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Abstract

JUNJIE SHAN. Fine-grained Video Classification for Rare Events. (Under the direction
of DR. RICHARD M. SOUVENIR)

Video analysis plays an important role in the field of computer vision and finds its ap-

plication in many areas. Fine-grained event classification is one of the most challenging

problems in video analysis due to subtle difference between classes and limited training

examples, such as echocardiogram function prediction and social insect behavior classi-

fication. The difference between patterns of interest in these tasks is hard to perceive so

we must rely on domain experts with professional skills to annotate the unlabeled videos.

As a result, the data set of annotated videos is usually in small quantity or severely un-

balanced. The performance of various traditional shallow learning methods is bounded by

handcrafted feature extraction and data scarcity. Recently, the methods based on deep learn-

ing, such as convolutional neural network (CNN), have made substantial advancements in

various vision tasks. They learn feature representation in a pure data-driven manner. In this

dissertation, we propose a set of methods to address three fine-grained video classification

problems for rare events. We first present an approach to classify fine-grained echocar-

diogram videos with subtle difference and limited training data using 3D CNN. Then, we

investigate an autoencoder with 3D CNN structure and additional one-class support vector

machine (OCSVM) layer to detect impaired heart videos using unbalanced echocardiogram

dataset. Finally, we propose a pipeline to localize fine-grained pairwise ant behaviors, by

generating behavior proposals from convolutional feature maps computed by 3D CNN.
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CHAPTER 1: INTRODUCTION

Video analysis plays an important role in the field of computer vision, it finds applica-

tions in many areas. One of the most fundamental video analyses is the behavior classi-

fication or event classification based on the content, it commonly serves as the basis of

many other higher-level processing. The difficulty of solving a particular behavior classifi-

cation task depends primarily on the visual difference of patterns we want to separate. For

instance, two video classification tasks are shown in the following:

A) Given a collection of sports games videos containing basketball game and soccer game,

classify each video based on game category, i.e, basketball or soccer.

B) Given a collection of basketball dribble videos, classify each video into legal dribble or

illegal dribble.

It is generally considered that Task B is more difficult than Task A. The reason is that

Task B classifies two behaviors with high similarities that belong to the same category of

sport. The difference between legal and illegal basketball dribbles only lies in the insignifi-

cant wrist and palm movement. It is challenging to design a model to captures those minor

difference in details. However, the difficulty of recognizing basketball game and soccer

game is relatively lower since they are perceivably distinct in term of limbs movement.

The type of video classification in Task B, is often referred to as fine-grained classification

because it operates in subcategory level.
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1.1 Problems

In this dissertation, we attempt to solve fine-grained event classification of echocardio-

gram and social ant videos. They are the real-world problems not as commonly seen as

sport videos. Figure 1.1 (a) depicts three echocardiograms from healthy human heart (top

row) and three echocardiograms with severe heart disease (bottom row). As we can see, the

difference between healthy echocardiogram and impaired echocardiogram is very subtle.

In Figure 1.1 (b) we show three types of pairwise ant behaviors, which are used by the

biologists to study the societies of insects. It is also difficult to recognize different pairwise

ant behaviors since they look visually almost the same.

(a) (b)

Figure 1.1: Two fine-grained video classification problems we solve in this dissertation. (a), clas-
sification of healthy echocardiograms and impaired echocardiograms: three echocardiograms from
healthy human heart are in the top row, three more echocardiograms with severe heart disease are
shown in the bottom row; (b), detection of different pairwise ant behaviors: three types of ant behav-
iors are shown, which are “Grooming” (in yellow-green box), “Feeding” (in blue box) and “Other”
behaviors (in red box). They are challenging to solve due to subtle appearance difference.

In the aforementioned fine-grained video classification problems, subtle difference is not

the only issue that makes the problem challenging. The behaviors we attempt to separate in

both problems are so similar that most people who do not have professional knowledge are

unable to perceive the difference. The echocardiogram functionality classification relies
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on the cardiologists to evaluate the healthiness of patient and provide function label of the

patient’s heart condition; pairwise ant behavior classification depends on the annotations

of the biologists, who watch and review the ant videos frame-by-frame. In both problems,

domain knowledge or learned skills are needed to acquire the training examples. Still,

the annotation of video dataset is often time-consuming due to high inter-class variations

between the patterns to separate. For this reason, the volumes of dataset in both problems

are not able to increase through crowd-sourcing. It’s the primary factor why the annotated

dataset of this type is usually in small quantity or unbalanced.

As a result, it is more challenging to design algorithms for these video analysis tasks due

to both high-similarity and small-size of the data.

Figure 1.2: Taxonomy of video classification problems. The difficulty increases as different pat-
terns become fine-grained and data size gets smaller. The problems we attempt to solve are the
intersection of both fine-grained and rare video classification.

In summary, there are two common issues in echocardiogram classification and ant pair-

wise ant behavior classification, which are subtle difference between different patterns and

limited training examples. Figure 1.2 shows the taxonomy of video classification problems
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in two dimensions, the data size and similarity of different patterns. Compared against

other video classification tasks, our problems are more challenging to solve due to both

high-similarity and small-size of the data.

1.2 Related Work

In this section, we first review recent literature that is related to fine-grained and rare

video classification. In the following subsection we briefly introduce the most important

method in this dissertation, 3D convolutional neural network (CNN).

1.2.1 Fine-grained rare video classification

In the literature of content-based video classification, both event classification and be-

havior classification are used as frequently as each other. Although their definitions is not

well defined and the difference between them is quite debatable, we review related work

that use either term. We also use them interchangeably throughout the context of this dis-

sertation.

The fine-grained and rare video event classification work that are most related to our re-

search is the method in [22]. The author employs weakly supervised topic model based on

Latent Dirichlet Allocation (LDA) [5] to detect subtle and rare events from traffic surveil-

lance videos. Other than that, no previous work appears to explicitly address the fine-

grained and rare issues simultaneously. For this reason, we will review existing methods to

analyze fine-grained event classification and rare event classification separately as follows.

Concerning fine-grain event classification, Eulerian Video Magnification in [52] uses

spatial and temporal frequency decomposition to select and amplify small movements in

specific frequency range from videos. The method in [1] adopts similar techniques to
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detect human pulse from videos. The author use principal component analysis (PCA) to

select the component that is closest to electrocardiogram (ECG) signal. Both work focus

on amplifying one single type of imperceptible vibration of object in the videos. Our goal

is different from them since we are more interested in classifying two or more categories of

events in videos. Rohrbach et al. [39] collected a video database for fine-grained cooking

video detection and extracted two features based on articulated human pose and holistic

video to recognize fine-grained cooking behaviors. There has been several recent work

in specific areas or application scenarios, such as fine-grained bird classification [40], fine-

grained pedestrians classification [20]. Unlike our problems, which classify video based on

behaviors presented in the video, these works classify video based on the object or people.

Another approach [44] proposed an method to detect fine-grained shopping behaviors using

a combination of two-stream convolutional neural network (CNN) and bi-directional long

short-term memory (LSTM).

To address the problem of rare event classification, a variety of methods have been

proposed. There are two broad categories of approaches in term of the how unbalanced the

different classes are distributed. First, data in all classes are in small amount but equally

or approximately equally distributed, transfer learning [36] is usually applied by taking

advantage of well trained model for similar tasks. Secondly, data in majority class are

sufficient but there is few data in minor class, i.e. training data are unbalanced. In this case,

methods such as anomaly detection [7], resampling [8] and hard-negatives mining [15, 33]

are often used. Among various anomaly detection algorithms, one-class classification [26],

especially one-class support vector machine (OCSVM) [41], have been utilized to solve

real-world anomaly detection problems. Another form of one-class classification, support
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vector data description (SVDD) [46] is also a method for anomaly detection but less widely

used.

1.2.2 3D CNN

The convolutional neural network (CNN) [10] was proposed by Yann Lecun. CNN re-

ceives enormous attention in computer vision community and obtains the state-of-the-art

performance in many image analysis tasks. For instance, Krizhevsky et al. [29] employs

CNN to obtain the lowest top-5 error rate on a 1000-category object classification bench-

mark, outputperforming all the other methods by a large margin. Recently, the development

of CNN has greatly advanced the progress in many image-related tasks, including image

recognition [45, 43], objection detection [17] and semantic segmentation [32].

While CNN achieves impressive result in image-related tasks, it is still an active re-

search area to utilize CNN or explore new type of CNN that works also on video-related

tasks. The most straightforward approach to take advantage of CNN is to independently

extract features from each frame in videos using pretrained CNN. Karpathy et al. [25]

proposes to concatenate the convolutional features of multiple video frames to fuse the fi-

nal spatial-temporal feature descriptor. However, this method is incapable of preserving

the rich motion information across multiple frames. Two-Stream CNN [42] and Action

Tubes [18] uses two separate CNNs to process original RGB image and optical flow. The

feature maps of two CNNs are merged for jointly training.
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(a) (b)

Figure 1.3: (a) CNN for image analysis and (b) 3D-CNN for video analysis

The concept of 3D Convolutional Neural Network (3D-CNN) is a natural extension of

CNN for image task. Shuiwang et al. [23] develops 3D CNN for human action recognition,

and Tran et al. [47] applies it on large scale sport dataset. In the case of 3D-CNN, both

the input data and convolution kernel are three dimensional. A video can be viewed as

3D tensor, since it represents a sequence of images and each pixel value can be uniquely

indexed by a triplet (width, height, time). The difference between CNN and 3D-CNN is

depicted in Figure 1.3. Comparing to the approach to fuse features of multiple still images

using CNN, one single 3D-CNN better captures spatial-temporal features in video.

1.3 Summary

In this chapter, we first present the problems that we attempt to solve in this dissertation

and why they are challenging. In addition to problems, we also review the related works

and fundamental method 3D-CNN.

In the following chapters, we investigate three different methods based on 3D CNN for

fine-grained and rare video analysis. The problems that we attempt to address are: 1) fine-

grained echocardiogram viewpoint classification; 2) fine-grained echocardiogram function

classification; 3) fine-grained pairwise ant behavior localization and classification.



CHAPTER 2: Fine-grained Echocardiogram Viewpoint Classification

In this chapter, we present a method based on 3D-CNN to classify visually similar yet

different echocardiogram videos. The echocardiogram is a medical ultrasound technology

used for cardiac diagnostic. It is non-invasive, and relatively inexpensive. During the ac-

quisition of echocardiogram, the positioning of the probe has a direct impact on the quality

of the acquired images; shifts of as little as a few millimeters can render the images unus-

able. We present a method which interpolates the predictions of a deep convolutional neural

network classifier to classify the viewpoint of the imaging probe directly from the visual

data. For echocardiogram view classification, our method outperforms recent approaches

on real-world data. Additionally, we present an application prototype which leverages the

probe pose estimates to provide guidance to ultrasound technicians and can be used as a

teaching tool.

2.1 Problem Statement

Medical ultrasound is a reliable, ubiquitous tool in clinical settings. Among many uses,

handheld ultrasound provides imagery that allows physicians to quickly assess the cardiac

health of critically-ill patients. For the most common modality, 2D echocardiography, the

placement of the transducer on the patient determines what structures are visible in the re-

sulting images. Certain locations correspond to common canonical viewpoints. Figure 2.1

shows how a typical transthoracic echocardiography is acquired and the sample echocar-
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diogram.

Obtaining the most diagnostically-relevant images is a learned skill. Undertrained tech-

nicians often acquire images of poor quality or those with important structures not visible.

The difference between a usable and unusable image can be due to positioning the probe

in the wrong intercostal space or a tilt of the head or the tail as small as a millimeter from

the ideal positioning. In the cases where ultrasound cannot be used diagnostically, the next

step is often a more expensive and invasive approach.

we present an automated method to estimate the transducer viewpoint from an echocar-

diogram and an application that provides guidance to the technician on moving the trans-

ducer to obtain the desired view.

(a) (b) (c)

Figure 2.1: For 2D transthoracic echocardiography (a), the imaging plane is based on the position-
ing of the probe (b), and results in an image (c), which visualizes a “slice” of the heart. Our method
estimates the transducer viewpoint from an echocardiogram for both standard and non-standard
viewpoints and can be used to improve transducer positioning.

2.2 Related Work

Our method and intended application are related to echocardiogram view classification

and self-calibration of sensors from images.
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2.2.1 View classification

Previous methods have considered the problem of echocardiogram view classification.

The method of Ebadollahi et al. [13] uses a generic cardiac chamber template for detection

and models the properties of detected chambers using Markov Random Fields and multi-

class SVM for classification. The method of Zhou et al. [59] uses boosted weak classifiers

of Haar-like local rectangle features to generalize the detection of specific heart structures

for view classification. The method of Kumar et al. [30] employs video features based on

optical flow and the image edge maps. CardiacVC [37] uses the multi-class Logit-Boost

algorithm to perform 4-way echocardiogram view classification. Wu et al. [53] employ

low-level image features for 8-way echocardiogram classification. All of these methods

classify echocardiograms to one of a discrete set of canonical views. Our method gener-

alizes this problem to the regression setting to consider “in between” views and provides

guidance to the operator for obtaining the desired view.

2.2.2 Self-calibration and egomotion

Outside of the domain of biomedical image analysis, there is a large amount of work

on sensor self-calibration and egomotion estimation. Our work shares similarity to these

approaches in that the pose of the sensor is estimated directly from the visual data. Cao

and Shah [6] detect vertical lines and their shadows for calibration. Another method [57]

calibrates cameras using appearance and motion in videos of traffic scenes. The method of

Zhang et al. [58] estimates the parameters of a lens-distorted camera directly from low-rank

textures. Koch and Teller [28] estimate the 6-DOF egomotion of an omnidirectional camera

given a coarse 3D model of the environment. Domke and Aloimonos [12] use Gabor filters
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to compute correspondences and estimate egomotion. Our problem, echocardiogram lo-

calization, differs from these methods in multiple ways. First, self-calibration approaches

typically seek to compute coordinates in a metric space, which is unnecessary for probe

orientation. Second, most of these methods assume rigid object motion, whereas human

hearts exhibit deformable motion.

2.3 Method

Echocardiograms are generated from the transmission and reflection of high frequency

sound waves through human tissue. In the case of 2D transthoracic echocardiography,

the most commonly applied variant of cardiac ultrasound, the resulting images represent a

“slice” of the heart, as shown in Figure 2.2. Typically, images are acquired from a small

set of predefined standard views. These standard views are described using alphanumeric

codes, which refer to the combination of transducer location window: parasternal (PS),

apical (A), or subcostal (SC), and image plane: long-axis (LX), short-axis (SX), four-

chamber (4C), or two-chamber (2C). For example, A4C stands for the apical, four-chamber

viewpoint.
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Figure 2.2: Each column shows the position of the transducer relative to the heart (top) and an
output echocardiogram from that viewpoint (bottom). These examples correspond to the PSSX,
A4C, and A2C viewpoints, respectively.

The image formation model is a complex function of the subject’s body composition,

ultrasound signal characteristics, and the position and orientation of the probe. We consider

a simplified model, where the resulting echocardiogram image, I , for a a given subject, is an

unknown, nonlinear function of the pose parameters, Θ, and the auxiliary causes of image

variation are not explicitly modeled. Our goal is to infer the sensor pose parameters for a

given image. This is a generalization of the echocardiogram view classification problem

where a given image is classified into one of a discrete set of standard views. In fact, our

method builds upon view classification to estimate the pose of the probe in the case of both

standard and non-standard positioning.

Figure 2.3: The network architecture of the C3D model [47]. The network contains 8 convolutional
layers, 5 pooling layers, 2 fully connected layers and a softmax output layer.
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We finetune one pretrained network for our goal of echocardiogram classification be-

cause of limited data we have. Figure 2.3 shows the network architecture of C3D [47], a

3D-CNN trained for generic video (2D+T) analysis, such as action recognition from image

sequences. Compared to other popular convolution nets (e.g., [29]) for (2D) image classi-

fication, C3D is composed of 3D convolution and pooling operations. For echocardiogram

view classification, the input is a sequence of echocardiogram frames. The output is a

posterior distribution over the different view classes (e.g., A4C, PSSX).

We assume that echocardiogram images lie on or near a low-dimensional manifold

parametrized by the viewpoint of the sensor. In this framework, we treat the posterior

probabilities of class membership as barycentric coordinates on this manifold. Figure 2.4

shows an example of barycentric interpolation on an echocardiogram viewpoint manifold

with four standard viewpoints.

Figure 2.4: The posterior class probabilities are treated as barycentric coordinates to interpolate the
position of a query image on the echocardiogram viewpoint manifold.

For an input image sequence, we obtain class posterior probabilities, p̂, as the output of

the trained network. The goal is to estimate the probe pose parameters, Θ̂, of the input.

Let Θ∗i represent the ideal pose parameters for the ith standard view. The inferred pose of

sensor probe for the input echocardiogram is computed as the convex combination of pose
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parameters for the standard views:

Θ̂ =
∑
i=1

p̂i ·Θ∗i (2.1)

where p̂i is the class posterior probability for the ith standard viewpoint.

2.4 Results and Discussion

We evaluate our approach on both the problem of echocardiogram view classification for

standard views and also probe pose localization. For both problems, we apply our method

to real-world data and compare to related approaches. Training and testing for all methods

were carried out on a standard PC with a K40 Tesla GPU.

2.4.1 Data

Data was collected using a Philips Healthcare iE33 xMATRIX Ultrasound System. Echocar-

diogram scans were collected from 60 patients from four viewpoints: apical 2-chamber

(A2C), apical 4-chamber (A4C), parasternal long axis (PSLX) and parasternal short axis

(PSSX), which are four of the most commonly used views in echocardiography. Figure 2.5

shows sample echocardiograms used in these experiments.

A2C A4C PSLX PSSX

Figure 2.5: Sample echocardiograms and the view labels used for view classification.

To ensure the reliability of the view labels, the viewpoints of all echocardiogram scans

are annotated by an experienced echocardiography technician. We design an GUI to assist
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the annotation of the echocardiogram data. The screenshot of the annotation tools is shown

in Figure 2.6.

Figure 2.6: User interface of the tools we designed for echocardiogram viewpoint annotation.

For a given patient, each view corresponds to a separate echocardiogram video clip,

whose duration ranges from 3 to 10 heartbeat cycles. Because the data was collected in a

real-world clinical setting, not all four views were collected. In some cases, the echocar-

diograms were corrupted or otherwise unusable. Table 2.1 shows the number of echocar-

diogram video in each view we used in the experiment.

Table 2.1: Number of echocardiogram videos in the data set

Views A2C A4C PSSX PSLX

# Count 59 65 8 52

2.4.2 Implementation Details

For our approach, we start with the C3D convolutional neural network, which is initially

trained on the Sports-1M dataset [25]. The finetuning process is shown in Figure 2.7. We

modify the output layer for four-class (A2C, A4C, PSSX, PSLX) prediction.
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Figure 2.7: The finetuning of 3D-CNN for fine-grained echocardiogram classification.

The original C3D network takes as input 16 sequential color frames of video; we modify

the input layer to take a sequence of echocardiograms. Each frame is resized to 128× 171

to make sure it matches the input size of C3D. Using the labeled echocardiogram training

data, we fine-tune the output layer of the network to this task. With a learning rate of

0.001, training to convergence takes roughly 3000 iterations and 6 hours. For each learning

experiment using the labeled echocardiograms collected from the Philips machine, data

from 50 subjects were used for training and 10 subjects were used for testing.

2.4.3 Sequence Length

The C3D network was designed for generic video analysis of short clips. For this prob-

lem, we evaluated video clips of varying length. Figure 2.8 shows the accuracy on a 4-way

discrete classification task as a function of the input clip length. For each input size, we

repeated the classification task 5 times. Based on the results, we selected N = 2 frames

as the input length for the subsequent experiments, which roughly corresponds to ∼ 0.1

seconds of real time and provides a balance between accuracy and real-time performance.
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Figure 2.8: Classification accuracy as a function of input image sequence length.

2.4.4 Echocardiogram View Classification

We evaluated the C3D-based model on a 4-way (A2C, A4C, PSSX, PSLX) classification

task and compare against the following methods:

• Baseline Each input image is represented using the HOG [11] feature descriptor

and classified using kernel logistic regression (KLR). HOG features are computed

in 20 × 20 pixel cells and 4 × 4 blocks are used to normalize gradients, resulting a

2304-dimensional feature vector. The radial basis kernel (σ = 0.01) is used for KLR.

• Wu2013 This recently-developed method for view classification [53] uses the GIST

feature descriptor [35] and SVM for classification. GIST was computed in 4 × 4

blocks and, within each block, 8 orientations for each of the three filters of different

scales are computed, resulting in a 384-dimensional feature vector. The SVM uses

the radial basis kernel (γ = 64) and regularization parameter, C = 10.

• CNN For this CNN baseline, we fine-tuned the popular CaffeNet [24] to echocardio-

gram image classification. Compared to C3D, this network is based on single-frame

input and mainly 2D convolution operations. The CNN training settings were the

same as for the C3D network.
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Table 2.2: Accuracy of views prediction on testing data

Method Baseline Wu2013 CNN 3D-CNN

Accuracy 73.2% 80.7% 88.5% 94.1%

The prediction accuracy on testing data are reported in 2.2. The CNN approaches out-

perform the other methods, with 3D-CNN achieving ∼6% higher accuracy than CNN.

Figure 2.9 shows the confusion matrix for the 3D-CNN method on this task. Except for a

small amount of confusion between A2C and PSSX, most of the confused predictions were

between typically challenging pairs of viewpoints similar in visual appearance (e.g., A2C

vs. A4C).

 95.73

 92.69

100.0

 92.02

A2C A4C PSLX PSSX

A2C

A4C

PSLX

PSSX

Figure 2.9: Confusion matrix for 3D-CNN method on 4-way echocardiogram view classification.

We select a few representative testing example to analyze. Figure 2.10 shows example

test images and the output classification for each approach. In the first example, the view

of the right atrium (bottom left) is heavily corrupted by image noise. This results in two

methods incorrectly predicting the two-chamber (rather than 4) apical view. The second and

third images are challenging due to probe positioning and imaging settings, respectively.
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BASE A2C A4C A4C PSLX PSLX

Wu2013 A4C A2C PSLX PSLX PSLX

CNN A2C A4C PSLX PSLX PSLX

3D-CNN A4C A4C PSLX PSLX PSLX

Figure 2.10: Results (correct = green, incorrect = red) on representative examples for the 4-way
classification task.

To further investigate the model learned by the 3D-CNN network, we visualize the high-

level feature representations of the test examples. Figure 2.11 shows the 2-dimensional

multidimensional scaling (MDS) embedding of the 4096-D fc6 (fully connected layer 6)

and fc7 (fully connected layer 7) of the 3D-CNN network where the color of each point

represents the ground truth label. Both layers show the type of intra-class similarity and

inter-class differences the enable discrimination. At the fc7 layer, most of the examples

form disjoint clusters.
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Figure 2.11: 2D MDS embedding of echocardiogram features extracted using fc6 and fc7 layers in
3D-CNN.

2.4.5 Echocardiogram Localization

Echocardiogram localization is a generalization of the classification problem. For this

task, we collected non-standard data using a SonoSite M-Turbo Ultrasound Machine. To

build this data set, the technician moved the probe to non-standard positions “in-between”

the standard views. This data was obtained from three volunteers, and the stream from

each volunteer consists of roughly 1800 frames of video. Each frame of this data was also

annotated by the domain expert as one of the 4 standard views or “non-standard”.

For the two CNN approaches, we train the network for discrete classification and apply

barycentric interpolation as described in Section 2.3. The probe pose is parametrized by

the location sensor location in 3D and the rotation of the imaging plane in a reference co-

ordinate system. The pose parameters of the four canonical viewpoints (A4C, A2C, PSLX,

PSSX) were obtained by manual alignment with the probe positions from an expert techni-

cian at the respective positions. Figure 2.12 and Figure 2.13 show representative results for

echocardiogram localization and probe pose estimation using CNN and 3D-CNN. While
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hardware-based probe trackers have been proposed in the literature (e.g., [19]) and com-

mercially, these experiments were performed with the type of sensor typically found in

medical settings, without tracking capabilities. Therefore, the results were evaluated qual-

itatively. In Figure 2.12, the probe was moved smoothly between the standard A2C and

PSSX views. As the probe moves, new structures are visible in the bottom portion of the

image, however the prediction from the CNN model remains unchanged.

Input

CNN

3D-CNN

Figure 2.12: Probe pose estimation for non-standard views between A2C and PSSX. In each col-
umn, the visualization shows the probe pose prediction for the echocardiogram. The first row are
the input moving echocardiograms (from left to right); while the estimated probe poses using CNN
and 3D-CNN are shown in second and third row, respectively.

Similarly, in Figure 2.13, the probe was moved gradually between the A4C and PSLX

views. 3D-CNN provides smoothly changing pose estimates for these sequences. In both

cases, the quality of the prediction follows the trend of the discrete classification results,

with 3D-CNN showing estimates, which most closely matched the probe motion applied

by the technician.
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Input

CNN

3D-CNN

Figure 2.13: Probe pose estimation for non-standard views between A4C and PSLX. In each col-
umn, the visualization shows the probe pose prediction for the echocardiogram. The first row are
the input moving echocardiograms (from left to right); while the estimated probe poses using CNN
and 3D-CNN are shown in second and third row, respectively.

Currently, most ultrasound training follows the apprentice model where an experienced

technician provides guidance to a novice. Most of this guidance is provided using gen-

eral rules of thumb (e.g., “start at the 4th or 5th intercostal space”, “orient the probe to 3

o’clock”, “rotate towards the patient’s shoulder”, “tilt the probe until the relevant structures

are visible”) that must be adapted to each patient’s body shape.

Our application prototype is based on probe pose estimation from echocardiograms. Fig-

ure 2.14 shows a screenshot of the application with the echocardiogram output displayed

alongside a visual representation of the estimated probe orientation. For a selected view

(e.g., A4C, PSLX), the arrows indicate the direction the transducer should be repositioned

based on the difference between the estimated pose and the reference pose. In a similar

manner to human trainers, the arrows will instruct the user to rotate the head or the tail of

the probe. In a teaching setting, such an application could be used to increase the amount

of practice time a technician-in-training receives. For a new echocardiographer, this ap-

plication may help in finding usable images faster, thus decreasing the amount of time a

patient is exposed to the ultrasound as well as the patient’s comfort level. For the expe-
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rienced echocardiographer, such an application could be used in cases involving difficult

body habitus that is the result of surgery, size of the patient, or additional signal interference

introduced by lung diseases.

Figure 2.14: A screenshot of the application prototype with the echocardiogram output displayed
alongside a visual representation of the estimated probe orientation. For a selected view (e.g., A4C,
PSLX), the arrows indicated the direction the transducer should be repositioned.

2.5 Summary

In this chapter, we present a method for fine-grained echocardiogram view classifica-

tion from videos. Our method is based on finetuning 3D CNN. This problem represents

the class of tasks having small scale of data but clean and balanced labels. The proposed

method employs pretrained model previously trained on large but unrelated data set. We

finetune the model with limited echocardiogram data we collected. We augment the train-

ing data through many techniques. We compare the method against several other methods.

The experiment result shows that the proposed method work best on echocardiogram clas-

sification. We demonstrate the effectiveness of 3D CNN on solving video analysis task

with small amount of labeled training data.



CHAPTER 3: Autoencoder with One-Class Loss for Rare Event Video Detection

Echocardiograhy is one of the most reliable ways to diagnose human heart diseases. Au-

tomated evaluation of heart healthiness from echocardiogram is a challenging task, largely

because there are large variations in the impaired hearts and very limited learning examples.

Figure 3.1 shows three healthy echocardiograms and three impaired echocardiograms. As

can be seen from the figure, the difference between healthy and impaired echocardiograms

is barely noticeable. Therefore, the impaired echocardiogram detection task belongs to

the fine-grained classification realm. However, the data imbalance between normal and im-

paired hearts pose another huge challenge to the problem. In this chapter, we frame this task

as an anomaly detection problem between two types of highly similar videos. We develop a

3D convolutional autoencoder with one-class layer. We use only normal echocardiograms

to train a model and use it to predict the healthiness of the unseen echocardiogram videos.

This method solves a fine-grained video classification problem given unbalanced dataset.

We evaluate the performance of the proposed method with real-world dataset collected in

clinical settings. The experimental results show that our method outperforms the traditional

methods.
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Healthy

Impaired

A2C A4C PSLX

Figure 3.1: Three echocardiograms from healthy human hearts are in the top row (enclosed by
green rectangle), another three echocardiograms with heart disease are shown in the bottom row
(enclosed by red rectangle). The three columns correspond to A2C, A4C, and PSLX viewpoints,
respectively.

3.1 Problem Statement

In many real-world video classification problems, videos are not equally distributed in

all categories. In its simplest form, the dominant class contains most of the data and the

rest of data belong to the minor class. Data imbalance makes classifier hard to train. Since

the minor class contains few training examples, the learned classifier tends to classify all

unknown data in the testing into majority class, as illustrated by Figure 3.2. In real-world

problems such as diagnosis of diseases, if a potential heart disease is diagnosed as healthy

it could lead to fatal consequences. On the contrary, if a heart disease can be detected in

early development of disease, timely treatment can prevent heart disease from developing

into more deadly stages.
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Figure 3.2: Data imbalance makes classifier hard to train.

This type of data imbalance issue is not uncommon in computer vision and general pat-

tern recognition area. In conjunction with fine-grained difference between classes, prob-

lems get even harder to solve. For instance, echocardiogram function label classification,

is challenging due to insufficient impaired echocardiogram examples. There are several

possible reasons for the scarcity of impaired echocardiograms. Firstly, patients with heart

diseases are less common than patients with healthy heart both in real world and in our

data set. Secondly, patients with severe heart diseases tend to less actively share their

echocardiogram with third party for research purpose. These factors together make im-

paired echocardiogram underrepresented in the collected dataset. (In our dataset, impaired

echocardiogram videos is less than 5%).

3.2 Related Work

There have been extensive methods to address the data imbalance problem in generic

pattern recognition area, such as resampling [8]. Typically, the resampling method reduces

the dominant data by randomly sampling a fraction of it. It can also enlarge the minor data

using multiple sampling with replacement. Other approaches introduces hard-negatives

mining [15, 33] to iteratively discard easy examples that are relative far from the true de-
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cision boundary. In the end, only the hard examples that are close to the true decision

boundary are used for final classifier training. Note that there is a common limitation of

above methods: simple random resampling or hard-negatives mining mitigate the problem

to some extent but it can’t eradicate data imbalance.

3.2.1 Anomaly Detection

Anomaly detection [7] trains on mostly one class of data for the purpose of identifying

object not belonging to this class. Any data does not belong to the training class will be

viewed as anomaly. Among many anomaly detection algorithms, one-class support vector

machine (OCSVM) [41, 46] learns a separating hyperplane by using only the majority class,

as illustrated by Figure 3.3. OCSVM is widely used in pattern recognition problems when

one single class is dominant in the dataset. Wu et al. [54] employs OCSVM to classify

normal and impaired echocardiograms.

Figure 3.3: Illustration of one-class SVM for anomaly detection. In the figure, handwritten digit
images from MNIST data set are shown. The digit “8” is the dominant class and all the other digits
are minor class (anomaly). One-class SVM learns a hyperplane separating the dominant class from
the minor class. Most data in the dominant class are encompassed by the separating hyperplane.
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3.3 Method

To detect abnormal video event, we build on 3D convolutional autoencoder with a one-

class SVM layer. Figure 3.4 illustrates our model architecture. The encoding layers in the

autoencoder are consist of 3D convolutional kernels, and the decoding layers are consist

of 3D deconvolutions (or upsamplings) kernels. We use a one-class SVM layer to add

regularization on the on learned feature of the autoencoder. The total loss is a combination

of reconstruction loss between the input and output, and the loss of the one-class layer.

Figure 3.4: 3D convolutional autoencoder with an one-class SVM layer

For reconstruction loss, mean squared error (MSE) and cross entropy loss are typically

used in image-related and video-related problems. For one-class layer, we employ the loss

function in OCSVM, which was proposed by Schölkopf et al. [41] for novelty detection.

The loss function can be expressed as follows:

Locsvm = 1
2‖w‖

2 + 1
υn

n∑
i=1

ξi − ρ

subject to (w>Φ(xi)) ≥ ρ− ξi, i = 1, . . . , n,

ξi ≥ 0, i = 1, . . . , n,

(3.1)

where, Φ is a function that maps the input into feature space, υ ∈ (0, 1) a hyperparameter

controlling the maximum percentage of anomalies, w and ρ are parameters learned from
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the training set.

We implement the OCSVM layer using Keras [9], a popular deep learning library. Once

the model is trained, the encoding layers of the autoencoder is used as a feature extractor

in the testing stage. Given a testing video xtest, we first extract feature from it using the en-

coder layers. Then the decision function of OCSVM, w>Φ(xtest)−ρ, computes the signed

distance of xtest to the hyperplane that separates normal data and anomaly in the feature

space. If distance is positive, the testing video is classified into normal class. Otherwise,

testing video is classified as anomaly.

3.4 Result and Evaluation

We evaluate our method with two datasets.

• Handwritten digit recognition We use handwritten digit images from MNIST dataset [31]

to validate the initial idea of combining reconstruction loss and one-class loss. In this

experiment on toy data, we use 2D convolutions instead of 3D convolutions.

• Impaired Echocardiogram Detection We employ the proposed autoencoder with

one-class layer to classify the function label of echocardiogram. We also implement

multiple other methods for comparison.

In both experiments, we use area under the receiver operating characteristic curve (AU-

ROC) to evaluate multiple algorithms. In most classification problems, precision and recall

are inversely related. By adjusting the decision threshold, one could tune any method’s per-

formance from the highest recall ( the lowest precision) to the highest precision (the lowest

recall). Therefore the performance of two methods cannot be compared using one pair of

precision-recall value. AUROC provides an unbiased way to compare different algorithms.
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3.4.1 Handwritten Digit Recognition

3.4.1.1 Data

The MNIST dataset is a large handwritten digit database that consists of 70,000 digit

images, 60,000 images of training data and 10,000 images of testing data. It is widely used

as a benchmark to evaluate the performance of various machine learning and computer

vision algorithms. The dataset contains 10 common digits written by human. The size of

the grayscale images is 28 × 28. A few examples of images in MNIST are shown in the

Figure 3.5.

0 1 2 3 4

5 6 7 8 9

Figure 3.5: Examples of handwritten digit images in the MNIST database

3.4.1.2 Experiment setup

The experiment steps are explained as follows. First, we random select one digit (such as

“0”) as normal data, and treat the remaining digits (such as “1” to “9”) as anomaly. Second,

we create the training set and testing set for the experiment. The training dataset contains

all normal digits from the 60,000 original MNIST training images set, and testing data set

contains both normal digits and abnormal digits from the 10,000 original MNIST testing

images.
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Since anomaly data is uncommon in many real application scenarios, to emulate the situ-

ation in real-world problems, we explicitly control the ratio between normal and abnormal

data in the testing set to make sure it is close to 80:20.

For abnormal digit detection, we train a 2D autoencoder with convolutional autoencoder

with OCSVM layer. The network architecture is shown in the following Figure 3.6. The

only part that differs from the proposed method for impaired echocardiogram detection is

the 2D convolutions instead of 3D convolutions. The input size of the network is 28x28,

corresponding to the original dimension of MNIST images. After three stages of convo-

lutions and max pooling, the feature map’s size is reduced to 1x32, followed by a fully

connected layer. The OCSVM layer is attached to the end of fully connected layer.

During the training phase, we alternately switch between two phases, Phase 1 and Phase

2. In Phase 1, the autoencoder optimization phase, we focus on optimizing the weights in

autoencoder layers, so the learning rate of One-Class SVM layer is set to a smaller value.

(Through our experiment, we choose 10%.) In Phase 2, the One-Class SVM optimization

phase, we mainly optimize OCSVM layer, thus we set the learning rate of autoencoder

layers to a smaller rate. We repeat two optimization phases multiple times until the loss

converges. We choose is AdaDelta’s [55] as the automatic learning rate deceasing policy.

The initial learning rate is set to 1.0. The implementation of AdaDelta is provided by

Keras [9] library.
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Figure 3.6: Network architecture of the autoencoder used in MNIST experiment

3.4.1.3 Result

Table 3.1: AUROC of the anomaly digit recognition

Normal Digit Abnormal Digit AUROC

“0” non-“0” 0.9736

“1” non-“1” 0.9988

“2” non“2” 0.9313

“6” non“6” 0.9809
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We repeat the experiment 10 times, using each digit as the normal data. Since there are 10

different experimental results, we select four of them to report. The ROC curves of anomaly

digit recognition in four experiments are shown in Figure 3.7 and corresponding AUROC

values are reported in Table 3.1. The average AUROC of four experiments is 0.9711,

indicating the proposed anomaly detection mostly performs well. The lowest AUROC we

obtain is when digit “2” is selected as normal data, and used to detect non-“2” digits. In the

testing, abnormal digit such “5” is confused with of “2”. The experiment result also shows

that the difficulty of anomaly detection of handwritten digits depends on the similarity

between normal digit and abnormal digits.
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Figure 3.7: The ROC curve of experiment on MNIST data set

We also investigate the learned features of autoencoder. We use t-Distributed Stochas-

tic Neighbor Embedding (t-SNE) [50, 49], a nonlinear dimensionality reduction tool, to

visualize the learned features of testing data. The 2D embeddings of learned feature repre-

sentation of testing data in four experiments are shown in Figure 3.8. We can find that in

2D embedding space, nearly all abnormal data (in red color) distribute in the outer edge of

normal data.
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Digit “0” versus other digits Digit “1” versus other digits

Digit “2” versus other digits Digit “6” versus other digits

Figure 3.8: 2D t-SNE Embedding of handwritten digit images’ learned features. Normal digits are
represented by green points and red points mean anomaly digits. We can find that in 2D embedding
space, nearly all abnormal data (red) distribute in the outer edge of normal data.

3.4.2 Impaired Echocardiogram Detection

In this section, we describe the experiment setting for the impaired echocardiogram de-

tection problem and report the comparison result.

3.4.2.1 Data

We collect echocardiogram data from around 200 patients who need accurate diagno-

sis based on echocardiogram in clinical settings. The echocardiography ultrasound ma-
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chines we used are SonoSite M-Turbo and SonoSite X-Porte. Four different viewpoints

of echocardiogram scans were collected from : apical 2-chamber (A2C), apical 4-chamber

(A4C), parasternal long axis (PSLX) and parasternal short axis (PSSX), which are most

commonly used views in echocardiography. The function labels of all patients are anno-

tated by six experienced echocardiography technicians from three categories: Normal,

Impaired, and Uncertain. The screenshot of the annotation tool we design is shown in

Figure 3.9.

Figure 3.9: The screenshot of the tools we designed for echocardiogram function annotation.

We use Cohen’s kappa to find the annotators that deviates a lot from the other annota-

tors and eliminate all the annotations provided by the outlier annotator. Then we obtain the

ground truth function labels using majority voting based of the remaining annotator’s label-
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ing. We discard the echocardiogram with Uncertain ground truth labels, in order to reduce

the ambiguity of function label in the experimental echocardiogram. Only the echocardio-

gram with Normal and Impaired ground truth labels are retained for the experiments.

After the filtering, we keep 125 normal and 17 impaired patients’ echocardiogram.

Each original echocardiogram video contains variable number of heartbeat cycles, usu-

ally between 3 to 10. We extract the ECG signal from the raw echocardiograms using

digital image processing. The ECG signal is utilized to split the original echocardiogram

into multiple short video clips. Each video clip starts with diastole (relaxation of heart

muscles), it is followed by systole (contraction of heart muscles), ending right before next

diastole. The numbers of echocardiogram video clips for all views are shown in Table 3.2.

The purpose of this procedure is to align all echocardiogram in temporal domain, and it

also guarantees a short video clip contains exactly one single heartbeat. The video clips are

the immediate input of all experiments in the following.

Table 3.2: Number of echocardiogram video clips in the experiment

Echocardiogram View # Normal # Impaired # Total

A2C 1658 277 1935

A4C 1731 318 2049

PSLX 1880 274 2154

PSSX 1772 242 2014

3.4.2.2 Experiment setup

We randomly split the data into five disjoint folds by patients (human subjects) and

perform five-fold cross validations. For each validation, we run four experiments, each
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for one viewpoint from A2C, A4C, PSLX, and PSSX, independently. Therefore, we have

5x4=20 sets of experimental results for every single method.

The network architecture for impaired echocardiogram detection (only the encoder part)

is shown in Figure 3.10. In total it contains four convolutional stages, 6 convolutional

layers and 4 max pooling layer. The decoder is symmetric to the encoder, except that the

convolution operation is replaced by deconvolutions. The input size of 3D convolutional

neural network is 3x16x128x128, the size of learned feature representation is 512x8x8x8,

meaning there are 512 channels of 8x8x8 cubes.

Figure 3.10: The encoder structure used in impaired echocardiogram detection experiment

As mentioned above, we train the model with only normal echocardiogram data, and

test on both normal and impaired echocardiogram data. We implement the OCSVM using

Keras [9], a deep learning library. All experiments are conducted on a workstation equipped

with two Nvidia K-40c GPUs. Our method is compared against six baseline methods. In

all experiments, we random select 10% of training data as validation set, and use it to

select best hyperparameters. The detailed experimental setup of all methods are explained

as follows.

• 3D autoencoder:from scratch This is our proposed method, the 3D autoencoder

with OCSVM layer. In this experiment, the entire model is trained from scratch, i.e,
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the weights are random initialized. The training elapsed time is 5 to 10 times longer

than the training method using finetuning since it needs more iterations to converge.

• 3D autoencoder:fine-tune This method is nearly the same as the method above. The

only difference is the optimization process. For this method, the encoder’s weights

are initialized from the C3D [47] network’s convolutional weights. However the

decoder’s weights and OCSVM layer’s weight are still randomly initialized since

there is no pretrained model for it.

• 3D CNN:fine-tune This is supervised 3D CNN for the purpose of binary classifica-

tion, “Impaired” vs “Normal” . It is also fine-tuned from the C3D model. In order

to mitigate the imbalance of training samples, we augment the “Impaired” echocar-

diograms by resampling and adding various transformations so that the numbers of

both classes are are to 50:50. This is the only supervised method while all other

methods are unsupervised.

• 3D-CNN feature+linear OCSVM This method extracts feature from the echocar-

diogram using pretrained C3D model and train anomaly detection using OCSVM

with linear kernel. We extract the features from conv5 and fc6 layers. An earlier

comparison experiments shows that fc6 features is better. Therefore we only use fc6

feature through all the experiment comparisons. We use grid search to determine the

optimal hyperparameter.

• 3D-CNN feature+RBF OCSVM This method is similar to 3D-CNN feature+linear

OCSVM, except that we choose radial basis function (RBF) kernel for OCSVM. We
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also use grid search to determine the optimal hyperparameter based on validation set.

• VGG16 feature+linear OCSVM This method is also similar to 3D-CNN feature+linear

OCSVM. We extract feature from the echocardiogram using VGG16 [43] instead of

C3D. We feed all frames of the input video to VGG16 model. Then we concatenate

all the fc1 features to form one single descriptor. The reason we choose VGG16

model over AlexNet [29] is that it performs better than AlexNet in image classifica-

tion benchmarks. A linear kernel is used in this method’s OCSVM .

• VGG16 feature+RBF OCSVM This method is similar to VGG16 feature+linear

OCSVM, except it uses RBF kernel in OCSVM. We still use grid search to select the

optimal hyperparameters of OCSVM.

• HOG+linear OCSVM This method is similar to VGG16 feature+linear OCSVM,

except it uses conventional histogram of oriented gradients (HOG) feature [11]. The

cell size of HOG is 16× 16 in pixels, the block size is 2× 2 in cells.

3.4.2.3 Result

The mean AUROC values of all methods on impaired echocardiogram detection task

are reported in Table 3.3. As can be seen in the table, the proposed method, 3D autoen-

coder with OCSVM layer using fine-tuning optimization obtains the highest AUROC. The

proposed method using random initialization acquires second best AUROC, though the dif-

ference between them is very small. We discuss more results to compare these methods in

details as follows.

Figure 3.11 shows the same results for easy comparison.
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Table 3.3: Mean AUROC over all cross-validation folds for each view

Method
Mean AUROC over all cross-validation folds

A2C A4C PSLX PSSX All

3D autoencoder
from scratch 0.7039 0.6789 0.6720 0.6155 0.6676

3D autoencoder
fine-tune 0.7077 0.6966 0.7170 0.6505 0.6930

3D-CNN
fine-tune 0.5958 0.5725 0.6758 0.5058 0.5875

3D-CNN feature
linear OCSVM 0.3336 0.3784 0.3435 0.4148 0.3676

3D-CNN feature
RBF OCSVM 0.4125 0.5155 0.4879 0.5182 0.4835

VGG16 feature
linear OCSVM 0.2020 0.2692 0.2770 0.3339 0.2705

VGG16 feature
RBF OCSVM 0.5021 0.4581 0.5601 0.5515 0.5180

HOG
linear OCSVM 0.4662 0.4793 0.4954 0.5192 0.4900
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Unsupervised anomaly detection vs supervised classification. 3D-CNN:fine-tune is

the only supervised learning method in all methods. It utilizes very limited impaired

echocardiogram training examples by resampling and adding various transformations. In

actual training, the percentage of impaired echocardiogram is below 5%. Neural network

optimization is very sensitive to data imbalance in dataset. We augment the minor class to

make sure the both classes, “Normal” and “Impaired”, have approximately equal number

of training examples. The mean AUROC of 3D-CNN:fine-tune is 0.5875, which is 0.10

lower than the two proposed methods that belongs to unsupervised learning. The differ-

ence might be caused by the high variation of “impaired” echocardiogram. It also suggests

that simple resampling and augmentations with transformation mitigate the data imbalance

problem to some extent but it can’t recover the original data distribution since minority data

is underrepresented in the dataset.

3D CNN vs CNN In general, the methods based on 3D CNN perform better than those

methods using CNN. It supports that 3D CNN better models the spatial-temporal features

than fusion of 2D image features.

Linear OCSVM vs RBF OCSVM Two methods both train OCSVM with linear ker-

nel, while two other methods utilize OCSVM with RBF kernel. We observe that in both

cases, the RBF kernel perform better than linear kernel. The OCSVM layer we imple-

ment in Keras framework is equivalent to a linear kernel. This observation may suggest

that RBF OCSVM layer within 3D autoencoder network has the potential to improve the

performance. However, to this end, we find it is challenging to implement it.

A2C vs A4C vs PSLX vs PSSX We notice that not all view of echocardiogram yield

equal AUROC for impaired human heart detection. From Figure 3.11 and Table 3.3, we
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observe that the detection performance based on viewpoint “PSSX” is noticeably lower

than other three viewpoints. It could be explained by the fact that “PSSX” is actually

consist of three subcategories view points, the “PSSX Apex” level, “PSSX Mid” level and

“PSSX Mitral” level. Therefore, it increases the difficulty for autoencoder to reconstruct

all subsubcategories in PSSX viewpoint.

To further compare different methods, we randomly select one specific experiment, A4C

view is selected and run on the fifth cross-validation. We plot ROC curve in Figure 3.12

(a). In this particular experiment, 3D autoencoder with OCSVM layer and fine-tuned by

C3D weights, again obtains the highest AUROC, 0.7463. The second highest AUROC is

0.7174, obtained by similar method where optimization starts with random initialization.
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Figure 3.12: ROC curves of impaired echocardiogram detection and precision of top query curve
in one random cross-validation fold

In Figure 3.12 (b), we show the curves of impaired echocardiogram detection precision

with respect to the top query number for all methods, from largest to smallest. This is a

measurement of the detection quality of most impaired patients. Our proposed methods

with two different optimization processes still acquire the best precision in top queries.
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3.5 Summary

In this chapter, we frame the task of automatic echocardiogram healthiness grading as

an anomaly detection problem. We propose a 3D convolutional autoencoder with OCSVM

loss. We use only healthy (normal) echocardiogram data to train a model and predict the

healthiness of new echocardiogram. We evaluate the performance of the proposed method

with real-world dataset which are collected in clinical settings. We also implement multiple

baseline methods as comparisons. The experimental results show that our method outper-

forms the traditional methods. It suggests that the concept of combining 3D convolutional

autoencoder and outlier detection framework could be a potential method to solve the video

analysis task that has only limited yet unbalanced data set.



CHAPTER 4: Rare Event Localization and Classification

For the study of social insects like ant, interactions between individual ant are an im-

portant aspect of behavior analysis. Current approaches to the automated analysis of insect

behavior from video are mainly limited to tracking the single-insect activities. In this work,

we present an automated system to localize and classify fine-grained pairwise insect behav-

iors such as trophallaxis and grooming. Our method consists of two steps. First we generate

video proposal regions by utilizing the feature map in 3D-CNN. Second, we classify the

proposals into predefined ant behavior categories. Experimental results show that our ap-

proach outperforms baseline methods on testing videos from ant colonies recorded in a real

laboratory setting.

4.1 Problem Statement

Many insect colonies including bee and ant, demonstrate substantial social behaviors.

The study of social behaviors is important for understanding the social interaction in multi-

agent system such as human society [21]. In this chapter, we aim to solve fine-grained

pairwise ant localization and classification problem. A pairwise ant behavior is defined as

a continuous interaction between the same two ants. In the case of ant behavior studies,

videos are usually recorded on top of ant colonies for hours. The detailed analysis of all

the ant behaviors often rely on the manual review of hours of video playback. This human

review is costly and time-consuming.
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The primary challenge for automatic identification of these ant behaviors from video is

the visual similarity of the behaviors. In a typical setup, a colony contains tens to hun-

dreds of ants. On average, each ant is roughly 80 pixels in size, and the movement of ant

behaviors can be as small as a few pixels. Figure 4.1 shows a video containing multiple si-

multaneous ant behaviors in one colony, as well as two enlarged grooming and trophollaxis

behaviors for closer comparison. As can be seen from the figure, the difference between

grooming and trophollaxis is barely noticeable.

Figure 4.1: In the left of the figure, we show one frame containing several concurrent pairwise
ant behaviors in the same ant colony. Two visually-similar behaviors are shown in the right, the
grooming and trophollaxis.

Behavior localization in video analysis aims to know the spatial and temporal position of

multiple events in a video. In the simplest case, we use a tightest 3-dimensional bounding

volume to contain each event in 2D+T space. The bounding volume is represented by a

vector of six elements: (x1, y1, t1, x2, y2, t2), where (x1, y1) and (x2, y2) are the coordinates

of top left corner and the bottom right corner, t1 and t2 are start and completion time of the

event, respectively.

In the following, we review related methods in the area of automated insect analysis,
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describe our approach to detecting pairwise ant behaviors, and evaluate the performance of

our approach on ant colony video collected from a biological research lab.

4.2 Related Work

We review the related work in two perspectives the automated insect analysis and pro-

posal generation for video analysis.

4.2.1 Automated Insect Analysis

Existing approaches to solve this problem mainly focus on tracking of the ant’s loca-

tion [3, 14, 27], which track location of tens and hundreds of ants. While the above

approaches have alleviated some of the burden of manual analysis, tracking is only the

first step for ant behavior analysis, the ultimate goal however is to understand the insect

behaviors. Recent methods directly recognize the behavior for all insects [3]. Our pro-

posed method differs from them since we bypass the tracking of individual ants, we build a

pipeline to directly localize and classify the pairwise ant behavior. Balch et al. [2] develop

a method to identify common ant interactions. However, it still relies on the precomputed

automated tracking location of ants.

Several other methods recognize group behaviors and non-contact behaviors. Balch and

Khan [4] consider behavior of the overall group. Wittman and Gotelli [51] propose a

method to model the contactless behavior of ant such as “chasing” using on Markov chain

model. These two methods have different concentrations, our problem focuses on must-

touch pairwise ant behaviors.

Our approach follows recent efforts toward fine-grained classification for object catego-

rization [56] and action recognition [34] and, to the best of our knowledge, represents the
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first method to efficiently classify fine-grained, pairwise insect interactions from video.

4.2.2 Video Volume Proposal

Compared to region proposal generation for object localization task from images, the

video proposal generation for videos behavior recognition draws less attention, partially

because of its large computation time and there exists no widely used dataset for compar-

ison. Current work to generate video proposals usually takes advantage of existing image

proposal generation method. By concatenating image proposals in multiple frames we

obtain video proposals. The Selective Search [48], Edge Boxes [60] are commonly used

region proposal methods for object localization. Recently, convolutional neural network

is modified to generate video region proposals, such as R-CNN [17], deep proposal [16]

and region proposal network [38]. The common limitation of these approaches for video

proposal generations is that the edges of resulting video proposals do not align with actual

regions with behaviors, since the smoothness between frames is not considered. Gkioxari

and Malik [18] propose a method called action tube to generate video proposal. Optical

flow is used to re-rank the image proposals. However, there are two weaknesses in this

method. First, it assumes there is only one action or behavior in the video, so it cannot ap-

ply to video with multiple concurrent behaviors. Second, optical flow images of all frames

have to be computed separately and it is time-consuming. Our method is motivated by [16].

We extend the method of generating proposal by taking advantage of convolutional features

to the case of 3D-CNN.
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4.3 Method

Our task is to localize and classify the fine-grained ant behavior in video, especially for

video with multiple fine-grained behaviors. The overall model including both localization

and classification can be shown in Figure 4.2. Our pipeline contains two major steps: 1)

generate video proposals from given testing video; and 2) classify each video proposal

using a trained 3D-CNN classifier. While the second step is straightforward, we put more

emphasis on describing the video proposal generation pipeline in both training stage and

testing stage.

Figure 4.2: Overview of the pipeline to localize actions in video

4.3.1 Training Video Proposal Generation

Our training process consists of the training of behavior-specific 3D-CNN classifier and

the training of behavior/non-behavior SVM detector. The first step is similar to the fine-

tuning of the C3D model in Chapter 2, given the cropped video containing ground-truth ant

behaviors. We denote this behavior-specific 3D-CNN classifier by C3dcnn, which is used to

extract features at all convolutional layers in the next step.

The second step is to learn multiple binary behavior/non-behavior detectors. We first

extract the convolutional features using C3dcnn from all original training videos at all con-
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volutional layers. Using the 3D bounding volumes of ground-truth behaviors in the original

2D+T space, we compute the corresponding 3D bounding volumes of ground-truth behav-

iors at all convolutional layers. Figure 4.3 depicts the training process of multiple behavior

detectors based on SVM.

Figure 4.3: Training pipeline for 3D proposals

Next we train a set of SVM classifiers to classify behaviors and non-behaviors for all

convolutional layers. The positive class of training data for SVM is the C3dcnn features in-

side the ground-truth bounding volumes. Like the problem of object localization in images,

negative class is not explicitly defined. We randomly sample non-behavior regions outside

the ground-truth bounding volumes, as well as the region that overlaps with the ground-

truth bounding volumes but the intersection over union (IoU) is lower than a predefined

threshold.

Since we obtain much more non-behavior data than behavior data, i.e. the data is quite

unbalanced. We use hard-negative mining [15, 33] to train SVM. A large portion of non-

behavior data can be easily recognized since they contain few or no motion, thus they

can be discarded after several iterations of the SVM training. The behavior/non-behavior

classifiers focuses on the training samples that are hard to classify.

Hard-negative mining starts the training with all behavior data and a small portion of
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non-behavior data. It then tests its classification performance on the remaining non-behavior

data. The falsely classified non-behavior data will be added to the training set. It repeats

this steps until the training set stops changing. This also increases the training speed of

SVM since the number of effective training instance is lower than all original train set in

each iteration. The output of the training process is a set of behavior/non-behavior classi-

fiers, each for one convolutional layer. A more detailed algorithmic description is shown in

Algorithm 4.1 as follows.
Algorithm 4.1: Training pipeline of video proposal generation

Input : Vtrain = {v1,v2, . . . ,vm}, training video set
n, number of convolutional layers in 3D-CNN

Output: Csvm = {c1, c2, . . . , cn}, classifiers for video proposal generation

1 Utrain←get all cropped ground-truth ant behaviors using annotation;
2 C3dcnn←train a behavior-specific 3D-CNN with m conv layers using Utrain;
3 P = {P1,P2, . . . ,Pn} ← Initialize a set of set to store feature map of behaviors;
4 N = {N1,N2, . . . ,Nn} ← Initialize a set of set to store feature map of

non-behaviors;
5 for i← 1 to m do
6 Feed vi to C3dcnn;
7 F = {f1, f2, . . . , fn} ← Compute convolutional features of vi;
8 for j ← 1 to n do
9 B ← Get the bounding volume of ground-truth behaviors of vi at fj;

10 finside ← Get vi’s features inside B at layer j;
11 Pj ← Pj ∪ finside;
12 foutside ← Randomly sample vi’s features outside B at fj;
13 Nj ← Nj ∪ foutside;
14 end
15 end
16 for j ← 1 to n do
17 cj ← Train a binary SVM classifier to detect behaviors at conv layer j, using

data Pj as positive and Nj as negative. Hard negative mining is used in the
training;

18 end
19 return Csvm = {c1, c2, . . . , cn}
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4.3.2 Video Proposal Generation in Testing

We notice that size of the convolutional feature maps at different layer become smaller,

while the information the convolutional feature maps contains become condenser. By ana-

lyzing feature maps from the most coarse layer (very last convolutional layer) to the most

fine-grained layer (very first convolutional layer), we can localize the desired video with

better precision layer by layer. In testing, the video proposal generation pipeline operates

as follows. First, we feed the testing video to C3dcnn, our trained behavior-specific 3D-

CNN. The convolutional feature maps of a given video are computed at all convolutional

layers. Second, we utilize the rich information in 3D feature maps to reversely localize the

positions and frames where ant behaviors possibly exist. The proposal generation process

is illustrated by Figure 4.4.

Figure 4.4: Testing pipeline with 3D proposals

As can be seen in the figure, the video proposals are generated from coarse to fine graini-

ness, re-ranked by the response of the behavior/non-behavior classifier, Csvm, in each layer.

Only the sub-regions that have high response score will be preserved for the refinement of

spatial-temporal position in the next step. The first convolutional layer in 3D-CNN has the

highest resolution, so it localize the boundary of behaviors better than the second convolu-
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tional layer. One advantage of our method is that no optical flow is computed during both

training and testing.

Algorithm 4.2: Testing pipeline of video proposal generation
Input : C3dcnn, trained a behavior-specific 3D-CNN

Csvm = {c1, c2, . . . , cn}, trained behavior detection classifier
vtest, the testing video
n, number of convolutional layers in 3D-CNN

Output: B, a set of bounding volumes
1 Feed vi to C3dcnn;
2 F = {f1, f2, . . . , fn} ← Compute convolutional features of vtest;
3 B← Get the size of fn;
4 for j ← n to i do
5 B← Use cj to keep only high response volume at fj;
6 end
7 return B

4.4 Result and Evaluation

In this section, we first describe the real ant dataset we used as well as the experiments

setup. After introducing two baseline methods, we report the final comparison of perfor-

mance between our methods and the baseline methods, followed by the analysis of repre-

sentative testing examples.

4.4.1 Data

The experimental ant behavior data set consists of 8 videos, recorded at four different ant

colonies using 24 frames per second. The average length of the videos is 5 minutes, 7200

frames. The spatial resolution of the videos is 1920× 1080 and there are about 50 moving

ants per video on average. There are six videos in the training set, and the remaining two

videos will be used for testing. Table 4.1 shows the screenshots of all videos.
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Table 4.1: Snapshot of videos in the experiment

Data Screenshot of video

Train

Test

The positions and orientations of all ants are computed using a recent automated tracking

algorithm [14]. However, the tracked positions of ants are not always accurate, partially

due to the small sizes and similar appearances of ants. To make the ant position reliable,

we develop a GUI application to correct and adjust the ant location frame by frame. The

screenshot of the annotation tool is shown in Figure 4.5.
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Figure 4.5: User interface of the ant’s behavior adjustment tools we’ve written.

The pairwise behaviors in all videos are manually annotated and reviewed. We set the

spatial window size of bounding volume based on the average size of two interacting ants.

Since the average size of ant in our data set is roughly 80 pixels, we set the spatial window

size to be 150x150 pixels. Three types of behaviors are considered in the experiments,

Trophallaxis, Grooming, and Other Behavior ). Table 4.2 shows that total frames of

ground-truth ant behaviors in two categories.

Table 4.2: Statistics of ground-truth ant behaviors

Statistics
Trophallaxis Grooming

# behaviors # frames mean length # behaviors # frames # mean length

Train 10 15850 1585.0 24 9912 413.0

Test 5 10004 2000.8 5 1958 391.6

4.4.2 Experiment Setup

A large portion of original video is the ant colony’s surrounding where no ant moves.

To accelerate the processing, we crop the input video, keeping the region in the center of

the colony. This process does not skip any ant behaviors and can speedup the computation.
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The cropping are illustrated in Figure 4.6. After this step, the resolution of the cropped

videos is roughly 600× 800.

(a) training video 1

(b) training video 2

Figure 4.6: The preprocess step to crop ant videos

4.4.3 Baseline Methods

We compare our proposal generation method against two baseline methods including

Selective-Search [48], and Action Tubes [18].

The selective search is widely used as the primary method to generate region proposals

because it is simple and fast. It repeatedly divides the input image into multiple sub-regions

based on low level cues like RGB color until the region is small enough or pure enough.

We apply the selective search to each frame of the ant video, and aggregate all region

proposals across all frames. The intersection of region proposals in multiple frames will be

viewed as the final proposal for output. The pipeline of applying selective search is shown

in Figure 4.7.
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Figure 4.7: The pipeline of generating volume proposals based on selective search

The action tube method is an extension of selective search. It considers the motion

smoothness in video by taking advantages of the optical flow of original image. In the pro-

posal aggregation step, it employs dynamic programming to fuse the final output proposal.

Figure 4.8 displays the overflow video proposal generation of action tube .

Figure 4.8: The pipeline Action Tubes of generating volume proposals
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4.4.4 Result

Behavior-specific classifier As described, our pipeline to localize and classify contains

two steps, the video proposal generation and video proposal classification. The behavior-

specific classifier is used to classify behavior proposals in the final step of three methods.

We train the behavior-specific classifier using the ground-truth data of the ant behaviors,

which cropped from original videos. The behavior-specific 3D-CNN classifier is fine-tuned

from the C3D model [47]. We change the number of output to 3 classes and retrain fc7 and

fc8 layers in C3D using a smaller learning rate.

Since we have limited training examples and pairwise ant behaviors are highly simi-

lar, we augment the input videos to increase the training set. For each training video, the

transformations we apply include, horizontal mirroring, vertical mirroring, 90 degree rota-

tion, random white noise, brightness change. After using transformation, the training set is

enlarged about 50 times.

After training, we plot the 2D MDS embedding of the training data in Figure 4.9. As

shown in the figure, three classes of behaviors are well separated in fc7 and fc8 feature

space. It suggests the finetuning of the model to classify different ant behaviors is effective.
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(a) conv5b (b) fc7 (c) fc8

Figure 4.9: 2D MDS embedding of training data’s features, extracted using finetuned 3D-CNN for
behavior-specific classification. As shown in the figure, three classes of behaviors are well separated
in fc7 and fc8 feature space.

4.4.4.1 Comparison of ant behavior proposal generation

Computation Time The computation time of three proposal generation generation meth-

ods in testing is reported in Table 4.3. It can be seen that selective search is the fastest

among three methods. The action tubes is the slowest because it requires separate compu-

tation of optical flow for all frames of the original video. Our proposed method is not the

fastest or the slowest. Our method does not need to compute optical flow since the tempo-

ral smoothness has been captured by 3D-CNN. It is worthwhile noting that selective search

runs on CPU while the other two methods rely on GPU to accelerate the CNN computation.

Table 4.3: Comparison of computation time in the experiment (in hours )

Computation time Optical Flow Proposal Generation Total

Selective Search 0 0.5 0.5

Action Tubes 15 2 17

3D Proposals 0 9 9
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Quality of ant behavior localization To this end, since we use the same behavior-

specific classifier for all three methods, the performance of pairwise ant behavior localiza-

tion is mainly determined by the quality and quantity of the region proposals. In the testing

stage, one common problem is there are multiple overlapped proposals. Non-maximum

suppression (NMS) is a common technique used in edge detection and object detection to

remove redundant detections. We also apply NMS to keep only one candidate region with

maximum classifier score and IoU score.

The number of output proposals must be fixed for fair comparison. In Figure 4.10 (a),

we present the curves of recall of 1000 generated region proposals. The horizontal axis is

the spatial IoU threshold of video volume proposal and the ground-truth behavior. If the

actual IoU is equal to or greater than the threshold, the video proposal is considered a hit.

Otherwise, the video proposal is a miss. It is not surprise that selective search is the lowest

among three methods, because it does not take the motion into consideration. Overall, our

proposed method obtains the highest recall and action tube gets the second highest recall.

Our proposed method gets nearly 100% recall rate when IoU is less than 0.28.

(a) (b)

Figure 4.10: (a) Recall of generated proposals vs IoU threshold;(b) Precision-recall curve
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The quality of ant behavior proposals is also reported using precision-recall curve. When

fixing the IoU threshold by letting IoU = 0.3, we compare the precision of three methods,

with respect to the recall rate. In Figure 4.10 (b), we show the precision-recall curves

of three methods in the ant behavior localization and classification task. The horizontal

axis is the recall rate. In general, our proposed method obtains the highest precision when

recall=0.2. It’s also clear that it obtains the largest area under the precision-recall curve.

It suggests that utilizing 3D-CNN feature map helps localize better behavior proposals. In

Table 4.4, we compute the the precision, recall and F-score of behavior classification using

the default behavior-specific classifier.

Table 4.4: Precision, recall and F-score of detecting ant behaviors using fixed number of volume
proposals (IoU=0.3)

Method Precision Recall F-score

Selective Search 0.55 0.08 0.14

Action Tubes 0.76 0.16 0.26

3D Proposals 0.89 0.24 0.38

Error analysis We select two representative test examples to show the difference of three

proposal generation methods. For selective search, it does not detect the true behavior re-

gions. Several possible reason could explain its limitation. Firstly, selective search is tuned

on general natural images, so it’s not designed and not able to finetune for application-

dependent problems, such as ant videos. Secondly it relies only on appearance of input

image, does not consider motion information. These reasons make it less robust when

adapting to a different yet challenging problem. While action tube improves the localiza-
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tion performance by taking into consideration motion information, it uses generic optical

flow. Our proposed method is trained only with the ant-behaviors, so its ability to localize

ant behavior should be more specialized. This is another advantage of our method. It can

be tuned to be application-dependent video problems.

(a) Test example 1 (b) Test example 2

Figure 4.11: Two test examples of volume proposals generated by three methods. (Yellow) Ground-
truth ant behavior. (Green) Correct localization. (Red) Wrong localization.

4.5 Summary

In this chapter, we introduce a pipeline to localize fine-grained pairwise ant behaviors

from ant videos. We build a method to generate the proposals by reversely looking up the

information in convolutional feature maps of all convolutional layers, from coarse grain to

fine grain. The first step is to compute all the convolutional feature maps through forward

propagation. The second step is to train a set of SVM classifiers at all convolutional layers

in order to rank the proposal’s quality. After the video volume regions are generated, we

use a separate behavior-specific 3D-CNN model to classify them into the desired behavior

categories. To evaluate the effectiveness of our method, we implement two baseline meth-

ods based on selective search and action tube. The experiment results show that our method
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yields better localization performance than two baseline methods.



CHAPTER 5: SUMMARY

Machine learning and computer vision has advanced very fast in the past years. After

the revival of CNN, many challenging real-world problems existing for many years have

been solved, including large-scale object classification, object localization and semantic

segmentation. Some of them have achieved super-human performance in Dog Breed clas-

sification task. While the result is still debatable, it is no doubt that the computer vision

algorithms building on top of CNN is quickly closing the gap between human’s intelligence

and the artificial intelligence in computer vision area. It is still an active research area to

apply CNN-related algorithms on task with imbalanced yet small amount of data, due to the

huge data hungry property of CNN. This dissertation attempts to address three problems.

In chapter 1, we briefly introduce that concepts and fundamentals that are closest to this

work. We discuss the basic components of classical 2D CNN, 3D CNN.

In chapter 2, we develop a method to classify fine-grained echocardiogram view based-

on 3D-CNN. This problem represents the class of tasks having small scale of data but clean

and balanced labels. The proposed method employs pretrained model previously trained

on large but unrelated data set. We finetune the model with limited echocardiogram data

we collected. We augment the training data through many techniques. We compare the

method against several other methods. The experiment result shows that the proposed

method work best on echocardiogram classification. We demonstrate the effectiveness of

3D CNN on solving video analysis task with small amount of labeled training data.
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In chapter 3, we propose an algorithm to detect abnormal video pattern from imbalanced

data set. We utilize the model to detect impaired human heart video from a collection of

echocardiograms. We build a network architecture that combines 3D convolutional autoen-

coder and one-class SVM. The model tasks only the majority class of data as training input

and can be used to predict the likelihood or confidence score it belongs to majority class

when given a new testing video. In the network, encoder aims to learn a feature represen-

tation that can be reconstructed later on with decoder. And the one-class SVM layers tries

to learn a decision boundary separating most of training data with the origin in the high

dimensional feature space. We also implement several baseline methods to compare with.

The result shows that our method based upon autoencoder and One-Class SVM obtains the

highest detection rate on average. The proof-of-concept work shows the same idea can be

applied to solve similar data-imbalance problems.

In chapter 4, we introduce a method to localize ant behavior from videos based on 3D-

CNN feature maps. The method takes advantages of the rich information within the 3D

convolutional feature maps computed by the forward propagation. By analyzing feature

maps from the most coarse layer (very last convolutional layer) to the most fine-grained

layer (very first convolutional layer), we can localize the desired video gradually layer by

layer. We compare our method with two previously methods and it shows that the proposed

method has several advantages.
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