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ABSTRACT 

SISI YUAN. Landscape and Architecture of cis-regulatory Modules and Prediction of Their 
Functional Types, States and Target Genes (Under the direction of DR. ZHENGCHANG SU) 

Cis-regulatory modules (CRMs) can function as enhancers and/or silencers to promote and repress, 

respectively, the transcription of their target genes in a spatiotemporal manner, thereby playing 

critical roles in virtually all biological processes. However, despite recent progresses, the 

understanding of CRMs’ precise locations, landscape and architecture in terms of transcription 

factor binding sites (TFBSs) in the genomes as well as their functional types (enhancer or silencer), 

states (active or inactive) and target genes in various cell/tissue types of organisms is still limited.  

We have recently predicted comprehensive maps of CRMs and constituent TFBSs in the 

human and mouse genomes, enabling us to investigate the organization and architecture of the 

CRMs in both genomes. We reveal common rules of the organization and architecture of CRMs 

in the genomes. We conclude that the rules governing the organization and architecture of CRMs 

in the human and mouse genomes are highly conserved. 

Moreover, until recently research has long been focused on enhancers, and much less is 

known about silencers. To fill the gap, we develop two logistic regression models for predicting 

the functional states of our previously predicted 1.2M CRMs as enhancers and silencers in any 

cell/tissue types using five epigenetic marks data. Applying the models to 56 human cell/tissue 

types with the required data available, we predict that 793,140 of the 1.2M CRMs are active as 

enhancers or/and silencers in at least one of these cell/tissue types, of which 14.8% and 28.6% of 

them only function as enhancers (enhancer-predominant) and silencers (silencer-predominant), 

respectively, while 10.6% functioned both as enhancers and silencers (dual functional). Thus, both 

dual functional CRMs and silencers might be more prevalent than previously assumed. Most dual 

functional CRMs function either as enhancers or silencers in different cell/tissue types (Type I), 
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while some have dual functions regulating different genes in the same cell/tissue types (Type II). 

Different types of CRMs display different lengths and TFBS densities, reflecting the complexity 

of their functions.  

Furthermore, identifying their target genes of predicted or experimentally validated CRMs 

remains a challenge due to the low quality of the predicted CRMs and the fact that CRMs often do 

not regulate their closest genes. To fill this gap, we developed a method — correlation and physical 

proximity (CAPP) to not only predict the CRMs’ target genes but also their functional types using 

only chromatin accessibility (CA) and RNA-seq data in a panel of cell/tissue types plus Hi-C data 

in a few cell types. Applying CAPP to a panel of 107 human cell/tissue types with CA and RNA-

seq data available, we predict target genes for 20% of the 1.2M CRMs, of which 4.5% are predicted 

as both enhancers and silencers (dual functional CRMs), 95.2% as exclusive enhancers and 0.3% 

as exclusive silencers. Different types of CRMs as well as their target genes and regulatory links 

exhibit distinct properties. CAPP predicts more enhancer-gene and silencer-gene links with higher 

accuracy than state-of-the-art methods.  
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Chapter 1 

INTRODUCTION 

Approximately 99.5% of genomes among human individuals are identical at the single nucleotide 

level(1), suggesting that the remaining 0.5% of genetic variation, mostly located in non-coding 

regions(2, 3), might account for the diverse phenotypes within the human populations. 

Consistently, genome-wide association studies (GWAS)  have unveiled that nearly 90% of single 

nucleotide polymorphisms (SNPs) associated with complex diseases or phenotypes reside in non-

coding regions(4). This underscores that disparities in phenotypes and disease susceptibilities 

across individuals primarily stem from variation within non-coding regions, particularly those that 

disrupt transcription factor (TF) binding sites (TFBSs) in cis-regulatory elements (CRMs) located 

predominantly in non-coding regions(5-8).  

CRMs play critical roles in virtually all biological processes, from cell differentiation to 

physiological homeostasis, pathogenesis and evolution by regulating transcription of genes in 

various cell/tissue types, thereby rendering their types and functions(9, 10). Thus, specific binding 

of TFs to their cognate TFBSs within enhancers and silencers can facilitate and repress the 

recruitment of RNA polymerase to the promoters of target genes, resulting in upregulation and 

downregulation of gene transcription, respectively(11, 12), in a cell/tissue specific manner. 

Moreover, binding of CTCF TF to its cognate sites within insulators establishes boundaries 

between topologically associating domains (TADs), preventing cross-regulation of CRMs in a 

TAD(13). Cellular specificity of CRMs is largely established by unique epigenetic modifications 

of CRMs in different cell types by altering the accessibility and binding affinity of TFs to their 

cognate binding sites(14, 15). Therefore, to fully understand the functions of CRMs, one needs to 

not only precisely locate their locations in the genome and understand their landscape and 

architecture in terms of TFBSs, but also to characterize their functional types (mainly enhancers 
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and silencers), states (active or inactive) and target genes in various cell/tissue types of the 

organism. However, only a small portion of CRMs (mostly enhancers) in genomes have been fully 

characterized in all these three aspects due to the difficulty to study them using traditional 

molecular biology methods(16).  

The landscape of CRMs and their architecture in terms of constituent TFBSs is a 

fundamental aspect of genomics and molecular biology. Understanding these elements is crucial 

for unraveling the intricacies of gene regulation, revealing how genes are turned on and off in 

different contexts, and how these processes contribute to various biological functions and disease 

mechanisms. Despite significant advancements in high-throughput techniques of chromatin 

immunoprecipitation sequencing (ChIP-seq), a comprehensive map of CRMs and TFBSs in 

genomes remains elusive. This limitation has hindered the exploration of the precise organization 

and distribution of CRMs across the genome. Furthermore, current methods often fail to accurately 

predict the TFBSs within CRMs, limiting our understanding of the mechanisms underlying 

transcriptional regulation. The lack of highly accurate and comprehensive CRM maps has led to 

contradictory findings in the literature regarding the distribution and organization of these 

elements. For instance, while some studies(17) suggest that candidate cis-regulatory elements 

(cCREs) tend to cluster in regulatory islands, others(18) propose that enhancers are more evenly 

dispersed across extensive genomic regions. Recent efforts, including our work(19-21), have made 

strides in predicting more comprehensive maps of CRMs and their constituent TFBSs using 

available TF ChIP-seq data from various cell and tissue types. These advancements position us to 

better analyze the landscape and organization of CRMs in genomes, uncovering the underlying 

rules of their organization and architecture.   
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CRMs, classified as enhancers, silencers, promoters and insulators based on their effects 

and roles in transcriptional regulation, often exhibit on-off switches in functional states across 

different cell/tissue types(9, 10). Particularly, specific TFs binding to cognate binding sites in an 

enhancer or a silencer can facilitate or prevent, respectively, the recruitment of RNA polymerase 

to the promoter of the target gene, thereby upregulating or downregulating transcription of the 

gene, respectively(11, 12). Epigenetic modifications of CRMs within diverse cell types can 

influence the accessibility and binding affinity of TFs to their cognate binding sites. Consequently, 

this dynamic interplay among TFs, TFBSs, RNA polymerase and epigenetic modification systems 

contributes to distinct spatiotemporal expression patterns of genes in various biological processes 

across different cell/tissue types(14, 15). The recent availability of enormous functional and 

epigenomic data in various cell/tissue types in well-studied organisms have provided an 

unprecedented opportunity to predict loci of enhancers and silencers in the genomes and their 

functional states in various cell/tissue types of the organisms. Most of these methods attempt to 

simultaneously predict the loci of CRMs and their functional states in a cell/tissue type using 

multiple epigenetic marks such as chromatin accessibility (CA) assayed  by either DNase I 

hypersensitive sites sequencing (DNase-seq)(22-24) or assay for transposase-

accessible chromatin using sequencing (ATAC-seq)(25), and histone marks assayed by ChIP-

seq(26). Although conceptually appealing, these one-step methods result in high false discovery 

rate (FDR)(19, 27-32) since CA and histone marks, though informative, are not specific marks for 

active enhancers or silencers(29, 30, 33). Additionally, it has been shown that TF binding data are 

more informative for identifying loci of CRMs than epigenetic data(29-33), suggesting a two-step 

approach: first locating CRMs using TF data and then predicting functional types including 

silencers and states using epigenetic data. 
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In recent years, advancements in high-throughput techniques such as Hi-C(34) and 

chromatin interaction analysis with paired-end-tag sequencing (ChIA-PET)(35), along with 

clustered regularly interspaced short palindromic repeats (CRISPR) technologies such as CRISPR 

activation (CRISPRa) and CRISPR interference (CRISPRi) have provided insights into the 

regulatory relationships between enhancers, silencers, and their target genes across various cell 

and tissue types. However, identifying precise CRM-gene regulations remains challenging due to 

limitations in data resolution and the complexity of regulatory interactions. Therefore, 

experimental determination of target genes of CRMs on a genome-wide scale remains an ongoing 

challenge. To address this challenge, various computational methods have emerged in recent years, 

including score-based(36, 37), correlation-based(38-40) and machine learning methods (40-44), 

in past few years, aiming to predict target genes of putative enhancers and silencers. However, 

these methods are also limited, since in the absence of a precise and comprehensive CRM map in 

the genome, they aim to predict target genes for specific genomic regions marked by distinct 

epigenetic modifications. Besides, though these methods have provided some valuable insights, 

they face constraints due to the arbitrary selection of flanking regions around putative CRMs; the 

inconsistence of experimentally validated training sets introduces noise and potentially influence 

prediction accuracy for machine learning methods. In response, we proposed a new method termed 

correlation and physical proximity (CAPP), which leverages our predicted CRMs as well as their 

functional states while considering regulatory interactions within TADs. 

1.1 Organization  

The remainder of this dissertation is structured as follows. In Chapter 2, we analyze the landscape 

of CRMs and the architecture of their constituent TFBSs in both the human and mouse genomes 

and reveal the common rules of their organizations. In Chapter 3, we use two logistic regression 
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(LR) models using distinct features to predict the functional types (enhancers or silencers) and 

states (active or inactive) of CRMs. In Chapter 4, we use our target gene prediction method, CAPP, 

to predict both the target genes as well as the functional states of these CRMs. We finally conclude 

this dissertation in Chapter 5. 
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Chapter 2  
COMMON RULES OF THE ORGANIZATION AND ARCHITECTURE OF CRMs IN 

THE HUMAN AND MOUSE GENOMES   

 
2.1 Introduction 

Annotating all CRMs in genomes is essential for understanding genome functions and its 

evolutionary history. Despite significant progress made in the two last decades with the 

development of techniques like ChIP-seq and others, this task remains incomplete(45). Indeed, the 

degree to which the human genome is deemed functional is actively debated within the scientific 

community(46, 47). The main source of contention arises from the challenge of precisely 

delineating the locations and thus the proportion of functional non-coding sequences in the genome, 

particularly CRMs, which have been estimated to span from 8% to 40% of the genome(46, 47). 

Additionally, estimates of the number of CRMs in the human genome vary widely, from 

400,000(46)  to over a million(45). Similarly, systematic annotation of CRMs in the well-studied 

mouse genome is still in its early stages, despite significant efforts made by large consortia such 

as ENCODE(48, 49) and individual research laboratories(50, 51). Furthermore, current methods 

often fail to accurately predict the TFBSs within CRMs, hindering the understanding of the 

intricate mechanisms of transcriptional regulation in vital biological processes. 

Moreover, how CRMs are distributed and organized in genomes and their relationships 

with target genes in linear DNA are fundamental issues in understanding their functions, as such 

information provides crucial insights into the complexities of gene regulation and mechanisms of 

gene activation and repression in various biological contexts. However, our understanding of the 

genomic landscape of CRMs remains limited due to the lack of highly accurate and comprehensive 

maps of CRMs in genomes. Consequently, contradictory findings have been reported in the 

literature. For instance, the ENCODE project(17) observed a pronounced nonuniform distribution 
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of so-called cCREs within ENCODE regions, and thus proposed that cCREs tended to cluster in 

certain regions, forming regulatory islands, while other regions were relatively devoid of 

regulatory elements, forming regulatory “deserts”. On the contrary, other researchers(18) have 

reported that enhancers are dispersed across extensive regions rather than clustering around genes.  

Furthermore, at a finer resolution, a CRM consists of clusters of TFBSs interspersed with 

spacer sequences(52). TFBSs serve as docking sites for cognate TFs, facilitating either the 

activation or repression of target gene transcription in a highly context-specific manner.  TFBSs 

of different TFs may overlap(53), forming TFBS islands within CRMs. The regions between these 

TFBS islands, known as inter-TFBS spacers, are recognized as playing crucial roles in gene 

regulation. For instance, studies have demonstrated that these spacers can influence the 

conformation of specific regions such as the DNA-binding surface, the “lever arm” and the 

dimerization interface of the rat glucocorticoid receptor DNA binding domain(54), highlighting 

their functional relevance in modulating TF activities. Moreover, it has been shown that 

modification of spacers in synthetic elements can alter gene expression, supporting the idea that 

the flanking regions of TFBS islands play a significant role in determining cis-regulatory 

activity(55). However, no genome scale study on the inter-TFBS spacers has been conducted due 

to the aforementioned reasons, to our best knowledge. 

As a continued effort, we have recently predicted unprecedentedly comprehensive maps of 

CRMs and their constituent TFBSs from 85.5% of the human(19, 20) and 79.9% of the mouse(21) 

genomes using available TF ChIP-seq data from various cell/tissue types of each species. The 

availability of these CRM and TFBS maps well-positioned us to analyze the landscape and 

organization of the CRMs in the genomes as well as their architecture in terms of TFBSs, thereby 

uncovering the underlying rules of the organization and architecture of CRMs.  
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2.2 Results 

2.2.1 The total lengths and numbers of CRMs on chromosomes are strongly correlated with 
both the numbers of genes on and the sizes of chromosomes 

We first examined the distributions of the 1.2M and 0.8M CRMs, alongside 63,133 and 55,361 

annotated genes, across the autosomal and sex chromosomes of the human (hg38) and mouse 

(mm10) genomes, respectively. Both the numbers and total lengths of CRMs on chromosomes are 

strongly correlated with the chromosome sizes as well as with the numbers and total lengths of 

genes on chromosomes for both humans (Figure 2-1A) and mice (Figure 2-2A). Expectedly, the 

numbers and total lengths of CRMs on chromosomes also are strongly correlated with each other 

(Figures 2-1A and 2-2A), as both the number and total length of CRMs on a chromosome in both 

species are proportional to the chromosome’s size. 
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Figure 2-1. The landscape of CRMs and genes on the chromosomes, in sliding windows of 10! bp 
with a step size of 10" bp along the chromosomes and in TADs and non-TADs in the human 
genome. A. Heatmap of correlations among genome sizes, numbers of CRMs and genes on 
chromosomes, and total lengths of CRMs and genes on chromosomes. B. Manhattan plot of the 
normalized lengths of CRMs in sliding windows along the chromosomes. C. Manhattan plot of 
the normalized numbers of CRMs in sliding windows along the chromosomes. D. Manhattan plot 
of the normalized lengths of genes in sliding windows along the chromosomes. E. Manhattan plot 
of the normalized numbers of genes in sliding windows along the chromosomes. F. Percentages 
of the genome length, and numbers of CRMs and genes, covered by TADs. G. Correlation between 
the numbers of CRMs and the numbers of genes within TADs. H. Correlation between the numbers 
of CRMs and the numbers of genes within non-TAD regions. 

2.2.2 CRMs and genes are unevenly but correlatedly distributed along chromosomes 

To explore the distributions of CRMs and their relationships with those of genes along 

chromosomes, we analyzed the total lengths and numbers of CRMs as well as of genes within a 

sliding window of 10! bp with a step size of 10" bp along each chromosome of the human genome. 

We then converted the total lengths and numbers of CRMs as well as of genes in each window 
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into corresponding z-scores with the null hypotheses that the total lengths and numbers of CRMs 

as well as of genes are evenly distributed along the genome (Materials and Methods). Among the 

30,678 sliding windows along the human genome for a window size of 10! bp, a considerable 

portion (20,217/65.9% and 7,081/23.1%) showed enrichment (z > 5.2) for the lengths and numbers 

of CRMs (Figures 2-1B and 2-1C, Supplementary Table S2-1), suggesting the presence of CRM-

rich islands. Conversely, many windows (9,920/32.3% and 3,919/12.8%) exhibited depletion (z < 

-5.2) for the lengths and numbers of CRMs, indicating the existence of CRM deserts. For genes, a 

substantial number of windows are enriched for the lengths (z > 5.2: 17,962/58.6%) and numbers 

(z > 5.2: 4,947/16.1%), while many others are depleted of the lengths (z < -5.2: 12,547/40.9%) 

and numbers (z < -5.2: 4,673/15.2%) (Figures 2-1D and 2-1E, Supplementary Table S2-1), 

suggesting an uneven distribution of gene along chromosomes, forming islands or deserts of genes.  

Notably, there are more than twice as many CRM and gene islands as well as deserts measured by 

their lengths as measured by their numbers. The results using a sliding window of 10# bp with a 

step of 10! bp (Figure 2-3 and Supplementary Table S2-2) support these findings. Additionally, 

CRMs and genes in sliding windows are strongly correlated in their lengths and numbers (Figure 

2-4), indicating the simultaneous enrichment or depletion of CRMs and genes within the same 

sliding windows, aligning with the previous report by ENCODE(17) that CRMs are clustered 

around the genes. Similar observations were made in the mouse genome (Figures 2-2B to 2-2E, 2-

5, 2-6 and Supplementary Tables S2-3, S2-4). 
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Figure 2-2. The landscape of CRMs and genes on the chromosomes, in sliding windows of 10! bp 
with a step size of 10" bp along the chromosomes and in TADs and non-TADs in the mouse 
genome. A. Heatmap of correlations among genome sizes, numbers of CRMs and genes on 
chromosomes, and total lengths of CRMs and genes on chromosomes. B. Manhattan plot of the 
normalized lengths of CRMs in sliding windows along the chromosomes. C. Manhattan plot of 
the normalized numbers of CRMs in sliding windows along the chromosomes. D. Manhattan plot 
of the normalized lengths of genes in sliding windows along the chromosomes. E. Manhattan plot 
of the normalized numbers of genes in sliding windows along the chromosomes. F. Percentages 
of the genome length, and numbers of CRMs and genes, covered by TADs. G. Correlation between 
the numbers of CRMs and the numbers of genes within TADs. H. Correlation between the numbers 
of CRMs and the numbers of genes within non-TAD regions. 
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Figure 2-3. Lengths and Numbers of CRMs and genes in sliding windows of 10# bp with a step 
size of 10! bp along the chromosomes of the human genome. A. Manhattan plot of the normalized 
lengths of CRMs in sliding windows along the chromosomes.  B. Manhattan plot of the normalized 
numbers of CRMs in sliding windows along the chromosomes. C. Manhattan plot of the 
normalized lengths of genes in sliding windows along the chromosomes. D. Manhattan plot of the 
normalized numbers of genes in sliding window along the chromosomes.  
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Figure 2-4. Relationships between the lengths or numbers of CRMs and those of genes in sliding 
windows in the human genome.  A. Relationship between the lengths of CRMs and those of genes 
in sliding windows of 10! bp.  B. Relationship between the numbers of CRMs and those of genes 
in sliding windows of 10! bp.  C. Relationship between the lengths of CRMs and those of genes 
in sliding windows of 10# bp.  D. Relationship between the numbers of CRMs and those of genes 
in sliding windows of 10# bp.   
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Figure 2-5. Lengths and Numbers of CRMs and genes in sliding windows of 10# bp with a step 
size of 10! bp along the chromosomes of the mouse genome. A. Manhattan plot of the normalized 
lengths of CRMs in sliding windows along the chromosomes.  B. Manhattan plot of the normalized 
numbers of CRMs in sliding windows along the chromosomes. C. Manhattan plot of the 
normalized lengths of genes in sliding windows along the chromosomes. D. Manhattan plot of the 
normalized numbers of genes in sliding window along the chromosomes.  

A B

C D

Z-
sc

or
e 

(L
en

gt
h 

of
 C

RM
s)

Z-
sc

or
e 

(L
en

gt
h 

of
 g

en
es

)

Chromosome Chromosome
Z-

sc
or

e 
(N

um
be

r o
f g

en
es

)
Z-

sc
or

e 
(N

um
be

r o
f C

RM
s)



 15 

 
Figure 2-6. Relationships between the lengths or numbers of CRMs and those of genes in sliding 
windows in the mouse genome.  A. Relationship between the lengths of CRMs and those of genes 
in sliding windows of 10! bp.  B. Relationship between the numbers of CRMs and those of genes 
in sliding windows of 10! bp.  C. Relationship between the lengths of CRMs and those of genes 
in sliding windows of 10# bp.  D. Relationship between the numbers of CRMs and those of genes 
in sliding windows of 10# bp.   

2.2.3 The numbers of CRMs and genes within a TAD exhibit stronger correlation than those 
in non-TAD regions 

TADs typically manifest at the sub-megabase scale, and CRMs predominantly regulate genes 

within the same TADs(56). After demonstrating the correlation between the occurrences of CRMs 

and genes along chromosomes in both genomes, we explored the relationships between the 

numbers of CRMs and genes within TADs. As depicted in Figure 2-1F, TADs cover 89.4% of the 

human genome, yet they contain 96.2% of the CRMs and 93.0% of the genes in the genome, 

indicating an enrichment of CRMs and genes within TADs compared to non-TAD regions. We 

observed a similar trend for the numbers of CRMs, but not for the number of genes, in the mouse 

genome (Figure 2-2F). Interestingly, the numbers of CRMs and genes within both TADs and non-
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TAD are correlated; however, the correlation in TADs is significantly higher (Fisher’s z test: 

p<0.001) than that in non-TAD regions in both the human (Figures 2-1G and 2-1H) and the mouse 

(Figures 2-2G and 2-2H) genomes. The results indicate stronger dependency between the numbers 

of CRMs and genes in TADs than in non-TAD regions. 

2.2.4 Both our CRMs and experimentally validated regulatory elements are slightly biasedly 
distributed downstream of their nearest transcription start sites (TSSs) 

Although not every enhancer regulates their nearest genes, a considerable portion of them do(57). 

It also is unknown whether CRMs are preferentially located upstream or downstream of their 

nearest TSSs. We therefore analyzed the distributions of the distances between the middle points 

of our CRMs and their nearest TSSs (middle point distance, 𝑑$, Materials and Methods) while 

taken the orientations of the TSSs in consideration, such that a negative 𝑑$ indicates an upstream 

middle point and a positive 𝑑$ a downstream middle point. We compared the results with those 

of experimentally validated FANTOM promoters(58), FANTOM enhancers(59), and VISTA 

enhancers(60) in both the human and mouse genomes. In both genomes, FANTOM promoters 

(n=184,326 for humans, Figures 2-7A1 and 2-7B1; and n=164,421 for mice, Figures 2-7C1 and 2-

7D1), FANTOM enhancers (n=32,684 for humans, Figures 2-7A2 and 2-7B2; and n=49,797 for 

mice, Figures 2-7C2 and 2-7D2), VISTA enhancers (n=1,002 for humans, Figures 2-7A3 and 2-

7B3; and n=702 for mice, Figures 2-7C3 and 2-7D3) and our predicted CRMs (n=1.2M for humans, 

Figures 2-7A4 and 2-7B4; and n=0.8M for mice, Figures 2-7C4 and 2-7D4) are all almost 

symmetrically distributed around their nearest TSSs, but all slightly biased to downstream of their 

nearest TSSs (Table 2-1, except for VISTA enhancers in mice), and this is particularly true for 

FANTOM promoters. Moreover, FANTOM promoters (Figures 2-7A1 and 2-7C1) are more 

closely located around TSSs than are FANTOM enhancers (Figures 2-7A2 and 2-7C2), VISTA 

enhancers (Figures 2-7A3 and 2-7C3) and our CRMs (Figures 2-7A4 and 2-7C4). More 
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specifically, most of FANTOM promoters (66.8% for humans and 59.1% for mice) have a |𝑑$| < 

1,000 bp (Figures 2-7B1 and 2-7D1). In contrast, only a small portion of FANTOM enhancers 

(11.8% for humans, Figure 2-7B2; and 12.5% for mice, Figure 2-7D2), VISTA enhancers (12.7% 

for humans, Figure 2-7B3; and 6.8% for mice, Figure 2-7D3), and our CRMs (7.2% for humans, 

Figure 2-7B4; and 5.5% for mice, Figure 2-7D4) have a	|𝑑$|  < 1,000 bp. These results are 

consistent with the general understanding that promoters tend to be proximal to TSSs while 

enhancers tend to be distal to TSSs. However, the vast majority of FANTOM enhancers (80.8% 

for humans, Figure 2-7A2; and 96.7% for mice, Figure 2-7C2), VISTA enhancers (66.2% for 

humans, Figure 2-7A3; and 98.0% for mice, Figure 2-7C3) and our CRMs (73.4% for humans, 

Figure 2-7A4; and 90.2% for mice, Figure 2-7C4) have a |𝑑$| < 0.1M bp. 

Table 2-1. Numbers and proportions of experimentally validated regulatory elements and our 

CRMs located upstream and downstream of their nearest TSSs based on 𝑑$ values 

 Total Number 𝑑!	< 0 𝑑!	> 0 

 Human Mouse Human Mouse Human Mouse 
FANTOM 
Promoters 184,326 164,421 

79,964 
 (43.4%) 

68,904 
(41.9%) 

100,858 
(54.7%) 

93,630 
(56.9%) 

FANTOM 
Enhancers 32,684 49,797 15,663  

(47.9%) 
23,644 
(47.5%) 

17,016 
(52.1%) 

26,148 
(52.5%) 

VISTA 
Enhancers 

1,002 702 480  
(47.9%) 

354  
(50.4%) 

520  
(51.9%) 

348  
(49.6%) 

Our 
CRMs 1,225,115 798,257 

583,588 
(47.6%) 

387,093 
(48.5%) 

641,408 
(52.4%) 

411,125 
(51.5%) 
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Figure 2-7. Distributions of FANTOM promoters and enhancers, VISTA enhancers and CRMs in 
the human and mouse genomes around the nearest TSSs. A1-A4. Histogram of 𝑑$ of FANTOM 
promoters, FANTOM enhancers, VISTA enhancers and our CRMs and histogram of 𝑑% of their 
CPL category in the human genome. B1-B4.  Zooming-in views of 	regions of A1-A4 indicated 
by the axes, respectively. C1-C4. Histogram of 𝑑$ of FANTOM promoters, FANTOM enhancers, 
VISTA enhancers and our CRMs and histogram of 𝑑% of their CPL category in the mouse genome. 
D1-D4. Zooming-in views of	regions of C1-C4 indicated by the axes, respectively. 

2.2.5 Both our CRMs and experimentally validated regulatory elements can be classified in 
two categories based on whether they overlap TSSs or not  

Notably, in both humans and mice (Figure 2-7), the histograms of 𝑑$ for FANTOM promoters, 

FANTOM enhancers, VISTA enhancers and our predicted CRMs all peak around the 0 distance, 

indicating that varying yet considerable portions of all these elements overlap their nearest TSSs. 
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Since the elements overlapping TSSs might contain core promoters, while those that do not might 

not, we thus classified these elements in two categories: 1) those that overlap their nearest TSSs 

as core promoter-containing (CPC) elements, and 2) those that do not overlap their nearest TSSs 

as core promoter-lacking (CPL) elements. In humans, as expected, a considerable portion (19.9%) 

of FANTOM promoters are classified as CPC promoters, while the remaining 80.1% are classified 

as CPL promoters (Figure 2-8A, Table 2-2). Interestingly, a considerable portion of VISTA 

enhancers (12.2%) also are classified as the CPC category, while the remaining 80.1% are 

classified as the CPL category (Figure 2-8A, Table 2-2), indicating the enhancers indeed can 

overlap core promoters. Moreover, smaller but still considerable portions of FANTOM enhancers 

(3.0%) and our CRMs (6.1%) are classified as CPC enhancers, while the remaining vast majority 

are classified as CPL elements (Figure 2-8A, Table 2-2). These results indicate that a considerable 

number of experimentally validated enhancers and our predicted CRMs contain core promoters in 

addition to other regulatory elements. These findings also highlight the substantial differences in 

the proportions of CPC and CPL categories between FANTOM promoters as well as VISTA 

enhancers and FANTOM enhancers as well as our CRMs. Similar results are obtained in the mouse 

data (Figure 2-9A, Table 2-2).  

Table 2-2. Numbers and proportions of experimentally validated regulatory elements and our 
CRMs categorized into the CPC and CPL categories in the two genomes 

 Total Number CPC  CPL 

Species Human Mouse Human Mouse Human Mouse 
FANTOM 
Promoters 

184,326 164,421 36,759 
(19.9%) 

25,565 
(15.5%) 

147,567 (80.1%) 138,856 
(84.5%) 

FANTOM 
Enhancers 32,684 49,797 

972  
(3.0%) 

1,066  
(2.1%) 31,712 (97.0%) 

48,731 
(97.9%) 

VISTA 
Enhancers 1,002 702 122  

(12.2%) 56 (8.0%) 880 (87.8%) 646 (92.0%) 

Our 
CRMs 

1,225,115 798,257 74,329  
(6.1%) 

54,203  
(6.8%) 

1,150,786 
(93.9%) 

744,054 
(93.2%) 
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To further investigate the location relationships between the CPL elements and their 

nearest TSSs, we analyzed the distribution of nearer end distance 𝑑% for the CPL elements (defined 

as the distance between the nearer end of an element and its nearest TSS, Materials and Methods). 

In both humans and mice (Figure 2-7, Table 2-3), all the CPL elements are almost symmetrically 

distributed around their nearest TSSs, but all slightly biased to downstream of their nearest TSSs 

except for VISTA enhancers in mice.  More than half (56.3% and 51.7% for humans and mice, 

respectively) of FANTOM CPL promoters are located around the nearest TSSs with a |𝑑%| < 1,000 

bp (Figures 2-7A1, 2-7B1 and 2-7C1, 2-7D1). In contrast, only a small portion of FANTOM CPL 

enhancers (11.7% for humans, Figures 2-7A2, 2-7B2; and 12.9% for mice, Figures 2-7C2, 2-7D2), 

VISTA CPL enhancers (7.1% for humans, Figures 2-7A3, 2-7B3; and 3.6% for mice, Figures 2-

7C3, 2-7D3) and our CPL CRMs (4.5% for humans, Figures 2-7A4, 2-7B4; and 2.9% for mice, 

Figures 2-7C4, 2-7D4) are located around the nearest TSSs with a |𝑑%| < 1,000 bp.  
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Figure 2-8. Classification of FANTOM promoters and enhancers, VISTA enhancers and our 
CRMs based on whether or not they overlap TSSs in the human genome. A. Comparison of 
percentages of the CPC and CPL categories in FANTOM promoters and enhancers, VISTA 
enhancers and our CRMs.  B. Boxplots of the lengths of the CPC and CPL categories in FANTOM 
promoters and enhancers, VISTA enhancers and our CRMs. C. CRM (chr19:14778431-14778705) 
is classified to be the CPC category, containing a FANTOM CPC promoter (a core promoter of 
gene ADGRE2: chr19:14778552-14778569) and a FANTOM CPL promoter (a proximal promoter 
of ADGRE2: chr19:14778574-14778582) plus additional putative regulatory elements. D. CRM 
(chr1:11846931-11848928) is classified to be the CPC category, containing a FANTOM CPC 
promoter (a core promoter of gene NPPA: chr1:11847772-11847790) and a VISTA CPC enhancer 
(chr1:11846819-11848609) plus additional putative regulatory elements. E. CRM 
(chr10:69047012-69048370) located upstream of gene SRGN is classified to be the CPL category, 
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overlapping a FANTOM CPL enhancer (chr10:69048135-69048356). F. CRM (chr11:33942659-
33943407) located upstream of gene LMO2 is classified to be the CPL category, overlapping a 
VISTA CPL enhancer (chr11:33942739-33946310).    

Table 2-3. Numbers and proportions of experimentally validated regulatory elements and our 

CRMs located upstream and downstream of their nearest TSSs based on 𝑑%  values 

 Total Number 𝑑" < 0 𝑑" > 0 

 Human Mouse Human Mouse Human Mouse 
FANTOM 
Promoters 184,326 164,421 65,180 

(35.4%) 
57,540 
(35.0%) 

82,386 
(44.7%) 

81,316  
(49.5%) 

FANTOM 
Enhancers 32,684 49,797 14,953 

(45.8%) 
22,862 
(45.9%) 

16,759 
(51.3%) 

25,869  
(51.9%) 

VISTA 
Enhancers 1,002 702 411  

(41.0%) 
325  

(46.3%) 
469  

(46.8%) 
321  

(45.7%) 
Our 

CRMs 1,225,115 798,257 554,778 
(45.3%) 

366,184 
(45.9%) 

596,025 
(48.7%) 

377,870 
(47.3%) 
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Figure 2-9. Classification of FANTOM promoters and enhancers, VISTA enhancers and our 
CRMs based on whether or not they overlap TSSs in the mouse genome. A. Comparison of 
percentages of the CPC and CPL categories in FANTOM promoters and enhancers, VISTA 
enhancers and our CRMs.  B. Boxplots of the lengths of the CPC and CPL categories in FANTOM 
promoters and enhancers, VISTA enhancers and our CRMs.  C. CRM (chr10:105839767-
105844033) is classified as the CPC category, containing a FANTOM CPC promoter (a core 
promoter of gene Ccdc59: chr10: 105841454-105841512) and a FANTOM CPC promoters (a core 
promoter of gene Ccdc59: chr10: 105841323-105841372) plus other regulatory elements. D. CRM 
(chr8:123477104-123479225) is classified as the CPC category, containing a FANTOM CPL 
promoters (a proximal promoter of gene Afg3l1: chr8:123477849-123477856), two FANTOM 
CPC promoters (core promoters of gene Afg3l1: chr8:123477859-123477904, chr8:123477934-
123477945), and a downstream promoter element of gene Afg3l1: chr8:123478144-123478181 
and a FANTOM CPL enhancer (chr8:123478955-123479296) plus other regulatory elements. E. 
CRM (chrX:73473538-73482090) located upstream of gene Bgn is classified as the CPL category, 
containing two FANTOM CPL enhancers (chrX:73476667-73476958 and chrX:73480499-
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73480597) plus other regulatory elements. F. CRM (chr1:133185552-133186431) located 
upstream of gene Plekha6 is classified as the CPL category, overlapping a VISTA CPL enhancer 
(chr1:133185980-133189493).    

2.2.6 CPC elements are generally longer than CPL elements  

We proceeded to compare the lengths of FANTOM promoters, FANTOM enhancers, VISTA 

enhancers and our CRMs. In humans, as anticipated, FANTOM promoters are short, with a nearly 

uniform length distribution, a median length of 15 bp and 99.4% of them being shorter than 100 

bp (Figure 2-8B). Notably, FANTOM CPC promoters have a significantly longer median length 

(29 bp) than FANTOM CPL promoters (15 bp). Considering the distributions of FANTOM 

promoters around the nearest TSSs, in addition to a core promoter, a FANTOM CPC promoter 

might contain an upstream proximal promoter element and/or a downstream promoter element(61), 

while a FANTOM CPL promoter might only contain an upstream proximal promoter element or 

a downstream promoter element. Although the vast majority (99.5%) of FANTOM enhancers are 

shorter than 1,000 bp, with a median length of 288 bp, they are generally longer than FANTOM 

promoters (Figure 2-8B). Interestingly, FANTOM CPC enhancers have a significantly longer 

median length (346 bp) than FANTOM CPL enhancers (286 bp) (Figure 2-8B). VISTA enhancers 

have a length ranging from 428 to 11,051 bp with a median length of 1,688 bp, and thus are much 

longer than FANTOM enhancers (Figure 2-8B). Interestingly, as in the case of FANTOM 

enhancers, VISTA CPC enhancers also have a significantly longer median length (2,337 bp) than 

VISTA CPL enhancers (1,638 bp) (Figure 2-8B). It is likely that in addition to an enhancer element, 

a FANTOM CPC enhancer or a VISTA CPC enhancer contains a core promoter, while a FANTOM 

CPL enhancer or a VISTA CPL enhancer only contains enhancer elements.  

With a median length of 707 bp, our CRMs are more similar to VISTA enhancers than to 

FANTOM enhancers in length (Figure 2-8B). Interestingly, as in the cases of FANTOM and 

VISTA enhancers, our CPC CRMs also have a significantly longer median length (2,408 bp) than 
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our CPL CRMs (650 bp) (Figure 2-8B). A small number (103 or 0.1%) of our CPC CRMs are 

shorter than 100 bp that is the typical length of core promoters (Figure 2-8B), suggesting that these 

CPC CRMs might be core promoters. The remaining vast majority (99.9%) of our CPC CRMs are 

longer than 100 bp, with 83.6% of them being longer than 1,000 bp. Thus, like FANTOM CPC 

enhancers and VISTA CPC enhancers, the CPC CRMs that are longer than 100 bp might contain 

core promoters in addition to enhancer or silencer elements. The analysis conducted on the mouse 

genome yielded similar results and conclusions (Figure 2-9B). Moreover, of the 213,882 and 

125,827 annotated unique TSSs in the human and mouse genome regions from which we were 

able to predict CRMs and constituent TFBSs(19-21), 192,735 (90.1%) and 118,896 (94.5%) 

overlap our CPC CRMs in the human and mouse genome regions, respectively, indicating that 

core promoters rarely exist alone. 

2.2.7 Overlaps among our CRMs, FANTOM promoters, FANTOM enhancers and VISTA 
enhancers   

We note that FANTOM enhancers and VISTA enhancers in both humans (Supplementary Table 

S2-5) and mice (Supplementary Table S2-6) rarely overlap each other. In humans, only 131 

FANTOM enhancers overlap with 102 VISTA enhancers (Supplementary Table S2-5) while the 

numbers for mice are 317 FANTOM enhancers and 220 VISTA enhancers (Supplementary Table 

S2-6). Therefore, FANTOM enhancers and VISTA enhancers are two quite different sets of 

experimentally validated enhancers determined using different techniques(59, 60). Moreover, 

FANTOM enhancers that overlap VISTA enhancers are shorter than the counterpart VISTA 

enhancers, and multiple such FANTOM enhancers overlap the different parts of the same VISTA 

enhancers. This suggests that some of the FANTOM enhancers might be components of long 

enhancers, likely due to the limitations of the eRNA-seq techniques used for their determination. 

Although FANTOM enhancers and VISTA enhancers do not have extensive overlaps, we 
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have previously shown that our predicted CRMs overlap the vast majority of both sets in the 

human(19) and mouse(21) genomes. We show a few examples of overlaps in light of our 

classification of the elements in the CPC and CPL categories in humans. First, CPC CRM 

(chr19:14778431-14778705) contains a FANTOM CPC promoter (a core promoter of gene 

ADGRE2: chr19:14778552-14778569) and a FANTOM CPL promoter (a proximal promoter of 

ADGRE2: chr19:14778574-14778582), in addition to other putative enhancer or silencer elements 

(Figure 2-8C). Second, CPC CRM (chr1:11846931-11848928) contains a FANTOM CPC 

promoter (a core promoter of gene NPPA: chr1:11847772-11847790) and the most part of a 

VISTA CPC enhancer (chr1:11846819-11848609) plus additional putative regulatory elements 

(Figure 2-8D). Third, CPL CRM (chr10:69047012-69048370) located upstream of the nearest TSS 

of gene SRGN overlaps a FANTOM CPL enhancer (chr10:69048135-69048356) (Figure 2-8E). 

Finally, CPL CRM (chr11:33942659-33943407) located upstream of gene LMO2 overlaps a 

VISTA CPL enhancer (chr11:33942739-33946310) (Figure 2-8F). A few examples of overlaps in 

the mouse genome are shown in Figures 2-9C to 2-9F. 

2.2.8 Inter-TFBS spacers in CRMs are under similar evolutionary constraints as TFBS 
islands  

We next investigated the architecture of the CRMs (Figure 2-10A) by analyzing the landscape and 

properties of the 125M TFBSs within our predicted 1.2M CRMs in the human genome. Our 

predicted TFBSs within these putative CRMs have a length ranging from 10 to 21 bp, with the 

majority being 10 bp in length (Figure 2-10B). On average, each CRM contains around 102 TFBSs. 

By examining the arrangement of TFBSs within CRMs (Figure 2-10A), we found that adjacent 

TFBSs often overlapped each other by 1 to 10 bp, with 10, 9, and 8 bp overlaps being the most 

common (Figure 2-10C). On the other hand, it is relatively rare for two adjacent TFBSs to be 

separated by more than 100 bp (Figure 2-10C). We thus merge two adjacent TFs if they overlap 
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by at least one bp, and refer to the resulting sequences as TFBS islands, which range from 10 bp 

to 1,255 bp with a median length of 12 bp (Figure 2-10B). The distance between adjacent TFBS 

islands within the CRMs ranges from 1 to 2,238 bp, with a median distance of 13 bp, indicating 

variability in the spacers between the TFBS islands (Figure 2-10C). The analysis conducted on the 

165M putative TFBSs in the 0.9M predicted CRMs in the mouse genome yielded similar 

conclusions (Figures 2-11A and 2-11B). 

Of the human genome regions (85.5%) from which we were able to predict CRMs and 

constituent TFBSs(19, 20), 20.7%, 34.6% and 44.7% consist of TFBS islands, inter-TFBS spacers 

and non-CRMs, respectively (Figure 2-10D). These proportions are 29.9%, 39.6% and 30.5% for 

TFBS islands, inter-TFBS spacers and non-CRMs, respectively, in the mouse genome regions 

(79.9%) from which we were able to predict CRMs and constituent TFBSs(21) (Figure 2-11C). 

To assess possible functionality of inter-TFBS spacers, we compared the distribution of phyloP 

conservation scores(62) of their nucleotide positions with those of TFBS islands and non-CRMs. 

As expected, the distribution of phyloP scores of TFBS islands have a much lower peak around 0 

than that of non-CRMs and is right-shifted relative to that of non-CRMs (Figures 2-10E and 2-

11D), indicating that TFBS islands are more likely under evolutionary constraints than non-CRMs. 

Surprisingly, the distribution of phyloP scores of inter-TFBS spacers differs only slightly from that 

of TFBS islands, with a slightly lower peak of 0 and slightly less right shift (Figures 2-10E and 2-

11D), indicating that inter-TFBS spacers are under almost the same evolutionary constraints as 

TFBS islands, which are much stronger than those on non-CRMs. Moreover, TFBS islands and 

inter-TFBS spacers in the human genome have similar median LINSIGHT scores that were 

computed to measure functionality of nucleotide positions in the human genome(63), both  are 

significantly higher than that of non-CRMs (Figure 2-12). These results strongly suggest that inter-
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TFBS spacers also play critical roles in CRM functions. 

 

Figure 2-10. Properties of putative TFBSs and inter-TFBS islands in the predicted CRMs in the 
human genome. A. Cartoon showing the arrangement of the TFBSs, TFBS islands and inter-TFBS 
spacers in a CRM on a chromosome. B. Distribution of the lengths of putative TFBSs and TFBS 
islands in the predicted CRMs (only the length region from 10 to 50 bp is shown). C. Distribution 
of the distance between adjacent of putative TFBSs and TFBS islands in the predicted CRMs (only 
the distance region from -20 to 100 bp is shown). D. Coverage of putative TFBS islands, inter-
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TFBS spacers and non-CRMs in the genome regions from which we were able to predict CRMs 
and constituent TFBSs. E. Distribution of phyloP scores of TFBS islands, inter-TFBS spacers in 
the predicted CRMs in comparison with that of the non-CRMCs (only the score region from -4 to 
4 is shown).  

 
Figure 2-11. Properties of putative TFBSs and inter-TFBS islands in the predicted CRMs in the 
mouse genome. A. Distribution of the lengths of putative TFBSs and TFBS islands in the predicted 
CRMs (only the length region from 10 to 50 bp is shown). B. Distribution of the distance between 
adjacent of putative TFBSs and TFBS islands in the predicted CRMs (only the distance region 
from -20 to 100 bp is shown). D. Coverage of putative TFBS islands, inter-TFBS spacers and non-
CRMs in the genomic regions from which we were able to predict CRMs and constituent TFBSs. 
E. Distribution of phyloP scores of TFBS islands, inter-TFBS spacers in the predicted CRMs in 
comparison with that of the non-CRMCs (only the score region from -3 to 3 is shown).  
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Figure 2-12. Boxplots of LINSIGHT scores of non-CRMs, TFBS islands and inter-TFBS spacers 
in the human genome.  

2.2.9 Inter-TFBS spacers might have functional roles other than direct TF binding in 
transcriptional regulation  

TFBS islands bound by their cognate TFs and inter-TFBS spacers wrapped around histones in a 

CRM are resistant to DNase I cleavage, while TFBS islands and inter-TFBS spacers free of binding 

by both TFs and histones can be cut by DNase I (Figure 2-10A). To see whether or not inter-TFBS 

spacers are directly involved in TF binding, we compared the DNase I cleavage profiles of TFBS 

islands, inter-TFBS spacers and non-CRMs in the human genome using maps of 3.6 million DNase 

I hypersensitive site (DHS) cores(64) and 4.6 million TF footprints(65) produced by ENCODE via 

aggregating DNase-seq data from hundreds of human bio-samples spanning hundreds of cell/tissue 

types. With an average length of 55 bp, the 3.6 million DHS cores occupying 6.4% of the genome 

are consensus regions that could be cut by DNase I at multiple positions in different cell/tissue 

types(64). As summarized in Table 2-4, TFBS islands have the highest proportion (14.4%) 

overlapping DHS cores, followed by inter-TFBS spacers (8.3%) and non-CRMs (3.6%). Thus, 

both TFBS islands and inter-TFBS spacers are enriched for DHS cores, while non-CRMs are 

depleted of DHS cores. This result suggests that compared with TFBS islands, inter-TFBS spacers 

might be more likely wrapped around histones (Figure 2-10A) and inaccessible to regulatory 
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proteins, while compared with non-CRMs, they might be less likely so (Figure 2-10A).  The 

similar results are seen from the same analysis in the mouse genome using full-length DHSs (Table 

2-5). 

Table 2-4. Summary of overlaps between DHS cores and TFBS islands, inter-TFBS spacers as 

well as non-CRMs in the human genome 

 Total Numbers Total Length (bp) Overlapping length (bp) 
TFBS islands 35,576,559 545,014,253 78,653,450 (14.4%) 

inter-TFBS spacers 35,154,776 910,694,944 75,657,276 (8.3%) 
non-CRMs 1,755,876 1,177,572,135 42,087,044 (3.6%) 

 
Table 2-5. Summary of overlaps between full-length DHSs and TFBS islands, inter-TFBS 

spacers and non-CRMs in the mouse genome 

 Total Numbers Total Length (bp) Overlapping length (bp)  

TFBS islands 38,350,446 650,376,376 277,206,030 (42.6%) 
inter-TFBS spacers 38,014,062 861,299,538 273,550,233 (31.8%) 

non-CRMs 1,270,937 664,133,141 145,840,695 (22.0%) 
 

Moreover, with an average length of 16 bp, the 4.5 million TF footprints comprising 2.1% 

of the genome are regions around the summit of DHSs, which are bounded by TFs and thus are 

protected from DNase I cleavage(65). As summarized in Table 2-6, TFBS islands have the highest 

proportion (5.6%) overlapping TF footprints, followed by inter-TFBS spacers (2.8%) and non-

CRMs (1.3%). Thus, TFBS islands are highly (5.6% vs 2.1%) but inter-TFBS spacers are only 

slightly (2.8% vs 2.1%) enriched for TF footprints, while non-CRMs are (1.3% vs 2.1%) depleted 

of TF footprints. Taken together, these results suggest that some inter-TFBS spacers might be in 

the nucleosome form, and thus cannot be cut by DNase I or bounded by TFs; some other inter-

TFBS spacers might be both nucleosome-free and TF-free, and thus can be cut by DNase I; and 

few inter-TFBS spacers might be bounded by TFs, and thus cannot be cut by DNase I (Figure 2-

10A). Therefore, functions of inter-TFBSs, if any, might not mainly be carried out by direct 
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interactions with TFs.   

Table 2-6. Summary of overlaps between TF footprints and TFBS islands, inter-TFBS spacers as 

well as non-CRMs in the human genome 

 Total Numbers Total Length (bp) Overlapping length (bp) 
TFBS islands 35,576,559 545,014,253 30,783,710 (5.6%) 

Inter-TFBS spacers 35,154,776 910,694,944 25,706,710 (2.8%) 
non-CRMs 1,755,876 1,177,572,135 15,126,676 (1.3%) 

 
2.3 Discussion 

In this study, we investigated the landscapes and organizations of CRMs in the human and mouse 

genomes as well as the architecture of constituent TFBSs within the CRMs. We reveal a few 

common rules for the organization of CRMs in the two genomes. First, like genes, the numbers 

and lengths of CRMs on chromosomes are correlated with the sizes of chromosomes.  Second, 

CRMs are unevenly but correlatedly distributed with genes along chromosomes, forming mega-

base-sized CRMs islands and deserts. Third, the numbers of CRMs and genes in TADs have 

stronger correlation than those in non-TAD regions. Fourth, like FANTOM enhancers and VISTA 

enhancers, CRMs are slightly biasedly distributed downstream of their nearest TSSs. Fifth, like 

FANTOM promoters and enhancers as well as VISTA enhancers, a small yet considerable portion 

(7%) of CRMs overlap TSSs, while the remaining vast majority do not. Based on this observation, 

we categorize the regulatory elements into two categories, i.e., CPC and CPL.  

Sixth, promoters are traditionally classified into core promoters, proximal promoter 

elements and downstream promoter elements based on whether or not they overlap TSSs and their 

relative location to TSS, while enhancers are traditionally classified into distal enhancers and 

proximal enhancers based on their distances to the target TSSs(37, 46, 66). However, we find that 

only few (0.1%) of our CPC CRMs have a typical length of FANTOM promoters (<100 bp), and 

thus might be simple core promoters, while most (99.9%) of them are longer than 100 bp, and thus 
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might contain other regulatory elements in addition to core elements. On the other hand, most 

(>90.0%) of annotated TSSs overlap our CRMs. Thus, it appears that only a small portion (<10%) 

of core promoters exist alone, while most of them prefer to cluster with nearby regulatory elements 

to form longer CPC CRMs. Our classification of CRMs into the CPC and CPL categories does not 

differentiate traditional promoters and enhancers and their subtypes, but rather treats them as the 

same type of cis-regulatory sequences. This is consistent with growing evidence that enhancers 

and promoters share common molecular attributes, and are not functionally distinguishable in line 

of function and structure(67, 68). In this study, we also show that 12.2% of human and 8.0% of 

mouse VISTA enhancers contain core promoters, and thus are of the CPC category (Table 2-2).   

According to our classification, a CPC enhancer may contain a core promoter, and other regulatory 

element such as a proximal promoter element, a downstream promoter element and an enhancer 

element, and a CPL enhancer may also include a proximal promoter element or downstream 

promoter element and an enhancer element when it is close to a TSS. Finally, we find that CPC 

elements tend to be longer than CPL elements due at least partially to the fact that CPC elements 

contain core promoters in addition to other regulatory elements while CPL elements lack core 

promoters. However, containing a core promoter that has a mean length of ~100 bp cannot account 

for the difference in the mean lengths of CPC (2,408 bp) and CPL (650 bp) CRMs, thus other 

unknown reasons should exist and need to be elucidated in the future.  

We also reveal a few common rules for the organization and architecture of TFBSs within 

the CRMs in the two genomes. First, adjacent TFBSs in a CRMs tend to overlap with each other, 

forming longer TFBS islands. This result is consistent with earlier reports in the fly(69, 70) and 

mammals including humans based on extensive overlaps of binding peaks of various TF ChIP-seq 

data(60). Besides, it provides valuable insights into the organization and characteristics of TFBSs 
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within putative CRMs and their potential roles in gene transcriptional regulation. In agreement 

with this, it has been shown that different TFs can compete for partially overlapping binding 

sites(71) or bind synergistically to the opposite faces of the DNA duplex(72). The adjacent putative 

TFBSs with a small portion of overlaps might be binding sites of different TFs for competitive 

binding, while those with a large portion of overlaps might be parts of a long TFBS, which our 

algorithm was unable to merge to form a long one. Second, TFBS islands comprise less than half 

(37.4% for human and 43.1% for mice) of CRMs in length, while the remaining majority positions 

in the CRMs are inter-TFBS spacers. Finally, inter-TFBS spacers within CRMs are under almost 

the same evolutionary constraints as are TFBS islands, suggesting that the same portion of 

positions in the spacers might also be functional. Although it is likely that some inter-TFBS spacers 

contain unknown TFBSs, most positions in the spacers do not appear to be TFBSs, since we find 

that the spacers are much less likely to overlap DHS cores than are TFBS islands, implying that a 

larger percentage of the spacers might be wrapped around histones than might TFBS islands. 

Moreover, we found that inter-TFBS spacers are much less likely to overlap TF footprints than 

TFBS islands, thus, a smaller percentage of the spacers might be bounded by TFBSs. While 

interactions between TFBSs and cognate TFs are critical in transcriptional regulation, adjacent 

spacers of TFBSs might have other functional roles other than direct TF binding. Indeed, it has 

been shown that inter-TFBS spacers could influence the conformation of adjacent TFBSs(54) and 

the interactions between adjacent TFBSs(55) (i.e. the regulatory grammar). That inter-TFBSs are 

as conserved as TFBSs suggests that the functions of inter-TFBS spacers, if any, depend on their 

sequences. Although many details of the functions of inter-TFBS spacers in CRMs remain to be 

elucidated, acknowledging their potential functions in transcriptional regulation beyond direct TF 

binding expands our understanding of the intricate transcriptional regulatory landscapes encoded 
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in genomes. 

2.4 Conclusion 

By analyzing our recently predicted unprecedentedly complete maps of CRMs and constituent 

TFBSs in the human and mouse genomes, we reveal common rules for the landscape and 

organization of CRMs on the human and mouse chromosomes as well as for the architecture inside 

of CRMs in terms of their constituent TFBSs and inter-TFBSs spacers. These findings will 

significantly advance the understanding of regulatory genomes and have a profound impact on the 

field of gene transcriptional regulation research. 

2.5 Materials and Methods 

2.5.1 The datasets 

For the analysis in the human genome, we obtained 1,225,115 predicted CRMs and 124,923,659 

constituent TFBSs at p-value = 0.05 and 1,755,876 predicted non-CRMs from our PCRM 

database(73). We downloaded the Hi-C interaction matrix in the K562 cell line from the ENCODE 

portal(74) with the accession ID ENCFF080DPJ. We downloaded 1,002 experimentally verified 

enhancers from the VISTA Enhancer database(60), as well as 32,684 enhancers and 184,326 

promoters from the FANTOM project website(58, 59). We downloaded the precomputed 

20,971,9847 LINSIGHT entries from the CshlSiepelLab GitHub repository at 

https://github.com/CshlSiepelLab/LINSIGHT?tab=readme-ov-filePrior. We obtained 3,591,899 

unique DHS cores from ENCODE portal(74) with the accession ID ENCSR857UZV. We 

downloaded 4,465,728 TF footprints from https://www.vierstra.org/resources/dgf#appendix-file-

format-descriptions.  

For the analysis in the mouse genome, we obtained 798,257 predicted CRMs and 

164,866,277 constituent TFBSs at p-value = 0.05 and 1,270,937 non-CRMs from our PCRM 
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database(21, 73). We downloaded the Hi-C interaction matrix in the CH12F3 cell line from 

ENCODE portal(74) with the accession ID ENCFF909ODS. We downloaded 702 experimentally 

verified enhancers from the VISTA Enhancer database(60), as well as 49,797 enhancers and 

164,421 promoters from the FANTOM project website(58, 59). We downloaded a total of 

14,532,289 DHSs from ENCODE portal(74) (Supplementary Table S2-7).  

2.5.2 Generation of Manhattan plots 

We assume that the total lengths and numbers of CRMs and genes within sliding windows in a 

genome are evenly distributed — our null hypotheses. To test that all these random variables are 

unevenly distributed in a genome — our alternative hypotheses, we computed 𝑧 -values for each 

sliding window:  𝑧 = &'(
)

, where 𝑥 denotes the total length or number of CRMs or genes within 

the window, 𝜇 the mean and 𝜎 the standard deviation of the length or number of CRMs or genes 

in the windows in the genome assuming that our null hypotheses are true. Under the null 

hypotheses, the total lengths and numbers of CRMs and genes within sliding windows follow 

binomial distributions. Therefore, the means and standard deviations of the total lengths or 

numbers of CRMs and genes within sliding windows can be computed as 𝜇 = 𝑛𝑝  and 𝜎 =

1𝑛𝑝(1 − 𝑝). For the total lengths of CRMs and genes in windows, 𝑛 is the window size in bp, 𝑝 

the coverage defined as the total length of CRMs or genes in the genome divided by the genome 

size, which is 0.47 or 0.58, respectively in the human genome, and 0.55 or 0.45, respectively in 

the mouse genome. For the total number of CRMs or genes in windows, 𝑛 is the number of CRMs 

or genes that can fit into a window, estimated as the size of the window divided by the mean length 

of CRMs or genes, i.e., 𝑛 = *+,-./	1+2%
3%4,	5%,678

. Then, 𝑝 = 9
:%,.$%	1+2%

×𝑀𝑒𝑎𝑛	𝐿𝑒𝑛𝑔𝑡ℎ , where N 

denotes the number of CRMs (1,225,115 and 798,257 for the human and mouse genome, 

respectively) or genes (63,313 and 55,364 for the human and mouse genome, respectively). The 
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size of the human and mouse genome is 3,088,269,832 and 2,725,521,370 bp, respectively. 

Subsequently, we generated Manhattan plots of these z-scores using the “qqman” library within R 

version 4.2.2. We defined thresholds of z>|5.2| for window size 1M bp and z>|4.7| for window size 

10M bp as cutoffs for identifying CRM and gene islands and deserts for humans, corresponding 

to a p-value 0.01 to reject the null hypotheses after Bonferroni correction(75) for multiple 

hypothesis tests. The cutoffs for mice are z>|5.1| for window size 1M bp and z>|4.7| for window 

size 10M bp for identifying CRM and gene islands and deserts, corresponding to a p-value 0.01 to 

reject the null hypotheses after Bonferroni correction(75) for multiple hypothesis tests. 

2.5.3 Generation of TADs 

To generate TADs in the human genomes, we applied the Arrowhead algorithm of the Juicer 

tools(76) with the Knight-Ruiz Matrix Balancing (KR)(77) normalization method on the Hi-C 

interaction matrix in the K562 cell line at different resolutions: 5K bp, 10K bp, 25K bp, 50K bp 

and 100K bp. We then merged overlapping TADs into larger domains, resulting in a total of 944 

merged TADs. To generate TADs in the mouse genome, we followed a similar procedure and 

generated 1,018 TADs using the Hi-C interaction matrix in the CH12F3 cell line. However, due 

to the unavailability of KR normalization for the Hi-C data in the CH12F3 cell line, we opted for 

the Vanilla-Coverage (VC) normalization method(78) instead. 

2.5.4 Middle and nearer end distance between a CRM and its nearest TSS 

2.5.4.1 The middle distance: The middle distance between a CRM and its nearest TSS is defined 

as 𝑑$ =	𝑐$	(𝐶𝑅𝑀) − 𝑐(𝑇𝑆𝑆),	 if the nearest TSS is in the forward orientation, or  𝑑$ =

	𝑐	(𝑇𝑆𝑆) − 𝑐$(𝐶𝑅𝑀),	 if the nearest TSS is in the reverse orientation; where 𝑐(𝑇𝑆𝑆)  and 

𝑐$	(𝐶𝑅𝑀) are the coordinates of the nearest TSS and the middle point of the CRM, respectively. 
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2.5.4.2 The nearer end distance: The nearer end distance between a CRM and its nearest TSS 

(when they do not overlap) is defined as d; =	 c;	(CRM) − c(TSS),	if the nearest TSS is in the 

forward orientation, or  d; = 	c	(TSS) − c;(CRM),	if the nearest TSS is in the reverse orientation; 

where c(TSS) is the coordinate of the nearest TSS, and c;(CRM) is the coordinate of the nearer 

end of the CRM to the TSS. 

2.5.5 Distance between adjacent TFBSs or TFBS islands in a CRM 

For each CRM, we first arranged the constituent TFBSs or their TFBS islands by sorting them 

according to their starting coordinates. We then computed the distance 𝑑 between two adjacent 

TFBSs or TFBS islands by subtracting the end coordinate of the current TFBS or TFBS island 

from the starting coordinate of the downstream TFBS or TFBS island. If 𝑑 < 0,  then the two 

adjacent sequences overlap each other by 𝑑  bp. It is evident that for two adjacent TFBS islands 

𝑑 > 0, as they do not overlap each other. 

2.5.6 LINSIGHT scores  

As a LINSIGHT entry may cover multiple nucleotide positions, we assigned each of the positions 

within the loci the pre-computed LINSIGHT score. Since these entries may overlap, some 

positions may have multiple LINSIGHT scores. We calculated the average score for each position 

as its final LINSIGHT score if the position has more than one assigned score. 

2.5.7 Overlaps between DHSs or TF footprints and TFBS islands, inter-TFBS spacers, and 
non-CRMs 

For the analysis in the human genome, we obtained overlaps between DHS cores or TF footprints 

and TFBS islands, inter-TFBS spacers, and non-CRMs using bedtools2 version 2.29.0. However, 

for the analysis in the mouse genome, due to unavailability of DHS core or TF footprint data, we 

only aggregated the original DHSs from various cell/tissue types, and then merged these regions 
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to a set of non-redundant DHSs. We then obtained overlaps between the non-redundant DHSs and 

TFBS islands, inter-TFBS spacers, and non-CRMs using bedtools2 version 2.29.0. 

2.6 Availability of data and materials 

The datasets supporting the conclusions of this chapter are available at https://osf.io/7t8nm/ and 

are included within the chapter and its supplementary tables at 

https://github.com/sisyyuan/CRM_Dissertation. 
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Chapter 3  
SIMULTANEOUS PREDICTION OF FUNCTIONAL STATES AND TYPES OF CRMs 

REVEALS THEIR PREVALENT DUAL USES AS ENHANCERS AND SILENCERS 

3.1 Introduction 

CRMs have long been characterized by using low throughput laborious molecular biology 

methods. However, recent advancements in a plethora of omics techniques have revolutionized 

our capacity to investigate CRMs. These techniques encompass: 1) ChIP-seq for identifying 

TFBSs(79-81) and regions modified by histone marks(26) in the genome; 2) DNase-seq(22-24) 

and ATAC-seq(25) for probing CA of genome regions; 3) Hi-C technology for measuring physical 

proximity between genomic loci in the nucleus(78, 82); and 4) RNA-seq for quantifying 

transcriptomes in cells/tissues(83). The wide adaptations of these techniques have resulted in vast 

volumes of data, originating from large consortia as well as individual laboratories worldwide(84-

91). This wealth of data presents an unparalleled opportunity to reliably predict the location of 

CRMs in genomes, along with their functional states (on/active or off/inactive), types 

(predominantly enhancers or silencers), and target genes across diverse cell/tissue types(92, 93). 

Most existing methods attempted to simultaneously predict locations and functional states of 

enhancers in a given cell/tissue type by integrating multiple epigenetic marks including CA and 

various histone modifications(94-98). Although conceptually appealing, these one-step methods 

are limited for their high FDRs(19, 27-32). This is due to the fact that the presence of CA and 

histone marks, while informative, is not exclusively indicative for enhancers and their functional 

states, as these marks are also present in non-CRM sequences(29, 30, 33).  

On the other hand, it has been shown that TF binding data are more informative for 

identifying loci of CRMs than CA and histone modification data(29-33). Furthermore, it has been 

established that accurate anchoring of a CRM’s location through the binding of key TFs renders 
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epigenetic marks on the CRM a reliable predictor of its functional states(29-33). In light of these 

findings, we have recently introduced a two-step approach to predict CRMs and their functional 

states sequentially(19, 20). Firstly, we predict an accurate and more complete map of CRMs in the 

genome using TF binding data. Secondly, we predict the functional states of all the predicted 

CRMs in any given cell/tissue type of the organism using few epigenetic marks. For the first step, 

we have developed the dePCRM2 algorithm(19), which predicts loci of CRMs by integrating 

putative TF binding motifs identified in a large number of diverse TF ChIP-seq datasets using our 

ultra-fast motif finder ProSampler(99, 100). dePCRM2 is able to effectively segregate genomic 

regions covered by TF binding peaks into two exclusive sets: the CRM candidates and the non-

CRMs(19). While dePCRM2 can predict a CRM’s functional state in a specific cell/tissue type 

based on its overlaps with TF binding peaks available in the very cell/tissue type, this predictive 

capacity is often limited due to the scarcity of available TF binding datasets in most cell/tissue 

types. Therefore, similar to the cCREs identified recently by the ENCODE project(101), our 

predicted CRMs are generally cell/tissue type agnostic. For the second step, we have developed a 

machine learning model that can accurately predict the functional states of all the predicted CRMs 

as enhancers in diverse human and mouse cell/tissue types using only four epigenetic marks as 

features(20). This two-step approach significantly surpasses existing one-step methods in terms of 

sensitivity and specificity for predicting active enhancers in various cell/tissue types(20). 

However, recent investigations have found that silencers are more prevalent than initially 

believed(102-104), and that an active enhancer in a cellular context could be an active silencer in 

another cellular context(9, 104). Thus, it is interesting to also predict functional states of CRMs as 

silencers. Indeed, a few diverse computational tools have been developed to predict active silencers 

in specific cell/tissue types(103). However, as in the case of enhancers, these methods attempted 
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to simultaneously predict the locations and functional states of silencers using epigenetic marks 

on candidate DNA segments(105-107). For example, a correlation-based method correlated 

putative active silencer mark (e.g., H3K27me3 and DHS) signals with the expression levels of 

neighboring genes across different cell/tissue types(105). A support vector machine (SVM) model 

was then trained using sequence features as well as features derived from the aforementioned 

correlation-based method to predict silencers(105). Additionally, a simple subtractive approach 

(SSA) excluded genome regions with enhancer chromatin signatures to be putative silencers and 

a gapped k-mer SVM (gkmSVM) was trained on massively parallel reporter assay (MPRA) data 

and sequence patterns to predict silencers(107). However, the accuracy of these one-step methods 

is quite low (see later), due to similar reasons for predicting enhancers and their functional states 

using one-step methods. 

Building upon the success of our two-step strategy in predicting enhancers and their 

functional states in cell/tissue types, we now extend our machine learning model to simultaneously 

predict the functional types (enhancer or silencer) and states (on/active or off/inactive) in various 

cell/tissue types in a genome-wide fashion. Our methods achieve an area under the receiver 

operator characteristic curve (AUROC) > 0.96 and show superior performance to state-of-the-art 

methods. Using the tools, we predicted functional types and states of 1.2M CRMs in 107 human 

cell/tissue types. Our results indicate that silencers and dual functional CRMs are more prevalent 

than previously thought and that various types of CRMs display distinct properties in terms of their 

lengths and TFBS densities, reflecting their functional complexity. 

3.2 Result 

3.2.1 Functional states of CRMs as silencers and enhancers can be accurately predicted using 
three epigenetic marks 
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We have previously developed an LR model to predict functional states in a cell/tissue type of our 

1.2 M predicted CRMs in the human genome(19) using signals of few epigenetic marks on the 

CRMs as  features that are more or less associated with active enhancers. We employed a similar 

LR model (Figure 3-1A) to predict functional states of the CRMs as silencers in a cell/tissue type 

using three epigenetic marks (CA, H3K9me3 and H3K27me3) on the CRMs as features. We 

pooled positive and negative silencer sets compiled in each of 40 of the 67 human cell/tissue types 

with the required data available (Materials and Methods), resulting in a positive set containing a 

total 256,766 positive silencers and a negative set with the same number of negative control 

sequences. As shown in the UpSet plot in Figure 3-1B, H3K27me3 peaks pooled from the 40 

cell/tissue types have the highest coverage of the human genome, followed by CA and H3K9me3 

peaks, and around 100 Mb of the genome are covered by the peaks of all the three marks. To 

evaluate the ability of these three marks to predict the functional states of the CRMs as silencers 

in cell/tissue types, we trained and evaluated the seven models using all the seven possible 

combinations of one, two and three of the three marks as features by 10-fold cross validation 

(Figure 3-1B). Of the three models using only one mark, model 2 using CA had the highest median 

AUROC of 0.948, followed by model 1 using H3K27me3 (median AUROC=0.826) and model 3 

using H3K9me3 (median AUROC=0.685). Thus, CA alone has quite high prediction accuracy, 

while H3K27me3 alone and particularly, H3K9me3 alone have only intermediate prediction 

accuracy. Of the three models using two marks, model 4 using CA and H3K27me3 

(CA&H3K27me3) obtained the highest median AUROC of 0.960, followed by model 6 

(CA&H3K9me3, median AUROC=0.951) and model 5 (H3K9me3&H3K27me3, median 

AUROC= 0.919). Model 7 using all the three marks (CA&H3K9me3&H3K27me3) achieved the 

highest median AUROC of 0.962 (Figures 3-1B, 3-1C), which is significantly higher than the other 



 44 

six models (p value < 0.01, Mann-Whitney U test). Consistently, CA in model 7 had a much higher 

weight (102.7) than H3K27me3 (16.5) and H3K9me3 (10.9) (Figure 3-1D). We thus selected 

model 7 as our silencer functional state predictor in the subsequent predictions. The numbers of 

predicted active silencers in these 40 cell/tissue types were greater than those of positive silencers 

compiled in them (Figure 3-1E), suggesting that the positive silencers used for training and testing 

consist of only a small portion of active silencers in these cell/tissue types.  
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Figure 3-1. The epigenetic marks can accurately predict the functional states of putative silencers.  
A. A cartoon illustrating the workflow of our LR model using CA, H3K9me3 and H3K27me3 
signals as the features. B. The UpSet plot showing intersection sizes (Gb) of mark peaks (upper 
bar graph) and the boxplot of AUROCs of the seven LR models using all possible combinations 
of the three epigenetic marks with 10-fold cross validation (lower boxplots). **: p value < 0.01, 
Mann-Whitney U test. C. ROC curves of model 7 using all the three marks. The red curve is the 
median ROC curve from the results of 10-fold cross validation. The AUROC curve of each fold is 
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invisible since these curves have almost the same shape as the median curve. D. Bar graph of the 
weights of CA, H3K9me3 and H3K27me3 in model 7. E. Bar graph of the numbers of positive 
and active silencers compiled and predicted, respectively, in each of the 40 cell/tissue types. 

Although we have successfully used four epigenetic marks (CA, H3K4me1, H3K4me3 and 

H3K27ac) as features to predict functional states of our CRMs as enhancers(20), in this study we 

only used three of them (CA, H3K4me1 and H3K27ac) in our LR model. We excluded H3K4me3, 

since it is more likely associated with promoters than to enhancers(108, 109). We pooled positive 

and negative sets compiled in each of the 67 human cell/tissue types used in our previous study(20) 

(Materials and Methods), resulting in a positive set containing a total 1,415,796 positive enhancers 

and a negative set with the same number of negative control sequences. We trained and evaluated 

the seven LR models using all the seven possible combinations of the three epigenetic marks as 

features by 10-fold cross validation. Of the three models using only one mark, model 4 using CA 

had the highest median AUROC 0.913, followed by model 1 using H3K4me1 (median 

AUROC=0.897) and model 2 using H3K27ac (median AUROC=0.866). Of the three models using 

two marks, model 3 using H3K4me1 and H3K27ac (H3K4me1&H3K27ac) obtained the highest 

median AUROC of 0.971, followed by model 5 (CA&H3K4me1, median AUROC=0.963) and 

model 6 (CA&H3K27ac, median AUROC=0.952). Model 7 using all of the three marks achieved 

the highest median AUROC of 0.977 (Figures 3-2A and 3-2B), which is significantly higher than 

the other six models (p value < 0.01, Mann-Whitney U test). Consistently, CA has a higher weight 

(92.0) in the model than H3K4me1 (30.0) and H3K27ac (17.1) (Figure 3-2C). The median 

AUROC value achieved by model 7 (0.977) is comparable with our previous model (0.986) using 

four epigenetic marks, which substantially outperforms five existing state-of-the-art methods(20). 

We thus selected model 7 as our enhancer functional state predictor (enhancer predictor) for the 

subsequent predictions. As expected, the numbers of predicted active enhancers in 65 of the 67 

cell/tissue types are greater than those of positive enhancers compiled in them (Figure 3-2D), 



 47 

suggesting that the positive enhancers used for training and testing consist of only a small portion 

of active enhancers in most of the cell/tissue types. However, both the positive sets and predicted 

active enhancers in each of these cell/tissue type are smaller than those compiled and predicted in 

our earlier study(20), due to the more stringent criterion used to compile the positive sets to ensure 

the CRMs in the positive sets are true active enhancers.  

In summary, CA alone is a more effective predictor for both active silencers (Figure 3-1B) 

and active enhancers (Figure 3-2A) than the other two marks (H3K27me3 and H3K9me3 for 

silencers and H3K4me1 and H3K27ac for enhancers) alone. Using additional two histone marks 

could moderately improve the enhancer prediction accuracy (mean AUROC 0.977 vs 0.913), but 

only slightly increase the silencer prediction accuracy (mean AUROC 0.962 vs 0.948), over that 

obtained by using CA alone. In both predictors CA has overwhelmingly higher weights than the 

other two marks, making the other two marks weaker predictors. 
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Figure 3-2. The epigenetic marks can accurately predict the functional states of enhancers. A. 
UpSet plot showing intersection sizes (Gb) of the three types of epigenetic mark peaks (upper bar 
graph) and the boxplot of AUROCs of the seven LR models using all possible combination of the 
three epigenetic marks as features with 10-fold cross validation (lower boxplots). **: p value < 
0.01, Mann-Whitney U test. B. ROC curves of model 7 using CA, H3K4me1 and H3K27ac as 
features. The red curve is the median ROC curve from the results of 10-fold cross validation. The 
AUROC curve of each fold is invisible since these curves have almost the same shapes as the 
median curve. C. Bar plots of the weights of CA, H3K27ac and H3K4me1 in model 7. D. Bar plots 
of numbers of positive and active enhancers compiled and predicted, respectively, in each of the 
67 cell/tissue types (Materials and Methods). 
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respectively, with the required epigenetic data available from ENCODE (74) (Figure 3-3A). This 

yielded highly varying numbers of active enhancers in the 105 cell/tissue types ranging from 

31,947 (2.7% of the 1.2 M CRMs) in tibial nerve cells to 168,471 (14.3%) in motor neuron cells, 

with a median of 95,496 (8.1%) in a cell/tissue type (Supplementary Table S3-4). We predicted a 

total of 10,068,782 active enhancers in the 105 cell/tissue types. After removing the redundancy, 

we ended up with a total of 695,507 (59.0%) non-redundant active enhancers from the 105 cell 

types. Moreover, we also predicted highly varying numbers of active silencers in the 58 cell/tissue 

types ranging from 27,843 (2.4%) in tibial nerve cells to 197,133 (16.7%) in HepG2 cells, with a 

median of 86,668 (7.4%) in a cell/tissue (Supplementary Table S3-5). We predicted a total of 

5,096,269 active silencers in the 58 cell/tissue types. After removing the redundancy, we ended up 

with a total of 677,840 (57.5%) non-redundant active silencers from the 58 cell types. Thus, we 

predicted a slightly higher median number of active enhancers than active silencers (95,496 vs 

86,668). As expected, most (78.0%~97.2%) of the CRMs were not active either as enhancers or as 

silencers in a cell/tissue type (Supplementary Table S3-6). In total, we predicted the functional 

types and states for 868,944 (73.8%) of the 1.2M CRMs as active enhancers or active silencers in 

at least one of the cell/tissue types. 

3.2.3 Predicted functional types and states of CRMs are reflected by their epigenetic mark 
signals 

Notably, in each of the 49 cell/tissue types with only enhancer marks (CA, H3K4me1 and 

H3K27ac) data available (Materials and Methods), we were only able to predict each CRM either 

as an active enhancer or as an inactive enhancer (Figure 3-3A, Supplementary Table S3-7). For 

example, in the A549 cells, we predicted 128,601 (10.9%) CRMs to be active enhancers and the 

remaining 89.1% to be inactive enhancers (Supplementary Table S3-7). The predictions in each of 

these 49 cell/tissue types are reflected by the signal patterns of all the three epigenetic marks on 
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the CRMs. Figure 3-3B shows the case in the A549 cells from donor ENCDO000AAZ as an 

example. Specifically, CRMs that were predicted to be active enhancers in a cell/tissue type such 

as the A549 cells were enriched in the active enhancer marks (CA, H3K4me1 and H3K27ac), 

while those that were not, were depleted of these signals (Figure 3-3B). Similarly, in each of the 

two cell/tissue types with only putative active silencer marks (CA, H3K27me3 and H3K9me3) 

data available (Materials and Methods), we were only able to predict each CRM either as an active 

silencer or as an inactive silencer (Figure 3-3A, Supplementary Table S3-8). For example, in the 

heart left ventricle cells from donor ENCDO039RUH, we predicted 108,302 (9.2%) CRMs to be 

active silencers and the remaining 90.8% to be inactive silencers (Supplementary Table S3-8). The 

predictions in these two cell/tissue types also are reflected by the signal patterns of all the three 

epigenetic marks on the CRMs. Figure 3-3C shows the case for the heart left ventricle cells. 

Specifically, CRMs that were predicted to function as active silencers in a cell/tissue type such as 

heart left ventricle cells were enriched in putative active silencer marks (CA, H3K27me3 and 

H3K9me3), while those that were not, were depleted of the signals (Figure 3-3C).  
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Figure 3-3. Prediction of functional types and states of CRMs in the 107 cell/tissue types. A. 
Prediction of functional types and states of CRMs in various cell/tissue types with different 
available data and categorization of CRMs based on predictions in the 56 cell/tissue types with 
both active enhancer and silencer marks data available. B. Heatmaps of signals of three active 
enhancer marks in a 6 kb window centering on the middle points of the predicted active enhancers 
and inactive enhancers in A549 cells from donor ENCDO000AAZ. C. Heatmaps of signals of 
three putative active silencer marks in a 6 kb window centering on the middle points of the 
predicted active silencers and inactive silencers in the heart left ventricle cells from donor 
ENCDO039RUH. The heatmaps show the mean signals of the epigenetic marks in each 100 bp 
sliding window along each sequence; the line plot shows the mean signal of each window at a 
position in all the sequences in the set (Materials and Methods). The color code for the types in 
the line plot above each column is the same as the left legends of the heatmaps.   
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Furthermore, in each of the 56 cell/tissue types with both enhancer and putative silencer 

marks data available (Materials and Methods), we have four possible predictions about the 

functional types and states of each of the 1.2M CRM (Figure 3-3A): i) both the enhancer predictor 

and the silencer predictor predict it to be active (ActiveEnhancer-ActiveSilencer); ii) the enhancer 

predictor predicts it to be active, but the silencer predictor predicts it to be inactive 

(ActiveEnhancer-InactiveSilencer); iii) the enhancer predictor predicts it to be inactive, but the 

silencer predictor predicts it to be active (InactiveEnhancer-ActiveSilencer); and iv) both the 

enhancer predictor and the silencer predictor predict it to be inactive (InactiveEnhancer-

InactiveSilencer). The numbers of predicted CRMs in each of the categories are shown in Figure 

3-4A (Supplementary Table S3-9). For example, in the MCF-7 cells from donor ENCDO000AAE, 

we predicted 69,327 (5.9%) CRMs to be “ActiveEnhancer-ActiveSilencer”, 45,278 (3.8%) to be 

“ActiveEnhancer-InactiveSilencer”, 45,862 (3.9%) to be “InactiveEnhancer-ActiveSilencer”, and 

the remaining 1.02M (86.4%) to be “InactiveEnhancer-InactiveSilencer” (Figure 3-4A, 

Supplementary Table S3-9). The predictions in each cell/tissue type also are reflected by the 

relevant epigenetic marks on the CRMs. Figures 3-4B and 3-4C show the cases in the MCF-7 cells 

as examples.  Specifically, “ActiveEnhancer-ActiveSilencer” CRMs were enriched in both the 

marks of active enhancers (CA, H3K4me1 and H3K27ac) and marks of putative active silencers 

(CA, H3K9me3 and H3K27me3) (Figure 3-4B). “ActiveEnhancer-InactiveSilencer” CRMs were 

enriched in marks of active enhancers H3K4me1 and H3K27ac but depleted of marks of putative 

active silencer H3K9me3 and H3K27me3 (Figure 3-4B). Interestingly, the CA signals on these 

“ActiveEnhancer-InactiveSilencer” CRMs were weak in the middle but strong at the two flanking 

regions, while the H3K4me1 signals were narrowly peaked at the middle, suggesting that the 

middle of these CRMs might not be nucleosome free, and therefore could not be cut by transposase. 
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“InactiveEnhancer-ActiveSilencer” CRMs were enriched in putative active silencer marks but 

depleted of active enhancer marks H3K4me1 and H3K27ac (Figure 3-4C). “InactiveEnhancer-

InactiveSilencer” CRMs had weak signals of all the five epigenetic marks (Figure 3-4C). In 

summary, by predicting the functional states of the 1.2M CRMs as enhancers or silencers in a 

cell/tissue type, we are able to simultaneously predict the functional states and types of the CRMs 

using only five epigenetic marks data in the very cell/tissue type. 

 
Figure 3-4. Four possible combinations of predictions of the functional types and states of the 
CRMs in the 56 cell/tissue types with both active enhancer and putative active silencer marks data 
available. A. Bar plots of the numbers of the CRMs with the four possible combinations of 
predicted functional types and states in each of the 56 cell/tissue types. B. Heatmaps of signals of 
the five epigenetic marks in a 6 kb window centering on the middle of the predicted 
ActiveEnhancer-ActiveSilencer and ActiveEnhancer-InactiveSilencer CRMs in MCF-7 cells. C. 
Heatmaps of signals of the five marks in a 6 kb window centering on the middle of the predicted 
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InactiveEnhancer-ActiveSilencer and InactiveEnhancer-InactiveSilencer CRMs in MCF-7 cells. 
The heatmaps show the mean signals of the epigenetic marks in each 100 bp sliding window of 
each sequence; the line plot shows the mean signal of each window at a position of all the 
sequences in the set (Materials and Methods). The color code for the types in the line plot above 
each column is the same for the heatmaps.   

3.2.4 At least 10% of the CRMs are dual functional 

We predicted a total of 793,140 (67.3%) CRMs to be active as enhancers and/or silencers in at 

least one of the 56 cell/tissue types (Figure 3-3A, Supplementary Table S3-9) with both active 

enhancer and putative silencer marks data available. These predictions provide us an opportunity 

to investigate the predominant roles of the CRMs used as enhancers, silencers, or both in these 

cell/tissue types. Of these 793,140 CRMs, 117,646 (14.8%) were predicted to be active only as 

enhancers across all the cell/tissue types (Enhancer-predominant), 227,211 (28.6%) were predicted 

to be active only as silencers across the cell/tissue types (Silencer-predominant), and 448,283 

(56.6%) were predicted to be active both as enhancers and silencers in the 56 cell/tissue types 

(Dual functional CRMs) (Figure 3-3A). Of the 448,283 dual functional CRMs, 408,451 (91.1%) 

were predicted to be both as active enhancers and active silencers in the same cell/tissue types 

(denoted as type I dual functional CRMs), while the remaining 39,832 (8.9%) were predicted to 

be as active enhancers in some cell/tissue types and as active silencers in other cell/tissue types 

(denoted as type II functional CRMs). As we indicated earlier, CA signals have much higher 

weights than the two other markers in both our enhancer (Figure 3-2C) and silencer (Figure 3-1D) 

predictors, thus a CRM with a very strong CA signal but relatively weak signals of the two other 

marks can be predicted both as active enhancer and as active silencer in the same cell/tissue type. 

To reduce possible false positives, for type I dual functional CRMs, we only consider those that 

have at least one active enhancer mark and at least one putative active silencer mark for further 

analysis, yielding a total of 44,153 (10.8%) more stringent type I dual functional CRMs, while the 

remaining 89.2% were categorized as unclassified CRMs (Figure 3-3A). Our subsequent analyses 
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will mainly focus on a total of 83,985 (10.6%) dual functional CRMs (44,153 type I and 39,832 

type II) (Figure 3-3A).  

3.2.5 Dual functional CRMs can switch their roles in different cellular contexts 

It has been shown in previous reports that CRMs may switch their roles between active enhancers 

and active silencers in different cellular contexts(9, 10, 104). Consistently, our type II dual 

functional CRMs functioned as active enhancers in some cell/tissue types while as active silencers 

in other cell/tissue types. On the other hand, all of the 44,153 type I dual functional CRMs could 

function both as active enhancers and as active silencers in at least one of the 56 cell/tissue types, 

most (89.1%) of which could also only function as active enhancers or active silencers in at least 

one of the 56 cell/tissue types. Moreover, more than half (56%) of the type I dual functional CRMs 

have dual functions in the same cell/tissue type in only one cell/tissue type, and only a small portion 

(3.8%) of them did so in more than half (28) of the 56 cell/tissue types (Figure 3-5A). Thus, most 

type I dual functional CRMs also were able to switch their roles in different cell/tissue types. For 

example, the CRM at chr7:1,428,212-1,430,677 was dual functional in spleen (ENCDO221IPH) 

and HepG2 (ENCDO000AAC) cells, but only functioned as an active enhancer in Panc1 

(ENCDO000ABB) cells, and only functioned as an active silencer in heart left ventricle 

(ENCDO477WED), SK-N-SH (ENCDO000ABD) and breast epithelium (ENCDO271OUW) 

cells, as indicated by the patterns of epigenetic marks on the CRM in relevant cell/tissue types. 

More specifically, as shown in Figure 3-5B as examples, in spleen cells the CRM was heavily 

marked by both active enhancer marks (H3K4me1) and active silencer marks (H3K27me3) in 

addition to CA, while in Panc1 cells it was heavily marked by the active enhancer marks 

(H3K4me1 and H3K27ac), but depleted of active silencer marks, and in heart left ventricle cells it 
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was heavily marked by the active silencer marks (H3K27me3), but with weak active enhancer 

marks.  

 

Figure 3-5. Analysis of different types of active CRMs in the 56 cell/tissue types. A. Histogram of 
percentages of type I dual functional CRMs that are active both as enhancers and silencers in the 
indicated number of cell/tissue types. The inset plot is cumulative percentage of type I dual 
functional CRM that are active both as enhancers and silencers in at least the indicated numbers 
of cell/tissue types. B. Epigenetic marks on a type I dual functional CRM at chr7:1,428,212-
1,430,677 in spleen cells where it functions both as an active enhancer and as an active silencer 
(upper panel); in Panc1 where it functions only as an active enhancer (middle panel); and in heart 
left ventricle cells where it functions only as an active silencer (lower panel). C. Histogram of 
percentages of type I dual functional CRMs with the indicated overlapping ratio between their 
enhancer mark regions and silencer mark regions. The inset plot is the cumulative percentage of 
overlapping ratio less than the indicated numbers. D. Boxplots of the lengths of the four types of 
CRMs and unclassified CRMs. E. Boxplots of the density of TFBSs (number of TFBSs per 100 
bp) in the four types of CRMs and unclassified CRMs. 

3.2.6 Enhancer and silencer mark peaks on type I dual functional CRMs overlap each other 

As we predicted CRMs by stitching adjacent TFBSs(19), it is conceivable that type I dual-

functional CRMs may be the result of simply merging distinct enhancers and silencers. To test this 

possibility, we assessed the extent to which active enhancer mark peaks and putative active silencer 

mark peaks along type I dual functional CRMs overlap each other (Materials and Methods). As 

shown in Figure 3-5C, of type I dual functional CRMs, 55% have their active enhancer and silencer 
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mark peaks completely overlapping each other (overlapping ratio = 1), and more than 78% have 

an overlapping ratio larger than 0.5, indicating that type I dual functional CRMs are unlikely 

formed by incorrectly stitching adjacent enhancers and silencers. For example, active enhancer 

and silencer marks interdigitate and overlap one another along the CRM chr7:1,428,212-1,430,677 

in the spleen cells where it functions both as an active enhancer and as an active silencer (Figure 

3-5B). These results indicate that the dual functions of a CRM might be achieved by the 

collaboration between different parts of the CRM, but not by two non-overlapping parts each 

conferring the CRM a different role. It is likely that such collaboration renders the dual functional 

CRMs to be longer than enhancer-predominant and silencer-predominant CRMs. 

3.2.7 Length and TFBS density of a CRM reflect the complexity of its functional type 

To see how the length of a CRM is related to its predicted functional type, we plotted the 

distributions of the lengths of the different types of predicted CRMs.  Interestingly, as shown in 

Figure 3-5D, different types of CRMs show distinct length distributions. Specifically, type I dual 

functional CRMs have the longest median length (2,577 bp), followed by type II dual functional 

CRMs (678 bp), silencer-predominant CRMs (558 bp), and enhancer-predominant CRMs (454 bp). 

Unclassified CRMs are shorter than type I dual functional CRMs, yet longer than the other three 

types, suggesting that they might be a blend of type I dual functional CRMs and other three types 

of CRMs. The longer lengths of dual functional CRMs might be related to their more complex 

functions. Moreover, it has been demonstrated that enhancers and silencers in mouse retinal 

photoreceptor cells (cones and rods) possess different information content in terms of TFBS 

composition(112). In light of this, we analyzed TFBS densities (number of TFBSs in 100 pb length, 

Materials and Methods) of enhancer-predominant CRMs, silencer-predominant CRMs, type I and 

type II dual functional CRMs, and unclassified CRMs. As shown in Figure 3-5E, type I dual 
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functional CRMs have the highest TFBS densities, followed by type II dual functional CRMs, 

enhancer-predominant CRMs and silencer-predominant CRMs. Likewise, unclassified CRMs 

exhibit a lower TFBS density than type I dual functional CRMs, but a higher TFBS density than 

the other three types (Figure 3-5E), suggesting again that unclassified CRMs might be a 

combination of type I dual functional CRMs and other three types of CRMs. 

3.2.8 Type I dual functional CRMs might execute dual functions by regulating different genes 
in the same cell type  

Of the 56 cell/tissue types that we used to predict type I dual functional CRMs (Figure 3-3A), 9 

are cell lines, each nominally contains a single cell type; while the remaining 47 are primary tissues, 

each might contain multiple cell types. Thus, we compared the numbers of type I dual functional 

CRMs that functioned as both active enhancers and active silencers in the cell lines (n=9) with 

those in the primary tissues (n=47). As shown in Figure 3-6A, the numbers of dual active CRMs 

observed in the cell lines were not significantly different (p-value>0.26) from those in the primary 

tissues. This suggests that the dual functions of CRMs may not necessarily be attributed to various 

cell types in a primary tissue, rather, CRMs can be dual functional in the same cell type.  

 To investigate how dual functional CRMs could possibly exert their enhancer and silencer 

functions, we identified genes whose promoters were in close physical proximity to a dual 

functional CRMs from the Hi-C interaction map and compared expression levels of putative target 

genes in different cell/tissue types according to the CRM’s predicted functional states as an 

enhancer or a silencer of the genes. For instance, the Hi-C interaction map shows that CRM 

chr7:1,428,212-1,430,677 is in close physical proximity with the promoters of genes MICALL2, 

INST1, MAFK, and PSMG3 (Figure 3-6B). Figure 3-6C shows the expression levels of these genes 

across diverse cell/tissue types based on the CRM’s functional states as an enhancer for these genes.  

INST1 and PSMG3 had significantly higher expression levels in cell/tissue types where the CRM 
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was active as an enhancer than in cell/tissue types where the CRM was inactive as an enhancer, 

while MICALL2 and MAFK did not. This leads us to conclude that the CRM might function as an 

enhancer for INST1 and PSMG3, but not for MICALL2 and MAFK. Similarly, Figure 3-6D shows 

the expression levels of the four genes across different cell/tissue types based on the CRM’s 

functional states as a silencer for the genes. MICALL2 had significantly lower expression levels in 

cell/tissue types where the CRM was active as a silencer than in cell/tissue types where the CRM 

was inactive as a silencer, while the other three genes did not. We therefore conclude that the CRM 

might function as a silencer for MICALL2, but not for the other three genes. Although the CRM 

interacts with gene MAFK, our result suggests that it may not regulate this gene as either an 

enhancer or a silencer in the cell/tissue types that we examined. 

 
Figure 3-6. Comparison of numbers of type I dual functional CRMs in cell lines and primary 
tissues and an analysis of expression levels of putative target genes of a type I dual functional 
CRM. A. Boxplots of numbers of type I dual functional CRMs predicted in 9 cell lines and 47 
primary tissues. p-value>0.26 (Mann-Whitney U-test). B. A Hi-C interaction map for the region 
of 1,350,000 to 1,60,000 bp on chromosome 7. CRM chr7:1428212-1430677 indicated by the box 
interacts with the promoters of genes MICALL2, INST1, MAFK and PSMG3, highlighted by the 

ch
r7

chr7

1,
30

0 
KB

1,
40

0 
KB

1,
50

0 
KB

1,
60

0 
KB

1,
70

0 
KB

1,300 KB 1,400 KB 1,500 KB 1,600 KB 1,700 KB

1.
4M

1.
5M

1.
6M

Number of Dual Active CRMs

Cell 
Lines

Primary 
Tissues

Ge
ne

 E
xp

re
ss

io
n 

(T
PM

)

MICALL2 INST1 MAFK PSMG3

MICALL2 INST1 MAFK PSMG3

A

B

C

D
Inactive (n=25)
Active (n=33)

CRM

** **

**

p-value > 0.26
n=9

n=47

Inactive (n=96)
Active (n=9)

Scale
chr7:

100 kb hg38

1,400,000 1,450,000 1,500,000 1,550,000 1,600,000
PSMG3

TMEM184A
MAFK

INTS1
MICALL2

Scale
chr7:

100 kb hg38

1,400,000 1,450,000 1,500,000 1,550,000 1,600,000
PSMG3

TMEM184A
MAFK

INTS1
MICALL2

Ge
ne

 E
xp

re
ss

io
n 

(T
PM

)



 60 

circles. C. Boxplots of expression levels of genes MICALL2, INST1, MAFK and PSMG3 across 
different cell/tissue types based on the CRM’s functional states as an enhancer in these cell/tissue 
types. **: p-value <0.01 (Mann-Whitney U-test). D. Boxplots of expression levels of genes 
MICALL2, INST1, MAFK and PSMG3 across different cell/tissue types based on the CRM’s 
functional states as a silencer in these cell/tissue types. **: p-value <0.01 (Mann-Whitney U-test). 

3.2.9 The “validated” silencers from silencerDB may contain false positives 

We have previously shown that our CRM functional state predictor that used four active enhancer 

marks substantially outperformed five state-of-the-art methods(20). As our enhancer predictor 

trained on a more stringent positive set using three active enhancer marks achieved comparable 

AUROC value (0.980) to that of our previous predictor (0.986) in the same dataset, to avoid 

repetition, here we only evaluated the performance of our silencer predictor. To this end, we first 

compared our 677,840 (57.5%) predicted silencers pooled from the 58 cell/tissue types (Figure 3-

3A) with the “validated” silencers from the silencerDB database(113). There were 8,588 

“validated” unique silencers in silencerDB, which were identified by two recent studies using 

MPRA(106) or its variant called repressive ability of silencer elements (ReSE) screen(107). Our 

predicted silencers overlap 4,661 (54.3%) of the “validated” silencers by at least a 1bp, while only 

5,525 (64.3%) of the “validated” silencers overlap 5,434 (0.5%) of our predicted 1.2 M CRMs. To 

see whether the rest 3,063 (35.7%) that do not overlap our CRMs are really functional, we analyzed 

their evolutionary behaviors using the phyloP scores. As shown in Figure 3-7A, like our predicted 

silencers the “validated” silencers that at least partially overlap our CRMs are under strong 

selection as indicated by their broadly distributed phyloP scores(62). By contrast,  the remaining 

“validated” silencers that do not overlap our CRMs are more selectively neutral as indicated by 

their narrowly distributed phyloP scores around 0 (Figure 3-7A)(62). We thus posit that the 

“validated” silencers that do not overlap our CRMs might represent false positives. If we exclude 

these false negative “validated” silencers (35.7%) and only consider the 5,525 (64.3%) of the 

validated silencers that overlap our predicted 1.2M CRMs, then we recall 84.4% (4,661) of them. 
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Thus, our method has achieved 84.4% sensitivity for recalling validated silencers overlapping our 

1.2M CRMs, substantially higher than by chance (0.3%=57.5% x 0.5%).  

3.2.10 Comparison of our predicted silencers with predicted silencers from two existing 
methods 

Next, we compared our 677,840 silencers with the predicted silencers from silencerDB, primarily 

by two previous studies(105, 107). Specifically, Huang et al.(105) predicted a set of silencers by 

correlating putative active silencer epigenetic marks (H3K27me3) signals on DHSs with mRNA 

levels of neighboring genes across 25 different cell/tissue types, and then predicted additional 

silencers using an SVM model trained on the set using a combination of sequence features, 

epigenetic marks and gene expression profiles (CoSVM). Hawkins et al.(107) predicted silencers 

using a gkmSVM model by employing a simple subtractive strategy to obtain uncharacterized 

regulatory elements as potential silencers. After removing the redundancy in different cell/tissue 

types, we ended up with 157,813 and 982,985 non-redundant putative silencers predicted by 

CoSVM and gkmSVM, respectively. 
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Figure 3-7. Comparison of our predicted silencers with the “validated” silencers and predicted 
silencers by CoSVM and gkmSVM. A. Distributions of phyloP scores of “validated” silencers that 
overlap or do not overlap our CRMs, as well as of our silencers. B. Boxplots of lengths of our 
predicted silencers, CoSVM-predicted silencers and gkmSVM-predicted silencers. C. Pie charts 
of CoSVM-predicted silencers (left) and gkmSVM-predicted silencers (right), which overlap our 
silencers, do not overlap our silencer but overlap our CRMs and do not overlap our CRMs. D. 
Distributions of phyloP scores of gkmSVM-predicted silencers and CoSVM-predicted silencers, 
which overlap and do not overlap our CRMs, as well as of our silencers.  

As summarized in Table 3-1, gkmSVM predicted the highest number (982,985) of silencers, 

followed by our method (677,840) and CoSVM (157,813). However, our predicted silencers with 

a median length of 989 bp are longer than those predicted by CoSVM (601 bp) and gkmSVM (150 

bp) (Figure 3-7B) and covers a greater proportion (33.3%) of the genome than those by CoSVM 

(4.8%) and gkmSVM (5.7%) (Table 3-1). Only 38,525 (24.4%) of the CoSVM-predicted silencers 

could be mapped to 52,539 (5.3%) gkmSVM-predicted silencers, indicating that the two methods 

predicted quite different sets of sequences as silencers. On the other hand, of the CoSVM-predicted 
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141,062 (89.4%) overlap 127,380 (10.8%) of our predicted silencers, while 10,644 (6.7%) overlap 

our CRMs but do not overlap our silencers, and 6,107 (3.9%) do not overlap our predicted CRMs 

(Figure 3-7C). As expected, the 151,706 CoSVM-predicted silencers that overlap our CRMs have 

similar evolutionary constraints as our predicted silencers (Figure 3-7D), suggesting that they 

might be true silencers. In this regard, our predicted silencer recalled most (93.0%) of CoSVM-

predicted silencers, substantially higher by chance (7%=57.5% x 12.1%). Interestingly, the 6,107 

CoSVM-predicted silencer that do not overlap our CRMs also have similar evolutionary 

constraints as our predicted silencers (Figure 3-7D), suggesting that they might be true silencers, 

but our CRM predictor dePCRM2 failed to predict them to be CRMs. This could be explained by 

the fact that dePCRM2 is not able to touch about 15% of the genome because of unavailability of 

TF binding data in these regions, therefore missing those CRMs that can function as silencers. 

Moreover, of the gkmSVM-predicted silencers, 592,502 (60.3%) overlap 342,813 (29.1%) 

of our 1.2 M predicted CRMs, 432,572 (44.0%) overlap 232,960 (19.8%) of our predicted silencers, 

159,930 (16.3%) overlap our CRMs but do not overlap our silencers, and 390,483 (39.7%) do not 

overlap our predicted CRMs (Figure 3-7C). As expected, the 592,502 gkmSVM-predicted 

silencers that overlap our CRMs have similar evolutionary constraints as our predicted silencers 

(Figure 3-7D), suggesting that they might be true silencers. In this regard, our method recalled 

most (73.0%) of them, substantially higher by chance (16.7%=57.5% x 29.1%). In contrast, the 

gkmSVM-predicted silencers that do not overlap our CRMs are largely selective neutral or nearly 

so, suggesting that they are more likely false positives (Figure 3-7D). In summary, CoSVM-

predicted silencers appear highly accurate, and our predicted silencers recall 93.0% of them. Of 

the gkmSVM-predicted silencers, 44.0% appear to be authentic, and our predicted silencers recall 
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73.0% of them, while 39.7% appear to be false positives. Our method is comparable to CoSVM 

but superior to gkmSVM in accuracy. However, our method predicts more silencers than CoSVM.  

Table 3-1. Summary of silencers predicted by the three methods 

Method # of unique silencers Genome coverage Median length 
CoSVM(105) 157,813 4.75% 601 bp 

gkmSVM(ENCODE)(107) 982,985 5.67% 150 bp 
Our prediction 677,840 33.3% 989 bp 

 

3.3 Discussion 

In this study, we introduce two LR models to separately predict the functional states of our 

previously predicted 1.2M CRMs(19) as enhancers and silencers. The enhancer predictor uses 

signals of three epigenetic marks (CA, H3K4me1 and H3K27ac) on the CRMs as features. We 

choose these marks since they have been shown to be associated with active enhancers(114). The 

silencer predictor also employs signals of three epigenetic marks (CA, H3K9me3 and H3K27me3) 

on the CRMs as features. We choose these three marks based on the following reasons: CA is a 

hallmark of TF binding on CRMs including silencers(115, 116), both H3K9me3(117, 118) and 

H3K27me3(119) have been shown to be associated with repressive DNA sequences, and CA as 

well as H3K27me3 have been used as features for predicting silencers(105). As many cell/tissue 

types only have one set of these epigenetic marks, we build two independent predictors for their 

wider applicability as demonstrated in this study. Our enhancer predictor achieves comparable 

AUROC (0.977 vs 0.986) as our previous predictor that used four marks, which substantially 

outperforms five state-of-the-art methods(120). Our silencer predictor also achieves a high 

AUROC of 0.962, albeit slightly smaller than that (0.977) of the enhancer predictor. Although 

none of the three epigenetic marks alone or their combinations are specific for either active 

enhancers(29, 30, 33) or silencers(105), each of the three marks alone and their combinations 

achieve from moderate (0.685) to high (>0.95) AUROC values. We attribute the high accuracy of 
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the models to our two-step approach(120), i.e., we predict the functional types and states (second 

step) of our CRMs that were predicted (first step) using TF binding data. This conclusion is in 

good agreement with earlier reports that once the loci of CRMs are accurately anchored by the 

binding of key TFs, epigenetic marks can be accurate predictors of the functional states of the 

CRMs(29, 30, 33). Applying the enhancer model to the 105 cell/tissue types with data of the three 

active enhancer marks available, and the silencer model to the 58 cell/tissue types with data of the 

three putative active silencer marks available, we predict 868,944 (73.8%) of our 1.2 M CRMs in 

the human genome(19) to be active as enhancers or silencers in at least one of the 107 cells/tissue 

types.  

Particularly, in the 56 of the 107 cell/tissue types, with both active enhancer and silencer 

marks data available, we predict 793,140 (67.3%) CRMs to be active enhancers, active silencers, 

or both in at least one of the cell/tissue types. We classify the 793,140 CRMs in four types: 

enhancer-predominant, silencer-predominant, dual functional, and unclassified. Moreover, we 

further classified dual functional CRMs into type I and type II based on whether or not they can 

be both active enhancers and active silencers in the same cell/tissue type. Moreover, since CA has 

much higher weights than the two other marks in both the enhancer and silencer predictors, they 

may predict some CRMs with very high CA signals but low signals of the two other marks both 

as active enhancers and silencers in the same cell/tissue type, thereby overestimating dual 

functional CRMs. To reduce possible such false positive predictions, we only consider the CRMs 

that are predicted to be active by both predictors as type I dual functional CRMs only if they are 

also labeled by at least one of the two other enhancer marks and one of the two other silencer 

marks, and classify the remaining CRMs that do not meet this criterion as unclassified. This gives 

a lower bounder 10.6% of the 793,140 CRMs to be dual functional. Consistent with earlier 
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reports(9, 102, 104), type II dual functional CRMs may switch their roles in different cell/tissue 

types, presumably by binding two different sets of TFs in different cellular contexts. To the best 

of our knowledge, we for the first time find that type I dual functional CRMs can function both as 

enhancers and silencers in the same cell/tissue type.  

We show that the four types of CRMs (enhancer-predominant, silencer-predominant, type 

I dual functional and type II dual functional) possess distinct properties in terms of their lengths 

and TFBS densities, which reflect their functional complexity. Specifically, the longer lengths and 

the higher TFBS densities of type I dual functional CRMs might also be related to their dual 

functions in the same cell/tissue type, necessitating longer length and denser TF bindings. The 

shorter lengths and lower TFBS densities of type II dual functional CRMs than those of type I dual 

functional CRMs might be due to the fact that TFBSs in the former type can be shared for different 

functions across different cell/tissue types, since they only serve a single function in each 

cell/tissue type, while this might not be the case for the latter type. Such sharing might result in 

reduced TFBS densities and shorter lengths of type II dual functional CRMs. The higher TFBS 

density of type II dual functional CRMs than those of enhancer-predominant and silencer-

predominant CRMs suggest that the former type might need denser TFBSs than the latter two types 

to execute both enhancer and silencer functions in different cell/tissue types by interacting with 

different sets of TFs. Although enhancer-predominant CRMs tend to be shorter than silencer-

predominant CRMs (Figure 3-5D), the higher TFBS density of the former type suggests that 

activating genes might be a more intricate process than repressing genes. Unclassified CRMs with 

intermediate lengths and TFBS densities might be a mixture of the four types of CRMs. In the 

future, we need to determine the types of unclassified CRMs. One possible approach is to consider 

the positive or negative correlation between the predicted activation probabilities of a CRM and 
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the expression levels of its potential genes in a TAD across multiple cell/tissue type, as well as the 

physical proximity between the CRM and the transcription start sites of the potential genes as we 

demonstrated for the CRM shown in Figure 3-6B. Alternatively, we may use more specific 

epigenetic marks for active enhancers and silencers as features in machine-learning models when 

such marks are available in the future. 

 The substantial or complete overlaps between enhancer and silencer epigenetic marks 

peaks along type I dual functional CRMs strongly suggest that they are not artifacts by erroneously 

concatenating enhancers/silencers with their adjacent silencers/enhancers. A type I dual functional 

CRM might accomplish its dual roles in the same cell by simultaneously binding two sets of TFs 

via their cognate binding sites that are interdigitated along the CRM. Alternatively, it might 

accomplish its dual roles in different individual cells in a cell population of the same type by 

separately binding two sets of TFs in different individual cells. However, before relevant single-

cell data are available, we could not differentiate these two possibilities. In either scenario, the 

high overlaps between the epigenetic mark peaks of enhancers and silencers along type I dual 

functional CRMs suggest that they might fulfill their dual roles by collaborative bindings of two 

different sets of TFs to their cognate binding sites along the CRMs as recently suggested for 

enhancers(121). Although type I dual functional CRMs can function both as enhancers and 

silencers in the same cell types, they more often only function as enhancers or as silencers in 

different cell/tissue types, presumably by binding one of the two sets of TFs, indicating the highly 

dynamic and cellular context dependent nature of their usage. 

Our predicted silencers recall 84.4% of MPRA-validated silencers falling in our predicted 

CRMs, while missing the remaining 15.6%, indicating that we might need data from more 

cell/tissue types to predict them. On the other hand, we find that the “validated” silencers that do 
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not overlap our predicted CRMs might be false positives as they are largely selective neutral. This 

result is consistent with our recent finding(122) and other reports(123-127) that a considerable 

proportion of “regulatory sequences” identified by expression vector-based methods such as 

MPRA and its variants might be false positives. The two sets of previously predicted silencers 

cover a similar proportion (4.75% vs 5.67%) of the genome, but differ largely in their numbers 

(157,813 vs. 982,984) and have few overlaps. We find that CoSVM-predicted silencers are rather 

accurate, while gkmSVM-predicted silencers might have a false positive rate at least 39.7%. Our 

predicted silencers recall 93.0% CoSVM-predicted and 73.0% of gkmSVM-predicted silencers 

falling in our CRMs. Clearly, to recall the missed 7.0% of CoSVM-predicted and 27% of 

gkmSVM-predicted silencers falling in our CRMs, we might need more data from more diverse 

cell/tissue types. On the other hand, both CoSVM and gkmSVM miss 89.2% and 79.2% of our 

predicted silencers. Therefore, our method predicts much more silencers than CoSVM and 

gkmSVM while achieving accuracy comparable to that of CoSVM and superior to that of 

gkmSVM.   

 With the ongoing expansion of epigenetic and TF binding data available in a wide 

spectrum of cell/tissue types, our two-step approach holds the potential to uncover a more 

comprehensive map of CRMs in the genome, and then predict their functional types and states 

within these cell/tissue types. Based on the accurately predicted functional states of the CRMs and 

the expression levels of genes across a large number of cell/tissue types, as well as physical 

proximity between the CRMs and genes in TADs, it is possible to predict the target genes of the 

CRMs. This forward-looking perspective underscores the adaptive nature of our approach and its 

ability to yield deeper insights into the regulatory genomes and transcriptional machineries as 

datasets continue to grow and diversify in the future.  
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3.4 Conclusion 

In this study, we extend our two-step approach(20) so that it can simultaneously predict the 

functional states and types of our previously predicted 1.2M CRMs(19) using data of only five 

epigenetic marks in a cell/tissue type. Applying the method to cell/tissue types with the data 

available, we classified the CRMs into four types (enhancer-predominant, silencer-predominant, 

type I dual functional and type II dual functional CRMs) with distinct properties reflecting their 

functional complexity. Dual functional CRMs and silencers might be more prevalent than 

previously assumed. The accurate prediction of functional types and states of CRMs opens avenues 

for identifying their target genes. 

3.5 Materials and Methods 

3.5.1 The datasets  

We obtained a set of 1,178,229 predicted CRMs in the human genome from our prior work(19). 

We downloaded histone mark ChIP-seq, DNase-seq, ATAC-seq and TF ChIP-seq data in 67 

human cell/tissue types from Cistrome Datasets Browser(110, 111) (Supplementary Table S3-1, 

S3-2, S3-3). All these 67 cell/tissue types have data for the three active enhancer marks (CA, 

H3K4me1 and H3K27ac), and 40 of them also have data for the three active silencer marks (CA, 

H3K27me3 and H3K9me3). We downloaded ATAC-seq and histone mark ChIP-seq data and 

RNA-seq data in 107 cell/tissue types from ENCODE data portal(74), of which 105 cell types have 

data for active enhancer marks (CA, H3K4me1 and H3K27ac), 58 have data for active silencer 

marks (CA, H3K27me3 and H3K9me3), 56 have data for both the active enhancer and active 

silencer marks, 49 only have data for active enhancers, and 2 only have  data for active silencer 

marks (Figure 3-3A, Supplementary Table S3-10, S3-11). We downloaded the Hi-C contact matrix 

of the K562 cell line from the ENCODE(74) portal with the session ID ENCFF080DPJ.  
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3.5.2 Epigenetic mark feature scores  

For each epigenetic mark 𝑒 and a sequence 𝑐, which can be a CRM or non-CRM, we define a raw 

feature score as: 

𝐹<4/(𝑐, 𝑒) = ∑ 𝑟+,%𝑠+,% 	
9!
+>? (3 − 1)              

where 𝑁% is the number of peaks of 𝑒 mapping to 𝑐 at least 50% of the length of either one, 𝑟+,% the 

ratio of overlapping length between 𝑐 and the 𝑖78 peak of 𝑒 over the length of the 𝑖78	peak of 𝑒, 

𝑠+,% 	the signal of the 𝑖78	peak of 𝑒 quantified by MACS2(128, 129). We then normalized each raw 

epigenetic feature score in each cell/tissue type by the min-max normalization, i.e., 

𝐹(𝑐, 𝑒) =
𝐹<4/(𝑐, 𝑒) − 𝑚𝑖𝑛(𝐹<4/(𝐶, 𝑒))

𝑚𝑎𝑥R𝐹<4/(𝐶, 𝑒)S 	− 𝑚𝑖𝑛(𝐹<4/(𝐶, 𝑒))
		 (3 − 2) 

where 𝐶 denotes all candidate sequences in the genome, 𝑚𝑖𝑛	(𝐹<4/(𝐶, 𝑒)) and 𝑚𝑎𝑥	(𝐹<4/(𝐶, 𝑒)) 

the minimum and maximum raw score of the epigenetic mark 𝑒 over 𝐶 in the cell/tissue type.  

3.5.3 Prediction of functional states of CMRs  

Since a CRM can function both as an enhancer and a silencer in different cellular contexts, we use 

two separate models to predict the activation probability of a candidate CRM to be an enhancer 

and a silencer in a cell/tissue type. Specifically, we used an LR model to predict the activation 

probability of a candidate CRM functioning as an enhancer using signals of three active enhancer 

markers, i.e., CA, H3K4me1 and K3K27ac. Meanwhile, we used a similar LR model to predict 

the activation probability of a candidate CRM functioning as a silencer using signals of three active 

silencer markers, i.e., CA, H3K9me3 and K3K27me3.  

3.5.3.1 Construction of positive and negative sets: In each of 67 cell/tissue types with the 

required data available, we selected the CRMs that overlap TF binding peaks and at least one of 

active enhancer marks H3K4m1 and K3K27ac, or of silencer marks K3K27me3 and K3K9me3 in 
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the cell/tissue type as the positive enhancer or silencer set, to ensure the high quality of the positive 

set in a cell/tissue type. At the same time, we randomly selected predicted non-CRMs with matched 

numbers of the positive sets as the negative sets. We pooled the positive and negative sets in all 

the relevant cell/tissue types separately to construct a comprehensive positive set and a negative 

set for enhancers and silencers, resulting in 1,415,796 positive enhancers and 256,766 positive 

silencers and the same numbers of respective negative sets. Thus, the positive sets and negative 

sets for both enhancers and silencers are well-balanced. 

3.5.3.2 Model training and evaluation: Ten-fold cross-validation was conducted to train and 

assess the performance of seven models using all the seven possible combinations of three marks 

as the features. The models were implemented using sci-kit learn v.0.24.2 and the code is available 

at https://github.com/zhengchangsulab/EnhancerSilencerPrediction. 

3.5.3.3 Prediction: We applied both trained enhancer model and silencer model to the 1,178,229 

CRMs in each of the 107 cell/tissue types with the required data available. We predict a CRM to 

be an active enhancer or silencer if its activation probability as an enhancer or a silencer is greater 

than 0.5. 

3.5.4 Heat maps of epigenetic marks 

We used the “EnrichedHeatmap” package(130) version 4.2.2 to generate heat maps of signal 

intensities of epigenetic marks in a 6 kb region centered on a CRM. We computed the mean signal 

value for a mark in each100 bp sliding window in each of the 6 kb sequences, using “w0” as the 

“mean_mode”. The line plot on the top of the heat map is the mean signals of each window at a 

position across all the sequences of a set of CRMs. The CRMs within each set are ranked based 

on their CA signal strengths in descending order.  

3.5.5 Overlapping ratio of the enhancer and silencer epigenetic marks along dual functional 
CRMs 
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We merged the peak regions of the two enhancer marks H3K4me1 and H3K27ac on a CRM to 

form a unified region 𝐸$4<@, and those of the two silencer marks H3K9me3 and H3K27me3 on 

the CRM to form another unified region 𝑆$4<@ . We computed the overlapping ratio between 

enhancer and silencer marks on the CRM as: 

𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔	𝑟𝑎𝑡𝑖𝑜 =
𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝐸$4<@ , 𝑆$4<@)

	𝑚𝑖𝑛(𝑙𝑒𝑛(𝐸$4<@), 𝑙𝑒𝑛(𝑆$4<@))
(3 − 3) 

where 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝐸_𝑚𝑎𝑟𝑘, 𝑆_𝑚𝑎𝑟𝑘) denotes the length of the overlapping part between 𝐸$4<@ 

and 𝑆$4<@,  and 𝑙𝑒𝑛(𝐸_𝑚𝑎𝑟𝑘) and 𝑙𝑒𝑛(𝑆_𝑚𝑎𝑟𝑘)	the lengths of 𝑆$4<@ and 𝑆$4<@, respectively. 

3.5.6 Heat map of Hi-C contact matrix  

We used the Juicebox(131) version 2.17.00 to generate the heat map of the Hi-C contact matrix 

using the Hi-C data from K562 cells with default settings at a resolution of 1 kb on the region from 

1,350,000 to 1,600,000 bp on chromosome 7. 

3.6 Availability of data and materials 

The datasets and code supporting the conclusions of this chapter are available at 

https://github.com/zhengchangsulab/EnhancerSilencerPrediction and are included within the 

chapter and its supplementary tables at https://github.com/sisyyuan/CRM_Dissertation. 

 

 

 

https://github.com/zhengchangsulab/EnhancerSilencerPrediction
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Chapter 4  
PREDICTION OF TARGET GENES OF CRMs IN THE HUMAN GENOME REVEALS 

THEIR DISTINCT PROPERTIES  

4.1 Introduction 

High throughput methods like Hi-C(34) and chromatin interaction analysis with ChIA-

PET(35), which examine physical proximity between two linearly distant loci, have been used to 

map regulatory relationships between enhancers and target genes(132-134) in various cell/tissue 

types. Hi-C technologies have led to the identification of distinct genome compartments at the 

mega-base scale. Compartment A resides in open, gene-rich euchromatin, while compartment B 

is composed of closed, gene-poor heterochromatin(78). Interactions are more frequent within the 

same compartment than across different compartments(135). Within the compartments, TADs are 

formed at the sub-mega-base scale, where interactions are highly enriched within TADs relative 

to between TADs(56). At a higher resolution, chromatin loops can establish spatial proximity 

between specific distant genomic loci through a process called loop extrusion(136-138). However, 

it is difficult to identify CRM-gene regulations precisely due to the often-low genomic resolution 

of such data and that genomic contacts may not guarantee regulation relationships. More recently, 

CRISPR technology has been used to identify target genes of putative CRMs in various ways(139). 

For example, CRISPRa was used to probe putative enhancers for their potential to regulate nearby 

genes(140). Additionally, CRISPRi was employed to identify regulatory relationships by targeting 

putative enhancers and assessing the effects on the neighboring genes(141-144). Nonetheless, 

these methods are limited to a few CRMs and genes. Consequently, experimental determination 

of target genes of CRMs on a genome-wide scale remains an ongoing challenge. 

In the past few years, several computational methods have been developed for predicting 

target genes of putative enhancers and silencers. However, these methods are limited, since in the 
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absence of a precise and comprehensive CRM map in the genome, they aim to predict target genes 

for specific genomic regions marked by distinct epigenetic modifications. These methods attempt 

to predict both CRMs and their target genes, along with their functional types if applicable, all in 

a single step. The predominant one-step approaches for predicting target genes of enhancers 

include score-based(36, 37), correlation-based(38-40) and machine learning methods(40-44).  

As the most intuitive and widely used score-based method, the distance-based method uses 

the genomic distance or some function of the distance, usually defined as the number of bp between 

the potential regulatory region and TSS of the candidate gene(36). The simplest distance-based 

method assigns the gene whose TSS is closest to either end of a CRM as the CRM’s target gene. 

While this closest neighbor assignment (CNA) method suits some predictions well, it can overlook 

distant regulations. This is crucial because a CRM can target genes from hundreds of thousands to 

a million bp away(145), and a CRM can regulate multiple target genes(146). Other score-based 

methods incorporate additional geometric or functional data, consolidating multiple metrics into a 

composite score that quantifies a putative regulatory region’s potential in regulating a candidate 

gene. For example, GeneHancer(37) integrates five features associated with enhancers and/or 

target genes — RNA and  eRNA levels, and eQTL, cHi-C and distance data — to predict target 

genes of candidate enhancers compiled from four databases.  

The correlation-based methods evaluate correlation between the activities of a potential 

regulatory region and the activities of possible target genes across a panel of cell/tissue types. 

DHSs, indicative of DNA accessibility, have been employed as potential regulatory regions, and 

correlations between DHS signals in these regions and in promoters across a panel of 79 tissues 

have been used to predict enhancer-gene links(147). However, it turns out that the correction 

between DHS signals alone is inadequate to indicate enhancer-gene regulations(38). Thus, a 
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variant method was proposed that quantified correlations between DHS signals at potential 

regulatory regions with the expression levels of possible target genes(38). Moreover, correlation 

between DNA methylation levels at potential regulatory regions and the expression levels of 

possible target genes has also been utilized to pinpoint enhancer-gene regulations(39, 148).  

Supervised learning models trained on “golden standard” enhancer-gene links, along with 

an equivalent number of negative links, have been used to predict unknown links using features 

such as gene expression levels(42), DHS signals(42, 43), histone marks(40, 42), correlations of 

these signals(40), sequence compositions(40, 44), and the distance(40, 43) between candidate 

enhancers and the TSSs of potential target genes. However, a significant drawback of these 

methods is the lack of sufficient experimentally validated “golden standard” positive and negative 

sets(16), leading different groups to define training sets differently. This divergence in defining 

training sets can introduce noise and potentially influence prediction accuracy. Moreover, in many 

of these methods(132, 133, 144), the candidate genes were typically screened within an arbitrarily 

selected flanking region around putative CRMs, although the true target genes can be located 

outside of the region. 

To overcome the limitation of these existing one-step methods for predicting the loci of 

enhancers and silencers, we have recently proposed a two-step approach based on the following 

two observations: i) TF binding is more informative for locating CRMs than CA and histone marks; 

and ii) once the loci of a CRM’s is accurately located, epigenetic marks on the enhancers are good 

predictors of its functional state(29-33). Specifically, we first predict a highly accurate and more 

complete map of CRMs in the genome, and then predict the functional states of all the CRMs in 

various cell/tissue types of the organism. For the first step, we have developed the dePCRM2 

algorithm(19) that predicts the locations of all possible CRMs in the genome by integrating all 
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available TF ChIP-seq datasets in various cell/tissue types of the organism(19). Applying 

dePCRM2 to more than 11k TF ChIP-seq datasets in various human cell/tissue types, we predicted 

1.2M CRMs in the human genome. For the second step, we have developed two LR models that 

can accurately predict functional states of the many CRMs as enhancers and silencers in any 

cell/tissue types using CA in combination with two active enhancer or silencer histone marks, 

thereby simultaneously predicting the functional types and states of the CRMs. This two-step 

approach substantially outperforms existing one-step methods for predicting the loci of CRMs in 

the genome as well as their functional types and states in cell/tissue types of the organism(20). 

Nonetheless, since CA has overwhelmingly higher weights than do the two enhancer or silencer 

histone marks in both the LR models, they are unable to unambiguously distinguish enhancers and 

silencers that have high CA signals but weak enhancer or silencer histone marks signals(20, 149). 

Moreover, unlike CA data that are widely available in a broader range of cell/tissue types, data of 

the two enhancer or silencer histone marks are only available in a small number of even well-

studied human and mouse cell/tissue types, limiting the application and statistical power of the 

models. 

Building upon the success of the two-step strategy and by overcoming the limitation of the 

LR models, we now introduce a method, CAPP for the third step of our strategy to predict the 

target genes of the predicted CRMs in a genome-wide fashion. CAPP predicts enhancer-gene and 

silencer-gene links based on the correlation between functional states of the CRMs and the 

expression levels of potential target genes within the same TAD across a panel of cell/tissue types 

as well as physical proximity between the CRMs and potential target genes. In this way, CAPP is 

able to not only predict the CRMs’ target genes, but also to more accurately predict their functional 
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types. We show that CAPP out-performs state-of-the-art methods in accuracy, while predicting 

substantially more CRM-gene links.  

4.2 Results 

4.2.1 Most of the genome and our predicted CRMs are covered by consensus TADs in various 
cell types 

Since CRM-gene regulations are believed to occur mainly within a TAD(18, 150-152), to reduce 

the search space we only consider CRMs and genes in the same TAD for potential regulation 

relationships. Utilizing Hi-C interaction data in six cell/tissue types, we identified their TADs at 

five resolutions (5,000 bp~100,000 bp). As expected, TADs identified at different resolutions 

cover varying proportions of the human genome, genes and our predicted CRMs in each cell/tissue 

type (Figure 4-1A shows the case in the K562 cells). As TADs predicted at a higher resolution 

tend to be shorter and are often nested inside of larger ones predicted at a lower resolution, we thus 

merged overlapping TADs predicted at different resolutions to form certain number of merged 

TADs (e.g., there are 944 merged TADs in K562 cells), which cover higher proportions of the 

genome, genes and CRMs than TADs predicted at a single resolution (Figure 4-1A for the K562 

cells). Particularly, the vast majority (1,178,225, or 96.2%) of our 1,225K predicted CRMs in the 

genome are located within the merged TADs (Figure 4-1A). Similar results were obtained in other 

five cell/tissue types with Hi-C data available (Figure 4-2). As shown in Figure 4-1B, 81.12% of 

the genome can be covered by the merged TADs in all the six cell/tissue types, and 6.48% of the 

genome remains uncovered by any of the merged TADs in the six cell/tissue types, while 91.44% 

of the genome are covered by the merged TADs in at least two cell/tissue types, suggesting that 

TADs from different cell/tissue types are largely invariable, consistent with previous reports(153-

155). Therefore, in cases where Hi-C data is not yet available in a cell/tissue, we use TADs from 
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these six cell/tissue types as a substitute. Particularly, if not otherwise noted, the analysis was 

conducted using TADs derived from the K562 cells. 

 
Figure 4-1. Coverage analyses on predicted TADs. A. Coverage of the genome, CRMs and genes 
by TADs identified at various resolutions and by merged TADs in the K562 cells.  B. Proportion 
of the genome covered by the merged TADs from different numbers of cell lines. The legends 
such as “6 TADs 81.12%” means 81.12% of the genome is covered by the merged TADs from the 
six cell lines. 

 
Figure 4-2. Coverage of the genome, CRMs and genes by TADs identified at various resolutions 
and by merged TADs in different cell lines:  A. GM12878 (B Lymphocyte in Blood). Hi-C contact 
matrix cannot be generated at resolution 10K bp using Arrowhead, resulting in missing bars. B. 
H1 (Embryonic Stem Cell in Embryo). C. HeLa-S3 (Epithelium in Cervix). D. HepG2 (Epithelium 
in Liver). E. IMR90 (Fibroblast in Lung). 
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4.2.2 CA alone can accurately predict the functional states of CRMs 

As the first step of the CAPP method, it predicts functional states of CRMs in as many as possible 

cell/tissue types of the organism. To this end, unlike our previous method that used two LR models 

with CA and two histone marks as the features(20, 149), CAPP employs a single LR model with 

CA as the sole feature to predict functional states of CRM without first differentiating their types 

(enhancers and silencers). When trained and evaluated on the 67 human cell/tissue types (Materials 

and Methods) with ten-fold cross-validation, the LR model achieved a median AUROC of 0.93 

(Figure 4-3), which was only slightly lower than those (AUROC=0.98) of LR models using two 

additional histone marks(20, 149). Hence, the LR model using CA as the sole feature is able to 

accurately predict the functional states of CRMs in a given cell/tissue type, although it cannot 

differentiate their functional types (enhancers and silencers). Applying the model to the 107 human 

cell/tissue types, we predicted highly varying numbers of active CRMs ranging from 18,995 (1.6%) 

in SJSA1 cells to 166,236 (14.1%) in motor-neuron cells, with a median of 64,476 (5.5%) in the 

cell/tissue types (Supplementary Table S4-1). We predicted a total of 7,363,163 active CRMs in 

the 107 cell/tissue types. After removing the redundancy, we ended up with a total of 547,695 

(46.5%) non-redundant active CRMs in the 107 cell types. 



 80 

 

Figure 4-3. ROC curves of the LR model with CA as the sole feature. The red curve is the median 
ROC curve from the results of 10-fold cross-validation using positive and negative data in 67 
human cell/tissue types. 

4.2.3 Target genes of one fifth of CRMs can be predicted using currently available datasets 

After the functional states of the CRMs are predicted, CAPP predicts the target genes of the CRMs 

in TADs by examining the correlation across a panel of cell/tissue types between their functional 

states and expression levels of genes located within the same TADs, followed by validation of 

physical proximity between the CRMs and the genes using Hi-C interaction data available in the 

six cell/tissue types (Materials and Methods). To ensure high statistical power of the predictions, 

we only considered the CRMs that were predicted to be active and inactive in at least five different 

cell/tissue types, resulting in 260,220 (47.8%) CRMs out of the 547,695 CRMs that were predicted 

to be active in at least one of the 107 cell/tissue types. At an FDR of 0.1, CAPP predicted 240,024 

(92.2%) CRMs that enhanced the expression of 47,765 genes via 4,399,244 enhancer-gene 

regulations. Similarly, at the same FDR, CAPP predicted 11,592 (4.5%) CRMs repressed 10,400 

genes via 31,477 silencer-gene regulations. In total, CAPP predicted 47,775 (82.0% out of 58,261) 

target genes for 240,680 (92.5% out of 260,220) CRMs. Thus, CAPP was able to predict target 

genes for one fifth (20.4%) of the 1,178K CRMs within TADs using data available in only 107 

cell/tissue types. Of the 240,680 CRMs with predicted target genes, 10,936 (4.5%) functioned as 

Median 
AUROC=0.93
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both enhancers and silencers (dual CRMs) for different genes, while 229,088 (95.2%) exclusively 

acted as enhancers (exclusive enhancers), and the remaining 656 (0.3%) exclusively acted as 

silencers (exclusive silencers). The fewer predicted silencers than predicted enhancers can be 

attributed to the less prevalence of silencers than enhancers in transcriptional regulation. It is 

evident that obtaining more data from more and diverse cell/tissue types is crucial to predict target 

genes for more CRMs. 

4.2.4 Dual functional CRMs tend to regulate the largest number of genes, followed by 
exclusive enhancers and exclusive silencers 

We first analyzed the number of genes regulated by the three different types of CRMs, i.e., dual 

CRMs, exclusive enhancers and exclusive silencers. As shown in Figure 4-4A, dual CRMs tend to 

regulate more genes than exclusive CRMs. Furthermore, exclusive enhancers tend to regulate more 

genes than exclusive silencers (Figure 4-4A). Specifically, 33.9% of dual CRMs regulate no more 

than 10 genes, contrasting with 52.4% for exclusive enhancers and 95.3% for exclusive silencers. 

These results indicate that exclusive silencers tend to have narrower effects by regulating few 

genes, and exclusive enhancers tend to have broader effects by regulating larger numbers of genes, 

while dual CRMs can function as both enhancers and silencers, and thus, regulate the largest 

number of genes.  

4.2.5 Enhancers are more cooperative than silencers to regulate target genes 

We next analyzed the numbers of enhancers or silencers that regulate a gene. As shown in Figure 

4-4B, 95.6% of genes are regulated by no more than 10 silencers and only 4.4% of genes are 

regulated by more than ten silencers. In contrast, only 9.8% of genes are regulated by no more than 

10 enhancers and 90.2% of genes are regulated by more than ten enhancers. These results suggest 

that enhancers are more likely to cooperate with one another to regulate a gene than silencers. In 

other words, multiple enhancers are required to up-regulate a gene, while only few silencers are 
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needed to down-regulate a gene. This result is in line with a previous report that an assembly of 

multiple enhancers, often located tens to hundreds of thousands of bp away from their target gene, 

tend to collaboratively regulate the common target gene by looping to the gene’s promoter(156).  

 
Figure 4-4. Comparisons of different types of CRMs for their predicted target genes and regulation 
lengths. A.  Cumulative probability of CRMs regulating the indicated numbers of genes. The inset 
is a zooming-in view of the region with the number of genes not larger than 10. B. Cumulative 
probability of genes regulated by the indicated numbers of CRMs. The inset is a zooming-in view 
of the region with the number of CRMs not larger than 10.  C. Boxplots of regulation lengths (in 
bp) of the predicted exclusive enhancer-gene, exclusive silencer-gene, dual enhancer-gene and 
dual silencer-gene regulations. D. Cumulative probability of regulation lengths (in bp) of the 
predicted exclusive enhancer-gene, exclusive silencer-gene, dual enhancer-gene and dual silencer-
gene regulations. E. Boxplots of 𝜏  values of target genes of exclusive enhancers, exclusive 
silencers, dual enhancers and dual silencers. F. Boxplots of the number of cell/tissue types where 
target genes of exclusive enhancers, exclusive silencers, dual enhancers and dual silencers are 
expressed. 

4.2.6 Dual functional CRMs tend to regulate more distant genes  

We ask whether different types of CRMs have preference to regulate nearby or distant genes. To 
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regulations. Here the regulation length is defined as the distance in bp between the nearer end of a 

CRM and the TSS of its target gene. If a target gene’s TSS falls within the body of a CRM, we 

consider the regulation length to be 0. For each dual CRM, we call it a dual enhancer when it 

functions as an enhancer, and a dual silencer when it functions as a silencer. As illustrated in Figure 

4-4C, the regulation lengths of dual enhancers and silencers are significantly longer than those of 

exclusive CRM-gene links, while those of exclusive enhancers are significantly longer than those 

of exclusive silencers. Interestingly, dual enhancers tend to regulate more distant genes than dual 

silencers, mirroring the behaviors of exclusive enhancers and exclusive silencers. Remarkably, 

approximately 32.7%, 27.1%, 20.1%, and 11.6% of the dual enhancer-gene, dual silencer-gene, 

exclusive enhancer-gene, and exclusive silencer-gene links, respectively, exhibit a regulation 

length exceeding 5M bp (Figure 4-4D). This exceeds the fixed 1~5M bp flanking regions used in 

conventional approaches, which can potentially miss such regulations. Similarly, the number of 

intervening genes between dual functional CRMs and their target genes are greater than those 

between exclusive CRMs and their target genes (Figure 4-5A and 4-5B).  

 
Figure 4-5. Numbers of Intervening genes between CRMs and their target genes. A. Boxplots of 
numbers of intervening genes between target genes and exclusive enhancers, exclusive silencers, 
dual enhancers and dual silencers. B. Cumulative probability of numbers of intervening genes 
between target genes and exclusive enhancers, exclusive silencers, dual enhancers and dual 
silencers. 
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4.2.7 Enhancers tend to regulate more narrowly expressed genes while silencers tend to 
regulate more broadly expressed genes  

To explore whether enhancers and silencers exhibit preferences for regulating specific types of 

genes, we analyzed the expression patterns of their predicted target genes. Specifically, we first 

calculated the 𝜏 index value(157) for each gene within TADs that were expressed (transcript per 

million (TPM) > 0) in at least one of the 107 distinct cell/tissue types. The τ index measures gene 

expression specificity, with a value of 0 indicating ubiquitous expression and a value of 1 

indicating expression in a single cell/tissue type(157). Genes regulated by enhancers tend to have 

greater 𝜏 values than those regulated by silencers (Figure 4-4E), implying that enhancers tend to 

regulate more narrowly expressed genes, while silencers tend to regulate more broadly expressed 

genes. Exclusive enhancers tend to have the highest 𝜏 values, indicating its preference in regulating 

narrowly expressed genes, while exclusive silencers tend to have the lowest 𝜏  values, indicating 

its preference in regulating broadly expressed genes (Figure 4-4E). Consistently, genes regulated 

by enhancers tend to exhibit expression in fewer cell/tissue types than those regulated by silencers 

(Figure 4-4F). Furthermore, exclusive enhancers have a propensity to regulate genes expressed in 

fewer cell/tissue types, while exclusive silencers tend to regulate genes expressed in a broader 

array of cell/tissue types (Figure 4-4F). These observations underscore the distinct strategies that 

enhancers and silencers take to regulate different gene types based on the prevalence of their 

usages. 

4.2.8 Static and active cis-regulatory networks can be built by the predicted CRM-gene links 

Based on our 47,775 predicted target genes of the 240,680 CRMs, we constructed static cis-

regulatory networks (sCRNs) whose nodes are the CRMs and their target genes, and the edges are 

the CRM-gene links between them, regardless of the functional states of the CRMs in cell/tissue 

types. The sCRNs are made of 753 connected components distributed across the 23 pair of 
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chromosomes (Supplementary Table S4-2). Most of the connected components correspond to a 

TAD since the predicted regulations are primarily within the same TAD. However, some 

components may correspond to more than one TAD due to CRMs or genes crossing the border 

between two TADs, resulting in regulation across adjacent TADs, or one TAD might break into 

several components due to the hierarchical nature of TAD structures. The active cis-regulatory 

networks (aCRNs) in a cell/tissue type can be induced from the sCRNs by the active enhancer-

gene and silencer-gene links in the cell/tissue type. As an example, Figures 4-6A and 4-6B show 

the sub-sCRNs on chromosome 10, composed of 33 connected components and the sub-aCRNs 

on chromosome 10 in the K562 cells embedded in the sub-sCRNs with the active exclusive 

enhancer-gene, exclusive silencer-gene and dual CRM-gene links highlighted in green, red and 

orange, respectively. More network examples can be found in the APPENDIX B. 
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Figure 4-6. Examples of sub-static and sub-active cis-regulatory networks on chromosome 10. A. 
The sub-static cis-regulatory networks on chromosome 10 are made up of 33 connected 
components. The sub-active cis-regulatory networks on the chromosome in the K562 cells are 
embedded in the static cis-regulatory networks and can be induced by active exclusive enhancers, 
active exclusive silencers and active dual CRMs in the cells. The circles represent CRMs, 
including inactive CRMs (gray), active exclusive enhancers (green), active exclusive silencers (red) 
and active dual CRMs (yellow) in the K562 cells. The purple squares represent genes and their 
size are proportional to the degrees, i.e., the number of their regulating CRMs. The edges represent 
regulation relationships between CRMs (circles) and genes (squares). The edges linked to active 

A

B
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CRMs are colored by the same colors as the type of active CRMs. B. The zooming-in view of the 
connected component from Figure 4-6A in light blue shadow rotated counterclockwise by 30 
degrees. 

4.2.9 Our model outperforms the distance-based method CNA 

We compared our method CAPP with a commonly used distance-based method, CNA. To do so, 

we considered the 260,220 CRMs that were predicted to be active and inactive in at least five of 

the 107 cell/tissue types. For each of these 260,220 CRMs, we assigned the gene(s) whose TSS(s) 

was(were) closest to the CRM as its target gene(s), resulting in 287,946 CRM-gene regulations (a 

CRM may have multiple closest genes). First, we evaluated the possibility of these CRMs being 

enhancers of the assigned target genes. To this end, we tested whether the expression levels of the 

putative target genes of each CRM were significantly higher in the cell/tissue types where the 

CRM was active than in the other cell/tissue types where the CRM was inactive. At an FDR of 0.1, 

117,319 (40.7%) of the 287,946 CRM-gene regulations predicted by CNA exhibited significantly 

positive regulation, while the rest 59.3% did not show enhancer-gene regulations (Figure 4-7A). 

In contrast, all of our predicted 4,399,244 enhancer-gene regulations exhibited significantly 

positive regulations (Figure 4-7A). Consistently, only 94,988 (33.0%) of the 287,946 CRM-gene 

regulations predicted by CNA coincided with our 4,399,244 predicted enhancer-gene links (Figure 

4-7B), implying that 33.7% of our enhancers are able to regulate their closest genes, while the 

remaining 66.3% only regulate distant genes. Figure 4-7C shows an example of enhancer 

chrY:20574642-20577538 regulating its closest gene EIF1AY. On average, our predicted 

enhancers regulated 18.3 genes while those predicted by CNA only targeted 1.1 genes. Hence, 

CNA might overlook distant regulations, missing out on the crucial one-to-many regulatory 

mechanism for enhancers. This is significant as a CRM can target genes located hundreds of 

thousands to a million bp away(145), and a single CRM might regulate multiple target genes(146).  
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Next, we evaluated the possibility of these CRMs being silencers of the assigned target 

genes. To this end, we tested whether the expression levels of the putative target genes of each 

CRM were significantly lower in the cell/tissue types where the CRM was active than in the other 

cell/tissue types where the CRM was inactive. Of the 287,946 CRM-gene links, at the same FDR 

of 0.1, only 43 (0.01%) regulations exhibited significantly negative regulations, while the 

remaining 99.99% of the CRM-gene regulation did not show significantly negative regulations 

(Figure 4-7D). In contrast, all of our predicted 31,477 silencer-gene regulations exhibited 

significantly negative regulations (Figure 4-7D). Consistently, only 123 (0.04%) of the 287,946 

CRM-gene links predicted by CNA overlapped our 31,477 predicted silencer-gene links (Figure 

4-7E), implying that only about 0.39% of silencers are able to regulate their closest genes, while 

the remaining 99.61% only regulate distant genes. This result suggests that silencers, compared 

with enhancers, tend not to regulate nearby genes. Figure 4-7F illustrates an example of a silencer 

chr5:67798877-67801081 regulating its closest gene lnc-CD180-6. On average, our predicted 

silencers regulated 2.7 genes while those predicted by CNA only targeted 1.1 genes. As in the case 

of enhancers, CNA might neglect distant regulations, leading to a potential oversight of a one-to-

many regulatory mechanism for silencers.  In summary, CAPP demonstrates superior performance 

over CNA in predicting the target genes for both enhancers and silencers. 
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Figure 4-7. Comparison of CNA and our method CAPP for predicting target genes of CRMs. A. 
Distribution of FDR-adjusted p-values of enhancer-gene regulations assigned by CNA or predicted 
by CAPP. The p-values were calculated by one tailed Mann-Whitney U test. B. Venn diagram of 
enhancer-gene regulations assigned by CNA and enhancer-gene regulations predicted by CAPP. 
C. Boxplots of expression levels of gene EIF1AY against the functional states of its closest CRM 
chrY:20574642-20577538 in the 107 cell/tissue types. p < 1e-14, one tailed Mann-Whitney U test. 
The CRM chrY:20574642-20577538 is predicted by both CNA and CAPP to enhance the 
transcription of gene EIF1AY. D. Distribution of FDR-adjusted p-values of silencer-gene 
regulations assigned by CNA or predicted by CAPP. The p-values were calculated by one tailed 
Mann-Whitney U test. E. Venn diagram of silencer-gene regulations assigned by CNA and 
silencer-gene regulations predicted by CAPP. F. Boxplots of expression levels of lnc-CD180-6 
against the functional states of its closest CRM chr5:67798877-67801081 in the 107 cell/tissue 
types. p < 1e-7, one tailed Mann-Whitney U test. The CRM chr5:67798877-67801081 is predicted 
by both CNA and CAPP to repress the transcription of gene lnc-CD180-6. 

4.2.10 Comparison of our method with the activity-by-contact (ABC) model predictions 

We next compared our predicted enhancer-gene regulations with those predicted by the ABC 

model(144). The ABC model considers DNA sequences with DNase-seq and/or H3K27ac ChIP–

seq signals as regulatory elements (REs), and calculates a score for each RE to regulate a gene 

within the two 5 Mb flanking regions around the RE. The score is defined as the product of the 
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strength of these epigenetic marks signals (Activity) in the RE and the Hi-C interaction frequency 

(Contact) between the RE and the gene. Using a predefined threshold of the score, the ABC model 

predicts a total of 175,860 non-redundant RE-gene links, involving 89,248 REs and 18,390 genes 

in five human tissue/cell types (GM12878, K562, liver, LNCAP and NCCIT). CAPP predicted 

4,399,244 enhancer-gene links involving 240,024 enhancers and 47,765 genes in these five 

cell/tissue types. Therefore, CAPP predicted a much larger number of enhancer-gene links than 

did the ABC model in the five cell types. 

We found that 51,501 (57.7%) of the 89,248 REs overlap 32,855 (13.7%) of our 240,024 

enhancers by at least one bp (Figure 4-8A). We noted that multiple REs may overlap one our 

predicted enhancer, as REs are generally shorter than our enhancers (data not shown). We refer 

these overlapping REs and enhancers as ERo (enhancer-RE overlapping) REs and enhancers, 

respectively. The ERo REs and enhancers are involved in 99,241 (56.4%) RE-G (RE-gene) links 

and 638,789 (14.5%) enhancer-G (enhancer-gene) links, respectively. If a pair of overlapping ERo 

RE and enhancer regulate the same gene, we refer their respective link as an ERo RE-Gm (gene 

match) link and an ERo enhancer-Gm link (Figure 4-8A); otherwise, we refer their respective link 

as an ERo RE-Gnm (gene not match) link and an ERo enhancer-Gnm link (Figure 4-8A). This 

classification yielded 30,448 (17.3%) ERo RE-Gm links, 68,793 (39.1%) ERo RE-Gnm links, 

21,521 (0.5%) ERo enhancer-Gm links and 617,268 (14.0%) ERo enhancer-Gnm links (Figure 4-

8A). Thus, the ABC model predicted more RE-Gm links than enhancer-Gm links by CAPP, while 

CAPP predicted more enhancer-Gnm links than RE-Gnm links by the ABC model. Moreover, we 

found that 28,306 (31.7%) REs overlap our CRMs for which we were unable to predict their target 

genes using the data available to us, and we refer them as ERno-Co (Enhancer-RE not overlapping, 

but CRM-RE overlapping) REs, which are involved in 59,186 (33.7%) RE-G links (Figure 4-8A).  
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The remaining 9,441 (10.6%) REs do not overlap any of the CRMs within TADs, we refer them 

as CRno (CRM-RE not overlapping) REs, which are involved in 17,433 (9.9%) CRno RE-G links 

(Figure 4-8A). To see whether these CRno REs are functional, we plotted the distribution of their 

nucleotides’ phyloP scores(62). As shown in Figure 4-8B, the density curve of CRno REs is more 

narrowly distributed with a high peak around 0, compared to those for the ERo REs and ERno-Co 

REs, indicating that the CRno REs are more not under natural selection, and thus, at least some of 

them might not be even parts of authentic enhancers (Figure 4-8B). Finally, 207,169 (86.3%) of 

our 240,024 enhancers do not overlap the REs, and we refer them as ERno (Enhancer-RE not 

overlapping) enhancers, which are involved in 3,760,455 (85.5%) enhancer-G links (Figure 4-8A).  

Since H3K27ac is generally considered as a mark for active enhancers, the ABC model is 

actually aimed to predict target genes of active enhancers in a cell type(144). However, we noted 

that some REs from the five cell types overlapped our predicted inactive enhancers in the cell types, 

although the REs were identified by their H3K27ac signals. We thus further investigated the issue 

by applying our LR state predictor to the REs in the five cell types. Of the 20,982 REs in the K562 

cells, while the majority (16,786 or 80.0%) were predicted to be active, the remaining considerable 

4,196 (20.0%) were predicted to be inactive. By contrast, of the 1,178,225 CRMs in TADs, we 

predicted 84,083 (7.1%) to be active enhancers and the remaining 1,094,142 (92.9%) to be inactive 

enhancers in the K562 cells. Moreover, we predicted target genes for 60,164 (71.6%) of the 84,083 

predicted active enhancers and for 179,860 (16.4%) of the 1,094,142 predicted inactive enhancers 

in the K562 cells. Though our LR predictor only used CA as the feature, our predictions are 

supported by the signals of the three active enhancer marks (CA, H3K27ac and H3K4me1) on the 

predicted i) active and inactive REs with either ERo RE-Gm links or ERo RE-Gnm links (Figure 

4-8C), ii) active and inactive enhancers with either ERo enhancer-Gm links or ERo enhancer-Gnm 
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links (Figure 4-9A), iii) active and inactive REs with either ERno-Co RE-G links or CRno RE-G 

links (Figure 4-8D), and iv) active and inactive enhancers with ERno enhancer-G links (Figure 4-

9B). Specifically, in all these cases, the three epigenetic marks are enriched around the centers of 

the predicted active RE or enhancers and are depleted around the centers of predicted inactive REs 

(Figures 4-8C and 4-8D) and enhancers (Figures 4-9A and 4-9B). Hence, our prediction of 

functional states for the REs are as accurate as for the enhancers using CA as the sole feature. 

We reason that if the RE-G links or our enhancer-G links are correctly predicted, then the 

expression levels of the target genes of REs or enhancers should be significantly higher in certain 

cell/tissue types where the REs or enhancers are active than in other certain cell/tissue types where 

the REs or enhancers are inactive. To ensure statistical power in evaluating the RE-G links, we 

only consider REs that are active and inactive in at least five cell/tissue types. Our reasoning holds 

for all our enhancer-G links (Figure 4-7A). By contrast, it holds for only 77.8% of the ERo RE-

Gm links (Figure 4-8E), suggesting that 22.2% of ERo RE-Gm links might be false positives. The 

discrepancy between ERo RE-Gm links and ERo enhancer-Gm arises due to our requirement of a 

single-bp overlap between REs and silencers, potentially leading to differing predictions of their 

functional states. Moreover, of the ERo RE-Gnm links, only 19.7% were identified as significant 

positive regulations at an FDR of 0.1, while the remaining majority (80.3%) might be false 

positives. Furthermore, our ERo enhancers were linked to an average of 19.4 target genes, while 

the overlapping REs were only linked to an average of 1.9 genes. Therefore, it is highly likely that 

the ABC model might overlook some regulations, given the fact that the human genome encodes 

at least 20 times as many CRMs as the genes(19, 48). In addition, only 32.7% of the ERno-Co RE-

G links and 36.7% of the CRno RE-G links (Figure 4-8E), exhibit significant positive regulations 

(FDR of 0.1). Thus, our predictions might have missed some positive regulations predicted by the 
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ABC model, particularly, the significant predictions in the ERno-Co RE-G links and the CRno 

RE-G links. However, the ABC model might have disregarded a much larger number of ERno 

enhancers and their target genes predicted by our method CAPP. Interestingly, we predicted more 

enhancers to regulate a gene than the ABC model (91.2 vs 9.6). This might be due to an intrinsic 

limitation of the ABC model, as it may overlook some regulations due to the reduction in the 

weighted score for each regulation when a large number of enhancers regulate a gene. Considering 

that different methods only take into account a subset of features of up-regulations, both our 

approach and the ABC model merely scratch the surface of capturing the extensive landscape of 

true enhancer-G regulations. 
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Figure 4-8. Comparison of our predicted enhancer-gene links with the RE-gene links predicted by 
the ABC model. A. A cartoon showing the overlaps between the RE-G links and the enhancer-G 
links. Based on the overlaps between the REs and our enhancers, we divide them into different 
categories: ERo enhancers and REs that overlap each other; ERno-Co REs that do not overlap the 
enhancers but overlap our other CRMs; CRno REs that do not overlap any CRMs; and ERno 
enhancers that do not overlap any REs. Accordingly, we also divide the RE-G links and enhancer-
G links into different categories: ERo RE-Gm and ERo enhancer-Gm links are those with 
overlapping enhancers and REs and matched target genes; ERo RE-Gnm and ERo enhancer-Gnm 
links are those with overlapping enhancers and REs but different target genes; ERno-Co RE-G 
links are those for REs not overlapping enhancers but overlapping other CRMs; ERno enhancer-
G links are those for enhancers that do not overlap REs; and CRno RE-G links are those for REs 
that do not overlap any CRMs. B. Density curves of PhyloP scores of the three categories of REs: 
ERo, ERno-Co and CRno. C. Heat maps of ATAC, H3K27ac and H3K4me1 signals of active and 
inactive REs with ERo RE-Gm links or ERo RE-Gnm links in the K562 cells. D. Heat maps of 
ATAC, H3K27ac and H3K4me1 signals of active and inactive REs with ERno-Co RE-G links or 
CRno RE-G links in the K562 cells. The heat maps show the mean signal of each 100 bp window 
in each sequence and the plot above each column of heat maps shows the mean signal of each 
window position across the sequences sampled in the same categories (Materials and Methods). 
The color code for the categories in the density plot above each column is the same with the heat 
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map legends. E. Boxplots of FDR-adjusted p-values for comparing the expression levels of 
putative target genes of the REs with different categories of regulation links in cell/tissue types 
where the REs are active with those in other cell/tissue types where the REs are inactive. The p-
values were calculated by one tailed Mann-Whitney U test as used in our method (CAPP). 

 

Figure 4-9. Heat maps of the three epigenetic marks around our enhancers. A. ATAC, H3K27ac 
and H3K4me1 signals of active and inactive enhancers with ERo enhancer-Gm links or ERo 
enhancer-Gnm links. B. ATAC, H3K27ac and H3K4me1 signals of active and inactive enhancers 
with ERno enhancer-G links. The heat maps show the mean signal of each window in each 
sequence and the density plot shows the mean signal of each window position across the sequences 
sampled in the same categories (Materials and Methods). The color code for the categories in the 
density plot above each column is the same with the heat map legends. 

4.2.11 Comparison of our predicted silencer-gene links with those compiled in the silencerDB 
database 

SilencerDB(113) documents a total of 33,060 validated and 5,045,547 predicted silencers 

(hereafter referred as REs). The predicted REs were collected from the CoSVM(105), the 

gkmSVM method(107) and a variant of gkmSVM called deepSilencer(158). SilencerDB also 

contains non-redundant 86,035 RE-G links predicted by paired expression and chromatin 

accessibility (PECA)(159), involving 79,604 REs and 10,195 target genes. We compared our 

predicted silencer-G (silencer-gene) links with those (hereafter referred as RE-G links) predicted 

A B
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by PECA. Among the RE-gene links, 2,084 have their 1,932 (2.4%) REs overlapping 1,086 (9.4%) 

of our 11,592 silencers with predicted target genes. Like enhancers, we refer these overlapping 

silencers and REs as SRo (Silencer-RE overlapping) REs and SRo silencers, respectively (Figure 

4-10A). Out of the 2,084 SRo RE-G links, 97 (0.1%) also target the same gene as overlapping 

silencers (SRo RE-Gm links), while 1,987 (2.3%) target different genes than overlapping silencers 

(SRo RE-Gnm links). The 1,086 (9.4%) SRo silencers are involved in 3,520 (11.2%) SRo silencer-

G links, of which 55 target the same gene as overlapping REs involved in 55 (0.2%) SRo silencer-

Gm links, while 1,079 target different genes than overlapping REs involved in 3,465 (11.0%) SRo 

silencer-Gnm links. It is important to note that an SRo REs and an SRo silencer can be involved 

in both types of links. Among the RE-G links whose REs do not overlap our silencers, 56,342 

(65.4%) have their REs overlapping our CRMs for which we were unable to predict their target 

genes, and we refer them as SRno-Co REs; the remaining 27,609 (32.2%) have their REs not 

overlapping with our CRMs, and we refer them as CRno REs (Figure 4-10A). As expected, in 

contrast to the REs that overlap with our silencers or other CRMs, the CRno REs are more likely 

selectively neutral (Figure 4-10B), suggesting that more of CRno REs might be false positives 

(Figure 4-10B). Finally, 10,506 (90.6%) of our 11,592 silencers do not overlap the REs, and we 

refer them as SRno (Silencer-RE not overlapping) silencers, which are involved in 27,957 (88.8%) 

silencer-G links (Figure 4-10A). 

As the functional states of the 79,604 REs with target genes predicted by PECA are 

unknown in the cell types, we predicted them using our LR model using CA as the sole feature. In 

K562 cells, 13,832 (17.4%) and 65,772 (82.6%) of the REs are predicted to be active and inactive, 

respectively. Among our 11,592 silencers with predicted target genes, 2,820 (24.3%) are predicted 

to be active, while the remaining 8,772 (75.7%) are deemed inactive in the K562 cells. As expected, 
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predicted active REs (Figures 4-10C and 4-10D) and silencers (Figures 4-11A and 4-11B) are 

enriched for the CA mark, while predicted inactive REs (Figures 4-10C and 4-10D) and silencers 

(Figures 4-11A and 4-11B) are depleted of the CA mark in the cells. However, unlike enhancers, 

there are no discernible patterns between active REs or silencers and inactive REs or silencers in 

other epigenetic marks such as H3K27me3. This suggests that H3K27me3 may not serve as a 

specific active silencer mark, as previously reported in a separate study(105).  

 

Figure 4-10. Comparison of our predicted silencer-gene links with the RE-gene links predicted by 
the PECA from silencerDB. A. A cartoon showing the overlaps between the RE-G links and our 
silencer-G links. Based on the overlaps between the REs and our silencers, we divide them into 
different categories: SRo silencers and REs that overlap each other; SRno-Co REs that do no 
overlap our silencers but overlap our other CRMs; CRno REs that do not overlap with any CRMs; 
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and SRno silencers that do not overlap REs. Accordingly, we also divide the RE-G links and 
silencer-G links into different categories:  SRo silencer-Gm and SRo RE-Gm links are those with 
overlapping silencers and REs and matched target genes; SRo RE-Gnm and SRo silencer-Gnm 
links are those with overlapping silencers and REs but different target genes; SRno-Co RE-G links 
are those for REs not overlapping silencers but overlapping other CRMs, and SRno silencer-G 
links are those for silencers not overlapping REs; CRno RE-G links are those for REs that do not 
overlap any CRMs. B. Density curves of PhyloP scores of the three categories of REs: SRo, SRno-
Co and CRno. C. Heat maps of ATAC and H3K27me3 signals of active and inactive REs with 
SRo RE-Gm links and SRo RE-Gnm links in the K562 cells. D. Heat maps of ATAC and 
H3K27me3 signals of active and inactive REs with SRno-Co RE-G links or CRno RE-G links in 
the K562 cells. The heat maps show the mean signal of each 100 bp window in each sequence and 
the plot above each column of heat maps shows the mean signal of each window position across 
the sequences sampled in the same categories (Materials and Methods). The color code for the 
categories in the density plot above each column is the same with the heat map legends. E. 
Boxplots of FDR-adjusted p-values for comparing the expression levels of putative target genes 
of the REs with different categories of regulation links in cell/tissue types where the REs are active 
with those in cell/tissue types where the REs are inactive. The p-values were calculated by one 
tailed Mann-Whitney U test as used in our method (CAPP). 

 
Figure 4-11. Heat maps of the two epigenetic marks around our silencers. A. ATAC and 
H3K27me3 signals of active and inactive silencers with SRo silencer-Gm links or SRo silencer-
Gnm links. B. ATAC and H3K27me3 signals of active and inactive silencers with SRno silencer-
G links. The heat map shows the mean signal in each window in each sequence and the density 
plot shows the mean signal of each window position across the sampled sequences in the same 
categories (Materials and Methods). The color code for the categories in the density plot above 
each column is the same with the heat map legends. 

A B
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We reason that if the RE-G links or our silencer-G links were correctly predicted, then the 

expression levels of the target genes should be lower in some cell/tissue types where the REs or 

silencers are active than in other some cell/tissue types where the REs or silencers are inactive. To 

ensure statistical power in evaluating the RE-G links, we only consider REs that are active and 

inactive in at least 5 cell/tissue types. Our reasoning holds for all our silencer-G links (Figure 4-

7D). In contrast, it holds for 59.7% of the SRo RE-Gm links (Figure 4-10E), while the remaining 

40.3% might not be correct links. The discrepancy between SRo RE-Gm links and SRo silencer-

Gm links arises due to our requirement of a single-bp overlap between REs and silencers, 

potentially leading to differing predictions of their functional states. Moreover, all the SRo RE-

Gnm, SRno-Co RE-G, and CRno RE-G links do not exhibit significant negative regulation at an 

FDR of 0.1(Figure 4-10E). This suggests that none of these RE-G links are true regulations. 

Notably, our SRo silencers demonstrate an average regulation to 3.2 target genes, while 

overlapping REs are linked to just 1.1 genes on average. It is likely that PECA might overlook 

certain regulations, as a single silencer, on average, tends to regulate multiple target genes(160). 

Despite PECA predicting more regulations than our approach, an overwhelming majority (97.6%) 

diverges from the expected behavior of silencers, and thus, might be false positives. 

4.3 Discussion 

In this chapter, we introduced a new method CAPP to predict the target genes of CRMs. 

Leveraging on our previously predicted map of 1.2M CRMs in the human genome and functional 

states (active and inactive) of the CRMs, CAPP identifies target genes of the predicted CRMs 

within TADs by finding genes within the same TADs, whose expression levels are correlated with 

the functional states of the CRMs across a panel of cell/tissue types, followed by checking whether 

the CRMs and the genes are in close physical proximity as measured by Hi-C data in multiple 
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cell/tissue types. There are a few merits of our method. Firstly, CAPP can potentially enable us to 

predict the target genes of all CRMs in the genome when data are available from a sufficiently 

large number of diverse cell/ tissue types. Even using data in only 107 cell/tissue types in this 

study, we are able to predict target genes for around 20% of the 1.2M CRMs. Clearly, with the 

required data in a larger number of diverse cell/tissue types becoming available, we will be able to 

predict target genes for a higher proportion of the CRMs. Secondly, in addition to Hi-C data in a 

few cell types, CAPP only needs CA and RNA-seq data in a panel of cell types for the prediction, 

thus is highly cost-effective. Thirdly, in addition to target genes of CRMs, CAPP also is able to 

predict the functional types of CRMs as enhancers and/or silencers, the first of its kind, to the best 

of our knowledge. Fourthly, CAPP predicts the functional types of CRMs based on whether their 

functional states exhibit positive or negative correlation with the expression level of their target 

genes, respectively, in a panel of cell/tissue types, thus, overcoming a drawback of our previous 

LR models using three epigenetic marks(149). Fifthly, CAPP evaluates every pair of CRM and 

gene within the same TAD without a fixed distance constraint, allowing it to predict target genes 

located more than 5M bp away from the regulating CRM. This is the first of its kind, to our best 

knowledge, as previous methods predict target genes of candidate enhancers or silencers only in a 

fixed flanking genomic range. In fact, about 20% of our predicted enhancer-gene regulations have 

a regulation distance longer than 5M bp, which could be missed by existing methods that use a 

fixed distance constraint, typically 1~5M bp. Sixthly, although CAPP is aimed to predict cell type 

agnostic sCRNs encoded in the genome, an aCRN in any cell/tissue type can be readily induced 

from the sCRNs by the active CRMs predicted using only CA data in the cell/tissue type. Finally, 

CAPP predicts more CRM-gene links with higher accuracy than existing methods. The expression 

levels of our predicted target genes are significantly positively and negatively correlated with the 
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functional states of the predicted regulating enhancers and silencers, respectively. However, such 

correlations do not hold for a considerable proportion of target genes of enhancers and silencers 

predicted by the state-of-the-art methods, namely the ABC model and PECA, respectively. 

However, in the absence of a large gold standard set for enhancer-gene and silencer-gene 

regulations, it is still difficult to calculate the sensitivity and specificity of each method.  

Based on our predicted enhancer-gene and silencer-gene regulations, we revealed distinct 

properties of various CRM types. Firstly, dual functional CRMs tend to regulate the greatest 

number of genes, followed by exclusive enhancers and exclusive silencers. Secondly, enhancers 

display a higher degree of cooperation in gene regulation than silencers. Thirdly, dual functional 

CRMs tend to regulate more distant genes than exclusive enhancers and exclusive silencers. 

Finally, enhancers prefer to regulate narrowly expressed genes, whereas silencers tend to regulate 

more broadly expressed genes.  

4.4 Conclusion 

In this study, we used a correlation and physical proximity method to predict both the functional 

types and target genes of CRMs simultaneously. Through this approach, we have identified 

millions of enhancer-gene regulations and tens of thousands of silencer-gene regulations. These 

findings highlight the diverse characteristics of different types of CRMs, their target genes, and 

their regulation links, providing insights into the distinct regulatory behaviors of exclusive 

enhancers, exclusive silencers, and dual functional CRMs. Importantly, our method surpasses 

traditional closest gene assignments and existing state-of-the-art methods, marking a notable 

advancement in predicting target genes and CRM functional types. 

4.5 Materials and Methods  

4.5.1 The Datasets 
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We obtained a comprehensive set of 1,225,115 predicted CRMs in the human genome from our 

prior work(19).  We downloaded Hi-C data of six cell lines from the ENCODE(74) or 4D 

Nucleome(161) data portals (Supplementary Table S4-3). We downloaded DNase-seq, ATAC-seq 

and TF ChIP-seq data of the 67 human cell/tissue types for training from Cistrome Datasets 

Browser(110, 111) (Supplementary Table S4-4 and S4-5). We downloaded ATAC-seq data and 

RNA-seq data of the 107 cell/tissue types for predicting from ENCODE data portal(74) 

(Supplementary Table S4-6).  

4.5.2 Generation of TADs 

TADs were generated in each cell line at various resolutions (5K bp, 10K bp, 15K bp, 25K bp, 

50K bp and 100K bp) using the Arrowhead algorithm of Juicer tools(76) version 2.17.00 with KR 

normalization method. We subsequently merged overlapping TADs from different resolutions into 

larger domains in each cell line using the bedtools2/2.29.0 merge command. 

4.5.3 Identifications of CRMs within TADs 

We identified the CRMs that overlap at least one bp with the merged TADs using the 

bedtools2/2.29.0 intersect command and ended up with 1,178,225 CRMs for further analysis.  

4.5.4 CA feature score 

For a sequence 𝑞, we define its raw CA feature score as: 

𝐹<4/(𝑞) =]𝑟+𝑠+ 	
A

+>?

(4 − 1) 

where N is the number of peaks of CA mapping to 𝑞 at least 50% of either one, 𝑟+ the ratio of 

overlapping length between 𝑞 and the 𝑖78 peak of CA over the length of the 𝑖78	peak of  CA, 𝑠+ 	the 

signal of the 𝑖78	peak of CA quantified by MACS2(128, 129). We then normalized the raw feature 

score in each cell/tissue type by the min-max normalization, i.e., 
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𝐹(𝑞) =
𝐹<4/(𝑞) − 𝑚𝑖𝑛	(𝐹<4/(𝑄))

𝑚𝑎𝑥R𝐹<4/(𝑄)S 	− 𝑚𝑖𝑛	(𝐹<4/(𝑄))
(4 − 2) 

where 𝑄 denotes all candidate sequences in the genome, 𝑚𝑖𝑛	(𝐹<4/(𝑄)) and 𝑚𝑎𝑥	(𝐹<4/(𝑄)) the 

minimum and maximum raw score of CA over Q in the cell/tissue type.  

4.5.5 Quantification of gene expression levels  

We computed log(TPM+1) for a gene as its expression level in a cell/tissue type. If multiple RNA-

seq datasets were available for a cell/tissue type, we first computed the average expression level 

(mean(TPM)) of the gene across all the datasets and then computed the log(mean(TPM)+1).  

4.5.6 Prediction of functional states of sequences  

We employed a simple LR model using CA as the only feature to predict the functional state of 

the 1.2M CRMs within the TADs in each of the 107 cell/tissue types. A CRM in a cell/tissue type 

is considered active if its activation probability exceeds 0.5. 

4.5.6.1 Construction of positive and negative sets: In each of the 67 cell/tissue types with the 

required data available, we selected the CRMs as the positive set that overlap TF binding peaks. 

At the same time, we randomly selected predicted non-CRM candidates with matched numbers of 

the positive set as the negative set in the cell/tissue type. We pooled the positive and negative sets 

in all the cell/tissue types to construct a comprehensive positive set and a negative set. The 

resulting positive set contains 1,784,345 CRMs and the negative set contains the same numbers of 

non-CRM candidates. Thus, the positive sets and negative sets are well-balanced. 

4.5.6.2 Model training and evaluation: Ten-fold cross-validation was conducted to train and 

assess model performance. The models were implemented using sci-kit learn v.0.24.2 and the code 

is available at https://github.com/sisyyuan/Target-Gene-Prediction. 

4.5.7 Prediction of target genes for CRMs  

https://github.com/sisyyuan/Target-Gene-Prediction
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We predict target genes for the CRMs and at the same time identify their functional types as 

enhancers and/or silencers by using a one-tailed Mann-Whitney U test, with Benjamini-Hochberg 

(B-H) multiple hypothesis correction, followed by validation of physical proximity between the 

CRMs and the target genes using Hi-C interaction data in any of the six cell/tissue types 

(Supplementary Table S4-3). Assuming that the regulation of a gene by a CRM remains consistent 

across various cell/tissue types, then when the CRM is activated in a cell/tissue type, the expression 

level of the gene will elevate if the CRM functions as an enhancer, or will decrease if the CRM 

functions as a silencer. We adopted a statistical approach to assess the significance of such 

correlation.  

4.5.7.1 Step 1: Test correlation between CRM activity and gene expression using Mann-

Whitney U Test 

For each pair of a CRM 𝑐 and a gene 𝑔 in a TAD 𝐷, we perform two one-tailed Mann-Whitney U 

Tests based on two datasets 𝐸𝑥𝑝BCDEF;(𝑔, 𝑐)  and 𝐸𝑥𝑝EGBCDEF;(𝑔, 𝑐),  where 𝐸𝑥𝑝4H7+I%  is the 

expression levels of 𝑔  in a minimum of 𝑡  cell/tissue types where 𝑐  is active (group A), and 

𝐸𝑥𝑝EG4H7+I% is the expression levels of 𝑔 in a minimum of 𝑡 cell/tissue types where 𝑐 is inactive 

(group B). The first test is to evaluate whether 𝑐 function as an enhancer of 𝑔. Thus, the null 

hypothesis 𝐻J is: the median of group A is the same as or smaller than the median of group B, and 

the alternative hypothesis 𝐻? is: the median of group A is greater than the median of group B. The 

second test is to evaluate whether 𝑐 function as a silencer of 𝑔. Thus, the null hypothesis 𝐻J is: the 

median of group A is the same as or greater than that of group B, and the alternative hypothesis 

𝐻? is: the median of group A is smaller than the median of group B. The Mann-Whitney U Test 

function “mannwhitneyu” from the scipy.stat library in python3 was used to conduct the tests. 

Here, to ensure robust statistical analysis, we only consider the CRMs that are predicted to be 
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active and inactive in at least 𝑡 cell/tissue types. We applied the B-H procedure “fdr_bh” from the 

“statsmodels.stats.multitest” library in python3 to correct the p-values with an FDR of 0.1.  

In this study, we performed the tests based on the predicted functional states of the CRMs 

and experimentally measured expression levels of the genes in the 107 cell/tissue types, and we 

set 𝑡=5 to ensure robust statistical analysis. In other words, we only considered the CRMs that 

were active and inactive in a minimum of five cell/tissue types.  

4.5.7.2 Step 2: Test for physical contact  

As correlation does not guarantee causal regulation relationship, for each significant CRM-gene 

correlation, we checked whether the CRM and the gene have physical contact.  We define a CRM 

and a gene to have physical contact, if both the CRM and target gene can be mapped to the 

respective ends of at least one pair of Hi-C reads from any of the six cell/tissue types 

(Supplementary Table S4-3), with at least one bp overlap. The Hi-C contact matrices were 

generated using the Straw algorithm(162) from the hicstraw library in python3 with SCALE 

normalization method at a resolution of 2000 bp.  

4.5.8 Closest neighbor assignment to CRMs 

For each CRM under consideration, we assign the gene whose TSS is linearly closest to either end 

of the CRM as its CNA target gene. In cases where a CRM overlaps a gene’s TSS, we consider 

the gene as the CRM’s target genes. Obviously, when TSSs of multiple genes are located within a 

CRM, multiple target genes will be assigned to the CRM.  

4.5.9 The 𝝉 index 

We used the 𝜏  index(157, 163) to measure the cell/tissue specificity of a gene based on its 

expression profiles across a panel of cell/tissue types, defined as: 

𝜏(𝑔) =
∑ (1 − 𝑒K+)9
+>?

𝑁 − 1 	, 𝑒′+ =
𝑒+

	 LBM
?NON9 	(𝑒O)

(4 − 3) 
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where 𝑒+  denotes the expression level of gene g  in cell type 𝑖  , 𝑒′+  the expression level of g 

normalized by the maximum of the expression levels of g	in 𝑁 cell/tissue types. 

4.5.10 Heat maps of epigenetic marks 

Heat maps of epigenetic mark signals were generated using the “EnrichedHeatmap” package(130) 

within R version 4.2.2. For a mark on each element in a set of sequences, we considered a 2K bp 

extension on either side of the element, and computed the mean signal of the mark in a 100 bp 

sliding window along the element (lower heat maps).  For a mark in a set of sequences, we also 

computed the mean of the mean signal of the mark in the 100-bp sliding windows across all the 

sequences in the set (upper line annotations). The elements in each set of sequences were organized 

based on their CA signal in descending order.  

4.6 Availability of data and materials 

The datasets and code supporting the conclusions of this chapter are available at 

https://github.com/sisyyuan/Target-Gene-Prediction and are included within the chapter and its 

supplementary tables at https://github.com/sisyyuan/CRM_Dissertation. 
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Chapter 5  
CONCLUSION AND FUTURE WORK  

In this dissertation, we analyzed the organization and architecture of predicted CRMs in the human 

and mouse genomes, and developed computational methods for predicting functional types, states, 

and target genes of CRMs using few functional genomics data.   

We revealed common rules for the organization and architecture of CRMs in the human 

and mouse genomes. CRM abundance on a chromosome correlates with the size and gene 

abundance on the chromosome. Like genes, CRMs also are highly unevenly distributed along 

chromosomes, forming “islands” and “deserts”. CRMs can be classified into two categories CPC 

and CPL depending on whether they overlap TSSs or not. CPC CRMs are generally longer than 

CPL CRMs. Within CRMs, TFBSs have extensive overlaps, forming islands, suggesting potential 

competitive or cooperative binding of different TFs. Finally, the spacers between TFBS islands 

exhibit similar evolutionary constraints to TFBS islands, indicating their alternative functional 

roles beyond direct TF binding in transcriptional regulation. 

Our RL models are able to simultaneously predict the functional states and types of CRMs 

in any cell/tissue types using only five epigenetic marks data. Applying the models to 56 human 

cell/tissue types with the required data available, we revealed different types of CRMs: 

predominant enhancers, predominant silencers and dual functional CRMs. Different types of 

CRMs display distinct properties in lengths and TFBS densities, reflecting the complexity of their 

functions. Moreover, we found that both dual functional CRMs and silencers might be more 

prevalent than previously assumed. 

Our target gene prediction method CAPP is able to not only predict target genes, but also 

more accurately predict functional types of CRMs using only CA and RNA-seq data in a panel of 

cell/tissue types plus Hi-C data in few cell lines. Applying CAPP to 107 human cell/tissue types, 
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we predict target genes for 20% of the 1.2M CRMs, of which 4.5% function as both enhancers and 

silencers (dual functional CRMs), 95.2% as exclusive enhancers and 0.3% as exclusive silencers. 

The different types of these CRMs show distinct properties in the numbers and expression patterns 

of their target genes as well as regulatory lengths. CAPP outperforms state-of-the-art methods, and 

thus represents a significant advancement in predicting target genes and functional types of CRMs. 

In the future, we will further our research by focusing on the following issues. Firstly, while 

predicting functional types and states of CRMs, we utilized cell/tissue type data, which aggregated 

signals from a population of not necessarily a homogeneous cell type, and thus lacked single-cell 

resolution. Integrating single-cell multi-omics data in future analyses promises more precise CRM 

functional predictions across diverse cellular contexts. Secondly, although we have identified 

CRMs as enhancers and silencers, understanding how they cooperatively regulate their target 

genes remains elusive. Thus, further studies are needed to unveil intricate gene regulatory networks.  

Thirdly, as complex traits including diseases are mainly caused by variation in CRMs, integration 

of GWAS data with CRMs and their functional states and target genes presents an opportunity to 

identify causal non-coding variants of diseases. Revealing the chains of events linking causal non-

coding variants to diseases within CRM-gene regulatory networks would uncover key players that 

could be therapeutically targeted, offering novel disease treatments.  Lastly, establishing publicly 

accessible databases housing CRM maps as well as their functional types, states, and target genes 

would foster data sharing and collaboration within the research community. 

 

 

 



 109 

REFERENCE 

1. Robert F, Pelletier J. Exploring the Impact of Single-Nucleotide Polymorphisms on 
Translation. Frontiers in Genetics. 2018;9. 
2. Zhang F, Lupski JR. Non-coding genetic variants in human disease. Hum Mol Genet. 
2015;24(R1):R102-10. 
3. Kumar V, Westra HJ, Karjalainen J, Zhernakova DV, Esko T, Hrdlickova B, et al. Human 
disease-associated genetic variation impacts large intergenic non-coding RNA expression. PLoS 
Genet. 2013;9(1):e1003201. 
4. Giral H, Landmesser U, Kratzer A. Into the Wild: GWAS Exploration of Non-coding 
RNAs. Front Cardiovasc Med. 2018;5:181. 
5. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, et al. Potential 
etiologic and functional implications of genome-wide association loci for human diseases and 
traits. Proc Natl Acad Sci U S A. 2009;106(23):9362-7. 
6. Ramos EM, Hoffman D, Junkins HA, Maglott D, Phan L, Sherry ST, et al. Phenotype-
Genotype Integrator (PheGenI): synthesizing genome-wide association study (GWAS) data with 
existing genomic resources. Eur J Hum Genet. 2014;22(1):144-7. 
7. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic 
Localization of Common Disease-Associated Variation in Regulatory DNA. Science. 
2012;337(6099):1190-5. 
8. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 Years of 
GWAS Discovery: Biology, Function, and Translation. Am J Hum Genet. 2017;101(1):5-22. 
9. Huang D, Ovcharenko I. Enhancer-silencer transitions in the human genome. Genome Res. 
2022;32(3):437-48. 
10. Erceg J, Pakozdi T, Marco-Ferreres R, Ghavi-Helm Y, Girardot C, Bracken AP, et al. Dual 
functionality of cis-regulatory elements as developmental enhancers and Polycomb response 
elements. Gene Dev. 2017;31(6):590-602. 
11. Hardison RC, Taylor J. Genomic approaches towards finding cis-regulatory modules in 
animals. Nat Rev Genet. 2012;13(7):469-83. 
12. Suryamohan K, Halfon MS. Identifying transcriptional cis-regulatory modules in animal 
genomes. Wiley Interdiscip Rev Dev Biol. 2015;4(2):59-84. 
13. Chen D, Lei EP. Function and regulation of chromatin insulators in dynamic genome 
organization. Curr Opin Cell Biol. 2019;58:61-8. 
14. Liu L, Jin G, Zhou X. Modeling the relationship of epigenetic modifications to 
transcription factor binding. Nucleic Acids Res. 2015;43(8):3873-85. 
15. Wang M, Zhang K, Ngo V, Liu C, Fan S, Whitaker JW, et al. Identification of DNA motifs 
that regulate DNA methylation. Nucleic Acids Res. 2019;47(13):6753-68. 
16. Hoellinger T, Mestre C, Aschard H, Le Goff W, Foissac S, Faraut T, et al. Enhancer/gene 
relationships: Need for more reliable genome-wide reference sets. Front Bioinform. 
2023;3:1092853. 
17. Zhang ZD, Paccanaro A, Fu Y, Weissman S, Weng Z, Chang J, et al. Statistical analysis 
of the genomic distribution and correlation of regulatory elements in the ENCODE regions. 
Genome Res. 2007;17(6):787-97. 
18. Symmons O, Uslu VV, Tsujimura T, Ruf S, Nassari S, Schwarzer W, et al. Functional and 
topological characteristics of mammalian regulatory domains. Genome Res. 2014;24(3):390-400. 
19. Ni P, Su Z. Accurate prediction of cis-regulatory modules reveals a prevalent regulatory 
genome of humans. NAR Genom Bioinform. 2021;3(2):lqab052. 



 110 

20. Ni P, Moe J, Su Z. Accurate prediction of functional states of cis-regulatory modules 
reveals common epigenetic rules in humans and mice. BMC Biol. 2022;20(1):221. 
21. Ni P, Wilson D, Su Z. A map of cis-regulatory modules and constituent transcription factor 
binding sites in 80% of the mouse genome. BMC Genomics. 2022;23(1):714. 
22. Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, et al. High-resolution 
mapping and characterization of open chromatin across the genome. Cell. 2008;132(2):311-22. 
23. Song L, Zhang Z, Grasfeder LL, Boyle AP, Giresi PG, Lee BK, et al. Open chromatin 
defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome 
Res. 2011;21(10):1757-67. 
24. Crawford GE, Holt IE, Whittle J, Webb BD, Tai D, Davis S, et al. Genome-wide mapping 
of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res. 
2006;16(1):123-31. 
25. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native 
chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins 
and nucleosome position. Nat Methods. 2013;10(12):1213-8. 
26. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, et al. High-resolution 
profiling of histone methylations in the human genome. Cell. 2007;129(4):823-37. 
27. Catarino RR, Stark A. Assessing sufficiency and necessity of enhancer activities for gene 
expression and the mechanisms of transcription activation. Genes Dev. 2018;32(3-4):202-23. 
28. Kheradpour P, Ernst J, Melnikov A, Rogov P, Wang L, Zhang X, et al. Systematic 
dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel 
reporter assay. Genome Res. 2013;23(5):800-11. 
29. Dogan N, Wu W, Morrissey CS, Chen KB, Stonestrom A, Long M, et al. Occupancy by 
key transcription factors is a more accurate predictor of enhancer activity than histone 
modifications or chromatin accessibility. Epigenetics & chromatin. 2015;8:16. 
30. Arbel H, Basu S, Fisher WW, Hammonds AS, Wan KH, Park S, et al. Exploiting regulatory 
heterogeneity to systematically identify enhancers with high accuracy. Proc Natl Acad Sci U S A. 
2019;116(3):900-8. 
31. Kwasnieski JC, Fiore C, Chaudhari HG, Cohen BA. High-throughput functional testing of 
ENCODE segmentation predictions. Genome Res. 2014;24(10):1595-602. 
32. Kleftogiannis D, Kalnis P, Bajic VB. DEEP: a general computational framework for 
predicting enhancers. Nucleic Acids Res. 2015;43(1):e6. 
33. Podsiadlo A, Wrzesien M, Paja W, Rudnicki W, Wilczynski B. Active enhancer positions 
can be accurately predicted from chromatin marks and collective sequence motif data. BMC Syst 
Biol. 2013;7 Suppl 6:S16. 
34. Belton JM, McCord RP, Gibcus JH, Naumova N, Zhan Y, Dekker J. Hi-C: a 
comprehensive technique to capture the conformation of genomes. Methods. 2012;58(3):268-76. 
35. Li G, Cai L, Chang H, Hong P, Zhou Q, Kulakova EV, et al. Chromatin Interaction 
Analysis with Paired-End Tag (ChIA-PET) sequencing technology and application. BMC 
Genomics. 2014;15 Suppl 12(Suppl 12):S11. 
36. Sikora-Wohlfeld W, Ackermann M, Christodoulou EG, Singaravelu K, Beyer A. 
Assessing computational methods for transcription factor target gene identification based on ChIP-
seq data. PLoS Comput Biol. 2013;9(11):e1003342. 
37. Fishilevich S, Nudel R, Rappaport N, Hadar R, Plaschkes I, Iny Stein T, et al. GeneHancer: 
genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford). 
2017;2017. 



 111 

38. Sheffield NC, Thurman RE, Song L, Safi A, Stamatoyannopoulos JA, Lenhard B, et al. 
Patterns of regulatory activity across diverse human cell types predict tissue identity, transcription 
factor binding, and long-range interactions. Genome Res. 2013;23(5):777-88. 
39. Silva TC, Coetzee SG, Gull N, Yao L, Hazelett DJ, Noushmehr H, et al. ELMER v.2: an 
R/Bioconductor package to reconstruct gene regulatory networks from DNA methylation and 
transcriptome profiles. Bioinformatics. 2019;35(11):1974-7. 
40. He B, Chen C, Teng L, Tan K. Global view of enhancer-promoter interactome in human 
cells. Proc Natl Acad Sci U S A. 2014;111(21):E2191-9. 
41. Hariprakash JM, Ferrari F. Computational Biology Solutions to Identify Enhancers-target 
Gene Pairs. Comput Struct Biotechnol J. 2019;17:821-31. 
42. Kielbasa SM, Bluthgen N, Fahling M, Mrowka R. Targetfinder.org: a resource for 
systematic discovery of transcription factor target genes. Nucleic Acids Res. 2010;38(Web Server 
issue):W233-8. 
43. Zhao C, Li X, Hu H. PETModule: a motif module based approach for enhancer target gene 
prediction. Sci Rep. 2016;6:30043. 
44. Hafez D, Karabacak A, Krueger S, Hwang YC, Wang LS, Zinzen RP, et al. McEnhancer: 
predicting gene expression via semi-supervised assignment of enhancers to target genes. Genome 
Biol. 2017;18(1):199. 
45. Gasperini M, Tome JM, Shendure J. Towards a comprehensive catalogue of validated and 
target-linked human enhancers. Nat Rev Genet. 2020;21(5):292-310. 
46. Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M. An integrated 
encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57-74. 
47. Stamatoyannopoulos JA. What does our genome encode? Genome Res. 2012;22(9):1602-
11. 
48. Consortium EP, Moore JE, Purcaro MJ, Pratt HE, Epstein CB, Shoresh N, et al. Expanded 
encyclopaedias of DNA elements in the human and mouse genomes. Nature. 2020;583(7818):699-
710. 
49. Yue F, Cheng Y, Breschi A, Vierstra J, Wu W, Ryba T, et al. A comparative encyclopedia 
of DNA elements in the mouse genome. Nature. 2014;515(7527):355-64. 
50. Sharov AA, Dudekula DB, Ko MS. CisView: a browser and database of cis-regulatory 
modules predicted in the mouse genome. DNA Res. 2006;13(3):123-34. 
51. Vierstra J, Rynes E, Sandstrom R, Zhang M, Canfield T, Hansen RS, et al. Mouse 
regulatory DNA landscapes reveal global principles of cis-regulatory evolution. Science. 
2014;346(6212):1007-12. 
52. Davidson EH. The Regulatory Genome: Gene Regulatory Networks In Development And 
Evolution. Amsterdam: Academic Press; 2006. 
53. Biggin MD. Animal transcription networks as highly connected, quantitative continua. Dev 
Cell. 2011;21(4):611-26. 
54. Watson LC, Kuchenbecker KM, Schiller BJ, Gross JD, Pufall MA, Yamamoto KR. The 
glucocorticoid receptor dimer interface allosterically transmits sequence-specific DNA signals. 
Nat Struct Mol Biol. 2013;20(7):876-83. 
55. King DM, Hong CKY, Shepherdson JL, Granas DM, Maricque BB, Cohen BA. Synthetic 
and genomic regulatory elements reveal aspects of cis-regulatory grammar in mouse embryonic 
stem cells. Elife. 2020;9. 
56. Szabo Q, Bantignies F, Cavalli G. Principles of genome folding into topologically 
associating domains. Sci Adv. 2019;5(4). 



 112 

57. Karnuta JM, Scacheri PC. Enhancers: bridging the gap between gene control and human 
disease. Hum Mol Genet. 2018;27(R2):R219-r27. 
58. Consortium F, the RP, Clst, Forrest AR, Kawaji H, Rehli M, et al. A promoter-level 
mammalian expression atlas. Nature. 2014;507(7493):462-70. 
59. Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, et al. An atlas 
of active enhancers across human cell types and tissues. Nature. 2014;507(7493):455-61. 
60. Visel A, Minovitsky S, Dubchak I, Pennacchio LA. VISTA Enhancer Browser--a database 
of tissue-specific human enhancers. Nucleic Acids Res. 2007;35(Database issue):D88-92. 
61. Levine M, Tjian R. Transcription regulation and animal diversity. Nature. 
2003;424(6945):147-51. 
62. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral substitution 
rates on mammalian phylogenies. Genome Res. 2010;20(1):110-21. 
63. Huang YF, Gulko B, Siepel A. Fast, scalable prediction of deleterious noncoding variants 
from functional and population genomic data. Nat Genet. 2017;49(4):618-24. 
64. Meuleman W, Muratov A, Rynes E, Halow J, Lee K, Bates D, et al. Index and biological 
spectrum of human DNase I hypersensitive sites. Nature. 2020;584(7820):244-51. 
65. Vierstra J, Lazar J, Sandstrom R, Halow J, Lee K, Bates D, et al. Global reference mapping 
of human transcription factor footprints. Nature. 2020;583(7818):729-36. 
66. Zerbino DR, Wilder SP, Johnson N, Juettemann T, Flicek PR. The ensembl regulatory 
build. Genome Biol. 2015;16:56.(doi):10.1186/s13059-015-0621-5. 
67. Andersson R, Sandelin A, Danko CG. A unified architecture of transcriptional regulatory 
elements. Trends Genet. 2015;31(8):426-33. 
68. Kim TK, Shiekhattar R. Architectural and Functional Commonalities between Enhancers 
and Promoters. Cell. 2015;162(5):948-59. 
69. Li XY, Thomas S, Sabo PJ, Eisen MB, Stamatoyannopoulos JA, Biggin MD. The role of 
chromatin accessibility in directing the widespread, overlapping patterns of Drosophila 
transcription factor binding. Genome Biol. 2011;12(4):R34. 
70. Thurmond J, Goodman JL, Strelets VB, Attrill H, Gramates LS, Marygold SJ, et al. 
FlyBase 2.0: the next generation. Nucleic acids research. 2019;47(D1):D759-D65. 
71. Kamar RI, Banigan EJ, Erbas A, Giuntoli RD, De La Cruz MO, Johnson RC, et al. 
Facilitated dissociation of transcription factors from single DNA binding sites. Proceedings of the 
National Academy of Sciences. 2017;114(16):E3251-E7. 
72. Panne D, Maniatis T, Harrison SC. Crystal structure of ATF‐2/c‐Jun and IRF‐3 bound to 
the interferon‐β enhancer. The EMBO journal. 2004;23(22):4384-93. 
73. Ni P, Su Z. PCRMS: a database of predicted cis-regulatory modules and constituent 
transcription factor binding sites in genomes. Database : the journal of biological databases and 
curation. 2022;2022:baac024. 
74. Luo Y, Hitz BC, Gabdank I, Hilton JA, Kagda MS, Lam B, et al. New developments on 
the Encyclopedia of DNA Elements (ENCODE) data portal. Nucleic Acids Res. 
2020;48(D1):D882-D9. 
75. Bonferroni C. Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R 
Istituto Superiore di Scienze Economiche e Commericiali di Firenze. 1936;8: 3-62. 
76. Durand NC, Shamim MS, Machol I, Rao SS, Huntley MH, Lander ES, et al. Juicer 
Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. Cell Syst. 
2016;3(1):95-8. 



 113 

77. Knight PA, Ruiz D. A fast algorithm for matrix balancing. Ima J Numer Anal. 
2013;33(3):1029-47. 
78. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et 
al. Comprehensive mapping of long-range interactions reveals folding principles of the human 
genome. Science. 2009;326(5950):289-93. 
79. Johnson DS, Mortazavi A, Myers RM, Wold B. Genome-wide mapping of in vivo protein-
DNA interactions. Science. 2007;316(5830):1497-502. 
80. Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, et al. Genome-wide 
profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel 
sequencing. Nat Methods. 2007;4(8):651-7. 
81. Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, et al. Integration of external signaling 
pathways with the core transcriptional network in embryonic stem cells. Cell. 2008;133(6):1106-
17. 
82. Belton JM, McCord RP, Gibcus JH, Naumova N, Zhan Y, Dekker J. Hi-C: A 
comprehensive technique to capture the conformation of genomes. Methods. 2012. 
83. Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, et al. The transcriptional 
landscape of the yeast genome defined by RNA sequencing. Science. 2008;320(5881):1344-9. 
84. Consortium TEP. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science. 
2004;306(5696):636-40. 
85. Stamatoyannopoulos JA, Snyder M, Hardison R, Ren B, Gingeras T, Gilbert DM, et al. An 
encyclopedia of mouse DNA elements (Mouse ENCODE). Genome Biol. 2012;13(8):418. 
86. Snyder MP, Gingeras TR, Moore JE, Weng Z, Gerstein MB, Ren B, et al. Perspectives on 
ENCODE. Nature. 2020;583(7818):693-8. 
87. Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, 
et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol. 2010;28(10):1045-
8. 
88. Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, et al. 
Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317-30. doi: 
10.1038/nature14248. 
89. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45(6):580-5. doi: 
10.1038/ng.2653. 
90. Forrest AR, Kawaji H, Rehli M, Baillie JK, de Hoon MJ, Haberle V, et al. A promoter-
level mammalian expression atlas. Nature. 2014;507(7493):462-70. 
91. Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, et al. An atlas 
of active enhancers across human cell types and tissues. Nature. 2014;507(7493):455-61. 
92. Paul DS, Soranzo N, Beck S. Functional interpretation of non-coding sequence variation: 
concepts and challenges. Bioessays. 2014;36(2):191-9. doi: 10.1002/bies.201300126. Epub 2013 
Dec 5. 
93. Kleftogiannis D, Kalnis P, Bajic VB. Progress and challenges in bioinformatics approaches 
for enhancer identification. BriefBioinform. 2016;17(6):967-79. 
94. Consortium EP. An integrated encyclopedia of DNA elements in the human genome. 
Nature. 2012;489(7414):57-74. 
95. Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, et al. Mapping 
and analysis of chromatin state dynamics in nine human cell types. Nature. 2011;473(7345):43-9. 



 114 

96. He Y, Gorkin DU, Dickel DE, Nery JR, Castanon RG, Lee AY, et al. Improved regulatory 
element prediction based on tissue-specific local epigenomic signatures. Proc Natl Acad Sci U S 
A. 2017;114(9):E1633-e40. 
97. Rajagopal N, Xie W, Li Y, Wagner U, Wang W, Stamatoyannopoulos J, et al. RFECS: a 
random-forest based algorithm for enhancer identification from chromatin state. PLoS Comput 
Biol. 2013;9(3):e1002968. 
98. Roadmap Epigenomics C, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. 
Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317-30. 
99. Bailey TL. STREME: Accurate and versatile sequence motif discovery. Bioinformatics. 
2021;37(18):2834-40. 
100. Li Y, Ni P, Zhang S, Li G, Su Z. ProSampler: an ultrafast and accurate motif finder in large 
ChIP-seq datasets for combinatory motif discovery. Bioinformatics. 2019;35(22):4632-9. 
101. Moore JE, Purcaro MJ, Pratt HE, Epstein CB, Shoresh N, Adrian J, et al. Expanded 
encyclopaedias of DNA elements in the human and mouse genomes. Nature. 2020;583(7818):699-
710. 
102. Halfon MS. Silencers, Enhancers, and the Multifunctional Regulatory Genome. Trends 
Genet. 2020;36(3):149-51. 
103. Pang BX, van Weerd JH, Hamoen FL, Snyder MP. Identification of non-coding silencer 
elements and their regulation of gene expression. Nat Rev Mol Cell Bio. 2023;24(6):383-95. 
104. Gisselbrecht SS, Palagi A, Kurland JV, Rogers JM, Ozadam H, Zhan Y, et al. 
Transcriptional Silencers in Drosophila Serve a Dual Role as Transcriptional Enhancers in 
Alternate Cellular Contexts. Mol Cell. 2020;77(2):324-37 e8. 
105. Huang D, Petrykowska HM, Miller BF, Elnitski L, Ovcharenko I. Identification of human 
silencers by correlating cross-tissue epigenetic profiles and gene expression. Genome Res. 
2019;29(4):657-67. 
106. Pang B, Snyder MP. Systematic identification of silencers in human cells. Nat Genet. 
2020;52(3):254-63. 
107. Doni Jayavelu N, Jajodia A, Mishra A, Hawkins RD. Candidate silencer elements for the 
human and mouse genomes. Nat Commun. 2020;11(1):1061. 
108. Soares LM, He PC, Chun Y, Suh H, Kim T, Buratowski S. Determinants of Histone H3K4 
Methylation Patterns. Mol Cell. 2017;68(4):773-85 e6. 
109. Wang H, Fan Z, Shliaha PV, Miele M, Hendrickson RC, Jiang X, et al. H3K4me3 regulates 
RNA polymerase II promoter-proximal pause-release. Nature. 2023;615(7951):339-48. 
110. Mei S, Qin Q, Wu Q, Sun H, Zheng R, Zang C, et al. Cistrome Data Browser: a data portal 
for ChIP-Seq and chromatin accessibility data in human and mouse. Nucleic Acids Res. 
2017;45(D1):D658-d62. 
111. Zheng R, Wan C, Mei S, Qin Q, Wu Q, Sun H, et al. Cistrome Data Browser: expanded 
datasets and new tools for gene regulatory analysis. Nucleic Acids Res. 2019;47(D1):D729-D35. 
112. Friedman RZ, Granas DM, Myers CA, Corbo JC, Cohen BA, White MA. Information 
content differentiates enhancers from silencers in mouse photoreceptors. Elife. 2021;10. 
113. Zeng W, Chen S, Cui X, Chen X, Gao Z, Jiang R. SilencerDB: a comprehensive database 
of silencers. Nucleic Acids Res. 2021;49(D1):D221-D8. 
114. Zentner GE, Tesar PJ, Scacheri PC. Epigenetic signatures distinguish multiple classes of 
enhancers with distinct cellular functions. Genome Res. 2011;21(8):1273-83. 



 115 

115. Yaragatti M, Basilico C, Dailey L. Identification of active transcriptional regulatory 
modules by the functional assay of DNA from nucleosome-free regions. Genome Res. 
2008;18(6):930-8. 
116. Hansen TJ, Hodges E. ATAC-STARR-seq reveals transcription factor-bound activators 
and silencers across the chromatin accessible human genome. Genome Res. 2022;32(8):1529-41. 
117. Ninova M, Fejes Tóth K, Aravin AA. The control of gene expression and cell identity by 
H3K9 trimethylation. Development. 2019;146(19). 
118. Padeken J, Methot SP, Gasser SM. Establishment of H3K9-methylated heterochromatin 
and its functions in tissue differentiation and maintenance. Nat Rev Mol Cell Biol. 2022;23(9):623-
40. 
119. Cai Y, Zhang Y, Loh YP, Tng JQ, Lim MC, Cao Z, et al. H3K27me3-rich genomic regions 
can function as silencers to repress gene expression via chromatin interactions. Nat Commun. 
2021;12(1):719. 
120. Sethi A, Gu M, Gumusgoz E, Chan L, Yan KK, Rozowsky J, et al. Supervised enhancer 
prediction with epigenetic pattern recognition and targeted validation. Nat Methods. 
2020;17(8):807-14. 
121. Rao S, Ahmad K, Ramachandran S. Cooperative binding between distant transcription 
factors is a hallmark of active enhancers. Mol Cell. 2021;81(8):1651-65.e4. 
122. Ni P, Wu S, Su Z. Underlying causes for prevalent false positives and false negatives in 
STARR-seq data. NAR Genom Bioinform. 2023;5(3):lqad085. 
123. Arnold CD, Gerlach D, Stelzer C, Boryn LM, Rath M, Stark A. Genome-wide quantitative 
enhancer activity maps identified by STARR-seq. Science. 2013;339(6123):1074-7. 
124. Wang X, He L, Goggin SM, Saadat A, Wang L, Sinnott-Armstrong N, et al. High-
resolution genome-wide functional dissection of transcriptional regulatory regions and nucleotides 
in human. Nat Commun. 2018;9(1):5380. 
125. Liu Y, Yu S, Dhiman VK, Brunetti T, Eckart H, White KP. Functional assessment of 
human enhancer activities using whole-genome STARR-sequencing. Genome Biol. 
2017;18(1):219. 
126. Inoue F, Kircher M, Martin B, Cooper GM, Witten DM, McManus MT, et al. A systematic 
comparison reveals substantial differences in chromosomal versus episomal encoding of enhancer 
activity. Genome Res. 2017;27(1):38-52. 
127. Klein JC, Agarwal V, Inoue F, Keith A, Martin B, Kircher M, et al. A systematic evaluation 
of the design and context dependencies of massively parallel reporter assays. Nat Methods. 
2020;17(11):1083-91. 
128. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based 
analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137. 
129. Feng J, Liu T, Qin B, Zhang Y, Liu XS. Identifying ChIP-seq enrichment using MACS. 
Nat Protoc. 2012;7(9):1728-40. 
130. Gu Z, Eils R, Schlesner M, Ishaque N. EnrichedHeatmap: an R/Bioconductor package for 
comprehensive visualization of genomic signal associations. BMC Genomics. 2018;19(1):234. 
131. Robinson JT, Turner D, Durand NC, Thorvaldsdóttir H, Mesirov JP, Aiden EL. Juicebox.js 
Provides a Cloud-Based Visualization System for Hi-C Data. Cell Syst. 2018;6(2):256-+. 
132. Moore JE, Pratt HE, Purcaro MJ, Weng Z. A curated benchmark of enhancer-gene 
interactions for evaluating enhancer-target gene prediction methods. Genome Biol. 2020;21(1):17. 
133. O'Connor T, Grant CE, Boden M, Bailey TL. T-Gene: improved target gene prediction. 
Bioinformatics. 2020;36(12):3902-4. 



 116 

134. Ron G, Globerson Y, Moran D, Kaplan T. Promoter-enhancer interactions identified from 
Hi-C data using probabilistic models and hierarchical topological domains. Nat Commun. 
2017;8(1):2237. 
135. Fortin J-P, Hansen KD. Reconstructing A/B compartments as revealed by Hi-C using long-
range correlations in epigenetic data. Genome Biology. 2015;16(1):180. 
136. Davidson IF, Bauer B, Goetz D, Tang W, Wutz G, Peters JM. DNA loop extrusion by 
human cohesin. Science. 2019;366(6471):1338-45. 
137. Fudenberg G, Abdennur N, Imakaev M, Goloborodko A, Mirny LA. Emerging Evidence 
of Chromosome Folding by Loop Extrusion. Cold Spring Harb Symp Quant Biol. 2017;82:45-55. 
138. Roayaei Ardakany A, Gezer HT, Lonardi S, Ay F. Mustache: multi-scale detection of 
chromatin loops from Hi-C and Micro-C maps using scale-space representation. Genome Biol. 
2020;21(1):256. 
139. Canver MC, Bauer DE, Orkin SH. Functional interrogation of non-coding DNA through 
CRISPR genome editing. Methods. 2017;121-122:118-29. 
140. Joung J, Engreitz JM, Konermann S, Abudayyeh OO, Verdine VK, Aguet F, et al. Genome-
scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nature. 
2017;548(7667):343-6. 
141. Liu SJ, Horlbeck MA, Cho SW, Birk HS, Malatesta M, He D, et al. CRISPRi-based 
genome-scale identification of functional long noncoding RNA loci in human cells. Science. 
2017;355(6320). 
142. Stuart WD, Guo M, Fink-Baldauf IM, Coleman AM, Clancy JP, Mall MA, et al. CRISPRi-
mediated functional analysis of lung disease-associated loci at non-coding regions. NAR Genom 
Bioinform. 2020;2(2):lqaa036. 
143. Tian R, Gachechiladze MA, Ludwig CH, Laurie MT, Hong JY, Nathaniel D, et al. CRISPR 
Interference-Based Platform for Multimodal Genetic Screens in Human iPSC-Derived Neurons. 
Neuron. 2019;104(2):239-55 e12. 
144. Fulco CP, Nasser J, Jones TR, Munson G, Bergman DT, Subramanian V, et al. Activity-
by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations. 
NatGenet. 2019;51(12):1664-9. 
145. Pennacchio LA, Bickmore W, Dean A, Nobrega MA, Bejerano G. Enhancers: five essential 
questions. Nat Rev Genet. 2013;14(4):288-95. 
146. Ferretti E, Cambronero F, Tumpel S, Longobardi E, Wiedemann LM, Blasi F, et al. Hoxb1 
enhancer and control of rhombomere 4 expression: Complex interplay between PREP1-PBX1-
HOXB1 binding sites. Mol Cell Biol. 2005;25(19):8541-52. 
147. Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, et al. The 
accessible chromatin landscape of the human genome. Nature. 2012;489(7414):75-82. 
148. Aran D, Sabato S, Hellman A. DNA methylation of distal regulatory sites characterizes 
dysregulation of cancer genes. Genome Biol. 2013;14(3):R21. 
149. Yuan S, Ni P, Su Z. Simultaneous Prediction of Functional States and Types of 
<em>cis</em>-regulatory Modules Reveals Their Prevalent Dual Uses as Enhancers and 
Silencers. bioRxiv. 2024:2024.05.07.592879. 
150. Acemel RD, Maeso I, Gomez-Skarmeta JL. Topologically associated domains: a 
successful scaffold for the evolution of gene regulation in animals. Wiley Interdiscip Rev Dev Biol. 
2017;6(3). 
151. Bolt CC, Duboule D. The regulatory landscapes of developmental genes. Development. 
2020;147(3). 



 117 

152. Furlong EEM, Levine M. Developmental enhancers and chromosome topology. Science. 
2018;361(6409):1341-5. 
153. Krefting J, Andrade-Navarro MA, Ibn-Salem J. Evolutionary stability of topologically 
associating domains is associated with conserved gene regulation. Bmc Biology. 2018;16. 
154. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological domains in 
mammalian genomes identified by analysis of chromatin interactions. Nature. 
2012;485(7398):376-80. 
155. Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et al. A 
3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping 
(vol 159, pg 1665, 2014). Cell. 2015;162(3):687-8. 
156. Schoenfelder S, Fraser P. Long-range enhancer-promoter contacts in gene expression 
control. Nat Rev Genet. 2019;20(8):437-55. 
157. Kryuchkova-Mostacci N, Robinson-Rechavi M. A benchmark of gene expression tissue-
specificity metrics. Brief Bioinform. 2017;18(2):205-14. 
158. xy-chen16. DeepSilencer: A deep convolutional neural network for the accurate prediction 
of silencers 2020 [Available from: https://github.com/xy-chen16/DeepSilencer. 
159. Duren Z, Chen X, Jiang R, Wang Y, Wong WH. Modeling gene regulation from paired 
expression and chromatin accessibility data. Proc Natl Acad Sci U S A. 2017;114(25):E4914-E23. 
160. Riethoven JJ. Regulatory regions in DNA: promoters, enhancers, silencers, and insulators. 
Methods Mol Biol. 2010;674:33-42. 
161. Dekker J, Belmont AS, Guttman M, Leshyk VO, Lis JT, Lomvardas S, et al. The 4D 
nucleome project. Nature. 2017;549(7671):219-26. 
162. Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP, Lander ES, et al. Juicebox 
Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. Cell Syst. 
2016;3(1):99-101. 
163. Yanai I, Benjamin H, Shmoish M, Chalifa-Caspi V, Shklar M, Ophir R, et al. Genome-
wide midrange transcription profiles reveal expression level relationships in human tissue 
specification. Bioinformatics. 2005;21(5):650-9. 
 
 

 

 

 

 

 

 

 

 



 118 

APPENDIX A: Link of supplementary materials 

Supplementary materials are available at https://github.com/sisyyuan/CRM_Dissertation. 
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APPENDIX B: Regulatory Networks of Prediction of Target Genes of Enhancers and 
Silencers cross different chromosomes 
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Chr Y 

 
Regulation Networks. The sub-static and sub-active cis-regulatory networks on each 
chromosome. The sub-active cis-regulatory networks on each chromosome in the K562 cells are 
embedded in the static cis-regulatory networks and can be induced by active exclusive enhancers, 
active exclusive silencers and active dual CRMs in the cells. The circles represent CRMs, 
including inactive CRMs (gray), active exclusive enhancers (green), active exclusive silencers (red) 
and active dual CRMs (yellow) in the K562 cells. The purple squares represent genes, and their 
size are proportional to the degrees, i.e., the number of their regulating CRMs. The edges represent 
regulation relationships between CRMs (circles) and genes (squares). The edges linked to active 
CRMs are colored by the same colors as the type of active CRMs. 
 
 


