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ABSTRACT 
 
 

KAREN THORSETT-HILL. A semi-quantitative schlieren high-speed flow diagnostic: 
analysis of high-pressure-ratio, overexpanded planar flow in rocket nozzles. (Under the 

direction of (DR. RUSS KEANINI) 
 
 

 This work introduces a semi-quantitative schlieren (SQS) method which is used to 

qualitatively and quantitatively analyze complex, unsteady, compressible flows in a 

small, planar convergent-divergent nozzle. A basic schlieren system is used to image the 

evolution in time of complex supersonic flow structures, including Prandtl-Meyer 

expansion fans, internal shocks, near-wall oblique shocks, quasi-normal shocks, 

shock/boundary layer interactions, shock/shock interactions, and shock trains. The first 

images of shock trains in high nozzle-pressure-ratio flows are shown, and the underlying 

processes are described. A flow-field decomposition method is presented which allows 

the entire flow field to be separated into unit processes and analyzed.  Various methods of 

analysis are presented, including a new method for the determination of node locations 

along a defined nozzle wall geometry using the method of characteristics. A numerical 

solution is developed for the analysis of a blow-down process. Computer programs which 

implement these solutions are presented.  
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CHAPTER 1: OVERVIEW OF AVAILABLE DIAGNOSTICS FOR HIGH-SPEED 
FLOW 

 
 
1.1 Introduction 

Over the past 60 years, a number of diagnostics have been developed for 

investigating high-speed flows. Unfortunately, experimental high-speed flow test 

facilities are typically difficult to access and expensive to use [1]. Indeed, most existing 

high-speed flow research has been carried out at specialized university and government-

sponsored laboratories.  

The primary objective of this dissertation centers on development of an 

accessible, low-cost approach for experimentally investigating complex, high-speed 

flows. Prior to describing this new approach, available experimental and numerical 

methods for studying compressible flow are reviewed.  

1.2 Current experimental methods 

Available experimental high-speed flow diagnostics include shadowgraph 

methods [2,3,4], various pressure measurement techniques [5,6], schlieren methods 

[2,7,8], interferometric techniques [9,10,11], and various hot wire [12,13], hot film 

[14,15],  Mie scattering [16], molecular tagging velocimetry [17], laser fluorescence, 

Raman scattering [18], laser Doppler velocimetry [12], and Particle Image Velocimetry 

(PIV) [12] methods.  

Photonic methods play a central role in compressible flow research. These 

techniques can be grouped into one of four categories: i) methods based on light 
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scattering by small particles or molecules, ii) methods that rely on light-induced atomic 

or molecular fluorescence, iii) techniques that measure phase shifts produced by 

variations in the index of refraction, and iv) methods that mark the flow via molecular 

tags.  Of relevance to the present investigation, all of these methods have the potential of 

providing nominally frozen-in-time images of the flow field; this is achieved when the 

imaging time scale is much shorter than the unsteady flow time scale.   

1.2.1 Light scattering methods 

Light scattering methods introduce small particles into a flow and track particle 

motion using various light-based interrogation techniques. For example, particle image 

velocimetry (PIV) measures velocity fields by seeding the flow with particles (e.g., dye, 

smoke) and correlating close-in-time images of the displaced particle field [12]. In all 

light scattering approaches, it is implicitly assumed that particles faithfully follow motion 

of the fluid. Due to particle inertia, however, particularly in high speed flows, particle 

paths may diverge significantly from flow path lines [12].  

Smoke injection, comprising a widely-used scattering method, produced the first 

quantitative volumetric flow field data [19]. Time lines were introduced by Lippisch [20]. 

This method uses pulsed-smoke injection in conjunction with a high-speed video to 

produce and portray velocity distributions within the flow. Thin light sheets generated by 

high intensity lamps [21] or lasers [22] have extended this technique so that two-

dimensional cross sections of three-dimensional flow fields can be visualized. By pulsing 

the light source or using a short time gate on the camera [22], the fluid motion can be 

frozen to give an instantaneous cross section of mixing phenomena or complex 

structures. If separate particles are distinguishable, two-dimensional velocity fields can be 
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mapped by measuring the length and direction of the particle streak trajectories in the 

image and relating that exposure to the time [24, 25]. Numerous examples of particle 

scattering in both air using smoke or seeded particulates, and in water using particulates 

or bubbles, are shown in Van Dyke’s An Album of Fluid Motion [26].  

Using high-powered lasers, scattering from molecules is a feasible alternative to 

particle scattering for flow diagnostics. This eliminates the problems associated with 

particle seeding and gives quantitative information on mixing, density, and temperature. 

Both Rayleigh scattering, which is direct scattering of light by molecules, and Raman 

scattering, which is inelastic scattering of light from molecules, have been used to 

generate cross-sectional images [27, 28]. The use of Raman scattering as a probe for gas 

diagnostics is well-established [29], as are numerous forms of nonlinear Raman 

spectroscopy [30]. Planar images of Raman scattering have been achieved, but require 

multiple passes of a very high-energy laser to generate enough scattered light to record an 

image.  

1.2.2 Flourescence methods 

Laser and fluorescence mechanisms are somewhat more complex than light 

scattering techniques. Here the exciting laser is scanned across an absorption line and the 

resulting fluorescence and Doppler shift are observed. Given these measurements, the 

local fluid temperature, velocity, and density can be extracted. Specifically, temperature 

and velocity correlate with the observed Doppler shift, while density largely determines 

the observed collision frequency [31]. By continuously recording the fluorescence 

intensity as the laser is tuned, velocity, temperature, and density at any point can be 

determined [31]. The dependence of fluorescence on laser frequency, transition length, 
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and the local environment significantly complicates these measurements, however. 

Velocity measurements rely on either the Doppler shift or line tagging, both of which are 

independent of the fluorescence intensity, and thus are somewhat easier to accomplish.  

In compressible flows, either a naturally occurring species such as oxygen can be 

used [32, 33], or some fluorescing atomic or molecular species, such as sodium can be 

added to the flow and used as a marker [34]. Oxygen fluorescence can potentially be used 

to measure instantaneous temperatures and densities, but suffers from very low signals 

below a temperature of 500K. Direct Rayleigh scattering from molecules in a flow, 

together with simultaneous laser-induced fluorescence, can potentially yield two 

dimensional temperature cross-sections [35].  

1.2.3 Molecular tagging methods 

The direct interaction of light with molecules in the flow has led to the 

development of new laser tagging methods in which the flow is marked at a particular 

location and the motion of these marked molecules is followed to generate quantitative 

velocity information. In air, the stimulated Raman effect has been used to vibrationally 

excite thin lines of oxygen molecules which are subsequently interrogated to give 

instantaneous velocity profiles [36]. These techniques show great promise for generating 

volumetric velocity fields and can be coupled with Rayleigh scattering to simultaneously 

generate density cross-sections [37].  

1.2.4 Simultaneous measurement methods 

The method developed in this dissertation provides approximate, simultaneous 

measurements of the velocity, pressure, temperature, density, and Mach number fields in 

complex high-speed flow. In marked contrast to existing approaches for obtaining 
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multiple space-dependent field measurements, the proposed technique is inexpensive and 

easily implemented.  

In this subsection, we briefly review existing multiple-property measurement 

methods. Approaches which do not introduce sensors directly into a flow, can be grouped 

into the same categories used for single-property measurements: flow marking by 

molecular tagging [34], atomic or molecular laser-induced fluorescence [34], light 

scattering by seeded particles or molecules native to the flow [32, 33, 38], and 

measurement of phase shifts resulting from variation in index of refraction caused by 

density gradients [39, 40, 41]. Of these, only laser-induced fluorescence allows the 

determination of at least three properties, namely temperature, velocity, and density [38].  

It is important to emphasize, again, however, that all of these methods are 

complex, costly, require use of special equipment, and, often, must be performed in 

controlled laboratory environments. For instance, seeding often requires very specific 

seeding rates.  Fluorescence with sodium requires careful control of seeding density on 

the order of 1 part per 100 million, and is not useful in low temperature air.  Raman 

scattering, when used for generation of planar images in 3-dimensional flow fields, rests 

on acquisition of sufficient scattered light, which in turn, requires multiple passes of a 

very high energy laser.  In some cases, the seed material must be heated before injection 

into a flow. This can introduce thermal distortion into the flow field. Likewise, seeding 

can also cause corrosion and environmental pollution [38]. Furthermore, in compressible 

flows, as noted, scattering particles often do not follow the flow in regions of steep 

velocity gradients [38].  
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1.3 Overview of computational fluid dynamics approaches 

Computational modeling provides an alternative to experimental measurements 

when diagnosing high speed flows. Quantitative data acquired from computational fluid 

dynamics (CFD) analysis requires problem-specific tuning via validation of benchmark 

calculations through experimentation.  Furthermore, while CFD can provide a global and 

qualitative understanding of complex, high-speed flows, it often fails to allow distillation 

of simpler models which may lead to a conceptually deeper understanding of a 

particularly complex flow. Computational treatments of complex supersonic flows can be 

time-consuming, expensive, and frequently fail to accurately capture important features 

of the flow field, such as shock structures or shock/boundary-layer interactions.  For 

example, spectral methods for flows having Reynolds numbers on the order of 106 

require on the order of 1000 to 5000 hours of time on teraflop machines, on the order of 

109 grid points, and on the order of 1 terabytes of memory. Flows having order 107 

Reynolds number and higher require (in principle) on the order of 350 years of teraflop 

computer time, 100-500 hours on petaflop computers, and on the order of 1011 grid points 

and 100 terabytes of memory [42].  

Even large eddy simulations (LES) which allow capture of unsteady separated 

flows require an extremely large number of grid points and, hence, carry significant 

computational cost, especially at high Reynolds numbers [42].  

Progress in computer speed has led to a shift from RANS (Reynolds Averaged 

Navier-Stokes) simulations to LES, which again allows for capture of unsteady separated 

flows. RANS calculations cannot capture the high level of unsteadiness that characterizes 

flows in which shock-induced separation occurs, however. Moreover, LES requires fine 
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mesh resolution near wall boundaries, limiting time-step size. The LES/RANS hybrid 

methodology represents a more powerful method, and is more cost-effective since it 

alleviates the requirement for fine mesh resolution near walls. The major drawback of 

this technique centers on its limited ability to accurately capture boundary layer 

transitions [42].  

With regard to high Reynolds number nozzle flows, a major CFD modeling 

challenge centers on accurately predicting boundary layer behavior in the presence of 

shock waves. Hadjadj and Onofri’s recent work, representing the state-of-the-art [43], 

modeled the transient flow in a supersonic, ideal nozzle [43]. Their computations gave 

insight into the complex time evolution of the nozzle starting process, showing the 

development and effect of shock wave propagation, as well as capturing the early stages 

of boundary layer separation from the wall [43]. More generally, nonlinear schemes such 

as the weighted-essentially-non-oscillatory (WENO) scheme, weighted compact non-

linear scheme (WCNS), discontinuous Galerkin methods, and spectral volume methods 

are required to capture discontinuities such as shock waves [42]. 

High-order compact schemes may be used on non-uniform meshes with a variety 

of boundary conditions. When used to solve flows having steep gradients, however, such 

as those containing shock waves, these schemes often generate non-physical (numerical) 

oscillations [44]. There have been many approaches that modify high-order schemes in 

order to capture shock waves. For instance, for shock-turbulence interaction problems, 

Adams and Shariff [45, 46] proposed a high-order compact-essentially nonoscillatory 

scheme, and later, Pirozzoli introduced a conservative compact weighted essentially 

nonoscillatory (WENO) scheme [47]. Rizzetta et al. proposed a hybrid compact Roe-type 
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scheme in order to simulate supersonic compression ramp flows [48]. Deng and Zhang 

developed high-order compact schemes based on a weighted technique involving 

combinations of the above schemes [49]. 

1.4 Overview of schlieren methods 

As noted, this dissertation proposes and describes a new, approximate approach 

for diagnosing complex high-speed flows. The method combines straightforward, 

schlieren imaging with simple theoretical modeling to develop an experimentally and 

theoretically consistent description of a given complex flow. Prior to describing the 

method, a brief overview of existing schlieren-based diagnostics is provided.  

Schlieren imaging approaches are often used for qualitative analysis of flow 

fields, as are shadow methods, where the former has a much higher degree of resolution 

and sensitivity [50]. The schlieren technique allows for the visualization of fluid motion, 

does not require intrusion into the fluid, does not modify the flow in any way, and is 

commonly used to study density fields in transparent media, such as gases or liquids.  

The physical principal underlying the schlieren approach, depicted in Figure 1-1, 

centers on the coupling between index of refraction and density. A light beam traveling in 

the z-direction passes through a medium whose index of refraction varies in the x- and y-

directions; the light beam thus undergoes a small deviation of angle, α [12], where the 

magnitude of the deviation depends on the path integrated density gradient normal to the 

beam travel direction. The larger the integrated normal density gradient (where 

integration sums the local normal density gradient at all points along the beam path), the 

larger the deflection angle. Thus, collimated light rays passing through regions of 

significant (normal direction) density gradients experience larger deviations than rays 
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passing through lower gradient regions. In the present investigation, where a portion of 

the collimated light passes through, for example, a normal shock wave, that portion is 

refracted significantly. Thus, by placing a small aperture or knife edge at the focal point 

of a second lens, such refracted light is removed, resulting in a dark (or darkened) region 

in the final image plane.  

In this dissertation, the z-shaped schlieren imaging set-up is used [51, 52], as 

shown schematically in Figure 1-2. Here, the schlieren field of view is optimized to allow 

complete imaging of the nozzle flow.  
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Figure 1-1: Typical schlieren setup [12] 
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Figure 1-2:  Z-type schlieren arrangement used in present experimental system 

 

 
In the z-type arrangement, a white light source passes through a thin slit, and is 

then collimated by using two parabolic mirrors. The collimated light passes through the 

flow test section (a convergent/divergent nozzle in this dissertation) and is then brought 

into focus. A knife edge at the focal point then blocks most of the refracted light.  

In this study, a variation of the standard schlieren method is employed, using 

instead color schlieren [8, 50]. In this approach, a transparent color film is placed at the 

focal/aperture point. Thus, regions having the same color in the image plane correspond 

to beam elements (within the collimated light beam) that have experienced the same 

integrated, normal-to-beam-direction density gradients.  

As a closing remark, it is noted that both calibrated color schlieren (CCS) and 

background-oriented schlieren (BOS) employ quantitative techniques to evaluate the 

integrated density gradient. Essentially, CCS and BOS measure the light deflection angle 
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in two spatial directions, yielding the projected density gradient vector field. Spatial 

integration using the conjugate gradient method then gives the projected density field [8].  
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CHAPTER 2: OVERVIEW OF SEMI-QUANTITATIVE SCHLIEREN METHOD 
 
 
2.1 Introduction 

As mentioned, this dissertation proposes a new, approximate diagnostic termed 

the semi-quantitative schlieren method, for analyzing complex, high-speed flows. This 

chapter provides an overview of the technique.  

Semi-quantitative schlieren (SQS) represents a simple, low-cost approach for 

determining, in an approximate sense, the velocity, temperature, pressure, Mach number, 

and density field properties.  The method estimates flow field properties by combining 

schlieren images with simple compressible-flow models of the following: 

i) isentropic, steady or unsteady flow, including flow through Prandtl-Meyer 

expansions, 

ii) steady or unsteady flow through oblique and quasi-normal shocks, 

iii) shock and expansion wave interactions with other shocks and expansion 

waves, flow boundaries, and contact discontinuities, and  

iv) interactions of weak waves with other weak waves.  

The method is classified as semi-quantitative since its accuracy is determined by a 

number of often poorly controlled or poorly characterized features, including the quality 

of schlieren images used, the level of uncertainty in upstream boundary conditions, and 

the degree to which ideal wave interactions with boundary layers, shear layers, and/or 

contact discontinuities deviate from real wave interactions.  
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Since similar uncertainties plague even high-fidelity numerical simulations, it 

becomes apparent that a semi-quantitative approach can offer a number of potential 

benefits, including use as a precursor, adjunct, or replacement for numerical solutions, 

use in code validation, and application in fundamental studies of complex compressible 

flow processes, such as shock/boundary-layer interactions.  

In order for the method to be of practical use, it is important that simple, low-cost 

techniques for generating and imaging high speed flows are available. Tkacik et al. 2010 

[1] address this important point, detailing the design and construction of a reliable, safe, 

inexpensive system for generating high Mach number flows in planar nozzles [1]. Indeed, 

the same experimental system is used here.  

It is emphasized that the proposed diagnostic is not an extension of quantitative 

schlieren techniques [2, 8, 11]. The latter methods require pixel-level, or equivalent non-

digital measurements of light intensity or color hue fields. These measurements can, in 

turn, be related to flow field properties such as density, temperature, pressure, and/or 

velocity through detailed consideration of light propagation through density and/or 

temperature-induced refractive-index gradient fields within the flow.  

In traditional quantitative schlieren methods, the refraction index gradient 

distribution is obtained from the intensity distribution of the schlieren image. This 

refraction index gradient distribution can be related to distributions of temperature, 

density, and pressure. Here, in the semi-quantitative schlieren approach, by contrast, the 

schlieren image is used to identify or diagnose regions of the flow for analytical treatment 

by appropriate theoretical models. These models include, but are not limited to: 

i) isentropic ideal gas flow, 
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ii) flow through normal shocks,  

iii) flow through oblique shocks,  

iv) flow through Prandtl-Meyer expansions, and  

v) flow through wall-generated Mach waves. 

2.1.1 Schema of the semi-quantitative schlieren method 

In essence, the semi-quantitative schlieren method is based on the following 

iterative approach in which experimental data and simple theoretical models are 

combined to arrive at an approximate diagnosis of a given flow. Refer to Figure 2-1. 
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STEP 1: Obtain schlieren image of flow 

STEP 2: Guess an appropriate decomposition of imaged 
flow into unit sub-flows 

STEP 3: Introduce additional (simple) experimental 
measurements (as necessary) 

STEP 4: Based on the guessed decomposition (step 2), 
introduce and couple simple models for each unit sub-
flow 

STEP 5: Using the models in step 4, compute flow 
fields in each unit sub-flow 

STEP 6: Compare theoretical flow predictions with 
available experimental data 

RETURN to STEP 2 
until consistency 
between theory and data 
is achieved 

STOP when theoretical predictions 

are consistent with available 

experimental data 

Figure 2-1 Flow chart for SQS technique  Figure 2-1: Flowchart of the semi-quantitative schlieren method 



16 
 

 

Consistent with the schematic description shown in Figure 2-1, subsequent 

chapters will:  

i) detail the experimental system used in this study (Chapter 3),  

ii) detail the procedures used when initially decomposing a complex flow 

into simpler unit sub-flows (Chapter 4),  

iii) review the theoretical models used to analyze each sub-flow (Chapter 5), 

and  

iv) present the results obtained.  

2.2 Objectives of dissertation 

The primary objective of this study centers on proposing and developing a new 

approach, the semi-quantitative schlieren method, for diagnosing complex high-speed 

flows. This method is proposed as a simple, low-cost alternative to existing experimental 

and numerical techniques for studying high-speed flows. The technique is not only 

suitable for a laboratory environment, but can be easily and inexpensively adapted to 

industrial applications.  
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CHAPTER 3: EXPERIMENTAL SYSTEM 
 
 
3.1 Introduction 

Prior to discussing the experimental system, three important points are   

highlighted.  

i) Considering the typical approach in which a high-pressure plenum forces a 

steady or quasi-steady high-speed nozzle flow, costs can be minimized by 

shrinking the plenum volume, subject to two competing constraints. On one hand, 

the volume must be small enough to allow affordable pressurization. On the other, 

the volume must be large enough to provide quasi-steady flow within the test 

apparatus. In this dissertation, a simple scaling argument is presented to determine 

the conditions leading to quasi-steady flow conditions.  

ii) In a relative sense, it can be argued that designing, fabricating, and setting up a 

small high-speed flow experiment suitable for simple schlieren imaging is often 

much simpler than, for example, constructing a high-fidelity numerical 

simulation. The experimental system employed here was designed, fabricated, and 

used to obtain experimental schlieren images over a period of 4 weeks [1].  

iii) The experimental apparatus is designed to investigate flow physics under high 

nozzle pressure ratio (NPR) conditions, where NPR is the ratio of plenum to 

ambient pressures. Outside of a limited number of large, specialized, limited-

access facilities, e.g. the Nozzle Test Facility at Marshall Space Flight Center 
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(Huntsville, Alabama), similar small-scale, high NPR test set-ups do not exist. 

The cost of building and operating this system is less than $1000 per year.  

The approximate nature of the semi-quantitative schlieren approach encourages 

 use of various non-standard approaches when diagnosing a given flow. This 

 important feature is illustrated in three ways: 

i) In order to validate model calculations within the flow region adjacent to the 

nozzle wall, small facets are etched into the wall. These produce weak oblique 

shocks which, in turn, can be used to either diagnose the near-wall region or 

validate the near-wall flow model. Since the strength of these artificially induced 

shocks approaches that of Mach waves, this strategy has minimal effect on the 

diagnosed flow.  

ii) The plenum blow-down process in the apparatus sets the time available for 

collecting schlieren images. Due to the small size of the system (pressurizing tank 

volume = 8500 cm3), blow down is complete in less than one second. 

Nevertheless, as noted, scaling shows that quasi-steady conditions persist 

throughout any given run within the nozzle.  

iii) One of the long-term objectives of this research program centers on 

investigating the physical processes underlying side loads in rocket nozzles [53]. 

An important open question concerns in-nozzle flow mechanisms underlying 

bifurcation to and from so-called free-shock and restricted-shock flow structures 

[53].  Presently, no visual data exist concerning this bifurcation. 

Although the time resolution of the imaging system is too coarse to 

resolve such bifurcations (and moreover, the present nozzle does not produce this 
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bifurcation) due to high repeatability, the highly dynamic evolution of complex, 

high-speed flows including shock trains can be traced out, via repeated runs. 

Many essential flow structures which are believed to underlie free-shock 

separation, and that are predicted by numerical simulation, are observed in this 

study. Indeed, it appears that this is the first experimental visualization of a 

rapidly evolving free shock structure within a nozzle [1]. 

The schlieren technique produces two-dimensional images of a flow field. Thus, a 

two-dimensional planar nozzle is used in this study. Since planar nozzles are 

geometrically similar to circular cross-section nozzles, all of the complex flow field 

features observed in a planar nozzle are also present in an axisymmetric convergent-

divergent nozzle. Additionally, the method of characteristics, which plays a central role 

in this study, is much more easily applied to a two-dimensional planar nozzle.  

Although several imaging studies with planar nozzles have been reported, these 

are primarily limited to flows in which the nozzle pressure ratio lies below the range 

characteristic of medium to large rockets [1]. This study focuses on flow in high NPR 

nozzles.  

One of the main advantages of the SQS method is the immediate, direct 

connection between modeling and experiments. The present experimental system is 

sufficiently small, simple, and inexpensive that new diagnostics, such as additional wall 

pressure measurements, can be readily introduced, and experiments quickly repeated. 

Here, flexibility is a major advantage.  

As highlighted in Chapter 2, the SQS method requires an iterative approach to the 

development of the model and the design of the experiment. Essentially, visual 
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(schlieren) data guides/suggests which models might be appropriate to a given flow 

region. If it is found that additional experimental data is required in order to complete a 

model prediction, the experimental system can be easily modified to gather the necessary 

data. This process of testing models and modifying the experiment continues until a 

coherent picture of the physical processes underlying a given compressible flow emerges.  

3.2 Nozzle experimental set-up 

A schematic of the experimental apparatus is shown in Figure 3-1.

 

Figure 3-1: Schematic of experimental set-up 

 

 
Here, a high-pressure tank is connected to the nozzle plenum, which in turn 

supplies the experimental convergent-divergent nozzle, where the latter is shown in 

Figures 3-2 and 3-3. (Figure 3-2 shows a detailed schematic of the experimental nozzle, 

while Figure 3-3 shows photographs.)  
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The supply tank is designed for safe operation up to pressures of approximately 

16.4 MPa (2400 psi). In all experiments, the tank is charged with argon to 15.0 MPa; the 

corresponding maximum nozzle plenum pressure is 28 bar (407 psi). The tank is 

connected to the plenum by a hose with an inside diameter of 2.54 cm. A Kulite ETM-

375 2500 psi pressure sensor is mounted in the nozzle plenum (not shown), as well as on 

the high-pressure supply tank.  

Four holes are drilled into the side of the nozzle. Two of these are plugged and 

two are used for placement of two pressure sensors. The sensors are mounted flush with 

the interior nozzle wall to avoid flow disturbances. The sensors and plugs are sealed in 

place with Dow 732 multi-purpose sealant.  

 
 

 

Figure 3-2: Schematic of planar nozzle  

 

throat 

schlieren window 62.5 mm 12.7 mm 76.2 mm 

plenum 

argon supply 
(axial view) 

pressure taps 



22 
 

 

  

Figure 3-3: Photographs of planar nozzle  
 
 
 
The contour of this 5:1 convergent-divergent planar nozzle purposely deviated 

from an ideal contour in order to produce the complex flow structures observed. The 

nozzle used in these experiments was designed with a maximum wall turn of 36 degrees 

in the expansive section, followed by a straightening turn of 36 degrees, yielding axial 

flow at the exit. For comparison, a thrust-optimized contoured nozzle would require a 

maximum wall turn in the expansive section of 24 degrees, typically using a centered 

expansion.  Nozzles with long expansive turns could, of course, make do with less.   

In order to accommodate relatively high pressures, the viewing windows are 

fabricated from 1/2-inch-thick tempered glass and sealed to the aluminum nozzle with 

Dow 732. In order to allow analysis of the near-wall flow field upstream of the boundary 

layer separation zone [54, 55], small facets are machined, at fixed axial intervals, into the 

nozzle wall. This technique, pioneered by Prandtl and Meyer [56], allows 

straightforward, experimentally-based determination of the near-wall Mach number 

distribution, where the latter is determined via the classical oblique shock equation, or its 
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weak-disturbance asymptotic form, the simple Mach wave-Mach number relation given 

by: 

 sin−1 1
𝑀

 = µ        Equation 3.1 

Here, µ is the Mach wave angle and M is the local Mach number.  

3.3 Schlieren set-up 

As noted, the color schlieren imaging system uses a typical, z-shaped arrangement 

[51, 52], as shown in Figure 3-4. Again, the schlieren field of view is optimized to allow 

complete imaging of the nozzle flow. Pressure signals and corresponding schlieren 

images are acquired at 1000 Hz using a National Instruments PCI-6024E data logger and 

a Redlake Motion Xtra HG-XR high-speed digital camera. The lens is a Nikon 24-85 mm 

zoom f2.8.  

 

 

Figure 3-4: Z-type arrangement for schlieren imaging system 
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3.4 Notes on safety  

Since the exhaust from the nozzle is supersonic, care must be taken to prevent 

anything from entering the gas flow area. The thrust downstream of the upward 

exhausting nozzle is strong enough that the nozzle must be fastened down to the work 

surface/lab bench. The pressure test run is initiated by rotating the ball valve 90 degrees 

as quickly as possible. This ball valve is located between the hose and the argon tank and 

is rated at 3000 psi. The nozzle is constructed using high-strength tempered glass. As an 

extra safety measure, the nozzle is placed behind a 2-inch metal shield. 
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CHAPTER 4: COMPRESSIBLE FLOW MODELS 

 
 
4.1 Introduction 

Analysis of high-speed, non-reacting flow often requires the combined use of the 

equations of fluid motion, i.e., the Navier-Stokes equations, and the equations of 

equilibrium (macroscopic) thermodynamics. Depending on the problem under study, and 

the level of information required, theoretical analysis of high-speed flows typically 

follows one of three paths 

I) Thermodynamic-based analysis is used when spatially coarse descriptions of, e.g., 

temperature, pressure, density, and/or flow velocity are sufficient. Compressible 

flow analysis typically emphasizes thermodynamics, often combined with 

conservation of mass. In this energy-based approach, one applies conservation of 

energy and mass, for example to fluid particles moving along streamlines or 

within stream tubes of various dimensions. [Stream tubes are one-inlet, one-outlet 

control volumes whose lateral surfaces correspond to streamlines. By definition, 

all mass entering a stream tube (at the inlet) eventually leaves the stream tube at 

the outlet. Typical stream tubes have small cross-sectional areas, and, in essence, 

correspond to thick, hybrid streamlines. However, in some internal flow 

problems, stream tubes, for example, can encompass most of the non-boundary 

layer internal flow.] 



26 
 

 

In the thermodynamics-based approach, conservation of energy and mass are 

augmented with thermodynamic relationships appropriate to the problem at hand. The 

latter can include, for example, isentropic relations, and an equation of state. In the 

thermodynamics-based approach, fluid mechanics is typically not treated in any depth.  

II) Differential continuum-based analysis is used when detailed information is 

required, for example, on a velocity distribution, as well as on spatially-varying 

temperature, pressure, and density fields, one focuses on solving the coupled, 

differential forms of the conservation of linear momentum, energy, and mass. In 

this field-based approach, beyond the energy equation, thermodynamics enters 

peripherally, providing, for example, the equation of state. While the 

thermodynamics-based approach often allows analytical solution of a given high-

speed flow problem, the field-based method, more often than not, requires high-

level numerical treatments.  

III) Modular analysis of unit flow processes is used when the hyperbolic nature of 

high-speed flow, wherein flow conditions at a given position and time depend on 

upstream conditions (and in subsonic flow, downstream conditions) lends this 

class of flows a strong sense of modularity. In particular, it is often possible to 

analyze a given flow sequentially in modular fashion, by decomposing the flow 

into simpler, connected unit flow processes. Examples of unit flow processes that 

often appear in high-speed flows include:  

i) normal shocks, 

ii) oblique shocks,  

iii) expansion fans,  
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iv) interacting shocks of the same or opposite families [57], 

v) simple and non-simple [57] isentropic flow regions, and 

vi) stream tubes.  

Importantly, simple models and methods have been developed for analyzing each 

of these unit flow processes. Thus, as illustrated in this dissertation, it is often possible to 

decompose a complex high-speed flow into simpler, connected unit flow processes, and 

to then analyze the flow by sequentially analyzing the unit flows.  

This chapter highlights the unit flow process models that are used in diagnosing 

the complex high-speed flow observed in the experimental nozzle. The next chapter 

highlights how this flow was decomposed.  

4.2 Isentropic flow  

As discussed in subsequent chapters, much of the time-varying flow field within 

the nozzle remains isentropic, or nominally so. Thus, isentropic flow models feature 

prominently in this analysis. In brief, an isentropic process is one which is adiabatic and 

reversible. When analyzing compressible flows, we use the isentropic relations from 

thermodynamics  

𝑝2
𝑝1

= �𝜌2
𝜌1
�
𝛾

= �𝑇2
𝑇1
�

𝛾
𝛾−1       Equation 4.1 

which relate pressure, p, density, ρ, ratio of specific heats, ϒ, and temperature, T, for an 

isentropic process. Here, subscripts 1 and 2 represent upstream and downstream 

conditions, respectively, in a one-dimensional isentropic flow, e.g., within a stream tube. 

This relationship holds in regions where spatial gradients in temperature and velocity 

remain small, i.e., where irreversible energy transfer to the molecular scale remains 

minimal. It should also be noted that this relationship is valid for calorically perfect gases 
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i.e., ideal gases having constant specific heats. In this study, the assumption of constant 

specific heat is made.  

4.3 Prandtl-Meyer expansions 

A Prandtl-Meyer expansion occurs immediately downstream of the nozzle throat 

over a short axial distance as shown in Figure 4-1.  

 

 

 

Figure 4-1: Schlieren image of Prandtl-Meyer expansion fan 

This expansion fan is a continuous expansion region composed of an infinite 

number of Mach waves that act to isentropically increase the flow Mach number. Since 

the expansion happens over a continuous succession of Mach waves, and entropy is 

constant across each Mach wave, the entire expansion is considered to be isentropic, even 

for centered expansions with a slope discontinuity in the wall. Analysis of flow through 

expansion fans relies on the Prandtl-Meyer function, ν(M), as given by  
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𝜈(𝑀) = �𝛾+1
𝛾−1

 tan−1 �(𝛾−1)(𝑀2−1)
(𝛾+1)

 − tan−1 √𝑀2 − 1  Equation 4.2 

where M is the Mach number and γ is the ratio of specific heats. Essentially, this function 

relates changes in Mach number to the turning angle of the Prandtl-Meyer flow, where 

the latter corresponds to flow through an expansion, or flow through a series of 

infinitesimal, compressive, oblique shocks. This relationship is derived geometrically, 

and can be found in any compressible flow textbook. See e.g. Anderson [57]. Using this 

function in conjunction with the nozzle geometry, wall Mach numbers immediately 

downstream of the throat can be calculated. A Matlab program was written to solve the 

Prandtl-Meyer function and is given in Appendix A. 

4.4 Oblique shocks 

As also described in subsequent chapters, weak and non-weak oblique shocks are 

observed at various locations in, and during various periods of, the time-varying nozzle 

flow field. Oblique shock waves are analyzed using a well-known equation [57] 

 tan𝜃 =  � 𝑀1
2(sin𝛽)2−1

𝑀1
2(𝛾+cos2𝛽)+2

�      Equation 4.3 

where θ is the wall turning angle, M1 is the Mach number in front of the shock, 

β is the oblique shock angle relative to the oncoming free stream, and γ is, again, the ratio 

of specific heats. As depicted in Figure 4-2, this relationship is geometrically derived 

using the integral forms of momentum, energy, and mass conservation. Again, see e.g., 

Anderson [57] for details.   
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When analyzing flow through an oblique shock, additional relationships come 

into play. Specifically, when determining property changes across an oblique shock, well-

known normal shock equations [57] can be applied, based on the normal component of 

the upstream Mach number, 𝑀𝑛1 , where 𝑀𝑛1 is given by   

 𝑀𝑛1 =  𝑀1 sin𝛽       Equation 4.4 

Refer to Figure 4-3. Thus, in terms of Mn, and for calorically perfect gases, changes in 

density are determined using 

 
𝜌2
𝜌1

 = (γ+1)Mn1
2

(γ−1)Mn1
2 +2

       Equation 4.5 

where ρ2 and ρ1 are the densities downstream and upstream of the shock, respectively.   

Likewise, the pressure change across an oblique shock is determined using  

 p2
p1

= 1 + 2γ
γ+1

(Mn1
2 − 1)      Equation 4.6 

where p2 and p1 are the pressures downstream and upstream of the shock, respectively. 

In addition, the cross-shock static temperature change is obtained using 

 
𝑇2
𝑇1

 = 𝑝2
𝑝1

 𝜌1
𝜌2

        Equation 4.7 

β 

M1 

shockwave 

M2 

θ 

Figure 4-2: Theta-Beta-Mach relation 
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where T2 and T1 are the temperatures downstream and upstream of the shock,  

respectively.  

Finally, the downstream normal component of the Mach number, 𝑀𝑛2, follows 

from  

𝑀𝑛2
2 =  𝑀𝑛1 

2 + [2/(𝛾−1)]
[2𝛾/(𝛾−1)]𝑀𝑛1

2 −1
      Equation 4.8 

Figure 4-3 shows the relationship among 𝑀𝑛1, 𝑀𝑛2, M1, and M2.   

 

 

 

 

 

 

 

For situations where the strength of the pressure wave across an oblique shock 

approaches zero, the oblique shock wave becomes a Mach wave. In this limit, the angle, 

θ, approaches zero and the shock angle, β, approaches the Mach angle, µ, where µ is 

again related to the local Mach number by: 

 sin−1 1
𝑀

 = µ        Equation 4.9 

 

β 

θ 
M1 

M2 

Mn1 Mn2 

Figure 4-3: Oblique wave shock geometry  
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See Figure 4-4.  Since the strength, i.e., the pressure increase across a Mach wave, is 

infinitesimal, the Mach number and flow direction remain unchanged across Mach 

waves.  

4.5 Blow-down model 

As a means of gaining physical insight into flow conditions upstream of the 

nozzle plenum, a model of time-dependent pressure variation within the high pressure 

holding tank was developed. Unfortunately, for safety reasons, it was not possible to fit 

the tank with a pressure sensor; thus, the objective centered on comparing theoretical 

blow-down time, τBD, as predicted by the model, against the observed blow-down time.  

As noted, the high-pressure tank (volume = 8500 cm3) is pressurized to 

approximately 14.4 MPa.  The tank is then discharged through a 2.54-cm ID hose into the 

nozzle plenum, which, in turn, discharges through the nozzle to the surrounding 

atmosphere.  A schematic of the experimental apparatus is shown in Figure 3-1, and a 

photograph is shown in Figure 4-5. 

 

M1 

µ 
M1 

surface irregularity 
Figure 4-4: Mach angles emanating from wall 
irregularities 
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Figure 4-5: Blowdown apparatus   

 

The analysis starts with the unsteady form of the first law of thermodynamics, 

applied to a fixed control volume. Here, the control volume includes the tank, hose, 

plenum, and convergent-divergent nozzle. Thus,  

�̇� + ∑ �̇�i(h + 
𝑉��⃗ 2

2
 + gZ)i =  �̇� + ∑ �̇�e(h + 

𝑉��⃗ 2

2
 + gZ)e +  

𝑑𝐸
𝑑𝑡

  Equation 4.10 

where the subscripts i and e refer to properties at the control volume inlet and exit, 

respectively. Here, �̇� is the rate of heat transfer through the control surface, and �̇� is the 

rate of shaft work done by or on the fluid within the control volume.  In addition, E 

denotes the total instantaneous energy,∫𝜌(𝑢 +  𝑉
��⃗ 2

2
)𝑑𝑉, within the control volume. Thus, 

𝑑𝐸
𝑑𝑡

 represents the time rate of change of this energy. Here, �̇�e and �̇�i are the instantaneous 

argon mass flow rates at the nozzle exit and inlet, respectively, and h and 𝑉�⃗   are the 

corresponding exit/inlet enthalpy and (average) fluid speed. 

In the present case, there is no work done on or by the fluid in the control volume 

(excluding flow work, which is incorporated in the enthalpy terms), and the blow-down 
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process occurs in such a short time that heat transfer may be neglected.  Neglecting 

potential energy terms, introducing the large-reservoir approximation at the pressure tank, 

and recognizing that most of the fluid within the control volume lies, at any given instant, 

within the tank, Equation 4.10 simplifies to 

 
𝑑𝐸
𝑑𝑡

 = -�̇�e(h + 
𝑉��⃗ 2

2
 )e        Equation 4.11 

where E now represents the internal and kinetic energy within the tank alone. Since 

variations in fluid kinetic energy within the tank are small however, 
𝑉��⃗ 2

2
 in Equation 4.11 

can be neglected, and dE can be written in finite-difference form as  

dE = ΔE = U2 – U1         Equation 4.12 

where U represents the total instantaneous internal energy of the fluid within the high 

pressure tank.    

It is assumed that argon, the gas used in the experiment, is calorically perfect. 

Thus, the specific heat Cv is constant, so that  

ΔU = mj+1 Cv Tj+1 – mj Cv Tj        Equation 4.13 

where the subscripts j and j+1 represent the thermodynamic states within the tank at two 

different times. 

The energy equation thus assumes the final form: 

mj+1Cv Tj+1 – mjCv Tj  =  �̇�e(h + 
𝑉��⃗ 2

2
 )e    Equation 4.14 

where �̇�e  is the instantaneous argon mass flow rate at the nozzle exit, and h and 𝑉�⃗   are 

the corresponding exit enthalpy and (average) fluid speed. The mass flow rate, �̇�, and 

velocity, 𝑉�⃗ , are determined at each time step using the choked-flow assumption at the 
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nozzle throat. This, in turn, allows calculation of the stagnation temperature, Tj+1, of the 

fluid within the tank at each time step.  Additional properties, such as pressure and 

density are calculated using traditional equations for the compressible, isentropic flow of 

a calorically perfect gas.  Appendix B contains the Matlab computer program written to 

carry out the finite-difference solution.   

Equation 4.14 is solved numerically in time-incremental fashion with a plot of 

theoretical tank pressure versus time is shown in Figure 4-6. Comparing the predicted 

blow-down time, τBD, with those observed experimentally, it is found that τBD ≈ 0.65s, 

which compares well with the approximate 0.65 to 0.90s times observed experimentally. 

  

 

Figure 4-6: Theoretical prediction of stagnation pressure versus time for the tank blow-down process 
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CHAPTER 5: DECOMPOSITION OF COMPLEX FLOWS INTO SIMPLE SUB-

FLOWS 
 
 
5.1 Introduction 

Referring to the schematic description of the semi-quantitative schlieren method in 

Figure 2-1 in Chapter 2, the third step in this approach centers on decomposing a 

complex high-speed flow into simpler sub-flows.   

In this dissertation, the SQS technique is applied to high-speed flow in a planar 

nozzle. This case, the first to illustrate the SQS approach, is chosen for a number of 

reasons:  

1. The complexity of the flow, characterized by an internal shock, Prandtl-Meyer 

expansion fans, near-wall oblique shocks, and boundary layers, all evolving 

rapidly in time, provides a stringent test bed for the proposed technique.  

2. Since the schlieren images provide the experimental foundation upon which 

diagnostic models are built, the proposed approach is imbued with significant 

elements of self-correction and self-validation. This important feature is 

demonstrated by showing that: 

 i) theoretical Prandtl-Meyer expansion fans are quantitatively consistent 

with those observed in schlieren images, and  

ii) theoretical near-wall Mach number fields are quantitatively consistent 

with image data. 
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3. Semi-quantitative schlieren approaches are envisioned as inexpensive 

alternatives (or adjuncts) to traditional, typically expensive experimental 

diagnostics and/or to time-consuming, technically dense computational flow 

simulations.  

5.2 Experimental schlieren images of the time-dependent nozzle flow 

Prior to describing the flow field decomposition, experimental schlieren images of 

the nozzle blow-down process are presented. The color schlieren images shown in 

Figures 5--1a through 5-1bb and Appendix C were taken at a rate of 30 frames per 

second. Selected images obtained at a higher rate of 5000 frames per second, are shown 

in Chapters 8 and 10.   

 

 

Figure 5-1a: Schlieren image 30fps, t=0.033s 

 

 



38 
 

 

 

Figure 5-1b: Schlieren image 30fps, t=0.066s  

 

 

Figure 5-1c: Schlieren image 30fps, t=0.0996s  

 

 

Figure 5-1d: Schlieren image 30fps, t=0.133s 
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Figure 5-1e: Schlieren image 30fps, t=0.167s  

 

 

Figure 5-1f: Schlieren image 30fps, t=0.199s  

 

 

Figure 5-1g: Schlieren image 30fps, t=0.232s  
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Figure 5-1h: Schlieren image 30fps, t=0.266s  

 

 

Figure 5-1i: Schlieren image 30fps, t=0.299s  

 

 

Figure 5-1j: Schlieren image 30fps, t=0.332s  
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Figure 5-1k: Schlieren image 30fps, t=0.365s  

 

 

Figure 5-1l: Schlieren image 30fps, t=0.399s  

 

 

Figure 5-1m: Schlieren image 30fps, t=0.432s  
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Figure 5-1n: Schlieren image 30fps, t=0.465s  

 

 

Figure 5-1o: Schlieren image 30fps, t=0.498s 

 

 

Figure 5-1p: Schlieren image 30fps, t=0.531s  
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Figure 5-1q: Schlieren image 30fps, t=0.565s 

 

 

Figure 5-1r: Schlieren image 30fps, t=0.598s  

 

 

Figure 5-1s: Schlieren image 30fps, t=0.631s  
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Figure 5-1t: Schlieren image 30fps, t=0.664s  

 

 

Figure 5-1u: Schlieren image 30fps, t=0.697s  

 

 

Figure 5-1v: Schlieren image 30fps, t=0.731s  
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Figure 5-1w: Schlieren image 30fps, t=0.764s  

 

 

Figure 5-1x: Schlieren image 30fps, t=0.797s  

 

 

Figure 5-1y: Schlieren image 30fps, t=0.830s  
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Figure 5-1z: Schlieren image 30fps, t=0.864s  

 

 

Figure 5-1aa: Schlieren image 30fps, t=0.897s  

 

 

Figure 5-1bb: Schlieren image 30fps, t=0.930s  

 

As discussed in Chapter 8, during the blow-down process, flow within the nozzle 

is characterized by two distinct regimes:  
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i) during periods when the nozzle pressure ratio (NPR) is less than 

approximately 16.8, the nozzle flow field is dominated by two, and 

sometimes three, parallel, translating, normal shocks, and  

ii) when the NPR is greater than approximately 16.8, the in-nozzle flow 

remains free of normal shocks.  

The first regime is termed “shock-train-dominated flow” and the second “shock-

train-free flow.”  

Detailed discussion of these regimes is deferred to Chapters 8, 9, and 10, and it is 

simply noted when each appears in Figures 5-1a through 5-1bb.  

Thus, during the initial stages of blow-down, when the plenum is being 

pressurized by the high pressure holding tank and the NPR is thus still relatively small, a 

double-shock, initiated near the nozzle throat (not shown), traverses the nozzle and is 

observed exiting the nozzle in Figures 5-1c and 5-1d.  

Likewise, during the much slower plenum (and holding tank) depressurization 

period (see Figure 6-1, Chapter 6), a pair of normal shocks first appear at the nozzle exit 

as observed in Figure 5-1k. As the NPR continues to decay, the shock pair then moves 

upstream within the nozzle, as shown in Figures 5-1k through 5-1w.  

The two periods of shock-train-dominated flow are separated by an extended 

period of shock-train-free flow, as shown in Figures 5-1d through 5-1j. [Note, while a 

barrel-shaped internal shock is apparent in these latter images, further analysis by the 

SQS approach shows that the shock is quite weak. See Chapter 8. Thus, since the moving 

pair of normal shocks that constitute the shock-train are not present, this regime could 

also be characterized as shock-free flow.] 



48 
 

 

Importantly, nozzle flow structure remains nominally invariant during the period 

of shock-train-free flow; refer again to Figures 5-1d through 5-1j. Thus, as an initial test 

bed for developing and validating the semi-quantitative schlieren method, the SQS 

diagnosis is focused on the shock-train-free flow field. The next subsection describes the 

initial and final SQS decomposition of this flow regime.  

5.3 Initial SQS flow field decomposition 

As noted in the SQS flow chart in Chapter 2, one must guess, based on available 

schlieren image data, an initial decomposition.  

Here, the initially guessed decomposition of the shock-train-free flow is shown in 

Figure 5-2, where the initial guess is based on the following assumptions:  

a) The near-wall region is assumed to be dominated by oblique shocks, produced by 

facets in the nozzle wall. 

b) It is assumed that the interaction of these oblique shocks produced a near-

horizontal internal shock. 

c) A strong normal shock is assumed to exist downstream of opposing horizontal 

internal shocks. 

d) The region interior to the opposing horizontal internal shocks and upstream of the 

normal shock is assumed to be isentropic. 

[Note, throughout this dissertation, the “near-wall flow region” refers to the region 

exterior to the internal, barrel-shaped shock.] 
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Figure 5-2: Initial flow decomposition guess 

 

As outlined in the SQS flowchart in Chapter 2, once an initial decomposition is 

specified, a comparison must be made between theoretical predictions obtained from the 

initial guess with available experimental data. Here, three pieces of experimental data 

were initially available: 

i) observed near-wall wave angles produced by nozzle wall facets,  

ii) observed expansion fans immediately downstream of the nozzle throat, and 

iii) time-varying plenum pressure measurements.  

As detailed in Chapter 6, subsequent analyses, as well as introduction of limited 

wall pressure measurements, eventually lead to revision of the initial decomposition, as 

described immediately below.  

5.4 Final SQS flow field decomposition 

The final flow field decomposition is shown in Figure 5-3.  
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Figure 5-3: Final SQS flow field decomposition 

 

Here, the region of flow considered purely isentropic extends from the Mach line at the 

throat, through the Prandtl-Meyer expansion fan, to the downstream normal shock, and is 

bounded radially by the barrel-shaped internal shock.  

Comparing the initial and final decompositions, Figures 5-2 and 5-3, respectively, 

it is observed that only one significant modification was necessary: the near-wall region 

where oblique shock theory applies was found to extend only over the first third of the 

nozzle wall. Over the remaining two-thirds, much better agreement between theory and 

experiment was obtained by assuming this region to be isentropic; thus, near-wall waves, 

in reality, correspond to Mach waves. See Chapter 6.  
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CHAPTER 6: SEMI-QUANTITATIVE SCHLIEREN DIAGNOSIS OF QUASI-
STEADY SHOCK-TRAIN-FREE FLOW IN A PLANAR NOZZLE – PART I 

 
 
6.1 Introduction 

This chapter presents the results of various analyses that were used to diagnose 

the quasi-steady flow observed in a single schlieren frame during shock-train-free flow. 

The imaged flow field shown in Figures 5-2 and 5-3 is representative of those observed 

during this period. As noted, the nozzle blow-down process is characterized by two 

distinct flow regimes. The first, which is observed at nozzle pressure ratios (NPR) less 

than approximately 16.8, is dominated by the presence of a multi-shock shock train. This 

regime occurs twice, first during the initial period of plenum pressurization when the 

NPR is increasing from 1 to approximately 16.8, and subsequently during the latter stages 

of the blow-down process when NPR decays from approximately 16.8 back to 1.  Refer 

to Figure 6-1. The shock-train-dominated flow regime is analyzed in Chapter 9.  
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Figure 6-1: Nozzle pressure ratio (NPR) as a function of time (from experiment)  

 

The second regime, which this chapter and the next analyzes, and which exists 

when the NPR is greater than approximately 16.8, is characterized by the absence of  

shock trains.  

The analysis of the shock-train-free flow is organized as follows: 

1) First, the expansive region immediately downstream of the nozzle throat is diagnosed 

(Section 6.2). Based on schlieren image data and the assumption that this region 

behaves as a Prandtl-Meyer expansion, experimentally observed expansion waves are 

compared to those computed using the standard Prandtl-Meyer model.  

2) The flow region adjacent the nozzle wall, downstream of the Prandtl-Meyer 

expansion and extending to the exit, is next diagnosed; see Section 6.3. Here, several 
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different theoretical models are examined, with the objective of obtaining a model 

that reasonably predicts observed near-wall wave angles.  

3) Analysis of the near-wall region in Section 6.3 reveals that, contrary to an initial 

visual assessment, waves emanating from the wall are almost certainly (isentropic) 

Mach waves, rather than (non-isentropic) oblique shocks. Thus, since the region 

interior to the weak internal shock is almost certainly isentropic, a method of 

characteristics analysis of both the interior, strongly isentropic region and the near-

wall nearly-isentropic region is undertaken. This analysis comprises Part II of the 

SQS diagnosis and is presented in Chapter 7.   

6.2 Prandtl-Meyer expansion region 

As indicated in Figure 6-2, expansion fans appear to emanate from the outwardly 

expanding nozzle wall, immediately downstream of the nozzle exit. Introducing the  

 

 

Figure 6-2: Schlieren image of Prandtl-Meyer expansion fan 
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assumption that flow between the throat and wall expansion is isentropic, and based on 

the apparent existence of expansion fans in the schlieren images, it can be assumed that 

these regions behave as Prandtl-Meyer expansions.  

Thus, using the known wall geometry, which provides the local wall angle, θ, and 

assuming a sonic condition at the throat (i.e., Mthroat = 1), local Mach wave angles can be 

sequentially computed: 

i) First, and as outlined in Chapter 4, the local change in the Prandtl-Meyer 

function, υ(M), is computed, where: 

υ(Mi+1) - υ(Mi) = Δθi     Equation 6.1 

and where υ(M) is related to the local Mach number via Equation 4.2. 

Here, Mi and Mi+1 denote the Mach numbers at wall nodes i and i+1 along 

the wall expansion, and Δθi is the known change in wall angle between 

nodes. See Figure 6-3.   

 

 

Figure 6-3: Prandtl-Meyer expansion fan  
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ii) Second, the angle of the local Mach wave, µi, given by 

sin−1 1
𝑀𝑖

 = µi      Equation 6.2 

  can be determined given Mi.  

Using this procedure leads to the results shown in Figure 6-4.  

 

 

Figure 6-4: Schlieren image of Prandtl-Meyer expansion fan [Theoretical Mach waves are shown by red line 
segments.] 

 

As shown, the Prandtl-Meyer model provides a reasonable description of the 

observed experimental expansion fans. Physically, this provides strong support for the 

assumption that flow over the wall expansion is nominally isentropic.  

6.3 Near-wall flow region 

An initial assessment of the schlieren image of the near-wall region, Figure 6-5, 

clearly suggests that facets in the nozzle wall produce oblique shocks. In order to test the 

validity of this initial assessment, a calculation was performed in which oblique shock 
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wave angles were determined sequentially, starting from the first wall facet, and 

proceeding downstream.  

 

 

Figure 6-5: Schlieren image with oblique shocks 

 

Using the oblique shock model outlined in Chapter 4, the following strategy was 

employed:  

i) Starting at wall facet 1, the final computed Mach number at the exit from the 

Prandtl-Meyer fan (downstream of the nozzle throat) was used as the upstream 

Mach number at the corresponding first oblique shock. 

ii) Using the known wall deflection (at the facet) and the known upstream Mach 

number, Equation 4-3 was then used to determine the corresponding oblique 

shock angle, β. 

iii) Given β and the upstream Mach number, the downstream Mach number was then 

computed via oblique shock relations in Chapter 4. 
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iv) Using the downstream Mach number computed in step iii) as the upstream Mach 

number for the next downstream oblique shock, steps i) through iii) were then 

repeated at all subsequent downstream wall facets.  

The results of this calculation are shown in Figure 6-6.  

 

 

Figure 6-6: Wave angles versus fractional distance from throat 

 

 As indicated by Figure 6-6, the assumption that near-wall waves are oblique 

shocks appears to be quite reasonable, at least over approximately the first third of the 

nozzle wall. However, over the remaining two-thirds, increasing divergence between 
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predicted and observed wave angles clearly indicates that the oblique shock model no 

longer applies.   

 In order to address the discrepancy between theory and experiment over 0.3 < x/L 

< 0.9 (where x and L are axial position and nozzle length, respectively), attention is 

focused on wall curvature over this range of wall positions. Specifically, close inspection 

shows that wall curvature is significant over 0 < x/L < 0.3, while the wall becomes almost 

flat for x/L > 0.30. Thus, the oblique shock model is modified as follows: 

i) Over 0 < x/L < 0.30, it is assumed that changes in wall angle at each wall facet are 

large enough to produce an oblique shock. 

ii) For x/L > 0.30, it is assumed that wall curvature approaches zero so that each 

facet creates a Mach wave.  

 The latter assumption means that over the near-wall region, x/L > 0.30, the (non-

boundary layer) flow behaves approximately as a uniform, constant Mach number flow 

over a flat plate. Thus, for x/L > 0.3, wave angles remain constant, having a magnitude 

equal to that downstream of the last oblique shock at x/L ≈ 0.3.   

 Using this modified model leads to the results shown in Figure 6-7.   
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Figure 6-7: Wave angles versus fractional distance from throat  (modified model) 

  

 In closing this subsection, it is noted that the assumption that Mach waves, rather 

than oblique shocks, are created over x/L > 0.30 is fully consistent with the two 

subsequent analyses presented in Sections 6.4 and 6.5 below.  

6.4 Isentropic stream tube model applied to near-wall region 

In this section, the idea that the near-wall flow region between 0 < x/L < 0.9 is 

approximately isentropic is tested. This important notion is suggested by the analyses and 

results described in section 6.3. Specifically,  

i) over x/L > 0.3, it was found that wall facets apparently generate Mach waves, 

while  
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ii) over 0 < x/L <  0.3, due to small changes in wall slope, it appears reasonable to 

expect that facet-generated waves, likewise, generate either weak oblique shocks 

or Mach waves. 

Importantly, from a physical and diagnostic standpoint, if the nature of the near-

wall waves over 0 < x/L < 0.9 can be unambiguously determined, then an appropriate 

compressible flow model can be used to determine field properties, such as P, T, h, M, 

and ρ, within this region. 

In order to address this question, three tasks were undertaken: 

i) Pressure taps were installed at two points, x/L = 0.25 and x/L = 0.62, along the nozzle 

wall. 

ii) A third theoretical model of flow in the near-wall region was introduced, which took 

advantage of both wall pressure and schlieren image data. 

iii)  A new set of nozzle blow-down experiments were carried out.  

The new model focuses on flow in stream tubes that extend from the nozzle plenum 

to locations along the nozzle wall. See Figure 6-8 
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Figure 6-8: Theoretical streamtube  

 

The model assumes that flow within any given near-wall stream tube remains 

isentropic and steady. Thus, near-wall pressure at any position x, P(x), can be related to 

the local near-wall Mach number, M(x) via 

𝑃𝑜
𝑃(𝑥)

= [1 + �𝛾−1
2
�𝑀2(𝑥)]

𝛾
𝛾−1      Equation 6.3 

where Po is the measured plenum pressure, and γ = cp/cv, is the ratio of gas specific heats.  

Thus, measured pressures at x/L = 0.25 and x/L = 0.62, P(0.25) and P(0.62), when 

combined with measured Po in Equation 6.3, provide a theoretical prediction of 

associated near-wall Mach numbers, M(0.25) and M(0.62); corresponding theoretical 

Mach wave angles, µ(0.25) and µ(0.62), then follow from:  

 µ(x) = 𝑠𝑖𝑛−1 1
𝑀(𝑥)

        Equation 6.4 

The results of this analysis are presented in Figure 6-9.  
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Figure 6-9: Stream tube model of wall wave angles versus fractional distance from throat 

 

Importantly, from a diagnostic standpoint, there are now two consistent results 

that strongly indicate the physical nature of the near-wall flow region: 

i) The close agreement between theoretical and experimental wave angles (at x/L = 

0.25 and x/L = 0.62) shown in Figure 6.9 indicates that the flow from the plenum 

to these locations is nominally isentropic. This, in turn, suggests that the near-wall 

facet-induced waves between 0 < x/L < 0.3 are, in fact, weak oblique shocks or 

Mach waves. 

ii) Likewise, the close agreement between theoretical and experimental wave angles 

shown in Figure 6-7 is consistent with nominally isentropic flow. Certainly, the 

close agreement between computed isentropic Mach angles and observed wave 
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angles over 0.3 < x/L < 0.9 provides strong, direct evidence of isentropic flow 

over this portion of the near-wall region.  

6.5 SQS determination of near-wall temperature, pressure, and density fields 

Having obtained strong evidence that the near-wall flow region is nominally 

isentropic, observed near-wall wave angles, µexp(x), obtained via schlieren imaging can 

now be combined with standard isentropic flow relations to obtain near-wall temperature, 

density, and pressure fields:  

𝑇𝑜
𝑇(𝑥)

= 1 + (𝛾−1
2

)𝑀2(𝑥)      Equation 6.5  

𝜌𝑜
𝜌(𝑥)

= [1 + �𝛾−1
2
�𝑀2(𝑥)]

1
𝛾−1       Equation 6.6 

𝑃𝑜
𝑃(𝑥)

= [1 + �𝛾−1
2
�𝑀2(𝑥)]

𝛾
𝛾−1      Equation 6.7 

[Note, again, that M(x) above follows from the measured Mach angle, µexp(x), Equation 

6.4.] 
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CHAPTER 7: SEMI-QUANTITATIVE SCHLIEREN DIAGNOSIS OF SHOCK-
TRAIN-FREE FLOW REGIME, PART II – METHOD OF CHARACTERISTICS 

CALCULATION 
 
 

Part I demonstrated that during the period of shock-train-free flow, most of the 

nozzle flow field is likely isentropic or nearly so. This chapter thus uses a method of 

characteristics analysis to obtain an approximate diagnosis of the entire shock-train-free 

flow.  

7.1 Introduction: An overview of the method of characteristics 

Although developed by mathematicians for the solution of partial differential 

equations, Prandtl himself was involved in the first successful implementation of the 

method of characteristics (MOC) for the analysis of two-dimensional supersonic flows 

[57]. The method presented herein is essentially the same: Determine lines in the flow 

field (characteristics) along which property derivatives are undefined or discontinuous 

and on which the partial differential equations which describe the flow reduce to ordinary 

differential equations. For two-dimensional flow, these can be solved using a step-by-step 

algebraic procedure, yielding properties for the entire flow field.  

For two-dimensional, irrotational, supersonic flow, the equations describing 

conservation of mass, linear momentum, and energy result in well-known partial 

differential equations that govern the flow field. See, for example, Anderson [57]. Every 

point in the flow field has passing through it two lines, along which fluid properties are 

continuous, but across which property derivatives with respect to position are 
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discontinuous or undefined. These lines are called characteristics and, in fact, correspond 

to Mach waves. For flow proceeding left to right, the characteristic with a positive slope 

relative to the flow direction is termed left-running, and the one with negative slope is 

termed right-running. Referring to Figure 7-1, these slopes can be expressed relative to 

any chosen coordinate system:       

 𝑑𝑦
𝑑𝑥
�
𝑐ℎ𝑎𝑟

= tan(𝜃 ± µ)       Equation 7.1 

where θ is the angle that the flow makes with a positive (horizontal) x axis, and µ is the 

Mach angle measured on either side of the flow direction. 

 

 

Figure 7-1: Slopes of characteristics  

 

The system of coupled equations governing continuity (conservation of mass), 

momentum, and energy can be manipulated into compatibility relations, given by  

dθ = ±√M2 − 1 𝑑𝑉
𝑉

       Equation 7.2 
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where the negative sign refers to right-running characteristics and the positive to left-

running characteristics. Recognizing this as the equation which is integrated to give the 

Prandtl-Meyer function, υ, allows the compatibility equations to be written in algebraic 

form as [57] 

𝜃 + 𝜐 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡       Equation 7.3 

for right-running characteristics and  

𝜃 − 𝜐 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡       Equation 7.4 

for left-running characteristics. The specific implementation of these equations is detailed 

below.  

The implementation presented herein is numerical rather than graphical (as was 

favored by Prandtl). A Matlab program, listed in Appendix D, was written to perform 

necessary calculations.  

7.2 Implementation of MOC calculation 

The method of characteristics can be used to analyze steady, compressible, high 

speed flows that are calorically perfect and isentropic. Analysis is typically limited to 

two-dimensional flow. Here, assume that the flow is two-dimensional, consistent with use 

of a planar nozzle in experiments.  

Figure 7-2 shows three general interior nodes in the characteristic grid. Parent 

nodes 1 and 2 can be used to obtain property values at child node 3, without regard to 

node locations. The characteristic grid for two-dimensional, isentropic, supersonic flow is 

constructed as follows. 

 



67 
 

 

 

Figure 7-2: MOC grid  

 

Along a right-running characteristic, ξ, the sum of the Prandtl-Meyer function 

value, υ, and the flow angle, θ, measured from the horizontal is constant, or 

 𝜐 + 𝜃 = 𝑄 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡      Equation 7.5 

Along a left-running characteristic, η,  

 𝜐 − 𝜃 = 𝑅 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.      Equation 7.6 

Therefore, for a left-running characteristic,  

𝜐2 − 𝜃2 = 𝜐3 − 𝜃3,       Equation 7.7 

while for a right-running characteristic,  

𝜐1 + 𝜃1 = 𝜐3 + 𝜃3       Equation 7.8 

Combining these then gives 
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𝜐3 =  𝜐1+𝜐2
2

+ 𝜃1+𝜃2
2

       Equation 7.9 

By this method, the flow direction, θ, and Prandtl-Meyer function, υ, at any 

interior node – where the latter is located by the intersection of upstream left-running and 

right-running characteristics - are uniquely determined. Knowing the value of the Prandtl-

Meyer function, the local Mach number can then be found from the former: 

 𝜈(𝑀) = �𝛾+1
𝛾−1

 tan−1 �(𝛾−1)(𝑀2−1)
(𝛾+1)

 − tan−1 √𝑀2 − 1  Equation 7.10 

Since this equation is implicit in Mach number, a Matlab program was written to solve it. 

See Appendix A for the program listing.   

For the case of a node lying on the centerline of the nozzle, only a right-running 

characteristic is needed to determine properties. This results from using only the upper 

half of the nozzle contour, where symmetry about the centerline is assumed. See Figure 

7-3. 

For this case flow angle 𝜃3 = 0, (from symmetry) so from Equation 7.8,  

𝜐3 = 𝜐1 + 𝜃1        Equation 7.11 

 

 

Figure 7-3: MOC symmetry   
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For the case of a wall node (Figure 7-3), only a left-running characteristic is 

needed for property determination; thus, from Equation 7.7,  

𝜐5 = 𝜐4 − 𝜃4 + 𝜃5        Equation 7.12 

where 𝜃5 is the wall node known from the nozzle geometry. As discussed next, unlike the 

interior node and centerline node, for which properties can be determined independent of 

node location, the location of wall node 5 is needed in order to know flow direction.  

The more difficult aspect of the MOC calculation involves determination of node 

locations. Referring to Figure 7-5, the slope of the right-running characteristic from node 

1 relative to the horizontal is given by 

𝑑𝑦
𝑑𝑥
� = tan(𝜃1 − µ1) = 𝑚1       Equation 7.13 

Similarly, the slope of the left-running characteristic is given by  

𝑑𝑦
𝑑𝑥
� = tan(𝜃2 + µ2) = 𝑚2      Equation 7.14 

As is described in some textbooks [57], the characteristics could, in principle, be 

assumed straight, and the location of node 3 could then be taken as their point of 

intersection. Since the characteristics are actually curved, a better location of node 3 is 

determined by using the average of the slopes at the parent and child nodes, and then by 

finding the intersection of the resulting lines for the right-running characteristics from 

node 1 and the left-running characteristics from node 2. The average slopes, 𝑚���, can then 

be found as  

𝑚1���� = 𝑡𝑎𝑛 �𝜃1+𝜃3
2

− µ1+µ3
2

� = 𝑦3−𝑦1
𝑥3−𝑥1

     Equation 7.15 

and 

𝑚2���� = 𝑡𝑎𝑛 �𝜃2+𝜃3
2

− µ2+µ3
2

� = 𝑦3−𝑦2
𝑥3−𝑥2

     Equation 7.16 
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For the interior nodes, these can be solved algebraically to yield the location of 

child node 3 (Figure 7-2) in terms of the locations of parent nodes 1 and 2.  

x3 = y2−y1+m1�����x1−m2�����x2
m1�����−m2�����

       Equation 7.17 

and 

𝑦3 = 𝑚2�����(𝑚1�����𝑥1−𝑦1)+𝑚1�����(𝑦2−𝑚2�����𝑥2)
𝑚1�����−𝑚2�����

     Equation 7.18 

For the special case of a centerline node (Figure 7-3), where 𝜃3 = 0, 

𝑚1���� = tan �𝜃1
2
− µ1+µ3

2
�      Equation 7.19 

and 

𝑥3 = 𝑥1 −
𝑦1
𝑚1�����

         Equation 7.20 

and, by definition, 𝑦3 = 0. 

7.3 A new predictor-corrector method for flow near walls 

The biggest challenge arises for nodes lying on the nozzle contour (wall nodes). 

Fluid properties cannot be determined for a wall node without knowing its location, since 

flow direction must be parallel to the wall. The wall slope (flow direction) can only be 

determined by knowing the axial location (x-coordinate) and by substituting this into the 

derivative of a third-order curve fit of the nozzle contour. The previously described 

averaging method for the slope of left-running characteristics cannot be used since flow 

properties at the wall are unknown since the node location is unspecified. This 

conundrum (properties cannot be found without location and location cannot be found 

without properties) was solved by development of a new predictor-corrector method for 

the determination of the position of a wall node. Referring to Figure 7-3, a trial wall 

location was found by using the un-averaged value of the characteristic slope, given by  
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𝑚4 = tan(𝜃4 + µ4),       Equation 7.21 

and then by finding the intersection of this line with the third-order curve representing the 

wall contour 

𝑦 = 0.0187𝑥3 − 0.2029𝑥2 + 0.7825𝑥 + 0.19   Equation 7.22 

Note that the corresponding wall slope, m, is given by  

𝑚 = 𝑑𝑦
𝑑𝑥

= 0.0561𝑥2 − 0.4058𝑥 + 0.7825    Equation 7.23 

Thus, 

𝑚4 =  tan(𝜃4 + µ4) = 𝑦5−𝑦4
𝑥5−𝑥4

      Equation 7.24 

and 

𝑦5 =  𝑦4 + 𝑚4(𝑥5 − 𝑥2)       Equation 7.25 

The x-coordinate of the intersection of the characteristics and the curved wall is 

then found by equating Equations 7.22 and 7.25 and by solving the resulting cubic 

equation. Since this had to be done for every wall node, the solution was incorporated in 

the MOC Matlab program given in Appendix C.  The resulting trial (predictor) value of x 

(the axial location of the wall node) was used in Equation 7.23 to obtain the trial wall 

slope. With this wall slope representing the flow direction, Equations 7.12 and 7.10 

finally give flow properties.  

With properties now known at both parent and child nodes, nodes 4 and 5 

respectively, the usual averaging method is used to obtain a new characteristic slope and 

a new, better, wall node location, along with associated properties.   

7.4 Further model details and assumptions 

The schlieren image of the shock-train-free flow analyzed is again shown in 

Figure 7-4.  
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Figure 7-4: Image for analysis 

 

To start the MOC calculation, a Mach number of 1.0 was assumed at the throat, 

with a straight sonic line.  The expansive turn (Prandtl-Meyer region) immediately 

downstream of the throat occurs over a short axial distance and can, in principle, be 

treated as a centered expansion.  However, for improved accuracy, the expansion was 

treated as a smooth curve, with wall characteristic lines taken as Mach waves inclined at 

the local Mach angle to the wall tangent.  Symmetry about the nozzle centerline was 

assumed in order to limit the MOC calculation to half of the actual flow field.  

Figure 7-5 shows the characteristic grid associated with the MOC analysis.  Due 

to the compressive turn in the straightening section of the nozzle, the characteristics are 

seen to coalesce in the region where an internal shock is observed in the schlieren images.  

The MOC analysis fails in the area downstream, and radially outboard of the location of 

the predicted internal shock. 
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Figure 7-5: Characteristic grid for MOC analysis 

 

Since observed facet-generated waves emanating from the wall correspond to 

very weak oblique shocks, or equivalently, Mach waves, the internal shock separating the 

large, feature-free region downstream of the nozzle throat and the near-wall flow region 

is assumed to be a weak (internal) shock. Thus, it is assumed that, outside of the near-

wall boundary layers, and upstream of the internal (weak) normal shock (located 

immediately upstream of the nozzle exit), the entire flow field is isentropic. Refer to 

Figure 7-6.  
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Figure 7-6: Schlieren image flow field regions/features 

 

7.5 Results of semi-quantitative diagnosis of shock-train-free flow 

The method of characteristics approach outlined above can, in principle, be is 

used to compute the field properties P(�⃗�), T(�⃗�), M(�⃗�), and ρ(�⃗�), throughout the entire 

nozzle flow field, where �⃗� denotes position within the nozzle.  

Specifically, given local, i.e., nodal, Mach numbers, M, determined via the MOC 

calculation and given the measured plenum stagnation pressure and temperature, Po and 

To, respectively, associated position-dependent temperature and pressure fields, P(�⃗�) and  

T(�⃗�), can be computed using the isentropic relations, Equations 6.3 and 6.5.  Finally, 

given T(�⃗�) and  P(�⃗�), the density field follows from the ideal gas law:  

ρ(�⃗�) = 𝑃(�⃗�)
𝑅𝑇(�⃗�)

        Equation 7.26 

Note, in this dissertation, since the plenum stagnation temperature, To, was not measured, 

P(�⃗�), T(�⃗�), and ρ(�⃗�) were not computed.  

In order to validate the MOC calculations, predicted Mach angles along the 

nozzle wall are compared with those observed via the schlieren image.  
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As shown in Figure 7-7, the near-wall Mach angle distribution predicted by the 

method of characteristics calculations compares reasonably well with experimental 

schlieren data.  

 

 

Figure 7-7: MOC-predicted wall Mach and schlieren image Mach angle versus fractional distance from throat 

 

7.6 Final SQS diagnosis of the shock-train-free flow regime 

The relatively close agreement observed between the method of characteristics 

calculations and the experimental data, combined with the analyses presented in Chapter 

6, leads to the following, final, semi-quantitative-schlieren-based picture of shock-train-

free flow in the present experimental system: 
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1) Prandtl-Meyer expansion fans form at the initial nozzle expansion, immediately 

downstream of the nozzle throat. 

2) The waves generated by wall facets over 0 < x/L < 0.3 are in fact very weak oblique 

shocks. The waves are classified as weak oblique shocks rather than Mach waves due 

to the close agreement observed between the oblique shock model calculation 

described in Section 6.3 and experimental image data. It should be noted, that similar 

results follow by assuming that the waves over 0 < x/L < 0.3 are Mach waves; 

however slightly improved agreement is obtained by using the oblique shock model.  

3) The facet-generated waves observed over 0.3 < x/L < 0.9, in slight contrast, appear to 

be Mach waves. As noted in Section 6.3, since wall curvature is small over this 

region, wall facets effectively represent small perturbations to the (non-boundary 

layer) high speed flow. Under these circumstances, and as strongly suggested by the 

results in Figure 6-7 (which compare near-wall wave angles predicted by the oblique 

shock/Mach wave model versus experiment), it becomes apparent that these waves 

are most likely Mach waves.  

4) Based on the above analyses of the near-wall region, it is hypothesized that weak, 

facet-generated waves coalesce to form a weak internal shock; refer, again to Figure 

7-6. 

Given the assumption that the internal shock is weak, it is idealized that the entire 

shock-train-free flow is nominally isentropic. Importantly, based on this idealization, a 

method of characteristics analysis of the entire flow was undertaken. The relatively close 

agreement observed between predicted and observed near-wall Mach angles in Figure 7-7 

provides strong support for all of the diagnostic results described in 1) through 4).  
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As a closing aside, it is noted that all models used assume quasi-steady flow 

conditions within the nozzle. This important assumption is valid over time increments, 

Δτ, that are long relative to the characteristic nozzle advective time scale (i.e. the time 

required for fluid particles to transit the nozzle),  

 τf = L/U = O(10-4 s)       Equation 7.27 

but short relative to the experimental run-time,  

 τE = O(1s)         Equation 7.28 

where, L and U are the nozzle length and characteristic flow speed, respectively. 

Specifically, since in-nozzle flow structure and plenum pressure remain nominally fixed 

on time scales that are long relative to τf, it can be safely assumed that on these scales, 

flow between the plenum and nozzle, as well as within the nozzle, is quasi-steady. 
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CHAPTER 8: TIME-DEPENDENT SEMI-QUANTITATIVE SCHLIEREN 

DIAGNOSIS OF THE NOZZLE BLOW-DOWN PROCESS 
 
 
Chapter 7 presented a detailed semi-quantitative schlieren analysis and diagnosis 

of the quasi-steady nominally instantaneous flow observed in a single schlieren image. 

The essential findings of that analysis: During shock-train-free flow, most of the flow 

field is nominally isentropic and can thus be diagnosed using the method of 

characteristics. This chapter extends this instantaneous, single frame diagnosis to an 

examination of the time-varying, shock-train-free nozzle flow that accompanies the full 

nozzle blow-down process. The objective of this examination centers on gaining a broad 

picture of how the nozzle flow evolves during blow-down. 

8.1 Methods 

Consistent with a semi-quantitative schlieren-based approach, two pieces of 

experimental data: 

i) observed, time-varying near-wall wave angles, and  

ii) measured, time-varying plenum and nozzle wall pressures 

are combined with a simple model of in-nozzle flow: 

i) isentropic, quasi-steady flow within plenum-to-near-wall stream tubes.  

8.2 Experimental Measurements 

Experimentally, and as detailed in Chapter 3, time-varying wall pressures were 

measured at x/L = 0.25 and x/L = 0.62; the time-dependent plenum pressure was 
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measured at a single location within the plenum. All pressures were obtained at a sample 

rate of 1000 Hz.  

For these experiments, a high frame rate camera (Redlake MotionXtra HG-XL), 

acquiring frames at 1000 frames per second, was introduced. Time-varying near-wall 

wave angle distributions were then determined manually, frame-by-frame, through the 

entire blow-down process. [Note 1: since the time scale over which in-nozzle flow 

structure varies is long relative to the camera frame rate, wave angle distributions were 

measured every 50th frame.] 

As noted, the blow-down process was typically complete within approximately 

0.65 seconds. (See, for example, Figure 9-1 in Chapter 9.) 

8.3 Isentropic stream tube model 

Considering any given stream tube passing from the plenum to locations along 

and adjacent to either nozzle wall, it is assumed that quasi-static conditions prevail at all 

points within the stream tube. For this assumption to hold, time-dependent variations in 

nozzle and plenum pressure, temperature, density, and velocity fields must occur on time 

scales, τs, that are long relative to both the characteristic advection time scale, τf = L/U, 

for particle transport through the nozzle, and the schlieren imaging and pressure 

measurement time scales, τi and τp, respectively. [Here, Δtp= 0.001s and Δti = 0.001s are, 

respectively, the inverse data sample rates for the pressure sensors and the schlieren 

imaging system as noted in Chapter 7, τf = O(10-4s).] 

In the present set of experiments, it is readily shown that, throughout blow-down, 

i) nozzle flow structure, an indirect indicator of nozzle flow field properties, varies 

on time scales much longer than τf, τi, and τp, and  
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ii) measured plenum and wall pressures, again surrogates for plenum and nozzle 

flow field properties, likewise vary on long time scales.  

Thus, at any given pressure measurement time, tn = nΔtp, and any given schlieren 

imaging time, tm = mΔts, it can be safely assumed that quasi-static conditions exist in any 

stream tube passing from the plenum and through the near-wall flow region. [The indices 

n and m run from 1 to Np and 1 to Ns, respectively, where Np and Ns are respectively the 

total number of pressure measurements and schlieren images captured during a given 

blow-down experiment.] 

Based on the analyses presented in Chapter 6, it is assumed that flow in any given 

stream tube, is, throughout any given blow-down experiment, isentropic. Thus, assuming 

constant specific heats, cp and cv, the measured, nominally instantaneous pressures 

obtained at tn = nΔtp, within the plenum and at wall locations, x/L = 0.25 and x/L = 0.62, 

can be used to determine corresponding, near-wall Mach numbers:  

𝑃𝑜(𝑡𝑛)
𝑃0.25(𝑡𝑛)

= [1 + �𝛾−1
2
�𝑀0.25

2 (𝑡𝑛)]
𝛾

𝛾−1     Equation 8.1 

 𝑃𝑜(𝑡𝑛)
𝑃0.62(𝑡𝑛)

= [1 + �𝛾−1
2
�𝑀0.62

2 (𝑡𝑛)]
𝛾

𝛾−1      Equation 8.2 

Here, tn = nΔt, is the measurement instant, Po(tn), P0.25(tn), and P0.62(tn) are the 

measured plenum pressure and measured wall pressures at x/L = 0.25 and x/L = 0.62, 

respectively, M0.25(tn) and M0.62(tn) are corresponding near-wall Mach numbers, and γ = 

cp/cv is the ratio of specific heats.  

Consistent with the assumption of isentropic stream tube flow, and more 

specifically consistent with the analyses and results described in Chapter 6, it is assumed 

that near-wall waves are Mach waves. Thus, using the local, nominally instantaneous 
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Mach numbers obtained via Equations 8.1 and 8.2, corresponding theoretical Mach wave 

angles can finally be computed:  

µ0.25(tn) = sin−1 1
𝑀0.25(𝑡𝑛)

          Equation 8.3 

µ0.62(tn) = sin−1 1
𝑀0.62(𝑡𝑛)

         Equation 8.4 

8.4 Comparison of time-dependent wave angles from the isentropic stream tube model 

with experiment 

Theoretical and observed wave angle evolutions at x/L = 0.25 are compared in Figure 

8-1. From the figure, a number of observations can be made: 

a) As noted, at nozzle pressure ratios less than approximately 16.8, a shock-train exists 

within the nozzle. During the plenum pressurization period, extending from t = 0 s to 

approximately t = 0.23s, the shock-train is observed within the nozzle until 

approximately t = 0.14s. Referring to Figure 8-1, during this initial period of shock-

train-dominated flow, the isentropic stream tube model does a poor job of predicting 

the observed evolution of the wave angle at x/L = 0.25.  
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Figure 8-1: Near-wall wave angles vs time @ x/L =0.25 

 

b) The model’s over-prediction of the Mach wave angle, µ0.25(t) during the first period 

of shock-train-dominated flow, 0 < t < 0.138s, reflects: 

i) the fact that µ(x) varies in direct proportion to P(x) (which is seen, e.g., from 

equations 8.1 and 8.3), and  

ii) the presence of a closed, pressurized, recirculation bubble which encompasses 

x0.25. 

With regard to the second  feature, a cyclically opening and closing recirculation 

bubble, is strongly indicated by the cyclic pressure variation, above and below 

atmospheric pressure, observed at x0.25, over the interval 0 < t < 0.138s. Refer to Figure 

8.2.  
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Figure 8-2: Pressure readings and shock position versus time 

 

In particular, during the short intervals when P0.25 < 0 (i.e. when P0.25 drops below 

atmospheric pressure), it is seen that P0.62 likewise drops below atmospheric pressure. 

Thus, a long, thin recirculation zone, extending from the nozzle exit, upstream past x0.62 

and x0.25, almost certainly exists. As the normal shocks comprising the shock-train pass 

over x0.25, the open recirculation zone closes, creating a (temporarily) closed recirculation 

bubble around x0.25. 

Thus, the model’s over-prediction of µ0.25 during the initial period of shock-train-

dominated flow, 0 < t < 0.138s, simply reflects the existence of a closed, pressurized 

recirculation bubble about x0.25. 

c) Similar physical features underlie over-predicted Mach angles observed during the 

second period of shock-train-dominated flow, 0.391 < t < 0.598s. 

-50

0

50

100

150

200

250

300

350

400

450

0 0.2 0.4 0.6 0.8

Ga
ge

 P
re

ss
ur

e 
(p

si)
 

Time (s) 

Pressure readings and shock position vs time 

chamber pressure

25% nozzle pressure

62% nozzle pressure

Shock position %nozzle



84 
 

 

d) The relatively close agreement observed between theoretical and experimental Mach 

angles during the period of shock-train-free flow, 0.138 < t < 0.391s, suggests that the 

flow from the plenum to x0.25 is nominally isentropic. This result is consistent with the 

single-instant results reported in Chapters 6 and 7.    

 

 

Figure 8-3: Near-wall wave angles vs time @ x/L=0.62 

 

Figure 8-3 shows predicted near-wall wave angles at x/L = 0.62, versus wave 

angles measured from the schlieren image. Overall, better agreement is seen at this 

location compared to that obtained at x/L = 0.25. This is expected since the change in 

wall slope versus axial position is small, and no cyclically opening and closing separation 

bubble appears to exist.  
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CHAPTER 9: QUALITATIVE MODEL OF SHOCK-BOUNDARY LAYER 
INTERACTION DURING THE SHOCK-DOMINATED FLOW REGIME 

 
 
9.1 Introduction 

This chapter presents two new findings. First, experimental schlieren image data are 

presented which show that within the non-thrust optimized nozzle used in this 

investigation, a double-shock structure dominates the flow, at least under low NPR, 

overexpanded flow conditions. This appears to be the first documented observation of 

such structures within high-pressure ratio nozzles. Importantly, this observation 

represents a distinct departure from the classical picture in which only single normal 

shocks can exist under overexpanded flow conditions.   

Second, a qualitative model is proposed which exposes the fluid dynamic processes 

that create this double-shock structure. The model suggests the following: 

1) Under overexpanded flow conditions, the nozzle flow adjusts to the ambient external 

pressure through two shocks rather than one normal shock. 

2) The observed double-shock structure corresponds to a shock-train [58,59,60,61]. This 

appears to be the first observation of shock-trains in high pressure nozzles. 

3) The shock-train structure is produced by a series of interactions between the near-wall 

boundary layer, the observed shocks, and the non-boundary-layer high speed flow 

upstream, between, and downstream of the double shock.  

The model, which provides a detailed physical description of these interactions, 

appears to be the first to explain the origins of shock-train structures.  
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9.2 Experimental schlieren and pressure data 

As shown in Figures 5-1o through 5-1v, during any given blow-down experiment 

and during the period when plenum pressure was decaying, two nominally parallel shock-

like structures were consistently observed to travel from the nozzle exit upstream toward 

the nozzle throat.  

In order to investigate this rather unusual structure, the experimental system was 

enhanced as follows:  

1) A Canon HD Vixia HF S100 camera, having a 30 frame-per-second image 

acquisition rate, was replaced by a Redlake MotionXtra HG-XL camera, having a 

1000 frame-per-second image acquisition rate. 

2) Pixel resolution was increased from 1431 x 767 pixels to 1504 x 1128 pixels.  

Prior to presenting schlieren image data, a typical time history of the nozzle 

pressure ratio, NPR, is presented in Figure 9-1.  As shown, the NPR exhibits a rapid 

initial rise as the nozzle plenum becomes pressurized by the inflow of high-pressure 

argon.  

[As noted, for cost savings, the present experimental system uses a relatively 

small high pressure tank (volume = 8500 cm3). Due to the tank’s small volume, and as 

seen in Figure 8-1, the plenum pressure (and thus, the nozzle NPR) never achieves a 

fixed magnitude. Once a sufficient mass of argon has exited the supply tank, plenum 

pressure (and NPR) begin to decay.]  
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Figure 9-1: NPR as a function of time  

 

The maximum NPR tested was approximately 30. For purposes of comparison, a 

typical NPR range used in full-scale rocket nozzles is on the order of 15 < NPR < 200. 

Refer, for example, to Keanini and Brown [55].  

Schlieren images of the blow-down process, obtained at the higher 1000 frames-

per-second rate and higher image resolution, are shown in Figures 9.2a through 9.2j. It is 

important to note that the present experimental nozzle remains in an overexpanded 

condition – roughly indicated by the presence of normal shocks within the nozzle – at 

NPR’s less than approximately 16.8. See, for example, Figures 9.2a through 9.2e as well 

as Figures 9.2g through 9.2j. By contrast, at NPR’s exceeding 16.8, the nozzle flow is 

under-expanded and shock-free. See, for example, Figure 9.2f.  
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Figure 9-2a: NPR=5.905 (Time=0.062s)  

 

 

Figure 9-2b: NPR=8.708 (Time =0.088s)  
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Figure 9-2c: NPR=11.511 (Time = 0.121s)  

 

 

Figure 9-2d: NPR=14.314 (Time = 0.143s) 

 

 

Figure 9-2e: NPR=16.767 (Time = 0.153s)  
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Figure 9-2f: NPR=16.767 (Time = 0.328s)  

 

 

Figure 9-2g: NPR=14.314 (Time = 0.360s)  

 

 

Figure 9-2h: NPR=11.511 (Time = 0.404s)  
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Figure 9-2i: NPR=8.708 (Time = 0.463s)  

  

 

Figure 9-2j: NPR=5.905 (Time = 0.563s)  

 

Thus, in the analyses and discussion to follow (this section and Section 9.3), it is 

assumed that overexpanded flow exists for NPR < 16.8. Likewise, during shock-train-free 

flow, as analyzed via the semi-quantitative schlieren technique in Chapter 7, the nozzle is 

assumed to be underexpanded.  

9.3 Discussion of new schlieren image data 

During the period when plenum pressure, and thus, NPR, is increasing, an 

apparent pair of parallel normal shocks are observed moving downstream from the throat 

toward the nozzle exit; see Figures 9-2a through 9.2e.  
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Close examination of the figures indicates that for 11.5 < NPR < 16.77, the shock 

pair still exist, but are much closer in proximity. In addition, it appears that the 

downstream shock becomes significantly weaker than its upstream twin. See Figures 9-2c 

through 9-2e.  

Similarly, close examination of Figures 9-2a and 9-2b suggests the existence of 

three parallel normal shocks, where the most downstream member is weaker than the 

other two.  

Similar structural characteristics are observed during the period when plenum 

pressure, and thus, NPR, is decreasing. See, for example, Figures 9-2g through 9-2j.  

Note, that in many of the images, each normal shock appears to bend in the 

downstream direction. In reality, as argued in Section 9.4, the downstream-directed 

segments likely correspond to oblique shocks produced by the formation of virtual 

compression corners in the near-wall boundary layer.  

Importantly, the enhanced images in Figures 9.2a through 9.2j provide the 

experimental foundation for exposing the physical mechanisms that produce multiple 

normal shocks in the experimental nozzle. Thus, in Sections 9.4 and 9.5, what appears to 

be the first physical model of shock-train development in high NPR nozzles is presented.  

9.4 A physical model of shock trains in high NPR rocket nozzles 

Random side loads often appear within overexpanded rocket nozzles, usually 

during low altitude flight where back pressure is relatively high. Over the last 50 years, a 

number of structural and catastrophic failures have been attributed to side loads [62, 63]. 

Current conceptual understanding traces to Summerfield et al. [64], who proposed that 

side load generation arises from the following chain of fluid dynamic processes: i) Under 
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over-expanded flow conditions, where high ambient pressure can force ambient air 

upstream into the nozzle. ii) The inflow, confined to the low inertia near-wall region, and 

in response to the inertia of the out-flowing boundary layer, eventually turns back on 

itself. iii) The inflow-turning process causes the nozzle boundary layer to separate which, 

in turn, produces a virtual compression corner. iv) The compression corner, which rings 

the inner circumference of the nozzle, produces an oblique shock, which also rings the 

nozzle. v) Since the separation line and compression corner are not perfectly symmetric – 

both fluctuating due to intense turbulence – a net, random, lateral pressure force, 

produced by the pressure jump across the asymmetric shock, acts on the nozzle wall.  

While a number of visualization studies have investigated separation and side 

loading in planar nozzles [65], these have been carried out at nozzle pressure ratios of 

less than two, well-below the range, ~15<NPR<~200, characteristic of medium and 

large-scale rockets [66]. Due to significant variations in, e.g., shock strength, shock 

angle, shock-boundary-layer interaction, and separation line dynamics, under low and 

high NPR conditions [67, 68], visualization data at high NPRs are needed.  

Current understanding of side-load generation has evolved indirectly, based in 

part on numerous early measurements of nozzle wall pressure distributions, obtained 

under overexpanded flow conditions [69, 70] (as well as reviews by [54] and [55]), and 

on more recent equally voluminous numerical studies (see e.g. [71, 72, 73]).  

Presented, here, is the first visual data on shock-induced boundary layer 

separation within high NPR nozzles, obtained under time-varying NPR conditions. In 

marked contrast to the Summerfield picture [64] in which boundary layer separation is 

associated with a single normal (or quasi-normal) shock [54], a complex shock-train 
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structure is observed, consisting of two spatially separated, nominally self-similar quasi-

normal shocks, intersecting shocks of the same family, and reflected shocks.  

Significantly, the presence of a persistent, self-similar shock-train structure, 

visible over a range of NPR’s, or equivalently, over a range of boundary layer separation 

locations, suggests that significant revisions to the existing Summerfield picture [64] are 

in order. Specifically: i) Shock-boundary layer interactions may be much more strongly 

coupled than previously recognized. ii) Previously measured separation-zone wall 

pressure distributions (see e.g. [54, 55, 64, 70]), exhibiting a gradual, rather than step-like 

pressure rise, may, in fact, reflect the presence of internal shock trains, as opposed to 

previously hypothesized single shocks [64] and (see reviews in e.g. [54] and [55]). iii) 

The region of near-wall turbulent flow downstream of the nominal separation line may be 

much thicker than previously believed (see, e.g. [54] and [55]).  

In this section, visual evidence is presented of the existence of nominally self-

similar, persistent shock-train structures in high-pressure-ratio rocket nozzles, as 

observed over a range of NPRs, and a simple physical model is proposed which explains 

how the nozzle boundary layer and the external non-boundary layer flow interact to 

create the observed shock train structure. It should be noted that this model is general and 

applies to any shock-train-dominated high speed flow.  

9.5 A simple physical model of shock-boundary layer interaction 

Figures 9-3, 9-4, and 9-5 describe a simple model which explains not only the 

shock-train structures observed in the present study, but those observed in, e.g., high 

speed duct flows, [58, 59, 60, 61]. Rather than repeating the details given in the figure 

and table, the following points are noted: 
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i) While shock-trains and associated pseudo-shock phenomena have been 

observed and investigated since circa. 1949 [58, 71], the model 

proposed here appears to be the first to provide a detailed physical 

explanation of how shock-shock and shock-boundary layer interactions 

produce an observed shock-train pattern. (See [58] for a description of 

pseudo-shocks and their relationship to shock-trains.) 

ii) On the theoretical front, computational simulations of shock-train and 

pseudo-shock-dominated flows have proven difficult and non-

predictive [58]. As an alternative, a number of approximate, simple 

models of shock-train and pseudo-shock evolution have been proposed. 

With respect to the latter, existing physical models [58] share the 

following characteristics: a) all represent lumped formulations in which 

amorphous boundary layers grow from the flow boundaries inward – 

analogous to the classical picture of internal boundary layer growth in 

low speed flow [74], and b) all completely neglect shock-boundary 

layer and shock-shock interactions.  

iii) The present model, in contrast to previous physical models, provides a 

fine-grained description by decomposing the shock-train into simple, 

well-known (and easily modeled) unit-processes: a) oblique shock 

formation at compression corners, b) shock reflection at the intersection 

of shocks of the same family, c) subsonic-supersonic acceleration 

through convergent-divergent flow areas, d) flow through (quasi-) 

normal shocks, and e) boundary layer deflection due to shock 
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impingement. (Note: for simplicity and clarity, the figure and table 

below do not include, for example, formation of contact discontinuities 

downstream of the shock interaction lines, Prandtl-Meyer expansion 

fans on the lee side of diverging boundary layers, and converging 

shocks with shock-foot precursors to oblique shocks).  

It is anticipated that the proposed model can be used in various ways: a) 

development of detailed, non-lumped analytical models of shock-train and pseudo-shock 

evolution, b) development of physically reasonable initial conditions for, e.g., 

parabolized numerical simulations, and c) development of inverse methods for 

diagnosing unresolved boundary layer regions, based on experimentally observed shock-

train/pseudo-shock structures.  

With respect to shock-boundary layer interaction in rocket nozzles, the present 

results appear to be the first to report the existence of shock-trains in high-pressure-ratio 

nozzles. Importantly, these results indicate that existing conceptual and theoretical 

constructs require revision.  

 

 

Figure 9-3: Schlieren image of shock-train structure in nozzle 
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Figure 9-4: Schematic of normal shock wave/turbulent boundary layer interaction 

 

 

 

 



98 
 

 

 

1 Virtual compression corners formed by inflection in 

boundary layer.   

2 Internal oblique shocks produced by 1. 

3 Quasi-normal shocks. 

4 Reflected shocks formed by intersection of 2 and 3. 

5 Boundary layer inflection points produced by impingement 

of 4. The outward BL inflection produces a virtual throat, 

allowing the sub-sonic flow in region IIA to accelerate to 

supersonic conditions in region IIB. 

6 Decaying pressure in supersonic region IIB produces 

inward BL inflections, i.e., a second set of virtual 

compression corners. 

7 Second quasi-normal shock. 

8 Second set of oblique shocks formed by 6. 

9 Second set of reflected shocks formed by intersection of 7 

and 8. 

10 Second virtual throat, allows subsonic flow in region IIIA to  

accelerate to supersonic conditions in IIIB. 

I Isentropic supersonic flow region. 

IIA Subsonic Flow Region after first shock 

IIB Supersonic Flow Region before second shock 

IIIA Subsonic Flow Region after second shock 

IIIB Supersonic Flow Region after nozzle exit plane 

IV Boundary layer.   
N.B. Due to slight curvature in shocks 3 and 7, regions IIA, IIB, IIIA, and IIIB are, strictly speaking, non-isentropic 

Figure 9-5: Table defining the simplified physical model of shock train-boundary layer interaction 
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Thus, in conclusion, high speed schlieren imaging shows that, under a range of 

nozzle pressure ratios, a persistent, self-similar shock-train structure exists within an 

experimental planar nozzle. On one hand, this observation runs counter to conventional 

wisdom that in overexpanded nozzles, single normal (or quasi-normal) shocks underlie 

observed shock-induced pressure increases, and on the other, offers an alternative 

explanation for observed pressure increases that are gradual rather than sharp. A simple 

physical model provides a detailed, non-lumped, unit-process-based description of how 

shock-boundary layer interactions produce observed shock-train patterns. This proposed 

model may improve understanding of the fundamental flow processes underlying shock-

train and pseudo-shock structure and evolution, and may allow the development of 

improved analytical and numerical models.  
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CHAPTER 10: CONCLUSIONS 

 
 

With renewed interest in commercial supersonic flight and space vehicles, flow 

through rocket nozzles has been the subject of numerous computational fluid dynamics 

(CFD) and experimental studies.  

The semi-quantitative schlieren (SQS) method offers a new, accessible, low-cost 

approach for investigating high-speed flow through rocket nozzles. Furthermore, SQS 

can serve as a precursor, adjunct, or replacement for CFD studies or can be used to 

further understand the flow processes within structurally complex, compressible flows. 

While much research has been done on combining two or more experimental  high-speed 

flow diagnostic methods, such as combining two or more density-sensitive visualization 

techniques, a long-sought objective in the broad field of compressible flow diagnostics 

centers on development of methods like SQS which allow measurement of multiple flow 

field variables such as Mach number, velocity, pressure, temperature, and density fields 

without the introduction of sensors or other instrumentation which could disrupt the 

complex compressible flow fields.  

Indeed, this work has shown that complex, unsteady compressible flows can be 

analyzed both qualitatively and quantitatively with reasonable accuracy using a relatively 

simple, low-cost, bench-top apparatus composed of a machined plenum/convergent-

divergent nozzle fed by the blow down of a high-pressure tank. Depending on the contour 

chosen for the divergent portion of the nozzle, various flow structures can be produced, 
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including Prandtl-Meyer expansion fans, internal shocks, near-wall oblique shocks, 

quasi-normal shocks, shock/boundary-layer interactions, and shock trains. Using a basic 

schlieren system, these structures can be imaged as they evolve in time. Basic unit 

processes of compressible flow can then be applied to estimate flow properties such as 

pressures, temperatures, densities, and Mach numbers, for the entire flow field. 

Future work could include other planar nozzle wall contour analysis, a 

comparative CFD analysis of this planar nozzle, and a loss model for the blow-down 

analysis.  
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APPENDIX A: PRANDTL-MEYER FUNCTION ANALYSIS 

 
 
function prandtl_meyer_fn  %                   2011       Thorsett-
Hill   
%This program determines the downstream properties which result from 
an 
%expansive wall turn of theta degrees starting at an input Mach 
number. 
%The Prandtl-Myer function is solved using a root finder which 
employs  
%Newton's method. This is valid for compressive or expansive turns 
as %long as there is no slope discontinuity in the wall 
%(smooth turns rather than ramps.) 
%A plot of Prandtl-Myer function vs Mach number is produced for the 
%specified gamma.  Gamma must be hard coded. 
clc; 
gamma = 1.4;   %ratio of specific heats 
M1 = input('input upstream Mach number: '); 
nu = get_nu(M1,gamma); %get P-M function, nu, for upstream Mach 
theta = input('input turning angle,(degrees): '); 
theta = theta*pi/180;  %convert to radians 
nu = nu + theta;       %calculate downstream P-M function, nu 
pm(nu,gamma,M1); 
end 
%-------------------------------------------------------------------
----- 
function pm(nu,gamma,M1) 
M = newton(nu,gamma);  %calculate downstream Mach          
nu_d= nu*180/pi;       %convert to degrees 
mu = asin(1/M)*180/pi; %mach angle in degrees 
poop = (1 + M*M*(gamma-1)/2)^(gamma/(gamma-1)); %stag pres/stat 
pressue 
fprintf('Mach= %g    f(M)=  %g      mu=%g\n',M,f(nu,M,gamma),mu); 
plot_PM(gamma,M1,M,nu_d,mu,poop); 
end %pm 
%-------------------------------------------------------------------
----- 
function root = newton(nu,gamma)  
%locate the root using the Newton-Raphson technique 
count = 0;                %count the number of times through the 
loop 
M = 2.5;                  %initial guess for Mach number (used in 
Newton) 
while(abs(f(nu,M,gamma)) >= .0001) %while not converged 
    count = count + 1;    %increment counter 
    M = M - f(nu,M,gamma)/fprime(nu,M,gamma); 
    if count > 500        %solver failed 
        fprintf('root not found');   
        break             %quit looking after 500 attempts 
    end 
end %while 
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root = M; %return current root 
end %newton 
%-------------------------------------------------------------------
----- 
function fx = f(nu,M,gamma) %evaluate function at current Mach 
    fx = get_nu(M,gamma) - nu;  
    %RHS - nu is zero for correct value of Mach 
end 
%-------------------------------------------------------------------
----- 
function fp = fprime(nu,M,gamma) %evaluate the derivative 
numerically 
     fp = (f(nu,M + .001,gamma) - f(nu,M,gamma))/.001;  
end 
 
 
%-------------------------------------------------------------------
------ 
function plot_PM(gamma,M1,mach,nu_d,mu,poop) 
m=1;          %starting value of Mach for plot 
  for i = 1:50    
    M(i)=m;   %store Mach number as vector for plotting 
    nu(i) =get_nu(m,gamma); %P-M function 
    m = m + .1; %increment Mach number 
  end 
  plot(M,nu*180/pi); 
  title('Prandtl-Myer function vs. Mach number') 
  xlabel('Mach number') 
  ylabel('Prandtl-Myer angle (degrees)') 
  grid 
  gamma_string = sprintf('gamma = %g',gamma); 
  mach_string = sprintf('downstream Mach number = %4.2f',mach); 
  up_mach_string = sprintf('upstream Mach number = %4.2f',M1); 
  nu_string = sprintf('P-M functiion, nu = %4.2f degrees',nu_d); 
  mu_string = sprintf('Mach angle, mu = %4.2f degrees',mu); 
  poop_string = sprintf('total press/static pres = %4.2f',poop); 
  text(1.45,64,gamma_string); 
  text(1.45,58,up_mach_string); 
  text(3.25,15,mu_string); 
  text(3.25,25,mach_string); 
  text(3.25,35,nu_string); 
  text(3.25,5,poop_string); 
end %plot 
%-------------------------------------------------------------------
------- 
function nu = get_nu(M,gamma) 
  gp = (gamma + 1)/(gamma - 1); 
  M2 = M*M; 
  nu = sqrt(gp)*atan(sqrt((M2-1)/gp))-atan(sqrt(M2-1)); 
end %get_nu 
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APPENDIX B: BLOWDOWN MODEL 

 
 
function blowdown                                    %Thorsett-Hill 
11/10 
%This program calculates the isentropic blowdown of a calorically 
perfect 
%gas through a CD nozzle 
%  
clc;               %clear command window 
clear;             %clear variables and functions from memory 
PoverP0_crit = .99;%Pb/P0 required to choke nozzle for given area 
ratio (user input) 
conv_only = 0;     %set this flag to 1 if convergent nozzle, 
PoverP0_crit is calc below 
T0 = 300.;         %stagnation temperature, K (user input) 
t = 0;             %initialize time 
P0 = 14400.;       %stagnation pressure, kPa  (user input) 
Pb = 101;          %atmospheric pressure (back pressure), kPa  (user 
input) 
dt = .001;         %time step 
%assume choked flow from the start 
Cp = .5203;        %kJ/kg-K  (user input) 
Cv = .3122;        %kJ/kg-K  (user input) 
R = Cp - Cv;       %gas constant 
k = Cp/Cv; 
vol = 8.66e-3;     %volume to be blown down, m^3  (user input) 
Aratio = 5;        %user input (exit plane area)/(throat area) 
At = 3.221e-4;     %throat area, m^2 (CD nozzle throat) (user input) 
if conv_only == 1  %nozzle is convergent only 
    PoverP0_crit = (2/(k+1))^(k/(k-1)); %Pb/P0 required to choke 
nozzle 
    Aratio = 1; 
    fprintf('P/P0 crit = %g\n',PoverP0_crit); 
end 
Ae = At*Aratio;    %exit plane area 
m = P0*vol/R/T0;   %initial mass in blowdown volume, kg 
fprintf('m = %g   P0 = %g   T0 = %g\n',m,P0,T0); %print initial cond. 
for i = 1:1000 
    if Pb/P0 > PoverP0_crit  %nozzle not choked, subsonic solution 
using 
                             %exit plane props 
        Pe = Pb;             %exit plane pressure = Pb (back 
pressure) 
        Te = T0*(Pe/P0)^((k-1)/k);     %calc exit plane temp as  
                             %isentropic expansion 
        Ve = sqrt(2*Cp*(T0-Te)*1000);  %speed at exit plane 
        mach = Ve/sqrt(k*R*Te*1000); 
        mdot = Pe*Ve*Ae/R/Te;%mass flw rate at ext pln for unchoked 
flow; 
        T = Te;                    %for use in T0new calculation 
below 
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        fprintf('unchoked t=%g  P0=%g  T0=%g  Ve=%g  Pe=%g  Te=%g  
mach=%g\n',t,P0,T0,Ve,Pe,Te,mach); 
    else           %choked, using throat properties for mdot 
calculation 
        Tt = T0/(1+(k-1)/2) ;      %temp at throat, M = 1 
        Vt = sqrt(k*R*Tt*1000);%spd at throat=spd of sound at throat 
temp 
        Pt = P0*(Tt/T0)^(k/(k-1));%calc throat press as an isntrpic 
exp 
        mdot = Pt*Vt*At/R/Tt; %mass flow rate at throat for choked 
flow; 
        T = Tt;                    %for use in T0new calculation 
below 
        fprintf('t=%g  P0=%g  T0=%g  Vt=%g  Pt=%g  
Tt=%g\n',t,P0,T0,Vt,Pt,Tt); 
    end 
    fprintf('mass=%g  mdot=%g\n',m,mdot); 
    mnew = m - mdot*dt;        %calc new mass in volume after time 
step 
    T0new = (m*T0 - mdot*k*T*(1+R/2/Cv)*dt)/mnew;   %new stagnation 
temp 
                                                    %after time step 
    P0new = mnew*R*T0new/vol;%calc new stag pres frm idl gas eqn of 
state 
    %P0new = P0*(T0new/T0)^((k/(k-1))); %calc new stag pressure as  
                                        %isentropic expansion 
    m = mnew; 
    T0 = T0new; 
    P0 = P0new; 
    t0plot(i) = T0; %store T0 in array for plotting 
    p0plot(i) = P0; %store P0 in array for plotting 
    tplot(i) = t;   %store time in array for plotting 
    t = t + dt;     %increment time 
    if P0 <= Pb     %stop if sta press is less than or eql to bk 
pressure 
        ifinal = i; %number of times through the loop 
        break       %get out of for loop 
    end 
end 
fprintf('%d times through the loop\n',ifinal); 
plot_pressure(tplot,p0plot,t0plot);  %call plot function 
%-------------------------------------------------------------------
----- 
function plot_pressure(tplot,p0plot,t0plot) 
title('Stagnation Pressure and Stagnation Temperature vs. Time') 
ax = plotyy(tplot,p0plot,tplot,t0plot); 
xlabel('Time (seconds)') 
axes(ax(1)); 
ylabel('Stagnation Pressure (kPa)') %y axis label on left 
axes(ax(2)); 
ylabel('Stagnation Temperature (K)')%y axis label on right 
%grid     
  



112 
 

 

APPENDIX C: SCHLIEREN IMAGES TAKEN AT 30 FRAMES PER SECOND 
 
 

 

Figure C-1a Schlieren image 30fps, t=0.033s 

 

 

Figure C-1 Schlieren image 30fps, t=0.066s  

 

 

Figure C-2 Schlieren image 30fps, t=0.0996s  
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Figure C-3 Schlieren image 30fps, t=0.133s 

 

 

Figure C-4 Schlieren image 30fps, t=0.167s  

 

 

Figure C-5 Schlieren image 30fps, t=0.199s  
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Figure C-6 Schlieren image 30fps, t=0.232s  

 

 

Figure C-7 Schlieren image 30fps, t=0.266s  

 

 

Figure C-8 Schlieren image 30fps, t=0.299s  
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Figure C-9 Schlieren image 30fps, t=0.332s  

 

 

Figure C-10 Schlieren image 30fps, t=0.365s  

 

 

Figure C-11 Schlieren image 30fps, t=0.399s  
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Figure C-12 Schlieren image 30fps, t=0.432s  

 

 

Figure C-13 Schlieren image 30fps, t=0.465s  

 

 

Figure C-14 Schlieren image 30fps, t=0.498s 
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Figure C-15 Schlieren image 30fps, t=0.531s  

 

 

Figure C-16 Schlieren image 30fps, t=0.565s 

 

 

Figure C-17 Schlieren image 30fps, t=0.598s  
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Figure C-18 Schlieren image 30fps, t=0.631s  

 

 

Figure C-19 Schlieren image 30fps, t=0.664s  

 

 

Figure C-20 Schlieren image 30fps, t=0.697s  
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Figure C-21 Schlieren image 30fps, t=0.731s  

 

 

Figure C-22 Schlieren image 30fps, t=0.764s  

 

 

Figure C-23 Schlieren image 30fps, t=0.797s  
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Figure C-24 Schlieren image 30fps, t=0.830s  

 

 

Figure C-25 Schlieren image 30fps, t=0.864s  

 

 

Figure C-26 Schlieren image 30fps, t=0.897s  
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Figure C-27 Schlieren image 30fps, t=0.930s  
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APPENDIX D: METHOD OF CHARACTERISTICS NUMERICAL SOLUTION  
 
 
function moc  %                                2012   
Thorsett-Hill   
%This program does the MOC calculations for an interior node 
clc; 
%----o----o----o----o----data input----o----o----o----o----o----o 
gamma = 1.667;   %ratio of specific heats 
th_left =   14.99  ; %left-running thetam,degrees 
nu_left = 21.03    ;    %PM function for left-running 
characteristic,deg 
xleft =     .3823  ;       
yleft =     .1678 ; 
th_right =  22.84           ;   %right-running theta,deg 
nu_right =  22.84     ;   %PM function for right-running char, deg 
xright =      .2633  ; 
yright =    .2388  ; 
%----o----o----o----o----end data input----o----o----o----o----o----
o 
nu = (nu_right + nu_left)/2 + (th_right - th_left)/2; %new value of 
nu,deg 
theta = (nu_right - nu_left)/2 + (th_right + th_left)/2; %new 
theta,deg 
M_right = newton(nu_right*pi/180,gamma); % Mach number for rr char 
M_left = newton(nu_left*pi/180,gamma); % Mach number for lr char 
Mach = newton(nu*pi/180,gamma); %new Mach number 
mu = asin(1/Mach)*180/pi;       %Mach angle at new Mach number 
mu_right = asin(1/M_right)*180/pi;  %Mach angle for right running 
mu_left = asin(1/M_left)*180/pi;    %Mach angle for left running 
mright = tan(((th_right+theta)/2-(mu_right+mu)/2)*pi/180); %slope 
for rt ch 
mleft = tan(((th_left+theta)/2+(mu_left+mu)/2)*pi/180); %slope for 
rt ch 
x=(yleft-yright+mright*xright-mleft*xleft)/(mright-mleft);%new x 
y=(mleft*(mright*xright-yright)+mright*(yleft-mleft*xleft))/(mright-
mleft); 
%fprintf(' M_right = %g      M_left = %g\n',M_right,M_left) 
fprintf(' nu = %g   theta = %g    Mach = %g \n',nu,theta,Mach); 
fprintf(' r_slope = %g  l_slope = 
%g\n',atan(mright)*180/pi,atan(mleft)*180/pi); 
fprintf(' x = %g   y = %g   mu = %g\n',x,y,mu); 
fprintf('x_scale = %g          y_scale = %g\n',x*4,y*4); 
end %moc  
%-------------------------------------------------------------------
------- 
function root = newton(nu,gamma)  
%locate the root using the Newton-Raphson technique 
count = 0;                %count the number of times through the 
loop 
M = 2.5;                  %initial guess for Mach number (used in 
Newton) 
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while(abs(f(nu,M,gamma)) >= .0001) %while not converged 
    count = count + 1;    %increment counter 
    M = M - f(nu,M,gamma)/fprime(nu,M,gamma); 
    if count > 500        %solver failed 
        fprintf('root not found');   
        break             %quit looking after 500 attempts 
    end 
end %while 
root = M; %return current root 
end %newton 
%-------------------------------------------------------------------
------- 
function fx = f(nu,M,gamma) %evaluate function at current Mach 
    fx = get_nu(M,gamma) - nu;  
    %RHS - nu is zero for correct value of Mach 
end 
%-------------------------------------------------------------------
------- 
function fp = fprime(nu,M,gamma) %evaluate the derivative 
numerically 
     fp = (f(nu,M + .001,gamma) - f(nu,M,gamma))/.001;  
end 
%-------------------------------------------------------------------
----- 
function nu = get_nu(M,gamma) 
  gp = (gamma + 1)/(gamma - 1); 
  M2 = M*M; 
  nu = sqrt(gp)*atan(sqrt((M2-1)/gp))-atan(sqrt(M2-1)); 
end %get_nu 
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APPENDIX E: NUMERICAL SOLUTION FOR A SUPERSONIC COMPRESSION 
CORNER 

 
 
function theta_beta_mach  %                   Thorsett-Hill  
January 2012 
%This program solves the equation which relates deflection 
angle (theta), 
%shock angle (beta), and upstream Mach number for the supersonic 
flow ofa 
%calorically-perfect gas over a compression corner, given two of the  
%three parameters. A root finder is used to solve for the strong and 
weak   
%shock beta. The other two are solved explicitly. Downstream Mach is 
%calculated, along with static pressure and temperature ratios, as 
well  
%as pressure ratio across the shock. For a given Mach number, if a 
%deflection angle theta is input which is greater than the max 
possible  
%for an attached shock, the solution fails. 
%-------------------------------------------------------------------
----- 
clc;           %clear screen 
gamma = 1.667; %user input 
select = input('input 1 to find theta, 2 to find beta, 3 to find 
Mach:'); 
if select == 1 %calculate shock angle theta given Mach number and 
beta 
    [theta,beta,M] = get_theta(gamma); 
elseif select == 2 %calculate beta given Mach and deflection angle, 
theta 
    [theta,beta1,M] = get_beta(gamma); 
    fprintf('beta for weak shock = %g degrees\n',beta1(1)); 
    fprintf('beta for strong shock = %g degrees\n',beta1(2)); 
    fprintf('theta = %g degrees \n',theta*180/pi); 
    fprintf('Mach number = %g   \n',M); 
    beta = beta1(1)*pi/180; %for downstream Mach calculation 
else %calculate Mach number given deflection angle theta and shock 
angle beta 
    [theta,beta,M] = get_Mach(gamma); 
end 
if select ~= 2   %beta is single valued 
    fprintf('theta = %g degrees \n',theta*180/pi) 
    fprintf('beta = %g degrees  \n',180*beta/pi) 
    fprintf('upstream Mach number = %g\n',M)           
end 
Mn1 = M*sin(beta); %normal component of upstream Mach number 
Msq = Mn1*Mn1;     %upstream Mach number squared for use in 
following eqns 
Mn2 = sqrt((Msq+2/(gamma-1))/(2*gamma*Msq/(gamma-1)-1));%norm comp 
dwnstr M 
M2 = Mn2/sin(beta - theta); %downstream Mach number 
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p_ratio = 1 + 2*gamma*(Msq - 1)/(gamma + 1); %st pres ratio across 
shock p2/p1 
rho_ratio = (gamma + 1)*Msq/((gamma - 1)*Msq + 2);%density ratio 
across shock 
T_ratio = p_ratio/rho_ratio; %static temperature ratio across shock 
T2/T1 
num = 1 + (gamma-1)*M2*M2/2; 
den = 1 + (gamma-1)*M*M/2;  
Pt2oPt1=p_ratio*(num/den)^(gamma/(gamma-1)); %total pressure ratio  
mu = asin(1/M); %mach angle for upstream Mach number 
    fprintf('p2/p1 = %g\n',p_ratio); 
    fprintf('T2/T1 = %g\n',T_ratio);  
    fprintf('Pt2/Pt1 = %g\n',Pt2oPt1);  
    fprintf('downstream Mach number = %g\n',M2); 
    fprintf('Mach angle (for upstream Mach) = %g\n',mu*180/pi); 
 
 
%-------------------------------------------------------------------
----- 
function [theta,beta,M] = get_theta(gamma) 
    beta = input('input shock angle, beta (degrees): '); 
    beta = beta*pi/180; %convert to radians 
    M = input('input upstream Mach number, M: '); 
    num = 2*cot(beta)*(M*M*sin(beta)*sin(beta) - 1); 
    den = M*M*(gamma + cos(2*beta)) + 2; 
    theta = atan(num/den); 
%-------------------------------------------------------------------
----- 
function [theta,beta,M] = get_Mach(gamma) 
    beta = input('input shock angle, beta (degrees): '); 
    beta = beta*pi/180; %convert to radians 
    theta = input('input deflection angle, theta: '); 
    theta = theta*pi/180; %convert to radians 
    num = -2*(tan(theta) + cot(beta)); 
    den = tan(theta)*(gamma + 1) - 2*tan(theta)*sin(beta)^2 - 
2*cot(beta)*sin(beta)^2; 
    M = sqrt(num/den); 
%-------------------------------------------------------------------
----- 
function [theta,beta1,M] = get_beta(gamma) %uses functions 
bata1,root,fx and fp 
    theta = input('input deflection angle, theta (degrees): '); 
    theta = theta*pi/180; %convert to radians 
    M = input('input upstream Mach number: '); 
    beta1 = findroot(theta, M, gamma);  %beta1 is a two-element 
array 
%-------------------------------------------------------------------
----- 
function beta1 = findroot(theta,M,gamma)   
% Incremental Search Root Finder with the Newton-Raphson Method 
i = 1;                   %initialize root array index 
xleft = 1.e-3;           %input('Input start of interval:'); 
xright= 90;              %input('Input end of interval:'); 
nsteps = 20;             %number of steps on the interval 
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epsilon = .0001;         %set convergence criterion 
dx = (xright - xleft)/nsteps; %determine step size 
x = xleft;               %initialize x to left side of the interval 
while (x <= xright)      %while beta < 90 degrees 
  y = f(x,theta,M,gamma);%evaluate function at left end of intervel 
  %fprintf('x = %g    f(x) =  %g\n',x,y); 
  x = x + dx;            %increment x (x = beta in degrees) 
  yright = f(x,theta,M,gamma); %evaluate function on right side of 
interval 
  if(y * yright <= 0)          %a root is trapped in the interval 
      root = newton(x, epsilon,theta,M,gamma);  %invoke the Newton-
Raphson method 
      beta1(i) = root;   %degrees 
      %fprintf('root = %6.4f   y = 
%6.4g\n',root,f(root,theta,M,gamma)); 
      i = i+1;           %increment root array index 
  end 
end 
 
 
 
%-------------------------------------------------------------------
----- 
function root = newton(x, epsilon,theta,M,gamma)  
%locate the root in the sub-interval using the Newton-Raphson 
technique 
count = 0; 
while(abs(f(x,theta,M,gamma)) >= epsilon) %while not converged 
    count = count + 1;                    %increment counter 
    x = x - f(x,theta,M,gamma)/fprime(x,theta,M,gamma); 
    if count > 500 
        fprintf('root not found');   
        break  %quit looking after 500 attempts 
    end 
end 
root = x; %return current root 
%-------------------------------------------------------------------
----- 
function fx = f(x,theta,M,gamma) %evaluate function at current x (x 
= beta) 
    beta = x*pi/180; %convert beta to radians 
    num = 2*cot(beta)*(M*M*sin(beta)*sin(beta) - 1); 
    den = M*M*(gamma + cos(2*beta)) + 2; 
    fx =-tan(theta)+num/den; %fx is the theta-beta-Mach eq'n set to 
zero 
%-------------------------------------------------------------------
----- 
function fp = fprime(x,theta,M,gamma) %evaluate the derivative 
numerically 
     fp = (f(x + .001,theta,M,gamma) - f(x,theta,M,gamma))/.001; %x 
= beta 

 


	A SEMI-QUANTITATIVE SCHLIEREN HIGH-SPEED FLOW DIAGNOSTIC: ANALYSIS OF HIGH-PRESSURE-RATIO, OVEREXPANDED PLANAR FLOW IN ROCKET NOZZLES
	by
	1.2 Current experimental methods
	1.2.1 Light scattering methods
	1.2.2 Flourescence methods
	1.2.3 Molecular tagging methods
	1.2.4 Simultaneous measurement methods
	1.3 Overview of computational fluid dynamics approaches
	1.4 Overview of schlieren methods
	2.1.1 Schema of the semi-quantitative schlieren method
	2.2 Objectives of dissertation
	3.2 Nozzle experimental set-up
	3.3 Schlieren set-up
	3.4 Notes on safety
	4.2 Isentropic flow
	4.3 Prandtl-Meyer expansions
	4.4 Oblique shocks
	4.5 Blow-down model
	5.2 Experimental schlieren images of the time-dependent nozzle flow
	5.3 Initial SQS flow field decomposition
	5.4 Final SQS flow field decomposition

	CHAPTER 6: SEMI-QUANTITATIVE SCHLIEREN DIAGNOSIS OF QUASI-STEADY SHOCK-TRAIN-FREE FLOW IN A PLANAR NOZZLE – PART I
	6.1 Introduction
	6.2 Prandtl-Meyer expansion region
	6.3 Near-wall flow region
	6.4 Isentropic stream tube model applied to near-wall region
	6.5 SQS determination of near-wall temperature, pressure, and density fields
	7.1 Introduction: An overview of the method of characteristics
	7.2 Implementation of MOC calculation
	7.3 A new predictor-corrector method for flow near walls
	7.4 Further model details and assumptions
	7.5 Results of semi-quantitative diagnosis of shock-train-free flow
	7.6 Final SQS diagnosis of the shock-train-free flow regime

	CHAPTER 8: TIME-DEPENDENT SEMI-QUANTITATIVE SCHLIEREN DIAGNOSIS OF THE NOZZLE BLOW-DOWN PROCESS
	8.1 Methods
	8.2 Experimental Measurements
	8.3 Isentropic stream tube model
	8.4 Comparison of time-dependent wave angles from the isentropic stream tube model with experiment
	9.2 Experimental schlieren and pressure data
	9.3 Discussion of new schlieren image data
	9.4 A physical model of shock trains in high NPR rocket nozzles
	9.5 A simple physical model of shock-boundary layer interaction



