DEVELOPMENT OF A MULTI-LAYERED BOTMASTER BASED ANALYSIS
FRAMEWORK

by

Napoleon Cornel Paxton

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in
Information Technology

Charlotte

2011

Approved by:

Dr. Gail-Joon Ahn

Dr. Mohamed Shehab

Dr. Cem Saydam

Dr. Nickolas Stavrakas

©2011

Napoleon Cornel Paxton
ALL RIGHTS RESERVED

i

iii
ABSTRACT
NAPOLEON CORNEL PAXTON. Development of a multi-layered botmaster based
analysis framework. (Under the direction of DR. GAIL-JOON AHN)

Botnets are networks of compromised machines called bots that come together to
form the tool of choice for hackers in the exploitation and destruction of computer
networks. Most malicious botnets have the ability to be rented out to a broad range
of potential customers, with each customer having an attack agenda different from the
other. The result is a botnet that is under the control of multiple botmasters, each of
which implement their own attacks and transactions at different times in the botnet.
In order to fight botnets, details about their structure, users, and their users motives
need to be discovered. Since current botnets require the information about the initial
bootstrapping of a bot to a botnet, the monitoring of botnets are possible. Botnet
monitoring is used to discover the details of a botnet, but current botnet monitoring
projects mainly identify the magnitude of the botnet problem and tend to overt some
fundamental problems, such as the diversified sources of the attacks. To understand
the use of botnets in more detail, the botmasters that command the botnets need to
be studied. In this thesis we focus on identifying the threat of botnets based on each
individual botmaster. We present a multi-layered analysis framework which identifies
the transactions of each botmaster and then we correlate the transactions with the
physical evolution of the botnet. With these characteristics we discover what role
each botmaster plays in the overall botnet operation. We demonstrate our results

in our system: MasterBlaster, which discovers the level of interaction between each

v
botmaster and the botnet. Our system has been evaluated in real network traces.
Our results show that investigating the roles of each botmaster in a botnet should
be essential and demonstrates its potential benefit for identifying and conducting
additional research on analyzing botmaster interactions. We believe our work will
pave the way for more fine-grained analysis of botnets which will lead to better
protection capabilities and more rapid attribution of cyber crimes committed using

botnets.

ACKNOWLEDGEMENTS

During my time at UNC Charlotte, I have been truly blessed to work with an
amazing group of people. Without these people this work would not have been
possible. My deepest gratitude goes out to my advisor, Dr. Gail-Joon Ahn who
has guided me on my Ph.D. journey. His constant inspiration, encouragement, and
insightful advice has been invaluable throughout my Ph.D. study. He has not only had
an enormous impact on my professional development, but also on my personal life and
for that I am very thankful. I would also like to thank Dr. Mohamed Shehab for all his
hard work during my Ph. D. study. Dr. Shehab’s advice and hands on demonstrations
were also a valuable asset that significantly aided my growth during my Ph.D. study.
Also, I would like to thank the other members of my committee, Dr. Cem Saydem and
Dr. Nickolas Stavrakas for their interest in my work. Their insightful comments and
suggestions have truly improved the quality of my work. I have been very fortunate
to work with a great group of researchers in the LIISP lab. I would like to thank Moo
Nam Ko, Wenjuan Wu, Jing Jin, and Hongxin Hu. Meeting and studying with you all
has truly enriched my experience at UNC Charlotte. Thank you and I wish you all the
very best in all your future endeavors. I would also like to thank all the students that
participated in the UNC Charlotte Cybercorp during my tenure there. I enjoyed the
hands on security training we practiced together and am truly appreciative of the hard
work many of you dedicated to developing tools that went into the botnet monitoring
projects. In particular I would like to thank Jonathan Peterson, Chris Nunnery, Kevin

Pearson, David Stone, Connie Kellen, Aaron Friedman, Steven Blanchard, Vikram

vi
Sharma, Jonathan Lavender, and Richard Kelly. These people worked closely with
me on various network security problems that significantly enriched my knowledge of
network security. I would like to thank my family for their support and encouraging
words during good and bad times. I love and appreciate you all. In particular I would
like to thank my son Jeremiah. He has always been a major source of my inspiration
and always has a positive and uplifting thing to say about his dad. I would like to
thank my mom. She has been a true example of strength and she has always believed
I was destined for greatness. I only hope to continue to make you proud. I would also
like to thank my father, whom I lost during my Ph.D. journey. He showed me what
it meant to strive to be the best at what I do and for that I will always be grateful.
I would like to thank my grandparents and in particular my grandmothers who both
taught me to always trust in God. I would like to give a special thanks to my wife
Daelena. Her patience and understanding has been invaluable to me completing my
Ph.D. study. Her love and kindness has been a constant motivating factor and I look
forward to what life has in store for us. Finally I would like to thank my Lord and
Savior Jesus Christ for his grace and mercy which has allowed me to matriculate
through my Ph. D. study. Without His love I am nothing and I owe all things to

Him.

TABLE OF CONTENTS

LIST OF FIGURES
LIST OF TABLES
CHAPTER 1: INTRODUCTION
1.1 The History of Botnets
1.2 Economic Impact of Botnets
1.3 Honeynets
1.4 Botnet Monitoring
1.5 Botnet Analysis: New Focus
1.6 Social Coordination
1.7 Botmaster Based Analysis: Our Goals
1.8 Research Overview
1.9 Research Contribution and Thesis Organization
CHAPTER 2: RELATED WORK
2.1 Honeynet-based Data Capture
2.2 Botnet Monitoring
2.3 Botnet Analysis
2.4 Attribution
CHAPTER 3: HONEYNET-BASED TESTBED ENVIRONMENT
3.1 Background
3.2 Honeynet-based Bot Analysis Architecture

3.3 Analysis Methods and Results

vil

xii

10

12

12

15

18

21

21

22

22

23

24

25

26

33

viil

3.4 Conclusion 39

CHAPTER 4: ATTACK ANALYSIS FRAMEWORK DEVELOPMENT 40
4.1 Background 41
4.2 Overview of our framework 43
4.3 Component development 47
4.4 Preliminary Results 49
4.5 Conclusion 52

CHAPTER 5: FRAMEWORK DEVELOPMENT WITH IRC SANDMAN 53

5.1 Overview of Our Framework and Its Realization 54
5.2 Understanding Bots D7
5.3 IRC Sandman 60
5.4 Results 67
5.5 Conclusion 69
CHAPTER 6: MASTERBLASTER 70
6.1 Scope of Research 71
6.2 Important Features 71
6.3 Data Collection 77
6.4 System Overview 81
6.5 Implementation and Results 90
CHAPTER 7: DISCUSSION 101
7.1 Limitations 101

7.2 Future Research 102

CHAPTER 8:

REFERENCES

CONCLUSION

1X

110

113

FIGURE 1:

FIGURE 2:

FIGURE 3:

FIGURE 4:

FIGURE 5:

FIGURE 6:

FIGURE T7:

FIGURE 8&:

FIGURE 9:

FIGURE 10

FIGURE 11:

FIGURE 12:

FIGURE 13:

FIGURE 14:

FIGURE 15:

FIGURE 16:

FIGURE 17:

FIGURE 18:

FIGURE 19:

FIGURE 20:

FIGURE 21:

LIST OF FIGURES

Bot History Timeline

Basic Botnet Operation
Research Solution

Research Framework
Architecture Diagram
Anti-Virus Detection

Binaries Downloaded
Nepenthes + Diagram

IAFT Menu

: Bot Uploaded Into Correlator
PCAP Uploaded Into Correlator
Correlation Report

Honeynet Based Architecture
IRC Sandman Framework

Cycle of Botnet Evolution

Finite State Machine Example

DFA Construction

MasterBlaster System Overview

Auto-Correlation Statistics

Interaction Between the Reflective-Impulsive Systems

Threat Values of Top Botmasters in Each Botnet

14

24

28

33

36

40

46

46

48

49

50

ol

54

58

60

61

62

63

64

64

65

FIGURE 22:

FIGURE 23:

FIGURE 24:

FIGURE 25:

FIGURE 26:

Attacks Motivated by Evolution
Total Botnet Evolution
Botnet Analysis Portal
Botnet Analysis Portal

The Mariposa Attack Modeled Using Our Framework

x1

67

68

70

71

74

LIST OF TABLES

TABLE 1: Framework Component Details

TABLE 2: Bots Captured and Analyzed

TABLE 3: Comparison of Bots Ran Through the Analysis Process
TABLE 4: Abbreviated Taxonomy of Bot 0c28

TABLE 5: Classifier Comparison

TABLE 6: Bots Captured

TABLE 7: Reflective Keywords in Closed Analysis

TABLE 8: Size Comparison of Open Analysis Data

TABLE 9: Commands and Ratio

TABLE 10: Correlated Patterns

xii

41

67

72

73

87

90

105

106

108

109

CHAPTER 1: INTRODUCTION

Computer networks and in particular the Internet, have become an integral part
of life today. In most cases these networks are enriching and add value to our lives,
but because the Internet is connected to most of the world there is also opportunity
for cyber criminals to cause significant damage to those that depend on its services.
In most cases security services are in place to dampen the threat of cyber criminals,
but these services are far behind criminal capabilities in the realm of protecting
clients connected to the Internet. One of the greatest threats to the Internet is the
botnet. Botnets are networks of compromised machines called bots that carry out the
commands of botmasters through communication mediums—such as the Internet Relay
Chat (IRC), Peer-to-Peer (P2P), social networks, and so on—which has a command
and control that exchange all commands with the botnet. The purpose of a malicious
botnet is to facilitate some sort of cyber crime such as spamming attacks, phishing
attacks, identity theft, and distributed denial of service attacks (DDoS). Current
techniques to study and analyze botnets with the goal of thwarting botnet attacks are
insufficient, as is evident by the rising number of botnet attacks and botnet activity
throughout the Internet today. These techniques are focused mainly on analyzing
the malware which infects the computers and turns them into bots or shutting down

the command and control architecture which is the protocol used by the botmasters

2

to command the botnet. While these components of the botnet are important to
analyze and understand, we believe there is a glaring omission to botnet analysis
that must be addressed. This omission is the analysis of the botmaster himself.
In this thesis we address this present deficiency in botnet analysis by sharing our
experiences with using our framework to analyze botnets based on the botmasters
which control them. For the remainder of this chapter we first discuss the history of
botnets and how they became such a threat to computer networks today. We then
discuss how botnets and cybercrime in general have had a significant economic impact
on society today. We follow this up with a discussion on honeynets, a section on botnet
monitoring, a section on botnet analysis, and then we discuss how botnets exhibit
social coordination much like other networks. Next we discuss our goals followed by
a summary of our research which includes the articulation of our contributions and

the structure of the rest of this thesis.
1.1 The History of Botnets

Botnets have a short but destructive history. The bot was originally created for
legitimate purposes, but it did not take long for cyber criminals to realize the power
of the bot and to discover how they could use it for malicious purposes. Figure 1 is

a timeline of the history of the bot beginning from the invention of IRC.
1.1.1 The origin of botnets

Malicious botnets are derived from early programmers creating a way to command
agents on IRC chat channels. These programmers would create agents that would

do their bidding in a coordinated fashion. The first bot was reportedly invented in

- Conflicker - P2P based command and
== SubSeven - 1st trojan/bot control
= RBot - uses packing
- TWitter bot - shut down twitter social
GT Bot - runs scripts in response to networking system
IRC events

oo M == SDBot - source code available online

1985 1990 1995 2000 2005 2010 2015 2020

= SpyBot - spyware
== Mariposa - large hybrid botnet

= 1stIRC Bot Created by Greg Lindahl = [ty (| IREGEr et el

== Gao Bot - introduced modular design

= Mydoom - mass emailing worm\bot

Poly Bot - changes it's code slightly
with every infection

Figure 1: Bot History Timeline

1989 and was called GM by inventor Greg Lindahl. The purpose of the bot was to
play a game of Hunt the Wumpus with other IRC users. Soon after the first bot was
created, other programmers realized bots could be used to perform more useful tasks
such as administering channels and taking requests from users. During the late 1990s
a couple of malicious bots had come on the scene (Pretty Shark, SubSeven). These
bots showed future hackers how bots could be used to gain administrative control over
infected systems. In 2000, a bot named ”GTbot” was introduced. This bot displayed
the ability to run scripts on IRC servers and could conduct flooding attacks which
could be used in denial of service attacks. Also in 2000, a sixteen year old Canadian
hacker by the name of "mafiaboy” used a botnet to cause over 1.5 billion in damage
to several large e-commerce sites. In 2002 the botnet problem escalated due to the
creation of the SD bot. The author of this bot released the source code to the web
which made it easy for other hackers to access and customize it for their nefarious
purposes. This act of sharing malicious code began the explosion of botnet attacks

worldwide.

1.1.2 Newer forms of botnets

IRC based botnets are still prevalent and destructive which is evident by the recent
attack on Twitter and other social networking sites [101]. Recently there has been
a shift from the more prevalent IRC based botnet to newer and potentially more
destructive forms of botnets. These botnets include Peer-2-Peer (P2P) such as con-
flicker which is described here [68, 43], http, and hybrid botnets such as the Mariposa
botnet which consisted of over 13 million computers in 190 countries [19, 82, 33, 5].
P2P botnets use the P2P protocol to command the botnets. In this type of archi-
tecture the botmaster can use any compromised peer in the botnet to command the
bots. This eliminates the single point of failure problem in IRC based botnets. Http
based botnets receive their commands from a number of different URLs over http. In
other words the bots in this architecture frequently connect to a pre-programmed list
of URLs in order to receive their orders. Hybrid based botnets use a combination of
the techniques to command the botnet. An example of this type of botnet could be
one that uses P2P to spread and recruit more bots, but connect to certain predefined
URLs to download commands. Although these types of botnets are generally thought
of as more destructive, a recent resurgence in IRC based botnets shows the need for

more research to be done on this type of botnet architecture as well.
1.2 Economic Impact of Botnets

Despite the increased attention to cybercrime over the past few years, financial
damage caused by botnets continue to climb. The recent findings of the FBI IC3

2010 report shows that company losses from cybercrime rose from 264.6 million in

5

2009 to 559.7 million in 2010 [32]. Botnets are the major culprit in these crimes
since they are the tool of choice for cyber criminals to use. Botnets have proven to
be an effective and flexible tool that the cyber criminals can rent or create on their
own. They are also very cost effective since renting or owning a botnet costs far less
than trying to defend against them. Some of the crimes committed using botnets are:

Distributed Denial of Service attacks (DDoS), identity theft, and spam.
1.2.1 Renting botnets

One way cyber criminals profit from botnets is through renting the botnet out to
other criminals that have targets in mind but do not have the technological expertise
to design or administer the botnets. This results in a variety of attacks from one
botnet by multiple criminals but each with a different intent. Since each botmaster
has his own agenda, the transactions between each botmaster and the botnet will vary.
Currently these differences in transactions are not normally considered in automatic
machine based analysis. This means that most analysis consists of manually combing
through logs and analyzing the botnet data as a whole instead of the botmaster
being automatically analyzed by a computer program. The result is slow error prone
analysis when trying to decipher one botmaster from another which also results in a

low rate of convictions when it comes to crimes committed using botnets.
1.2.2 Offense vs. defense

Obtaining and operating a botnet are relatively inexpensive, as opposed to defend-
ing against them. It is estimated that those who rent botnets usually pay between

$50 to a few thousand dollars for 24 hours of continuous operation of a DDoS enabled

6

botnet depending on the robustness and the functionality of the botnet[58]. Once the
cyber criminal has access to the botnet, the recruitment of more bots is free since
they infect computers without the knowledge of their owners. Some more technolog-
ically savvy cyber criminals can actually download code to create botnets free over
the Internet. There are many sites that provide this service and some even provide
tutorials which give step by step instructions on how to create and administer the
botnets. Because of this ease of access to botnets, the price for defending against the

botnet has always been much greater.
1.2.3 Types of attacks

Botnets can conduct a wide variety of attacks against machines connected to the
Internet. Here we discuss a few of the more destructive and widely prevalent forms

of attacks utilizing botnets.
1.2.3.1 DDoS

DDosS is the most destructive of the attacks committed using a botnet. Servers are
created to handle a set amount of connections from customers. When this connection
amount is exceeded it leads to a denial of service to some or all of the users trying
to access the service. Alone each bot is relatively harmless. It acts as a single user
trying to access a service on the server. This is also the case when dealing with a
SYN flood attack from one bot. Most servers will be able to handle the attack from
a single source because it has the resources to withstand its magnitude. The power
of botnets are in their coordination and the volume of the responses from the bot

nodes. In a typical botnet hundreds to thousands of bot nodes coordinate to respond

7

to botmaster commands. When these nodes are instructed to connect to one web-
service, the aggregated volume of the bandwidth is too much for most companies to
handle, causing a denial of service to the targeted servers. Most companies do not
have the millions of dollars it takes to properly secure their servers from these types
of attacks. Since the denial of service attack comes from multiple bot nodes which are
geographically distributed, this type of attack is normally referred to as a distributed
denial of service attack. These attacks are prevalent today and cyber criminals are
compensated in a variety of ways. Some use the threat of a DDoS attack to extort
money from a company [24]. Some perform these attacks to cripple a competitor
which will give them a better chance to gain market share and increase their money
flow in that way. Others use DDoS attacks as a form of revenge or political statement
(60, 3, 64, 81, 34, 13, 38]. These attacks are also growing in nature and analyzed more
closely in [26, 45, 13, 14, 62, 63, 1, 22, 94, 61, 59]. In any case, damage from a DDoS

attack can be very significant and can cost a substantial amount to repair.
1.2.3.2 Identity theft

In some cases botnets are used to steal confidential information from the true
owners of the bot nodes they have compromised. When bot nodes are instructed to
download files, the botmaster can receive files from every bot in the botnet which
can be hundreds or thousands in some botnets. These downloaded files can vary
from secret files that can take away the competitive advantage of the owner, or they
can be banking credentials which give the botmasters access to the compromised

machine owner bank accounts. In either case, the financial loss for the owner of the

compromised machine can be great. This is discussed in more detail in [24].
1.2.3.3 Spam

Another problem caused by botnets that is growing exponentially is e-mail spam-
ming. According to a report by M86 Labs [51], spam typically represents around
80-90% of all inbound Email to organizations which calculates to about 200 billion
messages per day which seriously clogs networks, and most of the spam in the world
today comes from botnets. Nowadays spam is not only a network-clogging problem,
but also a means for criminals to distribute additional malware to infect a greater
number of computers when the person reading the spam clicks on the email. This
has also become a popular way for botmasters to recruit more bots to become part

of their botnet army.
1.3 Honeynets

Although botnets are very complicated to code initially, the creation of botnets
has been made relatively easy. The code to program bots have been made modular
and are made available to anyone with Internet access. This results in a network full
of botmasters which do not necessarily have a strong technical background [87, 30].
Because of this, most botmasters can easily be monitored without them realizing it. A
honeynet is a network of machines that are set up to look like a normal network, but
have a set of known vulnerabilities. When these vulnerabilities are exploited, these
systems are designed to monitor the nefarious activities that take place on them.
Using this method we are able to discover the initial compromise of the system and

also the commands that are given to the honeynet by the compromiser. In other words

9

this allows us to monitor the interactions between the attacker and the compromised
machines. As for the more sophisticated botmaster, more sophisticated honeynets
need to be created which can trick the botmaster into thinking he is compromising a
real network. This can be very expensive to setup, but depending on the target and

the situation it may be a worthwhile endeavor.
1.4 Botnet Monitoring

Since there is normally a geographical difference between the botmaster and most
of the bots in a botnet, the botmaster has to command his botnet using a command
and control component. This component has evolved over the years, but one thing is
still true regarding the connection of the bots to the command and control. Botnets
require the information about the initial bootstrapping of a bot to a botnet to be
public so this can be recorded and duplicated which allows us to create our own
bots which can join the botnet and monitor its transactions. Botnet monitoring has
proven to be an effective method to infiltrate and monitor botnets to garner in-depth
information about the threat of botnets. Monitoring botnets give us the capability
to learn many statistics about botnets, such as the size, the amount of attacks, and
how active the botnet is as a whole. Organizations such as Shadowserver do a lot of
botnet monitoring to generate these statistics. When the packet capture traces are
recorded between the bot and the botmaster there is a unique opportunity to view
the messages sent between the botmaster and the bot. Since botnets are normally
massive in size, it has been relatively easy to covertly infiltrate a botnet and monitor

its transactions. Because of this, botnet monitoring has become a common way to

10

analyze and identify botnets and the destruction they cause. The idea behind botnet
monitoring is to capture a bot, modify the bot so that it will not become part of any
subsequent attacks, allow the bot to connect to its command and control center, and
then monitor the communications that take place on the botnet. This works well when
trying to explain the magnitude of the botnet problem as a whole, but a finer grained
analysis technique is still needed to develop better protection mechanisms to defend
against discovered threats. In this research we extend botnet monitoring techniques
based on the interactions between botmasters and their botnets. Figure 2 shows
the basic operation of an IRC botnet. This figure addresses a deficiency present in
previous figures which only show a botmaster sending commands to a botnet, giving
the impression that there is only one botmaster in control of the botnet. In fact,
most botnets are controlled by multiple botmasters. In the figure we see botmaster
1 initially creating the botnet. Once the botnet is created, botmaster 1, 2, and N
(which represent all other botmasters commanding the botnet) each have a different
attack agenda. Discovering these agendas and the roles played by each botmaster is

the goal of this research.
1.5 Botnet Analysis: New Focus

Once we have the monitored data as an input, most analysis research in the area of
botnets are focused on finding bots and command and control channels and shutting
the botnet down quickly [2, 27], but as Park and Reeves pointed out [68], it is also
important to monitor botnets for an extended time to learn the purpose of the botnets

to develop more effective countermeasures. A large problem with slowing the rise of

11

DNS Server

H O]
_ -
1. Exploit
2. Bot Download

‘. R 2
BN T
6B 7 3.DNS %
& "o 7 84 ue
_ Query 2. _~
r~y 9. Identity Extortion Online
Botmaster 1 l 1 Theft __— (attack2) Casino
(attack 1) N

7. Attack
Command 1

Online
Banking

10. Attack
Command 2

ﬁﬁﬁﬁﬁﬁ

13. Attack
Command 3

Command
and Control
Server

Figure 2: Basic Botnet Operation

botnets is that most significant botnets today are constantly changing. They are
evolved by adding bots, deleting bots, changing to new channels, being upgraded,
etc. In order to stop botnets we need a sophisticated analysis method, instead of
relying on only attempting to discover their command and control servers. This can
only be achieved by conducting a long term analysis [59]. A good example of this is
what happened after the take down of the largest spamming botnet in the world, the
McColo botnet. In November 2008, the most major spamming botnet in the world,
McColo was shut down. The next day the spam volume was nearly cut in half, but
by the end of 2009 the volume was increased higher than ever. Experts agree that the
explosion in spamming is a result of the botmasters in charge of McColo regrouping

and creating other botnets in which they could spread their spam once again [51]. In

12

order to address this issue we focus on discovering characteristics of the botmaster
over time which will allow us to not only discover the means to shut the botnet down,
but hopefully enough information to discover the attacker to prevent the creation of

potential botnets.
1.6 Social Coordination

We argue that botnets can be looked at as a social network. Social networks tie
nodes together based on the interdependency. The way we look at these interdepen-
dencies are as commands and their semantics. We see this often in networks of people.
Suppose we have a network (group) of house builders. In order to build a house we
have a foreman that gives the commands (orders) to builders. At times the foreman
tells a subset of the builders to lift a wall into place, and at other times he tells all the
builders to go to the next house or go take a break. There are even situations when
the foreman will tell one worker to install a light bulb or order one of the workers
to leave. In botnets the botmaster plays the role of the foreman and the bots play
the role of the workers. The botmaster can command the bots to download software
updates, or attack a victim website. He could order one bot to leave the botnet, or a
subset of the bots to download banking credentials from their compromised hosts. In
our work we begin to explore modeling the social aspect of the botnet by analyzing

the transactions between the botmasters and the bots on the botnet.
1.7 Botmaster Based Analysis: Our Goals

Current analysis techniques have done a good job of enumerating the size of botnets

and how they are organized. These techniques concentrate on the botnet as a whole

13

and therefore omits the transactions between the botmaster and the bots. They also

do a great job of analysis on individual bots. In our earlier research we also performed

bot based analysis as shown in [4, 70, 71]. We also describe these techniques in

chapters 2, 3, and 4. In order to eventually stop botnets we have to hold those that

are at fault accountable. In order to do that we need more fine grained analysis of

the botnet transactions. In particular we need to concentrate on botmaster based

analysis. This type of analysis presents several issues:

1.

Storage of packet captures can get very costly. Since the transactions
between the botmaster and the bots within the botnet are located in the payload
section of the network packets, we capture the full packet capture traces (PCAP)
of the botnets. These PCAPs consume a lot of storage space and requires a large
amount of computational power to analyze. In order to alleviate some of this
burden we parse the PCAPs for the usable content and then discard the rest.
In the future we plan on modifying current network flows to also capture the
application layer payload data since network flow data takes much less storage
and is more efficient to analyze.

All transactions are not displayed in plain text. In this case we have two
choices. We can either try to decipher the transactions using various decrypting
techniques or we can omit the cryptic results. It is our aim that by showing the
benefit of analyzing the botmaster transactions we will inspire more research in
decrypting more advanced botnet transactions.

Botmasters do not generally use their real name or other personal
attributes when connecting to a botnet. Since botmasters do not want
others to know who they actually are, they normally do not include any identi-
fiable information in their transactions with botnets. Some botmasters even use
multiple botmaster names when they are commanding their botnets just in case
someone is starting to suspect who they might be. This is not a real problem
in our work. We aim to identify what the botmaster names are doing, so we do
not concentrate on the actual person behind the transactions at the moment. It
is however possible to correlate multiple botmaster names to determine if they
are exhibiting similar behavior. We plan on working on that issue in later work.

In our research we have the following goals:

1.

Discover botmaster characteristics. Using monitored botnet data as in-
put, identify transactions between each botmaster and the botnet. We aim to
discover all the exchanges of information within the botnet and attribute it to
the botmaster that is initiating the transactions.

14

2. Discover the level of impact of a botmaster within the botnet. Here
we aim to discover the threat each botmaster poses based on his involvement in
the botnet. We also aim to see what types of activities the individual botmaster
participates in the most.

Masters Botnets/Nodes Characteristics Patterns

J My Pattern
CELZN'H J
Tz 14

M

1. Initial install of reflective commands (parsed bot source code)

2. Botmasters sending impulsive commands to botnets and the nodes within the botnets (PRIVMSG transactions from
Masters (M1) to nodes in a Botnet (B1)

3. The impulsive commands matched with the reflective commands in each botnet equal the associated links which
are also the characteristics (reflective commands found in PRIVMSG transactions)

4. The aggregate characteristics for each botmaster is the botmaster pattern (All Characteristics (C) found in every

botnet (B) for each Master (M)

Figure 3: Research Solution

Figure 3 is a diagram that shows the methodology of how we turn botnet transac-
tions into categories that are botmaster based. In step 1 of the diagram we show that
one botmaster initiates the botnet process by creating the first botnet nodes. The
binaries of these nodes are analyzed in our analysis system which is described in the
next chapter. Once the nodes are analyzed, they are parsed and reflective keywords
are extracted. These keywords are the first building blocks to characteristics which
are described in detail in chapter 5. In step 2 one or more botmasters send commands
to the nodes of the botnets. We call these commands impulsive commands and they

are also described in chapter 5. In step 3 these reflective keywords and impulsive

Table 1: Framework Component Details

15

’ Component

\ Requirements Met

\ Description

Bot Capture

Characteristic Discovery

Starts the analysis

Closed Analysis

Characteristic Discovery
Characteristic Discovery
Characteristic Correlation

Scans bots
Discovers bot keywords
Submitted for correlation

Open Analysis

Characteristic Discovery
Characteristic Correlation

Connects to node hosts
Matches correlated

Net Monitoring

Characteristic Discovery
Characteristic Correlation

Captures transactions
Matches correlated

Characteristic Correlation
Characteristic Correlation

Correlate results of components
Discover social characteristic type

Correlation Characteristic Correlation | Discover evolutionary characteristics
Characteristic Correlation | Match botnet map characteristics
Characteristic Correlation | Generate correlation

Threat Threat Generation Discover significance level

Taxonomy Threat Generat%on Generate significance level
Threat Generation Generate taxonomy

Protection Threat Generation Generate report

commands are combined to create characteristics and in step 4 patterns based on the

botnet are created from these characteristics.

1.8 Research Overview

To accomplish our goals we have developed a framework composed of eight com-

ponents. Alone each component provides its own results which are a low level of

analysis given the correctly structured input. Collectively each component combines

with each other to provide multiple layers of analysis which give a detailed output. In

our framework each of the eight components satisfy at least one of the three system

requirements. Figure 4 displays our framework. Table 1 shows the details of each

component.

16

System Requirements

Characteristic Discovery

Identify Bots Attempting to Exploit Services
ScanCapturedBots —~ ~ "~ T T T T T T T T
a. Discover Keywords Hard Coded in Bot Binary

Connect to Botnet Node Hosts
Record Botnet Communications

a. Discover Command and Control Protocol

b. Discover Botnet Statistics

c. Discover Botnet Nodes

a. Discover Commands Sent From Botmaster

}

/ Characteristic Correlation \

Q Correlate Component Results————————————
T—-———— a. Discover Open Analysis Results

———— b. Discover Network Monitoring Results

c. Discover Closed Analysis Results— — — — — —
— Discover Social Characteristic Type: Protocol/ User
Defined— — — — — — — —
—0 Discover and match Evolutionary Characteristics

with Social Characteristics — — — — — — — — — — — — —

- /

v

Threat Generation

Analyze correlated characteristics for significance — -+ ——f————
level ===~ =~—"~=~-~"—-~-—~-—~—=—-————
Generate Botmaster Taxonomy
Generate Protection Report —— —— — ——— — — — —

Figure 4: Research Framework

1.8.1 Characteristic discovery

Characteristic discovery is concerned with discovering the building blocks that will
be correlated to become characteristics. Within the characteristic discovery require-
ment we have four main tasks. Our first task is to identify a bot attempting to
exploit services. This is done using the bot capture component. The goal of this
task is to covertly copy a bot of interest and not be detected by the administrators
of the botnet. The next task is scan captured bots. This task is completed within
the closed analysis component. The goal of this task is to discover the commands and

keywords hard coded in the bot binary. The task connect to botnet node hosts

17

is performed by the open analysis component and its goal is to create a connection
between the captured bot and the botnet. The task Capture Botnet Commu-
nications is carried out by the network monitoring component. In this component
the network traffic captured after setting up the communication line in the previous
task is analyzed for characteristic building blocks. All these elements become the

foundation of our analysis system.
1.8.2 Characteristic correlation

Now that we have discovered the individual elements of each characteristic from the
botnet traffic, we need to correlate them into characteristics to make the information
meaningful. The first task is to Correlate Component Results. The components
involved with this task are closed analysis component, the open analysis component,
the network monitoring component, and the correlation component that performs
the matching. The purpose is to discover evolutionary change at the botnet level
and also discover the social characteristics at the botmaster level which exists within
the channels of the botnet. The next task is to Discover Social Characteristics
Type: Protocol/User Defined based on protocols defined from RFCs and user
defined criteria. Using the social results, the purpose for this task is to discover
how involved a human is in the command generation process. A bot node that
generates more User Defined characteristics within his communications is generally
responding to human initiated commands verses the more commonly found generic
bots that conduct protocol based commands more often. Next we Discover and

Match Evolutionary Characteristics with Social Characteristics. Here we

18

discover how the size of the botnet corresponds with the social activity of the botnet

and discover whether or not it has an effect on botnet attacks.
1.8.3 Threat generation

To discover the threat involved with the botnet transactions, we take the corre-
lated results as the input. The first task to be completed is to Analyze Correlated
Attack Matches for Significance Level. This gives us an idea of what role each
botmaster plays in the botnet. The significance analysis component, correlation com-
ponent, and taxonomy component handles this task. The next task to be completed
is to Generate Taxonomy of Botmasters. Here the generator or "master” of the
botnet traffic is categorized. Each time a new characteristic is discovered to be gen-
erated from a master, the masters taxonomy entry is appended. This task is carried
out by the significance analysis component, taxonomy component, and the correlation
component. The next task is to Generate Protection Report. In this task when
an administrator decides to do an analysis of the botnet, he can generate a protec-
tion report. This report alerts the administrator about the threat each botmaster is

posing to the network. This report is carried out by the protection component.
1.9 Research Contribution and Thesis Organization

In our research, our contributions are manifold as follows: first, within the moni-
tored data we attribute each transaction to the botmaster and categorize the transac-
tions based on a modified version of the reflective-impulsive model [91]. Our reasoning
is, although a botnet is destructive, it is still just a tool, and a tool is only as good as

the person who uses it. For example, an experienced tailor can use a sewing machine

19

to sew a shirt better than an inexperienced tailor. A tool is also only as good as the
way it is used. If a Swiss army knife is always used as a knife and a screw driver then
the unused scissors that come with the knife does not matter. Botnets are similar to
the sewing machine and the Swiss army knife. Its usefulness is determined by the skill
level of the botmaster and how they correspond with the botnet. We categorize the
botmaster interactions as social characteristics since there is a 2-way correspondence
between the botmaster and the node in a botnet that responds to him. Second, we
identify the evolution of the physical characteristics (size) of a botnet. In most situ-
ations the size of a botnet determines the magnitude of the botnet’s attack power.!
When it comes to size, botnets also have the same characteristics as other networks,
like human social networks which are constantly in a state of flux. These communica-
tion networks are born, grow, shrink, and also disappear. Because of this, we explore
botnet evolution to track and garner physical characteristics from each evolutionary
stage of a botnet. Third, we correlate the discovered social characteristics and the
evolutionary characteristics to shed light on the role and effect each botmaster plays
within a botnet. To the best of our knowledge, this is the first attempt to identify the
evolutionary characteristics of a botnet, and also to analyze a botnet based on its bot-
masters. The remainder of the thesis is structured as follows: Chapter 2 discusses the
related work and why our approach is needed to provide a higher level of granularity
in botnet analysis, Chapter 3 presents our reasons and motivation for developing a
honeynet testbed setup and how it provided the groundwork for our research as well

as served as an educational tool to explore network security in a testbed environment.

!The compromised machine bandwidth is also a major factor of attack power.

20

Chapter 4 presents our techniques for monitoring botnet attacks. Here we introduce
the theoretical development of our framework and show how each component of the
framework is needed to accomplish our goals. Chapter 5 presents an introductory
view of how we could realize the bot detection and bot monitoring portion of our
framework through IRC Sandman which automatically downloaded and studied bots
from IRC channels. Implementation and results of IRC Sandman on a botnet are
shown here. Chapter 5 also goes into more detail about the remaining components of
our framework. Chapter 6 discusses our motivation and experiences developing our
botmaster based system which identifies the role of each botmaster within a botnet.
Here we present ”MasterBlaster” which is the realization of our framework. Imple-
mentation and results of the analysis of ”MasterBlaster” on three monitored botnets
are shown here. Chapter 7 summarizes the lessons learned from the development of
our framework and in particular ” MasterBlaster”, the botmaster based analysis sys-
tem. This includes a discussion about the limitations and future aim for our research.

Chapter 8 concludes this thesis.

CHAPTER 2: RELATED WORK

Our motivation for creating our honeynet based architecture is to create a robust
botnet monitoring and analysis system. Botnet monitoring and analysis has remained
a hot topic in the last few years due to the continued increase in destruction caused
by botnet attacks. Current methods to monitor and analyze botnets have provided
valuable information that allows us to discover many interesting characteristics of
botnets. The problem is most of the information provided today does not lead to
actionable intelligence that can reduce the impact of botnets. Our goal is to extend
the current methods by identifying a fine-grain level of characteristics that will lead

to developing actionable intelligence. Below are works that relate to our research.
2.1 Honeynet-based Data Capture

Honeynets have proven to be a valuable tool in our research. Many other projects
have used honeynets to capture data from unauthorized users. Li, Goyal, and Chen
used honeynets to discover capture data [48]. Yegneswaran, Barford, and Paxson used
honeynets to model Internet situational awareness [102]. Provos explored deploying
virtual honeynets in [77]. In this study he was able to quickly deploy honeynets
with little cost or setup. Cai explored using honeynets to defend networks using a
game theoretic approach in [11]. All of these projects use honeynets in the same

way we do which is to capture unauthorized traffic from an attacker. Our approach

22

differs from theirs in the purpose of the data capture which is to discover botmaster

characteristics.
2.2 Botnet Monitoring

Li, Goyal, and Chen used botnet monitoring to discover botnet traffic as we did.
The difference is their approach was to analyze scanning traffic, where our approach
was conversation centric [48]. Dagon, Gu, Zou, Grizzard, Dwivedi, Lee, and R. Lipton
introduced a taxonomy of botnets to provide a response to botnets by degrading or
disrupting them [21]. This method involved discovery and proactive attack to the
botnet. In our work, we focus on a bot taxonomy composed of properties that generate
patterns of the botmasters. Some earlier works addressed issues on tracking botnets
[25]. Such works adopted sensors and honeypots to investigate a pathway to and from
botnets. Our approach uses a virtual space such as honeypots to capture bots and

track botnets. Other projects that utilized botnet monitoring were [78, 79, 49, 105].
2.3 Botnet Analysis

Defending networks against botnet attacks is an ever growing issue in network
security and cyber crime research communities. To our knowledge, there are only a
few works using threats as a deciding factor such as the McAfee Advanced Botnet
Protection in Intrusion Prevention System [23]. This tool uses a proxy to accept
or block traffic that appears to be botnet related. It does not use the threat value
rigorously but mainly relies on a signature based approach. Our architecture is very
similar to the approach as noted by Rajab, Zarfoss, Monrose, and Terzis [2]. Some key

differences are that instead of creating (drones) to connect to a command and control,

23

we (install) the actual captured bot on a honeypot to connect to its command and
control. Our correlation system component is also a major difference in that we are
keeping track of the characteristics of each botmaster. Other research which focuses
on botnet analysis includes work by Park, Pai, Lee, and Calo [67], work by Binkley
and Singh [9], [8], and others [104, 7, 50, 92, 84]. These projects focused on discovering
bots within the network traffic. In our approach we own the bot and are analyzing
the traffic between it and the botmaster. Several projects have studied the behavior
of bots within the botnet such as [90, 52, 16, 15, 10, 36]. These projects are similar
to our approach since they are studying activities of the bots in the botnet. Our
approach differs from these in that we analyze the conversations and not statistical
characteristics of the bots such as time or spacial deviation which are found in these

approaches.
2.4 Attribution

Attribution in our case consists of discovering what attacks belong to what bot-
master names. The Internet consists of proxies, and allows for IP and MAC masking
among other anonymization techniques which make it very difficult to determine the
true perpetrator behind an attack. Issues in obtaining attribution are discussed in
more detail in [88, 31]. In our research we attribute the botmaster usernames to the
command activity they carry out on the botnets. Research which attempts to perform
attribution is normally geared around watermarking of packets such as [69, 97, 72].
These projects differ from our approach by not taking into account the content of the

packets which we believe is needed for true attribution.

CHAPTER 3: HONEYNET-BASED TESTBED ENVIRONMENT

Now that we have discussed the problem, articulated our goals for our research, and
shown how current research does not fully address the problem by discussing related
works, the next order of business is to setup a test bed to capture botnet related
network traffic. In this chapter we discuss our experience developing our honeynet-
based testbed and how it set the groundwork for the rest of our research. In this
chapter, we describe our Honeynet-based Bot Analysis Architecture which includes
collecting bots in our Malware Collection System Component, running them on
an off-line simulated network in our Closed Analysis System Component, and
installing them on our Open Analysis System to connect with their command and
control center. We use the actual collected bots to connect to their command and
control centers instead of simulated attack bots, sometimes called (drones). We use
our analysis template which is our Correlated System Component, to discover
characteristics of each individual bot. This template has proved to be an invaluable
learning tool for students to interact with malware in the wild. The rest of the chapter
is organized as follows. Section 3.1 discusses background information. The Honeynet-
based Bot Analysis Architecture is presented in Section 3.2. In Section 3.3, we discuss

our analysis method along with the results. Section 3.4 concludes this chapter.

25
3.1 Background

In this section we discuss a brief background of honeynets and why we are utilizing
their framework. We also discuss command and control architectures and issues with

the current methods to detect botnet attacks.
3.1.1 Honeynets

A honeynet is a network composed of two or more machines that has the sole
purpose of allowing itself to become compromised by a cyber criminal. Once the
machine is compromised, another machine records the interactions observed between
the attacker and the compromised machine all the while this second machine thwarts
any attacks the attacker attempts from the compromised machine. This type of
architecture has proven very beneficial in learning about cyber criminals and their
methods of attack. Honeynets have been used to learn as much about bots and the
attacker sending bots as possible [75]. We use this approach, because it provides us
with the data between the attacker and the compromised machine. Even though this
approach allows us to gather attacker footprints, a systematic data analysis method

is still needed.
3.1.2 Command and control architectures

As mentioned earlier, in the botnet the command and control is where the attacker
sends commands to the botnet. Currently most malicious bots use IRC to commu-
nicate with the command and control. IRC built in multi-cast capabilities make it

easy for the commander to send orders to all the bots in the botnet without much

26

effort [47]. We also briefly mentioned earlier that a more destructive form of commu-
nication for bots is with the P2P protocol. These bots contain P2P clients and can
communicate with one another without the use of a central command center. With
this type of command and control the attacker can initiate commands by posing as a
peer anywhere in the network. Other forms of command and control are also being
used to a lesser degree, such as instant messaging and cellular phones. As researchers
continue to find ways to protect against IRC based command and control structures,

the number of botnets controlled by other protocols will continue to increase.
3.1.3 Detecting botnet attacks

DDoS attacks are extremely difficult to detect. Most existing mechanisms have
limitations to properly distinguish botnet traffic from legitimate traffic, generating a
high false positive rate [23]. A high false positive rate may be its own denial of service,
since legitimate traffic is blocked from accessing the network. Some research which
discuss this problem are [37, 42, 55, 103, 85]. These methods were able to detect
botnet traffic at varying degrees, but still suffered from false positives. Botnets will
continue to be a growing threat until a trustworthy mechanism is presented that
effectively detects and blocks botnet attacks while allowing a very low false positive

rate [76, 28].
3.2 Honeynet-based Bot Analysis Architecture

Our honeynet testbed was created to satisfy three major requirements:

1. Systematically collect and analyze malware traffic over the Internet
2. Comprehensively discover characteristics and unique behaviors of
malware

27

3. Dynamically determine associated threats and generate correspond-
ing threat reports.

3.2.1 Architecture components

In this section we discuss the components of the architecture without having any
specific tools in mind. Any tool that can perform the tasks described here can be
used as part of the architecture. This requirement is to ensure the extensibility of

our architecture. Figure 5 is a visual representation of our architecture.

Lagwe PCs Visible to the Intemet

Attacker PC

Closed Analysis System
Component

&

Correlation System Companent

Figure 5: Architecture Diagram

3.2.1.1 Malware collection and network monitoring

Before we can discover what the risks are in a network, we need to discover how
attack code reacts with the system. To realize this goal, a collection system is pro-
posed that collects bots to be dynamically analyzed. Dynamic analysis occurs by

ensuring that the collection system emulates each of the services on the network it

28

is protecting. We capture bots by emulating the vulnerable services. Also, this sys-
tem provides protection against significant involvement in attacks after the bot has
been run on the system. It uses firewall and intrusion protection techniques, such as

limiting or dropping packets leaving the protected network.

3.2.1.2 Closed and open analysis system components

These components take the binary captured in the collection system and runs it on
a closed network environment. This is a necessary step to discover certain aspects of
the malware before putting it on the open analysis system and opening it up to the
network. The closed analysis component has the capability to use attack commands
found in the binary and perform simulated attacks using a Perl script. These attacks
are only run in the simulated network and will give insight to what the binary is
made to be used for. It includes the discovered hard-coded DNS addresses, attack
commands, and other functionality of the bot. Eventually more functionality will
be identified from the closed analysis such as patterns from the virtually simulated
attacks that can be performed within the closed analysis system. The open analysis
component of this system allows us to inject a malicious bot into a computer and
connect back to its original destination. This enables us to isolate the bot from the
network and monitor its traffic in a more controlled way instead of waiting to be
infected and then monitoring the traffic passively. The strings are pulled from the

binary as it is being run in memory, thereby negating any obfuscation techniques.

29
3.2.1.3 Correlation and repository system component

The pattern correlation system takes input from the open analysis and closed anal-
ysis systems and creates an intelligence report to display the alert events that are
identified from the bot installed. This intelligence report is used to discover patterns
in the traffic and correlations between logs. The goal of the correlation system is to
gather as much information (characteristics) about each individual bot as possible
and correlate the results with other bots to discover a record of each bot which is
sent to our repository system component. Each bot record will have a list of its own
characteristics as well as references to other bots that use or have any connection
with the bot entry in the repository. The purpose of the bot record is to provide a
comprehensive identity for the bot so the characteristics provided by the identity will
lead to an accurate assessment of the risks or threats they present. A record updater
is also needed to keep the repository up to date and accurate. When a new correla-
tion is found in a bot, its repository entry will change to reflect the new correlation.
All other bot records that are cross referenced by that bot will then be updated by
the record updater. The repository is a central collection of all the logs in our ar-
chitecture. This gives the administrator a macro view of the protection system and

provides an aggregated view of the attackers on the network.
3.2.2 Tools used in analysis

In this section we describe how we have analyzed the bots and what tools were

used in the components of our architecture.

1. Network Monitoring: Used to capture all the transactions between the at-
tacker and the drone machine after we have captured a bot, modified it and

30

stored it on the Open Analysis System Component. We use one tool to perform
this analysis.

Honeywall: A firewall that allows the connection of an attacker to our analysis
system. [76]

Malware Collection: Component for capturing and storing binaries. We used
two tools to accomplish this.

Nepenthes. A low interaction honeypot for capturing malware [6, 56].

MySQL. Our database of choice for storing the malware [57].

Closed Analysis: Component for analyzing each captured binary off-line be-
fore allowing it to be run in its native environment. To implement this compo-
nent we utilize one tool.

Sandnet. Sandnet emulates the Internet and gives us the ability to act as the
command and control by sending commands found in the strings to a python
script that allows us to issue the bot commands [95].

Open Analysis: Component for analyzing each binary in its native environ-
ment. We currently use seven tools to perform this analysis.

VMWare. This tool gives us the ability to run our bots on an operating system
image that can be quickly restored to the previous system state. This allows us
to quickly switch from bots to bots in our analysis process [96].

Perileyez. A malware analysis tool that compares snapshots of the system and
produces all the changes made. We run this tool before we place the bot on the
honeypot and to observe any immediate changes it makes [73].

Sebek. A root kit used to collect all the system calls from a client and server.
We use this root kit to record all the commands given from the bot master to
the bot [74].

Wireshark. This tool analyzes network packets. We use this as a learning tool
to manually analyze packets [100].

Honeywall. It monitors all packets in and out of our architecture. It also
provides us with data control, which is our fail-safe shutdown method to avoid
being an active participant in a botnet attack [75].

Maxmind Database. Tool for displaying the location of an IP on a world map.
We use this tool to map the source locations of where the malware was down-
loaded from [53].

Norton AntiVirus and ClamAV. We use this tool to determine whether the
antivirus signature and categorization for each bot exists [93, 17].
Correlation System Component: Component for combining data from the
other components into an analysis report. We use two tools to perform this
analysis.

XML based botzoo report. This report is XML based so it can easily be im-
ported into other tools in the future.

MySQL. Our database of choice for storing the analysis results from the other
components.

31
3.2.3 Malware interaction

This section discusses the steps of how the malware interacts with our components,
including each tool role in our architecture. Malware collection is achieved using
Nepenthes, which is a program that emulates Microsoft Windows services to incite
automated attacks. When an attack occurs, Nepenthes logs the malicious activities
and attempts to download any binaries associated with the attack. The downloaded
malware is automatically stored in a MySQL database on the architecture, as well
as the originating IP address, and run through two anti-virus engines, Norton 10
Corporate and ClamAV. The anti-virus engine results are then stored in the database.
Our Maxmind Database detects the source of the bot and adds an entry on a map
of the world to geographically visualize the location of the bot. For our Closed
Analysis we use a simulated environment. Although, Norman Sandbox is the most
popular malware simulation environment, we use a tool called Sandnet. Sandnet
provides an isolated environment and a virtual network for the piece of malware to
execute. The environment consists of two computers, a Sandnet Server and Sandnet
Client. After the initial execution of malware, an MD5sum file, memory dump file and
network traffic logs are sent to the Sandnet Server from the Sandnet Client. Using
a specifically designed Perl script we can recompile the memory dump file and run
the Linux command (strings /minus a jfile;) to obtain the strings off of the malware.
The strings allow us to determine commands used by the malware as well as target
areas that the malware will be likely to hit. Furthermore, Sandnet is able to simulate

various types of servers, the most important being an IRC server since this is the

32

most notorious avenue for sending malware commands. Our Open Analysis provides
connection to the Internet. The live execution environment is notably more verbose
than using Sandnet. To begin, VMWare workstation is used to create a default
installation of Windows XP, Service Pack 1. After the image is created, Sebek is
installed onto the image. Sebek is a kernel based data capturing tool and captures
the processes used by the image, sending them as packets across the network. To
obtain the files added, deleted and changed by the malware the tool Perileyez is run
on the image. The initial snapshot of the image is taken once Sebek and Perileyez
are installed and after the malware is executed, a second snapshot is taken. By
comparing the two snapshots we can identify alterations the malware makes to the
image including changes to drivers, DLLs, processes, ports and remote connections
as well as any files changed. Capturing and analyzing network traffic is the final step
in running a live execution environment. To capture all network traffic generated by
the virtual environment, we use a Honeywall. The Honeywall is able to capture all
network packets that are sent and received by the image. These packets are merged
into PCAP files and sent to a central server at the end of each day. Currently we
have found it useful to separate the PCAP files into four hour segments, giving us six
slices for each day. By segmenting the file, it allows us to locate suspicious data more
easily. Using the tool Wireshark, we can look at the daily PCAP files and determine
the actions of the malware for the previous day. One PCAP file can display IRC
conversations, secondary injections attempts, DNS queries, propagation scans and

HTTP conversations as well as any other type of network traffic.

33
3.3 Analysis Methods and Results

Here we present the methods we used to analyze the malware we collected with
Nepenthes. After the brief discussion about the methods, we present our preliminary

results.
3.3.1 Analysis methods

We analyze our collected malware using a predefined method. The list below shows
the content of each analysis. Each week information security students share their
findings on bot characteristics using this template with other students and faculty.
This has greatly increased their competency in analyzing these bots within their
native environment.

1. Identification: MD5 value and anti-virus engine results

Source of Infection: network traffic analysis related to the location where the
malware downloaded from.

3. System Interaction: system state report which includes files added, unloaded

drivers, unloaded DLLs and so on.

4. DNS queries: identification of domain names for command and control servers

and corresponding ISP information

5. IRC Communications: collection of live IRC conversation and any traffic
related to scanning and secondary injection

3.3.2 Results

Here we describe our results generated from our architecture. We first describe some
of the statistics of the bots that were captured in the bot capture component and
then we discuss some interesting discoveries concerning the analysis made possible by
the network monitoring component, the closed analysis system, and the open analysis

system. We then show results from the correlation of the bots.

3.3.2.1 Correlation statistics

34

Most of the malware that we have examined have exhibited similar behavior. Figure

6 is a snapshot from our bot repository. It shows our number of total binaries as

opposed to the number of binaries that were actually detected.

UNC Charlotte Bot Zoo

|Binaries || Viruses || Hosts| | Statistics || Source Map |

Anti-Virus Detections

Antivirus Engine Total Binaries Detected Binaries Percent Detected
ClamAV 1241 943 759871
Norton 10 Corporate 1241 900 72.5222

Top 5 Binaries

MD5 Total
aab37d687aee5T TdBa7d0fdd909ectad 7308
2957108fbT8df f68195547316798abee 3012
edc2eceec44db98c53baabdfd797b151 2576
1a1t6496107b1063313ababaf39fceBe 2535
2fc369acfc24c7/08a007d7ff221aedae 1635

Malware Captured
[es2]

B

)

I + w2 w @ o | -

Figure 6: Anti-Virus Detection

As we notice, both Norton Antivirus and ClamAV did not detect nearly 25% of the

bots that were downloaded in Nepenthes. When started, at least one and as high as

fourteen executable were installed on the image. Figure 7 shows the binaries down-

loaded from nepenthes. As shown some binaries were downloaded over a thousand

times. This shows that the attackers are sending out the bots using a script and they

do not care about duplicate infections.

35

= [E2) I [5 UNC charlotte Bot Zoo -...

o) UNC Charlotte Bot Zoo - Kongueror _Ex
Location Edit View Go Bookmarks Tools Settings Window Help

QLOO OB =XAXa
B> Location: & httpifocalhost/botzoo BE]
. EIIEITA [yNC Charlotte Bot Zoo H
° ©E580n " |[Binaries || Viruses || Hosts || Statistics || Source Map | | All Detections || ClamAV/|[Norton | | Undetected |
. ® SDesktop
2 Einstal flash player 7 MD5 Sum First Seen Last Seen Hits.
E @%:::t:u-ﬁ:z:-z:zi:—: 248e1d79fe15839495d7e813af3adbb 2007-01-09 16:13:33 2007-04-20 16:18:23 408
£ o[TircLogs tar 2b41d62720225b650618fa0e4270e564 2007-04-20 15:01:42 2007-04-20 15:59:36 2
&) EnuLre_Locs 5d2cbf4a3842b10cee259ec385ec5d4c 2006-12-20 11:28:33 2007-04-20 15:39:18 25
@ 87d95881b74ce59f F086768f6b69a7a 2007-04-20 14:44:31 2007-04-20 14:44:31 1
& b3e70a483ad2b59e59919bbce0e6ges 2007-03-12 16:12:09 2007-04-20 10:42:39 3
r edc2eceecd4db98c53baabdfd797b151 2006-10-12 23:06:13 2007-04-20 01:32:26 2576
5b51aec1c7b2b7ebb2db6406556099¢6 2007-02-15 21:53:31 2007-04-20 00:57:40 1140
= e1705ef3e6259c5157e10be406d950e9 2007-03-01 10:55:51 2007-04-19 21:30:29 265
519850811c5161925e26e59b3ae8d43 2006-11-29 17:21:41 2007-04-19 20:05:05 20
98f1b1e45875c788b7d23becd8bfOC17 2007-03-29 14:16:15 2007-04-19 19:26:51 a5
865915650a85¢7c27cdd11850a13f86e 2006-10-25 20:30:03 2007-04-19 03:36:16 18
©44bfda21be6ebl F85F4bcccBe59c2e2 2007-04-13 11:39:02 2007-04-19 01:38:50 2
2c29e26f2ea6ef179c08504918a89228 2007-01-20 23:34:13 2007-04-18 23:20:29 6
dlee9d2e39e06495aa8b457e3d2d75a4 2006-04-28 16:39:24 2007-04-18 21:15:53 21
2b51f2a88b6bb611acfb541a0c11290 2007-04-18 12:47:31 2007-04-18 12:47:31 1
€c254540252410cc34eeaabi0aaacedd 2007-03-15 16:48:42 2007-04-18 06:03:05 5
3a0a745ebb2bf 12ef8a76b2ac34dBadc 2007-04-10 19:31:23 2007-04-17 20:27:23 4
570893d05e1b8c82994405d7 40472230 2007-04-17 17:32:51 2007-04-17 17:32:51 1
7952fec43a17888d3d457ed192664¢3 2007-03-26 05:29:30 2007-04-17 14:55:44 66
8610d84bd092753aacaf fef910a5891e 2007-04-15 19:13:11 2007-04-17 01:14:26 2
d2e34cccc9aet 44 110aa556445503fc 2007-04-16 21:22:48 2007-04-16 21:22:48 i
dodBlelc35ef67af7279d1d16e1d9327 2007-04-14 11:50:03 2007-04-16 20:42:07 18
€978b8b68213970CdF 7736902320347 2007-04-06 01:17:48 2007-04-16 19:55:06 10
873390132090 24650b5c4c f9eddbe7b 2007-03-06 20:54:28 2007-04-16 19:21:03 49
015e31357dc567c3070475d176132a 2007-04-01 16:48:07 2007-04-16 15:37:50 66
JC | D] o @

I - o - o 2 D

Figure 7: Binaries Downloaded

3.3.2.2 Bot interaction

Observing the interactions of the bots that matriculated through our architec-
ture yielded very interesting results. Ports were opened, processes shutdown and/or
restarted and new registry keys created. The malware usually restarts legitimate Win-
dows processes so that it may append itself to that process. For example, msmgs.exe
is the MSN Messenger process and, by default, is loaded on startup causing the
malware to be reloaded every time the machine is restarted. In a high number of
instances, the malware (hardens) the system to prevent other bots from infecting
the machine with any further attacks and leaves the system still accessible, so that
the casual user would not notice much difference. Only a small number of times
has a piece of malware completely disabled the image causing it to be unusable.

To use a concrete example, the malware Trojan.Mybot-7663 initially loaded the files

36

Issas.exe and fswinsys.exe, which are registered as the W32.AGOBOT.RL Trojan and
Worm.Ircbot.Gen respectively. It furthered its assault by unloading 90 drivers from
memory including cdrom.sys, ultimately rendering the CDROM useless. It proceeded
to unload 250 DLL files and deleted 77 services, most notably the secondary logon
service causing major problems in logging into the image. After opening a few select
ports, the malware terminated 16 processes, many system critical. These processes
included lIsass.exe, winlogon.exe, and services.exe and even though all were eventu-
ally restarted it is safe to assume that they were tampered with. All of the malware
that we have actively examined use some type of systematic scan, presumably for
propagation. Most of these were TCP SYN scans on a class B subnet. If a TCP
SYN scan was not used, ICMP ping scans were used. We have noticed that DNS
queries were hard coded into the bots, using the returned IP address to log into an
IRC server and obtain secondary injections. Some malware ran had been relatively
inactive until the completion of the secondary download in which a propagation scan
would ensue. A high number of malware have displayed this behavior allowing us to
form the hypothesis that malware writers use other writer code to ensure a small,
compact binary. For example, our Nepenthes sensor captured a process called fswin-
sys.exe for the first time on May 10, 2006 and since have seen numerous hits per day.
Upon execution, we realized that fswinsys.exe is able to initiate a propagation scan
a lot more quickly than most other malware. After this realization we ran numerous
other malware that would download the fswinsys.exe process as a secondary injection
and used for propagation scans. This discovery lead us to our second hypothesis,

which is that many of the malware writers use previously created malware or copy

37

and paste code from previously created malware. For example, the malware following
the md5sum 429d74b465003ddcfd54b586705191cb (classified as a W32.Spybot. Worm)
displayed the above mentioned behavior. Its initial execution resulted in PCAP slices
ranging from 200K to 600K. Once the secondary injection of fswinsys.exe was com-
plete the next slice was 7.8M. The propagation scan had a time limit associated with
it, so on completion the PCAP slices fell back to its 200K to 600K average. The
malware then received a second propagation scan command the following day, but
with no time limit and a longer delay resulting in PCAP slices ranging from 1.5M
to 6.9M. This malware has become common among our analysis team in which the
fswinsys.exe process is used to initiate large propagation scans. Malware often use
IRC channels to receive commands for propagation scans and secondary download.
Throughout the life of our Honeynet, these bots have shown an interesting similarity
in the type of commands received. A main focal point for all malware is the use of
a propagation scan. The common command for a propagation scan has been .advs-
can jport number; jthreads; jdelay, jtime; jswitches;. For example, the command
.advscanlsassg4520050 -1 —b —s would correspond to a randomized (—r switch), class
B (b switch) subnet scan on port 445 using 200 threads with a 5 second delay for an
infinite amount of time. Rarely does a piece of malware designate a time for the scan
to finish so the 0 is used to express an infinite amount of time. Furthermore, the —s
switch is a silent switch that bots will use to keep their status from being broadcast

across the IRC channel.

3.3.2.3

Bot correlation

38

There was a variety of bots that were captured and analyzed using our format.

Table 2 shows a list of some of the bots we captured.

Table 2: Bots Captured and Analyzed

’ Binary \ Packer \ ClamAv \ NortonAv ‘
44115764 | tElock.98b Worm. Vesser.A-1 W32.HLLW.Deadhat.B
04ch8 EXECryptor 2.2.4 | Trojan.SdBot-2215 | W32.Spybot. Worm
0c28c27 NsPack V3.3 Trojan.Mybot-5031 | W32.Spybot. Worm
Oce21f eXPressor v1.2 None W32.Spybot. Worm
20d414 Morphine 1.4 Trojan.SdBot-1836 | W32.Spybot. Worm
3d3525610 | Unknown Unknown Unknown
429d7 EXECryptor 2.2.4 | Trojan.SdBot-2275 | W32.Spybot. Worm
4a94c Packman V1.0 None W32.IRCBot
54085f0 UPolyX v0.5 Trojan.Mybot-7706 | W32.Virut.A
54d52 Unknown Trojan.SdBot-2976 | W32.Spybot. Worm
5525d6e6 | Unknown Unknown Unknown
98c9d4aa | ASProtect 2.1 Trojan.Mybot-5151 | W32.Linkbot. A
abb335dab | Unknown Unknown Unknown
b48811 PEnguinCrypt 1.0 | Trojan.SdBot-2564 | W32.Spybot. Worm
c36dc ASProtect 2.1 Trojan.Mybot-7669 | W32.IRCBot
cd433 Unknown Trojan.SdBot-4053 | W32.Spybot. Worm
d8f04a Unknown Trojan.SdBot-4053 | W32.Spybot. Worm
edc2e ASPack Trojan.SdBot-4053 | W32.Spybot. Worm

Out of the 19 bots in the table several of them have the infected file Issas.exe.

Table 2 also shows that several of the bots use the same packers. These similarities
in the bots tells us that it is highly likely that these bots, although they come from
different addresses geographically, have some of the same code in them. Overall we
estimate that 70 percent of the bots in our repository come from the same bot source

code. This supports the claims made by other publications [76, 12].

39
3.4 Conclusion

In this chapter, we have discussed our Honeynet-based Bot Analysis Architecture.
We have shown that our testbed has been an invaluable learning tool for our students
and allows them to directly observe interactions of malware in the wild. Our approach
in this chapter has also provided us with the ground work necessary to discover
characteristics within the network traffic of attackers that can lead to the reduction

of attacks in the future.

CHAPTER 4: ATTACK ANALYSIS FRAMEWORK DEVELOPMENT

In the previous chapter we created a testbed that was able to capture botnet traffic.
After capturing the bots we were also able to perform analysis on them to discover
some interesting facts like how many of them are related to one another. One of the
most important lessons we learned was that mechanisms that detect botnets based on
signatures, such as firewalls and IDS, suffer from low detection rate when bot variants
are introduced into the wild. This and other lessons learned from our honeynet testbed
led us to develop our framework for botnet analysis. In this chapter, we introduce a
network centric analysis framework to work towards detecting and preventing botnet
attacks. For our framework we continue to use the components created in the Hon-
eynet Based Architecture in the previous chapter. These components are the network
monitoring system component, malware collection system component, closed analysis
system component, open analysis system component, correlation system component,
and the repository system component. In this chapter we make slight changes to
the nomenclature of the components previously mentioned. The new names of the
previously mentioned components are network monitoring component, bot capture
component (because now we are only interested in malware that exhibits bot capa-
bilities), closed analysis component, open analysis component, correlation repository

component (we combined the correlation and repository components into one com-

41

ponent since the correlator collects all the data from the other components). We
also added the taxonomy component which organizes the analysis by bot, the threat
component which discovers the threat each bot poses, and the protection framework
component, which produces a report that displays the threats of the bots. In this
chapter we also introduce two implementations. The first implementation is ”Ne-
penthes +” which uses Ruby scripts to dynamically add vulnerability modules on the
fly to capture more bots without a significant downtime. This is an implementation
of the bot capture component. The second implementation is the Intrusion Analysis
Forensics Tool (IAFT) which implements the correlation component by receiving var-
ious inputs and discovering correlation links between them. In this chapter we focus
on learning more information about the bots by identifying malicious characteristics
through the network traffic. Once we have their characteristics we can then decide
what the threat level of each bot in the botnet is determined to be. The remainder of
this chapter is organized as follows. Section 4.1 discusses background technologies and
related work. The analysis framework is presented in Section 4.2. We then discuss
the component development in section 4.3. In Section 4.4, we discuss our preliminary

results and section 4.5 concludes the chapter.
4.1 Background

This section is a review of the background behind our bot analysis architecture.
Some of this information is repeated from earlier discussion. Botnets continue to
be a disruptive force in computer networks today [18, 54, 24, 40]. Honeynets have

been used to learn as much about bots and the attacker sending bots as possible [75].

42

Even though this approach allows us to gather attackers footprints, a systematic data
analysis method is still needed. In the botnet, the command and control is where
the attacker sends commands to the botnet. Currently most malicious bots use IRC
to communicate with the command and control. IRC built-in multi-cast capabilities
make it easy for the commander to send orders to all the bots in the botnet without
much effort [47]. A more destructive form of communication for bots is with the P2P
protocol. These bots contain P2P clients and can communicate with one another
without the use of a central command center. With this type of command and control
the attacker can initiate commands by posing as a peer anywhere in the network. The
power of P2P botnets was discussed in [39]. Other forms of command and control
are also being used to a lesser degree, such as instant messaging and cellular phones.
As researchers continue to find ways to protect against IRC based command and
control structures, the number of botnets controlled by other protocols will continue
to increase. As mentioned earlier, DDoS attacks are extremely difficult to detect.
Most existing mechanisms have limitations to properly distinguish botnet traffic from
legitimate traffic, generating a high false positive rate [23]. A high false positive rate
may be its own denial of service, since legitimate traffic is blocked from accessing the
network. Botnets continue to be a growing threat until a trustworthy mechanism is
presented that effectively detects and blocks botnet attacks while allowing a very low
false positive rate [9, 10]. Defending networks against botnet attacks is an emerging
issue in network security and cyber crime research communities. To our knowledge,
there are a few works using risk as a deciding factor such as a newly released McAfee

Advanced Botnet Protection in Intrusion Prevention System [8]. This tool takes a

43

similar approach of our framework in that it uses a proxy to accept or block traffic
that appears to be botnet related, but it does not use the risk value rigorously but

mainly relies on a signature based approach.
4.2 Overview of our framework

This section gives detail of our approach that is based on three critical requirements

we identified in the last chapter. These requirements are as follows:

1. Bot Detection: Systematically collect and analyze bot traffic over the Internet
Bot Characteristics: Comprehensively discover characteristics and unique
behaviors

3. Bot Threats: Dynamically determine threats and generate protection reports

Our analysis framework consists of several components to satisfy these require-

ments:
4.2.1 Bot detection

Bot detection involves identifying both known and unknown bots that are trying
to enter the protected network. We accomplish this by installing a malware collection
system component on the network. Malware collection component. The type of
bots collected on each network are different because attackers target certain subnets
with different bots. The malware collection system component uses emulated vul-
nerabilities to entice attackers and to trick them into believing they are interacting
with the actual vulnerable services. The attackers send their bots to this system and
it is captured and not run. To realize this architecture we built upon a tool call
Nepenthes [56]. Nepenthes has to restart each time a new module is created for a
vulnerability. This is not feasible for us, since we want to start capturing bots as soon

as a new vulnerability is found. To correct this discrepancy, we use a Ruby program

44

to provide script space where modules are added on the fly and the system does not
have to restart to go into effect.

As new vulnerabilities are found in software, modules to capture bots that tar-
get these vulnerabilities will be added to the collection system. In addition to the
vulnerability modules to capture bots, is a scanning module to capture the scanning
activity produced before the bot is downloaded to the collection system. This en-
ables us to know the full story of each compromise, which helps us to develop concise

characteristics for blocking the bots in the future.
4.2.2 Bot characteristics

To comprehensively discover characteristics and the unique behavior of bots, the
system is required to identify known malware, discover new malware, discover traffic
patterns of individual malware, and discover a correlation between more than one in-
stance of malware. Network monitoring. The network monitoring component is
employed to identify known malware signatures. In this system, both an antivirus and
a firewall analyze the traffic to discover if anything matches their current rule set. The
discovery of new malware is done by detecting the variations in the traffic using the
malware collection system component. Once the traffic has been determined to have
malicious packets, it will update the vulnerability list in the component and create a
new module to capture the malware. To discover the traffic patterns, the bot is then
automatically sent to the closed analysis component where it is ran in a virtual
network and analyzed to return characteristics based on the behaviors it showed in

the analysis. The initial characteristics obtained using the closed analysis will include

45

the strings and PCAP packets from simulated attacks. The open analysis system
component is then used to run the malware on the Internet. All transactions to
and from the network are monitored and blocked if the malware we have installed
is a significant contributor to an attack. The characteristics discovered here are the
actual characteristics of the communication between the malware and the attacker.
The malware characteristics are then correlated and displayed using the correlation
system component. This system provides the ability to display the intelligence
discovered from the characteristics. All alerts from the network monitoring sys-
tem component are displayed in the intelligence report. This report is generated by
querying the open and closed analysis system components and connecting the char-
acteristics found by their md5 value, which is discovered in the malware collection
system component. The correlation system component uses keywords found
using the strings command from the closed analysis system component to search
the Internet for possible characteristics, such as motives or frequency of meta-data of
the attacker. This can include IRC commands, hard-coded DNS entries, usernames,
and so on. These characteristics are then added to the data from the open and closed
analysis systems in the correlator. The correlation system component also finds
links between different malware to discover patterns that may exist between different
types of malware. The taxonomy system component keeps a record of all bot
characteristics. All characteristics in the taxonomy are able to be correlated. When a
relation is found that connects multiple characteristics of malware, the correlation
system component will send an update to the taxonomy system component

which makes a reference to the malware that has been correlated.

46
4.2.3 Bot threats

An examination of the system is taken to discover what the vulnerabilities are.
This examination takes into account the applications installed, the operating system
and the importance of their vulnerabilities to the mission of the network. The more
important an application or service is to a network, the more weight the vulnerability
carries as it pertains to the threat-value. As we identify evidence of targeting these
vulnerabilities in increasing the threat-value of that particular IP traffic, subsequent
packets are recorded in a suspicious traffic storage component and not allowed to
access the network until a certain level of legitimate traffic is recorded in the proxy.
This is dynamic since every window of traffic would be different and increase and
decrease the risk-level on the fly. All the components work together to discover as
much information about the malware as possible to be able to discover whether or not
they present a threat to the network. The threat engine is unique for each particular
system it is protecting because risk is relative to the individual, or company that
is being protected. Each entity has its own risk factors and different weights for
each factor. The first step in this engine is to discover the personalized risks. These
risks include the vulnerabilities of the operating systems being used on the protected
network, the applications, the known vulnerable services on the network, and the
importance of the services. After the personalized risks are detected, we receive
input from the Taxonomy System Component to give the malicious characteristics
and then use the combination of the personalized risks and the characteristics to give

a risk value that is used to aid in the determination of whether traffic is blocked or

47

not. We implement the threat analysis section in the next chapter.
4.3 Component development

In this section we discuss the development of the components that satisfy the three

requirements discussed earlier.
4.3.1 Bot Detection Development

To capture bots, Nepenthes uses vulnerability modules which are loaded at run
time. These modules emulate vulnerabilities that are currently found and exploited
in the wild. The following is partial code of the Isass vulnerability module:

56 Nepenthes *g_Nepenthes;

57

58 /*x

59 * The Constructor

60 * creates a new LSASSVuln Module,

61 * LSASSVuln is an example for binding a socket

73 LSASSVuln: :LSASSVuln(Nepenthes *nepenthes)

75 m_ModuleName = "vuln-lsass2";

76 m_ModuleDescription = "modules provides lsass emulation";
77 m_ModuleRevision = "Rev";

78 m_Nepenthes = nepenthes;

80 m_DialogueFactoryName = "LSASSDialogue Factory";

81 m_DialogueFactoryDescription = "creates dialogs to emulate lsass";

In order to add new vulnerability modules Nepenthes has to completely restart
which could take a significant amount of time depending on the complexity and the
number of modules that were being added to capture bots. To alleviate this scenario
we developed a new version of Nepenthes we call "Nepenthes +”. ”Nepenthes +”
uses ruby scripts to load the vulnerability modules on the fly. Figure 8 is a diagram

of our ”"Nepenthes +” implementation.

48

Hepenthes ModuleManager

in
Mepenthes namespace

RubyEmbed Seript Ruby Script
Manager

solibrary files

RubyEmbed Seript Ruby Script
Wanager

Figure 8: Nepenthes + Diagram

Intrusion Analysis Forensics Tool
[Mlenu = —— [Sltatistics

[Lload Log File
[Bluild Links
[W1rite XML Report

Figure 9: TAFT Menu

4.3.2 Correlation Development

We implemented the correlation component by creating a Perl based program we
call the Intrusion Analysis Forensics Tool (IAFT) that takes in multiple files as input,

builds links between the files, and then writes an XML report. Figure 9 shows the

menu of the correlation component.

49
4.3.3 Taxonomy Development

The taxonomy is a comprehensive collection of each individual bot characteristic
based on the bot. The purpose of the taxonomy is to determine to what extent
the bots that come across our network are related. We implement the taxonomy
component using MYSQL for the storage and Perl scripts to update the database

with new relations.
4.4 Preliminary Results

Our results demonstrate how our framework can help us identify different classes
of bots. Here we show the results from the bot detection component, the correlation

component, and the taxonomy component.
4.4.1 Bot capture results

Table 3 illustrates a list of bots that we examined and analysis results of each bot.
Each bot has an identification based on MD5 value. Also, we identified whether the
collected bots are known or unknown bots. The targeted vulnerabilities were captured
and further interactions with our system were also monitored. Those interactions
include system changes, DNS queries and IRC communication, network service, and

IRC communications with the intent.

Table 3: Comparison of Bots Ran Through the Analysis Process

’ Bot ‘ Ident.: MD5 ‘ Vuln. Targeted ‘ DNS ‘ IRC Comm.
Unknown 3d35 .. ms04-011 bacho.us Yes: Checks paypal
Mybot-7706 | 0c28 .. ms04-011 bacho.us | Yes: Checks paypal
Unknown 5525 ms04-011 asechka.ru | Yes: Reptile Welcomes
Mybot-7669 | C36d .. ms04-011 prison.net | Yes: Reptile Welcomes

4.4.2 Bot correlation results

7 Intrusion Analysis Ferensic Tool
File

We created the IAFT to implement our correlation component.

= |G|
Import Filesl Malware Inf Drmatinnl Netwark Trafficl \F'Addressesl Website Eearchmgl F\Epmtﬁenelalmnl

swohost.exe -

Mark this mabware tem | |

Figure 10: Bot Uploaded Into Correlator

Unmark this maksare item

7 Intrusion Analysis Forensic Tool
File

= I[=]lE=]
Import Files || Malwars Infarmation | | Netwark Traffic \FAddressesl ‘websits Searchmgl Hapmtﬁanelalmnl
Fé Importing File

(== =
Importing test2 peap as @ Network Traffic [peap) fle

Scanning packels for interesting data.. (78%]

Figure 11: PCAP Uploaded Into Correlator

Figures 10 and 11 show the bot capture file being uploaded using our Intrusion
Analysis system. In figure 10, the binary is uploaded from our closed analysis com-

ponent and in figure 11, the PCAP file is uploaded from open analysis. Once the

50

51

analysis is completed, each analysis item is stored in our bot taxonomy to categorize
the bot for articulating patterns of bot centric attacks. Using the open and closed
analysis results, we also developed a correlation report so that we can identify all
relevant system and network activities performed by a particular bot. As shown in
Figure 12, more fine-grained intelligence report for the bot can be generated. Also, it
allows us to further examine network and system activities at the specific time frame

during the course of investigation actions.

TAFT Report Yiewer P[] 54

Ele Yiew Dsbug

@ IRC SENTMSG: [SCAN]: Random Port Scan started on B0+ 5300 with a delay of § seconds for 720 minutes using 50 t+ [
@ IRC TOPIC: “advscan vneroot 505 720 124k 1
@ IRC TOPIC: "advscan wncroot 50 5 720 88200 x 1
@ IRC TOPIC: "sdvscan deom 35 505 720 84. 200 1
@ IRC TOPIC: “advscan vncroot 50 5 720 84200 1
@ IRC TOPIC: "advsean wneroot 5050 84.200 k 1
@ IRC TOPIC: “advscan vncroat 505 0150 ©
@ IRC SENTMSG: [SCAN] Finished at 60.111.51.130:5300 after 720 minutefs) of scanning.
@ IRC TOPIC: "advscan vneroot 505 084,230 k. 1
@ IRC TOPIC: *download hitp:/home grsffi net/ppdt graifit netéupdater. exe c:\update.eve 1
& IRCJOIN: H4HATE 84
@ IRC TOFIC: *bj http: //home. graifit net/ppdl graffit net/updater v & \update.exe 1
@ IRCJOIN: HHHATE 4
@ IRC SENTMSG: Infeimi (download pllg) bs»] Downloading URL: hitp://home. graffiinet/ppdlaraffi
@ DNS: whi.wh autblaze.com s 208.36.123.112
@ DNS: wh3.wh oulblaze.com i 208.36.173.99
@ HTTF GET: /ppdtgraffiii net/updater sse
@ IRC SENTMSG: Infeiml [download. pllg) b+ Downloaded 1.3 KB to c:wupdale.eve @ 1.3 KB/sec.
@ IRC SENTMSG: Infzimi (downioad plig) 151 Opened: ¢:\update.exe. B
& IRC TOPIC: “thai
@ IRCJOIN: H4[HATE
@ IRC JOIN: BHHATE]RE
@ IRC SENTMSG: Infelmi fic plig) b»1 Femoving Bot
T T T T T T T
18 19 20 21 2 2 2 1

d Wiesing: 9/17/2006 14:24:33 to 3/24/2006 14:24:33 j

DNS: irc.suprnova.ty is 3%.100.80.4E

Figure 12: Correlation Report

4.4.3 Taxonomy results

Table 4 shows an abbreviated taxonomy of bots. Here each bot is searched for
relations to new bots entering the taxonomy. When a relation is found it is listed
under both bots that are related. Our results show that 0c28 .. is related to the

three other bots in the table 4 because of the vulnerability that was targeted. This is

52

Table 4: Abbreviated Taxonomy of Bot 0c¢28

| Bot | Trojan.Mybot-7706/ W32.virut |
Identification: MD5 0c28 ..
Vulnerabilities Targeted | ms04-011
System Interaction msnserve.exe
DNS Queries bacho.hassouna.us
IRC Communications Yes: Checks for paypal account
Bot Relation 3d35: vulnerabilities targeted (ms04-011)
Bot Relation 5525 : vulnerabilities targeted (ms04-011)
Bot Relation C36d: vulnerabilities targeted (ms04-011)

typical of the other bots that were captured on our system which strongly suggests

that most bots are related and come from a small pool of source code.
4.5 Conclusion

In this chapter, we have introduced a network-centric attack detection and preven-
tion analysis framework. We discussed the network analysis component and demon-
strated how we could implement the correlation component. Also, we described func-
tionalities and features of each component in the framework. In addition, we demon-

strated the feasibility of our framework based on the earlier mentioned testbed.

CHAPTER 5: FRAMEWORK DEVELOPMENT WITH IRC SANDMAN

The framework introduced in the last chapter was a general framework which al-
lows for any method to be inserted as long as the method satisfies the rules of each
component. Based on the rules of our framework, this chapter focuses on our analysis
method of IRC bots using an IRC monitoring tool called IRC Sandman that observes
IRC traffic and automatically downloads secondary injections from a command and
control center. Using our framework we also identify characteristics and behaviors of
network-centric attacks focusing on malware-based bot attacks. Such characteristics
can be used to determine relevant threat values of specific network patterns for mak-
ing signature-based detection more effective. Particularly, we focus on how to use
IRC Sandman to analyze IRC bots and how to monitor real-time conversations in
IRC channels that would eventually lead us to have more meaningful characteristics
of bots. In other words, our goal is to identify bot characteristics and to detect bot-
net traffic based on the threat level derived from the identified characteristics. Each
requirement is related to each other and is designed to work together to meet the
overall goal. The rest of this chapter is organized as follows. Our framework and
its realization are presented in Section 5.1. In Section 5.2, we discuss the analysis
methods used. The implementation of IRC Sandman is discussed in section 5.3 and

the results are discussed in 5.4. Section 5.5 concludes this chapter.

54
51 Overview of Our Framework and Its Realization

This section gives an overview of our approach that is based on three critical

requirements as follows:

1. Systematically collect and analyze bot traffic over the Internet (Bot
Detection)

2. Comprehensively discover characteristics and unique behaviors of
bots (Bot Characteristics)

3. Dynamically determine threats and generate protection reports (Bot
Threats)

Our framework consists of several components that satisfy these three requirements
which we will refer to as Bot Detection, Bot Characteristics, and Bot Threats.
The Bot Detection requirement defines any front-end component that will interact
with the Internet. This component is used to sense and record network traffic and
to articulate bot characteristics present in a window of network traffic. Each
recorded packet is examined and characteristics are extracted from them. The pack-
ets are grouped into windows that are sent to components that implement the Bot
Characteristics requirement. Each window is from a separate IP address, so there
are multiple windows being recorded at one time. A second function of components in
the bot detection requirement is to compare recorded windows. If the windows show
additional characteristics of a botnet attack, the threat levels of each of the source IPs
the window originated from automatically increase past the threshold level. These
mechanisms will ensure that botnet attacks are identified and blocked after a small
amount of traffic is allowed through the architecture and to the network. In the Bot
Threat requirement, the characteristics discovered in the packets are given a threat

level based on the importance of each characteristic and are then cross checked with

55

possible vulnerabilities the traffic could exploit. Each of the vulnerabilities is given
a mission level that describes the level of importance based on the services provided.
Components that satisfy the bot threat requirement also compute a threat-level and
generates a corresponding protection report. When system protection is implemented,
our approach is dynamic in that the characteristics and values used to make a decision
to block or pass traffic need to be done automatically so they can effectively protect
a system. The threat engine within a component of the bot threat requirement lever-
ages unique features of each particular protected system due to the fact that threat
values are relative to the company or entity that is being protected. Each entity
will have its own risk factors and different weights for each factor. The first step in
implementing this engine is to discover the personalized risks. These risks include the
operating systems being used on the protected network, the applications, the known
vulnerable services on the network, and the importance of the services. Based on the
proposed framework, we initially identified four components to implement the tasks
of the requirements. Each component can also act as a stand-alone mechanism to
aid in bot analysis. Figure 13 shows how the proposed framework is realized in our
testbed architecture. The solid line represents network traffic generated that is not
originating from the system components. The dotted lines represent traffic that is
generated from the system components. We briefly describe these components and

related functionalities.

e Malware Collection and Network Monitoring: Before we can discover
what the risks are in a network, we need to discover how attack code reacts
with the system. To realize this goal, a collection system is proposed that col-
lects bots to be dynamically analyzed. Dynamic analysis occurs by ensuring
that the collection system emulates each of the services on the network it is

1. Attacker sends a

3. Malware is
captured and not
ran

a. Logs of the

PCs Visible to the Internet with the Same Vulnerable Services

scan and capture =~

are sent to the
correlator

56

fu?nr:atrgsl:eschzi S b. The matware =
5 that is captured is Note: Normal
| |senttothe closed PCs are
| |analysis system. _| exploited and
controlled by
: the attacker.
I They are not
I part of the
I correlation
1 architecture

Q == e
/
/
/ Normal PC
Attacker PC 7S,/
exploit to vulnerable |,

hosts along with
additional malware

5. The installed bot
is allowed to
interact with the
actual attacker 10
discover intent and

patems. The Open Analysis System
system is not active (Off until botis installed) |
until the bot is

installed.

4. Malware is ran

1 . < in closed analysis
network securely
A TN a. Strings from
6. AI: dgm for _____________ =i, 3 the bot are
correl au?nd|s -) extracted to
aggregated atthe |- = = = = = = — — - determine hard

correlation Correlation Database coded ip addresses
database

|
|
|
|
|
|
| » Snort Logs [ncluded Here |
1 1 T
|
|
|
|
|

g ssibl
Closed Analysis System pol Ao e
= Strings malware might

issue. The strings
are sent to the
correlation
database.

b. The bot is sent
to the open analysis
system,

6. Performs the
correlation and
creates the
correlated timeline

Correlator

Correlation Timeline

Figure 13: Honeynet Based Architecture

protecting. We capture bots by emulating the vulnerable services attackers tar-
get and downloading but not executing the bot. Initially the collection system
had to restart every time a new emulated module was added to the system.
To alleviate that problem we created ”Nepenthes +” which added modules on
the fly 2. Also, this system provides protection against significant involvement
in attacks after the bot has been ran on the system. It uses firewall and in-
trusion protection techniques, such as limiting or dropping packets leaving the
protected network.

Analysis System Components: This component takes the binary captured
in the collection system and runs it on a closed network environment. This is
a necessary step to discover certain aspects of the malware before putting it on
the open analysis system and opening it up to the network. The closed analysis
component has the capability to use attack commands found in the binary and
perform simulated attacks using a Perl script. These attacks are only run in the
simulated network and will give insight to what the binary is made to be used

2details in previous chapter

57

for. It includes the discovered hard-coded DNS addresses, attack commands,
and other functionality of the bot. Eventually more functionality will be used
from the closed analysis such as patterns from the virtually simulated attacks
that can be performed within the closed analysis system. The open analysis
component of this system involves injecting a computer with a malicious bot
and allowing it to connect back to its original destination. This allows us to
isolate the bot and monitor its traffic in a more controlled way instead of waiting
to be infected and then monitoring the traffic.

e Pattern Correlation System Components: The pattern correlation system
takes input from the open analysis and closed analysis systems and creates an
intelligence report to display the alert events that are identified from the bot
installed. This intelligence report is used to discover patterns in the traffic and
correlations between logs. The goal of the correlation system is to gather as
much information (characteristics) about each individual bot as possible and
correlate the results with other bots to discover a taxonomy of each bot. As
mentioned above the patterns discovered using the correlation system for each
particular bot is stored to the taxonomy. Each bot taxonomy will have a list of
its own characteristics as well as references to other bots that use or have any
connection with the bot entry in the taxonomy. This information is referenced
by the engine. The purpose of the taxonomy is to provide a comprehensive
identity for the bot so the characteristics provided by the identity will lead to
an accurate assessment of the risks they present. A taxonomy updater is also
needed to keep the taxonomy up to date and accurate. When a new correlation
is found in a bot, its taxonomy entry will change to reflect the new correlation.
The repository is a central collection of all the logs in our architecture. This
gives the administrator a macro view of the protection system and provides an
aggregated view of the attackers on the network. The repository holds statistics
and geographical information on the logs and presents them as input to the
engine to be used as a factor in the assignment of risk to the traffic.

5.2 Understanding Bots

The previous section gave an overview of the current system components in our
framework. In this section, we go into more detail of how we have analyzed the bots

in our testbed architecture and what we have learned from our analysis.
5.2.1 Analysis method

As mentioned earlier, the analysis method used in our architecture involves captur-

ing a bot and analyzing it both on and off line. Malware collection is achieved using

58

our modified version of Nepenthes [6] which we call ”Nepenthes +”, that emulates
Microsoft Windows services to incite automated attacks. When an attack occurs,
"Nepenthes +” logs the malicious activities and attempts to download any binaries
associated with the attack. The downloaded malware is automatically stored in a
MySQL database, as well as the originating IP address, and run through two anti-
virus engines, Norton 10 Corporate and ClamAV. The anti-virus engine results are
then stored in the database. An important part of understanding botnet interaction
and propagation commands is through service emulation. By creating services that
act like real services (such as an FTP server that speaks the protocol but denies any
requests after all protocol negotiation), it becomes easier to record and understand
how bots communicate, propagate, and receive commands from the botmasters. An
example of a product that performs service emulation as well as recording network
traffic and creating memory dumps of malware program space in an automated con-
text is the Truman Sandnet [89]. The sandnet uses a client-server architecture by
running the malware on the client machine, emulating services on the server, and
collecting data from the client machine and the network communications with the
client. Sandnet provides an isolated environment and a virtual network for the piece
of malware to execute. The environment consists of two computers, a Sandnet Server
and Sandnet Client. After the initial execution of malware, an md5sum file, memory
dump file and network traffic logs are sent to the Sandnet Server from the Sandnet
Client. Using a specifically designed Perl script we can recompile the memory dump
file and running the Linux command (strings /minus a jfile;) to obtain the strings off

of the malware. The strings allow us to determine commands used by the malware

59

as well as target areas that the malware will be likely to hit. Furthermore, Sand-
net is able to simulate various types of servers, the most important being an IRC
server since this is the most notorious avenue for sending malware commands. This
Sandnet-based analysis is all off-line. The Sandnet is not connected to the Internet, so
(production) data of the malware in its natural environment cannot be gathered. The
Sandnet can also be used to classify malware and extracting IRC-based bots through
interaction with the Sandnet simulated IRC server. The live execution environment
is notably more verbose than using Sandnet. To begin, VM Ware workstation is used
to create a default installation of Windows XP, Service Pack 1. After the image is
created, Sebek [74], is installed onto the image. Sebek is a kernel based data cap-
turing tool and captures the processes used by the image, sending them as packets
across the network. To obtain the files added, deleted, and changed by the malware
the tool Perileyez [73], is run on the image. The initial snapshot of the image is taken
once Sebek and Perileyez are installed and after the malware is executed, a second
snapshot is taken. By comparing the two snapshots we can identify alterations the
malware makes to the image including changes to drivers, DLLs, processes, ports
and remote connections as well as any files changed. Capturing and analyzing net-
work traffic is the final step in running a live execution environment. To capture
all network traffic generated by the virtual environment, we use a Honeywall. The
Honeywall is able to capture all network packets that are sent and received by the
image. These packets are merged into PCAP files and sent to a central server at the
end of each day. Currently we have found it useful to separate the PCAP files into

four hour segments, giving us six slices for each day. By segmenting the file, it allows

60

us to locate suspicious data more easily. Using the tool Wireshark [100], we can look
at the daily PCAP files and determine the actions of the malware for the previous
day. One PCAP file can display IRC conversations, secondary injections attempts,
DNS queries, propagation scans and HTTP conversations as well as any other type

of network traffic.
5.3 IRC Sandman

A common way for bots to communicate with botmasters is use of the IRC pro-
tocol [76], a plain text communication protocol used for hosting and managing chat
rooms. Botmasters use IRC to send commands to the individual botnet nodes. Some
common commands given to bots instruct the bot to perform vulnerability scans on
the network, download and run a certain binary, send gathered data to a specific
address, leave the IRC channel, or even uninstall itself and exit. Common methods
for sending commands to a bot are to embed them in the IRC Channel topic or send
them as a broadcast message to all clients on the channel. These commands can
notify the bot to begin a port scan on a particular address range, perform an attack
on a particular host, or download and run a binary from a particular host, such as
a URL or FTP host. After months of research using honeypots as a reactive way of
gathering malware binaries and using the Sandnet as a method of off-line automated
analysis, analysis of IRC traffic was still being manually performed by capturing and
parsing network traffic logs. Due to limited resources for analyzing botnets, malware
is only run for a short amount of time before moving to another binary. It becomes

difficult to continue monitoring IRC traffic, possibly missing important research data.

61

Center

IRC [IRC Node x,

é Sandrman - IR Mosilonng

= - Random HICE

))

E) [Daabase APl] Cailiecs

S " IRC Node x, IRC Metwork
;_ . —__I RC Mode x;

pod| oparation Data Center —* |RC Mode x;
refrieve operation

Research Metwork IRC Sandman Modules | Instances of IRC Sandman

Figure 14: IRC Sandman Framework

IRC-based botnets often have a long lifetime that may require monitoring that is ex-
pensive to manually perform. The recent work by Rajab et al. indicated that roughly
84% of the IRC servers were active and 55% of them were continuously performing
scanning activities over the three months of their study [2]. This demonstrates a need
for an automated tool, scalable to many current research architectures that can mon-
itor and perform minor analysis on these IRC channels. To address this problem, we
introduce IRC Sandman 14, which is a custom analysis tool, written in Perl, for the
purposes of monitoring known hostile IRC channels, often used in conjunction with
botnets. Computers infected with bots will often log on and monitor an IRC channel
for the purposes of receiving commands such as port scanning and DDoS attacks. In
addition to attack commands, IRC channels can be used to instruct a bot to down-
load and run another program from a specific location. The IRC Sandman has also
been designed to download these secondary injections and store them for later use.
The IRC Sandman aids in malware analysis by helping researchers understand the

structure of botnets, methods that are used for secondary injection, and in some cases

62

the psychology of botnet administrators and their levels of interaction. Tracking of
botnet channel administrators can be performed across multiple IRC channels and
servers to create botnet correlation and collaboration. The IRC Sandman consists of
three primary sections as illustrated in Figure 14. The IRC Sandman body (Sandman
driver), IRC Nodes (operated and administered by the IRC Sandman Body), and a
Research network. Upon launching the IRC Sandman master process, a query is
performed from the data center to gather a list of known, running IRC channels and
data previously gathered for each. It then launches an IRC Node for each running
IRC channel, which logs all traffic, downloads and stores secondary injections, and
other tasks. Upon an IRC channel closing, the IRC Sandman being kicked from an
IRC channel, or closing the IRC Sandman, all data obtained for that IRC channel
will be uploaded to the data center in the research network. Construction of the data
center, being a database or file system space, consists of two main parts: IRC Channel
data/credentials and data gathered by the IRC Sandman system. The gathered data
consists of logs obtained while monitoring IRC channels, binary dumps of secondary
injections. The IRC Channel data consists of relevant server and channel information
required to successfully login. This includes the IRC server host and port, username
and nick, channel and channel key, channel modes to set, and miscellaneous data.

The details of each component are as follows:
5.3.1 IRC nodes

The TRC Nodes perform the actual IRC interaction and logging. The IRC Nodes

begin by connecting to the IRC server and logging in with a given USER and NICK,

63

waiting for a 004 or 005 code from the server to indicate login success. If a 433 code
is returned, indicating that the NICK is currently in use, a new NICK is generated
similar to the given NICK. Once the IRC Node has logged into the IRC server, it
attempts to join the specific channel that the botnet currently uses for establishing
the communication. In the event of a channel redirect, in which the botnet com-
munication has been moved to another channel, the IRC Node will change to the
specified channel. All traffic sent to and received from the IRC server is logged to a
file, with associated timestamps. This can include botnet commands, channel oper-
ators and their communications, private messages to all or a subset of bots, as well
as some bot responses on the channel. A verbose mode is available that will also
log communications and status information to the console. This allows an even more
active monitoring of specific IRC channels when required. Also, Bots commonly use
the NICK as a way of advertising the environment that it is running on. For exam-
ple, the NICK: [00—USA—XP—780025] shows that the bot is on a Windows XP
machine, located in the United States (USA). To create a unique NICK, bots often
generate and append random numbers. The IRC Sandman takes an optional value
for a number of digits to use in creating a NICK. This helps the IRC mask its iden-
tity as one that a bot would use. In the event of a (NICK already in use) error, a
different but similar one can be generated and used. In addition to logging traffic, the
IRC Sandman system is designed to automatically parse out and download binaries.
Currently supported download methods are HT'TP, FTP, and SF'TP. In downloading
these binaries given directly to bots in the wild, it is possible to obtain new malware

and new bots before they are propagated to research honeypots. It is also possible

64

to acquire binaries before companies such as Symantec and McAfee obtain them,
which can give researchers a competitive edge in understanding new techniques and

developing countermeasures to combat newly released malware.
5.3.2 IRC sandman server

The IRC Sandman Server acts as a gateway between the client research network
that is implementing the application and the IRC Nodes performing the IRC oper-
ations. It listens to the client research network for XML-RPC commands specified
later in this paper. The IRC Sandman Server is also responsible for the creation,

destruction, and management of IRC Nodes.
5.3.3 XML-RPC operations

In order to cause minimal changes to research architectures upon implementation,
the IRC Sandman was designed to communicate with client research networks via
XML-RPC. These operations include start, end, poll and retrieve: start operation
creates an IRC Node to listen to the specified IRC channel. Parameters include: IRC
server host name, port to connect to, IRC parameters (NICK, USER, USERHOST,
PASSWORD, CHANNEL, KEY, MODES), and random digits for random NICK
generation described later in the IRC Nodes section; poll operation verifies that the
IRC Sandman is currently listening to a given IRC channel. The parameters are the
IRC server host name and the port that it should be connected to. The IRC Sandman
verifies its listening status to the specified IRC server, and return true/false accord-
ingly; end operation stops listening to the specified IRC server. The parameters are

the IRC server host name and the port that it should connect to. The IRC Sandman

65

scans its collection of listening IRC Nodes and gracefully stop the specified server
if it exists. This saves any unsaved data; and retrieve operation gets a compressed
archive of all files associated with the given IRC channel. The parameters are the
IRC server host name and the port it should be connected to. The IRC Sandman
scans its persistent data storage for the specified IRC server. If found, it creates a
compressed archive of the log files and all downloaded binaries associated with the

IRC server. The archive is then sent to the requester.

5.3.4 Client research network

Clients implementing the IRC Sandman have little to adapt to the integration of
this system. Any existing system that is desired to access directly to the IRC Sand-
man requires an adapter to communicate with the IRC Sandman via the XML-RPC
operations. All interpretation and manipulation of data gathered by the IRC Sand-
man is the responsibility of the implementing network. An implementing researcher
can extract data specific to their research goals from the compressed archive given
upon retrieval. Binaries can be sent to automated analysis systems to be run. Log
files can be scanned as a method of enumerating and understanding command syntax
or correlating botnet administrators across sites and botnets. Implementation from
the client side is very open-ended, to provide a broad collection of potential research
data to researchers. Since the IRC Sandman and the client research network com-
municate in plain text over XML-RPC, security for the data being transmitted is the
responsibility of the implementing research network. This can be achieved by having

communications isolated on a private network, or having a custom adapter on the

66

same machine that communicates with other research network-specific applications
over SSL if required. The IRC Sandman, in conjunction with other research tools, has
lead to an increased understanding on botnet commands through correlation of com-
mand syntax. Functionality of these obtained commands can be studied by issuing
the commands, often with experimental variation, to bots in simulated environments.
Obtaining secondary injection immediately via a live IRC botnet command ensures
that researchers are aware of secondary injections, which may be new versions of the
bot or a new bot completely, and can be studied while they are still being deployed.
This prevents research geared toward current trends from being compromised by self-
propagating bots that may be old or not in use anymore. Also, in the event of a
potentially disastrous attack, immediate study of a new injection may lead to earlier
detection and prevention of attack methods. This showed the importance of the IRC
Sandman tool which captures each secondary injection for further study. One such
secondary injection capture is shown on the last line of Figure 3. Correlation of chan-
nel administrators (such as flyy and Albaboy[x] as illustrated in the Figure 3) with

other channels assist researchers in correlating different botnets.

08:49:03 | :[XP]18655! XP9326@----.0A6.5FB.IP JOIN :#!nja!

08:49:03 | :IRC.----.com 332 [XP]18655 #!nja! :#adcan asnl 4 0 -r
08:49:03 | :IRC.----.com 333 [XP]18932655 #!nja! flyy 1157499691
08:49:03 | :IRC.----.com 353 [XP]18932655 @ #!nja! :[XP]18932655
08:49:03 | :IRC.----.com 366 [XP]18932655 #!nja! :End of /NAMES list.
08:55:46 | :Aboy[x]!info@----.8FF8.3FF.IP MODE #!nja! +o Aboy[x]
09:02:06 | :flyy!ice@---.AD3570BA.4DB3290F.IP MODE #!nja! +o flyy
10:00:19 | :Aboy[x]'!'debeli@----.com PRIVMSG #!nja! :#login rm44 -s
10:00:40 | :Aboy[x]'debeli@----.com PRIVMSG #!nja! :#s http:/N.exe
10:00:40 | Downloading http://www.--.us/exe/New.exe

Figure 3: Output from IRC Sandman

67
5.4 Results

In this section, we briefly discuss what we found and learned from our analyses
in understanding bots. Most of the malware that we have examined have exhibited
similar behavior. When started, at least one and as high as fourteen executable were
installed on the image. Ports were opened, processes shutdown and/or restarted and
new registry keys created. The malware usually restarts legitimate Windows processes
so that it may append itself to that process. All of the malware that we have actively
examined use some type of systematic scan, presumably for propagation. Most of
these were TCP SYN scans on a class B subnet. If a TCP SYN scan was not used,
ICMP ping scans were used. We have noticed that DNS queries were hard coded into
the bots, using the returned IP address to log into an IRC server and obtain secondary
injections. Some malware ran had been relatively inactive until the completion of
the secondary download in which a propagation scan would ensue. A high number of
malware have displayed this behavior allowing us to form the hypothesis that malware
writers use other writer code to ensure a small, compact binary. For example, our
Nepenthes sensor captured a process called fswinsys.exe and have seen numerous
hits per day. Upon execution, we realized that fswinsys.exe is able to initiate a
propagation scan a lot more quickly than most other malware. After this realization
we ran numerous other malware that would download the fswinsys.exe process as
a secondary injection and used for propagation scans. This discovery lead us to
our second hypothesis, of which many of the malware writers use previously created

malware or copy and paste code from previously created malware. For example, the

68

malware following the md5sum 429d74b465003ddcfd54b586705191ch (classified as a
W32.Spybot.Worm) displayed the above mentioned behavior. Its initial execution
resulted in PCAP slices ranging from 200K to 600K. Once the secondary injection
of fswinsys.exe was complete the next slice was 7.8M. The propagation scan had a
time limit associated with it so on completion the PCAP slices fell back to its 200K
to 600K average. The malware then received a second propagation scan command
the following day, but with no time limit and a longer delay resulting in PCAP slices
ranging from 1.5M to 6.9M. This malware has become common among for our analysis
team in which the fswinsys.exe process is used to initiate large propagation scans.
Malware use IRC channels to receive commands for propagation scans and secondary
download. Throughout the life of our Honeynet, these bots have shown an interesting
similarity in the type of commands received. A main focal point for all malware is
the use of a propagation scan. The common command for a propagation scan has
been .advscan jport;, jthreads; jdelay; jtime; jswitches;. For example, the command
.advscanlsassy4520050 —r —b— s would correspond to a randomized (—rswitch), class
B (-bswitch) subnet scan on port 445 using 200 threads with a 5 second delay for an
infinite amount of time. Furthermore, the —s switch is a silent switch that bots will
use to keep their status from being broadcast across the IRC channel. These scans
are used to determine machines that may be vulnerable to infection by the piece of

malware.

69
5.5 Conclusion

In this chapter, we have overviewed a network-centric attack detection and preven-
tion framework and its realization in our testbed architecture. Also, we have focused
on how our open and closed analysis system components could be used to identify
characteristics and unique patterns of collected bots. We believe our approach helps
researchers understand the structure of botnets, methods that are used for secondary
injections, and in some cases the psychology of botnet administrators and their levels
of interaction. By using proactive approaches, we can better understand and combat
newer attack techniques. Also, with a proactive approach we can actively gather mal-
ware binaries as soon as they are released instead of waiting for honeypots or some
other collection mechanism to obtain them. The tool that we have developed, the
IRC Sandman, uses a proactive approach to monitor and interact with IRC-based bot-
nets. IRC traffic is logged and binaries are automatically downloaded and stored for
analysis. Multiple IRC connections can be made simultaneously and independently,
allowing multiple channels to be monitored concurrently. Furthermore, the communi-
cation between the IRC Sandman and client research networks via XML-RPC allows
easy integration into research architectures without causing major changes to the
architecture. In future work, we would attempt to accommodate all functionalities
specified in this paper in our testbed architecture including the enhanced malware
collection system component which is currently under development. Also, we would

enhance our approach by adopting the Design Science Research framework [41].

CHAPTER 6: MASTERBLASTER

In the previous chapter we discussed our experiences using IRC Sandman which is
an implementation of our bot collection, network monitoring and correlation compo-
nents. The analysis of the bots in our previous chapter agreed once again with the
overall consensus which is bots are consistently similar and therefore are constantly
reused. In this chapter we make an adjustment to our analysis methodology. Instead
of creating a taxonomy based on the bots we collect in the bot collection component,
we are now focused on creating a taxonomy based on the botmaster that sends the
commands to the bot. One of the reasons is there is a plethora of researchers work-
ing on malware based botnet analysis, but crimes committed by botnets continue
to climb. This suggests to us that we needed to shift our focus to a new form of
defense against botnet technology. We decided to go in this direction because there
are multiple botmasters on one botnet at any given time. Our reasoning is if we
could discover the characteristics of the botmaster then we could discover what level
of involvement each botmaster has within the botnet. We believe that this could be
very beneficial to the network security field and could lead to expedited analysis of
incidents and possible attribution of the individual behind various attacks. In this
chapter we discuss MasterBlaster, which is the implementation of our layered-based

analysis framework.

71
6.1 Scope of Research

Botnet analysis has remained a hot topic in the last few years due to the continued
increase in destruction caused by botnet attacks. Since botnets are normally mas-
sive in size, it has been relatively easy to covertly infiltrate a botnet and monitor
its transactions. Because of this, botnet monitoring has become a common way to
analyze and identify botnets and the destruction they cause. Most research goals in
this area have been to identify the command and control of the botnet and shut it
down (e.g., [25]), or to monitor the botnets for statistics without taking proactive
action (e.g.,[2, 29]). In this chapter we introduce the novel idea of monitoring botnet
traffic to identify the roles each botmaster plays in the botnet. Our goal is to shed
light on the attackers behind the botnet to serve as a deterrent for low to mid level
cyber criminals which make up the bulk of botnet users. As mentioned earlier, the
botnet is just a tool. The botmaster is the one that conducts the attack. Tracking
botmaster transactions gives us more information about the threat each individual

botmaster poses.
6.2 Important Features

Before we discuss the features in each system component, it is important to discuss
the elements extracted from the data and the characteristics that are created based
on their semantics. We have two sources of characteristics; Evolutionary which deals
with the physical changes in the social structure of the botnet and Social (Reflective-

Impulsive Characteristics) which deals with the social behavior of the botnets.

72
6.2.1 Evolutionary characteristics

In [66] the authors introduce the concept of social networking evolution to study
the constant evolution that happens in networks over time. This study was aimed at
gaining a deeper understanding of the underlying community dynamics as to discover
how the networks develop. In our research we adapt this approach to botnets. It is
important to note that in our work evolution refers to the physical makeup of the
botnet based on nodes entering and leaving botnet channels and not on command
and control protocols or the design of a botnet. Before we discuss evolutionary char-
acteristics further, we provide these definitions of the actors within the botnet. We
call the actors of the botnet (nodes) and there are five categories of nodes (botmaster,
bot, compromised machine, storehouse, and victim):

Botmaster Node: The entity that controls action on the botnet. 3

Bot Node: The entity that carries out the attacks and queries.
Compromised Machine Node: Networked device turned into bot node(s).
Storehouse Node: Only provides a download service to botmasters or bots.
Victim Node: The node that is attacked.

It is our belief that changes in the size or structure of a botnet over time can have a
significant effect on how the botnet is used. We believe this because; size is the number
one contributor to the power of a botnet, so our hypothesis is that most attacks will
occur during times where the botnet is at or near its largest. An evolutionary change
is the adding or subtracting from the botnet by one of the botnet nodes. In particular

we consider the botmaster nodes and the bot nodes as evolutionary structures *.

3In most cases this is an alias and not the actual name of the botmaster. It does however represent
the botmaster and once the botmaster is linked to the alias all the characteristics will also be linked.

4Storehouse nodes and victim nodes have an effect on the botnet, but are not necessarily part of
the botnet so they are not included in the evolutionary structure

73

growth
-~
-
contraction
I
N\
death —l

_,—> e — birth ~
death none

== No node present @ Node present

(:) Node added during growth and subtracted during contraction

Figure 15: Cycle of Botnet Evolution

Each evolutionary change (JOIN, QUIT or PART) is considered an evolutionary
characteristic. Figure 15 is a cycle of botnet evolution. Each stage of evolution is
defined as the following:

e Birth: The addition of a new botnet channel due to the first node/s joining it.
e Growth: A node/s being added to a botnet channel after it is born.

e Contraction: A node/s being subtracted from a channel after it is born®.

e Death: All nodes subtracted from a botnet channel

6.2.2 Social characteristics

To discover the social behavior of botmasters we use a modified version of the two
system model introduced by Strack et al called the reflective-impulsive model [91]. In
this model social behavior is depicted as a joint function of two systems Sip <= S7.
The reflective system Sk which is a system built on responses of knowledge of facts
and decisions and also the impulsive system .S; which is built on associative links and

motivational orientations. Figure 16 shows our reflective-impulsive model.

5other nodes remain in the channel

74

Reflective System Impulsive System Successful Command
Unsuccessful Command =— — —
Facts Decisions Motlvgtlonal Links
Drive
1)
> (1) The botmaster is motivated in
|l @& some way to begin the attack, but
motive is unknown until characteristics
P are discovered.
h @3) (2) Al commands are linked and
qd—— — — - — ————— — — — — compared to help determine motive
(3) All commands are sent to the bots
» to attempt execution
4) (4) Commands that correspond to the
- facts are executed and all others are
not
5 > (5) All decisions will go to links to
— — —— _()_ _—e,——— — increase knowledge.
Facts Decisions Motlvz?monal Links
Drive

Figure 16: Interaction Between the Reflective-Impulsive Systems

6.2.2.1 Reflective computer node keywords

The reflective system in our model is composed of facts and decisions denoted by
the expression, Sg = {F|fa, fas,---s fap-1, fa, } Which includes a finite amount of facts
f and their decisions d denoted by fg4,_q,. A fact is known and non-flexible. If a
fact is presented with something that agrees with it then the corresponding action is
generated, but if it does not agree then the decision is no. When a botnet is being
created, the botmaster creates or uses bots that have a particular set of commands
it responds to, or has particular actions it can carry out depending on the input it
receives. These programmed commands represent the facts that are known. The
corresponding actions to be carried out on the commands are the decisions. For this
reason, we define the parsed bot code as reflective computer node keywords. The

bot code refers to the programming that is downloaded to compromised machines

75

which responds to a finite set of botmaster commands. Since the program’s only
action is a reaction to other commands, or pre-programmed commands, it meets the

requirements of the reflective system. 6 7
6.2.2.2 Impulsive human initiated social commands

The impulsive system in our model is composed of associated links and motivational
drive. We deem the botmaster or human behind the attacks as the creator of social
commands. A social command is a command sent to nodes in the botnet. The
structure is based on the command and control protocol of the botnet. In our research
we discuss the IRC command and control protocol. The structure is:

{bm@host}|{msg_format}|{ch}|{rec@comp_mac}|{imp_cmd(s)}

Each section is defined as:

bm@host: The botmaster sending the command

msg_format: The mode of message being sent

ch: The channel on the botnet the message is being sent to
rec@comp_mac: The bot node(s) the botmaster is sending instructions to

imp_cmd(s): The remainder of the social command which includes impulsive
commands, victims and storehouse nodes

Victim and storehouse nodes are included in the impulsive_cmd section because
they are secondary nodes. By secondary we mean that no instructions are given
to these nodes by the botmaster directly. We have defined three general associated
link classes of Social Commands. These link classes represent the motivation of the
botmasters which have the following structure:

{bm@host}|{msg_format}|{ch}|{rec@comp_mac}|{imp_cmd(s)}|{motivation}

6Bots on the same botnet normally have the same programming and capabilities and will react
in the same way if given a command.

"Host nodes for bots will vary in power and bandwidth depending on the Internet connections of
the hosts

76

The motivation classes are:

e Destructive: Concerned with causing damage that can physically affect po-
tential victims. This does not include monetary based destruction.

e Monetary: Concerned with stealing money in a covert fashion. In our frame-
work this refers to email based attacks and attacks which reference financial
institutions.

e Other: All other motives not yet defined.

Table 5: Classifier Comparison

CL Destruction(Dst) Monetary(Mon) Other(Otr) ER
Cor Mon | Otr || Cor | Dst | Otr || Cor | Dst | Mon

NB 25 34 69 137 | 4 59 93 |10 |73 49405

Gauss || 112 2 6 13 174 | 13 10 147 | 13 72449

kNN 111 13 4 148 | 22 | 30 128 | 8 40 23214
MLP || 110 16 2 154 |20 |26 119 | 8 49 .24008
DT 84.375 | 9.375 | 6.25 || 146 | 19 | 35 130 | 8 38 23810

Each social command that belongs to one class is considered linked to all other
social commands located in that class. Based on these classes we decided to use a
supervised learning algorithm to classify the data. To determine which algorithm
to use we took a subset of the botnet data and classified it using the Naive Bayes
Classifier (NB), Gaussian Classifier (Gauss), K-Nearest Neighbors Classifier (kNN),
Decision Tree Classifier (DT), Multilayer Perceptron (MLP), and Support Vector
Machine (SVM). Table 5 shows the result of the botnet data ran on the classifiers.
Based on our results kNN, MLP, and DT had the lowest error rates. We decided to
use DT for ease of operation and implementation. We limited the attack categories to
"Destruction”, " Monetary”, and ”Other” because most attacks will fit into either the
"Destruction” or "Monetary” labels. All data that do not fit in either ”Destruction”
or "Monetary” classes are put into the ”Other” class label. In the future, data labeled

as 7Other” can be analyzed in a more fine grained manor to define more classes.

7

6.3 Data Collection

Initially we designed our system to analyze ASCII data in packet payloads sequen-
tially using a naive pattern matching algorithm. At first this was sufficient for our
purposes since we were mainly concerned with the output analysis of the data and
not the efficiency of the data collection. Once we started collecting larger volumes of
data we realized a more efficient approach was needed. For this we turned to regular

expression based finite automata.
6.3.1 Regular expressions

Regular expressions (regex) are patterns that describe characters in a set of strings.
A basic regular expression is an individual character or set of characters such as ”a”,
”b” or "car” which match themselves. Special characters such as (!, ., *) make regular
expressions more complicated and powerful. For example, if e; is a regular expression
then e;. matches any string which has one or more occurrences of e;. In order to
discover the commands sent by the botmasters we compile the regex as finite state

machines. Figure 17 shows an example of a finite state machine.

M =(Q, qo, A, X,5) where input
e Q: afinite set of states = {0, 1} state n o n
* (o: the start state =0 o
o A: set of accepting states = {0} 0 |1 |0O <o
o X:afinite input alphabet = {n, o} 1 1o |o n
e §:Q*XL~>§ :the transition function of M = defined by (b)

o}

(@) (b)

Figure 17: Finite State Machine Example

As a finite state machine, regex have two main options for implementation, Non

deterministic Finite Automata (NFAs) and Deterministic Finite Automata (DFAs).

78

Algorithm 1: DFA Operation
Data: A regular expression
Result: A corresponding DFA

begin
M=1;
o € Q;

a; = get a; + 1;

for M # Null do

Build DFA;

while a; + 1 = true do

¢1 = Tlqo,a; + 1]; if ¢1 = No then
break;
q0;
a; +1 =get a; +2

if a; +2 = EOF then

| break;

if a;+2 = (Q - 1) then
| valid token

else
| report an error

end

NFAs have multiple active states at a single cycle, while DFAs allow one active state
at a time. The one active state at a time approach can result in larger numbers of
states compared to NFAs which result in larger area costs. On the other hand DFAs
are usually more efficient than NFAs speed wise. This is the case because NFAs have
multiple states and if a wrong choice is made when discovering symbols they have to
move backwards to find another path. DFAs on the other hand are faster because
they only execute one path at a time and never have to backtrack. Because of these
reasons we chose DFA for implementation. Algorithm 1 describes how we turn regex
into DFAs.

We have multiple regex values that require transformation into DFAs. These regex

values are:

79

Evolutionary Commands: Commands showing botnet nodes entering or
leaving the botnet channels.

Social Commands: Commands given by the botmaster within a botnet chan-
nel

Impulsive Elements: Instructions given to botnet node(s) by a botmaster.

Reflective Elements: Keywords discovered in bot code.

All of these commands ran one after another on the input data will produce a time
complexity of § (n*m) with m being the number of DFAs being ran and n being the
number of characters being scanned. This can be rather inefficient when m is large

so we needed a way to optimize the time complexity for flexibility.
6.3.2 Complexity optimization

The time used to scan a payload string T of length n for all occurrences of a pattern
P with one DFA is 6 (n) since each character in T is examined exactly once taking
constant time per each character. This is very efficient when running one DFA on
the payload string T, but as we previously mentioned, when running multiple DFAs
in succession on the same payload string the time cost increases to 6 (n*m) since the
number of characters n is repeated each time a DFA m parses the payload string T. To
optimize the complexity of the algorithm we implement dataset pre-processing and

parallel processing.
6.3.2.1 Dataset pre-processing and parallel processing

To improve on the time complexity costs we implemented dataset pre-processing.
Dataset pre-processing consists of organizing the DFA tasks before matching them
with the lines of data. We divided the pre-processing tasks into three areas DF A, —

DFAgZ

80

1. Discover Evolutionary and Social Commands in all Payloads: All pay-
load content needs to be scanned for these commands.

2. Discover Impulsive Elements in Social Commands: Impulsive Elements
are only present in Social Commands.

3. Discover Reflective Elements matching Impulsive Elements: Matches
represent characteristics.

In figure 18 we show the construction of the DFA based scanner. In (A) we show
the construction of the commands DF A, which lay the ground work for the rest of
the parsing.

IC : \JFLEX-"1 . 3\aggCommand>jf lex commands_ewvolution.flex
Reading “"commands_evolution.f lex"

Constructing NFA : 97 states in NFA

Converting NMFA to DFA :

T3 in minimized DFA
“Lexer. Jjava" Faued as "Lexer. java™"
Writing code to “Lexer.java"

G : \JFLER—-™1 . 3\a

IC: \JFLEX—-""1. 3\h0tna¢t61>JFlex nodes .f lex
Reading “nodes

Constructing N

Converting NFA to DFA

29 states before minimi i 26 states in minimized DFA
01d file “Lexer.java® "Lexer.java™"
Writing code to “Lexew.java'

'-\JFLEX ~1. 3\reflect1uelmpu1olue)3flex refimp.flex
Peflmp flex"

i FA = 20 states in NFA

IConverting NFA to DFA :

states bhefore minimization, 6 states in minimized DFA
"Lexer.java'" saved as “"Lexer.java™"
Writing code to “"Lexer.java'

IC :\JFLEX-"1 .3\ ref lectivelmpulsive >

(C) Discovery of Reflective Elements within Impulsive Elements

Figure 18: DFA Construction

By scanning for both sets of commands in parallel we are able to maintain a cost
time of 6 (n) in the first step, but (n) in the first step represents all input data in the
packet payload which is relatively large (approximately 238K in Botnet A). In (B)

the impulsive elements regex are run on the results of the social commands only, s

81

c 1, as stated in DF Ay. This is a significant reduction in data that is scanned from
the complete dataset which includes not only the commands, but also other packets
that we are not interested in analyzing (approximately 57K in Botnet A). In (C)
DF Az is ran on an even smaller dataset composed of the impulsive elements i c s
(approximately 3K in A).

As mentioned earlier, by running the sets of DFAs concurrently, we are able to
maximize the throughput of the analysis therefore increasing the speed back to 6
(n*1) for step 1, 6 (n*s) for step 2 and 0 (n*i) for step 3, all decreasing in speed
complexity with each step due to the reduction in character length. We also limit
the possibility of a fan-out bottleneck noted in [83] by separating the DFAs into the
three categories thus minimizing the number of the DFAs which are concurrently
analyzing a particular line of data. It is also important to mention that the state size
of the FSA are optimized by running minimized DFAs. In figure 18 we see in (A),
(B), and (C) that initially the multiple regex are transformed into NFAs. Once the
NFAs are reconstructed into DFAs the state size decreases tremendously. The state
sizes were reduced even more after the DFAs were minimized. It is possible that we
could achieve even higher efficiency gains through other forms of pattern matching
algorithms such as hardware based DFAs, but further study of algorithm efficiency is

out of the scope of this thesis.
6.4 System Overview

Here we give a brief overview of the operation of each system component. Mas-

terBlaster, shown in Figure 19, is composed of 8 components. Each component gen-

P e T — — — — — — — L el 1
| s Shel code handler with Perl | | | |
| o Vln- Shell Regular Expressions | |
¢ uln: (Detect the type of shell |
code P
| k awstats handler code) I ; |
| 1 | Open Analysis
| port | 1) I__________.: :
jcnnnedwun attempt for vuln-awstats— 80 |
code sent after expl n \ ljm==l===— || BotAgentmoie |
T a vain 5 | Bot Parser | | |
| [awstats J code | [| ! Command | Agent Botnet |
e handler | | code Ascil Location | Creation | | Connection
| r L words | | |
| f
| Bot Capture _! | Closed Analysm]I | e | 1
_________________________________ b —— -
71 | collection |
Module
_________________ e N | |
- L r L, - Packet
} |
' ‘ Pl I, 1| e
| ‘ Corelated Modules | t T T | [Payioad | |
| | lf— L L Contents | |
1| | closed Analysis Open Analysis) ! || | _Evolution Characterisics | } _ _ Social Characteristics _ _| | T -
| Results Results | Botmaser | | - | I
Correlation | | | Birth Death ||| Protocol user |
| Based | I
fm—————— Engine [Patterns | | | Based Based N e —I
B i Network | |
| | ThreatResults | Monitoring | | | | Grow Contract | I T 1 | |
| 3 ! Results | | | | ‘ } Statistics N Threat Engine |
[T T | s L !
| n N P !
| | Taxonomy/I |)1 |
L Correlation | LProtection | | Network Monitoring | | Threat AnalysisI

Figure 19: MasterBlaster System Overview

82

erates an output so although they work together to form a system they can also

function as a separate entity to provide a lower level of analysis.

6.4.1

Bot Capture

Bots actively seek new vulnerable machines to compromise by the second. In order

to capture a bot we need only pretend to be a legitimate vulnerable machine much like

most computers that belong to a network. We assume the bots are captured without

alerting the attacker; because if the attacker notices we are monitoring him he could

take countermeasures such as attacking the analyst, or poisoning the data to lessen

the worth of the data captured. Our bot capture component has three elements:

e Socket manager element.

The attacker attempts to connect to a port

through the socket manager. All vulnerability (vuln) modules assigned to the

port receive the connection attempt.

e General shell code handler element. Once the connection attempt is re-
ceived at the vuln modules, general shell code handlers are created to receive

the data.

e Perl regex shell code handler element. If a connection is made all code is
sent to the general shell code handlers. If the general shell code handler receives
code that is not meant for it, it tells the socket manager to stop sending packets.
If the code is meant for the general shell code handler it passes the code to

83

the Perl regex shell code handler to determine what type of code it is. After
determining the type of code, the code is downloaded, but not run.

6.4.2 Closed analysis

In our closed analysis system we examine the bot code and parse it for the reflective
keywords which are the ASCII characters in the code that correspond to known
commands used. Our reasoning for this is that the bot code makes reference to
all the commands that can be carried out by the bot and we aimed to discover
if the keywords we discovered from the bot code would be used extensively in the
actual transactions of the botmasters. Here we assume all bot code data has been
unencrypted before analysis. As [25] states, botmasters change commands using bot
updates. Each download from a storehouse bot node is analyzed in the closed analysis

component. There is one element in the closed analysis component:

e Bot parser element. The bot parser element identifies the ASCII keywords
from the bot code.

6.4.3 Open analysis

Using our open analysis component, we monitor the botnets and extract the ”Evo-
lution and Social Commands” from the botnet communication data. As stated in
[44], botnet monitoring is always possible, since all information about the initial
bootstrapping has to be included in the bot binary and thus can be cloned. Here
we assume the payloads which include the communications are decrypted at time of

analysis. This component has three elements that carry out the analysis:

e The bot agent element. In the bot agent element, the bot is stripped of its
ability to attack victim machines. The agent sits and listens to the command
and control traffic in the same way a normal bot would.

84

e The botnet connection element. The botnet connection element is the
bridge that allows the bot agent to connect to the command and control loca-
tions. Here we install the bot agent on a Virtual Machine (VM) that is setup
like a normal host. Our VM has a windows XP operating system on it. The
VM needs to mimic a normal machine as closely as possible.

e The botnet payload collection element. The botnet payload collection
element is the element that captures all the readable contents of the payload.
This element first captures the packet header content from each packet to dis-
cover the timestamps of when the process transaction takes place, the protocol
used, and the source and destination IP numbers. The payload collection ele-
ment then captures all the ASCII readable data in the payload and stores it for
further analysis by our next component.

6.4.4 Network monitoring

The network monitoring component is the main analysis component in our system.
Here we analyze the ASCII readable data in the payload discovered by the open anal-
ysis component and extract evolutionary and social characteristics from the content
of the data. The payload contents of each packet is inspected to discover conversa-
tions initiated by commands between the bot master node and the other nodes in the
botnet. All JOINs and QUITSs are also discovered which represent the evolutionary

characteristics. There are two elements that do the work here:

e Command inspection element. In order to discover the commands initiated
by the bot master node, we have a command inspection element that analyzes
the payload based on two different criteria; Protocol defined commands, and
User/ system defined commands.

- Protocol defined commands. These commands are discovered and semantics are
derived by evaluating the packets based on RFC 1459 and RFC 2812 defined
commands which define the protocol used for IRC command and control opera-
tion. In most cases this command structure is not altered much by the attacker
due to the time it would take and the skill level required.

- User/ system defined commands. User/ system commands are commands that
are not found in a specific communication protocol. Most of these commands are
Unix or Linux based commands the botmaster uses to discover information from
the botnet nodes itself. Here we discover commands used by botmasters that
are not listed in the RFC. By including the user defined component, we leave
room for possible commands that may change in the future. This is determined

85

by observing the botnet payloads manually and discovering commands that are
not accounted for by our protocol defined command methods. We also keep
statistics which are based on what percentage of the commands was discovered
using the user defined component and the protocol defined component.

e Evolutionary patterns element. We discover the evolutionary patterns by
tracking when a node enters and leaves a botnet channel. This is a direct
representation of the size of the botnet and the state it is in during an event
such as an attack.

6.4.5 Threat

The threat component computes the amount of threat each reflective-impulsive
characteristic poses. To generalize threat in our approach we created three formulas
which discover low threat level, moderate threat level, and high threat level. Each
threat level computed by non-attack traffic is dependent on the amount of transactions
over a 24 hour time period. To determine threat for non-attack characteristics, each
reflective keyword is given a designation of "attack” or "non-attack” based on the
implied semantics of the keyword. For instance ”dccflood” is considered an ”attack”
keyword, whereas ”script” is considered "non-attack”. It is possible for the keyword
"script” to be part of an impending attack, but for our purposes it does not constitute
a designation of "attack” on its own. Once the keyword is matched in the impulsive
system as a characteristic, the threat value is included in the calculation.

In most cases threat level stays relatively low until attack activity is detected.
Since the botnets we are studying are malicious botnets, we believe the more time a
botmaster spends on a botnet the more likely he will commit a crime with it even

when no attack commands are present. In the case of low threat level we have the

86

following formula:

Ey,
0<F, < —===

_ 2
= (. W C
Ty = (001) % B, € Cp—p e (1)

Here we show that the low threat level T} is equivalent to .001 multiplied by the
non-attack characteristics F, within a botnet command line C} that number from
0 command to half the mean amount of commands in a 24 hour time frame. From
0 - —‘z<* commands of non attack characteristics the botmaster is not spending

a significant amount of time submitting commands on the botnet and none of the

commands are attacks. Moderate threat level uses the following formula:

E
MSEn<En

24hours

mean

Ty = (005) * B, cCp, (2)

The above equation shows moderate threat level T}, is equivalent to .001 multiplied

by the non-attack characteristics F,, within a botnet command line C; that number

mean

E,
from —=c
2

Nmean

commands to E commands in a 24 hour time frame. From

Nmean 2

- E

Nmean

commands of non attack characteristics, the threat level is moderate due
to the botmaster spending moderate time submitting commands on the botnet. For

E

Nmean

or more commands of non attack characteristics the threat level is high. High

threat level uses the following formula:

Enmean S En <00

Ty = (. E
1= (005) x Bn € Cr 24hours ®)

This equation shows that the high threat level Ty is equivalent to .005 multiplied by
the non-attack characteristics F,, within a botnet command line C; that number from

E

Nmean

commands to an unlimited amount of commands within a 24 hour time frame.

87

This is because the botmaster is highly active even though he hasn’t committed an
attack yet. We also have some escalating factors that increase the threat level when
they are detected. When a file is detected the threat level automatically goes to the
moderate value discovered using the moderate formula. We do this because files are
normally downloaded to give the botnet more functionality which warrants a higher
level of suspicion, but since a file download does not necessarily mean an attack is
imminent we do not escalate the threat level to high. When an attack is detected the
threat level automatically goes to the high value discovered using the formula. Since

this can happen with less than FE, command line characteristics, we reduce the

mean

time to move down a threat level to twelve hours of non attack traffic. This means
the level goes down to moderate after twelve hours of non attack traffic and then it
resumes the normal operations based on a 24 hour time frame which is shown in the

following formula:

E,>1

Ty=(1)*E, C _—
= (1) Q_CL12h0urs

(4)
6.4.6 Correlation

The correlation component is where the results from the other components are
combined and formed into patterns based on the botmaster. The output of this
component is what allows us to discover what role each botmaster plays in the botnet.
Two elements are used in the component:

e Component correlation. Each result from the components has a timestamp.
Using this timestamp and the botmaster name, the results of the components
are correlated.

e Botmaster characteristic statistics. Once the evolutionary and reflective-
impulsive characteristics are discovered, statistics are derived based on the state
of each characteristic. In evolutionary characteristics we discover the effect the

88

size of the botnet had on attacks, and on the dynamic nature of the botnet.

- Evolutionary characteristic statistics. These statistics were captured using the
auto-correlation function, C(t), here we discovered the number of botnet nodes
that consecutive timesteps (t) have in common®:

B(to) N B(to +1)
B(to) U B(tg+1)

The number of botnet nodes that are present in both timesteps is 5(to)nS(to+t)
and [(tg) U B(tg+t) is the number of timesteps that have both botnet nodes in
common. We discover the effect size has on attacks in a straight forward way
which is comparing each attack with the number of bot nodes present at the
time of attack.

C(t) =

(5)

- Reflective-impulsive characteristic statistics. Here we discover the ratio of pro-
tocol defined commands to user/system defined commands to discover the level
of direct human intuition behind the transactions of each botmaster. Our rea-
soning is, user/system defined commands are more personalized than protocol
defined commands, therefore the higher the user/system number the more the
transactions reflect the botmaster’s intuition. If the protocol value is higher,
then there is a more generic intuition reflected. For example, all the botmas-
ters that generated messages to the bots used the protocol defined command
NICKNAME to identify the nickname of the bots but only one botmaster used the
user /system defined command 1spci |grep GIG to identify powerful machines.
The system defined command shows that the botmaster is looking for a special-
ized type of machine to use which differentiates it from the other botmasters.

e Correlation engine. This element does the actual work of correlating the
results of the closed analysis component, the open analysis component, the
network monitoring component, and the botnet characteristic results to discover
the botmaster based patterns. Algorithm 2 is for correlating the data.

We call the individual inputs for correlation botmaster attributes A, = {B., E,V}.
These attributes are aggregated to become the individual botmaster record Agr =
{Ap1, Apa... Ay}, and the set of botmaster records R = Agr; — Agr. B. is the bot-
net connection that proceeds the transactions in the botnet. This attribute comes
from the open analysis component. General knowledge of the commands are used
to determine the type of attacks. For example if the command contains mail related

connotations such as an "paypal” or "hotmail” we consider the attacks "mail related”

8timesteps are not the same thing as timestamps. Timesteps include multiple timestamps

89

which we group into the class monetary. If the commands contained anything about
a flood in it we consider the attacks "flood related” which would be in the destructive

class.

Algorithm 2: Correlation Engine Operation

Data: B., V, E = {e,f}, where B. is the botnet connection recorded by open
analysis, V is the evolutionary characteristic, and E is the
reflective-characteristic which consists of impulsive command (e)
recorded by network monitoring and reflective keyword (f) recorded by
closed analysis

Result: R = {Ar =) A,}, where R is the set of botmaster records and each
AbEH
record Ap is equal to the sum of botmaster attributes A, located in
each botnet channel H. Motivation and Threat value are calculated by

the correlation of E

begin
Ab = {Bm E7 V}7
for A do

Ay +#0 for H do

if £ +0 then

B.#0;

Append E to H{Agr};

Calculate reflective-impulsive statistics;
Append V to H{Ag};

Calculate evolutionary statistics;
Calculate motivation;

Calculate threat value;

UE)date all calculations;
end

6.4.7 Protection component

The protection component produces a display of the botmasters that will warn an
administrator or forensic analyst of the individual threats from the botmasters. This
display is a visual representation of the results in the correlation component. The
protection component gives a quick analysis of the major players within the botnet.

This can be useful when analyzing an attack because you can quickly narrow down the

90

botmasters involved, because here the viewer of this data will not only see the activity
from the botnet, but also see what botmasters are conducting these activities and how
significant their role is. In the future we plan on enhancing the protection component
to add more functionality such as search parameters and customized reports of the
results. This will give the analyst the ability to focus on botmaster attributes that

matter the most to him.
6.5 Implementation and Results

Here we present the implementation and results. Our results are based on three
real world botnet attack cases that were thoroughly manually analyzed at first and

then run through our MasterBlaster framework.
6.5.1 Implementation

All the components are implemented on a Pentium II1I CPU with 3GB of memory
and 360GB of disk space. The results from all the components are stored on a Dell
PowerEdge 2900 server using the relational database MYSQL. Bot capture com-
ponent. We built our bot capture component on top of the Nepenthes platform [6]
which is housed on a Debian OS Virtual Machine (VM). We chose to use a vulnerable
Awstats general shell code handler to capture the bot since there are many bots that
target this vulnerability, but the general code handler is dependent on the type of
botnet you plan on monitoring. Since the bot capture component is housed on a
Linux based VM, the risk is very low that the Microsoft based bot that is captured
will accidentally be run. Closed analysis component. The closed analysis com-

ponent is also implemented on the VM which houses the bot capture component. It

91

accepts the bot from the bot capture component as its input and uses the strings
command in Unix to identify the ASCII readable characters in the binary bot code.
Open analysis component. The open analysis component is implemented on two
VMs. One VM is the client and it consists of a Windows XP operating system with a
vulnerable awstats service. It receives the bot from bot collection as input and allows
it to connect to its command and control center. The other VM is the server and it
consists of a Debian operating system. It performs the monitoring on the client sys-
tem, which collects data that is transferred to and from it (botnet communications),
and prevents it from participating in attacks using the IPtables firewall. Network
monitoring component. The network monitoring component resides on a Win-
dows XP based VM. It takes the packets discovered in the open analysis component
as input. It consists of a Java program that uses JFLEX [35] to scan and tokenize the
contents of the packet payload and uses CUP [20] to parse through the results and
returns the social characteristics located in the payload as well as the header infor-
mation in each packet. Threat component. The threat component resides on the
same VM as the network monitoring component. It consists of a Java program that
computes the threat of each individual command. Correlation component. The
correlation component resides on the Windows XP VM. It consists of a Java program
that correlates the results from all the components and separates them into patterns
based on the botmaster. Protection component. The protection component also
resides on the same VM as the network monitoring component, the threat compo-
nent, and the correlation component. It consists of a web based front end that selects

the patterns of the botmasters and displays their threats to warn administrators or

92

anyone that would like to perform detailed analysis on individual botmasters.
6.5.2 Results

In this section we show the results of conducting our botmaster based analysis on
three different botnets. One month of data was collected from each botnet on its

most active month. We identify the botnets by Botnet A, Botnet B, and Botnet C.

6.5.2.1 Bot capture results.

Table 6: Bots Captured
’ Botnet A H Botnet B H Botnet C ‘
| 49 | 112 | 39 |

Table 6 shows the amount of bots captured in each of the three botnets. Each bot

after the first one in each botnet represents an update to the first bot.
6.5.2.2 Closed analysis results.

Closed analysis was performed on each of the bots captured in all 3 botnets.
Changes in commands of the bots are discovered and updated with each bot code up-
date. The following scripts in one version of the bot codes in Botnet A were identified

by closed analysis:

123 if (/~\:$owner!.*\@.*PRIVMSG.*: !'who(.*)/){
124 print $sock "who ".$channel."\n";}

125

126 if (/7 :.+7\s+352\s+\S+\s+\S+\s+(.+7)$/) {
127 my $nicks = $1;

128 #$nicks =" s/\n//;

129 #$nicks =~ s/\r//;

130 push(@WHO, split(/ /,$nicks));

131 print STDOUT "$who[1]\n";}

132

93

133 if (/~\:$owner!.*\@.*PRIVMSG.*: !dccflood(.*)/){
134 for (1 .. 10) {

135 print $sock "PRIVMSG ".$mescalina.": \001DCC
136 CHAT chat 1121485131 1024\001\n";}

137

138 if (/~\:$owner!.*\@.*PRIVMSG.*: 'hop (.*)/){
139 print $sock "JOIN ".$1." : ".$2."\n";

140 for (1 .. 10) {

141 print $sock "PART ".$1." : ".$2."\n";

142 print $sock "JOIN ".$1." : ".$2."\n";}

Example reflective keywords pulled out of these results are PRIVMSG which are
found in line 123, 133, 135, 138 or dccflood found in line 133. Table 7 shows the
results of reflective keywords discovered in each botnet along with the percent each

bot keyword had in common with the other bots in the botnet.

Table 7: Reflective Keywords in Closed Analysis

] Botnet H Reflective Keywords H % in Common
Botnet A || 23124 91%
Botnet B || 54329 82%
Botnet C || 12132 97%

This comparison of the keywords found that only small changes were made to the
bots from the first injection until the final one. This shows that code reuse is still

extremely evident.
6.5.2.3 Open analysis results

The open analysis results were discovered after connecting to the botnet and ex-
tracting the data. Table 8 shows the size of the data file before and after analysis.
The "before” data file includes each packet in the communication between our bot

agent and the botnet and the ”after” data file only includes the content of the packets

94

we have identified as important. This significant decrease in size was mandatory for

practicality of our method.

Table 8: Size Comparison of Open Analysis Data

’ Botnet H Packet Size H Analysis Size ‘
Botnet A || 5G 238K
Botnet B || 12G 435K
Botnet C || 3G 185K
6.5.2.4 Network monitoring results

Using our framework we were able to identify over 1000 botmasters across the 3

botnets. Table 9 displays the top three botmasters on each botnet. Column 2 in the

table shows the number of impulsive commands generated and column 3 shows the

ratio of protocol based commands to user/system based commands.

Table 9: Commands and Ratio

’ Botnet H Commands H Protocol:User/System ‘
Botnet A,qster1 || 65535 18702:46833
Botnet A,astera || 2836 695:2141
Botnet A,,qsters || 1672 395:1277
Botnet B,aster1 || 100195 16502:83693
Botnet Bastera || 85421 49658:35763
Botnet B,qsters || 32100 11842:20258
Botnet C)uster1 || 11195 7774:3421
Botnet C),uster2 || 6154 6078:76
Botnet C),uster3 || 876 866:10

As mentioned earlier, more user/system based commands suggest that the bot-

masters are more actively involved with the continuous operations of the botnet.

Therefore these results suggest that overall the botmasters in botnets A and B were

more actively involved with the interactions on the botnet, whereas botnet C was run

in a more automated fashion.

95

.
(a) Botnet A ~ Master 1 . (b) Botnet A — Master 2
15
Z ,_/ AJ T hign J_J‘ I—
£ high 2 [’
= =
] ﬁ moderate
moderate rJ)J
o I ol) [R A R]
0 200 400 600 800 1000 1200 0 50 100 150 200 250
Impulsive Commands Impulsive Commands
(c) Botnet B ~ Master 1 (d) Botnet B — Master 2
15
£ = high
3 high =
3 2
" moderate = moderate
low ; . low
0 200 400 600 800 1000 1200 0 100 200 300 400 500 600
Impulsive Commands Impulsive Commands
(¢) Botnet C — Master 1 (f) Botnet C — Master 2
0.015 15
= high =
= \ A
= moderate f E i
o ENAABANARN ANYA NAARNA s

0 5 10 15 20 25 30 35 0 200 400 600 800 1000 1200
Impulsive Commands Impulsive Commands

Figure 20: Threat Values of Top Botmasters in Each Botnet

6.5.2.5 Threat results

Here we present the results of the threat values discovered. Figure 20 shows the
threat values of two botmasters within each botnet. One botnet channel for each
of the two botmasters is displayed. The X axis represents each time an Impulsive
Command was sent and the Y axis represents the threat value discovered for each
Impulsive Command. As mentioned before, each result is based on one month of
botnet analysis data. In this figure you can visually see a pattern for each botmaster
by observing the peaks of the threats. Also in (a) the master was very active and
conducted attacks at a high rate which is why most of his attacks are in the moderate
to high threat rate. In (b) and (f) the botmasters conducted attacks at a lesser rate.
Most of their attacks were low to moderate. In (c) and (d) the botmasters did not

conduct many attacks. You can also see that their patterns are similar which suggests

Table 10: Correlated Patterns

96

’ Botmaster \ Channel \ Evolution \ Attacks \ User /System \ Protocol | Motivation
Botnet A
Channel 1 Grow: 5000 228 5274 1475 Destruction
Master 14 | Channel 1 Grow: 5092 30 2379 1052 Monetary
Channel 2 Grow: 1423 56 786 365 Destruction
Master 2.4 Channel 1 Grow:882 5 1482 532 Monetary
Channel 2 | Contract: 652 1 41 38 Destruction
Botnet B
Master 15 Channel 1 Grow:7217 23 2192 832 Monetary
Channel 2 Grow: 1388 11 539 32 Destruction
Master 25 Channel 1 Grow:7294 112 862 829 Monetary
Channel 2 Grow: 1312 None 32 837 Other
Botnet C
Master 1¢: Channel 1 Grow: 3824 54 954 1528 Monetary
Channel 2 | Contract: 523 None 432 62 Other
Master 2 Channel 1 Grow: 3821 1 1012 3 Destruction
Channel 2 Grow: 594 None 142 0 Other

that they are working together or could possibly be the same person using different
botnet aliases. In (e) the botmaster did not conduct an attack. The escalation from

low to moderate to high is due to volume of commands in a small period of time.

6.5.2.6 Correlation results

Here we collect the results of the system as a whole. Table 10 shows our correlated
results. Here we show two botmasters for each botnet monitored. Fwvolution displays
the average number of nodes in the channel and the average evolutionary stage of
the attacks. If no attacks are discovered the stage defaults to None. Attacks display
the type of attacks and the number of attacks. User/System and Protocol show
the type of keywords discovered and Motivation shows the overall motivation of the

channel based on the attacks discovered. In table 10 we split Master 14 Channel 3

into two records to show the individual classes of the attacks. When the two records

97

in Channel 3 are combined the Motivation is Destruction due to the large amount of

flood based attacks.

Botnet A

c 1rH TR P] : :
ie] \ [m \ /] L:
© \ [5 . | \ J| —&— Large Channel
T 05k [Tt e e | Small Channel
I I N N N \ o)
o \ /| "Boosoog | B o Nis W T
5 | | | i=as / \
2 0 . ‘ Saia =N S L] AT)
0 5 10 15 20 25 30 40 45 50
Time Series
Botnet B
5 ft o T E)
s ——H— Large Channel
T Small Channel
8 |
T A [
L2 \
2 ———
45 50
Time Series
Botnet C
5 T & $ I;{ T T
= \ | 15} —=— Small Channel
2 ‘O£ | —H5— Large Channel
o - -
; = |)
E =0 | B
< L Che -l i Log i o-orefor)
25 35 40 45 50

Time Series

Within 50 time steps in Botnet A, Botnet B, and Botnet C, the large channels in each botnet decay at a faster rate than
the smaller channels.

Figure 21: Auto-Correlation Statistics

To further evaluate evolutionary characteristics we discover how dynamic each bot-
net channel is. Figure 21 shows the auto correlation results for 2 botnet channels
in each of the three botnets monitored. Here we divide the temporal periods of the
botnets into 50 timesteps. The auto correlation discovers the amount of decay of the
botnet nodes in the channels over the timestamps. Each time the auto correlation
value decreases from 1 to 0 the original bots have all left the channel. As shown
in Figure 21 larger channels decayed more rapidly. The large channel in botnet A
decayed 5 times as opposed to 2 times for the smaller channel. The large channel in
B and C decayed 10 and 6 times as opposed to 3 times for both the small channels in

botnet B and C. Overall the large channels contained an average of 2348 nodes and

98

the small channels contained an average of 469 nodes. These findings support our
claim that larger botnet channels decay faster than smaller botnet channels. This
phenomenon has also been observed in other types of networks [66], which opens up
the door for future work in modeling botnets using social networking techniques. An
interesting finding was observed involving the evolution between the different nodes

of the botnet.

1500

1000

Size

20

60

60 Attacks - 20 40
Attacks 0 40 0 Timesteps

20
0 Timesteps (b) Botnet B
(a) Botnet A

2000

1000 (a) 78% of attacks occurred at 50% or

o higher botnet capacity
40
(b) 82% of attacks occurred at 50% or

20 higher botnet capacity

Attacks - 20 (c) 53% of attacks occurred at 50% or
Q Timesteps

(¢) Botnet C higher botnet capacity

Figure 22: Attacks Motivated by Evolution

Using the same 50 timesteps as the auto-correlation, we discover whether or not
evolution plays a major role in attack generation. Figure 22 displays the three botnets,
where the X axis is the botnet size and the Y axis represents the timesteps. Normal
transactions are denoted in a black solid line and attacks are denoted in a read line
with no fill. Our results show that in figure 22 when analyzing the attacks based on
the number of nodes in the botnet, in (a), (b), and (c¢) 78%, 82%, and 53% of attacks

occurred at 50% or higher botnet capacity. This supports our initial belief that the

99

physical evolution of the botnet plays a major role in botnet attacks. In figure 22, (c)
had a lower than expected ratio of attacks to botnet size. More research is needed to

discover the reason behind the lower percentage.

Total Evolution in Botnet
6000 T T T T

—+—— master nodes [NN A—A AA
5000~ / i
—=4— bot nodes / v

—&— compromised machines / oo 6690

4000 -

3000~

Quantity

2000

1000 -

35

Days v

Once the botnet reaches optimal size the compromised machines
remain relatively constant but bot
nodes fluctuate.
— Some compromised machines contain multiple bot
nodes

Figure 23: Total Botnet Evolution

Another interesting finding pertaining to evolution involves the type of nodes
present on the botnet. Figure 23 shows the evolution of the master nodes, the bot
nodes, and the machines that were compromised in botnet A to become bot nodes in
the dataset °. In figure 23 we can observe that the master nodes remained relatively
intact while the bots and compromised computers increased at nearly the same rate.
A same situation was also observed in botnet B and C. A misconception normally
leads us to think that the bot node and the compromised node would increase at a 1:1
ratio because such a misconception assumes that one bot is present on one compro-
mised machine. However, our data clearly shows that bot nodes constantly outnumber
compromised machines. This is due to some compromised machines containing more

than one bot node.

9We do not include the victim and storehouse nodes in this test since those nodes do not generate
actions associated with attacks within the botnet.

Top 5 Botmasters Top 5 Botnets

L S Time Botnet Channel Threat Level Time Botnet Botmaster Chamel Channel Count
2007-03-21 #botnet? channel 2 0.0010 2007-03-21 #bome master] chamnel2 2

Botmasters:1120

s 128 2007-03-21 #botnet? channel 2 0.1200 2007-04-12 #bome master] chamnel2 3

Bomete 5 2007-03-21 #botnet? channel 2 0.0030 2007-04-19 #bomet] masterd chamnel2 3
2007-03-21 #botnet? channel 2 0.4000 2007-05-15 #bomet] master] chamnell 1
2007-03-21 #botnet? channel 2 0.0020 2007-06-18 #bometd masterS chamnel15 4

Figure 24: Botnet Analysis Portal
Custom Botnet Analysis Results
Custom Botnet Analysis Botmaster ID | Time Attack Malware | Keywords Message
03 all!

T ymeserrm— 1 2007-03-07 sql attack codered | attack sql || calll attack xxxcx.a 20 200
@ Attacks @ Bomets |[@) Messages Botnet Command Connection
Corumands Threats Connectioas
V] Malware] Agents ¥ Keywords Master 2 - Botnet 1 || :attack sql ddos XX XXXXX
) Report ¥ Comments
[r lysis | [Submit Analysis |

Protection Report Entry Display Protection Entry
[MasteriD:| 1]| MastertD Time Comments
03,30 Master 2is the same as Master 1. We have determined this because Master 2 sent

[Time:| 20070330

| Comments:| Master2is the same as Master . W_|

\ Add Eniry

‘ 1 2007

identical commands from the same IP address within 20 mins of each other

Figure 25: Botnet Analysis Portal

6.5.2.7

Protection results

100

Our protection report is a portal that displays the correlated data collected. Figures

24 and 25 shows our protection portal. In 24 we show the summary information at

the top of the screen where the top botmasters are displayed along with pertinent

information such as their current threat level. In 25 we show our custom analysis

where we are able to decide what components we would like to see displayed. We

also show the comments section where we can add comments to be included in the

analysis. With this portal we shift the focus of the analysis from the bots and botnet

to the botmaster behind the attacks.

CHAPTER 7: DISCUSSION

In this section we first discuss the limitations of our work. Following the limitations
we present future research which includes three case studies of how our framework

applies to three well known botnet based attacks that have occurred recently.
7.1 Limitations

A key limitation of our work is we can only identify the botmaster characteristics
of transactions that have been decrypted. We are aware that many botnets now
encrypt their malware and communications between them and their command and
control servers, but there are many research projects aimed at decrypting payloads
and malware data which have done excellent work. In the future we may incorporate
some of these techniques such as doing a memory dump of an encrypted bot as in the
work by Park and Reeves [68], but currently we are concentrating on the analysis of the
data after it is decrypted, so encrypted payloads are beyond the scope of this paper.
Identifying the structure of the communications is also a limitation. Our method of
identifying the commands is based on the interpretation of the protocol RFCs used
and the system commands we know. Currently we have to manually identify how the
commands are structured so we can automatically extract the characteristics. This
is an issue we are currently working on. At the moment we are only analyzing IRC

based botnet monitoring data and as shown with the recent DDoS attack on Twitter

102

[101], IRC based command and control botnets are still a very dangerous threat to

the Internet, so it is important to continue to do research on them.
7.2 Future Research

Currently we were able to achieve an efficient pattern matching result, but we
are aware some hardware based methods may be more efficient. In the future we
plan to experiment with these methods as we aim to make the analysis system more
interactive with real-time payloads in a network protected using our methods. Our
closed analysis system methodology was sufficient for our purpose to identify keywords
to match against commands sent by the botmasters, but in the future we plan on
utilizing more fine-grained botnet analysis to discover all the capabilities of the bot.
We can then match the abilities of the bot against the uses of the bot to discover
even more characteristics about the botmasters that use them. In the future we also
plan on making the protection system more autonomous and able to block traffic of
botmasters with high threat values. Although IRC based botnets are still destructive
and still need to be researched, botnets with other forms of command and control are
becoming more prevalent and destructive. Future implementations of our work involve
migrating our methods to these other forms of botnets such as http, p2p, and hybrid
based attacks. Using our methods we should be able to identify the communication
characteristics of all forms of botnets, but we leave this study to future work. The
following case studies show how our framework can apply to three recent attacks, a

hybrid based attack, a p2p based attack, and another IRC based attack.

103
7.2.1 Examples of social behavior in attacks

Here we present case studies of three well known attacks of recent history (The
Ongoing Denial-of-Service-Attack of Twitter, the Mariposa Botnet, and the Conflicker
Botnet). Each botnet has a different command and control structure and different
approaches by the botmasters. To give a theoretical idea of how these attacks would
fit into our proposed model, we briefly examine some of the well known aspects of
the attacks to show how these and other processes between the botnet nodes can be
modeled as social behavior. Since we do not have actual packet traces from these
attacks we derive the semantics of the characteristics discussed from analysts that

have had the opportunity to study the packets [19, 65, 101]
7.2.1.1 Mariposa Botnet

In May 2009 the Mariposa or butterfly botnet was discovered. The botnet consisted
of about 13 million computers in 190 countries and it was controlled by three known
botmasters. This botnet was one of the largest recorded in history. The botmasters
attacked millions of people through DDoS attacks and identify theft of over 800,000
of their host nodes. The bots would examine their hosts for usernames and banking
credentials and send their results back to the botmasters. Their main botmasters
also rented the botnet out to other cyber criminals looking to attack victims. It took
a team of network defense professionals from Defense Intelligence, the Georgia Tech
Information Security Center, Panda Security, along with others to finally take the
botnet down. The botnet was taken down in December of 2009, but the botmasters

connected to the botnet using VPN which made it nearly impossible for security

104

professionals or police to determine who they were as long as they connected using
this method. While trying to re-obtain the botnet, one of the botmasters ended up
connecting to the botnet using his home computer and not through the VPN. This
allowed the security professionals the ability to discover where the attacker lived and
he was arrested. A forensic analysis of the botmaster’s home computer also led to
the capture of the other two major botmasters. The command and control structure
is a hybrid. It uses multiple DNS names to lookup central servers through UDP
ports and downloads instructions from the server it connects to. The skill level of
the botmasters has been determined to be low, but even though this was the case, it
has been estimated that over half of the companies in the fortune 1000 were affected
by this botnet. [19, 80]. Recently the author of the malware behind the Mariposa
botnet has been captured. It is estimated that the malware software was used to
create almost 10,000 variants and over 700 other botnets, which reinforces the idea

that it is of the most importance to discover the masters behind the botnet. [68]
7.2.1.2 Conflicker botnet

A botnet that generated a large amount of attention in early March 2009 was the
conflicker botnet. Researchers had seen the botnet around since November 2008, but
according to logs in the botnet data all the bots would be connecting to its command
and control servers on April 1, 2009. At the time it was not known what would
happen. Some thought it would be a massive attack, while others just thought the
bots would connect for a simple wake up call. As it turns out, the bots in the botnet

only connected for a simple wake up call. Although no massive worldwide attack

105

has been recorded from the conflicker botnet there has been significant damage done
because of its presence [99, 98, 46]. In conflicker there are approximately 50,000
possible domains which can serve as the command and control server which make
it extremely difficult to discover the command and control since blacklisting a large
list of non-static domain names is impractical [68]. The botnet authors also use
asymmetric cryptographic authentication on the bots so the botnets cannot be reverse
engineered by security professionals unless they have the private key. The botmasters
that control conflicker are thought to have a high level of technical expertise. The
malware writer for conflicker follows security research and updates the malware with
the latest security technology. One such update was a security feature developed by
M.L'T. researcher Ron Rivest. Conflicker added the security feature weeks after it
was first introduced by Rivest, and when Rivest released a revision to correct a flaw
in the feature the Conflicker authors updated the malware to reflect the revision [86]
In late March, 2009 Felix Leder and Tillmann Werner from the Honeynet Project
discovered a way to detect conflicker-infected hosts [44]. Other anti-virus companies
have released tools to remove conflicker, but the botnet is still present on the Internet

today. The command and control structure is mainly peer-to-peer.
7.2.1.3 Ongoing denial-of-service-attack of twitter

In August 2009 Twitter, Live Journal, YouTube, and Facebook were attacked by
DDoS. The DDoS attack consisted of the botmaster infecting thousands of personal
computers and then instructing all the computers to send view requests to each site.

After further investigation it was discovered that the attacks were directed at one

106

user that goes by the name Cyxymu. It was also discovered that the DDoS attack
was related to massive spam that was sent out with Cyxymu’s source address forged
on them, which gave the appearance that all the spam originated from Cyxymu. The
social sites of Cyxymu all contained substantial content promoting Georgia, where he
is from. During this time there were tensions between Georgia and Russia, this gives
us reason to believe that the attacks were Political in nature. Although the attacks
were aimed at one user the result of the attacks shut down Twitter and Live Journal
and also slowed down the services of Facebook and YouTube worldwide. This attack
was carried out using the well known method of IRC for command and control com-
munications. This is important to note, since research has seemingly shifted towards
studying newer forms of botnet command and control communications. In fact there
are still a large number of IRC controlled botnets still prevalent on the Internet today.
The fact that the botnet responsible for this attack has not been shutdown and the
botmasters have not been caught is evidence that IRC based botnets still need to be

researched [101].
7.2.2 Using our method to analyze attacks

Each of the previously mentioned attacks has a different command and control
structures. The Mariposa Botnet operates by having all the bots choose from a pro-
grammed list of DNS addresses to connect to and it communicates with the connected
command and control using UDP. The Conflicker Botnet uses peer-to-peer commu-
nications to communicate and the Twitter attack uses IRC protocol like the botnet

we analyze in the paper. While the monitoring methodology will change depend-

107

ing on protocol, the main analysis will remain the same. Instead of discovering the
semantics of the commands using RFC 1459 and RFC 2812 for the IRC protocol,
we would use RFC 5694 for peer-to-peer or a portion of the UDP protocol such as
RFC 4113 for the Management Information Base for UDP. We would still employ our
manual technique of monitoring the botnet for commands we do not find in the RFCs
and discover meanings for them through our analysis. The rest of the process is the
same as with the IRC protocol and the results will depend on the interactions of the

botmasters and bots.
7.2.2.1 Mariposa botnet attack analysis

To get an idea of how our approach could work on a botnet with a command and
control architecture other than IRC we explore possible results of analyzing the mari-
posa botnet. Figure 26 shows how we propose our framework will work on a botnet
with a hybrid command and control architecture. In the figure we show the charac-
teristics of a mariposa bot on the left side which includes the name of the infecting
bot and two of the capabilities. On the right hand side we show how the components
of our framework would process and analyze the botnet. In our example we see that
there are three tiers of botmasters. To summarize this scenario; First the character-
istics of the attack are modeled as behaviors using the reflective-impulsive method.
Next the discovered behaviors are modeled using social networking evolution which
evaluates the behavior based on the evolutionary phases the botnet goes through.
Using these results we discover patterns to predict future actions. In figure 26, bot-

master 3 generates many more transactions than any of the other botmasters. His

Mariposa Botnet

Characteristics of MasterBlaster Analysis System

N

Closed Analysis (b)

Worm_palevo.smzr code

I

I I
Reflective command keywords parsed
from code

| Bot Capture (a)
Bot: worm_palevo.smzr N
Copy worm_palevo.smzr
DDoS]
Capabilities:
P Open Analysis (c)
Keylogging A
Agent: worm_palevo.smzr

Protocol Based: | UDP | CONNECT

User/ System Bassdj Synflood | SatWindowsHookEx

I
Agent connect to Ly Correlation (e)
—
command and control
Open Analysis Results Network Analysis Results
Botmasters 1 and 3 used | | Network Analysis () ! J
the DDoS capabilities — etwork Analysis (d) Botmaster based pattern examples
Capture social Botmaster | Message # | Aftacks Evolution
converiarlon between Botmaster | 0 a Grow: 5000
te d botnet Botmaster 2 30 1 Grow: 5750
masters and botne; Bolmasterd | 300 30| Grow 7700
1
Botmaster . 4 0 0 A
Evolution
based d
Botmaster 2 used the T Impulsive an =
X s Attacks Result Summary
key logging capabilities commands
|| | Botmaster 1: st Botmaster 3 is the main botmaster (tier 1)
DDoS J :ﬁ‘% based on message numbers and attacks
LAl Botmaster 2 R : (high activity)
Keylogging e Botmasters 1 and 2 are second tier
L Botmaster 3 botmasters (moderate activity)
Botmaster 4 did not use DDoS @' Bolmas%e_m is a third tier master
k Biliti Iy D {low activity)
ny known it y
any Kno capa es JOIN "‘!.f.‘

Output from each component is input for next system component to discover botmaster based patterns

(a) A bot with file name “worm_palevo.smzr” is captured
(b) The bot code is parsed using the closed analysis system

- The parsed code is now split into two types of characteristics; Protocol Based commands and User/System Based commands

(c) The bot is sent to the open analysis module and turned into an agent under our control
- The agent is allowed to connect to the command and control center the bot was originally destined to connect to
(d) The transactions recorded by the agent is analyzed for conversations generated by bot masters

- Impulsive commands that are in-line with the bot capabilities discovered by the reflective command keywords are discovered
- The evolutionary stages and attacks are discovered: | Birth = Blue | Growth = Green | Contraction = Yellow | Death = Black | Attack = Red |
(e} Results from closed analysis component, open analysis compenent, and network analysis compenent are correlated

- Patterns are discovered and listed according to their botmaster name
- Resulis are conclusions made based on the patterns

Figure 26: The Mariposa Attack Modeled Using Our Framework

108

traffic is also much more attack laden which shows he is probably the most dangerous

botmaster. Botmasters 1 and 2 do not generate a lot of transactions, but they both

have an attack which took place so they are considered a moderate threat. Botmaster

4 did not generate much traffic at all, and no attacks took place. This botmaster is

not considered a significant threat at the moment.

Although this was just an example loosely based on the characteristics of the mari-

posa botnet, an analysis would not likely differ greatly from what we have discussed.

Within the mariposa botnet, thousands of companies were attacked by thousands of

botmasters. By identifying what botmaster conducted the attack we can create a

109

list of suspects to help toward possible attribution. Using the previous example in
figure 26, if we are examining a DDoS attack we can eliminate botmasters 2 and 4
as suspects since they did not conduct any DDoS related activities. Furthermore we
can identify Botmaster 3 as the lead suspect since he had the most DDoS related

messages.

CHAPTER 8: CONCLUSION

The real threat from botnets come from the botmasters that use them. Since multi-
ple botmasters are found on each separate botnet channel, automatically discovering
the role each botmaster plays will significantly reduce analysis time and provide a
list of suspects to aid in the attribution of attacks. We believe the results we have
discovered are an important and encouraging start to identifying the patterns created
by the transactions of botmasters and future work could prove invaluable to identify

and defend against the persistent threat of botnets. Our contributions are as follows:

e Identified the importance of botmaster based analysis: Current botnet
analysis methodologies have focused on either discovering bots in botnets or
studying the magnitude of the botnet problem. Although these focuses are
necessary, the botnet problem continues to worsen. In our work we focus on a
more fine grain analysis. We first address a deficiency present in most botnet
diagrams by including the fact that most botnets are controlled by multiple
botmasters instead of just one. We then discovered that each botmaster has
their own agenda which can be identified through the analysis of the commands
they submit to nodes within the botnet channels along with the capabilities of
the bots that reside on the botnet. Our results prove that multiple botmasters
on the same botnet do in fact have different agendas, which is especially evident
by the different types of attacks committed by botmasters on the same botnet.
To the best of our knowledge this is the first attempt to study botnets based
on the fine-grained analysis of the botmaster.

e Introduced characteristic discovery through bot code contents: Pre-
vious research in bot analysis has focused on shutting down botnets based on
the types of bots it uses, or identifying the botnet based on the bots. In our
work we introduce the ability to discover meaningful characteristics by matching
keywords found in the bot code with commands the botmaster sends to other
bot nodes within the botnet. Using this methodology we were able to identify
characteristics and the implied motives of the botmasters.

e Identified the importance of evolution study in botnet analysis: We
showed that our hypothesis which states (most botnet attacks will occur while

111

the botnets are at their largest), is most likely true. More testing over longer
periods of time need to be conducted to definitively prove this is true. We also
discovered that larger botnets are more dynamic than smaller botnets in relation
to botnet nodes entering and leaving the botnet channels. Larger botnets tend
to recycle botnets at a much faster rate than smaller botnets. This is a very
interesting trend, especially since other networks have been proven to have the
same attributes. To the best of our knowledge this is the first time evolution of
a botnet has been studied.

We believe our research has opened the door for many research projects in the
future. Some of the future projects we plan to work on include:

e Botnet based analysis on multiple command and control protocols:
Our current research was on IRC based botnets only. Although IRC based bot-
nets still present a significant threat, other forms of botnets have emerged as
more difficult to stop due to their command and control architectures. Theoret-
ically our approach should be able to work on any command and control since
we determine the command structure based on the protocols. In the future we
plan on extending our approach to these other botnets.

e Fine-grained analysis of bot code for characteristic discovery: Our
current approach was sufficient in identifying keywords that could match the
commands of the botmasters. In the future we will be doing a through mal-
ware analysis of the bot code to discover what commands are possible with
the malware. We will then match the bot command capabilities with the com-
mands sent from the botmasters. This will give us a better idea of the skill
level of the botmasters and it will give us a more detailed view of the botmaster
characteristics and motives.

e Hardware based DFA implementation of data collection: Our software
based solution worked well for our approach, but in order to create an even more
efficient approach we will investigate hardware based solutions. A more efficient
approach will give us the flexibility to place our system in-line instead of off-line.

e Autonomous Protection Mechanism: Currently our protection compo-
nent consists of a web-based front-end that is generated by the administrator.
In the future we will research more automatic means to protecting systems from
botmasters. One approach we will explore will be to automatically block traffic
and send alerts to administrators when the threat level reaches a certain level
for a certain botmaster.

In conclusion we believe the results we have discovered has made significant contribu-
tions to the field of network security. Botmasters today operate under the protection
and comfort of anonymity. By identifying attributes of botmasters, we move a step

closer to attribution of botnet attacks. We believe that the threat of attribution will

112

reduce the amount of botmasters that carryout attacks using botnets and it is our
goal that future research in botmaster based analysis will reduce the impact of botnet

attacks in the near future.

1]

2]

[10]

[11]

[12]

[13]

113
REFERENCES

Cyber protests: The threat to the wu.s. information infrastructure.
www.au.af.mil/aufawclawcgate [nipe/cvberprotests.pdf (April 2001), 1.

ABU RAJAB, M., ZARFOSS, J., MONROSE, F., AND TERzIS, A. A mul-
tifaceted approach to understanding the botnet phenomenon. In IMC ’06:
Proceedings of the 6th ACM SIGCOMM conference on Internet measurement
(New York, NY, USA, 2006), ACM, pp. 41-52.

ADAIR, S. The website for the president of georgia under attack - politically
motivated? www.shadowserver.org/wiki/pmuwiki.php (April 2008), 1.

AHN, G., PaAxToN, N. C.; AND PEARSON, K. Understanding irc bot behav-
iors in network-centric attack detection and prevention framework. In ICIW

2008 (2008).

ArLTO, P. Mariposa how exposed are we.
www.paloaltonetworks.com/mariposa/2009 (April 2009), 1.

BAECHER, P., KOTTER, M., HoLz, T., DORNSEIF, M., AND FREILING, F.
The nepenthes platform: An efficient approach to collect malware. In RAID
'06: Proceedings of the 9th International Symposium on Recent Advances in
Intrusion Detection (2006), pp. 41-52.

BARFORD, P., AND YEGNESWARAN, V. An inside look at botnets. In Special
Workshop on Malware Detection.

BINKLEY, J. R. Anomaly-based botnet server detection. In FloCon 2006.

BINKLEY, J. R., AND SINGH, S. An algorithm for anomaly-based botnet
detection. In USENIX SRUTIL

CABALLERO, J., YIN, H., LIANG, Z., AND SONG, D. Polyglot: Automatic
extraction of protocol message format using dynamic binary analysis. In the
14th ACM Conference on Computer and Communications Security (2007).

CAIl, J. Honeynets and honeygames: A gametheoretic approach to defending
network monitors. In Tech Rep TR1577 (2006).

CaLver, J., Davis, C., AND PIERRE-MARC, B. Malware authors don’t
learn, and that’s good. In MALWARE’09: Proceedings of the Fourth Annual
Conference on Malicious and Unwanted Software (2009), IEEE.

CARR, J. Why i believe that the kyrgyzstan government hired russian hackers
to launch a ddos attack against itself. hitp : [[intel fusion.net/wordpress/?p520
(April 2009), 1.

114

[14] CArRr, J., WartoN, G., AND WALTON, A. The kyrgyzstan
ddos attacks of january, 2009: Assessment and analysis. http
[[intel fusion.net/wordpress/?p = 516 (April 2009), 1.

[15] CHIA, G., BARABASI, A.-L., AND VICSEK, T. Quantifying social group
evolution. Nature 446 (April 2007), 664-667.

[16] CHO, C. Y., BaBic, D., SHIN, E. C. R., AND SoNG, D. Inference and
analyis of formal models of botnet command and control protocols. In the 17th
ACM Conference on Computer and Communications Security (2010).

[17] CLAMAV. clamav. www.clamav.net (April 2007), 1.

[18] cNET. Bots slim down to get tough. http : /[news.com/..tough/213.html (April
2005), 1.

[19] CORRONS, L. Mariposa botnet. hitp
/[pandalabs.pandasecurity.com/mariposa — botnet (March 2010), 5.

[20] cuP. cup. http: [[www2.cs.tum.edu/cup (January 2010), 1.

[21] DAGoN, D., Gu, G., Zou, C., GRIZZARD, J., DWIVEDI, S., LEE, W., AND
LipToN, R. A taxonomy of botnets. In the 23rd Annual Computer Security
Applications Conference (2007).

[22] DENNING, D. E. Activism, hactivism, and cyberterrorism: The internet as a
tool for influencing. In Networks and Netwars: The future of terror, crime, and
militancy (2001).

[23] DUNN, J. Mcafee launches first bot-killing system. www.techworld.com (April
2007), 1.

[24] EWEEK. Money bots: Hackers cash in on hijacked pcs.
www.eweek.com/article2/0.957.00.asp (April 2006), 1.

[25] FREILING, F., HoLz, T., AND WICHERSKI, G. Botnet tracking: Exploring a

root-cause methodology to prevent denial of service attacks. In ESORICS’05:
Proceedings of ESORICS 2005 (2005), IEEE.

[26] GEERS, K. Sun tzu and cyber war. www.ccdcoe.org/articles/CyberW ar.pdf
(April 2011), 1.

[27] Gu, G., YEGNESWARAN, V., POrRRrAS, P., STOLL, J., AND LEE, W. Active
botnet probing to identify obscure command and control channels. In ACSAC
09: Proceedings of the 2009 Annual Computer Security Applications Conference
(Washington, D.C., 2009), IEEE, pp. 241-253.

[28] Horz, T. A short visit to the bot zoo. In Security and Privacy Magazine
(2005).

[35]
[36]

[37]

[38]
[39]
[40]
[41]

115

HONEYNET. Know your enemy: Tracking botnets. http
/ Jwww.honeynet.org/papers/[bots (August 2008).

HouLE, K., AND WEAVER, G. Trends in denail of service attack technology.
In CERT (2001).

HUNKER, J., HUTCHINSON, B., AND MARGULIES, J. Role and chal-

lenges for sufficient cyber-attack attribution. www.thei3p.org/whitepaper —
attribution.pdf (April 2008), 1.

IC3. 2009 internet crime report. http
[[www.ic3.gov/media/annualreport/2009;C3Report.pdf (March 2010).

INTELLIGENCE, D. Mariposa botnet analysis. In Technical Report (2009).

JACKSON, D. Kyrgyzstan under ddos attack from russia.
www.secureworks.comkyrgyzstan — under — ddos — attack — from — russia
(April 2009), 1.

JFLEX. Jflex. http://jflex.de (January 2010), 1.

KARASARIDIS, A., REXROAD, B., AND HOEFLIN, D. Wide-scale botnet de-
tection and characterization. In Useniz hotbots 2007 (2007).

KARGL, F., AND WEBER, M. Protecting webservers from distributed denial of
service attacks. In the 10th International World Wide Web Conference (2001).

KIrk, J. Student fined for attack against estonian website. 1.
KREBS, B. Storm worm dwarfs worlds top supercomputers.
KRISTOFF, J. Botnets. In NANOGS32 (2004).

KUECHLER, W., AND VAISHNAVI, V. Design [science| research in is: A work
in progress. In the 2nd International Conference on Design Science Research
in Information Systems and Technology (2007).

Lavu, F., RuBIiN, H., SMITH, M., AND TRAJKOVIC, L. Distributed denial of
service attacks. In international Conference on Systems, Man, and Cybernetics

(2000).

LEDER, F., AND WERNER, T. Know your enemy: Containing conflicker. The
Honeynet Project (April 2009).

LEDER, F., WERNER, T., AND MARTINI, P. Proactive botnet countermea-

sures - an offensive approach. In In Cooperative Cyber Defense Centre of Fux-
cellence (Tallinn, Estonia, 2009).

LeEwis, J. Assessing the risks of cyber terrorism, cyber war and other cyber
threats:. www.steptoe.com/publications/231a.pdf (April 2002), 1.

[48]

[49]

[50]

[57]
[58]

[59]

[60]

[61]

116
LEYDEN, J. Conflicker seizes city’s hospital network. The Register (July 2009).

L1, J., EHRENKRANZ, T., AND KUENNING, G. Simulation and analysis on

the resiliency and efficiency of malnets. In the 19th Workshop on Principles of
Advanced and Distributed Simulation (2005).

L1, Z., GoyAaL, A., AND CHEN, Y. Honeynet-based botnet scan traffic anal-
ysis.

L1, Z., GoyAL, A., CHEN, Y., AND PAXSON, V. Automationg analysis of
large-scale botnet probing events. In ASIACCS 09 (2009).

Livabpas, C., WALSH, R., LAPSLEY, D., AND STRAYER, W. T. Using ma-
chine learning techniques to identify botnet traffic. In 2nd IEEE LCN workshop
on Network Security.

M86SECURITY. Security labs report. http
[[www.m86security.com|M86absgeport ;jan2010.pdf (January 2010), 5.

Mao, C., CHEN, Y., HUANG, S., AND LEE, H. Irc-botnet network behavior
detection in command and control phase based on sequential temporal analysis.

In CISC 2009.
MAXMIND. maxmind. www.mazxmind.com (April 2007), 1.

McLAUGHLIN, L. Bot software spreads, causes new worries. http :
[[csdl2.computer.org/comp/mags.pdf (April 2004), 1.

Mirkovic, J. Distributed denial-Of-service attacks. In PhD thesis (2003).

MWCOLLECT. Nepenthes-finest collection. www.nepenthes.mwcollect.org
(April 2007), 1.

MySQL. Mysql. www.mysql.com (April 2007), 1.

NAMESTNIKOV, Y. The economics of botnets. http
[Jwww.securelist.com[ynambotnets0907en.pdf (July 2009), 11.

NAzAr1O, J. Estonian ddos attacks - a summary to date. http

[[asert.arbornetworks.com/estonian — ddos — attacks — a — summary — to— date
(May 2007), 1.

NAzARrIO, J. Politically motivated denial of service attacks.
www.cedcoe.org/publications [virtualbattle field (April 2007), 1.

NazARrI1O, J. Cnn attack summary. http : [/asert.arbornetworks.com|cnn —
attack — summary (April 2008), 1.

NAZARIO, J. The effects of war: Gaza and isreal. http

| [asertarbornetworks.com[the —ef fects —of —war — gaza—and —israel (April
2009), 1.

[63]

[64]

[65]

[73]

[74]

[75]

117

NazARriO, J., AND DiMINO, A. M. An in-depth look at the georgia-russia
cyber conflict of 2008. In the Botnet Task Force Meeting (2008).

News, F. Estonia hosts georgian websites to halt hackers.
www. foxnews.comjwires| EstoniaGeorgiaH alting H ackers00.html (April
2008), 1.

NUNNERY, C., SINCLAIR, G., AND KANG, B. B. Tumbling down the rabbit

hole: Exploring the idiosyncrasies of botmaster systems in a multi-tier botnet
infrastructure. In LEET’10: Proceedings of 3rd Annual Workshop on Large-
Scale Exploits and Emergent Threats (San Jose, CA, 2010), USENIX.

PAaLLA, G., BARABASI, A.-L., AND VICSEK, T. Quantifying social group
evolution. Nature 446 (April 2007), 664-667.

PARrk, K., Par, V. S., LEE, W. K., AND CALO, S. Securing web service by
automatic robot detection. In USENIX 2006 (2006).

PARK, Y., AND REEVES, D. S. Identification of bot commands by run-time ex-
ecution monitoring. In ACSAC '09: Proceedings of the 2009 Annual Computer
Security Applications Conference (Washington, D.C., 2009), IEEE, pp. 321-
330.

PARkK, Y. H., AND REEVES, D. S. Adaptive timing-based active
watermarking for attack attribution through stepping stones. ftp

/] ftp.eos.ncsu.edu/pub/tech.pdf (April 2007), 1.

Paxton, N. C.; AuN, G., AND CHU, B. Towards practical framework for
collecting and analyzing network-centric attacks. In IRI’07: Proceedings of
the IEEE International Conference on Information Reuse and Integration (Las

Vegas, NV, 2007), IEEE, pp. 73-78.

PaxTon, N. C., AuN, G., KELLY, R., PEARSON, K., AND CHU, B. Collect-
ing and analyzing bots in a systematic honeynet-based testbed environment. In
the 11th Colloquium for Information Systems Security Education (2007).

PENG, P., NING, P., AND REEVES, D. S. On the secrecy of timing-based ac-

tive watermarking trace-back techniques. In 2006 IEEE Symposium on Security
and Privacy (2006).

PERILEYEZ. Perileyez. www.digitalninjitsu.com/downloads.html (April 2007),
1.

ProJecT, H. Know your enemy: Sebek- a kernel based data capture tool.
www.honeynet.org/papers (April 2003), 1.

ProJecT, H. Know your enemy: Genii honeynets. www.honeynet.org/papers
(April 2006), 1.

[76]

[77]
[78]

[79]

[80]

[81]

[82]

[87]

8]

[89]

[90]

118

ProJECT, H. Know your enemy: Tracking botnets. www.honeynet.org/papers
(April 2007), 1.

Provos, N. A virtual honeypot framework. In USENIX Security 2004 (2004).

RACINE, S. Analysis of internet relay chat usage of ddos zombies. In Master’s
thesis, ETH (2004).

RAMACHANDRAN, A., FEAMSTER, M., AND DAGON, D. Revealing botnet
membership using dnsbl counter-intelligence. In 2nd Workshop on Steps to
Reducing Unwanted Traffic on the Internet (2006).

RUBENKING, N. J. New botnet may have infected half of fortune 1000. PC-
MAG.COM (August 2009).

Russia, T. O. Russian opposition websites shut down by attacks.
www.theotherrussia.org/russian — opposition — websites — shut — down — by —
attacks (April 2008), 1.

SINHA, P., BOUKHTOUTA, A., BELARDE, V. H., AND DEBBABI, M. Insights
from the analysis of the mariposa botnet. In 5th International Conference on
Risks and Security of Internet and Systems (2010).

SoNG, J., KM, J., SE0, D., SoH, W., AND KIM, S. Something about dfas.
In Communications in Computer and Information Science 2010 (2010).

Song, J., KiMm, J., SE0, D., SoH, W., AND KimMm, S. Study of host-based
cyber attack precursor symptom detection algorithm. In Communications in
Computer and Information Science 2010 (2010).

SPATSCHECK, O., AND PETERSEN, L. L. Defending against denial of ser-
vice attacks in scout. In the 3rd Symposium of Operating Systems Design and
Implementation (1999).

STAFF, R. Experts team up to battle conflicker botnet. RedOrbit (March
2009).

STANIFORD, S., PAXSON, V., AND WEAVER, N. How to Own the internet in
your spare time. In the 11th USENIX Security Symposium (2002).

STANIFORD-CHEN, S.; AND HEBERLEIN, L. T. Holding intruders accountable
on the internet. In the 1995 IEEE Symposium on Security and Privacy (1995).

STEWARD, J. Truman - the reusable unknown malware analysis net.
www.lurhg.com/truman (April 1991), 1.

STINSON, E.; AND MICHELL, J. C. Characterizing bots remote control be-
havior. In GI SIG SIDAR conference on detection of intrusion and malware
vulnerability assessment.

[95]

[96]

[97]

[98]

[99]

[100]
[101]

102]

[103]

[104]

[105]

119

STRACK, F., AND DEUTSCH, R. Reflective and impulsive determinants of
social behavior. In Proceedings of Person. Soc. Psychol. Rev 8 8§ (March 2004),
220-247.

STRAYER, W. T., LAPSLEY, D., WALSH, R., AND LivAaDpAs, C. Botnet
detection based on network behavior. In Springer-Verlag 2008.

SYMANTEC. symantec. www.symantec.com (April 2007), 1.

Tikk, E., Kaska, K., RunNniMERI, K., KERT, M., AND TALIHARM, A.
Cyber attack against georgia: Legal lessons identified. 1.

TRUMAN. Truman-the reusable unknown malware analysis net.
www.lurhg.com/truman/ (April 2007), 1.

VMWARE. Vmware gsx server. www.vmware.com (April 2007), 1.

WaANG, X., REEVES, D. S., NING, P., AND FENG, F. Network-based attack
attribution through probabilistic watermarking of packet flows. In Report TR-
2005-10 (2005).

WiLLiams, C. Conflicker seizes city’s hospital network. The Register (Janurary
2009).

WILSHER, K. French fighter planes grounded by computer virus. 7Tele-
graph.co.uk (February 2009).

WIRESHARK. wireshark. www.wireshark.com (April 2007), 1.

WORTHAM, J., AND KRAMER, A. E. Professor main target of assault on
twitter. The New York Times (August 2009), B1.

YEGNESWARAN, V., BARFORD, P., AND PAXSON, V. Using honeynets for
internet situational awareness. In ACM Hotnets IV (2005).

ZHENG, Y. L., AND LEIWO, J. D-ward: Source-end defense against distributed
denial of service protection base. In Information Security and Privacy (1997).

ZHICHUN, L., GovAaL, A., CHEN, Y., AND PAXSON, V. Towards situational
awareness of large-scale botnet probing events. In IFEE Transactions on In-
formation Forensics and Security.

Zou, C., Gao, L., GonGg, W., AND TOWSLEY, D. Monitoring and early
warning for internet worms. In ACM CCS (2003).

