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ABSTRACT

NITISH CHANDRA. Characterization of Light-Meta Structure Interactions.
(Under the direction of DR. MICHAEL A. FIDDY)

The advent of metamaterials has increased the complexity of possible light-matter in-

teractions, creating gaps in knowledge and violating various commonly used approx-

imations and rendering some common mathematical frameworks incomplete. Our

forward scattering experiments on metallic shells and cavities have created a need for

a rigorous geometry-based analysis of scattering problems and more rigorous current

distribution descriptions in the volume of the scattering object. In order to build

an accurate understanding of these interactions, we have revisited the fundamentals

of Maxwell’s equations, electromagnetic potentials and boundary conditions to build

a bottom-up geometry-based analysis of scattering. Individual structures or meta-

atoms can be designed to localize the incident electromagnetic radiation in order to

create a change in local constitutive parameters and possible nonlinear responses.

Hence, in next generation engineered materials, an accurate determination of cur-

rent distribution on the surface and in the structure’s volume play an important role

in describing and designing desired properties. Multipole expansions of the exact

current distribution determined using principles of differential geometry provides an

elegant way to study these local interactions of meta-atoms. The dynamics of the

interactions can be studied using the behavior of the polarization and magnetization

densities generated by localized current densities interacting with the electromagnetic

potentials associated with the incident waves. The multipole method combined with

propagation of electromagnetic potentials can be used to predict a large variety of lin-

ear and nonlinear physical phenomena. This has been demonstrated in experiments

that enable the analog detection of sources placed at subwavelength separation by

using time reversal of observed signals. Time reversal is accomplished by reversing



iv

the direction of the magnetic dipole in bianisotropic metasurfaces while simultane-

ously providing a method to reduce the losses often observed when light interacts

with meta-structures.
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CHAPTER 1: INTRODUCTION

The study of origin and behavior of electric (E(r, t)) and magnetic (H(r, t)) field

vectors underpins the investigation of interactions between electromagnetic waves

and materials. In three dimensional vector notation, Maxwell’s equations [1] provide

a relationship between the field vectors, electric displacement (D(r, t)), magnetic

induction (B(r, t)) and the current density (j(r, t)) allowing a unique determination

of field vectors from arbitrary current distribution.

∇ ·D(r, t) = ρ(r, t) (1.1)

∇ ·B(r, t) = 0 (1.2)

∇× E(r, t) +
∂

∂t
B(r, t) = 0 (1.3)

∇×H(r, t)− ∂

∂t
D(r, t) = j(r, t) (1.4)

However, these equations have to supplemented with constitutive equations or ma-

terial equations which describe the behavior of materials under the influence of fields.

D(r, t) =
↔
ε · E(r, t) +

↔

ξ ·H(r, t) (1.5)

B(r, t) =
↔

ζ · E(r, t) +
↔
µ ·H(r, t) (1.6)
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The nature of permittivity (
↔
ε), permeability (

↔
µ) and cross-coupling (

↔

ξ &
↔

ζ ) tensors

determine the response of materials to incident electromagnetic wave. For an isotropic

medium, the permittivity and permeability are scalar quantities and cross-coupling

terms are zero. Hence, the electric field vector is parallel to electric displacement

and the magnetic field vector is parallel to magnetic induction. A material can be

electrically anisotropic if the permittivity is a tensor quantity and permeability is

a scalar then electric field vector may not be parallel to electric displacement and

if permittivity is a scalar and permeability is a tensor quantity then magnetic field

vector may not be parallel to magnetic induction rendering the material magnetically

anisotropic. A material can be both electrically and magnetically anisotropic if the

both permittivity and permeability are tensor quantities simultaneously and the cross-

coupling terms are zero.

For isotropic and anisotropic materials, the constitutive relations relate both elec-

tric quantities and magnetic quantities to each other. However, a bianisotropic ma-

terial provides cross coupling between the electric and magnetic fields as shown by

constitutive relations (1.5 & 1.6) re-written as,

D

B

 =

↔
ε

↔

ξ
↔

ζ
↔
µ


E

H

 =
↔

C

E

H

 (1.7)

The functional dependence of the constitutive matrix (
↔

C) determines the type of

materials, if
↔

C depends on field vectors then the material is nonlinear. If
↔

C depends

on spatial coordinates then medium is inhomogeneous and material is dispersive if
↔

C

depends on time derivatives [2].

The propagation of electromagnetic waves in vacuum or material medium is gov-

erned by wave equations which can be derived from the Maxwell’s equations. For

an isotropic, homogeneous and non-dispersive medium, the wave equation for electric

and magnetic field vectors in presence of source current density is given by
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∇×∇× E(r, t) + εµ
∂2

∂t2
E(r, t) = −µ ∂

∂t
j(r, t) (1.8)

∇×∇×H(r, t) + εµ
∂2

∂t2
H(r, t) = ∇× j(r, t) (1.9)

Using the vector identity, ∇ × ∇× = ∇(∇·) − ∇2 and equation 1.1, the wave

equations describing the propagation of electric and magnetic field vectors originating

from the source current and charge densities becomes,

∇2E(r, t)− εµ ∂
2

∂t2
E(r, t) =

1

ε
∇ρ(r, t) + µ

∂

∂t
j(r, t) (1.10)

∇2H(r, t)− εµ ∂
2

∂t2
H(r, t) = −∇× j(r, t) (1.11)

These equations can be simplified using the continuity equation which provides a

relationship between charge and current densities.

∇ · j(r, t) +
∂

∂t
ρ(r, t) = 0 (1.12)

It is imperative to realize that the source current density has both space and time

dependence, especially in the study of scattering from an object. Usually during

calculations, the total fields observed are assumed to be the superposition of incident

and scattered fields. The scattered field is calculated by assuming that the scattering

object or scatterer acts as the source being driven by the incident fields. Boundary

conditions are an essential piece of the puzzle for understanding the propagation of

electromagnetic fields through an interface of two media. Using Gauss’ and Stokes’

theorem boundary conditions for tangential and normal components of the fields can

be derived which has been discussed in detail in chapter 3. Boundary conditions

play an important role in establishing the general coordinate system for scattering
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problems as they depend on the geometry of the boundaries. In the simplest case,

a boundary can be a plane surface separating two semi-infinite media or much more

complex bounded material such as spheres or cylinders. Quite often, the field inside

the scattering object is not studied in detail as simplifying approximations such as

perfect electrical conductors (PEC) and lossless dielectric medium are used.

In literature the overall size (as) of the scattering object relative to the incident

wavelength (λ0) is the main parameter that determines the type of scattering mech-

anism to study the interaction but geometry of the scattering object is ignored. The

type of interactions can be described succinctly by a relative dimensionless scattering

parameter which is defined as,

xs =
2π

λ0

as (1.13)

If the size of the scattering object is much smaller than the incident wavelength

or xs << 1, then the interaction is characterized as Rayleigh scattering. Interaction

with scattering objects with sizes comparable to the wavelength or xs ≈ 1 fall into

the category of Mie scattering. The figure 1.1 gives examples of common objects and

the category of the scattering depending on the wavelength of interacting fields. It is

evident that the same object can fall into Rayleigh or Mie type scattering depending

on the variation of the incident wavelength.

In order to solve the scattering problem boundary conditions have to be imposed

on the scattering surface which requires continuity of tangential components of the

electric and magnetic fields, assuming the surface current is zero. In general, closed

form solution for scattering from arbitrary objects does not exist and fields are writ-

ten in the integral form. However, scattering from simple geometries such as spheres

or infinite solid cylinders can be analyzed analytically. Theoretical solution for scat-

tering from spheres are widely known as Mie scattering because of the well known

solutions published by Gustav Mie [3] which can be modified to analyze other dielec-
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Figure 1.1: Primitive illustration of different types of scattering based on object size
and incident wavelength without considering effects such as, absorption.

tric or conducting structures such as infinite solid cylinders. The formulation of the

scattering problem can be simplified and generalized by using vector harmonics and

electromagnetic potentials discussed in chapter 3.

The effects of geometry and nature of incident electromagnetic waves on scattering

becomes very important for the study of metamaterials where the values of constitu-

tive parameters can be engineered. The inception of the idea of negative constitutive

parameters for materials can be credited to V. G. Veselago in 1968 [4], who first

showed that the principles of electrodynamics do not restrict the permittivity (ε) and

permeability (µ) to positive values. His work paved the path for the existence of

left-handed materials where the permittivity and permeability values can be negative

simultaneously. In the simplest case, the phase and group velocity in left handed ma-

terials are opposite to each other which was first discussed in 1904 [5]. The interest
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in negative refractive index was renewed by the research to increase the resolution

of a lens and the theoretical evidence that negative index can produce a perfect lens

[6]. The modern era of metamaterials was ushered by the first experimental evidence

of negative index at microwave frequencies [7] and later at optical frequencies [8].

Similar to every new area of research metamaterials has peaked interest of a large

section of the physics and electrical engineering community and a plethora of papers

have followed presenting new applications of metamaterials.

The defination of metamaterial is still very vague but can be understood as mate-

rials possessing properties that are not available in natural materials such as strong

response to magnetic fields at optical frequnecies [9], light trapping structures [10, 11]

and slow light propagation [12]. The crucial role of resonances to achieve negative

values of permittivity and permeability can be traced back to the work of N. A.

Khizhnyzk [13]. Hence, the design of elementary components of metamaterials or

meta-atoms (MA) which are essentially resonators to obtain a desired response is

crucial to the study of metamaterials. The optimal size of the unit cell compared to

the wavelength is still debatable and experiments have shown that the meta-atoms

do not have be deeply subwavelength as initially percieved. With careful choice of

the geometries of the resonators and material for meta-atoms macroscopic response

to incident field can be tailored for specific applications such as negative refraction

[14, 15], and optical cloaking [16]. The area of research has been extended to other op-

tical phenomenon which can affect the off-diagonal elements of the constitutive tensor

(
↔

ξ &
↔

ζ ) to achieve optical activity [17], chirality induced negative index [18, 19], and

amplification of evanescent waves [20, 21]. Despite the anticipated exotic properties

of metamaterials, the design and characterization of these materials can be under-

stood by studying the simple building blocks and thin mutual interactions as shown in

figure 1.3. There are three main components to the study of metamaterials, material

response (
↔

C) at operating frequency (ω), effects of geometry on the material response
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(
↔

C(r)) and interaction among neighboring meta-atoms or multiple scattering events.

In addition, study of metamaterials requires understanding of effects of bandwidth

and errors in fabrication to create meta-devices.

(a) Simple meta-atom (b) Complex meta-atom (c) Meta-molecule

Figure 1.2: Building blocks of metamaterials

(a) Meta-chain (b) Meta-surface (c) Meta-material

Figure 1.3: Various arrangements of meta-structures leading to different kinds of
metamaterials.

At the microscopic level metamaterials are composed of structures or resonators

smaller or on order of the wavelength (meso-scale). These structures can be as sim-

ple as rods and can be termed as meta-atoms. The complexity of structures can be

increased to achieve more exotic properties such as chiral and bianisotropic response

to incident fields (see figure 1.2). These structures can be arranged one dimension to

design a meta-chain and even though the structures are arranged in one dimension,

the entire arrangement still has materials distributed in three dimensions interacting

with the electromagnetic waves. Similarly, two dimensional arrangement is called

a meta-surface and three dimensional structures are called meta-materials. The di-

mensionality in the analysis of these systems is very important in order to capture
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the effects of multiple scattering events on the phase and effects of geometry. The

mathematical modeling of a meta-surface in two dimensions is not totally accurate

because the meta-atoms may be arranged two dimensions but locally the the inter-

action occurs in three dimensions. Hence, in order to capture the effects of multiple

scattering the modeling has to be done with consideration given to all three dimen-

sions of a meta-atom with the limit of third dimension approaching to zero at the

end of calculations as discussed in chapter 4.

The response of metamaterials composed of metallic meta-atoms is largely based

on plasmon resonances supported by the structure. On application of electric field,

conduction electrons are displaced from their equilibrium position causing polariza-

tion and the core ions creating a restoring force. Hence, applying a time varying field

the motion can be modelled as Lorentzian oscillator with peak at resonance frequency

with phase shift of π across the spectral width of the resonance. For small particles

the electric field penetrates the whole volume of the meta-atoms, creating a complete

dipolar response with resonant frequency depends on material, and the surrounding

environment [22]. However, when the thickness of these structures becomes greater

that skin depth the electric field is restricted primarily on the surface giving rise to

multipole resonances making the response more sensitive to the geometry. Analytical

results for spheres [3] and ellipsoid exists but other complicated shapes, especially

shells are largely unexplored. Interesting physical phenomenon can be observed when

two meta-atoms are brought closed to each other. The near field interactions can lead

to creation of symmetric and asymmetric modes relative to the individual dipoles.

The individual modes get altered by the presence of neighbors which alters the field

distribution and hence affecting both electric and magnetic polarizabilities. The in-

teraction can be classified in three categories, first the meta-atom separation is of

the order of the resonance wavelength which leads to diffractive far-field interactions

between the meta-atoms of the array and interfere constructively, leading to collec-
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tive modes known as surface lattice resonances. Second, the meta-atom separation

is smaller than the resonance wavelength, but meta-atoms are still sufficiently well

separated that near-field-mediated interactions are small. Third, the meta-atom sep-

aration is small compared with the resonance wavelength and near-field interactions

become very important. Modeling of these interactions becomes more complicated

when the thickness of the meta-atoms are greater than skin depth which requires

careful consideration of geometry for accurate calculation of interactions and field

induced in the structures. The issue of skin depth in curved geometries is discussed

in detail in chapter 4.

There is still an ambiguity about the best method for designing and characterizing

metamaterials as the analysis becomes much more difficult near resonances. The

excitation of resonances can be studied using circuit theory and can be modeled by

LC resonances. There are few fundamental techniques for modeling such as, use

of coupled dipole equations [23], and effective medium theory based on inclusions

[24]. Transformation optics [25, 26] where the variation in refractive index n(r) is

represented as coordinate transformations is also used in design of metamaterials and

invisibility cloaks. It provides a way to deal with electromagnetic waves bending in

curved spaces but has certain limitations in the formalism such as permittivity and

permeability values have to be equal ε = µ. We want to develop a much more robust

method where the constitutive parameters are not restricted to certain values and

can deal with presence of cross-coupling terms. Theoretical framework presented in

this dissertation is inspired by experiments hence, extensive efforts have been made

to relate the theory to the experimental observations.

The most common techniques used in metamaterial design are differential Maxwell’s

equation solvers such as finite difference time domain simulations [27], finite element

methods and Fourier modal methods. Effective medium method where local interac-

tions are averaged to calculate effective material parameters are often used to analyze
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metamaterials. It is assumed that the local interactions are static in nature and the

spatial variation is negligible hence, it can be assumed to form a composite making

the details of the structure insignificant. Green’s functions can be used to solve for the

fields originating from the current densities and hence, are capable of capturing the

details of individual interactions. In the limited fundamental literature, Green’s func-

tions seem to be the thread that ties all the physical phenomenon with the geometry

in the study of metamaterials. It provides an elegant way to model field distribution

originating from meta-atoms and effects of meta-surfaces of arbitrary shape. It allows

to encompass the vast variety of metamaterials being operated at radio-frequencies

to quantum metamaterials in single formulations. Hence, Green’s functions combined

with effect of coupling should provide a good platform to charaterize the response of

metamaterials from physical point of view. However, homogenization leads to loss of

capability of engineering individually the local interaction for desired global response.

Other techniques such as boundary layer method and dipole or multipole approxi-

mation methods are also used in metamaterial design. Despite the availability of

variety of numerical techniques and software the analytical description of metamate-

rial design is still not well developed. There are recent publications [28, 29, 30] that

point towards the need to develop a better physical understanding of metamaterials

in order for the area of research to mature. There has been a growing uncertainty

about the accuracy of finite element programs, such as COMSOL [31] to capture all

physical phenomenon involved in interaction of meta-atoms with the incident field.

Currently, methods available are not capable of characterizing the whole range of

interactions as the dynamical picture of interactions has not been studied and formu-

lations for constitutive parameters based on geometry of structures are non-existent.

The torrent of research published in the metamaterials area is largely dependent on

software tools to understand the key components of the interaction. An analyti-

cal method for mapping structure to function is not available and mesh-dependent
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finite-element analysis by commercial software is typically used to understand the

propagation properties of the problem. Various homogenization methods are used to

simplify the computations, such as assuming an infinite lattice and approximating

meta-atoms by dipoles averaged over the unit-cell volume [32, 33]. Multiple or recur-

rent scattering among adjacent meta-atoms are not considered in analytical models

and the meta-atoms are assumed to be driven only by incident radiation. No funda-

mental limits have yet been determined for interactions depending on size and wave-

length for metallic and dielectric meta-structures. These structures are considered

two dimensional for numerical experiments when dimensions much smaller than the

wavelength but physically interactions occur in three dimensions. Bianisotropic prop-

erties of structures are typically ignored in order to simplify the framework [34]. The

current methodology has numerous limitations, since the different computation-based

approaches have led to models approximately describing individual physical problem

which are not generalizable. Current methods cannot be used for accurate analysis

of bianisotropic structures or to decompose the interaction in to various modes of a

multipole response. Effects of size and local surface curvature on power absorbed and

emitted, and internal losses and collective effects have not been discussed. Methods

for classification of different meta-structures and an overall framework relating all the

local phenomena to an observed far-field response are not available. The study of

non-linear effects is mostly perturbative in nature but recent work with anapoles [35],

oligomers, and toroidal dipoles [36] have showed a path towards modeling strong non-

linearities. Metamaterials have thus far been used as a way to manipulate waves but

not as a source of radiation. There is lack of holistic methods for analyzing the entire

2D and 3D arrangements incorporating ensemble effects and localization of photons.

The approach being built in this dissertation links observed far-field behavior to local

resonant/non-resonant light-matter interaction. The main foundations of this mul-

tifaceted approach can lead to a classification hierarchy of structures that would be
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generally useful as a starting point in future analyses.

The advent of metamaterials has increased the complexity of the physics of light-

matter interactions creating gaps in knowledge and violating various approximations

making the usual mathematical frameworks incomplete. In order to build an accurate

understanding of interactions it is necessary to revisit basic frameworks and build a

bottom-up analysis of interactions. The individual structures or meta-atoms are

designed to localize the incident electromagnetic radiation in order to create a change

in local constitutive parameters. Thus, we develop a theoretical framework for the

dynamics of the total system which consists of the incident electromagnetic field and

the current distribution in meta-atoms. The localized current densities can interact

with each other and alter the individual dynamics creating perturbation in global

effective constitutive parameters for 2D and 3D arrangements of such meta-atoms.

Precise calculation of such interactions can be analyzed by the change in dynamics

on an individual meta-atom due to scattered field from adjacent structure. Such

detailed description of dynamics of meta-atoms can be used to describe strong non-

linear interactions and possibly a way to develop a metamaterial-based radiation

source.

The majority of meta-atoms are metallic and the current induced in these structures

plays a crucial role in accurate determination of scattered field. The traditional theory

of skin depth may not be sufficient to explain the interaction when the size of meta-

atoms becomes comparable to the operating wavelength and the thickness of the

structures becomes deeply sub-wavelength. In the experiments conducted we have

observed some abnormalities in the scattered field from cylindrical shells when the

contents are altered which can be inferred as an effect of variations in skin depth.

If we are able to excite Fabry-Perot type resonances then the transmission can be

increased as evident in Fabry-Perot cavities. This raises a question about the effect

of geometry in the distribution of current in conductors with finite conductivity. For
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ease of calculation in majority of the research, metals are assumed to have infinite

conductivity but as we know from calculation of transmission in cavities a slight

deviation from 100% reflectivity leads to a large transmission. Hence, similar resonant

effects can lead to modification of the skin depth in finite conductivity calculations

which opens the avenue for skin depth engineering. Modal analysis has shown the

existence of resonances at certain frequencies but the analysis becomes increasingly

cumbersome when the geometry becomes more complex which makes it imperative

to develop a framework that capable of handling complex geometry using differential

geometry. The wave equation in curvillinear coordinates provides a way to deal

with propagation of electromagnetic waves through curved spaces and modifying the

boundary conditions, a framework to deal with bounded spaces necessary for meta-

atoms of arbitrary complexity is developed. Geometry introduces a non-linearity

combined with evanescent fields and multi-pole response due to thickness to produce

non-linear response. There have been papers showing that negative index can be

achieved away from resonances by exploiting chirality and biansotropy. This can

pave the path for low loss metamaterials for applications in time reversal and digital

circuitry [37].

A simplistic views of light interactions with meta-structures can be understood by

studying the eigenmodes supported by antennas which are used to convert localized

current density or energy into electromagnetic radiation and vice versa. On the other

hand, meta-atoms are designed to localize energy from an incoming electromagnetic

field to alter the local effective material parameters as the waves propagates through

the structures. The size of meta-atoms are dictated by the operating wavelength.

At optical wavelengths a sufficiently long rod antenna can support fundamental half-

wavelength eigenmode and higher-order modes when it is folded into more complex

shapes, see figure 1.4. Deformations have two main effects: shift the resonance fre-

quency due to modified dipolar interactions between the ends of the antenna, adding
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a degree of tunability, and change the symmetry of the antenna, so that formerly

dark modes may couple to incident light for appropriate directions of the incident

electric field. Such dipole formulation assumes that field penetrates the entire volume

of meta-atoms. The skin effect can be included by using multi-pole approximations

but still does not capture all physical phenomenon involved in interaction of field with

the structures.

(a) Rod (b) V-shaped

(c) Split ring (d) Split ring

Figure 1.4: Evolution of eigenmode: As the geometry of the meta-atom is changed the
charge distribution changes which in turn changes the electric and magnetic dipoles
asscociate with the structure. The geometry can be further tuned to produce higher
multipole moments such as quadrupole.

The phase shift between the scattered and incident light in an antenna can be

qualitatively studied by classifying the size of the antennas (la) (shown in figure 1.2a)

with surface plasmon wavelength (λsp). If the antenna is very small (la/λsp << 1),

then the charge distribution instantaneously follows the incident field (Ei(r, t)),

ρ(r, t) ∝ Ei(r, t) = Ei(r)e
−iωt (1.14)



15

Hence, using Larmor formula [38], the scattered field (Es(r, t)) from the antenna

is proportional to acceleration of charge density and it can be easily shown from

equation 1.15 that the incident and scattered fields are π out of phase.

Es(r, t) ∝
∂2ρ(r, t)

∂t2
∝ −ω2Ei(r, t) (1.15)

With the increase in the size of antenna (la/λsp ' 1/2), the incident field is in

phase with the current density (j(r, t)) at the center of the antenna therefore drives

the current most efficiently leading to maximum charge density at the ends of the

antenna. Hence the scattered field derived from equation 1.16 is π/2 out of phase to

the incident field.

Es(r, t) ∝
∂2ρ(r, t)

∂t2
∝ ∂j(r, t)

∂t
∝ −iωEi(r, t) (1.16)

For long antenna with length of antenna is comparable to the surface plasmon

wavelength (la/λsp ' 1) the antenna impedance is primarily inductive, hence the

incident and scattered field are in phase.

Es(r, t) ∝
∂2ρ(r, t)

∂t2
∝ ∂j(r, t)

∂t
∝ Ei(r, t) (1.17)

Thus for fixed excitation wave, antenna impedance changes from capacitive to

resistive to inductive as the size of the antenna changes leading to phase shift of

0− π. The problem of scattering becomes complex when the incident field does not

penetrate the entire volume of the antenna and the charge density experiences force

due to incident field and restoring force from the rest of charges.

These systems of oscillating charges can be modeled using Lorentz oscillator model.

For analysis, consider localized charge density q of mass m, located at x(t) at certain

time t with spring constant k being driven by an incident electric field at frequency

(ω) with damping coefficient Γi due to internal damping. The equation below shows
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the force equation in one dimension

m
∂2x(t)

∂t2
+ Γi

∂x(t)

∂t
+ kx(t) = qEi(r)e

−iωt − Γs
∂3x(t)

∂t3
(1.18)

The charge density experiences an additional recoil force called Abraham - Lorentz

or radiation reaction force [38] which reduces momentum by emitting radiation, where

the force constant is given by Γs = q2/6πε0c
3.

Fs = −Γs
∂3x(t)

∂t3
(1.19)

If the motion of the charge density is harmonic in time x(ω, t) = xeiωt where

ω0 =
√
k/m, then we can control phase over a range of 0− π.

x(ω, t) =
q

m

Ei

(ω2
0 − ω2) + iω

m
(Γa + ω2Γs)

(1.20)

In order to obtain control over the entire range of 0−2π and give ability to control

the polarization of the scattered field. This requires design of meta-atoms consisting

of two independent oscillators oriented orthogonally, for example V-shaped or split

ring meta-atoms, see figures 1.4b and 1.4c. But as the complexity of the meta-

atoms increases the oscillator model becomes more complex because of increasing

dimensionality of oscillators and imperfect penetration of the fields in the volume of

meta-atoms.

We have developed a new method of characterizing light-matter-interactions where

we determine accurate current distributions in a meta-atom described by multipole

moments which are used to develop the model for multipole analysis of the inter-

action with incident radiation. Interaction between various structures arranged in

two or three dimensions can be studied as a consequence of multiple scattering and

appropriate approximations can be made to simply the problem based on weak and

strong interactions. The dynamics of interactions can be studied by Lagrangian and
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Hamiltonian formulations using charge distribution as the canonical variable and dis-

placement field and scalar potential as conjugate momenta under the Power-Zienau-

Woolley Transformation [39].

Building a bottom-up approach using principles of quantum electrodynamics helps

understand interactions on a minutiae level and set fundamental limits on interactions

using energy conservation principles. Introduction of metric tensor, Gaussian and

mean curvatures provide a way to study interactions in three-dimensional structures

which can be adapted for 2.5-dmesnisonal analysis by changing the metric tensor.

Using these fundamental principles, we can analyze interactions of unit structures in

metasurfaces and metamaterials. Strong scattering among these unit structures can

lead to localization of electromagnetic energy, super- and sub-radiant modes of the en-

semble which consequently affects the radiation/decay rate of meta-atoms which can

only be accounted by this rigorous method. Studying the dependence of current dis-

tribution on curvature provides an opportunity for skin depth engineering in metallic

and dielectric structures using curvature and multi-layered materials, respectively.

Decomposition of current densities into time- and space-dependent functions can

be used to map structure to function and function to structure. The analysis of

eigenmodes that are supported by the structure can be generalized by methods of

differential geometry. This approach can be used to map structure to function and

the inverse problem of mapping function to structure can be done by exploiting the

presence of or lack of symmetry in a structures or ensemble by using group theory.

This can form the basis of classification of response to incident radiation based on

geometry of the structure [40]. This method can be adapted for metallic or dielectric

meta-structures since functional forms for permittivity and permeability have been

used for constructing the framework. The parameterization used for calculating the

metric tensor of the structure can be changed based on the symmetry of the bound-

aries. The metric tensor can be defined such that one of the dimensions can be
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separated, enabling a simplified analysis of 2.5D structures as described in chapter 4.

The method developed is a completely new way to characterize and tailor the linear

and non-linear properties of metamaterials where the interaction of incident light

and structures expressed by the Lagrangian and Hamiltonian formalism with single

dynamic variable with the units of charge. Current distribution in meta-structures

of arbitrary geometries represented by multipole moments enabling the multipole

expansion of scattered field and providing tools to tailor the collective response. This

moves the state-of-the-art forward and away from computational and perturbative

models for such interactions. Since the polarization density has a time and space

dependent part the modes supported by the structure can directly be determined by

eigenmodes corresponding to that geometry. The interaction between various modes

can be leveraged to produce novel non-linear effects in materials. Exploiting the

presence and lack of symmetry using group theory, inspired by classification molecules

in chemistry, provides a way to classify meta-structures and maps observed function

to structures.

The multipolar analysis of the interaction opens up an avenue for study of interac-

tion between various modes in order to enhance second or higher order response. We

study the effects of surface and bulk discontinuities for time reversal applications. The

accurate analysis of multiple scattering can lead to identification of sub-radiant and

super-radiant modes of the ensemble, which can be used to create bianisotropic meta-

surfaces where the reversal of magnetic dipoles can be used to achieve time reversal

which is discussed in chapter 5.

This theoretical formalism combined with computational verification can open

doors to modeling strong non-linearity and provide a way to move away from pertur-

bative models for non-linear applications. Research has shown their advantages for

non-linear applications [41] such as second harmonic generation by exploiting modal

interactions. Even though it is not discussed in this work, investigation of the en-
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hancement in magnitude of non-linear processes using epsilon-near-zero materials has

been suggested in the literature [42]. The method developed here can be extended

with the help of numerical experiments for wave mixing to demonstrate the extreme

nonlinearity which can surpass the capabilities of perturbative models [43]. Treatment

of meta-atoms as discrete entities can pave the way for design of metamaterial lasers,

as certain eigenmodes in a structure can be excited by incident wavelength and the

localized electromagnetic energy can in turn excite an eigenmode of a different geom-

etry with gain medium and such composite geometry can be basic building block of

lasers. Such hybrid nanoparticle architecture has already been used to demonstrate

spaser-based nanolaser [44]. Hence, this bottom-up approach has clear advantage

against present computational techniques, since it treats the individual meta-atoms

with accurate current distributions and provides clear parameters that can be manip-

ulated in an experiment to verify the method and engineer new properties.



CHAPTER 2: SCATTERING EXPERIMENTS

Theoretical study of scattering is arduous and often cannot be accomplished analyt-

ically, hence numerical methods along with experiments are used to analyze scattering

from various structures. In practical situations, it is desirable to predict the geom-

etry and composition of the scattering object. Extensive research has been done to

solve the inverse problems [45] of obtaining the structure of objects from scattered

field data. In general, inverse scattering problems can be divided into two categories

depending on the interaction of waves with the scattering object namely, weak and

strong scattering. Weak scattering occurs when the incident wave interacts with the

object once and undergoes little perturbation as it propagates across the object. In

this case, the field inside the scattering object can be approximated as incident waves

and can help linearize the problem, which is exploited by Born and Rytov approxi-

mation methods to find a solution [46]. In these methods, it is often required that

the material parameters or refractive index do not change rapidly on the scale of the

wavelength. However, when the incident waves inside the scattering object scatters

multiple times and significant perturbation occurs then the interaction is character-

ized as strong scattering and the formulation becomes nonlinear [47].

In a typical two dimensional scattering experiment there are fixed number of re-

ceivers or receiver locations around the center of the scattering object which measure

the distribution of fields as a function of angle. In figure 2.1, the scattering object of

volume V (r) interacts with a plane wave propagating in z direction and the scattered

field is captured by detectors placed at various locations. Ideally, the scattered field

should be measured around the object but in practical situations the measured field is

restricted to certain angles for both forward and backward scattering measurements.



21

The issue of incomplete data along with the issue of convergence and degenerate

solutions make inverse problems extremely difficult to solve without linearizing ap-

proximations.

Figure 2.1: Simplistic view of general scattering experiment illustrating approximate
regions of forward and backward scattering where the red dots show the positions of
detector.

The complexity of the problem increases manifold when the scattering object size

becomes comparable to the incident wavelength and the fields starts to interact with

the object strongly. The internal fields can no longer be approximated as incident

waves but has to be calculated precisely in order to explain the far field patterns at

meso-scale. In this chapter, first we will discuss scattering experiments from various

objects and then discuss in detail the issue of internal field for a metallic shell and

enhancement in skin depth which can produce a large change in far field scattering

pattern.

2.1 Experiments

In order to understand the effect of change in geometry on the far field scattering

patterns, we have studied scattering patterns from various structures. A standard
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scattering experiment was performed using spheres, cylinders and other everyday

objects as scatterers. Figure 2.2 shows the setup with a Gunn diode microwave

source emitting at 10.5 GHz and the detector reading the values of scattered fields in

mA during each scan which was later normalized with values without any scattering

object. The scattering profiles of several metallic spheres and arrangements were

studied. To study the nature of scattering from common objects such as metallic

sphere, a concentric dielectric sphere and cylindrical metallic shells were used. The

observed far field patterns matched with theoretical predictions for majority of the

cases except, cylindrical metallic shells.

Figure 2.2: Schematic of the setup used in the experiment.
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2.1.1 Spheres

The rigorous analysis of scattering from solid spheres with varying radius is de-

scribed in Born and Wolf [48] hence, we will not discuss the formalism in detail here.

In the case of spheres with high conductivity or high dielectric constant; most of the

incident wave is scattered backwards or reflected. The intensity and polarization of

scattered light depends on the direction of observation of scattering and on three

physical quantities, incident wavelength (λ0), radius of sphere (as) and the material

parameters which is derived from Mie theory. In case of very small particles where

the dimensionless scattering parameter xs → 0, the polar diagram of the intensity is

maximum at angles of 0 and π with respect to incident waves and minimum at a plane

perpendicular to the incident wave passing through the center of scattering object as

shown in figure 2.3a. As the radius of sphere increases the symmetry of scattering

pattern is broken and the field in forward direction increases which is termed as Mie

effect. Increasing the radius of the sphere composed of finite conductivity or dielectric

materials as compared to the incident wavelength the higher order scattering modes

start to appear as side lobes as shown in figure 2.3c. In the case where the size of the

scattering object becomes large as compared to the wavelength (xs >> 1) then the

interaction can be studied by geometrical optics.

First, spherical geometry was chosen for scattering experiments as exact solutions

are well known and can be used to verify the accuracy and reliability of the experi-

mental setup. The scattering profile of several spheres were measured and patterns

from two spheres are shown in figure 2.4 to illustrate the evolution of scattering modes

depending on the size of the sphere as expected by Mie type scattering object. Figure

2.4a shows scattering from a solid metallic sphere of diameter of 1.27 cm which cor-

responds to scattering parameter of xs = 1.4 at the incident frequency of 10.5 GHz.

Figure 2.4b shows scattering from a solid metallic sphere of diameter of 3.65 cm, cor-

responding to a scattering parameter of xs = 4 at the same frequency. The intensity
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(a) Particle with very small scatter-
ing parameter (xs << 1).

(b) Particle with small scattering pa-
rameter (xs < 1).

(c) Particle with greater scattering parameter (xs ≈ 1).

Figure 2.3: Scattering patterns from spheres of varying sizes and evolution of diffrac-
tion lobes with the increase of radius of scattering objects from (a) to (c).

profile of scattering vs angle from smaller sphere shows prominent forward scattering

and higher order scattering modes are barely visible. On the other hand, for the

sphere with greater radius intensity profile shows prominent forward scattering and

much more pronounced higher order scattering modes.

After studying the test case of solid metallic sphere we moved on to dielectric

spheres in order to study to effect of penetration of fields in the scattering volume.

We have chosen common everyday spherical dielectric objects as we are interested in

characterizing them from experimental scattered field data and combing it with exist-

ing inverse methods. In order to simulate a concentric dielectric sphere a golf ball was

used. Figure 2.5 shows intensity distribution scattering from the golf ball of diameter
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(a) Solid sphere of diameter 1.27cm.

(b) Solid sphere of diameter 3.65cm.

Figure 2.4: Scattering patterns from solid spheres.

4.24 cm, scattering parameter xs = 4.66. Even though there is a small increase in

scattering parameter from the solid metallic sphere, the higher order scattering modes

become dominant to the zeroth order forward mode. This can be attributed to the

superposition of scattering from various concentric layers in the ball. We have also

shown scattering from increasing larger dielectric spheres where the effects of increas-

ing the radius becomes evident along with the displacement of scattering from the

center of measuring arc translates into angular displacement of zeroth order mode.

The experiments performed on spheres have shown that the experimental setups

produce accurate results and can be used to study other geometries and multiple

objects.
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Figure 2.5: Scattering patterns from golf ball.

(a) Spherical scattering volume of radius equal to
the scattering parameter.

(b) Image of an arrangement
with three spheres placed in con-
tact.

Figure 2.6: Illustration of scattering from multiple scattering objects.

2.1.2 Multiple Scatterers

In any scattering or imaging experiment the resolution is determined by incident

wavelength which means that any features that are subwavelength cannot be resolved

by traditional methods. Figure 2.6a illustrates an approximate spherical volume

of radius xs equal to the scattering parameter where determination of features of

subwavelength size i.e. inside the volume of the sphere becomes ambiguous.

In order to verify this experimentally, we used combinations of spheres from pre-
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vious experiment in various arrangements. It is well known that multiple scattering

severly hampers the capability of reconstructing the object from scattered field be-

cause individual components cannot be viewed clearly and introduces nonlinearity in

the inverse algorithms.

(a) Scattering from two spheres of radius
1.27cm in contact with each other.

(b) Scattering from spheres of radius
1.27cm placed λ/2 apart.

(c) Scattering from spheres of radius
1.27cm placed λ apart.

(d) Scattering from two spheres of radius
1.27cm and one sphere of radius 3.65cm
in contact, as shown in figure 2.6b.

Figure 2.7: Scattering from multiple scattering objects.

It is evident from the figures 2.7a, 2.7b, 2.7c and 2.7d that scattering profile is

very similar to single sphere case. It very difficult to tell the number and position of

spheres involved in the process just from visual inspection of scattering pattern. This

coincides with the theoretical predictions that multiple scattering from similar objects

destroys the information about the arrangement of the object. The entire object
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behaves as an overall sphere composed of individual elements and the information

about subwavelength features is lost. From figure 2.7d, we can see a pronounced side

lobe with is due to the loss of symmetry in the setup due to displacement of smaller

spheres when larger sphere is placed. The multiple scattering is now evident from

the ambiguity in intensity profiles but gives an indication of the object arrangement.

The experiments performed show an excellent agreement with theoretical predictions

and prove that the setup built and it is configuration with respect to the laboratory

can be relied for other scattering experiments.

2.1.3 Cylindrical Shells

Figure 2.8: The first setup in which the variation in scattering due to level of fills of
liquid was measured. The shell was filled with water and the experiment was repeated
several times.

In order to study the effects of removal of the overall symmetry of scattering from

spherical objects we started to study cylindrical objects. Scattering from cylinders

is also well studied analytically but generally under the assumption of infinitely long

solid cylinders and perfect conductivity in case of metallic cylinders. In our experi-

ments, we have used cylindrical shells of finite length and radius comparable to the

wavelength. Different right circular cylindrical shells (shown in figure 2.8) such as,

unopened (sealed), opened, and top cut off with different fill levels of liquid inside the
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shell were used and results obtained did not match the theoretical predictions. The

diameter of the cylinders was 6.6 cm and height 15.72 cm, corresponding to scattering

parameters of xr = 7.25 and xl = 17.33, hence the interaction can be characterized as

strong Mie scattering. Scattering patterns from such cylindrical shells have been pre-

sented in figure 2.9. The angular position of nodes for the scattering pattern coincides

with the theoretical calculations. But when the liquid inside the shell is changed or

the quantity is varied the scattering pattern changes as can be seen from figures 2.9a

and 2.9b. The value of the zeroth order scattering mode decreases when the shell is

full indicating absorption and the first order diffracted beam increases indicating a

redirection of energy.

(a) Empty cylindrical shell.

(b) Full cylindrical shell.

Figure 2.9: Scattering patterns from cylindrical shells.

The area under the curve representing the total energy in the scattered fields is

greater in the case of empty shell than the shell filled with liquids which can be
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interpreted as absorption by the liquid. The issue of waves creeping in the shell

from the top was resolved by performing experiments on a half filled sealed shell

which produced same pattern as half filled taped shell. The experiment was repeated

multiple times and same results were obtained which eliminates issues of setup errors.

2.1.4 Inference of the Experiments

The angular vertical and horizontal beamwidth is obtained by

φ◦v =
51λ0

b

φ◦h =
70λ0

a

(2.1)

Figure 2.10: Diagram of the setup representing the distance and beam-size at the
scattering object location.

The change in the scattering pattern due to change in the contents of the cylindrical

shell can be attributed to penetration of fields deeper than skin depth. The wall

thickness of the shells are 500 µm and it is composed of an aluminum alloy Al6061 with

conductivity of 3.57×107 Siemens/m. It is well known that when an electromagnetic

wave is incident on metals, its penetration is limited to the material’s skin depth,
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hence providing some degree of shielding the contents inside the shell. The depth of

penetration or skin depth is defined as (see Appendix A for derivation)

δs =

√
2

σµω
(2.2)

Skin depth formula is calculated assuming conductor in semi-infinite half plane and

substituting the material parameters gives the skin depth 2 µm. Skin depth decreases

as frequency increases due to shielding from metallic objects. However, it is known

that Fabry-Perot resonances cause increased transmission in conducting plates thicker

than the classical skin depth. Similar resonant behavior can be expected for the

cylindrical conducting shells. Shells were filled with water up to various levels, hence

the entire system is not symmetric which can enhance Fabry-Perot like transmission

via frustrated total internal reflection which has been studied in great detail later in

the chapter.

The geometry of the cylindrical shell is an important factor in possible perturbation

of the penetration of electromagnetic fields. Both radius and length of the cylinders

are the order of wavelength making it imperative to solve the full wave problem.

The curvature of a scattering structure now becomes important in exciting surface

currents. It is clear from a deeper review of literature that the exact solution of the

skin effect problem depends on shape of conductor and nature of excitation [49]. The

surface currents generated by the incident field can generate additional surface cur-

rents which can be represented by series of non interacting basis functions which are

independent of each other. For a given geometry, two or more of these propagating

and possibly counter propagating currents can be shown to combine leading to en-

hanced penetration of the scattering structure. The finite length of shells used in the

experiments makes the analysis a 3D scattering problem. The solution for the fields

and complete description of scattered field requires the calculation of the Green’s

function. The use of potentials instead of fields makes the calculations easier which



32

has been discussed in chapter 3. In the next section, rigorous calculation has been

used to corroborate initial results of resonance induced transmission and the effect of

geometry on scattering.

2.2 Skin Depth

Maxwell discovered that the voltage required to force a time varying current through

a wire increases more than could be explained by inductive reactance. He explained

this phenomenon as being caused by a departure from uniform current density on the

surface [50]. The depth of penetration is defined as the depth at which the current

density (or magnetic flux) is attenuated by 1 Napier (in the ratio 1/e = 1/2.72, or -8.7

decibels). At the same depth, its phase lags by 1 radian, so δs is 1/2π wavelength or

1 radian length in terms of the wave propagation in the conductor. This study of this

effect was followed up by Heaviside, Rayleigh and Kelvin and came to be known as

skin depth because the current is concentrated in the outer surface of the conductor.

In any conductor carrying alternating current, the magnetic field around the axis

of the conductor produces variations in current density. In an isolated conductor

current tends to flow on the outermost part and this effect becomes enlarged when

frequency increases and section of conductor becomes large. In round wire or tube

current is concentrated in the outer skin known as skin effect and in flat isolated

strips of current is concentrated near the edges known as edge effects [50]. It is shown

that at high frequencies current decays towards the center of the conductor, being

confined effectively to the surface layer so that the resistance of the conductor was

the same as if composed of surface strips of thickness.

A slab of conductive material to be used in describing the skin effect, the current I

is concentrated in the upper surface. The total current is given by the integral of the

current density in the conductive medium. This integral calculated from the surface

into the medium is a decaying spiral in the complex plane, which rapidly approaches

its limit if the thickness is much greater than the depth of penetration. The total
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current is therefore given by the integral for infinite depth, over the width w:

I = w

∫ ∞
0

idz = i0w

∫ ∞
0

exp(−(1 + j)
z

δs
)dz =

i0wδs
1 + j

(2.3)

The voltage V on the surface along the length of the conductor is obtained from

the current density and the volume resistivity V = i0lρV . The internal impedance

or surface impedance is computed from this voltage V and the current I, where

δs =
√

2
ωµσ

which is traditional skin depth.

Z =
V

I
= (1 + j)

ρl

wδs
(2.4)

The internal inductance is the part of the total inductance which is caused by

magnetic flux in conductive medium. It is computed from the internal reactance

L =
X

ω
=

l

w
(µ
δs
2

) (2.5)

This is the inductance of a layer of the conductive material having a thickness of δs/2,

one half the depth of penetration. This merely means that the mean depth of the

current is one-half the thickness of the conducting layer. Some inductance formulas

carry the assumption that the current travels in a thin sheet on the surface of the

conductor, as if the resistivity were zero. Such assumptions are usual for transmis-

sion lines, waveguides, cavity resonators, and piston attenuators. Such formulas can

be corrected for the depth of penetration by assuming that the current sheet is at a

depth δs/2 from the surface. This is the same as assuming that the surface of the con-

ductor recedes by the amount δs
2
µ
µ0
. The current follows the path of least impedance

and because the impedance is mainly inductive reactance, in the common cases, the

current tends to follow the path of least inductance.

In a ring, for example, the current density is greater on the inner surface. If

the effective thickness exceeds twice the depth of penetration, the accuracy of the
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above impedance formulas is sufficient for most purposes, within two per cent for a

plane surface. The incremental-inductance rule is a formula which gives the effective

resistance caused by the skin effect, but is based entirely on inductance computations.

Its great value lies in its general validity for all metal objects in which the current and

magnetic intensity are governed by the skin effect. In other words, the thickness and

the radius of curvature of exposed metal surfaces must be much greater than the depth

of penetration, say at least twice as great. The incremental-inductance rule states,

that the effective resistance in a circuit is equal to the change of reactance caused

by the penetration of magnetic flux into metal objects. Experiments on cylindrical

shells reveal that the analysis of light interaction with metallic shells maybe missing

an important parameter, geometry which has been analyzed in the next section.

2.3 Modal Analysis

The analysis for the ring geometry can be done by dividing the space in three regions

(see figure 2.11), region 1: outside the ring (r > b), region 2: the ring (a < r < b)

and region 3: inside the ring (0 < r < a). There are no localized charge density in

entire system, thus ρ = 0 in Maxwell’s equations. Here for the ease of calculation,

we consider two dimensions in space - frequency domain (x, y, ω) for an incident field

which has time harmonic (e−iωt) dependence and all other fields should have same

dependence.

The material equations for scalar, homogeneous, isotropic and non-dispersive ma-

terial with conductivity (σ) is given by,

D(r, t) = εE(r, t)

B(r, t) = µH(r, t)

J(r, t) = σE(r, t)

(2.6)
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(a) Cross section of cylindrical shell. (b) Cylindrical shell.

Figure 2.11: Geometry of cylindrical shells.

The corresponding Maxwell’s equation becomes,

∇ ·D(r, t) = 0 (2.7)

∇ ·B(r, t) = 0 (2.8)

∇× E(r, t) = − ∂

∂t
B(r, t) (2.9)

∇×H(r, t) = J(r, t) +
∂

∂t
D(r, t) (2.10)

The wave equations for electric and magnetic fields vectors can be derived from

equations above using vector identities ∇×∇× = ∇(∇·)−∇2 and replacing the time

derivative by −iω in the frequency domain,

∇2E(r, t) + iωµ(σ − iωε)E(r, t) = 0 (2.11)

∇2H(r, t) + iωµ(σ − iωε)H(r, t) = 0 (2.12)
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The annular ring is composed of metal with finite conductivity and surrounded by

dielectrics. All three regions can be characterized by material parameters,

1. Region 1, free space: ε1 = ε0, µ1 = µ0, σ1 = 0, k2
1 = ω2ε1µ1

∇2E(r, t) + k2
1E(r, t) = 0 (2.13)

2. Region 2, metallic annular ring ε = ε2, µ = µ0, σ2 = σ, k2
2 = iωµ(σ − iωε)

∇2E(r, t) + k2
2E(r, t) = 0 (2.14)

3. Region 3, inside the ring ε = ε3, µ = µ0, σ3 = 0, k2
3 = ω2ε3µ3

∇2E(r, t) + k2
3E(r, t) = 0 (2.15)

Consider, the incident TM field polarized in ẑ traveling in x̂, E(r, t) = ẑE0e
kx−iωt.

The wave equations for all the regions can be solved in cylindrical coordinates using

cylindrical coordinate system, assuming infinite cylinders the electric field can be

written as, E(r, φ) = R(r)Φ(φ).

For azimuthal direction

∂2Φ

∂φ2
+ n2Φ = 0 (2.16)

For radial direction

∂2R

∂r2
+

1

r

∂R

∂r
+ (k2

i −
n2

r2
)R = 0 i = 1, 2, 3 (2.17)

The solution of the equations are a set of linearly independent solutions called

Hankel functions which are sum of Bessel and Neumann functions. Conventionally
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outgoing waves are represented by Hankel function of first kind (H(1)
n (x)) and incom-

ing waves are represented by Hankel function of second kind (H(2)
n (x)) because of

properties of the functions at infinity.

H(1)
n (x) = Jn(x) + iNn(x) (2.18)

H(2)
n (x) = Jn(x)− iNn(x) (2.19)

In region 1, the total field is composed of incident field and outgoing scattered

field. Bessel functions are used to represent the incident fields under plane wave

expansion and Hankel function represent the outgoing scattered field which satisfies

the radiation conditions.

Ez(r, φ) = E0

∞∑
n=−∞

in[Jn(k1r) + anH
(1)
n (k1r)]e

inφ r > b (2.20)

In region 2, we have to consider both incoming and outgoing waves to capture

multiple scattering which is usually ignored in literature to ease calculation. For

calculation of metallic shells the argument of Hankel functions become undefined or

the value becomes extremely small which requires the series expansion which has been

discussed in detail in Appendix B. In the case of dielectric shells the values remain

bounded and does not require expansions in general.

Ez(r, φ) = E0

∞∑
n=−∞

in[bnJn(k2r) + cnH
(1)
n (k2r)]e

inφ a < r < b (2.21)

Region 3 contains the origin and since Neumann functions are not defined at origin,

fields are defined only by Bessel functions.

Ez(r, φ) = E0

∞∑
n=−∞

indnJn(k3r)e
inφ 0 < r < a (2.22)
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Magnetic field vectors can be calculated using Maxwell’s equations, in region 1,

Hr(r, φ) =
E0

iωµ0

1

r

∞∑
n=−∞

nin+1[Jn(k1r) + anH
(1)
n (k1r)]e

inφ r > b (2.23)

Hφ(r, φ) = −E0k1

iωµ0

∞∑
n=−∞

in[J ′n(k1r) + anH
′(1)
n (k1r)]e

inφ r > b (2.24)

In region 2, both incoming and outgoing magnetic waves

Hr(r, φ) =
E0

iωµ0

1

r

∞∑
n=−∞

nin+1[bnJn(k2r) + cnH
(1)
n (k2r)]e

inφ b ≥ r ≥ a (2.25)

Hφ(r, φ) = −E0k2

iωµ0

∞∑
n=−∞

in[bnJ
′
n(k2r) + cnH

′(1)
n (k2r)]e

inφ b ≥ r ≥ a (2.26)

In region 3, Magnetic fields inside the shell

Hr(r, φ) =
E0

iωµ0

1

r

∞∑
n=−∞

nin+1dnJn(k3r)e
inφ a > r > 0 (2.27)

Hφ(r, φ) = −E0k3

iωµ0

∞∑
n=−∞

indnJ
′
n(k3r)e

inφ a > r > 0 (2.28)

All the solutions in different regions can be stitched together using boundary con-

ditions for metals with finite conductivity with normal vector n̂ = r̂ and coefficients

for each mode can be determined as follows,

n̂× (E2(r, t)− E1(r, t)) = 0 (2.29)

n̂× (H2(r, t)−H1(r, t)) = 0 (2.30)
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For the boundary at r = b,

Jn(k1b) + anH
(1)
n (k1b) = bnJ

(1)
n (k2b) + cnH

(1)
n (k2b) (2.31)

For the boundary at r = a

bnJn(k2a) + cnH
(1)
n (k2a) = dnJn(k3a) (2.32)

Continuity of tangential magnetic field vector r = b

k1[J ′n(k1b) + anH
′(1)
n (k1b)] = k2[bnJ

′
n(k2b) + cnH

′(1)
n (k2b)] (2.33)

Continuity of tangential magnetic field vector r = a

k2[bnJ
′
n(k2a) + cnH

′(1)
n (k2a)] = k3dnJ

′
n(k3a) (2.34)

The coefficients can be found by solving the system of equations in four variables

using Cramer’s rule and determinants.



H
(1)
n (k1b) −J (1)

n (k2b) −H(1)
n (k2b) 0

0 Jn(k2a) H
(1)
n (k2a) −Jn(k3a)

k1H
′(1)
n (k1b) −k2J

′
n(k2b) −k2H

′(1)
n (k2b) 0

0 k2J
′
n(k2a) k2H

′(1)
n (k2a) −k3J

′
n(k3a)





an

bn

cn

dn


=



−Jn(k1b)

0

−k1J
′
n(k1b)

0


(2.35)

Using the principles of linear algebra the system of equations Ax̃ = b can be solved

for coefficients represented in vector x̃.
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an =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−Jn(k1b) −Jn(k2b) −H(1)
n (k2b) 0

0 Jn(k2a) H
(1)
n (k2a) −Jn(k3a)

−k1J
′
n(k1b) −k2J

′
n(k2b) −k2H

′(1)
n (k2b) 0

0 k2J
′
n(k2a) k2H

′(1)
n (k2a) −k3J

′
n(k3a)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H
(1)
n (k1b) −Jn(k2b) −H(1)

n (k2b) 0

0 Jn(k2a) H
(1)
n (k2a) −Jn(k3a)

k1H
′(1)
n (k1b) −k2J

′
n(k2b) −k2H

′(1)
n (k2b) 0

0 k2J
′
n(k2a) k2H

′(1)
n (k2a) −k3J

′
n(k3a)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.36)

bn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

H
(1)
n (k1b) −Jn(k1b) −H(1)

n (k2b) 0

0 0 H
(1)
n (k2a) −Jn(k3a)

k1H
′(1)
n (k1b) −k1J

′
n(k1b) −k2H

′(1)
n (k2b) 0

0 0 k2H
′(1)
n (k2a) −k3J

′
n(k3a)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H
(1)
n (k1b) −Jn(k2b) −H(1)

n (k2b) 0

0 Jn(k2a) H
(1)
n (k2a) −Jn(k3a)

k1H
′(1)
n (k1b) −k2J

′
n(k2b) −k2H

′(1)
n (k2b) 0

0 k2J
′
n(k2a) k2H

′(1)
n (k2a) −k3J

′
n(k3a)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.37)

cn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

H
(1)
n (k1b) −Jn(k2b) −Jn(k1b) 0

0 Jn(k2a) 0 −Jn(k3a)

k1H
′(1)
n (k1b) −k2J

′
n(k2b) −k1J

′
n(k1b) 0

0 k2J
′
n(k2a) 0 −k3J

′
n(k3a)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H
(1)
n (k1b) −Jn(k2b) −H(1)

n (k2b) 0

0 Jn(k2a) H
(1)
n (k2a) −Jn(k3a)

k1H
′(1)
n (k1b) −k2J

′
n(k2b) −k2H

′(1)
n (k2b) 0

0 k2J
′
n(k2a) k2H

′(1)
n (k2a) −k3J

′
n(k3a)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.38)
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dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

H
(1)
n (k1b) −Jn(k2b) −H(1)

n (k2b) −Jn(k1b)

0 Jn(k2a) H
(1)
n (k2a) 0

k1H
′(1)
n (k1b) −k2J

′
n(k2b) −k2H

′(1)
n (k2b) −k1J

′
n(k1b)

0 k2J
′
n(k2a) k2H

′(1)
n (k2a) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H
(1)
n (k1b) −Jn(k2b) −H(1)

n (k2b) 0

0 Jn(k2a) H
(1)
n (k2a) −Jn(k3a)

k1H
′(1)
n (k1b) −k2J

′
n(k2b) −k2H

′(1)
n (k2b) 0

0 k2J
′
n(k2a) k2H

′(1)
n (k2a) −k3J

′
n(k3a)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.39)

This is the complete and exact solution of TM electromagnetic field being scattered

from a two dimensional annular ring or an infinitely long cylinder of finite conductiv-

ity. Similar calculation can be performed for TE case by assuming the magnetic field

is propagating in x direction and polarized in ẑ, then H(r, t) = ẑH0e
kx−iωt. From

Maxwell’s equations 1.3 we obtain the electric fields,

Er =
1

σ − iωε
1

r

∂Hz

∂φ
(2.40)

Eφ =
−1

σ − iωε
∂Hz

∂r
(2.41)

Thus, full electromagnetic solution in region 1:

Hz(r, φ) = H0

∞∑
n=−∞

in[Jn(k1r) + enH
(1)
n (k1r)]e

inφ r > b (2.42)

Er(r, φ) =
H0

iωε1

1

r

∞∑
n=−∞

nin+1[Jn(k1r) + enH
(1)
n (k1r)]e

inφ r > b (2.43)

Eφ(r, φ) = −H0k1

iωε1

∞∑
n=−∞

in[J ′n(k1r) + enH
′(1)
n (k1r)]e

inφ r > b (2.44)
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In Region 2:

Hz(r, φ) = H0

∞∑
n=−∞

in[fnJn(k2r) + gnH
(1)
n (k2r)]e

inφ b ≥ r ≥ a (2.45)

Er(r, φ) =
H0

σ − iωε2
1

r

∞∑
n=−∞

nin+1[fnJn(k2r) + gnH
(1)
n (k2r)]e

inφ b ≥ r ≥ a (2.46)

Eφ(r, φ) = − H0k2

σ − iωε2

∞∑
n=−∞

in[fnJ
′
n(k2r) + gnH

′(1)
n (k2r)]e

inφ b ≥ r ≥ a (2.47)

In Region 3:

Hz(r, φ) = H0

∞∑
n=−∞

inhnJn(k3r)e
inφ a > r > 0 (2.48)

Er(r, φ) =
H0

iωε3

1

r

∞∑
n=−∞

nin+1hnJn(k3r)e
inφ a > r > 0 (2.49)

Eφ(r, φ) = −H0k3

iωε3

∞∑
n=−∞

inhnJ
′
n(k3r)e

inφ a > r > 0 (2.50)

In the same manner as TM case, using the boundary conditions and continuity of

tangential magnetic field vector at r = b implies,

Jn(k1b) + enH
(1)
n (k1b) = fnJ

(1)
n (k2b) + gnH

(1)
n (k2b) (2.51)

For the boundary at r = a

fnJn(k2a) + gnH
(1)
n (k2a) = hnJn(k3a) (2.52)
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Continuity of tangential electric field vector r = b

k1

iωε1
[J ′n(k1b) + enH

′(1)
n (k1b)] =

−k2

σ − iωε2
[fnJ

′
n(k2b) + gnH

′(1)
n (k2b)] (2.53)

Continuity of tangential electric field vector r = a

−k2

σ − iωε2
[fnJ

′
n(k2a) + gnH

′(1)
n (k2a)] =

k3

iωε3
hnJ

′
n(k3a) (2.54)

Similarly, the coefficients can be determined



H
(1)
n (k1b) −Jn(k2b) −H(1)

n (k2b) 0

0 Jn(k2a) H
(1)
n (k2a) −Jn(k3a)

k1

iωε1
H
′(1)
n (k1b)

k2

σ−iωε2J
′
n(k2b)

k2

σ−iωε2H
′(1)
n (k2b) 0

0 −k2

σ−iωε2J
′
n(k2a) −k2

σ−iωε2H
′(1)
n (k2a) −k3

iωε3
J ′n(k3a)





en

fn

gn

hn



=



−Jn(k1b)

0

−k1

iωε3
J ′n(k1b)

0



(2.55)

Using principles of linear algebra the exact and complete solution of electromagnetic

scattering of TE waves from cylinders can be obtained. In order to visualize the

propagation of fields described by the equations above have to be programmed. The

arguments of Bessel and Hankel functions in are complex for the metallic region,

hence we have to use series and asymptotic expansion of these functions as they

become small for an large argument. Using series expansions that are available in

standard textbooks [51, 52, 53] we can simplify the problem. A detailed analysis of

series expansion of Bessel and Hankel functions has been presented in Appendix B.

In the case of waves in a metallic object the wavenumber becomes complex and can
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be represented as xc = p+ iq, then equation B.21 and B.22 becomes

Jm(x) ≈
√

1

2πx
[ei(p−

mπ
2
−π

4
)e−q + e−i(p−

mπ
2
−π

4
)e+q] (2.56)

H(1)
m (x) =

√
2

πx
ei(x−

mπ
2
−π

4
)e−q (2.57)

Using the values of conductivity, a rough estimate of the imaginary part of wavenum-

ber k2 =
√
ωµ0σ ≈ 106, hence the first term of Bessel function expansion can be ne-

glected for ease of calculations and the asymptotic expansion is valid as k2b & k2a ≥

103.

Jm(x) =

√
1

2πx
e−i(p−

mπ
2
−π

4
)e+q (2.58)

Another important consequence of the real values the phase of the complex quantity

k2

Arg[k2] =
1

2
arctan[

σ

ε0ω
] ≈ π

4
(2.59)

Our main concern is the field in the region inside the ring hence, calculation of

dn is important. We start with the calculation of zeroth order denominator for the

coefficient d0d given by the determinant,

dn = H(1)
n (k1b)

∣∣∣∣∣∣∣∣∣∣
Jn(k2a) H

(1)
n (k2a) −Jn(k3a)

−k2J
′
n(k2b) −k2H

′(1)
n (k2b) 0

k2J
′
n(k2a) k2H

′(1)
n (k2a) −k3J

′
n(k3a)

∣∣∣∣∣∣∣∣∣∣
+k1H

′(1)
n (k1b)

∣∣∣∣∣∣∣∣∣∣
−Jn(k2b) −H(1)

n (k2b) 0

Jn(k2a) H
(1)
n (k2a) −Jn(k3a)

k2J
′
n(k2a) k2H

′(1)
n (k2a) −k3J

′
n(k3a)

∣∣∣∣∣∣∣∣∣∣

(2.60)
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It implies,

d0d = k2H
(1)
0 (k1b)[k2J0(k3a)[J ′0(k2b)H

′(1)
0 (k2a)− J ′0(k2a)H

′(1)
0 (k2b)]1+

k3J
′
0(k3a)[J0(k2a)H

′(1)
0 (k2b)− J ′0(k2b)H

(1)
0 (k2a)]2]+

−k1H
′(1)
0 (k1b)[k2J0(k3a)[J0(k2b)H

′(1)
0 (k2a)− J ′0(k2a)H

(1)
0 (k2b)]3+

k3J
′
0(k3a)[J0(k2b)H

(1)
0 (k2b)− J0(k2a)H(1)

n (k2b)]4]

(2.61)

We will take a look at each bracket [ ]i in detail and use asymptotic forms to

simplify the results because of the value of the arguments of the functions.

[ ]1 = J ′0(k2b)H
′(1)
0 (k2a)− J ′0(k2a)H

′(1)
0 (k2b)

= J ′1(k2b)H
′(1)
1 (k2a)− J ′1(k2a)H

(1)
1 (k2b)

(2.62)

Representing the arguments as k2a = p1 + iq1 and k2b = p2 + iq2 and equation 2.59,

we get

[ ]1 =
ei
π
4

π

√
1

(k2a)(k2b)
[e−i(p2−p1)e(q2−q1) − ei(p2−p1)e−(q2−q1)] (2.63)

Manipulating the complex k2 = |k2|e−iArg[k2] = |k2|(cos(Arg[k2]) − i sin(Arg[k2])),

we get

p2 − p1 = q2 − q1 = δ =
1√
2
|k2|(b− a) (2.64)

Hence, the first bracket becomes,

[ ]1 =
ei
π
4

π

√
1

(k2a)(k2b)
[eiδeδ − eiδe−δ]

=
1

π

√
2

(k2a)(k2b)
[(cos(δ) sinh(δ)− sin(δ) cosh(δ))

−i(cos(δ) sinh(δ) + sin(δ) cosh(δ))]

(2.65)
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The second bracket becomes

[ ]2 = J0(k2a)H
′(1)
0 (k2b)− J ′0(k2b)H

(1)
0 (k2a)

= J1(k2b)H
(1)
0 (k2a)− J0(k2a)H

(1)
1 (k2b)

=
iei

π
4

π

√
1

(k2a)(k2b)
[e−iδeδ − eiδe−δ]

=
1

π

√
2

(k2a)(k2b)
[[cos(δ) cosh(δ) + sin(δ) sinh(δ)]+

i[cos(δ) cosh(δ)− sin(δ) sinh(δ)]]

(2.66)

Similarly, third bracket,

[ ]3 = J
(1)
0 (k2b)H

′(1)
0 (k2a)− J ′0(k2a)H

(1)
0 (k2b)

= J1(k2a)H
(1)
0 (k2b)− J (1)

0 (k2b)H
(1)
1 (k2a)

=
iei

π
4

π

√
1

(k2a)(k2b)
[eiδe−δ − e−iδeδ]

=
1

π

√
2

(k2a)(k2b)
[[cos(δ) cosh(δ) + sin(δ) sinh(δ)]+

i[cos(δ) cosh(δ)− sin(δ) sinh(δ)]]

(2.67)

For bracket 4,

[ ]4 = J
(1)
0 (k2b)H

(1)
0 (k2b)− J0(k2a)H

(1)
0 (k2b)

=
ei
π
4

π

√
1

(k2a)(k2b)
[eiδe−δ − e−iδeδ]

=
1

π

√
2

(k2a)(k2b)
[(sin(δ) cosh(δ)− cos(δ) sinh(δ))

−i(cos(δ) sinh(δ) + sin(δ) cosh(δ))]

(2.68)
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Thus, to recap the calculation of the denominator it is helpful to realize that

[ ]1 = −[ ]4 = Λ

[ ]2 = [ ]3 = Π

(2.69)

Thus, the denominator can be defined as,

d0d = k2H
(1)
0 (k1b)[k2J0(k3a)Λ + k3J

′
0(k3a)Π]

−k1H
′(1)
0 (k1b)[k2J0(k3a)Π− k3J

′
0(k3a)Λ]

(2.70)

Rearranging the terms and using the first derivative of Bessel functions, we get

d0d = Λ[k2
2H

(1)
0 (k1b)J0(k3a) + k1k3H

′(1)
1 (k1b)J

′
1(k3a)]

−k2Π[k3H
(1)
0 (k1b)J1(k3a)− k1H

(1)
1 (k1b)J0(k3a)]

= ΛA+ ΠB

(2.71)

Now, let’s calculate the numerator using the same procedure

d0n = k1k2[H
(1)
0 (k1b)J

′
0(k1b)−J0(k1b)H

′(1)
0 (k1b)][J0(k2a)H

′(1)
0 (k2a)−H(1)

0 (k2a)J ′0(k2a)]

(2.72)

d0n = k1k2[H
(1)
0 (k1b)J1(k1b)− J0(k1b)H

(1)
1 (k1b)][J0(k2a)H

(1)
1 (k2a)−H(1)

0 (k2a)J1(k2a)]

(2.73)
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Using the definition of Hankel functions, we get

d0n = k1k2[J1(k1b)N0(k1b)−J0(k1b)N1(k1b)][J0(k2a)N1(k2a)−N0(k2a)J1(k2a)] (2.74)

The recursion relation between Bessel and Neumann functions leads to the following

identity

Jn(x)Nn+1(x)− Jn+1(x)Nn(x) = − 2

πx
(2.75)

Thus, the numerator becomes

d0n =
4

π2ab
(2.76)

Thus, the exact result using series expansions of Bessel and Hankel function for the

coefficient of fields inside the ring is given by

d0 =
4

π2ab

1

ΛA+ ΠB
(2.77)

After calculating the coefficient of fields inside the metallic shell, we can calculate

the fields

Ez(r, φ) = E0

∞∑
n=−∞

indnJn(k3r)e
inφ 0 < r < a (2.78)

In the simplest case, at the axis of the shell with J0(0) = 1 and penetration coeffi-

cient for TM incidence in dB can be defined as

∆TM = 20log|Ez(r = 0)

E0

| (2.79)

Similarly, the penetration coefficient for TE incidence is defined as,
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∆TE = 20log|Hz(r = 0)

H0

| (2.80)

(a) ∆TM for empty shell.

(b) ∆TM for shell with water εr = 80.

Figure 2.12: Cylindrical shells with wall thickness = 500 µm. Blue curve represents
the exact solution and orange curve shows approximate solutions.

In the figure 2.12, 2.13 and 2.14 we have demonstrated the importance of using
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(a) ∆TM for empty shell.

(b) ∆TM for shell with water εr = 80.

Figure 2.13: Cylindrical shells with wall thickness = 100 µm. Blue curve represents
the exact solution and orange curve shows approximate solutions..

exact solutions for scattering from cylindrical shells. It is evident that the features of

where the field penetrates deeper that the skin depth calculated from the assumption

of infinite medium or infinite conductivity solution are missed.

As expected the magnitude of fields inside the shell decrease as the wall thick-
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(a) ∆TM for empty shell.

(b) ∆TM for shell with water εr = 80.

Figure 2.14: Cylindrical shells with wall thickness = 10 µm. Blue curve represents
the exact solution and orange curve shows approximate solutions.

ness increases but the penetration is still greater than the fields calculated by the

approximate formula. This method also enables us to study the effects of varying

the material inside the shells. The presence of water in the changes the profile of

penetration allowing higher number of frequency with increased transmission.
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(a) ∆TM for shell with water εr = 80.

(b) ∆TM for shell with water εr = 80 immersed in water.

Figure 2.15: Tolerance to change in surrounding medium.

It is well known that that transmission of electromagnetic fields is greatly enhanced

in Fabry-Perot cavities when a resonance condition is satisfied. Similar effects can be

expected in case of cylinders and once the resonance is achieved the transmission is in-

creased which enables the wave to interact with contents of the shell. The calculation
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(a) ∆TM for empty shell immersed in water.

(b) ∆TM for shell with water εr = 80 immersed in water.

Figure 2.16: The change in number of resonant frequencies due to change in material
inside but same surrounding medium. It is also important to note the values of
penetration coefficients change by one and half order of magnitudes for empty and
full shell.

of resonance condition for infinitely long cylindrical shells or two dimensional rings we

consider linearly polarized plane-wave incident on the cylinder with its direction of
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(a) ∆TM for shell with water εr = 80 and outer radius 1.3cm.

(b) ∆TM for shell with water εr = 80 and outer radius 2.3cm.

Figure 2.17: The change in position of resonant frequencies due to change radius of
the shells.

propagation perpendicular to the cylinder axis. In these calculations, two polarization

states shall be analyzed separately: one state of linear polarization of the incident

wave with the E-vector parallel to the cylinder axis (TM), and one polarization state

with the H-vector parallel to the cylinder axis (TE). The resonance for TE occurs
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(a) Resonance condition for TM mode for empty shell.

(b) Resonance condition for TE mode for empty shell.

Figure 2.18: The penetration is enhanced when the resonance condition is satisfied
at these discrete the zeros of the Bessel functions.

when ka = j1(n) where j1(n) are the nth zeros of J1(x) and for TM ka = j0(n) where

j0(n) are the nth zeros of J0(x). These conditions are valid for an empty shell and

has been plotted in figures 2.18a and 2.18b which shows the such response can only

be obtained for certain discrete values and form a basis for design of accurate meta-

atoms. In the next section, we summarize the mathematical framework and discuss

its implications on design and characterization of light meta-structure interactions.
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2.4 Conclusions

Mathematical Framework 1: Scattering from annular ring.
Input: Incident Electric field: E(r, t) = ẑE0e

kx−iωt

case Region 1 do
For r ≥ b use Bessel functions and Hankel functions of first kind.

Ez(r, φ) = E0

∞∑
n=−∞

in[Jn(k1r) + anH
(1)
n (k1r)]e

inφ r > b (2.81)

case Region 2 do
For b ≥ r ≥ a use Bessel functions and Hankel functions of first kind.

Ez(r, φ) = E0

∞∑
n=−∞

in[bnJn(k2r) + cnH
(1)
n (k2r)]e

inφ b ≥ r ≥ a (2.82)

case Region 3 do
For a ≥ r ≥ 0 use Bessel functions only.

Ez(r, φ) = E0

∞∑
n=−∞

indnJn(k3r)e
inφ a > r > 0 (2.83)

for Boundary Condition do

Use r̂× (E2 − E1) = r̂× (H2 −H1) = 0, H is obtained by Faraday’s Law

Use Ax̃ = b and x̃i = det(Ai)
det(A)

Series and asymptotic expansions of Bessel and Hankel functions

Plot the field at the center of the annular ring

∆TM = 20log|Ez(r = 0)

E0

| (2.84)

Result: Penetration coefficient for transverse magnetic case (∆TM)
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We have shown that rigorous analysis of light interaction with metallic cylindrical

shells we have shown that the geometry is very important to the analysis of scat-

tering. This explains the higher penetration of fields in the shells and the influence

of liquid inside the shell. The number of frequencies where the coefficient of pene-

tration increase by two order of magnitudes increase when the permittivity value of

material inside increases but is unaffected when by the change outside. The analysis

using fields is cumbersome due to the presence of two boundaries. We summarize the

method developed to analyze TM electromagnetic wave interactions with cylindrical

shells in mathematical framework 1. This method can easily be modified for analysis

of TM waves.

(a) ∆TM for shell with εr = 3.9. (b) ∆TM for shell with εr = 7.

(c) ∆TM for shell with εr = 30. (d) ∆TM for shell with εr = 100 at 25◦ C.

Figure 2.19: The variation in penetration frequencies due to material inside the shell.

The discrete frequencies increased penetration change due to variation in the dielec-

tric constant of the material inside the shell (see figure 2.19). Hence, these structures

can be engineered to interact with the incident wave of certain discrete frequencies,
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similar to quantized energy levels of a atom. Since, wave can interact with the ma-

terial inside it provides another degree of freedom to design meta-atom, where the

electromagnetic energy can be localized inside the shell. This method can used to

detect the material inside container because theoretical calculations would predict the

frequencies at which the wave to detect the material and any variation would change

the response of the meta-atom. The material inside can be linear, non-linear or active

gain medium which would produce a new generation of non-linear meta-structures.

Figure 2.20: Degrees of freedom for designing meta-atoms with responses at discrete
frequencies.

Lets consider an example where the material inside the shell is anisotropic in nature

with weak χ(3) non-linearity leading to a response to incident wave E(t) = <[Eωe
−iωt]

is given by,

D(t) = <[ε0(ε1 +
3

4
χ(3)|Eω|2)Eωe

−iωt] (2.85)

Remembering that the fields can only penetrate at certain frequencies, a particle
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of this geometry can act as linear as well as non-linear structure depending only

on the incident frequency. In the cases where the frequencies can be altered by

εNL, the field coupled inside the shell may not be able to propagate out which in

theory should localization of electromagnetic energy and hence introduce thermal

effects and observation of light. Another interaction analysis would be interactions of

pulsed waves with these structures and its temporal dynamics of localization of the

electromagnetic energy.

(a) Wave incident at certain angle to the
normal of cylinders.

(b) Normal wave incident at the an-
gle angled cylinders.

Figure 2.21: Mixing of eigenfrequencies by adding the degree of freedom of angle of
incidence.

Using the properties of scattering by waves incident angle where a TM fields pro-

duces both TE and TM scattered fields and the knowledge that the resonance condi-

tions (figure 2.18) for TE and TM modes are different, we design a meta-atoms which

has response which cannot be obtained by one filed only. The penetration coefficient

has to be combination of both dn and hn hence will provide another design param-

eter. In addition to engineering meta-atoms, the results obtained have implications

fundamental limits of the response [54], such as absorption per volume is incomplete

because it does not consider the geometry.

Pabs
V
≤ ωEin

|χ(ω)|2

=[χ(ω)]
(2.86)
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(a) Cylindrical shell. (b) Spherical shell. (c) Oblate shell.

Figure 2.22: Examples of other geometry which can be used to design meta-atoms.

Other geometry can also be analyzed similarly by using spherical wavefunctions in

terms of spherical Bessel functions zn(kr) and associated Legendre functions Pm
n (cos θ),

for example for spheres

ψ(r) = zn(kr)Pm
n (cos θ)eimφ (2.87)

In the next chapter, we discuss an elegant way to investigate the propagation of

fields using Green’s functions and electromagnetic potential through an object of

arbitrary geometry as shown in figure 2.22.



CHAPTER 3: PROPAGATION OF POTENTIALS

In chapter 2, we saw that the well known formulation for interaction of electro-

magnetic waves with shells is incomplete. Experimental and theoretical analysis of

cylindrical shells illustrates the importance of geometry in the formalism of scattering.

The exact study of propagation of fields through a structures of various geometries is

arduous and changes for every case based on geometry. Hence, it seems imperative to

develop a formalism capable of describing a large number of geometries which can be

helpful in analyzing metamaterials. The process of designing metamaterials focuses

on achieving certain responses to the incident waves from structures fabricated from

a variety of materials. In the design process the spatial (or temporal) transfer func-

tion is tailored to meet demands of a specific application. The design process can

also be performed in the spatial domain using Green’s functions of individual and

collections of meso-structures or nano-structures. In recent years, Green’s functions

have been used to design metamaterials to perform mathematical operations [55], and

hyperbolic metamaterials for quantum nanophotonics [56].

The geometries of individual unit cells are becoming increasingly complicated with

advancements in metamaterials which requires a rigorous technique capable of han-

dling these exotic geometries. Fabrication of metamaterials also pose an issue of

characterization of properties of the manufactured structures or materials. This cre-

ates a need to extend inverse methods to determine the properties such as local and

global variation of permittivity, and permeability. In the inverse problem, the prop-

erties are determined from the measured intensity which leads to problems related

to sampling, and convergence of solution [57]. Strong scattering and penetration of

incident field inside the scattering object leads to violation of many approximations
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[58]. More recent literature [45] suggests use of cepstral filtering to improve inverse

methods to determine the spatial distribution of permittivtiy, and permeability which

requires working in the Fourier domain. Exotic properties of meta-atoms and meta-

materials are often achieved by driving them at frequencies very close to the resonance

frequencies of the structures. Solutions of inverse problems becomes arduous because

various linear approximations such as the first Born approximation break down. This

means resorting to non linear algorithms for numerical calculations which are compu-

tationally expensive. Hence, it would be desirable to develop rapid methods to solve

the inverse problems in resonance regions, such as Herglotz wavefunctions [59]. The

Green’s functions methods can be used to solve the inverse problems in real space

and use of same the formulation for design and characterization of metamaterials can

help identity errors in fabrication.

Direct and inverse problems become very difficult when the size of the structures

becomes comparable to the wavelength because common electromagnetic scattering

approximations break down [60] which makes it imperative to build a framework from

first principles without any hidden approximations. Usually, numerical methods in

electric and magnetic vector E(r, t) - H(r, t) formulations are used in metamaterial

design and characterization. These methods suffer from breakdown at low-frequencies

[61] or when the dimensions of structures become much smaller than the wavelength.

Similar problems might occur when structures have highly subwavelength coatings

which also leads to high computing costs in field formulations. These issues can be

resolved by using scalar Φ(r, t) and vector A(r, t) electromagnetic potentials [62, 63,

64].

Traditionally, electromagnetic potentials are used to reduce the mathematical com-

plexity of the problem and used to be widely believed that potentials have no physical

meaning. But the Aharanov-Bohm effect [65] demonstrates that vector potentials

carry physical meaning at quantum levels. Subsequent research has shown its equva-
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lence in water waves [66], and its usefulness in graphene [67] and photonics [68].

This raises an interesting question: can electromagnetic potentials be used to ren-

der new properties to metamaterials? In order to explore the usage of potentials in

metamaterial design and characterization, they have to be established on the same

footing as fields. Hence, there is a need to understand the properties of potentials

in an inhomogeneous medium and across boundaries. In this chapter, a method for

propagation of potentials of across a boundary of arbitrary geometry using Green’s

function including boundary conditions are presented.

3.1 Gauge Transformations

The variation or propagation of electromagnetic fields in space and time is governed

by Maxwell’s equations and the behavior of materials characterized by permittivity ↔
ε

and permeability ↔
µ under the influence of fields is dictated by constitutive relations.

These characteristic parameters can take tensor form for complex materials but in

this chapter we are considering material with spatially varying scalar permittivity

ε(r) and permeability µ(r). Magnetic induction B(r, t) is always solenoidal, hence it

can be expressed in terms of vector potential as

B(r, t) = ∇×A(r, t) (3.1)

As a consequence of the Maxwell-Faraday equation, the displacement vector can

be expressed as

D(r, t) = − 1

ε(r)
[∇Φ(r, t) +

∂

∂t
A(r, t)] (3.2)

Using these definitions in Maxwell’s equations, coupled equations for electromag-

netic potentials generated by electric current density j(r, t), and localized charge

density ρ(r, t) in a inhomogeneous medium can be expressed as
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∇ · ε(r)∇Φ(r, t)− ∂

∂t
[∇ · ε(r)A(r, t)] = −ρ(r, t) (3.3)

∇× 1

µ(r)
∇×A(r, t) + ε(r)

∂2

∂t2
A(r, t) +

∂

∂t
[ε(r)∇Φ(r, t)] = −j(r, t) (3.4)

The use of potentials introduces an inherent non-uniqueness giving rise to freedom

of gauge for the scalar and vector potential

φ′(r, t) = φ(r, t)− ∂

∂t
χ(r, t) (3.5)

A′(r, t) = A(r, t) +∇χ(r, t) (3.6)

where, the gauge function χ(r, t) can assume various functional forms. In classical

electromagnetics, it is widely believed that gauge transformations are mathematical

constructs and have no physical meaning, and are used to simplify the problem. A

comprehensive review [69] of gauge invariance highlights the ambiguity in usage of

gauges going back to the Lorenz gauge. Subsequent papers [70, 71] show that choice

of a certain gauge imposes certain physical restrictions on the solution for potentials.

From equations 3.3 and 3.4, it is clear that electromagnetic potentials originating

from a source should propagate under the rules of causality, and relativity, satisfying

appropriate boundary conditions for discontinuity in ε(r) and µ(r).

The propagation speed of scalar potentials has been an interesting topic of re-

search and plays an important role in velocity gauges, where the speed can be chosen

to propagate at any speed relative to speed of light (c). The issue of causality of

a scalar potential was resolved by decomposing the current density into transverse

and longitudinal parts [72] which is a consequence of a subsidiary condition imposed
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on the potentials. The vector potential can also be decomposed in longitudinal and

transverse components, and the longitudinal component travels at ‘c’ and transverse

component can propagate at arbitrary speed. The velocity gauge (see equation 3.7)

uses a parameter ‘v’ to manipulate the propagation speed of potentials. Under the

velocity gauge, ‘v’ parameter controls the propagation speed of potentials which can

provide an opportunity to manipulate the response of materials in a novel way. Viola-

tion of gauge invariance can be linked to violation of causality, and relativity. Despite

the arbitrary speed of scalar potentials in the velocity gauge, it still has a physical

meaning [73] as E(r, t) still follows the laws of relativity.

1

ε(r)
∇ · ε(r)A(v)(r, t) + µ(r)ε(r)

c2

v2

∂

∂t
Φ(v)(r, t) = 0 (3.7)

The underpinning concept of metamaterial design is to have controlled spatial

variation of ε(r) and µ(r), which perhaps can be manipulated with electromagnetic

potentials and gauge transformations, providing a new avenue to metamaterial design

by using photonic Aharanov-Bohm effect [74, 75, 76]. The Aharanov-Bohm effect can

also be observed in plasmons leading to oscillations in plasmons’ frequencies [77],

and wavefront disloctions in scattering of surface plsmons from topological defect

[78]. Traditionally potentials have been used to calculate fields due to a source in an

infinite homogeneous medium but here propagation of potentials across a boundary

is discussed.

Coulomb and Lorenz gauges are two most commonly used gauges in electromagnetic

theory. The Coulomb gauge can be derived from velocity gauge if v →∞,

1

ε(r)
∇ · ε(r)A(C)(r, t) = 0 (3.8)

The issue of causality of scalar potentials under the Coulomb gauge becomes ap-

parent when it is used in equation 3.3. But the subsidiary condition ∇ ·A⊥(r, t) = 0
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[72] corrects the causality of retarded potentials. Upon decomposing vector potentials

in gradient and curl components using Helmholtz theorem (see Appendix C), it can

be shown that a gradient component can be altered during gauge transformations

[71] and does not generate a magnetic field hence should not appear when potentials

cross a boundary. These complications in the nature of propagation potentials under

Coulomb gauge makes the use of Lorenz gauge logical.

The Lorenz gauge can be obtained from the velocity gauge when v = c and it

treats potentials as waves, originating from a source subject to causality and relativity

conditions.

1

ε(r)
∇ · ε(r)A(L)(r, t) + µ(r)ε(r)

∂

∂t
Φ(L)(r, t) = 0 (3.9)

Applying the Lorenz gauge conditions in equations 3.3 and 3.4, we get two decou-

pled equations for potentials in an inhomogeneous medium

∇ · ε(r)∇Φ(r, t)− µ(r)ε(r)
∂2

∂t2
Φ(r, t) = −ρ(r, t) (3.10)

∇× 1

µ(r)
∇×A(r, t)− ε(r) ∂

2

∂t2
A(r, t) +∇[

1

µ(r)ε(r)
∇ · ε(r)A(r, t)] = −j(r, t) (3.11)

3.2 Boundary Conditions

An inhomogeneous medium can be treated as a piece-wise homogeneous medium

where potentials in various homogeneous regions can be stitched together using bound-

ary conditions. In general, boundary conditions are derived using integration over

infinitesimal surface or volume elements using Gauss’, and Stokes’ theorem. It is

important to note that boundary conditions for perfect conductors (σ → ∞) and

imperfect or real conductor (σ is finite) are different. In this chapter, the primary
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concern is to deal with real materials, implying finite conductivity hence over a in-

finitesimal region current and charge densities drop to zero. All information about

the behavior at an interface is encapsulated in the equations above and can be solved

by various numerical methods including finite element methods.

Figure 3.1: Infinitesimal contour for surface integration.

Figure 3.2: Infinitesimal volume for volume integration.

In order to have physical significance, the effects of electromagnetic potentials

should be unaffected under gauge transformations, including the boundary condi-

tions. Hence, the boundary conditions are derived from the uncoupled equations to

ensure independence from gauge transformations. Using divergence theorem in 3.12

and methods expounded in many textbooks over an infinitesimal volume shown in

figure 3.1

∮
V

[∇ · ε(r)∇Φ(r, t)]dV − ∂

∂t

∮
V

[∇ · ε(r)A(r, t)]dV = −
∮
V

[ρ(r, t)]dV (3.12)

From equation 3.12, at the boundary with finite conductivity, condition for scalar

potential at the boundary

n̂ · [ε2(r)∇Φ2(r, t)− ε1(r)∇Φ1(r, t)] = 0 (3.13)
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Due to the finitness of ∇ · ε(r)A(r, t) at the boundary we obtain a necessary con-

dition,

n̂ · [ε2(r)A2(r, t)− ε1(r)A1(r, t)] = 0 (3.14)

The integration in equation 3.15 is over an infinitesimal surface, with rectangular

path C0 shown in figure 3.2 in limit ∆h→ 0 and tangent vector τ̂ = n̂0 × n̂

∫
C0

[∇× 1

µ(r)
∇×A(r, t)] · dS +

∂2

∂t2

∫
C0

[ε(r)A(r, t)]·dS

+
∂

∂t

∫
C0

[ε(r)∇Φ(r, t)] · dS = −
∫
C0

[j(r, t)] · dS
(3.15)

From equation 3.15, it is clear that ∇ · ε(r)A(r, t) and ∇ × A(r, t) have to be

finite at the surface. Considering, ε(r) ∂2

∂t2
A(r, t) on a infinitesimal surface area at the

interface leads to the first boundary condition, where n̂ is a unit vector normal to the

surface.

n̂× [A2(r, t)−A1(r, t)] = 0 (3.16)

A surface with finite conductivity leads to finite j(r, t) combined with ∇[× 1
µ(r)
∇×

A(r, t)] leads to

n̂× [
1

µ2(r)
∇×A2(r, t)− 1

µ1(r)
∇×A1(r, t)] = 0 (3.17)

Observing ∂2

∂t2
Φ(r, t), we get another boundary condition,

Φ2(r, t) = Φ1(r, t)⇒ n̂× [∇Φ2(r, t)−∇Φ1(r, t)] = 0 (3.18)

The same boundary conditions can be obtained using the differentiation method

outlined in refernce [79]. It is notable that the boundary conditions for vector poten-

tials are dependent only on the curl component and not on the gradient component
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which can be affected by gauge transformations. These conditions can very easily be

translated to boundary conditions for fields [38].

The next step is to build a framework that embodies all the physical restrictions

imposed on the electromagnetic potential waves during propagation once it is gen-

erated by the source. An elegant way to express the propagation of vector fields

generated by a source located at r′ is the dyadic Green’s function
↔

G(r, r′|t, t′). There

are no assumptions made during the solution, hence it does not break down when

dimensions of the scattering object become comparable to the wavelength.

3.3 Dyadic Green’s Functions for Electromagnetic Potentials

In general, Green’s function is a kernel in an integral which transforms the boundary

conditions and/or the source density into the solution. When the solution is supposed

to be a scalar then the kernel could be a scalr but when the source function and the

boundary conditions are vectors then the kernels has to be a vector operator or

dyadic. Using the concept of eigenfunctions and Green’s functions it can be argued

that boundary conditions can be expressed as a vector in abstract vector space and

Green’s function transforms the boundary values into values of the solution. The

dyadic Green’s function
↔

G(r, r′|t, t′) must satisfy the following properties, reciprocity

relations, generate solutions from boundary conditions and source functions and the

resulting solutions must have discontinuities just outside the boundaries which has

been illustrated by scalar example.

∇2
↔

G(r, r′|t, t′) + k2
↔

G(r, r′|t, t′) = −
↔

I(r, r′|t, t′) (3.19)

In an inhomogeneous medium, we consider a medium containing the source total

field of incident and scattered fields, and the transmitted field in a non-source region.

In general scattering problems the superposition principle is used to satisfy the re-

quired boundary and radiation conditions for incident and scattered fields [80]. The
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method of scattering superposition is also valid for Green’s functions [81] as it has

to satisfy the same homogeneous or inhomogeneous Helmholtz equations, boundary

and radiation conditions. The method of scattering superposition which is valid for

any geometry can understood by simple 1D case for scalar Green’s function. Scalar

Green’s function g(x|x′) for one dimension with source at x′ can be written as sum

of free space g0(x|x′) and scattered Green’s functions of the form Feikx. Assuming

that the field goes to zero at x = 0 and satisfies Neumann boundary conditions, it

can be easily shown the that total Green’s function becomes the sum of free space

and scattered functions.

g(x|x′) =


i

2k
[eik(x−x′) + eik(x+x′)], x ≥ x′

i
2k

[e−ik(x−x′) + eik(x+x′)], x′ ≥ x ≥ 0

(3.20)

After establishing the method of scattering superposition, a method applicable to

a scattering object of arbitrary geometry employing an eigenfunction expansion of a

dyadic Green’s function using Hansen vector wavefunctions [82] is developed. Key

components of this formulation are a scalar generating function ψpqs(r) which should

satisfy the homogeneous Helmholtz equation with eigenvalues (kpqs) in a coordinate

system determined by the geometry of the scattering object, and a constant piloting

vector â. Vector wave-functions are classified as Cartesian vector wave-function if the

piloting vector can be x̂, ŷ, and ẑ and a spherical vector wave-function if the piloting

vector is radial vector r̂. Three vector functions required for the decomposition of

dyadic Green’s function can be represented using an vector operator T̃ and is obtained

from the scalar generating function.

Lpqs(r) = ∇ψpqs(r) = T̃Lψpqs(r) (3.21)

Mpqs(r) = ∇× âψpqs(r) = T̃Mψpqs(r) (3.22)
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Npqs(r) =
1

kpqs
∇×Mpqs(r) = T̃Nψpqs(r) (3.23)

Immediately some properties of the eigenfunctions can be inferred, Lpqs(r),Mpqs(r),

and Npqs(r) are not colinear and

∇ ·Mpqs(r) = ∇ ·Npqs(r) = 0 (3.24)

Using vector identities it can be shown that all three eigenfunctions satisfy the same

Helmholtz equation as ψpqs(r), and Lpqs(r) has an infinitely degenerate eigenvalue of

zero.

[∇2 + k2
pqs]



ψpqs(r)

Lpqs(r)

Mpqs(r)

Npqs(r)


= 0 (3.25)

These eigenfunctions have to be supplied with proper normalization factors which

depend on the geometry of the scattering object, because the eigenfunction expansion

of every vector field has to be supported by a completeness condition [83]. Normal-

ization factors for each eigenfunction can be written as

〈Lpqs(r);L∗pqs(r)〉 = ΛL
pqs (3.26)

〈Mpqs(r);M
∗
pqs(r)〉 = ΛM

pqs (3.27)

〈Npqs(r);N
∗
pqs(r)〉 = ΛN

pqs (3.28)

The completeness condition for eigenfunction expansion is
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Iδ(r− r′) =
∑

[
Lpqs(r)L

∗
pqs(r

′)

ΛL
pqs

+
Mpqs(r)M

∗
pqs(r

′)

ΛM
pqs

+
Npqs(r)N

∗
pqs(r

′)

ΛN
pqs

] (3.29)

The expansion of a dyadic Green’s function can be very easily used to decompose it

into longitudinal terms containing Lpqs(r) and transverse with terms of Mpqs(r) and

Npqs(r). This mathematical framework for propagation of electromagnetic potentials

can be understood with the help of an example.

Figure 3.3: Illustration of two semi-finite half spaces with source present in medium
1.

Consider two semi infinite half spaces (see fig. 3.3) where medium 1 is characterized

by (ε1, µ1) and medium 2 by (ε2, µ2, σ). A time harmonic point source (e−iωt) of

frequency ω is present at R′ in medium 1 emitting a three dimensional field. The 2D

geometry of the problem requires a Fourier transform in ŷ which is used to represent

the 3D incident field from a point source in the same geometry as the boundary

[84], which makes the use cylindrical generating function (equation 3.30) logical. The

Ohm-Rayleigh method [85] will be used to decompose the dyadic Green’s function

using anterior and posterior vector coefficients to satisfy the radiation and boundary

conditions.

ψpqs(r) = Jp(sρ)eipφe−iqz (3.30)
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where, Jp(sρ) is a Bessel function, radial spectral variable (s ∈ (0,∞)), longitudinal

spectral variable (q ∈ (−∞,∞)), integral azimuthal spectral variable (p ∈ (−∞,∞)),

hence the eigenvalues k2
pqs = q2 + s2. Using the scalar function, normalization factors

can be calculated, where δpp′ is the Kronecker delta function. In order to calculate the

normalization constants let’s expand the vector wavefunctions in terms of individual

functions.

Lpqs(ρ, φ, z) = [J ′p(sρ)ρ̂+
ip

ρ
Jp(sρ)φ̂− iqJp(sρ)ẑ]eipφe−iqz (3.31)

Mpqs(ρ, φ, z) = [
ip

ρ
Jp(sρ)ρ̂− iqJ ′p(sρ)φ̂]eipφe−iqz (3.32)

Npqs(ρ, φ, z) =
1

kpqs
[−iqsJ ′p(sρ)ρ̂+

pq

ρ
Jp(sρ)φ̂+ s2Jp(sρ)ẑ]eipφe−iqz (3.33)

Now using the definition of normalization constant and properties of Bessel’s func-

tions, we can show that

‘ΛL
pqs = 4π2 s

2 + q2

s
δ(s− s′)δ(q − q′)δpp′ (3.34)

‘ΛM
pqs = ‘ΛN

pqs = 4π2sδ(s− s′)δ(q − q′)δpp′ (3.35)

Its is important to realize that the vector wavefunctions are orthogonal to each

other and using Ohm-Rayleigh method, posterior coefficients we can write

↔

I(r− r′) =

∫ ∞
0

ds

∫ ∞
∞

dq
∞∑

p=−∞

[Lpqs(r)A + Mpqs(r)B + Npqs(r)C] (3.36)
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Taking a dot product of the equation with L∗p′q′s′(r) and integrating over the en-

tire volume, and normalization factors, and repeating the steps for M∗
p′q′s′(r) and

N∗p′q′s′(r), we get

A =
s

4π2(s2 + q2)
L−p−qs(r

′) (3.37)

B =
s

4π2
M−p−qs(r

′) (3.38)

C =
s

4π2
N−p−qs(r

′) (3.39)

Hence, the unit Dyadic in this geometry is

↔

I(r− r′) =

∫ ∞
0

ds

∫ ∞
−∞

dq
∞∑

p→−∞

[
sLpqs(r)L−p−qs(r

′)

4π2(s2 + q2)
+

Mpqs(r)M−p−qs(r
′)

4π2s
+

Npqs(r)N−p−qs(r
′)

4π2s
]

(3.40)

The Green’s function in a piece-wise continuous medium and should satisfy the

same equation as vector potentials, using vector identities equation 3.11 can be rewrit-

ten in space-frequency domain where, k2
i = ω2εiµi

∇2
↔

G(r, r′)−∇∇ ·
↔

G(r, r′)− k2
i

↔

G(r, r′) =
↔

Iδ(r− r′) (3.41)

Using anterior vector coefficients for vector eigenfunctions to satisfy the radiation

and boundary conditions, then Green’s functions can be written as,

↔

G(r− r′) =

∫ ∞
0

ds

∫ ∞
∞

dq

∞∑
p=−∞

[apqsLpqs(r) + bpqsMpqs(r) + cpqsNpqs(r)] (3.42)
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Using the expression for the unit dyadic and the properties of the vector wavefunc-

tions

∇× Lpqs(r) = 0 ∇ · Lpqs(r) = ∇2ψpqs(r) = −k2
pqsψpqs(r) (3.43)

∇×∇×Npqs(r) = k2
pqsNpqs(r) (3.44)

Substituting 3.42 in the equation 3.41, the dyadic Green’s function can be expressed

as

↔

G(r, r′) = − 1

4π2

∫ ∞
0

ds

∫ ∞
−∞

dq
∞∑

p→−∞

[
sLpqs(r)L−p−qs(r

′)

k2
pqs(k

2 − k2
pqs)

+
Mpqs(r)M−p−qs(r

′)

s(k2 − k2
pqs)

+
Npqs(r)N−p−qs(r

′)

s(k2 − k2
pqs)

]

(3.45)

The integration over wavenumbers depends on the orientation of the interface and

boundary which separates the media. In this case it is along ẑ, thus integration over

the spectral variable q has to be carried out using contour integration and Jordan’s

lemma. Thus, the dyadic Green’s function for semi-infinite half space, where posterior

functions are used to satisfy radiation condition and anterior functions for boundary

conditions.

↔

G(r, r′) =

∫ ∞
0

ds
∞∑

p→−∞

[
−Lp(is)s(r)L−p(−is)s(r′)

4πk2
−

sLpvs(r)L−p−vs(r
′)

4πvk2
+
iMpts(r)M−p−ts(r

′)

4πst
+
iNpts(r)N−p−ts(r

′)

4πst
]

(3.46)

where, i =
√
−1, k2 +s2 = −v2 and k2−s2 = t2. It is apparent that there exists an

extra term in the solution of the Green’s function for potentials than for fields [86] and
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Lpqs(r) cannot be ignored corroborating [82]. Total dyadic Green’s functions using

scattering superposition method with free space G0(r, r′) and scattering G
(i1)

s (r, r′)

dyadic Green’s function is expressed as

↔

G(r, r′) =


↔

G0(r, r′) +
↔

G
(11)

r (r, r′), z ≥ 0

↔

G
(21)

t (r, r′), z ≤ 0

(3.47)

Applying the boundary conditions derived earlier with some algebraic manipulation

the coefficients of reflection and transmission can be derived where µ2 = µ1 = µ0, aLr

and aLt can be arbitrary and set to zero for this geometry.

aMr =
t1 − t2
t1 + t2

aMt =
2t1

t1 + t2
(3.48)

aNr =
k2

2t1 − k2
1t2

k2
2t1 + k2

1t2
aNt =

2k1k2t1
k2

2t1 + k2
1t2

(3.49)

Hence, the total Green’s function for propagation across a boundary separating

two semi-infinite half spaces

↔

G
(11)

(r, r′) =

∫ ∞
0

ds
∞∑

p→−∞

[
iMp−t1s(r)[Mpt1s(r

′) + aMr Mp−t1s(r
′)]

4πst1

+
iNp−t1s(r)[Npt1s(r

′) + aNr Np−t1s(r
′)]

4πst1
] z ≥ z′

=

∫ ∞
0

ds

∞∑
p→−∞

[
i[Mpt1s(r) + aMr Mp−t1s(r)]Mp−t1s(r

′)

4πst1

+
i[Npt1s(r) + aNr Np−t1s(r)]Np−t1s(r

′)

4πst1
] z′ ≥ z ≥ 0

(3.50)
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↔

G
(21)

(r, r′) =

∫ ∞
0

ds
∞∑

p→−∞

[aMt
iMpt2s(r)Mp−t1s(r

′)

4πst2

+aNt
iNpt2s(r)Np−t1s(r

′)

4πst2
] z ≤ 0

(3.51)

This is an illustration of the framework for propagation of electromagnetic poten-

tials presented in this paper. It can be very easily adapted to any geometry by using

the boundary conditions derived in section 3 and appropriate scalar generating func-

tion. An important point is that the scalar variable will become discrete if the space is

finite. The integration over spectral variables in the Green’s function (equation 3.45)

for an infinite medium will be summations for a finite medium, such as cylinders.

This method can also be translated to a spherical scattering objects by changing the

Bessel function to spherical Bessel function in generating function and radial piloting

vector.
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3.4 Conclusions

Mathematical Framework 2: Green’s function method.
Input: Choose generating function ψpqs(r) based on geometry.

for Vector wavefunctions do

Lpqs(r) = ∇ψpqs(r) (3.52)

Mpqs(r) = ∇× âψpqs(r) (3.53)

Npqs(r) =
1

kpqs
∇×Mpqs(r) (3.54)

Calculate the normalization constants, ΛL
pqs, ΛM

pqs and ΛN
pqs Using the definition

of
↔

I and the equation below to calculate the general form of Green’s functions

∇2
↔

G(r, r′)−∇∇ ·
↔

G(r, r′)− k2
i

↔

G(r, r′) =
↔

Iδ(r− r′) (3.55)

General Green’s functions,

↔

G(r, r′) = − 1

4π2

∫ ∞
0

ds

∫ ∞
−∞

dq
∞∑

p→−∞

[
sLpqs(r)L−p−qs(r

′)

k2
pqs(k

2 − k2
pqs)

+
Mpqs(r)M−p−qs(r

′)

s(k2 − k2
pqs)

+
Npqs(r)N−p−qs(r

′)

s(k2 − k2
pqs)

]

(3.56)

Integrate for the spectral variable which defines the direction of interface

for Planar interface do
Using boundary conditions, we get coefficients

aMr =
t1 − t2
t1 + t2

aMt =
2t1

t1 + t2
aNr =

k2
2t1 − k2

1t2
k2

2t1 + k2
1t2

aNt =
2k1k2t1

k2
2t1 + k2

1t2
(3.57)

Result: Exact geometrical dependence comes from i =
√
−1, k2 + s2 = −v2 and

k2 − s2 = t2. The spectral variables depend on the dimensions of the

scattering object and the coefficients depend on the product of

wavenumuber and dimensions as shown in chapter 2.
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In mathematical framework 2,we have summarized the method for the propagation

of electromagnetic potentials across a boundary of arbitrary geometry is presented, es-

tablishing the propagation of potentials on the same footing as fields across boundary.

No approximations were made regarding the size of scattering object and wavelength,

making it applicable to any electromagnetic problem. Using potentials helps alleviate

the problem of low frequency breakdown making it applicable to any scale, and for

any materials. With the knowledge of sources and point of observation, potentials

can be calculated as,

A(r) =

∫
↔

G(r, r′)j(r′)dr′ (3.58)

The vector potential can be be written as a linear combination of the vector eigen-

function

A(r) =
1

iω

∞∑
n=0

[aLnLpqs(r) + aMn Mpqs(r) + aNn Npqs(r)] (3.59)

and consequent electric and magnetic field vectors are given by

E(r) =
∞∑
n=0

[aMn Mpqs(r) + aNn Npqs(r)] (3.60)

H(r) =
k

iωµ

∞∑
n=0

[aMn Npqs(r) + aNn Mpqs(r)] (3.61)

This formulation can be used for any geometry, by replacing the scalar generating

function based on geometry and coefficients ‘ain’ serving as reflection and transmission

coefficients. The complex integration over spectral variables have to be carried out

to capture near field effects. For far zone fields, asymptotic expressions for Bessel

functions can be used to simplify the problem.

For rectangular geometry, the generating function is combination of sines and



80

cosines and can be expressed as

ψpqs(r) = sin(
pπx

a
) sin(

sπx

b
)eiqz (3.62)

For cylindrical geometry,

ψpqs(r) = Jp(sρ)eipφe−iqz (3.63)

For spherical geometry,

ψpqs(r) = zn(sρ)P q
p (cos θ)eiqφ (3.64)

The framework also provides an opportunity to study the effects of change in po-

sition of the source on the measured scattered field. This method also decreases the

computation time as the dyadic Green’s function is composed of well defined Bessel

functions and their derivatives. Design and characterization of meta-surfaces is also

refined by the use of this method. Since any surface when fabricated is not truly

two dimensional then the simulations should also be carried out with the added con-

dition where one dimension is considerably smaller than other two dimensions. It

can also be modified to be used for chiral and bianisotropic media by changing the

scalar spatially varying permittivity and permeability to its tensor spatially varying

form in equation 3.41. The details of applications of this method to various geometry,

design and characterization of metamaterial properties will be covered in subsequent

chapters.



CHAPTER 4: META ELECTRODYNAMICS

So far, we have investigated the influence of geometry and surrounding medium on

propagation of electromagnetic waves through core-shell geometry where the fields

are related to each other using boundary conditions. The electromagnetic fields or

potentials inside the shells are usually neither studied in detail nor to my knowledge

any attempt has been made to engineer the distribution in the volume of the shell.

In this chapter, we have built a framework to study the following

• Distribution: Characterize and design the distribution of electromagnetic

fields and potentials inside the volume of dielectric and conducting shell or

solid structures.

• Dynamics: Interaction of localized current densities with incident electromag-

netic fields and perturbation due to presence of adjacent densities.

Since the geometry of a single meta-atom governs the detailed boundary conditions,

the analysis becomes extremely complex for the wide spectrum of shapes utilized to

construct meta-structures. This raises the question of how do geometrical parameters

such as curvature and thickness affect the distribution of current on the surface and

in the volume of the meta-atoms or eigen-modes? Here, we use differential geometry

to directly incorporate geometrical parameters into the existing formalism of electro-

magnetic interactions. This will provide a way to map structure to observed function

and to ensure that the method being developed can be generalized. Experimental

and theoretical results have demonstrated the importance of geometry in the study

of scattering and the three key components of such interactions are the wavelength

of the incident radiation, the geometry of structures and the material or constitutive
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parameters, all of has been embedded in the method. In this chapter, the theoretical

framework will be developed from first principles as most approximations are invalid

when structure sizes become comparable to wavelength. The basic understanding will

help develop physical intuition regarding the impact of loss mechanisms, scattering

from resonant and non-resonant meta-atoms, and also from 2D and 3D arrangements

of such structures. The incident field induces a current density in the meta-atoms and

thus the scattered field generated can be linked to the induced multipole moments

providing a method to connect observed global effects to local interactions.

The dynamics of interaction of localized current densities in a unit structure with

incident electromagnetic fields can be studied using semi-classical interaction La-

grangian and Hamiltonian. The effect of coupling between adjacent structures can be

understood by the perturbation in the dynamics accounted by damping parameters

and their effects on the observed far field. We have demonstrated the concept of cou-

pling parameters that can relate the local multiple scattering between meta-atoms and

their inter-element coupling effects to observable quantities but the rigorous mathe-

matics is yet to be developed.

The major impact of this method is development of a bottom-up theoretical frame-

work for analysis of interaction of light with meta-structures, which would be a major

step away from the existing mesh-based computational and small-field perturbative

models. This new characterization method relates the dynamics of current densi-

ties in meta-structures to the scattered field using multipole analysis of geometry

based current distribution. The effects of change in geometry of structures on the

induced current densities can be studied using differential geometry and group the-

ory approaches. These methods inherently exploit the symmetry and lack thereof

to predict the properties of structures and to classify them based on their response

to the incident field. Development of this framework improves the understanding of

interaction of various modes to achieve strong non-linearities for harmonic generation
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and can provide a basis for mathematical development of metamaterial-based lasers.

These tools for detailed understanding and numerical verification of meta-structures

will help to establish fundamental limits for scattering and losses, and will allow

identification of optimal structures having maximum response to incident radiation.

The study of non-linear phenomenon is dominated by perturbative models, inher-

ently restricting the magnitude of second- or higher-order effects. Interactions of

various multipole modes can be studied in order to enhance the second- and higher-

order effects along with the influence of epsilon-near-zero materials. One of the main

goals of this proposal is to establish the mathematical framework for analyzing strong

non-linear interactions using the multipole moments which can be manipulated by the

induced current densities. The analysis of single meta-atoms as entities possessing

various modes of radiation allows them to be treated as atoms which can be used to

develop sources of laser radiation. Experimental verification of limits of losses from

well-known structures has not been discussed in this dissertation but computational

studies of bianisotropic structures for second-harmonic generation can be done using

the method developed. Using the adaptable framework developed we can develop

a table of meta-structures according to their properties and meta-surfaces for max-

imum response to radiation and hopefully can achieve the most ambitious goal of

experimental demonstration of metamaterial lasers.

4.1 Distribution

In order to develop a complete understanding of light-structure interactions both

the geometry of the scattering object and the nature of excitation have to be con-

sidered, especially when the structure size is comparable to wavelength of incident

radiation [49]. In this section, we build a rigorous theoretical framework for analyzing

the responses of a structured material by characterizing the interaction of electromag-

netic waves with meta-atoms in terms of induced current densities and relating the

eigen-modes of current distribution to the scattered field through its multipole mo-
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ments. The effects of interactions between several adjacent meta-atoms in different

arrangements on the current dynamics can be studied using principles of quantum

electrodynamics and can be associated to observable far-field effects. In order to en-

sure generalizability of the method we can decompose the induced current densities

into temporal and spatial components which be dependent on the geometry of the

meta-atoms through differential geometry, hence mapping structure to function of

scattered fields. The aforementioned steps combined with specific functional forms of

material parameters will be used to determine the overall effective material parame-

ters of each meta-structure and their changes due to the interactions with adjacent

structures.

The distribution of current induced in metallic meta-structures depends on the skin

depth and geometry of the structure which plays a crucial role in accurate determina-

tion of scattered field. The traditional theory of skin depth may not be sufficient to

explain the interaction when the size of meta-atoms becomes comparable to the oper-

ating wavelength and the thickness of the structures becomes deeply sub-wavelength.

The experiments conducted ([87], and chapter 2) have led to unexpected results in the

scattered field from cylindrical shells when the interior contents are altered. These

observations imply that the skin depth can be varied by engineering the surface ge-

ometry. If we are able to excite Fabry-Perot type resonances then the transmission

can be increased as evident in Fabry-Perot cavities. This provides a new avenue for

exploiting the effect of geometry in the distribution of current in conductors with

finite conductivity. For ease of calculation, metals are typically assumed to have infi-

nite conductivity but as we know from calculation of transmission in cavities a slight

deviation from 100% reflectivity leads to a potentially large transmission. Hence,

similar resonant effects can lead to modification of the skin depth in finite conductiv-

ity calculations allowing skin-depth engineering. Skin depth can also be modified in

the dielectric structure [88] by designing structures using layers of different materials.
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In this section, we will discuss the decomposition of current densities into multi-

pole moments and accurate calculation of current distribution in three dimensional

structures.

4.1.1 Multipolar Analysis

The diversity of meta-atom geometries and the spectrum of frequencies spanned by

metamaterial applications makes the development of single analytical framework to

characterize the interactions very difficult. However, this complex task can be simpli-

fied by dividing it into smaller problems. The analysis of a single meta-atom can be

done using multipole theory which expresses observable quantities in terms origin de-

pendent such electric and magnetic polarizabilities or multipole moments. Multipole

expansions in electrostatics, magnetostatics and electrodynamics provide a useful and

powerful method for characterizing charge and current densities, and the generated

electromagnetic fields and potentials. Since, the multipole moments are generated by

the induced current distributions in the individual meta-atoms this method provides

an opportunity to engineer the current distribution in these structures. There have

been efforts using multipole theory as way to characterize light-matter interactions

but the current is usually considered to exist in a spherical volume which generates

the multipole moments [89, 90]. There is a dearth of literature where the microstruc-

ture of the materials is analyzed precisely without any simplifying approximations. In

order to study the accurate analysis of current distributions in metallic and dielectric

structure we to understand how current distribution is related to multipole moments.

First, we will be look at the traditional multipole expansions presented in standard

textbooks [38, 91] for electromagnetic potentials. In the case of a finite, continuous

charge distribution with density ρ and the origin within the distribution (see figure

4.1a), the charge density infinitesimal volume dv at r′ is ρdv. The electromagnetic

potential at point P located at r is
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Φ(r) =
1

4πε0

∫
V

ρ(r)dv

|r− r′|
(4.1)

If we assume that the zero of the potential is at zero then for a point r >> r′, we

can expand the denominator

|r− r′|−1 =(r2 − 2r · r′ + r′2)−
1
2

=
1

r
(1 +

1

r2
[r2 − 2r · r′])−

1
2

=
1

r
+

r · r′

r3
+

3(r · r′)2 − r2r′2

2r5
+

5(r · r′)3 − 3r2(r · r′)r′2

2r7
+ · · ·

(4.2)

(a) Discrete charge distribution. (b) Current distribution.

Figure 4.1: Coordinates for finite and continuous charge and current distributions.

Hence, using equation 4.1 and 4.2, the multipole expansion of electrostatic potential

is given by

Φ(r) =
1

4πε0
[
q

r
+
ri
r3
pi +

3rirj − r2δij
2r5

qij+

5rirjrk − r2(riδjk + rjδki + rkδij)

2r7
qijk + · · · ]

(4.3)

Similar expression can be derived for discrete charge distribution with N charges

qi (i = 1, 2, · · · , N) each located at position ri
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Φ(r) =
1

4πε0

N∑
i=1

qi(r)dv

|r− ri|
(4.4)

In the case of finite current distribution as shown in figure 4.1b, the vector potential

at point P is given by

A(r) =
µ0

4π

∫
V

j(r)dv

|r− r′|
(4.5)

Thus, multipole expansion for magnetostatic (∇· j(r)) = 0 vector potential is given

by,

A(r) =
µ0

4π
[
1

r

∫
V

jidv +
ri
r3

∫
V

jirjdv +
3rirj − r2δij

2r5

∫
V

jirjrkdv + · · · ] (4.6)

We are interested in the interaction of light interactions which is a dynamic system,

hence we have to look a the multipole expansion of electromagnetic potentials. In

Lorenz gauge, potentials are given by

Φ(r) =
1

4πε0

∫
V

ρ(r, t− |r−r
′|

c
)dv

|r− r′|
(4.7)

A(r) =
µ0

4π

∫
V

j(r, t− |r−r
′|

c
)dv

|r− r′|
(4.8)

Here, c is the speed of light in vacuum, V is volume of current and charge densities

at retarded time r, t− |r−r
′|

c
. For a field in the far field (R >> r), retarded time can

be written in terms of retarded time at the origin t′,

t− |r− r′|
c

= t− r

c
+ ∆t = t′ + ∆t (4.9)

where,
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∆t =
1

c
[
ri
r
ri+

rirj − r2δij
r3

rirj +
3rirjrk − r2(riδjk + rjδki + rkδij)

6r5
rirjrk + · · · ] (4.10)

Making a Taylor series expansion of ρ(r, t′ + ∆t) about t′,

ρ(r, t′ + ∆t) = ρ(r, t′) +
∂ρ(r, t′)

∂t′
∆t+

1

2!

∂2ρ(r, t′)

∂t′

2

∆t2 +
1

3!

∂3ρ(r, t′)

∂t′

3

∆t3 · · · (4.11)

Using equation 4.10, ρ = ρ(r, t′) and ρ̇ = ∂ρ(r,t′)
∂t

, we get

ρ(r, t′ + ∆t) = ρ+ ρ̇
1

c

ri
r
ri + [ρ̇

rirj − r2δij
2cr3

+ ρ̈
rirj

2c2r2
]rirj+

[
1

6cr5
(ρ̇+

R

c
ρ̈)[3rirjrk − r2(riδjk + rjδki + rkδij)] +

...
ρ
rirjrk
6c3r3

]rirjrk + · · ·
(4.12)

The scalar potential in terms of electrical multipole moments is given by,

Φ(r, t) =
1

4πε0
[
q

r
+
ri
r3

(pi +
R

c
ṗi) +

3rirj − r2δij
2r5

(qij +
R

c
˙qij) +

rirj
2c2r3

q̈ij

+
5rirjrk − r2(riδjk + rjδki + rkδij)

2r7
(qijk +

R

c
˙qijk)

+
6rirjrk − r2(riδjk + rjδki + rkδij)

6c2r5

...
qijk +

rirjrk
6c3r4

...
qijk + · · · ]

(4.13)

Similarly, for electromagnetic vector potential can be written in terms of electric

and magnetic multipole moments,

Ai(r, t) =
1

4πε0
[
ṗi
r

+
ri
r3

[(
1

2
q̈ij − εijkmk) +

r

c
(
1

2
q̈ij − εijkṁk)]

+
3rirj − r2δij

2r5
[
ṗi
r

+
ri
r3

[(
1

2
q̈ij − εijlmlk) +

r

c
(
1

3
¨qijk − εijlṁlk)]

+
rjrk
2c2r3

(
1

3

...
qijk − εijlṁlk) + · · · ]

(4.14)
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The multipole moments are located at an arbitrary origin in the current distribution

and the retarded time is at the origin. The main reason to reproduce standard

results is to illustrate the presence of individual electric and magnetic moments in

the expansions for scalar and vector potentials. It should also be noted that the

vector potential contains both electric and magnetic moments and in order to retain

the magnetic quadrupole it is required to retain electric octopole.

Figure 4.2: Top: Distribution of discrete charge particles leading to dipole,
quadrupole, octupole moments. Bottom: Illustration of modes of current distribu-
tions or eigen-modes in meta-atoms for multipole moments.

Current and charge distribution in the volume of object is very important as it can

be seen from the table below.
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Table 4.1: Charge and current dependence of multipole Moments.

Moments Electric Magnetic

Monopole q =
∫
V ρ(r)dv Does not exist

Dipole pi =
∫
V riρ(r)dv ṗi =

∫
V j(r)dv

Quadrupole qij =
∫
V rirjρ(r)dv 1

2 ˙qij(t)− εijkmk(t) =∫
V ji(r, t)rjdv

Octopole qijk =
∫
V rirjrkρ(r)dv 1

3 ˙qijk(t)− 1
2εijlmlk(t)−

1
2εiklmlj(t) =

∫
V ji(r, t)rjrkdv

where, εijlεklm = δilδjm − δimδjl. The exact calculation for higher order multipoles

have been calculated rigorosly in Ref. [92] and can be adapted for calculation of

multipoles of meta-atoms. It is also imperative to realize that multipole method is

also valid for macroscopic medium. Since, Maxwells’ equations are valid over any

geometrical scale, then for microscopic equations where electric (Em(r, t)) and mag-

netic (Hm(r, t)) vector fields generated by microscopic charge (ρm(r, t)) and current

(jm(r, t)) densities is given by,

∇ · Em(r, t) =
1

ε0
ρm(r, t) (4.15)

∇ ·Hm(r, t) = 0 (4.16)

∇× Em(r, t) = −µ0
∂

∂t
Hm(r, t) (4.17)

∇×Hm(r, t) = jm(r, t) + ε0
∂

∂t
Em(r, t) (4.18)

Averaging the microscopic fields and source densities using methods outlined in
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[38, 93, 94] the bound charge and current densities become evident

∇ · E(r, t) =
1

ε0
(ρf (r, t) + ρb(r, t)) (4.19)

∇ ·H(r, t) = 0 (4.20)

∇× E(r, t) = −µ0
∂

∂t
H(r, t) (4.21)

∇×H(r, t) = jf (r, t) + jb(r, t) + ε0
∂

∂t
E(r, t) (4.22)

The bound charge and current densities can expanded in macroscopic multipole

moments from equations 4.7 and 4.8

ρb(r, t) = −∇iPi +
1

2
∇i∇jQij −

1

6
∇k∇j∇iQijk + · · · (4.23)

jbi(r, t) = Ṗi −∇j(
1

2
Q̇ij − εijkMk) +∇j(

1

6
˙Qijk −

1

2
εijkMlj) + · · · (4.24)

Thus, macroscopic fields for each component in electric octopole -magnetic quadrupole

becomes

Di(r, t) = ε0Ei + Pi −
1

2
∇jQij +

1

6
∇k∇jQijk + · · · (4.25)

Bi(r, t) = µ0Hi − µ0Mi + µ0
1

2
∇jMij + · · · (4.26)

Multipole moments have been used to analyze interaction of light with structures

in large variety of scenarios from study of molecules in chemistry [95], astrophysics

[96] and widely in metamaterials [97, 98, 99, 100]. The multipole approach helps
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create a relationship between observed macroscopic response to microscopic interac-

tions within meta-atoms. It helps relate the magnetization induced in meta-atoms

to magnetic multipole moments and deduce the physical implications of the mag-

netic interactions on the overall response. This method can be used to derived the

geometrical dependence of polarization and magnetization densities as shown later

in the chapter and hence geometrical dependence of constitutive parameters. This

allows design of meta-atoms from very basic principles and which can be extended

to a wide variety of meta-atoms such as, plasmonic, active, passive and quantum

metamaterials.

The multipole method can be adapted for analysis of meta-structures, where each

meta-atom can be approximated as point current distribution and using multipole

expansions for spherical geometry [38]. In general, the total field generated by total

current distributions can be represented by superposition of point current densities. It

has already been shown that superposition of dipole and torodial moments to generate

non radiating anapole moment [35].

Es(r, θ, φ) = E0

∞∑
l=1

l∑
m=−l

il[π(2l + 1)]
1
2 [

1

k
aE(l,m)∇× (h

(1)
l (kr)Xlm(θ, φ))

+aM(l,m)h
(1)
l (kr)Xlm(θ, φ))]

(4.27)

Hs(r, θ, φ) =
E0

η

∞∑
l=1

l∑
m=−l

il−1[π(2l + 1)]
1
2 [

1

k
aM(l,m)∇× (h

(1)
l (kr)Xlm(θ, φ))

+aE(l,m)h
(1)
l (kr)Xlm(θ, φ))]

(4.28)

where, η is the impedance, h(1)
l (x) is the spherical Hankel function of the first

kind and Xlm(x) is the normalized vector spherical harmonics. The wavenumber k

is calculated for the surrounding medium which has the impedance η. As shown in
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Figure 4.3: Ref. [90]: Constructive interference electric and magnetic dipole lead
to zero back-scattering and destructive interference leads to zero forward scattering.
Later cancellation of radiation pattern leads to a non radiative anapoles.

chapter 3, the vector wavefunctions form a complete basis to describe a scattering

problem. They also help describe the scattering and extinction cross sections in

a compact form. The scattering cross-section (σs) describes the amount of power

scattered by the scattering object with respect to power per unit are carried by the

incident wave. The extinction cross section (σe) describes the amount of overall power

extracted by the scattering object with respect to power per unit area carried by the

incident waves. The absorption cross-section (σa) describes the power absorbed by

the scattering object with respect to power per unit area carried by the incident

waves. The expression of the cross-sections is given by [101, 32],

σs =
π

k2

∞∑
l=1

l∑
m=−l

(2l + 1)[|aE(l,m)|2 + |aM(l,m)|2] (4.29)

The extinction cross section depends on the choice of polarization and propagation

direction of the incident field, for a x-polarized wave traveling z extinction cross-
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section is given by

σe,x = − π

k2

∞∑
l=1

∑
m=−l,+1

(2l + 1)<[maE(l,m) + aM(l,m)] (4.30)

For y-polarized wave

σe,x = − π

k2

∞∑
l=1

∑
m=−l,+1

(2l + 1)=[aE(l,m) +maM(l,m)] (4.31)

where, <(·) and =(·) represent the real and imaginary parts. It should be noted

that the summation for m is carried over just two values. The absorption coefficient

is given by

σe = σa − σs (4.32)

The calculation of the coefficients for scattered field over any spherical volume in

terms of scalar spherical harmonics (Ylm(θ, φ)) is given by

aE(l,m) =
(−i)l+1kr

h
(1)
l (kr)E0[π(2l + 1)l(l + 1)]1

2

∫ 2π

0

∫ π

0

Y ∗lm(θ, φ)r̂ · Es(r) sin θdθdφ (4.33)

aM(l,m) =
(−i)l+1ηkr

h
(1)
l (kr)E0[π(2l + 1)l(l + 1)]1

2

∫ 2π

0

∫ π

0

Y ∗lm(θ, φ)r̂ ·Hs(r) sin θdθdφ (4.34)

Using the Maxwell’s equations and multipole representation of charge and current

densities (equations 4.23 & 4.24) provides a way to control the exact scattering from

meta-structures. The main question is that can the current density be manipulated

using geometry and what is the exact distribution of current inside the volume. In

the next section, we will derive the geometrical dependence of current distribution.
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4.1.2 Skin Depth Engineering

As we saw earlier that the analysis of electromagnetic waves inside a conducting

volume is missing the component geometrical parameters. These formalism work well

in large cases but there may situations where these calculations may breaks down

or in the case of meta-structure design it may be desired to engineer the current

distribution. The accurate calculation of current distribution in a volume element

requires the exact representation of the surface. It is apparent that the calculation

becomes increasingly complex even for relatively simple geometries such as a ring. In

order to develop a closed-form solution for a more complex geometry we have use the

generalized coordinate system from differential geometry and develop a formalism for

electromagnetism in curved spaces fulfilling the need for a mathematical framework

for calculation of current distributions and scattered fields in meta-atoms of arbitrary

geometry. In this section we will follow the notations of Ref. [102] for differential

geometry properties which describes any geometric configuration (curves, surfaces

and volumes) using differential and integral calculus.

4.1.3 Theory of Curves

In order to develop the mathematical framework in generalized coordinates we in-

troduce a set of local coordinates at the surface S. One of the key aspects of generalized

coordinate system is the parameterization of space.

• Three dimensional position vector x, where x1, x2, x3 are coordinates.

x = (x1, x2, x3) (4.35)

• The parametric representation of the position vector is given as

x = (x1(s), x2(s), x3(s)) (4.36)
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where, t is real variable defined in the interval I : a ≤ t ≤ b. This means that

for every value of t there is a point in three dimensional space that has position

vector x(t).

An arbitrary three dimensional curve C can be parameterized using the arc length

s as the parameter x(s). Two points on the curve separated by h determine a chord

between s and s + h with direction of the tangent vector x(s + h) − x(s), thus the

unit tangent vector at point x(s),

t(s) = lim
h→0

x(s+ h)− x(s)

h
=
dx

ds
(4.37)

• A straight line passing through a point P in the direction of the unit tangent

vector (see figure 4.4a) through a point on curve is called a tangent.

• The totality of all vectors bound at a point of the curve which are normal to

unit tangent vector is called normal plane.

(a) Tangent vector and Normal plane (b) Osculating plane.

Figure 4.4: Parameterization of a curve.

In figure 4.4b, we have two points p and p1 on the curve C joined by a straight line.

If the point p1 tends towards p, then in the limiting case line joining them becomes

a tangent. Hence, we want to determine the limiting position of plane through the
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points p, p1 and p2 as both points tend towards p. The parametric values of points

s, s+ h1, s+ h2, respectively gives a chord vectors pp1 and pp2 which span the entire

plane in the event of linearly independent.

ai = x(s+ hi)− x(t) (4.38)

The plane is also spanned by

v1 =
a1

h1

& w =
2(v2 − v1)

h2 − h1

(4.39)

Using Taylor formula

x(s+ hi) = x(s) + hix
′(s) +

hi
2!
x′′(s) + o(h2

i ) (4.40)

If f(z) and g(z) are non zero functions the interval with z = 0 such that quotient

g(z)/f(z) tends to zero as z tends to zero then g(z) is said to be o(f(z)). Hence if

o(h1) + o(h2) = o(h2 − h1), we get

v1 = x′(s) +
h1

2!
x′′(s) + o(h1) (4.41)

w = x′′(s) + o(1) (4.42)

• If hi → 0, then v1 → x′(s) and w → x′′, (s). And if x′(s) and x′′(s) are

linearly independent then they span the plane namely, osculating plane. Thus,

osculating plane at point P on curve C with z is the position vector of a point

on it is given by

|(z− x)x′x′′| = 0 (4.43)
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• When the osculating plane passes through the tangent, the intersection of os-

culating and normal plane is called principle normal.

Parameterization of surfaces require calculation of some basic tensor quantities. For

a curve on surface S : x(u1, u2) can be represented by a parameteric representation

u1 = u1(t) u2 = u2(t) (4.44)

Figure 4.5: Point P in three dimensional space.

In order to determine the element of arc (or linear element) of the curve which

leads to first fundamental form.

ds2 =
3∑
i=1

dx2
i = dx · dx = (x1du

1 + x2du
2) · (x1du

1 + x2du
2) (4.45)

ds2 = x1 · x1(du1)2 + 2x1 · x2du
1du2 + x2 · x2(du2)2 (4.46)

• Using the xα · xβ = gαβ are components of metric tensor tensor or fundamental

tensor.
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• Note superscript represents contravariant behavior and subscript represents co-

variant tensor.

ds2 =
2∑

α=1

2∑
β=1

gαβdu
αduβ (4.47)

• Without any detailed calculations, the second fundamental form is defined as

bαβ = xαβ · n xαβ =
∂2x

∂uα∂uβ
(4.48)

The second fundamental form is invariant with respect to any allowable coordinate

transformation which preserves the sense of the normal n evident by

bαβdu
αduβ = −dx · dn (4.49)

In order to parameterize the arbitrary and normal sections of a surface, we need

to introduce normal curvature

κn =
bαβdu

αduβ

gαβduαduβ
(4.50)

Thus, using the principal curvatures are the curves intersection of principal planes

with the surface which gives two main curvatures for the analysis of surfaces.

• Gaussian curvature of the surface at the point of curvature

K = κ1κ2 =
b

g
(4.51)

• For a sphere of radius r has Gaussian curvature 1
r2 everywhere, and a flat plane

and a cylinder have Gaussian curvature is zero.

• The arithmetic mean of the principle curvature is called mean curvature
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Figure 4.6: Principal plane and principal curvatures.

H =
1

2
(κ1 + κ2) =

1

2
bαβg

αβ =
1

2
bαα (4.52)

• It is related to the normal vector by

H = −1

2
∇ · n (4.53)

4.1.4 Asymptotic Skin Depth Formulation

In order to explain the method used in this section to derive geometrical dependence

of skin depth, first we illustrate the use of asymptotic methods to derive common

geometrical optics formulations, such as Fermat’s principle and intensity law using

the formulation used in Ref. [51].

In figure 4.7a a plane wave traveling positive z - direction shown which can be

written as
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(a) A plane wave. (b) A spherical wave.

Figure 4.7: Illustration of wavefronts and ray directions.

U(r) = U0e
ikz (4.54)

where, U0 is the amplitude of the incident field and the geometric waves are straight

lines propagating in z - direction and wavefronts can be written as z = constant. A

spherical wave generated by a point source at origin is illustrated in figure 4.7b which

can be written as,

U(r) = U0
eikr

kr
(4.55)

where, the optical path is simply a straight line originating from the origin. A more

general field can be written in the form which is not valid in every case but can be

used to define a ray with well defined direction at any given point.

U(r) = a(r)eikS(r) (4.56)

Substituting this trail solution in Helmholtz equation, we have

∇ · ∇[a(r)eikS(r)] + k2n2(r)a(r)eikS(r) = 0 (4.57)

Using chain rule the differential equation can be expanded as and dividing the

common exponential term,
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∇2a+ 2ik∇a · ∇S − k2a(∇S)2 + ika∇2S + k2n2a = 0 (4.58)

As both a and S are both real valued functions, the real part of the equation

becomes

∇2a− k2a(∇S)2 + k2n2a = 0 (4.59)

After dividing by k2a and take the geometrical optics limit of λ→ 0 and k →∞,

we get

(∇S)2 = n2 (4.60)

This is the Eikonal equation of geometrical optics which is the differential form of

Fermat’s principle. The expression 4.56 is the simplest form but a more sophisticated

model for geometric wave can be written as

U(r) =
∞∑
n=0

an(r)

(ik)n
eikS(r) (4.61)

Substituting in Helmholtz equation

[∇2 + k2n2(r)]
∞∑
n=0

an(r)

(ik)n
eikS(r) = 0 (4.62)

Using chain rule we can write

∞∑
n=0

1

(ik)n
[∇2an + 2ik∇an · ∇S − k2an(∇S)2 + ikan∇2S + k2n2an] = 0 (4.63)

The lowest order term n = 0,
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−ka0(∇S)2 + k2n2a0 = 0 (4.64)

which is the Eikonal equation. The next order term n = 1 gives,

2ik∇a0 · ∇S + ika0∇2S − a1(∇S)2 + n2a1 = 0 (4.65)

The last two terms vanish because of Eikonal equation and the rest gives the

intensity law of geometrical optics [51]. The case discussed here is for a scalar but

similar expression can be derived for electric and magnetic field vectors in Ref. [48],

which is given as

E0 =
∑
n≥0

en(r)

(ik0)n
eikS(r) H0 =

∑
n≥0

hn(r)

(ik0)n
eikS(r) (4.66)

Separating the spatial parts of the field vector in terms of a small parameters

provide an elegant way to obtain an asymptotic expression of light-meta structure

interactions. Now, we use these concepts to study conducting structure of arbitrary

geometry and surrounded by dielectric material interacting with an electromagnetic

wave with harmonic time dependence with angular frequency, ω.

• Dielectric region: ε = ε0, σ = 0 and µ = µ0

• Conducting region: ε = εrε0, εr = (1 + iσ(ω)
ε0ω

) = (1 + i
∆2 ), σ(ω) = σ and µ = µ0

Hence, Maxwell’s equations in space-frequency domain in both regions

For Dielectric,

∇×∇× E− ω2ε0µ0E = iωµ0j

∇×∇×H− ω2ε0µ0H = ∇× j

(4.67)

For Conducting region
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∇×∇× E− (1 +
i

∆2
)ω2ε0µ0E = 0

∇×∇×H− (1 +
i

∆2
)ω2ε0µ0H = 0

(4.68)

Now, with all the basic quantities defined we can start analyzing the geometric

dependence of skin effect. We first split the parameterization of position vector using

the formalism developed in quantum mechanics of constrained particles [103] using the

unit normal n as shown in figure 4.8. The local coordinate system can be decomposed

in normal and tangential components as

x(x1, x2, x3) = o(x1, x2) + δx3n(x1, x2) (4.69)

Figure 4.8: Illustration of arbitrary geometry of a conducting volume V represented
by red. Surrounding dielectric with σ = 0, represented by gray. The black lines
represents volume Vδ of current inside the conductor with thickness δ. Surface of the
conductor S is the interface between conductor and dielectric and Sδ is the surface of
the penetrated fields.

We want to develop a metric tensor that can split any vector field F into normal

Fn and tangential FT components which is a vector field Fα, where α = 1, 2 on the

surface Sδ inside the conducting object at a distance δ for the interface. The metric
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tensor

gαβ(x3) = fαβ − 2bαβx
3 + bηαbηβ(x3)2

g33 = 1, g3α = 0

(4.70)

gαβ(x3) =

gαβ(x3) 0

0 1

 (4.71)

In order to calculate the operators for Maxwell’s equations we need the determinant

of the metric tensor which is given by in terms of Jacobian expressed as a function of

Gaussian and mean curvature (H and K)

√
g =

√
f(1− 2Hx3 +K(x3)2) (4.72)

The calculation of exact solution for the decaying fields is still difficult to find,

hence using the formalism developed for study of scattering and general boundary

conditions [104] we want to calculate the series for skin depth. Henceforth, we will be

using the position vectors in local coordinate system, x = (xT , xn) = (xα, x3). Using

the series expansion of fields using the proof provided in section 4 of Ref. [104], for

dielectric region

Ed
∆(x) =

∑
j≥0

∆jEd
j (x) = Ed

0(x) + ∆Ed
1(x) + ∆2Ed

2(x) + · · ·

Hd
∆(x) =

∑
j≥0

∆jHd
j (x) = Hd

0 (x) + ∆Hd
1 (x) + ∆2Hd

2 (x) + · · ·
(4.73)

In conductor region,
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Ec
∆(x,∆) =

∑
j≥0

∆jEc
j (x,∆) = Ec

0(x,∆) + ∆Ec
1(x,∆) + ∆2Ec

2(x,∆) + · · ·

Hc
∆(x,∆) =

∑
j≥0

∆jHc
j (x,∆) = Hc

0(x,∆) + ∆Hc
1(x,∆) + ∆2Hc

2(x,∆) + · · ·
(4.74)

where, the functions in the conductor is calculated at ∆ from the surface in the

normal direction and Ξ(x3) is a smooth function on the surface and equal to 1 outside

the conductor region. Physically, it means that the field at a scaled distance inside

the conductor can be separated into tangential and decaying normal component.

Ec
j (x,∆) = Ξ(x3)e(xa,

x3

∆
)

Hc
j (x,∆) = Ξ(x3)h(xa,

x3

∆
)

(4.75)

In the case of very high conductivity the field penetration will be very small, hence

we need to add the condition e(xa, x3) → 0 and h(xa, x3) → 0 when x3

∆
→ 0. Now

using the wave equation for magnetic field with source located in dielectric region.

Thus, to be precise the expression should be

Ec
j (x,∆) = Ξ(x3)e(xa,

x3

∆
) +O(∆→∞)

Hc
j (x,∆) = Ξ(x3)h(xa,

x3

∆
) +O(∆→∞)

(4.76)

but the term O(∆ → ∞) is understood and not explicitly written in the calcu-

lations. The convergence of series has also been proved in [104] along with error

analysis, hence it has not been reproduced here.

Substituting the asymptotic representation in equations 4.67 and 4.68, we get
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[∇×∇× · − ω2ε0µ0]
∑
j≥0

∆jEd
j (x,∆) = iωµ0j (4.77)

[∇×∇× · − (1 +
i

∆2
)ω2ε0µ0]

∑
j≥0

∆jEd
j (x,∆) = 0 (4.78)

which can also be written as operator form

L
∑
j≥0

∆jEc
j (x,∆) = 0 L = [∇×∇× · − (1 +

i

∆2
)ω2ε0µ0I] (4.79)

The operators can also be expanded in power series using in terms of parameter

∆, which has been proved in detail in Ref. [105, 106].

L[∆] =
1

∆2

∞∑
n=0

∆nLn (4.80)

where individual terms of the series are

L0
α(e) = −∂2

3eα − iωε0µ0eα (4.81)

where, ∂3 is the partial derivative with respect to X3 = δ
∆

and the vector field can

be split in tangential and normal components e = (eα, eN)

L1
α(e) = −2bβα∂3eβ + ∂3DαeN − ibββ∂3eα (4.82)

Thus, transverse components of L is Ln3

L0
3(e) = −iωε0µ0eN (4.83)

With the change of metric tensor

aαβ(e) =
1

2
(Dαeβ +Dβeα)− bαβeN (4.84)
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L1
3(e) = aαα(∂e) + bββ∂3eN (4.85)

In order to calculate the relationship between the fields in dielectric and conductor

region we have to use boundary conditions for the coefficients on surface S. The

boundary conditions can be derived using the same method as equation 3.11 on

equations 4.68 and 4.67.

∇× Ec
∆ × n = ∇× Ed

∆ × n (4.86)

Ec
∆ × n = Ed

∆ × n (4.87)

The operator T = ∇ × · × n is in the local normal coordinate system and for

e = (eα, eN)

(Te)α = ∂∆
3 eα −DαeN (4.88)

After scaling the operator to X3 = δ
∆
, we can expand it in the power of ∆

T[∆] =
T0

∆
+ T1 (4.89)

where, the surface component terms can be derived using 4.88 and the scaling

factor

T0
α(e) = ∂3eα T1

α(e) = −DαeN (4.90)

Thus, the boundary condition on surface S becomes,

T[∆]
∑
n≥0

∆ne(xα, 0) =
∑
n≥0

∆n∇× Ed
n × n (4.91)
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From definition of operator T, we get

T0
α(e0) = 0 (4.92)

and

T0
α(e0) + T0

α(e0) = (∇× Ed
n × n)α (4.93)

Thus for first asymptotic n = 0, e0 wave equation and boundary condition become

∂2
3e0(xα, X3)− iω2ε0µ0e0(xα, X3) = 0 (4.94)

∂3e0(xα, 0) = 0 (4.95)

Thus for a unique solution for e0 such that e0 → 0 when X3 → ∞, we get

eα(xα, X3) = 0. Recalling L0
3 = −iω2ε0µ0eN , the zeroth order field inside the conduc-

tor is zero.

e(xα, X3) = 0 (4.96)

Thus, for the dielectric region

[∇×∇× · − ω2ε0µ0]∆jEd
0(x) = 0

Ed
0(x)× n = 0

(4.97)

The next term n = 1,

Observing that the series has common terms for order of ∆, we get
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L0(e0) = 0 L0(e1) + L1(e0) = 0
n∑

m=0

Ln−m(em) = 0 (4.98)

∂2
3e1(xα, X3)− iω2ε0µ0e1(xα, X3) = 0 (4.99)

∂3e1(xα, 0) = Ed
0(x)× n(xα, 0) (4.100)

In order to solve the partial differential equations, we use a common trick

Ed
0(x)× n(xα, 0) = κRα(xα) (4.101)

where κ = e−i
π
4ω
√
ε0µ0

e1(xα, X3) = −R(yα)e−κ
δ
∆ = −(Ed

0(x)× n(xα, 0))e−κ
δ
∆ (4.102)

For the dielectric part

[∇×∇× · − ω2ε0µ0]∆jEd
1(x) = 0

Ed
1(x)× n = −Ed

0(x)× n× n

(4.103)

For the next term n = 2, surface component becomes

∂2
3e2,α(xα, X3)−iω2ε0µ0e2,α(xα, X3) = −2bηα∂3e1,η(xα, X3)+bηβ∂3e1,α(xα, X3) (4.104)

∂3e2,α(xα, 0) = (Ed
1(x)× n)α(xα, 0) (4.105)

Thus,
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e2,α(xα, X3) = [−R1,α + (
1

κ
+X3)(bηαR0,η −HR0,α)](xβ)e−κ

δ
∆ (4.106)

where,

Ed
1(x)× n(xα, 0) = κR0,α(xα) (4.107)

and the normal component

e2(xα, X3) = −1

κ
DαR0,α(xβ)xβe

−κ δ
∆ (4.108)

In order to calculate the magnetic field in the conductor region we can use Faraday’s

law in generalized coordinates using Levi-Civeta matrix (εijk),

(∇× e)α = ε3βα(∂δ3eβ − ∂βe) (4.109)

(∇× e)3 = ε3βαDδ
αeβ (4.110)

The contravariant components (εijk) depend depend on normal coordinate δ

(εijk) = (detoαβ(δ))−
1
2 ε0(i, j, k) (4.111)

which implies

(εijk) = o−
1
2 (1 + 2Hδ +O(δ2))ε0(i, j, k) (4.112)

4.1.5 Physical Interpretation

In the simplest interpretation of the results are

• n = 0 Perfect conductor condition as there is no penetration
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• n = 1 Real conductor condition

• n = 2 Conductor with curvature condition

The results obtained in the equations 4.102 & 4.104 show that the fields inside the

conducting volume is function of geometry.

Econductor = E(H, bαη ) (4.113)

We can explore ways the use of geometry to tailor losses in meta-structures by rep-

resenting them as accurate current distribution and polarizations in order to under-

stand the dynamics necessary to achieve magnetic dipole flipping. The total induced

current can be decomposed in electric and magnetic current densities.

j(r) = jp(r) + jm(r) jp(r) =
∂P(H,K, t)

∂t
jm(r) = ∇×M(H,K, t) (4.114)

The geometrical dependence of charge and current densities lead to geometric de-

pendence of material response as shown by

D(r, t) = ε0E(r, t) + P(H,K, t) (4.115)

B(r, t) = µ0H(r, t) + M(H,K, t) (4.116)

4.2 Dynamics

In this section, we will describe the dynamics of the interaction of localized modes

of current distribution with the incident electromagnetic fields. The dynamics of

these modes decay due to radiation and ohmin losses and gets perturbed by the

presence of other structure. This method is different from the traditional quantum

electrodynamics method because the modes localized is quantized making it semi-
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classical. However, this method can also be used for quantum metamaterials by

replacing the finite current distribution by quantized distribution.

We can tie together various applications of structured materials in one method

using concepts of quantum electrodynamics for the dynamics of interaction, and dif-

ferential geometry to incorporate the geometry of structures in the framework of

meta-electrodynamics. Stated simply, in this method meta-atoms are represented as

multipoles generated by induced current distributions which interact with each other

and with the substrate to produce observable far-field effects. The problem statement

can be generalized with the help of mathematical techniques which exploit the pres-

ence or lack symmetry of individual structure and ensembles of them. The coupling

between various structures provides a method to control the decay rates and local

current distributions enabling tailoring of radiation patterns in individual structures.

We propose to develop a new method to develop a precise understanding of the

structure and dynamics of meta-structures providing better control of internal and

external degree of freedoms for realization of many applications. This provides an

elegant way to develop modes of the field distribution in ensembles of meta-atoms

incorporating effects of shape of meta-surfaces on the observed fields. It allows one

to span the range of metamaterials being operated at radio-frequencies to quantum

metamaterials in a single formulation. Hence, Green’s functions combined with effect

of coupling should provide a good platform to understand metamaterials from physical

point of view. Now, let us look at the important components required to understand

the dynamics of such interactions.

4.2.1 Dynamical Variables

From Maxwell’s equations, we can see that the rate of change of electric and mag-

netic fields with respect to time depends on their spatial derivatives in the neighbor-

hood of point r. In the reciprocal space, fields can be derived from spatial Fourier

transform
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E(k, t) =
1

(2π)
3
2

∫
d3rE(r, t)e−ik·r (4.117)

E(r, t) =
1

(2π)
3
2

∫
d3kE(r, t)e−ik·r (4.118)

Table 4.2: Real and reciprocal representation of electromagnetic quantities.

Physical quantity Space-time Reciprocal-time

Electric Field E(r, t) E(k, t)

Magnetic Field H(r, t) H(k, t)

Electric Displacement D(r, t) D(k, t)

Magnetic Induction B(r, t) B(k, t)

Vector Potential A(r, t) A(k, t)

Scalar Potential Φ(r, t) P(k, t)

Charge Density ρ(r, t) R(k, t)

Current Density j(r, t) J(k, t)

We can use the definitions above to derive Maxwell’s equations in reciprocal-time

domain and using the definitions of longitudinal vector quantities,

ik×V‖(k) = 0 (4.119)

Transverse vector quantities

ik ·V⊥(k) = 0 (4.120)

we can get longitudinal and transverse components of electromagnetic quantities.

From Maxwell’s equations it becomes evident that magnetic field is purely transverse
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ik ·B(k, t) = 0 (4.121)

and decomposing a vector into its longitudinal and transverse components

V‖(k) = k̂[k̂ ·V(k)]

V⊥(k) = V(k)−V‖(k)

(4.122)

we find that the longitudinal electric field is not dynamic in nature

E(k, t) = − i

ε0

k

k2
P(k) (4.123)

Thus, the dynamics is contained in the transverse components of the electromag-

netic quantities. From Maxwell’s equations, we can derive the dynamic equations

∂

∂t
B = −ik× E⊥

∂

∂t
E⊥ = − i

ε0µ0

k×B− 1

ε0
J⊥

(4.124)

Note,

• The source term is J⊥ and not J but in real the relationship between j⊥ and

j is non-local hence the dynamics at any time t is affected by current at every

point. This comes very subtle aeguments of delta function. (see page 14 Ref.

[39]).

Equation 4.124 can be used to derive a set of normal variables with normalization

constant Λ(k)

a(k, t) = − i

2Λ(k)
[E⊥(k, t)− 1

√
ε0µ0

k̂×B⊥(k, t)] (4.125)
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b(k, t) = − i

2Λ(k)
[E⊥(k, t) +

1
√
ε0µ0

k̂×B⊥(k, t)] (4.126)

Using the complex conjugate properties of the reciprocal fields

b(k, t) = −a∗(−k, t) (4.127)

Thus, we get the dynamic nature of the fields can be encapsulated in one term

a(k, t)

E⊥(k, t) = iΛ(k)[a(k, t)− a∗(−k, t)] (4.128)

B(k, t) =
iΛ(k)
√
ε0µ0

[k̂× a(k, t) + k̂× a∗(−k, t)] (4.129)

Thus, similar expression can be derived for vector potentials using

E⊥(r, t) = − ∂

∂t
A⊥(r, t) (4.130)

B(r, t) = ∇×A⊥(r, t) (4.131)

Now, let us look at a method using which Lagrangian and Hamiltonian of the

interactions.

4.2.2 Lagrangian and Hamiltonian Formulations

The Lagrangian for the system made up of particles interacting with the electro-

magnetic field is derived as a function of dynamic variable of each particle. In standard
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formalism, the position vector and it’s time derivative serves as the dynamical vari-

able and electromagnetic potentials for the incident fields because the equations of

motion are second order. The dynamics of the system of particles + electromagnetic

field can be derived from standard Lagrangian

L =
∑
i

1

2
miṙ

2
i +

ε0
2

∫
d3r[E2(r)− c2B2(r)] +

∑
i

[qiṙi ·A(ri)− qiΦ(ri)] (4.132)

The Lagrangian has three terms

For particles

Lp =
∑
i

1

2
miṙ

2
i (4.133)

For the electromagnetic fields

LEM =
ε0
2

∫
d3r[E2(r)− c2B2(r)] (4.134)

For interaction

LI =
∑
i

[qiṙi ·A(ri)− qiΦ(ri)] =

∫
d3r[j(r) ·A(r)− ρ(r)Φ(r)] (4.135)

Without going in rigorous detail, using the method developed in Ref. [39], the

conjugate momentum can be written as

Π(r) =
∂L

∂Ȧ(r)
= ε0Ȧ(r) = D⊥(r) (4.136)

The Hamiltonian is given by

H =

∫
d3rΠ(r)Ȧ(r)− L (4.137)



118

Thus, Hamiltonian as a function of fields in real space

H =
∑
i

1

2mi

[pi − qiA(ri)]
2 + VCoul +

ε0
2

∫
d3r[(

Π

ε0
)2 + c2(∇×A)2] (4.138)

where, pi = mṙi + qiAi(r) is the momentum associated with the discrete variable

4.2.3 Charge Coupled with External Fields

In order to understand the transformation required to understand the interaction

of current distribution with incident field we will see an example of localized charge

around the origin interacting with external electromagnetic field described by poten-

tials Ae(r, t) and Φe(r, t). The Lagrangian and Hamiltonian which are functions of

dynamical variable of particles only,

L =
∑
i

1

2
miṙ

2
i − VCoul +

∑
i

[qiṙi · Ae(r, t)− qiΦe(r, t)] (4.139)

H =
∑
i

1

2mi

[pi − qiA(ri)]
2 + VCoul +

∑
i

qiΦe(r, t) (4.140)

Under the long wavelength where the localized charges form a globally neutral

system

∑
i

qi = 0 (4.141)

where, the spatial extent as is small with respect to the length of variation of Ae(r, t)

and Φe(r, t) which is the wavelength of incident field. Upon expanding the potentials

into multipole moments and for the lowest order term, the dipole approximation

d =
∑
i

qiri (4.142)
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Under this approximation, the Lagrangian becomes

L =
∑
i

1

2
miṙ

2
i − VCoul + ḋ · Ae(0, t)− d · ∇Φe(0, t)] (4.143)

The momentum conjugate with ri

pi = mṙi + qiAe(0, t) (4.144)

The Hamiltonian becomes

H =
∑
i

1

2mi

[pi − qiA(0, t)]2 + VCoul + d · ∇Φe(0, t) (4.145)

4.2.4 Power-Zienau-Woolley Transformation

The Lagrangian can be derived by using the Power-Zienau-Woolley Transforma-

tion [39] where the incident field is considered as a dynamical system interacting with

distribution of charge and current density. The advantages of using this approach are

that the coupling between fields and current is expressed as function of electric and

magnetic field and no longer has to be a function of vector potential. The system of

charges and current densities can be described by polarization and magnetization den-

sities which are functions of macroscopic variables, geometry and incident-radiation

time dependence. This provides a rigorous basis to develop the electrodynamics

of structured material where the displacement vector D is introduced naturally as

momenta-conjugate with vector potential. Thus, by using the multipole moments

of charge and current distributions we can get multipole expansion of interaction of

light with structured materials. This also delineates the magnitude of the multipole

moments and coupling Hamiltonian when the system is extended. This generalization

makes the method valid for single meta-atom or an ensemble.

As shown in section 4.1.2 the current densities can be engineered using geometry
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of structures. The polarization and magnetization densities characterize the behavior

of materials under the influence of incident fields and are zero outside the structure.

D(r) = ε0E(r) + P(r) (4.146)

Considering, it’s divergence

∇ ·D(r) = ε0∇ · E(r) +∇ ·P(r) (4.147)

The electric displacement can be separated into parallel and perpendicular compo-

nents and for a electrically neutral system ρ(r) = 0,

D‖ = 0

D = D⊥

(4.148)

which implies,

P‖(r) = ε0E‖(r) (4.149)

Thus, Coulomb energy which is the energy of longitudinal fields becomes

VCoul =
1

2ε0

∫
d3rP2

‖(r) (4.150)

The variation of current produces a change in polarization density along with con-

tinuity equation, we get the polarization current density.

ρ̇+∇ · Ṗ = 0 (4.151)

And the total current can be written as sum of polarization and magnetization

current densities, j(r) = jP (r) + jM(r), where
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jP (r) =
∂P(r)

∂t

jM(r) = ∇×M(r)

(4.152)

In order to include the accurate current distributions Power, Zienau and Woolley

introduced

F = −
∫
d3rP(r) ·A(r) (4.153)

which changes the interaction Lagrangian

L′I = LI +
∂F

∂t
=

∫
d3rj ·A−

∫
d3r[Ṗ ·A + P · Ȧ] (4.154)

substituting the relationships of current densities

L′I =

∫
d3r(∇×M) ·A−

∫
d3rP · Ȧ (4.155)

Using integration by parts and definition of vector potentials, we get

L′I =

∫
d3rM ·B +

∫
d3rP · E⊥ (4.156)

Thus, the interaction can be expressed as localized polarization density with electric

field and magnetization density with magnetic field.

Similarly, the term for single particle containing the inertia,

L =
∑
i

1

2
miṙ

2
i (4.157)

can be modified using the dynamic distribution of charge (I) which would lead to

kinetic inductance (lk) energy
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LKinetic =
∑
i

1

2
lkİ

2 (4.158)

4.3 Characterization of Interactions

The research for interaction of light with structured materials is heavily dependent

on the computation and thus lacks inherent physical intuition. Currently, the most

popular technique for analysis of such structures is finite-element analysis using com-

mercial software. These programs are heavily mesh-dependent and are programmed

to provide quick solutions using equations which may not be valid at the mesoscale.

Recent papers [31] have discussed the factors that were missed using such programs,

especially in non-linear applications. There have been studies where finite-element

methods break down for deeply subwavelength structures [61]. But this issue can be

resolved by using electromagnetic potentials instead of fields Various homogenization

methods are used to average the effects of ensemble of meta-atoms over the volume

of unit cells. These homogenization methods fail to capture the multiple-scattering

effects that may lead to localization of fields within a system. In general, it is assumed

that each meta-atom is only excited by the incident waves but the spacing between

adjacent meta-atoms is subwavelength, which leads to strongly scattered fields act-

ing as input fields for other meta-atoms. Accurate analyses of strong interactions

between a metamaterial’s unit cells often requires simplifying assumptions, such as

the elements being arranged in an infinite lattice. But the discrete nature of meta-

materials becomes apparent when the infinite lattice symmetry is broken [107, 108]

and effects of local fields become more important. The strong interaction between

these structures renders them very sensitive to finite size effects and to disorder in the

lattice [109]. Strong interactions between resonators can find important applications

in metamaterial systems, providing precise control and manipulation of EM fields

on a subwavelength scale e.g., by localizing sub-diffraction-field hot spots, similar to
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Anderson localization of electrons. Different methods are chosen depending on the

application and the geometry of the meta-atom, which hinders development of an

overall classification of these structures.

The major change in formulation can be observed when we transition from bulk

bianisotropic media to bianisotropic meta-atoms. In the dipole approximation, the

moments generated by the incident field are described as

p =
↔
αee · Eloc +

↔
αem ·Hloc (4.159)

m =
↔
αme · Eloc +

↔
αmm ·Hloc (4.160)

It also important to realize that one meta-atom can support various modes of os-

cillation and hence during the calculation of various eigenmodes is essential. The

study of interaction between various eigenmodes is also valuable as under certain cir-

cumstances unexpected results can be observed. Modal analysis of light interaction

with cylinders have shown the existence of resonances at certain frequencies which

may affect the scattering properties [19]. However, the analysis becomes increasingly

cumbersome when the geometry becomes more complex which makes it imperative

to develop a framework that capable of handling complex configurations using differ-

ential geometry. Geometric effects may introduce non-linearity which can be studied

using the multipole method described earlier. There have been papers showing that

negative index can be achieved away from resonances by exploiting chirality [29] and

bianisotropy. This can pave the path for low-loss metamaterials for applications in

time reversal.

The polarizability coefficients are geometry dependent and in case of spheres they

can be derived using the Mie coefficients. Under the dipole approximation, interac-

tions between various modes of combination of sphere such as dimer and trimer [110]
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can create a perfect bianisotropic meta-atom. There have been efforts to develop mul-

tipole nonlinearity of metamaterials using a hydrodynamic model where the modes

are generated by localized charge densities located at certain positions. However, a

complete dynamic description would require calculation of current distributions not

making prior assumptions as to the location of charge densities.

4.4 Conclusions

The ecosystem of metamaterials consists of a wide variety of resonator geometries,

hence analyzing them using one framework is a complex task. Meta-atoms can be

composed of metallic structures supporting plasmonic oscillations, allowing internal

current flows. The dielectric meta-atoms have a system of surface current that are in-

duced based on the geometry. As we saw in previous section, the multipole moments

are dependent on the accurate determination of current distribution. Currently, there

are no rigorous methods available to map structure to function and computations are

mostly dominated by mesh-dependent methods. We extend the method developed to

describe light interaction with the general bianisotropic structures. Identification of

the spatial profiles or eigenmodes of the structure with one formalism is complex be-

cause the coordinate system is dependent on the geometry of interfaces and associated

boundary conditions. Use of differential geometry simplifies the identification process

of the eigenmode bases which can be supported by the structure at certain incident

wavelengths. Structures are capable of supporting multiple modes, hence can produce

a combined effects due to mode interference. The geometrical information about the

structure can be expressed in the metric tensor. The first and second fundamental

forms are derived by a parametrization of the structure. This is extremely important

for analyzing 2.5D structures, where the local analysis can be done in three dimen-

sions and third dimension can be set to zero capturing the 3D interaction effects. This

gives an extra degree of freedom by assigning multiple modes of current oscillation to

each meta-atom, each with its own dynamic variable and mode function to describe
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the corresponding polarization and magnetization densities. For simplification of the

problem, each meta-atom can be assumed to possess only a single mode of current

oscillation. This is analogous to approximating an atom interacting with the EM field

as a two-level atom.

Mapping an observed function to structure as an inverse problem often leads to non-

unique solutions. Various numerical methods have been discussed in the literature

[45] but they are computationally very expensive. The classification of structures is

also a complex task due to the wide variety of geometries employed. Hence, classifying

structures based on the presence or lack of geometry seems to be an excellent starting

point. Using the methodology used in chemistry to classify molecules based on group

theory we can start to put together a table of structure based on symmetry [111].

Stereo-metamaterials [112] is a novel class of metamaterials where meta-molecules

are classified by techniques that are inspired by chemistry. It demonstrates the effect

of change in dynamics of current densities and observed properties based on relative

angle between two split-ring resonators. There have been other efforts to classify

3D meta-molecules using group theory, augmenting the inverse methods [40]. We

will develop a group-theory-based technique combined with the interacting multi-

pole method for analyzing 3D meta-molecules (oligomers). For example, molecules

in chemistry can be identified as IR- or Raman-active by just their symmetry group

without any actual modal solution governing the equation of motions of the particles

[113]. Comparing the molecules in chemistry to meta-atoms, the vibrational modes

can be equivalent to the fundamental modes of the meta-structure and hence princi-

ples of point group and symmetry can be exploited to obtain structure from function

and classify meta-structures. The method discussed above is appropriate for classifi-

cation based on electromagnetic response as identification of modes of structures and

effects on dynamics of current densities on constitutive relations are essential.
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Figure 4.9: Pictorial summary of Meta-Electrodynamics.



CHAPTER 5: TIME REVERSAL USING META-MOLECULES

In chapters 2 and 3, we have studied the propagation of electromagnetic waves

through structures and obtained geometry based reflection and transmission coef-

ficients. In chapter 4, we have studied behavior of fields inside the volume of the

geometry by determining the distribution of current densities based on geometry.

The induced current density can be decomposed into multipole moments and their

interactions can be used to engineer large number of interactions. Multipole analysis

provides understanding of minutiae details of interactions of meta-atoms in various

metamaterials for linear and non-linear applications such as second harmonic gen-

erations [114]. Another building block of metamaterials are meta-molecules which

provides a method to tailor individual multipole moment of the unit structure. In

this chapter, we will present a method to analyze a meta-molecule which can be used

for time reversal of signals.

The issue of time reversal has been addressed for acoustic [115, 116] and electro-

magnetic [117] waves. In a non dissipative medium, for every wave produced by a

source there exists a time reversed wave that retraces the path exactly and converges

to the source location. In the basic experiment, the forward propagating wave is cap-

tured over a sufficiently long time window and the recorded signal is phase conjugated

before being propagating back in the same medium. Consider, a incident scalar wave

propagating in positive z direction,

E1(r) = <[ψ(r)e−i(kz−ωt)] (5.1)
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when it is substituted in the scalar wave equation we have,

∇2ψ − 2ik
∂ψ

∂z
+ [ω2µε(r)− k2]ψ = 0 (5.2)

Figure 5.1: Detection of scattered field.

The complex conjugate of the wave equation,

∇2ψ∗ + 2ik
∂ψ∗

∂z
+ [ω2µε(r)− k2]ψ∗ = 0 (5.3)

can be interpreted as describing the propagation of the wave in the negative z direc-

tion, which is opposite to E1(r) and having an amplitude complex conjugated at each

point.

E2(r) = <[ψ∗(r)ei(ωt+kz)] (5.4)

This one-to-one correspondence is the reason for reversing the distortions occurred

during propagation effects by propagating the conjugated wave backward in the
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Figure 5.2: Propagation of phase conjugated waves in reverse direction.

medium which is equivalent to time reversal for unity gain [118].

Time reversal symmetry holds in a strongly heterogeneous medium which con-

tains multiple scattering events of the incident waves. In order to have a complete

understanding of how distortions can be corrected through phase conjugation, un-

derstanding the role of evanescent waves is very important and this has been studied

by Nieto-Vesperinas and Wolf [119]. However, under phase conjugation the homoge-

neous and evanescent part of the waves behave differently. Depending on the space

in which the waves propagate the phase conjugation of waves follow different rules.

If the waves propagate in same half space then the evanescent waves are the complex

conjugate of each other whereas homogeneous wave are the complex conjugate of the

reflected waves. If the waves propagate in complimentary half space then the homo-

geneous waves are the complex conjugate of each other whereas evanescent wave are

the complex conjugate of reflected waves. Hence, for any wave containing both ho-

mogeneous and evanescent components together, phase conjugation is not equivalent

to time reversal in the presence of losses. Thus, for time reversal with subwavelength
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resolution it is not enough to have conjugate media but two metasurfaces should be

complimentary to each other.

The time-reversal in presence of losses becomes complicated as time reversed version

of a passive lossy scattering event is an event active one. Phase conjugation can be

equivalent to time reversal in presence of evanescent waves only if gain is equal to

loss [118]. Time reversal experiments in presence of losses are difficult but non-

perturbative computational methods provide a solution to the problem. But inverse

methods have non-unique solutions and suffer from issues of convergence, hence the

reconstructions are not accurate and suffer from issues of noise.

Evanescent waves play an important role as they carry subwavelength information

and decay exponentially before reaching the detector thereby limiting the reconstruc-

tion to the diffraction limit. It has been shown at microwave frequencies [120] that

using a multiple scattering medium in the near field and back propagating the conju-

gated wave, two sources separated by subwavelength distances can be resolved. Time

reversal with low losses reverses the multiple scattering and converts propagating

waves back into correctly located evanescent waves thereby providing high resolution

isolation. Exploiting multiple scattering in a positive and a complimentary negative

index material can provide a way for analog coding and decoding of signal with high

spatial resolution. This may be the first attempt to specifically design a time reversal

metamaterial for analog coding and decoding exploiting densely packed scatterers (or

sources). Subwavelength focusing using time-reversal can be used for various appli-

cations in telecommunications and RF broadcasting where it can increase the rate of

data sent by increasing the number of antennas.

In our theoretical model, time reversal is used to image two sources placed at sub-

wavelength separation. We do not have a phase conjugated wave being propagated

backwards instead we are trying to code by scattering an image with subwavelength

features. Traditionally, imaging strongly scattering objects requires a nonlinear in-
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verse scattering algorithm capable of recovering images of subwavelength features but

they are computationally expensive and suffer from issues of non-uniqueness and con-

vergence. Fully reciprocal and complimentary materials that effect time reversal will

inform us about reciprocal meta-structures and their ability to recover subwavelength

scale features in a target by encoding near field with the help of a strong scatterer.

Achieving negative refractive index in metamaterial requires using the structures at or

near resonance frequencies, leading to very high losses. Exploiting shapes associated

with low loss, such as, bianisotropic structures give us an opportunity to design local

meta-atom and avoid exploiting resonant phenomenon which would keep losses low.

This will allow antennas operating at different frequency ranges to be placed closely

together without interference. It will also allow far field superresolved imaging to be

achieved and should be scalable to higher frequencies.

5.1 Time Reversal and Reciprocity

The metasurfaces described in the setup are composed of electrically small res-

onators or meta-atoms. The size of the meta atoms dictate the type of multipole

response and to avoid any non-linear effects, the size of the meta-atoms are restricted

to have dipolar response. In this section, we discuss the effect of time reversal on these

dipole moments. Under time reversal, the magnetic moments reverse their directions,

while the electric moments remain unchanged as illustrated by figure 5.3. Hence, in

a magnetoelectric model with parallel electric and magnetic dipole moments, then

become antiparallel during time reversal. The form invariance of Maxwell’s equations

under time reversal (T ) gives
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T E(t) = E(−t)

TD(t) = D(−t)

TH(t) = −H(−t)

T B(t) = −B(−t)

(5.5)

For time harmonic fields, the complex vectors under time reversal can be written

as complex conjugate

T E = E∗

TD = D∗

TH = −H∗

T B = −B∗

(5.6)

Figure 5.3: Illustration of the change in direction of magnetic dipole moment of meta-
atoms under time reversal. The electric moment remains unchanged, hence to create
two complimentary resonators or meta-atoms, the dipolar response should follow this
scheme.

The two sets of electromagnetic fields for the coding metasurface (Ec, Hc) and the

decoding metasurface (Ed, Hd) are generated by the electric and magnetic current

densities of the individual meta-atoms. When ε and µ are Hermitian, a generalization

of the energy flux conservation principle from Maxwell’s equations becomes,
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∇ · (H∗c × Ed + H∗d × Ec) = Hdm
∗
c + Hcm

∗
d + Edj

∗
c + Ecj

∗
d (5.7)

This indeed can be shown for the condition mc = md, jc = jd, Ec = Ed and

Hc = Hd and integrating over a closed surface δΓ enclosing volume Γ gives the

Poynting vector

∮
δΓ

Pd2r = −1

2

∫
Γ

Re(E∗c · jc + H∗c ·mc)d
3r (5.8)

In its simplest form, the reciprocity theorem states that a system is reciprocal if the

response of the system is unchanged if source and detector positions are interchanged.

The reaction can be written as

< S,D >=

∫
V

Js · EddV (5.9)

Under reciprocity < S,D >=< D,S > but in order to design a complementary

medium for time reversal of waves with evanescent components, the following relation

should be satisfied, where ′c′ stands for complimentary.

< S,D >c=< D,S > (5.10)

With the increase in complexity of a bianisotropic response of meta-atoms, the

expression for reaction relation (equation 5.9) becomes complicated but can be used

to derive essential relationships between constitutive parameters.

5.2 Role of Bianisotropy

It has been argued that a negative index makes a perfect lens [121] thus making

it ideal for time reversal with subwavelength resolution. But achieving negative in-

dex by driving electric permittivity and magnetic permeability through two separate

resonances leads to increased losses, especially at optical wavelengths. It was shown
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that a single chiral resonance can be utilized to achieve negative refraction for single

polarization [122]. Similarly, bianisotropic structures can be used to achieve negative

index by avoiding resonances. The response of bulk biansiotropic materials to an

incident field is described by

D(r, t) =
↔
ε · E(r, t) +

↔

ξ ·H(r, t) (5.11)

B(r, t) =
↔

ζ · E(r, t) +
↔
µ ·H(r, t) (5.12)

In a source free region for a non absorbing medium, the time average of the diver-

gence of the Poynting vector vanishes 〈∇ · S〉 = 0, yielding a relationship.

H ·B∗ −H∗ ·B + E ·D∗ − E∗ ·D = 0 (5.13)

In the presence of losses, where the energy is absorbed in the medium, the above

relation is not valid and certain restrictions are imposed on the susceptibilty tensors

based on Maxwell’s equations and constitutive relations. The tensors ↔
ε and ↔

µ must

be symmetric and non-negative definite. Hence, the tensor elements must satisfy the

following conditions alongwith ξij = −ζij

εii ≥ 0 µii ≥ 0 i = 1, 2, 3 (5.14)

a2
ij ≤ aiiajj d2

ij ≤ diidjj i = 1, 2, 3 i 6= j (5.15)

However, metasurfaces are composed of discrete resonators which localize the in-

cident fields to achieve desired permeability and permittivity values. Hence, the de-

scription of a bianisotropic meta-atom is described by a different formalism in terms

of electric and magnetic dipoles
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p =
↔
αee · Eloc +

↔
αem ·Hloc (5.16)

m =
↔
αme · Eloc +

↔
αmm ·Hloc (5.17)

Using the above relations we can now find the relation for reciprocal scatterers from

the Onsager-Casimir principle [123]

↔
αee =

↔
αee

t ↔
αmm =

↔
αmm

t ↔
αme = − ↔

αem
t

(5.18)

For passive meta-atoms, the imaginary part of the six-dyadic formed by four po-

larizabilities (↔α − ↔
α
t
) is positive definite and scalar parameters satisfy the condition

=(αheαeh) < =(αeeαhh). However, passivity does not impose any restriction on the

real part of the six-dyadic ↔
α. In naturally occurring materials, the magnetoelectric

coupling effects are negligible as compared to direct polarization effects. However

with careful design of meta-atoms we can enhance these coupling effects. It is known

that indirect coupling cannot be stronger than direct ones but for polarizabilties,

metal spirals near their fundamental resonance for example follow the relation [124]

|αheαeh| = |αeeαhh| (5.19)

However, for bianisotropic meta-atoms the cross terms cannot be exactly equal

to the direct polarizability terms for passive scatterers. These terms for individual

meta-atoms are modified due to adjacent meta-atoms. The overall Green’s functions

of the metasurface derived using the dipolar terms of individual meta-atoms can have

fundamental a eigenfrequency different from the fundamental frequency of a single

resonator. This is mainly due to multiple scattering events and can be analyzed using

a multipole analysis of meta-atoms.
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5.3 Time Reversal using Bianisotropic Metastructures

The traditional condition for the time reversal effect resulting from phase conju-

gation [125] are, finite size lossless scatterers. A phase conjugate mirror should not

introduce any loss and gain and the mirror and observation plane should be far enough

away to avoid evanescent waves. However, the new concept introduced here requires

capturing the evanescent waves through strong multiple scattering and coupling and

then propagating to the observation plane. Subwavelength resolution is achieved by

placing a metasurface in the near field of the source to encode evanescent waves into

propagating waves. After the propagation in free space, these evanescent waves can

be decoded by a complementary metasurface in the near field of the detector. The

setup imposes the condition that the coder should have refractive index near +1 and

the decoder to have refractive index close to −1 to create a perfect imaging system.

The analysis of the entire system can be done using Green’s functions of the coder,

free space and the decoder. Since, the surfaces are composed of discrete resonators,

the Green’s functions have to be derived using a bottom up approach where individ-

ual excitation and decay rate are considered along with perturbations introduced by

multiple scattering events.

Meta-atoms composed of metals have inherent ohmic loss but dielectrics provide

a solution for reducing such losses. In order to design reciprocal meta-atoms the

geometry has to be asymmetric. It has been shown that half cut dielectric cylinders

can form a reciprocal meta-atom. Multipole analysis can be used to analyze the

scattered field from individual meta-atoms. The response can be altered due to strong

interaction between the adjacent scatterers. In the simplest form meta-atoms can

be approximated by dipoles with tensorial electric, magnetic, and magnetoelectric

polarization coefficients. The forward and backward propagation of waves can be

shown by using ± in the notation for extinction cross section, where I0 = |Einc|/2Z0

with free space impedance (Z0)
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Figure 5.4: Schematic of the entire setup. A metasurface composed of bianisotropic
scatterers placed in the near field of sources, the encoder. The field propagates and
passes through a complimentary surface present in the near field of detector (the
decoder) which reverses the multiple scattering events.

C±ext =
P±ext
I0

= − 1

2I0

Re

∮
s

(Einc ×H±∗sca + E±sca ×H∗inc) · nds (5.20)

By using the dipole expressions above

C±ext = kIm(αee ± αeh ± αhe + αhh) (5.21)

For the scattering cross section

C±sca =
P±sca
I0

= − 1

2I0

Re

∮
s

(Esca ×H±∗sca) · nds (5.22)
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C±sca =
k4

6π
(|αee ± αeh|2 + |αhe ± αhh|2) (5.23)

The extinction cross section for a lossless reciprocal meta-atom has to be identical

to the scattering cross section, i.e., due to the fact that the absorption cross section

should be close to zero Cabs = Cext − Csca = 0.

Figure 5.5: Illustration of electric and magnetic dipole moments in meta-atoms. The
split resonator posses binanisotripic properties if the thickness of the ring increases.

The strength of cross-coupling terms changes with the geometrical parameters of

the meta-atoms which can be optimized for this time reversal application by achieving

refractive indices of ±1. The resonant frequency of meta-atoms gets perturbed by

adjacent resonators which changes the radiation and decay rates of individual meta-

atoms. The overall effect is that the resonant frequency changes from the fundamental

frequency of the resonators. Hence, combining all the components of meta-atom de-

sign we have created a setup capable of resolving sources separated by subwavelength

separation.

5.4 Importance of Asymmetry

The study of dynamics of individual components of meta-molecules composed of

asymmetric rings provide a way to design a structure which can reverse the direction of

magnetic dipole as required for time reversal applications. The existence of multipoles

can be proved by observing the change in scattering cross-sections as function of
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Figure 5.6: Illustration of the setup and geometry of asymmetric meta-molecule with
changing mode of current oscillations.

wavelength. The over size of the meta-moelcules relative to the operating wavelength

dictates the presence of higher multipole moments. The accurate distribution of

current densities in the volume of the rings help tailor ohmic losses using geometry. It

has been shown in literature using finite element method that losses change depending

on dimensions of the ring with respect to the skin depth [126].

5.5 Conclusions

We have theoretically demonstrated a setup for low loss time reversal using bian-

isotropic metasurfaces. The evanescent component of the wave carrying subwave-

length information couples back and forth into propagating waves due to multiple

scattering. Losses are reduced by avoiding resonances and ohmic losses of metallic

meta-atoms. We have analyzed the possibility of exploiting various simple shapes

and geometrical parameters to reduce losses in meta-atoms. We have developed a

bottom-up theoretical framework for wave propagation through bianisotropic meta-

surfaces. The local meta-atom design is optimized in order to achieve the required

refractive index and studying the effects of interaction between adjacent meta-atoms.

The local interactions can be encapsulated in the Green’s functions of the metasur-

faces, which along with free space Green’s functions are used to analyze the system.

This technique can be used to enhance the bit-rate of signals by increasing the spatial

density or packing of antennas.



CHAPTER 6: CONCLUSIONS

In this dissertation, we have presented a rigorous analysis of interaction of electro-

magnetic waves with meta-structures of various geometries. This research is inspired

by an attempt to develop a deep understanding of irregular scattering patterns ob-

served from metallic cylindrical shells. The mathematical framework developed can be

generalized for any geometry by choosing a generating function based on the shape

of the boundaries. The key parameters common for interaction of electromagnetic

waves with structures at meso-scale are the wavelength of the incident wavelength,

the constitutive parameters of the material and the geometry of the structure. In gen-

eral, structures are defined by a single size parameter and the actual shape is ignored.

We have showed that the actual shape is important for designing and characterizing

these interaction for tailoring the properties of metamaterials through following two

main studies

• Propagation of electromagnetic waves through shell structures and implications

of the resonant behavior at discrete frequencies.

• Discovered a new family of meta-atoms based on transmission enhancement due

to shape resonances rather than plasmon coupling which can be used for linear

and non-linear applications.

• Geometry based determination of current distribution inside the volume of the

scattering object which can be used to tailor multiople moments of individual

structures and associated global properties.

• Using the principles of quantum dynamics, we have developed a method to

describe the temporal dynamics of interactions with localized current densities.
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In chapter 2, we have presented experimental and theoretical study of scattering

of waves from cylindrical shells in detail. Analyzing the data of variation of scat-

tered fields from empty and filled cylindrical shells, we concluded that waves must

interact with the contents of the shell through some mechanism. After repeating the

experiments with different shells the increase in penetration of fields was attributed to

possible Fabry-Perot type resonance on these structures. In order to understand the

scattering mathematically, we have obtained the fields in each region by solving wave

equations and the solutions in different regions were stitched together by calculating

the coefficients of fields from the boundary conditions. Since, there are two bound-

aries we have four unknown coefficients for each mode of the fields. Hence, we have

used Cramer’s rule from linear algebra to solve for these coefficients from the system

of equations. Plotting the relative field at the center of the shell which can be given

by the coefficient of fields inside the shell as a function of frequency we discovered

the presence of discrete frequencies at which the penetration increase by two order of

magnitudes. The number of such frequencies increases when the dielectric constant

of the medium inside the shell increases but is unaffected by the medium outside.

The position of the resonance frequencies can be changed by changing the radius of

the cylinders, hence combination of cylinders of different radii can be used to operate

metamaterials at certain frequencies only.

This discovery has huge implications on design of meta-atoms as it opens the abil-

ity to design meta-atoms which are active at certain discrete frequencies and these

frequencies are unaffected by the surrounding medium. This establishes these engi-

neered atoms at the same footing as a natural atom as it has similar narrow and

discrete response as energy levels calculated from quantum mechanics. The response

of the meta-atom can be controlled at a certain frequency by the conductivity and

radius of the shell and the linear, nonlinear or active core regions. We can design

meta-atoms that can only response to certain frequency and we can deliver electro-
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magnetic energy to the core region by using this phenomenon. We can also design

meta-atom which can trap and localize electromagnetic energy if the core material is

non-linear and shift the frequency of emitted wave away from the resonant frequency

which can be used for heating applications. By carefully designing the geometry we

design atoms that are responsive or "on" at certain frequencies and unresponsive or

"off" at others. It can be used as a method to detect objects inside shell if we can

mathematically relate the scattering pattern to the core material. In the case, where

the core region has second order non-linear properties then these structure can also

be used as frequency doubling atoms for discrete frequencies. Temporal dynamics

can also be added to this analysis which can expand the method to study pulsed

electromagnetic waves. The resonance condition shown in chapter 2 is only valid for

empty cylindrical shells but similar behavior is expected from other geometries such

as spheres, oblate shell if the parameters are kept in perfect harmony. In cylindrical

shell the condition for TE and TM waves can be mixed by changing the angle of

incidence or tilting the cylinder adding another degree of freedom.

In chapter 3, we have developed a mathematical framework which is capable of

describing the propagation of electromagnetic waves through any geometry. The gen-

erating function for finite or infinite structures contain spectral variables which relate

the incident wavelength to the geometrical parameters such as radius and height.

This enables calculation of the field coefficients which shows the existence of reso-

nances as a function of geometrical parameters. The main reason we are interested

in propagation to electromagnetic potentials rather than fields or Hertz vectors is ex-

ploiting Aharanov-Bohm effect where the observed fields are perturbed by the shielded

material without interacting with the fields. Even though it is not proved in this dis-

sertation, using core shell geometries we should be able to design such meta-atoms

by engineering the current in shell itself. The Green’s function developed contains all

the information about the geometry and boundary conditions of the objects, hence
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we can analyze the effect of structured excitation on interactions with structures.

In chapter 4, we have presented a method to analyze the current distribution within

the volume of the structure and studied the dynamics of interactions of the distribu-

tion current densities with the incident fields. This leads to determination of material

response D(r, t) & B(r, t) as a function of geometry. In general, the current distri-

bution in a structure is limited by the skin depth but as we saw geometry can lead

to enhanced transmission of fields. Hence, we have used differential geometry to in-

troduce curvature of the structures into asymptotically decaying current inside the

volume of the structure. The series is expanded in terms of a parameter ∆ which

is a ratio of conductivity to the permittivty and frequency of incident wave. As it

is evident from the derivation the first two terms show the well known expression of

skin depth but higher order term depend on the curvature. This provide a way to

engineer the current density in the volume of the scattering object and engineer the

multipole moments.

The interaction of adjacent meta-atoms are very important to characterize the

global parameters of the metasurface or metamaterials. By decomposing the accurate

current distribution related to the structure into multipole moments and analyzing

the interaction of the incident fields by using principles of quantum electrodynamics,

accurate dynamics can studied. The current distributions are affected by neighbor-

ing meta-atoms leading to change in decay and coupling rates. This holistic method

explains uses classical and quantum electrodynamics methods to engineer the dynam-

ics of interaction of fields with geometry based current distribution, hence is termed

meta-electrodynamics.

The simplest case of to study such interactions is meta-molecule which is usually

made of two meta-atoms. In chapter 5, we have illustrated an example for the meth-

ods where asymmetric meta-molecule can be used to obtain binaisotropic properties.

The bianisotropic materials have a unique property where reversing the direction
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of magnetic dipole moments time reversal of signals can be achieved. We have not

been able to show that the existence of negative index from these structure but us-

ing collective properties of individual structures we can achieve negative index of the

metasurface.

We have extended the knowledge of electromagnetic wave with structure at meso-

scale by rigorously introducing geometrical parameters in the electromagnetic formu-

lation along with method inspired by quantum electrodynamics to study dynamics

of the interactions. It is a significant leap forward in the design and characterization

of metamaterials from common techniques such as differential Maxwell’s equation

solvers such as finite-difference time-domain simulations, finite-element methods, and

Fourier modal methods. The results help fulfill the need to develop a better physical

understanding of metamaterials in order for the area of research to mature. With the

growing uncertainty about the accuracy of finite element programs, such as COMSOL

to capture all physical phenomenon involved in interaction of meta-atoms with the

incident field this effort is timely and can be extended to describe a wide variety of

interactions and help classify various types of meta-structures as touched upon in the

following sections.

6.1 Generalizability

The framework developed considers the functional dependence of permittivity and

permeability making it robust and adaptable for metallic or dielectric structures. It

has been shown that multipolar analysis can be used to analyze dielectric structures

and interference of modes can give rise to bianisotropic properties. Accurate deter-

mination of multipole moments for metallic structures requires exact calculation of

current distribution, hence dependence of skin depth on geometry. This raises an im-

portant question, are the fundamental limits to light-structure interaction dependent

only on material properties or can be affected by geometrical parameters? Currently,

the limits of extinction by metallic nanoparticles are independent of geometry but
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it can be observed that there is slight change to response for pinched tetrahedron

that ellipsoid [127]. We can use the method developed here to examine the effect

of geometry on fundamental limits [128] of light-structure interaction using energy

conservation principles. Since the polarization density is related to current distribu-

tion in a meta-atom, can it provide a way to design effective susceptibility that could

allow us to engineer the limits of interactions? We can also develop fundamental

limits on power extraction from incident fields and re-radiation from bi-anisotropic

meta-atoms and ensembles. By using energy-conservation principles we can set limits

based on geometry of meta-atoms. These limits are essential because even for ap-

plications of radiation absorption where fluctuations in Q-factor due to interaction

with neighboring structures is undesirable. Using Tretyakov’s [129] approach of an-

alyzing bi-anisotropic meta-atoms in terms of electric and magnetic dipole response

as the starting point, we can start analyzing limitations of response using multipole

response various structures. However, the arduous task of handling such varied ge-

ometries can be streamlined by using the formalism developed in chapter 4 and the

geometrical parameters inherent in the formalism using differential geometry can be

used to determine the geometry-based constitutive parameters.

6.2 Strong Non-Linearity

The results presented here can be used to demonstrate extreme non-linearity for

harmonic generations at optical wavelengths. Significant advancements in fabrication

techniques has led to widespread study of open nano-size optical resonators (resonant

nano-antennas). Metal nano-particles capable of sustaining surface plasmon-polariton

modes as well as dielectric meta-atoms with sufficiently high index of refraction to

produce significant multipole response are utilized as such resonators. In case of lin-

ear and nonlinear scattering at the nanoscale for arbitrary geometries, a multipole

decomposition of the scattered electromagnetic fields provides a logical interpretation

for the measurable far-field characteristics, such as radiation efficiency and radiation
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patterns, since they are essentially determined by the interference of the excited mul-

tipole modes. Details of these multipoles which are derived from current distribution

can be determined by our geometry-based method. Losses are large at optical wave-

lengths and attempts have been made to set fundamental limits on the responses. But

analysis of such structures in the present literature is typically geometry-independent

[54] which is incomplete, since the geometry is inherent in the study of structured

materials.

It has been suggested that a surface discontinuity can be a source of second-

harmonic generation. In multi-frequency electrical systems, nonlinear components

and discontinuities in metallic contacts lead to passive intermodulation which creates

signals that are harmonics of the incident frequencies [130]. This is undesirable in

electric circuits and has to be removed, and there are no rigorous methods available

to characterize such interactions. We can study the effects of asymmetry and dis-

continuities in the surface to design nonlinear properties meta-atoms using passive

intermodulation techniques. There has been evidence of harmonic generation by in-

teracting multipoles of two different meta-atoms [89, 131]. When dynamics of current

density is considered the non-linear properties arise from the bulk rather than at the

surface. Hence, accurate calculation of current distributions is important for engi-

neering non-linear properties. But the theoretical model used for non-linear analysis

in literature is perturbative in nature. However, designing combinations of meta-

atoms to enhance certain multipolar response can lead to strong nonlinearity. Such

interactions are enhanced by epsilon-near-zero (ENZ) materials [42] by concentrating

light in small regions and creating high energy densities which can enhance harmonic

generation. It has been shown that ENZ materials can be used to achieve large non-

linearities at optical wavelengths by using indium-tin-oxide [132]. These materials can

be used as a substrate for discontinuous meta-atoms to enhance harmonic generation

and experiments have shown the second harmonic can be generated using magnetic
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dipoles [133]. We can adapt this method to enhance the non-linearity by combining

such structures with epsilon-near-zero materials. Experimental studies of multipole

interactions of meta-atoms are as yet nonexistent mainly because the appropriate

theory is not available. Our multipole-analysis approach can provide a path forward,

and an improvement over the present perturbative models. Bi-anisotropic structures

can be classified as reciprocal or non-reciprocal depending on the response, which

when combined with lateral radiation pattern can be used to design beam blocking

surfaces.

6.3 Sources

The method proposed is a completely new way to characterize and tailor the prop-

erties of metamaterials where the interaction of incident light and structures expressed

by the Lagrangian and Hamiltonian formalism with single dynamic variable with the

units of charge. Current distribution in meta-structures of arbitrary geometries rep-

resented by multipole moments enabling the multipole expansion of scattered field

and providing tools to tailor the collective response. This moves the state-of-the-art

forward and away from computational and perturbative models for such interactions.

Since the polarization density has a time and space dependent part the modes sup-

ported by the structure can directly be determined by eigenmodes corresponding to

that geometry. The interaction between various modes can be leveraged to produce

novel non-linear effects in materials. Exploiting the presence and lack of symmetry

using group theory, inspired by classification molecules in chemistry, provides a way

to classify meta-structures and maps observed function to structures. The core-shell

geometry can be modified by adding a gain medium in the core which can be driven

by a broadband source as the shell will ensure transmission of single frequency. In

layman’s terms, we should be able to design circuits which can be driven flashlights

which high enough intensities.

One such area where the results can be applied is miniaturization of coherent
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sources which is essential in order to fill the gap between photonics and electronics.

Two main problems faced in miniaturization are radiative losses due to the diffrac-

tion limit and efficient coupling of light into and out of nano-photonic sources. There

has been evidence of nano-laser feasibility where optimizing the resonator geometry

and the laser material has led to successful demonstration of miniaturization [134].

Recently, more exotic anapoles have been used to show generation and coupling in

nano-sources [135]. The methods used in such cases have been problem-specific and

are difficult to generalize. The multipole analysis developed can be generalized to de-

velop the mathematical framework for a meta-laser as an interaction between various

modes.

Presently, Maxwell-Bloch models for active nano-plasmonic metamaterials are used

to describe coherent non-linear gain-plasmon dynamics [136]. These models combine

the Drude-Lorentz model with Bloch model for a four-level gain system for active

nano-plasmonic metamaterials. The dipole transitions are coupled to form a four-

level system by adding a non-radiating carrier relaxation term. The losses can be

compensated by an ultrafast pump-probe setup where both pump and probe have

shorter time scales than those for which typical fluctuations become relevant. In the

literature double-fishnet structures enclosing the gain material are used for demon-

stration of the technique. In present models, the polarizability follows a local equation

of motion, driven by the incident electric field, where the decay rate determines the

linewidth. The pump can be replaced by an electric pulse instead of ultrafast optical

pumping for robustness and miniaturization.

Recent papers [137, 138] have shown the importance of geometry in topological

insulator laser where the dynamics of lasing modes were studied using Haldane model.

Analysis of localized modes due to multiple scattering in the system of rings becomes

important as they do not utilize the gain medium optimally. We can to formulate gain

equations and a loss analysis for a meta-atom containing a gain medium. As shown
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in [135] different multipoles can be made to interact to produce non-radiating modes

that can be used as the resonant mechanism and presence of such modes in proximity

of a gain medium can be used to design a coherent source. Hence, study of effects

of dimers and trimers as the unit radiating structures appear to hold promise, with

one structure as the gain medium and the other acting as the cavity resonator. This

will require cavity quantum electrodynamics to accurately model such an interaction

from first principles, without solely relying on numerical methods. In this analysis,

the temporal dependence of interaction is very important to characterize the decay

rates and linewidth of the coherent radiation produced. Studies of mode competition

for such nano-sources are presently non-existent. The first test will be to formulate

equations for geometry-dependent multipoles interacting with other meta-atoms to

create a four-level lasing systems.
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APPENDIX A: CALCULATION OF TRADITIONAL SKIN DEPTH

There are a variety of ways to calculate the expression for skin depth in literature

but here we will derive the expression using free carrier conductivity method using

the formulation in Ref. [139]. For an electron with charge −e, mass m0and damping

factor Γ under the excitation E = E0e
−iωt

m0
∂2x

∂t2
+m0Γ

∂x

∂t
= −eE (A.1)

Using, the definition of momentum m0
∂x
∂t

= p, we get

∂p

∂t
= −p

τ
− eE (A.2)

where, damping rate Γ by 1/τ , where τ is the damping time. This shows that

electrons accelerated by electric fields losses momentum in the momentum scattering

time τ . For a field with harmonic time dependence, the variation of position also

has harmonic time dependence, ∂x
∂t

= v = v0e
−iωt. Upon substitution in equation of

motion,

v(t) =
−eτ
m0

1

1− iωτ
E (A.3)

The current density j for N electrons per unit volume is related to the field through

conductivity

j = −Nev = σE (A.4)

Thus, using the expression for v, we frequency dependent expression for conduc-

tivity σ(ω) in terms of DC conductivity σ0 = Ne2τ
m0

,

σ(ω) =
σ0

1− iωτ
(A.5)
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For a typical metal or doped semiconductor, the value of τ at room temperature

varies from 10−14 to 10−13. Using the definition of electric displacement,

D = ε0E + P (A.6)

the expression for relative permittivity εr can be obtained

εr(ω) = 1 +
iσ(ω)

ε0ω
(A.7)

which is the exact expression obtained from the waveumber in chapter 2. For

frequencies which satisfy the relation ωτ << 1, the relative permittivity can be split

into real and imaginary parts εr = ε1 + iε2. This leads to the imaginary part being

grater than the real part and the absorption (α) can be approximated as

α =
2ω(ε2/2)

1
2

(ε0µ0)2
= (2σ0ωµ0)

1
2 (A.8)

The strength field inside a conductor varies as e−
z
δs , and power falls as e−

2z
δs giving

rise to skin depth.

δs =
2

α
=

√
2

σ0ωµ0

(A.9)
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APPENDIX B: MANIPULATION OF BESSEL FUNCTIONS

As it is evident from the derivations in chapter 2 that the Bessel functions of first

and second kind and their derivatives required has to be analyzed. In this series

expansion we will follow the notation from Ref. [51]. The argument of the Bessel and

Hankel functions can be real and imaginary, hence the argument x has to be general

complex. Using Bessel’s differential equation of order m is given by the expression

x2R′′(x) + xR′(x) + (x2 −m2)R(x) = 0 (B.1)

Frobenius method can be used to find the series solution of Bessel’s equation

Jm(x) =
∞∑
n=0

(−1)n

n!(n+m)!
(
x

2
)2n+m m = 0, 1, 2 · · · (B.2)

Using the series expansion for Jm and J−m, the series expansion for Bessel function

of second kind can be derived.

Nm(x) =
2

π
[γ + ln(

x

2
)]Jm(x)− 1

π

m−1∑
n=0

(n−m− 1)!

n!
(
x

2
)−m+2n

− 1

π

∞∑
n=1

(−1)n

(n+m)!n!
[
n∑
k=0

(
1

k
+

1

m+ k
)](
x

2
)m+2n

(B.3)

where γ is the so-called Euler-Mascheroni constant which is defined as,

γ ≡ lim
N→∞

(
N∑
k=1

1

k
− lnN) (B.4)

In the case of m = 0 the second term in equation B.3 is not present and negative

index Bessel function is defined as,

J−m(x) = (−1)mJm(x) (B.5)
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N−m(x) = (−1)mNm(x) (B.6)

The presence of metals makes the wave vector complex which leads to first deriva-

tive of Hankel function not converge to zero when the complex number becomes large.

Calculations performed using SciPY of Python have shown that derivative of Han-

kel function of second kind will become extermely large for an argument 699 + i697

giving an output of 4.9569805312926237 × 10−300 − i1.1818047444764686e × 10−301

and becoming a non-number immediately afterwards. This makes it imperative to

use the series solutions of Bessel’s functions to prevent the function from becoming

extremely small by carefully terminating the series after required number of terms.

Assuming a general complex argument x = reiθ for the Bessel’s functions and the

values become extremely large when the magnitude of |x| ≤ 10, the series expansion

will be used and asymptotic expansion can be utilized for |x| > 10. Substituting the

complex notation in the series expansions, making the real <(·) and imaginary =(·)

parts

<[Jm(x)] =
∞∑
n=0

(−1)n

n!(n+m)!
(
r

2
)2n+m cos[(2n+m)θ] (B.7)

=[Jm(x)] =
∞∑
n=0

(−1)n

n!(n+m)!
(
r

2
)2n+m sin[(2n+m)θ] (B.8)

The series has to be truncated such that the value of the Bessel function to keep

the error to a minimum. Let us analyze J0(x) and J1(x) truncated to 30 terms, the

maximum error for this approximation is of the order 1.23 × 10−23 for J0(x) and

1.99 × 10−24 for J1(x). Now, for real and imaginary parts of zeroth and first order

Neumann functions for complex arguments becomes
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<[N0(x)] =
2

π
[<[J0(x)](γ+ln(

r

2
))−θ=[J0(x)]−

∞∑
n=1

(−1)nr2n

22n(n!)2

30∑
k=0

(
1

k
) cos(2nθ)] (B.9)

=[N0(x)] =
2

π
[=[J0(x)](γ+ln(

r

2
))−θ<[J0(x)]−

∞∑
n=1

(−1)nr2n

22n(n!)2

30∑
k=0

(
1

k
) sin(2nθ)] (B.10)

<[Y1(x)] =
2

π
[<[J1(x)](γ + ln(

r

2
))− θ=[J1(x)]− 1

r
cos θ

−
∞∑
n=1

(−1)nr2n+1

22n+2(n!)2

30∑
k=0

(
1

k
+

1

k + 1
) cos((2n+ 1)θ)]

(B.11)

=[N1(x)] =
2

π
[=[J1(x)](γ + ln(

r

2
))− θ<[J1(x)] +

1

r
sin θ

−
∞∑
n=1

(−1)nr2n+1

22n+2(n!)2

30∑
k=0

(
1

k
+

1

k + 1
) sin((2n+ 1)θ)]

(B.12)

Trucntaing the series for Bessel’s function of second kind to 30 terms makes the

value of γ = 0.593789618.

For large values of the argument of Bessel’s functions, asymptotic expansion is

used, given below in terms of Γ function

Jm(x) ≈
√

2

πx
[cos(x− mπ

2
− π

4
)
∞∑
n=0

(−1)n

(2n)2n

Γ(m+ 2n+ 1/2)

n!Γ(m− 2n+ 1
2
)

− sin(x− mπ

2
− π

4
)
∞∑
n=0

(−1)n

(2n)2n+1

Γ(m+ (2n+ 1) + 1/2)

n!Γ(m− (2n+ 1) + 1
2
)
]

(B.13)
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Nm(x) ≈
√

2

πx
[sin(x− mπ

2
− π

4
)
∞∑
n=0

(−1)n

(2n)2n

Γ(m+ 2n+ 1/2)

n!Γ(m− 2n+ 1
2
)

+ cos(x− mπ

2
− π

4
)
∞∑
n=0

(−1)n

(2n)2n+1

Γ(m+ (2n+ 1) + 1/2)

n!Γ(m− (2n+ 1) + 1
2
)
]

(B.14)

Thus, the Hankel functions becomes

H(1)
m (x) ≈

√
2

πx
ei(x−

mπ
2
−π

4
)

∞∑
n=0

(1
2
−m)nΓ(m+ n+ 1

2
)

m!Γ(m+ 1
2
)(2ix)n

(B.15)

H(2)
m (x) ≈

√
2

πx
e−i(x−

mπ
2
−π

4
)

∞∑
n=0

(1
2
−m)nΓ(m+ n+ 1

2
)

m!Γ(m+ 1
2
)(−2ix)n

(B.16)

The derivatives of these functions can be derived from recurrence relations,

J ′0(x) = −J1(x) J ′n(x) = Jn−1(x)− n

2
Jn(x) n = 1, 2, 3 · · · (B.17)

N ′0(x) = −N1(x) N ′n(x) = Nn−1(x)− n

2
Nn(x) n = 1, 2, 3 · · · (B.18)

H ′0(x) = −H1(x) H ′n(x) = Hn−1(x)− n

2
Hn(x) n = 1, 2, 3 · · · (B.19)

Applying stationary phase approximation and for large values of the arguments x

Bessel’s functions can be further simplified without loosing much accuracy

Jm(x) ≈
√

2

πx
[cos(x− mπ

2
− π

4
)] (B.20)
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To simplify the analysis of complex numbers we can use Euler’s formula

Jm(x) ≈
√

1

2πx
[ei(x−

mπ
2
−π

4
) + e−i(x−

mπ
2
−π

4
)] (B.21)

Hence Hankel function is given by

H(1)
m (x) ≈

√
2

πx
ei(x−

mπ
2
−π

4
) (B.22)

H(2)
m (x) ≈

√
2

πx
e−i(x−

mπ
2
−π

4
) (B.23)
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APPENDIX C: HELMHOLTZ THEOREM

An arbitrary vector ψ(r) can be decomposed into the sum of two vector fields, one

with zero divergence and another with zero curl.

ψ(r) = ψ⊥(r) +ψ‖(r) (C.1)

where,

∇ ·ψ⊥(r) = 0 and ∇×ψ‖(r) = 0 (C.2)

In order to analyze the electromagnetic potentials and fields the vector field can be

written as

ψ(r) = ∇×A(r)−∇Φ(r) (C.3)

Both A(r) and Φ(r) can be derived uniquely using integration over entire three

dimensional space which is valid for both static and time dependent vector fields.

φ(r) =
1

4π

∫
d3r′
∇′ ·C(r′)

|r− r′|
(C.4)

A(r) =
1

4π

∫
d3r′
∇′ ×C(r′)

|r− r′|
(C.5)

Using properties of delta function

ψ(r) =

∫
d3r′ψ(r′)δ(r− r′) = − 1

4π

∫
d3r′ψ(r′)∇2 1

|r− r′|
(C.6)

Exchanging ψ(r′) and ∇2 in the last term and using the identity ∇×∇ = ∇(∇·)−

∇2
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ψ(r) = − 1

4π

∫
d3r′∇ · [ ψ(r′)

|r− r′|
] +

1

4π
∇×

∫
d3r′∇× [

ψ(r′)

|r− r′|
] (C.7)

Using ∇f(|r− r′|) = ∇′f(|r− r′|)

∇′ · [ ψ(r′)

|r− r′|
] =
∇′ ·ψ(r′)

|r− r′|
−ψ(r′) · ∇ 1

|r− r′|
(C.8)

After moving ψ(r′) to the right of ∇ in the last term and rearranging terms

∇ · [ ψ(r′)

|r− r′|
] =
∇′ ·ψ(r′)

|r− r′|
− ∇′ · ψ(r′)

|r− r′|
(C.9)

Similarly,

∇× [
ψ(r′)

|r− r′|
] =
∇′ ×ψ(r′)

|r− r′|
− ∇′ × ψ(r′)

|r− r′|
(C.10)

Inserting equations C.9 and C.10 in equation C.7, we get

ψ(r) = − 1

4π
∇
∫
d3r′
∇′ ·ψ(r′)

|r− r′|
+

1

4π
∇×

∫
d3r′
∇′ ×ψ(r′)

|r− r′|

+
1

4π
∇
∫
d3r′∇′ · ψ(r′)

|r− r′|
− 1

4π
∇×

∫
d3r′∇′ × ψ(r′)

|r− r′|

(C.11)

The last two terms reduce to zero when first two integrals converge and using

divergence theorem changes volume integral to surface integral with the surface of

integrals at infinity.

∫
dS′ · ψ(r′)

|r− r′|
(C.12)

and

∫
dS′ × ψ(r′)

|r− r′|
(C.13)
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