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ABSTRACT

KALVIK JAKKALA. Efficient Bayesian Sensor Placement
and Informative Path Planning. (Under the direction of DR. SRINIVAS AKELLA)

Sensor placement and Informative Path Planning (IPP) are fundamental problems

that frequently arise in various domains. The sensor placement problem necessitates

finding optimal sensing locations in an environment, enabling accurate estimation of

the overall environmental state without explicitly monitoring the entire space. Sensor

placement is particularly relevant for problems such as estimating ozone concentra-

tions and conducting sparse-view computed tomography scanning. IPP is a closely

related problem that seeks to identify the most informative locations along with a

path that visits them while considering path constraints such as distance bounds and

environmental boundaries. This proves useful in monitoring phenomena like ocean

salinity and soil moisture in agricultural lands—situations where deploying static sen-

sors is infeasible or the underlying dynamics of the environment are prone to change

and require adaptively updating the sensing locations.

This thesis provides new insights leveraging Bayesian learning along with contin-

uous and discrete optimization, which allow us to reduce the computation time and

tackle novel variants of the considered problems. The thesis initially addresses sensor

placement in both discrete and continuous environments using sparse Gaussian pro-

cesses (SGP). Subsequently, the SGP-based sensor placement approach is generalized

to address the IPP problem. The method demonstrates efficient scalability to large

multi-robot IPP problems, accommodates non-point FoV sensors, and models differ-

entiable path constraints such as distance budgets and boundary limits. Then the

IPP approach is further generalized to handle online and decentralized heterogeneous

multi-robot IPP. Next, the thesis delves into IPP within graph domains to address

the methane gas leak rate estimation and source localization problem. An efficient
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Bayesian approach for leak rate estimation is introduced, enabling a fast discrete

optimization-based IPP approach. Lastly, the thesis explores sensor placement in

graph domains for wastewater-based epidemiology. A novel graph Bayesian approach

is introduced, facilitating the placement of sensors in wastewater networks to maxi-

mize pathogen source localization accuracy and enable efficient source localization of

pathogens.
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CHAPTER 1: INTRODUCTION

This thesis addresses two closely related problems: sensor placement and informa-

tive path planning. Each problem is further partitioned into data field estimation and

source localization problems. Bayesian learning, along with discrete and continuous

optimization methods, are leveraged to develop computationally fast approaches to

address these problems.

Sensor placement: Numerous real-world tasks, including environmental moni-

toring, infrastructure monitoring, and agriculture, necessitate the observation of phe-

nomena like ozone concentration, ocean water salinity, soil moisture, and temperature.

However, the cost and feasibility constraints often render it impractical to monitor the

entire environment with a dense sensor network. Hence, our objective is to identify

strategic locations for a limited set of sensors, ensuring that the data they provide

yields the most accurate estimate of the phenomenon across the entire environment.

This problem is commonly referred to as the sensor placement problem. Figure 1.1

illustrates sensor placement for environment monitoring and source localization.

(a) (b)

Figure 1.1: (a) Illustration of sensor placement for environment monitoring. (b)
Illustration of sensor placement in a wastewater network to localize virus outbreaks.

Informative path planning: Finding the most informative path for data col-
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(a) (b)

Figure 1.2: (a) Illustration of informative path planning for environment monitoring.
(b) Illustration of informative path planning for gas leak source localization.

lection is known as the Informative Path Planning (IPP) problem. The problem is,

at its core, a sensor placement problem with path constraints, i.e., finding the most

informative sensing locations while also ensuring that we satisfy any path constraints

such as a distance budget and boundary limits. Figure 1.2 illustrates informative

path planning for environment monitoring and source localization.

Moreover, both of the problems mentioned above have multiple variants depending

on factors such as the type of environment—discrete, continuous, or graph—and

the type of sensors—point, non-point, or integrated. Here, point sensors have a

point field-of-view (FoV), such as a temperature probe; non-point sensors have a

non-point FoV, such as a thermal vision camera, and integrated sensors integrate the

data within their FoV, as seen in a tunable diode laser spectrometer (TDLAS) gas

sensor. Therefore, one must explicitly consider such factors while developing solution

approaches to address these problems.

1.1 Thesis Contributions

1. Sensor Placement in Continuous and Discrete Environments for Data

Field Estimation

(a) We present an approach to obtain sensor placements for monitoring spa-

tially (or spatiotemporally) correlated phenomena in continuous spaces.
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Our approach formulates the sensor placement problem as a regression

problem using SGPs.

(b) Our approach can even be used for sensor placement in discrete environ-

ments. We present an efficient assignment problem-based method to map

our continuous space solutions to discrete solution spaces.

2. Informative Path Planning in Continuous and Discrete Environments

for Data Field Estimation

(a) We present an efficient informative path planning (IPP) approach using

sparse Gaussian processes for spatially and spatio-temporally correlated

environments. Our approach does not discretize the environment; it in-

stead optimizes paths in a continuous space using efficient gradient-based

approaches.

(b) We present an approach to model routing constraints such as a distance

budget and the environment’s boundary limits.

(c) Our approach can accommodate both discrete and continuous sensing

robots, with both point and non-point sensing FoV shapes, and can gen-

erate smooth paths.

(d) Our approach can plan informative paths for multiple robots simultane-

ously.

3. Online and Decentralized Heterogeneous Multi-Robot Informative

Path Planning in Continuous and Discrete Environments for Data

Field Estimation

(a) We generalize our offline IPP approach to accommodate online multi-robot

IPP by employing streaming sparse Gaussian processes.
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(b) Our approach can also model heterogeneous multi-robot IPP, wherein each

robot can possess a different sensing model and path constraints.

(c) Our approach employs a K-nearest neighbor-based environment partition-

ing scheme to effectively enable decentralized multi-robot IPP with mini-

mal communication requirements.

4. Informative Path Planning in Graphs for Source Localization

(a) Presents a fast and effective Bayesian approach for leak rate estimation

from gas concentration data.

(b) Derives an efficient analytical solution to an information metric—Expected

Entropy Reduction (EER)—that is used in the IPP problem.

(c) Improves the runtime efficiency of the Generalized Cost-benefit (GCB)

algorithm used to solve the IPP problem.

(d) Introduces an arc routing variant of the GCB algorithm for IPP in graph

networks.

5. Sensor Placement in Graphs for Source Localization

(a) Introduces an approach to model a reduced graph representation of wastew-

ater networks ideal for efficient sensor placement optimization and source

localization.

(b) Presents a novel approach to use the inherent structure of wastewater

networks to build graphical Bayesian networks.

(c) Establishes a Bayesian optimization objective that can be used to effi-

ciently find ideal sensor placements for accurate virus source localization.

The method also ensures that the placements collect high-concentration

wastewater samples.
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(d) Presents a computationally efficient Bayesian source localization approach.

(e) Empirically establishes that our optimization objective is submodular, giv-

ing us a (1− 1/e) approximation factor on our solution placements.

1.2 Preliminaries

A key component of sensor placement and informative planning approaches is being

able to quantify the informativeness of sensing locations. We use Bayesian methods to

define distributions over quantities of interest (e.g., the temperature at each location

in an environment) and quantify the informativeness of locations using information

metrics such as entropy and mutual information. This section details Gaussian dis-

tributions, their infinite-dimensional extension—Gaussian processes, sparse Gaussian

processes, and mutual information.

1.2.1 Gaussian Distributions

A random variable y ∈ Rd is said to have a Gaussian distribution with mean µ and

covariance Σ if its probability density function is given by the following:

p(y|µ,Σ) = 1

(2π)
d
2 |Σ| 12

e
−1
2
((x−µ)TΣ−1(x−µ)) (1.1)

A multivariate Gaussian distribution’s mean and covariance matrices can be par-

titioned. Consider the Gaussian distributed random variables y, with mean µ and

covariance matrix Σ:

y =

yA
yB

 µ =

µA
µB

 Σ =

ΣAA ΣAB

ΣBA ΣBB

 (1.2)

It has the following key properties:

1. Normalization: The integral of a Gaussian distributed random variable is

equal to one:
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∫
y

p(y)dy = 1 (1.3)

2. Summation: The distribution of the sum of two random variables follows a

Gaussian distribution if both random variables are Gaussian distributed:

yA ∼ N (µA,ΣAA)

yB ∼ N (µB,ΣBB)

yA + yB ∼ N (µA + µB,ΣA + ΣB)

(1.4)

3. Conditioning: Conditioning Gaussian distributed random variable results in

a Gaussian distributed posterior. Moreover, the posterior’s mean and covari-

ance can be calculated analytically; this is not always possible for most other

distributions:

p(yA|yB) =
p(yA, yB)∫
yA
p(yA, yB)

=
p(yB|yA)p(yA)∫
yA
p(yA, yB)

yA|yB ∼ N (µA + ΣABΣ
−1
BB(yB − µB), ΣAA − ΣABΣ

−1BBΣBA)

(1.5)

4. Marginalization: Marginalization of a variable from a multivariate Gaussian

distribution results is a Gaussian distributed posterior:

p(yA) =

∫
yB

p(yA, yB)dyB

yA = N (µA,ΣAA)

(1.6)

1.2.2 Gaussian processes (GPs)

Gaussian processes [2] are a non-parametric Bayesian approach that we can use for

regression, classification, and generative problems. GPs can also be viewed as infinite

dimensional extensions of Gaussian distributions, in which, instead of considering a
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distribution over a finite number of random variables, we consider an infinite number

of random variables, giving us a distribution over functions.

Suppose we are given a regression task’s training set D = {(xi, yi), i = 1, ..., n}

with n data samples consisting of inputs xi ∈ Rd and noisy labels yi ∈ R, such that,

yi = f(xi) + ϵi, where ϵi ∼ N (0, σ2
noise). Here σ2

noise is the variance of the independent

additive Gaussian noise in the observed labels yi, and the latent function f(x) models

the noise-free function of interest that characterizes the regression dataset.

GPs model such datasets by assuming a GP prior over the space of functions that

we could use to model the dataset, i.e., they assume the prior distribution over the

function of interest p(f |X) = N (0,K), where f = [f1, f2, ..., fn]
⊤ is a vector of latent

function values, fi = f(xi). X = [x1,x2, ...,xn]
⊤ is a vector (or matrix) of inputs, and

K ∈ Rn×n is a covariance matrix, whose entries Kij are given by the kernel function

k(xi,xj).

The kernel function parameters are tuned using Type II maximum likelihood [3]

so that the GP accurately predicts the training dataset labels. We can compute the

posterior of the GP with the mean and covariance functions:

my(x) = Kxn(Knn + σ2
noiseI)

−1y ,

ky(x,x
′) = k(x,x′)−Kxn(Knn + σ2

noiseI)
−1Knx′ ,

(1.7)

where y is a vector of all the outputs, and the covariance matrix subscripts indicate

the variables used to compute it, i.e., Knn is the covariance of the training inputs X,

and Kxn is the covariance between the test input x and the training inputs X.

Note that even though the method is called Gaussian processes, the Gaussian as-

sumption applies only to the likelihood p(y|x) and prior distribution p(x). Moreover,

there are generalizations of Gaussian processes that leverage approximate inference

techniques [4, 5, 6] to accommodate non-Gaussian likelihoods. As such, Gaussian

processes are capable of modeling a large class of functions. However, the approach



8

requires an inversion of a matrix of size n × n, which is a O(n3) operation, where n

is the number of training set samples. Thus this method can handle at most a few

thousand training samples.

1.2.3 Sparse Gaussian processes (SGPs)

Sparse Gaussian processes [7, 8, 9, 10, 5] address the computational cost issues

of Gaussian processes. SGPs do this by approximating the full GP using another

Gaussian process supported with m data points called inducing points, where m≪ n.

Since the SGP support set (i.e., the data samples used to estimate the training set

labels) is smaller than the full GP’s support set (the whole training dataset), SGPs

reduce the matrix inversion cost to O(m3).

There are multiple SGP approaches; one particularly interesting approach is the

sparse variational GP (SVGP) [8], a well-known approach in the Bayesian community

that has had a significant impact on the sparse Gaussian process literature given its

theoretical properties [11, 12].

To approximate the full GP, the SVGP approach uses a variational distribution

q parametrized with m inducing points. The approach treats the inducing points

as variational parameters instead of model parameters, i.e., the inducing points

parametrize a distribution over the latent space of the SGP instead of directly param-

eterizing the latent space. Thus the inducing points are protected from overfitting.

The SVGP approach’s mean predictions and covariances for new data samples are

computed using the following equations:

mq
y(x) = KxmK

−1
mmµ ,

kqy(x,x
′) = k(x,x′)−KxmK

−1
mmKmx′+

KxmK
−1
mmAK−1

mmKmx′ ,

(1.8)

where the covariance term subscripts indicate the input variables used to com-

pute the covariance; m corresponds to the inducing points Xm and x corresponds
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to any other data point x. µ and A are the mean and covariance of the optimal

variational distribution q∗. The approach maximizes the following evidence lower

bound (ELBO) F to optimize the parameters of the variational distribution:

F =
n

2
log(2π)︸ ︷︷ ︸
constant

+
1

2
y⊤(Qnn + σ2

noiseI)
−1y︸ ︷︷ ︸

data fit

+

1

2
log |Qnn + σ2

noiseI|︸ ︷︷ ︸
complexity term

− 1

2σ2
noise

Tr(Knn −Qnn)︸ ︷︷ ︸
trace term

,
(1.9)

where Qnn = KnmK
−1
mmKmn and Kmm is the covariance matrix of the inducing

points Xm. The lower bound F has three key terms. The data fit term ensures that

the training set labels are accurately predicted. The complexity and trace terms are

independent of the labels. The complexity term ensures that the inducing points

are spread apart to ensure good coverage of the whole training set, and the trace

term represents the sum of the variance of the conditional p(f |fm). Here fm are the

latent variables corresponding to the inducing point inputs Xm. When the trace term

becomes zero, the m solution inducing points become a sufficient statistic for the n

training samples, i.e., an SGP with only the m solution inducing points can make the

same predictions as a GP with all the n samples in its training set. Please refer to

Bauer et al. [11] for an in-depth analysis of the SVGP’s lower bound.

1.2.4 Mutual Information

Mutual information (MI) is an information metric that can be used to determine

the amount of information overlap between two random variables. MI is derived from

the KL divergence, which can be used to quantify the similarity of two distributions,

i.e., it is zero if the two distributions are the same. However, it is not symmetric, i.e.,

KL(p||q) ̸= KL(q||p), when p(x) and q(x) are different. The KL divergence is defined

as follows:
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KL(p||q) = −
∫
p(x) ln q(x)dx−

(
−
∫
p(x) ln p(x)

)
= −

∫
p(x) ln

{
q(x)

p(x)

}
dx

(1.10)

The MI between the random variables x and y is defined as follows:

MI[x, y] = KL(p(x, y)||p(x)p(y))

= −
∫ ∫

p(x, y) ln

{
p(x)p(y)

p(x, y)

}
dxdy

= H(x)−H(x|y)

(1.11)

Here, H is the entropy function.

Although MI is theoretically well-grounded and ideal for determining sensing loca-

tions in sensor placement and informative path planning problems, it is often difficult

to compute. This is because of the integrals needed to compute MI can become

intractable depending on the distributions over the random variables.

As such, a common approach is to fit a Gaussian process over the random variables

and then compute MI between the variables [13]. Although, the approach is still

computationally expensive, it is tractable.



CHAPTER 2: Sensor Placement in Continuous and Discrete Environments for Data

Field Estimation

2.1 Introduction

Meteorology and climate change are concerned with monitoring correlated environ-

mental phenomena such as temperature, ozone concentration, soil chemistry, ocean

salinity, and fugitive gas density [13, 14, 15, 16, 17]. However, it is often too expensive

and, in some cases, even infeasible to monitor the entire environment with a dense

sensor network. We therefore aim to determine strategic locations for a sparse set of

sensors so that the data from these sensors gives us the most accurate estimate of the

phenomenon over the entire environment. We address this sensor placement problem

for correlated environment monitoring.

Moreover, we focus on the sparsely labeled sensor placement problem, wherein only

a few labeled data samples are available. This data restriction limits the applicability

of many parametric approaches [18], such as deep learning and deep reinforcement

learning. The sparsely labeled sensor placement problem is a fundamental problem

with diverse and important applications. For example, informative path planning

(IPP) is a crucial problem in robotics that involves identifying informative sensing

locations for robots while considering travel distance constraints [14]. Similar sen-

sor placement problems arise in autonomous robot inspection and monitoring of 3D

surfaces [19], for example, when a robot must monitor stress fractures on an aircraft

body. Recently a sensor placement approach has even been used to learn dynamical

systems in a sample-efficient manner [20]. These problems require fast solutions, but

the sensor placement problem often becomes a computationally expensive bottleneck

in current approaches.
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Figure 2.1: Illustration of sensor placement in a farm.

An effective approach to address the considered sensor placement problem is to use

Gaussian processes (GPs) [21, 22, 23, 13]. We can capture the correlations of the

environment using the GP’s kernel function and then leverage the GP to estimate

information metrics such as mutual information (MI). Such metrics can be used to

quantify the amount of new information that can be obtained from each candidate

sensor location. However, computing MI using GPs is very expensive as it requires

the inversion of large covariance matrices whose size increases with the environment’s

discretization resolution. Consequently, these methods do not scale well to continuous

spaces and 3D spaces, and have limited applicability when addressing the aforemen-

tioned applications, which often necessitate a large number of sensor placements or a

fine sensor placement precision that is infeasible with discrete approaches.

Sparse Gaussian processes (SGPs) [24] are a computationally efficient variant of

GPs. Therefore, one might consider using SGPs instead of GPs in GP-based sensor

placement approaches. However, a naive replacement of GPs with SGPs is not always

possible or efficient. This is because SGPs must be retrained for each evaluation of
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MI. In sensor placement approaches, MI is often evaluated repeatedly, making SGPs

computationally more expensive than GPs for sensor placement. So even though

SGPs have been studied for over two decades, SGPs have received limited attention

for addressing the sensor placement problem [25].

The objective of this paper is to develop an efficient approach for addressing the

sparsely labeled sensor placement problem in correlated environments. We present an

efficient, sparsely supervised, gradient-based approach for sensor placement in contin-

uous environments by leveraging the connection between SGPs and sensor placement

problems, and the inherent structure of the SGP’s optimization function. Unlike most

prior approaches, our method is fully differentiable. As such, it can even be incor-

porated into deep neural networks optimized for other downstream tasks. We also

generalize our method to efficiently handle sensor placement in discrete environments.

Our approach enables efficient sensor placement in 3D spaces, spatiotemporally cor-

related spaces, and derivative problems such as informative path planning critical for

robotics applications.

2.2 Problem Statement

Consider a correlated stochastic process Ψ over an environment V ⊆ Rd modeling

a phenomenon such as temperature. The sensor placement problem is to select a set

A of s sensor locations {xi ∈ V , i = 1, ..., s} so that the data yi ∈ R collected at these

locations gives us the most accurate estimate of the phenomenon at every location

in the environment. We consider estimates with the lowest root-mean-square error

(RMSE) to be the most accurate. An ideal solution to this sensor placement problem

should have the following key properties:

1. The approach should be computationally efficient and produce solutions with

low RMSE. Since the environment is correlated, this should also result in the

solution sensor placements being well separated to ensure that the sensors collect

only novel data that is crucial for accurately reconstructing the data field.
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2. The approach should handle both densely and sparsely labeled environments.

In a densely labeled environment, we have labeled data at every location in

the environment. In a sparsely labeled environment, we have labeled data that

is sufficient only to capture the correlations in the environment, or we have

domain knowledge about how the environment is correlated.

3. The approach should handle both continuous sensor placements A ⊆ V , where

the sensors can be placed anywhere in the environment, and discrete sensor

placements A ⊆ S ⊆ V , where the sensors can only be placed at a subset of a

pre-defined set of locations S.

2.3 Related Work

Early approaches to the sensor placement problem [26, 27] used geometric models

of the sensor’s field of view to account for the region covered by each sensor and used

computational geometry or integer programming methods to find solutions. Such

approaches proved useful for problems such as the art gallery problem [28], which

requires one to place cameras so that the entire environment is visible. However,

these approaches do not consider the spatial correlations in the environment.

This problem is also studied in robotics [29, 30, 31]. Similar to geometric ap-

proaches, authors focus on coverage by leveraging Voronoi decompositions [28]. A

few authors [32, 33], have even considered Gaussian kernel functions, but they did

not leverage the full potential of Gaussian processes.

Gaussian process (GP) based approaches addressed the limitations of geometric

model-based sensor placement approaches by learning the spatial correlations in the

environment. The learned GP is then used to quantify the information gained from

each sensor placement while accounting for the correlations of the data field. How-

ever, these methods require one to discretize the environment and introduce severe

computational scaling issues. Our method finds sensor locations in continuous spaces
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and overcomes the computational scaling issues.

Early GP-based approaches [22, 23] placed sensors at the highest entropy loca-

tions. However, since GPs have high variance in regions of the environment far from

the locations of the training samples, such approaches tended to place sensors at the

sensing area’s borders, resulting in poor coverage of the area of interest. [13] used

mutual information (MI) computed with GPs to select sensor locations with the max-

imal information about all the unsensed locations in the environment. The approach

avoided placing the sensors at the environment’s boundaries and outperformed all

earlier approaches in terms of reconstruction quality and computational cost.

[34] leveraged a full variational Gaussian process to compute mutual information

(MI) and then utilized a stochastic greedy algorithm to select the solution sensors

that maximize MI. This method is a computationally faster generalization of [13].

However, it still discretizes the environment and performs a combinatorial search,

which limits its scalability to problems in 3D spaces.

[16] recently proposed an approach to model spatiotemporal data fields using a

combination of sparse Gaussian processes (SGPs) and state space models. They then

used the spatiotemporal model to sequentially place sensors in a discretized version of

the environment. Although their spatiotemporal model of the environment resulted

in superior sensor placements, the combinatorial search becomes prohibitively large

and limits the size of the problems that can be solved using their method.

[35] addressed sensor placement in continuous spaces by first mapping the data

samples to a lower-dimensional space and then estimating a lower bound for the mu-

tual information among the data. The lower bound on the mutual information was

then optimized using Bayesian optimization to find the solution sensing locations.

Sensor placement in continuous environments has also been addressed in the con-

text of informative path planning using gradient-free optimization methods such as

evolutionary algorithms [36] and Bayesian optimization [37]. However, both of these
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approaches maximize MI computed using GPs, which is computationally expensive.

In addition, evolutionary algorithms and Bayesian optimization are known to have

poor scalability.

A closely related problem is sensor placement with labeled data, where we either

have a large corpus of real or simulated data, which is used to select a subset of sensing

locations and validate their performance from the reconstruction error on the training

set. [38] used random forests, [25] used SGPs and optimized them using genetic

algorithms, [39] leveraged reinforcement learning, and [40] used linear programming

to address this problem. Although such approaches are capable of finding good sensor

placement locations, they do not generalize to novel environments where we do not

have any significant amounts of data. Our approach addresses the sparsely labeled

sensor placement problem.

2.4 Method

2.4.1 Theoretical Foundation

We first address the SP problem, which requires us to find sensing locations in

an environment so that the data collected at these sensing locations will accurately

reconstruct the data field being monitored. We treat the underlying data field as a

stochastic process that can be modeled using a Gaussian process (GP). Note that GPs

are not limited to modeling Gaussian distributed functions; a GP is a set of random

variables f(X) = {f(x) | x ∈ X} for which any finite subset follows a Gaussian

distribution. Here, the latent variables f(X) represent the noise-free labels of the

phenomenon being monitored at every location in the environment.

To find the solution sensor placements, we approximate the abovementioned GP

using a sparse distribution q, which introduces m auxiliary inducing latent variables

fm(Xm):
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X̂ = {X,Xm} ,

q(f̂(X̂)) = p(f(X), fm(Xm))

= p(f(X)|fm(Xm))q(fm(Xm)) .

(2.1)

Here, the sparse distribution q is formulated so that all the information relevant

to predicting the latent variables f is captured by the distribution q(fm(Xm)), i.e.,

knowing the latents fm(Xm) would suffice to predict all remaining latent variables

f(X). The conditional p(f(X)|fm(Xm)) can be explicitly computed for a given X and

Xm. Therefore, only q(fm(Xm)) needs to be optimized in q(f̂(X̂)). Note that from

here on, we stop explicitly denoting the dependence of the latent variables f on the

input locations X to simplify notation.

We optimize the sparse distribution q(f̂) by minimizing the KL-divergence between

the full GP modeling the underlying process p(f̂) and the sparse distribution q(f̂):

F(q) = KL(p(f̂)||q(f̂)) (2.2)

But p(̂f) in the above formulation is only a prior on the stochastic process modeling

the phenomenon of interest, and we need to provide it with labeled data y, i.e.,

p(̂f |y)) for it to represent the current state of the process. Including y has two key

implications. First, it allows us to learn the GP hyperparameters (i.e., the kernel

function parameters and data noise variance), thereby capturing the correlations in

the stochastic process. Second, it biases our optimized sparse approximation to ensure

that it captures the current realization of the stochastic process at the locations

corresponding to the labels y.

However, since our SP problem does not assume access to the ground truth labeled

data, we can not include it in our formulation. We address this problem by intro-

ducing an uninformative training set with the labels y all set to zero, and the inputs

are defined to be the locations within the boundaries of the environment. Such an
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approach would still bias the sparse approximation to match the process within the

confines of the monitoring environment. But we cannot use it to learn the hyper-

parameters. We address this issue by learning the hyperparameters from the sparse

set of labeled data provided to us, as mentioned in the problem statement. We opti-

mize the hyperparameters using the standard GP formulation and type II maximum

likelihood [2].

We now address optimizing the sparse approximation q. The current formula-

tion (Equation 2.2), which uses the forward KL-divergence, is computationally in-

tractable to optimize if we include the labels [41]. Nonetheless, there are multiple

alternative approaches to optimize the sparse approximation, such as variational infer-

ence and expectation proportion [3]. We leverage variational inference in this article,

which gives us the following evidence lower bound (ELBO) as the new optimization

objective:

F(q) = Eq
[
log p(̂f ,y)

]
− Eq

[
log q(̂f)

]
. (2.3)

Note that the above uses the reverse KL-divergence, and the training set labels y

are all set to zero, with the corresponding inputs being the locations from within the

monitoring environment. Substituting the full GP and the sparse approximation into

the above ELBO gives us the following:

F(q) =
∫
q(fm) log

N (y|α, σ2
noiseI)p(fm)

q(fm)
dfm

− 1

2σ2
noise

Tr(Kff −Q)

α = E[f | fm] = KnmK
−1
mmfm

Q = KnmK
−1
mmKmn .

(2.4)

Here, σnoise is the data noise, and the covariance matrix K subscripts indicate

the variables used to compute it, with n indicating the n zero labeled points X
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corresponding to y and m indicating the m inducing points Xm. By leveraging

Jensen’s inequality [3], we get the following optimal sparse distribution q∗ as the

solution to the ELBO:

q∗(f̂) = N (fm|σ−2
noiseKmmΣ

−1Kmny,KmmΣ
−1Kmm) , (2.5)

where Σ = Kmm + σ−2
noiseKmnKnm. The input locations Xm corresponding to the

auxiliary latents fm used in the optimal sparse approximation can be optimized by

maximizing the following expanded form of the ELBO:

F(q) = n

2
log(2π)︸ ︷︷ ︸
constant

+
1

2
y⊤(Qnn + σ2

noiseI)
−1y︸ ︷︷ ︸

data fit

+

1

2
log |Qnn + σ2

noiseI|︸ ︷︷ ︸
complexity term

− 1

2σ2
noise

Tr(Knn −Qnn)︸ ︷︷ ︸
trace term

,
(2.6)

where Qnn = KnmK
−1
mmKmn. The lower bound F has three key terms. The data fit

term ensures that the training set labels are accurately predicted, which is disabled

by setting the labels to zero. The complexity and trace terms are independent of the

labels. The complexity term ensures that the inducing points (i.e., the input points

Xm corresponding to the m auxiliary latent variables fm) are spread apart to ensure

good coverage of the whole training set, and the trace term represents the sum of

the variance of the conditional p(f |fm). When the trace term becomes zero, the m

solution inducing points become a sufficient statistic for the n training samples, i.e.,

the m solution inducing points can make the same predictions as a GP with all the

n samples in its training set.

The optimized Xm correspond to the solution sensor placement locations since

the data collected at these locations can be used to recover the state of the full GP

modeling the phenomenon of interest. Also, the inducing points can be optimized

in continuous spaces using gradient-based approaches such as gradient descent and
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Newton’s method. In contrast to the non-differentiable SP approaches, the above

formulation does not require one to discretize the environment, and is significantly

faster to optimize. As such, the formulation scales well to large sensor placement

problems.

Moreover, the above result can be viewed as a special case of sparse Gaussian

processes (SGPs, [7, 8]) with the training set inputs corresponding to the locations

within the data field being monitored and the labels all set to zero. In particular, our

formulation closely follows that of the sparse variational free energy-based Gaussian

process (SVGP); please refer to [8] for the full derivation of the above results.

Our formulation enables leveraging the vast SGP literature to address multiple

variants of the SP problem. For instance, we can use stochastic gradient optimiz-

able SGPs [42, 5] with our approach to address significantly large SP problems, i.e.,

environments that require a large number of sensor placements and have numerous

obstacles that need to be avoided. Similarly, we can use spatiotemporal SGPs [1] with

our approach to efficiently optimize sensor placements for spatiotemporally correlated

environments. [11] conducted an in-depth analysis of the SVGP’s lower bound, we

can even leverage these findings to understand how to better optimize the inducing

points in our formulation. Additionally, this formulation enables us to bound the KL

divergence between the sparse approximation and the ground truth full GP modeling

the underlying phenomenon in the environment:

Theorem 1. [43] SupposeN training inputs are drawn i.i.d according to input density

p(x), and k(x,x) < v for all x ∈ X. Sample M inducing points from the training data

with the probability assigned to any set of size M equal to the probability assigned to

the corresponding subset by an ϵ k-Determinantal Point Process with k = M . With

probability at least 1− δ,

KL(Q||P̂ ) ≤ C(M + 1) + 2Nvϵ

2σ2
nδ

(
1 +
||y||22
σ2
n

)
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where C = N
∑∞

m=M+1 λm, λm are the eigenvalues of the integral operator K for

kernel k and p(x).

Here, k represents the k-value in the k-determinantal point process, and k repre-

sents the kernel function. In our sensor placement problem, Q is equivalent to the

sparse approximation that can be used to predict the state of the whole environment

from sensor data collected at the inducing points, and P̂ is the ground truth GP

that senses every location in the environment. The theorem also suggests an asymp-

totic convergence guarantee, i.e., as the number of sensing locations increases, the

probability of the sparse approximation becoming exact approaches one.

Please refer to Appendix A.1 for additional theoretical analysis of the approach,

which details our derivation to show that our formulation is not submodular and the

conditions under which it behaves similarly.

2.4.2 Continuous-SGP: Continuous Space Solutions

Next, we detail Algorithm 1, which leverages the formulation above to address

the SP problem in continuous spaces. Given an environment, we first sample random

unlabeled locations within the boundaries of the monitoring regions. These unlabeled

locations X are used as the training set inputs, and their labels are all set to zero.

Next, we sample unlabeled locations to initialize the inducing points Xm of the

SGP used to solve the SP problem. As per the findings of [43], the initial inducing

points’ locations significantly affect the quality of the sparse approximation that can

be obtained with SGPs. We recommend using methods such as the conditional vari-

ance [43] or K-means [3] on the randomly sampled training dataset to initialize the

inducing points.

We use the sampled unlabeled training set and the inducing points to initialize

an SGP. This article uses the spare variational free energy-based Gaussian pro-

cess (SVGP) as it is the SGP counterpart to our formulation. However, as mentioned

in the previous subsection, any SGP approach can be used in our algorithm to address
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Algorithm 1: Continuous-SGP approach for obtaining sensor placements in
continuous spaces. Here, θ are the hyperparameters learned from either his-
torical data or expert knowledge, Φ is a random distribution defined within
the boundaries of the environment V , s is the number of required sensors, n
is the number of random unlabeled locations used to train the SGP, and γ is
the SGP learning rate.
Input: θ,V ,Φ, s, n, γ
Output: Sensor placements A ∈ V , where |A| = s

1 X ∼ Φ(V) / / Draw n unlabeled locations

2 Xm ∼ Φ(V) / / Draw s inducing point locations

/* Initialize the SGP with zero mean and zero labeled data */
3 φ = SGP(mean = 0, θ;X,y = 0,Xm)
/* Optimize the inducing points Xm by maximizing the objective

function F of the SGP φ using gradient descent with a
learning rate of γ */

4 Loop until convergence :
5 Xm ← Xm + γ∇F(Xm)
6 return Xm

the SP problem.

We then optimize the inducing point locations of the SGP via the complexity and

trace terms of the lower bound F ; the data fit term is disabled by the zero labeled

training set. Since the lower bound F is fully differentiable, we can use gradient-

based approaches to efficiently optimize the inducing points in continuous spaces.

This gives us the optimized inducing points, which, in turn, represent the solution

sensor placement locations.

2.4.3 Greedy-SGP: Greedy Discrete Space Solutions

Now consider the case when we want to limit the solution of the SP problem to a

discrete set of candidate locations, either a subset of the training points or any other

arbitrary set of points. In this case, we can generalize the inducing points selection

approach for SGPs outlined in [8] to handle non-differentiable data domains.

The approach (Algorithm 2) entails sequentially selecting the inducing points Xm

from the candidate set S using a greedy approach (Equation 2.7). It considers the

increment in the SVGP’s optimization bound F as the maximization criteria. In each
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Algorithm 2: Greedy-SGP approach for obtaining sensor placements in dis-
crete environments (i.e., sensor placements limited to a given set of candidate
sensor locations) using a greedy selection approach. Here, θ are the hyperpa-
rameters learned from either historical data or expert knowledge, S is the set
of candidate sensor placement locations, Φ is a random distribution defined
within the boundaries of the environment V , and s is the number of required
sensors, n is the number of random unlabeled locations used to train the SGP.
Input: θ,V ,S,Φ, s, n
Output: Sensor placements A ⊂ S, where |A| = s

1 X ∼ Φ(V) / / Draw n unlabeled locations

/* Initialize the SGP with zero mean and zero labeled data */
2 φ = SGP(mean = 0, θ;X,y = 0)
/* Sequentially select each of the solution inducing point

locations using the criteria defined in terms of the
optimization bound F of the SGP φ */

3 Xm = {∅}
4 repeat
5 x∗

m = argmaxx∈S\Xm
F(Xm ∪ {x})−F(Xm)

6 Xm ← Xm ∪ x∗
m

7 until |Xm| = s;
8 return Xm

iteration, we select the point x that results in the largest increment in the SVGP’s

bound F upon being added to the current inducing points set Xm:

Xm ← Xm ∪ {argmax
x∈S\Xm

F(Xm ∪ {x})−F(Xm)} . (2.7)

Here Xm is the set of inducing points/sensing locations, and S\Xm is the set of

remaining candidate locations after excluding the current inducing points set Xm.

Comparison with Mutual Information: The Greedy-SGP approach has a few

interesting similarities to the mutual information (MI) based sensor placement ap-

proach by [13]. The MI approach uses a full GP to evaluate MI between the sensing

locations and the rest of the environment to be monitored. The MI-based criteria

shown below was used to greedily select sensing locations:

MI(Xm ∪ {x})−MI(Xm) = H(x|Xm)−H(x|S\Xm) , (2.8)
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where Xm is the set of selected sensing locations, and S\Xm is the set of all can-

didate locations in the environment excluding the current sensor locations Xm. A

Gaussian process (GP) with known kernel parameters was used to evaluate the en-

tropy terms. The SVGP’s optimization bound-based selection criterion to obtain

discrete solutions using the greedy algorithm is equivalent to maximizing the follow-

ing:

∆F = KL(q(fi|fm)||p(fi|y))−KL(p(fi|fm)||p(fi|y)) . (2.9)

The first KL term measures the divergence between the sparse distribution q over

fi (the latent variable corresponding to x) given the latents of the inducing points set

Xm, and the exact conditional given the training set labels y (the conditional uses

the training set inputs X as well). The second term acts as a normalization term

that measures the divergence between the exact conditional over fi given the latents

of the inducing points and the same given the training labels.

A key difference between the Greedy-SGP and the MI approach is that we use effi-

cient cross-entropy (in the KL terms) to account for the whole environment. In con-

trast, the MI approach uses the computationally expensive entropy term H(x|S\Xm).

However, the overall formulation of both approaches is similar. We validate this em-

pirically in the experiments section. Please refer to Appendix A.1 for the derivation

of Equation 2.9.

2.4.4 Discrete-SGP: Gradient-based Discrete Space Solutions

The problem with any greedy selection algorithm is its inherent sequential selection

procedure. Given any sequentially optimized solution, it may be possible to improve

the solution by replacing one or more of the solution locations with different locations

from the candidate set. Thus, selecting the sensing locations sequentially restricts the

solution placements to a subset of the solution space. We could find a better solution
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by simultaneously optimizing all the sensing locations as such an approach would

account for their combined effect instead of considering only the incremental effect of

the solution locations in each selection iteration.

Algorithm 3: Discrete-SGP approach for obtaining sensor placements in dis-
crete environments (i.e., sensor placements limited to a given set of candidate
sensor locations) using gradient descent. Here, θ are the hyperparameters
learned from either historical data or expert knowledge, S is the set of can-
didate sensor placement locations, Φ is a random distribution defined within
the boundaries of the environment V , s is the number of required sensors, n
is the number of random unlabeled locations used to train the SGP, and γ is
the SGP learning rate.
Input: θ,V ,S,Φ, s, n, γ
Output: Sensor placements A ⊂ S, where |A| = s
/* Get the s continuous space sensor placements using the

gradient based approach Continuous-SGP (Algorithm 1) */
1 Xm = Continuous-SGP(θ,V ,Φ, s, n, γ)
// Compute pairwise L2 distances

2 C = 0|Xm|×|S|

3 for i← 0 to |Xm| do
4 for j ← 0 to |S| do
5 C[i][j]← ||Xm[i]− S[j]||2

/* Solve the assignment problem H to assign the s continuous
space inducing points Xm to locations in the candidate set S
*/

6 A = H(C)
/* Use the assignments A to index the candidate set S and get

the discrete space solution */
7 X∗

m = S[A]
8 return X∗

m

Our approach (Algorithm 3) to this problem is to simultaneously optimize all the

inducing points in the continuous input space using gradient descent and then map

the solution to the discrete candidate solution space S. We can map the continuous

space solutions to discrete sets by treating the mapping problem as an assignment

problem [44], i.e., as a weighted bipartite matching problem. The assignment problem

requires one to find the minimal cost matching of a set of items to another set of items

given their pairwise costs. We compute the pairwise Euclidean distances between the
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continuous space inducing points and the discrete space candidate set locations S.

The distances are then used as the costs in an assignment problem. One could even use

covariances that are appropriately transformed, instead of distances, in the mapping

operation to account for the correlations in the environment.

The solution of the assignment problem gives us points in the discrete candidate set

closest to the continuous space solution set. Such a solution could be superior to the

greedy solution since the points in the continuous space solution set are simultaneously

optimized using gradient descent instead of being sequentially selected. Although the

gradient-based solution could get stuck in a local optimum, in our experiments, we

found that the gradient-based discrete solutions are on par or better than the greedy

solutions while being substantially faster to optimize.

2.5 Experiments

We demonstrate our methods on four datasets—Intel lab temperature [45], pre-

cipitation [46], soil moisture [47], and ROMS ocean salinity [48]. The datasets are

representative of real-world sensor placement problems and some of these have been

previously used as benchmarks [13]. We used an RBF kernel [2] in these experiments.

The Intel lab temperature dataset contains indoor temperature data collected from

54 sensors deployed in the Intel Berkeley Research lab. The precipitation dataset

contains daily precipitation data from 167 sensors around Oregon, U.S.A, in 1994.

The US soil moisture dataset contains moisture readings from the continental USA,

and the ROMS dataset contains salinity data from the Southern California Bight

region. We uniform sampled 150 candidate sensor placement locations in the soil and

salinity datasets.

For each dataset, we used a small portion of the data to learn the kernel parameters.

and used a Gaussian process (GP) to reconstruct the data field in the environment

from each method’s solution placements. The GP was initialized with the learned

kernel function, and the solution sensing locations and their corresponding ground
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truth labels were used as the training set in the GP. We evaluated our data field

reconstructions using the root-mean-square error (RMSE).

We trained all GPs (and SGPs) with a learning rate of 1e−2 for a maximum of 3000

iterations using the Adam optimizer [49]. We used the GPflow Python library [50]

for all our GP implementations, and the apricot Python library [51] for the greedy

selection algorithm. All our experiments were executed on a Dell workstation with

an Intel(R) Xeon(R) W-2265 CPU and 128 GB RAM. We ran our experiments using

Python 3.8.10.

2.5.1 Discrete and Continuous-Space Sensor Placement

We benchmarked our approaches—Continuous-SGP (Section 2.4.2), Greedy-SGP (Sec-

tion 2.4.3), and Discrete-SGP (Section 2.4.4). We also evaluated the performance of

the approach in [13], which maximizes mutual information (MI) using the greedy

algorithm (Greedy-MI) in discrete environments, and we used the covariance matrix

adaptation evolution strategy (CMA-ES) to maximize MI (CMA-ES-MI) as another

baseline as it can handle continuous environments. We chose these baselines as they

have also been show to perform well on sensor placement problems1. All methods

considered the sparsely labeled sensor placement problem, i.e., only a small portion

of labeled data was available to learn the kernel parameters.

We computed the solution sensor placements for 3 to 100 sensors (in increments

of 5) for all the datasets, except for the Intel dataset, which was tested for up to 30

placement locations since it has only 54 placement locations in total. The experiments

were repeated 10 times and we report the mean and standard deviation of the RMSE

and runtime results in Figures 2.2 and 2.3. We see that our approaches’ RMSE

results are consistently on par or better that the baseline Greedy-MI and CMA-ES-

MI approaches.
1We also generated results using Bayesian Optimization (BO) as another baseline. However the

results were suboptimal. Please refer to Appendix A.2 for the BO results.
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Figure 2.2: The mean and standard deviation of the RMSE vs number of sensors for
the Intel, precipitation, soil, and salinity datasets (lower is better).

Moreover, our approaches are substantially faster than the baseline approaches.

Our Continuous-SGP approach is up to 6 times faster than the baselines in the tem-

perature dataset, up to 50 times faster in the precipitation dataset, and up to 43

times faster in the soil and salinity datasets. Our SGP-based approaches select sens-

ing locations that reduce the RMSE by maximizing the SGP’s ELBO, which requires

inverting only an m × m covariance matrix (m ≪ |S|, where |S| is the number of

candidate locations). In contrast, both the baselines maximize MI, which requires in-

verting up to an |S|× |S| covariance matrix to place each sensor, which takes O(|S|3)

time. As such, the computational cost difference is further exacerbated in the precipi-

tation, soil, and salinity datasets, which have three times as many candidate locations
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as the temperature data.

Also, the Continuous-SGP method consistently generates high quality results in

our experiments; which is consistent with the findings of [11], who showed that

SVGP’s are able to recover the full GP posterior in regression tasks. Solving the

assignment problem in our Discrete-SGP approach to map the Continuous-SGP solu-

tion to the discrete candidate set incurs a one-time O(m3) computation time that is

negligible. Therefore our gradient-based approaches—Continuous-SGP and Discrete-

SGP—converge at almost the same rate. Yet the Discrete-SGP retains the solution

quality of the Continuous-SGP solution.

The labeled data locations in the soil and salinity datasets used to train our kernel
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Figure 2.3: The mean and standard deviation of the Runtime vs number of sensors
for the Intel, precipitation, soil, and salinity datasets (lower is better).
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Figure 2.4: KL divergence between the SGP posterior and the true posterior vs
number of sensors for the temperature, precipitation, soil, and salinity datasets (lower
is better).
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function were not aligned with our candidate locations for the discrete approaches.

We chose this setup to demonstrate that we can learn the kernel parameters even if

the data is not aligned with the candidate locations, or is from a different environment

altogether.

In Figure 2.4, we show how each of the methods presented in this chapter—Greedy-

MI, CMA-ES-MI, Continuous-SGP, Greedy-SGP, and Discrete-SGP—perform on the

KL divergence between the SGP posterior and the true posterior measured using the

approach presented in [12]. We see the our approaches consistently perform on par

or better than the baselines.

2.5.2 Comparison with Mutual Information

In Figure 2.5 we show the MI and SVGP’s lower bound (ELBO) between the

solution placements and the environments (2500 uniformly sampled locations). The

label dependent data fit term in the ELBO was disabled to generate the shown results.

Although the ELBO values differ from MI, they closely approximate the relative

trends of the MI values. This validates our claim that the SVGP’s ELBO behaves

similarly to MI while being significantly cheaper to compute.

2.5.3 Spatiotemporal Sensor Placement

We demonstrate our approach’s scalability to large spatiotemporal data fields by

finding placements for 500 ozone concentration sensors across the planet. Note that

the environment is the surface of a sphere in this example. We used a spatiotemporal-

sparse variational Gaussian process (ST-SVGP) [1] as it allows us to efficiently model

spatiotemporal correlations in the data with time complexity linear in the number of

time steps in the training set. We used Matern 3/2 kernels [2] to model the spatial and

temporal correlations. All the model parameters were optimized with a learning rate

of 0.01, and the parameters were optimized using the Adam optimizer [49]. The ST-

SVGP was trained on the first six months of the monthly ozone data from 2018 [52],
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Figure 2.5: Comparison of the MI and SVGP’s lower bound (ELBO) for the soil and
salinity datasets. The mean and standard deviation of the MI vs number of sensors
(a), (c) and SVGP’s lower bound (ELBO) vs number of sensors (b), (d).

and we used a subset of 1040 uniformly distributed locations in the dataset as the

training set and 100 inducing points to learn the kernel parameters. The learned

kernel function was then used in our sensor placement approach—Continuous-SGP

(Algorithm 1)—to obtain the 500 solution placements shown below. Note that the

solution sensor placements are spatially fixed to monitor the spatiotemporal data.

The solution placements are relatively uniformly distributed over the planet. This

is because we used a stationary kernel function. However, in a real-world scenario,

using a non-stationary kernel would give us even more informative sensing locations
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Figure 2.6: Placements for 500 sensors generated using the Continuous-SGP approach
with an ST-SVGP [1]. The red points are the sensor placements projected onto the
2D map using cylindrical equal-area projection.

that can further leverage the non-stationary nature of the environment.

2.5.4 Obstacle Avoidance

We handle obstacles in the environment by building an appropriate training dataset

for the SGP. We remove the random samples in the SGP training set at locations in

the interior of obstacles. Therefore the resulting training set has samples only in

obstacle-free regions. Training an SGP on such data would result in inducing points

that avoid the obstacles since placing the inducing points at locations with obstacles

would not increase the likelihood of the training data used to optimize the SGP. Our

obstacle avoidance approach is best suited for relatively large obstacles.

We now present our solution sensor placements in an environment with multiple

obstacles (Figure 2.7). We trained the SGP using gradient descent on randomly

sampled points in the environment where there were no obstacles and set all labels

to zero. As we can see, the solution placements are well-spaced to ensure that the

same information is not repeatedly collected. Also, our solution placements perfectly

avoid the obstacles.
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Figure 2.7: Placements for 200 sensors generated using the SGP approach. The
hatched orange polygons represent obstacles in the environment and the blue points
represent the solution sensor placements.

2.5.5 Non-Stationarity Kernels

Based on the above experiments, when using stationary kernels, the solution sensor

placements appear to be uniformly distributed. Indeed, the benefit of the method

is in determining the density of the sensing locations and avoiding the obstacles.

This is true for approaches that maximize MI [13, 36, 37] and our SGP approach,

which is also an efficient method to approximately maximize MI. One can also use a

faster uniform sampling technique such as Latin hypercube sampling [53] to achieve

similar results if the ideal sensing density is known and there are no obstacles in the

environment.

However, when considering non-stationary environments, the key advantage of GP-

based methods (including our SGP approach) becomes apparent. We generated a non-

stationary data field (elevation data), in which the left half varies at a lower frequency

than the right half. Figure 2.8 shows the sensor placement results generated using

the SGP approach with a stationary RBF kernel [2]. The ground truth data from the

sensor placements was used to generate a dense reconstruction of the non-stationary

environment (20,000 data points). As we can see, the method performs poorly at
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reconstructing the ground truth data.
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Figure 2.8: A non-stationary environment. (a) Ground truth. Reconstructions from
the Continuous-SGP solutions with a stationary RBF kernel function for (b) 9, (c) 16,
and (d) 32 sensing locations. The black pentagons represent the solution placements.
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Figure 2.9: A non-stationary environment. (a) Ground truth. Reconstructions from
the Continuous-SGP solutions with a neural kernel for (b) 4, (c) 9 and, (d) 16 sensing
locations. The black pentagons represent the solution placements.

We can address the above issue by leveraging a non-stationary kernel. We trained a

neural kernel [54] to learn the correlations in the environment. We used three mixture

components in the neural kernel function and parameterized each constituent neural

network as a two-layer multilayer perceptron [3] with four hidden units each. The

training data consisted of 1250 grid-sampled labeled data from the non-stationary

environment. The neural kernel function parameters were optimized using a Gaussian

process (GP) [2] trained with type-II maximum likelihood [3]. We then used the neural

kernel function in our Continuous-SGP approach (Algorithm 1) to generate sensor

placements for 4, 9, and 16 sensing locations. The results with the non-stationary

neural kernel are shown in Figure 2.9 for 4, 9, and 16 sensor placements.
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As we can see in Figure 2.9, the sensor placements are no longer uniformly dis-

tributed. Instead, they are biased towards strategic locations that are crucial for

accurately estimating the data field. We see multiple sensors in the middle, where

the frequency of the variations (elevation) change, thereby accurately capturing the

underlying data field.

2.6 Conclusion

We addressed the sensor placement problem for monitoring correlated data. We

formulated the problem as a regression problem using SGPs and showed that train-

ing SGPs on unlabeled data gives us ideal sensor placements in continuous spaces,

thereby opening up the vast GP and SGP literature to the sensor placement prob-

lem and its variants involving constraints, non-point sensors, etc. The method also

enables us to efficiently handle sensor placement in 3D spaces, spatio-temporally

correlated spaces, and leverage the convergence rate proofs of SGPs. Furthermore,

we presented an approach that uses the assignment problem to map the continuous

domain solutions to discrete domains efficiently, giving us computationally efficient

discrete solutions compared to the greedy approach. Our experiments on four real-

world datasets demonstrated that our approaches result in both mutual information

and reconstruction quality being on par or better than the existing approaches while

substantially reducing the computation time.

A key advantage of our approach is its differentiability with respect to the sens-

ing locations, which allows us to incorporate it into deep neural networks optimized

for more complex downstream tasks. We leverage this differentiability property in

concurrent work to generalize our sensor placement approach to robotic informative

path planning. Since our approach, and more generally GP-based approaches, rely on

accurate kernel function parameters, we aim to develop online approaches to address

this in our future work.



CHAPTER 3: Informative Path Planning in Continuous and Discrete Environments

for Data Field Estimation

3.1 Introduction

Environmental monitoring problems require estimating the current state of phe-

nomena, such as temperature, precipitation, ozone concentration, soil chemistry,

ocean salinity, and fugitive gas density ([55, 56, 15, 17]). These problems are closely

related to the informative path planning (IPP) problem ([55, 57]) since it is often

the case that we have limited resources and, therefore, must strategically determine

the regions from which to collect data and the order in which to visit the regions to

efficiently and accurately estimate the state of the environment.

The IPP problem has been studied in numerous scenarios: [58] developed IPP for

persistent ocean monitoring with underwater gliders, [19] studied IPP for information

gathering on three-dimensional mesh surfaces for inspection tasks, [17] presented an

IPP approach for localizing gas sources in oil fields, and [59] used IPP for active

learning in aerial semantic mapping.

Most IPP approaches implicitly assume that the environment is correlated ([55,

58, 57, 60, 36, 56, 37]). Similarly, we consider IPP problems for environments that

are correlated either spatially or spatio-temporally and present an efficient approach

that leverages such correlations.

Existing discrete optimization based IPP methods have discretization requirements

that limit them to relatively small problems ([55, 57, 56]), making them infeasible for

large spatio-temporal environments. Additionally, incorporating routing constraints,

such as a distance budget and limits on the robot’s velocity and acceleration, signifi-

cantly increase the problem size when using discrete optimization.
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Figure 3.1: Illustration of informative path planning using multiple robots.

Furthermore, modeling informative paths in continuous domains with potentially

continuous sensing robots is a non-trivial problem. The problem is usually addressed

using optimization methods such as rapidly-exploring random trees (RRT), genetic

algorithms, or Bayesian optimization ([60, 36, 37]). These methods select sensing loca-

tions that maximize mutual information (MI) computed using Gaussian processes [13].

But some of these optimization methods are computationally expensive and rely on

computing MI, which is also expensive (O(n3), where n is the discretized environment

size). A few approaches have even considered multi-robot IPP ([61, 36]) but they are

also inherently limited by the scalability issues of prior IPP approaches.

Motivated by the above limitations of prior IPP approaches, we present a method

that can efficiently generate both discrete and continuous sensing paths, accommodate

constraints such as a distance budget and velocity limits, handle point sensors and

non-point FoV sensors, and handle both single and multi-robot IPP problems. Our

approach leverages gradient descent optimizable sparse Gaussian processes to solve

the IPP problem, making it significantly faster compared to prior approaches and
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scalable to large IPP problems.

3.2 Multi-Robot Informative Path Planning Problem

We consider a spatially (or spatiotemporally) correlated stochastic process over

an environment V ⊆ Rd representing a phenomenon such as temperature. We have

r robots and must find the set P of r paths, one for each robot, so that the data

from the phenomenon collected at these locations is sufficient to accurately estimate

the phenomenon at every location in the environment. We use the root-mean-square

error (RMSE) of the estimates as the measure of accuracy. Since we cannot directly

minimize the RMSE, we formulate this problem as one where we want to find the

paths P that maximize the information I (i.e., any function that is a good proxy for

accuracy and can be computed without the ground truth labels). Moreover, we also

consider constraints C such as distance budget and velocity limits on the paths:

P∗ = argmax
{Pi∈ψ,i=1,...,r}

I(∪ri=1SAMPLE(Pi)),

s.t. Constraints(Pi=1,...,r) ≤ C

(3.1)

Here ψ is the space of paths contained within the environment V , and the SAMPLE

function returns the sensing points along a path Pi. When considering discrete sensing

robots, each path is constrained to have only s sensing locations. In a continuous

sensing model, the SAMPLE function returns all the points along the path, which

are used to compute the integral of the information collected along the path. In

addition, we also consider point sensors such as temperature probes, and non-point

sensors that can have any field-of-view (FoV) shape such as a thermal vision camera

with a rectangular FoV.

3.3 Related Work

The Informative Path Planning (IPP) Problem is known to be NP-hard [62]. There-

fore, only suboptimal solutions can be found for most real-world problems. Numerous
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IPP methods select utility functions that are submodular ([63, 61, 64, 57]). Submod-

ular functions have a diminishing returns property that can be leveraged to get good

approximation guarantees even when optimized using greedy algorithms.

Many IPP approaches use mutual information (MI), an information metric that

is submodular [13], as the optimization objective. The methods compute MI using

Gaussian processes with known kernel parameters. But MI requires one to discretize

the environment, thereby limiting the precision with which the sensing locations can

be selected. Also, MI is computationally expensive (O(n3), where n is the number of

locations in the discretized environment). Singh et al. [65] proposed a recursive-greedy

algorithm that maximized MI. The approach addressed both single and multi-robot

IPP. Ma et al. [56] solved the IPP problem by maximizing MI using dynamic program-

ming and used an online variant of sparse Gaussian processes for efficiently learning

the model parameters. Bottarelli et al. [66] developed active learning-based IPP al-

gorithms with a complexity of O(|D|5), where D is the discretized data collection

space.

Hollinger and Sukhatme [60] presented IPP algorithms for continuous spaces that

maximized MI using rapidly-exploring random trees (RRT) and derived asymptot-

ically optimal guarantees. Miller et al. [67] addressed continuous-space IPP with

known utility functions using an ergodic control algorithm. Hitz et al. [36] and

Popovic et al. [68] developed IPP approaches that could optimize the sensing lo-

cations in continuous spaces by optimizing any utility function. The approaches

used a B-spline to parametrize a path and maximized the utility function (mutual

information) using a genetic algorithm. Some authors even leveraged Bayesian op-

timization [37, 69] to find informative paths in continuous spaces. However, similar

to discrete optimization and genetic algorithm based approaches, the method was

computationally expensive and limited the approach’s scalability. Mishra et al. [70]

addressed IPP using dynamic programming, but the approach utilized variance as
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the information metric, which can be computed quickly but is not as informative as

mutual information.

A closely related problem is the correlated orienteering problem (COP), in which

one has to plan a path that maximizes the information gain in a correlated envi-

ronment while restricting the path to a given distance budget [71]. Agarwal and

Akella [72] addressed COP for both point locations and 1D features using quadratic

programming.

Recently, Rückin et al. [73] leveraged deep reinforcement learning (DRL) to address

the IPP problem. However, it requires significant computational resources to simulate

a diverse set of data and train the RL agent.

3.4 SGP-based IPP

Our SGP based sensor placement approach [74] has two key properties that are

relevant to addressing the informative path planning (IPP) problem. First, the SGP

approach can generate solution sensor placements for both discrete and continuous

environments. Second, the approach is able to obtain sensor placement solutions

on par with the ones obtained by maximizing mutual information (MI) but with

significantly reduced computational cost.

However, the SGP based sensor placement approach does not consider the order

in which the sensing locations are visited. Indeed, in IPP, we need to specify the

order in which the sensing locations are visited and potentially also consider other

constraints on the path, such as distance budget and velocity limits.

In the following, we first detail our approach to address the visitation order issue of

the SGP based sensor placement approach for single-robot IPP. Then we explain how

to impose routing constraints, such as a distance budget and velocity limits. After

this, we generalize our approach to handle multi-robot IPP, and then finally address

continuous sensing along the paths and modeling non-point FoV sensors.
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3.4.1 Single-Robot IPP

We address the visitation order issue in spatially correlated environments by lever-

aging a travelling salesperson problem (TSP) solver [75]. In the most fundamental

version of the single-robot IPP problem, we need not consider any constraints on the

travel distance. Therefore, we first obtain s sensor placement locations using the SGP

approach and then generate a path P that visits all the solution sensing locations by

(approximately) solving the TSP, modified to allow for arbitrary start and end nodes:

Xm = Continuous-SGP(θ,V , s)

Xm = TSP(Xm) .

(3.2)

In spatio-temporally correlated environments, we do not even have to solve the TSP.

This is because the generated solution sensor placements have an inherent visitation

order since they span both space and time. However, such an approach could generate

solutions that cannot be traversed by real-world robots with restrictions on their

dynamics. The approach can handle a distance constraint if allowed to drop a few

locations from the selected sensing locations, but it would do that without accounting

for the information lost by dropping sensing locations. Therefore, we must develop a

more sophisticated approach to address real-world IPP problems that have constraints

such as a distance budget and velocity limits.

We do this by leveraging the differentiability of the SGP’s optimization objec-

Covariance matrixCovariance matrix

Aggregation transformationExpansion transformation

Aggregation m
atrix

Aggregation matrix

Reduced
covariance

matrix

  

Figure 3.2: An illustration of the expansion and aggregation transformations used in
IPP for continuous sensing robots.
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tive F (Equation 1.9) with respect to the inducing points Xm. The inducing points

of the SGP Xm, which we consider as the sensing locations, are used to compute the

covariance matrix Kmm, which is in turn used to compute the Nyström approximation

matrix Qnn in the objective function F . We can impose constraints on the sensing

locations by adding differentiable penalty terms dependent on the inducing points

Xm to the objective function F . Such an objective would still be differentiable and

can be optimized using gradient descent.

We use the above method to impose constraints on even the solution paths. We do

this by first solving the TSP on the SGP’s initial inducing points Xm and treating

them as an ordered set, which gives us an initial path that sequentially visits the

inducing points. We then augment the SGP’s objective function F with differentiable

penalty terms that operate on the ordered inducing points for each path constraint

and optimize the SGP to get the solution path. For instance, we can formulate the

distance budget constraint as follows:

F̂ = F − αReLu(PathLength(Xm)− c) ,

where ReLu(x) = max(x, 0) .
(3.3)

Here, PathLength is a function to obtain the total travel distance of the path that

sequentially visits each of the inducing points Xm (treated as an ordered set) and α is

a weight term used to scale the distance constraint penalty term. The ReLu function

ensures that F remains unchanged if the path length is within the distance budget c

and penalizes it only if the length exceeds the distance budget.

Similarly, we can accommodate additional constraints on the route, such as limits

on the velocity and acceleration. In addition, we can trivially set predefined start

and end points for the paths by freezing the gradient updates to the first and last

inducing points of the SGP.
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3.4.2 Multi-Robot IPP

We now address the multi-robot IPP problem. This is achieved by increasing the

number of inducing points in the SGP. If we have r robots and need paths with s

sampling locations each, we sample rs random points from the environment and find r

paths by solving the vehicle routing problem (VRP, [76]). After resampling the paths

so that each path has s points, this yields an ordered set with rs sensing locations

that form the r initial paths. We initialize the SGP with these rs points as the

inducing points. We then add the path constraints that operate on each path to the

objective function F and optimize the SGP to get the set of r solution paths P . The

approach is shown in Algorithm 4. For spatio-temporal environments, we can also

decouple the spatial and temporal inducing points to further reduce the computational

cost of our approach and ensure that it has optimal waypoint assignments (see the

Appendix [77]).

Algorithm 4: SGP-IPP: Multi-Robot IPP approach. µ is the SGP’s mean,
γ is the SGP learning rate, and VRP is the vehicle routing problem solver.
Input: Hyperparameters θ, domain of the environment V , number of

waypoints s, number of robots r, path constraints C
Output: P = {Pi|Pi ∈ V , |Pi| = s, i = 1, ..., r}

1 X ∼ U(V) / / Uniformly draw unlabeled locations

2 Xm = RandomSubset(X, rs) / / Initialize Xm

3 Xm = VRP(Xm) / / Get set of initial paths P
4 / / Add constraints to the SGP’s optimization function F
5 F̂ = F − α(Constraints(Xm)−C)
6 / / Initialize SGP with the ordered inducing points

7 φ = SGP(µ = 0, θ,X,y = 0,Xm, F̂)
8 Loop until convergence : Xm ← Xm + γ∇φ(Xm)
9 return Xm

3.4.3 IPP for Continuous and Non-point FoV Sensing Robots

Our approach so far has only considered discrete sensing robots with point sensors.

However, there are instances where we require robots to continuously sense along
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their paths, or to utilize sensors such as cameras with non-point fields of view (FoV).

While continuous and non-point FoV sensing robots can use paths optimized for

discrete sensing robots with point sensors, explicitly optimizing paths for continuous

and non-point FoV sensing robots is likely to yield more informative paths.

A naive approach to modeling continuous sensing robots is to use a large number of

inducing points. However, such an approach would limit scalability due to the cubic

complexity of SGPs with respect to the number of inducing points. Additionally, it

cannot handle non-point FoV sensors, as even if the additional inducing points are

initialized to match the sensor’s FoV, they would not retain the FoV shape after

optimization. A key advantage of generalizing the SGP-based sensor placement ap-

proach [74] to IPP is that we can leverage the properties of GPs and SGPs [2, 78, 7, 8].

We describe two such properties and how they can be used to address IPP for con-

tinuous and non-point FoV sensing robots.

First, we utilize the property that the inducing points of SGPs can be transformed

with any non-linear function and still be optimized using gradient descent. We can

employ such transformations to approximate the information along solution paths.

To achieve this, we parameterize the m inducing points of the SGP as the sensing

locations for a discrete point sensing robot’s path. Then, we apply a transforma-

tion—the expansion transformation Texp—to interpolate p additional points between

every consecutive pair of inducing points that form the robot’s path Xmp = Texp(Xm),

resulting in mp inducing points (actually (m− 1)p points, denoted as mp to simplify

notation). We then utilize the mp inducing points Xmp to compute the SGP’s ob-

jective function F̂ with path constraints. Note that the interpolation operation is

differentiable, enabling us to compute gradients for the m inducing points Xm. This

approach enables us to consider the information gathered along the entire path.

Next, we leverage the property of GPs that they are closed under linear trans-

formations [2, 58]. We use the aggregation transformation Tagg, which aggregates
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(via averaging) the SGP’s covariances corresponding to the p inducing points that

approximate the information between every consecutive pair of waypoints of the path

(i.e., the m inducing points), thereby reducing the size of the covariance matrix from

mp×mp back to m×m. Specifically, we first employ the expansion transformation

Texp on the m inducing points to map them to a larger set of mp points. Then, we

apply the aggregation transformation Tagg to the covariance matrices built using the

mp points. These covariances are utilized to compute Qnn, which in turn is used to

compute the SGP’s objective function (Equation 1.9):

Qnn = Kn×mpTagg(T
⊤
aggKmp×mpTagg)

−1T⊤
aggKmp×n . (3.4)

Here, Kn×mp represents the covariance matrix between the n training set inputs

and the mp inducing points. The aggregation transformation reduces the size of the

covariance matrix Kmp×mp before inversion. Consequently, the matrix inversion cost

is reduced to O(m3) from O(m3p3), allowing us to benefit from both the expansion

transformation, which enables modeling of continuous sensing robots, and the reduced

computational cost from the aggregation transformation. Note that the information

along the path between the waypoints is retained in the aggregated covariances. Ad-

ditionally, we observed that the aggregation transformation stabilized the gradients

during the optimization of the inducing points. The approach is illustrated in Fig-

ure 3.2 and shown in Algorithm 5.

We can use the transformations detailed above to handle non-point field of view

(FoV) sensing robots as well. This is accomplished by employing the expansion trans-

formation to map each of the m inducing points to p points that approximate the

sensor’s FoV area. Additionally, since the gradients are propagated back to the orig-

inal m inducing points Xm, the method retains the FoV shapes. Furthermore, we

can leverage this property to model sensors with integrated observations such as gas

sensors [17, 79], where the labels are modeled as yi = ||wi||
∫ 1

0
f(wit + zi)dt + ϵi,
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Algorithm 5: Expansion and aggregation transformation based approach for
obtaining non-point FoV sensor placements. Here θ are the hyperparameters
learnt from either historical data or expert knowledge, Φ is a random distribu-
tion defined over the bounds of the environment V , s is the number of required
sensors, n is the number of random locations used to train the SGP, and γ
is the SGP learning rate. Texp and Tagg are the expansion and aggregation
transformations, respectively.
Input: Hyperparameters θ, domain of the environment V , number of

waypoints s, number of random unlabeled samples n used to train the
SGP, expansion transformation Texp, and aggregation transformation
Tagg

Output: Solution sensor placements A ⊂ V , where |A| = s
1 X = {∅} ; // Initialize empty set to store SGP training set
2 repeat

// Draw n random unlabeled locations from the environment
3 x ∼ U(V)
4 X← X ∪ {x}
5 until |X| = n;
6 D = (X,y = 0) ;

// Generate SGP training dataset with 0 labels
7 Xm = RandomSubset(X, s) ;

// Initialize s inducing points at random locations
8 Xm ← RandomTheta(Xm, s) ;

// Add random sampled angles as the rotation parameter
of each inducing point

9 φ = SGP(µ = 0, θ,D,Xm) ;
// Initialize a SVGP φ with 0 mean, hyperparameters θ,

training set D, and inducing points Xm

10 repeat
11 Xmp = Texp(Xm) ;

// Use the expansion transformation Texp to map the m
inducing points Xm in the point parametrization to
mp points with FoV parametrization

12 Qnn = (Kn×mpTagg)(T
⊤
aggKmp×mpTagg)

−1(T⊤
aggKmp×n) ;

// Use the aggregation
transformation Tagg to reduce
the covariances

13 Xm ← Xm + γ∇φ(Qnn) ;
// Optimize the point parametrized inducing points Xm

by maximizing the SVGP’s ELBO F using gradient
methods with a learning rate of γ. We compute the
ELBO using the Qnn computed above

14 until convergence;
15 return Xm
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with zi as the start point of a line segment along which the data is integrated, and wi

giving the direction and length of the line segment. Similarly, we can efficiently model

complex path parametrizations, such as using splines to obtain smooth paths, account

for sensors such as cameras whose FoV varies with height from the ground, and even

model FoVs that consider the shape of the surface, such as stereo vision cameras when

used to scan 3D surfaces. Please refer to Appendix B for implementation details of

the expansion transformation.

3.4.4 Space-Time Decomposition

When considering multiple robots in spatio-temporal environments, our approach

can be further optimized to reduce its computation cost and can be show to have

optimal waypoint assignments. When optimizing the paths with t waypoints for r

robots, instead of using rt inducing points Xm ∈ Rr×t×(d+1), we can decouple the

spatial and temporal inducing points into two sets—spatial and temporal inducing

points. The spatial inducing points Xspace ∈ Rrt×d are defined only in the d-spatial

dimensions. The temporal inducing points Xtime ∈ Rt are defined across the time di-

mension separately. Also, we assign only one temporal inducing point for the r robots

at each time step. This would constrain the r paths to have temporally synchronised

waypoints. We then combine the spatial and temporal inducing points by mapping

each temporal inducing point to the corresponding r spatial inducing points, forming

the spatio-temporal inducing points Xm ∈ Rr×t×(d+1).

The approach allows us to optimize the inducing points across space at each

timestep and the timesteps separately. It ensures that there are exactly r induc-

ing points at each time step and also reduces the number of variables that need to be

optimized. Specifically, we only have to consider t temporal inducing points, rather

than rt inducing points along the temporal dimension. During training, we can use

backpropagation to calculate the gradients for the decomposed spatial and temporal

inducing points through the spatio-temporal inducing points.
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Figure 3.3: A schematic illustration of the IPP approach for multiple robots (2
robots). Note that the past training grid is only for visual interpretability and is
not used while training the SGP to get the new path.

An added advantage of this decomposition is that we can leverage it to prove that

the solution paths have optimal waypoint transitions. We do this by setting up an

assignment problem that maps the r waypoints at timestep i to the r waypoints at

timestep i+1. We calculate the assignment costs using pairwise Euclidean distances

and get the optimal waypoint transitions for each of the r paths by solving for the

assignments [44]. We repeat this procedure for all t timesteps. If the transitions

are optimal, the approach would return the original paths, and if not, we would get

the optimal solution. The pseudocode of the approach is shown in Algorithm 6, and

Figure 3.3 illustrates our approach.

Algorithm 6: Assignment problem based approach to get optimal waypoint
transitions for r paths.
Input: Inducing points X ∈ Rr×t×(d+1)

Output: Waypoints of paths X ∈ Rr×t×(d+1)

1 for i← 0 to t− 1 do
2 C = 0r×r

3 for j ← 1 to r do
4 for k ← 1 to r do
5 C[j][k]← ||X[j, i, : d]−X[k, i+ 1, : d]||2

6 A = H(C) / / Solve the assignment problem [44]

7 / / Re-index the inducing points at time i+ 1
8 X[:, i+ 1, : d+ 1]← X[A, i+ 1, : d+ 1]

9 return X
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3.4.5 IPP with Past Data

In a real-world scenario, it is possible that a robot has collected data from a sub-

region of the environment. In such cases, in addition to updating our kernel param-

eters, it would be beneficial to explicitly incorporate the data into our path planning

approach. We do this by adding more inducing points—auxiliary inducing points—to

the SGP in addition to the m inducing points used to get a path with m sampling

locations. The auxiliary inducing points are initialized at the locations of the past

data samples, and their temporal dimension is set to negative numbers indicating

the time that has passed since the corresponding data sample was collected. During

training, the auxiliary inducing points are not optimized; only the original m induc-

ing points used to form the path are optimized. Therefore, the approach accounts for

past data, including when it was collected, as the points collected further in the past

would be less correlated with the SGP’s training data consisting of random samples

restricted to the positive timeline. Note that this approach is also suited to address

online variants of IPP.

3.5 Experiments

We first demonstrate our approach for the unconstrained single robot IPP problem

on the ROMS ocean salinity [48] and US soil moisture [47] datasets. The ROMS

dataset contains salinity data from the Southern California Bight region, and the

US soil moisture dataset contains moisture readings from the continental USA. All

experiments were benchmarked on a workstation with an 18-core Intel(R) Xeon(R)

Gold 6154 3.00GHz CPU and 128 GB of RAM.

3.5.1 Single-Robot IPP

We benchmarked our SGP based IPP approach (SGP) that optimizes a path for

discretely sensing s locations and our transformation based generalization of the SGP

based IPP approach (Arc-SGP) that optimizes the paths while accounting for the
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information collected along the entire path. We also benchmarked two baseline ap-

proaches—the Information-Driven Planner (IDP, Ma et al. [56]) and Continuous-

Space Informative Path Planner (CIPP, Hitz et al. [36]). IDP leverages discrete

optimization to iteratively find discrete sensing locations that maximize mutual in-

formation (MI), and CIPP leverages CMA-ES, a genetic algorithm, to find informative

sensing locations that maximize MI in continuous spaces.

An RBF kernel [2] was used to model the spatial correlations of the datasets (the

baselines use it to measure MI). We evaluated the paths by gathering the ground truth

data along the entire generated solution paths (i.e., by continuous sensing robots)

and estimating the state of the whole environment from the collected data. The

root-mean-squared error (RMSE) between the ground truth data and our estimates

was used to quantify the quality of solution paths. We generated solution paths for

both the datasets with the number of path sensing locations ranging from 3 to 100

in increments of 5. The experiment was repeated 10 times. The mean and standard

deviation of the RMSE and runtime results on the ROMS and US soil moisture

datasets are shown in Figure 3.4 and Figure 3.5, respectively.
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Figure 3.4: RMSE results for single robot IPP with the IDP, CIPP, SGP, and Arc-
SGP approaches on the precipitation, ROMS and US soil datasets.

As we can see, our SGP approach is consistently on par or better than the two

baselines in terms of RMSE, and our Arc-SGP approach has a considerably lower

RMSE than the other approaches in all cases. Also, both our approaches substan-



52

0 20 40 60 80 100
Number of Sensors

0

50

100

150

200

250

300

350

Ru
nt

im
e 

(s
)

IDP
CIPP
SGP
Arc-SGP

(a) Precipitation

0 20 40 60 80 100
Number of Sensors

0

50

100

150

200

250

300

350

Ru
nt

im
e 

(s
)

IDP
CIPP
SGP
Arc-SGP

(b) ROMS

0 20 40 60 80 100
Number of Sensors

0

50

100

150

200

250

300

350

Ru
nt

im
e 

(s
)

IDP
CIPP
SGP
Arc-SGP

(c) Soil

Figure 3.5: Runtime results for single robot IPP with the IDP, CIPP, SGP, and Arc-
SGP approaches on the precipitation, ROMS and US soil datasets.

tially outperform the baselines in computation time (up to 35 times faster). In both

the baselines, a significant amount of computation time is spent on computing MI,

while our SGP approach’s objective approximates the same in a computationally ef-

ficient manner (detailed in our foundational work [74]). Indeed, the MI computation

cost is the key reason why both IDP and CIPP cannot scale to spatio-temporally

correlated environments, since even with a coarse discretization, it would be far too

computationally expensive. Also, since our approaches rely on gradient information,

they are significantly faster to converge compared to the discrete and genetic algo-

rithm based baseline approaches.

3.5.2 Multi-Robot IPP
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Figure 3.6: RMSE results for four robot IPP with the CIPP, SGP, and Arc-SGP
approaches on the precipitation, ROMS and US soil datasets.

We now demonstrate our approach for multi-robot IPP. We used the same kernel
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Figure 3.7: Runtime results for four robot IPP with the CIPP, SGP, and Arc-SGP
approaches on the precipitation, ROMS and US soil datasets.

parameters as we did in the previous experiments. The solution paths were generated

for four robots with the number of optimization waypoints ranging from 3 to 25 in

increments of 5 for each robot’s path. We evaluated the SGP, Arc-SGP, and CIPP

methods, which support multi-robot IPP. The RMSE and runtime results are shown

in Figure 3.6 and Figure 3.7, respectively. Our SGP approach consistently performs

on par with or better than the CIPP approach in terms of RMSE. Additionally, Arc-

SGP achieves notably lower RMSE compared to both SGP and CIPP, as it explicitly

optimizes the paths for continuous sensing. Moreover, both our approaches—SGP

and Arc-SGP—significantly outperform CIPP (up to 26 times faster) in terms of

compute time.

3.5.3 IPP with Distance Constraints
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Figure 3.8: Data collection paths generated using a spatio-temporal kernel function
for different distance budgets.
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We next show our approach for spatio-temporal IPP with a distance constraint. A

Gaussian process was used to sample dense spatio-temporal temperature data. We

used an RBF kernel with a length scale of 7.70 m, 19.46 m, and 50.63 mins along the

x, y, and temporal dimensions, respectively. We generated paths by optimizing the

inducing points in our SGP approach with distance budgets of 10 m, 20 m, and 40 m;

the results are shown in Figure 3.8. Our approach consistently saturates the distance

budget without exceeding it to get the maximum amount of new data, evident from

the paths’ RMSE scores. We also show the paths generated for three robots in the

same environment (Figure 3.9). We do not show the reconstructions since the data

is spatio-temporal, which is difficult to show in 2D.

X

5101520253035Y
5 10 15 20 25 30

Time

0

5

10

15

20

25

X 5101520253035 Y

51015202530

Time

0

5

10

15

20

25

X5 10 15 20 25 30 35Y 51015202530

Time

0

5

10

15

20

25

Figure 3.9: Three different views of our multi-robot IPP solution paths, with path
lengths of 47.29 m, 47.44 m, and 47.20 m. The data from all 3 paths gave us an
RMSE of 0.34.

3.5.4 IPP with a Non-Point Height-dependent FoV

Figure 3.10 shows our SGP approach for a discrete sensing robot, i.e., it senses only

at the path’s vertices (blue points). We considered a 3D environment with densely

sampled elevation data and parametrized the path so that we account for the robot’s

sensing FoV area to be a function of the robot’s height from the ground. We used an

RBF kernel with a length scale of 3 m (details in the Appendix [77]).
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Figure 3.10: Solution paths for a discrete sensing robot with a square height-
dependent FoV area (black squares) sensor. The solution paths adjust the sensor
height to ensure a good balance between the ground sampling resolution and the
coverage area.

3.5.5 IPP with Past Data

We demonstrate the approach with past data. We used 5 data samples as the

past data and generated new informative paths with the distance budgets set to 10,

20, and 40. The results are shown in Figure 3.11; the red points are the past data

samples. As we can see, our new solution paths are shifted to avoid collecting data at

the location of the past data. Therefore, our solution paths have lower RMSE scores

than those generated without past data information.
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Figure 3.11: Five points were used as past data (red points). Data collection paths
generated using a spatio-temporal kernel function for different distance budgets.

3.5.6 Sensor Placement for Integrated Non-Point FoV Sensors

Finally, as we mentioned in Section 3.4.3, our method expansion and aggregation

transformations can be used to model sensors with non-point FoV and integrated
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observations as well. We demonstrate this on the sensor placement for the sparse view

computed tomography (CT) scanning problem [79]. A third-generation fan beam CT

scanner [80] projects X-ray beams that fan out at a fixed angle (Figure 6.2). On

the opposite side of the projector, a sensor array captures data integrated along each

beam and encoded by the received X-ray intensity. The projector and sensor array

pair rotate around a circular area of interest, and the collected data is then used to

reconstruct the underlying spatially resolved data. Being able to compute informative

sensor placements efficiently is especially useful when the region of interest is a sub-

region of the observation space (e.g., if we only need to scan a specific organ), as

we will be able to optimize the sensor placements in real-time, thereby reducing the

amount of harmful X-ray exposure to patients while also retaining reconstruction

quality.

Expansion transformation

Point parameterization FoV parameterization

Figure 3.12: An illustration of the expansion transformation used for sensor placement
in sparse view CT-scanning.

We used the COVID-19 CT scan dataset which contains lung scans from 10 pa-

tients, with each containing 301 slices [81] to benchmark our sparse view CT scan

sensor placements. We used a fan beam CT projection [80] with 750 detectors with

a width of 2. The source projection and the detector distance were set to 400. We

used filter back projection [80] from the ASTRA Toolbox [82] to generate our recon-

structions using the data from only the placement locations. The kernel parameters
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Figure 3.13: RMSE, SSIM, and runtime results for the CT scan dataset.

were learned from phantom CT images.

We used the whole observation space as the region of interest. Figure 3.12 illus-

trates the expansion transformation, and we used a mean operation as the aggregation

transformation. We computed the solution sensor placements for 5 to 75 sensors (in

increments of 10) using our approaches (with p set to 20) and the mutual information-

based approach presented in [79] as a baseline. [79] addressed sensor placement for

sparse view CT-scanning using the mutual information-based approach by [13]. They

leveraged the closed-form nature of Gaussian processes under linear transformations

to extend the MI approach to handle the data-integrating sensor model of CT scan-

ners. However, the method still relies on discrete optimization, which makes the

approach computationally expensive and ill-suited for real-time applications. We

present the RMSE and SSIM scores of the CT scan dataset reconstructions obtained

using the solution sensor placement locations, and the sensor placement algorithm

runtimes in Figure 3.13, respectively.

Our results show that our approaches are significantly faster (up to 53 times) while

maintaining the reconstruction quality obtained using the computationally intensive

MI-based approach. In the Greedy-SGP case, the method is still faster than the MI

approach despite using a greedy optimization method. Also, the Continuous-SGP

and Discrete-SGP approaches take a fraction of the computation time of the baseline

MI approach and take approximately constant time with increasing number of sensing
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locations.

3.6 Conclusion

We presented an efficient continuous space approach to informative path planning

using sparse Gaussian processes that can address various challenges related to moni-

toring in spatially and spatio-temporally correlated environments. Our approach can

model routing constraints, and handle discrete and continuous sensing robots with

arbitrary FoV shapes. Furthermore, our method generalizes to multi-robot IPP prob-

lems as well. We demonstrated that our approach is fast and accurate for IPP on

real-world data. We also presented our IPP solutions for different distance budgets,

multi-robot scenarios, and with non-point FoV sensing robots. Our future work will

build upon this approach to extend its applicability to online and decentralized IPP

problems.



CHAPTER 4: Online and Decentralized Heterogeneous Multi-Robot Informative

Path Planning in Continuous and Discrete Environments for Data Field Estimation

4.1 Introduction

Informative Path Planning (IPP) is a fundamental problem in robotics. The prob-

lem requires finding paths to obtain the maximal amount of novel data about the

underlying data field of interest. One must also ensure that all path constraints, such

as distance-budget limits and boundary constraints, are satisfied. Moreover, it is often

the case that the environment is unexplored and there is no training data available.

In such cases, online IPP variants, which can plan initial paths and update the paths

by learning from the data being collected along the paths, need to be developed.

Also, in persistent monitoring problems, where robots must continuously monitor the

environment for tasks such as pollution tracking in lakes and rivers, online approaches

that can detect and adapt to changes in the data field mid-mission are crucial.

The IPP problem is particularly relevant for environmental monitoring, where one

must monitor phenomena like ozone concentration, soil moisture, and ocean salinity

in large environments [57, 56, 15, 17, 74, 77]. It is also prevalent in surface inspection

tasks [19], where robots are used to inspect 3D structures like bridges, dams, aircraft

wings, and pipeline insulation. IPP can also be used for collecting aerial images that

result in accurate semantic mapping [59].

Given the significance of the IPP problem, multiple authors have addressed it [36,

56, 68]. Most approaches compute the informativeness of locations using mutual infor-

mation (MI) calculated with Gaussian processes (GPs). But, MI is not differentiable

with respect to the sensing locations on the path(s). Therefore, computationally

expensive discrete optimization methods such as greedy algorithms, Bayesian opti-
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mization, and genetic algorithms are employed to optimize the solutions.

A key limitation of the above GP-based approaches is their inability to scale to

large environments due to high computational costs. Furthermore, computing MI

using GPs requires a priori knowledge of the GP hyperparameters that accurately

model the data field in the environment. Online IPP approaches typically address

this issue by learning the relevant hyperparameters from data collected along the path

using another GP or sparse GP, followed by updating the remaining waypoints with

discrete optimization methods [36, 56]. However, this simply propagates the offline

approach’s compute cost limitation to the online setting, further exacerbated by the

added cost of hyperparameter learning, thereby diminishing their online performance.

Further, only a few prior approaches addressed decentralized multi-robot IPP, which

is crucial in areas with poor communication networks [83, 84]. Finally, IPP with

heterogeneous robot teams is not well addressed, which is particularly important if

the robots have different distance budgets and sensor models.

We present a computationally efficient online and decentralized heterogeneous multi-

robot IPP approach, enabling the deployment of robot teams in a fully decentralized

manner. This is achieved with low individual robot computation and communication

requirements, while also accommodating heterogeneous robots with different path

constraints and sensor models. Our approach achieves this by leveraging sparse Gaus-

sian processes (SGPs) and streaming sparse Gaussian processes (SSGPs). Our method

can even find solution paths for robots with continuous sensing and non-point field

of view sensors, as well as handle dynamic environments, including spatio-temporal

environments.

4.2 Online and Decentralized Heterogeneous Multi-Robot Informative Path

Planning Problem

We address online IPP to monitor an environment V ⊆ Rd representing a phe-

nomenon such as temperature. We have r robots and must find the set P with r
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paths, one for each robot, so that the data y ∈ R collected at these locations is suf-

ficient to accurately estimate the phenomenon at every location in the environment.

We use the root-mean-square error (RMSE) of the estimates as the measure of accu-

racy. Since we cannot directly minimize the RMSE, we formulate this problem as one

where we want to find the paths P that maximize the amount of information I. Here

I is any function that is a good proxy for accuracy and can be computed without

the ground truth labels. Moreover, we also consider constraints C such as distance

budget limits and boundary constraints on the paths:

P∗ = argmax
{Pi∈ψ,i=1,...,r}

I(∪ri=1SAMPLE(Pi)),

s.t. Constraints(Pi=1,...,r) ≤ C

(4.1)

Here ψ is the space of paths contained within the environment V . The SAMPLE

function returns the sensing points at the robot path waypoints when modeling a

discrete sensing robot, and it returns all the points along the path when modeling a

continuous sensing robot. In addition, we also consider point sensors such as tem-

perature probes, and non-point sensors that can have any field-of-view (FoV) shape,

such as a thermal vision camera with a rectangular FoV. Moreover, we assume that

no training data is available from the target environment and that there is no robot-

to-robot communication capability. Finally, we also consider IPP for heterogeneous

robot teams, where each robot can have a different sensing model and path con-

straints. This online IPP problem generalizes the offline IPP problem addressed in

our previous work [77] by requiring updates to the solution path in response to newly

gathered online data, and necessitating a decentralized multi-robot approach that can

accommodate heterogeneous robot sensing models and path constraints.



62

4.3 Related Work

The Informative Path Planning (IPP) problem is known to be NP-hard [62]. There-

fore, only suboptimal solutions can be found for most real-world problems. Many

IPP approaches use mutual information (MI), an information metric that is submod-

ular [63, 61, 57], as the optimization objective. MI can be computed using GPs with

known kernel parameters. But the approach is computationally expensive (O(|D|3),

where D is the discretized environment).

Singh et al. [65] proposed a recursive-greedy algorithm that maximized MI for sin-

gle and multi-robot IPP. Bottarelli et al. [66] developed active learning-based IPP

algorithms with a complexity of O(|D|5). Hollinger and Sukhatme [60] presented of-

fline IPP algorithms for continuous spaces that maximized MI using rapidly-exploring

random trees (RRT) and derived asymptotically optimal guarantees. Miller et al. [67]

addressed continuous-space offline IPP with known utility functions using an ergodic

control algorithm. Hitz et al. [36] developed an online multi-robot IPP approach

based on a genetic algorithm that could optimize the sensing locations in continuous

spaces given a utility function. Francis et al. [37] and Vivaldini et al. [69] leveraged

Bayesian optimization for single robot IPP in continuous spaces. However, similar to

discrete optimization and genetic algorithm based approaches, the method was com-

putationally expensive and limited the approach’s scalability. Ma et al. [56] solved

the IPP problem by maximizing MI using dynamic programming and used an online

variant of sparse Gaussian processes for learning the model parameters.

Schmid et al. [85] addressed online IPP for 3D reconstruction. They utilized a

quadratic function of the distance from the camera to model the uncertainty in the

environment and optimized it using RRTs in an online algorithm. Zhu et al. [19] also

addressed IPP for 3D reconstruction and used a probabilistic estimate of variance as

the uncertainty measure. Mishra et al. [70] and Berget et al. [86] addressed online IPP

by selecting locations with high variance as the solution waypoints. Moon et al. [87]



63

used a sampling-based method to reduce entropy. However, variance and entropy-

based approaches do not result in good sensing locations when compared to MI-based

approaches [13]. Ghassemi et al. [83] and Newaz et al. [84] addressed decentralized

IPP using Bayesian optimization with an acquisition function that selects locations

estimated to have a large function value. Such approaches are suited for tracking

modes of data fields but might fall short when considering full environment monitoring

problems. Cao et al. [88] and Rückin et al. [73] leveraged deep reinforcement learning

(DRL) to address the online IPP problem. However, they require simulating a diverse

set of data and utilize significant computational resources to train the RL agent on

the data before deployment.

4.4 SGP-based Online and Decentralized Heterogeneous Multi-Robot IPP

We can generalize our SGP-based offline IPP approach to perform online IPP

by iteratively alternating between optimizing the solution path(s) with the offline

planner and learning the SGP’s hyperparameters using another separate Gaussian

process trained on the data collected along the traversed portion of the path(s).

Since the SGP-based offline IPP approach is significantly faster than earlier discrete

optimization-based approaches, our online approach will also be significantly faster

than the earlier online counterparts.

However, a naive implementation of this approach has a few limitations. First,

the computational cost of training the GP to learn the hyperparameters from the

collected data would keep increasing until it becomes infeasible to compute after

about 10,000 data samples. Since most sensors of interest, such as thermal cameras

and ocean salinity sensors, operate well above 10Hz, this data limit would be reached

very quickly when modeling continuous sensing robots, i.e., robots that sense along

the whole path. Second, when performing multi-robot IPP, the method would be

limited to centralized planning and require each robot to have a large-bandwidth

communication link to the central planner to stream all its collected data.
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4.4.1 Fast Online Hyperparameter Estimation

We address the hyperparameter estimation problem by leveraging streaming sparse

Gaussian processes (SSGPs, [89]). SSGPs are a principled approach to handle stream-

ing data, i.e., data that arrives sequentially in batches. With SSGPs, the hyperpa-

rameter updates can be computed using only the current batch of data ynew and the

previously computed variational distribution over all the past data yold. Moreover,

the method leverages a sparse approximation to the streaming data; therefore, it does

not require access to the whole dataset and significantly reduces the training time.

At each update step, to approximate all the data seen until the current update step,

the method computes the new optimal variational posterior distribution qnew(f̂), using

the new batch of data ynew, to replace the old variational distribution qold(f̂). The

optimal distribution can be computed by minimizing the following Kullback–Leibler

divergence:

KL
[
qnew(f̂)||p(f̂ |yold,ynew)

]
(4.2)

Here, f̂ are all the latent variables corresponding to the data. The above can be

analytically minimized to obtain the following optimal posterior variational distribu-

tion:

qopt(b) = p(b)N (ŷ;Kf̂bK
−1
bbb,Σ),

where,

q(a) = N (a;ma,Sa), p(ynew|f) = N
(
ynew; f , σ

2I
)
,

ŷ =

 ynew

DaS
−1
a ma

 ,Kf̂b =

Kfb

Kab

 ,
Σ =

σ2I 0

0 Da

 , and Da =
[
S−1
a −K−1

aa

]
.

(4.3)
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Here, a and b represent the latent variables corresponding to the old inducing

points (i.e., from the previous update step) and new inducing points of the posterior

variational distributions, respectively. The f are the latents corresponding to ynew.

The solution, the optimal posterior qopt(b), has a prior term p(b) to regularize the

posterior and a likelihood term N (ŷ), which predicts the data labels using the current

inducing variables b and the old variational distribution q(a). This ensures that the

information from the old variational distribution q(a) is retained while also capturing

the new information in ynew. Please refer to [89] for details of the derivation.

Collect Data
up to Next Waypoint

SSGP
Hyperparameter Update

KNN Environment Partitioning Single Robot IPP Solution PathsMulti-Robot IPP

(b) (c) (d)(a)

SGP IPP Update

Online Phase on Each RobotOffline Phase on the Central Server 

Figure 4.1: Overview of our online decentralized IPP approach for two continuous
sensing robots. (a) Our approach first solves the multi-robot IPP problem offline with
random hyperparameters. (b) We next use KNN to partition the environment among
the robots. (c) For each robot, we then iterate between hyperparameter updates
using an SSGP and IPP solution path updates using an SGP. (d) Illustration of the
solution path updates for a single robot.

4.4.2 Decentralized Online Updates

We address the decentralization problem by leveraging a warm start approach to

multi-robot IPP and then partitioning the search space into monitoring regions for

each robot. Specifically, we first solve the multi-robot IPP problem using our offline

IPP approach (Algorithm 4). Since we do not assume access to any information about

the data field in the environment, we optimize the offline IPP solution using random

hyperparameters.

Next, we partition the environment into regions for each robot to monitor. We

do this by leveraging the K-nearest neighbor (KNN) classifier [3] on the waypoints
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corresponding to the offline IPP solution path of each robot. The waypoint locations

serve as the inputs XKNN of the training set, and the labels yKNN are set to the index

of the robot path to which the waypoints correspond. Also, we interpolate additional

waypoints along the offline solution’s original s waypoints and add them to the KNN’s

training set to ensure that the KNN classifier accurately partitions the environment.

We then utilize the KNN classifier to predict labels for the Xenvironment random

unlabeled samples used to optimize the offline SGP-based IPP approach. The pseu-

docode of the method is shown in Algorithm 7. It is important to note that the

predicted labels here correspond not to the value of the phenomenon being moni-

tored, but rather to the index of the robot to which that point in the environment is

assigned. Moreover, the KNN classifier has a constant training time of O(1) since it

only needs to store the training samples, and prediction can be efficiently carried out

in O(nd) time, where n is the number of training samples and d is the dimensionality

of the data.

Algorithm 7: Offline Phase of the decentralized IPP approach run on the
central server.
Input: Domain of V , number of waypoints s, number of robots r, path

constraints C
Output: Monitoring regions Xregions, initial solution paths P ,

hyperparameters θ
1 θ ∼ U(.) / / Draw from a uniform distribution

2 P ,Xenvironment = SGP-IPP(θ,V , s, r,C)
3 for i← 1 to r do
4 XKNN

i = Upsample(Pi)
5 yKNN

i = {i|x ∈ XKNN
i }

6 XKNN = ∪ri=1X
KNN
i ; yKNN = ∪ri=1y

KNN
i

7 yregions = KNN(Xenvironment;XKNN,yKNN)
8 for i← 1 to r do
9 Xregions

i = {x ∈ Xenvironment|yregions(x) == i}
10 return Xregions,P , θ

Once we have the labels determining which regions of the environment are assigned

to each of the r robots, we send each robot its initial offline IPP solution path along
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Algorithm 8: Online Phase of the decentralized IPP approach run on each
robot.
Input: Robot i monitoring regions Xregions

i , initial solution path Pi, path
constraints C, hyperparameters θ

Output: Data along the traversed path Xpath,ypath

1 SGP-IPP.initialize(θ,Xregions
i ,C,Pi)

2 SSGP.initialize(θ)
3 Xpath = {},ypath = {}
4 for j ← 1 to |Pi| do
5 Xbatch,ybatch = CollectData(Pi[j])
6 θ = SSGP.update(Xbatch,ybatch)
7 Pi = SGP-IPP.update(θ, j)
8 Xpath = Xpath ∪Xbatch; ypath = ypath ∪ ybatch

9 return Xpath,ypath

with Xregions
i , the subset of the random sampled locations assigned to the robot by the

KNN classifier. Each robot then begins the online IPP phase. During this phase, the

robots traverse along the current solution path, and once a specified number of data

samples are collected, they use that batch of data to update the SSGP’s hyperparam-

eters. Subsequently, the updated hyperparameters are forwarded to the SGP-based

IPP approach, which utilizes the new hyperparameters to (re)optimize the unvisited

waypoints of the current solution path. Note that since the SGP-based IPP approach

resumes optimizing the solution path starting from the previous iteration’s solution

path, its computation time is further reduced. Additionally, we disable gradient up-

dates to the waypoints that have already been visited. Consequently, the online IPP

method accounts for the distance traveled and ensures that the total distance budget

is still satisfied by the updated solution path. The pseudocode for this online phase

is shown in Algorithm 8.

This approach can adapt its solution path(s) to the information from the environ-

ment in a computationally efficient manner. Indeed, our centralized offline approach

(Algorithm 4) has a runtime complexity of O(nm2 +m3), which is the SGP’s com-

plexity. Here, n is the number of randomly sampled unlabeled locations in Xenvironment
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and m is the number of SGP inducing points, which in our case is rs, i.e., the number

of robots times the number of waypoints for each robot. In practice, we found that

n < 1000 was sufficient for the SGP to approximate the extent of the environment

well, and a larger n was needed only if there were complex obstacles or regions to be

avoided in the environment. Moreover, the number of waypoints only controls the

complexity of the solution path, for instance, how many turns it can contain. As

such, one can even use a small number of waypoints to monitor a large area with

minimal degradation in performance. Similarly, our online approach has a complex-

ity of O(nm2 +m3 + n̂m̂2 + m̂3). Here, n̂m̂2 + m̂3 is the added SSGP training cost,

with n̂ as the data batch size at each update and m̂ as the number of inducing points

used in the SSGP. Finally, the decentralized approach has a similar complexity as our

online approach but with n reduced to the number of points in the Xregions
i assigned

to each robot and m reduced to just the number of waypoints of each robot. Thus,

our approach is feasible even on a robot with minimal computational resources.

Our method can even handle heterogeneous robots. In the centralized case, we

formulate the expansion transformation Texp used in the SGP-based IPP approach to

transform the set of inducing points corresponding to each robot to account for the

robot’s sensing model and update the SGP’s optimization objective with constraints

on those inducing points to model path constraints. In the decentralized case, since

each robot uses its own SGP for IPP, we can use the same transformation-based

approach for the robot’s sensing model and path constraints. See [77] for further

details.

4.5 Experiments

We demonstrate our IPP approaches on datasets related to ocean salinity, elevation,

and soil moisture. The ROMS ocean salinity dataset [48] contains salinity data from

the Southern California Bight region (USA), the elevation dataset [90] contains data

from near the coast of North Carolina (USA), and the soil moisture dataset [47]
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contains data from across the continental USA.

An RBF kernel [2] was used to model the spatial correlations of the datasets in all

approaches. We evaluated the paths by gathering ground truth data along the gener-

ated solution paths (i.e., by continuous sensing robots) and estimating the state of the

entire environment from the collected data using a GP with the ground truth kernel

parameters of the dataset. The root-mean-square-error (RMSE) between the ground

truth data and our estimates was used to quantify the solution paths. All benchmarks

were repeated 10 times on a workstation with an 18-core Intel(R) Xeon(R) Gold 6154

3.00GHz CPU and 128 GB of RAM.

Single Robot: For the unconstrained online single-robot IPP problem, we bench-

marked our SGP-based online IPP approach (Online SGP), which optimizes a path

with s waypoints. The method assumes that no prior data from the environment

is available and instead utilizes an SGP initialized with randomly sampled hyper-

parameters to generate the initial path. It then updates both hyperparameters and

the path online, as detailed in Section 4.4. As a baseline, we also implemented the

Continuous-Space Informative Path Planner (CIPP, Hitz et al. [36]). CIPP leverages

CMA-ES, a genetic algorithm, to find informative paths maximizing mutual informa-

tion in continuous spaces. We chose this method as a baseline because it is the most

closely related approach capable of handling online multi-robot IPP in continuous

spaces.

In particular, we implemented the online version of the method (Online CIPP),

which also assumes that no prior data is available from the environment. However,

Online CIPP employs a full GP to learn the hyperparameters; this does not scale

well to large IPP missions due to the O(n3) computational expense of full GPs and

the limited computational resources available on most robot platforms. Therefore, to

ensure a fair benchmark that focuses solely on the online IPP part of the algorithms,

we modified Online CIPP with our SSGP-based hyperparameter learning approach
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while retaining the original IPP part of the CIPP algorithm.
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Figure 4.2: The mean and standard deviation of the total runtime for single-robot
IPP for each method on three datasets (lower is better). The hatched regions indi-
cate the runtimes for the SSGP-based hyperparameter learning; for the offline oracle
approaches, the hatched portion represents the full GP training time.
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Figure 4.3: The mean and standard deviation of the RMSE scores for each single-
robot IPP method on each of the datasets (lower is better).
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Figure 4.4: The mean and standard deviation of the multi-robot IPP runtime, with
four robots, for each method on each of the datasets (lower is better).

Additionally, we benchmarked the offline versions of our SGP-based IPP approach [74]

and the CIPP approach. The offline methods (Oracle Offline SGP and Oracle Offline

CIPP) here assume they possess optimal hyperparameters that model the data field
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Figure 4.5: The mean and standard deviation of the RMSE scores for each multi-
robot IPP method on each of the datasets (lower is better).
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(c) Online update 2

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
X

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

y

Budget=12
Distance=11.94

Budget=18
Distance=17.41

Budget=14
Distance=13.39

(d) Online update 3

Figure 4.6: Online and decentralized heterogeneous multi-robot IPP with three robots
for ocean salinity monitoring. The robots modeled point sensing (green), continuous
sensing (orange), and non-point rectangle FoV sensing (blue). Note that the moni-
toring regions are limited to the ocean; the top right portion of the map is Southern
California and is not included in the monitoring regions. In (a) and (b), the paths
were unconstrained. In (c) and (d), the paths were distance constrained. The red
points indicate the waypoints that have been visited by the robots.

in the environment. Therefore, we first train a full GP with training data from the

environment and utilize those hyperparameters in the offline approach. These meth-

ods are referred to as oracle approaches, as they have a priori information about the

environment, which is not available to the online approaches.

All approaches were optimized for paths with 10 waypoints. The mean and stan-

dard deviation of the total runtimes for the IPP methods and the RMSE results are

shown in Figure 4.2 and Figure 4.3, respectively. For completeness, we also indicate

the runtimes for the SSGP-based hyperparameter learning part of the methods in

the figures with the hatched regions. For the offline oracle approaches, the hatched

regions represent the full GP training time. Note that the SSGP optimization time
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varies depending on the number of data samples collected along the path, and the

path is in turn affected by the parameters learned by the SSGP.

As we can observe, our Online SGP IPP approach is significantly faster than the

Online CIPP IPP approach. Furthermore, we note that our approach’s RMSE scores

closely match those of the Online CIPP, Oracle Offline SGP, and Oracle Offline CIPP,

despite having no initial training data from the environment. This demonstrates

that the Online SGP approach can be deployed on compute-limited robots in novel

environments while still achieving effective environmental monitoring performance.

Multiple Robots: Next, we demonstrate our online centralized and decentralized

multi-robot IPP approaches (Online SGP and Decentralized Online SGP, respec-

tively) on the three datasets. We also present results from the baselines: the online

centralized multi-robot CIPP approach (Online CIPP) and the oracle offline central-

ized multi-robot versions of the CIPP and SGP IPP approaches (Oracle Offline SGP

and Oracle Offline CIPP, respectively). All approaches in this experiment were opti-

mized for 4 robots with 10 waypoints in each path. The resulting IPP runtimes and

RMSE results (computed with data from all four robots) are shown in Figure 4.4 and

Figure 4.5, respectively.

For the decentralized approach, we report the average runtime of the 4 robots,

as unlike the centralized approach, the decentralized approach simultaneously runs

online single-robot IPP on each robot. As we can see, our online centralized multi-

robot and online decentralized multi-robot approaches are significantly faster than the

baseline CIPP-based approaches while maintaining RMSE score performance. This

demonstrates that our online decentralized multi-robot IPP approach can be deployed

on compute-limited robot teams without stringent communication requirements, and

still achieve good environmental monitoring results.

Heterogeneous Robots: We now demonstrate our decentralized online IPP ap-

proach for heterogeneous robots on the ocean salinity dataset. We used three robots:
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one with point sensing, one with continuous sensing, and one with non-point rectangle

FoV sensing. We generated the initial paths and environment partitioning assuming

homogeneous robots, as detailed in Algorithm 7, and then deployed the three robots

with online IPP, each with its corresponding sensor model as detailed in Algorithm 8.

Upon reaching the third waypoint, each robot was subjected to a distance budget

constraint. The resulting solution paths are shown in Figure 4.6. As we can see,

the warm-start solutions cover most of the environment even though they were op-

timized with random hyperparameters. After the first online update with data from

the environment, the paths are adjusted to account for the sensor FoV on each robot

(continuous and non-point sensors in particular). Upon adding a different distance

budget constraint on each robot, the paths are shortened. At the final leg, the paths

are updated to fully utilize the distance budget. Moreover, the non-point rectan-

gle sensing robot’s FoV rotation angle was also treated as an optimizable variable.

As such, we see that the final solution ensures that the FoVs are rotated to avoid

overlapping and to gather the maximal amount of new data. Note that we modeled

homogeneous robots in the offline phase to demonstrate the path updates for different

sensors; our method can also model heterogeneous robots in the offline phase.

In the above experiment, the point sensing robot spent a total of 4.06 secs on SSGP

optimization and 7.28 secs on IPP optimization. The continuous sensing robot spent

4.57 secs and 11.17 secs on SSGP and IPP optimization, respectively. The non-point

rectangle FoV sensing robot spent 6.36 secs and 23.27 secs on SSGP and IPP op-

timization, respectively. The data from the three robots collectively resulted in an

RMSE of 0.84. Note that the RMSE is higher compared to the benchmark results be-

cause we used a point sensing and non-point sensing robot here, while the benchmark

modeled all robots as continuous sensing robots. This experiment demonstrates that

our approach can effectively handle large-scale decentralized online IPP missions that

require infinite horizon monitoring with a large number of heterogeneous robots.
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4.6 Conclusion

This paper addressed the informative path planning (IPP) problem for environmen-

tal monitoring where the amount of data is continually increasing. Prior approaches,

which leveraged GPs to update the hyperparameters online, would not scale well to

real-world problems. Also, most earlier approaches used computationally expensive

discrete optimization methods for IPP. We presented an online and decentralized

heterogeneous multi-robot IPP approach. We tackled the online hyperparameter es-

timation issue by leveraging streaming sparse Gaussian processes and generalized

our offline sparse Gaussian process-based IPP approach to handle online IPP. More-

over, we presented an efficient decentralized generalization of the online approach by

warm-starting the multi-robot IPP solution and formulating a K-nearest neighbor-

based environment partitioning scheme. We provided benchmarks on three real-world

datasets demonstrating our approach’s computational efficiency on the single robot

and multi-robot IPP problems and compared it to a baseline genetic algorithm-based

IPP approach. The IPP approach is also demonstrated with three heterogeneous

robots with point sensing, continuous sensing, and non-point FoV sensing models,

and distance budgets introduced halfway through the mission. Our future work will

demonstrate our approach on real-world robots and investigate related problems such

as IPP for 3D surface inspection. We additionally plan to generalize our approach to

handle trajectory planning.



CHAPTER 5: Informative Path Planning in Graphs for Source Localization

5.1 Introduction

Methane accounted for 10% of the global greenhouse gas emissions in 2018 [91].

However, in the form of natural gas, methane is a viable energy source that can

slow global emissions since it has a smaller carbon footprint than most other fossil

fuels [92]. Unfortunately, it is not possible to extract without leaking, and its carbon

footprint is small only if under 4% of its total production volume leaks [93]. Since

methane leaks are unavoidable, we need to estimate leak rates in oil fields and take

appropriate actions depending on the estimated rate.

Figure 5.1: Illustration of an oil field depicting storage tanks. Note that methane gas
is not in the visible spectrum; it is shown green for visualization.

However, estimating the leak rates of gas sources is non-trivial. Recent work [94]

has shown that current methods have heavily underestimated methane leaks. The
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reason leak rate estimation is difficult is because it is inherently an ill-posed problem.

Even if a single source is considered, multiple leak rates could result in sensing the

same gas concentration at a given location as environmental factors such as wind

speed and temperature could affect the dispersion of the gas. Furthermore, when

multiple leak sources are considered (Figure 5.1), it is possible to have overlapping

gas plumes making it difficult to attribute the data to each source.

Robots can collect gas concentration data from oil fields to estimate leak rates. The

data collection locations have to be planned so that each location is highly informative

and reachable within the robot’s distance budget. So we also have to consider the

informative path planning problem (IPP) for mobile robots. Even if we restrict data

collection to a road network, depending on the size of the road network and distance

budget, there could be a prohibitively large number of possible data collection walks1.

We address two main problems in this chapter. First, we derive a computation-

ally efficient probabilistic approach for estimating gas leak rates. We improve on the

approach of Albertson et al. [95] by introducing a simplifying Gaussian assumption

that results in substantial computational gains while retaining leak rate estimate con-

vergence. Second, we address the IPP problem; we use the Generalized Cost-benefit

(GCB) algorithm [96] to find data collection walks. However, the GCB algorithm does

not consider arc routing constraints needed to find informative data collection walks

in road networks; we introduce a variant that considers such constraints. We also

present a modification to the GCB algorithm that substantially improves its runtime

efficiency.

This chapter makes the following contributions:

1. Presents a fast and effective Bayesian approach for leak rate estimation from

gas concentration data.
1A walk is any sequence of alternating vertices and edges v1, e1, v2, e2, ..., vk, ek, vk+1 in a graph

such that each edge ei has endpoints vi and vi+1. A walk could contain repeated edges or vertices.
It is considered closed if the first and last vertices are the same, and open otherwise.
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2. Derives an efficient analytical solution to an information metric—Expected En-

tropy Reduction (EER)—that is used in the IPP problem.

3. Improves the runtime efficiency of the GCB algorithm used to solve the IPP

problem.

4. Introduces an arc routing variant of the GCB algorithm for IPP in graph net-

works.

5.2 Problem Statement

We are given a road network graph G = (V,E) with intersections modeled as

vertices V and roads as edges E. We are also given a set of candidate leak locations

and environmental factors such as wind speed and ambient temperature. We need to

accurately estimate the leak rate of each leak source. The problem entails identifying

informative data collection walks within a distance budget b and using the collected

data to estimate the leak rates. Furthermore, depending on the leak rate of each

source, we can detect the gas leaks at varying distances from the source. Therefore,

our goal is to find minimal length data collection walks by selectively approaching

the sources and getting only as close as needed to the sources. Additionally, the

estimates could have high variance or become obsolete as environmental factors and

leak rates continually change over time. Thus the solution approach would have to

be fast, accurate, and iterative to update the leak rate estimates whenever needed.

5.3 Related Work

Leak rate estimation: There are several approaches to leak rate estimation based

on whether the sensors are fixed or mobile, the type of gas concentration sensors, and

resolution of the sensors.

Pandey et al. [97] showed that it is possible to estimate methane leak rates from

satellite measurements. However, satellites are expensive to deploy and maintain.
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The approach also has a limited ground pixel resolution and suffers occlusion from

clouds, making it challenging to estimate small scale leaks omnipresent in oil fields.

An alternative to satellite data based sensing is to deploy a methane sensor at

each oil well. To ascertain the feasibility of such a method, Project Astra [98] aims

to build a sensor network for an entire oil field and develop a network monitoring

method. However, it might be challenging to deploy and maintain a sensor network

in an oil field like the Permian Basin in the US, spanning about 220,000 square

kilometers with over 3500 drilled but uncompleted wells (DUC) [99], given the large

number of sensors required.

Travis et al. [100] addressed methane leak rate estimation using fixed sensors by

training a Neural Network (NN) on data from gas leak simulations. The NN could

predict leak rates with reasonable accuracy but assumed stationary methane gas

concentration sensors. Furthermore, the NN was an entirely data-driven, black-box

approach that does not generalize to oil fields that do not follow the same leak rate

distribution as the simulated data.

Albertson et al. [95] developed a Bayesian model for leak rate estimation in an oil

field. The Generalized Extreme Value (GEV) Type II distribution [101] was used as

the prior distribution in their approach. They also used Expected Entropy Reduction

(EER) as an optimization metric to find data collection paths for mobile sensors.

However, using the GEV distribution necessitated approximation methods like nu-

merical quadrature to evaluate the nested integrals involved in the computation of

EER and the posterior distribution of leak rates.

Furthermore, the framework of [95] is an iterative approach wherein one generates

a data collection path, collects data, updates the leak rate estimates, and repeats

the process until convergence to the true leak rates. However, every new iteration

introduces an additional nested integral, each incurring substantial computation costs.

Although the approach is theoretically elegant, it is computationally prohibitive and
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infeasible for large oil fields.

Informative Path Planning: Finding the most informative walk for data col-

lection is known as the Informative Path Planning (IPP) problem. Despite its name,

IPP is not limited to just paths but includes tours and walks as well2.

Usually, information metrics such as mutual information are used to quantify the

informativeness of data collection locations in IPP. But the IPP problem is known to

be NP-hard [62], and as a consequence, only suboptimal solutions can be obtained

for most real-world problems.

Hollinger and Sukhatme [103] presented branch and bound techniques for IPP

and established asymptotically optimal guarantees; their algorithms converge to the

optimal solution as the run time approaches infinity.

A recent approach presented by Bottarelli et al. [66] developed active learning algo-

rithms for the IPP problem with a complexity of O(|D|5) where D is the discretized

data collection space. They also suggested optimizations that trade search space

complexity for reduced computation time.

Some IPP methods exploit structure in their optimization functions, mainly sub-

modularity [104, 105, 106, 57], a property often found in information metrics used

in IPP. Submodular functions have a diminishing returns property that makes them

amenable to greedy optimization with known approximation factors. Iyer and Bilmes

[107] established tight approximation factors for the maximization of submodular

functions with submodular constraints.

Zhang and Vorobeychik [96] developed the Generalised Cost-benefit (GCB) algo-

rithm with approximation guarantees to find a subset of vertices in a graph that

maximize submodular functions with node routing constraints. They imposed node

routing constraints by solving the Travelling Salesperson Problem (TSP) while en-

suring that the walk is within the distance budget and includes the selected vertices
2A walk with no repeated edges is called a tour, and a walk with no repeated vertices is called a

path [102].
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of the graph. In practice, the method therefore requires numerous computations of

the TSP, making it relatively expensive, and the method was limited to node routing

constraints.

A closely related problem is gas distribution estimation [108, 109]. In this problem,

gas leak sources are at unknown locations. The task is to estimate the gas density

at each region and locate the leak. The problem also entails determining the data

collection locations. Arain et al. [110] presented an approach that discretizes the

search space and solves a convex relaxation of an integer linear program for near-

optimal environment coverage.

Nonetheless, our problem is intrinsically different from the conventional IPP prob-

lem. We are interested in collecting data only to predict the leak rates of potential

sources in an oil field instead of building a model of the entire data collection space.

Therefore, an optimal walk for our problem might be substantially different from an

optimal walk for the conventional IPP problem.

Albertson et al. [95] addressed our variant of the IPP problem by iterating over

every possible path within the distance budget b between a given start and end

location. The authors then computed each path’s EER and selected the maximal

EER path as the solution. However, a road network will have exponentially many

possible walks, some of which might not even go near any leak source in the field. As

such, the method incurs exponential computational costs to find the solution route

and is feasible only for small road networks.

Arc Routing: Arc Routing Problems (ARP) [102] are closely related to TSP. But

unlike node routing problems such as TSP that look for a walk that visits all nodes,

ARPs look for a walk that traverses the arcs or edges of a graph at least once. The

Rural Postman Problem (RPP) [111], a variant of ARP, is to find the shortest walk

that traverses a specified subset of edges, the required edges of a graph. Since a walk

needs to be continuous, RPP solvers may additionally use non-required edges.
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5.4 Preliminaries

Foster-Wittig et al. [112] developed a gas dispersion model to calculate fugitive gas

concentration at any location given the leak rate of the source. The gas concentration

C(s, x, y, z) at the location (x, y, z) when the leak rate is s is given by:

C(s, x, y, z) =
s

U

(
Ā

z(x)
exp

[
−
(
Bz

z(x)

)2
])
×

(
1√
2πσy

exp

[
−1

2

(
y

σy

)2
])

(5.1)

Here, U is the observed speed of the gas plume advection, Ā, B, and z are functions

of atmospheric stability, and σy is the length scale of the plume along the horizontal

axis. The (x, y, z) coordinates are relative to the origin centered at the leak’s source,

with the x-axis along the wind direction.

Albertson et al. [95] used the above gas dispersion model in a Bayesian model to

compute the posterior distribution of the leak rates given the methane gas concen-

tration data from field measurements. A new instance of the Bayesian model was

associated with each source.

The Bayesian model was also used to evaluate the Expected Entropy Reduction

(EER) information metric φ to set up an optimization problem and find maximally in-

formative data collection walks. EER measures mutual information [113], the amount

of information one random variable contains about another. Mutual information can

also be interpreted as the reduction in uncertainty of one variable due to the knowl-

edge of another variable. Mutual information is treated as a dimensionless metric

that can only be interpreted in its relative sense [113].

In [95], EER φ quantifies the information relevant to a source’s leak rate in gas

concentration data collected from a path. It also allows us to quantify this information

without knowing the true leak rate. Here, M is the set of gas concentration data from

the data collection path. Each m ∈M represents the measured gas concentration in
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parts per million (ppm). S ⊆ R≥0 is the domain of the leak rate s.

φ[S;M ] = − log2

∫
sϵS

p2(s)ds+

∫
mϵM

log2

∫
sϵS

(
p(m|s)p(s)∫

s1ϵS
p(m|s1)p(s1)ds1

)2

ds p(m)dm(5.2)

EER is submodular [114]. Submodular functions are set functions with returns

that diminish as the input set size increases. Any submodular function f satisfies the

following property for sets X, Y, and T , with u being an element of the set T that is

not already in Y .

f(X ∪ {u})− f(X) ≥ f(Y ∪ {u})− f(Y )

∀X ⊆ Y ⊂ T and u ∈ T\Y

Consider the EER function—adding more locations to a data collection path will

increase the EER. However, the size of the incremental increases in the EER will

diminish as the number of data points increases, as the amount of additional infor-

mation in a path decreases with each newly collected data sample.

Like prior approaches, we assume that the oil field is on flat terrain without any

large obstacles obstructing the gas plumes. Source detection is done by thresholding

the leak rate of every well. Table 5.1 lists all the variables used in this chapter along

with their definitions.

5.5 Approach

Our approach assumes a Gaussian prior for the leak rates, which we use to derive

an analytical EER and posterior for the leak rates; we use the analytical EER to

perform informative path planning.
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Table 5.1: Definitions of variables.

Variable Definition
G = (V,E) Road network graph G, with vertices V and edges E
b Distance budget
s Leak rate of a source
S Domain of leak rates
C Gas dispersion model or gas concentration function
x, y, z Coordinates along X, Y , and Z axes respectively
U Observed speed of gas plume advection
Â, B, ẑ Functions of atmospheric stability
σy Length scale of gas plume along the Y axis
φ Expected Entropy Reduction (EER)
M Set of gas concentration data
m Individual gas concentration data sample
N Normal distribution
µs Mean of leak rate s of Gaussian prior
σs Standard deviation of leak rate s of Gaussian prior
σe Combined error of gas dispersion model and data

measurement
A Function of all the terms except s in the gas

dispersion model C
Axyz Scalar output of the function A at location x, y, z
A Vector containing Axyz values computed at different

locations
γ, µ, β GEV Type II distribution parameters
ĉ Routing problem solver (returns solution route cost)

5.5.1 Gaussian Assumption

To avoid the drawbacks of using the GEV Type II distribution as the prior over

the leak rates, we instead use the Gaussian distribution as the prior. The Gaussian

distribution is conjugate—if the likelihood is Gaussian, using a Gaussian prior over its

mean will result in a Gaussian posterior. Moreover, its mean and variance compactly

parameterize the distribution and are amenable to analytical computations.

The Gaussian prior assumption facilitates our derivation of an analytical equation

to compute the EER and the posterior in time linear in the number of gas concentra-

tion samples collected from the field. Since Gaussian distributions have the maximal

likelihood at the mean, instead of sampling the entire domain of s as was done in [95],
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we only have to compute the mean to determine the most likely leak rate s (i.e., the

maximum a posteriori probability estimate).

However, assuming a Gaussian distribution for the prior has its shortcomings. It

is not consistent with the results of Brantley et al. [115] whose findings showed that

the leak rates follow a log-normal distribution. Nevertheless, we found that the com-

putational gains from computing both the EER and posterior analytically outweigh

aligning the prior to a log-normal distribution. Moreover, our experiments show that

our approach converges to the simulated leak rate despite the Gaussian prior. We

next describe the critical steps in our derivations.

5.5.2 Analytical EER and Posterior

We formulate the prior p(s) and likelihood p(m|s) functions of the leak rate s as

follows.

p(s) ∼ N (µs, σ
2
s)

p(m|s) = 1

σe
√
2π

exp

[
−1

2

(
m− C(s, x, y, z)

σe

)2
] (5.3)

Here, µs and σs are the mean and standard deviation of the leak rate s. The

combined gas dispersion model and concentration measurement error is σe. The gas

concentration m is measured at coordinates x, y, z.

The evaluation of EER and the posterior involves integrating the likelihood function

p(m|s) with respect to s. However, the likelihood p(m|s) contains the gas dispersion

model C (Equation 5.1), which is a function of numerous parameters and seemingly

intractable to analytical integration.

We found that the dispersion model C can be factorized into a product of s and

the remaining terms independent of s. Therefore, we can combine all the terms

other than s into a single function A, dependent on the (x, y, z) coordinates where
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the dispersion is calculated. This factorization allows us to treat the output of the

function A(x, y, z) as a constant with respect to the likelihood p(m|s), allowing us

to treat the likelihood as a Gaussian. And since both the prior p(s) and likelihood

p(m|s) are Gaussian, our posterior p(s|m) will also follow a Gaussian distribution.

We omit the arguments of A for brevity.

p(m|s) = 1

σe
√
2π

exp

[
−1

2

(
m− sA(x, y, z)

σe

)2
]

= N (sA, σ2
e)

(5.4)

We derived3 the EER φ and Gaussian posterior p(s|M) using the factorized like-

lihood p(m|s) and Gaussian prior p(s). Here, M is a vector containing gas concen-

tration data m at every sampling location. Axyz is the scalar output of the function

A computed for the sampling location with coordinates (x, y, z), A is the vector

representation of all the Axyz values, and c is a constant.

φ[S;M ] = − log2
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1

2σs
√
π

)
+
∑
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(m− µsAxyz)2

2(A2
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2
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2
s

ATAσ2
s + σ2

e

) (5.5)

Note that while computing the EER, M is calculated using a simulated leak source

(Equation 5.1) with an arbitrary leak rate since we are only interested in the amount

of information in a data collection walk, independent of the actual leak rate. However,

to compute the posterior leak rate, we use gas concentration data collected from the

generated data collection route.

Moreover, unlike the GEV prior model, the Gaussian prior model’s posterior can
3The derivation and code can be found at

https://github.com/UNCCharlotte-CS-Robotics/Gas-Leak-Estimation

https://github.com/UNCCharlotte-CS-Robotics/Gas-Leak-Estimation
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be represented by its mean and variance. So when the posterior needs to be used as

the new prior distribution to determine subsequent data collection walks, it will not

introduce any nested integrals as we can update the prior by changing its mean and

variance.

5.5.3 Informative Path Planning (IPP)

Our approach to evaluating EER and the posterior substantially decreases the

computation time. However, we still need to solve the IPP problem. Using the

EER function as an optimization metric, we wish to find a data collection walk that

maximizes the EER. Such a walk will result in the most informative sensor data for

leak rate estimation.

We reformulate the problem as one where we have to find the edges in the graph

G that maximize the aggregate EER and find a walk within the distance budget that

includes all the selected edges. This problem, belonging to the class of arc routing

problems with profits, is NP-hard [102].

Since EER is a submodular function, we could use the GCB algorithm [96] to

maximize EER while imposing routing constraints. However, the GCB algorithm

operates on nodes and imposes only node routing constraints. We need arc routing

constraints, as the EER function operates on edges to quantify information. Solving

the routing problem as a node routing problem does not always give us the best

solutions. Furthermore, it nullifies the approximation guarantee established for the

GCB algorithm [96].

We address this problem by proposing an ARP variant of the GCB algorithm. Our

ARP variant selects edges of the graph instead of vertices and imposes arc routing con-

straints. We set up the routing problem as the Rural Postman Problem (RPP) [111]

and solve it using an RPP solver. The RPP solver finds the shortest walk within the

distance budget (if one exists) while including all the edges in the subset selected by

the GCB algorithm. We found that the RPP variant of the GCB algorithm often re-
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Algorithm 9: The modified Generalized Cost-benefit Algorithm (MGCB). ĉ
is the routing function: TSP when W is the node set V of the graph G, and
ARP when W is the edge set E. φ is the submodular cost function (EER),
and W ′\x∗ is the set W ′ without the element x∗.
Data: b > 0,W
Result: Walk S ⊂ W

1 A := argmax{φ(x) | x ∈ W, ĉ(x) ≤ b}
2 Z := ∅
3 W ′ := W
4 while W ′ ̸= ∅ do
5 for x ∈ W ′ do
6 ∆x

φ := φ(Z ∪ x)− φ(Z)
7 ∆x

c := ĉ(Z ∪ x)− ĉ(Z)
8 end
9 Y := {x | x ∈ W ′, ĉ (Z ∪ x) ≤ b}

10 if |Y | == 0 then
11 break
12 end
13 x∗ = argmax{∆x

φ/∆
x
c | x ∈ Y }

14 Z := Z ∪ x∗
15 W ′ := W ′\x∗
16 end
17 return argmaxS∈{A,Z} f(S)

sults in walks with higher or equivalent EER than those generated using the original

TSP variant. Furthermore, the RPP variant retains the approximation guarantee of

the GCB algorithm since both the subset selection and routing constraints operate

on the edges of the graph.

Moreover, we also improve the runtime efficiency of the GCB algorithm by adding a

conditional break statement (Algorithm 9). Let S ⊆ W be the solution set generated

by the GCB algorithm. The original algorithm takes |W | iterations of the while loop.

In contrast, our modified GCB algorithm (MGCB) takes only |S|+1 iterations of the

while loop and returns the same result as the original algorithm.

The MGCB algorithm (Algorithm 9) starts by ensuring that at least one element

(nodes if using TSP or edges if using ARP) is reachable within the distance budget

(Line 1). Then it computes the increments in the route cost ∆x
c and submodular
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Figure 5.2: Posterior leak rate distribution with GEV Type II and Gaussian priors
for different true leak rates. The posterior with GEV prior is shown in orange (solid
line), and the posterior with Gaussian prior is shown in blue (dashed line). Subplot
titles show the true leak rate, the absolute difference between each distribution’s mode
and the true leak rate, and the computation time. The GEV Type II and Gaussian
priors were parametrized with a mode (most likely leak rate) of 0.09 g/s and 0.15 g/s
respectively.

function cost ∆x
φ upon adding each available element x ∈ W ′ to the solution set Z

(Lines 5-8). Any infeasible routes are filtered, and it checks if any feasible elements

remain that it could add to the solution route (Lines 9-12). If none remain, the

algorithm returns the best-known solution up to that point. Else it adds the element

x∗ with the highest increment ratio (of submodular cost to route cost) to the solution

set Z and removes it from the available elements set W ′ (Lines 13-15). The algorithm

iterates until either the available elements set is empty or the condition for the break

statement is satisfied (i.e., there are no more feasible elements).

5.6 Simulation Experiments

This section compares the EER and posterior computations using the GEV Type II

and Gaussian priors. Additionally, it illustrates the advantages of the modified GCB

algorithm for IPP. Real-world experiments on gas leak rates are stochastic, influenced

by environmental conditions such as wind or humidity. To control for such variations,

we conducted our experiments in simulation with the fixed environmental conditions

documented in [116] and used the dispersion model (Equation 5.1) from Foster-Wittig

et al. [112].

In all our experiments, we used the GEV Type II prior with model parameters
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γ, µ, β, and σe set to 1, 0.19, 0.23, and 0.01 respectively, obtained from [95], and

the Gaussian prior with µs, σs, and σe set to 0.15, 0.65, and 0.03 respectively. The

Gaussian prior’s mean was estimated by fitting to data sampled from the GEV Type

II distribution with the parameter values mentioned above. We can generalize this

fitting process to any oil field of interest by replacing the GEV distribution data with

aggregate historical leak data from that oil field. The σs and σe parameters were

tuned so that the largest leak rate in our sampled data used to fit the Gaussian mean

was within two standard deviations, which gave us Gaussian posterior predictions

close to that of the original GEV prior model.

5.6.1 Leak Rate Posterior

First, to establish our approach’s validity, we simulated a source leaking at three

different leak rates and calculated gas concentrations M at ten random locations

around the source. Using the GEV Type II and Gaussian prior-based approaches, we

then used the simulated gas concentration data M to estimate the true leak rate s.

The results are shown in Figure 5.2.
Path Iter (1.80E-05 MSE)

Graph Edge
Graph Vertex
Oil Well

MGCB TSP (2.20E-05 MSE) MGCB ARP (1.08E-05 MSE)

(a) Path iteration (1.80E-5
MSE)
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(b) Modified GCB with
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Figure 5.3: Example graph extracted from the oil well corpus and the walk generated
with each algorithm. The graph has 35 vertices, 36 edges, and 43 oil wells.

We found that using either prior we can accurately estimate the true leak rate.

Even when the leak rate has a low likelihood in the prior distribution, such as 5

g/s, our approach’s estimates are close to the true leak rate. But the Gaussian prior
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based model underestimates the leak rate as the true leak rate moves far away from

the prior distribution’s mean.

However, this is a degenerate scenario, as we limited the data to only 10 points to

show our approach’s limits. Moreover, gas concentration sensors have much higher

sampling rates, and according to Brantley et al. [115], most leaks occur at much lower

rates, around 0.16 g/s, which is close to the mean µs of our prior distribution p(s).

As such, we anticipate that our approach’s estimated leak rate would be closer to the

true leak rate in a real-world scenario.

Furthermore, the Gaussian prior based approach is five orders of magnitude faster

than the GEV prior based approach. This is because, unlike the GEV based approach,

we can analytically compute our model’s posterior.

5.6.2 Expected Entropy Reduction (EER)

The following experiment details the computational gains of our approach when

computing the EER. We are interested in paths with the most information about

leak rates quantified by EER. The EER computation cost is substantial when using

the GEV Type II prior. We demonstrate the advantages of the Gaussian prior based

approach to EER computation by evaluating the EER of six paths and sorting them

in decreasing order. The EER values are not interpretable by themselves. There-

fore, we are only interested in the order of the paths sorted by EER. We considered

straight-line paths (each with 100 evenly sampled data points) parallel to the Y -axis

at different distances along the X-axis from a simulated leak source.

We found that using either prior distribution to compute the EER gives the same

ordering of paths. However, the Gaussian prior based model took five orders of

magnitude less computation time compared to the GEV model, as shown in Table 5.2.

Furthermore, our approach’s benefits multiply in an actual oil field where hundreds of

leak sources are considered, and the computation is repeated for numerous paths. We

also observed fluctuations in the GEV model’s computation time due to the stochastic
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Table 5.2: EER computation time with GEV Type II and Gaussian priors for paths at
varying distances from the leak source. The results were averaged over 10 iterations.

Distance to oil well Compute Time (secs)
along X-axis (meters) GEV Type II prior Gaussian prior

0.2 22.42391 0.00017
0.8 16.90775 0.00016
1.4 30.65850 0.00017
2.4 41.51963 0.00021
3.0 42.78649 0.00017
5.0 41.21629 0.00020

nature of adaptive quadrature used to evaluate the integrals in its EER. In contrast,

the Gaussian prior model takes an almost constant amount of time to compute the

EER, given the analytical solution to its integrals.

Our results above establish that our method converges to the true simulated leak

rate with significantly reduced computation time despite the Gaussian assumption.

5.6.3 Informative Path Planning (IPP)

We also improved the IPP approach as mentioned in Section 5.5.3. The following

experiment establishes the improvement in computation time of the IPP approach

using our modified GCB algorithm.

We considered a corpus of 80,000 oil wells in the Permian basin in Texas, USA [117].

The wells were clustered into 1000 clusters based on their relative positions. We then

extracted the road network associated with each cluster. To ensure that the path

iteration algorithm’s runtime is feasible, we empirically chose the connectivity range

and total graph distance. We filtered out graphs with average node connectivity [118]

higher than 1.1 and graphs with total road network length less than two times the

distance budget b, which gave us 134 graphs. The statistics of the considered graphs

are shown in Table 5.3.

We then generated data collection walks with a distance budget of 15 km, which

we found to be the range feasible for selected unmanned aerial vehicles (UAVs) and

unmanned ground vehicles (UGVs). We generated the walks using the path iteration
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Table 5.3: Statistics of the graphs used to benchmark the MGCB algorithm.

Statistic Min Max Mean
Number of oil wells 11 145 35.50
Number of vertices 15 420 76.28
Number of edges 16 484 81.07
Avg. connectivity [118] 1.0 1.10 1.04

approach of Albertson et al. [95], the GCB algorithm with TSP, our modified GCB

algorithm with TSP, the GCB algorithm with RPP, and the modified GCB algorithm

with RPP. The TSP [75] and RPP [111] 4 solvers we used had a 3/2-approximation

guarantee. To compute the EER, we sampled the gas concentration at ten evenly

spaced points along each edge in the route generated by the routing algorithm.

Table 5.4: Leak rate prediction mean squared error (MSE) and computation time for
each method (lower is better). Path Iter is the path iteration, GCB is the original
GCB algorithm, MGCB is our modified GCB algorithm, and the TSP/RPP postfix
refers to the routing constraint solver used in GCB.

Method Mean MSE Std. MSE Mean Time (secs) Std. Time (secs)
Path Iter 1.6132E-01 1.2989E+00 1203.81 4.18
GCB TSP 2.0583E-04 1.4948E-03 1209.58 22.64
GCB RPP 2.5680E-05 1.3238E-04 1211.50 17.45

MGCB TSP 2.0583E-04 1.4948E-03 129.41 305.48
MGCB RPP 2.5680E-05 1.3238E-04 450.02 512.24

In this experiment, we used the Gaussian prior based EER computation method

as it would be far too expensive to compute EER with the GEV prior. We randomly

sampled the oil well leak rates from a uniform distribution over the range 0 to 6 g/s

and assumed that we were given no prior leak rate estimates. Therefore we used

the default µs and σs obtained from historical leak rate data [95]. Furthermore, we

allocated a maximum of 20 mins to each algorithm for each graph. The mean squared

error (MSE) of the leak estimates for each method and the computation times are

shown in Table 5.4. Additionally, one of the generated graphs, along with its walks,

is shown in Figure 5.3.
4We used the Line Coverage Library available at

https://github.com/UNCCharlotte-CS-Robotics/LineCoverage-library

https://github.com/UNCCharlotte-CS-Robotics/LineCoverage-library
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Path iteration is infeasible for large graphs as the number of possible walks increases

exponentially with the number of graph edges; this is reflected in its computation time.

In almost all cases, it terminates with a timeout and returns the best-known solution

up to that point, which also explains the low standard deviation of computation time.

In contrast, the GCB and MGCB algorithms’ computational complexity does not

grow exponentially. But GCB is still costly to compute and usually terminates with

a timeout and returns the best-known solution up to that point, thereby underuti-

lizing the distance budget. This also explains the low standard deviation of GCB’s

computation time.

Even though GCB finds the solution early on in its computation, it continues to

iterate through the algorithm as there is no test to detect convergence and terminate

the algorithm. However, MGCB converges to the same solution as the GCB algorithm

in a fraction of the time on all considered graphs.

We notice a higher standard deviation in the computation time of MGCB because

the graphs are of varying sizes, therefore taking a varying amount of time to solve.

Finally, we also note that the RPP variant of GCB performs better than the TSP

variant as the arc routing constraints align with the EER function that measures

information along the edges of the graph.

5.7 Discussion

Suppose the routing constraint solver used in MGCB is stochastic, which is some-

times the case when using heuristics to solve the TSP/ARP. In this case, one should

expect to see the original GCB algorithm improve its solution even after |S|+1 itera-

tions of the algorithm. This is because even though the GCB algorithm converges to

the solution subset of nodes/edges in |S| + 1 iterations, the algorithm keeps solving

the routing problem with the same required solution subset for |W | − |S| − 1 itera-

tions. Heuristic-based solvers usually find better solutions after a few such iterations.

However, one could always use an exact solver once MGCB converges to improve the
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solution and get similar results.

Also, note that even though the MGCB algorithm takes |S|+1 while loop iterations,

|S| could still be close to |W | in the worst case. This would be the case when the

distance budget b is large enough, and the total distance of the graph edges is small

enough that the solution could traverse the whole graph. Nonetheless, our approach

does not incur any significant additional computation costs. As such, it results in the

same computation time as the original GCB algorithm.

A limitation of our work is that our experiments were conducted only in simulation.

However, we did not change the gas dispersion model, which is the only component

influenced by real-world conditions. Since the validity of the dispersion model and

the Bayesian approach was already established by Albertson et al. [95], we believe

field experiments would be consistent with our simulations.

Additionally, the dispersion model we considered assumed flat terrain and steady

state environmental conditions. One could potentially develop a more sophisticated

dispersion model that can be factorized intoA and s to handle dynamic environmental

conditions and use it in our approach.

5.8 Conclusion

We presented a method for efficient and accurate gas leak rate estimation of green-

house gases such as methane. We derived a closed-form equation for EER, a mutual

information metric, and substantially improved the runtime efficiency of the GCB

algorithm used to maximize the EER to find informative data collection walks. Since

the GCB algorithm did not consider arc routing constraints, we presented a GCB

variant that addressed such constraints. We also derived an efficient analytical ap-

proach for computing the posterior distribution of the gas leak rate for each leak

source.

Our simulated experiments, using oil well data, established the convergence of our

approach to the true leak rate. We also showed that our approach computes the
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EER and posterior leak rates five orders of magnitude faster than the prior approach.

Furthermore, our modified GCB algorithm (MGCB) was shown to be at least an order

of magnitude faster than the original GCB algorithm. Finally, we demonstrated that

our ARP variant of the MGCB algorithm obtains data collection walks for oil fields

that on average result in more accurate leak rate estimates when compared to the

original GCB algorithm.

The TSP/ARP routing algorithm is invoked numerous times, with only one new

element added to the required set in each iteration. One could reduce this computa-

tion cost by incorporating incremental solutions in each iteration. We plan to address

this in our future work.



CHAPTER 6: Sensor Placement in Graphs for Source Localization

6.1 Introduction

There is growing evidence that the frequency of pandemics, such as the COVID-

19 pandemic, is increasing [119, 120]. It is, therefore, crucial to identify infected

individuals before they show symptoms and treat them to curb the spread of such

outbreaks. Wastewater-based epidemiology has proven to be an effective approach for

detecting viral and bacterial outbreaks ([121, 122, 123, 124, 125]) including influenza,

poliovirus, respiratory syncytial virus, and Escherichia coli infections.

Figure 6.1: Illustration of a wastewater network with wastewater autosamplers.

Recent studies have demonstrated that viruses can be detected in human waste

days before an infected individual exhibits symptoms [126]. Regular monitoring of

wastewater networks for active traces of harmful pathogens can aid in identifying

outbreak locations and their scale. A few case studies ([127, 128, 129, 130, 131, 132])
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have shown that monitoring wastewater networks is a reliable and non-intrusive way

to detect COVID-19 outbreaks.

Although autosamplers can automate the collection of wastewater samples, they

can be costly. Additionally, the sampled wastewater must be collected and processed

in a lab. As such, to keep operating costs in check for wastewater monitoring, it is

crucial to minimize the number of autosamplers while ensuring accurate virus source

localization and comprehensive population coverage. It is also challenging to accu-

rately detect viruses in diluted wastewater samples. Thus, we must account for the

concentration of the collected wastewater samples at the solution placement locations

when using autosamplers.

Bayesian Sensor Placement for Multi-source Localization of Pathogens in Wastewater Networks

Wastewater
treatment plant

Residential area

Utility access point

Wastewater flow
direction

Pathogen
concentration model

Conditional probability
distribution table

Generate
Bayesian network

from wastewater network

Localize pathogen source(s)

Optimize sensor locations
Combinatorial optimization

Inference in a Bayesian network

(c)(a) (b)

Figure 6.2: Illustration of our approach. (a) We consider wastewater networks and (b)
generate a Bayesian graph from the wastewater network graph. (c) We then optimize
the sensor placements using combinatorial optimization on the Bayesian graph and
localize the virus source(s) using inference in the Bayesian graph.

We model the placement of autosamplers as a sensor placement problem. Our

method leverages the underlying graph structure of wastewater networks to set up an

optimization objective based on Bayesian networks. We use discrete optimization to

obtain sensor placement solutions efficiently while also ensuring that the placements

provide high-concentration wastewater samples from the autosamplers. Moreover,

we introduce a graph Bayesian approach to localize multiple simultaneous virus out-

breaks. To validate our approach, we conduct simulation experiments based on a
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real-world wastewater network and demonstrate its accuracy and robustness. Our

contributions are summarized below:

1. Introduce an approach to model a reduced graph representation of wastewater

networks ideal for efficient sensor placement optimization and source localiza-

tion.

2. Present an approach to use the inherent structure of wastewater networks to

build Bayesian networks.

3. Present a computationally efficient graph Bayesian virus source localization

approach that uses wastewater sample test results.

4. Establish a graph Bayesian optimization objective that can be used to find

ideal sensor placements for accurate virus source localization. The method uses

our source localization approach to ensure that the placements collect high-

concentration wastewater samples.

6.2 Problem Statement

We are given a wastewater network modeled as a graph G = (V,E) with buildings

and utility access points1 modeled as vertices V and pipelines as directed edges E

whose direction is identified by the wastewater flow. Wastewater networks have a

(reverse) directed tree structure with wastewater flowing from the leaf nodes (i.e.,

the buildings) to the root node (i.e., the wastewater treatment plant). Given their

inherent graph structure, only buildings are associated with leaf nodes l ∈ L, and

only utility access points are associated with non-leaf nodes j ∈ J in the graph. We

use upper case letters to represent a set of nodes, lower case letters to refer to the

nodes in a set, and subscripts to indicate a specific node.
1Also referred to as maintenance holes, cleanouts, and sewer holes.
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We are given k sensors (i.e., the wastewater autosamplers) that can be deployed

to monitor the wastewater network. We must identify a set of nodes W ⊂ V to

monitor, i.e., select autosampler placements to accurately detect and localize virus

outbreaks at one or more buildings in the wastewater network. Note that in the real

world, the sensing nodes only collect the wastewater, which is then sent to a lab to

be analyzed and determine if the samples are positive or negative for any viruses.

Additionally, when wastewater from multiple sources is combined in pipelines, the

wastewater is diluted, resulting in inaccurate virus detection test results. Therefore,

we must also account for any sample concentration requirements on the wastewater

while determining the solution autosampler placements.

We define a virus outbreak as a positive test for the virus of interest from the

wastewater of any building. Deploying sensors at every building in the wastewater

network would make detecting and localizing virus outbreaks a trivial task. However,

as we are limited to only k sensors (where k << |L|), the problem of optimizing their

placement is NP-hard [133], making it challenging to solve.

6.3 Approach

We first describe our method for reducing the wastewater network graph. Then,

we explain how we construct a Bayesian graph from the reduced graph. Next, we

present our approach for using the Bayesian graph to localize virus sources. Finally,

we detail our method for sensor placement. Figure 6.2 shows an illustration of our

approach.

6.3.1 Wastewater Network Graph Reduction

An inherent property of wastewater networks is that a virus outbreak can occur

only at the graph’s leaf nodes (i.e., the buildings). Furthermore, since the wastewater

network graph has a (reverse) directed tree structure, we can leverage these two

properties to reduce the number of nodes in the graph without losing any significant
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information.

Indeed, we can exclude any non-leaf node with a single parent node, as shown

in Figure 6.3. This is because placing a sensor at either the current node j2 or its

parent node j1 would result in sensing the same wastewater that flows into node j1

from its parent nodes (l1 and l2). Since choosing either node (j1 or j2) results in the

same solution, and there is no benefit from sensing at both the nodes, we discard

the current node j2, which is a non-leaf node with a single parent. Note that after

discarding the node j2, we connect the parent node j1 to the child node(s) of the

discarded node j2.

Such a reduction in the graph size reduces the size of the optimization problem that

needs to be solved to find the ideal sensor placements without diminishing the final

solution quality. Also, it would reduce the computation cost of our source localization

approach.

Figure 6.3: Node elimination scheme to reduce the graph size. Nodes with a single
parent node are removed from the graph. Nodes in blue represent leaf nodes, green
nodes are non-leaf nodes, and red nodes are nodes that we can remove from the graph.

6.3.2 Bayesian Graph Construction

One of the main insights of this article is that we can utilize the inherent graph

structure of wastewater networks to construct Bayesian graph networks. Bayesian

graph networks incorporate random variables associated with each node in the graph

and utilize the graph structure to model causal relationships among the random
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variables. We can leverage Bayesian networks to calculate conditional probabilities

that can be employed to establish an optimization objective for sensor placement and

also predict the most probable source(s) of a virus outbreak.

We build a Bayesian graph B from the wastewater network graph G. In the

Bayesian graph, we associate a Boolean random variable b with each node. The value

of b indicates whether the wastewater flowing through that node contains viruses or

not, where True indicates the presence of viruses and False indicates their absence.

To construct the Bayesian graph, we must also define the distribution associated with

each random variable. For the leaf nodes l ∈ L, the Boolean random variables are

treated as Bernoulli distributed variables, and we parametrize the distributions to

model the probability of a virus outbreak at each building.

The random variables b at the non-leaf nodes j ∈ J are computed using a determin-

istic OR-gate operation over the random variables of their parent nodes. Although

the junction nodes j ∈ J in real-world wastewater networks might not behave as OR-

gates, this simplifying assumption allows us to efficiently compute the conditionals

using variable elimination and message passing techniques [134]. Indeed, given our

directed tree graph structure and Boolean random variables, our Bayesian graph net-

work is similar to the Noisy-OR Bayesian network [134], which is amenable to efficient

Bayesian inference. In addition, our experiments show that our approach works well

despite our simplifying assumption.

We assign a Conditional Probability Density (CPD) table [134] to each non-leaf

node to store the result of the OR-gate operation. The CPD table of each node is filled

by iterating over all possible instantiations of the states of the current node and its

parent nodes. Each instantiation is assigned a probability of 100% if the instantiation

is possible with an OR-gate and set to 0% otherwise, as shown in Figure 6.4.
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Figure 6.4: An example Bayesian graph B for a wastewater network with two build-
ings. The nodes are color-coded: blue for leaf nodes l ∈ L, and green for junction
nodes j ∈ J . Each CPD table’s header row color and text indicate the associated
node, and subscripts indicate the node index. T and F represent True and False,
respectively.

6.3.3 Source Localization

We can now use our Bayesian graph B to localize the source of virus outbreaks.

Assuming we already selected a set of nodes W ⊂ V to deploy our sensors (i.e., the

wastewater autosamplers), we can use Bayesian conditioning [134] to predict the virus

outbreak state Al(Wb) of each leaf node l ∈ L (i.e., each building) given the current

virus presence state of the sensing nodes Wb:

Al(Wb) =


True if P (bl = True|Wb) > 50%

False otherwise
. (6.1)

Our Bayesian graph B is informed about the structure of the wastewater network
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from the directed graph G, and the prior virus outbreak statistics of each leaf node

from the associated Bernoulli distributions. Therefore, evaluating the most likely

state Al(Wb) of each building by conditioning on the current state of the sensor nodes

Wb leverages all the information available to us. In addition, since our Bayesian model

is a binary graph, our source localization approach is still computationally feasible.

6.3.4 Sensor Placement

Our sensor placement approach leverages the Bayesian graph B to formulate an

optimization objective that maximizes the source localization accuracy for a given

scenario S. This accuracy is defined as the fraction of buildings whose virus outbreak

state is correctly predicted. In this context, a scenario S represents a hypothetical

virus outbreak indicating which of the leaf nodes (i.e., buildings) in the wastewater

network are currently experiencing an outbreak.

However, we anticipate that in the real world, most scenarios involve only a small

fraction of buildings experiencing a virus outbreak at any given time. As a result,

even if our model predicts that all buildings are virus-free, the accuracy may still be

high, as only a few buildings experiencing an outbreak are mislabeled. Therefore,

optimizing and evaluating our sensor placement solutions using accuracy alone may

not be the most suitable approach. As a result, we also consider precision, recall,

and F1 scores as alternative evaluation metrics to determine the best optimization

metric in the experiments section. In the remainder of this article, we will refer to

our optimization metric as the score function, implying that it can be any of the

aforementioned metrics.

To ensure that our sensor placement solutions W are not biased towards a single

virus outbreak scenario S, we sample multiple scenarios, each consisting of random

samples from the Bernoulli distributions associated with the leaf nodes L. Each

scenario consists of a random sample (True/False) from each of the leaf nodes.

Optimizing the score function on the sampled scenarios ensures that our solution
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sensor placements W account for the probability of a virus outbreak in each building.

We refer to this objective as the score objective:

argmax
W⊂V,|W |≤k

ES [score(A(Wb), S)] . (6.2)

Here, A(Wb) represents our predicted virus outbreak state for all the buildings,

and S represents a virus outbreak scenario. Note that we can optimize the sen-

sor placements by directly maximizing the score function since we have a discrete

combinatorial optimization problem. Such optimization problems do not require dif-

ferentiable operations. However, the above optimization problem is NP-hard [133],

making it challenging to find the globally optimal solution. As a result, we use the

naive greedy algorithm [135] to find the solution sensor placements. The greedy al-

gorithm selects one sensing node at a time until the cardinality constraint k is met.

Each new sensing node is selected by computing the increments in the optimization

objective upon adding each candidate node to the current solution set and selecting

the node that results in the largest increment.

W ← W ∪ {argmax
v∈V \W

F(W ∪ {v})−F(W )} . (6.3)

Here, F is the objective function (Equation 6.2). A drawback of optimizing the

score objective is that it results in sensors placed only at the leaf nodes with the

highest probability of an outbreak. Since we have a limited number of sensors, usually

k << |L|, using such a solution entails ignoring outbreaks in buildings with a lower

probability of an outbreak.

To address the issue mentioned above, we have added an indicator function to the

objective. This function, known as the coverage indicator function 1cov, returns a

value of 1 if a scenario S can be detected with the current sensor placements W , and

0 if the scenario cannot be detected. To evaluate the indicator function, we check if
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a path exists from the buildings experiencing a virus outbreak to the current sensor

placements W . We refer to this objective as the Coverage objective, which can be

formulated as follows:

argmax
W⊂V,|W |≤k

ES [score(A(Wb), S) + 1cov(W,S)] , (6.4)

1cov(W,S) =


1 if scenario S can be detected

with sensors at W

0 otherwise

. (6.5)

By optimizing the Coverage objective, we can obtain solutions with sensing nodes

capable of detecting outbreaks even at buildings with a low outbreak probability,

although with a reduced source localization accuracy.

Adding sensing nodes: The methods discussed so far have only considered sce-

narios where there are no preexisting sensors deployed in the wastewater network.

However, in practice, one might want to add additional sensing nodes to improve the

source localization accuracy. We can achieve this by maximizing the following objec-

tive function, where Wcurr represents the set of preexisting nodes in the wastewater

network, and V \Wcurr represents the set of nodes in V that are not in Wcurr:

argmax
W⊂V \Wcurr,
|Wcurr∪W |≤k

ES[score(A({Wcurr ∪W}b), S) + 1cov(Wcurr ∪W,S)] .

Removing sensing nodes: One might also want to remove a specified number

of sensing nodes from a wastewater network. This can happen if we want to monitor

fewer sensors to reduce costs. We can achieve this with our approach by maximizing
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the following objective:

argmax
W⊂Wcurr,

|Wcurr\W |≤k

ES[score(A({Wcurr\W}b), S) + 1cov(Wcurr\W,S)] .

Note that both the problems of adding and removing sensing nodes can be solved

using the greedy algorithm. However, to remove samplers, the greedy algorithm needs

to be modified. In this variant, the algorithm selects the node that contributes the

smallest increment to the total objective in each iteration, unlike the sensor addition

variant, which picks the node with the largest increment.

6.3.5 Concentration Requirements

The methods discussed above assume that sensing nodes always report the cor-

rect state of the nodes, i.e., whether the wastewater passing through them contains

viruses. However, this may not be the case in the real world. The qRT-PCR test,

commonly used to analyze wastewater samples for traces of viruses, is sensitive to the

concentration of the samples. Therefore, it is crucial to ensure that the concentra-

tion, measured by the number of RNA virus copies per liter of wastewater, is above

a minimum threshold to obtain reliable sensing results.

However, if one were to model all variables that influence the concentration of

wastewater samples, such as the volume of wastewater and the number of virus copies,

in the Bayesian graph B, the conditional probability P (bl|W ) used for sensor place-

ment and source localization would be computationally intractable. Therefore, we

construct a separate auxiliary Bayesian graph C, which models the variables that

affect virus concentration (as shown in Figure 6.5). The auxiliary graph C allows

us to efficiently compute the virus concentration at any node in the wastewater net-

work, given the virus concentration at the leaf nodes l ∈ L that are experiencing an

outbreak in a scenario S.
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Figure 6.5: The concentration Bayesian graph C for an example wastewater network.
The nodes are color-coded as follows, red nodes: wastewater flow volume f , yellow
nodes: number of infected individuals n̂, orange nodes: number of total virus copies
n shed from each building, and purple nodes: wastewater concentration c. The blue
and green nodes are the leaf and non-leaf nodes, respectively.

The auxiliary graph C is initialized with the wastewater network’s graph structure

similar to the binary Bayesian graph B. However, instead of using Boolean random

variables to model each node’s virus outbreak state, the auxiliary graph C employs

multiple random variables to represent the virus concentration at each node. Our ap-

proach considers the volume of wastewater flow f , the number of infected individuals

n̂, and the total number of virus copies n for each building. Note that this approach

can even use a more sophisticated concentration model.

We modeled the wastewater flow volume f of each building using a truncated

Gaussian distribution, truncated at 0 to ensure that only positive flows are sampled.

The number of infected individuals n̂ was modeled using a Poisson distribution, while

the number of total virus copies n at each building was computed by sampling the

number of virus copies shed by each infected individual from a uniform distribution

and then taking the sum. The wastewater virus concentration cl at each leaf node

l ∈ L can be computed using the ratio of the total number of virus copies n to the

wastewater flow volume f . To determine the concentration cj at each non-leaf node

j ∈ J , we use the conservation of mass equation shown below:
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cj =

∑
i∈parent(j) ni∑
i∈parent(j) fi

. (6.6)

The concentration rate c calculated at each node is then passed to an updated

threshold indicator function 1thresh, which enforces the minimum concentration re-

quirement in our sensor placement optimization objective. We refer to this new

optimization objective as the thresholded coverage objective.

argmax
W⊂V,|W |≤k

ES [score(A(Wb), S) + 1thresh(W,S)] (6.7)

1thresh(W,S) =



1 if scenario S can be detected with sensors

at W and every wastewater sample satisfies

the concentration threshold

0 otherwise

(6.8)

The threshold indicator function 1thresh (Eq. 6.8) is similar to the coverage indica-

tor function 1cov (Eq. 6.5), but it also considers the concentration requirements for

detecting a scenario. That is, even if a path exists from the buildings experiencing a

virus outbreak to the current sensor placements W , the threshold indicator function

1thresh will return 1 (i.e., True) only if the concentrations at the sensing nodes that

detect the scenario meet the required concentration threshold.

By optimizing the thresholded coverage objective, we can obtain sensor placements

that not only enable accurate source localization but also ensure that the concentra-

tion of viruses in wastewater samples collected by the autosamplers is above the re-

quired threshold for reliable virus detection. It is worth noting that our approach still

benefits from the computational efficiency of the Boolean OR-gate Bayesian network
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B used to compute P (S|W ), while also accounting for the complex concentration

requirements through the auxiliary Bayesian network C and Eq. 6.8. Thus, our ap-

proach overcomes the limitations of a computationally intractable Bayesian graph

that models all variables together.

Note that the Bernoulli distributed random variable bl in the Bayesian graph B,

which indicates if an infection outbreak occurred at a building, is analogous to the

Poisson distributed random variable n̂ in the auxiliary Bayesian graph C, which repre-

sents the number of infected individuals. Therefore, when using the auxiliary Bayesian

graph C to model the virus concentration, if we need to sample outbreak scenarios S

to optimize our sensor placements, we sample them using the Poisson distributions

associated with the random variable n̂ instead of the Bernoulli distributions associ-

ated with the random variable b. But since the scenarios S sampled from Poisson

distributions would indicate the number of infected individuals instead of the binary

state of an outbreak, we apply the following min operation on each element of S, i.e.,

the sampled n̂ at each building to ensure that the scenario is binary:

f(n̂) = min(1, n̂) .

Converting each scenario S into a binary vector enables us to use the binary

Bayesian graph B to evaluate P (bl|W ) for sensor placement and source localization.

However, it is important to note that the threshold indicator function 1thresh is still

computed using only the auxiliary Bayesian graph C. Additionally, when computing

the wastewater concentrations, we sample the number of virus copies n at a leaf node

l only if the corresponding building is indicated to be experiencing a virus outbreak

in the scenario S. However, we always sample the wastewater flow volume f from all

buildings to account for wastewater dilution. Table 6.1 lists all the variables used in

this chapter along with their definitions.
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Table 6.1: Definitions of variables.

Variable Definition
G = (V,E) Wastewater network graph G, with vertices V and edges E
B OR-gate Bayesian graph
C Bayesian graph with variables for modeling sample virus

concentration
l ∈ L A leaf node, corresponds to a building
j ∈ J A non-leaf node, corresponds to a junction node in the re-

duced graph
W Set of nodes (leaf/non-leaf nodes) where the sensors are

placed.
Wb The virus outbreak state of the sensing nodes W
S Virus outbreak scenario
k Number of sensors available to be deployed
b Random variable to indicate whether samples from a node

contain viruses
n̂ Random variable to model the number of infected individ-

uals in a building
n Random variable to model the number of total virus copies

shed from a building
f Random variable to model the volume of wastewater flowing

from a building
c Random variable to model the concentration of a wastewa-

ter sample collected at a node

6.4 Simulation Experiments

We tested our approach by analyzing a subgraph of our university’s wastewater

network consisting of residential buildings2. Initially, we constructed the reduced

graph representation of the wastewater network, denoted as G, by following the ap-

proach outlined in Section 6.3.1. The original wastewater network graph contained 35

vertices and 34 edges. However, we were able to reduce it to a 20 vertex and 19 edge

graph using our graph reduction approach (shown in Figure 6.6). This corresponds to

a 41% reduction in the number of vertices and a 44% reduction in the number of edges

of the graph. Out of the 20 vertices, 12 represented leaf nodes which corresponded to

buildings.
2Some aspects of the wastewater network have been obfuscated for security and confidentiality.
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Next, we utilized the wastewater network graph G to construct two Bayesian graph

networks: B to model virus presence states, and C to model wastewater concentra-

tions. Our methodology for constructing B and C is described in Section 6.3.2 and

Section 6.3.5, respectively.

We modeled the wastewater flow volume f of each building in the Bayesian graph

C using truncated Gaussian distributions, which were parameterized based on the

buildings’ historical monthly wastewater flow rates. The Poisson distribution was

used to model the number of infected individuals, and the mean of this distribution

was set to be proportional to the number of students assigned to the corresponding

building. Lastly, we bounded the uniform distribution over the daily number of virus

copies shed in the wastewater by each infected individual between 2.4 × 106 and

4× 1010, based on the findings of Foladori et al. [136].

To generate hypothetical scenarios, we utilized Poisson distributions in the auxiliary

graph C. We generated a total of 1000 scenarios, some of which modeled simultaneous

virus outbreaks in multiple buildings. These scenarios were binarized as described in

Section 6.3.5. We used these scenarios in all of our experiments, unless specified

otherwise, to maintain consistency in our benchmark results.
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Figure 6.6: Subgraph of our university’s wastewater network after reduction. The
percentages in the leaf nodes (blue circles) indicate the fraction of the total network
population at each node.
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6.4.1 Optimization Metric Benchmark

We began by benchmarking various score functions in Equation 6.7 which is used to

determine sensor placements. As discussed in Section 6.3.4, accuracy is not the most

effective optimization metric for our approach. Therefore, we employed the greedy

algorithm to optimize sensor placements using three other score functions: precision,

recall, and F1 in addition to accuracy. We set the virus concentration in the threshold

indicator function (Equation 6.8) to 4.8 × 105 and generated solutions for 6 sensor

placements. Figure 6.7 displays the quality of the sensor placements obtained by

optimizing with each score function. We evaluated the solution placements using all

four score functions and reported them, along with the fraction of scenarios that could

be covered (Equation 6.8) using the solution placements.

Accuracy Precision Recall F1 Coverage
Evaluation Metric

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
 V

al
ue

Accuracy
Precision
Recall
F1

Figure 6.7: Optimization metric benchmark.

As expected, we achieved the best results for each score function when the optimiza-

tion metric matched the evaluation metric. In a real-world scenario, the appropriate

optimization function can be selected based on the fraction of false positive and true

negative source localization predictions that can be accommodated. For the remain-

ing experiments, we utilized only the F1 score as the optimization score function since
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optimizing this score provided us with good precision and recall during evaluation,

even though they were not directly optimized.

6.4.2 Optimizer Benchmark and Submodularity
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Figure 6.8: Optimizer benchmark.

In addition to using different score functions, our approach also allows for the

use of different optimizers. We benchmarked four optimizers—naive [135], lazy [135],

approximate-lazy [137], and sample [138]. We generated solutions for six sensor place-

ments using a virus concentration of 4.8 × 105 in the threshold indicator function

(Equation 6.8), the results are shown in Figure 6.8.

The lazy, approximate-lazy, and sampls optimizers offer faster solutions than the

naive optimizer without sacrificing quality, and provide a near-optimal (1− 1/e) ap-

proximation factor guarantee. This is because they assume that the optimization

objective is submodular [139]. We can observe that all of these approaches perform

similarly to the naive optimizer, which is possible only if our optimization objective

is submodular.

6.4.3 Weighted Sum Benchmark

In our previous experiments, we used an unweighted sum of the score function and

the indicator function value in our optimization objective (Equation 6.7). However,
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in a real-world scenario, it may be necessary to prioritize the score function or the

scenario coverage (with the indicator function). As such, we introduce a weight term λ

to take a weighted sum of the score and indicator function values during optimization:

argmax
W⊂V,|W |≤k

ES[(λ)score(A(Wb), S)

+ (1− λ)1thresh(W,S)]
.

To illustrate the impact of different λ values, we benchmarked it by generating

solutions using various λ values, and the results are presented in Figure 6.9. We

utilized the naive greedy optimizer [135], set the virus concentration in the threshold

indicator function (Equation 6.8) at 4.8 × 105, and produced solutions for 6 sensor

placements.
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Figure 6.9: Weighted Sum Benchmark.

We observe from the plot that optimizing solely for coverage using the indicator

function (left side) yields high score values, but the scenario coverage is somewhat

reduced. Conversely, optimizing only for the score function on the right side of the

plot improves the coverage, albeit with a decrease in the score values.
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6.4.4 Concentration Threshold Benchmark

We also benchmarked our solution quality with different concentration values in the

threshold indicator function (Equation 6.8). We used the naive greedy optimizer [135]

and generated solutions for 6 sensor placements. Figure 6.10 shows our results.
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Figure 6.10: Concentration Threshold Benchmark.

As we had anticipated, using low concentration thresholds enables us to detect a

greater portion of the outbreak scenarios. This is due to the fact that the sensor

placements are closer to the root node, where all wastewater ultimately flows. Con-

sequently, detecting most virus outbreaks is feasible as the low virus concentration is

not an issue. However, as we increase the concentration threshold, sensors must be

repositioned closer to the leaf nodes (i.e., buildings) to ensure that the wastewater

samples contain high virus concentrations. As a result, we would require more sensors

to cover all the buildings. Nevertheless, this has the added benefit of improved source

localization as each sensor is allocated to a smaller subgraph with fewer leaf nodes.

Figure 6.11 illustrates the solution placements on our university’s wastewater net-

work graph. We observe that the solution generated without a concentration thresh-

old (Figure 6.11(a)) provides inadequate coverage (55.28%) as the wastewater at the

root node (i.e., node 19) is too diluted to produce reliable virus detection results.
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(b) With concentration threshold. Coverage: 74.51%, F1: 61.95%

Figure 6.11: Solution placements for a subgraph of our university’s wastewater net-
work. (a) Solution computed without a concentration threshold. (b) Solution com-
puted with a concentration threshold of 4.8 × 105 virus copies per liter. The per-
centages in the leaf nodes (blue circles) indicate the fraction of the total network
population at each node. The solution placements were evaluated with a concentra-
tion threshold of 4.8× 105 virus copies per liter.

However, the solution generated with a threshold of 4.8 × 105 virus copies per liter

(Figure 6.11(b)) delivers substantially improved coverage (74.51%).

6.4.5 Detection Threshold Benchmark

In another experiment, we evaluated the impact of varying the virus detection

threshold. To determine the virus outbreak state of each building, we thresholded

the state probabilities (Equation 6.1), i.e., label the state as True if the probability

is above the threshold, even if the False probability is higher than the True proba-

bility. Figure 6.12 illustrates the solution quality obtained using different detection

thresholds. For all evaluations in this benchmark, we used the same sensor place-

ments acquired in Section 6.4.1 with the F1 score objective. The sensor placements

consisted of 6 sensors and were optimized using the naive greedy optimizer [135].

Note that the zero threshold corresponds to using the original argmax operation

(Equation 6.1) to determine the state of each building. The results demonstrate

the classic inverse relation between precision and recall. Precision heavily penalizes

the score if we predict a building with a False virus outbreak state as True (false



117

0.0 0.1 0.2 0.3 0.4
Detection Threshold

0.6

0.7

0.8

0.9

M
et

ric
 V

al
ue

Evaluation Metric
Accuracy
Precision
Recall
F1
Coverage

Figure 6.12: Probability Detection Threshold Benchmark.

positives). On the other hand, recall allows us to make the same prediction without

being penalized, but instead, it penalizes the score if we predict a building with a True

virus outbreak state as False (false negative). As such, we observe that increasing

the detection threshold initially improves recall, as it increases the fraction of true

positives at the cost of increased false positives. However, beyond a threshold of 0.25,

it improves precision instead, as a larger fraction of predictions become true positives

but with increased false negatives.

6.4.6 Random Graph Benchmark

The experiments we conducted previously focused on a subgraph of our university’s

wastewater network, allowing us to isolate and study the effects of each variable of

interest. In this experiment, we aimed to test the generalizability of our approach

to different wastewater networks. To do so, we generated 20 random wastewater

network graphs and their corresponding outbreak scenarios, and then generated sensor

placement solutions for each graph.

Our random graphs consisted of 25 nodes each. The graphs were built by iteratively

linking a new node to a randomly selected existing node. Additionally, we redirected

new nodes to successor nodes of the randomly selected nodes, away from the root
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with a probability of 20%. We then sampled the building populations from a uniform

distribution in the interval [0, 100], and the wastewater flows for each leaf node from

a uniform distribution in the interval [1000, 3000].

For each graph, we sampled 500 virus outbreak scenarios and optimized the place-

ment of 6 sensors using the naive greedy algorithm. The thresholded coverage objec-

tive with the F1 score (Equation 6.7) was used as the optimization objective. We set

the concentration threshold to 4.8× 105 virus copies per liter.

Figure 6.13 and Figure 6.14 (Unperturbed) show the average solution F1 score

and coverage on the 20 random graphs. We compared our results to a baseline of

randomly placed sensors (Random) and found that our approach produced substan-

tial improvements in performance, comparable to those obtained on our university’s

wastewater network. Note that the random graphs have varying connectivity and

different ratios of sensor placements to graph size when compared to our university’s

wastewater network.
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Figure 6.13: F1 scores on the Random Graph Benchmark.

To test the limits of our approach further, we perturbed the virus outbreak prob-

ability of each building in the random graphs and generated a new set of scenarios

for each random graph. We perturbed the virus outbreak probabilities by adding

uniform-distributed noise to the populations of each building in the random graphs.

We evaluated the previously obtained sensor placement solutions that were optimized
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Figure 6.14: Coverage rates on the Random Graph Benchmark.

on the unperturbed virus outbreak probability-based scenarios using the new scenar-

ios. This experiment allowed us to test our approach in real-world scenarios where

the available virus outbreak probability or the whole model itself may be inconsis-

tent with the actual virus outbreak characteristics. The results, shown in Figure 6.13

and Figure 6.14 (Perturbed), demonstrate that our approach is robust to modeling

inconsistencies.

6.5 Related Work

There has been an active response to COVID-19 in automation and robotics, using

robots for disinfection, monitoring patients, making deliveries, lab automation, and

for telemedicine. See [140, 141] for comprehensive surveys. However, existing work

has not addressed the problem considered in this chapter.

Our problem is similar to that of Kempe et al. [142], who studied influence max-

imization in social networks. The authors considered social influence networks and

developed an approach to find a subset of nodes that, when influenced to take a

specified action, would result in the maximal number of nodes in the entire network

taking the same action. We are also interested in extracting maximal information

about the graph by monitoring a small number of nodes. However, we also need to

identify the sources of information.

Berry et al. [143] developed a mixed-integer programming problem formulation
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for sensor placement in water distribution networks. The method determined sensor

placement locations that would detect any contaminants in water in the shortest

time possible. Leskovec et al. [133] also studied the sensor placement problem in

water distribution networks and developed a submodular objective. Their approach

could efficiently optimize the objective to find a solution with provable approximation

guarantees. However, both approaches did not address source localization.

Spinelli et al. [144] developed an approach for source localization in contact net-

works to curb the spread of epidemics. The method considered disease transmission

times between patients to identify patient zero. However, the approach is limited to

single-source scenarios.

Jiang et al. [145] proposed a Bayesian approach to disease outbreak detection and

prediction by examining particular variables of interest that could indicate an out-

break in a given community. However the method did not consider identifying the

outbreak’s source and was limited to predicting only the presence of an epidemic and

its scale.

Jiang et al. [146] developed a Bayesian spatial scan statistic that considered indica-

tor variables to identify the presence and location of an outbreak. But the localization

approach assumed a rectilinear partitioning of the region of interest and access to data

from every sub-region.

The source localization problem also appears frequently in other domains such

as underwater localization [147], wireless network user localization [148], and EEG

device signal localization [149]. However most solutions to such problems develop

application specific metrics and optimization objectives.

Peccia et al. [126] studied the statistics of the COVID-19 virus in wastewater sam-

ples to identify general trends of community infection rates. Gibas et al. [132] ex-

amined the feasibility of sampling wastewater in a university to identify COVID-19

outbreaks and demonstrated the ability to detect single asymptomatic individuals in
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a dormitory. However, these papers did not consider sensor placement optimization.

Recently sensor placement approaches specifically for wastewater monitoring have

been presented [150, 151, 152, 153, 154]. These approaches focused on sensor place-

ment to maximize the population coverage while minimizing each sensor’s coverage

overlap, which was achieved using discrete integer programs. Nourinejad et al. [150]

and Calle et al. [151] were among the first to develop sensor placement approaches for

wastewater-based epidemiology. They presented Bayesian approaches to iteratively

locate virus hotspots and separately leveraged the graph structure of wastewater net-

works to optimize the sensor placement locations using discrete optimization.

Despite these advances, researchers in wastewater-based epidemiology have yet to

fully utilize Bayesian approaches, especially graph Bayesian methods [134], which can

leverage graph structures to model causal relationships in the problem. By using

efficient graph Bayesian methods such as message-passing techniques, we can reduce

computation costs and develop superior source localization methods. Additionally, we

have demonstrated the potential of optimizing sensor placement for source localization

accuracy directly, while also incorporating virus infection rates and wastewater sample

concentration requirements into our models.

6.6 Conclusion

We presented the sensor placement for source localization problem in wastewater

networks, and developed an approach that leverages graph Bayesian learning and

discrete optimization to address the problem.

We first presented an approach to reduce the size of wastewater network graphs,

thereby making relatively large problems computationally feasible. We then showed

how one can map any network graph to a Bayesian graph, which we can use to localize

sources of information, i.e., buildings experiencing a virus outbreak in our case. We

also developed optimization objectives that we can use to efficiently find ideal sensor

placements for source localization, even when there are multiple pathogen sources
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and constraints such as wastewater concentration requirements.

Our simulation experiments demonstrated the quality of our solution sensor place-

ments and the accuracy of our source localization approach in a case study on our

university’s wastewater network. We also benchmarked different discrete optimiza-

tion methods and score functions, and showed that our optimization objective can be

efficiently optimized. We then established the accuracy of our approach on random

graphs. In addition, our experiments established the robustness of our approach to

inaccurate virus outbreak models.

In a real-world scenario, our graph sensor placement approach coupled with virus

outbreak models and information about the wastewater network structure can de-

termine ideal wastewater sampling locations. Our source localization approach can

quickly localize the source of virus outbreaks from regularly collected wastewater sam-

ple test results. Additionally, our graph reduction and source localization approaches

can be used with existing wastewater network sensor placements approaches.

Our experiments have demonstrated that our optimization objective is submodular

on our university’s wastewater network graph. We conjecture that this property holds

for any wastewater network graph, and we plan to prove this theoretically in our future

work.

Furthermore, to validate our approach using real-world data, we require regular

virus concentration measurements and the number of infected individuals for each

building in the monitored wastewater network. We aim to collect such data and

present additional validation of our approach in future work.



CHAPTER 7: CONCLUSION

This thesis addressed the sensor placement problem and the closely related in-

formative path planning problem. First, fundamental concepts related to these is-

sues were detailed. Second, the sensor placement problem in discrete and continuous

spaces was tackled by leveraging the inherent properties of sparse Gaussian processes.

The method was then generalized to address non-point and integrated field-of-view

sensors. This, in turn, was leveraged to tackle the informative path planning prob-

lem. Indeed, we further generalized our method to efficiently handle multiple robots,

spatio-temporal data fields, incorporate past data into the path planning phase, and

efficiently learn the model parameters. Then the offline IPP method was further

generalized to effectively handle online IPP using streaming sparse Gaussian pro-

cesses. Moreover, a K-nearest neighbour based environment partitioning scheme was

presented to enable decentralized multi-robot IPP with minimal communication re-

quirements.

Next, the thesis addressed the informative path planning problem in graphs for

source localization. In particular, we considered the localization of methane gas leaks

in oil fields using gas concentration data collected from vehicles traversing the road

network. The proposed method leveraged the properties of Gaussian distributions

to significantly reduce the computation time for computing mutual information, by

orders of magnitude compared to the baseline. Moreover, we presented an efficient

algorithm for finding informative paths that maximize mutual information.

Finally, the thesis addressed the sensor placement problem in graphs for source lo-

calization. Indeed, we focused on localizing virus sources in wastewater networks. The

problem was approached by presenting an efficient algorithm to model the wastewater
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network as a Bayesian network. The Bayesian network was then utilized to formulate

discrete optimization objectives that could be optimized to determine the optimal

sensor placements. Moreover, the Bayesian networks were employed to efficiently

locate the virus sources using Bayesian inference.

The methods developed in this thesis can be applied to a broader range of problems

including the following:

• Informative path and trajectory planning: Our IPP approaches focus on path

planning, where we decide where the robot should go. In the trajectory plan-

ning problem, we must also determine how the robot follows the path. This

includes determining the robot’s velocity and acceleration, and modeling any

non-holonomic constraints on the robot.

• Decentralized IPP with collective hyperparameter learning and periodic envi-

ronment partitioning: Our decentralized IPP approach partitions the environ-

ment only at the beginning of the online multi-robot IPP phase and does not

require any inter-robot communication. However, when considering a dynamic

environment, developing methods for the robots to synchronize their hyperpa-

rameters and update their monitoring regions could result in better environment

monitoring.

• IPP for 3D surface inspection: Our IPP experiments focused on environment

monitoring problems. However, our approaches can also leverage Riemannian

kernel functions to model IPP on 3D surfaces, such as aircraft fuselages, for

inspection tasks.

• Deriving approximation proofs for our SGP-based IPP approaches: Future work

can include deriving approximation proofs for the environment coverage fraction

that can be achieved using our IPP approaches.
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APPENDIX A: Sensor Placement

A.1 Theory

This section shows the derivation of the SVGP evidence lower bound’s delta term,

which is used to contrast it with the MI approach’s delta term (Section 2.4.3) and de-

tails the derivation to shows that our variational formulation of the sensor placement

problem and, by extension, the SVGPs are not submodular, which suggests that they

are capable of capturing a higher order of information.

A.1.1 Preliminary

A.1.1.1 Properties of Entropy H

1. Joint entropy can be decomposed into the sum of conditional entropy and

marginal entropy [3]:

H(X, Y ) =H(X|Y ) +H(Y )

=H(Y |X) +H(X) .

2. The reverse KL divergence is the cross entropy minus entropy [155]:

KL(q||p) = Hp(q)−H(q) .

A.1.1.2 Submodularity

A set function f is submodular if it has the following diminishing returns property for

sets X, Y, and T , with u being an element of the set T that is not already in Y [139]:
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f(X ∪ {u})− f(X) ≥ f(Y ∪ {u})− f(Y )

∀X ⊆ Y ⊂ T and u ∈ T\Y .

A.1.2 SVGP Evidence Lower Bound’s Delta Term Expansion

The lower bound of the SVGP [8] is given by:

F =
n

2
log(2π)+

1

2
log |Qnn+σ

2
noiseI|+

1

2
y⊤(Qnn+σ

2
noiseI)

−1y− 1

2σ2
noise

Tr(Knn−Qnn) ,

(A.1)

where Knn is the covariance matrix computed using the SGP’s kernel function on

the n training samples X, Qnn = KnmK
−1
mmKmn, the subscript m corresponds to the

inducing points set, σnoise is the noise variance, and y is the vector containing the

training set labels.

Assume that the inducing points are a subset of the training set indexed by m ⊂

{1, ..., n}. Let (Xm, fm) be the set of inducing points locations and their corresponding

latent variables. Similarly, let (X, f) be the training set locations and latent variables.

Here n is the index set corresponding to the training dataset, and m is the index set

corresponding to the inducing points. Note that we use the same notation as [8], who

also used n and m to denote the cardinality of these sets. We know that the SVGP

evidence lower bound can be written as follows [3] for inducing points Xm:

F(Xm) =−KL(qm(f)||p(f |y)) + log p(y)

=−Hp(f |y)(qm(f)) +H(qm(f)) + log p(y) .

(A.2)

Here qm is the variational distribution of the SGP with the m inducing points.

We index the n training set points excluding the m inducing set points as the set
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difference n−m. We can use the above to formulate the increments (delta term) in

the SVGP lower bound upon adding a new inducing point xi such that i ∈ n−m as

follows:

∆F(Xm, {xi}) =F(Xm ∪ {xi})−F(Xm)

=−KL(qm+1(f)||p(f |y)) + KL(qm(f)||p(f |y))

=−Hp(f |y)(qm+1(f)) +H(qm+1(f)) +Hp(f |y)(qm(f))−H(qm(f))

= (H(qm+1(f))−H(qm(f)))︸ ︷︷ ︸
∆h1

− (Hp(f |y)(qm+1(f))−Hp(f |y)(qm(f)))︸ ︷︷ ︸
∆h2

.

(A.3)

The last equation above is similar to the KL divergence, except that each entropy

term ∆hj here is the difference of two entropies. We can use the following expansion

of the variational distribution qm to simplify the above:

qm(f) = p(fn−(m+1), fi|fm)ϕ(fm)

= p(fn−(m+1)|fi, fm)p(fi|fm)ϕ(fm) .
(A.4)

Here we factorized the variational distribution over f as the product of the vari-

ational distribution ϕ over the latents fm parametrized with the m inducing points

Xm and the conditional distribution p over the remaining data points n − m com-

puted using conditioning; fi corresponds to the additional data sample added to the

m inducing points. Similar to the above we can expand qm+1(f) as follows:

qm+1(f) = p(fn−(m+1)|fm+1)ϕ(fm+1)

= p(fn−(m+1)|fm, fi)ϕ(fi|fm)ϕ(fm) .
(A.5)

Instead of using the conditional p(fi|fm) as we did for qm(f), here the distribution

over fi is from the variational distribution ϕ(fi|fm). Since all the inducing points are

explicitly given in the variational distribution, the joint variational distribution over
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the inducing points can be decomposed as the product of marginals. We can now plug

the decomposed variational distribution back into Equation A.3 to get the following

using the chain rule of entropy:

∆h1 =H(qm+1(f))−H(qm(f))

=H(p(fn−(m+1)|fi, fm)ϕ(fi|fm)ϕ(fm))−H(p(fn−(m+1)|fi, fm)p(fi|fm)ϕ(fm))

=
(((((((((((
H(p(fn−(m+1)|fi, fm)) +H(ϕ(fi|fm))+

������
H(ϕ(fm))−(((((((((((

H(p(fn−(m+1)|fi, fm))−H(p(fi|fm))−������
H(ϕ(fm))

=H(ϕ(fi|fm))−H(p(fi|fm)) .
(A.6)

Similar to the above, we can get ∆h2 = Hp(fi|y)(ϕ(fi|fm))−Hp(fi|y)(p(fi|fm)). This

gives us the following:

∆F(Xm, {xi}) = H(ϕ(fi|fm))−H(p(fi|fm))−Hp(fi|y)(ϕ(fi|fm)) +Hp(fi|y)(p(fi|fm))

= (H(ϕ(fi|fm))−Hp(fi|y)(ϕ(fi|fm)))− (H(p(fi|fm))−Hp(fi|y)(p(fi|fm)))

= KL(ϕ(fi|fm)||p(fi|y))−KL(p(fi|fm)||p(fi|y)) .
(A.7)

Consider Xm ⊆ Xl ⊂ X and xi ∈ X\Xl:

∆F(Xm, {xi})−∆F(Xl, {xi}) ≥0

KL(ϕ(fi|fm)||p(fi|y))−KL(p(fi|fm)||p(fi|y))−

KL(ϕ(fi|fl)||p(fi|y)) + KL(p(fi|fl)||p(fi|y)) ≥0

(A.8)

One needs to show that the last equation above is true for the SVGP’s lower bound

to be submodular, which is not necessarily true in all cases. If we constrain the vari-

ational distribution ϕ to have a diagonal covariance matrix, the diagonal covariance

matrix assumption allows us to drop the variational distribution’s dependence on fm
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in ∆h1 and ∆h2. This gives us the following:

∆h1 = H(ϕ(fi))−H(p(fi|fm))

∆h2 = Hp(fi|y)(ϕ(fi))−Hp(fi|y)(p(fi|fm)) .
(A.9)

Now if we again consider Xm ⊆ Xl ⊂ X and xi ∈ X\Xl:

∆F(Xm, {xi})−∆F(Xl, {xi}) ≥ 0

KL(ϕ(fi)||p(fi|y))−KL(p(fi|fm)||p(fi|y))−

KL(ϕ(fi)||p(fi|y)) + KL(p(fi|fl)||p(fi|y)) ≥ 0

�����H(ϕ(fi))−H(p(fi|fm))−((((((((
Hp(fi|y)(ϕ(fi)) +Hp(fi|y)(p(fi|fm))−

�����H(ϕ(fi)) +H(p(fi|fl)) +((((((((
Hp(fi|y)(ϕ(fi))−Hp(fi|y)(p(fi|fl)) ≥ 0

Hp(fi|y)(p(fi|fm))−H(p(fi|fm))−Hp(fi|y)(p(fi|fl)) +H(p(fi|fl)) ≥ 0

KL(p(fi|fm)||p(fi|y))−KL(p(fi|fl)||p(fi|y)) ≥ 0

KL(p(fi|fm)||p(fi|y)) ≥ KL(p(fi|fl)||p(fi|y))

KL(p(fi|fm)||p(fi|y)) ≥ KL(p(fi|fm ∪ (fl\fm))||p(fi|y))

(A.10)

The last equation above is much simpler than the inequality obtained using a full

covariance matrix in the variational distribution. Indeed all the distributions used in

the KL divergence terms are Gaussian, and therefore have a closed form equation for

the KL divergence. However, we still found the inequality far too complex to be able

to conclusively prove that the SVGP’s lower bound is submodular.

So we performed empirical tests to check for submodularity and found that the

SVGP’s ELBO with a full covariance matrix and a diagonal covariance matrix were

not submodular. Nonetheless, we found that when using a diagonal covariance ma-

trix, the bound was almost submodular. This finding is based on the quality of the

solutions found by optimizing the lower bound using the naive greedy and lazy greedy

algorithms. When using a diagonal covariance matrix, the solution inducing points’
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lower bounds from both the algorithms were very close. This suggests that even if

one were to treat the lower bound as submodular and optimize it using the efficient

lazy greedy algorithm, we would still get good solutions.

A.2 Bayesian Optimization Results

For completeness, we also generated results on the Intel temperature dataset using

Bayesian optimization (BO) [53], shown in Figure A.1. We used the upper confidence

bound (UCB) acquisition function [156] in BO and maximized mutual information.

However, the method’s performance was subpar compared to other baselines.
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Figure A.1: Results on the Intel temperature dataset generated using BO and
the methods discussed in the chapter—Greedy-MI, CMA-ES-MI, Continuous-SGP,
Greedy-SGP, and Discrete-SGP.
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APPENDIX B: Informative Path Planning

The following is an example of the expansion transformation operation written as

a function in Python with TensorFlow. The function considers sensor with a FoV

shaped as a line with a fixed length.

Algorithm 10: Expansion transformation function (written in Python with
TensorFlow [157]) used to map the 2D position (x, y) and orientation (θ) to
a set of points along a line segment with the origin at the 2D point in the
direction of the orientation θ. Here, Xm are the inducing points with the
position and orientation parameterization, l is the length of the line along
which the mapped points are sampled, and p is the number of points that are
sampled along the line.

1 Input: Xm, l, p
2 x, y, θ = tf.split(Xm, num_or_size_splits = 3, axis = 1)
3 x = tf.squeeze(x)
4 y = tf.squeeze(y)
5 θ = tf.squeeze(θ)
6 Xm = tf.linspace([x, y], [x+ l × tf.cos(θ), y + l × tf.sin(θ)], p, axis = 1))
7 Xm = tf.transpose(Xm, [2, 1, 0])
8 Xm = tf.reshape(Xm, [−1, 2])
9 return Xm

The aggregation transformation matrix Tagg ∈ Rmp×m is populated as follows for

m = 3 and p = 2 for mean aggregation:

T⊤
agg =


0.5 0.5 0 0 0 0

0 0 0.5 0.5 0 0

0 0 0 0 0.5 0.5

 .
However, one can even use the 1-dimensional average pooling operation to efficiently

apply the aggregation transformation without having to store large aggregation ma-

trices.
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APPENDIX C: Graph Informative Path Planning

C.1 Derivation of EER and Posterior for Gaussian prior

We use the second order Rényi entropy function in our Bayesian model.

H(R) = − log2

∫
rϵR

p2(r)dr (C.1)

The conditional probability of a gas concentration given a leak rate is defined as

follows. We marginalize this term to get the probability distribution of gas concen-

tration m.

p(s|m) =
p(m|s)p(s)∫

s1ϵS
p(m|s1)p(s1)ds1

(C.2)

p(m) =

∫
sϵS

p(m, s)ds =

∫
sϵS

p(m|s)p(s)ds (C.3)

Albertson et al. [95] modeled the distribution of a leak rate across data collection

tours with the following wherein j is the tour number. Furthermore, we model the

initial prior as a Gaussian as shown below.

p(s) =


p(s), for j = 1

p(s|m)j−1, for j > 1

p(s) ∼ N (µs, σ
2
s)

(C.4)

We, consider the gas dispersion model of Foster et al. [112] in our derivation. This

allows us to model the conditional of a gas concentration rate given a leak rate in

terms of the dispersion model. Moreover, we assume the dispersion model to be linear
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in the leak rate.

C(s, x, y, z) = s
1

U

(
Ā

z(x)
exp

[
−
(
Bz

z(x)

)2
])(

1√
2πσy

exp

[
−1

2

(
y

σy

)2
])

︸ ︷︷ ︸
constant, independent of function input s

= sA(x, y, z)

(C.5)

p(m|s) = 1

σe
√
2π

exp

[
−1

2

(
m− C(s, x, y, z)

σe

)2
]

=
1

σe
√
2π

exp

[
−1

2

(
m− sA(x, y, z)

σe

)2
]

p(m|s) ∼ N (sA, σ2
e)

(C.6)
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p(m|s)p(s) = N (sA, σ2
e)N (µs, σ

2
s)

=
1

σe
√
2π

exp

[
−1

2

(
m− sA
σe

)2
]

1

σs
√
2π
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−1

2

(
s− µs
σs

)2
]

=
1

2πσeσs
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−1

2
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m− sA
σe

)2

+

(
s− µs
σs

)2
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=
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2πσeσs
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m2 − 2msA+ s2A2

σ2
e
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s2 − 2sµs + µ2

s

σ2
s
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The definite integral of an arbitrary Gaussian function
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The EER was derived as follows:
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Finally, we derived the posterior of the leak rate as follows.
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p(s) ∼ N (µs, σ
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