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ABSTRACT

WENRUI MIAO. Structured coherence beams. (Under the direction of DR. GREG
J. GBUR)

This thesis explores advanced manipulation and control of light’s structure, focus-

ing on the degrees of freedom such as phase, polarization, and coherence. The research

primarily addresses the generation, propagation, and application of structured optical

beams, with significant implications for imaging, communication, particle manipula-

tion, microscopy, and quantum state engineering.

A key area of investigation is the use of orbital angular momentum (OAM) in optical

beams. These beams, characterized by a conserved topological charge, have shown

promise in free-space optical communication due to their resilience against amplitude

and phase disturbances. The research highlights the development of partially coherent

beams that maintain deterministic vortices at specific propagation distances, achieved

through fractional Fourier transforms (FracFTs) applied to Schell-model vortex beams

in the source plane.

Another significant focus is on polarization singularities in fields with two harmonic

frequencies, i.e. Lissajous singularities. The study reveals stable Lissajous singulari-

ties within the beam core, offering new opportunities in high-precision metrology and

secure communication. Additionally, Young’s interference experiment with bichro-

matic vector beams is simulated creating Lissajous-type polarization singularities,

enhancing the fundamental understanding of the conditions under which Lissajous

singularities can be created in interference.

This work integrates these findings into a comprehensive framework for structured

coherence beams, advancing theoretical models and experimental techniques. The

resulting beams demonstrate unprecedented control over intensity, phase, coherence,

and polarization, paving the way for innovative applications in optical science and
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engineering.
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PREFACE

The manipulation and control of light’s structure has ushered in a new era of optical

science, enabling groundbreaking applications across various fields such as imaging,

communication, particle manipulation, microscopy, and quantum state engineering[1].

Light can be tailored in all of its degree of freedoms(DoFs), from amplitude, phase,

polarization to coherence. This thesis aims to investigate the generation, propagation

and application of these optical beams with sophisticated and novel structures.

Though the richness of studies of structured beams and its myriad applications

recently have drawn attention to the manipulation of many different DoFs, in the

beginning, structured beams are almost synonymous with beams containing orbital

angular momentum(OAM). In a monochromatic field, beams with OAM possess a

topological charge which is always an integer because the phase change by multiples

of 2π along closed paths around the vortex core. The topological charge is conserved

and resilient to amplitude and phase disturbances in the field. Due to their discrete

and robust properties, many researches have investigated the use of optical vortices

as information carriers in free space optical communication systems[2]. Because dif-

ferent vortex modes are orthogonal to one another, it is theoretically possible to

transmit information using multiple vortex orders simultaneously through the same

channel, thereby significantly increasing data transmission rates[3]. The conserva-

tion of topological charge also suggests robustness against atmospheric turbulence.

However, such turbulence can still impair system performance by causing the vortex

to drift out of the detector area or by creating additional vortex pairs through self-

interference. However, it has been found that fields with a reduced spatial coherence,

i.e. partially coherent fields show higher levels of resistance to turbulence compared

to its coherent counterparts[4]. Because partially coherent beams reduce the self-

interference effects, the strength of intensity fluctuations is reduced accordingly[5].

However, traditionally, the deterministic phase structure of optical vortices was seen
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as incompatible with the random phase fluctuations inherent in partially coherent

fields[6]. A deterministic vortex imparted on a partially coherent field, through the

use of a spiral phase plate, for example, would appear to always transform into a

coherence vortex on propagation; similarly, if a random phase is imparted on a deter-

ministic vortex beam (DVB), that vortex will also transform into a coherence vortex

on propagation[7]. In our research, we have demonstrated that it is possible to design

partially coherent beams that manifest a deterministic vortex at any desired propaga-

tion distance in free space by implementing fractional Fourier transforms(FracFTs) on

a Schell-model vortex beams in the source plane. Such beams hold promise for appli-

cations in optical manipulation, where precise control over beam shape and coherence

is essential, as well as in remote sensing and free-space optical communication, where

resilience to environmental perturbations is crucial[8].

In addition to phase and coherence, another important degree of freedom of light

the thesis investigated is polarization. In the simplest case, the polarization across the

transverse profile of a paraxially propagating light beam is homogeneous. However,

it can also exhibit a spatially inhomogeneous and complex distribution. With the de-

velopment of both near-field microscopy[9] and particle-based nanointerferometry[10],

the measurement of the full field polarization information at the nanoscale, polariza-

tion structured light has allowed for a wide range of applications in optical com-

munications, microscopy and many other fields of optics[11]. Typical polarization

singularities are lines along which the state of polarization is circular, with the major

axis of the polarization ellipse indeterminate. These singularities have been employed

in various applications, including imaging, particle trapping and rotation, and free-

space communications. Most investigations in the field of polarization singularities

have concentrated on monochromatic or quasi-monochromatic fields. However, in

2003, Kessler and Freund[12] identified a novel class of singularities applicable to

fields with two harmonic frequencies: a fundamental frequency ω and its first har-
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monic 2ω. In this context, the singularities manifest as lines in three-dimensional

space where the generalized orientation of the polarization figure, now represented as

a Lissajous figure, becomes indeterminate. In our study, we have revealed that the

on-axis Lissajous singularity in the beam core of the designed Lissajous beams can

be stable and propagate over significant distances. The ability to generate and con-

trol these singularities opens new possibilities for their application in high-precision

metrology, advanced imaging systems, and secure communication channels.

The exploration of Lissajous singularities was further extended through Young’s

interference experiment[13], which provided a platform to observe the interference of

bichromatic vector beams. This study elucidated the conditions necessary for the

formation of Lissajous-type polarization singularities on an observation screen[14],

highlighting the intricate relationship between polarization and interference. By ma-

nipulating the polarization properties of the incident beams, it is possible to engineer

specific polarization interference patterns that can be used in optical metrology and

polarization-based imaging techniques.

This thesis seeks to synthesize these advancements into a comprehensive frame-

work for structured coherence beams. By combining the design of Lissajous beams,

interference-induced Lissajous patterns, and deterministic vortices in partially coher-

ent fields, we aim to develop new theoretical models and experimental techniques

for generating and manipulating structured light. The resulting beams are expected

to exhibit unprecedented control over intensity, phase, coherence and polarization,

paving the way for innovative applications in optical science and engineering.

The subsequent chapters will delve into the theoretical foundations of structured co-

herence beams, presenting detailed analyses and simulations of their behavior. Exper-

imental methodologies for generating and characterizing these beams will also be dis-

cussed, along with potential applications in various technological domains. Through

this integrated approach, this thesis aspires to contribute to the advancement of phys-
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ical optics and to unlock new capabilities in the manipulation of light.
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CHAPTER 1: DETERMINISTIC VORTICES EVOLVING FROM PARTIALLY

COHERENT FIELDS

1.1 Introduction

Over the past few decades, research into optical wavefield singularities [15, 16, 17]

has become ubiquitous and has led to many interesting physical insights and potential

applications, including micromanipulation [18], optical trapping [19], imaging [20]

and free-space optical communications [21, 22]. The most common singularity is

an optical vortex, a line of zero intensity in a three-dimensional wavefield around

which the phase has a circulating or helical structure. It was soon recognized that

the handedness of the phase structure imbues a vortex beam with orbital angular

momentum, and that such OAM can be used to trap or rotate particles [23], or create

light-driven micromachines [24].

Optical coherence theory is another field of optics that has been researched intensely

in recent years, with many potential applications[25] such as intensity interferometry

[26], ghost imaging [27], and optical coherence tomography [28]. Partially coherent

beams can be structured to have unusual propagation characteristics like self-focusing

[29], and it is now well-known that partially coherent beams are in many circumstances

resistant to the distortions caused by atmospheric turbulence [4]. These observations

have motivated the study of partially coherent beams to improve free-space optical

communications [30].

The possibilities of optical vortices and partial coherence make it natural to ask

whether there is some benefit to combining their effects. However, it has long been

believed that there is an intrinsic conflict between vortices and partial coherence.

A vortex is a deterministic phase structure in a spatially coherent field, centered

on a line of zero intensity, which we will refer to as a deterministic vortex. In a

partially coherent field, the phase is non-deterministic: vortices can appear in two-
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point coherence functions with one observation point fixed, where they are referred to

as coherence vortices, but their position depends on the choice of observation point

and is not associated with a zero of intensity. It has been shown that field vortices

associated with a zero of intensity are not typically found in a partially coherent field

[6]. A deterministic vortex imparted on a partially coherent field, through the use of

a spiral phase plate for example, would appear to always transform into a coherence

vortex on propagation [7]; similarly, if a random phase is imparted on a deterministic

vortex beam, that vortex will also transform into a coherence vortex on propagation.

However, it was recently found that a certain class of partially coherent beams, now

called Rankine vortex beams, will evolve a deterministic vortex as they propagate into

the far zone [31]. The evolution of a deterministic vortex in a Rankine beam arises

because its cross-spectral density (CSD) is the Fourier transform of that of a Gaussian

Schell-model vortex beam, with a deterministic vortex at its core, and so the evolution

of a Rankine beam to the far zone results in a deterministic vortex embedded in a

partially coherent field.

Of most interest for applications such as optical manipulation, remote sensing and

free-space optical communications, however, is a partially coherent beam that can be

designed to have a deterministic vortex appear at any desired propagation distance.

In this letter, we demonstrate that a partially coherent beam can be designed, through

the use of FracFTs, to manifest a deterministic vortex at any range and for any degree

of spatial coherence in the source plane; we refer to such beams as DVBs. Our analytic

results are illustrated with examples, and show that the relationship between phase

singularities and partial coherence is more complicated than generally believed.

To characterize the behavior of partially coherent wavefields, we work in the fre-

quency domain and use the CSD function W (r1, r2, ω), which may be formally defined

as [32]

W (r1, r2, ω) = ⟨U∗(r1, ω)U(r2, ω)⟩ω (1.1)
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where ⟨. . . ⟩ω represents the average over an ensemble of monochromatic fields and the

asterisk denotes the complex conjugate. For a quasi-monochromatic field, the CSD

at central frequency ω provides an excellent description of the overall behavior of the

field, and we suppress ω as a functional argument for brevity moving forward.

To design a field that creates deterministic vortices at a specified distance, we start

with a Gaussian Schell-model vortex (GSMV) beam of the form,

W0(r1, r2) =
(x1 − iy1)(x2 + iy2)

σ2
e−r21/2σ

2

e−r22/2σ
2

e−|r2−r1|2/2δ2 ,

(1.2)

where σ represents the waist width of the beam and δ represents the transverse spatial

correlation length. The terms of the form x+iy represent a deterministic vortex, which

appears at the origin and has a zero of the spectral density S(r) = W (r, r). This

function is of Schell-model form because the spectral degree of coherence depends

only upon the difference variable, i.e.

µ0(r2 − r1) = e−|r2−r1|2/2δ2 . (1.3)

1.2 Creation of a deterministic vortex beam in the source plane

To create a DVB, we take two-dimensional FracFTs with respect to the variables

r1 and r2. The most elegant approach to do this is to first write the Schell-model

degree of coherence of the beam in terms of its Fourier transform,

µ0(R) =

∫
µ̃0(K)eiK·Rd2K, (1.4)

where

µ̃0(K) =
1

(2π)2

∫
e−R2/2δ2e−iK·Rd2R =

δ2

π
e−K2δ2/2. (1.5)
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The cross-spectral density may then be expressed in the form,

W0(r1, r2) =

∫
µ̃0(K)U∗

0 (r1,K)U0(r2,K)d2K, (1.6)

where U0(r,K) represents a monochromatic tilted vortex beam,

U0(r,K) =
(x+ iy)

σ
e−r2/2σ2

eiK·r. (1.7)

A FracFT is a generalization of the classical Fourier transform with an order param-

eter α[33]. The transform is defined such that α = 0 represents the identity operation

and α = π/2 represents the ordinary Fourier transform operation. The FracFT can

be implemented optically using a single lens system, as proposed by Lohmann [34].

The 2-D FracFT can be expressed as an integral transform [35],

Uα(r,K) =

∫ ∞

−∞
Fα(r, r′)U0(r′,K) d2r′, (1.8)

where Fα(r, r′) represents the 2-D FracFT kernel defined as

Fα(r, r′) =
ie−iα

2πσ2 sinα
e

−i cotαr2

2σ2 e
ir·r′

σ2 sinα e−
i cotαr′2

2σ2 . (1.9)

The FracFT is typically defined as a transform over dimensionless variables; to im-

plement it in transforming a beam, we had to choose a length scale for the transform.

In Eq. (1.9), this scale is taken as σ so that the beam width of the FracFT tilted

beams is independent of the choice of the FracFT order α in the source plane.

After applying the FracFT to the tilted beams in the source plane, Fresnel diffrac-

tion can be used to propagate them to any desired distance. The field distribution
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along propagation is expressed as

Uα(r,K, z) =
∫ ∫

G(r, r′)Fα(r′, r′′)U0(r′′,K)d2r′′d2r′, (1.10)

Where G(r, r′) is the Fresnel diffraction kernel, given by

G(r, r′) =
eikz

iλz
e

ik|r−r′|2
2z . (1.11)

Evaluating the integrals of Eq. (1.10), we find the fractional Fourier field propagated

to a distance z has the form,

Uα(r,K, z) =
−eikze−iα

4β4A2σ
e

−(sinα+i cosα)

4β2Aσ2 r2
e

−K·r
2β2A

e
−K2

4A [(x+Kxβ
2) + i(y +Kyβ

2)].

(1.12)

In this expression,

β2 ≡ σ2 sinα− z

k
cosα, (1.13)

and

A ≡ iβ̃2

2β2σ2
+

1

2σ2
, (1.14)

β̃2 ≡ σ2 cosα +
z

k
sinα. (1.15)

It is to be noted that each tilted beam has a vortex at the shifted position β2K;

however, if β2 = 0, every tilted beam will have its vortex at the origin, and the cross-

spectral density will therefore also have a deterministic vortex at the origin. Solving

β2 = 0 for z, we find that we recover the Schell-model vortex beam at distance

z0 = kσ2 tanα. (1.16)
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Because the tangent function takes on all positive values from zero to infinity as α

ranges from 0 to π/2, we may choose our source parameters to produce a deterministic

vortex at any desired propagation distance.

1.3 Propagation of a deterministic vortex beam in free space

We may determine the cross-spectral density by a formula analogous to Eq. (1.6),

Wα(r1, r2, z) =
∫
µ̃0(K)U∗

α(r1,K, z)Uα(r2,K, z) d2K. (1.17)

Substituting from Eq. (1.5) and Eq. (1.12) into the above integral yields

Wα(r1, r2, z) =
δ2

16β8|A|4σ2
e
− (sinα+i cosα)

4β2Aσ2 r22e
− (sinα−i cosα)

4β2A∗σ2 r21e
(r1A+r2A

∗)2

16β4|A|4η{
1

η3

[
(η − 1

4A
)(x2 + iy2)−

1

4A∗ (x1 + iy1)
]
∗

[
(η − 1

4A∗ )(x1 − iy1)−
1

4A
(x2 − iy2)

]
+
β4

η2

}
,

(1.18)

where η ≡ δ2

2
+ 1

4A
+ 1

4A∗ . A detailed derivation process of the CSD along propagation

is included in the Supplemental Material. The phase of this cross-spectral density

will manifest a deterministic vortex at the distance z0.

0.000

0.000

0.020-0.020

0.020 0.020

-0.020

x/m

y/
m

y/
m

-0.02
-0.020

x/m

0

2π
(b)(a)

0.00

0.00 0.020

Figure 1.1: Phase of the cross-spectral density of a DVB in the source plane. Here α = 0.308,
σ = 5× 10−3m, δ = 0.01m. The observation point r1 is located at (a) (0.3mm,0.3mm), (b)
(0.1mm,0mm).



11

For the following examples, the beam waist width is set to 5 mm and the wave

number k = 2π
5
× 107 m−1. Figure 1.1 shows the phase of the CSD in the source

plane z = 0 for different values of the observation point r1. It can be seen that

the positions of the vortices, if they even exist, depend upon the position of the

observation point, and are therefore singularities of the correlation function and not

deterministic vortices. In Fig. 1.1(b), the two correlation vortices have even in fact

annihilated, leaving no singularities in the beam.

Figure 1.2 shows the phase of the cross-spectral density and the spectral density

in the vicinity of the special distance, here chosen to be z0 = 100 m, with α = 0.308.

Figures 1.2(a)-(c) show the phase distribution at different propagation distances; the

circle indicates the radius σ of the beam width for scale. It can be seen that there

is a single vortex at the special distance z0, and as one moves away from the special

distance the CSD has a pair of opposite-handed vortices in the correlation function.

Figure 1.2(d) shows the cross-section of the spectral density along propagation; the

green line indicates the position z0.

These deterministic vortices of the DVBs only appear over a finite range around

the distance z0. We may estimate this “depth of field” of deterministic vortices as the

range over which the single deterministic vortex is the only one that appears within

a circle with the radius of the beam width. In Fig. 1.2, it can be seen that from

z = 77 m to z = 123 m there is always only one phase singularity in the beam center

within the beam width, making the depth of field approximately 46m for this case.

Additional simulations for a variety of choices of r1 suggest that within this depth of

field, the position of the vortex does not depend significantly on the position r1 of

the reference point and that outside this depth of field, the vortex position depends

strongly on r1.

As noted above, these deterministic vortices can be placed at any propagation

distance, even quite far away. Figure 1.5 shows the CSD of a DVB for the choice
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Figure 1.2: Phase of a DVB beam with z0 = 100m. (a) z=77m, (b) z=100m, (c) z=123m;
(d) intensity distribution along propagation. Here, in (a)-(c),the observation point r1 is
located at (0.1mm,0mm), α = 0.308, σ = 5×10−3m, δ = 0.01m. The black circle represents
the radius σ; in (d) the green line indicates the position where the deterministic vortex is
located.

z0 = 1000 m; in this case α = 1.2664. The correlation width is still δ = 0.01 m, so

that the depth of field is approximately 160m, which within an order of magnitude

as the value of Fig. 1.2. This ability to maintain a deterministic vortex in a partially

coherent field over long propagation distances has potential application in free-space

optical communication and long-range remote sensing.

The correlation width δ does not affect the position of deterministic vortices, as

can be seen by Eq. (1.16). However, it does change the depth of field. Figure 1.4

shows the calculated depth of field over a range of values of the correlation length δ.

It can be seen that the depth of field decreases dramatically as the spatial coherence

decreases.

Figure 1.5 shows the case z0 = 100 m but δ = 0.001 m. From the selected phase

images, it can be seen that the depth of field is reduced to about 0.3 m. Lower spatial
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Figure 1.3: Creating a Gaussian Schell-model vortex beam at z0 = 1000m. (a) z=920m,
(b) z=1000m, (c) z=1080m; (d) intensity distribution along propagation. Here, α = 1.2664,
σ = 5× 10−3m, δ = 0.01m.

coherence therefore corresponds with a smaller depth of field. Furthermore, it can be

seen from Fig. 1.5(d) that the field exhibits minor self-focusing in this low coherence

limit.

This self-focusing effect can be traced to the effect of the FracFT on the constituent

components of the beam. Equation (1.12) indicates that, even for z = 0, the effect

of the FracFT is to tilt the beam in one direction and spatially shift it in the oppo-

site direction. For example, the phase tilt in the x-direction is roughly of the form

exp[iKxx], a positive tilt, while the shift is of the form (x +Kxβ
2), a negative shift.

This naturally creates a converging beam. For beams with low spatial coherence,

and contributions from large K values, this convergence is stronger than the natural

diffractive spreading of the beam.

In summary, we have demonstrated that it is possible to design partially coherent

beams which manifests a deterministic vortex at any desired propagation distance in

free space. In this paper, we only considered a vortex beam of order 1, but deter-
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ministic vortices of any order can in principle be created by changing the order of

the GSMV beam at the source. The technique described depends upon the partial

undoing of the FracFT transformation by beam propagation, represented by the r′

integration in Eq. (1.10). Furthermore, it is to be noted that the same approach can

be applied to any beams with a deterministic vortex, such as Schell-model beams

with a higher-order Bessel vortex field profile.

Though FracFTs are often implemented optically using a lens system, it is im-

portant to note that such an optical system is not necessary to realize the beams

described here. Any method that produces the cross-spectral density of Eq. (1.18)

in the source plane will have the same effect. This can be done, for instance, by

encoding a spatial light modulator with an appropriate statistical ensemble.

Our results may find use in the synthesis of partial coherence and optical vortices

for free-space optical communication. They also demonstrate that the study of the

relationship between coherence and singular optics can still yield unexpected effects.



15

0.000

0.000

0.030-0.030

0.030

-0.030

x/m

y/
m

0

2π

0.000

0.000

0.030-0.030

0.03 0 0.03 0

-0.030 -0.030

x/m

y/
m

0.000

0.000

0.000

0.030-0.030

0.030

-0.030

x/m

y/
m

0

0

100 200
z/m

y/
m

0.76

(a)

(c) (c)

(b)(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 1.5: Decrease the transverse correlation length δ to 0.001m. (a) z=99.8m, (b)
z=100m, (c) z=100.1m; (d) intensity distribution along propagation. Here, α = 0.308, σ =
5× 10−3m.



16

CHAPTER 2: DESIGN OF LISSAJOUS BEAMS

2.1 Introduction

Singularities in optical wavefields, such as optical vortices in scalar fields and po-

larization singularities in vector fields, have become an area of great theoretical and

practical interest, becoming the field known as singular optics [36]. Typical opti-

cal vortices in a three-dimensional field are lines of zero intensity around which the

phase has a circulating or helical structure, and typical polarization singularities in

a three-dimensional field are lines on which the state of polarization is circular, with

the major axis of the polarization ellipse undefined. Such singularities have been

used for diverse applications such as imaging, trapping and rotation of particles, and

free-space communications [11].

Most studies of singular optics have focused on fields which are monochromatic or

quasi-monochromatic. In 2003, however, Kessler and Freund noted that a new class

of singularities could be defined for fields which possess two harmonic frequencies

[12], with a fundamental frequency ω and a first harmonic 2ω. The singularities in

this case are lines in three-dimensional space where a generalized orientation of the

polarization figure, now a Lissajous figure, is undefined. Freund elaborated on the

properties of these Lissajous singularities in detail, focusing on the case where the

fields are produced by second harmonic generation (SHG) [37].

In recent years, Lissajous singularities have been observed and investigated in a

number of projects. These include a study of the dynamical evolution of Lissajous

singularities in free-space propagation [38], control of the polarization of Lissajous

fields in high-harmonic generation [39], and the topological features of Lissajous fields

[40].

Though researchers have suggested a number of potential applications for such

polarized bichromatic beams, there has been relatively little work investigating the
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properties of beams possessing Lissajous singularities. For example, though funda-

mental classes of beams containing a single optical vortex or polarization singularity

on the propagation axis have been derived, no comparable class of Lissajous beams

has been introduced. The second harmonic generation example of Kessler and Fre-

und’s original paper [12], for example, contains 4 total Lissajous singularities, three

surrounding a central fourth. In this paper, we introduce a class of Lissajous beams,

discuss the various types of beams that are possible, and investigate their basic prop-

agation properties.

We consider a bichromatic optical field in the form

E(r) = A(r)e−iω1t + B(r)e−iω2t, (2.1)

where ω1 and ω2 are signal frequencies with the relation of ω2 = 2ω1.

A Lissajous singularity is a polarization singularity in a bichromatic field where

the total complex Stokes field equals zero, i.e.

S12 = S1 + iS2 = 0. (2.2)

In analogy with the monochromatic case, we define the orientation angle ϕ of the

bichromatic field as

tan(2ϕ) =
S2

S1

, (2.3)

where S1 and S2 are the first and second Stokes parameters of the bichromatic field.

They are expressed as [41]

S1,A = ⟨|Ax|2 − |Ay|2⟩, S1,B = ⟨|Bx|2 − |By|2⟩, (2.4)

S2,A = ⟨Ay
∗Ax + Ax

∗Ay⟩, S2,B = ⟨By
∗Bx +Bx

∗By⟩, (2.5)

where S1,A and S2,A are the first and second Stokes parameters for A(r), and Ax and
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Ay are the orthogonal field components of A(r), with similar definitions for B(r).

Because Stokes parameters are additive, the total Stokes parameters in Eq. (1.2) are

S1 = S1,A + S1,B, S2 = S2,A + S2,B. (2.6)

From Eq. (2.6), it is straightforward to see that Lissajous singularities can exist at

a point even when there are no singularities in the individual frequency components,

as was noted by Freund [42]. All that is necessary is that the states of polarization of

the two frequency components lie on opposite sides of the Poincaré sphere. Thus, the

most well-known Lissajous singularity with a trefoil pattern is a special case where

both frequency components have circular polarization with opposite handedness at a

point, and individually have S12 = 0. There are many more possibilities, however, as

we now discuss.

2.2 Local forms of an isolated Lissajous singularity

Inspired by the preceding observations, we introduce a local form of an isolated

Lissajous singularity where, near the z-axis, A and B are of the forms,

A(r) = γ1ê1(x+ iβ1y)
m1 + ê2, (2.7)

B(r) = γ2ê2(x+ iβ2y)
m2 + ê1. (2.8)

where

ê1 = axx̂+ aye
iδAŷ, (2.9)

ê2 = bxx̂+ bye
iδB ŷ, (2.10)

are unit vectors, which will typically – but not always – taken to be orthogonal. The

choice of ê1 and ê2 directly affect the orientation and handedness of the Lissajous

singularity at the origin. The two fields A and B are each made of a local vortex
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component of order m1,2 and a plane wave component; γ1,2 is generally complex and

introduces a relative amplitude and phase difference between the components. The

quantity β1,2 = ±1 is the handedness of the vortex, and m1 and m2 are non-negative

integer orders of the vortex for each frequency.

(a)

−π/2

π/2

00

1

2

-2

-1

-2 -1 0 1 2

y

x 

0

1

2

-2

-1

-2 -1 0 1 2

x 

y

−π/2

π/2

00

1

2

-2

-1

-2 -1 0 1 2

y

x 

0

1

2

-2

-1

-2 -1 0 1 2

x 

y

(b)

(c) (d)

Figure 2.1: Illustration of the polarization state of two fundamental Lissajous patterns.(a)-
(b) Lissajous singularity with m1,2 = 1, γ1,2 = 1, β1 = −1, β2 = 1, ax =

√
2
2 , ay =

√
2
2 ,

bx = −
√
2
2 , by =

√
2
2 , δA = δB = π/2. (c)-(d) Lissajous singularity with m1,2 = 1, γ1,2 = 1,

β1 = 1, β2 = −1, ax =
√
2
4 , ay =

√
14
4 , bx = −

√
14
4 , by =

√
2
4 , δA = δB = π/4. The colors of

(a) and (c) indicate the orientation angle defined by Eq. (1.2), while (b) and (d) show the
Lissajous patterns.

Fig. 2.1 shows two examples of Lissajous singularities generated using the above

local expressions. The color plots show the orientation angle as a function of position;

points where all colors come together represent a singularity of orientation angle,

as defined by Eq. (2.3). It can be seen that (a), (b) represent an isolated trefoil

singularity, while (c), (d) represent an isolated Lissajous singularity of more general

form.

Equations (2.7) and (2.8) have a bewildering number of parameters that can be
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adjusted; however, not all of these parameters will result in a single Lissajous singu-

larity in the beam center. Investigations have shown that there are two broad cases

where a single singularity exists. The first case, which we will call Type A, is when

β1β2 = −1 and m1 = m2, i.e. the vortex components of the fields are of equal and

opposite charge. Most arbitrary combinations of γ1 and γ2 work (but not all the

time, for example, γ1γ2 = −1 does not produce a single singularity). Curiously, it

was found that ê1 and ê2 can be almost any orthogonal states except for linear states.

For linear polarization, the singularity breaks down into a line where S12 = 0 in the

plane.

The second case, which we will call Type B, is when γ1 = 0 or γ2 = 0. Then β2 or

β1 can be ±1 and m2 or m1 can be any positive integer. For this case, ê1 and ê2 are

only allowed to be orthogonal circular states. For other bases there will be multiple

singularities in the beam cross-section; we will see an example momentarily.

2.3 Construct Lissajous beams

We next construct Lissajous beams by replicating the local forms of Eqs. (2.7) and

(2.8) with combinations of Laguerre-Gauss beams. The propagation formula for a

LG beam with radial index n = 0 and waist width W1,2 is of the form,

ELG
m1,2

(ρ, ϕ, z) =
1√

[|m1,2|]!

[ √
2ρ

w1,2(z)

]|m1,2|

× eiβ1,2m1,2ϕEG
1,2(r)e

−i(|m1,2|)Φ1,2(z)

(2.11)

where ELG
mi

represents the vortex component of the field with frequency ωi, and

EG
1,2(ρ, ϕ, z) = A0e

−iΦ1,2(z)
e

ik1,2ρ
2

2R1,2(z)√
1 + z2/z21,2

e
−ρ2

w2
1,2(z) (2.12)
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represents a fundamental Gaussian beam with A0 = 1 . The quantity R1,2(z) rep-

resents the wavefront curvature, w1,2(z) is the propagation-dependent beam width,

Φ1,2(z) is the Gouy phase and z1,2 the Rayleigh range, z1,2 = W 2
1,2k1,2/2.

We write our proposed Lissajous beams in the form,

E(ρ, ϕ, z) = E1(ρ, ϕ, z)e
−iω1t + E2(ρ, ϕ, z)e

−iω2t (2.13)

where

E1(ρ, ϕ, z) = γ1ê1E
LG
m1

(ρ, ϕ, z) + ê2E
G
1 (ρ, ϕ, z), (2.14)

E2(ρ, ϕ, z) = γ2ê2E
LG
m2

(ρ, ϕ, z) + ê1E
G
2 (ρ, ϕ, z). (2.15)

We begin our simulations by investigating Lissajous beams in the source plane

z = 0 and we take W1,2 = 10−2m for both frequency components. It is to be noted

that all of the following plots have sizes which are comparable to the intensity spot;

the figures therefore show the full range of Lissajous patterns covered in the beam

cross-section. Furthermore, in the source plane the Lissajous figures are independent

of the choice of carrier and signal frequencies.

If a beam possesses only one Lissajous singularity in the beam profile that lies in

the center, we refer to it as a pure Lissajous beam; other cases that can be derived

from Eqs. (2.7) and (2.8) we refer to as non-pure Lissajous beams. We now look at a

variety of examples.

Fig. 3.2 shows two examples of pure Type A Lissajous beams. We can see that by

choosing β1 = −1 and β2 = 1, the orientation of polarization changes from π/2 to

−π/2 following a clockwise path for both m1 = m2 = 1 and m1 = m2 = 3. If we

choose β1 = 1 and β2 = −1, the orientation will change in the opposite direction.

Fig. 2.3 shows two examples of pure Type B Lissajous beams, for which γ = 0 for

one of the frequency field components and ê1 and ê2 can only be orthogonal circular
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Figure 2.2: Examples of pure Type A Lissajous beams, with (a)-(b) m1,2 = 1,(c)-(d) m1,2 =

3. In both cases, we take γ1,2 = 1, β1 = −1, β2 = 1, ax = 1
6 , ay =

√
35
6 , bx = −

√
35
6 , by =

1
6 , δA = δB = π/5.

polarization states. Though the vortex order is different for both examples, we get

the same trefoil pattern at the center of each beam; this pattern depends only on the

choice of polarization basis.

It is worthwhile to explore the behavior of non-pure beams as well. In Fig. 3.4(a)-

(b), we investigate a beam with the same parameters as in Fig. 3.2, except we replace

β1β2 = −1 with β1β2 = 1, i.e. the vortex charges are equal rather than opposite.

It can be seen that there are no point Lissajous singularities, but instead there are

spoke-like Lissajous singularity lines, along which the orientation jumps by π/2. Al-

ternatively, we may keep all the parameters the same as in Fig. 2.3, except we now

allow ê1 and ê2 to be orthogonal elliptical states, in general resulting in more than

one singularity in the beam profile. In Fig. 2.4(c)-(d), now there is one third-order

positive singularity on axis and three negative singularities off axis.

Returning again to pure beams, we now investigate how these beams evolve on
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Figure 2.3: Examples of pure Type B Lissajous beams, with (a)-(b) m2 = 1,(c)-(d) m2 = 3.
In both cases, we take γ1 = 0, γ2 = 1, β2 = 1, ax =

√
2
2 , ay =

√
2
2 , bx = −

√
2
2 , by =

√
2
2 , δA =

δB = π/2.

propagation. We consider a SHG example, with k1 = 2π
5
× 107, k2 = 4π

5
× 107. We

estimate the Rayleigh range for the bichromatic field as an approximate average of

the Rayleigh ranges z1 and z2 of the two frequency components; for our choice of

beam widths and frequencies, this width is 1 km. The polarization distribution is

examined both in the near field (z = 1 m) and at the Rayleigh range for a pure Type

A beam in Fig. 2.5.

It can be seen that the center singularity remains even after propagating to the

Rayleigh range, and that no new singularities appear; we find similar results for other

higher-order pure Lissajous beams. The trefoil pattern remains a trefoil but its orien-

tation changes and its curvature changes. This is shown in more detail in Fig. 2.6(a)-

(c). Even more dramatic changes in the shape will arise if the two frequency compo-

nents of the beam have different spatial widths, which results in different propagation

characteristics, as seen in Fig. 2.6(d)-(f).
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Figure 2.4: Non-pure Lissajous beams, with (a)-(b) m1,2 = 3, γ1,2 = 1, β1,2 = 1; (c)-(d)
m2 = 3, γ1 = 0, γ2 = 1, β2 = 1. For both cases, ax = 1

6 , ay =
√
35
6 , bx = −

√
35
6 , by = 1

6 , δA =
δB = π/5.

The changes in shape can be roughly understood by calculating the field on axis of

the two components from Eqs. (2.11) and (2.12),

E1(0, ϕ, z) = A0
e−iΦ1(z)√
1 + z2/z21

ê2, (2.16)

E2(0, ϕ, z) = A0
e−iΦ2(z)√
1 + z2/z22

ê1. (2.17)

Eqs. (2.16) and (2.17) show that the amplitudes of the two components and their

Gouy phases are z-dependent, depending on the relative beam waists and frequencies.

A relative shift in amplitude will change the shape of the Lissajous figure, while

the relative change in phase will affect the amplitude of the figure. Because the

Gouy phase shift for a Gaussian always changes by π/2 at most, we expect that the

maximum change in orientation is also π/4, which follows from Eq. (3.7).
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Figure 2.5: Propagation of a pure Lissajous beam. m1,2 = 1, γ1,2 = 1, β1 = −1, β2 = 1, ax =√
2
2 , ay =

√
2
2 , bx = −

√
2
2 , by =

√
2
2 , δA = δB = π/2.

It is to be noted that, for very long propagation distances, the components of the

beam can change enough to cause new singularities to manifest. However, for all

examples we have considered, this only happens after the Rayleigh distance, which

means the beams will have a propagation-invariant singularity that travels for at least

1 km for the parameter choices given here.

In summary, we have demonstrated that it is possible to create a class of pure

Lissajous beams which possess a solitary on-axis Lissajous singularity, and that these

beams can maintain this structure over significant propagation distances. These re-

sults lay a foundation for the application of bichromatic optical singularities.
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Figure 2.6: Evolution of on-axis Lissajous singularity along propagation. (a)-(c) W1 =W2 =
10−2m, (d)-(f) W1 = 10−2m,W2 = 2 ∗ 10−2m.
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CHAPTER 3: LISSAJOUS SINGULARITIES IN YOUNG’S INTERFERENCE

EXPERIMENT

Singularities in wavefields have become important objects of study, both for their

unusual physical properties and the use of those properties to improve optical sys-

tems. The classic singularities are optical vortices in scalar wavefields, which are lines

of zero intensity in three-dimensional space around which the phase has a circulating

or helical structure [2, 43]. Beams with optical vortices have been used for a vari-

ety of applications, including free-space optical communications [21], super-resolved

imaging [44], and coronagraphy [45].

In vector electromagnetic fields, optical vortices are not typically seen and in-

stead the typical singularities encountered are polarization singularities [46], which

for paraxial fields include lines of circular polarization (on which the orientation of

the polarization ellipse is undefined) and surfaces of linear polarization (on which

the handedness of the polarization ellipse is undefined). Polarization singularities

have also been used for a number of applications, including imaging [47, 48] and

light-matter manipulation [49].

Both optical vortices and polarization singularities are typically studied in monochro-

matic fields. It is possible to generalize them further, however, and consider the types

of singularities that appear in bichromatic fields where the higher frequency is a har-

monic of the lower. The electric field vector then traces out a Lissajous figure instead

of an ellipse; singularities of the generalized orientation of this figure are called Lis-

sajous singularities, and were first introduced by Freund and Kessler [12, 50]. These

singularities, like polarization singularities and optical vortices, have potential to be

used in imaging and communications, and recently a class of beams containing a

single Lissajous singularity at their core was formulated [51].

Though the topology of Lissajous singularities has been well-formulated, the con-

ditions under which Lissajous singularities can be formed, for example through inter-
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ference, are still unclear. Young’s interference experiment provides a unique platform

for exploring a rich variety of phenomena in both classical optics and quantum op-

tics [13]. In 2003, it was used to investigate singularities of the correlation function

that appear in partially coherent light [52]. In 2009, the experiment was used to

analyze the creation of polarization singularities [53]. It is natural, then, to consider

Young’s experiment for bichromatic fields in order to determine conditions under

which Lissajous singularities can be created in interference.

In this study, we use Young’s interference experiment to investigate the super-

position of two vector beams, each possessing two frequency components, and we

derive sufficiency conditions under which the Lissajous-type polarization singularities

are formed on the observation screen. We give examples of the Lissajous patterns

and singularities created under these conditions, and demonstrate additional cases of

singularity creation.

3.1 Introduction to Lissajous singularities

Consider a beam-like electromagnetic field traveling along the z-direction, and con-

taining frequencies ωa and ωb. At position r and time t, its electric field can be

expressed as

E(r) = Re
[
A(r)e−iωat + B(r)e−iωbt

]
, (3.1)

where A and B are complex vectors with x and y-components. Because these vec-

tors are complex, a complete characterization of the electric field requires eight real

numbers. In a circular polarization basis with unit vectors

ϵ± =
1√
2
(x̂± iŷ), (3.2)
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the electric field at each point and at each individual frequency can be written as

E = Elϵ+ + Erϵ−, (3.3)

with El and Er the complex amplitude of the left- and right-handed component,

respectively. The four Stokes parameters may be written as [54]

S0 = |El|2 + |Er|2, (3.4)

S1 = 2 Re[E∗
l Er], (3.5)

S2 = 2 Im[E∗
l Er], (3.6)

S3 = |El|2 − |Er|2. (3.7)

Using the circular basis allows us to take advantage of the simple relation between

S1 and S2, as we will see. Because the Stokes parameters are cycle-averaged, those of

the total bichromatic field are simply the sum of the parameters at each of the two

frequencies, i.e.,

Sj = Sj,a + Sj,b, j ∈ {0, 1, 2, 3}. (3.8)

In analogy with polarization singularities in a monochromatic field, two types of

singularities can occur in a bichromatic field [50]: singularities of handedness and

singularities of orientation. Because the latter is a direct analogue of vortices, it

has broad potential applications compared to singularities of handedness which are

surfaces in 3-D. Thus, this paper focuses exclusively on Lissajous singularities of

orientation, hereafter referred to as Lissajous singularities.

A Lissajous singularity is a polarization singularity in a bichromatic field where

the total complex Stokes field S12 equals zero, i.e.

S12 ≡ S1 + iS2 = 0, (3.9)
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which means a Lissajous singularity only appears when S1 and S2 both equal 0. At

a singularity, the pattern’s orientation angle with respect to the x-axis is undefined;

this orientation angle is given by [12]

tan(2ψ) =
S2

S1

. (3.10)

In a bichromatic field, a singularity of orientation is not a simple figure like circular

polarization in the monochromatic case, but is generally a Lissajous figure.

3.2 Bichromatic version of Young’s experiment

Let us consider Young’s setup, as sketched in Fig. 3.1, in which a bichromatic beam,

with frequencies ωa and ωb and corresponding wavenumbers ka and kb, is normally

incident on a screen A that contains two identical pinholes separated by a distance d.

The polarization state at the two frequencies need not be equal, and may be different

at each pinhole. The superposition of the fields emanating from the apertures Q1 and

Q2 is observed at a point P = (x, 0,∆z) on a second, parallel screen B.

Figure 3.1: Young’s experiment with two frequencies. A bichromatic beam is incident on
screen A in the plane z = 0, which contains two identical pinholes, Q1 at (d/2, 0, 0), and Q2

at (−d/2, 0, 0). The observation screen B is located in the plane z = ∆z. The two distances
(dashed lines) are R1 = Q1P and R2 = Q2P .
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At frequency β (with β = a, b), the transverse field at P has the form

Eβ(P ) = A1,βK1,βê1,βe
ikβR1 + A2,βK2,βê2,βe

ikβR2 . (3.11)

Here, Ai,β represents the amplitude of the field at the βth frequency emanating from

the aperture Qi, and êi,β, with i = 1, 2, is a unit polarization vector expressed in the

circular basis, as indicated in Eq. (3.2), that characterizes the polarization state at

the aperture Qi. Explicitly,

êi,β = pi,βϵ+ +mi,βϵ−, (3.12)

with |pi,β|2 + |mi,β|2 = 1. We shall take pi,β to be complex while mi,β is assumed to

be real. The propagator Ki,β is given by the expression [55]

Ki,β =
dA

iλβRi

, (3.13)

where dA is the pinhole area, and λβ = 2π/kβ. Under typical circumstances the two

distances x and d are much smaller than the screen separation ∆z. We then have to

a good approximation

R2 −R1 ≈
xd

∆z
, (3.14)

and

K1,β ≈ K2,β = Kβ. (3.15)

In our derivation we make use of these two approximations, but in the simulations

the exact form of the expressions will be used.

Because the propagator depends on λβ, as seen in Eq. (3.13) the apertures will

preferentially transmit more light of the smaller wavelength component. This will

cause the smaller wavelength to dominate on the observation screen and wash out any
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Lissajous singularities. To eliminate the difference in amplitude at the two frequencies

caused by their respective propagators, we let Ai,β = 1/Kβ, to obtain a normalized

vector field

Ēβ(P ) = ê1,βe
ikβR1 + ê2,βe

ikβR2 . (3.16)

This could be done experimentally by placing appropriate spectral filters in front of

the pinholes Qi.

The resulting normalized Stokes parameters at frequency β on the observation

screen are thus

S̄1,β(P ) = 2 Re[Ē∗
l,β(P )Ēr,β(P )], (3.17)

S̄2,β(P ) = 2 Im[Ē∗
l,β(P )Ēr,β(P )], (3.18)

where

Ēl,β(P ) = Ēβ(P ) · ϵ∗+, (3.19)

Ēr,β(P ) = Ēβ(P ) · ϵ∗−. (3.20)

For brevity we omit, from now on, the dependence on the position P . At frequency

a we thus have

S̄1,a = 2 Re
[(
p∗1,ae

−ikaR1 + p∗2,ae
−ikaR2

) (
m1,ae

ikaR1 +m2,ae
ikaR2

)]
, (3.21)

S̄2,a = 2 Im
[(
p∗1,ae

−ikaR1 + p∗2,ae
−ikaR2

) (
m1,ae

ikaR1 +m2,ae
ikaR2

)]
. (3.22)

Similar expressions are obtained for S̄1,b and S̄2,b. Using their additive property, the
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Stokes parameters for the total field on the observation screen are thus

S̄1 = S̄1,a + S̄1,b, (3.23)

S̄2 = S̄2,a + S̄2,b. (3.24)

It is to be noted that the there are two ways to get a Lissajous singularity at a point:

the Stokes vectors can be identically zero at each frequency, or the different frequency

components can cancel each other out.

3.3 Lissajous singularities in Young’s experiment

Lissajous singularities appear at points where the zeros of S̄1 and S̄2 coincide.

Since these two parameters are the real and imaginary part of the same expression,

it readily follows that these joint zeros imply a single condition, i.e.,

p∗1,a
[
m1,a +m2,ae

ika(R2−R1)
]
+ p∗2,a

[
m2,a +m1,ae

−ika(R2−R1)
]

+ p∗1,b
[
m1,b +m2,be

ikb(R2−R1)
]
+ p∗2,b

[
m2,b +m1,be

−ikb(R2−R1)
]
= 0.

(3.25)

Eq. (3.25) can be rewritten in a compact matrix form as

⟨A|M|A⟩† = 0. (3.26)

Here

⟨A| =
[
e−ikaR1 e−ikaR2 e−ikbR1 e−ikbR2

]
, (3.27)

|A⟩† is the adjoint of ⟨A|, and

M =



p∗1,am1,a p∗1,am2,a 0 0

p∗2,am1,a p∗2,am2,a 0 0

0 0 p∗1,bm1,b p∗1,bm2,b

0 0 p∗2,bm1,b p∗2,bm2,b


. (3.28)
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This matrix is non-Hermitian, which indicates the possible solutions of Eq. (3.26)

are more complicated than those of a Hermitian matrix. A necessary condition for

Eq. (3.26) to be satisfied is DetM = 0, and this can be shown through direct calcu-

lation to be automatically satisfied. A more involved calculation shows that of the

four eigenvalues of the matrix, two of them are zero and two are non-zero.

Because the matrix M is non-Hermitian, it has distinct right and left eigenvectors

and these represent distinct situations when Lissajous singularities will form. Thus,

⟨A|M = ⟨0| (3.29)

and

M|A⟩† = |0⟩ (3.30)

are two independent sufficiency conditions to satisfy Eq. (3.26).

The formulation of the bichromatic interference problem in the matrix form of

Eq. (3.26) is the most significant finding of this paper. It provides a clear method

for determining the conditions under which the incident bichromatic fields on the

pinholes will produce Lissajous singularities. In the next section, we will delve into

the exploration of the two categories of solutions to generate Lissajous singularities

on the observation plane. Since both conditions are only sufficient, it is possible

to find Lissajous singularities in some situations without necessarily satisfying these

sufficiency criteria. We will provide an illustrative example of such a case as well.
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3.4 Examples and discussions

We now look at the conditions of Eqs. (3.29) and (3.30) in turn. The condition

⟨A|M = ⟨0| represents the pair of equations

p∗1,ae
−ikaR1 + p∗2,ae

−ikaR2 = 0, (3.31)

p∗1,be
−ikbR1 + p∗2,be

−ikbR2 = 0. (3.32)

Because R1 and R2 represent quasi-independent distances, and ka and kb are very

large at optical frequencies, kaR1 and kaR2 will produce every combination of phases

over the observation plane. We write kaR1 as ϕ1, and kaR2 as ϕ2. Since kb = nka,

with n = 2, 3, . . ., Eqs. (3.31) and (3.32) can be rewritten as

p∗1,ae
−iϕ1 + p∗2,ae

−iϕ2 = 0, (3.33)

p∗1,be
−inϕ1 + p∗2,be

−inϕ2 = 0. (3.34)

Thus

p1,a = Ae−iϕ1 , p2,a = −Ae−iϕ2 ,

p1,b = Be−inϕ1 , p2,b = −Be−inϕ2 ,

(3.35)

with A,B ∈ R. Figs. 3.2–3.4 illustrate solutions of Eq. (3.35) for different ratios

of wavenumber and polarization states of the incident vector beams. We choose

mi,β = (1− |pi,β|2)1/2 in all these examples, with little loss of generality.

In Fig. 2(a), with n = 2, the intensity (solid red curve) exhibits periodic fluctuations

and remains non-zero throughout. Lissajous singularities occur at the intersections of

S̄1 = 0 and S̄2 = 0. In panel Fig. 2(b) it is seen that the orientation angle undergoes a

π/2 jump across each singularity; an analogous π/2 change in orientation occurs when

crossing a polarization singularity in a monochromatic field, regardless of whether
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the type of generic polarization singularity is a lemon, star or monstar [2]. Along

the x-axis, a recurring array of identical “crescent” Lissajous singularities (orange

curves) forms, interspersed with non-singular Lissajous patterns of diverse shapes

(cyan curves).

/2

(b)

(a)

Figure 3.2: (a) Intensity [a.u.] (red) and the Stokes parameters S̄1 (green) and S̄2 (blue)
along the x-axis on the observation screen. (b) Lissajous singularities (orange), non-singular
Lissajous patterns (cyan) and the orientation angle ψ (purple) along the x-axis on the obser-
vation screen. In this example n = 2, λa = 800 nm, λb = 400 nm. p1,a = (

√
2/3) exp(i3π/5),

p2,a = −(
√
2/3) exp(iπ/2), p1,b = (1/2) exp(i6π/5), and p2,b = (−1/2) exp(iπ).

In Fig. 3.3, the frequency ratio n is changed to 3, and we vary the choices of pi,β.

It is seen that the Lissajous singularities take on varied orientations compared to the

identical orientations observed in Fig. 3.2. A video demonstrating the continuous

evolution of Lissajous patterns along the x-axis can be found in Visualization 1.

In the previous examples, the change in polarization state was accompanied by
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(b)

(a)

/2

Figure 3.3: (a) Intensity [a.u.] (red) and the Stokes parameters S̄1 (green) and S̄2 (blue)
along the x-axis on the observation screen. (b) Lissajous singularities (orange), non-singular
Lissajous patterns (cyan) and the orientation angle ψ (purple) along the x-axis on the ob-
servation screen. Here, n = 3, λa = 1200 nm, λb = 400 nm. p1,a = (

√
2/4) exp(i3π/2),

p2,a = −(
√
2/4) exp(iπ/8), p1,b = (1/2) exp(i9π/2), and p2,b = −(1/2) exp(i3π/8) (see Visu-

alization 1).
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significant changes in intensity. Fig. 3.4 shows that this need not be the case: for an

appropriate choice of parameters, Lissajous patterns can manifest along the x-axis

while the overall intensity remains effectively constant. In Fig. 4(a), the intensity

is essentially constant over the range of interest; the intensity for each frequency is

essentially constant as well. Though there is no observed pattern in intensity on the

observation plane, periodic Lissajous singularities do appear at the intersections of

S̄1 and S̄2 with the x-axis, as evidenced by the π/2 jumps in Fig. 4(b). In this case,

Lissajous singularities are not only of crescent shape. Instead, trefoils and crescents

appear alternately. This suggests a broader range of possible Lissajous singularity

shapes on the observation screen. A video depicting the variation of Lissajous patterns

along the x-axis in this scenario is included in Visualization 2.

We may also consider the second sufficiency condition, M|A⟩† = |0⟩, which yields

a pair of equations

m1,ae
ikaR1 +m2,ae

ikaR2 = 0, (3.36)

m1,be
ikbR1 +m2,be

ikbR2 = 0. (3.37)

Using a similar notation as for the previous case, we find that

m1,a = Ce−iϕ1 , m2,a = −Ce−iϕ2 ,

m1,b = De−inϕ1 , m2,b = −De−inϕ2 ,

(3.38)

with C,D ∈ R. Because mi,β are all real as we defined in Section 3, the phases ϕ1

and ϕ2 can only be multiples of 2π. Thus Eqs. (3.38) reduce to

m1,a = C, m2,a = −C,

m1,b = D, m2,b = −D.
(3.39)

Since |pi,β| = (1 − |mi,β|2)1/2, there is now no restriction on the phases of pi,β, only
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(b)

(a)

/2

Figure 3.4: (a) Intensity [a.u.] (red) and the Stokes parameters S̄1 (green) and S̄2 (blue)
along the x-axis on the observation screen. (b) Lissajous singularities (orange) and the
orientation angle ψ (purple) along the x-axis on the observation screen. Here, n = 2,
λa = 800 nm, λb = 400 nm. p1,a = (

√
2/2) exp(i3π/2), p2,a = −(

√
2/2) exp(i3π/2), p1,b =

(
√
2/2) exp(i3π), and p2,b = −(

√
2/2) exp(i3π) (see Visualization 2).
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on their amplitude. Thus, in the following examples these four phases are randomly

chosen.

(b)

(a)

/2

Figure 3.5: (a) Intensity [a.u.] (red) and the Stokes parameters S̄1 (green) and S̄2 (blue)
along the x-axis on the observation screen. (b) Lissajous singularities (orange), non-singular
Lissajous patterns (cyan) and the orientation angle ψ (purple) along the x-axis on the
observation screen. Here, n = 2, λa = 800 nm, λb = 400 nm. m1,a =

√
2/2,m2,a =

−
√
2/2,m1,b = 1/3,m2,b = −1/3, p1,a = (

√
2/2) exp(i3π/5), p2,a = (

√
2/2) exp(iπ/3), p1,b =

(
√
8/3) exp(i2π/3), and p2,b = (

√
8/3) exp(iπ/2).

In Figs. 3.5 and 3.6 two examples are presented for which Eqs. (3.39) are satisfied.

Irrespective of the pi,β, there is always a Lissajous singularity created at x = 0. This

is because on the z-axis, R1 −R2 = 0 and hence the conditions (3.36) and (3.37) are

automatically satisfied. Notice that in Fig. 3.5, with frequency ratio n = 2, again an

array of identical Lissajous singularities is formed.

In Figs. 5(b) and 6(b), the blank spots in the continuous interval of the orientation
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angle plots appear as S1 = 0 while at those points S2 does not equal 0. The mathe-

matical software encounters challenges when calculating the Arctan function with an

undefined value, resulting in gaps where we expect continuity.

(b)

(a)

/2

Figure 3.6: (a) Intensity [a.u.] (red) and the Stokes parameters S̄1 (green) and S̄2 (blue)
along the x-axis on the observation screen. (b) Lissajous singularities (orange), non-singular
Lissajous patterns (cyan) and the orientation angle ψ (purple) along the x-axis on the
observation screen. Here, n = 4, λa = 1600 nm, λb = 400 nm. m1,a =

√
3/5,m2,a =

−
√
3/5,m1,b = 1/2,m2,b = −1/2, p1,a = (

√
22/5) exp(i3π/2), p2,a = (

√
22/5) exp(iπ/8),

p1,b = (
√
3/2) exp(iπ), and p2,b = (

√
3/2) exp(i5π/3).

Because Eqs. (3.29) and (3.30) are only sufficient conditions, and not necessary

ones, it should be possible to find cases where Lissajous singularities appear even

though neither condition is satisfied. An example of this is shown in Fig. 3.7.

We set mi,β = (1−|pi,β|2)1/2, n = 3, |pi,β| = mi,β =
√
2/2, and the phases of pi,β are

randomly chosen. Lissajous singularities appear with the same shape but different
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(b)

(a)

/4

/4

Figure 3.7: (a) Intensity [a.u.] (red) and the Stokes parameters S̄1 (green) and S̄2 (blue)
along the x-axis on the observation screen. (b) Lissajous singularities (orange), non-singular
Lissajous patterns (cyan) and the orientation angle ψ (purple) along the x-axis on the
observation screen. Here, n = 3, λa = 1200 nm, λb = 400 nm. p1,a = (

√
2/2) exp(i3π/5),

p2,a = (
√
2/2) exp(iπ/3), p1,b = (

√
2/2) exp(i4π/3), and p2,b = (

√
2/2).
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orientations. This illustrates that the two independent conditions we derived are

indeed sufficient, but not necessary.
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3.5 Conclusions

We have examined the superposition of two bichromatic beams in Young’s interfer-

ence experiment, with the goal of finding conditions under which Lissajous singulari-

ties appear in interference. Two independent sufficiency conditions for the generation

of Lissajous singularities were derived. Several examples, in which either of these con-

ditions is satisfied, were presented, all showing a variety of Lissajous patterns, both

singular and non-singular. Furthermore, it was demonstrated that, when neither of

the two sufficiency conditions is satisfied, it is nevertheless possible to create singular

polarization figures.

Though Lissajous singularities have been relatively unexplored to date, there is

increasing interest in them, for example in studying unusual topological knots and

Möbius strips in light waves [56]. The conditions presented in this paper should serve

as a guide for future studies of such singularities.
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APPENDIX A: SUPPLEMENTARY MATERIAL FOR “DESIGN OF LISSAJOUS

BEAMS”

The following MATLAB code can be used to generate the Lissajous patterns of a

Lissajous beam, as shown in the paper. The sample code here generates the Lissajous

pattern in Fig.1(d).

1 vv=l i n s p a c e ( −2 ,2 ,7) ;

2 mypoints=length ( vv ) ;

3 xx=1;

4 [ x , y]=meshgrid (vv , vv);% draw L i s s a j ou s pat t e rns

5 gamma1=1;

6 gamma2=1;

7 beta1=1;%handedness o f the vortex f o r f requency1

8 beta2=−1;%handedness o f the vortex f o r f requency2

9 m1=1;%order o f the vortex f o r f requency1

10 m2=1;%order o f the vortex f o r f requency2

11

12 ax=sq r t ( 2 ) / 4 ;

13 ay=sq r t ( 1 4 ) /4 ;

14 deltaA=pi /4 ;

15

16 bx=−sq r t ( 14 ) /4 ;

17 by=sq r t ( 2 ) / 4 ;

18 deltaB=pi /4 ;

19 ex=ax . ∗ ( x+1 i ∗beta1 . ∗ y)^m1+bx;%ex and ey are the

20 x and y components o f the f requency1 f i e l d
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21 ey=ay . ∗ exp (1 i ∗deltaA ) . ∗ ( x+1 i ∗beta1 . ∗ y)^m1

22 +by . ∗ exp (1 i ∗ deltaB ) ;

23 fx=bx . ∗ ( x+1 i ∗beta2 . ∗ y)^m2+ax;% fx and fy are the

24 x and y components o f the f requency2 f i e l d

25 fy=by . ∗ exp (1 i ∗ deltaB ) . ∗ ( x+1 i ∗beta2 . ∗ y)^m2

26 +ay . ∗ exp (1 i ∗deltaA ) ;

27 exr=r e a l ( ex ) ;

28 ex i=imag ( ex ) ;

29 eyr=r e a l ( ey ) ;

30 ey i=imag ( ey ) ;

31 enorm=sq r t ( exr .^2+ ex i .^2+eyr .^2+ ey i . ^ 2 ) ;

32 f x r=r e a l ( fx ) ;

33 f x i=imag ( fx ) ;

34 f y r=r e a l ( fy ) ;

35 f y i=imag ( fy ) ;

36 fnorm=sq r t ( f x r .^2+ f x i .^2+ fy r .^2+ f y i . ^ 2 ) ;

37 totoalnorm=sq r t ( fnorm.^2+enorm .^ 2 ) ;

38

39 a=1.5;

40 exnorm=ex . / totoalnorm . / ( a∗mypoints ∗ . 5 ) ;

41 eynorm=ey . / totoalnorm . / ( a∗mypoints ∗ . 5 ) ;

42 fxnorm=fx . / totoalnorm . / ( a∗mypoints ∗ . 5 ) ;

43 fynorm=fy . / totoalnorm . / ( a∗mypoints ∗ . 5 ) ;

44

45 t t=l i n s p a c e ( 0 , 2 . 0∗ pi , 6 0 ) ;

46 hold on ;

47 ax i s ( ’ equal ’ ) ;
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48 f o r i i =1:mypoints

49 f o r j j =1:mypoints

50 %draw the L i s s a j ou s pattern at each po int

51 l i s s a j o u s x=x( i i , j j )+ r e a l ( exnorm ( i i , j j ) . ∗

52 exp(−1 i ∗ t t )+xx∗fxnorm ( i i , j j ) . ∗ exp(−2∗1 i ∗ t t ) ) ;

53 l i s s a j o u s y=y( i i , j j )+ r e a l ( eynorm ( i i , j j ) . ∗

54 exp(−1 i ∗ t t )+xx∗fynorm ( i i , j j ) . ∗ exp(−2∗1 i ∗ t t ) ) ;

55

56 p l o t ( l i s s a j o u s x , l i s s a j o u s y ) ;

57 end

58 end
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APPENDIX B: SUPPLEMENTARY MATERIAL FOR “DETERMINISTIC

VORTICES EVOLVING FROM PARTIALLY COHERENT FIELDS”

In this supplemental material, we show a detailed derivation process of

the cross-spectral density (CSD) along propagation, which is Eq. (3.18) in the

original manuscript.

We begin with a Gaussian Schell-model vortex (GSMV) beam

W0(r1, r2) = (x1 − iy1)(x2 + iy2)e
−r21/2σ

2

e−r22/2σ
2

e−|r2−r1|2/2δ2 . (B.1)

First, we write the spectral degree of coherence in terms of its Fourier transform,

µ0(R) =

∫
µ̃0(K)eiK·Rd2K, (B.2)

where

µ̃0(K) =
1

(2π)2

∫
e−R2/2δ2e−iK·Rd2R,

=
δ2

π
e−K2δ2/2.

(B.3)

The cross-spectral density may then be expressed in the form,

W0(r1, r2) =

∫
µ̃0(K)U∗

0 (r1,K)U0(r2,K)d2K, (B.4)

where U0(r,K) represents a monochromatic tilted vortex beam,

U0(r,K) =
(x+ iy)

σ
e−r2/2σ2

eiK·r. (B.5)

The 2-D FracFT for a tiled vortex beam can be defined as an integral transform

Uα(r,K) =

∫ ∞

−∞
Fα(r, r′)U0(r′,K) d2r′, (B.6)
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where Fα(r, r′) represents the 2-D FracFT kernel defined as

Kα(r, r′) =
ie−iα

2πτ 2 sinα
e

−i cotαr2

2τ2 e
ir·r′

τ2 sinα e−
i cotαr′2

2τ2 . (B.7)

Proper τ value needs to be chosen so that the beam width is invariant regardless

of the choice of the FracFT order α in the source plane. To find the beam width, we

integrate all the exponential terms of a normally incident Gaussian beam over the

source plane,

I =

∫
e

−i cotαr2

2τ2 e
irr′

τ2 sinα e
−i cotαr′2

2τ2 e
−r′2
2σ2 d2r′

=e
−i cotαr2

2τ2

∫
e−(

i cotα
2τ2

+ 1
2σ2 )r′2e

irr′
τ2 sinαd2r′.

(B.8)

We use the relation,

e−A(r′−B)2 = e−Ar′2+2ABr′−AB2

, (B.9)

For the above integral,

A =
i cotα

2τ 2
+

1

2σ2
, B =

ir

i cosα + τ2

σ2 sinα
, (B.10)

and thus,

I =e
−i cotαr2

2τ2 eAB2

∫
e−A(r′−B)2d2r′ =

π

A
e

−i cotαr2

2τ2 eAB2

, (B.11)

where

eAB2

= e
− σ2

2τ2 sinα(i cosασ2+τ2 sinα)
r2
. (B.12)
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The beam width ω is found as

ω =Re

[
− σ2

2τ 2 sinα(i cosασ2 + τ 2 sinα)
− i cotα

2τ 2

]−1
2

=

√
2(cos2 ασ4 + τ 4 sin2 α)

1
2

σ
.

(B.13)

Beam width goes from
√
2σ to

√
2τ2

σ
, as the FracFT order α increases from 0 to π/2.

So in order to keep all fractional beams sharing the same width, τ needs to be set as

σ.

Then, the 2-D FracFT kernel is expressed as

Fα(r, r′) =
ie−iα

2πσ2 sinα
e

−i cotαr2

2σ2 e
ir·r′

σ2 sinα e−
i cotαr′2

2σ2 . (B.14)

After applying the FracFT to the tilted beams in the source plane, Fresnel diffrac-

tion can be used to propagate them to any desired distance. The field distribution

along propagation is expressed as

Uα(r,K, z) =
∫

G(r, r′)Uα(r′,K)d2r′, (B.15)

Where G(r, r′) is the Fresnel diffraction kernel, given by

G(r, r′) =
eikz

iλz
e

ik|r−r′|2
2z . (B.16)

The 2-D FracFT and Fresnel diffraction integrals can be combined to write as

Uα(r,K, z) =
∫ ∫

G(r, r′)Fα(r′, r′′)U0(r′′,K)d2r′′d2r′, (B.17)

The integral over r′ can be calculated first to combine the FracFT and Fresnel kernel

into the combined kernel
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H(r, r′′) =
∫

G(r, r′)Kα(r′, r′′)d2r′

=
ieikze−iα

2πβ2
e

ik
2z

r2e
−i cotαr′′2

2σ2 e
− iγ(r′′−r/γ)2

2β2 ,

(B.18)

where β2 ≡ σ2 sinα− z
k
cosα, γ ≡ z

kσ2 sinα
.

Then the field distribution along propagation is obtained by the following integral

Uα(r,K, z) =
∫

H(r, r′′)U0(r′′,K)d2r′′. (B.19)

Substituting Eq. (B.5) and Eq. (B.18) and after lengthy calculations, Eq. (B.19) yields

Uα(r,K, z) =
−eikze−iα

4β4A2σ
e

−(sinα+i cosα)

4β2Aσ2 r2
e

−K·r
2β2A e

−K2

4A [(x+ kxβ
2) + i(y +Kyβ

2)], (B.20)

where A ≡ iβ̃2

2β2σ2 +
1

2σ2 , β̃2 ≡ σ2 cosα + z
k
sinα.

Then, the cross-spectral density along propagation can be obtained using a formula

analogous to Eq. (B.4),

Wα(r1, r2, z) =
∫
µ̃0(K)U∗

α(r1,K, z)Uα(r2,K, z) d2K. (B.21)

Substituting from Eq. (B.3) and Eq. (B.20) into the above integral yields

Wα(r1, r2, z) =
δ2

16β8|A|4σ2
e
− (sinα+i cosα)

4β2Aσ2 r22e
− (sinα−i cosα)

4β2A∗σ2 r21e
(r1A+r2A

∗)2

16β4|A|4η{
1

η3

[
(η − 1

4A
)(x2 + iy2)−

1

4A∗ (x1 + iy1)
]
·

[
(η − 1

4A∗ )(x1 − iy1)−
1

4A
(x2 − iy2)

]
+
β4

η2

}
,

(B.22)

where η ≡ δ2

2
+ 1

4A
+ 1

4A∗ .
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At the special distance z0, the CSD reduces to

Wα(r1, r2, z0) =
δ2

16β8|A|4σ2η
e

(r2−r1)
2

16β4A2η e
− (sinα+i cosα)

4β2Aσ2 r22e
− (sinα−i cosα)

4β2A∗σ2 r21(x1 − iy1)(x2 + iy2),

(B.23)

which is in the form of a GSMV beam.


