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ABSTRACT

DANIEL B. FULLAGER. Theory, characterization and applications of infrared
hyperbolic metamaterials. (Under the direction of DR. MICHAEL A. FIDDY)

Hyperbolic Metamaterials (HMMs) are engineered structures capable of supporting light-

matter interactions that are not normally observed in naturally occuring material systems.

These unusual responses are enabled by an enhancement of the photonic density of states

(PDOS) in the material. The PDOS enhancement is a result of deliberately introduced

anisotropy via a permittivity sign-change in HMM structures which increases the num-

ber and frequency spread of possible wave vectors that propagate in the material. Sub-

wavelength structural features allow effective medium theories to be invoked to construct

the k-space isofrequency quadratic curves that, for HMMs, result in the k-space isofre-

quency contour transitioning from being a bounded surface to an unbounded one. Since

the PDOS is the integral of the differential volume between k-space contours, unbounded

manifolds lead to the implication of an infinite or otherwise drastically enhanced PDOS.

Since stored heat can be thought of as a set of non-radiative electromagnetic modes, in this

dissertation we demonstrate that HMMs provide an ideal platform to attempt to modify

the thermal/IR emissivity of a material. We also show that HMMs provide a platform for

broadband plasmonic sensing. The advent of commercial two photon polymerization tools

has enabled the rapid production of nano- and microstructures which can be used as scaf-

folds for directive infrared scatterers. We describe how such directive components can be

used to address thermal management needs in vacuum environments in order to maximize

radiative thermal transfer. In this context, the fundamental limitations of enhanced spon-
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taneous emission due to conjugate impedance matched scatterers are also explored. The

HMM/conjugate scatterer system’s performance is strongly correlated with the dielectric

function of the negative permittivity component of the HMM. In order to fully understand

the significance of these engineered materials, we examine in detail the electromagnetic

response of one ternary material system, aluminium-doped zinc oxide (AZO), whose tune-

able plasma frequency makes it ideal for HMM and thermal transfer applications. This

study draws upon first principle calculations from the open literature utilizing a Hubbard-U

corrected model for the non-local interaction of charge carriers in AZO crystalline systems.

We present the first complete dielectric function of industrially produced AZO samples

from DC to 30,000 cm−1 and conclude with an assessment of this material’s suitability for

the applications described.
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CHAPTER 1: INTRODUCTION TO HYPERBOLIC METAMATERIALS

1.1 A Brief History of Metamaterials

The field of metamaterials often traces its origins back to the notion of a negative index

of refraction in a synthetic structure presented by Veselago in 1968 [75]. In this seminal

work, Veselago showed using arguments from complex analysis that simultaneously nega-

tive values of permittivity (ε) and permeability (µ) allow for a negative index of refraction

in what he referred to as ”left-handed material” (LHM). The terminology for the LHM re-

ferrs to the anomalous refraction theoretically exhibited by a material with a negative index

of refraction. It was also shown that LHMs are capable of transferring evanescent modes as

propagating waves in the steady-state case. This is a direct result of the simultaneously neg-

ative values of ε and µ , which causes amplification rather than attenuation of evanescent

fields. It is worth noting for posterity that the notion of utilizing sub-wavelength devices

to manipulate electromagnetic waves, however, goes back much further [9, 5]. Veselago’s

observation was perhaps unrealizable for some time until Sir John Pendry published ”Mag-

netism from conductors and enhanced nonlinear phenomena” in 1999 wherein he detailed

a method for creating simultaneously negative permittivity and permeability in an artifi-

cial structure made from wires and split ring resonators [54]. The following year, Pendry

pointed out that the negative refraction predicted in [1] theoretically allowed for diffrac-

tion free imaging via a structure termed a ”super lens” [52]. It was later observed by Ravi



2

Hegde et al in 2011 that the this super-resolution forced one to pay the price of expo-

nentially increased imaging time to acquire a super-resolved image [28]. The lack of an

effective demonstration of a perfect lens led many to consider new designs such as the hy-

perlens and Pendry’s ”poor man’s super lens” [33, 84]. Simultaneous with Pendrys work

was that of David Smith. Rather than exclusively focusing on achieving negative index

of n = -1, Smith pursued achieving negative refraction, a phenomena which manifests the

desired behavior of negative index materials with less stringent criteria shown in Eq. 1.

The primed terms represent the real parts of ε and µ respectively, while the double primed

terms correspond to the imaginary parts.

µ
′
ε
′′
+ ε

′
µ
′′
< 0 (1)

The ideal platform, according to Smith, to achieve negative refraction (without negative

index) is an indefinite medium [62]. An indefinite medium is a material or system in

which effective medium theories are used to greatly simplify the analysis required to solve

Maxwell’s equations. In this work a composite material whose constituents are dispersed

or arranged on a scale such that they form characteristic features which are well below the

wavelength at which the system is designed to interact with is studied. By averaging the

individual material properties as a function of their volumetric contribution the correct and

desired optical response is obtained. The ’indefinite’ characteristic comes from the fact that

the sign of µ̃ or ε̃ must differ in at least one of three orthogonal basis directions. In the

simple case of a uniaxial material, this leads to fundamental differences in how light-matter

interactions can occur.
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Another possibility of satisfying inequality (1) which has received significant attention

from the RF-metamaterial community is to make the signs of µ
′′

and ε ′′ both negative. For

waves which proceed forward in time, i.e. of the form e− jωt negative values of µ
′′

and ε ′′

correspond to a gain in the system. In non-Foster circuits (circuits which violate Foster’s

Reactance Theorem) the gain is achieved by using negative impedance inverters which are

a special configuration of an operational amplifier. The notion of relaxed constraints for

achieving negative refraction combined with the technique of using engineered anisotropy

to manipulate the light-matter interaction in a material led to what are now called hyper-

bolic metamaterials [65]. The namesake owes its origins to the shape of the manifold in

momentum space which represents all the possible wave vectors in the material: a hyper-

bola.

1.2 Electromagnetic Waves and Uniaxial Crystals

The physics describing light-matter interaction in crystalline solids provides a sufficient

basis to understand the operation of HMMs. Furthermore, our knowledge of crystalline

optics is enhanced by the large body of work created by the superlattice community, which

contributes information about charge transport and the absorption spectra of very thin films.

To begin, we consider the Helmholtz equation solved in a material with a single optic axis

(a uniaxial crystal). The optic axis is the direction of propagation in a material which does

not cause the polarization to change. The polarization is maintained despite the permittivity

varying in one direction because the E-field sees an average of the two permittivities as a

function of the angle of incidence. This phenomena is discussed in detail in subsequent

sections.
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As is typical in optics, it is safe here to assume the magnetic permeability of the material

is approximately equivalent to that of free space. Throughout this document magnetic

response will be neglected unless explicitly mentioned. It is worthwhile to note that we

begin with Maxwells equations in point form as shown in equations (2-5) below. The

constitutive relationship between D and E shown in equation (6) is considered for the case

where the permittivity is not isotropic and therefore requires representation by a tensor.

∇×E =−∂B
∂ t

(2)

∇×H =
∂D
∂ t

+J (3)

∇ ·D = ρ (4)

∇ ·B = 0 (5)

ε̃E = D (6)

Following the method detailed in [58] we assume that the field quantities vary with

the position vector r as e− jk·r where k=kû. This results in equations (2) and (3) being

transformed into

k×E = ωµoH (7)

k×H =−ωD (8)

Substituting (7) into (8) results in

k×k×E =−ω
2
µoD (9)
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Substituting (6) into (9) then gives

k×k× ε̃
−1E =−ω

2
µoD (10)

The choice of using the electric displacement current flux density is made for convenience

since we know that D is implicitly orthogonal to û from (8). Using the additional constitu-

tive relationships η = εoε̃−1, n = k
ko

, ko = ω
√

µoεo then obtain the equation for projection

of the electric impermeability operating on the displacement current flux density below

−û× (û×ηD) =
1
n2 D (11)

We can then re-write (11) in the form of an eigenvalue problem

PuηD =
1
n2 D (12)

Such that Pu is the projection operator. From (12) we obtain an eigenvalue equation whose

eigenvalues are index values in the directions of the normal modes of polarization. In the

case of a uniaxial crystal, which is sufficient to describe the electromagnetic interaction in

a HMM, the effective index of refraction is a function of the angle formed between k and

the optic axis of the material is given by

1
n2

e f f ective(θ)
=

cos2(θ)

n2
o

+
sin2(θ)

n2
e

(13)

With an understanding of the index ellipsoid formulation for uniaxial crystals, we can then

turn our attention to obtaining the dispersion relations for the HMM. Substituting (6) into

(9) results in the equation needed to determine the dispersion relation between ω and k:
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ω(k1,k2,k3).

k×k×E = ω
2
µoε̃E (14)

The solution to (14) is three linear homogeneous equations which give the components of

E and is represented in matrix form as

In a uniaxial crystal n1 = n2 = no and n3 = ne therefore the above matrix simplifies to

(k2− k2
on2

o)

(
k2

1 + k2
2

n2
e

+
k2

3
n2

o
− k2

o

)
= 0 (15)

The grouped terms on the left correspond to free space propagation, therefore we consider

only the solution to (15) for the grouped terms on the right. Rewriting, we obtain

k2
1 + k2

2
n2

e
+

k2
3

n2
o
= k2

o (16)

which is the dispersion relation needed to determine ω(k1,k2,k3). Equation (16) is nor-

mally characteristic of an ellipse. Keeping in mind that for non-magnetic media n =
√

εr ,

we can replace the n2 terms with εr to obtain the desired result:

k2
1 + k2

2
ε⊥

+
k2

3
ε‖

= k2
o (17)

The notions of ordinary vs. extraordinary and parallel vs. perpendicular are interchanged

somewhat freely in HMM literature. The convention used in this document follows that of

Agranovich used in [1]. The labeling will be oriented such that the optic axis is normal

to the surface. This is typical of c-plane wurtzite crystalline materials. In the case of zinc
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blende or other more complex crystal classes, care must be taken to ensure that the surface

is at a known angle to one of the crystal planes so that the effective material parameters can

be determined.

1.3 HMM Physics and Theory of Operation

With a firm understanding of the wave mechanics of uniaxial crystals in mind, we turn

our attention to understanding the properties of HMMs and indefinite media. In order to

consider an engineered structure or material to be a uniaxial material, there must exist

two orthogonal directions in which the material properties are exactly equal and a third

direction in which they differ. In the event that all three orthogonal directions have different

material properties, the medium is biaxial rather than uniaxial and the previously developed

formulae fail to properly describe the system. As such we only consider uniaxial HMMs

herein. Two structures which have most frequently been platforms for studies of HMMs

are multi-layer thin film stacks and host-matrix-embedded wire arrays.

A B

Figure 1: Examples of uniaxial metamaterial. A) Multi-layer thin films arranged as a stack
or so-called type II HMM B) Wires embedded in some host material, otherwise known as
a type I HMM

In Fig 1 the two most readily realizable variants of uniaxial HMM structures are depicted.

Typically it is much easier to fabricate a type II HMM since depositing thin films is a much
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more common task than creating an ideally periodic array of uniform wires which are then

successfully embedded in some other material. As a result, a majority of the fabrication

equipment at most research facilities is more suited to the production of multi-layer HMMs

(Fig 1.A). While the analysis is interchangeable from type I to type II, the subsequent

discussion in this text often neglects the type I embedded wire configuration for simplicity.

Looking at Fig 1.A, let us consider the relevant parameters of the type II HMM. Ultimately

we will use (17) to determine the dispersion relationship as previously mentioned. The first

question that needs to be addressed, then, is what are the values of ε⊥ and ε||?

The notion of determining an effective crystalline thin film material parameter from mul-

tiple constituents with different properties originated in the superlattice community. The

effect of having multiple stacked layers of thin film semiconductor is studied in detail in [1]

amongst other places. The key results we wish to focus on are the methods for determining

the effective bulk material parameters. In equations (19) and (18) below we note there are

four parameters of interest. The thickness of the two materials are l1 and l2, respectively,

and ε1 and ε2 are their permittivities.

ε⊥ =
ε1l1 + ε2l2

l1 + l2
(18)

ε|| =

[
1

l1 + l2

(
l1
ε1

+
l2
ε2

)]−1

(19)

Now that we have the ability to create the permittivity we want from the materials we

have, we might think ourselves ready to jump into designing devices etc. However, of-

ten times we will wish to make our type II HMM out of materials which are themselves

anisotropic. When this happens there is an extra step involved in using (19) and (18) to
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determine (17). Luckily the analysis for a uniaxial metamaterial made from uniaxial crys-

talline constituents is identical. We then remove the added complexity by iterating through

the determination of (13) for each material and then combining parameters using the previ-

ously described method. This notion of ’bootstrapping’ the effective permittivity can also

be applied to HMMs with more than two constituents by a similar iterative process. Equa-

tion (20) below shows equation (17) used in conjunction with (18) and (19) to derive an

expression for the permittivity as a function of angle from the surface normal.

ε(θ)=


cos2(θ)

1
2

(
cos2(θ)

ε1O
+ sin2(θ)

ε1E

)
+ 1

2

(
cos2(θ)

ε2O
+ sin2(θ)

ε2E

) +
sin2(θ)

2
(

cos2(θ)
ε1O

+
sin2(θ)

ε1E

)−1
×
(

cos2(θ)
ε2O

+
sin2(θ)

ε2E

)−1(
cos2(θ)

ε1O
+

sin2(θ)
ε1E

)−1
+
(

cos2(θ)
ε2O

+
sin2(θ)

ε2E

)−1


−1

(20)

Establishing the condition that the critical period (the thickness of the layers in the case

of multi-layer HMMs) determines the maximum range of wave vectors which are well

described by (17) according to the relationship kmax ∝
1

tbi−layer
. This limitation is important

because it imposes a boundary on the domain of (17) which prevents the photonic density

of states from diverging.

The photonic density of states (PDOS) is the number of modes available in a medium to

which an EM wave can couple. The PDOS directly relates to the spontaneous emission life-

time via Fermis golden rule [56]. A numerical value for the PDOS in a material or structure

can be deduced by integrating the differential volume between isofrequency surfaces over

all frequency. The ability to tune the density of states in a material by engineering the ω

vs. k dispersion through the proper choice of materials and device configuration thus leads
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to the ability to engineer radiative decay rates and emission lifetimes. The usefulness of an

enhanced PDOS in a HMM is limited by the ability to access the high-k modes (HKMs)

by coupling power into and then out of a given mode. There may also be a potential for an

exchange of energy between HKMs which could lead to parametric effects. Initially, it was

shown that it was possible to couple the radiation from fluorescent materials into HMMs in

order to modify their fluorescence decay rates [36]. However, these modes are sometimes

referred to as dark modes as they do not typically re-radiate due to the lack of momentum

conservation at the boundary between a material that supports HKMs and a normal medium

[37].

For a wave to propagate out of a HMM the standard boundary conditions (22-25) from

which we derive Fresnels equations are applied. It is instructive to consider the case of the

vector Helmholtz operator acting on E (21) to examine the behavior at HMM boundaries

for the case of an inhomogeneous solution in this case. The model for the HMM is a

sheet of infinite extent whose material properties are only dependent on the angle formed

between the surface normal and the incident wave’s k-vector.

∇
2E+k2E = µo

∂J
∂ t

(21)

n̂× (E1−E2) = 0 (22)

n̂× (H1−H2) = J (23)

(D1−D2) · n̂ = ρbound (24)

(B1−B2) · n̂ = 0 (25)
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To obtain a valid solution for (21) it can be seen that (22) must be satisfied at the boundary

of interest. As such, the transverse components of E must be exactly equal. We can then

show that k ∝ E in order to deduce that the transverse momentum at the HMM-to-isotropic

boundary can only differ by a factor of µoJ. Since the value of µo is 4π × 10−7 H/m this

difference is only significant for weak fields or large surface current densities. A similar

argument for the necessary continuity of the k-vector at the HMM interface can be made

using Snells law. Using the argument that phase matching must occur at the boundary such

that the wave is continuously defined, it becomes implicit that ko sin(θi) = k sin(θt). It is

critical to remember that this relationship fails to hold for rays in the case where D is not

parallel to E as can be the case in a uniaxial material where the incident wave is not normal

to the optic axis. Thus, while we can see an equivalence between wave fronts and rays, the

interactions that take place in HMMs are best determined by solving Maxwell’s equations.

As we have obtained an equation for the k-space surface and the relationship between k-

space surfaces of different media for propagating waves we can then graphically represent

momentum exchange in HMMs.

Considering equation (17) for the case of free space, we obtain the familiar shape of

a sphere since free space is anisotropic, i.e. all the permittivity components are unity as

shown in Fig 2.A. Adding some discrepancy between one component of permittivity and

the remaining two leads to the ellipsoidal shape of Fig 2.B. Again adding more differentia-

tion to an individual component of the permittivity we then consider the case where one of

the components is different and negative. This is the necessary condition to obtain a type

I HMM from a uniaxial structure. The direction in which this component is negative for
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the case of the type I HMM must be along the optic axis. The consequence is an index

ellipsoid which is a surface of two sheets as can be see in Fig 2.C. The final case accounts

for when the two components of the permittivity orthogonal to the optic axis are negative

and the component normal to the optic axis is positive. This is a type II HMM which has

an iso-frequency contour of a single sheet shown in 2.D.

A B C D

Figure 2: Index ellipsoids (also known as isofrequency or k-space contours) for free space
and the three cases of uniaxial materials considered herein. A) Index ellipsoid construction
for free space or isotropic media (spherical) B) Index ellipsoid for an anisotropic material
with all-positive components of the permittivity (ellipsoidal) C) The type I HMM’s ’index
ellipsoid’ is actually a hyperbola of two sheets as a result of the normal component of the
permittivity being negative D) The type II HMM’s ’index ellipsoid’ is also a hyperbola,
though of a single sheet, as a result of the two transverse components of the permittivity
being negative

Having obtained the necessary manifolds to perform the vector projection from one index

ellipsoid to the other, we can then determine the electromagnetic interaction between two

regions with differing material properties. For the sake of simplicity one can also leverage

the implicit two coordinate symmetry of the uniaxial HMM index ellipsoid by considering

two dimensional cases which are appropriate for any given plane of incidence. There are

several special cases of index ellipsoid projection which are worthwhile to consider, as they

give interesting and sometimes unexpected results.
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For a type II HMM seen in Fig 2.D, the curvature of the index ellipsoid is a function

of the permittivity components that are orthogonal to the optic axis. As the values of

the transverse permittivity approach zero the hyperbola begins to resemble two parallel

planes as shown in Fig3.A with the transverse permittivity set to εr = −0.005. As the

values approach −∞ , the hyperbola approaches the geometry of a cylinder as shown in

Fig3.B with the transverse permittivity set to εr = −50. The implicit ability to engineer

the curvature of the index ellipsoid by choosing the right materials and volume fractions

thereof by using Eqn 18 and Eqn 19 allows for the arbitrary selection of wave vectors

with which an HMM can interact. This wave vector selectivity then becomes a function

of the angle of incidence from the surface normal, leading to the ability to direct outward

propagation from a HMM. This is one of the most important traits of HMM and is not seen

in any other type of metamaterial.

A B

Figure 3: Showing two cases of type II HMM with the transverse permittivity set to two
different values. A) HMM with a transverse permittivity of εr =−0.005. B) HMM with a
transverse permittivity of εr =−50. In both cases the normal component of εr is set to 1

Analogous to the preceding methodology, one can also consider the effect of varying the

normal component of the permittivity on the index ellipsoid electrodynamics for the type II
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HMM. The effect of changing the permittivity in the normal direction is a variation in the

waist of the type II index ellipsoid. Let us again consider the case of a HMM-to-free space

boundary where the normal component of the permittivity is set to εr = 0.5 as shown in Fig

4.A. Here we see that the waist of the HMM is actually more narrow than that of free space.

While permittivity is typically greater than unity, our ability to invoke Eqn 19 allows us to

freely create any value we choose provided the necessary material parameters are within

reason. One will also note that there is an intersection between the index ellipsoids of free

space and a hypothetical HMM shown in Fig 4.A . It is then easy to visualize how one can

select materials and fill fractions at a given frequency which create an arbitrary angle at

which the HMM transitions from being reflective to transmissive. Similarly, we are free

to increase the waist of the index ellipsoid such that the HMM is reflective at all angles

for all frequencies. The dispersion in the HMM, then, near a region where we have chosen

specific angles at which radiation in or out of the HMM is desired, dictates the rate at which

the angular selectivity will vary from the intended device profile.
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A B

Figure 4: Showing two cases of type II HMM with the permittivity normal to the HMM
surface set to two different values. A) HMM with a transverse permittivity of εr =−0.005.
B) HMM with a transverse permittivity of εr =−50. In both cases the normal component
of εr is set to 1



CHAPTER 2: HYPERBOLIC METAMATERIAL APPLICATIONS IN THE OPEN
LITERATURE

2.1 HMM Lenses for Super Resolution

The so-called ’hyperlens’ traces its origins to the birth of metamaterial. When the initial

attempts at achieving negative index super resolution did not live up to the theoretical pre-

dictions, the analysis of indefinite media led to the conclusion that high spatial frequency

information could be transferred via hyperbolic dispersion [33]. The important feature of

a hyper lens which distinguishes it as a unique application is the radial geometry which

allows for the support of spherical modes. Using the plane wave expansion

eikr =
n=∞

∑
n=−∞

inJn(kr)einφ (26)

any plane wave can be decomposed into an infinite series of Bessel functions with inde-

pendent phase. The high-k modes supported by HMMs are then analogous to the higher

order Bessel function terms of the series expansion. The task of super resolution, then,

can be though of as recovering the amplitudes and phases of the spherical modes and then

reconstructing the plane wave which corresponds to the far field image. It is shown in [35]

and elsewhere that the allowed modal structure in a normal cylinder only includes the first

few Bessel terms. With the analysis provided in section 1.2 one can infer that the effec-

tive medium equations 18 and 19 easily translate to the cylindrical coordinate symmetry
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Figure 5: Schematic depicting the ideal multi-layer configuration of a hyperlens. Note the
concentric multi-layer configuration which is unique to this device.

provided by 5 which yields

εφ =
ε1l1 + ε2l2

l1 + l2
(27)

εr =

[
1

l1 + l2

(
l1
ε1

+
l2
ε2

)]−1

(28)

In the regions where the signs of Eqns 27 and 28 differ the structure exhibits the pre-

dicted hyperbolic dispersion and acts to transfer high momentum waves at the center of

the lens towards its edge which simultaneously causes magnification. This effect has been

demonstrated but the range at which ’far field’ images can be obtained is in fact rather lim-

ited. Due to the necessarily compact size of the imaging system, the volume with which

the hyperlens device can interact is implicitly quite small.
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2.2 Passive Non-reciprocal HMMs

The notion of violating Helmholtz reciprocity has existed for some time, but has always

relied on active devices. Recently, Xu and Lezec showed that sub wavelength gratings

coupled to HMMs could be used to engineer the conversion from propagating mode to

evanescent mode back to propagating mode [80]. The drawback to their method was that

the choice of materials implicitly lacked ideal crystallinity and showed high loss even in

the transmitting direction.

Figure 6: Figure from [80] showing a simulation of the transmitted field through the asym-
metric grating HMM combination

The non reciprocity is achieved by the use of a pair of sub wavelength gratings that are

coupled to a HMM. The gratings serve to transfer momentum from propagating waves into

evanescent modes which are supported in the HMM according to Eqn 29. The reverse

process takes place at the back side of the structure but with one difference: the momentum

exchange at the second grating is not identical to the process that takes place at the first

grating because the gratings are non symmetric. This symmetry breaking in the propagating
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to evanescent conversion process leads to the non reciprocal effect.

While the loss is somewhat high, the potential for systems configured in such a manner

leads to a large number of applications such as true one way mirrors, passive optical iso-

lators, optical damage protection, and more. An issue that must be immediately overcome

with respect to this application is the choice of grating material. While metallic sub wave-

length gratings give the desired dispersion for transfer of evanescent modes in HMMs, they

also suffer from a large impedance value. This impedance mismatch that is an intrinsic

property of the grating leads us to seek other more efficient mechanisms to couple to/from

HMMs.
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2.3 Hyperbolic Metasurfaces

While the notion of metasurfaces goes back to the concept of geometric phase, or Pancharatnam-

Berry phase, the recent interest in sub wavelength electromagnetic devices created by the

metamaterials community has led to significant work in the area of metasurfaces. One of

the most notable figures working towards better understanding of the engineering of meta-

surface components is Prof. Federico Capasso. Capasso’s group first presented the notion

of using an array of sub wavelength folded dipole antennae to arbitrarily alter the phase of

a wave front from 0 to 2π to achieve the effects of conventional optics with flat surfaces

[2].

Figure 7: Figure taken from [2] showing how variation in folded dipole bend angle affects
relative phase

Flat optics have the advantage of reduced weight as well as reduced degrees of freedom

in fabrication. So while a metasurface designed to replace a conventional optical element

may be comprised of very fine features, it does not suffer from the complexity of charac-

terization inherent to free form optics. As free form optics is a rapidly growing sub-field of

optical engineering, the ability to produce metasurfaces with figures of merit that compete

with conventional optics opens a new market. There also exists the potential to retro fit
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existing technology with metasurfaces in order to decrease the weight of existing imaging

systems. For example, consider Fig 8. One can easily imagine how reducing the form

factor of a heavy telephoto lens to that of a single properly patterned silicon-on-insulator

wafer would offer incomparable advantages in optical design.

Figure 8: Metasurface enabled flat optics will allow for drastically decreased form factors
for optical systems.

Not all metasurfaces are plasmonic. One of the first researchers in the area of metasur-

faces, Prof. Erez Hasman, has produced results where he achieves interaction between a

metasurface and a laser which shows nearly 100% efficiency [50]. These polaritonic based

devices have a much greater device potential as the optical phonon resonances in solid state

materials drastically outweigh the electrical resonances leading to large positive permittiv-

ity values at certain bandwidths [63]. There is also a growing consensus that dielectric Mie

resonators provide an avenue for low loss directive metasurface components [73, 72].
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2.4 Hypercrystals

As previously mentioned, the field of metamaterial research began due to the lack of a

desired material response from naturally occuring materials. The design space of a typical

uniaxial HMM is essentially limited to a choice of frequency/bandwidth, choice of con-

stituent materials, and choice of spatial allocation/material fill fraction. While to most this

leaves an endless combination of possibilities and different material science and fabrication

challenges, the theoretician will always find a new degree of freedom which in the case of

HMMs is a hypercrystal.

Figure 9: Showing a schematic representation of a hypercrystal. Image taken from [49].

Having developed in detail the necessary formulations to derive the k-space index el-

lipsoids for HMMs, we observe that the only way to access the enhanced PDOS in many

cases is to use a grating or a dielectric cap layer and a specific angle of incidence to couple

to high-k modes. In [31] this limitation is discussed and a method to overcome the fixed

shape of the iso frequency contours in k-space is detailed. Combining the salient features
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of HMMs with 1D photonic crystals, one can superimpose the k-space properties of pho-

tonic crystals onto those of HMMs provided certain geometrical restrictions on the spatial

period of the individual feature sizes are met.

Figure 10: Showing a comparison between k-space index ellipsoids for a regular type II
HMM (left) and for a photonic hypercrystal made from the same HMM and another homo-
geneous material. Image taken from [49].

The photonic hypercrystal is a new idea championed by Prof. Evgenii E. Narimanov, one

of the leading contributors in the field of HMMs. It is unique in that it is an amalgamation

of two previously existing photonic devices which work as a result of different physical

phenomena. HMM response is a function of material choice and fill fraction which is all

well described within the effective medium limit. Photonic crystal response is a direct con-

sequence of Bragg scattering and the size scale of 1D photonic crystal elements approaches

the effective medium limit.

In [23] Fig. 11 the previously discussed difficulty in out-coupling is overcome via cou-

pling to the spatial features of the photonic crystal component of the hypercrystal.
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Figure 11: Showing a comparison between k-space index ellipsoids for a regular type II
HMM (left) and for a photonic hypercrystal made from the same HMM and another homo-
geneous material. Note the scale is log10 indicating PDOS enhancements on the order of
200. Image taken from [23].

2.5 HMM Plasmonics

With regards to research in electromagnetism, the only topic to recently receive as much

or more attention than metamaterials in the recent past is plasmonics. Invigorated by the

pressing need for miniaturizing computing hardware, improved sensing, and better EM

devices, plasmonics has been revitalized by technological advances in near field optical

microscopy and nanoscale fabrication techniques. Interestingly enough, the notions of

plasmonic sensors and hyperbolic metamaterials need not be mutually exclusive of each

other.

One of the challenges of coupling photons to electrons in order to form a surface plasmon

polariton is the aforementioned problem in coupling to the high-k modes on the surface

plasmon polariton dispersion curve which correspond to strongly confined modes stored at

the same frequency as the incident radiation in an electron oscillation whose spatial period

decreases with increasing transverse momentum. As discussed, a similar problem exists
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Figure 12: Cartoon depicting the notion of a vertically aligned free-carrier concentration
gradient allowing for broad band absorption. Note how the long wavlength (red) penetrates
the entire stack because the energy of the red photon is below the bandgap of the preceding
layers.

for HMMs and thus a similar solution is likely to be a remedy.

In Fig. 22 the absorption characteristics of a high quality surface plasmon mode are

depicted. Essentially, at frequencies where the (metallic/conductive) material of interest

has a low loss and a large magnitude of the real part, we can find an angle of incidence

for a given frequency which results in nearly perfect absorption as well as the formation

of surface plasmon modes. To overcome the combined issues of angular acceptance and

low-loss regions with limited bandwidth, we note that multi-layer HMMs whose metallic

constituents are arranged to give a gradient in carrier concentration decrease the angular

selectivity and increase the availability of the various low loss regions that correspond to

the appropriate plasma frequencies in the material. This platform will likely see some form

of realization as it is one of the few currently available mechanisms to achieve broad band

low loss plasmonics without the use of a grating structure.



CHAPTER 3: REVIEW OF PUBLISHED DATA

3.1 Epitaxial HMM Fabrication and Characterization

Recent progress in the area of HMMs has sparked interest in transparent conductive ox-

ides (TCOs) that behave as plasmonic media in the near-IR and optical frequency range for

imaging and sensing applications. It has been shown that by depositing alternating layers of

negative-epsilon/positive-epsilon materials, a medium can be created whose index can be

tailored to be near zero. Modeling structures with sub-unity-magnitude indices of refrac-

tion reveals properties that enable evanescent fields containing sub-wavelength information

to be coupled to propagating radiation. We investigate the optical, electronic, and physical

properties of radio frequency plasma-assisted molecular beam epitaxial (RF-MBE) growth

of alternating layers of ZnO and TCO of uniform thickness for HMM applications. Prelim-

inary work creating ZnO and Al-doped ZnO (AZO) has shown a negative real part of the

permittivity at near-IR whose modulus is proportional to the number density of Al dopant.

However, increasing the Al content of the AZO increases the transmission losses to unac-

ceptable levels for device applications at industry standard telecommunication wavelengths

e.g. 1.33 µm and 1.55 µm. A TCO with conductivity and physical structure superior to

that of AZO is gallium-doped ZnO (GZO). Properly grown GZO has been demonstrated to

possess improved crystal quality over AZO due to the higher diffusivity of Al in the ZnO.
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At the time this work began (mid 2012), ZnO had begun to receive significant attention

from the HMM and plasmonics communities as a semiconductor material of interest. It

may also be a result of coincidence, as many of the well-recognized names in semicon-

ductor HMMs are also familiar to anyone working in the field of transparent conducting

oxides. We began by using the MBE facilities at UNC Charlotte to try and evaporate zinc

in an oxygen plasma ambient to grow ZnO on sapphire (α-Al2O3). The use of an effusion

cell proved to be somewhat problematic for our reactor’s configuration and so an experi-

ment was attempted where the MBE’s electron beam evaporator was loaded with a crucible

full of 7N (99.99999%) pure zinc. This technique delivered much better results than the

use of the effusion cell and eventually reasonable quality thin films were obtained. The

doping of the zinc was accomplished by evaporation of gallium from an effusion cell. To

create the doping gradient, the gallium cell is tuned on and off as the electron beam crystal

thickness oscillator counts the approximate deposition rate. Further details of the growth

procedure are detailed elsewhere [20].

After growth the samples were subjected to a full array of characterization techniques in-

cluding Hall effect, XRD, FTIR spectroscopy, IR and VIS ellipsometry, and SEM w/EDAX

(Energy Dispersive Analysis X-ray). The conductivity data combined with information

from the spectral characteristics of the ZnO/GZO thin films allows us to infer a reasonable

amount of information about the doping mechanisms and plasma frequency of the material.

The process of characterizing the IR properties of our HMM begins with having a com-

plete knowledge of the optical properties of our c-plane sapphire substrate. The properties

of sapphire being relatively well known in the literature, values for n and k were easy to
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obtain by fitting the ellipsometry data. Shown below in Fig 13 is the plot of the obtained

values.

With the optical substrate properties in hand, we can then turn our attention to attempting

Wavelength in µm

Figure 13: Ellipsometry of bare c-plane sapphire showing the index of refraction (blue) and
extinction coefficient (red) from 2 to 40 µm

to characterize the HMM. Though determined in hindsight, the proper method for char-

acterizing a HMM by variable angle spectroscopic ellipsometry (VASE) would follow the

following procedure:

1. Identify the candidate materials to be used as multi-layers components and substrate

2. Characterize the substrate using VASE

3. Measure the surface RMS roughness of the substrate by AFM

4. Measure the substrate diffraction peak by XRD

5. Deposit a thin film of each of the candidate materials on the same type of substrate
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6. Measure the surface RMS roughness of each film my AFM

7. Measure the strain/relaxation of the films by XRD

8. Characterize the individual films by VASE

9. Deposit one of the materials on the other and characterize by VASE

10. Measure the surface RMS roughness of the bi-layer by AFM

11. Measure the stress/strain of the bi-layer by XRD

12. Proceed to develop a multi-layer HMM by repeating this process until the contribu-

tion of each step to the end result is well understood

With the data available from the bare substrate we then characterize a 16-layer HMM

made of ZnO and GZO on c-plane sapphire by VASE. To fit the HMM on a substrate, an

attempt was made using the WVASE software to subtract the substrate from the HMM. This

is in fact a very challenging task in the mid-to-far-IR spectrum due to complex scattering

and interactions with optical phonons. Past 20 µm the results shown in Fig 14 below may

not be accurate as the FTIR resolution decreases with increasing wavelength.

In order to ascertain a reasonable estimate of the accuracy of our VASE results, we turn

to a Perkin-Elmer FTIR. Though only available at normal incidence, the FTIR can let us

known whether or not there are significant errors in our data. It is also advantageous in that

it gives an immediate result which requires no interpretation.
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Wavelength in µm

Figure 14: Ellipsometry of 16-layer ZnO/GZO HMM showing the index of refraction
(blue) and extinction coefficient (red) from 2 to 40 µm

Figure 15: FTIR of 16-layer ZnO/GZO HMM (red) and bare sapphire (blue) substrate
showing reflection (top) and transmission (bottom) from 2 to 22 µm. Y-axis is measured
signal intensity relative to a gold mirror reference, x-axis is wavelength in µm.

Looking at Fig 16 we can see that both results are in good agreement. There are noticable

differences between the FTIR and VASE results, but they are direct consequences of the

difference between the resolution of the two systems and angle of incidence. It is important

to note that the reflection and transmission values from the ellipsometer are actually derived
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Lambda in µm

Figure 16: FTIR of 16-layer ZnO/GZO HMM and bare sapphire substrate (top) compared
to VASE scan (bottom) of 16-layer HMM and sapphire substrate from 2 to 25 µm. Y-
axis is measured signal intensity relative to a gold mirror reference for the top graph and
calculated reflectance from VASE analysis on the lower graph, x-axis is wavelength in µm

from the extracted n and k values using the method detailed in [17] whereas the FTIR

directly measures transmission and reflection. It is thought that the spike in the VASE

plot near 10 µm can be attributed to unincorporated metal particles which exist in both the

HMM and the sapphire substrate. As such, we’re confident that we have a good estimate

of the IR optical properties of our HMM as fabricated.

Continuing the notion of push button characterization, Fig 17 shows a plot of the ab-

sorption determined by 1-T-R=A. While there are some discrepancies due to scattering,

one can see that the measured absorption is in agreement with the preceding reflection and

transmission data.
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Figure 17: Showing plot of absorption vs wavelength from 2 to 40 µm determined by
subtracting measurements of R and T for angles of incidence of 40-70 degrees

2θ −ω Lambda (nm)

Figure 18: 2θ −ω XRD scans of HMM structures showing ZnO (002) peak at approxi-
mately 34.5 degrees (left) Photoluminescense of HMM excided by HeCd laser (right)

Fig 18 shows 2θ −ω plots from a Panalytical Xpert Diffractometer which reveal both

strained and relaxed polycrystalline phases of ZnO/GZO. The strong peak at 38o is from

the substrate. It is instructive to consider the properties of the crystalline lattice of a semi-

conductor as strain can act as a doping mechanism, especially in ZnO [46]. Sometimes

called strain-induced doping, this apparent change in the free carrier concentration causes

us to adjust our estimates of the effect of doping on the material’s electrical and optical
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properties. Also in Fig 18 to the right of the XRD data is a photoluminescense plot of the

HMM illuminated with a HeCd laser. The large spike at 320nm is the laser, the small bump

at 400nm is the only photoluminescent carrier recombination observed. This is presumably

due to an extremely small minority carrier concentration as well as low mobility and poor

quantum efficiency typical of a polycrystalline film.

Figure 19: EDS plot with superimposed SEM image of HMM surface. Note the zinc
particles which dot the surface. These inclusions are incompletely evaporated zinc from
the electron beam.

In Fig 19 above, the EDS plot and SEM image are shown for the 16-layer ZnO/GZO HMM.

The use of electron spectroscopy to determine stoichiometry proved to be problematic in

multi-layer thin films. EDS is ideal in a scenario where a relatively thick film is on a bulk

substrate with an entirely different composition. The case where we have multiple very

thin films on a substrate which shares a common element with the film is the worst case

scenario for this method.

The other aspect of our group’s work with HMMs at UNC Charlotte consists of FEM

simulations of HMMs with a similar configuration to those that we have fabricated. Our

intent is to show good agreement between our experiments and our simulation work to
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verify that we have a firm understanding of the physics and material properties at play.

The simulation work began in Singapore as part of a NSF sponsored initiative to encourage

international collaboration. We began by modeling 16-layer ZnO/GZO HMMs in CST

Microwave Studio for the purpose of studying the transport of high-k modes in HMMs.

Figure 20: Two simulation results for the electric field in 16-layer ZnO/GZO HMMs for
high and low loss regions of operation. Note the enhancement of the field in the lower
picture indicating enhanced transmission of high-k modes

Once the CST simulations predicted reflection and transmission values that were ap-

proximately equal to those which were measured for the real-world HMM structure, the

simulation parameters were then considered to be representative of the actual values. A

keen eye will also notice the presence of a pair of thin black lines on the front and back

surfaces of the HMM. In order to study the interaction of evanescent modes in a FEM

solver which is using Maxwell’s equations, one must first address the challenge of creating

those evanescent modes. One method of creating evanescent fields is to drive a waveguide

below its cutoff frequency. However, the complexity added to the problem by convolving

the waveguide’s modal response with that of our material under test makes this method
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undesirable. Our desired solution, then, is to create evanescent field in the HMM by using

a subwavelength grating. Subwavelength gratings act like normal diffraction gratings with

the exception that all but their 0th order modes are evanescent. The normal equation which

describes the effect of a diffraction grating on the wave vector is

k = ko±
2πn
Λ

(29)

where k is the free space wave vector at the interface, n is a positive integer, and Λ is the

spatial period of the grating. It is critical to keep in mind that the simultaneous addition

and subtraction of this momentum is conducive to momentum conservation. However, the

grating adds virtual momentum which causes the relationship between the wave vector in

free space and the wave vector in the HMM to differ. This fact is key to our desired result:

a method for determining and subsequently engineering the evanescent mode interaction in

HMM. Since the spatial period defines the transverse momentum, we can vary the spatial

period to obtain the dispersion for evanescent waves in HMMs for our specific material

combination. The final result is Fig 21 below.

By running nested parameter sweeps in CST which iterate through frequency as well as

the spatial period of the grating seen in Fig 20, we assemble the data set required to produce

the above image. The data was compiled as a 2D array of scalar data in MATLAB and then

plotted as shown. The bright yellow band which intercepts the x-axis at approximately

kx
ko

= 1.25, represents the usable transmission window for this HMM in which evanescent

modes can be transferred effectively.
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Figure 21: Normalized transmission plot for 16-layer ZnO/GZO HMM from 30-300 THz
(y-axis) as a function of the normalized transverse momentum parameter kx

ko
(x-axis).

Recently the potential for using surface plasmon resonance for sensing and sub-wavelength

optical communication has emerged as one of the most popular topics in material science

and optics. Surface plasmons offer an unrivaled advantage in their ability to maintain the in-

formation encoded in the wave functions of propagating EM waves as electron oscillations

that have a spatial period which is shorter than the free space wavelength of the EM wave

they are driven by. This is a classic example of a polariton, which is a strongly coupled

light-matter interaction. As a result, surface plasmon polaritons provide one of the only

systematic mechanisms with which the diffraction limit of light can be overcome. Since

plasmonic devices can be used for a wide range of applications it was natural to investigate

whether or not HMMs are useful as plasmonic media.

Using COMSOL’s RF Module, the same dispersion relations from the aforementioned

CST simulations were used for the sake of making comparisons between CST and COM-

SOL. At the same time an effort was begun to see if surface plasmon resonance was a
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Figure 22: Showing a plot of the electric field enhancement due to the formation of a
surface plasmon resonance (left). Note the incident field to the left is almost invisible due to
the dynamic scaling of the E-field range. On the right is a reflection (blue) and transmission
(green) plot for the surface plasmon resonance shown on the left. Note the very sharp and
narrow dip in the reflection and the nearly perfect absorption which correspond to the angle
at which the surface plasmon resonance is a solution to Maxwell’s equations

phenomena that COMSOL could predict. Before continuing, we offer a brief summary of

the representations used herein for dealing with plasmon polaritons. Beginning with Eqn

30, which is derived in detail in [17] we can draw on some simple mathematical observa-

tions to gain physical insight into the material properties which give rise to surface plasmon

polaritons. This is the equation for a simple metal-dielectric interface and gives some in-

sight as to why it is important to keep coupling efficiency in mind when considering surface

plasmon polaritons.

kSP = ko

√
εDεM

εD + εM
(30)

We initially know that the wave vector which describes an evanescent field is character-

ized by its imaginary part. Therefore, we expect the net result under the radicand to be

negative. In principal this occurs when the magnitude of εD is greater than the magnitude
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of εM. Without any grating or other coupling structure surface plasmons only exist when

dispersion relations of the metal and dielectric provide a bandwidth over which |εM|< |εD|

and εM · εD < 0. The dependence of surface plasmon polaritons on the loss term of the

permittivity at flat metal-dielectric interfaces is all confirmed by COMSOL as lossless ma-

terials will not reveal the field enhancement characteristic of surface plasmon resonance

shown in 22 as well as in [82]. These results are also noteworthy because they show that

a simple flat dielectric surface with a non-unity index can be used to couple to surface

plasmon modes at a narrow range of angles. This allows one to utilize the latest nano

manufacturing techniques to tune polymers by doping and photo polymerization to realize

gradient index dielectric nanostructures to couple into plasmon modes for sub-wavelength

free space to plasmonic couplers.

In a FEM solver, surface plasmons appear as periodic sinusoidal variations in the electric

field intensity at a flat interface. They are strong enough to cause the incident radiation that

formed the plasmons to be almost invsible due to dynamic range issues in the displayer

scaling as shown above in Fig 22. The attempt at obtaining strong surface plasmon response

in the 16-layer ZnO/GZO HMM did not yield an encouraging result in COMSOL. The

evanescent field enhancement favors a low index material on the back side of the interface

to maximize the momentum discrepancy giving rise to the surface plasmon condition. This

adds another degree of complexity to designing HMMs for multi-layer plasmonics. In

the future, mitigating loss mechanisms and remembering the existence of surface plasmon

resonance will serve anyone working with HMMs well. The conclusion drawn is that at

present the loss in our structure is undesirably high in the region where our HMM has its
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type-II characteristics. This naturally leads to the discussion of HMM electrodynamics and

usable HMM bandwidth.

Having identified the necessary condition to obtain a hyperbolic dispersion profile, one

is still left with the contents of the periodic table as the limiting design space for the choice

of HMM materials. To begin to understand the properties of ZnO and GZO in the infrared a

literature search was initiated to look for phonon resonance frequencies and damping rates.

In the mid-to-far infrared range, the coupling of photons to phonons becomes the dominant

absorption mechanism [45]. Furthermore, the responses of optical phonons in crystalline

thin film materials are known to be isotropic and different from the bulk value [8]. Using

the data available from [10, 45, 8] Fig 23 shows the dispersion relations for the normal and

transverse components of the permittivity that were obtained by iteratively adjusting the

damping rates and resonance frequencies until the simulated reflection and transmission

spectra were in good agreement with the experimental data.

It is worthwhile to note that the phonon resonance frequencies can have a significant

effect even microns away from the absorption peak. This is a result of the FWHM of the

phonon resonance, which is a function of the microstructure of the film in this case. With

the dispersion relations in hand which accurately represent our 16-layer ZnO/GZO HMM

on sapphire, we can then check to see in which frequency ranges our material behaves as a

HMM.

The HMM mode of operation was determined with a simple routine in MATLAB which

checked the signs of ε⊥ and ε|| as a function of frequency. The ranges over which ε|| is
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Figure 23: Showing real and imaginary components used to form the permittivity ten-
sors for the 16-layer ZnO/GZO HMM. X-axis is wavelength in µm. Y-axis is in units
of Farads/meter. e1 and e2 denote the real and imaginary parts of the dielectric function,
respectively.

Material Mode Range (µm)
normal 2.0 - 9.09
type I 9.09 - 10.56

normal 10.60 - 10.83
type II 10.87 - 13.39
normal 13.43 - 24.35
type II 24.39

negative and ε⊥ is positive are labeled as type I HMM while the opposite correspond to a

type II in accordance with the conventions previously used within this document and the

open literature. To the uninitiated working in mid-to-far IR optics, the ranges over which

the permittivity can vary can be somewhat shocking. In the visible a permittivity of 10

could be considered reasonably high. Near a sharp optical phonon absorption peak, the

swing in the real part of the permittivity can be on the order of hundreds of F/m.
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Due to the strongly polar nature of the chosen materials, the anisotropy in the infrared

spectrum is rather strong. For the case of HMMs, this is desirable. Anisotropy is a critical

requirement for indefinite media and stronger the anisotropy, the more dramatic the HMM

properties.
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Figure 24: FLIR-IR Thermal images of gold diffraction gratings on 16-layer ZnO GZO
HMM

The last step taken in this research at present was the fabrication of 50/50 duty cycle 2µm

grating structures made of gold on top of our HMM structures in order to attempt to observe

enhanced radiation through grating-coupled high-k modes. Fig 24 shows 6 IR images taken

from a FLIR IR camera. The top sample is a control made from homogeneous GZO while

the bottom sample is a 16-layer ZnO GZO HMM with a 2µm grating. In the background
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one can see the heat sink onto which the Peltier heater is mounted. The samples sit on a

sapphire wafer identical to the one on which the samples are prepared. This serves as an

additional experimental control. In the top left picture one can see that there are parts of

the HMM sample which appear to the camera to be as hot as the Peltier heater which acts

as the thermal source. This is an interesting result which indicates that future work should

focus on studying the underlying physics behind the grating to HMM coupling interactions

which are most likely responsible for the effect.

3.2 HMM Colimators

Having fabricated and characterized GZO/ZnO HMMs, the next logical step was to de-

velop a device which demonstrated the unique, intrinsic properties of HMMs. As previ-

ously mentioned, a type II HMM will act as a perfect metal along the direction matching

the surface normal. In contrast, the type II HMM acts as a lossy dielectric in the plane

of the film. This is readily apparent from examining the projection from a bounded k-

space isofrequency contour to the HMM hyperboloid. To provide a predictive illustration

of the bulk electromagnetic directivity of type II HMMs, a simple COMSOL simulation

was executed in order show the effects of the generalized reflection coefficient equations at

a boundary where the index of our material is less than unity.

rTE =
η2sec(θ2)−η1sec(θ1)

η2sec(θ2)+η1sec(θ1)
(31)

rTM =
η2cos(θ2)−η1cos(θ1)

η2cos(θ2)+η1cos(θ1)
(32)

Equations (31) and (32) show the generalized reflection coefficients where loss may be

considered. Sometimes mistakenly identified as Fresnel’s equations, it should be noted
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that these coefficients are in terms of complex impedance (η =
√

µ

ε
) rather than index, and

are implicitly more physically meaningful when dealing with boundaries. While the two

may seem interchangeable under the proper transformations, it can be shown that index of

refraction only relates to the steady state phase compression of an electromagnetic wave in

a material. To be clear, this means that index of refraction is of questionable use for the

evaluation of transient phenomena if there is any appreciable absorption in the system of

interest. Transient electrodynamic phenomena are best modeled using impedance boundary

conditions.

3.3 Direct Laser Writing

Direct laser writing via two photon polymerization has enabled previously unavailable

degrees of freedom in the additive fabrication of micro-to-meso scale structures. The struc-

tures produced by these techniques are ideally suited to create optical devices which operate

from the THz regime to the near infrared spectrum into the visible spectral range. Here we

report on the infrared dielectric response of two monomers IP-Dip and IP-L after polymer-

ization which are frequently employed in commercial two photon lithography tools from

Nanoscribe over the spectral range of 250 cm−1 to 6000 cm−1. A parameterized dielectric

function model is presented and discussed.

The advent of commercially available nanoscale 3D direct laser writing (3D-DLW) sys-

tems has led to a rapid expansion of the application space available to researchers employ-

ing additive manufacturing techniques for the fabrication of 2D and 3D structures with

features ranging from the nanometer to millimeter scale. Initially, the fields of structural

and acoustic mechanics were the central focus of publications reporting on the properties
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of materials produced by 3D-DLW processes. A representative example of this initial ef-

fort is the work by Bückmann et al. where it has been shown that 3D-DLW of polymer

structures can lead to materials which can cloak mechanical motion [6]. Recently it has

been demonstrated that two photon polymerization can provide base elements from which

materials exhibiting mechanical strengths that approach the theoretical maximum of the

constituent materials can be created [3].

Interestingly, the characteristic feature scales that make the 3D-DLW processes attrac-

tive for mechanics and acoustics also lend themselves to the design of long wavelength

optical components such as printable optoelectronics, THz imaging and sensors, infrared

optical devices, etc. This relatively new application of additive manufacturing processes

for the fabrication of designed optical materials may have significant impact as early works

have already demonstrated that printable optical interconnects exhibit performance that is

suitable for industrial telecommunications applications [41, 60]. More recent works have

shown very encouraging results on materials and devices for the mid-infrared spectral range

for instance broadband dichroic circular polarizers and photonic crystals with measurable

band gaps [30, 55].

In addition to the advancement of optical components in the infrared spectral range, it

has been demonstrated that with care, two photon lithography can be extended toward the

realization of components intended to work in the visible spectrum. One example is the

use of structures fabricated by 3D-DLW in order to realize a plasmonic control of liquid

crystals [18].
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Although there is a rapidly growing effort to apply 3D-DLW techniques to fabricate

materials for THz and infrared applications, accurate infrared dielectric function data on

the some of the most commonly used monomers have not yet been reported. This hinders

both the understanding of the scattered fields from structures designed to operate in the

infrared in measurement and simulation as well as the simulation-based design of materials

with novel properties.

In this dissertation we report on the first mid-infrared ellipsometry experiments to deter-

mine the complex dielectric function of two polymerized monomers which are frequently

used in the Nanoscribe 3D-DLW process named IP-Dip and IP-L [48]. These monomers

have different viscosities, indices of refraction, and intended uses. IP-Dip is recommended

for use in standard and inverted 3D-DLW configuration. IP-L can be used in an inverted

oil immersion configuration wherein the laser beam writes through a transparent substrate

into the IP-L. A parameterized model dielectric function is derived and discussed.

The samples investigated here were prepared by means of spin coating IP-DIP and IP-L

at 5000 rpm for 4 minutes. Highly-doped (ρ ' 0.003 Ω·cm), 4 inch < 100 > silicon wafers

were used as substrates according to the best practices detailed in [68]. Prior to the spin

coating the substrates were carefully cleaned by immersion in CMOS grade acetone for

5 minutes followed by a DI rinse and 5 minutes of immersion in CMOS grade methanol.

Afterward, each substrate was dried manually with nitrogen, cleaned in a 3:2 mixture of

96% sulfuric acid and 30% hydrogen peroxide for 20 minutes, and then thoroughly rinsed

in DI water. After the spin coating the adhered monomers were polymerized in a UV oven

over the course of 30 minutes. The sample preparation was carried out in a class 100 clean
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room to ensure purity of the films.

The cured IP-Dip and IP-L polymer film samples were measured on a commercial in-

frared ellipsometer (Mark I IR-VASE R©, J.A. Woollam Company). The instrument is equipped

with a Boman FTIR source and a DTGS detector and operates in a classical rotating polar-

izer - sample - rotating compensator - rotating analyzer configuration as is detailed in [19].

Ellipsometric Ψ and ∆ data were acquired over the spectral range from 250 to 6000 cm−1

with a resolution of 2 cm−1 at three angles of incidence: Φa = 60◦, 65◦, and 70◦. The quan-

tities of interest, Ψ and ∆, represent the ratio of reflected transverse magnetic to transverse

electric polarizations and the relative optical path difference, respectively. The measure-

ments were carried out under normal ambient conditions while the room temperature was

kept at approximately 21◦C.

The optical modeling and data analysis was carried out using a commercial ellipsometry

data analysis software package (WVASE32TM, J.A. Woollam Company). The complete

ellipsometric data set obtained for each sample was fit to a stratified layer optical model.

The optical model consists of ambient/polymer thin film/Si substrate. Separate parameter-

ized dielectric function models were employed to describe the infrared optical response of

IP-DIP, IP-L, and the doped Si substrate.

The infrared dielectric functions of both IP-Dip and IP-L are described here using a

mixed oscillator model which was first introduced by Synowicki and Tiwald [67]. Synow-

icki and Tiwald demonstrated that combinations of oscillators with Gaussian and Lorentzian

broadening can be combined with Tauc-Lorentz oscillators in order to describe the dielec-

tric response of different materials over a wide spectral range from the infrared to the
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vacuum ultraviolet [67] using functions with physically relevant parameters. The advan-

tage of phenomenological mixed oscillator models is that typically a reduced number of

parameters is required in order to accurately describe the experimentally observed opti-

cal response. Here we employ a combination of oscillators with Gaussian and Lorentzian

broadening to describe the infrared dielectric function of IP-Dip and IP-L monomers after

polymerization:

ε = ε1 + iε2 =

ε∞ +∑
i

Lor(A,Γ,ω0)+∑
i

Gau(A,Γ,ω0),

(33)

where the functions Lor(A,Γ,ω0) and Gau(A,Γ,ω0) indicate oscillators with Lorentzian

and Gaussian broadening, respectively. The oscillator amplitude, broadening, and reso-

nance energy are indicated by A, Γ, and ω0, respectively. It will be demonstrated in the

following section that IP-Dip requires a combination of 27 Gaussian and Lorentzian oscil-

lators while IP-L required only 15 of the same two oscillator types.

Equations (34) and (35) show the Lorentzian and Gaussian forms for the imaginary part

εLor
2 (ω) and εGau

2 (ω) of the complex dielectric function ε(ω), respectively:

ε
Lor
2 (ω) =

A Γ2ω0 ω

(ω2
0 −ω2)+Γ2ω2 , (34)

ε
Gau
2 (ω) = Ae−(ω−ω0/ f ·Γ)+Ae−(ω+ω0/ f ·Γ), (35)

where 1/ f = 2
√

ln(2). The corresponding values for εLor
1 and εGau

1 are obtained by Kramers-

Kronig integration of Eqs. (34) and (35) during the Levenberg-Marquardt analysis of the

calculated Ψ and ∆ data relative to the experimental values.
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Figure 25: (A) and (C) Experimental (dashed green line) and best-model calculated Ψ data
(solid red line) for the monomer IP-Dip (A) and IP-L (C) obtained at Φa = 65◦. Vertical
dash marks in (A) and (C) indicate the oscillator center energies listed in Tab. 1 and Tab. 2
below. (B) and (D) Experimental (dashed green line) and best-model calculated ∆ data
(solid red line) for IP-Dip (B) and IP-L (D) obtained at Φa = 65◦.

The infrared dielectric function of the doped Si substrates is described using a clas-

sical Drude response where the resistivity ρ and the scattering time τ are accessible fit

parameters. For the Si substrate which was used for the IP-Dip sample we obtained

ρ = (0.0031±0.0001) Ω·cm and τ = (13.7±0.2) fs. For the Si substrate which was used

for the IP-L sample we obtained ρ = (0.0032±0.0001) Ω·cm and τ = (13.1±0.1) fs.

Figure 25 depicts the experimental (dashed green lines) and best-model calculated (solid

red lines) for Ψ (shown in (A) for IP-Dip and (C) for IP-L) as well as for ∆ (shown in (B)

and (D)) of polymerized IP-Dip and IP-L obtained at Φa = 65◦. Note that while the data

obtained at all three angles of incidence where analyzed simultaneously only the data for

Φa = 65◦ are shown here for clarity. An excellent agreement is found between the exper-

imental and best-model calculated data, which are virtually indistinguishable in Fig. 25.

Both IP-Dip and IP-L show a very similar infrared optical response where strong absorp-
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Tab. 1 and Tab. 2 show the best-fit mixed oscillator parameters for the dielectric response of
IP-Dip (left) and IP-L (right) from 250 to 6000 cm−1. The oscillator energy ω0, amplitude
A, and broadening Γ are given in units of cm−1. The letters ‘G’ and ‘L’ next to the oscillator
number indicate whether the oscillator is Gaussian or Lorentzian. The best-fit value for ε∞

is ε∞ = 2.37±0.01 for IP-Dip and ε∞ = 2.22±0.01 for IP-L. Error bars in parentheses [last
digit(s)] represent the 90% confidence limits of the oscillator parameters shown above.

Table 1: IP-Dip best-fit oscillator parameters

i ω0 A Γ

1 G 264 (13) 0.242 (6) 345 (26)
2 L 607 (5) 0.066 (4) 174 (16)
3 G 701.00 (3) 0.056 (4) 8.9 (8)
4 G 732.7 (7) 0.028 (5) 9 (2)
5 L 753.4 (4) 0.144 (3) 28 (2)
6 L 809.4 (3) 0.16 (1) 8 (1)
7 L 830 (4) 0.038 (5) 52 (11)
8 L 981.9 (9) 0.15 (1) 22 (4)
9 L 1018 (12) 0.18 (1) 141 (17)

10 L 1063 (1) 0.46 (3) 21 (3)
11 G 1113 (2) 0.15 (4) 32 (6)
12 L 1158 (3) 0.5 (3) 38 (10)
13 G 1188 (11) 0.5 (1) 59 (18)
14 L 1255 (1) 0.63 (3) 39 (5)
15 G 1291 (1) 0.12 (2) 24 (3)
16 G 1365 (4) 0.08 (6) 99 (12)
17 L 1408.8 (4) 0.22 (1) 12 (1)
18 G 1459.2 (6) 0.136 (4) 44 (1)
19 L 1507.7 (2) 0.11 (3) 7.9 (4)
20 L 1659 (1) 0.0586 (9) 169 (5)
21 G 1731.7 (1) 0.876 (4) 35.2 (2)
22 L 2420 (35) 0.0087 (1) 2495 (127)
23 L 2884 (2) 0.021 (2) 48 (6)
24 L 2930 (2) 0.025 (4) 51 (12)
25 G 2963 (1) 0.041 (5) 40 (3)
26 L 3062 (14) 0.0046 (4) 190 (31)
27 L 3503 (3) 0.0198 (4) 201 (6)

Table 2: IP-L best-fit oscillator parameters

i ω0 A Γ

1 G 289 (8) 0.279 (4) 552 (10)
2 L 1050 (1) 0.342 (4) 143 (3)
3 L 1154.3 (8) 0.35 (2) 43 (3)
4 L 1211 (2) 0.64 (4) 77 (6)
5 L 1259 (3) 0.27 (5) 54 (7)
6 G 1362 (6) 0.089 (6) 105 (7)
7 L 1399 (1) 0.08 (1) 35 (7)
8 G 1459.6 (3) 0.142 (2) 36.0 (5)
9 L 1633.4 (6) 0.0474 (8) 64 (2)

10 G 1729.80 (9) 0.89 (2) 35.1 (2)
11 L 1731.9 (4) 0.21 (2) 58 (3)
12 L 2685 (11) 0.01214 (9) 1781 (34)
13 L 2945.3 (3) 0.07153 (4) 89.8 (9)
14 G 3336 (11) 0.0203 (8) 289 (14)
15 G 3525 (2) 0.039 (2) 197 (4)

tion bands are found in the range from 500 to 2000 cm−1. The oscillator center energies

are indicated as vertical dashes in Fig. 25. All best-fit model parameters including the con-

fidence limits are give in Tab. 1 and Tab. 2 for IP-Dip and IP-L, respectively. The range

from ω = 2000 to 6000 cm−1 is transparent for both polymerized monomers as can be

easily observed by the Fabry-Perot oscillations generated in the transparent films. Note

that the frequency of these oscillations is significantly higher for the IP-Dip. IP-Dip has a
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Figure 26: Best-model calculated real (ε1(ω)) and imaginary (ε2(ω)) part of the complex
dielectric function ε(ω) for IP-Dip are shown in panels (A) and (B), respectively. Similarly,
(C) and (D) depict ε1(ω) and ε2(ω) for IP-L. The major contributions to the dispersive
behavior of both IP-Dip and IP-L occur between 1000 and 2000 cm−1. The best-model
parameters are given in Tab. 1 and Tab. 2.

higher viscosity compared to IP-L. This results in a significantly larger film thickness for

IP-Dip dIP-Dip =7.474±0.002 µm while the thickness for IP-L is dIP-L =4.448±.001 µm

when fabricated at the same spin speed during the deposition process described above.

A few very weak absorption features can be identified in both polymerized monomers at

approximately 3000 cm−1 and 3500 cm−1.

The real and imaginary parts of the best-fit model complex dielectric function are de-

picted in Fig. 26 for both IP-Dip and IP-L. The infrared dielectric response of both polymer-

ized monomers is dominated by two strong absorption lines around 1200 and 1600 cm−1.

However, comparing Fig. 26(B) and Fig. 26(D) it is readily apparent that while IP-L shows

a relatively simple structure, IP-Dip shows a large number of narrow resonances. In fact,

the dielectric function for IP-Dip gives evidence of a more complex chemistry as it takes

nearly twice as many oscillators to fit IP-Dip compared to IP-L such that a good match
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between the experimental and best-model calculated data is obtained as shown in Fig. 25.

Figure 27: Microsphere produced by 3D-DLW in a Nanoscribe Photonic Professional GT
system. This structure was produced as part of a study of the intrinsic form birefringence
in 3D-DLW structures and is currently being used to generate forthcomming publications.

We have determined the complex dielectric function of polymerized IP-Dip and IP-L,

two monomers which are frequently used in two photon polymerization with commercial

direct laser writing tools. A mixed oscillator model composed of oscillators with Gaus-

sian and Lorentzian broadening was found to appropriately render the dielectric response.

Comparing the dielectric functions of IP-Dip and IP-L shows that IP-Dip exhibits almost

twice as many discrete resonances which is interpreted here as an indication a more com-

plex chemistry. We anticipate that the parameterized dielectric function reported here will

help to improve first-principle calculations of the infrared optical response of 2D and 3D

structures composed of these materials.



53

Figure 28: Nanowire array produced by 3D-DLW in a Nanoscribe Photonic Professional
GT system. Note the tilt of the wires. This structure was produced as part of a study of the
intrinsic form birefringence in 3D-DLW structures and is currently being used to generate
forthcomming publications.

3.4 Evanescent Fields and Conjugate Matched Scatterers

An analysis is presented of k-space coupling of energy from an object into one or more

proximal resonant scatterers. The choice of basis function provides insight into coupling

mechanisms and efficiency which leads to the design of effective resonant scatterers that

can direct energy and/or information associated with high-k evanescent fields away from

the object. We discuss the trade-offs between the k-space and ω-space coupling as a func-

tion of the Q of the resonant scatterer. At the nanoscale, this has applications for super-

Planckian heat removal as well as superresolution imaging.

One of the largest limitations to electronic, optoelectronic, and optical devices is the im-

plicit generation of heat according to Joule’s first law dP
dV = J ·E. Typically, heat is modeled

as latent energy. However, this unrecoverable energy can simultaneously be viewed as in-

coherent infrared electromagnetic radiation that does not otherwise propagate away from
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the heat source of interest. The notion of harvesting this otherwise wasted energy is the

focus of the well established fields of thermophotovoltaics (TPVs) and thermoelectrics. At

present, a number of automotive and industrial thermoelectric devices are on the market,

demonstrating the importance of and interest in their continued research and development.

Separately, over the preceding ten years, some considerable attention has been devoted

to the enhanced thermal radiative transfer which occurs when a hyperbolic metamaterial

(HMM) is in extremely close proximity to a source of heat [26]. In fact, the power spec-

tral density of a near-field coupled HMM has been shown to exceed Kirchoff’s black body

limit by several orders of magnitude as radiative transfer is inversely proportional to the

separation distance between the HMM and hot body [64]. The super-Planckian thermal

transfer associated with near field coupled HMMs is a direct result of the increased pho-

tonic density of states (PDOS) intrinsic to indefinite media with subwavelength periodicity

[34]. The realization of devices utilizing this effect has been problematic, as the mechani-

cal limitations of creating a stable, near-field-separated, thin film device are considerable.

One proposed idea is a nanometer scale separation between two metallic layers. How-

ever, the combination of the Casimir force and thermal expansion can be expected to work

against the intended effect of having an enhanced steady-state radiative thermal emission.

Recently, the notion of increasing radiative transfer from an electrically large (on the order

of the wavelength or larger) body such that it exceeds the black body limit has been posed

[43]. In Tretyakov’s seminal work, a rigorous derivation of radiative transfer as a function

of spatial dimension and basis set is presented. Using [43] as a guide, practical cases of

methods which theoretically show the potential for super-Planckian far field radiation are
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examined.

The latent heat in a system can be modeled as a set of non-radiating electromagnetic

modes. This concept was put forth by R.M. Rytov in 1967 whereby a formulation for

radiative transfer in terms of Maxwell’s equations was presented [39]. The critical contri-

bution of this work is the development of the coherence theory for thermal fluctations. The

knowledge of how the notion of extrapolating thermal fluctuations to circuit theory later

appeared.

Le(ν ,T,σ) =
2hν3

c2
σ

e
hν

KbT −1
(36)

The Planck distribution (36), gives Le(ν ,T,σ ), the power per unit frequency per unit

area per steradian generated through spontaneous emission and is the product of Planck’s

quantum harmonic oscillator, a pre-factor which represents the number of modes per unit

volume in a cavity, and the object’s emissivity (σ ), which is absolutely identical to its

electromagnetic absorptivity [25]. Since absorption cannot exceed unity in practice, the

black body which absorbs all light incident upon it is the perfect radiator. There exists,

however, a potential exception to this theoretical limit. It is known in the radio frequency

antenna community that the radar cross section of an antenna can be designed such that

it exceeds the geometric cross section of the antenna itself [71]. The connection between

radiative heat transfer and electromagnetism having been established, the question is then

posed: what are the radiative properties of a thermal antenna with a radar cross section

larger than its physical size?

The answer is theoretically approached by Maslovski et al[43] wherein the unique na-

ture of an indefinitely sized spherical scatterer which could allow the body to exhibit a
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non-reciprocal coupling to a source of heat is discussed. The requirement for this super-

Planckian exchange is that the scatterer must be conjugately matched to the source of heat.

It is significant to note that the proposed coupling takes place at distances on the order of

the Mie size parameter n× k. In this manner one does not implicitly minimize reflections

at the boundary by satisfying (37)

Γ =
Z1−Z2

Z1 +Z2
= 0 (37)

but rather ensures a maximal electromagnetic coupling between two bodies. The electrody-

namic formalism which relates the coupled system relies on using vector transmission line

analysis (VTLA). VTLA provides a mathematically compact method for relating vectorial

waves on a transmission line to vector spherical harmonics (VSH) in free space that emit

from and converge to a spherical scatterer. A complete description of the derivation of the

VTLA equations is presented elsewhere [70]. VTLA also naturally lends itself to the de-

velopment of impedance boundary conditions in scenarios where the variation of the field

quantities normal to the boundary vary linearly, providing (48) as a solution to Maxwell’s

equations for a time varying field of the form e− jωt .

∇×E = jωµH ∇×H =− jωεE (38)

E = E⊥+ n̂E|| H = H⊥+ n̂H|| (39)

E⊥ · n̂ = 0 H⊥ · n̂ = 0 E|| · n̂ = |E||| H|| · n̂ = |H||| (40)

∇ = ∇⊥+∇|| ∇⊥ =
∂

∂x
x̂+

∂

∂y
ŷ ∇|| =

∂

∂ z
n̂ (41)



57

The strategy is to create a vector wave equation which contains no normal components of

the fields which we wish to solve for.

n̂H|| =
1

jωµ
∇⊥×E⊥ n̂E|| =−

1
jωε

∇⊥×H⊥ (42)

We then wish to find the transverse components of E and H. For both fields the transverse

components are of the form:

∇⊥×E||+∇||×E⊥ =
∂B⊥
∂ t

(43)

∂

∂ z
×E⊥−

1
jωε

∇⊥× (∇⊥×H⊥) = jωµH⊥ (44)

∂

∂ z
×H⊥+

1
jωµ

∇⊥× (∇⊥×E⊥) =− jωεE⊥ (45)

Equations (44) and (45) are then transformed into vector transmission line equations by

cross multiplying with −n̂. Upon transformation we obtain:

∂

∂ z
E⊥ =

(
jωµI⊥+

j
ωε

∇⊥∇⊥
)
·
(

n̂×H⊥
)

(46)

∂

∂ z
n̂×H⊥ =

(
jωεI⊥+

j
ωµ

n̂×∇⊥n̂×∇⊥

)
·E⊥ (47)

From (46) and (47) we see the rightmost dotted terms which provide an analogy to the

scalar transmission line equations, and thus produce a term which represents the induced

current (n̂×H⊥) as well as a term which represents the voltage (E⊥). The symbol I⊥

denotes the transverse unit dyadic (x̂x̂+ ŷŷ). Equation (48) then results from substituting

(46) into (47) thus eliminating the term for the vector current.

∂ 2

∂ z2 +

(
β

2
TM

k⊥k⊥
k2
⊥

+β
2
TE

n×k⊥n×k⊥
k2
⊥

)
·E⊥ = 0 (48)
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Having established impedance boundary conditions for a given system and developed a

wave equation for our system of interest, the subsequent analysis of energy transfer can

then be reduced to a T-matrix calculation.

The intent behind the development of the VTLA is to develop a formalism for a thermal

source coupled to some type of scatterer. One potential scattering configuration is the use

of negative index metamaterials as thermal antennae. The introduction of the ’perfect lens’

by John Pendry [53] has led to a resurgence of interest in subwavelength electromagnetic

devices in the literature. The fundamental premise behind the superresolution mechanism

enabled by negative index materials is that subwavelength materials or structures are justifi-

ably approximated as quasi-static. The quasi-static field approximation leads to an effective

medium approximation with respect to the electrical permittivity of the material of interest

since the material system being studied does not experience a significant spatial variation

of the incident field [81]. The effective medium approximations for multi-layer thin film

stacks wherein the uniaxial constituent layers have differing signs of permittivity and sat-

isfy the relationship:

ε⊥ < 0 , ε|| > 0 or ε⊥ > 0 , ε|| < 0 (49)

k2
1 + k2

2
ε⊥

+
k2

3
ε‖

= k2
o (50)

Considering the spatial dispersion of such a multi-layer structure one sees that the effec-

tive medium equations predict unbounded dispersion manifolds in reciprocal space. This

prediction is known to be accurate within the limitation ka . 1. The condition for propa-

gation across boundaries when an indefinite spatial dispersion profile is considered results

in the continuity of the transverse wave vector across the boundary which simultaneously
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satisfies the normal impedance conditions at the boundary of interest. Neglecting the mag-

netic response due to eddy currents, we note that k = ω
√

ε(θ)ε0µ0 and can then extend

(49) to a generalized form for arbitary angles of incidence and uniaxial constituents, which

frequently becomes necessary in the case of epitaxial material systems. This relationship

is described by equation (20).

There are two conditions which allow for propagation through a material which satis-

fies the requirements of a hyperbolic metamaterial. The first, and most common, is to use

diffractive optical components to couple transverse electromagnetic waves HMMs as pre-

viously discussed. The transverse momentum discrepancy between the propagating wave

vectors in the HMM structure is then resolved by the grating’s contribution to the wave’s

momentum which is shown in (51).

k⊥ = k0 sin(θ)± 2πn
Λ

n = 0,1,2... (51)

Astute readers will notice that (51) provides a mechanism whereby the transverse mo-

mentum exceeds that of free space. Upon transitioning from a regime where k0 > k⊥ to

k0 < k⊥ the diffracted orders become evanescent, and deliver no power to the surrounding

environment unless they couple to another body. The other means by which one can couple

a wave from free space to a HMM is through the careful selection of the constitutive mate-

rials which comprise the HMM [21]. Returning to the condition for propagation across the

HMM boundary: continuity of the transverse wave vectors, one can then consider the prop-

erties of an HMM whose effective permittivity magnitude is less than that of free space.

Typically reflection reaches a maximum as one increases the angle of incidence relative

to the surface normal past the Brewster angle. However, in the case of a HMM with an



60

effective permittivity magnitude less than unity, reflection is minimized at glancing angles

of incidence. This is a unique feature of HMMs and allows for the design of novel optical

components which direct electromagnetic waves in a manner which is otherwise unattain-

able with passive components. This intrinsic endfire directivity is detailed elsewhere [22].

The final interesting feature of HMMs is the spatial independence on the photonic density

of states.

The suggested mechanism from Sergei Tretyakov for out-coupling latent heat is the res-

onant scattering associated negative index materials. Since negative index materials ex-

hibit time reversal symmetry breaking, the loss mechanisms then naturally transform them-

selves to conjugate matched impedances [51]. However, while the use of negative index

metamaterials is sufficient to satisfy the requirements set forth to achieve super-Planckian

radiative transfer, herein it is suggested negative index is by no means necessary for the

desired effect. Excepting anomalous dispersion owed to strong absorption due to photon-

phonon coupling, passive systems are well-described as having a capacative nature at fre-

quencies associated with the majority of the radiative transfer from a given body. Thus,

conjugate matching only requires an inductive response from our scatterer. The search

for inductive response at infrared and optical frequencies led to a number of efforts in the

area of nanofabrication centering around resonant elements such as split ring resonators

or nanoscale lumped element inductors. The fundamental trade off in design is that these

structures are extremely sensitive to fabrication tolerances and polarization of the incident

wave. As the end goal is to have an easily constructed polarization independent device,

these difficulties present a non-starter to many applications of interest.
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The mechanism by which one can obtain a magnetic response at optical frequencies was

described long ago by Landau and Lifshitz. Their predictions were revisited by Roberto

Merlin [44] in the context of the magnetic resonances necessary to obtain truly negative

index metamaterials. Fundamentally, magnetic resonances can be generated through geo-

metric resonances which correspond to the field distributions of magnetic dipoles. A pop-

ular topology which readily demonstrates magnetic dipole resonances is that of a sphere.

Following the analytic derivation of van der Hulst [32] for the field distributions scattered

from spheres of arbitrary size, one can see that half the coefficients of the spherical wave

expansion represent a magnetic response because spatially they are the curl of the elec-

tric dipole terms. Since the evanescent field exists in the volume of a HMM rather than

exclusively at the surface, the statistical spatial correlation of thermal fluctuations in the

HMM to the desired eigenmodes in the conjugate scatterer should in principle increase as

the volumetric interaction implicitly has more spatial degrees of freedom for a given mode.

3.5 Transient Dynamics of Evanescent Fields

Some time after the perfect lens had been first presented by Pendry, Hegde et al turned

their attention to a computational investigation of the dynamics of nanoscale superresolu-

tion imaging with the superlens [27]. Previous research immediately following the perfect

lens concept discussed the potential mechanisms by which the system response became

unphysical [24]. By studying the optical forces transferred by the perfect lens in a time-

dependent scenario, one sees there is an implicit temporal dampening that is proportionate

to the wave vector of interest. Thus, to obtain higher spatial resolution than typically ob-

tained according to the diffraction limit, one must pay a price in time. With the result of
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Gómez-Santos, Hegde et al presented a plot of image settling time vs wavevector showing

that very high spatial frequencies could take days or even years to obtain. In the same work

it was also shown that the temporal latency effects were dependent upon the thickness of

the perfect lens. As the perfect lens’ working distance is a function of its thickness, this

effect further shows the limited use of such a device.

Returning to Maslovski et al [43], one can then consider how the temporal latency of

negative index metamaterials relates to the maximal index of the VSH summation. Since

the number of VSHs that contribute to the super-Planckian radiative transfer for spheres is

directly related to the loss tangent of the emitter, low-loss negative index metamaterials can

contribute as many as a hundred spectral terms to the far field radiation from a conjugate

matched scatterer. It remains, then, to evaluate what the minimum rate of emission must

be for a VSH to couple in real time such that the individual harmonic reproduces the same

result as the steady state solution.

A mechanism to test the limits of radiative thermal transfer has been proposed. It seems

that there may exist some special cases wherein steady state solutions provide for a viola-

tion of Kirchoff’s black body limit. However, in practice, the implicit temporal latency of

high-k states should limit the ability to demonstrate the effects of metamaterial superemit-

ters that rely upon negative index electrodynamic phenomena [43].



CHAPTER 4: ALUMINIUM ZINC OXIDE

4.1 Introduction to Aluminium Zinc Oxide

At present, various seemingly disconnected fields of research have serendipitously pur-

sued the development of transparent crystalline thin films made of aluminium zinc oxide

(AZO) for a host of applications. AZO is currently one of the most popular alternatives

to indium tin oxide (ITO), as it frees one from the concerns associated with the indium

supply chain. The panel display community continues to look for transparent electronics

with optical and electronic properties equal to or better than ITO to create thin film transis-

tors [16]. Meanwhile, the plasmonics and metamaterial communities continue the search

for efficient visible and near infrared wavelength plasmonic materials to improve sensing,

beam steering, and sub-wavelength imaging [78, 47, 66].

Recently, Eastman-Kodak has made significant progress in developing high speed spa-

tially selective atomic layer deposition technology (SALD). By selectively depositing atomic

layers over a given surface one can achieve a design pattern by simply printing the desired

footprint. Using patterned-by-printing materials thus eliminates the need for lithographic

techniques to produce structures which have the properties and geometries required by the

designer [14]. In order to predict the behavior/response of these hybrid structures their

intrinsic properties must be well understood. This can be somewhat problematic as the

degrees of freedom presented by the process parameters can create some ambiguity in un-
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Figure 29: WVASE32 Model Geometries depicting the 4-layer model used to characterize
SALD AZO samples grown at 250◦C on silicon. Notice the inclusion of silicon dioxide
at the silicon substrate interface as well as the two layers required to describe AZO rather
than a single material layer.

derstanding the optical response of the material. The characterization of these films is

further complicated by the presence of an ensemble of shallow energy level donor states.

As even unintentionally doped ZnO demonstrates conductivity gradients [57], evaluating

ternary ZnO systems to obtain of the infrared optical response can be expected to be a more

complex task .

It is known that long wave sensing, i.e. IR and THz, offers greater sensitivity to certain

quantities of interest such as conductivity and carrier mobility [61, 29]. At the same time

certain spectral features are constrained by optical activity that can only be detected in the

visible to ultraviolet [40]. In the process of developing oscillator models which describe

the absorptive phenomena of a crystalline material measured by variable angle spectro-

scopic ellipsometry (VASE), it is conventionally thought that free electrons, phonons, band
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gap transitions, and polariton states are the sole sources of dispersion. However, as can be

seen from numerous sources [4, 76, 69, 59] aluminium zinc oxide crystal systems exhibit

shallow absorption features whose energies cannot be ascribed to the previously mentioned

phenomena. In the past this discrepancy has typically been resolved by the use of non-

causal extended Drude models. The semiempirical extended Drude model is shown in Eq.

52 and Eq. 53. The well known form of 52 is augmented by a functional form of the scat-

tering term such that ωτ is parameterized by ωτ0, the low frequency scattering rate, ωtr, the

scattering transition frequency, ωtl , the past-transition scattering rate, α , the power law de-

pendence, and σ , the broadening term. In Fig. 30 we show how such models are of limited

use when compared to a spectrally well-resolved broadband characterization of a transpar-

ent conducting oxide by VASE. Thanks to the work of Kim et al [77] a Hubbard-U model

which corrects the density of states in AZO for non-local interaction is now available.

The Hubbard-U correction arises out of a failure of density functional theory to predict

the behavior of Mott insulators [11], which are materials that are predicted to be conductors

but instead act as insulators. This discrepancy arises out of correlated electron interaction

of free carriers due to interatomic forces in a crystalline lattice. This effect and many other

relevant phenomena are discussed in much greater detail in [74]. As such, we are herein

able to illustrate the connection between non-local response, extended Drude models, and

the incompletely described shallow absorption states in AZO.

ε(ω) =−
ω2

p

ω2 + iωωτ

(52)

ωτ(ω) =
ωτ0

1+ e
ω−ωtr

σ

+

(
1− 1

1+ e
ω−ωtr

σ

)
ωτl

(
ω

ωtr

)α

(53)
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Figure 30: Experimental data (dashed green) vs extended Drude model (solid red) for three
angles of incidence.

One of the most important process parameters in ALD is the substrate temperature dur-

ing deposition. As SALD is essentially metal organic chemical vapor deposition with a

printer head, the necessary energy to de-ligandize the precursors must still come from ther-

malization. For this reason, the large number of samples (54) are grouped by their growth

temperature and substrate type to simplify the comparisons. In this work, only samples

grown at 250◦C on silicon are discussed. Both the latent heat as well as the mass flow of

a given precursor ratio are observed to strongly affect the morphology of AZO thin films

[12, 42]. This has been studied in some detail [83, 7] but not extensively for SALD. SALD

seems to exhibit lower resistivity than typical ALD AZO [79, 13]. The high conductiv-

ity of SALD films further exaggerates the discrepancies between IR VASE measurements

and extended Drude models used to fit reflection and transmission from FTIR data. It also

presents a lower time cost in both production and device development as devices can be di-
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rectly written with differing form factors. These salient features make SALD AZO a prime

candidate for investigation via broadband spectroscopic ellipsometry. There is no readily

available infrared ellipsometric data for SALD films. As such herein we present broadband

ellipsometric characterization from 300 to 30,000 cm−1

4.2 Ellipsometry Data and Fitting for AZO

Many of the existing works regarding the optical properties of transparent conducting

oxides such as AZO and ITO combine spectroscopic ellipsometry over the visible to near

infrared spectral range with a FTIR measurement in the mid-to-far IR [79, 38] to capture

the spectral response associated with free carrier absorption. As previously mentioned,

in a covalently bonded solid absorption phenomena can be attributed to free carriers, in-

ter sub band transitions, inter band transitions, phonons, and polariton states. Due to the

mixed characteristic nature of their bonds, transparent conducting oxides exhibit some of

the traits of a covalently bonded solid as well as those of an ionic compound [15]. As such,

the ionized donor states in zinc oxide do not produce classical free electron behavior as one

might expect. This is due to the fact that in a ZnO crystal lattice aluminium may replace

either zinc or oxygen substitutionally or be incorporated as an interstitial lattice inclusion.

The aluminium substitution for zinc may occur for one, two, or three aluminium atoms,

leading to a spread of energy states according to [77]. It remains to be determined how the

growth process parameters contribute to the individual populations of these inclusions to

the total ensemble of states. Due to the relatively broad energy spread of these states com-

bined with their shallow absorption relative to the free carrier population as well as their

proximity to the intrinsic Drude resonance, they are almost impossible to spectrally resolve
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without variable angle spectroscopic ellipsometry. More specifically, FTIR reflection and

transmission data is inedaquate for the task at hand.

Table 3: GenOsc parameters for 250◦C samples. The Drude response is captured by ρ ,
the resistivity and τ , the scattering rate. ETauc represents the onset of indirect transitions
associated with phonon absorption while En represents the energy associated with the direct
inter band transition. A, E, and Br are the amplitude, center energy, and broadening of
Gaussian absorption features. Notice the absense of a definite exciton peak in the imaginary
part of the permittivity as shown in Tab. 6. The lack of a sharp narrow peak following the
indirect transitions gives clear evidence of non-excitonic shallow donor states.

Sample ρ,τ( f s) A,E,Br A,E,Br A,E,Br A,E,Br ETauc,En
1428-2E 0.0011 , 5.7 27 , 332 , 4139 65 , 388 , 109 8.35 , 714 , 1797 0.59 , 5061 , 3762 3.14 , 3.6
1428-2F 0.00087 , 5.8 24 , 313 , 4895 61 , 391 , 108 12 , 853 , 108 0.3 , 5913 , 3466 2.99 , 3.95
1377A 0.0011 , 4.9 - , - , - 65 , 383 , 135 14 , 605 , 5893 12 , 863 , 2620 3.21 , 3.84
1377B 0.00082 , 4.6 - , - , - 75 , 365 , 164 15 , 1017 , 2651 5 , 1206 , 5910 3.1 , 4.01
1377C 0.00086 , 4.3 - , - , - 67 , 368 , 166 16 , 709 , 2872 5 , 1456 , 5618 3.17 , 4.39
1377D 0.00092 , 5.4 - , - , - 47 , 399 , 124 19 , 633 , 2658 6 , 1786 , 5742 3.24 , 4.92
1377E 0.001 , 3.9 - , - , - 73 , 358 , 168 10 , 832 , 2974 4 , 1742 , 5392 3.24 , 3.93
1377F 0.00098 , 5.1 - , - , - 52 , 395 , 107 23 , 511 , 3164 5 , 1185 , 5843 3.15 , 3.84

In order to provide an accurate yet understandable model for the optical response of

AZO from experimental ellipsometric data, we use J.A. Woollam Company’s WVASE32

software. The model geometry as shown consists of the standard definition silicon sub-

strate, native silicon dioxide, AZO, and a surface layer which only contains a Drude term,

a pole, and a ε1 offset. The AZO and surface layers are modeled using the GenOsc layer in

WVASE32. Initially experimental data sets are converted into point-by-point fits in order

to obtain a reference absorption spectrum. From this reference, Kramers-Kronig consistent

oscillator responses are applied such that a causal best-fit dielectric function is obtained.

The necessary model geometry parameters are presented in Fig. 29. The primary motiva-

tion of this analysis is on the bulk response of the material. Present in the model geometry

used for the 250◦C set of samples on silicon substrates is a surface layer which accounts

for surface charge gradients. It is thought that this surface layer should also possess an
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Table 4: Reflectance polarization ratio (Ψ) for three angles of incidence (65◦, 70◦, 75◦) for
250◦C AZO samples. Dashed green lines indicate experimental data. Red line indicates
calculated oscillator model parameters.

(a) CD 1428-2E (b) CD 1428-2F

(c) CD 1377A (d) CD 1377B

(e) CD 1377C (f) CD 1377D

(g) CD 1377E (h) CD 1377F
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oscillator which transitions through the deep UV, however such experimental data is not

readily available, and so the spectal range is limited to approximately 250 nm or 5 eV. As

such, a pole is used to account for the interband transitions which occur beyond the range

of the experimental data. This is standard practice as taught by J.A. Woollam Co. in their

WVASE32 short course.

The oscillator model for AZO consists of a Drude term (ρ,τ), Gaussian oscillators to

capture both a phonon peak which occurs between approximately 350 to 390 cm−1 seen in

Tab.4 as well as the shallow donor states which are the primary concern of this work, and

lastly, a Tauc-Lorentz oscillator to capture the effect of the inter band transitions associated

with a direct band gap semiconductor which are evident in Tab.5. It should be noted that

the Tauc-Lorentz oscillator is typically used for amorphous materials such as ITO and that

J.A. Woollam does provide a series of PSEMI oscillator models whose line shapes better

capture the effects of semiconductor materials with a more definite crystalline character.

The comparisons of the relative accuracy of the Tauc-Lorentz vs the PSEMI oscillator

models show a slight (negligible) difference in mean square error and so are not discussed

for the sake of brevity. Samples 1428-2E and 1428-2F also have an additional Gaussian

oscillator to compensate for an extra shallow energy level donor state which only appears in

samples which are believed to be doped rather than alloyed due to their significantly lower

aluminium content. This implies the primary inclusion mechanism is subsitution of oxygen

by aluminium for lower volume fractions of aluminium. The discrepancies between doping

and alloying relate to the previous discussion of the inclusion mechanisms of aluminium

into the zinc oxide crystalline system.
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Figure 31: Scaled figure with data kindly provided by the authors of [77] showing the theo-
retically calculated energy levels of the different absorption mechanisms in AZO crystalline
systems.

Again returning to [77] one sees that the most free carrier-like absorption feature asso-

ciated with a specific inclusion mechanism is that of aluminium substituted for oxygen.

However, as one increases the Al fraction relative to stoichiometric ZnO, one statistically

increases the occurence of the other inclusion schemes. This leads to the presence of shal-

low donor states which begin to contribute to the thermally ionized carrier population at

room temperature due to the Burstein-Moss shift, and otherwise complicates the spectro-

scopic analysis necessary to understand the optical properties of the films. However, by us-

ing first principle calculations and wideband VASE measurements, we can obtain a precise

and accurate result which allows us to predictively design using AZO. It must be empha-

sized that the most conductive films are not those with the highest content of aluminium.
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Figure 32: Total Density of States plot kindly provided by the authors of [77]. The right-
most x-axis value (0 eV) corresponds to the Fermi level. As the Fermi level is pushed
higher and higher into the conduction band according to the Burstein-Moss effect more of
the states associated with the various inclusion mechanisms are brough into the conduction
band.

Examination of Fig. 31 reveals that the electronic density of states within a few tenths of

eV (hundreds of wavenumbers) of the Fermi level does not have a linear dependence on

energy. To be clear, as the various inclusion mechanisms contribute to the free carrier con-

centration and move the Fermi level further towards and subsequently into the conduction

band, one has to use the product of the Maxwell-Boltzman distribution with the density of

states shown in Fig. 32 to obtain the relative contribution of each inclusion mechanism due

to the overlap of the different states with the available thermal energy. This non-linear cor-

respondence between the volume fraction of aluminium and the free carrier population is an

archetypal of the fundamental difference between doping and alloying as well as the great



73

difficulty encountered by spectroscopists working with transparent conducting oxides.

The combination of Gaussian oscillators and the standard covalent absorption mecha-

nisms coupled with careful analysis is sufficient to produce the dielectric functions shown

in Tab. 6. All the models show a striking similarity to the experimental data so much so that

they are virtually indistinguishable and have a mean squared error of less than 2. This very

good agreement between the model presented and the experimental data is sufficient to be

sure that the values are correct within the limits prescribed by the software designers. The

last remaining step in fully characterizing the films consists of removing all the poles from

the oscillator models presented in Fig. 29 by measuring the effects of interband transitions

that approach the vacuum ultraviolet spectral range (VUV). The VUV data will be neces-

sary to resolve drastically shifted Fermi levels due to extremely high carrier concentrations

which cause interband transitions that occur above energies of 5.5 eV. These shifted in-

terband transitions also tend to correlate with the lower energy transitions associated with

the bulk of the material relative to the surface layer leading to some difficulty in spectrally

resolving them from neighboring transitions.

In conclusion, we have determined that the wideband VASE measurement of thin film

transparent conducting oxides leads to superior knowledge of and confidence in the deter-

mined optical properties thereof. Without the work of density functional theorists using

novel methods to correct for non-local contributions to the electronic density of states, this

result would be impossible to obtain. The author cannot help but note that the knowl-

edge of both VASE measurement and DFT produces a synnergistic understanding of an

extremely complex problem, reinforcing the validity of interdisciplinary research method-
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ologies. While the analysis presented is not ultimately complete, it is sufficient for the pur-

poses of industry to understand the correlation between optical and electrical measurements

to within a nominal error. As such, the methods presented in this section will provide a path

going forward for other researchers working to better understand the optical and electronic

properties of transparent conducting oxides.
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Table 5: Relative optical path difference (∆) for three angles of incidence (65◦, 70◦, 75◦)
for 250◦C AZO samples. Dashed green lines indicate experimental data. Red line indicates
calculated oscillator model parameters.

(a) CD 1428-2E (b) CD 1428-2F

(c) CD 1377A (d) CD 1377B

(e) CD 1377C (f) CD 1377D

(g) CD 1377E (h) CD 1377F
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Table 6: Real and Imaginary (log scale) relative permittivities for 250◦C AZO samples.
Red lines indicate the real part ε1 while the dashed green lines indicate the imaginary part
ε2.

(a) CD 1428-2E (b) CD 1428-2F

(c) CD 1377A (d) CD 1377B

(e) CD 1377C (f) CD 1377D

(g) CD 1377E (h) CD 1377F



CHAPTER 5: SUMMARY

In this section I would like to provide a clear statement of my individual contribution to

the work presented herein and the conlusions reached there from. Initially, I had to learn

the operation and maintenance of Professor Raphael Tsu’s III-V nitride molecular beam

epitaxy (MBE) system. This requires detailed knowledge of proper substrate cleaning,

as well as delicate mechanical skills. Great care is also required, as one simultaneously

uses liquid nitrogen, components that can hold temperatures of over 1000◦C, and floating

voltages on components such as the reflection high energy electron diffraction apparatus

which can spontaneously discharge onto a careless user. After learning how to run and

service the MBE I then had to determine the best method to obtain a doped zinc oxide film.

I found that the three possible candidates for n-type doping of ZnO are aluminium, gallium,

and indium. After researching the different proceedures associated with each material, I

chose to attempt to use a Knudsen effusion cell for the simultaneous co-evaporation of both

zinc and aluminium in an oxygen plasma environment. The sublimation of zinc proved to

be ineffective in our system and so I made the choice to improvise by using an electron

beam to vaporize zinc. In addition, concerns over the coefficient of thermal expansion of

aluminium led me to use gallium as an n-type dopant. After some trial and error, two

different samples of gallium zinc oxide were obtained.
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After growing the first two samples, I then dedicated my efforts to characterization. The

films were measured by numerous methods enumerated in section 3.1. The X-ray and ellip-

sometry analysis gave evidence of reasonable quality polycrystalline films. I then began my

two summers working at A*STAR in Singapore with Dr. Ravi Hegde. I was tasked with

using finite element analysis to reproduce the optical response of the two gallium doped

zinc oxide HMMs I had produced by MBE. After a considerable amount of iteration, a

Kramers-Kronig consistent dispersion relation was obtained giving a very good agreement

with the measured data. I then simulated the effects of different k-vectors being incident

on the gallium zinc oxide HMM structure. The result of running hundreds of simulations

with different grating periods and frequencies is the dispersion plot shown in Fig. 21. I

produced this 3D plot by tabulating all the simulation data and plotting as a function of

grating period and temporal frequency.

I then turned my attention to the installation and operation of the Nanoscribe Photonic

Professional GT. Utilizing the Nanoscribe system requires knowledge of the creation of

.stl files or else some scripting to direct the laser beam path. The user must then choose

how to render the object into machine code by using Nanoscribe’s DeScribe software. The

DeScribe output is then loaded into NanoWrite, the actual operational software for the

Nanoscribe system. Both DeScribe and NanoWrite have a large number of parameters and

features, all of which have some contribution to the speed and quality of the resulting struc-

ture. Having found a reasonable range of parameters, I was able to begin printing gratings,

spheres, split ring resonators, and more for the purposes of creating a library of various

scattering structures to study both in conjunction with HMMs and as stand alone objects.
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A significant number of simulations were performed on standing split ring resonators made

of only dielectric, but no strong absorption features were ever determined. As I wished

to both simulate and fabricate structures prepared by 3D direct laser writing, I realized

that I would need to know the dielectric response of the constituent materials used in the

Nanoscribe system.

It was at this point that I was serendipitiously introduced to Professor Tino Hofmann,

who had independently realized the importance of characterizing the monomers used in

the Nanoscribe system. I then created a method to obtain thin (less than 10 micron) films

of IP-Dip and IP-L, the Nanoscribe monomers, such that the infrared VASE could suffi-

ciently resolve the absorption features of the monomers without being overwhelmed by

Fabry-Perot oscillations. I then measured both films and created models to describe their

dispersion profile. After iterating with Professor Hofmann, I was able to obtain a very

good agreement between my model and my experimental data such that the discrepancies

between the two were unnoticable by eye.

I was also tasked with an investigation into a series of aluminium zinc oxide thin films

prepared by Carolyn Ellinger of the Eastman-Kodak company per Professor Fiddy’s re-

quest. Attempts to synthesize aluminium zinc oxide had led to a number of questions about

the properties of various phases of aluminium, zinc, and oxygen. One question that re-

mained to be answered from previous work was, ”How much aluminium can you try to

incorporate into zinc oxide before each aluminium no longer contributes one free electron

to the lattice?”. Initially, I chose to characterize the Kodak samples on the UV-Vis VASE.

This provided me with data from 350 nm to 2 µm. There were some uncertainties as to
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the effects of the doping level on the infrared optical properties of the AZO which led me

to measure the samples again on the IR-VASE. I then chose to combine the two spectral

regimes into one data set which led to a broadband characterization effort.

I then created an optical model for AZO which had absorption features which could not

be ascribed to phonons, Drude response, inter band transitions, or some more exotic light-

matter coupling (polariton states). It was suggested that such a model was not feasible and

that some other explanation would be required to justify our model to colleagues in our

field. However, recalling many conversations with Professor Raphael Tsu regarding both

covalent and ionic bonding radii, I remembered that the presumptive absorption schemes

previously mentioned were functions of a purely covalently bound solid, which zinc oxide

is assuredly not. Using some intuition, I was able to find a very recent paper on the density

functional theory of AZO. This paper was essential to understanding the optical response

that I was measuring as well as justifying my model for the absorption phenomena in AZO.

The key result of [77] is that the density of states below the Fermi level in AZO is non-

linear as a function of the various inclusion mechanisms. This shows that the increase of

aluminium does not generate a linear dependence on the free carrier concentration, our

desired result.

Because of the Kramers-Kronig relations, the value of the real part of the dispersion re-

lation at any single frequency depends on some contribution of the imaginary part at all

frequencies. This led to the observation by Professor Hofmann that trying to simultane-

ously evaluate the infrared and visible spectral range might produce inconsistent results.

This observation was in fact correct. I was able to overcome the difficulty imposed by the
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bandwidth of the data set by enforcing a uniform ε1 offset for the two layers of the geom-

etry which represent the optical behavior of AZO. This simple realization combined with

the standard practices taught by J.A. Woollam allowed me to successfully characterize the

subset of samples I was asked to study, thus concluding my course of research.
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