
ENABLING ARCHITECTURE RESEARCH ON GPU SIMULATOR FOR DEEP
LEARNING APPLICATIONS

by

Abhishek D Nikam

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial ful�llment of the requirements
for the degree of Master of Science in

Electrical Engineering

Charlotte

2018

Approved by:

Dr.Hamed Tabkhi

Dr. Erik Saule

Dr. James Conrad

ii

c©2018
Abhishek D Nikam

ALL RIGHTS RESERVED

iii

ABSTRACT

ABHISHEK D NIKAM. Enabling Architecture Research on GPU Simulator for
Deep Learning Applications. (Under the direction of DR.HAMED TABKHI)

Deep learning uses stacks of multiple processing layers to learn representations of

data with di�erent levels of abstraction. It enables machines to have the understand-

ing of outer environment just like the human body, opening a path for diverse range of

applications like autonomous control of a self driving car or monitoring a certain set

of devices. Convolutional Neural Networks (CNN), arguably the most popular deep

learning architecture, consists of multiple convolutional and pooling layers stacked on

each other. The convolutional layer is used for capturing the features of an image

while the pooling layers help reduce the number of parameters involved. With deep

learning consisting of multiple processing layers to learn the representation of data

the computation involved in it is intense.

Graphical Processing Units work on a Single Thread Multiple Instruction execution

model and the uniform structure of each layer in convolutional neural network �ts

well with the computations GPUs performs e�ciently. GPU simulators are a useful

tool in making architectural modi�cations to GPU hardware.

In this research, we explore the challenges involved in making Convolutional Neural

Networks compatible with latest versions of GPU simulators. We develop optimized

GPU kernels (GPU code) and integrate it with Darknet deep learning framework

which help us explore the actual hardware bottlenecks a�ecting GPU performance for

deep learning applications. We also do Architecture modeling of embedded GPUs and

performance comparison with actual GPUs to verify the accuracy of our architecture

modeling specially for deep learning applications.

iv

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Tabkhi for his immense help and guidance

throughout my entire research and college career. His patience and expertise in the

�eld served as an inspiration for me to complete the research.

I would also like to thank Dr. Saule for his contribution in improving my general

coding style and inspiring me to think in a parallel way of solving problems.

I also take an opportunity to thank Dr. Conrad for his constant encouragement

and insightful comments.

Finally, I thank Dr. Tabkhi and the Department of Electrical Engineering at UNC

Charlotte for providing me with a state of art research lab and high-end GPUs.

v

DEDICATION

This thesis is dedicated to the open source community which provided me with the

software tools that helped me complete my research and also my parents without

whom this could not have been possible. .

vi

TABLE OF CONTENTS

LIST OF FIGURES viii

CHAPTER 1: INTRODUCTION 1

1.1. Motivation 4

1.2. Problems 8

1.3. Contribution 9

CHAPTER 2: RELATED WORK 10

2.1. Architectural Advancements for Accelerating Deep Learning
Applications

10

2.2. GEMM Libraries 12

CHAPTER 3: BACKGROUND 13

3.1. GPU as general-purpose processor 13

3.1.1. Nvidia GPU Architecture 15

3.1.2. Nvidia Streaming Multiprocessor 16

3.1.3. GPU Memory Hierarchy 17

3.1.4. CUDA and OpenCL 18

3.1.5. Cuda Program Structure 19

3.1.6. Cuda Program Execution 21

3.1.7. Cooperative Thread Arrays (Thread Blocks) 22

3.1.8. GPGPU-Sim A Cycle-Level GPU Performance Simu-
lator

24

CHAPTER 4: OPEN SOURCE GEMM KERNELS FOR ARCHITEC-
TURE EXPLORATION

26

4.1. Base Line Model 26

vii

4.2. Optimization 1: Baseline Model 30

4.3. Optimization 2: Shared Memory Tiling 32

4.4. Optimization 3: More Work per Thread 36

4.5. Architecture Modeling of Embedded GPUs 40

4.5.1. GPGPU sim Parameters 40

4.5.2. Jetson TX1 41

4.5.3. Jetson TX2 43

4.5.4. Hardware Con�guration of TX1 and TX2 43

CHAPTER 5: RESULTS 45

5.1. Experimental Setup 45

5.2. Performance Comparison 45

5.2.1. Comparing performances of all the Libraries over Dif-
ferent Sizes

46

5.3. Detailed Analysis 48

5.3.1. Comparing Per Kernel Execution Time 48

5.3.2. Comparison of IPC and Time E�ciency over GEMM
Kernels

51

5.4. Architecture Modeling Results 54

CHAPTER 6: CONCLUSIONS 58

CHAPTER 7: Future Work 59

REFERENCES 60

viii

LIST OF FIGURES

FIGURE 1.1: Alex Net Architecture 2

FIGURE 1.2: Nvidia Volta Streaming Multiprocessor Microarchitecture 3

FIGURE 1.3: Deep Learning Training Phase 5

FIGURE 1.4: Deep Learning Training vs Inference 5

FIGURE 1.5: Performance comparison of Embedded and Server class
GPUs for GoogLeNet inference

6

FIGURE 1.6: Compilation �ow of PTX and PTX plus 8

FIGURE 2.1: TPU Architecure in-depth 11

FIGURE 3.1: A simple GPU Block Diagram 14

FIGURE 3.2: GPU Architecture 15

FIGURE 3.3: Maxwell Streaming Multiprocessor Architecture 16

FIGURE 3.4: GPU Memory Hierarchy 17

FIGURE 3.5: Host-Device Interaction 20

FIGURE 3.6: Execution of a CUDA Program 21

FIGURE 3.7: A cooperative thread array (CTA) is a set of concurrent
threads that execute the same kernel program. A grid is a set of
CTAs that execute independently.

22

FIGURE 3.8: Overall GPU Architecture Modeled by GPGPU-Sim 24

FIGURE 3.9: SIMT Core Clusters 25

FIGURE 4.1: Matrix Multiplication 29

FIGURE 4.2: Time Taken in ms by Global Memory Kernel over di�erent
Matrix sizes

31

FIGURE 4.3: GEMM using Shared Memory Tiling 33

ix

FIGURE 4.4: Data reuse in GEMM using Shared Memory Tiling 33

FIGURE 4.5: Time Taken in ms by Shared Memory Kernel over di�erent
Matrix sizes

35

FIGURE 4.6: GEMM using Shared Memory Register Sub Tiling and in-
creasing the work done per thread

37

FIGURE 4.7: Time Taken in ms by More Work Per Thread Kernel over
di�erent Matrix sizes

39

FIGURE 4.8: Maxwell SM Architecture 42

FIGURE 5.1: Yolo Architecture 45

FIGURE 5.2: Time Taken in ms by GEMM kernels over di�erent matrix
sizes

47

FIGURE 5.3: Time taken per kernel execution for di�erent layers of Yolo
Net on Jetson TX1

49

FIGURE 5.4: Time taken per kernel execution for di�erent layers of Yolo
Net on Jetson TX2

50

FIGURE 5.5: Percentage of execution time taken by gemm kernels com-
pared to total execution time for di�erent layers of Yolo Net on TX1

51

FIGURE 5.6: IPC of gemm kernels for di�erent layers of Yolo Net on TX1 52

FIGURE 5.7: Percentage of execution time taken by gemm kernels com-
pared to total execution time for di�erent layers of Yolo Net on TX2

52

FIGURE 5.8: IPC of gemm kernels for di�erent layers of Yolo Net on TX2 53

FIGURE 5.9: IPC Correlation between Hardware and GPU simulator for
Yolo Net 3 layer on Jetson TX1

54

FIGURE 5.10: IPC Correlation between Hardware and GPU simulator
for Yolo Net 3 layer on Jetson TX2

55

x

FIGURE 5.11: IPC Correlation between Jetson TX2 and Tesla c2050 55

xi

LIST OF ABBREVIATION

API Application Program Interface

ASIC Application-Speci�c Integrated Circuit

BLAS Basic Linear Algebra Subprograms

CNN Convolutional Neural Net

CUDA Compute Uni�ed Device Architecture

cuBLAS Cuda Basic Linear Algebra Subprograms

GEMM General Matrix Multiply

GPU Graphic Processing Unit

HPC High Performance Computing

OpenCL Open Computing Language

PTX Parallel Thread Exceution

Relu Recti�ed Linear Unit

SIMT Single Instruction Multiple Thread

SM Streaming Multiprocessor

TPU Tensor Processing Unit

CHAPTER 1: INTRODUCTION

With deep learning enabling human-like understanding of the physical environment

in machines, it has been used in a wide range of applications like voice recognition,

search-related product recommendation, drug discovery and language translation.

Tech giants like Google, YouTube, Quora, Amazon and Facebook are investing heavily

in deep learning. Google's search engine, voice recognition system and self-driving

cars all rely heavily on deep learning while YouTube used deep learning to choose an

attractive thumbnail from a video.

With deep learning becoming a quintessential part of human life, there has been

a lot of focus on improving the performance of deep learning applications. A lot

of Neural net architectures have been introduced after the initial success of Multi-

layered perceptron (MLP)[1]. Convolutional neural networks, Deep belief networks,

Recurrent neural networks were some of the deep learning architectures which were

introduced to make deep learning applicable and useful for a wider range of applica-

tions.

With convolutional neural networks arguably being the most widely used and ef-

fective deep learning architecture for image detection there has been a consistent

e�ort from the research community to come up with newer, more accurate and less

compute-intensive models for convolutional neural nets. The paper titled "ImageNet

Classi�cation with Deep Convolutional Networks" introduced Alex net model which

created a large, deep convolutional neural network for image detection. It was one of

the most in�uential publication in the �eld of image classi�cation with deep convo-

lutional neural nets. The Alex net model is shown in Fig 1.1

2

Figure 1.1: Alex Net Architecture

Source-https://medium.com/@small�shbigsea/a-walk-through-of-alexnet-
6cbd137a5637

Squeezenet [25] which was introduced just 3 years after Alex net had the same

accuracy as Alex Net.[2] with almost 50 times fewer parameters involved. Such ad-

vances in convolutional neural networks model made them feasible for FPGA and

embedded systems deployment.

Along with making convolutional neural network model's better for accuracy and

reducing the parameters involved, there is also an active interest in the chip manu-

facturing community to make better hardware for deep learning applications. Chip

manufacturing giants like Intel, Google and Nvidia are coming up with new design

architecture and hardware speci�cally focused on deep learning. Along with hav-

ing single precision and double precision cores for arithmetic operation hardware like

Google's Tensor processing unit shown in Fig 2.1 includes a dedicated unit for each

functional layer of a convolutional neural network. Even GPU design has been mod-

i�ed with the surge in deep learning, Nvidia's Volta GPUs [3] come with specialized

Tensor cores which are useful in accelerating the convolutional layer of deep neu-

ral networks. Fig 1.2 shows the Volta Streaming Multiprocessor architecture. So,

in order to have low-power real-time image detection, we must support an e�cient

convolutional neural network model with equally e�cient hardware.

3

Figure 1.2: Nvidia Volta Streaming Multiprocessor Microarchitecture

Source+http://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf

4

1.1 Motivation

For real-time object detection in self-driving cars and drones, we need hardware

which can do faster computations with low-power requirements. Traditional server

class GPUs are capable of doing millions of computations within quick time but their

high-power requirements and bulky size makes them ine�cient to employ in drones or

embedded devices which need real-time object detection. Embedded GPUs are low

power, light-weight portable GPUs with respectable performance compared to the

server class GPUs. There is always a trade-o� between the processing capability and

power consumption while designing embedded GPUs and in most cases, performance

is sacri�ced to abide with the power constraint. The main aim of embedded GPUs is

to provide a considerable performance in a low power environment.

Deep learning consists of two phases, training and inference. In the training phase

shown in Fig 1.3 the network tries to learn with the help of data. We have multiple

forward and backward propagations during the training phase. In a forward pass

with the help of the random weights assigned we predict the class labels and scores.

In a backward pass, we compare the class labels with actual labels and the error

calculated is backpropagated. Training is computationally intensive because only a

single weight update is done in a complete pass through all samples.

5

Figure 1.3: Deep Learning Training Phase

Source-http://blog.exxactcorp.com/discover-di�erence-deep-learning-training-
inference/

Inference shown in �g 1.4 requires only one forward pass as we are already working

on a trained model. We do not have a backward pass in inference phase as we do not

calculate or backpropagate any error.

Figure 1.4: Deep Learning Training vs Inference

Source-http://blog.exxactcorp.com/discover-di�erence-deep-learning-training-
inference/

6

Embedded GPUs have only 1 or 2 (depending on the architecture) streaming mul-

tiprocessors (explained in section 3.1.2) to account for low power usage. Training is

generally done on a batch of images at a time, embedded GPUs because of their low

memory can only process a few images per second. Also, the training phase requires a

lot of forward and backward passes, embedded GPUs overall performance falls short

of the server class GPUs owing to the large amount of computations involved. For

inference, the performance goals are di�erent. In inference phase only one forward

pass is required, to minimize the end to end times, inference uses small batch sizes

ideally 1 image at a time. Inference focuses on reducing the latency than throughput.

The following table shown in Fig 1.5 is taken from the Nvidia's "GPU-Based Deep

Learning Inference" white paper [4] .

Figure 1.5: Performance comparison of Embedded and Server class GPUs for
GoogLeNet inference

Source- https://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson-tx1-
whitepaper.pdf

This table shows the results of GoogLeNet inference on Jetson TX1 an embedded

GPU and Titan X a server class GPU. Even though the number of images processed

per second is not comparable, the power consumed by the embedded GPUs is far less

and also, the performance per watt is much better. Hence embedded GPUs can be a

good platform for applications involving low-power but when we need an extremely

fast inference for applications such as real time object detection, embedded GPUs

performance seems incompetent. To make embedded GPUs fast enough for applica-

7

tions like real-time object detection, hardware bottlenecks a�ecting the performance

should be recognized. This motivates my research objective of running convolutional

neural networks on embedded GPUs simulated GPU simulator, observing the hard-

ware bottlenecks a�ecting the performance and to come up with architectural changes

to accelerate deep learning inference on embedded GPUs.

8

1.2 Problems

1. GPU simulator is a good place to start for modeling di�erent GPUs and modify-

ing their architecture. We use GPGPU sim [5], a cycle-level GPU performance

simulator that focuses on "GPU computing" for our research. CUDA [6] is

a parallel computing platform which was created by Nvidia to program their

GPUs, CUDA C is the programming language used for working with Nvidia

GPUs. GPGPU sim relies on extracting the PTX (Nvidia's pseudo assembly

language) out of the Cuda C source code as shown in �g 1.6. Nvidia's closed

source libraries used by various deep learning frameworks comes in the form of

a binary which cannot be disassembled for extracting the PTX. The inability

of extracting PTX out of the Nvidia's provided binaries makes GPGPU sim

incompatible for running deep learning frameworks.

Figure 1.6: Compilation �ow of PTX and PTX plus

Source-http://gpgpu-sim.org/manual/index.php/Main-Page

GPGPU simulators cannot run a deep learning framework which uses Python

9

or Java wrappers.

2. GPGPU sim developers till now have limited their architecture modeling for

gaming and high-end GPUs like Nvidia GeForce GTX 1080 TI, thus there is no

support for modeling embedded GPUs.

1.3 Contribution

1. As GPU simulators are incompatible with deep learning frameworks because of

Nvidia's closed source libraries as discussed in section 1.2, my �rst contribution

was to come up with open source libraries to replace Nvidia's closed source one.

The custom library which was developed was programmed in CUDA C and

the code was optimized for performance. The replacement of Nvidia's closed

source library with custom library paved the way for enabling GPU architecture

research using GPU simulators for deep learning applications.

2. We integrated our open source implementations of the library and CLblast [7],

the only open source CUDA GEMM library (General Matrix Multiplication)

publicly available with darknet deep learning framework. Extensive perfor-

mance benchmarking was done for darknet's performance with the custom li-

brary, CLblast and Nvidia's closed source cuBLAS library on Nvidia's Jetson

TX1 and Jetson TX2 embedded GPUs. The results obtained are explained in

the section 5.2.1.

3. Introduced the GPU simulator to embedded domain by doing architecture mod-

eling of Nvidia Jetson TX1 and Jetson TX2 GPUs which is explained in detail

in the section 4.5. Yolo Net[8] for image detection was the application we chose

to benchmark on the actual hardware platform of Jetson TX1 and Jetson TX2

as well the simulated TX1 and TX2 platform.

CHAPTER 2: RELATED WORK

2.1 Architectural Advancements for Accelerating Deep Learning Applications

This research has been inspired by many current and previous work done on ac-

celerating deep learning for real time inference. With ever so increasing demand for

faster deep learning hardware, ASICs (application-speci�c integrated circuits) spe-

cially designed for deep learning applications are employing novel architectural ideas

for faster computations with lower power consumption.

Companies like Google uses deep learning for almost all their important services

like search, street view, photos etc. With heavy reliance on deep learning for almost

all its services, Google launched Tensor Processing Unit (TPU) [9] a customized ASIC

to accelerate the convolutional neural network computations. TPUs are tailor made

for deep learning applications such that it has a dedicated hardware unit for each

unique layer in a convolutional neural network. TPU is shown in �g 2.1.

TPUs have a customized Matrix multiplier Unit (MXU) specially dedicated for Ma-

trix multiplication operation which considerably accelerates the convolutional layer.

Activation Unit is speci�cally customized to apply various activation functions on the

input parameters while the pooling unit is dedicated to accelerating the pooling layer

of convolutional neural networks. With the help of dedicated units for each layer

TPU achieves much better energy e�ciency and performance than the conventional

chips used for deep learning. TPUs have their own instruction set which follows the

CISC (Complex instruction set) architecture.

11

Figure 2.1: TPU Architecure in-depth

Source-https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-
�rst-tensor-processing-unit-tpu

Even though ASIC's have a better performance and energy e�ciency than GPUs for

deep learning, designing an ASIC is a very expensive process and not feasible at the

academia level. The chip would become redundant if there are models implementing

convolutional neural network in a slightly di�erent way with new layers. Nvidia's

Volta architecture shown in Fig 1.2 combines the bene�ts of an ASIC and general

purpose GPUs. As convolution layer is the most compute intensive layer it has a

special unit called Tensor cores which accelerates the convolutional layer. Along with

the tensor cores it also has the single precision and double precision cores which can

be used for general computing. So, Nvidia's GPU Volta architecture and Google's

TPU highlights some of the architectural advancements done for deep learning.

12

2.2 GEMM Libraries

Convolutional layer in a convolutional neural network is used for extracting the

low-level features of an image. Each �lter used in the convolution layer is responsi-

ble for extracting a certain feature from the image. Convolutional layer is the most

compute intensive layer amongst all the other layers because multiple �lters convolve

across the image to extract features. Direct convolutions are not used in convolu-

tional layer because of the irregular access patterns, instead a convolution operation

between a kernel and image, Im2col function converts both of them to a form that

matrix multiplication between the image and kernel gives us the convolution out-

put. This conversion certainly causes data redundancy, but the performance bene�t

achieved due to the regular access patterns of a matrix multiplication operation out-

weighs the memory wastage. Another reason for converting a convolution operation

to matrix multiplication operation is that GPUs, in general are optimized for matrix

multiplication.

As General Matrix Multiplication is one of the most important part and time

expensive part of deep learning we investigate the available GEMM APIs for CPUs

and GPUs. General Matrix Multiplication(GEMM) APIs are generally a part of Basic

Linear Algebra Subprograms (BLAS) library [10]. For CPUs we have ACML, C++

AMP BLAS, ATLAS libraries which have an optimized GEMM functions. Nvidia's

cuBLAS library is the most optimized Cuda library for GPUs but is closed source.

CLblast library is the only publicly available open source cuda library which has

an optimized GEMM. We develop our own optimized GEMM APIs because neither

cuBLAS or CLblast are compatible with GPU simulator.

CHAPTER 3: BACKGROUND

This section talks about the rise of heterogeneous computing, GPU architecture

and the Cuda programing model.

3.1 GPU as general-purpose processor

Invention of Graphic processing unit brought a renaissance in the �eld of computer

vision and graphics. They were used as a co-processor alongside CPUs for handling

the graphics workload over the larger part of the previous decade. Early GPUs

had a �x rendering pipeline in which each step was designated to a particular task

like rasterization or vector transformation. During the end of previous decade, GPUs

started becoming more capable and several programmable stages were added into their

pipeline which allowed simple programs to be directly executed on GPUs. Initially,

di�erent types of shaders existed for the individual steps of the graphics pipeline.

With the addition of more and more shader instructions, running general-purpose

algorithms on GPUs became feasible[12].

Current GPUs consists of thousands of simple processing cores grouped into stream-

ing multiprocessors rather than �xed rendering pipeline or di�erent shader types.

Millions of threads are launched while calling a GPU function also called as a GPU

kernel which runs on di�erent cores in parallel. With the help of thousands of simple

processor cores, GPUs achieve enormous level of parallelism which increase perfor-

mance by orders of magnitude compared to CPUs for well-suited workloads. The

Fig shown in 3.1 shows the basic arrangement and components of a contemporary

embedded GPU.

14

-

4

Figure 3.1: A simple GPU Block Diagram

15

3.1.1 Nvidia GPU Architecture

Nvidia is one of the biggest GPU providers in the world and its CUDA-capable

GPUs are of great performance in the �eld of GPU computing. The Fig 3.2 shows

the general GPU architecture. Generally, a Nvidia GPU consists of Graphic pro-

cessing clusters, Memory controllers and Streaming multiprocessors. The Streaming

multiprocessors contain CUDA cores in it and are connected to the L2 Cache and

main memory through an interconnect.

Figure 3.2: GPU Architecture

Source-https://www.researchgate.net/�gure/Architecture-of-a-CUDA-capable-GPU-
based-on-the-Tesla-architecture-20-22-�g2-51041816

16

3.1.2 Nvidia Streaming Multiprocessor

Nvidia Streaming Multiprocessor shown in Fig 4.8 is the most fundamental compo-

nent of a Nvidia GPU architecture. A Nvidia SM consists of single/double precision

CUDA cores which are used for executing arithmetic instructions, texture engine to

modify a bitmap image be placed onto an arbitrary plane of a given 3D model as a

texture and polymorph engine. The section 3.1.6 will help us understand how millions

of threads are grouped into thread blocks and scheduled across the SMs. Inside an

SM we have warp schedulers and dispatch units which picks up warps from active

pool and send it to cores for execution. Each SM has its local low-latency memory

for context switching and faster computations.

Figure 3.3: Maxwell Streaming Multiprocessor Architecture

Source-https://devblogs.nvidia.com/maxwell-most-advanced-cuda-gpu-ever-made/

17

3.1.3 GPU Memory Hierarchy

Figure 3.4: GPU Memory Hierarchy

Source-http://www.orangeowlsolutions.com/archives/388

Fig 3.4 shows the memory hierarchy of a Nvidia GPU. Registers are private to

each Streaming multiprocessor and are used to store context of a warp. Each warp

scheduled on the SM is allocated some register �le space. If a warp is stalled for a

memory access or cache miss, the stalled warp is replaced by a di�erent warp while

the swapped-out warp is waiting for its data. The warp switching occurs quickly

because their context is stored in the register �les. Thus register �les help in hiding

memory access latency.

L1 cache and Shared memory are both on chip low latency memories. But not all

architecture has both the memories, some Nvidia GPU architecture give program-

mer a choice between using L1 cache and Shared memory for their program. The

main di�erence between L1 cache and Shared memory is that unlike L1 cache Shared

18

memory can be explicitly programmed for accelerating Cuda code. Shared memory

shares data and computation results by all the threads in the same block, called

the cooperative thread array (CTA) or block of threads in the CUDA. So it is recom-

mended not to allocate a large amount of shared memory per thread block as it a�ects

GPU occupancy. This allows massive parallel-reduction processes for computing and

synchronizing the block results that can be accessed using each CTA index or block

index (for example, bid=blockIdx.x). This is the second (middle) layer of the parallel

granularity in CUDA

All the SM in a GPU also share a common L2 cache and Global memory, the latency

associated with both these memories is relatively high. So, as a CUDA programmer

you must ensure not to have a lot of global memory accesses in the code. As threads

within a thread block can communicate with each other using Shared memory, all the

threads launched for a kernel can communicate using Global memory. This memory

allows the grids communication and the synchronization of the results among all the

CUDA blocks and to share a large data set and global computation results in global

memory.

3.1.4 CUDA and OpenCL

With GPUs becoming suitable to run arbitrary code for GPGPU applications, the

need for easy access to the GPUs vast computing power arose. This section introduces

the two most popular frameworks for GPGPU scenarios: NVIDIA's CUDA [6] and

the vendor-independent Open Computing Language (OpenCL)[13].

CUDA which stands for Compute Uni�ed Device Architecture, is a parallel com-

puting platform speci�cally for Nvidia GPUs. CUDA framework allows a programmer

to use an Nvidia GPU for general purpose computing. CUDA platform extends the

industry-standard C language to create a new parallel programming language called

CUDA C which is compiled using a nvcc compiler. CUDA Fortran is also available

for Fortran users. The CUDA [6] framework includes two separate APIs to access

19

the GPU [3],the CUDA Driver API and the CUDA Runtime API. The CUDA Driver

API implements basic primitives to access the GPU that allow a high degree of direct

control over the device.

3.1.5 Cuda Program Structure

A CUDA program can usually be divided into two parts, host code and device code.

Host code, as the name suggests, is the code that runs on the host, which is usually a

traditional CPU. It is the serial part of the program which is written in straight ANSI

C/C++. Device code, on the other hand, is the parallel part of the program which

is written in ANSI C extended with CUDA keywords. A complete Cuda program

is mixed source code with both host code and device code. The nvcc compiler will

separate them during compilation. The ANSI C/C++ code will be compiled with

host's standard C++ compiler and run on the CPU. The GPU code, also known as

GPU kernels, will be compiled by the nvcc compiler and mapped to the GPU device.

GPU is generally used as a co-processor; host code is responsible for allocating

both host and device (GPU) memory and to transfer the data from host to device.

After receiving data from the host device GPU does its computation and the host

copies the data back, this is shown in Fig 3.5. The global keyword indicates that the

following function will run on the GPU.

20

Figure 3.5: Host-Device Interaction

Source-https://blogandcode.wordpress.com/author/neelbommisetty/

21

3.1.6 Cuda Program Execution

Analogous to a function call in C/C++ we have a kernel call in CUDA C whenever

we have to invoke a device function. We need to con�gure the execution parameters

before call the kernel.

Kernel Name�< NUMBER OF BLOCKS, NUMBER OF THREADS PER BLOCK,

SHARED MEM PER BLOCK�>(Param1,Param2) is the general prototype of a de-

vice function. As GPUs work on a SIMT model, programmer is responsible for

con�guring number of threads for a kernel. In CUDA, the kernel is executed with

the aid of threads. The thread is an abstract entity that represents the execution of

the kernel. We will talk about how threads are grouped into thread blocks and warps

later in this section. Fig 3.6 shows how a single CPU thread spawns multiple GPU

threads.

Figure 3.6: Execution of a CUDA Program

Source-https://www.researchgate.net/�gure/Programming-and-execution-model-of-
CUDA-�g5-273478745

22

3.1.7 Cooperative Thread Arrays (Thread Blocks)

With millions of threads being launched with each GPU kernel call, thread block is

an abstraction used for grouping threads such that the process of scheduling thread

across SM and data mapping becomes easy. Basically, thread block is a group of

threads that can execute either serially or in parallel. There is a limit on the amount

of threads that can be grouped into a thread block with 1024 being the number for

most Nvidia GPU architectures. As shared memory is allocated per thread block it

becomes a very useful abstraction while synchronizing between di�erent thread block

of the same kernel. All the threads inside a SM are guaranteed to run on a single SM,

the thread block is swapped out when all its threads are done with their execution.

Figure 3.7: A cooperative thread array (CTA) is a set of concurrent threads that
execute the same kernel program. A grid is a set of CTAs that execute independently.

Source-https://www.researchgate.net/�gure/The-CUDA-execution-model-and-
thread-addressing-scheme-�g9-237570681

23

Each thread has it's unique Id inside the thread block, that Id is used to determine

the assigned roles or fetch data from a speci�c positions or write the data back to

speci�c position. The thread identi�er is a three-element vector tid, (with elements

tid.x, tid.y, and tid.z) that speci�es the thread's position within a 1D, 2D, or 3D

thread block as shown in Fig 3.7. Threads within a thread block execute in SIMT

(Single-Instruction Multiple Thread) fashion in groups called warps. A warp is a

group of 32 threads which execute in a lock-step mode. In every cycle the instruc-

tions scheduler selects the warps from active pool and dispatch unit dispatches it for

execution.

24

3.1.8 GPGPU-Sim A Cycle-Level GPU Performance Simulator

GPGPU-Sim is a cycle-level GPU performance simulator that focuses on "GPU

computing" (general purpose computation on GPUs). GPGPU-Sim runs program

binaries that are composed of a CPU portion and a GPU portion. However, the

microarchitecture (timing) model in GPGPU-Sim 3.x reports the cycles where the

GPU is busy it does not model either CPU timing or PCI Express timing (i.e. memory

transfer time between CPU and GPU).

Top-Level Organization

GPGPUsim consists of SIMT cores which Nvidia calls as Streaming Multiprocessor

which are connected to the memory partition with the help of interconnection net-

work. Fig 3.8 shows the top level organization of the GPU architecture as modeled

by GPGPU sim.

-

2

Figure 3.8: Overall GPU Architecture Modeled by GPGPU-Sim

Source-http://gpgpu-sim.org/manual/index.php/Main-Page

Each SIMT Core has its own shared memory,register �les,constant cache, data

cache and texture cache.

25

Clock Domains

GPGPU-Sim supports four independent clock domains: (1) the SIMT Core Cluster

clock domain (2) the interconnection network clock domain (3) the L2 cache clock

domain, which applies to all logic in the memory partition unit except DRAM, and

(4) the DRAM clock domain.3.8

SIMT core clusters

Multiple SIMT cores are stacked together in SIMT core clusters. All the SIMT

cores inside SIMT Core Cluster share the same connection port to interconnection

network as shown in Fig 3.9.

-

2

Figure 3.9: SIMT Core Clusters

Source-http://gpgpu-sim.org/manual/index.php/Main-Page

CHAPTER 4: OPEN SOURCE GEMM KERNELS FOR ARCHITECTURE

EXPLORATION

The motivation behind writing a custom GEMM kernel stems from the fact that

the Nvidia cuBLAS GEMM kernel [15] is not compatible with the GPU simulator as

Nvidia does not expose the source code. Our aim is not to match the performance of

Nvidia cuBLAS GEMM but to provide an accurate functionality for all the GEMM

con�guration with a decent speed. This section goes over 3 di�erent kernels which

were developed to replace Nvidia's cuBLAS GEMM in the darknet framework [16].

The GEMM kernels are optimized using standard CUDA performance optimization

techniques. Some of the optimizations are inspired by Cedric Nutregen's work on

accelerating Matrix multiplication for OpenCL devices.

4.1 Base Line Model

General Matrix Multiply (GEMM)

Matrix to matrix multiplication (GEMM) is one of the most important operation

in many engineering, and machine learning applications. Before developing our own

kernels for GEMM, we will take a look at the functionality of Nvidia's cuBLAS GEMM

kernel and also its parameters.

27

Nvidia cuBLAS GEMM

This is the function prototype of cuBLAS GEMM API

cublasStatus-t cublasSgemm(cublasHandle-t handle,

cublasOperation-t transa,\newline cublasOperation-t transb,

int m, int n, int k,

const float *alpha,

const float *A, int lda,

const float *B, int ldb,

const float *beta,

float *C, int ldc)\newline

This function performs the matrix-matrix multiplication

C = ALPHA. op (A). op (B) + BETA C ALPHA and BETA are scalar quantities

and matrices A, B and C are stored in Column Major format.

1. handle - It is the handle to cuBLAS library context.

2. transa - It speci�es whether operation op(A) is non- or (conj.) transpose.

3. transb - It speci�es whether operation op(B) is non- or (conj.) transpose.

4. m - It speci�es the number of rows of matrix op(A) and C.

5. k - It speci�es the number of columns of op(A) and rows of op(B).

6. n - It speci�es the number of columns of matrix op(B) and C.

7. alpha - It speci�es the <type> scalar used for multiplication.

8. A - It speci�es the <type> array of dimensions lda x k with lda>=max(1,m)

if transa == CUBLAS-OP-N and lda x m with lda>=max(1,k) otherwise.

28

9. lda - It speci�es the leading dimension of two-dimensional array used to store

the matrix A.

10. B - It speci�es the <type> array of dimension ldb x n with ldb>=max(1,k) if

transb == CUBLAS-OP-N and ldb x k with ldb>=max(1,n) otherwise.

11. ldb - It speci�es the leading dimension of two-dimensional array used to store

matrix B.

12. beta - It speci�es the <type> scalar used for multiplication. If beta==0, C

does not have to be a valid input.

13. C - It speci�es the<type> array of dimensions ldc x n with ldc>=max(1,m).

14. ldc - It speci�es the leading dimension of a two-dimensional array used to store

the matrix C.

C style Matrix-Multiplication

The matrix multiplication of two matrices is computed as following:

C := alpha * A * B + beta *C

Matrix A is of size M*K while matrix B is of size K*N hence the size of matrix C is

M*N as the number of columns of matrix A should be equal to the number of rows

in matrix B. For simplicity we will assume the scalar quantities alpha and beta to be

1 which gives us a simple equation:

C+=A*B.

This computation is illustrated in the Fig 4.1: to compute a single element of C

(in purple), we need a row of A (in green) and a column of B (in blue).

29

-

2

Figure 4.1: Matrix Multiplication

Source-https://cnugteren.github.io/tutorial/pages/page1.html

int row, col, k;

for (row = 0; i < M; row++)

{

for (col = 0; col < N; col++)

{

c[i][j] = 0;

for (k = 0; k < N; k++)

{

c[row][col] += a[row][k]*b[k][col];

}

}

}

30

This version of SGEMM is implemented in plain C using 3 nested loops.

4.2 Optimization 1: Baseline Model

Our �rst implementation of Matrix Multiplication on GPUs is pretty simple, but

it gives us a good amount of speedup over the CPU GEMM code which employs 3

nested for loops. In this approach we launch, M*N threads for our kernel one thread

for each of our output pixel. Each thread is responsible for calculating one pixel of

the output matrix by looping over matrix A and matrix B, K times.

int row = blockIdx.y * blockDim.y + threadIdx.y;

int col = blockIdx.x * blockDim.x + threadIdx.x;

if(col < N && row < M)

{

for(int i = 0; i < K; i++)

{

sum += (ALPHA *A_gpu[row * K + i]) * B_gpu[i * N + col];

}

C_gpu[row * N + col]+= sum;

}

Fig 4.2 shows the graph of time taken for execution by this kernel in ms for di�erent

matrix sizes . We ran this Test on Nvidia Jetson TX1 GPU. The matrices are square

matrices.

31

Figure 4.2: Time Taken in ms by Global Memory Kernel over di�erent Matrix sizes

Even though this code gives us a substantial speed up over the CPU Matrix mul-

tiplication code, it has a lot of global memory accesses in it. As we studied in the

section 3.4 that accesses to global memory are very costly, this results in poor per-

formance. If somehow, we can reduce the global memory accesses we can de�nitely

have some more speed-up.

32

4.3 Optimization 2: Shared Memory Tiling

Global memory accesses are always very costly, it was the major bottleneck in the

previous kernel. We had M*N*K*2 Global memory loads and M*N Global memory

stores in the previous kernel. In order to avoid these many Global memory accesses,

we use GPUs on-chip, low-latency Shared memory to store the values of matrix A

and matrix B. In this kernel every thread block would be responsible for bringing tiles

of matrix A and matrix B from global memory to the Shared memory. The matrix

multiplication is done inside the Shared memory which leads to a lot of data reuse

within a tile.

As shown in Fig 4.3 to compute the purple tile in matrix C we bring in tiles of

data from Matrix A(green sub tile) and also from matrix B(blue sub tile). Now

we can iteratively update the values in C sub tiles by adding the results of matrix

multiplication of A sub tile and B sub tile.

33

Figure 4.3: GEMM using Shared Memory Tiling

Source-https://cnugteren.github.io/tutorial/pages/page4.html

Well, if we take a closer look at the computation of a single element (in the image

below), we see that there is lots of data re-use within a tile. For example, in the 3x3

tiles of the image below, all elements on the same row of the purple tile (Csub) are

computed using the same data of the green tiles (Asub).

Fig 4.4 highlights the data re-use within a tile.

Figure 4.4: Data reuse in GEMM using Shared Memory Tiling

Source-https://cnugteren.github.io/tutorial/pages/page4.html

34

The algorithm for implementing Matrix multiplication using shared memory tiling

is described below. For implementing Shared memory tiling, we used a 32X32 sized

shared memory array per thread block.

\label{sm_algo}

// Local memory to fit a tile of TS*TS elements of A and B

#define TS 32

__shared__ float sA[32][32]; // Tile size of 32x32

__shared__ float sB[32][32];

int Row = blockDim.y*blockIdx.y + threadIdx.y;

int Col = blockDim.x*blockIdx.x + threadIdx.x;

//Fetch the subtiles A and B in shared memory

for (int k=0; k<(k/TS); k++) {

if ((Row < arows) && (threadIdx.x + (k*32)) < acols)

{

sA[threadIdx.y][threadIdx.x] = A[(Row*acols) + threadIdx.x + (k*32)];

}

if (Col < bcols && (threadIdx.y + k*32) < brows)

{

sB[threadIdx.y][threadIdx.x] = B[(threadIdx.y + k*32)*bcols + Col];

}

//Multiplication within Shared Memory

for (int j = 0; j < 32; j++)

{

sum += sA[threadIdx.y][j] * sB[j][threadIdx.x];

}

35

The algorithm is divided into two parts

1. Load the tiles from matrix A and matrix B.

2. Synchronize

3. Sub tile multiplication in Shared memory.

As each thread now performs only two global loads, we reduce the access to Global

memory by a factor of 32 which along with the data reuse in Shared memory is

responsible for the speedup over the baseline model . Fig 4.5 shows the graph of time

taken for execution by this kernel in ms for di�erent matrix sizes . We ran this test

on Nvidia Jetson TX1 GPU. The matrices are square matrices.

Figure 4.5: Time Taken in ms by Shared Memory Kernel over di�erent Matrix sizes

36

4.4 Optimization 3: More Work per Thread

The previous approach had some signi�cant speed-up over the C code and base-line

implementation as we reduced the number of Global memory accesses. In this kernel

along with reducing accesses to Global memory we will also be reducing the accesses

to Shared memory by increasing the amount of work done per thread.

for (int j = 0; j < 32; j++)

{

sum += sA[threadIdx.y][j] * sB[j][threadIdx.x];

}

This code is taken from the previous kernel and it does the multiplication of two

sub matrices(tiles) in shared memory. For doing a single multiplication operation

we need to have two Shared memory load operations and one Shared memory store.

Only one out of the four instructions are a useful fused multiply add instruction. We

can reduce the loads from shared memory if we increase the amount of data brought

by one thread from Global memory to Shared memory and let one thread compute

8 elements arranged in consecutive columns of matrix C . So, in this scenario we are

not reducing Global memory accesses but in turn reducing the shared memory loads

by a factor of WPT which is variable. WPT should be chose carefully, we do not

want the WPT value to be high as it would signi�cantly reduce the amount of threads

launched violating the basic principle of GPUs parallelism. Low WPT values would

not give us signi�cant performance bene�ts.

Fig 4.6 shows Matrix multiplication using Shared memory and increasing the work

done per thread.

37

Figure 4.6: GEMM using Shared Memory Register Sub Tiling and increasing the
work done per thread

The algorithm for the kernel includes three major steps

1. Each thread should fetch now fetches WPT values of matrix A and B into the

shared memory.

2. Synchronize

3. Each thread will do WPT amount of Matrix multiplications inside the shared

memory.

4. Each thread is responsible for storing WPT amount of values in the C matrix.

38

#define WPT 8

A factor of WPT registers are initialised to zero for each thread

float acc[WPT]; .

for (int w=0; w<WPT; w++)

{

acc[w] = 0.0f;

}

Each thread now loads WPT values of A and B into the local memory.

for (int t=0; t<t/TS; t++) {

// Load one tile of A and B into local memory

for (int w=0; w<WPT; w++) {

if ((Row <= (arows)) && (threadIdx.x + (k*TS)) < acols)

{

sA[threadIdx.y+ w*RTS][threadIdx.x] = A[(Row+w*RTS)*acols

+ threadIdx.x + (k*TS)];

}

if (Col < bcols && (threadIdx.y + k*TS) < brows)

{

sB[threadIdx.y+ w*RTS][threadIdx.x] = B[((threadIdx.y + k*TS)

+(w*RTS))*bcols + Col];

}

}

Inner-most loop over WPT doesn't require a new value from Asub each time,

39

saving precious local memory loads

for (int j = 0; j <(TS); j++)

{

for (int w=0; w<WPT; w++)

{

acc[w] += (sA[threadIdx.y + w*RTS][j]) * (sB[j][threadIdx.x]);

}

}

The number of threads spawned in our program should be reduced as a single

thread does WPT amounts of loads from shared memory and also WPT amount of

multiplications.

Fig 4.7 shows the graph of time taken for execution by this kernel in ms for di�erent

matrix sizes . We ran this test on Nvidia Jetson TX1 GPU.The matrices are square

matrices.

Figure 4.7: Time Taken in ms by More Work Per Thread Kernel over di�erent Matrix
sizes

40

4.5 Architecture Modeling of Embedded GPUs

Nvidia Jetson TX1 (Maxwell architecture) and Jetson Tx2 (Pascal architecture)

are Nvidia's latest embedded GPUs speci�cally designed for low-power embedded

applications. Publicly available information on these hardware chips is limited so the

�rst step for architecture modeling of embedded GPUs was to collect the available

literature from web, Nvidia's Cudadeviceprop structure is also a good source to collect

information about Jetson TX1 and TX2.

4.5.1 GPGPU sim Parameters

Before we move to the Architecture modeling of embedded GPUs on the GPU sim-

ulator, let us understand some GPGPU sim parameters which we will be con�guring.

Section 3.1.8 will help in understanding these parameters.

1. -gpgpu-ptx-sim-mode : To Select Functional Mode or Performance Mode

2. -gpgpu-ptxsave-converted-ptxplus : Allows Converting the Code to Ptxplus in-

stead of PTX

3. -gpgpu-n-clusters : Each Cluster has its own path to Interconnect Network

4. -gpgpu-ncores-per-cluster :Number of SM per cluster.

5. -gpgpu-clock-domains <Core Clock>:<Interconnect Clock>:<L2 Clock>:<DRAM

Clock : Clock Domains of various subsytems.

6. -gpgpu-shader-registers : Number of registers per shader core.

7. -gpgpu-shader-core-pipeline: Shader core pipeline con�guration

8. - gpgpu-pipeline-widths : Pipeline width of various functional units inside GPU.

9. -gpgpu-num-sp-units : Number of Single Precision Units.

10. -gpgpu-cache:dl1 : Setting L1 Cache size

41

11. -gpgpu-shmemsize : Setting Shared Memory size

12. -gpgpu-cache:dl2 : Setting L2 Cache size

13. -ptx-opcode-latency :Setting Instruction Latency

14. -gpgpu-operand-collector-num-units-sp : Single precision operand collectors

15. -gpgpu-shmem-num-banks : Number of Shared Memory Banks

16. -gpgpu-num-sched-per-core : Number of schedulers per core.

17. -gpgpu-scheduler : GPU scheduling policy.

4.5.2 Jetson TX1

NVIDIA Tegra X1 is an embedded GPU which includes power e�cient Maxwell

GPU architecture. In the section 1.1 we compared the performance per watt of

Jetson Tx1(embedded GPU) with Titan GPU(server class GPU), Embedded GPUs

being low-power devices had a better performance per watt than server class GPUs.

Maxwell GPU cores in TX1 also have support for 16-bit �oating point calculations

for embedded applications.

Jetson TX1 shown in Fig 4.8 contains 2 Streaming Multiprocessors with each having

128 cores. The Streaming multiprocessor is divided into four blocks with each block

containing 32 Cuda cores (total 128 cores per SM). Each Streaming multiprocessor has

4 dedicated warp schedulers and 8 dispatch units such that each each warp scheduler

is capable of dispatching two instructions per warp every clock.

42

Figure 4.8: Maxwell SM Architecture

Source-https://devblogs.nvidia.com/maxwell-most-advanced-cuda-gpu-ever-made/

43

4.5.3 Jetson TX2

NVIDIA Tegra X2 is an embedded GPU which includes high performance, power

e�cient Pascal GPU architecture. It also contains 2 Streaming Multiprocessors with

each having 128 cores. Similar to Pascal GPU architecture, The Streaming multipro-

cessor is divided into four blocks with each block containing 32 Cuda cores (total 128

cores per SM). Each Streaming multiprocessor has 4 dedicated warp schedulers and

8 dispatch units such that each each warp scheduler is capable of dispatching two

instructions per warp every clock.

Nvidia does not release the entire details of hardware speci�cation of any GPU.

They do not document the overall instruction execution �ow, scheduling policies

used for choosing thread blocks and warps and how branch divergence is handled.

So, before modeling the GPUs in simulator we will look into some of the hardware

speci�cation of the devices provided to us Nvidia.

4.5.4 Hardware Con�guration of TX1 and TX2

The table 4.1 compares Hardware speci�cations of Nvidia Jetson TX1 and Nvidia

Jetson Tx2 GPUs while the table 4.2 compares the Architecture modeling di�erences

between Jetson TX1 and TX2.

44

Table 4.1: Jetson TX1 and TX2 Hardware Con�guration

Hardware Speci�cation Jetson TX1 Jetson TX2
Architecture Maxwell Pascal
CPUs ARM A57 and

A53
ARM Cortex-
A57 and Denver

Number of SM 2 2
Number of Cuda Cores 256 256
Number of Schedulers/SM 4 4
L1 Cache size Unknown Unknown
L2 Cache size 256kb 512kb
Reg �le size 64kb 32kb
Max Tb/SM 32 32
Shared Mem Size 64kb 48kb
Instruction Latency Unde�ned Unde�ned
Scheduling Policy Unde�ned Unde�ned
No. of Sp collector units Unde�ned Unde�ned

Table 4.2: Architecture Modeling

Parameters Jetson TX1 Jetson TX2
-gpgpu-ptx-sim-mode Performance Performance
-gpgpu-n-clusters 2 2
-gpgpu-ncores-per-cluster 1 1
-gpgpu-clock-domains 1137.0:2700.0 1481.0:2750.0
-gpgpu-shader-registers 65536 32768
-gpgpu-shader-core-pipeline 2048:32 2048:32
-gpgpu-pipeline-widths 2,1,1,2,1,1,2 4,1,1,4,1,1,6
-gpgpu-num-sp-units 8 4
-gpgpu-cache:dl1 32:128:4 64:128:6
-gpgpu-shmemsize 65536 49152
-gpgpu-cache:dl2 128:128:8 128:128:16,
-gpgpu-operand-collector-
num-units-sp

6 20

-gpgpu-shmem-num-banks 32 32
-gpgpu-num-sched-per-core 4 4
-gpgpu-scheduler gto gto

CHAPTER 5: RESULTS

This chapter goes over the experimental setup and the various results.

5.1 Experimental Setup

The deep learning framework we use for our experiment is darknet [16]. Darknet

[16] is an open source neural network framework written in C and CUDA. The archi-

tecture we ran on the top of deep learning framework was Yolo [8] architecture shown

in the Fig 5.1. The deep learning application was image detection.

Figure 5.1: Yolo Architecture

Source-http://jderobot.org/Ni9elf-colab

5.2 Performance Comparison

In this section we will start o� by comparing the time-e�ciency of the GEMM

kernels over di�erent square matrix sizes. In the next section we will be integrating

our GEMM kernels with darknet framework to record the execution time of each

kernel along with their IPC's. We measure the execution time for the 1st layer, �rst

46

3 layers and all the layers of Yolo net, the reason behind recording metrics for the

1st layer and �rst 3 layers is that we have used GPGPU simulator to simulate 1 and

�rst 3 layers of Yolo Net as simulation of more than 3 layers takes extremely large

amount of time.

5.2.1 Comparing performances of all the Libraries over Di�erent Sizes

The motivation of this research was to Enable GPU architecture exploration on

embedded GPUs for deep learning applications by writing customized GEMM ker-

nels compatible with GPU simulator. Graph 5.2 compares the time taken by the

customized GEMM kernels for multiplying two square matrices along with commer-

cially available GEMM APIs which are not compatible with GPU simulator. This

experiment was done on Nvidia Jetson TX1 GPU.

47

Figure 5.2: Time Taken in ms by GEMM kernels over di�erent matrix sizes

Nvidia's cuBLAS GEMM API is extremely optimized and �ne tuned for faster

performance, it is optimized at assembly level for all the architectures. As Nvidia's

cuBLAS GEMM API is closed source we do not exactly know how the optimizations

technique are employed for achieving faster performance. 2D register blocking and

architecture speci�c instructions like warp shu�e instructions might be some of the

possible optimizations Nvidia uses. More work done per thread kernel also shows

impressive results and is faster than CLblast library for small matrix sizes. Global

48

Memory kernel is the slowest amongst all.

5.3 Detailed Analysis

5.3.1 Comparing Per Kernel Execution Time

In this subsection with the help of bar chart 5.3 and 5.4 we show the percentage

of time required to execute each kernel compared to the total execution time. We

conduct our experiments on Yolo net with di�erent GEMM kernels and di�erent

amount of layers.

The 3 Yolo net con�gurations with di�erent GEMM libraries are

1. Yolo net with cuBLAS GEMM kernel

2. Yolo net with Global memory kernel.

3. Yolo net with Shared memory kernel

Yolo net in total has 24 convolutional layers followed by 2 fully connected layers.

We ran our tests on

1. Yolo net with only one convolution layer which we call as 1 layer.

2. Yolo net with �rst 3 convolution layers which we call as 3 layer.

3. All Yolo net layers which we call as entire network.

Bar graph 5.3 shows the percentage of time required to execute each kernel com-

pared to the total execution time. This graph helps us to visualize the percentage of

time spent on each kernel for Yolo net with 1,3 and all layers. The graph is divided

in to 3 sections based on the GEMM library integared with darknet. The �rst sec-

tion is darknet framework integrated with cuBLAS GEMM while the second section

is darknet integrated with Global memory GEMM and the third section is darknet

with Shared memory GEMM. In each section we have

49

1. The red line shows the percentage of time consumed by a kernel compared to

the percentage of total time spent in execution of all kernels for all the layers

of Yolo net.

2. The green line shows the percentage of time consumed by a kernel compared to

the percentage of total time spent in execution of all kernels for �rst 3 layers of

Yolo net.

3. The yellow line shows the percentage of time consumed by a kernel compared

to the percentage of total time spent in execution of all kernels for 1 layer of

Yolo net.

The graph 5.3 shows per kernel execution time percentage for Jetson TX1.

Figure 5.3: Time taken per kernel execution for di�erent layers of Yolo Net on Jetson
TX1

The graph 5.4 shows per kernel execution time percentage for Jetson TX2.

50

Figure 5.4: Time taken per kernel execution for di�erent layers of Yolo Net on Jetson
TX2

Time consumed by the GEMM kernel and the memory copy kernel seems to be

extremely high compared to other kernels. Memory copy from host to device is depen-

dent on the PCI-bus or Nvlink bandwidth. GEMM kernel seems to the performance

bottleneck for accelerating deep learning on GPUs. So, optimizing Gemm kernels can

lead us to better and faster Yolo Net implementation. Let us look into the details of

GEMM kernel.

51

5.3.2 Comparison of IPC and Time E�ciency over GEMM Kernels

From the previous graphs we identi�ed that GEMM is the most time-intensive

kernel in our application. For making our GEMM kernel fast we employed certain

optimization techniques.In this section we will see how our optimization techniques

have had an e�ect on optimizing GEMM and thus the entire application. We will

be comparing the IPC and Time E�ciency for GEMM kernels on TX1 and TX2

Hardware.

The graph 5.5 shows the percentage of time taken by di�erent gemm kernels com-

pared to the total execution time for di�erent layers of Yolo Net on TX1.

Figure 5.5: Percentage of execution time taken by gemm kernels compared to total
execution time for di�erent layers of Yolo Net on TX1

The graph 5.6 shows the IPC of di�erent gemm kernels for di�erent layers of Yolo

Net on TX1.

52

Figure 5.6: IPC of gemm kernels for di�erent layers of Yolo Net on TX1

The graph 5.7 shows the time taken by di�erent gemm kernels for di�erent layers

of Yolo Net on TX2.

Figure 5.7: Percentage of execution time taken by gemm kernels compared to total
execution time for di�erent layers of Yolo Net on TX2

The graph 5.8 shows the IPC of di�erent gemm kernels for di�erent layers of Yolo

Net on TX2.

53

Figure 5.8: IPC of gemm kernels for di�erent layers of Yolo Net on TX2

IPC metrics is de�ned as Instructions executed per cycle. Nvidia's pro�ler nvprof

reports IPC in terms of number of instructions executed by an SM per cycle. As

each scheduler has a dual dispatch unit, in an ideal scenario we can have an IPC

of 8 for both Pascal and Maxwell Architecture. The Execution Time and IPC are

directly proportional metrics. The faster instructions are executed the more number

of instructions can be scheduled and executed per cycle. Except for the cuBLAS

GEMM kernel the relative time spent on GEMM kernels increases as we go from 1

layer to the entire network. cuBLAS is highly optimized such that it takes only 8

percent of the total execution for the entire Yolo network. The possible reason behind

cuBLAS GEMM being slow for the 1st layer is that, for the �rst layer it uses a shared

memory of size 32x32 and possible the work done per thread is not a lot. For further

cuBLAS GEMM calls after the �rst it was observed that the shared memory size

used was 128x128 and it arguable used 2D register blocking for increasing work done

per thread in both dimensions, this can be con�rmed by low achieved occupancy of

cuBLAS GEMM kernels.

54

5.4 Architecture Modeling Results

In the section 4.5 above we discussed modeling of embedded GPUs, Jetson Tx1

and Tx2 by studying the Maxwell, Pascal architecture and GPGPU sim internal

architecture. In this section we will compare the IPC results obtained by running Yolo

net on GPGPU simulator and real hardware. We ran the �rst 3 layers of Yolo net with

Global and Shared memory GEMM kernel on the GPU simulator and hardware, the

graph 5.9 shows the IPC correlation for Jetson TX1 and 5.10 shows IPC correlation

for Jetson TX2 .

Figure 5.9: IPC Correlation between Hardware and GPU simulator for Yolo Net 3
layer on Jetson TX1

55

Figure 5.10: IPC Correlation between Hardware and GPU simulator for Yolo Net 3
layer on Jetson TX2

For IPC comparison of an embedded GPU with server-class GPU we ran Yolo net

on Tesla c2050 GPU simulated by GPGPU sim, Tesla c2050 GPU being a server class

GPU has much higher but the trend of IPC reported for kernels is similar to Jetson

TX2. The graph 5.11 shows the IPC correlation between Jetson Tx1 and Tesla c2050.

Figure 5.11: IPC Correlation between Jetson TX2 and Tesla c2050

56

GPGPU-Sim calculates IPC over an SM where the number of instructions being

executed is incremented per thread. NVIDIA's pro�ler program calculates the IPC

of the execution of a program run on a GPU by using the formula:

ipc= SUM(sm-inst-executed) / SUM(sm-active-cycles) This results in the average

IPC of a single SM. sm-inst+executed - The number of warp instructions executed

count at the point where the instruction must complete (cannot be rolled back due to

speculative execution). Fully predicated o� instructions are count. sm-active-cycles

- The number of cycles the SM had at least 1 resident warp.

NVIDIA Perfworks provides the following metrics: sm[sp]-inst-executed-avg, sumper-

active, elapsed-cycle. The sum variant would be IPC calculated over the full GPU.

The elapsed-cycles variant includes cycles the SM is not active. From the graph 5.9

and 5.10 we can observe that although the GPU sim IPC and hardware IPC do no

match completely but the simulator's IPC follows the similar trend as obtained from

hardware. Table 5.1 and 5.2 shows the IPC correlation between simulated Jetson

TX1 and TX2 with actual hardware.

57

Table 5.1: IPC correlation for Jetson TX1 Hardware and Simulator

Kernels Jetson TX1
(H/W)

Jetson
TX1(Sim)

Error(percentage)

Fill-kernel 80 95 15
Im2Col-kernel 103 105 2
sgemm-kernel 60 50 16
Copy-kernel 75 45 40
forward-maxpool-kernel 107 121 13

Table 5.2: IPC correlation for Jetson TX2 Hardware and Simulator

Kernels Jetson TX2
(H/W)

Jetson
TX2(Sim)

Error(percentage)

Fill-kernel 70 100 30
Im2Col-kernel 105 112 6
sgemm-kernel 53 50 6
Copy-kernel 55 65 18
forward-maxpool-kernel 110 126 14.5

CHAPTER 6: CONCLUSIONS

This research explored and studied various GPU architectures, GPU simulators and

convolutional neural networks. I tried to search for an open source CUDA GEMM

library which can be compatible with GPGPU-sim but CLblast is the only publicly

available open source CUDA library but is not compatible with GPU simulators. So,

we decided to build an optimized library for GEMM but could not match cuBLAS

Gemm API performance. Yolo Net for image detection with our customized GEMM

kernels successfully ran on Jetson TX1 and Jetson TX2 hardware and the simulated

platform as as well. This research opens up GPU architecture exploration for em-

bedded GPUs on GPU simulators specially for deep Learning applications The IPC

results from the simulated platform did not exactly match the hardware IPC but re-

sults give us a good idea to predict whether a certain architectural change will boost

the GPU performance.

CHAPTER 7: Future Work

In this research we explored some optimizations for GEMM kernel and implemented

it but the optimized kernels were not able to match the performance of cuBLAS

GEMM. So, we can try to improve the performance of our GEMM kernels by us-

ing advanced level optimizations like 2D Register blocking and software prefetching.

Along with improving GEMM kernels we can improve the Architecture modeling of

Jetson TX1 and TX2 to decrease the IPC correlation error. One area to work on

is to perform micro benchmarks on the Jetson TX1 and TX2 to obtain accurate

latencies for all the execution paths. Other areas that could be worked on include

updating GPGPU-Sim's memory hierarchy, updating GPGPU-Sim's top-level orga-

nization, and adding new clocking features, such as boost clock and di�erent levels

of clock gating. Support for Volta Architecture and Tensor cores in GPU simulator

is one thing to look forward to.

60

REFERENCES

[1] S. K. Pal and S. Mitra, �Multilayer perceptron, fuzzy sets, classi�action,� 1992.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, �Imagenet classi�cation with deep
convolutional neural networks,� in Advances in neural information processing
systems, pp. 1097�1105, 2012.

[3] R. Smith, �Nvidia volta unveiled: Gv100 gpup and tesla v100 accelerator an-
nounced,� 2017.

[4] G.-B. D. L. Inference, �A performance and power analysis,� Whitepaper, Novem-
ber, 2015.

[5] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt, �An-
alyzing cuda workloads using a detailed gpu simulator,� in 2009 IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software, pp. 163�
174, April 2009.

[6] C. Cuda, �Programming guide,� 2012.

[7] C. Nugteren, �Clblast: A tuned opencl blas library,� arXiv preprint
arXiv:1705.05249, 2017.

[8] J. Redmon and A. Farhadi, �Yolo9000: better, faster, stronger,� arXiv preprint,
2017.

[9] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey, et al., �Google's neural machine translation sys-
tem: Bridging the gap between human and machine translation,� arXiv preprint
arXiv:1609.08144, 2016.

[10] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Du�, �A set of level 3
basic linear algebra subprograms,� ACM Transactions on Mathematical Software
(TOMS), vol. 16, no. 1, pp. 1�17, 1990.

[11] G. Malhotra, S. Goel, and S. R. Sarangi, �Gputejas: A parallel simulator for gpu
architectures,� in High Performance Computing (HiPC), 2014 21st International
Conference on, pp. 1�10, IEEE, 2014.

[12] L. M. P. d. Oliveira, A framework for scienti�c computing with GPUs. PhD
thesis, Faculdade de Ciências e Tecnologia, 2012.

[13] J. E. Stone, D. Gohara, and G. Shi, �Opencl: A parallel programming stan-
dard for heterogeneous computing systems,� Computing in science & engineer-
ing, vol. 12, no. 3, pp. 66�73, 2010.

[14] Y. LeCun et al., �Lenet-5, convolutional neural networks,� URL: http://yann.
lecun. com/exdb/lenet, p. 20, 2015.

61

[15] C. Nvidia, �Cublas library,� NVIDIA Corporation, Santa Clara, California,
vol. 15, no. 27, p. 31, 2008.

[16] J. Redmon, �Darknet: Open source neural networks in c,� h ttp://pjreddie.
com/darknet, vol. 2016, 2013.

[17] D. Mor, �Gpgpu for embedded systems,� White Paper, 2016.

[18] J. Nijhuis, L. Spaanenburg, and F. Warkowski, �Structure and application of
nnsim: a general-purpose neural network simulator,� Microprocessing and Mi-
croprogramming, vol. 27, no. 1-5, pp. 189�194, 1989.

[19] Y. LeCun, L. Bottou, Y. Bengio, and P. Ha�ner, �Gradient-based learning
applied to document recognition,� Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278�2324, 1998.

[20] T. Aaamodt and A. Boktor, �Gpgpu-sim 3. x: A performance simulator for many-
core accelerator research,� in International Symposium on Computer Architecture
(ISCA), http://www. gpgpu-sim. org/isca2012-tutorial, 2012.

[21] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell, �Ca�e: Convolutional architecture for fast feature embed-
ding,� in Proceedings of the 22nd ACM international conference on Multimedia,
pp. 675�678, ACM, 2014.

[22] J. Ho and R. Smith, �Nvidia tegra x1 preview and architecture analysis,� 2015.

[23] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, �Rich feature hi-
erarchies for accurate object detection and semantic segmentation,� CoRR,
vol. abs/1311.2524, 2013.

[24] G. E. Hinton, �Deep belief networks,� Scholarpedia, vol. 4, no. 5, p. 5947, 2009.

[25] T. Greene, �Squeeze your'net links,� Network World, vol. 14, no. 28, p. 1, 1997.

[26] C. Nugteren, Improving the programmability of GPU architectures. PhD thesis,
Ph. D. thesis, Department of Electrical Engineering, Eindhoven University of
Technology, 2014.

[27] N. C. PTX, �Parallel thread execution,� NVIDIA Corp., Jun, 2008.

