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ABSTRACT

KAMAL CHANDRA PAUL. Artificial Intelligence-based Arc Fault Detection for AC and
DC Systems. (Under the direction of DR. TIEFU ZHAO)

The prevalence of electrical fires due to arc faults in both AC and DC systems

has necessitated advancements in detection technologies. This dissertation introduces

innovative artificial intelligence (AI)-based methods for efficient arc fault detection,

enhancing both safety and reliability in electrical systems. For AC systems, a convolutional

neural network (CNN)-based arc fault detection algorithm has been proposed, which

has an arc fault detection accuracy of 99.47% with a balanced sampling rate of 10 kHz.

The performance of the proposed algorithm has been verified using the Raspberry Pi 3B

platform.

Although traditional CNN algorithms exhibit high accuracy, they require optimization for

real-time arc fault detection on resource-limited hardware. To address this, a lightweight

CNN architecture combined with a model compression technique using a knowledge

distillation-based teacher-student algorithm has been proposed. This model maintains a

high detection accuracy of 99.31% and achieves a minimal runtime of 0.20 ms per sample

on the Raspberry Pi 3B platform, demonstrating its suitability for commercial embedded

microcontrollers (MCUs) with limited computational capability.

Extending the research to DC systems, a cost-effective, AI-driven Arc Fault Circuit

Interrupter (AFCI) for DC applications has been proposed. Utilizing an STM32 MCU and

a silicon carbide (SiC) MOSFET-based solid-state circuit breaker (SSCB), this system

achieves a detection accuracy of 98.14% with an arc fault interruption time of 19 ms. To

enhance robustness, instead of making decisions on a single cycle of arc, a few consecutive

cycle wait time has been proposed. This research demonstrated an arc fault clearing time

of 95 ms considering 5 cycles of arcs as one arc fault event. This AFCI solution stands out

for its rapid response and high reliability, promising significant improvements in safety for
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DC-powered installations.

Together, these contributions signify a leap forward in the domain of electrical safety,

presenting viable solutions for the timely detection and interruption of arc faults in both

AC and DC systems. The outcomes of this research are expected to influence future

standards and practices in electrical safety management across residential, commercial,

and industrial sectors.
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CHAPTER 1: INTRODUCTION

1.1 Background of Arc Fault

An arc fault is characterized by the luminous discharge of electricity between two

conductors. This arc fault poses significant safety hazards across various electrical systems,

including both alternating current (AC) and direct current (DC) circuits. These faults

are often caused by many factors such as loose cable connections, wire aging, insulation

breakdown due to external intrusion, or physical damage to cables (Fig. 1.1). Arc fault

can happen even at low currents ranging from 3A to 12A. It can elevate the temperatures

beyond 5000oC, [1] and eventually may lead to electrical fire hazards, causing property

damage, injury, or even fatalities. In the United States, arc faults are a leading cause of

residential fire hazards. A survey by Zebra found that 36.3% of fire hazards are attributed

to electrical issues [2], while the Industrial Safety and Hygiene News reports over 30,000

arc flash incidents annually, leading to significant casualties and hospitalizations. Series

AC arc fault detection is challenging because it inserts series impedance when it occurs

and reduces the load current instead of increasing it. Therefore, traditional overcurrent

protective equipment can not detect arc faults. Rather, an arc fault detection device

(AFDD) or Arc Fault Circuit Interrupter (AFCI) is required to prevent these fire hazards.

However, the nature of the load current, switching noise, and environmental noise cause a

lot of false detection resulting in nuisance tripping of AFDDs or AFCIs. Standards set

by entities like the International Electrotechnical Commission (IEC), National Electrical

Code (NEC), and Underwriters’ Laboratories (UL) mandate arc fault detection devices in

household and industrial systems for safety [3–5].

The U.S. solar industry has experienced remarkable growth, with over 140 GW of solar
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Figure 1.1: Causes of arc faults.

capacity installed and an ambition to greatly expand this by 2033 [8–10] (Fig. 1.4). This

expansion underscores the increasing importance of addressing safety concerns due to series

arc faults inherent in DC systems. Arc fault is stochastic and can happen anywhere in a

system (refer to Fig. 1.5). A few recent incidents of PV arc fault fire hazards are depicted in

Fig. 1.2 and Fig. 1.3. Series arc faults in PV systems are particularly challenging to detect

due to noise interference from various sources such as radio frequency interference, power

electronics noise, and electromagnetic interference (EMI). These conditions exacerbate

the difficulty of discerning arc faults from normal operational signals [1, 11]. In response

to these risks, the NEC 2020 sec. 690.11 mandates the use of PV AFCIs for systems

operating at or above 80 V DC. Apart from this, the AFCI standard requires arc faults

must be extinguished before dissipating 750 J of energy or within 2.5 s of arcing, whichever

occurs first [4].
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Figure 1.2: Arc fault fire hazard: 1,208kW PV array, Mount Holly, North Carolina, 2011 [6].

Figure 1.3: Arc fault fire hazard: 383 kW PV system, Bakersfield, CA, 2009 [7].

Arc faults are two types. One is a series arc fault and the other is a parallel arc fault

(see Fig. 1.6). Unlike series arc fault, parallel arc fault heavily increases the line current

and usually easily noticeable by an overcurrent protective device. As the load current

reduces due to a series arc fault, it can not be detected by a regular circuit breaker.
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Figure 1.4: Cumulative U.S. solar installations over the period [8].

Figure 1.5: Power flow diagram of a photovoltaic system with locations where series and
parallel arc faults can happen
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Figure 1.6: Types of arc faults- (a) series arc fault; (b) parallel arc fault (line-neutral); (c)
parallel arc fault (line-ground).

1.2 Detection of Series Arc Faults

Conventional arc fault detection techniques, including Fast Fourier Transform (FFT),

Wavelet Transform (WT), and Discrete Wavelet Transform (DWT), are employed in both

AC and DC circuits but are limited by the necessity for manual threshold adjustments,

which can lead to false positives under varying load conditions [12–16]. The challenges

are further compounded by the presence of noise which distorts the frequency spectrum,

affecting the accuracy of these methods [17].

Due to their high classification accuracy, artificial intelligence (AI) and machine learning

(ML) based algorithms have increasingly become the focus of research in arc fault detection.

Different classification algorithms, including Support Vector Machine (SVM), Particle

Swarm Optimization combined with Self-Organizing Map Neural Network, Recurrent

Neural Network (RNN), and Convolutional Neural Network [18], have been employed

for arc fault classification, often coupled with data preprocessing techniques. These

AI-based methods offer advantages in automatically generating features without the need

for hand-adjusted thresholds, thereby increasing reliability and reducing the likelihood of

false positives [11,18–33].
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1.3 Key Technology for Arc Fault Protection

In order to prevent arc fault fire hazards and enhance electrical safety and reliability, it

is required to develop an efficient arc fault detection algorithm having accurate and fast

detection capability. AI-based methods have high arc fault detection capability and they

are flexible, and adaptable compared to traditional signal processing-based algorithms.

Therefore, the development of efficient, lightweight deep learning (DL) models for arc fault

detection is critical for both AC and DC systems [34–38]. An efficient and lightweight

model can reduce the computational complexity and can easily be implemented in a

resource-limited embedded device for real-time operation. Moreover, the platform to run

the algorithm has to be cost-effective and affordable. After arc fault detection, the faulty

part should be isolated from the healthy part as quickly as possible. A solid-state circuit

breaker (SSCB) can be integrated into the model for quicker interruption of the circuit.

1.4 Overview of Proposed Research

The main goal of my research is to create a highly efficient arc fault detection algorithm

that is both accurate and low-cost. This algorithm is designed to be easily integrated into

affordable microcontrollers for quick fault interruption using a solid-state circuit breaker.

An overview of the proposed works is provided below.

1. Develop an AC arc fault detection algorithm utilizing traditional CNN

methods: This dissertation focuses on developing an AC arc fault detection

algorithm using advanced CNN methods. This algorithm can directly process

raw electrical current data, which simplifies the process by removing the need for

data preprocessing. Tested on a Raspberry Pi 3B, this approach achieves impressive

accuracy of over 99% and provides quick fault detection within 31 ms.

2. Optimize the AC arc fault detection model for computational efficiency:

This research aims to make the AC arc fault detection model more computationally
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efficient. By using a lightweight CNN architecture combined with a teacher student

knowledge distillation (KD) method the model is optimized. The optimized model

achieves an extremely fast runtime of just 0.2 ms on the Raspberry Pi 3B. This

significant improvement ensures the model is well-suited for low-cost microcontrollers

without compromising on performance. It requires only 57.93 KB of flash and only

13.04 KB of RAM when implemented on STM32 MCU.

3. Design and validate a DC AFCI using a lightweight CNN approach and

SSCB: Finally, the research focuses on designing and validating a DC AFCI that

uses a streamlined CNN algorithm for detecting PV arc faults and an SSCB for

fast interruption. This AI-based AFCI is optimized for real-time use in embedded

hardware and is verified using an STM32 microcontroller. The algorithm is highly

efficient, requiring only 12.6 KB of RAM and 34 KB of flash memory, and it achieves

the fastest arc fault clearing time of 19 ms. This design not only ensures rapid fault

clearing but also enhances the overall reliability and robustness of the system.



CHAPTER 2: LITERATURE REVIEW

2.1 Arc Faults in Photovoltaic Systems

In photovoltaic (PV) systems, solar cells are typically interconnected in series and

parallel configurations to amplify the voltage and current levels. However, this increase in

interconnected solar panels also leads to more junction points, which raises the likelihood

of loose connections and potential arc faults, posing significant safety risks. An illustration

of a typical PV system setup, depicting the potential locations of PV arc faults, is shown

in Fig. 1.5.

Detecting series arc faults in DC systems presents unique challenges. One significant

issue is that PV systems can continue operating and supplying power even during an arc

fault, which increases the risk of fires and electrical hazards. The challenge is further

compounded by the nature of PV modules, which are current-limited devices. This makes

it difficult to differentiate between normal operations and fault conditions. Additionally,

the presence of numerous conductor joints within the PV system adds complexity to

pinpointing the exact location of a series arc fault.

PV systems can experience two main types of arc faults: series and parallel, with ground

faults being a subset of parallel faults. Parallel arc faults typically result in a surge in

current, making them easier to detect with traditional circuit breakers. In extreme cases,

this surge can be strong enough to melt a fuse. Conversely, series arc faults introduce

additional impedance into the load, thereby reducing the load current and preventing fuse

melting. This reduction in load current also makes series arc faults difficult to detect with

standard circuit breakers.

While parallel arc faults are relatively straightforward to detect due to the high current
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they generate, detecting series AC arc faults is significantly more challenging. This is

because the impedance created by the fault results in a decrease, rather than an increase,

in current amplitude. Identifying series arc faults is further complicated by certain loads,

such as those with switch-mode power supplies, which can exhibit arc-like current patterns

under normal conditions. This often leads to false alarms and nuisance trips. Recognizing

these challenges, researchers have utilized a variety of methods, both conventional and

based on artificial intelligence, to address this complex issue [39].

An arc fault is stochastic by nature and can occur anywhere in the photovoltaic (PV)

system. Terzija et al. [40] and Lu et al. [16] have described the random behavior of an arc

as Gaussian noise:

x(t) =
1√
2πσ2

· e−
t2

2σ2 (2.1)

where x(t) represents the signal in the time domain. In the frequency domain, it is

expressed as:

X(f) = Fx(t) = 1√
2π

· σ · e−2π2σ2f2

(2.2)

with X(f) representing the signal in the frequency domain.

Johnson et al. [41] also stated that the signal exhibits white noise characteristics, meaning

that it has a constant power spectral density (PSD) and contains all frequencies with equal

intensity:

Spectral density S(f) = const. (2.3)

Therefore, the arc can be considered as white Gaussian noise.

Moreover, the output voltage and current signal of the PV system are contaminated with
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various noise components from different sources, including radio frequency interference,

power electronics noise such as inverter switching frequency, electromagnetic interference

(EMI), and noise due to changes in irradiance, temperature, and load conditions. These

noises distort the signals, further complicating the detection of series DC arc faults in

PV systems. The stochastic nature of an arc fault’s location and the series impedance

it introduces reduce the signal quality, making the effective recognition of the series arc

more challenging. This impacts the reliability of the PV system.

Currently, commercial products for PV arc fault detection (AFD) devices are scarce

and not cost-effective. Their accuracy is also significantly affected by various noise and

loading conditions [30,42,43].

2.2 Arc Fault Detection Standards

Standardization is key to ensuring the safety and effectiveness of arc fault detection

devices (AFDDs) in photovoltaic (PV) systems. It guarantees that these devices work

seamlessly across different PV systems and are compatible with equipment from various

manufacturers. Standardization also ensures transparency and accountability in the

development and deployment of AFDDs, fostering confidence in their performance and

reliability.

The Underwriters Laboratories (UL) established the UL 1699B standards for AFCIs

or AFDDs [44], pivotal for the safety of PV systems. According to these standards, an

AFCI is required to interrupt an arc fault within 2.5 seconds or before the arc energy

reaches 750 joules, whichever happens first. This critical requirement is aimed at providing

prompt intervention to avert potential dangers. A device is deemed non-compliant if it

fails to meet these standards. Additionally, UL 1699B specifies detailed testing conditions

for AFCIs, including the arcing gap distance, minimum arcing current, and open circuit

voltages, to ensure comprehensive evaluation and consistent reliability.

Furthermore, the National Electrical Code (NEC) mandates that AFDDs must be
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installed in all PV systems operating at voltages above 80 V [5]. The significance of

effective arc fault detection in PV systems was recognized with its incorporation into article

690 of UL 1699B in 2011 [41, 45, 46]. These standards and regulations are instrumental in

ensuring the safe functioning of PV systems and in reducing the risks associated with arc

faults. Compliance with these standards is vital for upholding the safety and reliability of

PV systems.

2.3 Traditional Methods of Arc Fault Detection

A variety of features can be harnessed for the detection of arc faults, ranging from

observable characteristics like arc flash to the audible sounds produced by arcs. Depending

on the approach, the input for detection can be in the time domain, frequency domain, or

a combination of both. The most commonly utilized input types are:

• Time-domain current and voltage signals (raw values) [47–53]

• Derivatives of current and voltage, such as averages or the difference between

maximum and minimum values, median, variance, RMS values etc. [54–56]

• Processed signals derived from current and/or voltage, including:

– Fast Fourier Transform (FFT) [49,57]

– Short Time Fourier Transform (STFT) [32,48,57,58]

– Wavelet Transform (WT) [48,52,56,57,59–61]

– Other signal processing techniques including Empirical Mode Decomposition

(EMD), Variational Mode Decomposition (VMD), Hilbert-Huang transform

(HHT), independent component analysis (ICA), power spectral density (PSD)

analysis, correlation analysis, statistical signal processing, and adaptive filtering

techniques [40,61–65]

• Additional detection modalities, including:
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– Electromagnetic radiation (EMR) [66]

– Machine vision and image processing [67]

– Infrared imaging

– Power quality analysis

– Temperature, acoustic, and gas measurements

– Optical sensing [68,69]

– Electrical impedance measurements

Among these, current and voltage measurements are the most frequently employed

features. Voltage measurement poses particular challenges, especially when the precise

fault location within the system is unknown [70]. Moreover, to thoroughly monitor a

system, a larger array of voltage sensors is often required compared to current sensors.

As a result, the industry commonly focuses on current measurements for arc fault

detection. Traditional methods extract key features from these measurements, such as

the average value, peak-to-peak value, and standard deviation. In contrast, modern deep

learning techniques use raw data, taking advantage of the powerful feature extraction

capabilities of convolutional neural networks. These methods make arc fault detection

more effective by avoiding the challenges of voltage measurement and reducing the need

for an extensive network of voltage sensors.

2.3.1 Time-Domain and Statistics-based Algorithm

The occurrence of an arc fault typically results in an immediate drop in the line

current, which serves as a distinct and measurable characteristic. Time-domain features

and parameters are particularly beneficial for embedded systems due to their rapid

computability and ease of implementation. Additionally, time-domain analysis can be

conducted with lower sampling frequencies, which significantly cuts down on computational
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time [54]. A few feature extraction methods with mathematical expressions in the time

domain are enlisted in Table 2.1.

Monitoring the current is one of the simplest detection methods. Current signals are

straightforward to measure, rich in distinctive features, and do not require preprocessing.

As a result, several studies [11, 18, 50, 51, 67, 71, 72] have employed raw DC current signals

directly. Others [54, 73] have focused on specific features derived from the DC current,

such as analyzing variations in the line current [70,74,75]. However, a notable drawback is

that when calculating statistical metrics like mean, standard deviation, and variance, vital

fault information that may be present in the raw data could potentially be obscured [60].

It is important to recognize that the fault current signal associated with nonlinear loads

is unstable and varies randomly, which can hinder the accurate detection of arc faults

solely based on time-domain characteristics. Chen et al. [49] discussed how the bus current

experiences significant fluctuations following an arc fault. Furthermore, the presence of

electromagnetic interference noise from converters/inverters and the switching of electrical

drives in DC systems adds layers of complexity to arc fault detection, complicating the

identification process.

2.3.2 Fourier Transformation

The Fast Fourier Transformation (FFT) is a widely utilized method for extracting useful

features in DC arc fault detection. Dang et al. [77] have indicated that deep learning

techniques achieve greater success with frequency-domain input. When an arc fault occurs,

there is a noticeable increase in spectral noise across all frequency bands, independent of

switching frequency, current level, or load conditions, which aids in the detection of arc

faults [50, 78].

Research from Sandia National Laboratories [41] indicates that while there is minimal

variation in arcing noise content between the low-frequency ranges (1 - 100 Hz) and the

high-frequency ranges (100 kHz to 5 MHz), a clear distinction between arcing noise and



14

Table 2.1: Time-domain features

Feature Mathematical Definition

Raw Values [50,52,54,60,67] X

Average [54,55] 1
N

∑N
i=1 xi

Median [54] Middle value in a sorted set

Variance [54,55] 1
N

∑N
i=1(xi − x)2

Standard Deviation [76]
√

1
N

∑N
i=1(xi − x)2

Kurtosis [53]
1
N

∑N

i=1
(xi−x)4

( 1
N

∑N

i=1
(xi−x)2)

2

RMS [54]
√

1
N

∑N
i=1 x

2
i

Peak-to-Peak value [54,55] Max - Min

Moving Average [56] 1
W

∑t
i=t−W+1 xi

background noise is noticeable within the mid-frequency range of 100 Hz to 100 kHz.

Specifically, the spectrum energy in the range of 1-100 kHz undergoes significant changes

during arc faults [57]. This was also proven by Telford et al. [56], who stated a 25 dB

increase in the 10 kHz spectrum during their experiments and in which showed a significant

increase in 30 - 100 kHz, [78] with 5 to 40 kHz, [76] for lower frequencies like 10 kHz

and [79] for 20 kHz to 100 kHz.

Arc faults progress through three distinct phases [50]:

1. In the initial phase, there is a sharp fluctuation in the arc current signal.

2. The second phase shows reduced fluctuations but includes occasional spikes.
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3. In the final phase, the arc stabilizes with fewer fluctuations and spikes in the arc

current signal.

For the transient state especially in the frequency band of 10 - 50 kHz the frequency is

increased, so the Wavelet transformation (and the STFT) can be helpful to concentrate

on the right time instead of mixing up the stable and the transient time by observing the

whole time at once for a fixed window [57].

In the frequency domain, noise suppression can be achieved through prefiltering, a topic

to be further discussed in the next chapter. Owing to switching frequencies, many methods

prioritize dampening lower frequencies, like those around 10 kHz. PWM noise, produced by

power electronic devices, exhibits a predictable pattern. This allows for the differentiation

of current signals under varying operational conditions by analyzing the power spectrum, as

shown in studies like [30]. Furthermore, several researchers [16,41,49,80] describe arc faults

as pink noise, also known as 1/f noise or flicker noise. This type of noise signal maintains

equal energy per octave or equal power across frequency intervals. Mathematically, it is

defined by its power spectral density (PSD) function, following the formula:

PSD(f) =
1

fα
(2.4)

This implies that monitoring lower frequencies can be particularly insightful.

In the high-frequency band, the amplitude of the arc current is notably small and can

easily be obscured by other noise signals. Thus, it is advisable to set the upper frequency

limit at 100 kHz [55]. The magnitude of components in the 5 to 40 kHz range tends to

increase after arcing, particularly at higher switching frequencies. Also, lower currents

tend to result in greater frequency increases within this same range post-arcing [78].

In the study "Frequency-Domain Characteristics of Series DC Arcs in Photovoltaic

Systems with Voltage Source Inverters" [78], it was observed that under constant voltage

and gap distance, high-frequency variations diminish at higher load current levels. Similarly,
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higher source voltages tend to stabilize arcs, resulting in fewer variations at these elevated

voltage levels.

To demonstrate the differences in frequency spectra between arc and normal conditions

in PV arc faults, FFT spectra of random samples from 3 A, 5 A, and 8 A loads were

analyzed, as illustrated in Figure 2.1. Most samples showed clear differences in their

frequency spectra within the 0 to 40 kHz range. However, at the higher frequency end,

some overlap among samples became evident, attributable to various noise conditions

in the system. It’s important to recognize that because of these overlapping regions, an

arc sample might closely resemble a normal sample. As depicted in the figure, a normal

sample from the 5A load largely coincides with an arcing sample from the 8A load. As

a result, solely depending on a manually adjusted FFT spectrum threshold for arc fault

classification could lead to poor accuracy and inadvertent false triggers.

Figure 2.1: FFT spectrum of arc and normal signals at different current levels.

Arcing-induced high-frequency variations tend to increase as source voltage decreases,

load current diminishes, and the gap distance between electrodes widens [30]. This

pattern implies that in low-voltage or low-current systems, the impact of the arc is more

pronounced and potentially more consistent, making detection more straightforward. In
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contrast, high-voltage systems pose greater challenges for arc fault detection due to the

less stable nature of arc effects.

Additionally, high-frequency noise similar to that caused by arcing is generated when a

photovoltaic (PV) inverter operates in the Pulse Width Modulation (PWM) state. In such

cases, the amplitude of the frequency spectrum of this noise can match or even exceed

that of the arc signal. This overlap makes it challenging to differentiate between normal

operational states and arc faults based solely on amplitude differences.

The Fast Fourier Transformation (FFT) is the most widely used method in the frequency

domain for various applications, including PV arc fault detection [20, 24, 81–86]. FFT

transforms a time-domain signal into its frequency-domain counterpart, facilitating the

identification of frequency components that may be obscured in the time-domain. The FFT

of a discrete sequence of N complex numbers x[n] (for n = 0, 1, . . . , N − 1) is computed

using the equation:

X[k] =
N−1∑
n=0

x[n] · e−j2πkn/N (2.5)

This efficient computation, with a complexity of O(N logN), makes FFT a valuable

tool. However, FFT does have limitations, particularly in capturing transient signals and

in frequency resolution which can be affected by the sampling rate. Manual threshold

adjustments in FFT-based methods can also be less effective due to noise or changes in

the system. Despite these limitations, FFT remains beneficial for PV arc fault detection,

especially when combined with other signal processing techniques. A notable drawback

of FFT is its inability to convey time information, which is essential in some diagnostic

contexts.
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2.3.3 Short-Time Fourier Transform

Series arc faults (SAFs) in PV systems exhibit distinctive characteristics in both the

time and frequency domains. The Short-Time Fourier Transform (STFT) is an effective

tool for analyzing these characteristics, as it provides a time-frequency representation of a

continuous-time signal x(t). STFT works by dividing the signal into overlapping frames

and then applying the Discrete Fourier Transform (DFT) to each frame. The STFT of

x(t) is mathematically defined as:

X(t, f) =
∫ ∞

−∞
x(τ) · w(t− τ) · e−j2πfτ , dτ (2.6)

In this equation, w(t) is a window function, t denotes time, f denotes frequency, and

X(t, f) represents the complex magnitude or phase at time t and frequency f . This

combination of time and frequency information distinctly highlights the characteristics

of an arc, notably the increase in power across all frequencies during an arc event.

Research has shown that a 2D CNN effectively isolates inverter switching noise in the

high-frequency domain, primarily utilizing frequency information below 20 kHz [59].

Additionally, repeating time dependencies have been observed in power spectra, potentially

influenced by experimental setups [87].

However, utilizing time information in STFT comes at the cost of reduced frequency

information, and vice versa, due to the uncertainty principle. This principle is expressed

as:

∆x ·∆p ≥ 1

4π
(2.7)

Here, ∆x represents the uncertainty in position, and ∆p represents the uncertainty in
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momentum. This trade-off means that arbitrarily high accuracy cannot be simultaneously

achieved in both time and frequency representations of a signal.

Another consideration is the window size in STFT, which must be carefully chosen to

balance time resolution and frequency resolution. While the signal within the window

is assumed to be time-stationary, arc signals are typically nonstationary. Therefore, a

smaller observation window is preferable to maintain the assumption of a stationary signal,

though this can lead to poor spectral resolution in STFT. Consequently, the selection of

the window size is another crucial parameter in STFT.

Studies have demonstrated that using a Hamming window in STFT provides a clearer

distinction between normal conditions and fault detection compared to real-time Fast

Fourier Transform (FFT) methods [59].

2.3.4 Wavelet Transformation

The Wavelet Transform is an effective mathematical tool for decomposing a signal into

a series of basis functions, known as wavelets. This transformation is particularly useful

for its computational efficiency and simplicity, making it well-suited for analyzing large

data sets. In the realm of signal processing, two primary variations are employed: the

Continuous Wavelet Transform (CWT) and the Discrete Wavelet Transform (DWT).

The formula for the Wavelet Transform of a signal x(t) is defined as follows:

W (a, b) =
∫ ∞

−∞
x(t) · ψ∗

(
t− b

a

)
, dt (2.8)

In this equation, a and b represent the scaling and translation parameters, respectively,

while ψ(t) is the chosen wavelet function. Notably, wavelets provide improved temporal

resolution for higher frequency analysis, which is particularly advantageous for signals

with irregular changes, such as non-stationary arc fault signals [88].

Wavelet Transformation is thus particularly apt for handling non-stationary signals.
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Researchers like Lu et al. [57] have emphasized the sensitivity of wavelet functions to

irregular signals and the concentration of energy in signal compression and reconstruction

as reasons for choosing specific wavelets, such as the Daubechies series with variable branch

length. However, it’s important to note that when applied to inverter-based signals, certain

detection limitations exist [89].

In the field of signal energy computation, the wavelet transformation is frequently

utilized, relying primarily on two parameters: the choice of the mother wavelet and the

scale parameter, which dictates the frequency range of focus in the signal. Selection of the

mother wavelet is often driven by the need to detect specific types of discontinuities. For

arcing faults detection, many researchers prefer the Daubechies family of wavelets due to

their beneficial properties [14].

For instance, a real-time arc fault detection method in PV systems employing 1-level

DWT has been proposed, using the ratio of the average power of the first level DWT

coefficients (50-100 kHz) to the reference average power [90]. Furthermore, a 4-level DWT

is utilized to extract energy information and the modulus maximum of the 126-250 kHz

frequency band for detecting parallel arc faults in PV systems [91].

Wang et al. [92] analyzed the spectrum of DC series arc current using DWT and FFT.

Their findings indicated that DWT could effectively capture the spectrum’s temporal

changes, a task at which FFT fails, especially when arc durations are significantly short

compared to the sampling window. Moreover, Sung et al. [32] pointed out the limitations

of FFT and used STFT data for training their network, allowing for the retention of

temporal information. Their methodology involved analyzing the data via STFT and

implementing a 1D CNN module with dropout on the raw current data.

It has been stated that Wavelet Transformation generally yields higher accuracy

compared to STFT, while also being more computationally efficient [59]. However, it can

suffer from issues like oversampling and redundancy, leading to increased memory usage

and processing time. Sung et al. [32] addressed this by employing the Mallat algorithm [93],



21

which aims to reduce computational complexity.

The Mallat algorithm’s core principle is to separate the input data into low-frequency

and high-frequency components, each representing different levels of detail or resolution.

Traditional wavelet transform methods calculate all wavelet coefficients at every

decomposition level, resulting in O(N) complexity for a 1D signal of length N. Conversely,

the Mallat algorithm’s filtering and downsampling steps in each iteration reduce the data

size, leading to a complexity of O(N log N). However, this downsampling process can cause

information loss and frequency aliasing between components [60]. The computational

complexities of different algorithms are provided in Table 2.2.

In the context of PV arc fault detection, researchers have explored both DWT and

Wavelet Packet Transform (WPT) to extract relevant features from arc fault signals

[90, 90, 94–96]. DWT is preferred for its computational efficiency, while WPT is chosen for

its higher frequency resolution. Each approach, however, has its own set of advantages

and limitations.

Table 2.2: Computational Complexities for 1D Signal with length N and a window length
of size M (if used) of the different transformations and algorithms

Transform/Algorithm Complexity
Fourier Transform (FT) O(N2)

Fast Fourier Transform (FFT) O(N logN)

Short-Time Fourier Transform (STFT) O(NM logM)

Wavelet Transform (WT) O(N)

Mallat Algorithm (DWT) O(N logN)

2.3.5 Other Methods

The wavelet packet transformation extends the capabilities of the wavelet transform,

providing a more intricate analysis of a signal’s frequency content. It decomposes both the

detailed coefficients (from high-pass filters) and approximation coefficients (from low-pass

filters), yielding a comprehensive set of new coefficients.
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Mathematically, the wavelet packet transformation for a discrete-time signal x(n) involves

recursively applying wavelet decomposition to both detailed and approximation coefficients

at each decomposition level. Initially, at level j = 0, the approximation coefficients A0

represent the original signal x(n). At the next level, j = 1, wavelet decomposition is applied

to D0 and A0, resulting in new detailed coefficients D1 and approximation coefficients A1.

This recursive process creates a tree-like structure of coefficients, offering both low and

high-frequency insights. However, to ensure effective analysis, it is crucial to maintain

maximum flat pass-band characteristics and good frequency separation. Wavelet functions

with more coefficients tend to exhibit less distortion than those with fewer coefficients.

The wavelet packet transformation can be represented by the following equations: At

each level j, the wavelet decomposition is given by:

Dj = Wj ·Dj−1, (2.9)

Aj = Vj ·Dj−1, (2.10)

where Dj represents the detailed coefficients at level j, and Dj−1 represents the detailed

or approximation coefficients at level j − 1. Similarly, Aj represents the approximation

coefficients at level j, and Dj−1 represents the detailed or approximation coefficients at

level j − 1.

This transformation enables a more detailed frequency analysis, allowing access to a

broader range of coefficients representing various frequency bands. It’s especially beneficial

in applications requiring an in-depth understanding of a signal’s frequency content.

The STFT and wavelet transform, employed for analyzing non-stationary signals, operate

under the assumption that the frequency content of a signal changes minimally within

a short time interval. The window width in STFT, determined by the signal’s temporal

variability, influences the frequency resolution.

The Wigner-Ville distribution offers a joint time-frequency analysis of a signal,
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providing a two-dimensional representation of the signal’s energy distribution across

both domains. Mathematically, it’s defined as the time-frequency representation of the

signal’s autocorrelation function, computed by Fourier transforming the time-varying

autocorrelation function:

The Wigner-Ville distribution can be expressed as follows:

W (t, ω) =
∫ ∞

−∞
x(t+ τ/2)x∗(t− τ/2)e−jωτdτ (2.11)

where W (t, ω) represents the Wigner-Ville distribution of the signal x(t) at time t and

frequency ω, x∗(t) denotes the complex conjugate of x(t), and the integration is performed

over all time delays τ .

The resulting Wigner-Ville distribution W (t, ω) provides information about the

time-varying frequency content of the signal. The magnitude of W (t, ω) represents the

energy or power of the signal at a specific time t and frequency ω. The phase of W (t, ω)

provides information about the phase relationship between different frequency components

of the signal at a particular time. It is important to note that the Wigner-Ville distribution

has some limitations. One of the main issues is that it can exhibit interference patterns

known as cross-terms, which can make the interpretation of the distribution challenging.

These cross-terms arise due to the quadratic nature of the distribution and can introduce

spurious components in the time-frequency representation. Additionally, it has a higher

computational cost than all other methods

Empirical Mode Decomposition (EMD) is a signal processing technique that decomposes

a given signal into a set of intrinsic mode functions (IMFs). It was proposed by Norden E.

Huang and his colleagues in the 1990s as a method to adaptively analyze non-stationary

and nonlinear signals. EMD is a data-driven decomposition technique that does not

rely on predefined basis functions or assumptions about the signal’s characteristics. It

aims to decompose the signal into oscillatory components with well-defined instantaneous
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frequencies. Each IMF represents a narrowband component with a well-behaved oscillatory

behavior.

Mathematically, the EMD process can be expressed as follows:

x(t) =
N∑
k=1

ck(t) + r(t)

where x(t) represents the original signal, ck(t) denotes the k-th intrinsic mode function

(IMF), r(t) is the residue signal, and N represents the total number of IMFs obtained.

Each IMF ck(t) satisfies the IMF criterion and captures a specific oscillatory component

in the signal. These IMFs are sorted in descending order of their instantaneous frequencies,

with the first IMF representing the component with the highest frequency. Empirical

Mode Decomposition (EMD) is renowned for its versatility and has been widely applied

in various fields, such as biomedical signal analysis, environmental signal processing,

and financial time series analysis. EMD’s data-adaptive nature enables it to extract

meaningful components from complex, non-stationary signals, enhancing both the analysis

and interpretation of these signals.

However, it’s important to recognize that EMD has certain limitations, including mode

mixing and endpoint effects, which can impact the accuracy of the decomposition. To

address these issues, various modifications and extensions have been developed, such

as Ensemble EMD (EEMD) and Complete EEMD (CEEMD), which aim to improve

the efficacy of EMD-based signal analysis. Overall, Empirical Mode Decomposition is a

powerful analytical tool for dissecting non-stationary signals into their intrinsic components,

offering valuable insights into their underlying oscillatory behavior.

The voltage or current information alone can be effectively utilized to detect arc faults.

Specifically, a variation in the voltage of the DC optimizer can serve as an indicator of a

PV arc fault [97]. Typically, the presence of a series arc fault, which involves the insertion

of a series impedance, results in a decrease in the terminal voltage. However, it’s important
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to note that relying solely on voltage measurements for fault detection can sometimes lead

to false positives. This is because the output voltage of PV panels can fluctuate due to

a variety of factors, including high temperatures, accumulation of dust and dirt, partial

shading, issues with the inverter, or failures in other components.

Figure 2.2: Generic AI-based method for arc fault detection [16].

2.4 Artificial Intelligence and Machine Learning-based Methods

In general AI-based methods acquire some data, extracts features from the input data

and process using AI algorithm and finally gives a decision. A generic AI-based arc fault

detection algorithm is provided in Fig. 2.2.

2.4.1 Fuzzy Logic

Fuzzy Logic (FL) is an AI-based method for PV arc fault detection algorithm [76,98].

The FL-based method uses linguistic variables to describe the system status, and these

variables are then mapped onto fuzzy sets. The fuzzy sets are then processed using fuzzy

rules to classify the system state as either normal or faulty. These methods have high

accuracy and does not require a large amount of training data. The response time is

slower than the ANN-based method. Also, the hand adjusted threshold makes it difficult

to adjust to different scenario and resulting in false tripping. A cascaded Fuzzy logic based
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algorithm is presented in [76] where the inputs are frequency analysis, peak detection and

operating point. The detection logic is split into 4 sub-detectors (peak evaluator, window

near, window wide and power analyzer) followed by a Master Fuzzy Arc Fault Detector

(MFAFD). The sub-detectors analyze peaks, signal energy change, and power change, and

their outputs are fed to the MFAFD. The MFAFD output delivers a number between 0

and 1 and is a mass for the arc fault probability. A threshold has to be defined to detect

an arc fault. Similarly, [52] used different WT features, CT and Voltage features to fuzzy

it into a single scalar classified by a rule based engine. [53]. Wang et al. [53] used for this

classification task a support vector machine. This algorithm is cost-effective and can be

implemented directly in the inverter’s controller. It is more complex to implement as the

rules of different sub-detectors and input variables have to be defined. Another major

drawback is that FL method is based on hand adjusted threshold, which may need to be

adjusted based on the specific application and operating conditions. The algorithm is very

sensitive and needs clear value to do a precise description. [52] stated, that as increasing

fault impedance increases, the fault detection becomes more challenging since the impact

of shorted panels on the whole system is minimal.

2.4.2 Support Vector Machine

Support vector machine (SVM) is a popular AI-based method for classification tasks,

including PV AFD [62, 99–102]. The SVM-based method uses a decision boundary

to separate the normal and faulty states. The SVM optimization problem for binary

classification can be formulated as follows:

min
w,b

1

2
∥w∥2 + C

n∑
i=1

max(0, 1− yi(w · xi − b)) (2.12)

subject to the constraint: yi(w · xi − b) ≥ 1, ∀i = 1, . . . , n. The objective is to find
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the optimal hyperplane represented by w · x − b = 0 that separates the two classes

with the maximum margin, where w is the weight vector and b is the bias term. Here,

C is a hyperparameter that controls the trade-off between maximizing the margin and

minimizing the classification error. The first term in the objective function represents

the margin maximization, and the second term is the hinge loss function that penalizes

misclassifications. The solution to this problem can be computed using Lagrange multipliers

[103]. By selecting an appropriate kernel, the power of SVMs can be leveraged to find

non-linear decision boundaries and handle complex patterns in the data. The SVM-based

method has high accuracy and can handle nonlinear relationships in the data. It requires

a large amount of training data to develop a reliable model. In combination with particle

swarm optimization algorithm, SVM model is used in [64] for DC arc fault detection.

2.4.3 K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a simple, yet effective, machine learning algorithm used

for classification and regression tasks. KNN operates on the principle of similarity, where

the class or value of a data point is determined by the classes or values of its nearest

neighbors in the feature space. In classification, a data point is assigned to the class

most common among its k nearest neighbors, where k is a user-defined constant. For

regression, the output is the average of the values of its k nearest neighbors. KNN is a

non-parametric, instance-based learning algorithm, meaning it makes predictions based on

the memorized training data without assuming an underlying distribution. Despite its

simplicity, KNN can achieve competitive performance in various applications, provided

that the data is properly normalized and the choice of k is appropriate. Given a training

dataset D = (x1, y1), (x2, y2), ..., (xn, yn), where xi are feature vectors and yi are class

labels the k-nearest neighbors algorithm assigns a class label or predicts a target value for

an unlabeled data point x0 as follows:

1. Find the k training examples in D that are closest to x0 based on a distance metric.
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2. 2. If k = 1, assign the class label or target value of the closest neighbor to x0.

3. 3. If k ≥ 1, assign the class label or predict the target value of x0

based on a majority vote or average of the k nearest neighbors’ labels or values.

Reference [99] used 250 kHz sampling rate and 2 ms sample length of the input current to

analyze and test the DC arc fault using several machines learning based methods including

LSTM, DNN, SVM, DT, KNN, gated recurrent unit (GRU) as an RNN method, RF,

Naive Bayes (NB). The models are tested at different switching frequencies and current

levels of the loads. It is found that different models works better for different combination

of switching frequency and current levels. Reference [104] demonstrates the integration

of load classification with the KNN algorithm, complemented by the use of event-based

methodologies and sequential forward floating selection techniques.

2.4.4 Artificial Neural Network

A fully connected network, also known as a dense network or a multi-layer perceptron,

is a type of artificial neural network (ANN) in which each neuron is connected to every

neuron in the adjacent layers and is responsible for transforming the high-level features

into the final output. Let X be the input vector to the fully connected network, and let W

represent the weight matrix connecting the input to the first hidden layer. Each neuron in

the hidden layer receives the weighted sum of the inputs and applies an activation function

f to produce the output. The output of the first hidden layer can be computed as follows:

H1 = f(X ·W + b) (2.13)

where H1 is the output of the first hidden layer, b denotes the bias vector, and f is the

activation function.

One of the early attempts to utilize neural networks for arc fault detection was conducted

by Momoh et al. in 2003 [86]. In this study, the authors computed spectral energies and
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used them to train a neural network for fault identification. The anti-aliased digital voltage

signal, with a fixed window length of 10ms, was passed into a DSP module to calculate the

Fast Fourier Transform (FFT). Subsequently, ten components of the spectral energy were

fed into a fully-connected neural network to estimate the fault probability. By employing

prefiltering, power spectrum analysis, and applying an ANN to the output, Momoh et

al. took the first steps towards a high error-aware detection. No specific accuracy was

determined in the study. Ma et al. [105] developed a comparable network based on wavelet

decomposition at level 4. Their network architecture consisted of a 5-6-6-1 fully connected

network with two hidden layers, where the numbers denote the respective number of

neurons in each layer. Their research demonstrated that even with just five input neurons,

the network achieved an accuracy of over 95%, surpassing traditional approaches. However,

the examined cases were closely clustered. To overcome this,

J. Siegel et. al [24] used a 3-16-32-16-1 fully connected network with 4 different loads by

using the Discrete Fourier Transform, the spectral signature of the current (Mel Frequency

Cepstral Coefficients MFCC) and the Discrete Wavelet Transform as input and five types

of load as data. The model failed to detect unseen device configurations by testing

the previously trained model on loads in parallel. Han et al. [25] conducted three 2-5-1

three-layer artificial neural network with prejudging the categories on the waveform based

on the wavelet transformation. The loads were divided into resistive, resistive-inductive,

capacitive category. Wang et al. [20] used a similar way with prejudging before applying a

specific BP network with resistive category, capacitive-inductive category, and switching

category, but in difference with prejudging based on the FFT. Although both papers

achieved a 100 % accuracy in categorizing the faults, it is important to note that training

three networks and the associated processing costs of pretraining and a fully connected

network are quite high. The major drawback lies in the fact that the features used in

the network are handcrafted, and the overall quality of the network heavily relies on the

specific choices made during feature selection. To overcome this, a convolution neuronal
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network can be used to extract certain features.

2.4.5 Hidden Markov Model

Hidden Markov Model (HMM) is a statistical model widely used for modeling sequential

data, where the underlying system is assumed to be a Markov process with hidden states

original designed for speech models.

They consist of a set of hidden states: S = S1, S2, . . . , SN and a set of observed emissions:

O = O1, O2, . . . , OT . The probabilities are defined as:

Transition probabilities: A = [aij], 1 ≤ i, j ≤ N

Emission probabilities: B = [bik], 1 ≤ i ≤ N, 1 ≤ k ≤M

Initial state probabilities: π = [πi], 1 ≤ i ≤ N

The classification can be done by the viterbi algorithm by backtracking. The computational

complexity of the Viterbi algorithm is O(N ·K) for N states and a sequence of length K.

HMMs can be used in classification problems associated with noisy time-series data even

though they do not have exact domain knowledge of the problem. HMMs assume that the

system modeled is a Markov process with unobserved (hidden) states and that system

data is a noisy observation of this process [56]. HMM are well-designed for time series. It

shows good accuracy of 98.3% in [56]. However, only limited data is available (60 Tests in

1 study) and its training is based on Maximum a posteriori estimation [106].

2.4.6 Convolution Neural Network

Convolutional neural network (CNN) is an AI-based method that has been widely used

in image classification tasks. A convolutional layer applies a set of filters, denoted by W,

to the input X using the convolution operation denoted by (∗) [107]. Each filter is a set of

learnable parameters that are optimized during the training process. The output feature

maps, denoted as Y, are computed as follows:

Yi,j,k =
∑
m,n,l

Xi+m,j+n,l ∗Wm,n,l,k (2.14)
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where Yi,j,k is the value of the feature map at position (i, j) and channel k, Xi+m,j+n,l

represents the input value at position (i+m, j + n) and channel l, and Wm,n,l,k denotes

the weight of the filter at position (m,n) and channel l for the output channel k.

The pooling layers reduce the dimensionality of the feature maps by downsampling the

data. Common pooling operations include max pooling or average pooling. Let P denote

the pooling operation, and Z be the output of the pooling layer. The pooling operation

can be defined as:

Zi,j,k = P(Yi,j,k) (2.15)

Finally, the fully connected layers consolidate the high-level features extracted by the

convolutional and pooling layers to generate the final predictions.

Schweitzer et al. [48] and Zhang et al. [108] utilized a 2D CNN architecture based on

the LeNet5 model, employing frequency analysis to convert the data into 2D images in

the frequency domain. Schweitzer et al. employed the Short-Time Fourier Transform

(STFT) to calculate the DC spectrogram, which was then fed into the network. Their

network consisted of an average pooling layer as the first layer, followed by 2 convolutional

layers and 2 fully connected layers. Zhang et al. mapped the wavelet coefficients to a 2D

matrix and interpreted it as HSV color index. To make the network more stable, he used

image occlusion to make a new dataset. Omran et al. [33] and Wang et al. [71] adopted a

similar approach by mapping the raw data to a 2D matrix, treating it as an image. The

convolutional network was responsible for automatically extracting relevant features from

the data, followed by a fully connected network for classification. S. Lu [89] adapted a

2D feature map based on the normalized wavelet packet entropy with overlapping signal

windows. Compared different settings and suggested a 3 Max Poling layer with ReLU

activation function followed by 8-5-1 Fully connection. Thus, the optimal filter size for DC
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arc fault detection is proposed as 5x5. [33] showed that this approach has a high accuracy

(98% in the simulation). He used 3 convolution layers, the first and the last one with a 5x5

filter, each followed by a 2x2 pooling layer to extract the features, followed by a 4 fully

connected layer. The main drawback is that the network was only tested on simulated

DC data. Qi et al. [109] achieved high accuracy in their research, as reported in their

paper. They used a stacked CNN-layer network with a fully connected implementation

and demonstrated that a three CNN-layer network followed by a fully connected network

is enough to achieve a 99.908 % accuracy, but when the data is clean and provided by a

simulator. Li et al. [59] showed that instead of using short time Fourier transform (STFT),

the use of DWT as the input to the CNN model works better for arc fault detection.

There are certain drawbacks to consider. The 2D CNN architecture tends to have a

high number of parameters, leading to increased computational complexity. Moreover,

the effectiveness of the approach heavily depends on the method used to transform the

data into a 2D image, introducing additional preprocessing steps and computational costs.

Additionally, it is important to note that the data being processed is not an actual image

but rather a representation of the input data in a 2D format. Mapping the raw data to

a 2D matrix requires preprocessing steps, which can introduce additional computational

cost. The process of converting the data to an image format may result in a loss of

information or a change in the data representation. If deep CNN is used, it is easy to fall

into overfitting, resulting in poor effect. On the contrary, if only shallow CNN is used, it

cannot obtain good results due to insufficient fault feature extraction [55]. Even there is a

lacked of evaluation for DC systems, 1D CNNS shows an excellent feature extraction and

classification ability tested on AC data even with only a few layers. Wang et al. proposed

a novel CNN-based algorithm called ArcNet [11], which directly applies a 1D- CNN to

the raw current data. By adapting the AlexNet network, ArcNet is able to categorize

normal and abnormal load conditions using eight different types of generalized loads, with

31 ms of examination time per test sample at a 10 kHz sampling rate, making it feasible
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for real-time arc fault detection applications. four convolution layers each followed by

a MaxPooling layers and three FC layers were used. Moreover, the design was refined

to create Efficient-ArcNet [18], which utilizes EffNet building blocks to achieve an arc

fault detection accuracy of 99.36 % and reduces the runtime to 1.17 ms. Each block in

Efficient-ArcNet includes a 1D pointwise convolution using Ch/2 filters, followed by a 1D

depthwise convolution with a filter size of 5x1 and Ch/2 filters. Finally, a Max Pooling

layer of size 2x1 is applied. After the third block, the data is flattened and three fully

connected layers with 64, 32, and 8 neurons are added. The last layer serves as the output

layer, with 8 possible outcomes. This refinement makes it possible to run the algorithm

in real-time on a Raspberry Pi 4B. Shan et al. [63] composed the signal into eigenmode

function signals and calculated the Spearman correlation coefficient . A study [110] shows

that this approach fails when it comes to unknown combination of known single loads.

2.4.7 Attention Algorithm

The attention [111] method is a mechanism used in deep learning models to focus on

specific parts or features of the input data. It assigns different weights or importance values

to different elements of the input, allowing the model to selectively attend to relevant

information.

The attention mechanism can be defined mathematically as follows: Given an input

sequence X = (x1, x2, . . . , xn) and a target element Y = (y1, y2, . . . , ym), the attention

mechanism computes the attention weights A = (a1, a2, . . . , an), where ai represents the

weight assigned to the i-th element of X.

The attention weights are typically calculated using a scoring function, which measures

the similarity or compatibility between the target element and each element in the input

sequence. One common scoring function is the dot product:

score(xi, yj) = Wa · (xi ⊙ yj) (2.16)
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where ⊙ denotes element-wise multiplication and Wa is a learnable weight matrix. The

attention weights are obtained by applying the softmax function to the scores:

ai =
exp(score(xi, yj))∑n
i=1 exp(score(xi, yj))

(2.17)

Finally, the context vector C is computed as the weighted sum of the input elements:

C =
n∑

i=1

ai · xi (2.18)

Although Chabert et al. [112] utilize the raw current data, Wang et al. focus on the power

spectrum for arc fault detection. It is worth noting that in the case of power spectrum

analysis, selecting the appropriate frequencies can be advantageous without the need for

extensive preprocessing. When employing an attention mechanism, there is a trade-off

between losing a priori knowledge of the frequency band with the most significant changes

and increasing computational effort. An important aspect to highlight is that Wang et

al. estimated the power spectrum through the utilization of an autoregressive model,

leading to a decrease in computational effort. It is crucial to emphasize that the selection

of optimal parameters for the model is of utmost importance and must be approached

with careful consideration.

2.4.8 Other CNN Techniques

One of the newer publications, Yan et al. [51] from 2023, proposed a method with an

high accuracy of 99.88 %, called ArcNN. The network is applied to the raw current data

and is based on dilated convolution, which avoids the Max pooling Layer and allows every

neuron to have a higher receptive field. For an input time series sequence X = x0, x1, ..., xt
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and a filter f(), the dilated convolution is defined as:

F (t) = (X ∗ f)(t) =
k−1∑
n=0

f(i) ·Xt−d·i (2.19)

where d is the dilation factor, k represents the filter size.

This allows neurons to have a wider spread of historical data and eliminates the need

for pooling layers. To avoid neural network degradation, residual blocks were added The

residual block can be defined as follows:

y = F (x,W) + x, (2.20)

where x is the input to the block, F is a function that transforms the input, W are the

learnable parameters of the function, and y is the output of the block. The addition of

x to the output of F(x,W) creates a residual connection that allows gradients to flow

through the network more easily.

Principal component analysis (PCA) was applied to reduce the input dimensionality.

The resulting data was then fed to a single hidden layer network for classification. To

optimize the network, multiple layers were fused and quantized to 8-bit integers, resulting

in an overall size of 127 kb and a total of 15875 parameters.

The system’s major drawback is the expensive Jetson Nano board, which is not applicable

in industry, and the long communication latency. Therefore, the authors recommend

implementing the system using an FPGA. Also, shallow CNN networks showing good

results and don’t have the need of residual blocks which cost more computational effort.

2.4.9 Ensemble Machine Learning

Ensemble machine learning (EML) is a method that combines multiple machine learning

models (different features or different methods) to improve the accuracy and reliability

of predictions [101]. In the context of PV arc fault detection, ensemble methods can be
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used to combine the predictions of multiple individual machine learning models, such

as decision trees or support vector machines, to generate a final prediction that is more

accurate than any individual model.

The random forest method is a popular supervised machine learning algorithm used for

both classification and regression. Ensemble learning combines multiple individual models

to make predictions. The main idea behind random forests is to create an ensemble of

decision trees [113], where each tree is built using a different subset of the training data

and a random subset of features. This randomness helps to reduce overfitting and increase

the model’s robustness.

The reference in [54] used ensemble machine learning based algorithm for series DC

arc fault detection. The method is validated using experimental data from buck and

boost converter constant power loads (CPLs), and a set of time domain features (average,

median, variance, RMS, and difference between maximum & minimum value) are extracted

from the data to train the machine learning algorithms. The data sampling rate is 80

kS/s and window size is 2 ms long. A two-step algorithm is proposed to recognize the

arc fault in different load types. The stacking ensemble algorithm is found to maintain

superior performance compared to other EML algorithms. The prototype arc fault detector

is realized using low-cost hardware and has achieved remarkable versatility, reliability,

and low detection latency time. One of the main limitations of the paper is that the

experiments were conducted only on two specific types of constant power loads, and it

is unclear how well the proposed method would perform with other types of loads. The

detection latency time is also relatively long, ranging from 37 to 69 ms, and this may not

be sufficient for certain applications.

Another ensemble method that has been used for PV arc fault detection is the AdaBoost

algorithm, which combines multiple weaker classifiers into a stronger classifier. The basic

idea behind ensemble methods is that by combining the predictions of multiple models,

the limitations of any individual model can be overcome, thereby improving the overall
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accuracy and robustness of the predictions.

Decision Tree (DT) is an AI-based method that uses a tree-like model of decisions and

their possible consequences. The DT-based method uses a set of rules to classify the

system state as either normal or faulty. The DT-based method has a fast response time

and can handle large datasets. However, it requires a large amount of training data to

develop a reliable model [99,114].

Instead of relying on manually set decision methods, another approach is to process

different features individually and then combine their outputs. Liu et al. [70] utilized

features from the time domain, frequency domain, and energy entropy domain, each

processed by its own network. Remarkably, these networks shared the same structure as

the other networks. Chen et al. [49] employed DC Current and FFT decomposition with

CNN models and an attention algorithm. In order to capture both local and global features

simultaneously, each network utilized an Inception layer. The Inception architecture is

designed to effectively capture information at multiple spatial scales by incorporating

filters of different sizes within the same layer. It comprises parallel branches with varying

filter sizes, allowing for the capture of information at different levels of detail. Similarly,

Yu et al. [72] utilized two adapted AlexNets trained in parallel and applied them to the

same features. The overall accuracy of the Network was only 92%.

In contrast to this, the ensemble method employed different methods while utilizing the

same features. Rather than solely relying on CNNs, a variety of methods were employed.

V. Le employed in his papers [47] [54] [73] ensemble machine learning techniques. The

same feature was applied to different models such as SVM, KNN, RF, and ET, and their

outputs were fused for the final prediction. This approach achieved a high accuracy of up

to 99.9%.

Combining different features and methods can yield benefits due to the high variation

in the signal. It is crucial to carefully select features that provide high accuracy and offer

orthogonal information. Nevertheless, utilizing multiple features and methods significantly
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increases computational efforts. Additionally, employing too many features may lead to

overfitting and a reduction in accuracy.

One disadvantages of the CNN networks is that are not constructed for time data,

only using context of the neighboring data. They are not involving the ordered time

information. In contrast, recurrent neuronal networks like LSTM are constructed for time

series. By compression past input data and using it for the new processing cycle, it can

use information of the past for the actual output.

2.4.10 Recurrent Neural Network

LSTM (Long Short-Term Memory) is a type of recurrent neural network (RNN)

architecture that is designed to address the challenges of capturing and retaining long-term

dependencies in sequential data [107]. The key idea behind LSTM is the introduction of

memory cells and gating mechanisms. These mechanisms allow the LSTM to selectively

remember or forget information, which helps in preserving relevant information over long

sequences. The LSTM module consists of several components: the input gate, the forget

gate, the candidate value, the cell state, and the output gate.

ft = σ(Wf · [ht−1, xt] + bf ) (2.21)

it = σ(Wi · [ht−1, xt] + bi) (2.22)

c̃t = tanh(Wc · [ht−1, xt] + bc) (2.23)

ot = σ(Wo · [ht−1, xt] + bo) (2.24)

ct = ft ⊙ ct−1 + it ⊙ c̃t (2.25)

ht = ot ⊙ tanh(ct) (2.26)

In these equations, xt represents the input at time step t, ht−1 represents the previous

hidden state, ft, it, c̃t, and ot represent the gates. ct−1 represents the previous cell state,
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and ct and ht represent the updated cell state and output at time step t respectively. The

σ symbol represents the sigmoid activation function, which squashes the values between 0

and 1. The ⊙ symbol denotes element-wise multiplication. The LSTM-based method has

high accuracy and can handle time-varying data [99]. It requires a large amount of training

data to develop a reliable model. X. Liu [87] used in the previous mentioned paper a LSTM

layer to proceed the features extracted from the convolutional layer TL-LEDarcNet [32]

used the same for a 1D CNN with an classifier network trained without a LSTM. Lu

Xing [58]proceeded a LSTM on the STFT Yu et al. [72] used the eigenmatrix from the

CNN features to feed it into a LSTM.

Gated Recurrent Unit (GRU) is a type of recurrent neural network (RNN) architecture

which is commonly used in ANN for processing sequential data, such as time series or

natural language. The GRU is a variation of the standard RNN that addresses some of the

limitations of traditional RNNs, such as the vanishing gradient problem. In [115], GRU

has been used for detecting series arc fault in building integrated photovoltaic (BIPV)

systems.

2.5 Advantage and Limitations of Different Methods

When comparing the traditional methods and machine learning (ML) approaches for

arc fault detection, each comes with their advantages and limitations.

Traditional Methods like time or frequency domain analysis (using tools like Fast Fourier

Transform, FFT, and Wavelet Transform, WT) are appreciated for their straightforward

implementation in real hardware. However, they may not be well-suited for dynamic

systems as they’re hard to adapt to new scenarios. They also suffer from a high rate of

false positives due to noise interference, and a significant drawback is the need for manual

threshold adjustments, which can be subjective and limit their effectiveness.

Conventional Machine Learning Methods such as SVM and Random Forest (RF) offer

higher accuracy and can manage a moderate to high runtime. However, like traditional
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methods, they encounter difficulties when it comes to adapting to new systems. Ensemble

ML methods, which combine the predictions of multiple learning algorithms, may enhance

results but introduce complexity that could be a challenge to manage in the low-end

microcontrollers.

Advanced Machine Learning Methods including ANN and CNN are known for their high

accuracy levels. Nonetheless, they come with the cost of high computational complexity and

runtime, which might not be practical for implementation in commercial microcontroller

units (MCUs) due to limited resources. They also have the risk of missing samples,

potentially due large model size and the eventual large inference time due to its complexity

of computation.

In essence, while advanced ML methods offer high accuracy, they require significant

computational resources, and their complexity can make them less accessible for deployment

in hardware-constrained environments. On the other hand, traditional methods, while

simpler to deploy, may not perform as well in complex or noisy environments and lack

the adaptability that machine learning methods can provide. Conventional ML strikes a

balance with respectable accuracy and runtime, though it still faces challenges in adaptation

and potentially increased complexity with ensemble techniques.



CHAPTER 3: AC ARC FAULT DETECTION USING CNN-BASED ALGORITHM

In the pursuit of enhancing the electrical safety and reliability of AC systems, the

first objective is to develop an AC arc fault detection algorithm utilizing a CNN-based

algorithm. Convolution layers can automate the feature extraction from arc fault current

therefore the complex data preprocessing can be avoided. The algorithm is designed to

have an arc fault detection accuracy of more than 99%. The proposed method is verified

using Raspberry Pi 3B platform for arc fault detection.

3.1 Data Collection And Analysis

3.1.1 Arc Fault Experiment Platform

Figure 3.1: Arc Fault Data Collection Process and Circuit Arrangement [11].
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Since real arc faults are always random and difficult to capture or reproduce, a specific

test platform has to be used to generate arcs with different types of real loads. According

to the IEC60606 standard, a series arc fault experiment platform has been designed, as

shown in Fig. 3.1. The arcs can be generated in two different ways: one with the arc

generator, the other by using a cable specimen [11]. The arc generator can create the real

arc that occurs during the loose connection of an electric cable, whereas the arc generated

by the cable specimen can simulate an arc caused by insulation breakdown in the electric

circuit. Although it is allowed to choose either method as per the standard, both methods

have been adopted to closely simulate real scenarios. The input for this setup is a 220 V,

50 Hz power supply. One current transformer (CT) is used to sense currents carried by the

loads. Additionally, a well-designed hardware circuit board is used for DAQ rather than an

oscilloscope to ensure the DAQ is consistent with a commercial arc fault detection device.

The proposed DAQ board is based on the STM32H743 MCU, and the cut-off frequency of

the active low-pass filter is 20 kHz with gain. The original sampling rate of the collected

data is 83.33 kHz with a resolution of 12 bits. The recorded data are collected on board

and stored in an SD card, which can also be transferred to a PC or an online detection

device (such as Raspberry Pi) via the UART interface. Furthermore, a photoelectric sensor

is integrated to provide a timestamp to the data, aiding in post-processing.

3.1.2 Types of Loads and Visible Arc Features

Since arc fault protection is mainly used in residences, different household appliances are

selected as experimental loads. Eight different types of loads are considered for collecting

diversified load currents along with arc and normal conditions. The loads include resistive

load, capacitor start (air compressor type) motor, vacuum cleaner, fluorescent lamps,

electronic light dimmer (thyristor type), electronic switch mode power supply, electric

hand tool (drill), and halogen lamps. The specifications of the loads are complied with

the IEC62606 standard [116]. Each load has a sub-load category of different brands, for
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example, vacuum cleaner of Midea and vacuum cleaner of Philips brands. The arc and

normal load currents are collected from single load as well as from different loads connected

in parallel.

Although it is difficult to recognize most series arc data by visualization, nevertheless,

arc data can be visualized and understood in many ways. For example, Fig. 3.2 shows the

current waveforms and corresponding frequency spectrum of a resistive load. From the

time domain perspective, in the arc current there almost always has a current zero at the

”zero crossings” for a period of time as shown in Fig. 3.2 (a). This is because the arc is

extinguished as the voltage across the discharge gap decreases. Then, as the voltage rises,

the arc reignites and the current suddenly changes at that moment. From the frequency

domain perspective, the high-frequency component of arc current is higher than that of

non-arc current as shown in Fig. 3.2 (b). In order to avoid the interference of harmonic

currents of normal operating loads, 3 kHz - 12 kHz is set as the frequency bandwidth for

arc fault detection, which also allows using a relatively low sampling rate to save the RAM

required.

Moreover, whether it is a linear load or a non-linear load, its non-arc current waveform

has relative stability within a short observation window (such as 2-3 power cycles). However,

the arc current lacks significant stability. As shown in Fig. 3.2 (b), even in adjacent

periods, the current waveforms are significantly different, and no stable periods can be

observed. This is because the arc discharge itself is a very complicated physical and

chemical process, affected by various factors such as loads, electrode materials, and more.

Therefore, 2 or 3 cycles of the current signals can be taken as one calculation unit for the

algorithm.

The visible features mentioned earlier might be challenging to identify using

time-frequency domain approaches. However, AI methods can effectively learn these

features. Particularly with a large amount of data, the proposed method can achieve high

accuracy.
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Figure 3.2: Visualization of (a) the arc and the normal current of a resistive load, (b) its
corresponding frequency spectrum [11].

3.2 Description of Database

For this research, more than eight different types of loads are grouped into four major

classes based on their specific characteristics. All the loads which are resistive types have

nearly sinusoidal types of load currents and hence they are kept in the resistive group

(RE). Capacitor start motor, electric hand drill, and vacuum cleaner loads classified as

the motor (MO) type loads, because they have high inrush current during the starting

period. Halogen lamps and fluorescent lamps load currents look like arc when the gas is

discharged. Therefore, those two loads are categorized into gas discharge lamps (GDL)

load class. Power electronics type of loads such thyristor type electronic lamp dimmer and

switch mode power supply loads such as computers have wide bandwidth of harmonics
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in the load currents. These types of loads are kept in the power electronics-enabled (PE)

loads group.

The primary database is created by down-sampling to 10 kHz from the original data.

Each sample of data having 1 complete cycle of the current wave is converted into a 1D

vector. The dataset is composed of 9623 samples of arcing and 20528 samples of normal

load current resulting in a total of 30151 samples. Although the data number is relatively

large, they can be automatically labeled with the help of a computer program and the

timestamp provided by the photoelectric sensor. All data are labeled in such a way so that

the proposed algorithm can not only able to identify the arc and normal load currents but

also it can specify the load type (i.e., RE, MO, GDL, PE). The dataset is randomly split in

order to have 75% data for training, 10% data for validation and 15% data for testing. The

load categories, their corresponding labels, and number of respective training, validation,

and test samples are depicted in TABLE 3.1. The primary database is normalized between

0 and 1 within each of 200 sample points. Besides having the primary database of 10 kHz

sampling rate, to check the accuracy of arc detection with a different sampling frequency,

different databases were created containing same data samples sampled at 40 kHz, 5 kHz,

2.5 kHz, 2 kHz, and 1 kHz respectively. In each of the databases, the training, testing and

validation split is kept as per the primary database.
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Figure 3.3: Visualization of normal & arcing currents of a) resistive, b) electric Drill, c)
thyristor type dimmer, and d) switch-mode power supply
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Figure 3.4: t-SNE projection of arc fault data (all load categories) in the frequency domain.

Data for this research were collected using a real test bench designed according to the

IEC62606 standard [3], which includes a microcontroller unit (MCU)-based Arc Data

Acquisition (DAQ) board, as illustrated in Fig. 3.1. Arc faults were generated in two

ways: one with the help of an arc generator and the other by using a cable specimen. A

current transformer (CT) was employed to sense the load current. The arc generator was

equipped with a stationary graphite electrode and a movable copper electrode, and it was

placed in load branch 2. The database includes 30,151 samples across four major load

categories from a 220 V, 50 Hz power system, each representing one cycle and initially

sampled at 83.33 kHz. For research purposes, the data was downsampled to 10 kHz to

optimize arc fault detection, resulting in 200-point 1D time vectors per sample, normalized
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via Min-Max scaling.

Realistic arc faults were generated using both the arc generator and cable specimens to

emulate typical arcing conditions like loose connections and insulation failures. Resistors

were added in parallel to meet IEC62606 power requirements. The loads are categorized into

four groups: Resistive (RE), Motor (MO), Power Electronics-Enabled and Switch-mode

Power Supplies (PESMPS), and Gas Discharge Lamps (GDL). RE loads are near-sinusoidal

like heaters; MO includes high inrush current devices such as drills and motors; PESMPS,

with broad harmonic content, includes items like dimmers and computers; GDL covers

lamps. Each sample is thoroughly labeled - arcing currents assigned even numbers (0, 2, 4,

6, 8) and normal currents odd numbers (1, 3, 5, 7).

3.2.1 Characteristics of Arc Faults and Data Visualization

Arcing currents differ from normal load currents, exhibiting unique characteristics across

various load types. Some loads produce predominantly sinusoidal currents, whereas others

show flat shoulders and sharp changes, known as catastrophe points. Arcing currents

are characterized by distorted waveforms, reduced amplitude, increased high-frequency

harmonics, and shorter conduction angles. Importantly, normal currents from certain loads,

such as dimmers, may mimic arcing currents from others, like heaters. Arcing typically

extends the stagnation period-the time the current ’zero’ state or the flat shoulder length

in a cycle-and intensifies waveform distortions and high-frequency harmonics. Figure 3.3

compares normal and arcing currents across different loads.

For a deeper analysis, arc fault data has been converted to the frequency domain using

Fast Fourier Transformation (FFT) at a 40 kHz sampling rate. This higher sampling rate

is chosen to retain more high-frequency details compared to a 10 kHz rate. To make this

high-dimensional data more manageable, the t-Distributed Stochastic Neighbor Embedding

(T-SNE) method has been applied, as it is known for preserving data point relationships in

a low-dimensional space. The result, shown in Fig. 3.4, displays a widespread distribution
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of arcing and normal currents, highlighting the complexity of setting a clear threshold for

distinguishing between them in the frequency domain.

3.3 CNN-based Arc Fault Detection Methodology: ArcNet

To address the complex behavior of arcing current and to classify the arcing and normal

state of the load current, a CNN-based algorithm, ArcNet, has been proposed [11]. ArcNet

is designed to categorize the normal and abnormal conditions of load currents using eight

different types of generalized loads. There is a difference between the arcing current

waveforms and the current of normally operating circuits. Although it is sometimes very

difficult to differentiate between an arcing and a normal state of the current waveform,

often there are shoulders as well as high-frequency components of the current signal in the

arc current waveforms, indicating a clear difference from the usual load current. Sometimes

high-frequency currents at the zero-crossing position of the current waveshape are evident.

From these phenomena of currents, different useful features can be extracted. Additionally,

the current signal is a one-dimensional time series data. An arc can happen in any segment

at any time of the time series current data.

CNN-based models, e.g. AlexNet [117] were developed for image classification but can

also be used for one-dimensional time series data analysis. It can automatically extract

informative features as well as map the internal extracted features of the data sequence to

a fixed-length representation.

The classification is also included in the same network, leading to an end-to-end

framework. It is worth noting that CNN can be applied to the raw current data without

any data preprocessing such as discrete wavelet transforms, Fourier transform, or Chirp

Zeta transform. Given these advantages of CNN, a 1D CNN-based model, namely ArcNet,

has been built to detect arc and non-arc states as well as load types.

A CNN is a trainable hierarchical network composed of multiple stages and has

forward and reverse transmission. During the forward transmission, the input features are
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propagated through a few layers followed by an activation function in each layer, resulting

in output features in the output layer. During the reverse transmission process, the error,

which is calculated between the results of the forward transmission and the sample tag, is

transferred back to each layer through the error function. The network weights and bias

parameters are updated using the gradient descent formula.

For 1D convolution, if the input vector is f of length l and the kernel is k of length r,

then the i -th convolution of f and k is (f*k) using j -th kernel can be defined as:

(f ∗ k)(i) =
r∑

j=1

k(j).f(i− j +
r

2
) (3.1)

During the forward propagation in the fully connected (FC) layer having m inputs and n

outputs are computed using the following expression

Y = ReLU(ωn×mxm×1 + bn×1) (3.2)

where ω and b represents the weights and biases respectively. The non-linear activation

function, ReLU is given by,

ReLU(x) =Max(0, x) (3.3)

The categorical Cross Entropy is calculated using the following equation:

CategoricalCrossEntropy = − 1

N

∑
j

yj ∗ log(ŷj) (3.4)

where y represents the true label for a specific class and Å· represents the predicted label,

N is the total number of samples.

The network architecture of the proposed ArcNet is illustrated in Fig. 3.5. The proposed

network has 4 convolution layers and 4 MaxPooling layers followed by 3 fully connected

(FC) layers. Each convolution layer is followed by a Rectified Linear Unit (ReLU) and
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Figure 3.5: The network architecture of the proposed ArcNet model

a MaxPooling layer of pooling size 2x1 with stride 1 to reduce the feature map size for

computational efficiency. The input size is 200x1. The 1st & the 3rd convolution layers

have 96 filters each. 2nd convolution layer have 128 filters. The 4th convolution layer has

64 filters. All the filters in the 4 convolutional layers have the same kernel size of 5x1. At

the end of the last MaxPooling layer, 2 FC layers having 64, and 32 neurons respectively

are appended. The last MaxPooling layer is flattened before feeding into the 1st FC

layer. Each FC layer is followed by a ReLU operation. Each neuron in the FC layer is

connected with all the neurons in its previous layer with learnable weights. The response of

a hidden layer unit is calculated by summing over the product of each input signal and its

corresponding weight and passing the summation through a ReLU. The output layer has 8

neurons and it is followed by a Softmax layer for categorical multiclass classification (i.e.,

arc, non-arc and load category). The Softmax function S(yi), as expressed in equation

(3.5), turns the logit outputs scores (raw prediction values) into probabilities so that

the sum of all the probabilities becomes equal to 1. Finally, the one having the highest

probability is considered as the output category. Categorical cross-entropy is employed as
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the loss function in ArcNet.

S(yi) =
eyi∑
j
eyj

(3.5)

The ArcNet model is implemented in Keras using the TensorFlow backend. The ArcNet is

trained in 120 epochs with a batch size of 100 using adaptive learning rate. The adaptive

learning rate monitored the ”validation_loss” with a patience of 10. The initial learning

rate is set to 0.001 and the minimum learning rate is set to 0.00001.

3.4 Experimental Result and Analysis

This section illustrates the experimental results conducted to evaluate the performance

of the proposed ArcNet algorithm. In all the experiments the databases containing arc and

non-arc signals are used. The samples in the testing dataset are exclusive of the training

or validation datasets.

3.4.1 ArcNet Result and Analysis

ArcNet model is trained with the primary database. During the training time, the

labels of the 8 classes of the database are converted into categorical data using One-Hot

encoder. ArcNet is trained for 120 epochs with a batch size of 100 using the adaptive

learning rate strategy with an initial learning rate of 0.00001. The training and validation

accuracy plots are shown in Fig. 3.6. The validation accuracy closely follows the training

accuracy which validates that the model is not overfitting. While the overall classification

accuracy is 99.05%, the maximum arc fault detection accuracy of ArcNet is 99.47% in

terms of classifying arc and normal load currents. The confusion matrix for 10 kHz data

of different load types is provided in TABLE 3.2. The boldface values in the diagonal of

the confusion matrix (from top-left to the bottom-right) designate the samples/percentage

of samples which are correctly classified.

It can be observed that most of the resistive arc samples (9) are confused with arc of

other loads. This holds true for motor type loads and gas discharge loads too. Apart from
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Figure 3.6: Train and validation accuracy plot of ArcNet model.

this, it can be noted that a few samples are misclassified among arc and normal state

of the same load type. The numbers/percentage except in the diagonal represent all the

misclassified samples.

In machine learning based classification system, a model is evaluated using some

performance measures such as accuracy, precision, recall, and Fβ scores. These performance

metrics are calculated using the confusion matrix as given in TABLE 3.4 which is computed

from TABLE 3.2 by grouping all the classified arcs as arc category and all the classified

normal currents as normal category. The precision of ArcNet is 99.65% and recall is 98.68%

whereas the arc detection accuracy is 99.47%. The F0.5 score of the model is 99.16%

and F0.95 score is 99.60%. Near perfect values of precision, recall and accuracy validates

ArcNet as a good model for arc fault detection applications. It is also evident from the

table that 98.68% samples of arc of the 4 group of loads are correctly recognized as arc.

On the other hand, 99.84% normal samples are correctly predicted as normal currents.
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Table 3.3: 4-fold cross-validation of ArcNet using 10 kHz data.

k-Fold Load group &

arc classification

accuracy (%)

Overall

accuracy

(%)

1 99.15 99.69

2 98.97 99.32

3 98.94. 99.47

4 99.00 99.29

Mean 99.02 99.44

Table 3.4: Precision, recall, & accuracy of the ArcNet model (10 kHz)

Predicted Class
Total

A
ct

ua
lC

la
ss Arc Normal

Arc 1419 19 1438
Normal 5 3070 3075
Total 1429 3089 4513

Precision = 99.65%
Recall = 98.68%

Accuracy = 99.47%

3.4.2 Cross-validation

Cross-validation is a resampling procedure used in machine learning models to check

the performance metric of the model. In this research, k-fold cross-validation has been

used where k=4. The whole dataset is randomly shuffled and split into 4 groups. Each

group of the dataset is evaluated while the model is trained with the remaining 3 groups.

The overall result of the 4-fold cross-validation is tabulated in Table 3.3. Using each fold

of data, the load as well as arc fault classification accuracy along with overall arc fault

classification accuracy are determined and tabulated as shown in the table. Using the
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proposed ArcNet model and the 10 kHz data, the achieved mean accuracy for load group

and arc fault classification accuracy is 99.02% and the overall mean accuracy of arc fault

detection is 99.44%. These results indicate the suitability of the ArcNet algorithm for

practical use.

3.4.3 Analysis for Misclassified Samples

Despite of having near perfect arc fault detection accuracy of ArcNet (10 kHz), a few

samples are misclassified. This section digs deeper into the very cause of misclassification

by the proposed ArcNet. By analyzing closely, three samples have been selected to find

out the reason of misclassification. The first sample is labeled as resistive arc which has

been predicted as normal signal (refer to Fig. 3.7). Second sample is labeled as resistive

arc and is correctly classified. The final feature vectors after the 4th max pooling layers of

those two samples are extracted. While both samples are classified as resistive loads the

first sample is misclassified. A closer look in to the two samples reveal that even though

there is a minor signature of arc in the first sample, both a and b samples have a lot of

similarity in them which is very obvious from their corresponding extracted features (Fig.

3.7. c & d). Clearly the feature vectors of the first two samples are similar. This makes

the model to predict the first sample as normal signal. There are a few other samples in

the database which have very minor arc signatures and thus misclassified as normal. In

the similar fashion, some current signals of one load type have similarity with the load

current of other load group and causing a misclassification by ArcNet.

3.4.4 Model Optimization Based on Sampling Rate and Runtime

The reduction in the sampling frequency of the data results in the reduction of the

input size of the CNN which, in turn, is supposed to reduce the computation time as well

as less burden to the RAM. This could lead to a simpler network structure as well. In

this ablation study the sampling frequency of the data is varied and tested with ArcNet

or modified ArcNet(s) to check the performance as well as to find the optimal network
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loads are correctly recognized as arc. On the other hand, 
99.84% normal samples are correctly predicted as normal load 
currents.   

B. Analysis for Misclassified Samples 

Despite of having near perfect arc fault detection accuracy of 
ArcNet (10kHz), a few samples are misclassified. This section 
digs deeper into the very cause of misclassification by the 
proposed ArcNet. By analyzing closely, three samples have 
been selected to find out the reason of misclassification. The 
first sample is labeled as resistive arc which has been predicted 
as normal signal (refer to Fig. 7). Second sample is labeled as 
resistive arc and is correctly classified. The third sample, which 
is accurately predicted as resistive arc, is chosen to see the 
obvious arc features present in the signal. The final feature 
vectors after the 4th max pooling layers of those three samples 
are extracted. While all three samples are classified as resistive 
loads the first sample is misclassified. A closer look in to the 
first two sample reveals that even though there is a minor 
signature of arc in the first sample, both a and b samples have a 
lot of similarity in them which is very obvious from their 
corresponding extracted features (Fig. 7. d & e). The third 
sample has a very clear arcing signature in it and its extracted 
feature vector is shown in Fig. 7.f. The presence of an arc 
signature in a signal makes its extracted to be different than the 
one having no arc.  

Clearly the feature vectors of the first two samples are similar 
but are different from the third one. This makes the model to 
predict the first sample as normal signal. There are a few other 
samples in the database which have very minor arc signatures 
and thus misclassified as normal. In the similar fashion, some 
current signals of one load type have similarity with the load 
current of other load group and causing a misclassification by 
ArcNet. 

C. Model Optimization Based on Sampling Rate and Runtime 

The reduction in the sampling frequency of the data results 
in the reduction of the input size of the CNN which, in turn, is 
supposed to reduce the computation time as well as less burden 
to the RAM. This could lead to a simpler network structure as 
well. In this ablation study the sampling frequency of the data 
is varied and tested with ArcNet or modified ArcNet(s) to check 
the performance as well as to find the optimal network 
architecture and optimal sampling frequency of the data. As the 
proposed arc detection models consider the raw input data for 
classification, number of inputs to the model would be 
decreased with the decrease of the sampling frequency of the 
data. ArcNet architecture is modified for different data 
sampling rate by deleting convolution and max pooling layers 
keeping the same FC layers for all. All the proposed arc 

detection models along with corresponding fault detection 
precisions are illustrated in TABLE V. In the CNN architecture 
column of the above table in 𝐶ଵ

ଽ଺, the letter C indicates conv 
layer, subscript 1 indicates 1st Conv layer, and the superscript 
96 indicates that particular conv layer has 96 filters each of 
them having a kernel size of 5x1. Letter M indicates Max 
Pooling layer of size 2x1. FC (64, 32,8) denotes 3 fully 
connected layers having 64, 32, and 8 neurons respectively. 
Besides, the last FC layer is the output followed by Softmax 
function. 

The models are trained from the scratch and the 
hyperparameters are fine-tuned to get the best possible arc fault 
detection accuracies for 40kHz, 5kHz, 2.5kHz, 2kHz, 1.5kHz, 
and 1kHz data. Experimental results indicated that as the data 
sampling rate is reduced, the prediction accuracy starts 
decreasing except the models for 40kHz and 10kHz data both 
of which ensued maximum arc fault detection accuracy of 
99.47%. Although the accuracies of the first two models are 
same, the later model gave an added benefit which is the 
reduction of the runtime because of the smaller input size.  The 
model structure for 2kHz, 1.5kHz and 1kHz data are kept same 
but simpler compared to that of 10kHz model. In each case, 
ArcNet models are trained from scratch with the adaptive 
learning rate and then tested with the corresponding test dataset.  

The drop of accuracy with the declination of the data 
sampling rate is obvious and expected. Because, reduction in 
the sampling frequency reduces the number of data points in 
one cycle which essentially causes to lose some important 
arcing signature in the current signal and the number of 
extracted features is hampered as well.  

        

   

    
     

Fig. 7. Feature visualization for misclassified samples by ArcNet. a) 
resistive arc recognized as normal current; b) resistive normal current 
correctly identified; c) feature vectors of a;  d) feature vectors of 
sample b.

TABLE V 

ARC FAULT DETECTION MODEL ARCHITECTURES, ACCURACY, AND DETECTION TIMES FOR VARIOUS DATA SAMPLING RATES 
 

Sampling 
rate 

(kHz) 

Proposed CNN architecture for arc fault 
detection 

Arc fault 
detection 
accuracy 

(%) 
40 𝐶ଵ

ଽ଺𝑀𝐶ଶ
ଵଶ଼𝑀𝐶ଷ

ଽ଺𝑀𝐶ସ
଺ସ𝑀 + 𝐹𝐶(64, 32, 8) 99.47 

Figure 3.7: Feature visualization for misclassified samples by ArcNet. a) resistive arc
recognized as normal current; b) resistive normal current correctly identified; c) feature
vectors of a; d) feature vectors of sample b.

Table 3.5: Arc fault detection model architectures, accuracy, and detection time for various
sampling rates.

Sampling
rate (kHz)

Proposed CNN architecture for arc fault
detection

Arc fault detection
accuracy(%)

40 C96
1 MC128

2 MC96
3 MC64

4 M + FC(64, 32, 8) 99.47
10 C96

1 MC128
2 MC96

3 MC64
4 M + FC(64, 32, 8) 99.47

5 C96
1 MC96

2 MC64
3 M + FC(64, 32, 8) 99.45

2.5 C96
1 MC96

2 MC64
3 M + FC(64, 32, 8) 99.29

2 C96
1 MC64

2 M + FC(64, 32, 8) 99.00
1.5 C96

1 MC64
2 M + FC(64, 32, 8) 98.69

1 C96
1 MC64

2 M + FC(64, 32, 8) 97.56

architecture and optimal sampling frequency of the data. As the proposed arc detection

model considers the raw input data for classification, number of inputs to the model

would be decreased with the decrease of the sampling frequency of the data. ArcNet

architecture is modified for different data sampling rate by deleting convolution and max
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pooling layers keeping the same FC layers for all. All the proposed arc detection models

along with corresponding fault detection accuracies are illustrated in TABLE 3.5. In the

CNN architecture column of the table, in C96
1 the letter C indicates conv layer, subscript 1

indicates 1st conv layer, and the superscript 96 indicates that particular conv layer has

96 filters each of them having a kernel size of 5x1. Letter M indicates Max Pooling layer

of size 2x1. FC (64, 32,8) denotes 3 fully connected layers having 64, 32, and 8 neurons

respectively. Besides, the last FC layer is the output which is followed by Softmax function.

The models are trained from the scratch and the hyperparameters are fine-tuned to get

the best possible arc fault detection accuracies for 40 kHz, 5 kHz, 2.5 kHz, 2 kHz, 1.5 kHz,

and 1 kHz data. Experimental results indicated that as the data sampling rate is reduced,

the prediction accuracy starts decreasing except the models for 40 kHz and 10 kHz data

both of which ensued maximum arc fault detection accuracy of 99.47%. Although the

accuracies of the first two models are same, the later model gave an added benefit which

is the reduction of the runtime because of the smaller input size. The model structure for

2 kHz, 1.5 kHz and 1 kHz data are kept same but simpler compared to that of 10 kHz

model. In each case, ArcNet models are trained from scratch with the adaptive learning

rate and then tested with the corresponding test dataset.

The drop of accuracy with the declination of the data sampling rate is obvious and

expected. Because, reduction in the sampling frequency reduces the number of data points

in one cycle which essentially causes to lose some important arcing signature in the current

signal and the number of extracted features is hampered as well. Therefore, the drop of

the accuracy is reasonable. Nevertheless, the recognition accuracy is very high (97.56%)

even with a very low sampling frequency of 1 kHz. This indicates two things. Firstly,

the decrease in the sampling frequency did not cause a loss of significant arc signatures.

Secondly, the proposed models are robust. Even with a lower sampling frequency of only

1 kHz of the data the reduction in the arc fault detection accuracy is not very significant.

However, the highest accuracy of the 10 kHz ArcNet model evidenced that the model
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could be an optimal model for arc fault identification.

In this research, CNN based ArcNet algorithm considers raw data of different load

currents to classify the arc and normal state. Features are extracted directly from the raw

input data and thus it avoids extra data preprocessing like DFT, DWT, or MFCC which

requires extra processing time and increases the computational complexity.

Arc fault detection in real-time scenarios requires faster detection time so that the faulty

circuit can be isolated from the healthy portion as quickly as possible without having any

damage or loss of property as well as human. For example, the arc fault should be cleared

within 0.12s to 1s according to IEC and UL standards. To evaluate such performance of

the ArcNet, pre-stored data has been used to verify the algorithm on Raspberry Pi 3B

V1.2 (served as an edge device), which has a 1.2 GHz 64-bit quad-core Arm V8 Cortex-A53

CPU. During the runtime checking process in the Pi, the data samples are read from the

stored memory of the edge device and then tested by fetching every data sample into

the proposed ArcNet model. The reported runtime is the average runtime of all the test

samples. The model with 40 kHz sampling rate on an average takes 51 ms to classify every

sample. The average runtime per sample reduces with the reduction of the data sampling

rate. The average runtime per sample for 10 kHz, 5 kHz, 2.5 kHz, 1.5 kHz, and 1 kHz

are 31, 26, 25.5, 21, and 20 ms respectively. This analysis indicates that the proposed

models are suitable for real-time operation of arc fault detection application. It is to be

noted that, detection runtime is not reduced much with the reduction of the sampling

frequency unless the number of convolution layers and max pooling layers are reduced.

This is because a convolution layer consumes the major computation time. Therefore,

the reduction of sampling frequency from 10 kHz to 5 kHz, which is associated with a

reduction of the number of conv layers, reduces the runtime by 5ms whereas the reduction

of sampling rate from 5 kHz to 2.5 kHz reduces average runtime by only 0.5 ms which is

insignificant.

An optimal arc detection model should have maximum possible arc detection accuracy
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and minimum possible detection time per sample. UL standard for arc detection specifies

that if the load current becomes at most 63 A of a 230 V system, the maximum break time

could be 120 ms for a series ac arc fault. The maximum break time for a 120 V system

with the same load current is 140 ms. The arc fault detection accuracy and detection time

per sample for different arc detection models are plotted in Fig. 3.8. From the plot it can

be seen that the prediction accuracy is maximum with the model having 10 kHz sampling

rate. The hardware implementation of this model also indicates only 31 ms per sample

detection which satisfies the UL standard. Therefore, this study recommends the model of

10 kHz sampling rate as the proposed optimal arc fault detection model (ArcNet) which

have 4 conv layers, 4 max pooling layers, and 3 FC layers as depicted in Fig. 3.5.

Figure 3.8: Classification accuracy and runtime vs data sampling rate. Mentioned runtime
is obtained using Raspberry PI 3B.
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3.5 Comparison of ArcNet Attributes With Prior Methods

In order to evaluate and compare the ArcNet method with the other published methods,

a few key evaluation metrics are established.

1. Can the detection method achieve high recognition accuracy, faster detection speed

which can be implemented in real-time applications and should detect arc fault for a

wide variety of load types?

2. Does the method consider signals of a wider bandwidth so that the signal can contain

more detailed information of arcs which will help to avoid nuisance tripping when

some interference is present in the current signal?

3. Is the method able to detect the most common types of arcs including arc from a

loose connection of cables and those caused by the failure of the insulation?

A comparative analysis of the proposed ArcNet [11] method and other methods has

been summarized in TABLE 3.6. It can be seen that the proposed ArcNet algorithm can

have arc detection precision of 99.47% and considered 8 types of loads in the database.

The accuracy of ArcNet is slightly less compared to some other methods indicated in

the comparison table. This is because the ArcNet focused on the robustness of the fault

detection for a wide variety of loads instead of focusing on smaller number of loads. A

model with a fewer number of loads in the database though makes the model easier to

detect arc faults but the algorithm loses its robustness and makes it impractical.

A data sampling rate of 10 kHz, has been considered in the ArcNet database so that

the raw input current signal can have detailed but optimal features of the arc to avoid

unwanted tripping for interferences. Two types of arc generation methods, including loose

connection of cables and failure of the insulation, are considered in the database so that

the model can learn the most common types of arc faults and can detect them in real-world

applications.
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3.6 Summary

In summary, a novel convolutional neural network-based algorithm named ArcNet is

proposed. ArcNet, comprised of four convolutional layers followed by three fully connected

layers, is designed for series AC arc fault detection. Using samples of 8 types of generalized

household load currents, ArcNet achieved an arc fault detection accuracy of 99.47% and

load classification along with arc fault detection accuracy of 99.05% for 4 major load

groups. 4-fold cross-validation is performed for the ArcNet model with the 10 kHz data

which also showed a mean overall arc fault detection accuracy of about 99.44%. Besides,

modified ArcNet models are proposed which can achieve a reasonably good performance

with a smaller sampling rate of the training set. The arc generation method of this

research simulated the most common arc situations including the loose connection of cable

and insulation breakdown that happens in the real-world. Therefore, the proposed arc

identification algorithm will be more robust in nature in real-world applications. Besides,

a higher number of load types have been considered for the experiment to make it more

appropriate for practical application. The proposed algorithm can not only detect arc

faults but also can identify the load types for which the fault has occurred. ArcNet model

is implemented using Raspberry Pi 3B. The time taken to examine one test sample by

ArcNet is only about 31 ms at a 10 kHz sampling rate which indicates the feasibility of

this algorithm in real-time arc fault detection applications.

Even though a satisfactory arc fault detection accuracy has been achieved by ArcNet,

the computational efficiency is still very high for low-end MCUs. Therefore, it needs further

optimization. Future work of this research includes model optimization and compression

using a lightweight CNN algorithm and knowledge distillation method.



CHAPTER 4: MODEL OPTIMIZATION USING EFFICIENT & LIGHTWEIGHT CNN

ALGORITHM

The use of traditional CNN-based algorithms can help to get rid of complex data

preprocessing time and yield a high arc fault detection accuracy. Despite their effectiveness,

the computational complexity of these models makes them unsuitable for implementation

in low-cost commercial microcontroller units (MCUs) having limited computing resources

[26, 118]. Slower models may miss critical faults and also safety and reliability may be

hampered. The attempt to model simplification by reducing the sampling frequency to

too small [71] or lowering the window size to less than 1 cycle hurts efficient arc fault

detection.

Therefore, developing an efficient, lightweight model for arc fault detection is crucial.

Advanced AI techniques like pointwise and depthwise separable convolutions [34, 36] can

help to build lightweight and efficient AI models. Additionally, model compression methods

like parameter pruning and knowledge distillation [37] can minimize model size, enhance

efficiency, and reduce latency.

In this chapter, an optimized arc fault detection algorithm is proposed that combines

a lightweight CNN architecture with a teacher-student knowledge distillation technique.

This model achieves high accuracy in arc fault detection. Furthermore, it is optimized

using the TensorFlow Lite (TF-Lite) tool, resulting in a reduced binary size suitable for

implementation in resource-limited edge devices. The performance of the optimized model

is evaluated on a Raspberry Pi 4B device, demonstrating its practicality and real-time

operational capability.

The key contributions of this work are as follows:
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1. An extremely fast and lightweight AI algorithm, LArcNet, has been proposed to detect

series AC arc faults using raw current data. This model combines a teacher-student

knowledge distillation method with an efficient CNN architecture, achieving a high

fault detection accuracy of 99.31%. By avoiding the pitfalls of traditional bottleneck

designs, it ensures low computational demand. LArcNet was trained and tested

using real-world data collected from a test bench as per the IEC62606 standard.

2. To optimize LArcNet for real-time applications on resource-constrained devices,

model compression techniques such as knowledge distillation and mixed precision

training have been employed. These enhancements, coupled with TensorFlow

Lite optimization, have substantially reduced the model’s memory usage and

computational overhead. The optimized LArcNet model achieved an inference

latency as low as 0.20 ms per sample when deployed on a Raspberry Pi 3B MCU.

With its lightweight design and rapid response time on embedded devices, LArcNet

is exceptionally well-suited for real-time fault detection applications.
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Figure 4.1: Neural network model building blocks a) conventional CNN, b) Mobile-ArcNet
[34], c) EffNet [36] and d) LArcNet. ’DW’ means depthwise convolution, ’MP’ refers to
Max Pooling, ’Ch’ denotes the number of output channels. The number of strides was set
to 2.
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Figure 4: The framework of teacher-student model for knowledge distillation 

 
Proposed ArcNet-Lite Model: Our proposed ArcNet-

Lite model has its architectural building blocks similar to 
that of Efficient-ArcNet building blocks. However, the 
ArcNet-Lite uses the teacher-student knowledge distillation 
technique of a deep neural network to make the proposed 
model extremely lightweight. In the knowledge distillation 
technique, there is a large teacher network that generally su-
pervises a small student network which mimics the teacher 
network to achieve comparable or even superior perfor-
mance. There are three main components in the KD model 
namely knowledge, teacher-student architecture, and distil-
lation of the knowledge. A generic framework of the teacher-
student model for knowledge distillation is depicted in Er-
ror! Reference source not found.. ArcNet-Lite used re-
sponse-based knowledge. The proposed model ArcNet-Lite 
consists of a strong teacher model and a comparatively 
weaker student model. The teacher model is stronger so that 
it can gain as much information as possible from the data. 
The knowledge is then distilled and transferred to the student 
model which has a very simpler architecture however, the 
main body structure (number of CNN and FC layers) of the 
student model is similar to that of the teacher model. The 
student model has a reduced number of filters and neurons 
in the corresponding layers of the teacher model. 

In the ArcNet-Lite model, the output layer has the ‘softmax’ 
function which converts the logits of each class, 𝑧௜, into a 
probability, 𝑝௜  by comparing the logits of each class with 
other logits. 
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where T is the temperature. The value of T is usually set to 
1. If the value of T is increased to a higher value, we get a 
softer distribution of probability over other classes.  The 
teacher model is trained with a transfer set by setting a high 
value of T in its softmax function. The knowledge is then 
transferred to the distilled model by training it using a soft 

target distribution in the transfer set for each case. For known 
correct labels of all or part of the transfer sets, this technique 
can be improved by training the distilled model by using a 
weighted mean of 2 objective functions to generate the exact 
labels.  The first objective function, the cross-entropy having 
soft targets in the distilled model, is computed by using the 
same high temperature as used by the teacher model for soft 
target.  The 2nd objective function is the cross-entropy with 
the correct labels which is computed by using the same logits 
as used in the softmax function of the distilled model. The 
temperature, however, is now set to 1. The cross-entropy 
gradient dC/dzi of the distilled model can be expressed as  
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here, ui denotes the logits of the teacher model, and qi indi-
cates the probabilities of the soft targets with transfer train 
temperature of T. For high temperature equation (2) can be 
approximated as given below: 
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Assuming the logits to have zero-mean for each transfer case 
where, ∑ 𝑧௝ = ௝ ∑ 𝑢௝ = 0 ௝ , equation (3) can be simplified 
further to:  
ఋ஼

ఋ೥೔
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ே்మ (𝑧௜ − 𝑢௜)           (4) 

 

Given that the logits are zero-mean for each transfer case, 
the distillation is considered equivalent to minimize ½(zi-vi)2

 

in the high limit of the temperature T. The distillation pays 
very less attention to logits matching at low values of the 
temperature. Therefore, the loss function of the teacher 
model is completely unconstrained for training and could be 
noisy. Furthermore, a negative value of the logits furnishes 
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Figure 4.2: Framework of the teacher-student knowledge distillation process.

4.1 Proposed Methodology of Model Optimization

This section elaborates on the fundamental building block of LArcNet, architecture

and methodology underlying the proposed LArcNet model. LArcNet integrates advanced

design strategies from both efficient neural network architectures, such as EffNet [36] and

network compression techniques including knowledge distillation. The LArcNet model is

constructed using the knowledge distillation method and a series of LArcNet blocks (as

shown in Fig. 4.1(d)), each with varying numbers of filters. This hybrid approach combines

the strengths of these methods to optimize performance and reduce computational load.

The model is compared against a baseline CNN model constructed using conventional

CNN blocks and the Mobile-ArcNet model which was constructed following the MobileNet

architectural block (Fig. 4.1(b)).

4.1.1 Efficient Model Building Block of LArcNet

The LArcNet model employs an efficient network architecture inspired by the EffNet

block [36] (illustrated in Fig. 4.1(d)). Designed to minimize computational complexity,

the LArcNet block begins with a pointwise convolution layer, followed by depthwise

convolution and Max Pooling in the subsequent sub-layer. This configuration significantly

reduces computational demands and the number of trainable parameters compared to
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traditional CNN structures. Notably, the pointwise convolution layer uses half the number

of filters typically found in standard CNN models. The depthwise separable layer, sized

5x1, maintains the initial filter count and is followed by a 1D Max Pooling layer with a

pool size of 2. A subsequent 2x1 convolutional layer employs the full filter count with a

1D stride of 2. Diverging from MobileNet’s design, LArcNet avoids stringent bottleneck

structures, leading to a lighter model. Focused on 1D time-series data, LArcNet omits

certain sub-layers from the EffNet block. The experiments demonstrated that a 5x1 kernel

size in the depthwise sub-layer achieves a better balance between computational demand

and performance efficiency than the 3x1 size.

4.1.2 Knowledge Distillation Algorithm

The LArcNet model employs a teacher-student knowledge distillation (KD) method,

a model compression strategy that improves efficiency significantly. In this paradigm, a

complex teacher network trains a simpler student network to replicate its functionality, often

achieving comparable performance. This KD technique includes three core components:

the knowledge, the teacher-student framework, and the distillation process, depicted in

Fig. 4.2. LArcNet uses response-based knowledge, where a robust teacher model imparts

refined information to a simpler student model. The student model mirrors the teacher

CNN and fully connected (FC) layers but with fewer filters and neurons, maintaining

essential structural features.

The output layer of LArcNet uses a ’softmax’ activation function, which transforms

class logits, zi, into normalized probabilities, pi, ensuring that the probabilities sum to

one. This process is described by pi = e
zi
T∑

j
e
zj
T

Here, T is the temperature parameter in the

softmax function. Raising T creates a softer distribution over classes, smoothing the output

probabilities. The teacher model is trained with a higher T to produce these softened

distributions, which are then used as targets for training the student model. When labels

are known, the student’s training can be enhanced by combining the cross-entropy from
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the softened targets with the cross-entropy from the actual labels, using logits at T = 1.

Suppose the comprehensive teacher model yields a softened probability denoted by

qi and possesses logits labeled as ui. The cross-entropy loss in this framework can be

expressed by C(x) = −∑i qi(x) log pi(x) where, x is the input feature. The cross-entropy

gradient ∂C
∂zi

, of the distilled model [37,119] can be expressed as

∂C

∂zi
=

∂

∂zi

(
−
∑
i

qi log pi

)

= −qi
1

pi

∂

∂zi

 e
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T∑

j e
zj
T


= −qi

1

pi

 1
T
e

zi
T
∑

j e
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T

(
e

zi
T

)2
(∑

j e
zj
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)2


=
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T
(pi − qi)

=
1

T

 e
zi
T∑
je

zj
T

− e
ui
T∑

je
uj
T



(4.1)

where, ui represents the logits derived from the teacher model, while qi signifies the

softened target probabilities calculated at a transfer training temperature T . When

employing a high temperature setting, the gradient of the cross-entropy loss with respect

to the logits, zi, can be approximated as:

∂C

∂zi
≈ 1

T

(
1 + zi

T

N +
∑

j
zj
T

−
1 + ui

T

N +
∑

j
uj

T

)
(4.2)

Under the assumption of zero-mean logits for each transfer case as per Hinton et al. [37],

where
∑

j zj =
∑

j uj = 0, equation (4.2) simplifies to:

∂C

∂zi
≈ 1

NT 2
(zi − ui) (4.3)

In the distillation process, assuming logits have zero mean for each transfer case, the
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focus is on minimizing the squared error 1
2
(zi−ui)2 as the temperature T approaches higher

values. At lower temperatures, emphasis on matching logits decreases. The teacher model’s

loss function is unconstrained during training, potentially introducing noise. Notably,

negative logits are valuable as they reveal insights about the knowledge encoded by the

teacher model.KD Teacher & Student Network for ArcNet-Lite (IEEE TIA) 
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Max Pooling 2x1 1D Depthwise Convolution; 
filters=Ch/2 @ 5x1 
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1D Pointwise Convolution; 
filters=Ch/2 @ 1x1 
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64 
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64 
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200x1 
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    8    
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200x8 49x16 
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Ch=16 Ch=32 Ch=32 Figure 4.3: Architectures of the LArcNet (a) teacher and (b) student networks consist of
three LArcNet blocks. Each block includes a pointwise convolution with Ch/2 filters, a
5x1 depthwise convolution, followed by a 2x1 Max Pooling layer, and a 2x1 convolution
with Ch filters. Both architectures conclude with three fully connected layers, including
an output layer with 8 neurons. The student model mirrors the teacher structure but with
fewer filters and neurons.

4.1.3 Network Architecture of LArcNet Model

The LArcNet model includes both a teacher and a student network, each featuring

three LArcNet blocks and three fully connected (FC) layers. The teacher network uses

256, 512, and 512 filters across the blocks, and the FC layers have 128, 64, and 8 neurons,

respectively. The student network, designed for efficiency, uses fewer filters (16, 32, & 32)

and maintains the same neuron configuration in the FC layers (64, 32, and 8) to balance
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performance and simplicity without sacrificing accuracy. Figures 4.3 and Table 4.1 depict

their architectures data flow respectively.

An aggressive bottleneck for data flow through a network can cause a huge reduction of

significant features along the way. This might have a destructive effect when applied to a

smaller deep model. The LArcNet model reduces computational complexity and kFLOPs

by using an efficient block design and knowledge distillation, which minimizes the count

of trainable parameters. It avoids the high bottleneck factor seen in the Efficient-ArcNet

model, which has a factor of 4 (shown in red in Table 4.1). Instead, the student model of

LArcNet limits the bottleneck factor to a maximum of 2 (highlighted in green), facilitating

smoother data flow and enhancing efficiency. This approach is crucial because narrower

models cannot afford significant filter reduction without losing important features.

4.2 Experimental Settings and Implementation

This section details the setup and implementation of the LArcNet model. The dataset

was split into training, testing, and validation sets in a 75:15:10 ratio, with labels converted

to OneHot encoding. Model inputs consisted of raw current data sampled at 10 kHz,

normalized using min-max normalization.

The training process utilized a mixed precision system, combining 16-bit half-precision

for data processing and 32-bit single-precision for weight updates and loss scaling. The

LArcNet teacher and student models were trained for 300 epochs with a batch size of

100, using an Adam Optimizer at a learning rate of 0.001. Parameters for the distillation

process included an alpha value of 0.5 and a temperature of 20, facilitating nuanced

guidance and preventing overfitting. Training and validation accuracies and losses for both

models were closely monitored, as shown in Fig. 4.4.

Baseline and Mobile-ArcNet models underwent 250 epochs of training with an adaptive

learning rate strategy starting from 0.001, adjusted based on validation loss. Both models

used a batch size of 100, a patience parameter of 10, and a reduction factor of 0.1 for
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learning rate adjustments.

All models were trained using TensorFlow with Keras, employing categorical crossentropy

as the loss function and ReLU in the convolution layers. The output layers used the

softmax activation function. Mixed-precision training involved converting data samples

to 16-bit floating points for efficiency. Extensive hyperparameter tuning optimized the

model’s performance.

Table 4.2: Experimental results of LArcNet and other models. Best results are boldfaced.

Model 8 Class
Accuracy

Accuracy
(%)

Trainable
Params

kFLOPs Factor Runtime
(ms)

Baseline 98.96 % 99.22 318.63 k 19205.4 1 3.27
Mobile-ArcNet 99.00 % 99.29 107.02 k 4542.93 0.24 1.43
ArcNet [11] 99.85 % 99.47 189.64 k 18209.5 0.24 31
Efficient-ArcNet
[18]

- 99.36 79.05 k 3620.0 - 1.17

GBDTa - 99.65 - - 10.22
LArcNet
(Proposed)b

98.85 % 99.31 8.4 k 182.27 0.01 0.20

aGradient Boosted Decision Tree model was developed for this research
b Input to the model is raw data (sampled at 10 kHz) with Min-Max normalization.

4.3 Experimental Validation, Result and Discussion

This section presents the experimental results of the LArcNet model along with the

Baseline and Mobile-ArcNet models. All models were trained on the same dataset. The

Baseline model, comprising only conventional convolutional blocks, has the highest number

of trainable parameters and limited computational efficiency, despite the inclusion of

Max Pooling layers. Conversely, the Mobile-ArcNet model has a higher parameter count

(107.2 k) compared to LArcNet and was not trained using knowledge distillation. The

student model of LArcNet, however, utilized the knowledge distillation technique, benefiting

from the comprehensive teacher model. The LArcNet student model features the smallest
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Epoch Train_Acc Student_lossDistillation_LossVal_Acc Val_Loss

1 0.6432 0.9469 0.0137 0.6697 1.1762
2 0.7104 0.7748 0.0205 0.7496 0.7317
3 0.7475 0.6677 0.024 0.7687 0.6492
4 0.7825 0.5822 0.0254 0.8209 0.4101
5 0.8141 0.5066 0.026 0.837 0.447
6 0.8387 0.4476 0.0252 0.8614 0.3129
7 0.8507 0.4182 0.0243 0.8651 0.2453
8 0.8612 0.3859 0.0242 0.8885 0.2492
9 0.875 0.3561 0.0239 0.8736 0.2834

10 0.8761 0.3461 0.0236 0.8571 0.1547
11 0.884 0.3279 0.0234 0.8898 0.3791
12 0.8914 0.3113 0.0231 0.8928 0.295
13 0.8975 0.2919 0.0236 0.9066 0.1779
14 0.9023 0.2812 0.0232 0.8816 0.4392
15 0.9027 0.2756 0.023 0.9165 0.3136
16 0.9056 0.2719 0.0229 0.9215 0.2183
17 0.9125 0.2486 0.0231 0.9195 0.2387
18 0.9201 0.2312 0.0231 0.9122 0.2555
19 0.9118 0.2547 0.0225 0.8878 0.6965
20 0.9169 0.2383 0.0217 0.9139 0.3685
21 0.9233 0.2232 0.0222 0.9221 0.2834
22 0.9242 0.2188 0.0218 0.9195 0.1059
23 0.9272 0.2086 0.0222 0.9324 0.155
24 0.9301 0.205 0.0216 0.9258 0.2103
25 0.9286 0.2069 0.0214 0.9393 0.1187
26 0.9327 0.1975 0.0211 0.9317 0.1114
27 0.9329 0.1941 0.0206 0.9274 0.2701
28 0.9304 0.1962 0.0205 0.9284 0.1438
29 0.9367 0.1877 0.0207 0.94 0.2874
30 0.9384 0.1784 0.0201 0.9456 0.1234
31 0.9432 0.1673 0.0205 0.9416 0.1206
32 0.9389 0.1793 0.0203 0.9215 0.3137
33 0.9452 0.1671 0.0202 0.9416 0.5722
34 0.9406 0.1705 0.02 0.9122 0.6689
35 0.9476 0.1552 0.0198 0.9426 0.2127
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Figure 4.4: Train & Validation accuracy plot of the LArcNet student model.

number of trainable parameters among the models, totaling only 8.4k. The Raspberry Pi

4B served as the microcontroller unit (MCU) for implementing the models.

The kFLOPs (floating-point operations per second) for each model were estimated

to understand the computational complexity of the models. FLOPs is a measure of

the performance of a computer system, used to estimate the amount of computational

resources required to perform a certain task. The higher the FLOPs, the more complex the

computation of the model. Compared to the kFLOPs of the Baseline model, Mobile-ArcNet

has a factor of 0.24, and the LArcNet model has a factor of only 0.01. The LArcNet has

only 182.27 kFLOPs of computational burden. This indicates that the proposed LArcNet

model has the least computational complexity and is therefore lightweight. Detailed results

are tabulated in Table 4.2.

Accuracy-wise, LArcNet achieved the highest arc fault detection accuracy of 99.31%.

The baseline model scored the lowest in arc fault detection at 99.22% (Table 4.2). The Load

classification and arc fault classification accuracy using the LArcNet model is depicted in

the confusion matrix (Table 4.3), highlighting the accuracy for 8-class classifications of

different load groups and misclassification percentages. Even-numbered labels indicate
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arc faults, and odd-numbered labels normal currents. The GDL loads demonstrated the

lowest accuracy due to their characteristics, where normal currents can resemble arc faults,

leading to significant misclassification. Approximately 10.23% GLD arcs are mistakenly

classified as resistive arcs. Overall binary classification accuracy for arc fault detection

was calculated by summing correctly classified arc faults and dividing by the total number

of test samples.

Precision, recall, and binary classification accuracy for arc and normal current samples

were determined without considering load classification. The precision and recall matrix

of the LArcNet model, presented in Table 4.4, was derived from Table 4.3. High precision

and recall values indicate the model’s practicality and low rate of false positives.

The LArcNet model boasts a simpler yet efficient structure. It includes a large and

comprehensive teacher model that effectively learns arc features with high accuracy. This

design allows the student model to be significantly more lightweight, benefiting from the

knowledge distilled from its larger counterpart. Notably, the Mobile-ArcNet model retains

its original first layer without a depthwise layer, whereas LArcNet replaces its first layer

with efficient design blocks, significantly reducing computational load. Additionally, the

proposed model employs a maximum bottleneck factor of 2, enhancing data flow and

reducing computational complexity. The integration of a moderate bottleneck structure,

pointwise and depthwise separable convolutions, and the teacher-student knowledge

distillation technique makes the model extremely lightweight and reduces the number

of kFLOPs substantially. As a result, LArcNet achieves a lightweight framework that

maintains high performance in detecting series AC arc faults accurately, minimizing both

computational costs and runtime, and making it an efficient solution for its intended

application.
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Table 4.4: Precision, recall, and accuracy of the LArcNet model.

Predicted Class

A
ct

ua
lC

la
ss Arc Normal Total

Arc 1413 25 1438

Normal 6 3069 3075

Total 1419 3094 4513

Precision 99.58%

Recall 98.26%

Overall accuracy 99.31%

4.3.1 Model Optimization and Hardware Implementation

TensorFlow Lite (TF-Lite) [120], an open-source framework, facilitates the running of

TensorFlow models on edge devices with limited resources such as microcontrollers and

mobile devices. TF-Lite optimizes models to reduce binary size and latency. The student

model of LArcNet was optimized to decrease its binary size from 600 kB to 49 kB resulting

in enhanced performance for resource-limited edge computing devices.

The optimized LArcNet model was then implemented on a Raspberry Pi 4B to evaluate

its real-time performance. The process involved initializing the TF-Lite interpreter,

allocating tensors to set model inputs and outputs, and testing the model using sample

sets. The model performance, tested five times using all samples, showed an average

inference time of only 0.20 ms per sample without sacrificing accuracy. The test time

included reading a sample, normalization, label fetching, and testing. Fig. 4.5 shows that

LArcNet outperforms other state-of-the-art models in runtime with comparable accuracy.

Parallel assessments were conducted for the Baseline and Mobile-ArcNet models,

with their inference times summarized in Table 4.2. LArcNet demonstrated superior

performance in both accuracy and runtime, confirming its suitability for real-time practical
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implementation in commercial MCUs. The runtime assessments were performed over one

cycle of power frequency, showcasing the model’s effectiveness in real-time applications.

Figure 4.5: Comparison of the LArcNet with the state-of-the-art models.

4.4 Comparative Analysis of LArcNet with Contemporary Methods

This section offers an in-depth comparison of LArcNet with other recent methodologies

in AC arc fault detection, as presented in Table 4.5. This comparison is crucial for

showcasing the advancements and efficiencies of LArcNet in the field.

Reference [11] initially reported the longest runtime among the compared techniques

at 31 ms per sample due to a lack of optimization. This research has optimized the

method, reducing its runtime significantly to 2.64 ms, demonstrating potential efficiency

gains through optimization. Other studies, such as those in References [21] and [121],
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reported respectable arc fault detection accuracies (98.70% and 94.30%, respectively).

However, they do not provide comprehensive implementation details on low-end commercial

MCUs, crucial for practical applications. SAFNet [71] employs a 2D input that increases

computational load, resulting in a slower inference time of 6.38 ms per sample compared

to LArcNet. Additionally, SAFNet’s testing on the Jetson Nano, which has superior GPU

capabilities compared to the Raspberry Pi 4B, focuses on a single load type, limiting

its applicability compared to LArcNet’s multi-load capacity. Reference [19] proposed a

method with lower accuracy and a higher computational burden when implemented on

the same platform as LArcNet.

In contrast, LArcNet not only identifies various load groups but also detects arc

faults across four major load groups with an exceptional accuracy of 99.31%. Most

notably, it achieves a remarkably low runtime of only 0.2 ms per sample. This efficiency

results from LArcNet’s triple simplification approach: architectural optimization to reduce

computational load, model compression via knowledge distillation to enhance performance,

and TF-Lite optimization to decrease binary size and latency. This comprehensive

strategy makes LArcNet highly suitable for real-time applications in resource-constrained

environments.

Overall, LArcNet stands out as a leading solution in arc fault detection, offering a

perfect balance between high accuracy and low computational demand, making it ideal for

practical implementation in edge devices.

4.5 Summary

In this study, an innovative, ultra-fast algorithm for high-performance arc fault detection,

has been developed, combining efficient network architecture with advanced model

compression techniques. Using a teacher-training knowledge distillation approach, the

proposed LArcNet model processes raw current inputs with minimal computational

complexity and high efficiency.
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LArcNet’s lightweight yet robust structure provides arc fault detection accuracies

comparable to or better than traditional models like the Baseline CNN and Mobile-ArcNet.

It achieved a load classification accuracy of 98.85% and an arc fault detection accuracy of

99.31%. Although models like Efficient-ArcNet may offer similar accuracy, they involve

increased architectural complexity.

Transforming LArcNet into a TensorFlow Lite (TF-Lite) model significantly reduced its

binary size and latency, optimizing it for real-time applications. Tested on a Raspberry Pi

4B MCU, LArcNet excelled, demonstrating superior performance with an average runtime

of just 0.20 ms per sample. This efficiency of the proposed model not only highlights

its practicality for commercial deployment but also establishes it as a leading solution in

series AC arc fault detection.

In summary, LArcNet demonstrates high accuracy and reduced inference time, proving

its viability for practical use in embedded hardware systems. Future efforts will focus on

refining LArcNet to handle unknown load scenarios, enhancing its applicability across

various real-world conditions.



CHAPTER 5: DC ARC FAULT CIRCUIT INTERRUPTER USING LIGHTWEIGHT

CNN ALGORITHM AND SSCB

AI-based methods have demonstrated high accuracy in detecting photovoltaic (PV)

arc faults. However, their computational complexity poses a significant challenge for

implementation in commercial microcontroller units (MCUs) which have limited memory

and RAM. This necessitates an arc fault detection algorithm that is not only highly

accurate but also lightweight enough to be implemented on edge devices for real-time

operation. Industrial applications of AI models face strict constraints on model size

due to multitasking, run times, and cost considerations. Reducing model sizes also

decreases computational burden, making it feasible to run these models on resource-limited

computing devices.

Building on the previous research on AC arc fault detection algorithms and lightweight

models such as the Efficient-ArcNet [18], this chapter proposes a lightweight algorithm,

referred to as PADNet, capable of reliably detecting series arc faults in PV (DC) systems

with high accuracy and efficiency. The primary objective of this research is to embed the

AI model into an edge device with limited computational power compared to devices like

the Raspberry Pi, ensuring real-time operation and integrating an SSCB for rapid arc

fault interruption. The entire process, including data acquisition, min-max normalization,

frequency domain conversion using FFT, AI model inference, and trip signal generation

for arc faults, is performed within an STM32 MCU. Data acquisition for one sample takes

a total of 12.8 ms. The main contributions of this research are:

1. The development of a lightweight and computationally efficient CNN for accurate

detection of series PV arc faults, achieving a high accuracy of 98.15%. The network
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architecture employs pointwise and depthwise convolution layers, along with strategic

convolution and Max-Pooling layers and a carefully designed bottleneck structure,

to optimize accuracy. The model is highly effective in detecting series arc faults in

PV systems.

2. The introduction of a novel approach using a solid-state circuit breaker based on

MOSFETs to promptly interrupt the circuit during arc fault events, enhancing the

operation speed of the intelligent AFCI and effectively protecting the system from

potential fire hazards.

3. Optimization of the proposed PADNet model using the TensorFlow-Lite tool to

reduce binary size and latency, enabling implementation in resource-limited edge

devices. Real-time performance is verified using a commercial Microcontroller Unit

(MCU), the STM32H743ZI2, which features a 32-bit Arm Cortex architecture with

2 MB of internal memory and 1 MB of internal RAM. The model demonstrates

real-time operational capabilities for commercial use, with an estimated inference time

per sample of 12.2 ms on the STM32H743ZI2. The SSCB takes only 33 microseconds

to break the circuit during an arc fault, resulting in a total arc fault clearing time of

just 25 ms, including data acquisition, preprocessing, model evaluation, and circuit

tripping.

Figure 5.1: Block diagram of PV arc fault detection system.
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Figure 5.2: Schematic diagram of PV arc fault data collection test bench.

5.1 Data Collection and Analysis

5.1.1 Experimental Platform of PV Arc Fault Generation

Collecting PV arc fault data from a real PV system is inconvenient and dangerous. On

the other hand, model-based PV arc fault data is impractical to use with the real system.

Following the UL1699B standard, a test platform has been designed for PV arc fault data

collection in a lab environment, as shown in Figure 5.2 (decoupling and impedance module

are omitted in the setup). The test bed is built using a programmable PV simulator (DC

source), an arc fault generator, a grid-tied inverter (GTI), and the AC grid. The PV

simulator is of 10kW, 1000V, and 10A rating (Model ETS100X10C-PVF). For testing the

experiment, resistors and GTI with grid were used as load, respectively. The AFCI was

not included during data collection. However, for testing, the AFCI was incorporated,

which includes an interfacing board to sense the load current, sending the current signal

to the STM32 microcontroller. The STM32 MCU has a built-in analog-to-digital (ADC)

converter to read those input data. The full block diagram of the AFCI system is provided

in Fig. 5.1.

The irradiance profile and temperature can be varied in the program of the PV simulator.

According to the UL1699B-2018 standard, the PV string can be replaced with a PV

simulator for the experiment. The used SMA brand PV inverter is of 5 kW capacity

and grid-tied type. The output terminal of the inverter has an L1-N-L2 configuration.
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Therefore, L1 and L2 terminals are connected to the two phases of the 208V, 3-phase 4-wire

utility grid, and the N terminal is connected to the neutral wire of the grid. The inverter

is furnished with built-in AFCI functionality. During the data collection operation, the

AFCI functionality was turned off. The inverter output was connected to the utility grid

(AC). A detailed description and rating of different components are provided in Table 5.1.

The test-bed is one string, single module, and one MPPT-based PV arc fault generation

and detection system.

Table 5.1: Specifications of the components used in the PV arc fault test-bed setup.

Equipment Model Ratings
PV Simulator Chroma32180D-1800 18 kW, 1.8 kV, 40A
PV Inverter SB5.0-1SP-US-40 5kW 208/240VAC GTI ∗

AC Source - 208V, 3-Phase
AC Grid (Load) - 208V, 3-Phase
Mixed Signal Oscilloscope Tektronix MSO58 500 MHz, 6.25 GS/s
Resistive Load - (10-32) Ohms, 1 kW
*GTI stands for Grid Tied Inverter

Figure 5.3: Architectural diagram of arc fault generator.

The arc generator is built using a stationary electrode made of copper and the moving

electrode which sits on top of a sliding block is made of carbon graphite rod. Both of

the electrodes have 1/4 inch diameter. The lateral adjustment of the sliding block is

performed using a programmable motor controller attached to the sliding block. The
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maximum current rating of the arc generator is 20A. The architectural diagram of the arc

fault generator is presented in Fig. 5.3. During the arcing experiment, a sustainable arc

makes the tips of the electrodes to be dirty, which is cleaned periodically using sandpaper.

The arc generator is furnished with a parallel switch, S. Closing that switch, normal load

current data were collected.

5.1.2 Operating Conditions of Arc Fault Experiments

UL1699B-2018 standard specified different conditions of PV AFCI tests that have to be

followed. According to the standard, a number of arc fault tests were performed to collect

PV arc fault data at different operating conditions. This helps to make the algorithm

more robust. Arc faults were generated at the start of the string as well as at the end of

the string as shown in Fig. 5.2 (one configuration at a time). A stepper motor was used to

create an arc gap between the arcing electrodes at a constant speed of 5mm/s to generate

arc fault. The data were collected at different voltage and current levels. The current

range was (3∼4) A and the voltage range was (480∼480) V. Table 5.2 depicts various

arcing tests performed under different levels of maximum power point voltages (Vmpp) and

maximum power point currents (Impp). Minimum arc currents were always higher than

Iarc that is specified in the Table. It also shows the arc gap distances and number of

samples collected under various testing conditions. From zero arc gap distance, the arcing

electrodes are separated using the stepper motor at a speed of 5 mm/s to generate arc

fault. The data sampling rate was 250 KS/s. A mixed signal oscilloscope (MSO58) was

used to record and collect data. A current probe was used to sense the arcing current.

The voltage across the arc gap was also recorded using a differential voltage probe. The

arc gap voltage was recorded to verify the status of the arc and normal current during

data collection. For two arcing tests, 7000 samples of arc and 7058 samples of normal

current were collected. Total samples were 14058, each of them having 10.8 ms in length.
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5.1.3 Data Visualization, Preprocessing and Analysis

Figure 5.4: Graph of (a) PV system current and (b) arc voltage across the arc gap.

During data collection, both the arc current and arc voltage information were captured

and recorded using an oscilloscope. A zero voltage across the arc gap indicated no arc.

When there was an arc present in the current, the arc gap voltage increased a considerable

amount (about 5 to 30 V). Fig. 5.4 depicts the normal and arcing current of 8 A, 490 V

(Vmpp) condition of the PV system. Before the arcing event, the arc gap current is zero.

When arcing occurs at 0.52 s, the arc gap voltage is increased above 12.5 V. Each segment

of recorded data was 10 s in length. Sample length and sampling frequency play vital roles

in preserving feature information. A large sampling frequency and a larger sample size

even though hold good feature information, they make the input size large and make the
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computation higher for data preprocessing as well as in the computation inside the neural

network. Nevertheless, the sample length should be sufficient to be able to be tested in a

short time for the identification of a possible arcing fault. A larger sample size may lead

to missing an important sample in the real-time testing environment which could be an

arcing fault. Different research have used different length of samples ranging from 2ms to

50ms [30,32]. A shorter sample size such as 2 ms may yield poor accuracy. Considering

the computational time, feature information, and accuracy in arc fault detection, a sample

length of 10 ms is considered in this research. A total of 14058 samples were collected

using the aforementioned experimental setup.

Before preprocessing the data, they are visualized and analyzed using the popular t-SNE

(T-distributed Stochastic Neighbor Embedding) plot. T-SNE, a non-deterministic tool

based on the stochastic neighbor embedding method [124], is a nonlinear dimensionality

reduction technique used to visualize high-dimensional data in two or three-dimensional

space. Fig. 5.5 (a) shows the t-SNE projection of the training database in the time domain.

The plot reveals that the data samples are so scattered that a simpler decision boundary

cannot effectively separate arc and normal samples.

To address this, the fast Fourier transform (FFT) is applied to the data, and the

t-SNE visualization of the training data is shown in Fig. 5.5 (b). The FFT spectrum

arranges features of the data more conveniently, extracting useful features for classification.

However, many arc samples still lie within the normal region and vice versa. Therefore,

instead of using raw samples for the model, FFT data is used for the training and testing

of the proposed model. It is important to note that after applying FFT, each sample

is normalized using the Min-Max normalization technique following the equation given

below.

Xnorm(i) =
X(i)−Xmin(i)

Xmin(i)−XMax(i)
(5.1)
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Figure 5.5: t-SNE plots of arc fault data in the (a) time domain and (b) frequency domain.
Feature extraction is more effective in the frequency domain compared to the time domain.

where Xnorm(i) indicates the normalized data of ith sample. Xmin(i) and Xmax(i),

respectively, denote the smallest and largest values of the same data sample.

The final data sample has a frequency spectrum of 0 to 125 kHz. The whole database

is split at the ratio of 70 : 10: 20 to get the training, validation, and testing samples

respectively. The training dataset is used to train the algorithm. The validation dataset
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is used as an unknown dataset to the model while training is ongoing. It also helps to

determine how efficiently the algorithm is learning the features from the training data.

At the same time, it also helps to find a suitable termination point before the model is

overfitting on the training data. Testing samples are used to test the algorithm after the

training is complete. Arc fault detection is a binary classification problem- arc and normal

signal. Therefore, for binary classification, the arcing samples are labeled as 1 and the

normal current samples are labeled as 0.

One random sample from each of the 3 A, 5 A, and 8 A loads (arc and normal) is chosen

from the database for visualization. Their FFT spectrums are plotted in Fig. 2.1. It is

noticed that even though within 0 to 40 kHz frequency range most of the samples showed

differences in the frequency spectrum, for the later portion some of them overlapped.

Sometimes, due to various noise conditions, an arc sample may look like a normal sample

or vice versa. In Fig. 5.6, a normal sample of 5 A load is mostly overlapped with the

arcing sample of 8A. Therefore, classification of arc fault using only the hand-adjusted

threshold of the FFT spectrum may lead to poor accuracy and hence false triggering may

occur.

5.2 Algorithm Development using Lightweight CNN Approach

Based on the analysis in Section 5.1.3, it is evident that Fast Fourier Transformation

(FFT) generates good initial features from the current signal. Nevertheless, the data in the

frequency spectrum is complex, making it difficult to segregate arc samples from normal

samples using a simple hand-adjusted threshold with good accuracy. It requires a special

algorithm that can extract more concrete features from the frequency domain current

signal and classify it more accurately. CNN [125] is an artificial intelligence-based deep

learning algorithm that, when designed properly, can automatically extract important

feature information from an input signal. At the same time, from the extracted features, it

can distinguish and classify the input signals at its output layer with high accuracy. In this
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Figure 5.6: Overlapping FFT spectrum of an arc and a normal current.

case, the supervised learning method is used where, during the training of the algorithm,

pre-labeled data samples are fed to the algorithm to learn feature vectors from them. The

learned model is then tested with a separate test dataset, which is non-inclusive to the

training set. The CNN-based method also helps to avoid hand-adjusted threshold-related

problems.

In this research, the frequency domain features extracted from the FFT signals are

used to feed a convolutional neural network to further extract features and finally classify

the arc and non-arc signals. However, the use of traditional CNN blocks in designing an

algorithm incurs a lot of computation, which can hinder the implementation of the model

in commercial MCUs. Inspired by the efficient network architecture of EffNet-ArcNet [18],

a lightweight and efficient CNN-based model has been built. The data fed to the network

is a one-dimensional vector of the FFT spectrum. The image of the FFT spectrum is not

considered as input to the model, as it adds more computation compared to a 1D vector
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as input.

5.2.1 Model Building Block

Due to various factors such as competitive costs, combined multitasking, and interactive

run-times, there are strict limitations on the size of AI-based models when they are used for

industrial applications. Thus, if the computational cost can be reduced, it could allow the

redistribution of computational power to critical areas where it is required. Alternatively,

it can enable the use of deeper or wider networks to complete tasks with increased capacity.

Instead of using conventional CNN blocks to build a model, a structurally efficient

CNN building block is used, as shown in Fig. 5.7. The conventional CNN block has

been replaced by a pointwise (1x1) convolution with half of the channels (ch/2). Then, a

depthwise (dw) convolution of kernel size 5x1 is applied, followed by a 1D Max Pooling

(MP) layer of size 2x1. Finally, a sub-layer consisting of the full channels (ch) with kernel

size 2x1 followed by a 1D stride of 2 is applied.

A Max Pooling layer is applied to the depthwise layer instead of the spatial convolution

layer, allowing the network to encode the data before a drastic reduction. Since early

pooling yields cheaper consecutive layers, separable pooling has been used to take advantage

of early pooling. Instead of conventional convolution, depthwise convolution has been

utilized, which, when combined with the pooling strategy, achieves a significant advantage

in computation.

5.2.2 Network Architecture of PADNet

Using the building block discussed in Section 5.2.1, the PV arc fault detection model

has been designed. The network architecture of the proposed PADNet model is based

on multiple building blocks of the model, as shown in Fig. 5.7. The complete network

architecture of the PADNet model is illustrated graphically in Fig. 5.8. It has three basic

building blocks of PADNet (as shown in Fig. 5.7) with 32 filters in each block. Finally,

three fully connected (FC) layers with 16, 8, and 2 neurons are annexed. The last layer
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with 2 neurons is the output layer, having two outputs (arc and normal). The basic

building block replaces the conventional CNN layer and makes the model lightweight and

efficient.

The data flow of the proposed model at different stages of the network is described in

Table 5.3. The data flow of a baseline CNN model corresponding to PADNet layers is

also compared in that table. Except in the first layer of the Baseline CNN, other layers

have a higher number of trainable parameters compared to the PADNet architecture. It

is noteworthy that a maximum bottleneck factor of 2 has been used in the architecture

(shown in red color). Additionally, a bottleneck factor of 1.5 (blue) is observed in some

cases throughout the structure. A large bottleneck factor tends to reduce accuracy. Unlike

other lightweight network architectures, such as ShuffleNet, MobileNet, or SqueezeNet,

where a higher bottleneck factor ranging from 4 to 8 is observed [35,36,126], a moderate

bottleneck factor (within 2) has been maintained. Furthermore, the pointwise spatial

convolution layer has been applied in the very first layer, reducing the computation by

approximately 30% in the subsequent layers.

The activation function in all convolution and fully connected layers except the output

layer is Rectified Linear Unit (ReLU). In the output layer, the ’sigmoid’ activation function

has been used.

Figure 5.7: PADNet layer building block replacing traditional CNN layers. ’DW’ stands
for depthwise convolution, ’MP’ for max pooling, and ’Ch’ for output channels. Strides
are set to 2.
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Figure 5.8: Network architecture of PADNet with three consecutive PADNet building
blocks each containing 32 filters, followed by three fully connected layers with 16, 8, and 2
neurons respectively. The output layer has 2 neurons.

Table 5.3: Data flow of PADNet model compared to conventional baseline CNN model.
FC (16, 8, 2) refers to fully connected layers with 16, 8, and 2 neurons, respectively. The
last FC layer has 2 neurons for 2 output classes (arc and normal current). Depthwise
convolution and max pooling layers are denoted by ’dw’ and ’mp’.

Baseline CNN PADNet (Ours)
Layers Params Layers Params

5x1x32 + mp of 2 192
1x1x16
dw 5x1 + mp of 2
2x1x32 + stride of 2

32
352
1056

5x1x32 + mp of 2 5152
1x1x16
dw 5x1 + mp of 2
2x1x32 + stride of 2

528
352
1056

5x1x32 + mp of 2 5152
1x1x16
dw 5x1 + mp of 2
2x1x32 + stride of 2

528
352
1056

FC (16, 8, 2) 77994 FC (16, 8, 2) 1194
Total Params 88,490 6,506

5.3 Experimental Setup, Results and Analysis

This section summarizes the experimental result of the PADNet model, model

optimization, and analyzes the misclassified samples.
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Figure 5.9: Experimental setup for PV arc fault data collection and real-time testing.

5.3.1 Experimental Setup and Results of The Proposed Model

The PADNet algorithm is developed using the TensorFlow Keras platform. The proposed

model is trained using all the train samples for 80 epochs with a batch size of 300. Adam

optimizer with a learning rate of 0.001 has been used for training. During training, the

training accuracy and validation accuracy plots of the model are checked for any possible

overfitting. Fig. 5.10 shows the training and validation accuracy plots. From the learning

curves, it is observed that the training accuracy continues to improve till the end. However,

the validation accuracy increased to a certain point and then became flat without getting

worse. The two curves closely followed each other. Hence the model is not overfitted.

To compare the result of PADNet, a baseline CNN model was trained using conventional

CNN blocks but with a similar number of channels in each corresponding layer. In this

case, the model was trained for 45 epochs with a batch size of 300. The Adam optimizer

with an adaptive learning rate was used during training. When the traditional CNN
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block was used, the model showed a maximum accuracy of 98.89% in classifying arc and

normal current. However, the PADNet algorithm showed an increased accuracy of 99.02%

compared to the conventional model. In terms of model parameters, PADNet has only

14.698 K trainable parameters, which is an 83.39% reduction compared to the traditional

CNN-based model.

The actual size of the models also indicates that the efficient PADNet model has a

smaller size. When both models were implemented without any compression, the CNN

model required a Flash Memory size of 367.1 KB, which is larger than that of the PADNet

model, given that the RAM requirement is similar. On the other hand, because PADNet

is constructed using a lightweight and efficient model architecture, it took only 83.08 KB

of Flash and 85.62 KB of RAM to run in the MCU (without any model compression).

The results are summarized in Table 5.4. The actual experimental platform of the PV

arc fault detection system is shown in Fig. 5.9. Different components of the experimental

setup are properly labeled in the diagram.

Figure 5.10: Training and validation accuracy plots of PADNet model.
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Table 5.5: Precision, recall, and overall accuracy of PADNet model.

Predicted Class
Total

A
ct

ua
lC

la
ss Normal Arc

Normal 1380 4 1384
Arc 48 1379 1427
Total 1428 1383 2811

Precision 99.71%
Recall 96.64%

Overall accuracy 98.15%

From the test results of PADNet, a confusion matrix was produced as shown in Table 5.5.

It indicates that out of 1384 normal samples 1380 samples were correctly classified. The

classification accuracy of the normal sample is 99.71%. Only 4 samples were misclassified

as an arc. Conversely, out of 1427 arcing samples, 3.3% samples (48) were misclassified

as normal samples. Only arc classification accuracy is 96.7%. In machine learning-based

classification problems, precision and recall are considered important performance metrics.

A model is considered more reliable when its values are closer to 1. The precision and

recall of the PADNet model are 99.71% and 96.64%, respectively. Those values are very

high, which indicates that the model yields good performance. It also means that the false

positive, as well as the false negative rates of the model, are very low. Overall classification

accuracy is 98.15%.

5.3.2 4-Fold Cross Validation

Cross-validation is a statistical technique used to evaluate machine learning models by

training several models on a subset of the whole data and testing with the complementary

subset of the data. A k-fold cross-validation involves training the algorithm with all but

one of the k subsets and evaluating on the subset that is not used for training. This

method is repeated k times, with each iteration using a different subset of the data as

the test dataset. Cross-validation is used to detect model overfitting and to check the
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robustness of the model.

A 4-fold cross-validation using the PADNet model has been performed. The whole

dataset is grouped into four subsets. Each time, three subsets are used for training the

algorithm and the fourth subset is used for testing. The arc fault detection accuracies

are recorded in each iteration by evaluating the model on the corresponding test subset.

The 4-fold cross-validation results are tabulated in Table 5.6. After 4-fold cross-validation,

the average accuracy of 98.07% is determined, which is close to the reported accuracy

(98.15%) of the original PADNet model.

Table 5.6: 4-fold cross validation of PADNet model

k-Fold Iteration Model Accuracy (%)
1 98.09
2 98.05
3 97.99
4 98.14

Average 98.07

5.3.3 Real-time Testing of AFCI using Microcontrollers and SSCB

0 ms 25 ms 50 ms 225 ms125 ms75 ms 100 ms 175 ms 200 ms150 ms

Arc voltage

Load current

Arc detect signal

Arc fault starts4.5A

Arc fault detectedDetection time
(without AFCI)

24 ms

Continuous detection
~25 V

Figure 5.11: Real-time arc fault detection (without AFCI; C4 = 10 µF).

The proposed PADNet model can be used for commercial applications using embedded

microprocessors (STM32 microcontrollers). This is because the model is lightweight
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Arc fault cleared

Arc voltage

0 ms 10 ms 20 ms 90 ms50 ms30 ms 40 ms 70 ms 80 ms60 ms

Arc detect signal

Arc fault starts

25 V

Arc fault detected
Fault clearing time 25 ms

Load current

90 V

3A (with AFCI)

Figure 5.12: Real-time testing of AI-based AFCI (fault clearing time; C4 = 150 nF).

2.8 A

3.3 V

250 V

33 µs

Breaker Interruption Time

-125 µs -100 µs -75 µs -50 µs 25 µs-25 µs 0 µs 100 µs50 µs 75 µs

Figure 5.13: Breaker waveforms for AFCI operation.

and has less computational burden. The network architecture is built using an efficient

model building technique of Deep Learning. Furthermore, instead of using a 2D image as

input, a 1D vector of the FFT spectrum with a frequency range of 40 kHz has been used.

Each sample having a 100 kHz frequency spectrum could be huge. Therefore, an FFT

spectrum of 40 kHz has been used before feeding the input to the AI model. The STM32

NUCLEO-H743ZI2 development board has been used for embedded implementation. It

has an STM 32-bit Arm Cortex microcontroller unit STM32H743ZI2 on the board. The

STM32H743ZI2 MCU has a flash memory size of 2 MB and a RAM of 1 MB. Before

embedding the model in the STM32H743ZI2 MCU, it has been optimized using the
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TensorFlow Lite optimization tool for reduced binary size and latency. The PADNet model

has been tested in the ST microcontroller for all the test samples, achieving an arc fault

clearing time of only 25 ms. This time includes the data acquisition time of 12.8 ms and

inference time of 12.2 ms. This experiment demonstrated the feasibility of the proposed

model to embed in a resource-limited commercial embedded microcontroller.

The performance of the proposed AI-based AFCI has been extensively tested under

various operating conditions for normal operation and arc fault. Fig. 5.11 demonstrates

the real-time detection of an arc fault using the proposed PADNet model without the

use of an AFCI or an SSCB. The value of the capacitor C4 was set to 10 µF in this part

of the experiment. This test evaluates the algorithm’s capability to continuously detect

arc fault occurrences. The oscilloscope capture includes three critical waveforms: the

load current (black); the arc gap voltage (red), which exhibits significant voltage ( 25 V)

indicating the occurrence of arc fault; and the arc detect signal (green), which activates

within 24 milliseconds of the fault initiation and remains active, indicating continuous

fault detection. The results highlight the PADNet model’s effectiveness in real-time arc

fault detection, ensuring continuous monitoring and providing a crucial safety measure.

The snapshot of the fault-clearing time during real-time operation is shown in Fig. 5.12.

The AFCI was tested under a loading condition of 3.10 A with an input voltage of 330 V

(DC). The value of the capacitor C4 was set to 150 ηF in this experiment. The total time

required to clear the arc fault was 25 ms. Notably, the breaker took only 33 µs to break

the circuit, as depicted in Fig. 5.13. It is important to note that the AFCI was tested

using both resistive loads and a grid-tied PV inverter.

5.3.4 Visualization and Analysis of Misclassified Samples

The proposed PADNet model has achieved more than 98% arc fault detection accuracy,

but some samples are misclassified. To understand why samples are misclassified, a deeper

analysis of these samples has been conducted. A gradient class activation map (grad-CAM)
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tool and a statistical analysis method were used to analyze a few misclassified samples [127].

In deep models, as the network goes deeper, activations become more complex and abstract,

with deeper layers encoding very high-level feature vectors. Final CNN layers often show

that many filters are not activated, as the model has already extracted the necessary

feature vectors for classification. Using this concept, grad-CAM images of the last CNN

layer of PADNet were evaluated.

Fig. 5.14 shows the output of the last CNN layer for three samples. There are 32

filters in the last CNN layer, as indicated by the red square in the figure. Fig. 5.14 (a) is

the activation filter map (grad-CAM) of a sample that is originally an arc sample but is

misclassified as normal. Fig. 5.14 (b) is the correctly classified normal sample, and Fig.

5.14 (c) is the activation map for the correctly classified arc sample. A closer look at the

figures reveals that the grad-CAM output of Fig. 5.14 (b) and (c) shows considerable

differences in the activation of filters as the two samples are of two opposite classes (normal

and arc). However, Fig. 5.14 (a) and (b) show more similarity in the location of the

activated filters. Even though Fig. 5.14 (a) is originally an arc sample, it has many

similarities to a normal sample as shown in Fig. 5.14 (b). Therefore, it was misclassified

as a normal sample by the model.

Furthermore, the FFT spectrum of the first two samples mentioned in Fig. 5.14 was

checked and found to be almost overlapped throughout the entire range (Fig. 5.15).

Pearson’s correlation between the two samples was determined and found to have 88%

similarity. Therefore, it can be concluded that there are a few samples in the database with

similar feature vectors to those of the opposite class, causing misclassification. Additionally,

there might be other samples that lie inside the region of the opposite class in the feature

map, resulting in misclassification. It was evident from the t-SNE plots shown in Fig. 5.5

that the data distribution is so complex that a very complex decision boundary is required

to classify them accurately, which in turn requires a more complex algorithm and more

computation. Examining this is beyond the scope of this paper.
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When misclassification happens, the arc sample looks like a normal sample and vice

versa. The Pearson’s correlation of a misclassified sample is compared in Fig. 5.15, where

an actual normal sample is compared with an arc sample classified as normal.

Figure 5.14: Grad-CAM output of the last CNN layer for (a) an arc sample misclassified
as normal (top), (b) a correctly classified normal sample (middle), and (c) a correctly
classified arc sample (bottom). Each red square represents an individual filter. There
are 32 filters in the last CNN layer. Darker regions indicate inactive filters, while colored
regions indicate activated filters.

Figure 5.15: Comparison of a Misclassified Normal Sample with an Actual Normal Sample
Which is Classified Correctly. The Pearson’s Correlation of the two samples is 0.889.

5.4 Comparison of PADNet with Different Methods

In order to demonstrate the performance of the proposed PADNet model, it has

been compared to other PV arc fault detection algorithms. The methods have been
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compared based on different criteria, including classification algorithm, accuracy, platform

of verification, detection time, fault location, and sampling frequency of the database, as

shown in Table 5.7.

Reference [64] used variational modal decomposition to extract features and then used

particle swarm optimization and support vector machine algorithm for classification. Using

a high-end computing machine the inference time is reported as 138 ms per sample. In [67],

domain adaptation with a deep convolutional generative adversarial network (DA-DCGAN)

based method has been used for arc fault detection. The sampling frequency is very low

(20 kHz). Compared to PADNet it has higher detection runtime. CNN in combination

with Long Short Term Memory (LSTM) based detection algorithm has been proposed

in C. However, a high-end computing platform has been used to report the detection

runtime. Reference D has used the wavelet packet decomposition (WPD) based method,

however, the test accuracy is very low (86.36%). Compared to other methods, PADNet

is lightweight as well as it has high arc fault detection accuracy. The proposed method

is also tested using commercial MCUs for performance evaluation and showed a runtime

of only 23.38 ms per sample. Also, compared to traditional CNN-based algorithms, the

model used lightweight CNN architecture which yields a faster inference time and smaller

binary size.

5.5 Summary

This research presents a real-time closed-loop system for an AFCI designed for PV

(DC) systems. An artificial intelligence-based algorithm has been employed for arc

fault detection and a solid-state circuit breaker to interrupt the circuit during arc fault

events. An experimental platform was established following the UL1699B-2018 standard

to systematically collect PV arc fault data.

A lightweight and efficient algorithm, PADNet, has been proposed for series DC arc

fault detection based on the FFT spectrum of the current signal and an efficient CNN
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model. The model exhibits remarkable accuracy in arc fault classification with over 80%

less computational burden than conventional CNN block-based models. Additionally, it

requires only 22.84 kB of RAM and 50.07 kB of Flash memory, making it suitable for

implementation in resource-limited edge computing devices like the STM32 MCU.

PADNet undergoes optimization using the TF-Lite tool and is tested on the STM32 MCU

to assess its performance. The model achieves an average inference time per sample of only

12.2 ms. Further validation in an embedded system for real-time performance evaluation,

utilizing an STM32 microcontroller (NUCLEO-H743ZI2) and a solid-state circuit breaker,

demonstrated an arc fault clearing time of 25 ms. The STM32 microcontroller, with its

comparatively lower computational power, memory size, and RAM (1 MB), proves to

be a cost-effective solution. The performance evaluation demonstrates the feasibility of

the PADNet model for real-time arc fault protection in photovoltaic systems, enabling

implementation in resource-limited commercial MCUs with rapid fault-clearing times.

The main objectives of this study were to utilize a lightweight architecture for the

CNN-based model and achieve fast interruption with reasonably high accuracy for DC arc

fault interruption using a solid-state circuit breaker.

Although a test bed has been developed to collect PV arc fault data, real-world

applications may still exhibit some differences compared to lab-collected data. The lab

environment may not include external environmental noise that can affect real PV systems.

Additionally, the algorithm has only been tested with load currents ranging from 3 to 5 A.

High-current arc faults may present more subtle differences than low-current arc faults.

Furthermore, adding more power electronics equipment to the system may alter the noise

level, potentially reducing the accuracy of the models developed based on lab-collected

data.

To address this issue, a domain adaptation method can be adopted, where a smaller

number of arc and normal samples from real-world PV systems are added to the training

of this algorithm. This would help the model to learn arc features over a wider range and
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make it more effective in all environments. This calls for further research.

Future research directions include conducting extensive tests under various loading and

environmental conditions to assess the system’s performance and generalizability. Insights

gained from these tests will be used to refine the proposed CNN model, leading to a more

robust and reliable system for real-world application.



CHAPTER 6: OPTIMIZATION AND GENERALIZATION OF THE DC AFCI

Ensuring the robustness and reliability of DC AFCIs is essential for maintaining the

safety and efficiency of photovoltaic (PV) systems, especially under diverse operating

conditions. Building on previous research, this chapter aims to expand the dataset to

include information from various operating environments, shadow occlusions, and inverter

startup conditions. The objective is to enhance the model’s robustness.

To achieve this, a lightweight architecture is employed, along with model compression

techniques using a knowledge distillation-based teacher-student model. This strategy

ensures that the model remains robust while being efficient enough for deployment on

resource constrained edge devices.

The key contributions of this research are:

1. Enhanced Database: The dataset has been expanded to include diverse operating

conditions, environmental factors, shadow occlusions, and inverter startup scenarios.

This extensive dataset helps the model generalize better and maintain high

performance across different situations.

2. Lightweight Architecture: A lightweight design using pointwise and depthwise

convolutions instead of traditional CNN blocks has been proposed. These techniques

minimize computational load while maintaining high detection accuracy.

3. Knowledge Distillation-Based Model Compression: A teacher-student model

approach for compression has been used. The larger teacher model guides the training

of a smaller, more efficient student model. This technique retains the accuracy of

the original model while significantly reducing its size and computational demands.
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4. Improved Robustness Strategy: A systematic strategy to enhance the model’s

robustness has been developed. This includes noise handling techniques, data

augmentation, and advanced regularization methods to improve generalization.

5. Real-Time Implementation: The optimized model has been tested on a

commercial microcontroller unit (MCU), the STM32H743ZI2. Real-time performance

has been evaluated under various conditions, demonstrating the model’s robustness

and efficiency. Inference time per sample was significantly reduced while maintaining

high detection accuracy. The enhanced model has been integrated with a solid-state

circuit breaker to ensure rapid circuit interruption during arc fault events. This

integration demonstrates the practical applicability of the solution in real-world PV

systems.

6. Online Accuracy and Consecutive Arc Cycle Detection: The model’s online

accuracy in detecting arc faults has been demonstrated, showcasing its ability

to maintain high detection rates in real-time scenarios. The robust algorithm’s

effectiveness has been further validated by detecting consecutive arc cycles in a single

arc event, proving its reliability in continuous monitoring and detection.

7. Power Electronic Noise Immunity Testing: The algorithm has been tested by

connecting the DC output to an inverter and then to the AC grid. This ensured

that power electronic noise did not affect the algorithm’s performance, confirming

its robustness in noisy environments. This step was crucial, as previous tests focused

mainly on resistive loads.

This chapter highlights significant advancements in model optimization and

generalization for robust DC AFCIs, paving the way for more reliable and efficient arc

fault detection systems in photovoltaic applications.
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6.1 Database Enhancement

Collecting high-quality data is very important for developing a reliable DC AFCI. To

build an effective model, an extensive PV arc fault database has been constructed by

simulating various real-world conditions using a Solar Array Simulator (SAS) module. The

schematic architecture of the arc fault data collection and test setup is provided in Fig.

6.1 which includes an inverter and AC grid (208 V, 2-phase). The experimental setup is

provided in Fig. 6.2.

A system has been set up to generate arc faults with both fixed and variable arc gaps

by moving the movable electrode. This setup has allowed the capture of the nuanced

behavior of arc faults in photovoltaic systems under different conditions. The loads have

been varied, inverter startup conditions have been simulated, and shadow occlusions as

well as sudden load changes have been introduced to ensure that the model could be

trained with a wide range of scenarios.

The dataset includes a substantial number of samples with current ranging from 3 A

to 8.5 A while the open circuit voltage ranged from 480 V to 600 V (see Table 6.1). The

database consists of a total of 102,000 normal samples and 52,000 arc samples (see Table

6.2). This balanced representation helps in training and testing the model effectively. Data

has been collected at 250 KS/s; however, for model simplicity, a sampling rate of 51.2

kS/s has been used, with each sample lasting 10 ms, which is sufficient to capture the

detailed characteristics of arc faults. The input to the model was FFT data.

* 
(*Arc Fault Circuit Interrupter)

208V, 

2 Phase

Figure 6.1: Schematic diagram of PV arc fault data collection test bench.
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Figure 6.2: Experimental setup for PV arc fault data collection and real-time testing.

Table 6.1: Data description of PV arc fault database.

Sl. No. Imp (A) Min Iarc (A) Vmp (V) Isc (A) Voc (V)
1 3 2.5 400 4 490
2 4 3.5 480 5 550
3 5 4.5 500 6 600
4 6 5.5 520 7.5 600
5 7 6.5 520 8.5 600
6 8.5 8 540 10 600

To further ensure the quality of the data, samples have been projected into the frequency

domain using techniques like t-SNE (t-Distributed Stochastic Neighbor Embedding). This

approach helped visualize the variations and understand the underlying data distribution

patterns (see Fig. 6.3). The results indicate that the data distribution is more complex

due to the inclusion of diverse data. The data clustering is also worse than before, which

means a simpler algorithm may not be able to classify the arc faults properly and efficiently.

The database includes at least eight different loading conditions along with other critical
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environmental conditions, providing a robust foundation for the model to generalize and

perform well in diverse environments.

Table 6.2: Total samples in the database

Arc Samples Normal Samples Total
50,000 52,000 102,000

Our data collection process was carefully designed to encompass a wide range of scenarios,

resulting in a comprehensive and high-quality dataset. This extensive data is key to the

model’s ability to generalize and accurately detect arc faults in real-world PV systems.

Figure 6.3: t-SNE projection of PV arc fault data in the frequency domain.

6.2 Network Architecture and Methodology of the Proposed Model

The PADNet-Lite architecture is designed to be lightweight yet highly effective in

detecting DC arc faults in photovoltaic systems. This section breaks down the key

components and techniques used to achieve this balance between performance and efficiency.
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Figure 6.4: Network architecture of the proposed knowledge distillation-based PADNet-Lite
model.

6.2.1 Lightweight CNN Design

Our proposed model PADNet-Lite (Lightweight PV Arc Fault Detection Network)

combines advanced convolution techniques with knowledge distillation to create a model

that is both lightweight and highly accurate. Its robust training process and efficient

architecture make it suitable for deployment in real-world PV systems to detect DC arc

faults effectively. The model architecture of the teacher-student knowledge distillation

method is depicted in Fig. 6.4 To create a model that is both powerful and efficient,

PADNet-Lite leverages pointwise and depthwise convolutions instead of traditional CNN

blocks.

• Pointwise Convolutions: These involve applying a 1x1 convolution to each pixel,

which helps reduce the number of parameters and computations by limiting the filter

size. This is particularly useful in extracting features from the input data while

keeping the model size small.
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• Depthwise Convolutions: These convolutions apply a single filter to each input

channel separately, which significantly reduces the computational load compared to

applying multiple filters across all channels. By combining depthwise and pointwise

convolutions, PADNet-Lite maintains high accuracy in fault detection while being

computationally efficient enough to run on resource-limited edge devices.

• Knowledge Distillation: Knowledge distillation is a technique used to compress the

model while preserving its performance. This involves training a smaller student

model using the guidance of a larger, more complex teacher model. The teacher model,

with its larger capacity, is trained first to achieve high accuracy. The knowledge

gained by this model is then transferred to a smaller student model. The student

model learns to mimic the teacher model’s outputs, benefiting from its insights

without the need for the same computational resources. This approach ensures

that the student model remains lightweight and efficient, making it suitable for

deployment on edge devices with limited computational power. Despite its reduced

size, the student model retains much of the accuracy of the larger teacher model.

6.2.2 Model Training

The training process for PADNet-Lite involves several key parameters and strategies to

ensure robust performance and prevent overfitting.

The teacher model consists of 430.88K parameters, while the student model has only

4.27K parameters. This significant reduction in model size is achieved through knowledge

distillation, where the larger teacher model transfers its knowledge to the smaller student

model.

For training, the teacher model was trained with a batch size of 200 for 40 epochs,

whereas the student model used a batch size of 32 for 50 epochs. Early stopping was

implemented at 39 epochs for the teacher model and 35 epochs for the student model to
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Teacher model accuracy plot

Figure 6.5: Training and validation accuracy plots of teacher model.

Student model accuracy plot
Figure 6.6: Training and validation accuracy plots of student model.

prevent overfitting by halting training when the model’s performance on a validation set

stops improving.
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Both models utilized an adaptive learning rate starting at 0.001. For the student

model, L1 regularization was applied to penalize large weights and encourage simplicity.

Additionally, a dropout layer with a rate of 0.5 was added to the final convolutional layer

of the student model to further prevent overfitting by reducing the dependency on any

single feature.

During the knowledge distillation process, a temperature (T) of 5 and an alpha value of

0.3 were used to control the softening of the probability outputs and balance the influence

of the teacher model’s predictions and the ground truth data during the student’s training.

The effectiveness of these strategies is evident in the training and validation accuracy

plots for both models (see Fig. 6.5 & Fig. 6.6). The curves closely follow each other,

indicating that overfitting was successfully mitigated. For the student model, the training

accuracy quickly rises and stabilizes around 96%, with the validation accuracy closely

mirroring this trend. This alignment between training and validation accuracy curves

confirms that the model generalizes well to new, unseen data.

6.3 Experimental Results and Discussion

The experimental results of the PADNet-Lite model are presented in a comprehensive

comparison with both the teacher model and a baseline student model trained from scratch,

as shown in Table 6.6. The aim is to highlight the performance, accuracy, and efficiency of

the student model compared to the teacher model and the baseline.

6.3.1 Results of PADNet-Lite Model

The teacher model, with its 430.88K parameters, achieved the highest accuracy of

97.45%. This model, however, is significantly larger, with a model size of 5,135 KB,

making it impractical for deployment on resource-constrained edge devices. The student

model, derived through knowledge distillation, has only 4.27K parameters and a much

smaller model size of 52 KB. Despite this reduction in size, the student model achieved an

impressive accuracy of 96.52%, demonstrating that it retained most of the performance



118

benefits of the teacher model while being significantly more efficient (see Table 6.6).

Table 6.3: Confusion matrix of student model.

Predicted
Normal Arc Total

A
ct

u
al

Normal 10167 200 10367
(98.07%) (1.93%)

Arc 509 9524 10033
(5.07%) (94.93%)
Total 10400

Type I error (false positive) 1.93%
Type II error (false negative) 5.07%

Overall accuracy 96.52%

Table 6.4: Confusion matrix of teacher model.

Predicted
Normal Arc Total

A
ct

u
al

Normal 10207 160 10367
(98.46%) (1.54%)

Arc 360 9673 10033
(3.59%) (96.41%)
Total 10400

Table 6.5: Confusion matrix of student scratch model.

Predicted
Normal Arc Total

A
ct

u
al

Normal 10062 305 10367
(97.06%) (2.94%)

Arc 1097 8936 10033
(10.93%) (89.07%)
Total 10400

In comparison, the student model trained from scratch (without knowledge distillation)

also has 4.27K parameters but achieved a lower accuracy of 93.13%. This indicates that the
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Table 6.6: Comparison of teacher, student, and student scratch models.

Model Teacher Student Student Scratch
Parameters 430.88 K 4.27 K 4.27 K
Accuracy 97.45% 96.52% 93.13%

Loss 0.0806 0.0385 0.2203
Model size (kB) 5,135 52 122

knowledge distillation process effectively transferred critical knowledge from the teacher

model to the student model, enhancing its performance beyond what could be achieved

through traditional training alone.

The confusion matrices (Table 6.4, Table 6.3, and Table 6.5) provide a detailed breakdown

of each model’s performance in classifying normal and arc fault conditions. The teacher

model correctly identified 10,207 out of 10,367 normal samples (98.46%) and 9,673 out

of 10,033 arc samples (96.41%). It misclassified 160 normal samples as arcs (1.54%)

and 360 arc samples as normal (3.59%). The student model showed a slightly lower

performance but still impressive, correctly classifying 10,167 out of 10,367 normal samples

(98.07%) and 9,524 out of 10,033 arc samples (94.93%). The misclassification rates were

1.93% for normal samples and 5.07% for arc samples. This performance is very close to

that of the teacher model, underscoring the effectiveness of the knowledge distillation

process in maintaining high accuracy with a significantly smaller model. The student

model trained from scratch, however, showed a noticeable drop in performance, correctly

identifying 10,062 out of 10,367 normal samples (97.06%) and 8,936 out of 10,033 arc

samples (89.07%). The misclassification rates were higher, at 2.94% for normal samples

and 10.93% for arc samples, demonstrating that this model struggled more with accurate

classification compared to the student model derived from knowledge distillation.

The key takeaway from these results are that the teacher model, while highly accurate, is

too large for practical use in edge devices. The student model, created through knowledge

distillation, provides a highly efficient and almost equally accurate alternative, making it
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suitable for real-world applications. The baseline student model trained from scratch was

not able to match the performance of the distillation-derived student model, highlighting

the value of the knowledge distillation technique. These results demonstrate that the

PADNet-Lite student model offers a compelling balance of high accuracy and efficiency,

making it a practical solution for real-time DC arc fault detection in photovoltaic systems.

6.3.2 Real-Time Implementation Details

6.3.2.1 AFCI Testing During Regular Operation

For real-time arc fault detection and circuit interruption experiments, the STM32H743ZI2

microcontroller unit (MCU) and a SiC MOSFET-based solid-state circuit breaker (SSCB)

were utilized. The STM32H743ZI2 is particularly suited for this application due to its

balanced performance and cost-effectiveness. It features a Cortex M7 processor running at

480 MHz, with 1 MB of RAM and 2 MB of flash memory. This configuration provides

sufficient computational power and memory to handle the arc fault detection algorithm

while maintaining low power consumption. The choice of this MCU was influenced by its

affordability, costing only about $25, making it an ideal choice for cost-sensitive AFCI

solutions in photovoltaic systems. The STM32H743ZI2 offers a compelling balance of

processing capability and cost when compared to other platforms like the Jetson Nano

and Raspberry Pi 4B. Although powerful, the Jetson Nano and Raspberry Pi 4B are more

expensive compared to the STM32H743ZI2.

The algorithm for arc fault detection was tested under two conditions: without AFCI

and with AFCI. One condition demonstrates timely detection, and the other shows fast

interruption using the SSCB. The real-time implementation details are illustrated in Fig.

6.7. Under conditions without the AFCI (Imp = 5A, Vmp = 500V, and Voc = 600V),

the arc fault starts and the arc voltage rises to around 30V. The arc detection time is

approximately 23 ms, but without the AFCI, the arcing continues as there is no mechanism

to interrupt the circuit. As long as the arc fault continues, the arc detect signal remains
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Figure 6.7: Real-time online arc fault detection using STM32 MCU.
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Figure 6.8: Real-time arc fault circuit interruption using STM32 MCU & SSCB.

high, indicating that the algorithm is continuously detecting arc faults during arcing time.

In contrast, under conditions with the AFCI (Imp = 3 A, Vmp = 400 V, Voc = 450 V),

the arc fault is detected and the SSCB quickly interrupts the circuit (see Fig. 6.8). The

fault clearing time is around 19 ms, effectively stopping the arcing and protecting the

system. The use of SiC MOSFETs in the SSCB provides a rapid and reliable method for

breaking the circuit upon detection of an arc fault. This fast response time is crucial for

preventing damage and ensuring the safety of the photovoltaic system.

These real-time tests demonstrate the effectiveness of the PADNet-Lite model when

implemented in the STM32H743ZI2 MCU in conjunction with the SiC MOSFET-based
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SSCB for rapid arc fault detection and interruption. The setup successfully detects and

clears arc faults much faster than traditional methods, with the AFCI-equipped system

showing a fault clearing time of just 19 ms. The STM32H743ZI2’s balance of low cost,

sufficient computational power, and robust community support make it an ideal choice for

real-time arc fault detection in photovoltaic systems, ensuring both safety and efficiency.

6.3.2.2 AFCI Testing During Regular Operation

0s       1s       2s       3s       4s       5s       6s       7s       8s       9s      10s

Arc gap voltage

Load current

Arc detect signal
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Normal

0V

3A
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0s       1s       2s       3s       4s       5s       6s       7s       8s       9s      10s
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Figure 6.9: Real-time AFCI performance evaluation during inverter startup.

The performance of the arc fault detection system was evaluated under inverter startup

conditions to assess its robustness against the dynamic behaviors typically seen during



123

the startup phase of photovoltaic systems. During startup, inverters exhibit transient

behaviors where currents and voltages fluctuate before settling into a steady state. A few

of these experiments and results are depicted in Figure 6.9.

Scenario 1: In this scenario, the load current gradually increases from 0 A to 3 A within

the first 10 seconds. Throughout this period, the arc gap voltage remains stable near zero,

and the arc detect signal does not trigger, indicating any detection of arc faults. The

transient fluctuations in the load current at around 1.5 seconds do not affect the arc gap

voltage or trigger any false alarms, showing the algorithm’s ability to differentiate normal

startup behavior from actual faults.

Scenario 2: Similar to the first scenario, the load current ramps up to 3A over 10 seconds.

However, there are noticeable transient fluctuations in the load current between the 2 and

3-second marks. Despite these transients, the arc gap voltage stays constant, and the arc

detect signal remains inactive. This indicates that the system correctly identifies these

transient behaviors as normal and does not falsely detect an arc fault.

The results from these two scenarios demonstrate that the arc fault detection system

is capable of distinguishing between normal inverter startup transients and actual arc

faults. This ability is crucial for preventing false positives and ensuring reliable operation

in real-world photovoltaic systems.

6.3.2.3 Shadow Occlusion and Change in Irradiance Test

The arc fault detection system was evaluated under conditions of changing irradiance

and shadow occlusion to test its robustness in varying environmental conditions. These

tests simulate real-world scenarios where photovoltaic systems experience fluctuations in

sunlight due to moving clouds or other obstructions.

In these experiments, three scenarios involving changes in load current and irradiance

were tested, as illustrated in Fig. 6.10, Fig. 6.11, and Fig: 6.12.

• Scenario 1: Shadow Occlusion: In this scenario, the load current changes from 0A



124

1

Arc

Normal

8A

0V

1A0A

Arc gap voltage

Load current

Arc detect signal

0A
0s       1s       2s       3s       4s       5s       6s       7s       8s       9s      10s

Shadow occlusion test: 0 A→ 8 A→ 1 A 

Figure 6.10: Real-time performance evaluation of the proposed AFCI during shadow
occlusion.
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Figure 6.11: Sudden load change (from 3 A to 8 A) test of AFCI.

to 8A and then drops to 1A within the 10-second period. Despite these significant

changes in load current, the arc gap voltage remains stable, and the arc detect signal

does not trigger. This indicates that the system accurately identifies these changes

as normal variations in irradiance rather than arc faults.

• Scenario 2: Load Change (Jumping Up): The load current starts at 3A and jumps
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Figure 6.12: Sudden load change (from 8 A to 3 A) test of AFCI.

to 8A at the 5-second mark. This sudden change in load current is typical of a

cloud passing over the PV array, temporarily increasing the irradiance. The arc gap

voltage remains unchanged, and the arc detect signal stays low, confirming that the

system does not misclassify this scenario as an arc fault.

• Scenario 3: Load Change (Jumping Down): In this shadow occlusion test, the

load current initially at 8A drops sharply to 3.2A at the 5-second mark. The

arc gap voltage remains consistent throughout, and the arc detect signal does not

activate. This scenario further validates the system’s ability to handle rapid changes

in irradiance without producing false positives.

The results demonstrate the arc fault detection system’s robustness and reliability under

varying environmental conditions. The system successfully maintained a classification

accuracy of 100% with zero false positives, even during significant changes in load current

and irradiance. This capability is crucial for real-world applications, ensuring that the

system can accurately differentiate between normal environmental variations and actual

arc faults.
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6.3.2.4 Testing at Different Loading Conditions

The arc fault detection system was tested under various current (Imp) and voltage

(Vmp) settings to evaluate its performance across different operating conditions. These

tests aimed to simulate real-world scenarios where photovoltaic systems might experience

varying loads and voltage levels. The results of these tests are illustrated in Fig. 6.13.

Scenario 1 (4A, 480V): The load current was set to 4A and the voltage to 480V. An arc

fault started around the 5-second mark, and the arc gap voltage increased accordingly. The

system successfully detected the arc fault with no false positives during normal operation,

indicating high accuracy.

Scenario 2 (5A, 500V): With the load current increased to 5A and the voltage to 500V,

the arc fault detection again began around the 5-second mark. The system accurately

detected the arc fault, maintaining its reliability with no false positives.

Scenario 3 (6A, 520V): In this test, the load current was 6A and the voltage 520V. The

system detected the arc fault but showed a few false negatives towards the end of the

10-second period. This suggests a slight decrease in detection accuracy at higher currents

and voltages.

Scenario 4 (7A, 520V): At a load current of 7A and voltage of 520V, the system

detected the arc fault but with some false negatives as the arcing continued. Despite these

inaccuracies, the system effectively broke the circuit at the first occurrence of an arc fault,

mitigating potential hazards.

The arc fault detection system demonstrated reliable performance across various current

and voltage settings, with minimal false positives. However, the likelihood of false negatives

increased at higher current and voltage levels. The system’s capability to quickly interrupt

the circuit upon initial arc fault detection ensures enhanced safety and stability for

photovoltaic systems.
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Figure 6.13: Real-time arc fault detection test under diverse loading conditions.
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Figure 6.14: Real-time online arc fault detection accuracy test under diverse loading
conditions.

Table 6.7: Online accuracy testing of the proposed PADNet-Lite model

Current Duration Samples Accurate Detection
3A (mixed) 1s 60 59
4A (normal) 1s 60 60
6A (mixed) 10s 600 596
6A (mixed) 2s 120 118
7A (mixed) 2s 120 115
8A (mixed) 10s 600 583
Total = 1560 1531

6.3.2.5 Real-time Online Accuracy Testing

The real-time arc fault detection accuracy of the proposed system was evaluated under

diverse loading conditions to ensure its robustness and reliability in different operating

scenarios. The test setup involved monitoring various parameters such as load current, arc

gap voltage, arc detect signal, and data collection signal, as shown in Fig. 6.14.

In the depicted test scenario, the load current is set to 3A with a voltage of 400V. The

data acquisition (DAQ) period and the processing and inference time are clearly marked.
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The DAQ period is indicated by the LED signal being high, and the LED signal being low

represents the processing and inference time. This method allowed for precise calculation

of accuracy based on ground truth data.

The system’s online accuracy was tested under various loading conditions, summarized

in Table 6.7. The conditions ranged from mixed scenarios to normal operation, with

currents varying from 3A to 8A and durations from 1 to 10 seconds. The results show the

number of samples collected and the accurate detections made by the system. In total,

1560 samples were collected across all conditions, with 1531 samples accurately detected,

resulting in an overall detection accuracy of approximately 98.14%. This high level of

accuracy demonstrates the system’s effectiveness in real-time arc fault detection across

various loading conditions, confirming its suitability for use in photovoltaic systems.

6.3.3 Reliability Enhancement of PV AFCI

To enhance the reliability of the arc fault detection system, a strategy was adopted

where five consecutive arc cycles are considered as one arc fault event. This approach

addresses issues associated with fast tripping due to detection within a single cycle, which

can be prone to inaccuracies. By waiting for multiple consecutive cycles, the system

ensures more robust detection of arc faults. As illustrated in Fig. 6.15, this method

improves the reliability of the detection process.

The average fault detection time was found to be between 95 to 106 milliseconds. This

slight delay ensures that the system captures the arc signature more accurately. Sometimes,

the first cycle of an arc event may go undetected due to partial capture of the arc signature,

but the inclusion of subsequent cycles enhances overall detection accuracy. This approach

significantly reduces false trips and enhances the dependability of the arc fault detection

system in real-world photovoltaic applications.

Additionally, Fig. 6.16 demonstrates the real-time AFCI testing with the five-cycle arc

approach. The results show that the arc fault is cleared within 95 milliseconds, confirming
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Figure 6.15: Reliability enhancement using 5 cycles of arc per arc event.

the system’s ability to respond quickly and accurately. This method is less likely to result

in false tripping, thereby enhancing the overall safety and reliability of the photovoltaic

system.

6.4 Performance Comparison with Existing Methods

The final evaluation of the robust AI-based AFCI involved a comprehensive performance

comparison of the proposed arc fault detection method with existing state-of-the-art

models. The comparison focused on accuracy and runtime, providing a clear picture of

the effectiveness and efficiency of the proposed model.

As shown in Fig. 6.17, the proposed model achieved an accuracy of 98.14% with the
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Figure 6.16: AFCI testing for interruption time using 5 cycles of arcs per arc event.

fastest inference time of 19 milliseconds. This performance is particularly noteworthy

given the low-cost STM32H743ZI2 microcontroller unit (MCU) and the diverse conditions

under which the model was tested. A detailed comparison, presented in Table 6.8, lists

various models, their parameter counts, and the platforms they were tested on. The

proposed method stands out due to its low parameter size (4.2K) and its deployment on

the STM32H743ZI2, combined with the solid-state circuit breaker.

Several key findings from the comparison include models tested on various platforms.

The model tested on the Udoo X86 MCU achieved 99.9% accuracy but had a longer runtime

of 89 milliseconds. Another model using the TMS320F280049 with a small window size of
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Figure 6.17: Performance comparison: proposed vs. state-of-the-art methods.

2 milliseconds achieved 99.5% accuracy and a runtime of 69 milliseconds. The model tested

on the NI PXI3-8821 reached 100% accuracy but with a significantly high runtime of 320

milliseconds. A model with 3.6 million parameters showed 99.19% accuracy and a runtime

of 60 milliseconds. Another model with 514.54K parameters achieved 99.4% accuracy and

a runtime of 100 milliseconds. A model using an I7-10750 CPU had 354.37K parameters,

97.48% accuracy, and a runtime of 75 milliseconds. The Compact RIO9030 platform, with

103.35K parameters, achieved 97.37% accuracy and a runtime of 59 milliseconds. The

i.MX RT1064 platform with 208.9K parameters achieved 99.6% accuracy and a runtime

of 43 milliseconds. The Jetson Nano platform, with 332.8K parameters, achieved 98.14%

accuracy and a runtime of 23.11 milliseconds.

Our proposed AFCI, tested on the STM32H743ZI2, demonstrated the best balance

between high accuracy and low runtime, making it the most efficient model for real-time

arc fault detection. This ensures both performance and cost-effectiveness, highlighting its
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Table 6.8: Comparison of different state-of-the-art methods and platforms.

Method Remarks Platform
[73] Params not found Udoo X86 MCU
[54] Small window size 2 ms TMS320F280049
[60] Not run in MCU NI PXI3-8821
[67] Params 3.6 M Not found
[59] Params 514.54 K Not found
[49] Params 354.37 K I7-10750 CPU
[50] Params 103.35 K Compact RIO9030
[111] Params 208.9 K i.MX RT1064
[32] Params 332.8 K Jenson Nano

PADNet-Lite (proposed) Params 4.2 K; SSCB STM32H743ZI2

suitability for practical applications in photovoltaic systems.



CHAPTER 7: CONCLUSIONS AND FUTURE RESEARCH

7.1 Conclusion

The proposed research developed efficient AC and DC arc fault detection algorithms and

provided real-time hardware verifications. Traditional CNN-based algorithms eliminate

the drawbacks of manually adjusted threshold problems of conventional frequency domain

methods but exhibit significant computational burdens for commercial MCUs. However, a

lightweight CNN algorithm with proper optimization can be effective for real-time arc fault

protection using low-end MCUs. Additionally, integrating SSCB provides fast interruption

of arc faults, thereby enhancing power system safety and reliability. The conclusive remarks

of the proposed methods are as follows:

• Advanced CNN-based Arc Fault Detection for AC Systems: The

development of a CNN-based algorithm for arc fault detection represents a

significant advancement in electrical safety technology. Traditional methods rely on

manual threshold setting, which can be error-prone and less adaptable to varying

environmental conditions. The CNN-based approach automates the detection

process, significantly reducing the possibility of human error and enhancing system

reliability. By achieving an accuracy rate of 99.47%, this method sets a new

standard for fault detection efficacy. Additionally, the research identified 10 kHz

as the balanced sampling frequency for AC arc fault detection, balancing system

responsiveness and computational efficiency. This finding provides a crucial guideline

for system design, ensuring effective arc fault detection while optimizing system

resource utilization.
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• Lightweight CNN Architecture for Resource-Constrained Environments:

A key contribution of this research is the development of a lightweight CNN-based

algorithm specifically designed for AC arc fault detection on platforms with limited

computational resources. Achieving an impressive detection accuracy of 99.31% and

an ultra-fast runtime of only 0.20 milliseconds per sample, this algorithm challenges

the conventional trade-offs between performance and computational demand. Its

minimalistic design conserves system resources and ensures seamless integration into

commercially available microcontroller units (MCUs), enhancing their capabilities in

critical arc fault detection applications.

• Cost-Effective AI-Driven AFCI for DC Systems: Another significant

contribution of this research is the proposal and implementation of an AI-driven

AFCI for DC systems. Utilizing a combination of an STM32 microcontroller unit

(MCU) and a Silicon Carbide (SiC) MOSFET-based Solid State Circuit Breaker

(SSCB), this system not only detects arc faults with high accuracy (98.14%) but

also interrupts faulty circuits faster than any previously recorded systems (within 19

milliseconds). This rapid response capability is critical in preventing electrical fire

hazards due to DC arc faults. The cost-effectiveness of the proposed AFCI system,

coupled with its high performance, marks a significant advancement in protective

devices for DC power systems, particularly in renewable energy applications like

photovoltaic systems.

These contributions collectively represent substantial advancements in the field of

electrical safety, particularly in detecting and managing arc faults in both AC and DC

systems. They reflect a move towards more intelligent, efficient, and reliable safety

mechanisms that can adapt to the demands of modern electrical systems and are poised to

make a significant impact on the industry’s approach to managing electrical fire hazards

due to arc faults.
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7.2 Future Research Directions

The research presented in this dissertation lays a robust foundation for arc fault detection

in both AC and DC systems. However, there are several avenues for future research that

can build upon these findings and further enhance the effectiveness and applicability of

the developed technologies.

1. Incorporating Real PV Systems: Future work should involve integrating the

proposed AFCI system into actual photovoltaic systems to verify its functionality

and effectiveness in real-world scenarios. This step is essential to assess the

system’s performance under varying environmental conditions and operational

stresses, providing a more comprehensive validation of the model.

2. Testing at Higher Voltages and Load Conditions: Extending the testing to

higher voltages and diverse load conditions will validate the robustness and reliability

of the model. Evaluating the detection algorithm and the SSCB under extreme

conditions ensures the system’s durability and effectiveness, confirming its suitability

for broader applications.

3. Exploring Advanced AI Techniques: Further research could explore the

integration of advanced AI and machine learning techniques, such as reinforcement

learning or hybrid models, to enhance the detection accuracy and response time of

the AFCI system.

4. Enhancing Data Augmentation Methods: Improving data augmentation

techniques can provide a more diverse training dataset, which is crucial for enhancing

the model’s generalization capabilities. Simulating various fault scenarios and

environmental conditions will create a robust training dataset, improving the system’s

overall performance.
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5. Developing Adaptive Algorithms: Future research could focus on developing

adaptive algorithms that can adjust their parameters in real-time based on the

operating conditions. This will ensure optimal performance of the AFCI system

under different scenarios, making it more responsive and reliable.

These future research directions build on the strong foundation established in this

dissertation, aiming to further enhance the capabilities and applicability of arc fault

detection technologies in photovoltaic and other electrical systems. By pursuing these

avenues, the ongoing development and refinement of these systems can be ensured,

contributing to greater safety and reliability in electrical infrastructure.
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7.3 Published Papers & Provisional Patents

The following list is a summary of my main publications.

1. Y. Wang, L. Hou, K. C. Paul, Y. Ban, C. Chen, and T. Zhao, "ArcNet: Series AC

Arc Fault Detection Based on Raw Current and Convolutional Neural Network,"

IEEE Transactions on Industrial Informatics, vol. 18, no. 1, pp. 77-86, 2021.

2. Y. Wang, J. Zhou, K. C. Paul, T. Zhao, and D. Sheng, "Explainability Approach-

Based Series Arc Fault Detection Method for Photovoltaic Systems," IEEE Access,

vol. 12, pp. 45 530-45 542, 2024.

3. K. C. Paul, T. Zhao, C. Chen, Y. Ban, and Y. Wang, "Efficient-ArcNet: Series

AC Arc Fault Detection using Lightweight Convolutional Neural Network," in 2021

IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1327-1333, IEEE,

2021.

4. K. C. Paul, L. Schweizer, T. Zhao, C. Chen, and Y. Wang, "Series AC Arc Fault

Detection Using Decision Tree-Based Machine Learning Algorithm and Raw Current,"

in 2022 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1-8, 2022.

5. K. C. Paul, J. Zhou, S. Chen, C. Chen, and T. Zhao, "Efficient and Lightweight

Convolutional Neural Network-based Series DC Arc Fault Protection for PV Systems,"

in 2024 IEEE Holm Conference on Electrical Contacts, 2024 (accepted).

6. S. Chen, K. C. Paul, and T. Zhao, "Enhancing Arc Fault Detection Performance

through Data Augmentation with Artificial Intelligence Technology: An Approach

to Time Series Dataset Enlargement," in 2024 IEEE Energy Conversion Congress

and Exposition (ECCE), 2024 (accepted).
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Provisional patents are enlisted below:

1. T. Zhao, K. Paul, and Y. Wang, "ArcNet-Lite: Lightweight Deep Neural Network for

Real-Time Series AC Arc Fault Detection," US Patent Application No. 63/531,659,

2023.

2. T. Zhao, K. Paul, and S. Chen, "Lightweight Neural Network-based Series DC Arc

Fault Circuit Interrupter for PV Systems," US Patent Application No. 63/626,673,

2024.

Journals under review are enlisted below:

1. K. C. Paul, C. Chen, Y. Wang, and T. Zhao, "LArcNet: Lightweight Deep Neural

Network for Real-Time Series AC Arc Fault Detection," submitted to IEEE Open

Journal of Industry Applications, April 2024.

2. K. C. Paul, D. Waldmann, C. Chen, and T. Zhao, "Artificial Intelligence for DC Arc

Fault Detection: A Comprehensive Review," submitted to IEEE Access, July 2024.
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