
SECURING MOBILE HYBRID APPLICATIONS THROUGH
CONFIGURATIONS - FIRST LINE OF DEFENSE

by

Abeer AlJarrah

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Computing and Information Systems

Charlotte

2018

Approved by:

Dr. Mohamed Shehab

Dr. Heather Lipford

Dr.Weichao Wang

Dr. Chuang Wang

ii

c©2018
Abeer AlJarrah

ALL RIGHTS RESERVED

iii

ABSTRACT

ABEER ALJARRAH. Securing Mobile Hybrid Applications through Configurations
- First Line of Defense. (Under the direction of DR. MOHAMED SHEHAB)

Mobile hybrid apps have the potential to dominate the mobile and IoTs apps mar-

ket. Cross-platform or hybrid apps are providing a promising development choice

that appeals to a great body of developers. This development approach “wraps”

standard web code (HTML, Javascript and CSS) into a thin native layer, enabling

the same code base to run on several platforms. This approach also provides a mech-

anism to access device native sensors such as camera, geolocation and more, through

Javascript code. As much as this seems innovative and promising, enabling web-code

to access device native sensors is comparable to opening a can of worms in security

terms. Most web-based vulnerabilities can be leveraged in mobile apps context which

means amplified damage. Apache Cordova is an open source library that is a common

component in many hybrid platforms including PhoneGap and IBM Worklight. Yet,

it suffers several security limitations such as a coarse-grained access control model,

risky defaults, and for many developers a non-trivial configuration process. Hybrid

app development is an intricate task as is, not to mention configuring these apps se-

curely. Given the increased popularity of the approach itself and the proven tendency

of developers to use platform-provided default settings, this work aims to harden the

middleware by implementing security mechanisms. Addressing security limitations

on the platform/ middle-ware level reduce the cost of potential breaches significantly.

In mobile hybrid apps context, we are focusing on one main app component; that is

iv

the configurations. This work aims to provide different mechanisms to help develop-

ers by adopting configurations that are more aligned with the app requirements, and

that implements the Least Privilege principle. Fine-grained and aligned configura-

tions should help nullify several code injection attacks. To achieve this, we present

2 frameworks to implement a fine-grained plugin access model. The first one is a

page-level and the second is more granular to enforce policies on a state-level.

In addition, we provide a tool that is mainly meant to incorporate the developer into

the configuration process. We have implemented CordovaConfig, an interactive

web-based tool that is based on the state-level approach. Moreover, it provides more

control to the developer and increases her awareness to the impact of risky settings.

We have tested this tool, and our experiments demonstrate that it is a practical and

a usable alternative for configuring hybrid apps.

We believe that fortifying hybrid mobile development process with functionalities that

complies with security principles and involves the developer, is essential to enhance

the quality and security of hybrid apps as a product. This is especially relevant with

the current absence of proper supporting tools.

v

ACKNOWLEDGMENTS

I would like to express the deepest appreciation to my committee chair Profes-

sor Mohamed Shehab, who has the attitude and the substance of an inspiration: he

continually and convincingly conveyed a spirit of brilliance in regard to research and

scholarship, and an excitement in regard to teaching. Without his guidance and per-

sistent help this dissertation would not have been possible.

I am grateful to all of those with whom I have had the pleasure to work during this

and other related projects. Each of the members of my Dissertation Committee has

provided me with personal and professional guidance and taught me a great deal

about both scientific research and life in general.

Nobody has been more important to me in the pursuit of this project than the mem-

bers of my family. I would like to thank my parents, whose love and guidance are

with me in whatever I pursue. My brothers and sisters, whose unconditional love and

support helped me bypass several obstacles. My UNCC friends whom I share with

the same challenges and the same dreams.

I am especially indebted to Dr. Mary Lou, Chairman of the Department of SIS, who

have been supportive of my career goals and who worked actively to provide me with

the protected academic time to pursue those goals.

Finally, I would like to highlight that this work would not have been possible without

the financial support of the Graduate Assistant Student Plan (GASP) awarded by

the University of North Carolina at Charlotte.

vi

TABLE OF CONTENTS

LIST OF FIGURES x

LIST OF TABLES xiii

CHAPTER 1: INTRODUCTION 1

1.1. Statement of Hypothesis and Approaches 4

1.2. Summary of Contributions and Dissertation Organization 5

CHAPTER 2: PRELIMINARIES 7

2.1. Mobile Development Approaches 7

2.2. Apache Cordova Library 11

2.3. Configurations of Cordova-Based Apps 19

2.3.1. Configuration Items 20

2.3.2. Configurations Evolution 26

2.3.3. Configurations & Security Consideration for Hybrid
Apps

29

2.4. Threat Model 30

2.4.1. Attack Form 1: Code Injection 33

2.4.2. Attack Form 2: Compromised Third-Party Providers 34

2.4.3. Attack Form 3: Apps Repackaging Attack 35

2.4.4. Attack Form 4: Event Oriented Exploits - Return Ori-
ented based Attack

36

2.4.5. Examples of Malicious Impact on Hybrid Apps 38

2.4.6. “Bad” Configurations Risks on Hybrid Apps 39

2.5. HTML-5 Based App Development 42

vii

2.6. Android WebView 44

CHAPTER 3: RELATED WORK 49

3.1. Cordova Library Access Control Model 49

3.2. Hybrid Apps Specific Attacks and Solutions 50

3.3. Securing Apps by providing tooling support 53

3.4. Security-By-Contract (SxC) on Mobile Code 55

CHAPTER 4: HYBRID APPS STATUS QUO: SECURITY &
STATISTICS

57

4.1. Market Analysis - 2014 57

4.1.1. Data Collection 58

4.1.2. Results 58

4.2. Market Analysis - 2017 62

4.2.1. Data Collection 63

4.2.2. Results 64

4.3. Cordova Common Vulnerabilities (CVEs) 77

CHAPTER 5: SECURING HYBRID APPS THROUGH THE APP
CONFIGURATIONS

81

5.1. Page Level Configuration Model 81

5.2. Behavior-Based Configuration Model 86

5.2.1. Plugin Access Policy 88

5.2.2. Behavior State Modeling 95

5.2.3. Performance Analysis 99

viii

CHAPTER 6: CordovaConfig: AUTOMATED TOOL FOR CON-
FIGURING HYBRID APPS

103

6.1. Educational Goals 108

6.2. App Behavior Synthesis Phase 109

6.3. Generating Configurations & Permissions 111

CHAPTER 7: USER STUDY: HYBRID APPS DEVELOPERS
PERCEPTIONS

113

7.1. Case Study App 114

7.2. Recruitment 116

7.2.1. User Study Protocol 116

7.3. Using CordovaConfig 118

7.4. Results 119

7.4.1. Participants Demographics 119

7.4.2. H1:CordovaConfig & Configurations
Understanding

121

7.4.3. H2:CordovaConfig and Developers Mental Model 122

7.4.4. Q1: Developers’ awareness of potential risks 124

7.4.5. Q2: Perception of the benefits of CordovaConfig 127

7.4.6. Tool Usability 129

7.5. Limitations 131

CHAPTER 8: CONCLUSION 132

REFERENCES 135

APPENDIX A: CordovaConfig Screen Shots 141

APPENDIX B: Survey Questions A & B 146

ix

APPENDIX C: Interview Questions 149

x

LIST OF FIGURES

FIGURE 1: Different tools, languages and distribution channels associ-
ated with leading mobile operating systems[53]

8

FIGURE 2: Mobile Development Approaches[59] 10

FIGURE 3: Hybrid Platforms position in the Life- cycle of Technology
Adoption [70]

12

FIGURE 4: PhoneGap config.xml file 16

FIGURE 5: Plugin access control execution flow 17

FIGURE 6: Mobile Hybrid App Architecture 20

FIGURE 7: Default Configurations as of version 8.x 21

FIGURE 8: Possible plugin access abuse 31

FIGURE 9: Attack Forms 1 & 2 33

FIGURE 10: Hybrid Apps Repackaging Attack 36

FIGURE 11: EOE Attack Model [76] 37

FIGURE 12: Targetting Device Plugins/Data 47

FIGURE 13: Targeting App Behavior 48

FIGURE 14: HTML File App Count 59

FIGURE 15: PhoneGap dataset page similarity distribution 60

FIGURE 16: Plugin declaration vs plugin usage 61

FIGURE 17: Access Origin usage distribution 62

FIGURE 18: Access Rules Usage 65

FIGURE 19: Network Resource Access: Platform Provided Settings 67

FIGURE 20: Network Resource Access: Custom Settings 68

xi

FIGURE 21: Intents White-list Settings 68

FIGURE 22: Navigation White-list Settings 69

FIGURE 23: Core Plugins APIs 71

FIGURE 24: Custom Plugins APIs 72

FIGURE 25: Platform Native Permissions Usage 74

FIGURE 26: Content Security Policy Usage 76

FIGURE 27: Example Multi-Page App and Access Models 82

FIGURE 28: Policy stage in config file 84

FIGURE 29: Build/Enforce Policy 85

FIGURE 30: Proposed PluginManager Rule Check 86

FIGURE 31: Three-Stage Behavior Policy 87

FIGURE 32: Abstraction of Syntax Tree Representing States 91

FIGURE 33: Plugin Access Policy 94

FIGURE 34: App State Configurations 97

FIGURE 35: Check Redirection 99

FIGURE 36: Enforce Time vs # States 100

FIGURE 37: exec() with Plugin Type 101

FIGURE 38: CordovaConfig Work Flow 107

FIGURE 39: Explaining scanned configurations meaning/impact 108

FIGURE 40: Plugin accesses and OS permissions captured per state 109

FIGURE 41: State Transition Example 110

FIGURE 42: App interaction with external entities 111

xii

FIGURE 43: Generated Configurations 112

FIGURE 44: Employee Directory App 115

FIGURE 45: Common Coding Practices followed by participants 120

FIGURE 46: Developers’ Configuration Understanding Scores 122

FIGURE 47: Developers’ Mental Model Change Scores 124

FIGURE 48: Perceived Implications of having unaligned plugins settings 125

FIGURE 49: Perceived Implications of having unaligned Network Access
settings

126

FIGURE 50: Perceived Benefits of CordovaConfig 128

FIGURE 51: SUS Scale with red Arrow indicating CordovaConfig
Score

130

FIGURE 52: SUS Distribution 131

FIGURE 53: Start Screen 141

FIGURE 54: Current Configuration Analysis-Part1 141

FIGURE 55: Current Configuration Analysis-Part2 142

FIGURE 56: Current Configuration Analysis-Part3 142

FIGURE 57: Plugin access captured for a state 143

FIGURE 58: Plugin access captured for a state 143

FIGURE 59: App transition diagram 144

FIGURE 60: App interaction with external components 144

FIGURE 61: Generated Configurations 145

xiii

LIST OF TABLES

TABLE 1: Mobile Development Approaches Summary 11

TABLE 2: Whitelist Configurations 22

TABLE 3: Configuration Items 23

TABLE 4: Cordova Configuration History Summary 27

TABLE 5: Policies Break Down 77

TABLE 6: Cordova Security Vulnerabilities[28] 78

TABLE 7: Configurations Issues and impact on apps’ security 104

TABLE 8: Variables Measurement Methodology 114

TABLE 9: Participants Development Experience 119

CHAPTER 1: INTRODUCTION

Smartphones, wearable devices, and the system of Internet of Things (IoTs) are

eventually becoming mainstream, replacing desktops not only as personal gadgets but

also as workplace tools. This will increase the demand for Enterprise mobile apps,

which is expected to outstrip the available development capacity 5 to 1 according

to Gartner [65]. Enterprises are striving to maintain apps that can run on different

devices with low cost. This explains enterprises’ increasing interest in adopting a

Mobile Hybrid development approach [50] since this approach satisfies the business

need to leverage mobile applications across many platforms. It also provides the

capability to use mobile device features using standard web technology. Adopting

this approach eases administrative tasks in the Bring Your Own Device (BYOD) en-

vironment; moreover, it enables using a single code base in many platforms, which

drastically reduces the cost by targeting the whole market and discarding platforms’

market fragmentation [13][71]. From a developer‘s point of view, research [44][13]

shows that Fragmentation is the major challenge mobile developers are facing as

they have to deal with multiple mobile platforms. The fact that advocates for us-

ing cross-platform apps more appealing to mobile developers more than other mobile

development approaches. Not to mention that they show great potential for rapid

development of high-fidelity prototypes of mobile apps[13].

Mobile Hybrid development uses standard web technology (HTML5, JavaScript, CSS)

2

“wrapped” into a thin native layer, which enables the app to run on different plat-

forms. This approach is a mix of the other two approaches on Mobile development,

namely Native and Web-Based. Native apps’ advantage of accessing device native

features is leveraged in Hybrid apps through the native wrapper. At the same time,

the same code base is used for different platforms, making it possible to ship to a

wider customer base in a low cost.

As this Hybrid approach continues to experience acceptance within the developers’

community, organizations must think seriously about how key changes in this latest

paradigm will require them to shift their application security practices for Web and

Mobile Apps. Given the fact that Hybrid Apps are basically web-based; most web-

based vulnerabilities are shipped to smartphone devices rather than a confined web

browser window. The effect of any attack on a hybrid app is amplified because the

app has the ability to access device native features through a bridge implemented

by the hybrid platform middleware [41][42]. This requires reconsidering the current

approaches to be more conformant to the new paradigm.

Cordova Library [3] is a middle-ware which is a common component in many popular

hybrid platforms such as PhoneGap, IBM Worklight, App Builder, Sencha, Monaca,

and Appery.io. This component is the real enabler of connecting the two worlds (Web

and Native) inside a hybrid app. However, the library endures limitations that raise

security concerns such as unsafe defaults and a coarse-grained configuration model.

Moreover, the library has vague configuration documentation, especially those related

to security settings [11].

Cordova-Based Apps Configurations In the latest release of the ten most critical

3

web application security risks, OWASP [21] indicates that security misconfiguration

is a serious issue given that defaults are usually not secure. This is congruent with

the results we have from scanning 662 Cordova based apps, which uncovered a serious

issue in that regard. We have found that 81% of the apps have misaligned configu-

rations, meaning they have API declarations that are not actually used. Moreover,

58% have risky settings such as allowing loading resources from any domain. This is

a result of using the default settings provided by the library which is not necessarily

secure, especially the early versions of Cordova library[3] because a default Content

Security Policy (CSP) was not provided by default. This also can be attributed to

developers’ tendency to overlook security settings and focus only on the functional

part of the app.

In this work, we aim to investigate different approaches of identifying and fixing weak-

nesses in hybrid mobile middlewares. We aim to identify weak access models adopted

and to help developers to consider security aspects of their apps as early as possible

during the life-cycle of the app.

We focus on the configuration scheme adopted by Cordova library, we highlight its

weaknesses and propose two approaches that aim to provide more fine-grained and

aligned models. We address a page-level access control model that defines plugin

access to be per page rather than per the whole app.

We also address a behavior-based approach to securely configure hybrid apps. This

approach provides the benefit of securing against novel attacks, yet adding minimal

effort on the developer’s side, by automatically generating a fine grained access policy

to govern app behavior in terms of plugin access and state transition. Our proposed

4

approach captures state-plugin access rules and state transition rules through moni-

toring the app behavior while running in a controlled environment and then enforcing

these rules when the app is released to the market. This approach aims to provide

behavior based configuration on app state level, minimizing the effort on the devel-

oper side.

Moreover, we focus on enabling the developer by providing tooling and educational

support. We implement an interactive tool CordovaConfig that is built to enable

developers to control the configurations based on monitored behavior. The aim of

this tool is not only to involve developers in the configuration process but also to

increase their awareness and knowledge. Hence, we conduct a user study to measure

the tool effectiveness in increasing developers’ awareness in that regard. The proposed

approach is well-suited for the security of hybrid apps, especially that the security of

this technology is in a relatively immature state compared to the conventional mo-

bile development approaches. It is highly expected that there are still several attack

forms and implications that are not yet discovered. Particularly, because the hybrid

software stack adds new complexity by bridging external web code to internal smart-

phone sensors creating new security concerns that are specific to this category.

1.1 Statement of Hypothesis and Approaches

This presented research here hypothesizes that:

• The Cordova-Configuration scheme addresses several potential security breaches

and there is a need for fine-grained Cordova-based app configurations to reduce

5

the attack surface on device-resources

• Developers have minimal knowledge on configuring apps securely

• Providing developers with automated tools to help configure their applications

will reduce the attack surface and will increase developer awareness in that

regard.

• Given the relative novelty of this app category, we hypothesize that monitoring

apps’ behavior in a healthy environment and enforcing it later can be used to

control critical resource accesses and protect the app against the risks of hybrid

app-specific attacks, regardless of the attack type.

1.2 Summary of Contributions and Dissertation Organization

The contributions of this securing hybrid apps research are as follows:

• We explore the Hybrid Apps ecosystem in terms of internal implementation of

Cordova library, market share, developers’ practices and common vulnerabilities

• We conduct a large-scale market apps scan to better understand developers

practices in terms of coding and configurations.

• We identify attack scenarios applicable to hybrid mobile applications focusing

on the impact of these attacks on users’ privacy and security

• We demonstrate an approach to reduce the attack surface on hybrid apps by

implementing a fine-grained configuration scheme

6

• We demonstrate an automated behavior-based configurations tool to generate

aligned configurations that can be used to control app behavior.

• We implement CordovaConfig; a tool that provides an interactive configu-

ration process giving developers more control to configure hybrid apps

• We conduct a user study to measure the effectiveness of Cordova Config in

increasing developers’ awareness in Cordova configurations

The remainder of this dissertation is organized as follows: Chapter 2 discusses prelim-

inary work explaining Mobile development approaches and how they relate to each

other. Then, explaining the Apache Cordova internal implementation and then dis-

cussing HTML5 coding practices and finally a brief description of Android Web View

since Android is the platform used. Chapter 3 reviews current applications, and ex-

plores related work. In Chapter 4 we explore the current status-quo of hybrid apps

through investigating developers’ practices in developing and configuring hybrid apps

and exploring the threat model related to hybrid. Then, in Chapter 5 we explain

two approaches for securing hybrid apps through configurations. In Chapter 5 we

present the tool CordovaConfig, which offer interactive configuration process and

in Chapter 7 we discuss the results of the user study conducted on the tool. Lastly,

Chapter 8 discusses future work and concluding remarks.

CHAPTER 2: PRELIMINARIES

The cross-platform hybrid mobile framework manages the connection between the

native app and the embedded web browser component. It enables the app’s JavaScript

to communicate with the native application programming interfaces (APIs) to access

native resources, such as the network, camera, GPS and contacts. In addition, several

frameworks provide different settings to control and setup the communication channel

between the embedded web browser component and the hosting native app. In this

chapter, we first explain different mobile app development approaches including the

trendy hybrid apps development and compare them in several aspects. Second, we

focus on the Apache Cordova library and explain its architecture and configuration

model. Then, we explain in detail configuration items and their impact on an app.

After that, we demonstrate the threat model on hybrid apps and how they are related

to poor configurations. Finally, we highlight HTML5 development practices and

explain Android Webview’s to help convey the design decisions we made and the

implementation of our tools.

2.1 Mobile Development Approaches

Native Apps: Binary executable files designed for vendor devices. They can access

all APIs made available by the OS vendor. SDKs are platform-specific. Each mobile

OS comes with its own unique tools and GUI tools. Examples of the main Mobile

8

OSs are shown in Figure 1 Once the app is installed, it interacts with the underlying

Figure 1: Different tools, languages and distribution channels associated with leading
mobile operating systems[53]

operating system through proprietary API calls that the OS exposes. These are di-

vided into 2 categories: Low-level APIs and high-level APIs. Through low-level API

calls, the app can interact directly with the touchscreen or keyboard, render graphics,

connect to networks, process audio received from the microphone, receive images and

video from the camera, access the GPS etc. Higher level services include processes

like browsing the web, managing the calendar, contacts, photo album, and the ability

to send and receive phone calls,.. etc. Native apps have full use of all functionalities

that modern mobile devices have to offer. On the other hand, natives apps cannot

be used for other platforms. They are also expensive to develop in terms of time and

development skills.

Web-Based Apps Modern mobile devices consist of powerful browsers that sup-

port many new HTML5 capabilities, Cascading Style Sheets 3 (CSS3) and advanced

JavaScript. With recent advancements on this front, HTML5 signals the transition of

this technology from a page-definition language into a powerful development standard

for rich, browser-based applications. Mobile web apps are a very promising trend.

9

To capitalize on this trend and help developers build the client-side UI, a growing

number of JavaScript toolkits have been created, such as dojox.mobile, Sencha Touch

and jQuery Mobile, which generate user interfaces that are comparable in appearance

to native apps.

One of the most prominent advantages of a web app is its multi- platform support

and low cost of development. Unlike native apps, which are independent executables

that interface directly with the OS, web apps run within the browser. The browser is

itself a native app that has direct access to the OS APIs, but only a limited number

of these APIs are exposed to the web apps that run inside it. While native apps have

full access to the device, many features are only partially available to web apps or not

available at all. Although this is expected to change in the future with advancements

in HTML, these capabilities are not available for todays mobile users.

Hybrid Apps The hybrid approach combines native development with web technol-

ogy. Using this approach, developers write significant portions of their application

in cross-platform web technologies, while maintaining direct access to native APIs

when required. The native portion of the app can be developed independently, but

some solutions in the market provide this type of a native container as part of their

product, thus empowering the developer with the means to create an advanced ap-

plication that utilizes all the device features using nothing but web languages. In

some cases, a solution will allow the developer to use any native knowledge he or she

might have to customize the native container in accordance with the unique needs of

the organization. The web portion of the app can be either a web page that resides

on a server or a set of HTML, JavaScript, CSS and media files, packaged into the

10

application code and stored locally on the device. Both approaches carry advantages

and limitations.HTML code that is hosted on a server enables developers to intro-

duce minor updates to the app without going through the process of submission and

approval that some app stores require. Unfortunately, this approach eliminates any

off line availability, as the content is not accessible when the device is not connected

to the network. On the other hand, packaging the web code into the application itself

can enhance performance and accessibility, but does not accept remote updates. The

best of both worlds can be achieved by combining the two approaches. Such a system

is designed to host the HTML resources on a web server for flexibility, yet cache them

locally on the mobile device for performance.

Figure 2 summarizes the different approaches. The native approach excels in perfor-

Figure 2: Mobile Development Approaches[59]

11

Table 1: Mobile Development Approaches Summary

Feature Native Web-Based Hybrid

Development language Native only Web only Mixed
Code portability and optimization None High High
Access device-specific features High Low Medium
Leverage existing knowledge Low High High
Advanced graphics High Medium Medium
Upgrade flexibility Low High Medium
Installation experience High Medium High

mance and device access, but suffers in cost and updates. The web approach is much

simpler, less expensive and easier to update, but is currently limited in functionality

and cannot achieve the exceptional level of user experience that can be obtained us-

ing native API calls. The hybrid approach provides a middle ground which, in many

situations, is the best of both worlds, especially if the developer is targeting multiple

operating systems. Table 1 summarizes the features of each approach.

2.2 Apache Cordova Library

The Apache Cordova Library is an open source library that enables building mobile

apps with HTML, CSS and JS. It targets multiple platforms with one code base. It

supports 8 platforms including Android, iOS, Windows, and Blackberry. Applications

execute within “wrappers” targeted to each platform and rely on standards-compliant

API bindings to access each device’s sensors, data, and network status[3]. Diverse

platforms use this library, including PhoneGap, Ionic, Visual Studio and Intel XDK

[3]. The PhoneGap platform in particular is gaining popularity over other options for

many reasons, including flexibility, straightforward architecture and ease of use not to

mention the relatively low consumption of memory, CPU, and power [29][52]. Hybrid

12

development, or the approach of building native apps using Web technologies, has

gone through its fair share of highs and lows. But, despite high-profile abandonments

from companies such as Facebook and LinkedIn, hybrid development continues to be

used by a substantial number of developers. According to a recent article [70], the

adoption of Mobile Hybrid platforms is steadily increasing and is enjoying a stable

stage in the technology adoption life-cycle. Developers are still overwhelmed by the

need to support a growing number of platforms. Hybrid development, and its single

codebase approach, resonated with developers, particularly Web developers who sali-

vated at the opportunity to write native iOS and Android apps with the technologies

they already knew. Despite its relatively recent presence, Cordova-based apps re-

Figure 3: Hybrid Platforms position in the Life- cycle of Technology Adoption [70]

13

cent statistics in the Google Play store shows that it constitutes 5.84% of the market

share. Some apps are able to attract 10,000,000+ customers [15]. Business, Medical

and Finance tops the list of Cordova-based app categories. Moreover, observing the

platform’s increasing popularity, recent research work suggested augmenting the Cor-

dova library with wider functionalities such as a voice agent and embedded WebRTC

[63][40][71].

Cordova applications are implemented as a browser-based WebView within the native

mobile platform. A Cordova plugin is add-on code that provides a JavaScript inter-

face to native components. It allows the app to use native device capabilities beyond

what is available to pure web apps such as the camera, contacts and geolocation. At

the time of writing this dissertation, Cordova supported 3627 plugins that are open

source and available to the public[3].

Cordova also implements a bridge to connect the two worlds (Web and Native) to-

gether. CordovaWebView adds a Javascript Interface using the method AddJavascript-

Interface() which enables the WebView’s internal Javascript code to call the native

method CordovaPlugin.exec(). The exec() function is the entry point to any plu-

gin on the native side of the app. After the native side executes the plugin, the result

is saved in a queue of Javascript messages that are injected back to the WebView

using loadUrl(). Moreover, the Cordova JS side might trigger the WebView to dis-

play an alert dialog, confirmation or prompt. This is implemented by customizing the

event handlers in WebChromeClient. This object is mainly to model how WebView

should react to Javascript dialogs, favicons, titles, and the progress through overrid-

ing methods.

14

Recently (as of version 4.0 [11]), a default Content Security Policy (CSP) is included

in the startup index.html generated by the library. According to the library docu-

mentation, CSP is meant to control network requests such as images and XML HTTP

Requests (XHRs) made via WebView directly which cannot be controlled using Net-

work Request Whitelisting. On Android, for instance, the network request whitelist

is not able to filter all types of requests; such as <video >and WebSockets. So, in ad-

dition to the whitelist, a CSP via the <meta >tag is required on all pages. However,

CSP is not effective nor practical for two main reasons. The first reason is that CSP

is not mandatory in Cordova-apps. Meaning, if a developer copied her web-based

files into the www folder inside the app, replacing the default index.html file provided

by the library, there will be no CSP yet the app runs with no errors. Second, CSP

documentation is not simple rather than informative in terms of potential risks on

the app if CSP is not set properly. This may not encourage developers to use it,

especially those whose ultimate priority is getting the app to work. Such developers

are not expected to go further into considering security policies in their code.

There are several cross-platform frameworks that implement the Apache Cordova li-

brary, but PhoneGap is actually a distribution of Apache Cordova. For the sake of

simplicity, we discuss Android Apps generated through PhoneGap as an example to

explain how the library works. The same context applies with the other platforms

that use the Cordova library. As discussed earlier, PhoneGap uses the Apache Cor-

dova engine as a middleware that provides APIs to establish communication channels

between the native code and JavaScript. The Cordova library defines the native

(Java) to JavaScript interfaces through the WebView interface. The native library

15

provides native APIs that are developed as native classes which are referred as plu-

gins or features. These plugins include the native code required to access native

device resources such as location services. The PhoneGap framework is extensible; it

is possible for developers to include their own customized third-party plugins which

require the developer to define both native plugin libraries and JavaScript interfaces.

The app configuration file (config.xml) is used to specify the app settings, such

as the plugins to be included, the application orientation (landscape, or portrait)

and many other settings. Plugins are included in the app by declaring feature

tags specifying the plugin library in the config.xml file. Figure 4 shows an exam-

ple config file which includes the Accelerometer and Compass plugins. Note that

the org.apache.cordova.devicemotion.AccelListener, is the native plugin class

name which contains the plugin methods that access the native accelerometer APIs.

When the app starts the main app activity that hosts the embedded WebView, it

initializes several components, loads the app configuration, and loads the apps startup

HTML page. The CordovaActivity (also known as DroidGap) class is the main app

entry point. The following are the native and client (JavaScript) components included

in a PhoneGap project that are needed for communication between native side and

web side:

• ExposedJsApi (Native): The global native object shared with the WebView’s

JavaScript through JavaScriptInterface.

• CordovaWebview (Native): The customized WebView. During initialization, the

native ExposedJsApi is registered in the WebView by using the addJavascriptInterface.

16

<widget id="com.phonegap.helloworld" version="1.0.0">
 <name>Hello Cordova</name>
 <description>A sample Apache Cordova app</description>
 <access origin="*" />
 <content src="index.html" />
 <author email="aaljarra@uncc.edu" href="http://liisp.uncc.edu">
 LIISP Team
 </author>
 <feature name="App">
 <param name="android-package" value="org.apache.cordova.App" />
 </feature>
 <feature name="Accelerometer">
 <param name="android-package"
 value="org.apache.cordova.devicemotion.AccelListener" />
 </feature>
 <feature name="Compass">
 <param name="android-package"
 value="org.apache.cordova.deviceorientation.CompassListener" />
 </feature>
 <preference name="loglevel" value="DEBUG" />
</widget>

Figure 4: PhoneGap config.xml file

• PhoneGap Client Library (Client): The JavaScript library (cordova.js or

phonegap.js) that contains the PhoneGap client functions, and that decodes

the client API calls to javascript messages to be sent to the CordovaWebView

instance.

• CordovaChromeClient (Native): A WebView client that is attached to the

CordovaWebview which is used to register event handlers associated with the

WebView.

• PluginManager (Native): This is the central component in apps operation, it

is responsible for the initialization of the different plugins included in the app,

manages the mapping of the client API calls to the corresponding native plugin

APIs.

17

The client app (JavaScript) is able to send and receive messages from the native

components through the established PhoneGap interfaces. When the client app issues

a request to listen to the compass heading, this is sent as a message to the native

code to execute the corresponding plugin methods and ultimately send the compass

heading data to the client app.

CordovaWebView ExposedJsApi - JavaScriptInterface

Plugin
Plugin.execute(...)

 JS - cordova library

JS to WebView
cordova.exec(function(success)
{},function(error) {},"service",
 "action",
 [/*Arguments*/]);

JS - Application Logic (API Calls)
camera.getPicture(onSuccess,
onError,options);

loadUrl("javascript:"+JSMessage)

N
at

iv
eT

oJ
SM

es
sa

ge
 (M

es
sa

ge
 Q

ue
ue

)

JSMessage

JSMessage

JSMessage

JSMessage

JSMessage

JSMessage

JSMessage

1

2 3

4 5

6

7

Plugin Manager
Plugin Map

Figure 5: Plugin access control execution flow

Figure 5 illustrates the execution flow from the client code to the native code and

then back to the client code. The flow starts when the client (JavaScript) app re-

quests to access a native resource (Step 1), in this example the app is requesting to

listen to the compass heading by calling the client method compass.watchHeading()

and providing the method with parameters which include a callback function for

success, a callback function for error and an array of options (if needed). The

compass.watchHeading() is a wrapper method to an exec() function that triggers

a JavaScript prompt event (Step 2) that is captured by the CordovaChromeClient

which is initialized to handle to the prompt event, see Step 3. In previous PhoneGap

18

versions (before 2.3), the exec() function used the injected native object exposedJsApi

but in later versions the JavaScript prompt event was used. The event handler in the

CordovaChromeClient calls the ExposedJSApi.exec() method and passes it all the

received parameters indicating the requested service, action, callback ID and other

arguments (Step 4). The called method calls the PluginManger.exec() method to

resolve and call the plugin that should be activated (Step 5). During the app ini-

tialization, the PluginManager loads the config.xml and creates a plugin mapping

table that maps the service to a native plugin class. As indicated in Figure 4, the

feature tags are used to specify the native packages for the included plugins. The

PluginManager locates and instantiates the corresponding plugin class and the indi-

cated action (method) is executed by the PluginManager (Steps 6). The plugin result

is returned to the PluginManager (Step 7) which then enqueues the returned result

as a JavaScript encoded message into the message queue (Step 8). The message is

then dequeued and loaded in the WebView which executes the corresponding callback

function with parameters being the result of executing the requested plugin (Step 9).

It is important to note that plugins vary in their sensitivity and access to private

information. Some plugins require no native permissions and others require sev-

eral permissions in order to execute. PhoneGap has an active community and most

enhancements are moving towards more security checks and requiring more control

on plugin access. After releasing Cordova 2.8.0 (06/12/2013), the PhoneGap docu-

mentation added Privacy Guide which contains recommended policies to be used by

developers when using plugins, especially those accessing private information like the

camera, contacts and geolocation information. Despite of the controls provided by

19

PhoneGap to control plugin access, it is still possible to compromise apps and bypass

these checks as is discussed in the following section.

2.3 Configurations of Cordova-Based Apps

A Cordova-based app, regardless of the platform, uses one global configuration

source file, namely config.xml. This XML based file located under /res/xml path

and contains several settings that control app behavior. The configurations are mainly

updated through the Cordova command line interface (CLI) or by simply editing the

file. Configurations are parsed and the content is then translated into a set of fea-

tures (see Fig. 6). Those features form the policy of accessing the device native

APIs and define the app local and external interactions with web domains. For in-

stance, in a cordova Android-based app, certain components in the library, mainly

PluginManager and CordovaActivity are responsible for enforcing these features.

Default configurations specify global properties like name, description, author, pref-

erences, and domain whitelisting specifications. Adding a plugin API changes the

configuration to include a declaration of that plugin by adding a <feature> tag. CLI

also adds the required system permissions to the native side to permit using the de-

vice native features. The default config.xml, according to the the version (version

8.x) only includes the Whitelist feature. This feature manifests the security model

provided by the library through providing the developer with configuration items that

control the app interactions with external entities such as URLs and other installed

apps using the domain whitelisting model. Table 2 explains the specifications pro-

vided by this plugin indicating the defaults. Domain whitelist configurations can be

20

Hybrid App

config.xml

Native Platforms Supported

Android App

CordovaActivity

ConfigXMLParser

PluginManagerPreferences

Blackberry App

Windows App

iOS App

Figure 6: Mobile Hybrid App Architecture

categorized into Network Request Whitelisting, Navigation Whitelisting, and Intent

Whitelisting.

2.3.1 Configuration Items

Default configuration settings are shown in Fig. 7. Configurations are mostly

common among different platforms, however there exist certain configurations and

options that are specific to certain platforms. We summarize the description of the

common configuration items in Table 3 as described in their manual [4].

We categorize the configuration items into two categories based on their function-

ality and impact:

• Descriptive configurations: configurations related to providing meta-data about

the app and the author. Examples include widget, name, description, author,

and platform.

21

<?xml version='1.0' encoding='utf-8'?>
<widget id="com.example.hello" version="1.0.0" xmlns="http://www.w3.org/ns/widgets"
xmlns:cdv="http://cordova.apache.org/ns/1.0">
 <name>HelloWorld</name>
 <description>
 A sample Apache Cordova application that responds to the deviceready event.
 </description>
 <author email="dev@cordova.apache.org" href="http://cordova.io">
 Apache Cordova Team
 </author>
 <content src="index.html" />
 <plugin name="cordova-plugin-whitelist" spec="1" />
 <access origin="*" />
 <allow-intent href="http://*/*" />
 <allow-intent href="https://*/*" />
 <allow-intent href="tel:*" />
 <allow-intent href="sms:*" />
 <allow-intent href="mailto:*" />
 <allow-intent href="geo:*" />
 <platform name="android">
 <allow-intent href="market:*" />
 </platform>
 <platform name="ios">
 <allow-intent href="itms:*" />
 <allow-intent href="itms-apps:*" />
 </platform>
</widget>

Figure 7: Default Configurations as of version 8.x

22

Table 2: Whitelist Configurations

Syntax Default Meaning
access origin="*" X Allow accessing re-

sources from all do-
mains

allow-navigation href="http(s)://*/*" Allow links to all
http(s) URLs to be
loaded

allow-navigation href="data:*" Allow data of all for-
mats to be passed into
the WebView

allow-intent href="http://*/*" X Allow all http links to
web pages to open in
a browser

allow-intent href="https://*/*" X Allow all https links
to web pages to open
in a browser

allow-intent href="sms:*" X Allow SMS links to
open messaging app

allow-intent href="geo:*" X Allow geo: links to
open maps

allow-intent href="tel:*" X Allow tel: links to
open the dialer

allow-intent href="market:*" X Allow market: links
to open Google Play
Store

• Behavior-control configurations: configurations related to controlling app ac-

cess to device APIs, interacting with external domains and installed apps, and

the starting page. Examples include content, access, allow-navigation,

allow-intent, and feature.

Descriptive configurations are simple and self-explanatory as explained in Table 3.

We focus on the app’s behavior-control configurations as they can have a substantial

impact on the app security and behavior.

We explain the main configuration parts:

23

Table 3: Configuration Items

Item Description

widget Root element of the config.xml document
name Specifies the app’s formal name, as it appears on the

device’s home screen and within app-store interfaces.
description Specifies metadata that may appear within app-store

listings.
author Specifies contact information that may appear within

app-store lisitngs such as author’s email and website.
content Defines the app’s starting page in the top-level web as-

sets directory. The default value is index.html, which
also appears in a project’s top-level www directory.

access Defines the set of external domains the app is allowed to
communicate with. The default value allows it to access
any server.

allow-navigation Controls which URLs the WebView itself can be navi-
gated to. Applies to top-level navigations only.

allow-intent Controls which URLs the app is allowed to ask the sys-
tem to open. By default, no external URLs are allowed.

preference Sets various options as pairs of name/value attributes.
feature Specifies the device APIs the app is allowed to use. Ex-

amples include camera, geolocation, ..etc.
platform Specifies preferences or other elements specific to a par-

ticular platform.

24

Plugins APIs: Hybrid apps can access device native features such as CAMERA,

through a Javascript API provided by the library. A developer needs to include the

plugin name in the configurations using the tags <feature> or <plugin>, depend-

ing on the version. Developers can use command lines to add plugins which also

updates the native side automatically to include the required system permissions

and the native code needed to use the plugin. For instance, including the CAMERA

API in an Android app changes the AndroidManifest file to include the permission:

"android.permission.CAMERA" and the config file to include a declaration of the

camera plugin. Earlier versions of the library include by default a set of core plugins

in the configurations along with all required system permissions.

Domain White-listing for Accessing Network Resources: this is the se-

curity mechanism that controls access to external domains over which the app has

no control. Cordova provides a configurable security policy to define which exter-

nal sites can be accessed. By default, new apps are configured to allow access to

any domain. The library “recommends” that developers customize the white-list to

allow access to specific domains and subdomains before moving the app to produc-

tion. For Android, Cordova’s security policy (as of its 4.0 release) is extensible via a

plugin interface cordova-plugin-whitelist, as it provides better security and con-

figurability than earlier versions of Cordova. The library configurations use <access>

element within the app’s config.xml file to enable network access to specific domains.

For example, to access domain XYZ.com, access should be configured as : <access

origin="http://XYZ.com">. The default value for this configuration item is “*”

which allows access to any domain. It is important to mention that there is a limita-

25

tion in the enforcement of this item, as described in the library documentation. The

issue is that white-listing alone can not block network redirects from a white-listed

remote website (i.e. http or https) to a non-whitelisted website which jeopardizes the

app to be vulnerable to several attacks. Examples include injection attacks, XSS, and

untrusted JavaScript code inclusion. To overcome this, the library recommends using

a content security policy (CSP) on a page level to mitigate redirects to non-whitelisted

websites for webviews that support CSP.

Content Security Policy: A fundamental component of the platform security

model. Its main purpose is to mitigate XSS and injection attacks. It controls which

network requests (images, XHRs, etc) are allowed to be made (via webview directly)

on a page level. CSP is set by including a <meta> tag listing the rules of content down-

load. A CSP consists of a set of policy directives and corresponding values. Examples

of directives include default-src, script-src, and img-src. These are responsi-

ble for control of default content, script and images respectively. default-src is a

default directive that applies in case other directives are not specified. Policies help

controlling allowed URL sources, executing inline code, and enabling eval() function.

In Cordova, a default CSP policy: (1) disables eval() and in-line scripts style; (2)

allows network requests of types CSS, AJAX, and frame; and (3) allows only local

code execution. CSP is added to the library starting in version 5.0.0 and is included

by default in the generated index.html file.

Domain White-listing for Intents: Like any native app, a hybrid app may

interact with other system components including other installed apps. In Android,

this is handled by Intents which is designed to manage inter-application communi-

26

cation. Hybrid apps may access other intents such as dialer, email or messages via

URIs and may also pass data to these intents. Thus, cordova library provides rules

via allow-intent to govern what intents can be called. As is demonstrated in Fig.

7, default configurations allow interaction with the following apps: dialer, messages,

maps, market, and the browser. This white-list applies to calls via hyperlinks and

the method window.open().

Domain White-listing for Navigation: controls which URLs the WebView

itself can be navigated to. Applies to top-level navigations only. On Android, it also

applies to iframes for non-http(s) schemes. By default, navigations are allowed only

to local files. To allow other URLs, the item <allow-navigation> can be used to set

the list of URLs.

2.3.2 Configurations Evolution

Initially in version 1.5.0, the library supported 6 platforms (Android, Blackberry,

iOS, Symbian, WebOS and Windows Phone) and offered APIs to access 13 device

resources (Accelerometer, Camera, Capture, Compass, Connection, Contacts, Device,

Events, File, Geolocation, Media, Notification, and Storage). The most recent version

of the library (at the time of writing this dissertation) is 8.x. This version supports 7

platforms (adding WP8), ships with 16 core APIs in addition to supporting a repos-

itory of 2895 plugins developed and shared by the community1. We track and report

the changes on the library starting from version 1.5.0 till the most recent version in

Table 4. We only highlight the changes related to configurations and security in ad-

1https://cordova.apache.org/plugins/

27

Table 4: Cordova Configuration History Summary

Version Change(s)

1.5.0
• Core plugins are included by default
• Plugins declarations in file plugin.xml.
• No security model.

1.8.0
• Domain whit-listing is introduced.
• Documentation added a section about white-listing guide.
• Access rules in file cordova.xml.

1.9.0 • CLI is shipped with the library.

2.0.0
• Plugin developers guide is introduced.
• Access rules in file config.xml

2.8.0 • Documentation added a privacy guide.

3.0.0

• No plugins are included by default.
• CLI enables adding plugins.
• Documentation added configuration reference.
• White-list plugin is introduced.

3.5.0 • Documentation added security guide.

5.0.0
• Content-Security Policy (CSP) is added.
• White-list plugin introduces <allow-navigation>

• White-list plugin introduces <allow-intent>

dition to any security awareness effort made by the library. In version 1.5.0, all core

plugins are included by default in the configurations. This would also effect the na-

tive side of the app because it would be configured to include the system permissions

needed to use all the included APIs. An Android app, for instance, would have 15 sys-

tem permissions by default, including CAMERA, ACCESS COARSE LOCATION,

and INTERNET. At that time, there was no consideration of any security principle

such as controlling app interaction with external domains. It wasn’t untill the release

of version 1.8.0.that the concept “Domain White-listing” was introduced to support

controlling access to external domains [5]. At that time, domain white-listing was

implemented for 3 platforms (Android, iOS, and Blackberry). Access rules to outside

domains are specified in an XML format using the element <access>. It was set to

28

origin="*" which allows access to any server by default. These rules are stated in

a file named cordova.xml. Later in version 1.9.0 the library presented a Command

Line Interface (CLI) which is a standard set of command-line tools. The purpose is

to simplify interaction with the library and make it easier to develop cross-platform

applications. It was supported for 3 platforms, Android, iOS, and Blackberry. In

version 2.0.0 the library started to encourage developers to develop their own plug-

ins, hence the library released a plugin development guide in their manual; explaining

the architecture of the Cordova API on both sides JavaScript and native. In version

2.8.0, the library dedicated a section in their documentation for privacy. The privacy

guide at the time encouraged developers to follow practices to preserve users’ privacy

such as, having a privacy policy, avoiding collecting users’ information, and giving

users more control on allowing collecting information and accessing device APIs. Ver-

sion 3.0.0 had a major change compared to previous versions. First, plugins are not

included by default. Second, adding plugins is supported commands through CLI.

Third, a domain white-listing policy is implemented in the file config.xml.

Not until the release of version 3.5.0, was a security guide added in the documentation

[9]. The guide addressed security issues that are discussed in research [48][8][7]. It

focused on several security breaches including bringing awareness to issues related to

setting access to specific servers rather than allowing access to all servers.

To provide more modularity and extensibility to the security model, the library pro-

vided a white-list plugin for Android and iOS in version 5.0.0. This plugin pro-

vides better security and configurability compared to earlier versions of Cordova

as it added more security related configurations such as <allow-navigation> and

29

<allow-intent>. In addition to that, the library implemented a Content Security

Policy (CSP) to allow more control of content downloads at a page level.

2.3.3 Configurations & Security Consideration for Hybrid Apps

Efforts to make the library more secure (driven either by the research community

or the library itself) are evident. Yet, the library still suffers security limitations in

their configuration model.

2.3.3.1 Coarse-Grained

Configuration rules are enforced on the app regardless of the context. The policy

fails to address context-aware details such as location and time. Moreover, configu-

rations are global to the whole app. The app consists of one or more pages or states.

Each of which requires different permissions based on the app behavior in a specific

state. However, the configurations grant permissions to the app as a whole.

2.3.3.2 Risky defaults

Default settings of the configurations are liberal. Most default values grant non-

restricted access. Values, such as “*” indicating non-restricted access, are common.

For instance, if we examined the default settings for domain white-listing for network

resource access is set to “*” which allows access to any server - in the absence of

CSP. One consequence is the capability of including remote JavaScript from remote

untrusted servers into the app. Moreover, intents white-listing default settings allow

access to several built-in apps including dialer, SMS, maps, and browser.

Having risky defaults is a serious issue given the high probability that developers

are likely to keep default values as is.

30

2.3.3.3 Inefficient Security Model

The content security policy was added to control access on page level and to address

limitations of domain white-listing. However, this security model is not as efficient

because its usage is not enforced. In other words, the absence of a CSP does not

prevent fing the app, it would only log a warning message. This may not necessarily

draw developers’ attention to include it at all. Not having CSP and keeping the

network resource setting to default, shall expose device resources to an untrusted

server. This jeopardizes the security of the app to enable injection attacks.

2.4 Threat Model

To configure the required permissions for a hybrid app there are two main stages.

The first step is to set up the permissions granted to the native application hosting

the hybrid app. In Android, for example, the native application permissions should

be declared in the AndroidManifest.xml file. The second step is to set up the

platform specific configuration file (config.xml) to specify the plugins that should

be included in the app. Developers using Cordova versions before 3.1.0 are required

to configure the project manually and this can easily cause confusion and result in

misconfigured and over-privileged applications. In addition, projects created by these

versions include all the plugins by default in the config.xml file, which eliminates

the second step but results in having plugins declared in the config.xml that are

not required by the app, and hence, increases the attack surface of the app. In figure

8(a), we demonstrate a possible attack that can be launched on an app developed

using Cordova library before version 3.1.0. Some of the plugins like Accelerometer

31

don’t need any permission to execute, which enables an attacker to access this plugin

easily by calling it through javascript. Later versions of Cordova use a minimalistic

geo.htmlindex.html

Welcome to the
Map Your Contacts

App

Review Contacts

Map Contacts

contacts.html

Albert Brown

Adam Sandler

Anna Long

Bob Harris

Anna Smith

<widget id="com.phonegap.helloworld" version="1.0.0">

 <feature name="Accelerometer">
 <param name="android-package"
 value="org.apache.cordova.devicemotion.AccelListener" />
 </feature>

</widget>

Config.xml

(a) Seizing access to plugins declared
by default in config file

geo.htmlindex.html

Welcome to the
Map Your Contacts

App

Review Contacts

Map Contacts

contacts.html

Albert Brown

Adam Sandler

Anna Long

Bob Harris

Anna Smith

(b) Seizing access to plugins through
different pages

Figure 8: Possible plugin access abuse

approach since by default the app doesn’t have any plugin. The developer can use the

help of Cordova Command-Line Interface (CLI) to add device level features which

in turn configures the project accordingly. In both cases, plugin access is set on

the app level, i.e. declaring a plugin means it can be accessed through any local or

dynamic javascript file if the permissions requirements of the plugin are fulfilled. This

addresses the possibility of malicious scripts to execute plugins through any page, see

figure 8(b) which demonstrates how an attacker can access the geolocation plugin

through the contacts page - that is meant to access only the contacts plugin, and the

same applies to the rest of the pages in the app. As the previous threats were due

to the current implementation of Cordova security access model, other threats might

arise from the WebView implementation. The WebView’s loadUrl() method can be

32

used to load content and scripts into the WebView. An app can load pages and scripts

from local and external sources which introduce several vulnerabilities [49] as remote

pages and scripts could be easily loaded and gain access to sensitive information

throughout the native device services. In addition, dynamically loaded JavaScript

can easily introduce malicious code into the app which will not be detected by the

application vetting process. To be able to control the source of loaded content Cordova

uses a domain whitelisting security model. The developer should specify the whitelist

of allowed domains, which is a list of trusted URLs. The access element in the

config.xml file specifies the allowed domains. The default policy is to allow all

local and external domains, as indicated in the configuration file in Figure 4. The

wildcard <access origin="*"/> allows access to an external resource. In addition,

it is possible to allow access to resources from specific domains, for example, <access

origin="https://www.google.com"/>.

There are many threats [17, 49, 24] associated with using WebViews in mobile apps.

The loadUrl and addJavascriptInterface methods can be easily used to introduce

back channels to give access to malicious apps [49]. For example, loadURL can also

be abused to inject malicious javascript code into the WebView. Similarly, event

hijacking can be performed by registering custom malicious event handlers in the

WebView client component, which can enable attackers to override the app expected

behavior. The Cordova framework is based on using browser-based components. To

reduce the risk of these attacks, Cordova provides the developer with configurations

to white list the source of the loaded pages and scripts and to control the plugins to

be included in the app. The app developers should carefully configure their hybrid

33

apps to ensure the correct security configurations are selected.

The first two subsections explain attack scenarios applicable to hybrid apps. The

ultimate goal of these attacks is to compromise a hybrid app to host a malicious

code. The third subsection provides examples of malicious code and its effect on

hybrid apps.

Cordova-Based App

Cordova WebView

Input Plugins Untrusted
Source

Data

Code

Payload

Render
Engine

Data

Code

Malicious
Activities

JS Engine

(a) Code Injection

<script src="..\victim.js"></script>

victim.js

1

2

(b) Compromised Third-Party
Provider

Figure 9: Attack Forms 1 & 2

2.4.1 Attack Form 1: Code Injection

Given that JS is subject to code injection and that hybrid apps use standard web

technology, attackers can abuse smart phone specific features such as a camera; as

new windows for code injection. The essence of this model stems from two basic facts:

• Data and code can be mixed and the mixed code can be triggered by a standard

JS engine inside CordovaWebView.

• Smart phones by nature, provides broader interaction surface with the outer

world compared to PCs, through device native features such as camera.

Cordova input plugins can be abused as channels to inject infected payloads of data

34

into the app [41]. Figure.9(a) describes the basic premise of these attacks. Untrusted

data input resources such as WiFi access points, Bluetooth, Bar-codes, QR images

and MP3 files can embed malicious code that can be triggered inside the infected app

through the JS engine.

Recent work [37] have also discussed Web-to-Application injection attacks. Where

malicious code injection can happen through passing malicious data to Intent through

a link call. The target of such an attack is installed apps on the device abusing the

bridge enabled to launch installed apps such as dialer and maps. One compromise

scenario would be invoking a BROWSABLE intent passing a malicious url as a param-

eter.

2.4.2 Attack Form 2: Compromised Third-Party Providers

An important feature of JavaScript is the ability to combine many libraries from

local and remote resources into the same page. Developers include remote resources

for many reasons, such as decreased latency, increased parallelism, and better caching.

Mobile Hybrid Apps developers, in particular, strive to create cross-platform apps

with a native look, high performance, and rich functionality. Thus, UI specialized

libraries (jQuery, Ionic, Framework7, Mobile Angular UI), Tracking libraries (Google

Analytics), Social Integration libraries (Facebook) or Ad libraries (AdMob) are very

common in cross-platform apps. Ideally, developers should include JS code from

trustworthy providers, yet even these providers are not immune to attacks.

Figure.9(b) depicts how a compromised remote server can actuate malicious code

execution inside a benign app through the inclusion of a malicious remote JS file.

35

Although developers trust that remote providers will not abuse the power bestowed

upon them, the amount of damage that can be caused by compromising these remote

servers is substantial. Remote JS code has the same privilege as the local code. Thus,

it can access not only app resources such as data but also native features through the

bridge provided by the hosting hybrid platform. This amplifies the damage that can

be caused by this vulnerability which makes the provider of the library an interesting

target for cyber-criminals. Attackers may also use client apps that do not follow

security tips in regard to input sanitization to include malicious code through File

inclusion vulnerability. File inclusion vulnerability is a common vulnerability in web

application context. It allows an attacker to include a file, usually through a script

on the web server. The vulnerability occurs due to the use of user-supplied input

without proper validation. This can lead to something as minimal as outputting

the contents of the file or more serious events such as native plugin code execution

on the device. For instance, the developer intended only file1.js and file2.js

to be used as input options. But it is possible to include code from other files as

anyone can insert arbitrary values for the PARAM parameter. This line for instance

/vulnerable.php?PARAM=http://evil.example.com/webshell.js?

includes a remotely hosted file containing a malicious code.

2.4.3 Attack Form 3: Apps Repackaging Attack

Repackaging apps is an old threat that applies to all apps, and hybrid apps are not

an exception. Attackers can compromise hybrid apps easily by repackaging the app,

then adding/modifying the web-based code and then repackage it again with the new

36

Signed
APK

Unpack Folder

Folder

Signed
APK

Modify

Compile, Package, Sign

Figure 10: Hybrid Apps Repackaging Attack

code, see Figure 10. In fact, repackaging hybrid apps is much easier than repackaging

Android apps because web-based code (javascript and HTML) remains as a plain text

after unpackaging. Unlike native Java code which is decompiled into Dalvik bytecode

instead. Attackers can target popular apps of this category and inject malicious code.

Users who install apps from untrusted resources will be infected.

2.4.4 Attack Form 4: Event Oriented Exploits - Return Oriented based Attack

A recent work [76] has discussed the applicability and severity of event-oriented

exploits (EOE) on Android hybrid apps. This line of attacks belongs to the renowned

return-oriented programming exploits. The stem of this attack is to gain control by

abusing the call stack of a program. By carefully chaining together a sequence of call

statements, an attacker can call arbitrary operations that would not execute in the

normal control flow. In the case of hybrid apps, the fact that event handlers on the

37

Figure 11: EOE Attack Model [76]

native side can be called from the web side, made this exploit feasible, see Figure

11. The internal critical functionalities can be utilized by triggering the associated

web event and feeding it the proper input. For example feeding the webview the

URI “sdk://c1.c2?args:...&callback=..” would trigger the native components

c1 and c2 on the native side.

Specifically, attackers may abuse the combination of the functions: Webview’s loadUrl

and WebviewClient’s shouldOverrideUrlLoading to create an implicit control flow.

EOE has multiple advantages. First, it doesn’t require any extra permissions, i.e.

the malicious code injected fully inherits the permissions granted to the app. Second,

EOE doesn’t require malicious payloads. Instead, the functionalities contained in

the event handlers are utilized. Moreover, compared to code injection attacks, EOE

doesn’t require the code to be triggered nor the bridge to be enabled. This means,

even having proper configurations, permissions and tight CSP will not prevent the

exploit from happening.

38

2.4.5 Examples of Malicious Impact on Hybrid Apps

Malicious code damage can take several forms, such as data manipulation, privacy

leakage, Denial of Service (DoS), or changing app behavior. The impact of the attack

and the way the attack is taken differ based on the target of the attack. For example:

Target Device/User Data: Hybrid platforms provide a bridge to connect to de-

vice sensors, thus malicious JS code may target the device sensors accessing private

data such as tracking the location of a specific device as shown in Figure. (12). The

malicious code in this example posts the compromised device geolocation coordinates

every 3 seconds to a remote server.

Target App Behavior A recent market scan showed that Finance, Banking, and

Health tops the market share of Cordova based apps [15], thus, compromising the

app itself is a valid concern, particularly in these sectors. This can be carried out by

malicious actions like malicious redirect, injecting un-wanted content like advertising,

adult content, or manipulating the routing logic to bypass a mandatory check such

as log-in or payment page. The Cordova InAppbrowser plugin provides the function-

ality of redirect from one URL to another. By injecting code such as that shown in

Figure. (13), it does not only redirect to another URL, but also external code will be

loaded into the application. The parameter self means that CordovaWebView will

host the external webpage not the system browser. Moreover, this plugin enables JS

code injection using the method executeScript() method which enables executing

a JS code. Although, this JS code injected by InAppBrowser cannot access Cordova

APIs, at least it can manipulate the app behavior. This can successfully run using

39

any URL if configurations are kept on default settings. Previous work [41][22][20]

suggested static JS analysis to detect malicious code; however, attackers may ob-

fuscate their code, making it more challenging to be detected, especially if it was

dynamically injected. JS provides many obfuscation libraries, one simple example

using the function escape().

Successfully redirecting the app to other pages has serious implications on the user

experience, especially if the app is critical such as banking and shopping apps. Syman-

tec declares Malicious JavaScript Redirection a sever vulnerability that could pose a

serious security threat to the device[66]. Current default configurations shown in Ta-

ble 2 are very loose, especially that the default network request white-listing <access

origin="*" /> doesn’t block any access request if a CSP is not included in the page.

This gives more privilege to the malicious code over the app and the device.

2.4.6 “Bad” Configurations Risks on Hybrid Apps

App configuration is a contract between the app and the system. The file config.xml

content states what external domains can access the app, what external apps can be

launched from the app, what plugins the app can use, and what domains can be nav-

igated from inside the app’s WebView. Secure configurations serve as a first defense

line against potential attacks. Previous work on securing hybrid apps [41][22][20]

have been focusing only on Javascript (JS) as a source of problem and solution. The

approaches suggested so far are revolving around static and dynamic JS analysis to

detect malicious code injection. Configurations, however, have been missing from the

literature even though it is a basic component of the app security. The damage from

40

any malicious code execution can be voided by properly configuring the app. For

example, an injection attack trying to access a camera is ineffective if the app is not

configured to include the camera plugin in the first place.

As previously shown, default configurations in Table 2 are loose and coarse-grained.

We demonstrate the impact of bad configurations that may result from either keeping

default settings or having relaxed configurations

2.4.6.1 Network Request Whitelist

This configuration item controls which network requests are allowed to be made

via Cordova native hooks. The default setting, <access origin="*" />, does not

block any access request. The default index page generated by the library contains

Content Security Policy (CSP) to control which network requests are directly allowed

to be made via WebView. The default CSP allows only local URLs. CSP is enforced

through the white-list plugin, which is added to the app by default. CSP is repre-

sented inside <meta> tags on the top of the HTML file. While including CSP is a

secure practice that is encouraged by the library, not including one results only in

showing a warning message. Controlling network requests is merely dependent on

the possibility of the developer using a default generated index page that contains a

default CSP , or the possibility of her adding a CSP to her customized pages. Hav-

ing no CSP enforced and keeping default configurations may jeopardize the app to

external resource loading/injection from any URL (1st row in Table 2).

41

2.4.6.2 Navigation Whitelist

This item controls which URLs the WebView itself can be navigated to. This

setting applies to top-level navigations only. By default, it navigates to local files

because, as shown in rows 2,3 in Table 2, these settings are not the default. To

white-list specific URLs, configuration should include the corresponding value, for

example, allow-navigation href="http://example.com". However, as mentioned

earlier, this applies only to top-level navigation, which means that any redirect from

example.com to any other URL may not be in conformance with the specified set-

ting. We argue the need of additional configuration settings to control all URLs being

loaded into WebView. This helps not only protect against malicious URLs loading but

also maintains the app behavior against any injection attack trying to bypass certain

states in the app, such as authentication.

2.4.6.3 Intents Whitelist

This item controls which URLs the app is allowed to ask the system to open (

through hyperlinks and window.open()). This includes Built-in Apps, such as Mes-

saging, Dialler, Maps, Mail, and Browser. Default settings allow calling all the men-

tioned apps as shown in rows 4-9 in Table 2. Including these apps in the configuration

file allows malicious injected code to launch these apps, not to mention passing val-

ues to them using crafted URIs. In fact, Cordova versions before 3.5 suffered from

a vulnerability (CVE-2014-3502) [27] that allows remote attackers to open and send

data to arbitrary applications via a URL with a crafted URI scheme for an Android

intent. Hence, we argue that keeping the default settings as is will increase the attack

42

surface through this channel.

2.4.6.4 Declaring Plugins/Features

Early versions of Cordova configuration (before 3.1), used to include, by default, a

set of 16 declarations of native APIs or plugins, including Camera, Geolocation, and

Contacts. This default setting assumes that the app needs to use all the declared

plugins, which is not necessarily true. Previous work [61] demonstrated the gap

between the plugin declaration in the configuration file and the actual plugin usage

in the code. Even if a developer included only the plugins needed by the app, these

declarations assume that these plugins are used by every page/state in the app, which

also creates a window for attack. We argue that a plugin declaration should be tied

with the app state/page that needs to access the plugin rather than being tied to the

whole app as one unit.

Most developers consider security a non-functional requirement. Thus, they are less

likely to change default configurations. Even for developers who consider themselves

security-sensitive, there is still a possibility that they might lack the knowledge to do

so. This outlook is backed by a study [75] that reveals the existence of a disconnect

between developers conceptual understanding of security and their attitudes regarding

their personal responsibility and practices for software security.

2.5 HTML-5 Based App Development

HTML-5, Javascript and CSS have opened the door for platform-independent UI

development, since it provides a rich UI experience not to mention support for several

mobility features such as offline web storage, canvas drawing, and CSS3. Consider-

43

ations specific to mobile development must be taken into account to help provide

the user with a full experience of a mobile app with good performance, given the

limited processing capacity of mobile devices. Bandwidth is a major concern; thus,

minimizing server requests and payload size while providing a rich UI is a priority. To

achieve this, mobile HTML-5 based apps implement most of the logic on the client-

side, leaving the server side for authentication and data access. This trend mandates

applying strict mechanisms to keep client side Javascript as layered, modular and

object-oriented as possible to help manage and maintain the code.

Single Page Applications, or (SPA), is a web-based app that fits into a single page

with the goal of providing a more fluid user experience, akin to a desktop appli-

cation. Developers are highly encouraged to follow this approach when developing

mobile apps for several reasons such as improved performance, fast navigation be-

tween many views/pages, and less download content/network bandwidth in order to

achieve a more native like experience.

SPA attempts to reduce the total number of pages that a user must load down to

one. JavaScript routers provide a method for tracking user state and loading re-

quired resources, as needed, without requiring a URL change or page reload using

Hashbangs. As the user navigates, the library changes the hashbang (#!) in the URL

to denote their current location. Hashbangs are usually an alphanumeric word that

represents certain action. It might also contain a parameter which can be a digit

(for instance index in a list or an array) or a letter. Examples of hashbangs looks

like #employee/1/changePhoto, #/users/list/5, #pages/about. To support SPA to

navigate properly, certain logic should be implemented to act as a proxy between user

44

actions and the app engine:

(1) Routing: When the window hash changes, logic must apply to load the correct

state from global states.

document.addEventListener(‘hashchange ’,function(e){

// swipe views here

});

(2) Markup Management: Views rendered by manipulating the DOM variable. The

current state decides how markups are updated.

if(current_view){

// insert before current view

}

else{

// insert to the content wrapper

}

Manipulation of the Document Object Model (DOM) determines the view visible to

the user. GMail, Twitter, and Facebook are examples of SPAs. The urge to adopt

this approach for hybrid apps is increasing. This also complies with our apps scan

result, as approximately 60% of the apps pool have one html file.

2.6 Android WebView

The web browser component is a user interface component that can be embedded

in a native mobile app to render (HTML/CSS) content and execute JavaScript. This

component is available in different mobile frameworks, WebView in Android, UIWe-

bView in iOS, and WebBrowser in Windows Phone. In this work we will focus on

45

the Android platform because of its openness; however, our discussion is applicable

to other platforms as well. The WebView component uses the WebKit rendering en-

gine to display web pages, it includes methods to navigate forward/backward through

history,to zoom in and out, to perform text searches in addition to many other meth-

ods [14]. Besides its ability to render the page,the WebView also executes the scripts

(JavaScript) imported or included in the page. The WebView is embedded in a native

app that can control the embedded WebView. For example, the native app can load

a URL in the WebView or execute JavaScript in the currently rendered page.

WebView webview = new WebView(this);

setContentView(webview);

webview.getSettings ().setJavaScriptEnabled(true);

webview.loadUrl ("http://www.uncc.edu");

webview.loadUrl (" javascript:alert(’hello ’);");

The code demonstrates how the WebView loadUrl method can be used to load a

specific URL and execute JavaScript in the context of the currently rendered page.

The developer can customize the WebView’s behavior through WebView clients (We-

bViewClient and WebChromeClient), which can be used to register event handlers to

respond to WebView events such as onPageStarted, onPageFinished and onJsAlert.

In addition, the native app is able to receive data directly from the embedded We-

bView by injecting a native Java object into the WebView. The object is injected

into the currently loaded JavaScript context and the object is accessible through the

supplied name. Through this Java to JavaScript interface, the injected Java object’s

methods are accessible from JavaScript.

46

// Native Java Side

class JsObject{

public String save(String data) {

//save data

reurn value;

}

}

webview.addJavascriptInterface(new JsObject () ,"injectedObject ") ;

// Javascript Side

var value= injectedObject.save("data");

The code demonstrates how a native object is injected into the WebView using the

addJavascriptInterface method.

47

1 <script>
2 var refreshID = setInterval(function(){
3 navigator.geolocation.watchPosition(
4 function(loc) {
5 $.post('someurl',format(loc),function(){});
6 });}, 3000);
7 function format(loc){
8 var data= {'lat':loc.coords.latitude,
9 'long':loc.coords.longitude} ;
10 return JSON.stringify(data);
11 }
12</script>

(a) Access Device Data

(b) Geolocation Data Exposed

Figure 12: Targetting Device Plugins/Data

48

1 <script>
2 var ref = cordova.InAppBrowser.open
3 ('http://www.someurl.com', '_self');
4 ref.addEventListener('loadstop',
5 function(){
6 ref.executeScript(
7 {code:"alert('Injected JS Code')"}
8);
9 });
10 </script>

(a) Change App Behavior

(b) Infected App

Figure 13: Targeting App Behavior

CHAPTER 3: RELATED WORK

3.1 Cordova Library Access Control Model

Early work related to hybrid apps security [43][62][61][32] has focused on the coarse

grained access control model offered by the library and on the risk associated with

having a bridge implemented to connect native device resources with javascript (JS)

code. Jine at al. and Singh at al. [43][62] suggested a finer-grained access model

to control the native side permissions associated with external resources. MobileIFC

[62] proposed to include a context-aware policy to control access to resources on both

sides, native and web. The work suggested splitting JS code into confined chunks

that are activated based on certain conditions. While Jin et al [43] have discussed

how the privilege granted to Cordova-based Webviews breaks the existing protection

mechanism provided by Android Webviews, they have proposed a fine-grained access

control model on the frame level to be associated with native side permissions. Later,

Kudo et al. [46] presented a run time access control model where the user needs to

approve plugins access at run time. This mainly depends on a users’ judgment and

knowledge of what needs to be accessed and by which parties. Early work [32] have

focused on the inefficacy of the Same Origin Policy principle (SOP) implementation

and enforcement in Cordova library and proposed a change on both native and JS

side of the library to extend origin based access control to local resources outside the

50

web browser.

Phu et al. [54] recommended HybridGuard, a principal-based stateful policy enforce-

ment framework that enables developers to define policies and specifiy principal-based

permissions.

While the line of this work aims aims to have a fine-grained access control model to

limit API access by external JS code; however, as opposed to previous solutions, this

work does not require developers to set a policy nor split JS into chunks. Our tool

requires no effort on the developer side nor changing JS coding structure, yet provides

a state level policy on plugins access and app behavior.

3.2 Hybrid Apps Specific Attacks and Solutions

Despite the relative newness of the technology, mobile hybrid apps security has

gained a lot of attention. Code injection attacks viability of Cordova-based apps are

discussed in several reseach papers [41][22][42]. In their work Jin et al [41][42] have

explained how XSS attacks can be mounted on mobile devices using sensors such as

Contact, SMS, Barcode, and MP3. These can be abused to serve as channels for re-

ceiving and spreading malicious code. The attack is based on the ability to mix code

and data on web technology which can be used to inject malicious code to exploit

plugin calls. To handle these attacks, they have modified the Cordova plugin manager

to include code that sanitizes JS calls from malicious strings. A followup work by

Chen et al [22] discovered another attack channel that is based on the ability to inject

malicious JS code through HTML text input fields. They have also developed a tool

named DroidCIA which is a tool that parses HTML files along with the JS files to

51

fully analyze the mobile app and sanitize malicious API calls.

Kudo et al. [46] have discused repackaging attacks and highlighted that it is much

easier to apply this attack on hybrid apps since JS and HTML code remain in plain

text format even after packaging. Solutions such as obfuscating JS code [35] is dis-

cussed but there is still valid concerns on its effectivness and applicability.

Several tools have been suggested by researchers that mainly aim to detect vulnera-

bilities using static and dynamic analysis of code [19][78][77][57][47]. Early work done

by Brucker at al. [19] developed a static analysis tool for foreign language calls and

detecting data flows in cordova based apps. Yang et al. [78] focused on sensitive

methods in hybrid apps and studied their communication with the native side. They

proposed a hybrid analysis tool that combines dynamic and static analysis. The main

target here is to detect unsafe connections (HTTP or insecure HTTPS) that tries to

invoke sensitive operations. Static analysis searches for sensitive functions and dy-

namic analysis investigates these functions’ invokation from an unsecure connection.

This work has several limitations such as its failure to intercept HTTPS connections

and inability to perform complete dynamic analysis on apps that require access to

credentials. Another similar work [47] presented HybriDroid, a static analysis frame-

work for hybrid apps. The tool analyzes intercommunication between Android Java

and Javascript.

Considering the dynamic nature of hybrid apps, dynamic taint tracking is proposed

[64] to detect data leakage. The approach principally identifies data sources and sinks,

taint sensitive data such as cookies, geolocation and offline storage, then tracks the

channels and checks if the data is leaked. The main issue with this work is the weak

52

experimentations.

Yang et al. [77] presented BridgeScope that is a system for vetting JS bridge security

among various implementations of Webviews in several platfroms including Android

and Mozilla. The tool use static analysis, type taint and value analysis. The tool

focuses on vetting sensitive API calls and tracing their call path. However, it suffers

limitations including not handling implicit data flows and low level libraries written

in C/C++ which may leads to false negatives. Our approach can prevent and detect

injection attacks based on observed app behavior. It can detect dynamic injection

attacks which include obfuscated code which could be overlooked by conventional

solutions such as JS sanitization and static JS analysis. Along the same lines, in-

formation flow analysis is used by Rizzo et al. [57] to evaluate the impact of code

injection attacks against Webviews. Their approach relies on instrumetning apps and

using an extention of the class Webview -“Babelview” to trace API calls.

A new attack vector on hybrid apps was presented by Yang et al. [76] that addressed

Event-Oriented exploits on Android hybrid apps. The exploit is an extention of the

well-known return oriented programming attacks. The basis of this exploit is the

fact that hybrid apps allow event handlers defined in the native side to handle web

events. Attackers can remotely access native device resources through event handlers

in Webview without any permission or authentication. Critical internal functionali-

ties can be utilized by triggering the associated web events and feeding it with proper

inputs that follows the format : “sdk://c1.c2?args=...&callback=...”, where c1

and c2 are the native functions to be accessed, args are the function’s parameters

and callback is a JavaScript function name to receive the execution result of the

53

native function. To detect such an exploit, the authors proposed EOEDroid, a tool

that vets event handlers using selective symbolic execution and static code analysis.

This direction of research, where attacks are discovered and a solution is suggested to

counter the mentioned attack, is still in its infancy in regard to hybrid apps. There

has been a recent effort [36] to systematize analyzing potential attacks and vulnerabil-

ities in hybrid apps by investigating common security concerns based on standardized

references such as OWASP and simulate them on hybrid apps. Yet, there is still an

immense need to protect the app against zero-day attacks by enforcing specific rules

that conform with app healthy behavior given the expected uncertainty of the attacks’

channels.

3.3 Securing Apps by providing tooling support

Supporting developers to maintain privacy protective behavior when coding has

been addressed in the literature in different aspects. Rebbeca at al.[16] highlight

key challenges developers face in following best practices related to privacy. Being

a secondary concern, privacy is not a priority to developers. Not to mention the

difficulty of reading and writing privacy related policies. In fact , according to Zi-

bran et al. [80], API documentation is among the top factors that negatively affects

API usability. Mobile hybrid platforms are no exception. Thus, solutions to solve

these problems have been directed towards following a human-centric approach in

API design not only to improve usability, but also to promote security and privacy

earlier in the design process. Myers et al. [51] provide insights into understanding

how different API stakeholders (API designers , API users ,and API consumers) have

54

different needs- contradictory at some point - which effects the way the API is de-

signed and built. They stress the importance of adopting a human-centric approach

to promote usability. Having the API user in consideration when designing the API

and investing on tooling support may positively affect API usability.Green and Smith

[34] have also supported the argument of creating developer-friendly and developer

centric approaches to promote usable security. They have identified ten principles for

creating usable and secure APIs. Examples include making the API easy to use, even

without documentation and ensure that defaults are safe and never ambiguous.

Along the same lines, implementing secure code has been receiving demonstrable

attention recently. Practices followed by developers, such as lapses of attention to

security and the lack of application security knowledge in general, are the main rea-

sons motivating this research toward providing more support to developers in order

to produce secure code. Jing et al. [72] propose a tool named ASIDE (Application

Security IDE), an Eclipse plugin for Java. The plugin goal is to help programmers

prevent errors by providing interactive code annotation and refactoring. The tool

evaluation [74] reveals that programmers are only likely to successfully address such

non-functional errors during programming if the effort and cognitive burden is suffi-

ciently small. Moreover, programmers need easy ways of understanding and learning

about secure programming regardless of their experience level.

The need to provide a detailed context rich interface for system configurations has

been already discussed for different technologies. Raja et al. [56] have discussed the

effect of the Windows Vista personal firewall basic interface on users’ mental mod-

els. The UI does not present enough details which may result in users developing

55

an incorrect mental model of the protection provided by the firewall. They suggest

a prototype to support development of a more contextually complete mental model

through inclusion of network location and connection information. The study shows

that participants produce richer mental models after using the prototype. In their

analysis of the causes of software errors in terms of chains of cognitive breakdowns,

Ko and Myers [45] indicated that certain type of errors are due to attentional issues

such as forgetting or a lack of vigilance.

3.4 Security-By-Contract (SxC) on Mobile Code

In 2007 [31], the term Security-By-Contract (SxC) was proposed as a mechanism

to secure mobile apps through using digital signature not only to prove trusted sources

but also to bind together the code with a contract. Contract is a formal specification

on how an app should behave. Every app carries its own contract which can be spec-

ified by the developers, the distributor (e.g., marketplace), third-party certification

authority, or by the user[30]. The term is interchangeably used with policy which is

also refers to is a formal complete specification of the acceptable behavior of applica-

tions to be executed on the platform for what concerns relevant security actions such

as API calls and OS calls. The contract/policy is specied as a list of disjoint rules with

a specific grammar. The contract/policy can capture application run-time behavior

by either learning some properties of the code or froming an intermediate-level lan-

guage (e.g., byte-code) or directly from the binary code. Alternatively, a contract can

be defined by exploiting the information learnt from the applications executions, e.g.

by monitoring some executions of the program to extract its behavior. This overlaps

56

with the approach we are using to secure hybrid apps by monitoring app behavior

to generate a policy to be enforced later. However the approaches are different in

several aspects. First, our approach captures the behavioral properties of the app

based on the monitored execution. This approach is based on specifying rules (by

developer or user) to govern app behavior in a context. Our approach is captured in

the development/testing stage while this approach can be enforced in all three stages

(developmet, deployment and execution). Most of the literature have discussed this

notion under Java and .Net frameworks depending basically on binary code an app

rewriting. Our approach domain is different and the implementation details.

CHAPTER 4: HYBRID APPS STATUS QUO: SECURITY & STATISTICS

In this chapter we reflect and analyze the current situation of hybrid apps in terms

of the configurations/ development practices and trends and we discuss how these can

affect apps security and privacy. We first present the results of the market analysis of

real-world hybrid apps that was conducted on 2013-2014. Our main goal of this study

is to analyze current configurations schemes and discover common trends of hybrid

apps development at the time. Due to the fact that the library is fastly changing

and its configuration and security measures are evolving, we conducted another large

scale market analysis in 2017. We have addressed new configurations items and their

usages. We have also highlighted actual developers’ usage patterns of the security

mechanism provided by the library.

Then we present threat models that apply to hybrid apps by discussing how apps are

compromised and how this can maliciously affect the user and the device. We also

demonstrate how “bad” configurations can play a role in enabling the malicious code

to be triggered and amplifying its damage.

4.1 Market Analysis - 2014

In this section we discuss the app analysis performed on real PhoneGap apps to in-

vestigate the common patterns used by hybrid apps in terms of file structure, plugins,

permissions, and security settings.

58

4.1.1 Data Collection

The PhoneGap website [38] hosts a repository linking to different app markets for

apps developed using the PhoneGap framework. We downloaded all free PhoneGap

Apps (662 apps) that were built over Android from Google Play [33] and were show-

cased by PhoneGap in Jun/2013. The apkdownloader (v. 1.8.2) was used to automate

the download of the apps from Google Play. The apktool (v.2.0) was used to extract

files from the downloaded apps which include AndroidManifest.xml, config.xml

and all application files under the www folder. We built a C++ tool to parse and ex-

tract information from the retrieved files, which includes the app permissions, plugin

declarations, plugin usages and other configuration details.

4.1.2 Results

4.1.2.1 PhoneGap app architecture

The choice to develop Single Page App (SPA) or Multi-page App has been always a

decision that the developer needs to take even though most Hybrid platforms consider

using SPA a good practice for many reasons related to performance and simplicity.

However, Figure 14 shows that more than 58% of the scanned apps are composed

of more than one page, which shows that apps tend to have multiple pages. The

average number of pages per app was 12.2 pages. For each of the apps downloaded

we computed the number of local HTML files (pages) used by the app and the sim-

ilarity between the different pages based on their accessed plugins. To investigate

the similarity between the app pages based on their access plugins, we scanned the

api calls in HTML/JS source for each page and generated a feature vector describing

59

>1 HTML Page
1 HTML Page

58.6%

41.4%

Figure 14: HTML File App Count

the plugins used in the page. The feature vector x for a page is a binary vector with

xi = 1 if plugin i was used and 0 otherwise. We computed the cosine similarity metric

sim(x, y) = x.y
‖x‖∗‖y‖ to compute the similarity between the pages in the same app. Fig-

ure 15 shows the average page similarity distribution for scanned apps, whereas the

similarity of 0 implies pages used disjoint plugin sets and 1 means matching plugin

sets. The overall average page similarity was 0.46. The majority of the apps have

a similarity in the range [0 − 0.5], which implies that different pages have different

plugin usage requirements.

4.1.2.2 PhoneGap Plugin Usage vs. Declaration.

We scanned the api calls in HTML/JS source for each app and recorded the used

plugins. In addition, we scanned the configuration files and recorded the declared

plugins. Figure 16 shows the comparison between the number of plugin declarations

and actual plugin usage. It can be concluded that there is a wide gap between what

is declared and what actually gets used, for example 91.6% of the apps declare the

60

Page Similarity

F
re

q
u
e
n
c
y

0.0 0.2 0.4 0.6 0.8 1.0

0
5

1
0

1
5

2
0

Figure 15: PhoneGap dataset page similarity distribution

GeoBroker plugin and only 8% of these apps actually use this plugin. This over

declaration can be easily exploited by maliciously loaded scripts.

4.1.2.3 Access Origin Usage Patterns.

As discussed earlier, domain whitelisting is the current security model adopted by

PhoneGap to control access to outside domains and subdomains. By default access

is open to any domain <access origin="*"/> which means that an external server

can communicate with this app. This model relies on the developer to provide the

list of whitelisted domains. For example, developers could grant access to google.com

by adding an <access origin="http://google.com" /> to the whitelist. We ex-

tracted the access origin entries specified in the apps in our dataset, and we cate-

61

Device

NetworkManager

Notification

Storage

FileUtils

FileTransfer

GeoBroker

AudioHandler

Capture

CameraLauncher

ContactManager

AccelListener

CompassListener

SplashScreen

Globalization

InAppBrowser

0 10 20 30 40 50 60 70 80 90 100

97.8%
20.1%

96.4%
8.8%

95%
12%

94.2%
15.3%

93.2%
2.8%

92.4%
2.8%

91.6%
8%

91.4%
4%

91.2%
0.6%

90.4%
5%

89.6%
2.8%

89.2%
3%

89.2%
2%

70.7%
3%

39.8%
1.4%

32.5%
8.4%

Declared Plugin

Used Plugin

Figure 16: Plugin declaration vs plugin usage

gorized the access origin declarations into the following three categories: open or *

which means app is open to any domain if origin="*" was specified as an allowed

access origin, local if localhost is listed as an allowed access origin, and specific if a

specific url was listed as a whitelisted access origin. Figure 17 shows the different

access origin category combinations and their statistics presented, note that the grey

combinations show the risky settings, where 16.8% specified (*) access, 35.7% spec-

ified a (* & local) access, 0.8% specified (* & specific) access, and 5.7% specified (*

62

& local & specific) access. Granting open (*) access is very risky as this allows access

to any domain. These results highlight that 59% of the apps granted open access

to any domain, which is an indication that the developers are not configuring their

apps correctly and are relying on the nonsecure default PhoneGap settings. Apps

granting open access to any external domain are subject to dynamic script loading

from malicious sites.

(*)

(local)

(specific)

(* & local)

(* & specific)

(local & specific)

(* & local & specific)

Usage (%)

0 5 10 15 20 25 30 35 40

16.8%

30.2%

1.4%

35.7%

0.8%

9.5%

5.7%

A
c
c
e

s
s
 O

ri
g

in
 P

a
tt

e
rn

Risky Settings

Safe Settings

Figure 17: Access Origin usage distribution

4.2 Market Analysis - 2017

In this subsection we present a large-scale study that is centered on mobile hybrid

apps configurations and permissions usage patterns. During the past five years, the

library have evolved in different aspects. The configuration model has evolved to have

63

more fine-grained configuration items to capture different aspects of the app behavior.

It also added new security tools such as using CSP in the default starting page. We

want to (1) discover how developers are configuring the apps; (2) how effective these

adiitions by the middleware; and (3)if there exist any pattern of using these new

configurations. We find that while the platform is adding more security features,

there is a demonstrable misconfiguration trend. The result of analyzing a set of 2111

hybrid apps uncovered several alarming observations. We have found that 80% of

the apps are vulnerable to injection attacks because of an absence or a poor usage of

the security model provided by the platform. We also detect a trend of keeping risky

default configuration settings which results in having over-privileged apps that may

expose device APIs to malicious code. On the system side, we realize that most of the

apps have access to the platform’s INTERNET and GEOLOCATION permissions.

Google messaging is also recognized as the most widely used third-party service. In

addition, we detect a suspicious set of domains including spying, payment, Adware,

and military that are white-listed.

4.2.1 Data Collection

We compiled a set of cordova based package names from different resources includ-

ing previous research work2 in addition to package names manually extracted from

the platform website. To ensure that the apps are still active in Google Play mar-

ket, we have implemented and used an automated tool to search for the app name

in Google Play, install the apk on a mobile device, then copy the apk file from the

2We obtained the data set used in the paper [41]

64

device to a computer. We started with a list of 20000 names and ended up with

a 2111 apps. The selection criteria was based on the following: - The app exists in

Google play

- The app installs properly on a mobile device

- The app package (apk file) is not corrupted and was tranferred successfuly from the

mobile device to another computer.

4.2.2 Results

4.2.2.1 Starting Page<src>

A hybrid app consists of one or more pages. Pages can be hosted locally inside the

app folder or remotely. We have found that most of the apps (98%) start from a local

page. The rest of the apps (2%) have the following settings :

• 17 apps are set to start from a remote page that uses http connection

• 3 apps are set to start from a remote page that uses https connection

4.2.2.2 Network Resources Access<access>

This is a key setting as it indicates the white-listed domains that can download re-

sources into the app, including Javascript code. The code from a white-listed domain

has the privilege to access device APIs and execute on the device just like the local

code. The developer may use one or more rules to white-list the domains. The library

adds a default rule of a “*” which restricts no domain. Developers may remove it

and specify domains according to the app needs.

We first report how many rules are found for this configuration item. Results of

65

0
50
0

10
00

15
00

20
00

access rule index

N
um

be
r o

f a
pp

s
ha

vi
ng

 a
cc

es
s

ru
le

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Figure 18: Access Rules Usage

66

scanning the data set indicate that most apps (96%) use 1 to 5 rules (see Figure.

18). A maximum number of rules per app reached up to 29 access rules.

In terms of rules’ values, we categorize them into system provided settings that

are suggested by the platform and custom settings that developers set depending on

the app specific access needs. Figure. 19 demonstrates the percentages of apps using

default values provided by the platform. The value “*” has the highest percentage

of occurrences as 67% of the apps include this value. This means that almost 1342

apps are configured to accept downloads from any server. Localhost value which is

found in 37% indicates that the app can accept accesses from local files. This low

percentage can be attributed to the fact that setting the access to “*” implies that

it can download from itself so developers may not need to add it. Values such as

"tel:/*" and "http:/*//*" are found because in versions before 5.0.0, the items

allow-navigation and allow-inent were not added yet. Hence, <access> was the

only configuration item related to domain white-listing regarding network resource

access, intents, and navigation. Other values that are related to intents and naviga-

tion are found in less than 5%.

Developers may also use specific domains which is a recommended practice by

the library. Yet, as it is demonstrated in Figure 20, custom URLs are found in

less than 5% of the apps. We categorize URLs based on their purpose. Social me-

dia URLs such as Facebook, Twitter, and Youtube are found in 3.4% of the apps.

Next, Google APIs, such as “*.googleapis.com”, “http://google-analytics.com”, and

“https://play.google.com/store/apps/*”, are found in 2.4%. We have also found that

almost 25 apps (1.1%) white-liste the Gstatic domain which can be explained be-

67

*

localhost

geo:*

mailto:*

market:*

tel:*

sms:*

http://*/

https://*/

Percentage

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 19: Network Resource Access: Platform Provided Settings

cause it is needed for TalkBack function [5]. On the other hand, this URL is con-

sidered by experts [10][6] a malicious URL that works in a way very similar to an

Adware. Others [12] indicate that this domain is for tracking page loads on cer-

tain sites. Moreover, we have identified several URLs (“https://*.netspend.com”,

“https://*.mycontrolcard.com”, “”https://*.wuprepaid.com”, “https://*.acebusinessselectcard.com”,

“https://*.paypal-prepaid.com”) related to online payment/banking in 0.8%. Ad-

ditionally, spying URLs (“https://*.spykemobile.net”, “https://*.iesnare.com”) are

found in 0.5%. Finally, we identify military and government domains in 0.2% of the

apps.

4.2.2.3 Domain White-listing for Intents <allow-intent>

Starting from version 5.0.0, this configuration item is added to control the app

inter-process communication between the app itself and other apps and also what

data can be passed. We have found that only 15% of the apps contained settings

68

Google

Social Media

Payment

Government

Spying

Gstatic

Percentage0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Figure 20: Network Resource Access: Custom Settings

P
er
ce
nt
ag
e

0.0

0.1

0.2

0.3

0.4

0.5

39%
35%

13%

4% 3%

ge
o:
* *

m
ar
ke
t:*

ht
tp
s:
//*
/*

m
ai
lto
:*

Figure 21: Intents White-list Settings

69

P
er
ce
nt
ag
e

0.0

0.2

0.4

0.6

0.8 77%

6%
3% 3%

*

da
ta
:*

ht
tp
://
*/

ht
tp
s:
//*
/*

Figure 22: Navigation White-list Settings

related to intents’ white-listing. For that set, we demonstrate the configuration values

distribution in Figure. 21. We can see that among those apps, 39% white-list “geo:*”

which offers maps service, followed by 35% using “*” which allows interaction with

all apps. The intent that white-lists Google play (“market:*”) is found in 13%. Then,

the rest of the values are found in less than 5%.

4.2.2.4 URL Navigation <allow-navigation>

We have found that only 10% of the apps contain navigation white-listing settings.

In that set we scan the settings and demonstrate the distribution in Figure. 22. For

this configuration item, there are no default configurations. This means that any

added configuration is added by the developer. The value “*” is found in 77% of the

70

apps which allows navigation to any protocol/ domain. This might explain the low

percentages of all other values ,such as “http:/*//*”, “https:/*//*” and “data:/*//*”,

since the value “*” includes them all.

4.2.2.5 Plugins Usage <feature/plugin>

We scan plugin configuration tags and divide them into core and custom. It is im-

portant to highlight that plugin declaration in the configurations does not necessarily

mean their usage. The plugin tag may exist because it is added by default, which

may explain the high percentages of default core plugins usage as depicted in Figure.

23. This also explains why 88% of the apps use core plugins.

On the other side, 80% of the apps use custom plugins in addition to the core ones.

We scan and classify custom plugins based on their purpose. Figure. 24 shows custom

plugins usage percentages. Plugins related to accessing device features are found in

79% of the apps. Examples of device related plugins are bar-code scanners, location

based, and SMS plugins. Application APIs mostly related to web browsing are found

in 26%. Video related APIs such as video players are found in 25% of the apps.

We also identify several encryption APIs (Crypto, i4crypt ,and cryptUtil) in 7% of

the apps. Application user interface interaction APIs such as push notifications and

progress dialogues are found in 6%. Same percentage for social media APIs such as

Facebook, Twitter, and social sharing. Advertisement APIs and screen image APIs

are detected in almost the same percentage (1%).

71

P
er
ce
nt
ag
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

96%
93%

95% 94%

84%

94%

83%

27%

92% 92% 92% 92% 91%
94% 93% 92%

85%

A
pp

G
eo
lo
ca
tio
n

D
ev
ic
e

Fi
le

N
et
w
or
kS
ta
tu
s

S
to
ra
ge

S
pl
as
hS
cr
ee
n

In
A
pp
B
ro
w
se
r

A
cc
el
er
om
et
er

C
om
pa
ss

M
ed
ia

C
am
er
a

C
on
ta
ct
s

N
ot
ifi
ca
tio
n

Fi
le
Tr
an
sf
er
e

C
ap
tu
re

B
at
te
ry

Figure 23: Core Plugins APIs

72

P
er
ce
nt
ag
e

0.
0

0.
2

0.
4

0.
6

0.
8 79%

26%

6%

0.6%

7% 6%

1%

25%

D
ev

ic
e

A
P

I

A
pp

 A
P

I

A
pp

 U
I

P
ur
ch
as
e

E
nc
ry
pt
io
n

S
oc

ia
l M

ed
ia

Im
ag
e/
S
cr
ee
n

V
ed
io

Figure 24: Custom Plugins APIs

73

4.2.2.6 Native Permissions

In a hybrid app, using a plugin may require one or more platform permissions on the

native side. For instance, using the CAMERA plugin on an Andoird app requires the

app to use the permissin “android.permission.CAMERA”. Including a plugin in the

configuration without using the proper corresponding native permissions shall void

any call to that plugin because the native platform won’t be able to fulfill the request.

Permissions in Android is a security mechanism by which the platform protects access

to sensitive device data and sensors. Developers need to include proper permissions to

use certain functionalities. In addition to platform defined permissions, a developer

may define her own custom permissions to control access to a component from other

apps .

Android permissions are divided into several protection levels. The two most com-

mon levels are normal and dangerous permissions. Normal permissions are used to

grant access to data or resources outside the app’s sandbox, but where there’s very

little risk to the user’s privacy or the operation of other apps. However, dangerous

permissions grant access to data or resources that involve the user’s private informa-

tion, or could potentially affect the user’s stored data or the operation of other apps

[1].

We are particularly interested to scan the permissions used to see if there exists a

particular set of permissions that are often used. We are also interested to check

if these native permissions are the required permissions for the default plugins. To

extract native permissions we scan the file AndroidManifest.xml file. We have found

74

INTERNET
ACCESS_NETWORK_STATE
ACCESS_FINE_LOCATION

ACCESS_COARSE_LOCATION
WRITE_EXTERNAL_STORAGE

READ_PHONE_STATE
GET_ACCOUNTS

ACCESS_LOCATION_EXTRA_COMMANDS
WAKE_LOCK

CAMERA
VIBRATE

RECORD_AUDIO
MODIFY_AUDIO_SETTINGS

BROADCAST_STICKY
RECEIVE_BOOT_COMPLETED

READ_CONTACTS
WRITE_CONTACTS
RECORD_VEDIO

ACCESS_WIFI_STATE

Percentage

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Dangerous Permission
Normal Permission

None-Core Permission
Deprecated Permission

Figure 25: Platform Native Permissions Usage

that 90% of the permissions used are standard Android permissions. The 10% are

developer’s customized permissions to use third party services such as google cloud

messaging and In-app billing.

For the standard permissions, we show in Figure. 25 the top permissions that

are color coded based on the protection level. Blue bars represent normal permis-

sions while red ones represent dangerous permissions. Solid bars are for permissions

needed for core plugins, while striped ones are permissions needed for other purposes.

The permission to use INTERNET is used in almost all the apps. Then comes a

set of dangerous permissions. Examples include those related to accessing location

such as ACCESS FINE LOCATION and ACCESS COARSE LOCTION. Also the

WRITE EXTERNAL STORAGE permission that is needed to save data in the de-

75

vice, the permission READ PHONE STATE that allows read only access to phone

state, including the phone number of the device, current cellular network information,

the status of any ongoing calls, and a list of any Phone Accounts registered on the

device.

While most permissions are those needed to use the core cordova plugins, we found

that there are two permissions; WAKE LOCK (32%) and RECEIVE BOOT

-COMPLETED (15%) that are not needed for the core plugins, yet they are among

the top used permissions. Both are normal permissions. The first one allows using

PowerManager WakeLocks to keep the processor from sleeping or the screen from

dimming. The second one allows an application to receive the broadcast after the

system finishes booting [2].

We also found that the permission RECORD VEDIO that exist in 10% of the apps

does not actually exist on the Android permission list. Its’ existence is probably due

to being a default permission added by the library in previous versions.

Regarding custom permissions, we have found that the most used permission is the

“com.google.android.c2dm.permission.RECEIVE” which is used in 36%. This per-

mission is needed to use Google’s cloud messaging service. Next permission is the

in-app billing permission “com.android.vending.BILLING” which is used in 2%.

It is observed that the permissions that are added by default are found in high per-

centages (average of 91%). This also supports the reflection that developers tend not

to change the default settings. This is also an indication that these granted permis-

sions exist not because they are necessarily needed, rather because they are simply

added by default. This also indicates an issue of permission misuse and violating the

76

No CSP 75%

CSP 15%

Empty CSP 1%

Commented out CSP 10%

Figure 26: Content Security Policy Usage

Least-Privilege principle.

4.2.2.7 Content Security Policy

Unlike previous configuration items, CSP is not set in the config.xml file. It is

set in the html pages. The purpose of setting CSP per page is to control content

download. We scan the index page and extract CSP meta tags- if any. Results

depicted in Figure. 26 show that the majority (75%) did not contain any CSP.

Morever, 10% of the apps contained a commented out CSP. These are probably the

default generated CSP tags but for some reason, developers decided to comment them

out. We also identified empty CSP rules in 1% of the apps. This leaves only 15% of

the apps having an active CSP. This means that 85% of the apps have no effective

CSP enforcement. Thus, no control of content download on a page level which means

that these apps are vulnerable to injection attacks. To inspect the way policies are

77

Table 5: Policies Break Down

Policy Directive Policies Values

* unsafe-inline unsafe-eval self only URLs

default-src 79% 65% 70% 2% 2%
script-src 63% 59% 1% 11% 0%
style-src 5% 27% 0% 24% 0%
img-src 6% 1% 0% 2% 1%

media-src 9% 0% 0% 0% 0%
frame-src 1% 0% 0% 0% 0%

specified in the 15% of the apps (178 policy), we break down the policies and report

results in Table 5. Each percentage is the number of occurrences of the policy

found for the corresponding policy directive divided by the total number of policies

(178). For instance, 79% of the policies allow content download from any domain.

Considering the way policies are set, we argue that developers are using liberal values

in setting their policies. Having * as the most commonly used value rather than

specifying URLs is an example. Moreover, allowing unsafe-inline and unsafe-eval

enables malicious code execution. Strict policies such as using ’self’ or specifying

URLs are the least used. A combination of * as a source of script download, allowing

unsafe-inline or unsafe-eval voids the whole purpose of having CSP. This combination

is found in 62% of the policies.

4.3 Cordova Common Vulnerabilities (CVEs)

The Cordova community has been evolving rapidly. CVE Details [27] have ded-

icated a page for Cordova-Specifc common vulnerabilities and exposures[28]. Table

6 shows the CVEs discovered up to the time of the writing. Most of the Cordova

vulnerabilities are Bypassing either URL or device-resource access.

78

Table 6: Cordova Security Vulnerabilities[28]

CVE ID Type Publish Date Version Platform

CVE-2015-8320 Bridge Hijacking attack 2015-11-23 5.0 Android
CVE-2015-5256 Whitelist Bypass 2015-11-23 4.3 Android
CVE-2015-5208 Whitelist Bypass 2016-05-09 4.3 iOS
CVE-2015-5207 Whitelist Bypass 2016-05-09 4.3 iOS
CVE-2014-3502 Send data to apps 2014-11-15 7.5 All
CVE-2014-3501 Whitelist Bypass 2014-11-15 4.3 Android
CVE-2014-3500 Change the start page 2014-11-15 4.3 Android
CVE-2014-1884 Device-Resource Bypass 2014-03-02 6.4 Windows

Phone 7&8
CVE-2014-1882 Access Bridge 2014-03-02 7.5 All
CVE-2014-1881 Device-ResourceBypass 2014-03-02 7.5 All
CVE-2012-6637 Whitelist Bypass 2014-03-03 7.5 All

CVE-2015-8320 Apache Cordova-Android before 3.7.0 improperly generates ran-

dom values for BridgeSecret data, which makes it easier for attackers to conduct

bridge hijacking attacks by predicting a value.

CVE-2015-5256 Apache Cordova-Android before 4.1.0, when an application relies

on a remote server, improperly implements a JavaScript whitelist protection mecha-

nism, which allows attackers to bypass intended access restrictions via a crafted URI.

CVE-2015-5208 Apache Cordova iOS before 4.0.0 allows remote attackers to exe-

cute arbitrary plugins via a link.

CVE-2015-5207 Apache Cordova iOS before 4.0.0 might allow attackers to bypass

a URL whitelist protection mechanism in an app and load arbitrary resources by

leveraging unspecified methods.

CVE-2014-3502 Apache Cordova Android before 3.5.1 allows remote attackers to

open and send data to arbitrary applications via a URL with a crafted URI scheme

for an Android intent.

79

CVE-2014-3501 Apache Cordova Android before 3.5.1 allows remote attackers to

bypass the HTTP whitelist and connect to arbitrary servers by using JavaScript to

open WebSocket connections through WebView.

CVE-2014-3500 Apache Cordova Android before 3.5.1 allows remote attackers to

change the start page via a crafted intent URL.

CVE-2014-1884 Apache Cordova 3.3.0 and earlier and Adobe PhoneGap 2.9.0 and

earlier on Windows Phone 7 and 8 do not properly restrict navigation events, which al-

lows remote attackers to bypass intended device-resource restrictions via content that

is accessed (1) in an IFRAME element or (2) with the XMLHttpRequest method by

a crafted application.

CVE-2014-1882 Apache Cordova 3.3.0 and earlier and Adobe PhoneGap 2.9.0 and

earlier allow remote attackers to bypass intended device-resource restrictions of an

event-based bridge via a crafted library clone that leverages IFRAME script exe-

cution and directly accesses bridge JavaScript objects, as demonstrated by certain

cordova.require calls.

CVE-2014-1881 Apache Cordova 3.3.0 and earlier and Adobe PhoneGap 2.9.0 and

earlier allow remote attackers to bypass intended device-resource restrictions of an

event-based bridge via a crafted library clone that leverages IFRAME script execu-

tion and waits a certain amount of time for an OnJsPrompt handler return value as

an alternative to correct synchronization.

CVE-2012-6637 Apache Cordova 3.3.0 and earlier and Adobe PhoneGap 2.9.0 and

earlier do not anchor the end of domain-name regular expressions, which allows re-

mote attackers to bypass a whitelist protection mechanism via a domain name that

80

contains an acceptable name as an initial substring.

CHAPTER 5: SECURING HYBRID APPS THROUGH THE APP
CONFIGURATIONS

In the previous section we have demonstrated how the current configuration scheme

of the library suffers security limitations that can compromise apps’ security, espe-

cially if the developer does not change default configurations values. In this section, we

demonstrate two methodologies we have developed to have more aligned and coarse-

grained configuration model. Both approaches propose a finer-grained configuration

scheme and suggest more aligned setting values.

5.1 Page Level Configuration Model

The Cordova access policy allows the developer to specify the list of whitelisted

domains and the set of plugins (features) to be included in the app. This model

specifies a global policy to be adopted for the whole app, if the app has multiple pages

then all the pages have the same access to all the plugins included in the app. This

approach does not ensure the principle of least privilege [60] since extra permissions

and access to plugins is granted to loaded pages that do not require such accesses.

Figure 27(a) shows our running example Map your Friends app which is composed

of three pages index.html, contacts.html, and geo.html. The index.html page

displays the application loading screen, it does not require any permissions/ plugin.

The contacts.html page displays the user’s contacts stored on the mobile device

which requires permissions to access the contacts. The geo.html displays the user’s

82

index.html contacts.html geo.html

Welcome to the
Map Your Contacts

App

Review Contacts

Map Contacts

Albert Brown

Adam Sandler

Anna Smith

Anna Long

Bob Harris

All the app pages have access to Contacts and Geolocation

(a) Current Cordova plugin access Model

index.html contacts.html geo.html

Welcome to the
Map Your Contacts

App

Review Contacts

Map Contacts

Albert Brown

Adam Sandler

Anna Smith

Anna Long

Bob Harris

None Contacts Contacts and
Geolocation

(b) Proposed Least Privilege Approach

Figure 27: Example Multi-Page App and Access Models

83

location on a map and allows users to map their friends living near their current

location which requires access to the contacts and location services. The current

Cordova policy will grant the three pages index.html, contacts.html and geo.html

access to the contacts and location services which doesn’t obey the principle of least

privilege.

We propose a framework that enables developers to build and enforce page-based

plugin access policies by slightly modifying the Cordova library. Figure 27 shows

the proposed approach when applied to the Map your Friends example app, where

the index.html is granted no plugin access, the contacts.html is given access to

some functions in the contacts plugin and the geo.html page is granted access to

some functions in the contacts and geolocation plugins. In order to implement the

proposed framework in the context of a cordova-based app, we let the app go through

two stages; “build” which means that the access policy table is being composed; this

phase is meant to be while the app is either under the development or in the testing

phase, “enforce” which means any access to a plugin should conform with the policy

table; this phase is meant to be when the app is to be released to the market. To do

this we add one element -<policy />- to the config.xml, see figure 28. To design

the model, these questions should be answered:

1. How to build a plugin access policy?

2. Where to store the proposed policy rules?

3. Where should the reference monitor be implemented?

To address the first and the second challenge, we monitor app plugin access behavior

84

<widget id="com.phonegap.helloworld" version="1.0.0">
 <name>Hello Cordova</name>
 <description>A sample Apache Cordova app</description>
 <access origin="*" />
 <content src="index.html" />
 <author email="aaljarra@uncc.edu" href="http://liisp.uncc.edu">
 PhoneGap Team
 </author>
 <feature name="App">
 <param name="android-package" value="org.apache.cordova.App" />
 </feature>
 <feature name="Contacts">
 <param name="android-package"
 value="org.apache.cordova.contacts" />
 </feature>
 <feature name="Geolocation">
 <param name="android-package"
 value="org.apache.cordova.geolocation.GeoBroker" />
 </feature>
 <policy stage= "build" />
 </widget>

Figure 28: Policy stage in config file

in terms of page, plugin and action requested while the app is in the “build” stage.

As demonstrated in figure 29(a), in this stage, any plugin access done during the

development and the testing phase is considered a valid plugin rule, as a result, it is

automatically recorded, hashed and added to the database as an access policy record.

This saves the developer specifying any rules manually, since the assumption here,

is that through app development and testing most if not all possible plugin calls are

covered as a normal testing procedure.These rules are hashed and then saved in a

SQLite data base. Once the app is released to the market -shipped with the database

that has the access policies-, the enforce flag is set which means stop writing on

the database and enable authenticating every plugin access request against the saved

policies, see figure 29(b). The change is transparent to the developer since it doesn’t

85

require the developer to do any extra step regarding setting or enforcing policies.

The access control model follows the closed world assumption, where if access is not

geo.html
Apache Cordova Library

SQLite DB

1. call plugin

2. extract :
• page name
• plugin name
• function name

3. Hash values
4. Insert values

(a) Build Stage

geo.html
Apache Cordova Library

SQLite DB

1. call plugin
2. extract :
• page name
• plugin name
• function name

3. Hash tuple

4.Check

5. return result

(b) Enforce Stage

Figure 29: Build/Enforce Policy

explicitly specified then it is assumed it is not granted.

We updated the PluginManager plugin mapping logic to accommodate the plugin

access rule and to grant access only to the pages specified in the policy stored in

the database. When the PluginManager receives a plugin execution request, it re-

trieves the address of the currently loaded page by executing the WebView’s getUrl()

method and the Action requested from the plugin. Then it checks if the stored policy

database contains a rule that grants the requested function from the plugin to the

currently requested page. If access is allowed, then the PluginManager forwards the

request to the corresponding plugin, else it will not forward the request and will gen-

86

erate a PluginResult that includes an illegal access permission message, which will

throw an exception in the JavaScript.

if(onCreate(checkPluginRule(service, action, currentPage))){
//send request to selected plugin

} else {
Status status = PluginResult.Status.ILLEGAL_ACCESS_EXCEPTION;
PluginResult cr = new PluginResult(status);
app.sendPluginResult(cr, callbackId);
return true;

}

Figure 30: Proposed PluginManager Rule Check

Figure 30 shows the reference monitor code inserted in the PluginManager execute

method.

5.2 Behavior-Based Configuration Model

Configuring any application requires a profound understanding of its behavior.

Static and dynamic code analysis approaches combined provide a comprehensive

methodology of modeling not only application behavior but also other details such

as data flow and control flows. Static analysis of cordova-based apps has been done

in previous research [19]. While this approach may provide an accurate call graph

with respect to static behavior in terms of cross-language calls, dynamic app features

may not be present in this analysis. Mobile Hybrid Apps are dynamic by nature.

Changing app logic, especially through remote Javascript calls is reasonable. More-

over, API calls using obfuscated code may not be captured as well. Hence, we present

a dynamic behavior modeling.

Our proposed approach captures (state,plugin) access rules by monitoring the app

87

Welcome to the
Map Your Contacts

App

Review Contacts

Map Contacts

(a) Monitor Stage

Logs
Rules

(b) Generate Stage

Welcome to the
Map Your Contacts

App

Review Contacts

Map Contacts

(c) Enforce Stage

Figure 31: Three-Stage Behavior Policy

behavior while running in a controlled environment. It also captures the states tran-

sitions sequence and then generates a policy to control app states transitions. To

implement these changes we have changed the internal implementation of the library.

Code changes mainly applies to three classes: PluginManager, CordovaWebview, and

CordovaActivity. The addition of code does not exceed 300 LOC. We have pub-

lished the modified version of the library on Github 3. Our ultimate goal is to control

malicious code’s impact on the device and the app using more aligned and fine-grained

configurations. We have chosen to monitor behavior in the stage of testing for two

main reasons:

• We can control code coverage by using extensive testing scenarios that cover all

API calls. Recommended App Testing practices require testers to go through

3https://github.com/aaljarra/ModifiedCordova.git

88

all functional scenarios of the app, covering every possible functionality needed

to be implemented. Thus, monitoring app behavior at this stage provides rich

information about how the app should perform.

• Using an existing stage to monitor the app behavior comes incongruent with

our goal of keeping the process as seamless as possible to the developer. Also,

to support addressing potential vulnerabilities as early as the development and

testing stage.

Our approach is focused on protecting the app against attacks that change the app

behavior, aiming to abuse the library implementation through accessing device fea-

tures or tampering app behavior. If this malicious behavior is detected, then the code

will be prevented from execution by setting configuration that defines app healthy

behavior.

According to the attack examples mentioned earlier in subsection 2.4, plugins ac-

cess and app behavior are listed to be potential targets; thus, we have modeled app

behavior in two directions, plugin access and state transition as it is explained in the

next two sections.

5.2.1 Plugin Access Policy

Our approach enables capturing app behavior and then enforcing access rules

elicited from the behavior of the app. The approach is a three-stage solution. The

app should go through the Monitor stage, Generate stage and then Enforce stage as

shown in Figure. 31. We extend the config.xml file to enable the management of

tracking these stages by including a “stage” element. The Cordova library contains

89

a function called exec, which serves as a central hub for plugin access. No plugin

can be accessed without being passed to this function. Hence, we add our reference

monitor logic in the exec function.

Algorithm 1 Plugin exec() Algorithm

1: procedure exec()

2: currentStage = extract stage from config.xml
3: if currentStage is ”monitor” then
4: execute plugin
5: call monitor(plugin name, current page state)
6: else satisfyRules = call enforce(plugin,current page state)
7: if satisfyRules = true then
8: execute plugin
9: else

10: cancel plugin call
11: notify user
12: end if
13: end if
14: end procedure

Hence, we added our reference monitor logic in the exec function. Algorithm 1

explains how the current stage of the app determines how to deal with a plugin call.

Monitor Stage: Occurs when the app is running in a controlled environment,

namely, while in development and testing. Any access request to native plugins

is monitored and associated with the app’s current state. Here, “State” refers to the

URL parts that include protocol, domain, subdomain path, fragment, and parame-

ters. This stage also captures the operation requested. The current state of the app

could end with a page name or a hashbang. Hashbang is anything after “#” tag in

the URL which can be either #/action or #action[68]. For either single or multi page

apps, all the URL parts are used to denote a state of the app. As described earlier,

each CordovaActivity contains a CordovaWebview that extends the Webview class.

90

We extract the current state by calling the Webview instance’s getUrl() method.

The information extracted are saved as Logs in a database.

Generate Stage This is an intermediate stage that is necessary to generate a

behavior-based policy for the app. It is meant to be when the developer is done

with development/testing and decides to release the app to the market. This stage

is done once, when the app stage in config.xml is changed from the Monitor to

Enforce. This change triggers the process of reading logs that were previously saved

during the Monitor stage to extract a fine-grained policy that represents the app be-

havior in terms of state-plugin rules. Processing the logs passes through the following

steps:

I Build Call Map: This step reads all plugin access instances and groups them by

plugin. As a result, a map of plugin, and a set of URLs are generated. This map

(callMap) helps construct access rules per plugin in the second step.

II Build Call Tree: This stage is essential to group all app URLs into states through

a syntax tree that represents all captured URLs of a specific plugin. For each

plugin a syntax tree (PluginCallTree) is generated to represent the states such

that it can be traversed later to generate a set of expressions that can be used

for enforcement. The pair (plugin,PluginCallTree) is saved into another map

callTreeMap (see algorithm 2).

III Extract Patterns: This step traverses the callTreeMap to extract regular ex-

pressions for every plugin. The list of regular expressions will be used to form

the access policy used by the third stage enforce().

91

root

index.html empDetails.html

#

/

\\d+

/

ChangePhoto

\\d+

employee

Figure 32: Abstraction of Syntax Tree Representing States

A simple heuristic function is implemented for step II that is responsible for identifying

app states. For multi-page apps, URLs can be used as is to serve as identifiers for

the app states. In single-page apps (SPA) however, URL fragments are considered.

Generally, SPA URLs follow the following scheme:

#[/]action[[/index]*[/action]*]*

Where action is an alphanumeric word that normally describes a function. The index

is either a digit or character that is used to identify an instance of data. For example,

if a plugin can have these URLs captured: index.html, #/employee/5/, #/employ-

ee/10/, #/employee/6/, #/employee/12/ChangePhoto and empDetails.html. The

syntax tree that will be generated to represent all states modeled by the tree on the

left in Figure 32. To minimize the tree size and to avoid the need of representing every

92

single possible value of an index, the heuristic function combines and abstracts nodes

that represent indexes accessing the same plugin. If the heuristic found repeated

nodes (more than a specific threshold) that differ only in the index, then it infers

that there is a pattern of calling the plugin. To represent the pattern, the nodes that

represent indexes are replaced with a generic expression that represents the proper-

ties of the repeated indexes. Our implementation uses Java; so we used Java regular

expressions to represent states. Indexes in number or character are replaced by “d+”

or “w” so that when the states are traversed back, we get Java regular expressions

to represent integer-indexed view state; for example, “#/employee/d+” represents

parameterized view state #/employee in this scenario. The left tree in Figure 32

shows the resulted tree if the threshold is set to 3. Similar URLs are grouped as an

expression. Extracted expressions can be used in the policy to validate subjects.

Algorithm 2 Build Call Syntax Tree Algorithm

1: procedure BuildCallTreeMap()

2: initialize Tree callT reeMap
3: for each pluginKey in callMap do
4: key = pluginKey
5: initialize Tree pluginCallTree
6: add root to pluginCallTree
7: currentParent = root
8: for all StateURL in callMap of pluginKey do
9: if StateURL contains “#” then

10: add child “#” child to parent currentParent
11: end if
12: tokenize StateURL by “/” into tokens
13: add child tokens to currentParent
14: update currentParent
15: end for
16: put into callT reeMap pair (key,pluginCallTree)
17: end for
18: end procedure

93

For instance, if a plugin has these URLs captured: index.html, #/employee/5/,

#/employee/11/, #/employee/2/ChangePhoto and empDetails.html. The syntax

tree that will be generated to represent all states looks like the tree in Figure. 32.

Similar URLs are grouped as an expression. The grouping decision is made based

on the number of observed states that shares the same tokens except for a token

that is either a number or a character, in that case, the token is replaced by the

proper regular expression that represents the type of the token. Based on scanning

the single-page based apps in our pool, we noticed that the hashbangs used follows

this syntax:

(#|#/)A/ + [/A] ∗ [/P] ∗ [/A]∗

Where A is for “action” which is an alphanumeric word and P is for “parameter”

which is either a digit or a character. This syntax helped to found the approach that

we have used to model the syntax of app states.

Enforce Stage This stage is meant to be when the app is released to the market.

A fine-grained policy on the state level is generated based on the behavior that has

been captured. Figure. (33(a)) shows a sample policy that can be mapped to a sim-

ple Access Control Rule syntax composed of subject:(who can access), object:(what

resources to be accessed) and rights:(what operations are allowed). In this case,

subjects are the “states” generated and objects are the plugins. The policy is repre-

sented by a parameter attached to each plugin declaration in the configuration file.

Plugins without any state parameter cannot be accessed through any state of the

app. Plugins added by default or by mistake, but are not actually needed in the app

94

<feature name="Storage" >
 <param name="android-package" value=".." />
</feature>
<feature name="Camera">
 <param name="android-package" value=".." />
 <param name="state" value="#/employee/\\d+" />
</feature>
<feature name="Contacts">
 <param name="android-package" value=".." />
 <param name="state" value="#/employee/\\d+" />
 <param name="state" value="empDetail.html" />
</feature>

(a) Policy Rules in config.xml

(b) Invalid Plugin Access

Figure 33: Plugin Access Policy

95

will have no state to be accessed from which will void the effect of including them.

However, plugins that have a parameter attached to it will be executed in the states

that conform to the value(s) indicated. For instance, in Figure (33) the Camera plu-

gin is only allowed to be accessed in a URL that conforms to the regular expression

“#/employee/d+” where the Contacts plugin can be also accessed from another page

“empDetail.html”. Storage, on the other hand, cannot be accessed at all because it

has not been captured by the reference monitor. Figure. (33(b)) shows how the app

will react to an invalid call to a plugin according to the app policy. This is a home

page where no plugin access is supposed to happen. We have injected a malicious

script that tries to access the camera when on document load. However, Camera

access is not associated with this state of the app; thus, it will not be executed and

a Toast message is displayed to the user. The instrumented library generates this

policy and updates the config.xml file of the app. The function enforce() that is

added in the exec() function will use these rules to verify access after decrypting the

state values using an assigned private key. If the access request complies with any

rule, access is granted; otherwise, a PluginException is raised and user notification

of an invalid access appears.

5.2.2 Behavior State Modeling

We propose an approach that enforces controlling transitions between different app

screens based on the app behavior. The essence of the approach is very similar to the

previous section in terms of monitoring app state transitions, creating a policy and

then enforcing behavior to prevent any potential app logic manipulation. A behavior

96

is also defined by app interactions with other apps, such as Dialer, Messaging, and

Maps. It is possible to call other apps the same way a link to a web page is called

through using <a href> tag. For example call

this number, enables the user to open the Dialer and pass a specific number

when the link is clicked.

Similar to the process of app behavior elicitation approach discussed earlier, this is

also a three-stage solution. The app should go through Monitor stage, Generate

stage, then Enforce stage.

Monitor Stage: At this stage, any URL load change, DOM view transition, or

external app call are monitored and saved. For single page DOM management, we

extended the “router” function on JS side to extract current window.location value

and log it. This log is handled in the native class SystemWebChromeClient where the

URL is then saved to a database (DB) through the native side.

URL transitions to another page can happen either by navigating to another domain

or loading the URL into the CordovaWebView. Capturing this transition can be done

by monitoring PluginManager.exec() for the plugin InAppBrowser. We also moni-

tor information such as URL and target host (i.e. WebView or System Browser).

The app calls to other apps through crafted URIs starting with tel: or SMS,for ex-

ample, are monitored by adding a reference monitor in class SystemWebViewClient,

specifically in the method shouldOverrideUrlLoading which gets triggered when-

ever a URL load happens.

Generate Stage This intermediate stage is necessary to generate an XML represen-

tation of the state machine notation for control abstraction. The DB contains logs of

97

URLs and page transitions in the sequence they were called. Then XML is generated

to dictate the states the app have passed by.

As for external apps, no policy is required. Instead, it is enough to generate naviga-

tions whitelisting only for those apps captured during the monitor stage. Figure. (34)

shows a sample state-policy generated by our sample app. The representation follows

<urlstate id='login' value='login.html' type=start
location=local>
 <redirect id='index'>
 <redirect id='contact'>
</urlstate>
<urlstate id='index' value='index.html'
location=local>
 <redirect id='index'>
 <redirect id='login'>
 <redirect id='employeeview'>
</urlstate>
<urlstate id='employeeview' value='#employee/d+'
location=local>
 <redirect id='employeeview'>
 <redirect id='index'>
</urlstate>
<urlstate id='contact' value='https://www.abc.com/
contactus' location=external>
 <redirect id='index'>
</urlstate>

(a) App state machine XML representation

login

index

employee/d+

contact

(b) App state diagram

Figure 34: App State Configurations

State Chart XML (SCXML) standard for representing the app control flow[69]. At

this point, the implementation captures the state signified by <urlstate>. It also

98

captures 3 other features:

• If it is a start state, represented by the value of type attribute.

• If it is an external or local URL state, represented by the value of location

attribute

• All the redirects (transitions) from the state to other states.

Developers need to copy this into their config.xml to be used for the Enforce() stage.

Enforce Stage A call graph is built based on the state machine configuration found in

config.xml. Based on the example shown in Figure. (34(a)). A transition from one

state to another is allowed only if the next state already exists as a destination from

the current state, otherwise, the app cancels redirection. Our Java implementation

of this graph is done using a HashMap of states and each state has an ArrayList to

hold the adjacency list to other states for the corresponding state. Any URL change

will require either InAppBrowser to be called or onhashchange to be triggered; thus,

we added the check in two places. For URL loading using the plugin InAppBrowser,

we added the check in the PluginManager.exec() which is as it has been already

mentioned, a central hub for all plugin calls. For internal DOM routing, we have

developed a Cordova API to handle redirects (Redirectlist). This plugin is very

similar to Cordova’s built-in Whitelist plugin. The API parses the config.xml to

create a HashMap to use for checking. We use the trigger window.onhashchange()

to check change in state for SPAs as shown in Figure. (35). To control the app

interaction with external entities, the approach includes the navigation whitelisting

settings. For example, the last two lines of configurations shown in Figure (34(a))

99

1 <script>
2 var oldHash = window.location.hash //global variable
3 $(window).on('hashchange', $.proxy(this.checkRoute, this));
4 checkRoute: function() {
5 var hash = window.location.hash;
6 var states = [oldHash, hash];
7 if(navigator.Redirectlist.checkTransition(states,
8 route(hash), route("error"));
9 oldHash = hash ;
10 }
11</script>

Figure 35: Check Redirection

includes only the Dialer and Browser to specific URL, instead of including all built-in

apps and all URL (see Table 2).

5.2.3 Performance Analysis

Performance overhead has been associated with dynamic code analysis as a dis-

advantage.This section describes performance measurements of different aspects of

the proposed instrumented library compared to the stock version of Cordova library

(version 6.x). We have used a device with the following specifications: Model Moto

G (2nd Generation), Android version 5.0.2, Internal Storage 5.5 GB.

I. Enforce Time vs App Size The purpose of this test is to measure the scalabil-

ity factor of enforcing plugin access policy on a varying number of pages/states of a

hybrid app. For this test, we use one plugin (Compass) with 10 apps having 1 to 10

pages/states. We choose the Compass plugin because it is a plugin that requires a

sensor access and at the same time has a frequency option that we can use to enable

automatic frequent calls from the code. We have also chosen to test up to 10 pages

because the average ratio of page to app based on the apps pool [61] was 10 to 1.

100

Hence, we conducted a series of tests measuring the time of enforcing a plugin access

on 10 apps having 1 up to 10 pages/states. The time needed by checking the policy is

the time between a plugin request and the decision to grant or prevent plugin access.

This interval is measured for every single plugin access in every page/state and then

the readings are averaged, Figure. (36) shows that checking the policy varies between

0.4 to 0.58 milliseconds. The trend line shows that the time is linearly increasing

with a positive slope value of 0.021. Although the app size and policy check time

are positively proportional, the number of pages/states does not seem to be a strong

factor of increasing the time given the low slope value.

Figure 36: Enforce Time vs # States

II. Original vs Modified exec() Time with Plugin Type The purpose of this

test is to check the relative overhead added by enforcing a policy related to a specific

plugin and executing it compared to the time needed by the stock version. Another

aspect of this test is inspect how different plugin types perform in both cases.

101

Figure 37: exec() with Plugin Type

We include only “Enforce” because the “Monitor” stage is an instrumentation of

the regular app, where data are being collected and saved and it is done temporarily

while the app is being developed/tested. While the “Generate” stage is an interme-

diary stage where all the rules are generated once. “Enforce” is the stage of the app

when released to the market, hence, our performance testing focuses on comparing the

overhead of an app in the Enforce stage with an app using the stock library (version

6.x). As Figure. (37) indicates, a set of plugins selected that represent a variety of

plugin categories. Compass, Geolocation, and Vibration are plugins that access the

device sensors. While Contacts is a plugin that accesses the device contacts database

and finally the InAppBrowser which does not access any device specific feature but

is designed to host web content in a container other than the CordovaWebView. This

plugin also is used in our tool for controlling external URL loads. The experiment

shows that the time needed by the Modified exec() (with Enforce) relative to the

stock version varies between 3.6% for Vibration to 10.1% for InAppBrowser. The

type of the plugin does not seem to affect the relative overhead time.

102

III. Redirect Plugin Check Time As for internal DOM manipulation and URL

redirects, we have measured the time it takes a router function to decide the view

and render it in 2 cases, regular routing and routing after checking the RedirectList

plugin. Averaging the time of 100+ runs of both cases revealed the following: Routing

between views without checking takes only ≈ 10.8 microseconds while after checking

using RedirectList plugin takes ≈ 50.6 microseconds which can be attributed to

the roundabout time of messages between JS and Native side.

CHAPTER 6: CORDOVACONFIG: AUTOMATED TOOL FOR
CONFIGURING HYBRID APPS

We explained securing Hybrid Apps though a Behavior-Based configuration model.

Automated behavior modeling is essential to seamlessly assisting developers to con-

trol app behavior through aligned configurations. The number of developers involved

in the development of mobile apps reached 12 million in 2016, according to Evans

Data. This number is more than half of the total worldwide population of 21 million

developers. It is expected to exceed 14 million by 2020 [26]. With this massive shift

in demand of labor force toward mobile apps development, the need to support de-

velopers with tools to help build secure apps is essential.

The current distribution of the library suffers several security limitations related to its

configuration scheme. Mainly, having coarse-grained settings and risky default values.

Code injection attacks are the most prominent threat to hybrid apps [41]. Malicious

injected code can abuse the bridge provided by the library to access device native

resources (plugins) such as camera, geolocation, and contacts. Malicous code may

also target the app iteself as it can maliciously tamper the app logic by redirecting to

an unwanted page. Table 7 summarizes how improper configurations can maximize

damage resulting from code injections attacks. In their latest report of mobile top

10 risks, OWASP identified “Improper Platform Usage” as the number one risk in

mobile apps development. This includes misuse of a platform feature or failure to use

104

Table 7: Configurations Issues and impact on apps’ security

Configurations Issues Impact
Not having a proper CSP Enable malicious code to be triggered/ executed

Global plugins declaration
- Plugins can be accessed in all app pages/states
- Having unnecessary plugins (over-privileged)

Risky defaults
- Resource network access is set to ”*”
- Allow calling built-in apps such as SMS, TEL, Maps

platform security controls resulting in an easy exploitability and a severe impact [21].

Smartphone apps are not as trusted as web nor desktop applications. Research [23]

shows that users are more concerned about privacy on their smartphones than their

laptops and they are more apprehensive about performing privacy-sensitive and fi-

nancial tasks on their smartphones than their laptops. Improving smartphone apps

security and privacy cannot be achieved without involving the app developer in the

process.

The lack of application security skills, tools and methods are ranked as being one

of the top three challenges faced by developers to maintain apps’ security [39]. The

lack of skills, tools, and methods induces the need to provide training and increase

awareness among developers to help implement better development practices.

Coding derives a cognitive burden on developers, mobile apps’ development is no

exception. Productivity bottlenecks divert efforts to repairing errors rather than

learning to avoid them. Developers are constantly under severe time pressure; there-

fore, they seek the fastest ways to get the job done.

Integrated Development Environments (IDEs) and tools support have been playing a

vital role in helping developers avoid errors and improve productivity. Nonetheless,

certain types of logical errors resulting from poor coding practices such as misconfig-

105

uration and not following platform recommendations, are as harmful as other syntax

and semantic errors. This category of errors may cause security breaches. Previous

research [75] mentioned that there is a disconnect between developers’ conceptual

understanding of security and their attitudes regarding their personal responsibility

and practices for software security. Many developers regard configurations as non-

functional and not as important as the core function of the code, not to mention that

the impact of such flaws may not necessarily interfere with the program logic but

only surface in the course of security breaches.

In 2008, Phonegap or Cordova, the leading mobile hybrid platform, was introduced

to the community as a solution to several challenges facing the mobile development

industry such as market fragmentation and the high cost of development and training.

Hybrid mobile platforms can target several operating systems using the same code

base. The platform is supported with libraries that implement the bridge that enables

access device specific features using Javascript. Cordova Library is a middleware that

is a common component in many popular hybrid platforms such as PhoneGap, IBM

Worklight, App Builder, Sencha, Monaca, and Appery.io. This component is the real

enabler of connecting the two worlds (Web and Native) inside a hybrid app. Recent

statistics in Google Play show that hybrid apps constitute a 5.84% of the market

share. Some apps are able to attract a customer base of 10,000,000+ [15]. Business,

Medical, and Finance apps are at the top of the list of hybrid apps.

Adoption of the technology has faced some challenges due to the lack of tooling sup-

port [55]. Later, several platforms have invested not only in providing tooling support

but also in incorporating other technologies, such as cloud-based builds. Most of the

106

support is toward hard-core coding, debugging, and deployment. App configuration

support is not only a low priority but also suffers limitations such as risky default

settings and a basic XML based interface. The current platform adopts a command

line interface to interact with the app. The app configuration can be changed by

editing a text file (config.xml) that contains xml formatted settings.

In this work, we are proposing CordovaConfig. A web-based tool to help devel-

opers configure their apps securely based on the app behavior. The tool aims to

minimize the burden on the developer by providing generated configurations based

on what has been monitored. The tool does not only generate configuration set-

tings, but also plays an educational role by explaining each configuration setting

meaning and consequences. Educating developers on secure programming techniques

through the IDE proved to be effective means of raising awareness among developers

[73][58][74][79]. Generating configurations values based on observed app behavior is

essential to remove some burden from developers shoulders and help control app be-

havior at the same time.

We have developed CordovaConfig, an interactive web-based tool that allows in-

teraction with developers to configure hybrid apps. The tool is built on the top of

the instrumented cordova library mentioned in section 5. CordovaConfig walks

the developer in a wizard style where there are different stages of app configuration

to finally generate what the developer determines to be a valid behavior. Since the

tool”s feed of information about the monitored app behavior is based on dynamic

analysis, false negatives are presumed. Involving the developer is necessary not only

to eliminate false negatives but also to give the developer more control to tweak the

107

configurations in a simple way. The tool also presents an educational part at the be-

ginning where developers get explanations of the meaning of the configurations and

the impact of keeping the current values. The developer can download the configura-

tion file and use it instead of the default one. Figure 38 explains the tool work flow.

The tool directs the developer through several steps before generating configurations.

Start

Extract current
configuration

Display
meaning &
implications

Show Monitored
Behavior

Export Policy

Edit/Confirm
Behavior

Suggested
Configurations

Stop

Educational
App Behavior Synthesis

1

2

3

Figure 38: CordovaConfig Work Flow

108

6.1 Educational Goals

Educating users is a pillar of usable security. Thus, we have designed the tool

to help improve developers’ understanding of configuration items. The tool starts

with reading the current configurations in the config.xml file. Then, it generates

an explanation in terms of the meaning of each configuration item and the impact of

having these configuration values in the app. For instance, Figure 39 demonstrates

Figure 39: Explaining scanned configurations meaning/impact

a set of configurations (including resource network access and navigation whitelist)

configuration found in the config file and the corresponding meaning/impact of such

value. It also captures the android permissions found in the AndroidManifest file

and explains the consequences of using such permissions. There exist several parts

(pages) of this educational phase to go over all the configurations values.

The goal of this part is to raise awareness of cordova based apps’ configurations mean-

ing and their impact. Figures 54,55 and 56 in Appendix A show sample screenshots

109

of current configuration explanations.

6.2 App Behavior Synthesis Phase

6.2.0.1 App States

As explained in the previous section, the behavior-based model captures app states.

Each app state is associated with a set of plugin access(es). Each state is also captured

State Identifier

Plugins Access

Captured screenshots of current state

OS permissions needed

Figure 40: Plugin accesses and OS permissions captured per state

with a screenshot of the app when using the plugin. A list of plugins accessed, URLs

accessed, and the corresponding Android permissions needed to be granted for these

plugins are all captured per state, see Figure 40 . The developer has the option to:

add any plugin that has not been captured or delete any unnecessary access to a

plugin. The tool also enables the developer to define a new state. Figures 57 and 58

110

in Appendix A show sample app states captured.

6.2.0.2 App States Transitions

The tool captures the app state transitions and translates them into configurations

to control app flow against attacks trying to tamper the app control flow. The

captured states transition is displayed to the developer in the form of a state diagram

(see Figure 41. Approving it creates configurations in a State Chart XML (SCXML)

format that represents the app flow. A developer can change the configurations

Home Details

Figure 41: State Transition Example

generated to any other form she chooses to. Identifying app states and their transition

may help the developer better understand the app behavior and the new configuration

scheme suggested. Figure 59 shows a sample app transition diagram.

6.2.0.3 App interactions with external entities

Another important aspect of modeling the app behavior is to capture the app

interactions with external entities, such as:

• Other Applications (Intents in Android).

• Remote network resource access

• Navigation URLs within the app

111

Captured URLs of resource access

Captured External Apps Calls

Captured URL navigations

Figure 42: App interaction with external entities

Figure 42 shows a sample of the settings related to interactions with external entities.

A developer can also add/modify/delete any of these settings then confirm them.

6.3 Generating Configurations & Permissions

After the developer confirms the behavior, configurations are generated to align

with it. As shown in Figure 43, generated settings are comprised of three parts:

• Configurations to control plugins, URLs, Navigations and interactions with

other apps per state.

• Configuration for app state transition, which is a new configuration item added

by our tool to control app transitions.

112

• Android permissions per state, which can be added to the Android-Manifest.xml

file to control the native side of the app.

Our prototype implementation supports interactive environment for developers to

help further customize the configurations in case the observed behavior did not cap-

ture all required features.

Plugin/State

Remote Network Access

App State Transition

External Apps Interaction

OS permissions

Figure 43: Generated Configurations

CHAPTER 7: USER STUDY: HYBRID APPS DEVELOPERS PERCEPTIONS

The current CordovaConfig prototype is a proof-of-concept web-based tool for

generating configurations based on the observed behavior of an app. The goal of

this tool is to allow interaction between the developer and the tool to address an

important and often overlooked step, that is app configurations.

The main goal of the user study is to explore developers perception of the tool and

its value. A controlled repeated measure study is conducted to either prove or refute

the following hypotheses:

• H1: Using CordovaConfig changes developers’ mental model in regard to

understanding the boundaries of the required privileges of an app.

• H2: Using CordovaConfig improves developers’ understanding of a specific

app’ configurations.

The study also further explore the following questions:

• Q1: What is developer’s’ perception of risky settings

• Q2: What is developers’ perception of the value of CordovaConfig

In order to test the hypotheses, we identify the variables and the research instruments

used to measure them (see Table 8). The user study is a controlled repeated measure

experiment. Metrics for H1 and H2 are set to be the score of the correct answers in

114

Table 8: Variables Measurement Methodology

Variable Research Instrument
Understanding of an app configurations Pre/Post Survey Questions - 1,2,3,4,8

Changing developer‘s mental mode Pre/Post Survey Questions - 5,6,7
Tool usability System Usability Scale (SUS) Survey

Perception of risky settings Interview Question 3
Perception of the tool value Interview Question 2

the Pre/Post Survey. Tool usability is also measured using SUS index [67]. The last

two questions aim to explore unknown aspects, so we use qualitative data points to

understand the current situation of developers’ perceptions.

7.1 Case Study App

The app presented in this study is a simple Employee Directory application. It is

referred to as empDir, which views information about a list of employees through a

summarized list item. Clicking on a list item displays a detailed information about

that employee. It also enables the user to perform the following functionalities:

• Getting the current location of the device. This functionality requires access to

the Geolocation API.

• Changing the employee profile photo. This functionality requires access to the

Camera API.

• Saving the employee contact information into the device contacts list. This

functionality requires access to the Contacts API.

The app (see Figure 44) is taken from one of PhoneGap tutorials[25]. This app is

chosen for the following reasons:

• Utilizes several APIs such as Geolocation, Contacts, and Camera.

115

• Interacts with other Apps (Dialler & Messages)

• Loads resources from an external URL.

This single page app makes a good candidate for an app that needs to customize

configurations for almost all configurations items found on config.xml. It also utilizes

the state identification and aligned configuration per state. The app starts with home

Using External
Apps

Using Device
Plugins

Figure 44: Employee Directory App

page that has a search text. The user can enter the name of the employee which will

filter the list of the employees to match the text. Once the user selects an employee, a

detailed information page opens. The page enables contacting the user through calls

and SMS. It also enables adding a location for the user, adding the employee phone

numbers to the device contacts and changing the current picture of the employee

using the device camera.

116

7.2 Recruitment

We have recruited 22 students who have a background in mobile application de-

velopment and Cordova/PhoneGap development. We have used flyers and emails

to call for participation. Participants are rewarded $20 gift cards in return of their

time and effort. Most of the participants are either current or previous students of a

Mobile Application Development course focusing on Android. In addition, the course

also offers material focusing on hybrid apps development by introducing students to

PhoneGap/Cordova library. The assignments given to the student related to this sub-

ject focuses on familiarizing students with using cordova built-in plugins. In addition

to other web-based platforms specific to mobile apps.

7.2.1 User Study Protocol

The participants are provided with the app empDir that is mostly implemented

missing only the third functionality -adding to contacts. Participants are asked to

resolve what is missing through testing the app and checking the app files. The app

configurations are kept to default settings. Once the participant is able to detect

the missing functionality. She is asked to implement it. On average, each partici-

pant took 45 minutes to finish this step. To be able to finish the task, participants

need not only to write the code for the missing functionality -calling plugin API on

JS side- but also to configure the app properly so that it includes the declaration

of the contacts plugin API. The goal is to familiarize the participant with the app

code and its logic. The participants are asked to test the app and check if it sat-

isfies all requirements. At this point, participants experienced a typical hybrid app

117

development cycle. Then participants are asked to answer a pre-survey. After that,

participants are provided with the same app built on the instrumented version of the

library. Thus, all app transactions are monitored. Participants are asked to test this

app to make sure it’s working properly, meanwhile, the tool can have more data on

the app behavior by logging all app interactions and transitions. Then, participants

are asked to use CordovaConfig. After that, participants are asked to answer a

post survey. Finally, participants are interviewed. The steps of the procedure can be

summarized as follows:

1. Complete the work on empDir.

2. Answer Pre-Survey

3. Test empDir on instrumented cordova library

4. Use CordovaConfig

5. Answer Post-Survey

6. Interview

To cancel any bias, two versions of Pre and Post surveys (Pre/Post Survey A &

Pre/Post Survey B) are formulated such that questions in Pre-Survey A are used on

Post-Survey B and vice versa. Participants are randomly assigned to answer either

Pre/Post Survey A or Pre/Post Survey B. Both surveys aim to measure the same

parameters but through different questions.

The interview at the end of the study is needed to measure qualitative variables such

118

as developer perception of the tool and their awareness in hybrid apps’ security. Each

interview lasted 5 to 15 minutes. We began by asking participants if they would be

interested in using this configuration tool and what is the value of such a tool. Next,

we asked our participants to explain what would be the implications of leaving the

default configuration on the users of the app and how the generated configurations

are different. Then, we asked the developers if the tool was confusing at any point

during their interaction. We also asked participants whether they thought they would

likely to pay attention to default configurations and fix risky setting without such tool

support. Finally, we asked the participant whether s/he are familiar with Content

Security Policy and what it stands for.

7.3 Using CordovaConfig

We have created a shortcut for the tool URL on the computer desktop. Each

participant is asked to click on the icon to start the tool. The average time participants

spent using the tool is ≈ 15 minutes. Only 2 participants asked questions while using

the tool. The questions were mainly about how to use the tool.

The final output of the tool is the generated configurations. All participants indi-

cated that they would use the generated configurations and the Android permissions

rather than keeping the old ones, mainly becuase they indicated that the configura-

tions are precise and exact and conform with the app functionality.

To observe how much attention participants would pay to configurations when

using the conventional method, we have changed the configurations of the app. We

have added unnecessary plugins but also removed the needed plugins for the app to

119

function. By the end of the development testing, we have noted that all participants

added the required plugins, but NO ONE has removed the unnecessary plugins. This

was a strong signal that developers tend to change configurations by adding the

required settings, but rarely they do any checking or revision of the setting values as

long as the app is working.

7.4 Results

Below a detailed demonstration of the participants’ background, data analysis pro-

cedures, and interpretation of research results.

7.4.1 Participants Demographics

Education level of participants varied between graduate 18 (81.8%) and undergrad-

uate 4 (18.2%) aging between 21 - 32 years old. Most of the participants are male

comprising 90.9% (20) as opposed to 9.1% (2) female participants. Table 9 shows a

Table 9: Participants Development Experience

Experience\# Years <1 1-3 3-6

Mobile Based 68.2% (15) 22.7% (5) 9.1% (2)

Web Based 31.6% (7) 54.5% (12) 13.6% (3)

Mobile Hybrid Based 95.5% (21) 4.8% (1) -

summary of the participants development experience in three areas; Mobile Applica-

tions, Web Applications, and Mobile Hybrid Applications.

As this tool is designed to maintain app’s security through aligned configurations, we

have asked the participants to self-assess their level of security knowledge (Novice,

Intermediate, Expert). Most of the participants 86.4% (19) have indicated a Novice

120

level while 13.6%(3) have indicated an Intermediate level.

Overlooking security and dealing with it a secondary issue is a common practice

Mainly Functional Requirements
Implement & enforce Security Policies
Implement Least Privilege
Sanitize Data Input

0
5

10
15

20

Figure 45: Common Coding Practices followed by participants

among developers. To check if this also applies to this group, we asked them to check

what applies as a common coding practice. Figure 45 depicts the options and shows

that, as expected, they normally focus on the functional requirements of the app more

than any other security-related practice.

121

7.4.2 H1:CordovaConfig & Configurations Understanding

Participants answered a set of questions before and after using the tool. The

questions focus on measuring developers understanding of configuring the app to

satisfy specific requirements. Specifically, settings related to :

• Plugin usage

• Network access

• Platform permissions

• Interaction with external apps

Participants are also asked to provide an explanation of certain settings impact, and

how-to change configurations to satisfy a specific need. The answers to these questions

are collected. The average of scores before using the tool is 3.4 while it changes to

4.4 after using the tool. Figure 46 demonstrates participants’ score in the Pre/Post

survey questions related to this variable. We can see that most participants are able

to score higher in the post survey. Nonetheless, there are 4 participants who had a

negative effect.

A dependent t-test (within-subjects) was conducted using participants’ scores before

(M=3.4, SD=1.4 7) and after (M=4.4, SD=0.79)the survey. The result supports the

hypothesis that developers are more likely to understand the purpose and the meaning

of the app configuration items after using this tool, T(21)=7.96, p= 0.01, p <.05 .

122

Figure 46: Developers’ Configuration Understanding Scores

7.4.3 H2:CordovaConfig and Developers Mental Model

One of the features provided by most hybrid platforms together with Cordova, is

to allow inter-applications interactions between apps. To perform an operation that

requires calling another app, the developer need to use URIs. For instance, to dial a

number developer can use this URI:

Call Me!.

Clicking this link launches the native Dialer app and passes the number. Other native

apps such as maps, SMS, and mail can be called the same way. Default configurations

allow interaction with all these apps.

Favoring simplicity at the expense of security might be the reason why default config-

urations are kept this way. However, it is important to recognize that this violates the

123

principle of least privilege. Moreover, it may invite a misconstruction at the developer

end in terms of understanding the boundaries of the hybrid app. Developers need to

recognize that having maps functionality in the app - for example - may require call-

ing the built-in maps app but this should not require the app to have any permissions

related to maps functionality. Developers need to recognize that once the maps app is

open the control is transferred to the maps app which is outside the boundary of the

app. Developer needs to understand that they do not need to include any platform

permission related to geolocation as this is outside the boundary of the app. Thus, in

the survey, we ask questions to test the tool effect on changing the developer mental

model by asking what permissions, configurations and changes needed to call native

apps. The questions addressed the case when the app calls another app and when the

app itself uses a functionality and how this should differ in terms of what permissions

to ask for. The average of scores before using the tool is 0.6 while it changes to 1.22

after using the tool. Participants scores are shown in Figure 47.

A dependent t test (within-subjects) using participants’ scores before (M= 0.5 ,SD=0.7)

and after (M= 0.1 , SD=0.8) the survey was performed. The result supports the hy-

pothesis that developers are more likely to understand the boundary of the app and

to recognize the needed permission/configurations needed, T(22)=4.44, p= 0.047,

p <.05 .When we categorized participants based on common coding practices they

follow (Figure 45), we have a found two groups have significant relationship with this

variable. Namely participants who checked that they usually implement and enforce

security policy (T(1,5)=25, p= 0.004, p <.05) and participants who checked that

they would sanitize external input (T(1,3)=27, p= 0.014, p <.05).

124

Figure 47: Developers’ Mental Model Change Scores

7.4.4 Q1: Developers’ awareness of potential risks

The goal of using the tool is to generate a set of aligned and fine-granular config-

urations rather than using the default configurations. To examine the difference the

tool is making developers are asked to compare the configurations generated by the

tool and the default configurations of empDir. Differences include :

• The inclusion of only the plugins that are necessary.

• Setting specific values of allowed URLs for resources’ loading rather than the

default value ‘*’ that allows all domains

• Setting specific values for types of apps allowed to be launched from the app

When asked, most participants have noticed the first two. Then when they were asked

to indicate the implications of keeping the default configurations in the app rather

125

than using the generated configurations, they gave different answers which show the

different perspectives of understanding. Figure 48 and 49 show the distribution

of developers answers. Although most developers are able to indicate a security

P
ar

tic
ip

an
ts

 A
ns

w
er

s

0
2

4
6

8
10

12

50%

23%

1%

2% 2%

Secu
rity

Perfo
rman

ce

Misc
onfig

uratio
n

Priva
cy

I don't know

Figure 48: Perceived Implications of having unaligned plugins settings

related risk of keeping the default configuration, only four participants were able to

mention attack types that can potentially compromise an app. The rest were unable

to describe nor mention a scenario that can put an app under risk.

Previous work [18] postulates three reasons for “Why Good People Write Bad Code”:

126

P
ar

tic
ip

an
ts

 A
ns

w
er

s

0
5

10
15

20

72%

22%

Se
cu
rity

I d
on

't k
no

w

Figure 49: Perceived Implications of having unaligned Network Access settings

• Technical factors which means the underlying complexity of the task itself.

• Psychological factors including poor mental models or difficulty with risk as-

sessment.

• Real-world factors comprising lack of finacial incentives and production pres-

sures

While our results similarly highlight number of real-world constraints, we identify

that a key inhibitor toward secure software development practices is a “ it’s not my

127

responsibility” attitude.

Hybrid platforms have improved over time. Current distributions have a content

security policy (CSP) to restrict local access per page. Developers are required to

understand CSP meaning and learn how to customize it when needed. We have asked

the developers if they know what is CSP or what it stands for. Only one participant

was able to recognize it’s meaning.

Then, we asked if they would normally check the configuration of the app. Only one

developer indicated that she would check the configuration file. All other developers

indicated that they don’t normally check the file for many reasons including lack of

time, lack of understanding, security is not a priority, and for many of them, it is not

necessary as long as the app is working properly.

7.4.5 Q2: Perception of the benefits of CordovaConfig

All participants indicated that they are likely to use the tool to configure their

apps. One indicated that this tool is most beneficial when prototyping apps. By ask-

ing about the benefit/value of this tool, we show answers distribution in Figure 50.

Easiness is the most observed benefit of the tool, depicted by answers such as:

[P7] “It is very tough to code hybrid apps, there is plenty of stuff to search

and look for. Having this would make it less hectic”.

[P3] “Managing permissions is easy now”.

Many participants indicated that using this tool would enhance the security of their

128

Easiness 32%

Security 27%

Save Time/Effort 16% Educational 16%

Reduce Errors 7%

Control 2%

Figure 50: Perceived Benefits of CordovaConfig

apps as well, example answers include:

[P1] “It restrict access to URLs, installed apps and plugins”.

[P4] “It automates the configuration according to app behavior so that your

app is secure”.

Many participants indicate that this tool has increased their understanding of hy-

brid platform configurations in general and the app configurations in specific. Exam-

ples of participants responses include:

129

[P13] “It helped understand the app flow”.

[P6] “It enhances readability of Cordova configurations”.

[P16] “I was not aware of these settings and what they do. I am more aware

now and I feel I have more control”.

[P19] “I appreciate all descriptions and explanations since we programmers

tend to shorthand things easily”.

A few participants indicated that using this tool gave them more control over the

app. Example comment:

[P13] “It seems like it is a good tool to insure that the app do what is

supposed to do”.

Only two participants described generating page-wise level settings as a value of

this tool, such as:

[P10] “Sometimes we don’t need plugins in certain pages, this generates

configurations per page”.

On the whole, participants showed a high level of excitement, interest, and gratitude

while and after using the tool. This can be attributed to the change from the original

configuration process or even to the idea of bringing this whole step to their attention.

7.4.6 Tool Usability

Although usability is generally a subjective feature, assessing the general quality of

appropriateness of an artifact is still imperative. Consider how even the most effective

tool created can only be as useful as its users consider it to be. The same can be said

130

for this configuration tool though quantitatively proven to be effective so far, if its

implementation is not considered usable by users, then it is still rendered an ineffective

approach. As a result, we used the industry-standard System Usability Scale (SUS)

to evaluate the usability of our CordovaConfig based on the responses to the

provided Likert-scale questions. SUS yields a single number representing a composite

measure of the overall usability of the system being studied. It is important to note

that though it is tempting to interpret the score as a percentage, it is not such, nor

is it meant to be diagnostic, but simply an evaluation of an applications ease of use

[42]. Based on the formula described in [67], we generated an overall SUS score of

86.25 for the tool. According to prior research, a SUS score above 68 is above average

for general applications. Figure 51 represents the SUS scale for general applications,

with a marker indicating how the CordovaConfig tool’s score compares. Figure. 52

Figure 51: SUS Scale with red Arrow indicating CordovaConfig Score

shows a descriptive statistics of SUS.

131

Figure 52: SUS Distribution

7.5 Limitations

Considering the novelty of the platform, conducting this user study have faced the

following obstacles:

• Finding participants who have the required background needed to conduct the

user study.

• Most of the participants are novice programmers in hybrid mobile apps in gen-

eral and cordova-based apps in specific.

CHAPTER 8: CONCLUSION

Considering the rapid growth in the use of hybrid mobile apps, researchers must

consider establishing a security framework by integrating models in the middleware

itself rather than using additional layers of security. In an effort to transition from

being reactive to proactive in securing hybrid apps, this work has addressed the

importance of having more fine-grained access models, adopting more aligned config-

urations settings and incorporating automated tools to secure hybrid apps through

recommended configurations. Towards this goal, we have designed, implemented, and

conducted user studies to configure Cordova-based apps including more aligned and

fine-grained configurations that conforms with the apps’ behavior. Our design adds

no effort on developers, and still generates policies to control app behavior at run-

time. The policies aim to control plugin access at the state level and also controls

apps behavior in terms of state transitions. Most of the implementation of this tool

is done on the native side which is more stable and centralized. We developed a

working prototype of our tool and used it for configuring representative applications

to demonstrate the viability of the tool and its applicability to real-world scenarios.

We have also measured the overhead time of using this tool compared to the stock

version of the library, and results showed that the added overhead is minimal.

The main security limitation of having coarse-grained access model has been dis-

cussed already by related literature. However, to the best of our knowledge, the work

133

we present in this dissertation is the only work that addresses these limitations by

changing the configuration scheme. As mentioned earlier, we regard configurations

as the first line of defense as many attacks can be simply neutralized by proper app

configurations. This work also carries the novelty of presenting tooling support that

caters to developers of mobile hybrid apps. Our goal is not only to have fine-grained

and more comprehensive configuration model, but also to provide support to devel-

opers in the form of an automated tool.

We realize that protecting apps through configuration is a vital need, but we also

recognize that configurations alone do not guarantee full protection against potential

attacks. Extension of this work should propose a pro-active plugin to help developers

follow recommended secure coding while in the development stage. Most security

breaches are a result of poor coding practices and improper data validation. More

research work should address this need and propose solutions to harden the security

of the code.

More research is also needed in the direction of addressing the security holes that

may result from the new software stack of this specific category. More specifically,

further analysis of the applicability of both web-based attacks and native code based

attacks on hybrid apps. This is important because such attacks can be easily launched

and with the given bridge provided by the library, the effect is amplified. One example

is the new discussion about return-oriented attacks and their applicability on hybrid

apps.

There is also an essential need to continue the line of exploratory research that

aims to measure the effectiveness of current security measures and the trend of using

134

them among developers. This should give the platform vendors a better idea on how

to re-design the platform and to how to address the current needs.

A current issue with hybrid apps security research is that most research body

discusses detection of security issues such as data leakage through means of static

and dynamic code analysis. While this is essential, but it is on the reactive side

rather than the proactive one. Once the damage happens, it is hard to revert it.

More research should present proactive solutions either in the middleware level or

application level. It is the turn now to focus more on facilitating the consideration

and the implementation of security principles as early as possible.

Finally, as mobile apps continue to dominate and as hybrid or cross-platforms in

specific are expected to trump conventional development approaches, there is a basic

need to further the research and efforts to make this approach more secure and usable.

This work is a step towards better understanding and improving the security of mobile

hybrid apps.

135

REFERENCES

[1] Android api guide ¡permission¿. https://developer.android.com/guide/

topics/manifest/permission-element.html.

[2] Android normal permissions. https://developer.android.com/guide/

topics/permissions/normal-permissions.html.

[3] Apache cordova. https://cordova.apache.org.

[4] Cordova config. https://cordova.apache.org/docs/en/latest/config\

_ref/index.html/.

[5] Domain whitelist guide. https://cordova.apache.org/docs/en/1.8.0/

guide/whitelist/index.html.

[6] Google chrome help forum. https://productforums.google.com/forum/#!

msg/chrome/yxX-9Fn8Hq8/UDXaHlPCDwAJ.

[7] Html5 security cheat sheet. https://www.owasp.org/index.php/HTML5_

Security_Cheat_Sheet.

[8] Phonegap platform security. https://github.com/phonegap/phonegap/wiki/

Platform-Security.

[9] Security guide. https://cordova.apache.org/docs/en/3.5.0/guide/

appdev/security/index.html.

[10] What is gstatic? (remove gstatic virus) (july 2017 update). https://

howtoremove.guide/what-is-gstatic-remove-gstatic-virus/.

[11] Whitelist documentation. https://github.com/apache/

cordova-plugin-whitelist.

[12] Wiki-domains: gstatic.com. https://en.wiki-domains.net/wiki/gstatic.

com.

[13] S. Amatya and A. Kurti. Cross-platform mobile development: challenges and
opportunities. In ICT Innovations 2013, pages 219–229. Springer, 2014.

[14] Android. WebView. "http://developer.android.com/reference/android/

webkit/WebView.html", 2014.

[15] AppBrain. Android statistics /cordova. http://www.appbrain.com/stats/

libraries/details/phonegap/phonegap-apache-cordova.

[16] R. Balebako and L. Cranor. Improving app privacy: Nudging app developers to
protect user privacy. IEEE Security & Privacy, 12(4):55–58, 2014.

136

[17] A. B. Bhavani. Cross-site scripting attacks on android webview. CoRR,
abs/1304.7451, 2013.

[18] A. Blyth. Secure coding principles and practices. Infosecurity Today, 1(3):46,
2004.

[19] A. D. Brucker and M. Herzberg. On the static analysis of hybrid mobile apps.
In International Symposium on Engineering Secure Software and Systems, pages
72–88. Springer, 2016.

[20] A. D. Brucker and M. Herzberg. On the static analysis of hybrid mobile apps:
A report on the state of apache cordova nation. In J. Caballero and E. Bodden,
editors, International Symposium on Engineering Secure Software and Systems
(ESSoS), Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, 2016.

[21] O. (c). Owasp top 10. https://www.owasp.org/index.php/Top10#tab=Main.

[22] Y.-L. Chen, H.-M. Lee, A. B. Jeng, and T.-E. Wei. Droidcia: A novel detection
method of code injection attacks on html5-based mobile apps. In Trustcom/Big-
DataSE/ISPA, 2015 IEEE, volume 1, pages 1014–1021. IEEE, 2015.

[23] E. Chin, A. P. Felt, V. Sekar, and D. Wagner. Measuring user confidence in
smartphone security and privacy. In Proceedings of the Eighth Symposium on
Usable Privacy and Security, page 1. ACM, 2012.

[24] E. Chin and D. Wagner. Bifocals: Analyzing webview vulnerabilities in android
applications. In In Proc. of the 14th International Workshop on Information
Security Applications (WISA), August 19-21 2013.

[25] C. Coenraets. Tutorial: Developing a phonegap application. http://coenraets.
org/blog/phonegap-tutorial/.

[26] E. D. Corporation. Mobile Developer Population Reaches 12M Worldwide, Ex-
pected to Top 14M by 2020. https://evansdata.com/press/viewRelease.

php?pressID=244.

[27] M. Corporation. Cve details. https://www.cvedetails.com.

[28] M. Corporation. Cve details for cordova. https://www.cvedetails.com/

vulnerability-list/vendor_id-45/product_id-27153/Apache-Cordova.

html.

[29] I. Dalmasso, S. K. Datta, C. Bonnet, and N. Nikaein. Survey, comparison
and evaluation of cross platform mobile application development tools. In 2013
9th International Wireless Communications and Mobile Computing Conference
(IWCMC), pages 323–328. IEEE, 2013.

[30] G. Dini, F. Martinelli, A. Saracino, and D. Sgandurra. Probabilistic contract
compliance for mobile applications. In Availability, Reliability and Security
(ARES), 2013 Eighth International Conference on, pages 599–606. IEEE, 2013.

137

[31] N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan. Security-by-contract: To-
ward a semantics for digital signatures on mobile code. In European Public Key
Infrastructure Workshop, pages 297–312. Springer, 2007.

[32] M. Georgiev, S. Jana, and V. Shmatikov. Breaking and fixing origin-based access
control in hybrid web/mobile application frameworks. In NDSS symposium,
volume 2014, page 1. NIH Public Access, 2014.

[33] Google. Google Play. "https://play.google.com/store/apps", August 2013.

[34] M. Green and M. Smith. Developers are not the enemy!: The need for usable
security apis. IEEE Security & Privacy, 14(5):40–46, 2016.

[35] T. Groß and T. Müller. Protecting javascript apps from code analysis. In Pro-
ceedings of the 4th Workshop on Security in Highly Connected IT Systems, pages
1–6. ACM, 2017.

[36] M. L. Hale and S. Hanson. A testbed and process for analyzing attack vectors
and vulnerabilities in hybrid mobile apps connected to restful web services. In
Services (SERVICES), 2015 IEEE World Congress on, pages 181–188. IEEE,
2015.

[37] B. Hassanshahi, Y. Jia, R. H. Yap, P. Saxena, and Z. Liang. Web-to-application
injection attacks on android: Characterization and detection. In Computer
Security–ESORICS 2015.

[38] P. Inc. PhoneGap Inc. "http://www.phonegap.com/", 2013.

[39] S. Institute. 2016 state of application security: Skills, configurations and
components. https://www.sans.org/reading-room/whitepapers/analyst/

2016-state-application-security-skills-configurations-components-36917.

[40] D. Jaramillo, V. Ugave, R. Smart, and S. Pasricha. Secure cross-platform hybrid
mobile enterprise voice agent. In Southeastcon 2014, Ieee, pages 1–6. IEEE, 2014.

[41] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri. Code injection at-
tacks on html5-based mobile apps: Characterization, detection and mitigation.
In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 66–77. ACM, 2014.

[42] X. Jin, T. Luo, D. G. Tsui, and W. Du. Code injection attacks on html5-based
mobile apps. arXiv preprint arXiv:1410.7756, 2014.

[43] X. Jin, L. Wang, T. Luo, and W. Du. Fine-grained access control for html5-based
mobile applications in android. In Proceedings of the 16th Information Security
Conference (ISC). Citeseer, 2013.

[44] M. E. Joorabchi, A. Mesbah, and P. Kruchten. Real challenges in mobile app de-
velopment. In 2013 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, pages 15–24. IEEE, 2013.

138

[45] A. J. Ko and B. A. Myers. A framework and methodology for studying the
causes of software errors in programming systems. Journal of Visual Languages
& Computing, 16(1):41–84, 2005.

[46] N. Kudo, T. Yamauchi, and T. H. Austin. Access control mechanism to mitigate
cordova plugin attacks in hybrid applications. Journal of Information Processing,
26:396–405, 2018.

[47] S. Lee, J. Dolby, and S. Ryu. Hybridroid: static analysis framework for an-
droid hybrid applications. In Automated Software Engineering (ASE), 2016 31st
IEEE/ACM International Conference on, pages 250–261. IEEE, 2016.

[48] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin. Attacks on webview in the an-
droid system. In Proceedings of the 27th Annual Computer Security Applications
Conference, pages 343–352. ACM, 2011.

[49] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin. Attacks on webview in the an-
droid system. In Proceedings of the 27th Annual Computer Security Applications
Conference, pages 343–352. ACM, 2011.

[50] J. Madden. Why html5 apps are ideal for enterprise mobil-
ity. http://searchmobilecomputing.techtarget.com/feature/

Why-HTML5-apps-are-ideal-for-enterprise-mobility.

[51] B. A. Myers and J. Stylos. Improving api usability. Commun. ACM, 59(6):62–69,
May 2016.

[52] M. Palmieri, I. Singh, and A. Cicchetti. Comparison of cross-platform mobile
development tools. In Intelligence in Next Generation Networks (ICIN), 2012
16th International Conference on, pages 179–186. IEEE, 2012.

[53] I. S. T. L. W. Paper. Ibm, native, web or hybrid mobile app development. 2012.

[54] P. H. Phung, A. Mohanty, R. Rachapalli, and M. Sridhar. Hybridguard: A
principal-based permission and fine-grained policy enforcement framework for
web-based mobile applications.

[55] T. Progress. The state of hybrid mobile development. http://developer.

telerik.com/featured/the-state-of-hybrid-mobile-development/.

[56] F. Raja, K. Hawkey, and K. Beznosov. Revealing hidden context: improving
mental models of personal firewall users. In Proceedings of the 5th Symposium
on Usable Privacy and Security, page 1. ACM, 2009.

[57] C. Rizzo, L. Cavallaro, and J. Kinder. Babelview: Evaluating the impact of code
injection attacks in mobile webviews. arXiv preprint arXiv:1709.05690, 2017.

[58] J. R. Ruthruff, S. Prabhakararao, J. Reichwein, C. Cook, E. Creswick, and
M. Burnett. Interactive, visual fault localization support for end-user program-
mers. Journal of Visual Languages & Computing, 16(1):3–40, 2005.

139

[59] i. salesforce.com. Native, html5, or hybrid: Understanding your mobile ap-
plication development options. https://developer.salesforce.com/page/

Native,_HTML5,_or_Hybrid:_Understanding_Your_Mobile_Application_

Development_Options.

[60] J. H. Saltzer and M. D. Schroeder. The protection of information in computer
systems. Proceedings of the IEEE, 63(9):1278–1308, 1975.

[61] M. Shehab and A. AlJarrah. Reducing attack surface on cordova-based hybrid
mobile apps. In Proceedings of the 2nd International Workshop on Mobile De-
velopment Lifecycle, pages 1–8. ACM, 2014.

[62] K. Singh. Practical context-aware permission control for hybrid mobile applica-
tions. In Research in Attacks, Intrusions, and Defenses, pages 307–327. Springer,
2013.

[63] K. Singh and J. Buford. Developing webrtc-based team apps with a cross-
platform mobile framework. 2016.

[64] D. Sun, C. Guo, D. Zhu, and W. Feng. Secure hybridapp: A detection method
on the risk of privacy leakage in html5 hybrid applications based on dynamic
taint tracking. In Computer and Communications (ICCC), 2016 2nd IEEE In-
ternational Conference on, pages 2771–2775. IEEE, 2016.

[65] G. Susan Moore. Gartner says demand for enterprise mobile apps will out-
strip available development capacity five to one. http://www.gartner.com/

newsroom/id/3076817.

[66] Symantic. Web attack: Malicious javascript redirection 2. http:

//www.symantec.com/security_response/attacksignatures/detail.

jsp?asid=28341.

[67] Usability.gov. System Usability Scale (SUS). http://www.usability.gov/

how-to-and-tools/methods/system-usability-scale.html.

[68] W3C. Hash uris. http://www.w3.org/blog/2011/05/hash-uris/.

[69] W3C. State chart xml (scxml): State machine notation for control abstraction.
https://www.w3.org/TR/scxml/.

[70] WIRED. Understanding technological hype cycles. https://www.wired.com/

2012/08/understanding-technological-hype-cycles/.

[71] S. Xanthopoulos and S. Xinogalos. A comparative analysis of cross-platform
development approaches for mobile applications. In Proceedings of the 6th Balkan
Conference in Informatics, pages 213–220. ACM, 2013.

[72] J. Xie, B. Chu, and H. R. Lipford. Idea: interactive support for secure software
development. In International Symposium on Engineering Secure Software and
Systems, pages 248–255. Springer, 2011.

140

[73] J. Xie, B. Chu, H. R. Lipford, and J. T. Melton. Aside: Ide support for web
application security. In Proceedings of the 27th Annual Computer Security Ap-
plications Conference, pages 267–276. ACM, 2011.

[74] J. Xie, H. Lipford, and B.-T. Chu. Evaluating interactive support for secure
programming. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 2707–2716. ACM, 2012.

[75] J. Xie, H. R. Lipford, and B. Chu. Why do programmers make security errors?
In Visual Languages and Human-Centric Computing (VL/HCC), 2011 IEEE
Symposium on, pages 161–164. IEEE, 2011.

[76] G. Yang, J. Huang, and G. Gu. Automated generation of event-oriented exploits
in android hybrid apps. NDSS, 2018.

[77] G. Yang, A. Mendoza, J. Zhang, and G. Gu. Precisely and scalably vetting
javascript bridge in android hybrid apps. In International Symposium on Re-
search in Attacks, Intrusions, and Defenses, pages 143–166. Springer, 2017.

[78] L. Yang, X. Cui, C. Wang, S. Guo, and X. Xu. Risk analysis of exposed methods
to javascript in hybrid apps. In Trustcom/BigDataSE/I SPA, 2016 IEEE, pages
458–464. IEEE, 2016.

[79] J. Zhu, H. R. Lipford, and B. Chu. Interactive support for secure programming
education. In Proceeding of the 44th ACM technical symposium on Computer
science education, pages 687–692. ACM, 2013.

[80] M. F. Zibran, F. Z. Eishita, and C. K. Roy. Useful, but usable? factors affect-
ing the usability of apis. In Reverse Engineering (WCRE), 2011 18th Working
Conference on, pages 151–155. IEEE, 2011.

141

APPENDIX A: CordovaConfig Screen Shots

Figure 53: Start Screen

Figure 54: Current Configuration Analysis-Part1

142

Figure 55: Current Configuration Analysis-Part2

Figure 56: Current Configuration Analysis-Part3

143

Figure 57: Plugin access captured for a state

Figure 58: Plugin access captured for a state

144

Figure 59: App transition diagram

Figure 60: App interaction with external components

145

Figure 61: Generated Configurations

146

APPENDIX B: Survey Questions A & B

Background Questions

1. What is your education level

2. How many years you have been coding Mobile apps

3. How many years you have been coding web based applications

4. How many years have you been using Cordova/ PhoneGap platform

5. How many Cordova-Based apps you have developed?

6. How do you describe your knowledge in apps security (common attacks, best

practices) in general ?

7. Check what describes a common coding practice you follow

(A) Pre-Survey Questions

Cordova Configuration Knowledge

1. Do you know what is config.xml and what is it for ? (One correct answer)

2. config.xml enables controlling: (Multiple answers)

3. How can you change app configuration ? (One correct answer)

Application Specific Configuration Knowledge

1. Check the plugins that are used in this app: (Multiple answers)

147

2. Check the Android permissions that are NOT needed in the app (Multiple

answers)

3. According to current configuration, this app can load images from domain

”http://liisp.uncc.edu” ? (One correct answers)

4. According to current configuration, Do you think you can use this href=””?

(One correct answer)

5. According to current configuration, Do you think the app can open phone built-

in Maps ? (One correct answer)

Developer Mental Model regarding granting permissions

1. Dialing a number (show a screen shot) is part of the application (One correct

answer)

2. To include Messaging functionality in this app I need to (One correct answer)

3. This screen (List employees) requires the following permissions to run properly

(One correct answer)

(A) Post-Survey Questions

Cordova Configuration Knowledge

1. config.xml is NOT controlling : (multiple correct answers)

2. How can you change app configuration ? (One correct answer)

3. Check the plugins that are NOT used in this app (multiple correct answers)

148

Application Specific Configuration Knowledge

1. Check the Android permissions that are needed in the app (Multiple correct

answers)

2. According to current configuration, this app can execute remote javascript code

from this server:”http://myserver.uncc.edu” (One correct answer)

3. The current app configuration allow this screen to appear(showing a browser

screenshot): (One correct answer)

4. According to current configuration, Do you think the app can open phone built-

in SMS ? (one correct answer)

5. Check the plugins that are NOT used in this app (Multiple correct answers)

Developer Mental Model regarding granting permissions

1. This screen (dialling a number) is part of my app (one correct choice)

2. To include this functionality (showing a screenshot of the built-in map app) in

this app I need to (one correct answer)

3. This screen (saving a contact) requires the following permissions to run properly

(One correct answer)

(B) Pre-Survey Questions

We have used the same questions used in the previous post-survey

149

(B) Post-Survey Questions

We have used the same questions used in the previous pre-survey APPENDIX C:

Interview Questions

1. Would you be interested to use this tool ? Why ? Why not ?

2. What is the value/benefit of such tool ?

3. What are the implications of keeping the default configurations ?

4. Can you think of an attack scenario that can compromise this app ?

5. What is the difference between old configurations and generated ones ?

6. Where the tool was confusing the most part ?

7. Do you know what is Content Security Policy?

8. Generally, would you care to go to the config file and check the configurations

? When would you do that ?

