# LANDSCAPE POSITION, FERROUS MINERAL OXIDATION, AND DISSOLVED OXYGEN: A CRITICAL ZONE PERSPECTIVE TO THE INNER PIEDMONT TERRANE

by

Justin C. Coley

A thesis submitted to the faculty of The University of North Carolina at Charlotte in partial fulfillment of the requirements for the degree of Master of Science in Earth Science

Charlotte

2024

Approved by:

Dr. David Vinson

Dr. Martha Cary Eppes

Dr. Andy Bobyarchick

©2024 Justin C. Coley ALL RIGHTS RESERVED

#### ABSTRACT

## JUSTIN C. COLEY. Landscape Position, Ferrous Mineral Oxidation, and Dissolved Oxygen: A Critical Zone Perspective to the Inner Piedmont Terrane. (Under the direction of DR. DAVID VINSON)

The depth at which weathering starts has been studied by others in felsic and mafic protoliths. However, weathering initiation in foliated parent material, which is inherently more permeable, has not, and there is little understanding of what mineral is first to weather at depth in this setting. Nor has the difference in weathering profiles along a hillslope transect been studied to better understand the geochemical evolution of groundwater as it moves down gradient due to deep mineral weathering. Using pXRF and binocular microscopy, elemental and mineral abundances were analyzed in 2 drill cores collected from low and high topographic positions located in a gneiss lithology. Comparative mineral ratios and mass-transport values ( $\tau$ ) were used to identify weathering front depths of biotite, hornblende, and plagioclase. Pearson correlation coefficients for biotite (r = -0.32), hornblende (r = -0.19), and biotite + hornblende (r = -0.4) with respect to iron-oxides show a combination of biotite and hornblende weathering is likely the initiation of weathering at depth rather than weathering of either specific mineral. Greater depth to the water table coincided with formation of thicker saprolite, and the boundary between hardweathered rock and unweathered rock coincided with oxygen depletion. This study used nondestructive testing to identify the depths over which profile weathering occurs emphasizing ferrous mineral oxidation. The weathering of Fe-bearing minerals at depth releases solutes that directly impact dissolved oxygen, and trace metal solubility, while also enhancing permeability because of mineral grain swelling, both of which impact water quality with corresponding implications for human and environmental health.

#### ACKNOWLEDGEMENTS

This project would not have been possible without the guidance, patience, and support of Dr. David Vinson. His direction and encouragement were invaluable to my progress throughout the project. I cannot thank him enough for his advice on how to design, put into action, critically analyze, and clearly describe the results of this study. I would also like to thank Dr. Martha Cary Eppes and Dr. Andy Bobyarchick for their help and suggestions both in prior courses and during this project.

This project was focused on analyzing drill cores using pXRF. I would like to thank Andrew Pitner, P.G. of the NC Department of Environment and Natural Resources for making the Allison Woods drill cores available for study. I would also like to thank Dr. Steven Falconer of the UNC Charlotte Department of Anthropology for providing the pXRF analyzer, certified standards, and training on their use. Several of my peers served as invaluable lab assistants and as a first level of review whenever needed. Specifically, Sadeya Tashnia, Sarah Holloway, and Patrick Webb contributed their thoughts and criticisms in material ways to both lab work and the final manuscript.

Finally, I would like to thank the organizations who provided vital financial support. Thanks are due specifically to the Association of Environmental and Engineering Geologists for the West-Gray and Norman R. Tilford Field Studies Scholarships, The Society of Exploration Geologists for the David & Rebecca Bartel Veterans' Scholarship, and the faculty of the UNC Charlotte Department of Earth, Environmental, and Geographical Sciences for the McCreary Memorial Award.

#### DEDICATION

This thesis is dedicated first and foremost to my wife Meghan for her steadfast love, support, and patience, and to my children Tucker and Lila who are my fundamental motivation. I could not have accomplished this without them. I also dedicate the work to my first chemistry teacher, my mother Susan. From an early age, she encouraged curiosity and excitement for learning about the way the natural world works.

| LI        | ST OF TABLES                                                              | vii        |
|-----------|---------------------------------------------------------------------------|------------|
| LI        | ST OF FIGURES                                                             | viii       |
| LI        | ST OF ABBREVIATIONS                                                       | xi         |
| 1         | INTRODUCTION                                                              | 1          |
|           | 1.1 Mineral Weathering                                                    | 1          |
|           | 1.2 Groundwater Redox Chemistry                                           | 7          |
|           | 1.3 Allison Woods Research Station – In General                           | 9          |
|           | 1.4 Allison Woods Research Station – Geology                              | 13         |
|           | 1.5 Hypotheses                                                            | 19         |
| 2         | METHODOLOGY                                                               | 21         |
|           | 2.1 Study Site                                                            | 21         |
|           | 2.2 Mineralogy                                                            | 23         |
|           | 2.2.1 Hand Lens Measurements                                              | 23         |
|           | 2.2.2 Binocular Microscope Examination of Core Mineralogy                 | 25         |
|           | 2.3 Whole-rock Geochemistry by Hand-Held X-Ray Fluorescence Spectrometry  | 28         |
|           | 2.3.1 pXRF Analysis                                                       | 29         |
|           | 2.3.2 Limits of Detection                                                 | 32         |
|           | 2.4 Determination of Elemental Enrichment and Depletion                   | 34         |
|           | 2.5 Groundwater Data                                                      | 36         |
| 3         | RESULTS                                                                   | 37         |
|           | 3.1 Mineralogy                                                            | 37         |
|           | 3.2 Whole-rock Geochemistry                                               | 49         |
|           | 3.2.1 Elemental Abundance                                                 | 49         |
|           | 3.2.2 Elemental Enrichment and Depletion                                  | 61         |
|           | 3.3 Water Levels and Water Chemistry                                      | 71         |
| 4         | DISCUSSION                                                                | 77         |
|           | 4.1 How Mineralogical Changes Relate to Weathering Patterns               | 77         |
|           | 4.1.1 Mineral Correlations                                                | 79         |
|           | 4.1.2 Mineral Ratios and Primary Mineral Weathering Depths                | 80         |
|           | 4.2 Changes in Elemental Concentrations and Their Relationship to Mineral |            |
|           | Weathering Fronts                                                         | 82         |
|           | 4.2.1 Elemental Correlations                                              |            |
|           | 4.2.2 $\tau$ Values as Indicators of Weathering Fronts                    |            |
|           | 4.2.3 Weathering Fronts Across the Hillslope Transect                     |            |
|           | 4.3 Mineral Weathering and Groundwater Evolution                          |            |
| _         | 4.4 Future Recommendations                                                |            |
| 5         | CONCLUSIONS                                                               | 98         |
| 6         | REFERENCES                                                                | 100        |
| A         | PPENDIX A: Tabular Hand Lens Kesults                                      | 106        |
|           | PENDIA D. Tabular Binocular Microscope Mineralogy Results                 | 113<br>120 |
| $\Lambda$ | I LINDIA C. Iabulai PARI' Results                                         | 120        |

# TABLE OF CONTENTS

# LIST OF TABLES

| Table 1. Core-hole and well construction characteristics, $R = regolith$ , $I = transition zone$ , $B = bedrock (modified from Huffman and Abraham, 2010)$                                                                                                                                                                                                                           | _23 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 2. Limits of detection calculated for each element of interest, including the number and percentage of measurements below the respective LOD. Columns C and D exclude measured zero values.                                                                                                                                                                                    | _33 |
| Table 3. Summary of lithologies at each core location (modified from Huffman and Abraham (2010))                                                                                                                                                                                                                                                                                     | 38  |
| Table 4. Depth and mineral correlations calculated based on binocular microscope mineral examinations. All correlations calculated exceed the critical value (CH-2 = $\pm$ 0.1069, CH-4 = $\pm$ 0.1801) with the exception of depth correlations for hornblende in CH-2 and biotite in CH-4. Correlations above the critical value indicate statistically significant relationships. | _45 |
| Table 5. $\tau$ : depth correlations. All correlations exceed critical values (CH-2 = ± 0.1027 and CH-4 = ± 0.1241) with the exception of Mn in both cores, and Rb in CH-4.                                                                                                                                                                                                          | _71 |
| Table 6. $\tau$ : $\tau$ correlations calculated based on XRF analyses. Values shaded orange indicate moderate to strong correlations. All CH-2 correlations exceed the critical value (CH-2 = ± 0.1027). All CH-4 correlations exceed the critical value (± 0.1241) with the exception of Ca : Rb, Mn : Sr, and Fe : Sr.                                                            | 71  |
| Table 7. Summarized water level data for each core hole                                                                                                                                                                                                                                                                                                                              | _72 |
| Table 8. CH-2 Selected water quality data                                                                                                                                                                                                                                                                                                                                            | _74 |
| Table 9. CH-4 Selected water quality data                                                                                                                                                                                                                                                                                                                                            | 75  |

# LIST OF FIGURES

| Figure 1. An idealized hillslope profile showing water table height with respect to bedrock.<br>At higher landscape positions, the water table is near the level of bedrock while at lower<br>landscape positions (valleys) the water table lies above bedrock. As groundwater moves<br>along the flow path from recharge zones to discharge zones it is gradually altered from oxic<br>to anoxic. | _2 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 2. The Goldich weathering series provides a framework to predict the order in which minerals will break down and weather away (generally in the same order that they crystallized). From (Churchman and Lowe, 2011)                                                                                                                                                                         | _3 |
| Figure 3. Traditionally, weathering has been thought to be initiated at the bottom of the transition zone (red line). It is hypothesized here that PIM weathering occurs much deeper in fractured unweathered bedrock (blue line). (modified from Huffman and Abraham, 2010)                                                                                                                       | 6  |
| Figure 4. The "redox ladder", a pattern of electron acceptor consumption based on the levels of acceptors present after the transition from oxic to anoxic conditions (modified from Sapkota et al., 2022)                                                                                                                                                                                         | 8  |
| Figure 5. Locations of AWRS, hydrogeologic units in Iredell County, and geologic belts in central and western NC (from Huffman and Abraham, 2010)                                                                                                                                                                                                                                                  | 10 |
| Figure 6. Transect orientations, core hole and monitoring well locations at AWRS (from Huffman and Abraham, 2010)                                                                                                                                                                                                                                                                                  | 12 |
| Figure 7. Overall DO conditions in groundwaters of the Inner Piedmont terrane. In general, the Inner Piedmont is approximately 51% oxic/suboxic and 26% anoxic. It is hypothesized that the AWRS site is representative of these conditions (modified from Tashnia et al., 2023)1                                                                                                                  | 13 |
| Figure 8. Geologic map of the Inner Piedmont and other structured terranes in the southeastern United States Piedmont (from Huffman and Abraham, 2010)                                                                                                                                                                                                                                             | 14 |
| Figure 9. Detailed map of the Inner Piedmont showing subordinate Cat Square terrane and the approximate location of AWRS. (modified from Merschat et al., 2023)                                                                                                                                                                                                                                    | 15 |
| Figure 10. Mapped bedrock units in the vicinity of AWRS (modified from Goldsmith et al. 1988b)                                                                                                                                                                                                                                                                                                     | 16 |
| Figure 11. Meiji Techno EMZ-8TR with typical core sample2                                                                                                                                                                                                                                                                                                                                          | 23 |
| Figure 12. Percentage estimator used during hand lens and binocular microscope analyses (from Eppes and Johnson, 2022).                                                                                                                                                                                                                                                                            | 26 |
| Figure 13. pXRF device mounted with core sample                                                                                                                                                                                                                                                                                                                                                    | 30 |

| Figure 14. pXRF device lying on its side for core sections too long for lab stand                                                                                                                                                                                                                                                                                                                                                            | 30        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Figure 15. Unadjusted concentrations as measured by XRF analysis of mid-range standards for each element throughout the course of the project. Si has been excluded here because it was the only element with no measured values below the LOD.                                                                                                                                                                                              | 33        |
| Figure 16. The upper 40 feet of CH-2 and a representative section of unweathered rock typical of the deepest sections of CH-2.                                                                                                                                                                                                                                                                                                               | 37        |
| Figure 17. CH-2 typical mineralogy visible by binocular microscope, clockwise from top left: A) unweathered hornblende and quartz (69.3 FBLS), B) weathered hornblende and garnet (circled) (68.5 FBLS), C) MnO <sub>x</sub> (black staining at arrows) on highly weathered biotite (38.2 FBLS), and D) well developed FeO <sub>x</sub> on highly weathered biotite (64.0 FBLS), field of view in all pictures is approximately 0.75 inches  | 39        |
| Figure 18. CH-4 typical mineralogy visible by binocular microscope, clockwise from top left: A) unweathered biotite (95.1 FBLS), B) weathered biotite with FeO <sub>x</sub> (73.3 FBLS), C) well developed FeO <sub>x</sub> and MnO <sub>x</sub> (black staining at arrows) on highly weathered biotite (31.6 FBLS), and D) unweathered kyanite (circled) and quartz (54.8 FBLS), field of view in all pictures is approximately 0.75 inches | 40        |
| Figure 19. Felsic & Mafic portions of each core with mafic zones falling in the gray shaded region and felsic zones in the unshaded region. Here 63% & 52 % SiO2 are taken as the felsic and mafic boundaries, respectively (Yager and Bove, 2007).                                                                                                                                                                                          | 41        |
| Figure 20. Abundances of primary minerals (biotite & hornblende) throughout each core profile as measured by binocular microscope.                                                                                                                                                                                                                                                                                                           | <u>43</u> |
| Figure 21. Secondary mineral (FeO <sub>x</sub> ) abundances throughout each core profile as measured by binocular microscope.                                                                                                                                                                                                                                                                                                                | 46        |
| Figure 22. FeO <sub>x</sub> ratios for biotite and hornblende. While not shown here, the ratio of FeO <sub>x</sub> to total Fe-bearing minerals generally corresponds to the biotite-oxide ratio curve in both cores.                                                                                                                                                                                                                        | 48        |
| Figure 23. Ca (L) and Sr (R) concentrations in CH-2 as a function of depth.                                                                                                                                                                                                                                                                                                                                                                  | 50        |
| Figure 24. Fe (L) and Mn (R) concentrations in CH-2 as a function of depth.                                                                                                                                                                                                                                                                                                                                                                  | _52       |
| Figure 25. Rb (L) and Zr (R) concentrations in CH-2 as a function of depth.                                                                                                                                                                                                                                                                                                                                                                  | 54        |
| Figure 26. Ca (L) and Sr (R) concentrations in CH-4 as a function of depth.                                                                                                                                                                                                                                                                                                                                                                  | 56        |
| Figure 27. Fe (L) and Mn (R) concentrations in CH-4 as a function of depth.                                                                                                                                                                                                                                                                                                                                                                  | 58        |

| Figure 28. Rb (L) and Zr (R) concentrations in CH-4 as a function of depth.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Figure 29. $\tau$ values for Ca as a function of depth in each core profile.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62          |
| Figure 30. $\tau$ values for Sr as a function of depth in each core profile.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>.</u> 64 |
| Figure 31. $\tau$ values for Fe as a function of depth in each core profile.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>66</u>   |
| Figure 32. $\tau$ values for Mn as a function of depth in each core profile.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>.</u> 68 |
| Figure 33. $\tau$ values for Rb as a function of depth in each core profile.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70          |
| Figure 34. The Goldich weathering series provides a framework to predict the order in which minerals will break down and weather away (generally in the same order that they crystallized). From (Churchman and Lowe, 2011)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _78         |
| Figure 35. The interpreted weathering front profile of CH-2, scales on left and right denote feet below the land surface, Green = soil layers, Brown = Saprolite, Red = Partially Weathered Rock, Gray = Hard Weathered Rock, Blue = Unweathered Rock, middle column shows the approximate depths of important transitions, far right column shows the fronts over which redox states are changing and reactions are happening (blue to red gradation is indicative of DO changes). Triangles numbered 1 thru 3 indicate the depths at which water quality samples were collected ( $1 = 33$ FBLS, $2 = 62$ FBLS, and $3 = 140$ FBLS), The depth to water table shown is based on the average of levels observed during the data collection period. | _84         |
| Figure 36. The interpreted weathering front profile of CH-4, scales on left and right denote feet below the land surface, Green = soil layers, Brown = Saprolite, Red = Partially Weathered Rock, Gray = Hard Weathered Rock, Blue = Unweathered Rock, middle column shows the approximate depths of important transitions, far right column shows the fronts over which redox states are changing and reactions are happening (blue to red gradation is indicative of DO changes). Triangles numbered 1 thru 3 indicate the depths at which water quality samples were collected ( $1 = 22$ FBLS, $2 = 39$ FBLS, and $3 = 88$ FBLS), The depth to water table shown is based on the average of levels observed during the data collection period.  | 85          |
| Figure 37. The "pinched" topography similar to that described by St. Clair et al. (2015) is seen in saprolite layers. The saprolite to UWR thickness is comparable, but the depth of weathering is deeper in the valley (CH-4). It should be remembered that the land surface at CH-2 is approximately 34.3 feet higher in elevation than the land surface at CH-4. Green = soil layers, Brown = Saprolite, Red = Partially Weathered Rock, Gray = Hard Weathered Rock, Blue = Unweathered Rock.                                                                                                                                                                                                                                                    | _90         |

## LIST OF ABBREVIATIONS

| As                 | Elemental arsenic                                                                  |
|--------------------|------------------------------------------------------------------------------------|
| AWRS               | Allison Woods Research Station, Iredell County, NC                                 |
| BDD                | Biotite Disappearance Depth                                                        |
| Ca                 | Elemental calcium                                                                  |
| CH-2               | Core-hole 2 and its corresponding drill core, from the mid-slope position          |
| CH-4               | Core-hole 4 and its corresponding drill core, from the lowest topographic position |
| Cr                 | Elemental chromium                                                                 |
| DO                 | Dissolved oxygen                                                                   |
| FBLS               | Depth below the land surface in feet                                               |
| Fe                 | Elemental iron                                                                     |
| Fe <sup>2+</sup>   | Ferrous iron                                                                       |
| Fe <sup>3+</sup>   | Ferric iron                                                                        |
| FeO <sub>x</sub>   | Iron oxides formed by chemical weathering of iron bearing minerals                 |
| HDD                | Hornblende Disappearance Depth                                                     |
| HCO <sub>3</sub> - | Dissolved bicarbonate                                                              |
| HWR                | Hard Weathered Rock                                                                |
| ICH                | International Council for Harmonization of Technical Requirements for              |
|                    | Pharmaceuticals for Human Use                                                      |
| IUPAC              | International Union of Pure and Applied Chemistry                                  |
| K                  | Elemental potassium                                                                |
| LOD                | Limit of Detection                                                                 |
| Mg                 | Elemental magnesium                                                                |
| Mn                 | Elemental manganese                                                                |
| MnO <sub>x</sub>   | Manganese oxides formed by chemical weathering of manganese bearing                |
|                    | minerals                                                                           |
| MW-X               | Monitoring wells associated with each corehole                                     |
| Na                 | Elemental sodium                                                                   |
| NCDEQ              | North Carolina Department of Environmental Quality (f.k.a. N.C. Department of      |
|                    | Environment and Natural Resources)                                                 |

| NIST-2710a                                 | National Institute of Standards & Technology – Montana soil with highly elevated |  |  |
|--------------------------------------------|----------------------------------------------------------------------------------|--|--|
|                                            | trace element concentrations                                                     |  |  |
| NIST-2711a                                 | National Institute of Standards & Technology – Montana soil with moderately      |  |  |
|                                            | elevated trace element concentrations                                            |  |  |
| PIM                                        | Profile Initiating Mineral                                                       |  |  |
| PWR                                        | Partially Weathered Rock                                                         |  |  |
| PWZ                                        | Plagioclase Weathering Zone                                                      |  |  |
| pXRF                                       | Portable X-ray Fluorescence                                                      |  |  |
| QLO-1a                                     | USGS Quartz Latite Standard                                                      |  |  |
| <i>r</i> Pearson's correlation coefficient |                                                                                  |  |  |
| Rb                                         | Elemental rubidium                                                               |  |  |
| REP                                        | Piedmont and Mountains Resource Evaluation Program                               |  |  |
| Si                                         | Elemental silicon                                                                |  |  |
| Sr                                         | Elemental strontium                                                              |  |  |
| τ                                          | Open-system mass transport function, a ratio expressing the degree of elemental  |  |  |
|                                            | enrichment or depletion in a geologic profile at a given depth                   |  |  |
| Ti                                         | Elemental titanium                                                               |  |  |
| USGS                                       | U.S. Geological Survey                                                           |  |  |
| UWR                                        | Unweathered Rock                                                                 |  |  |
| Zr                                         | Elemental zirconium                                                              |  |  |

#### **1** INTRODUCTION

#### 1.1 Mineral Weathering

Rock weathering is driven by physical and chemical processes that increase porosity, permeability, mineral transformations, and the removal of smaller particles and soluble components. In general, chemical weathering processes are primarily controlled by water and oxygen, with other factors such as temperature and organic activity also playing important roles. Physical weathering processes apply stress to rock that results in disaggregation. Chemical weathering processes transform minerals through various reactions such as biotic respiration, dissolution, precipitation, hydrolysis, hydration, and reduction/oxidation (redox). While chemical weathering is thought to be dominant below the water table, physical weathering processes also occur due to mineral swelling and other processes, allowing for greater penetration of water and dissolved oxygen (DO) into otherwise impermeable rock (Gilkes and Suddhiprakarn, 1979; Anovitz et al., 2021). Therefore, physical weathering can enhance chemical weathering rates, and vice versa, in subsurface environments.

A site's position in the landscape can also affect weathering rates (Bailey et al., 2014; Gannon et al., 2014). On hillslopes, bedrock can lie closer to, or farther from, the land surface depending on uplift and erosion rates, relative to the rock's resistance to chemical weathering (Brantley et al., 2017). Likewise, the thickness of regolith (herein meaning all weathered material above unweathered bedrock), representing in-place weathered material, is variable depending on rock resistance to weathering, climate, and topography. The relationship of depth to bedrock and water table height likely exerts some control on whether oxic or anoxic conditions are prevalent at the interface of regolith and unweathered bedrock (Fig. 1) (Bourgault et al., 2017, 2022). As the water table is a source of open system inputs of oxygen, the depletion of DO along a local groundwater flow path will depend on removal from the water table and interaction with chemical reductants that consume DO. In some systems, especially organic-rich environments, microbial activity can be significant for consuming DO.



Figure 1 - An idealized hillslope profile showing water table height with respect to bedrock. At higher landscape positions, the water table is near the level of bedrock while at lower landscape positions (valleys) the water table lies above bedrock. As groundwater moves along the flow path from recharge zones to discharge zones it is gradually altered from oxic to anoxic.

The dominance of oxic versus anoxic conditions significantly impacts groundwater flowing through an aquifer by enabling or limiting heavy metal dissolution, speciation, and contaminant transport (Oh and Richter, 2005; Li et al., 2021). For example, chromium (Cr) is more prevalent in oxic groundwater. At the same time, arsenic (As) can occur in oxidized and reduced species with the reduced species being more toxic than the oxidized species (Vengosh et al., 2016; Coyte and Vengosh, 2020). Manganese (Mn) has received increasing scrutiny as a naturally occurring chronic toxin that predominates in anoxic groundwater (Homoncik et al., 2010; Gillispie et al., 2016; Ramachandran et al., 2021; Riedel et al., 2022). Further, oxidative weathering of silicate minerals has implications for landscape evolution, global chemical cycling, and the long-term stability of man-made structures (Anderson et al., 2019; Anovitz et al., 2021).



Figure 2 - The Goldich weathering series provides a framework to predict the order in which minerals will break down and weather away (generally in the same order that they crystallized). From (Churchman and Lowe, 2011)

Igneous mineral weathering is generally initiated in a well-established order (Goldich, 1938) (Fig. 2) at surface or near-surface conditions, i.e. the "critical zone." These patterns have been used to describe specific depth intervals (i.e., weathering fronts) over which weathering occurs. From the surface downward, Brantley et al. (2017) described the soil-initiating mineral as a low solubility mineral whose dissolution demarcates the soil – saprolite boundary through disaggregation and clay formation with alkali-rich minerals the most common example in

granitic rock (Brantley et al., 2017). The soil initiating mineral is generally the last major mineral to begin weathering in a profile. The next to last major mineral to begin weathering, or porosityinitiating mineral, is defined as an abundant, moderately soluble mineral whose weathering results in density reduction and porosity formation, and denotes the boundary between hardweathered rock and saprolite (Brantley et al., 2017). The porosity-initiating mineral and reaction in felsic (granite) rocks are most often dissolution of plagioclase (Bazilevskaya et al., 2013, 2015). The profile-initiating mineral (PIM) is the first (deepest) major mineral to initiate weathering in a geologic profile, representing the transition from weathered to substantially unweathered rock (Brantley et al., 2017). While ultramafic and mafic minerals are the first weathered in the Goldich series, a mineral must be present significantly to be the PIM in a given system. In granitic rocks, biotite has been considered by some to be the first mineral to initiate weathering in unweathered rock (Bazilevskaya et al., 2015; Brantley et al., 2017). It is thought that oxidation of biotite is the primary weathering process at work at the interface of hard weathered and unweathered bedrock, which may indicate the presence of oxygen at greater depths than previously expected (Fig. 3). Others have argued that crystallization pressure resulting from iron-oxide (FeO<sub>x</sub>) and clay crystal growth along mineral grain boundaries preempts biotite oxidation (Anovitz et al., 2021). Still, those studies relied on the examination of submicroscopic mineral crystals that is beyond the scope of this project.

For the purposes of this study, the term soil refers to the generally unreactive, porous sediment that no longer exhibits rock fabrics or mineral grain structures. Saprolite refers to highly porous and friable regolith in which rock fabrics and mineral grain structures can still be seen with the naked eye. Partially weathered rock (PWR) refers to competent regolith that is porous enough that advection is the main driver of weathering, while hard weathered rock

(HWR) refers to rock whose porosity is limited, and through which diffusion is the main weathering mechanism. Unweathered rock (UWR) is not yet altered by chemical weathering processes, and whose existing fractures are the result of tectonic forces (Fig. 3).

The PIM is specific to the mineralogy of the crystalline rock being studied. Where it is present, oxidative dissolution of pyrite has also been hypothesized to coincide with biotite oxidation during the initiation of weathering at depth (Brantley et al., 2017). Where pyrite is especially abundant (e.g. in some volcanic rocks), it is conceivable that pyrite is the PIM. In mafic rocks, the PIM could be a mafic mineral such as olivine, a pyroxene, or an amphibole (e.g. hornblende). There has been little work concerning what the PIM could be in rocks of intermediate composition, or with a foliated morphology, that exhibits high levels of lithologic heterogeneity and increased permeability. Biotite, pyrite, pyroxenes, and amphiboles all contain ferrous iron (Fe<sup>2+</sup>), which is a reduced form of Fe that functions as an electron donor, or reductant in the environment.

As biotite oxidizes,  $Fe^{2+}$  is transformed to insoluble ferric  $FeO_x$  (e.g.,  $Fe(OH)_3$  containing  $Fe^{3+}$ ), consuming DO and releasing potassium (K) ions to maintain charge balance (Gilkes and Suddhiprakarn, 1979). As a result of these alterations, biotite swells, which likely drives microfracturing, enhancing porosity, permeability, and groundwater flow, and allowing further weathering along newly exposed surfaces (Anovitz et al., 2021).



Figure 3 - Traditionally, weathering has been thought to be initiated at the bottom of the transition zone (red line). It is hypothesized here that PIM weathering occurs much deeper in fractured unweathered bedrock (blue line). (modified from Huffman and Abraham, 2010)

Hornblende oxidation also consumes DO, and releases calcium (Ca) ions to maintain charge balance. The final product of ferrous mineral oxidation is incongruent dissolution, resulting in FeO<sub>x</sub> and clay mineral (e.g. kaolinite) formation (Eq. 1 & 2).

### **Biotite Hydrolysis**

 $(\text{Eq. 1}) \text{ 4 KFe}_3\text{AlSi}_3\text{O}_{10}(\text{OH})_2 + 32 \text{ H}_2\text{O} + 3 \text{ O}_2(\text{aq}) + 4 \text{ H}^+ \rightarrow 12 \text{ Fe}(\text{OH})_3 + 2 \text{ Al}_2\text{Si}_2\text{O}_5(\text{OH})_4 + 4 \text{ K}^+ + 8 \text{ H}_4\text{SiO}_4$ 

#### Hornblende Hydrolysis

 $(\text{Eq. 2}) \text{ Ca}_2\text{Fe}_4\text{AlSi}_7\text{AlO}_{22}(\text{OH})_2 + 15 \text{ H}_2\text{O} + \text{O}_2(\text{aq}) + 4 \text{ H}^+ \rightarrow 4 \text{ Fe}(\text{OH})_3 + \text{Al}_2\text{Si}_2\text{O}_5(\text{OH})_4 + 2 \text{ Ca}^{2+} + 5 \text{ H}_4\text{SiO}_4$ 

#### 1.2 Groundwater Redox Chemistry

Whereas acid-base neutralization reactions involve the exchange of protons, redox reactions are driven by electron exchanges. Electron-transport systems are fundamental to microbial metabolism, growth, reproduction, mineral and metal dissolution, and precipitation (Chapelle, 2001). Redox reactions require an electron acceptor and an electron donor, and the exchange can act as an energy source. At Earth's surface, oxygen is the primary electron acceptor. In the subsurface, oxygen levels decrease with depth as mineral weathering progresses, and microbes scavenge available oxygen during respiration. All groundwater systems contain microbes that use redox reactions to sustain their life cycles (Chapelle, 2001). In most groundwater systems organic carbon is the most common source of electrons for biota, and these microbial reactions catalyze many redox processes in the system (Chapelle, 2001; Jones et al., 2018; Li et al., 2021).

In the absence of oxygen, other electron acceptors, such as sulfate and nitrate, are utilized for respiration. Once DO becomes depleted, reducing conditions tend to dominate, and electron acceptors are used in an established order based on their energy potential and abundance under a given set of environmental conditions (Fig. 4) (Chapelle et al., 1995; Chapelle, 2001; Sapkota et al., 2022).



Figure 4 - The "redox ladder", a pattern of electron acceptor consumption based on the levels of acceptors present after the transition from oxic to anoxic conditions (modified from Sapkota et al., 2022)

Many contaminants and heavy metals (e.g., Fe and Mn) become more soluble in their reduced forms. Due to their redox sensitivity, both Fe and Mn play important biogeochemical roles (Scott et al., 2002; Herndon and Brantley, 2011; Herndon et al., 2015; Richardson, 2017; Jones et al., 2018; Coyte and Vengosh, 2020). When biotite and hornblende are oxidized, and DO is consumed, the conditions that enable the reductive dissolution of heavy metals are enhanced. However, the patterns of redox conditions and localized groundwater heterogeneity in association with complex lithologic heterogeneity are not well understood.

The primary objectives of this research were to identify the actual depth of weathering along a Piedmont hillslope transect, and determine what, if any, effect ferrous mineral oxidation at depth may have on DO levels and groundwater chemistry. However, the mechanisms by which groundwater becomes anoxic after recharge in the Piedmont groundwater system are relatively unpredictable at the scale of an individual well or hillslope. It has been argued that organic carbon, perhaps from the land surface and soils, is the primary reductant that drives anoxic groundwater in the Piedmont (Vinson et al., 2009). Others have argued that pyrite or biotite weathering provides Fe<sup>2+</sup> as a mineral reductant in the subsurface (Brantley et al., 2017). Improved understanding of the relationship of ferrous mineral weathering to oxic and anoxic groundwater conditions in the Piedmont region could improve our ability to predict naturally occurring trace elements of health significance, such as As, Cr, and Mn.

#### 1.3 Allison Woods Research Station – In General

This project is based on an examination of drill cores and water chemistry data collected at the Allison Woods Research Station (AWRS) in Iredell County, North Carolina (Fig. 5). The AWRS was established in approximately 2005 as part of a cooperative project between the U.S. Geological Survey (USGS) and the North Carolina Department of Environmental Quality (NCDEQ, formerly known as the N.C. Department of Environmental Natural Resources) known as the Piedmont and Mountains Resource Evaluation Program (REP). The REP ended in approximately 2012.



Figure 5 - Locations of AWRS, hydrogeologic units in Iredell County, and geologic belts in central and western NC (from Huffman and Abraham, 2010)

The climate at AWRS is humid, subtropical with average annual precipitation of 44.8 inches and a mean annual temperature of 59.5°F (Climate-Data.org, Undated). The area is rural with land cover dominated by forestland, but may have been the site of intense agricultural activity in the past. The site's topography is gently sloping with elevation ranging approximately 80 feet from hilltop to stream bottom (Huffman and Abraham, 2010).

The area has three soil units mapped with variation as a function of height above the stream channel (NRCS, U.S. Dept. of Agriculture, Undated). Clifford sandy loams and Clifford sandy clay loams lie atop summits and midslopes, respectively. Fairview sandy clay loams lie on midslopes, and Tomlin sandy clay loams cover valley bottoms. The Clifford and Fairview series are defined as fine, kaolinitic, mesic Typic Kanhapludults, common on hills and interfluves in Piedmont uplands, and derived from granitic, gneissic, or schistic saprolite. The Tomlin series is defined as fine, kaolinitic, mesic Rhodic Kanhapludult soils, common on hill slopes in Piedmont uplands, and derived from dioritic, gabbroic, diabasic, or gneissic saprolite (U.S. Department of Agriculture, Undated).

Four drill cores (CH-1 through CH-4) were collected at AWRS in 2005. The approximate location of the core collection is 35.907922° N and 80.825083° W. Cores were collected to depths ranging from 75 to 200 feet using split spoon sampling in regolith and saprolite and wire-line coring in the transition zone and unweathered bedrock. Drilling locations were chosen along topographic transects that were assumed to be parallel to groundwater flow paths (Fig. 6) (Huffman and Abraham, 2010).



Figure 6 - Transect orientations, core hole and monitoring well locations at AWRS (from Huffman and Abraham, 2010)

In addition to collecting drill cores, shallow, intermediate, and deep monitoring wells were installed adjacent to each core hole to capture water level and water quality data representative of the groundwater profile at each drilling location. Others have summarized the general redox conditions of Inner Piedmont aquifers based on nitrate, Mn, and Fe abundances where DO data was not available (Fig. 7) (Tashnia et al., 2023). It was expected that the AWRS site would be representative of those conditions.



## Inner Piedmont Groundwater DO Conditions

Figure 7 - Overall DO conditions in groundwaters of the Inner Piedmont terrane. In general, the Inner Piedmont is approximately 51% oxic/suboxic and 26% anoxic. It is hypothesized that the AWRS site is representative of these conditions (modified from Tashnia et al., 2023)

#### 1.4 Allison Woods Research Station – Geology

The AWRS lies in the Inner Piedmont terrane which is a composite of the subordinate Tugaloo and Cat Square terranes (Fig. 8 and 9) (Merschat and Hatcher, 2007). Specifically, the AWRS lies at the eastern edge of the Cat Square terrane, just west of the Central Piedmont Suture (N.C. Geological Survey, Undated). The Inner Piedmont and Cat Square terranes are dominated by compressional and transpressional structures, and component rocks are metamorphosed to sillimanite grade (Merschat et al., 2010). The Cat Square terrane is composed of Siluro-Devonian metapsammite and pelitic schists which have been hypothesized to have been metamorphosed from sedimentary and volcanic rocks (i.e. greywacke and turbidites) that made up an ancient ocean basin and volcanic island chain. Metamorphism is thought to have been driven by Devonian intrusion of granitoids and the Neoacadian orogeny that formed the southern Appalachian crystalline core (Merschat and Hatcher, 2007; Merschat et al., 2010, 2023).

At AWRS bedrock is metamorphosed to amphibolite grade, consisting of biotite gneiss and amphibolite with subordinate mica schist (Huffman and Abraham, 2010). This site was chosen for study because of the predominance of biotite and amphibolite gneiss, providing a site to study the hypothesis of a ferrous mineral being the PIM. USGS and NCDEQ selected the AWRS to represent a mafic gneiss hydrogeologic unit (Daniel, III and Dahlen, 2002) typical of the Inner Piedmont litho-tectonic terrane.



Figure 8 - Geologic map of the Inner Piedmont and other structured terranes in the southeastern United States Piedmont (from Huffman and Abraham, 2010)



Figure 9 - Detailed map of the Inner Piedmont showing subordinate Cat Square terrane and the approximate location of AWRS. Modified from Merschat et al. (2023)

The map-scale bedrock unit at the scale of the Charlotte 1° x 2° quadrangle (CZbga) is described as interlayered biotite gneiss, hornblende gneiss, amphibolite, metagabbro, and subordinate mica schist which can locally contain granitoid rock and form migmatites. An adjacent bedrock unit (CZbg) near AWRS is described as gray to dark-gray, thin- to thick-layered biotite-quartz-feldspar gneiss, in part garnetiferous, locally inequigranular and porphyroblastic, and interlayered with calc-silicate rock, sillimanite-mica schist, mica schist, and amphibolite (Fig. 10) (Goldsmith et al., 1988b). Mapped units, and other unmapped units, can occur at sub-map scale within the Piedmont (Goldsmith et al., 1988a), and are evidenced by lithologic changes along cores.



Figure 10 - Mapped bedrock units in the vicinity of AWRS (modified from Goldsmith et al. 1988b)

In this area, bedrock strikes generally east to west and dips approximately 20° to the north. The biotite gneiss is fine- to medium-grained and consists of quartz, plagioclase, biotite, hornblende, and lesser amounts of garnet, epidote, and FeO<sub>x</sub>. The amphibolite schist is fine- to

medium-grained and contains variable amounts of hornblende and biotite (Huffman and Abraham, 2010). Based on descriptions in the AWRS core reports, biotite gneiss and amphibolite gneiss are estimated to account for 49% and 35% of bedrock, respectively, with the remaining 16% being composed of varying amounts of granite, kyanite schist, augen gneiss, and leucocratic gneiss (Huffman and Abraham, 2010).

Depth to competent bedrock is approximately 70 feet in the upper slope cores (CH-1 & CH-2), and approximately 30-40 feet in the lower cores (CH-3 & CH-4), which indicate regolith and transition zone thickness are greater in upslope positions (Huffman and Abraham, 2010), consistent with region-wide assumptions (Daniel, III and Dahlen, 2002). AWRS regolith is composed of soil, sediment, and weathered bedrock that contains reddish-brown clayey silt with minor amounts of sand and mica, and becomes sandy silt with depth. The saprolite contains mostly brown, yellowish-brown to olive-brown micaceous silt with low-angle foliations, and grades into partially weathered rock. The transition zone is generally composed of schists, with deeper bedrock represented by biotite gneiss and amphibolite gneiss.

In the transition zone, kyanite-biotite schist contains many low-angle fractures, and is distinguished from unweathered bedrock by the number of fractures. Bedrock fractures are generally horizontal with few vertical fractures, and show water movement as evidenced by the presence of Fe- and Mn-oxide (MnO<sub>x</sub>) staining that decreases with depth. Water-bearing fractures in the biotite gneiss generally dip less than 30°, but can be as much as 60° (Huffman and Abraham, 2010). These fractures, in addition to existing foliation, represent the primary routes by which ferrous minerals are accessed by DO and water at depth in otherwise impermeable rock. Water-bearing fractures are denoted in the core reports where mineral dissolution and

precipitation occurred, and by the presence of FeO<sub>x</sub> with dip angle of fractures having been recorded (Huffman and Abraham, 2010).

Because of generally low mineral solubilities, mineral assemblages can be used to reveal how much water has flowed across a reaction front. Large quantities of water are usually required to dissolve small amounts of a mineral, meaning that small differences in minerals can amplify differences in cumulative water flow (Brantley et al., 2017). An examination of drill cores with the intent of identifying the depth at which ferrous mineral weathering is initiated, and the depth at which they are completely replaced by FeO<sub>x</sub>, should be indicative of the depth range over which ferrous mineral weathering occurs in crystalline Piedmont rocks (Bazilevskaya et al., 2015; Brantley et al., 2017). However, there is not a good understanding of what this continuum looks like in the lithologically heterogeneous crystalline rocks of the Piedmont. Most other studies have focused on homogenous bedrock types (i.e. granite and diabase) (Bazilevskaya et al., 2013, 2015). Is the change in lithologically complex profiles abrupt or gradual, or is there significant variability with changes in depth? Do depth profiles differ among different topographic positions?

The AWRS site is appropriate for this study for several reasons. The AWRS lies in the Piedmont of the eastern United States which, as a result of long periods of geologic stability, exposure, and low erosion rates, has been argued to be in a geomorphological steady state (Pavich et al., 1989). Others have more recently disputed the geomorphological steady state (St. Clair et al., 2015), but the area is generally accepted to exhibit low tectonic activity that would otherwise lead to constant exposure of fresher, less weathered earth materials with corresponding effects on weathering rates and weathering front depths. The site is typical of the Piedmont in general, and specifically of the Inner Piedmont terrane, a region of metamorphosed granitoid and gneissic rocks with significant amounts of ferrous and other indicator minerals (Goldsmith et al., 1988a).

The AWRS drill cores were located and drilled to capture groundwater evolution as it moves downgradient (Fig. 6), which provides a useful proxy for chemical changes across the hillslope transect. Because the REP was focused on groundwater quality, periodic water chemistry sampling data, including physicochemical and solute concentration measurements, are available for the period from November 2006 to March 2009 (N.C. Department of Environmental Quality, Undated).

The objectives of this study were to determine whether, and which, ferrous mineral is a PIM at AWRS based on detailed analysis of saprolite and bedrock cores; and to relate ferrous mineral weathering depths to groundwater chemistry and/or landscape position in a lithologically complex setting in the Inner Piedmont terrane. Meeting these objectives could lead to better prediction of groundwater conditions that directly affect anthropogenic and naturally occurring contaminant mobility in a region where groundwater is commonly used as a source of drinking water (Lindsey et al., 2014).

#### 1.5 Hypotheses

This research project was based on the following hypotheses:

 Hillslope position plays a role in the height of the water table above the reactive unweathered rock. At lower hillslope positions, the water table is believed to lie higher in less reactive, weathered rock and soil meaning anoxic weathering processes likely dominate at the unweathered rock interface. At higher hillslope positions, the water table is believed to lie at or near the depth of unweathered rock where oxic weathering processes are more likely to occur, and possibly dominate.

- Biotite, or some other ferrous mineral such as hornblende, is the first mineral to initiate weathering, and ferrous minerals and FeO<sub>x</sub> are reliable indicators of the weathering front. The weathering front can be distinguished with respect to the water table by visual examination and X-ray fluorescence analysis.
- Ferrous mineral weathering depth ranges influence DO levels, exerting control on oxic versus anoxic conditions, with related effects on redox-sensitive elements' solubility. Below the depth of weathering initiation, it is believed that conditions are anoxic while above the Biotite and/or Hornblende Disappearance Depths (BDD and HDD, the depth at which biotite and hornblende are completely replaced by FeO<sub>x</sub>), oxic conditions are dominant with a transition zone that corresponds to the ferrous mineral weathering depth range. It is believed that these oxic, anoxic, and transition zones correspond to redox-sensitive element (e.g. Fe, Mn, As, etc.) concentration thresholds in solution.

#### 2 METHODOLOGY

#### 2.1 Study Site

This study utilized drill cores collected from AWRS. As a component of the REP, several groundwater well clusters were constructed along a hillslope transect in a manner similar to other REP sites (Chapman et al., 2005; Huffman and Abraham, 2010). Each well cluster consisted of one corehole adjacent to three monitoring wells drilled to shallow, intermediate, and deep depths. The REP constructed 4 well clusters in total at AWRS to capture water quality and water level data along presumed groundwater flow paths from recharge to discharge areas (Fig. 6) which provides a useful proxy for chemical changes across the hillslope transect. Of the four clusters constructed, this study focused on the drill cores collected from the mid-slope and lowest topographic positions, CH-2 and CH-4, respectively.

The REP cores used in this study were collected in April (CH-2) and May (CH-4) of 2005 using split spoon sampling in regolith and saprolite and wire-line coring in the transition zone and unweathered bedrock. Cores were received from NCDEQ in October 2023. After cores were logged by USGS and NCDEQ, they were stored in plastic flip top core boxes on wire racks at a NCDEQ facility with no climate control. Ideally, the analyses described herein would have been completed at the time the drill cores were collected. Without that having been the case, there is some uncertainty as to the true baseline characteristics of these cores prior to being exposed to surface temperature, humidity, and oxygen conditions.

Both cores were examined to a depth of 100 feet below the land surface (FBLS). Approximately 56 and 97 feet, of the top 100 feet, of core were recovered for CH-2 and CH-4, respectively. Poor recovery was most prevalent in soil layers in both cores. In general, CH-2 was more fractured with 178 fractures than CH-4 with 92 fractures. A visible change from soil to weathered rock occurs at approximately 37.5 and 29 FBLS in CH-2 and CH-4, respectively.

The transition zone in CH-2 begins at 55 feet and extends to 70 FBLS with bedrock below that depth. CH-2 is characterized as a biotite garnet schist transitioning to amphibolite gneiss in the transition zone. From the top of bedrock downward, CH-2 alternates between amphibolite gneiss and biotite gneiss with interspersed granitic bands and augen gneiss becoming predominant near 90 FBLS. Water bearing fractures were noted throughout the transition zone and bedrock in CH-2 with evidence of dissolution at 84 FBLS (Huffman and Abraham, 2010).

The transition zone in CH-4 begins at 23 feet and extends to 40 FBLS with bedrock below that depth. CH-4 is characterized as a kyanite biotite schist in the transition zone. From the top of bedrock downward, CH-4 alternates between kyanite biotite garnet gneiss, kyanite-garnet schist, kyanite schist, and kyanite garnet biotite schist to a depth of approximately 62 FBLS. From this depth downward, CH-4 begins to alternate between biotite gneiss and amphibolite gneiss. All sections of CH-4 bedrock were interspersed with coarse grained quartz-feldspar zones. No water bearing fractures were noted below a depth of 74 feet in CH-4 (Huffman and Abraham, 2010).

Adjacent to each coring site, a nest of research groundwater wells was installed. Each well cluster was installed in a manner such that the intermediate well depth would correspond to the transition zone just above the top of competent bedrock. The CH-2 cluster was located in a conceptual recharge area, an area where precipitation and surface water infiltrate and percolate down to the water table. CH-2 itself was drilled to a depth of 200 feet with an open borehole interval from 60 - 200 FBLS. The shallow, intermediate, and deep monitoring wells at CH-2

were drilled to depths of 38, 70, and 400 feet, respectively with screened intervals of 23 - 38, 60 - 70, and 87 - 400 FBLS, respectively. The CH-4 cluster was located in a conceptual discharge area, an area where groundwater is discharged to the surface. CH-4 itself was drilled to a depth of 100 feet with an open borehole interval of 33 -100 FBLS. The shallow, intermediate, and deep monitoring wells at CH-4 were drilled to depths of 23, 40, and 300 feet, respectively, with screened intervals of 8 - 23, 30 - 40, and 45 - 300 FBLS (Table 1).

Table 1 – Core-hole and well construction characteristics, R = regolith, I = transition zone, B = bedrock (modified from Huffman and Abraham, 2010)

| Station<br>Name | Construction<br>Date | Land-Surface Altitude<br>(ft. above NAVD 88) | Screened interval or open<br>borehole interval (FBLS) | Screen Type      | Monitoring<br>Zone |
|-----------------|----------------------|----------------------------------------------|-------------------------------------------------------|------------------|--------------------|
| MW-2S           | 6/14/2005            | 870.93                                       | 23 - 38                                               | 0.01 slotted PVC | R                  |
| MW-2I           | 10/18/2005           | 871.39                                       | 60 - 70                                               | 0.01 slotted PVC | Ι                  |
| MW-2D           | 10/4/2005            | 871.47                                       | 87 - 400                                              | Open hole        | В                  |
| CH-2            | 4/7/2005             | 870.58                                       | 60 - 200                                              | Open hole        | I - B              |
| MW-4S           | 6/8/2005             | 836.02                                       | 8 - 23                                                | 0.01 slotted PVC | R                  |
| MW-4I           | 3/15/2006            | 837.41                                       | 30 - 40                                               | 0.01 slotted PVC | Ι                  |
| MW-4D           | 3/9/2006             | 836.79                                       | 45 - 300                                              | Open hole        | В                  |
| CH-4            | 5/24/2005            | 836.26                                       | 33 - 100                                              | Open hole        | I - B              |

#### 2.2 Mineralogy

#### 2.2.1 Hand Lens Measurements

To gain an initial, high-level understanding of the mineralogy in each core, and to provide initial identification of the depth and extent of weathering, the REP cores were screened semi-quantitatively in the lab from bottom to top (from unweathered to weathered depths) for the relative presence or absence of biotite, hornblende, pyrite, and FeO<sub>x</sub>. The screening was used to assess the depth range where more detailed examination would be useful to identify weathering features. A Belomo Triplet 10x hand lens with a field of view approximately 0.79 inches wide was used.

In this work, the abundance of dark or metallic luster minerals (vs. light minerals) was estimated, and the dark or metallic minerals were subsequently identified. Where possible, visual measurements with the hand lens were made at no greater than three-foot intervals along the core. Existing broken spots and fracture surfaces were used for a non-destructive approach, to examine mineral faces and relief, and to avoid uncertainty with respect to inner core composition that would have otherwise been the case if the core exterior was measured. Where possible, the entire core cross-section was examined using this method (core cross-sectional area =  $4.6 \text{ in}^2$ ). In some cases, areas less than the entire cross-section were examined due to breakage and core friability. Where this was the case, the measurement recorded was based on the largest surface available for the corresponding depth. Exceptions to the general interval length were due to either poor recovery resulting in missing core sections, or core lengths greater than three feet with no fracture surface. Such was the case in CH-2 from 60.0 - 64.2 FBLS and in CH-4 from 70.0 - 66.4 FBLS. Because of poor recovery, fine particle size, and core friability, hand lens measurements were not possible from the land surface to depths of 46.3 feet in CH-2 and 28.0 feet in CH-4. Semiquantitative scores of the indicator minerals were recorded for each depth examined according to the index below:

| Indicator Mineral Index |  |  |
|-------------------------|--|--|
| 1 - Not present         |  |  |
| 2 - Less than 10%       |  |  |
| 3 - 10% - 25%           |  |  |
| 4 - 25% - 50%           |  |  |
| 5 - More than 50%       |  |  |

Index scores were based on the discernable minerals at the surface. Scores do not add up to 100% because other minerals such as quartz and feldspar were not included in the analysis. (See Appendix A)
## 2.2.2 Binocular Microscope Examination of Core Mineralogy

Detailed semiquantitative examinations of existing fracture surfaces that exposed the entire circumference of each core were made with a Meiji Techno EMZ-8TR binocular microscope with a variable field of view (0.84 - 0.16 inches wide) (Fig. 11).



Figure 11 - Meiji Techno EMZ-8TR with typical core sample

As described above, emphasis was placed on fracture surfaces that give a more complete picture of the core's internal structure and composition. Percentage composition of the same minerals of interest as measured with the hand lens were estimated by comparison to figure 12 (Eppes and Johnson, 2022).



Figure 12 - Percentage estimator used during hand lens and binocular microscope analyses (from Eppes and Johnson, 2022).

In a manner similar to the hand lens measurements, there were gaps in microscope measurements either due to poor recovery or core friability. In CH-2 such gaps exist from 0.0 - 5.8, 9.6 - 10.0, 14.3 - 35.0, and 42.0 - 42.5 FBLS. The gap in CH-4 due to poor recovery and friability exists from 0 - 28.5 FBLS, and includes core sections too long to fit under the microscope. Those lengths exist from 61.5 - 64.2, 66.4 - 72.1, 80.7 - 83.5, 86.7 - 93.2, and 98.3 - 100 FBLS. Estimated mineral percentages do not add to 100% because no attempt was made to estimate major minerals such as quartz and plagioclase.

Estimated mineral percentages were plotted as a function of depth to characterize mineralogical composition. In addition to estimated mineral percentages, ratios were computed for FeO<sub>x</sub> : biotite, FeO<sub>x</sub> : hornblende, and FeO<sub>x</sub> : (biotite + hornblende). X-ray fluorescence only provides information on total Fe concentrations, and does not discern between Fe<sup>2+</sup> and ferric iron (Fe<sup>3+</sup>). However, these FeO<sub>x</sub> ratios do provide information about the Fe speciation present at a given depth with Fe<sup>2+</sup> contained in unweathered biotite and hornblende and Fe<sup>3+</sup> contained in their weathering products, FeO<sub>x</sub>. At depths where biotite and or hornblende abundances were found to be zero, the denominator in the ratio was set at 0.5%, which was considered to be half of the visual detection limit, to avoid calculating undefined values or setting ratio values at the corresponding depth to some notional value (i.e. zero). (See Appendix B for tabular mineralogy results)

Pearson correlation coefficients (r) were calculated for each mineral of interest and depth and the FeO<sub>x</sub> ratios discussed above and depth, using the CORREL function in Microsoft Excel to show what, if any, relationships might exist. r values were also calculated for biotite, hornblende, and the FeO<sub>x</sub> ratios discussed above. Where r is +1, a positive relationship exists meaning when one variable increases the other increases at the same rate. When r is -1, a negative relationship exists meaning as one variable increases the other decreases at the same rate. An *r* of zero signifies no correlation. An *r* with magnitude of 0.8 or higher is generally accepted to represent a strong correlation, and 0.5 represents a moderate correlation. Below 0.5, *r* represents a weak or no correlation. However, because of the large sample sizes, we calculated critical values for each core using a two-tailed test at a statistical significance of 0.05. While *r* values may be below 0.5 for a given dataset, if they are greater than the critical value, there is an indication of statistical significance, and an implication that the results observed were not random. With a greater number of data pairs comes lower critical values, and statistical significance at lower *r* values. In total, there were 337 and 119 mineral abundance data pairs in CH-2 and CH-4, respectively. At a statistical significance of 0.05, this results in critical values of  $\pm$  0.1069 and  $\pm$  0.1801 for CH-2 and CH-4, respectively (Dunaetz, 2017).

2.3 Whole-rock Geochemistry by Hand-Held X-Ray Fluorescence Spectrometry

After visual inspection and mineralogical characterizations were completed, the cores underwent whole-rock geochemical analysis for weathering-related elements from bottom to top at no greater than one-foot intervals along the core with an Olympus DELTA Handheld DP-6000 X-ray fluorescence (pXRF) spectrometer. One of the main goals of this study was to geochemically test the core material in a non-destructive manner. The pXRF device provides composition data for a wide range of elements, over very short time periods, without the need to break, crack, crush, or destroy the core material (i.e. as would thin section microscopy or conventional XRF pressed samples). However, the pXRF device used cannot provide information for many light elements, including sodium (Na), magnesium (Mg), or K, in its current configuration. This study focused on the concentrations of Fe, Mn, Ca, Rb, Sr, Si, and Zr. Fe is of interest because of its inclusion in the indicator minerals and their weathering products, FeO<sub>x</sub>. Mn plays an important role in redox chemistry and water quality. Ca is an integral part of both hornblende and early forming plagioclase. K was also of interest because of its inclusion in biotite and orthoclase, but was not detectable with the pXRF device used. Because it is in the same group and one period below K, Rb was considered an acceptable proxy for K. For the same reason Sr was considered an acceptable proxy for Ca, and to use as support of measured Ca values. Si was measured to provide a means of classifying core sections as either felsic, mafic, or intermediate depending on SiO<sub>2</sub> concentrations. Finally, Zr was measured for use as an immobile element in the  $\tau$  calculations discussed below.

### 2.3.1 pXRF Analysis

Scan time using this pXRF device was approximately 4 minutes per scan. During this time, it was critical that the pXRF device and target be in close proximity and not move. It was also critical that the distance and angle the pXRF device and target surface were with respect to each other (the "counting geometry") be as consistent as possible for each scan. To limit movement the scanner was mounted in a vertical, downward facing manner using a large lab stand and clamp. Core sections were placed directly below the scanner with the scanner placed as close as possible to the fracture surface to avoid pXRF device proximity errors (Fig. 13). Target surfaces were cleaned of dust and loose surface material with blasts of air from a lens cleaning bellows before analysis. Where mud from drilling had dried on the fracture surface, the surface was thoroughly rinsed with deionized water and allowed to air dry before analysis.



Figure 13 - pXRF device mounted with core sample

Where core sections were too long to use the lab stand, they were laid on their side on a countertop with the pXRF on its side, adjacent to and touching the fracture surface (Fig. 14).



Figure 14 - pXRF device lying on its side for core sections too long for lab stand

Where core sections had intervals greater than one foot between fracture surfaces the core's exterior was scanned at points no greater than a foot apart between fractures. In all cases, care was taken to place the pXRF device's view pane as close to the target sample as possible, in a consistent counting geometry, and to not have the pXRF device pointed at large individual crystals to avoid giving any element or group of elements greater weight at a depth than truly existed.

Each day before analysis of the core began, the pXRF device was used to scan four certified standards. The standards used were an SiO<sub>2</sub> blank provided by the pXRF manufacturer, a USGS quartz latite sample (QLO-1a), and two Montana soil samples, one with highly elevated trace element levels (NIST-2710a) and one with moderately elevated trace element levels (NIST-2711a). These unadjusted elemental concentrations were then compared to accepted values shown on Certificates of Analysis that accompanied each standard. No Certificate of Analysis was available for the SiO<sub>2</sub> blank, but there were never any values returned by the pXRF device for any element of interest, other than Si, above the machine's manufacturer's Limit of Detection (LOD), with two exceptions. On the first and final days of analysis the XRF device returned values of 406 and 2,332 ppm for Fe when scanning the SiO<sub>2</sub> blank, respectively. This is most likely attributable to  $FeO_x$  dust on the surface of the SiO<sub>2</sub> standard. It is not believed to have had a material effect on results. The unadjusted and accepted values were then analyzed via linear regression. Unadjusted concentrations were then calibrated using the equation of the best fit line for each element's standard runs of that day, and recorded with respect to the corresponding depth below land surface. (See Appendix C for tabular results)

### 2.3.2 Limits of Detection

To verify and ensure pXRF data quality, a LOD was calculated for each element of this study's focus. Each LOD was calculated using the calibration curve method adopted by the International Council for Harmonization (ICH) and the International Union of Pure and Applied Chemistry (IUPAC) (Kadachi and Al-Eshaikh, 2012; Swartz and Krull, 2012; Gazulla et al., 2021). According to that method:

$$LOD = 3.3 \left(\frac{\sigma}{S}\right)$$

In which  $\sigma$  is the standard deviation of the response (the unadjusted concentrations for each element from each standard in this case), and *S* is the slope of the calibration curve, calculated by linear regression, as discussed above. Because no Certificate of Analysis was available for the SiO<sub>2</sub> blank, it was only used as a "zero standard" for the major elements (Fe, Mn, Ca, and Si), because we could be reasonably assured that it contained negligible levels of major elements. The SiO<sub>2</sub> blank was not included in LOD calculations for the trace elements (Rb, Sr, and Zr) because we could not be assured of negligible levels of trace elements. The LODs for each element are shown in table 2. Columns A and B of the table show the total number and percentage of all measured values below the LOD. Columns C and D show the number and percentage of measured values below the LOD when excluding measured zero values.

| Limits of Detection |           |                   |                   |                                   |                                   |  |  |  |  |
|---------------------|-----------|-------------------|-------------------|-----------------------------------|-----------------------------------|--|--|--|--|
|                     |           | А                 | В                 | С                                 | D                                 |  |  |  |  |
| Element             | LOD (ppm) | <u># &lt; LOD</u> | <u>% &lt; LOD</u> | $\underline{\# < \text{LOD} > 0}$ | $\underline{\% < \text{LOD} > 0}$ |  |  |  |  |
| Iron                | 6,605     | 25                | 4%                | 25                                | 4%                                |  |  |  |  |
| Managanese          | 642       | 445               | 72%               | 108                               | 18%                               |  |  |  |  |
| Calcium             | 8,178     | 225               | 37%               | 172                               | 28%                               |  |  |  |  |
| Rubidium            | 16        | 52                | 8%                | 41                                | 7%                                |  |  |  |  |
| Strontium           | 74        | 154               | 25%               | 150                               | 24%                               |  |  |  |  |
| Silicon             | 74,764    | 0                 | 0%                | 0                                 | 0%                                |  |  |  |  |
| Zirconium           | 8         | 1                 | 0%                | 0                                 | 0%                                |  |  |  |  |

 Table 2 - Limits of detection calculated for each element of interest, including the number and percentage of measurements below the respective LOD. Columns C and D exclude measured zero values.

While the number and percentage of measurements below the LOD may seem dramatic for Mn, Ca, and Sr, the curves shown in figure 15 indicate that the pXRF analyzer was generally oscillating around mean values for all elements rather than trending systematically upward or downward for any element of interest during the period of the study.



Figure 15 - Unadjusted concentrations as measured by XRF analysis of mid-range standards for each element throughout the course of the project. Si has been excluded here because it was the only element with no measured values below the LOD.

The lack of an upward or downward trend suggests the reliability of these measurements for the purpose of generalizations about mineral weathering fronts. With that in mind, no values were excluded from the final dataset, whether below the LOD or not.

2.4 Determination of Elemental Enrichment and Depletion

In a manner similar to the mineralogy findings, elemental concentrations of the focus elements were plotted as a function of depth. Because of the gneissic nature of these cores there were high levels of heterogeneity and fast transitions between dominantly felsic and mafic sections. % Si was converted to % SiO<sub>2</sub>, and plotted as a function of depth to highlight transitions in the cores from overall felsic to mafic occurrences with SiO<sub>2</sub> concentrations greater than 63% being considered felsic, 52% to 63% considered intermediate, and below 52% considered mafic (Yager and Bove, 2007).

Elemental concentrations generally showed few trends. To highlight elemental mobility, and degree of weathering, a variation of the open-system mass-transport function ( $\tau$ ) was calculated for each element, at each depth measurement, as follows:

$$\tau_{j,w} = \frac{m_{j,flux}}{m_{j,p}} = \left(\frac{\frac{c_{j,w}}{c_{i,w}}}{\frac{c_{j,p}}{c_{i,p}}}\right) - 1$$

In this case  $\tau_{j,w}$  is the ratio of  $m_{j,flux}$  to the mass of element j, in the core material. Here,  $c_{j,w}$  represents the concentration of the mobile element in weathered material,  $c_{i,w}$  represents the concentration of the immobile element in weathered material,  $c_{j,p}$  represents the concentration of the mobile element in unweathered material, and  $c_{i,p}$  represents the concentration of the immobile element in unweathered material. Where  $\tau_{j,w}$  is +1 for a given element it represents 100% enrichment meaning 50% of the element in the weathered material is sourced from the protolith and 50% externally, but values greater than 1 are possible. If  $\tau_{j,w}$  is -1, complete

depletion has occurred with 100% removal of the element from the protolith as a result of weathering (Oh and Richter, 2005; Fisher et al., 2017).

Selection of the protolith is an important factor when using this method as it has a direct effect on elemental starting points. For the purpose of this study, the unweathered protolith was deemed to start where the original USGS core report (Huffman and Abraham, 2010) stopped mentioning weathered rock, and extended to the deepest depth studied. In CH-2 this depth was from 69.5 - 100 FBLS, and in CH-4 unweathered rock was from 64.7 - 100 FBLS. Over these depth ranges, elemental concentrations were averaged to arrive at a nominal unweathered value. This was done both for convenience, and as a means of integrating the otherwise high levels of heterogeneity intrinsic to these gneissic rocks.

Selection of what element to consider as immobile is also an important consideration (Oh and Richter, 2005). Originally, the intent was to measure both Zr and titanium (Ti) for use as immobile elements, and to compare  $\tau$  results. However, the pXRF device used never showed reliable results measuring Ti concentrations, and the original plan was abandoned in favor of solely examining  $\tau$  values calculated with Zr as the immobile element. The low Zr LOD calculated (7.68 ppm) and single measurement below that LOD (shown above) would seem to indicate that Zr measurements were reliable and appropriate for use in this study.

au values were plotted as a function of depth to highlight trends in enrichment or depletion. To show what, if any, relationships might exist between the two variables, *r* values were also calculated for au and depth using the same CORREL function in Microsoft Excel as discussed above. *r* values were also calculated for au-to-au values for each element of interest in each core (e.g.  $au_{\text{Fe}}$  in CH-2 to  $au_{\text{Mn}}$  in CH-2, etc.) to identify any correlated relationships between elements. In the case of both au-to-depth and au-to-au correlations, critical values were calculated in the same manner, and at the same level of statistical significance, used for the mineral and depth correlations discussed above. There were 365 and 250  $\tau$  data pairs which result in critical values of ± 0.1027 and ± 0.1241 for CH-2 and CH-4, respectively (Dunaetz, 2017).

## 2.5 Groundwater Data

Water levels and water quality data were not field collected for this study, but were rather obtained from external sources. Parameters including DO, pH, specific conductance, temperature, and ionic concentrations (Ca, Na, HCO<sub>3</sub>, etc.) were collected intermittently using multiparameter water-quality probes from the period November 28, 2006 to March 17, 2009 by USGS and NCDEQ. Groundwater levels were measured continuously with a submersible pressure transducer with an internal data logger (Huffman and Abraham, 2010). Water quality data was downloaded from an online NCDEQ storage site (N.C. Department of Environmental Quality, Undated), and water level data was downloaded from USGS' National Water Information System database (U.S. Geological Survey, Undated).

# 3 RESULTS

## 3.1 Mineralogy

Both cores showed a pattern of decreasing amounts of weathering as depth increased (Fig. 16). Fresh, unweathered rock was dominant at greater depths with degree of weathering and the presence of secondary minerals such as FeO<sub>x</sub> and MnO<sub>x</sub> increasing at shallower depths. However, both cores had zones of significant weathering and secondary mineral presence layered within the otherwise unweathered rock. These zones generally coincided with water-bearing fractures that allowed for higher DO levels and greater water-rock contact (Table 3). In both cores, there was a very high level of lithologic variation with banded gneiss being the predominant rock type, but both cores displayed a felsic weathering pattern like that described by Brantley et al. (2017) rather than a mafic weathering pattern.



Figure 16 - The upper 40 feet of CH-2 and a representative section of unweathered rock typical of the deepest sections of CH-2

| CH-2 Lithology |                                  |                          |            | CH-4 Lithology                |                          |  |  |
|----------------|----------------------------------|--------------------------|------------|-------------------------------|--------------------------|--|--|
| Depth          |                                  | H <sub>2</sub> O Bearing | Depth      |                               | H <sub>2</sub> O Bearing |  |  |
| (FBLS)         | Rock Name                        | Fractures (FBLS)         | (FBLS)     | Rock Name                     | Fractures (FBLS)         |  |  |
| 5              |                                  |                          | 5          |                               |                          |  |  |
| 10             |                                  |                          | 10         |                               |                          |  |  |
| 15             |                                  |                          | 15         | Regolith (residuum)           |                          |  |  |
| 20             |                                  |                          | 20         |                               |                          |  |  |
| 25             |                                  |                          | 23         |                               |                          |  |  |
| 30             | Regolith (residuum)              |                          | 28         | Transition Zana               |                          |  |  |
| 35             |                                  |                          | 30         | If ansmon Zone                |                          |  |  |
| 40             |                                  |                          | 35         | Kyanite Biotite Schist        | 32.5 & 33.5 - 35         |  |  |
| 45             |                                  |                          | 40         | Kyanite Schist                | 35 - 37                  |  |  |
| 50             |                                  |                          | 43         | Kyanite Biotite Garnet Gneiss | 42.5 & 43                |  |  |
| 55             |                                  |                          | 45         | Quartz Faldsnar Zana          |                          |  |  |
| 60             | Sanralitia Riatita Carnat Sahist | 56 - 60                  | 47         | Quartz-reidspar Zone          |                          |  |  |
| 65             | Sapronuc Bionce Garnet Schist    | 60.5                     | 48         | Kyanite-Garnet-Schist         | 48                       |  |  |
| 68.5           | Schist                           | 65 - 69                  | 49         | Quartz-Feldspar Zone          |                          |  |  |
| 71             | Amphibolite Gneiss               | 70.5                     | 50         | Kyanite Schist                |                          |  |  |
| 74             | Biotite Garnet Gneiss            | 73 - 74                  | 55         | Kyanite Biotite Garnet Gneiss |                          |  |  |
| 77.5           | Amphibolite Gneiss               | 75.5 <b>&amp;</b> 77.5   | 58         | Kyanite Garnet Biotite Schist |                          |  |  |
| 78             | Migmatitic Zone                  |                          | 60         | Quartz-Feldspar Zone          |                          |  |  |
| 80             | Biotite Gneiss                   | 80                       | 62         | Quarte i chuspai Zone         |                          |  |  |
|                | Alternating Biotite and          |                          |            | Alternating Biotite and       |                          |  |  |
| 83             | Amphibolite Gneiss               |                          | 65         | Amphibolite Gneiss            | 64.5                     |  |  |
| 84             | Migmatitic Zone                  | 82 - 85                  | 67         | Biotite Gneiss                | 66                       |  |  |
|                | Alternating Biotite and          |                          |            |                               |                          |  |  |
| 85             | Amphibolite Gneiss               |                          | 70         | Leucocratic Gneiss            |                          |  |  |
| 85.5           | Migmatitic Zone                  | 85.5                     | 73         |                               | 72.5 - 74                |  |  |
| 87             | Biotite and Amphibolite Gneiss   | 87-88                    | 75         | Alternating Biotite and       |                          |  |  |
| 90             | -                                | 89.2                     | 80         | Amphibolite Gneiss            |                          |  |  |
| 95             | Augen Gneiss                     | 90, 90.8, 92.5, 94.7,    | 85         | 85<br>90 Amphibolite Gneiss   |                          |  |  |
| 100            |                                  | 95.8 - 97, & 98.2        | 90         |                               |                          |  |  |
|                |                                  |                          | <b>9</b> 5 | Alternating Biotite and       |                          |  |  |
|                |                                  |                          | 100        | Amphibolite Gneiss            |                          |  |  |

Table 3 - Summary of lithologies at each core location (modified from Huffman and Abraham (2010))

Beginning at 100 FBLS, CH-2 was predominantly amphibolite gneiss with interspersed zones of augen gneiss and biotite gneiss (Table 3). At approximately 66 FBLS, the deepest occurrence of highly weathered rock was noted in CH-2 (Huffman and Abraham, 2010) with weathered biotite schist and biotite gneiss dominating above this depth. Accordingly, most intact hornblende was observed below 66 FBLS in CH-2 with biotite and FeO<sub>x</sub> being the predominant

mafic minerals at shallower depths (Fig. 17). CH-2 had a fracture density of 1.9 cracks per foot and 352 fracture surfaces that were used for mineral and XRF analysis.



Figure 17 - CH-2 typical mineralogy visible by binocular microscope, clockwise from top left: A) unweathered hornblende and quartz (69.3 FBLS), B) weathered hornblende and garnet (circled) (68.5 FBLS), C) MnO<sub>x</sub> (black staining at arrows) on highly weathered biotite (38.2 FBLS), and D) well developed FeO<sub>x</sub> on highly weathered biotite (64.0 FBLS), field of view in all pictures is approximately 0.75 inches

Beginning at 100 FBLS, CH-4 alternated between biotite gneiss and amphibolite gneiss until a zone of leucocratic gneiss was found from 70 – 73 FBLS (Table 3). Above this biotite gneiss alternated with kyanite schist and kyanite gneiss with interspersed quartzofeldspathic zones. Hornblende was generally only present in CH-4 below 75 FBLS. Above this depth, biotite and FeO<sub>x</sub> were the dominant mafic minerals (Fig. 18). CH-4 had a fracture density of 1.3 cracks per foot and 184 fracture surfaces used for mineral and pXRF analysis.



Figure 18 - CH-4 typical mineralogy visible by binocular microscope, clockwise from top left: A) unweathered biotite (95.1 FBLS), B) weathered biotite with FeO<sub>x</sub> (73.3 FBLS), C) well-developed FeO<sub>x</sub> and MnO<sub>x</sub> (black staining at arrows) on highly weathered biotite (31.6 FBLS), and D) unweathered kyanite (circled) and quartz (54.8 FBLS), field of view in all pictures is approximately 0.75 inches

In general, CH-2 was more mafic than CH-4. 80.6% of the pXRF scans in CH-2 indicate a mafic composition whereas 68.0% of scans in CH-4 were mafic. Both cores were found to be mafic throughout the soil layers, down to approximately 35 FBLS in CH-2 and 30 FBLS in CH-4. This is most likely due to Fe coatings on soil particles that had oxidized after being brought to the surface.

While both cores alternate between mafic and felsic compositions, CH-2 shows distinctly felsic zones from 45.9 - 54.17, 65.0 - 70.0, and 76.3 - 88.4 FBLS. CH-4 shows a large felsic zone extending from 37.1 - 62.9 FBLS. High levels of heterogeneity were expected when this project was conceived, but figure 19 puts heterogeneity in each core on display.



Figure 19 - Felsic & Mafic portions of each core with mafic zones falling in the gray shaded region and felsic zones in the unshaded region. Here, 63% & 52 % SiO<sub>2</sub> are taken as the felsic and mafic boundaries, respectively (Yager and Bove, 2007).

While both CH-2 and CH-4 biotite abundances varied from 0 - 90%, biotite showed differing patterns between the cores (Fig. 20). In CH-2, biotite generally increased with depth reaching a maximum abundance of 90% at 78.0 – 79.6 FBLS, and showing large alternations below that depth. In CH-4, biotite showed large alternation throughout the core profile, with its maximum abundance of 90% occurring at 36.1 FBLS. Biotite was positively correlated with depth in CH-2 (r = 0.58), but not in CH-4 (r = -0.01) (Table 4). An initial goal of the project was to attempt to identify a BDD to serve as an indicator of the biotite weathering front. However, no specific depth of continuous biotite disappearance was noted. Instead, there was a zone of discontinuous biotite occurrence in which biotite was weathered close to water-bearing fractures and unweathered away from the fractures. Above the discontinuous zone, biotite was absent or highly weathered, and below the zone biotite was generally unweathered.

In both cores, hornblende abundances varied from 0 - 75%, generally increasing with depth (Fig. 20). Hornblende was weakly correlated with depth in CH-2. There was a positive correlation between hornblende and depth in CH-4 (r = 0.36) greater than the critical value ( $\pm$  0.1801) (Table 4). We suspect the low hornblende correlation coefficients are the result of the limited number of hornblende occurrences observed, the distribution of hornblende throughout each core, and the banded nature of the bedrock which means that depth was not the only factor controlling the occurrence of hornblende. In CH-2, large spikes of hornblende were noted at 57.0, 69.0, 82.8, and 85.0 FBLS. In general, CH-2 displayed more, and wider, bands of hornblende occurrences at 59.5, 64.7, 72.5, 95.1 FBLS. The HDDs were 56.8 and 57.4 FBLS in CH-2 and CH-4, respectively. No hornblende was observed at depths shallower than the HDD in either core.



Figure 20 - Abundances of primary minerals (biotite & hornblende) throughout each core profile as measured by binocular microscope.

FeO<sub>x</sub> showed a moderate negative correlation with depth in both cores with a CH-2 *r* value of -0.51 (Table 4). In CH-2, FeO<sub>x</sub> showed a maximum abundance of 80% at 37.5 FBLS (Fig. 21). This depth is less than 2 feet above the average depth to the water table in CH-2 (39.3 FBLS), and falls within the range of fluctuation for depth to the water table in CH-2 as discussed below. Secondary FeO<sub>x</sub> spikes in CH-2 of 60% and 75% were noted at 59.2 and 66.5 FBLS, respectively. FeO<sub>x</sub> abundances reached zero at 59.5 and 69.5 FBLS, and were never greater than 30% at depths below 69.5 FBLS. Tertiary FeO<sub>x</sub> abundance spikes of 20% were noted at 75.6, 77.7, and 82.8 FBLS while spikes to 30% were noted at 85.8 and 87.3 FBLS. Compared to the original core report (Huffman and Abraham, 2010), all depths where secondary and tertiary FeO<sub>x</sub> spikes were found in CH-2 correspond with water-bearing fractures observed during drilling.

FeO<sub>x</sub> in CH-4 showed a higher degree of variability, but overall, the same negative correlation with depth as that observed in CH-2 with r = -0.48 (Table 4). FeO<sub>x</sub> abundance in CH-4 peaked at 80% at 28.7 FBLS, but dropped to zero at 30.5 FBLS (Fig. 21). A comparison of FeO<sub>x</sub> abundances and depth to the water table was not possible for CH-4 because the water table never fell below 9.0 FBLS, which is approximately 19.5 feet above the shallowest measurement in CH-4, due to core friability and thick coatings of drilling mud. FeO<sub>x</sub> spiked to 50% and 60% again at 33.2 and 36.4 FBLS, respectively. Again, these depths correspond to water-bearing fractures noted in the original core report (Huffman and Abraham, 2010). After falling to 1% at 45.5 FBLS FeO<sub>x</sub> abundances were never greater than 25% below that depth. FeO<sub>x</sub> spikes to 25% were observed at 50.0, 51.5, and 73.3 FBLS. Spikes to 20% were noted at 64.2 and 94.8 FBLS. All secondary and tertiary FeO<sub>x</sub> abundance spikes in CH-4 were found to coincide with water-bearing fractures pointed out in the original core report (Huffman and Abraham, 2010) with the exception of the 50.0 and 51.5 FBLS spikes that probably correspond to a water bearing

fracture noted at 48.0 FBLS with the discrepancy being due to differing length measurement methods.

Correlation coefficients were calculated to identify any relationships between FeO<sub>x</sub> and primary mineral abundances (biotite, hornblende, and biotite + hornblende). While there were no correlations between FeO<sub>x</sub> and any of the primary minerals in either core greater in magnitude than 0.49, all correlations were negative (as expected) and greater than the critical values calculated for each core. In CH-2, FeO<sub>x</sub> was moderately negatively correlated with biotite + hornblende (r = -0.49).

Table 4 - Depth and mineral correlations calculated based on binocular microscope mineral examinations. All correlations calculated exceed the critical value (CH-2 =  $\pm$  0.1069, CH-4 =  $\pm$  0.1801) with the exception of depth correlations for hornblende in CH-2 and biotite in CH-4. Correlations above the critical value indicate statistically significant relationships.

| <u>CH-2</u> Depth Correlations (n = 337,  | , p < 0.05) | CH-2 Mineral Correlations (n = 337, p < 0.05)           |       |  |
|-------------------------------------------|-------------|---------------------------------------------------------|-------|--|
| Biotite                                   | 0.58        | FeOx : Biotite                                          | -0.40 |  |
| Hornblende                                | 0.10        | FeOx : Hornblende                                       | -0.19 |  |
| FeOx                                      | -0.51       | FeOx : (Biotite + Hornblende)                           | -0.49 |  |
| FeOx / Biotite                            | -0.29       |                                                         |       |  |
| FeOx / Hornblende                         | -0.52       |                                                         |       |  |
| FeOx / (Biotite + Hornblende)             | -0.29       |                                                         |       |  |
| <u>CH-4 Depth Correlations (n = 119</u> , | , p < 0.05) | <u>CH-4 Mineral Correlations (n = 119, p &lt; 0.05)</u> |       |  |
| Biotite                                   | -0.01       | FeOx : Biotite                                          | -0.23 |  |
| Hornblende                                | 0.36        | FeOx : Hornblende                                       | -0.18 |  |
| FeOx                                      | -0.48       | FeOx : (Biotite + Hornblende)                           | -0.30 |  |
| FeOx / Biotite                            | -0.27       |                                                         |       |  |
| FeOx / Hornblende                         | 0.40        |                                                         |       |  |
|                                           | -0.42       |                                                         |       |  |



Figure 21 - Secondary mineral (FeOx) abundances throughout each core profile as measured by binocular microscope.

Ratios were also calculated to highlight FeO<sub>x</sub> and Fe-bearing mineral relationships based on the abundances discussed above and according to the following ratios:

 $Biotite - oxide \ ratio = \frac{FeO_x \ Abundance}{Biotite \ Abundance} \qquad Hornblende - oxide \ ratio = \frac{FeO_x \ Abundance}{Hornblende \ Abundance}$  $Total \ ratio = \frac{FeO_x \ Abundance}{(Biotite \ Abundance + Hornblende \ Abundance)}$ 

In CH-2, the biotite-oxide ratio shows a distinctive maximum of 80 at 37.5 FBLS, and a secondary peak to 70 at 35.0 FBLS (Fig. 22). Below 69.1 FBLS, the biotite-oxide ratio quickly settles to near zero and never again rises above 1.5 in CH-2 with one exception (6 at 84.0 FBLS). In CH-4, the biotite-oxide ratio's maximum of 23.3 occurs at 29.2 FBLS, with secondary peaks of 16.7, 10, and 5.0 at 28.7, 37.1, and 43.3 FBLS, respectively. Below 45.4 FBLS, the biotiteoxide ratio never rises above 1.25 in CH-4. In both cores, the total ratio generally corresponds to the biotite-oxide ratio, which is most likely due to the greater amounts of biotite observations than hornblende in these cores. The biotite and total ratios were weakly negatively correlated with depth in each core, but r values were greater than the critical values for each core (Table 4).

In CH-2, the hornblende-oxide ratio has a distinctive maximum of 160 at 37.5 FBLS (Fig. 22). There were numerous spikes in the hornblende-oxide ratio throughout CH-2. However, beginning at 68.6 FBLS and below, there were more zero or near zero values and local maximums were lower than at shallow depths. In CH-4, the hornblende-oxide ratio showed a maximum of 160 at 28.7 FBLS. Below 66.4 FBLS in CH-4 the hornblende-oxide ratio begins to show more zero or near zero values with subdued local maximums when compared to shallower depths. The hornblende-oxide ratio was moderately negatively correlated with depth in both cores (Table 4).



Figure 22 - FeO<sub>x</sub> ratios for biotite and hornblende. While not shown here, the ratio of FeO<sub>x</sub> to total Fe-bearing minerals generally corresponds to the biotite-oxide ratio curve in both cores.

#### 3.2 Whole-rock Geochemistry

#### 3.2.1 Elemental Abundance

No Ca values above the LOD (8,178 Ca ppm) were measured shallower than 42.5 FBLS in CH-2. Beginning at that depth, CH-2 Ca concentrations showed a high degree of variability, but with a generally upward trend. There is a distinctive peak of 186,003 Ca ppm at 87.3 FBLS with what appears to be a general downward trend after that (Fig. 23).

Sr values in CH-2 showed a similar pattern at shallow depths with the first measurement above the LOD (74 Sr ppm) of 80.2 Sr ppm at 6.0 FBLS. Otherwise, Sr concentrations stayed below the LOD until 37.0 FBLS where they spike to 887.7 Sr ppm. From 40.0 - 47.4 FBLS Sr concentrations stayed elevated and ranged from 93 - 1,155 Sr ppm before beginning a downward trend. In a manner similar to the Ca concentrations observed there was a distinctive spike to 3,623 Sr ppm at 87.1 FBLS with the downward trend continuing thereafter (Fig. 23).



Figure 23 - Ca (L) and Sr (R) concentrations in CH-2 as a function of depth.

Fe concentrations showed few if any trends in CH-2. With one exception, they generally oscillated from 3,524 to 125,393 Fe ppm throughout the core profile. There was a distinctive spike to 210,495 Fe ppm at 56.9 FBLS (Fig. 24).

Mn concentrations in CH-2 ranged from 0 to 4,322 ppm throughout the core profile, with two exceptions. Strong spikes were to 16,674 and 13,176 ppm at 9.6 and 37.3 FBLS, respectively. After the spike at 37.3 FBLS, maximum Mn concentrations show a downward trend with increasing depth. The Mn spike observed at 9.6 FBLS is difficult to explain, but the spike noted at 37.3 FBLS coincided with the upper limit of the depth to the water table range observed in CH-2 (Fig. 24).



Figure 24 - Fe (L) and Mn (R) concentrations in CH-2 as a function of depth.

Rb concentrations in CH-2 ranged from 0 - 642 Rb ppm throughout the core without any discernable pattern. There were abrupt spikes to 367 and 643 Rb ppm at 65.5 and 66.0 FBLS. Strong secondary peaks to 340, 310, and 342 Rb ppm were noted at 43.9, 84.8, and 85.6 FBLS, respectively. No other Rb concentration measured in CH-2 was greater than 289 Rb ppm (Fig. 25).

Zr concentrations in CH-2 ranged from 9 - 1,590 Zr ppm throughout the core profile. The maximum value was observed at 79.1 FBLS with no concentrations greater than 687 Zr ppm occurring anywhere else in CH-2. Zr concentrations showed a general downward trend until reaching the depth of the maximum concentration observed before again showing a downward trend (Fig. 25).



Figure 25 - Rb (L) and Zr (R) concentrations in CH-2 as a function of depth.

No Ca values above the LOD (8,178 Ca ppm) were measured in CH-4 shallower than 21.0 FBLS. Beginning at that depth, CH-4 Ca concentrations varied from 0 to 208,323 Ca ppm, with a generally increasing trend as depth increased. The maximum Ca concentration of 208,323 Ca ppm in CH-4 occurred at 72.1 FBLS, with a strong secondary peak to 150,296 Ca ppm at 68.0 FBLS (Fig. 26).

Sr values in CH-4 showed a similar pattern at shallow depths with the first measurement above the LOD (74 Sr ppm) of 216 Sr ppm occurring at 7.0 FBLS. Beginning at 29.0 FBLS, Sr concentrations began to oscillate, with a general upward trend in maximum values thereafter. Similar to the Ca concentrations observed in CH-4, there were distinctive spikes to 1,717 and 2,319 Sr ppm at 68.0 and 72.1 FBLS (Fig. 26).



Figure 26 - Ca (L) and Sr (R) concentrations in CH-4 as a function of depth.

Fe concentrations showed no trends in CH-4. Fe concentrations ranged from 1,476 – 115,321 Fe ppm throughout the core profile. The maximum observed Fe concentration in CH-4 of 115,321 Fe ppm occurred at 35.7 FBLS. There were distinctive secondary peaks of 109,796, 112,315, and 113,430 Fe ppm at 6.0, 58.0, and 97.1 FBLS, respectively (Fig. 27).

Mn concentrations in CH-4 ranged from 0 - 4,973 Mn ppm throughout the core profile. The maximum Mn concentration of 4,973 Mn ppm in CH-4 was observed at 33.2 FBLS. There were also fast spikes to 4,053, 4,644, 4,213, 3,616, and 2,703 Mn ppm at 21.0, 29.0, 31.6, 58.0 and 95.0 FBLS, respectively. No continuous trends in Mn concentrations were noted in CH-4. While Mn showed a very distinctive peak near the depth to water table in CH-2, such was not the case in CH-4. In CH-4 Mn levels were elevated near the depth to water table, but were much lower than Mn concentrations at lower depths. Also, unlike CH-2, Mn and Fe concentrations show local maximums at or near the same depths (Fig. 27).



Figure 27 - Fe (L) and Mn (R) concentrations in CH-4 as a function of depth.

Rb concentrations in CH-4 ranged from 0 - 384 Rb ppm throughout the core without any discernable pattern. The maximum Rb concentration of 384 Rb ppm observed in CH-4 occurred at 81.8 FBLS. No other Rb concentration measured in CH-4 was greater than 257 Rb ppm (Fig. 28).

Zr concentrations in CH-4 ranged from 8 – 921 Zr ppm throughout the core profile. The maximum value of 921 Zr ppm was observed at 26.0 FBLS. A strong secondary peak of 689 Zr ppm occurred at 5.0 FBLS with no concentrations greater than 526 Zr ppm occurring anywhere else in CH-4. Zr concentrations showed a general downward trend throughout the core below the depth of the observed maximum concentration (Fig. 28).



Figure 28 - Rb (L) and Zr (R) concentrations in CH-4 as a function of depth.
#### 3.2.2 Elemental Enrichment and Depletion

In CH-2,  $\tau_{Ca,w}$  was negative, indicating depletion, from the land surface down to a depth of 45.4 FBLS (Fig. 29).  $\tau_{Ca,w}$  stopped showing any -1 values, indicating complete depletion, at 42.0 FBLS. At depths greater than 45.7 FBLS,  $\tau_{Ca,w}$  showed a high level of variation, oscillating between -0.963 and 31.9, but with a general increasing trend until 75.6 FBLS. From 67.4 to 75.6 there were fast oscillations in  $\tau_{Ca,w}$  from -0.65 to 31.9. This zone coincides with shear zones, as evidenced by stretched quartz and feldspar grains, high garnet abundance (up to 20%), and interspersed amphibolite gneiss observed when the core was logged (Huffman and Abraham, 2010). The maximum  $\tau_{Ca,w}$  value was found at 69.0 FBLS, and  $\tau_{Ca,w}$  was positively correlated with depth in CH-2 (Table 5).  $\tau_{Ca,w}$  in CH-2 showed strong positive correlations with  $\tau_{Sr,w}$ ,  $\tau_{Fe,w}$ , and  $\tau_{Mn,w}$  (Table 6).

In CH-4,  $\tau_{Ca,w}$  was negative from the land surface down to 20.0 FBLS at which point it began to show quick oscillations between negative and positive values (Fig. 29). Beginning at 46.1 FBLS, and deeper, there were no further observations of complete Ca depletion. Maximum Ca enrichment in CH-4 was found at 84.1 FBLS with a  $\tau_{Ca,w}$  value of 10.9 which coincides with a migmatite zone (Huffman and Abraham, 2010). In CH-4,  $\tau_{Ca,w}$  showed the strongest correlation (positive) with depth of all elements (Table 5) and a strong positive correlation with  $\tau_{Fe,w}$  only (Table 6). Interestingly,  $\tau_{Ca,w}$  in CH-4 showed less dramatic variation and substantially less maximum enrichment than  $\tau_{Ca,w}$  in CH-2. This was the general case for all elements for which  $\tau$ values were calculated.



Figure 29 -  $\tau$  values for Ca as a function of depth in each core profile.

In CH-2,  $\tau_{Sr,w}$  was negative from the land surface down to a depth of 36.9 FBLS (Fig. 30). At 85.6 FBLS and below,  $\tau_{Sr,w}$  stopped showing any -1 values. However,  $\tau_{Sr,w}$  began to indicate enrichment at 42.5 FBLS. At depths greater than 37.0 FBLS,  $\tau_{Sr,w}$  showed a high level of variation, oscillating between -1 and 18.7.  $\tau_{Sr,w}$  was positively correlated with depth (Table 5), and the maximum  $\tau_{Sr,w}$  value of 18.7 was found at 58.7 FBLS.  $\tau_{Sr,w}$  in CH-2 showed positive correlations with  $\tau_{Ca,w}$  and  $\tau_{Fe,w}$  (Table 6).

In CH-4,  $\tau_{Sr,w}$  was negative from the land surface down to 30.0 FBLS at which point it began to show sharp oscillations between negative and positive values (Fig. 30). Beginning at 51.5 FBLS, and deeper, there were no further observations of complete Sr depletion.  $\tau_{Sr,w}$  was positively correlated with depth (Table 5), and the maximum Sr enrichment in CH-4 was found at 72.5 FBLS with a  $\tau_{Sr,w}$  value of 9.08. In CH-4,  $\tau_{Sr,w}$  correlations with other  $\tau$  values were weak, but positive correlations with  $\tau_{Ca,w}$  and  $\tau_{Rb,w}$  were greater than the critical value (± 0.1241) (Table 6).



Figure 30 -  $\tau$  values for Sr as a function of depth in each core profile.

Fe was never completely depleted in CH-2. The highest degree of Fe depletion in CH-2 ( $\tau_{Fe,w} = -0.92$ ) was found at 41.4 FBLS (Fig. 31). Between the land surface and 30.0 FBLS  $\tau_{Fe,w}$  oscillated between -0.55 and 1.99. A distinct  $\tau_{Fe,w}$  peak to 8.91 at 35.0 FBLS was notable. From 35.2 – 67.4 FBLS  $\tau_{Fe,w}$  showed a generally increasing trend in maximum enrichment values.  $\tau_{Fe,w}$  was positively correlated with depth (Table 5), and the maximum  $\tau_{Fe,w}$  value of 25.3 was found at 84.9 FBLS.  $\tau_{Fe,w}$  in CH-2 showed a strong positive correlation with  $\tau_{Ca,w}$ , and positive correlations with  $\tau_{Sr,w}$ ,  $\tau_{Rb,w}$ , and  $\tau_{Mn,w}$  (Table 6).

Similarly,  $\tau_{Fe,w}$  was never completely depleted in CH-4 as was the case with CH-2 (Fig. 31). The maximum Fe depletion of  $\tau_{Fe,w} = -0.97$  was found at 70.0 FBLS which coincides with a zone of leucocratic gneiss containing low levels of Fe. Between the land surface and 17.0 FBLS,  $\tau_{Fe,w}$  oscillated between -0.79 and 0.65 followed by fast spikes to 1.76, 5.34, and 6.34 at 18.0, 21.0, and 23.0 FBLS, respectively.  $\tau_{Fe,w}$  was positively correlated with depth (Table 5), and the maximum Fe enrichment in CH-4 was found at 81.8 FBLS with a  $\tau_{Fe,w}$  value of 15.8. In CH-4,  $\tau_{Fe,w}$  showed positive correlations with  $\tau_{Ca,w}$ ,  $\tau_{Rb,w}$ , and  $\tau_{Mn,w}$  (Table 6).



Figure 31 -  $\tau$  values for Fe as a function of depth in each core profile.

In CH-2,  $\tau_{Mn,w}$  was negative from the land surface down to a depth of 5.81 FBLS (Fig.

32).  $\tau_{Mn,w}$  showed high levels of variation throughout CH-2, oscillating between -1 and 144. The maximum  $\tau_{Mn,w}$  value of 144 was found at 67.4 FBLS. There were distinct local  $\tau_{Mn,w}$  maximums of 33.8, 65.9, and 36.8 at 9.6, 37.3, and 85.6 FBLS with the shallowest local maximum lying within one foot of the maximum observed depth to water table (Table 7). Despite this,  $\tau_{Mn,w}$  was not correlated with depth in CH-2 or CH-4 (Table 5). However,  $\tau_{Mn,w}$  in CH-2 did show strong positive correlations with  $\tau_{Ca,w}$  and  $\tau_{Fe,w}$  (Table 6).

In CH-4,  $\tau_{Mn,w}$  began to show enrichment as shallow as 3.0 FBLS. Like CH-2,  $\tau_{Mn,w}$  in CH-4 varied significantly throughout the core, ranging between -1 and 70.6, but localized zones of enrichment were noted at 28.8 – 37.0 and 81.2 – 90.0 FBLS (Fig. 32). Maximum Mn enrichment in CH-4 was found at 21.0 FBLS with a  $\tau_{Mn,w}$  value of 70.6. In CH-4,  $\tau_{Mn,w}$  showed a positive correlation with  $\tau_{Fe,w}$  only (Table 6).



Figure 32 -  $\tau$  values for Mn as a function of depth in each core profile.

In CH-2,  $\tau_{Rb,w}$  was negative from the land surface down to a depth of 5.0 FBLS, and became positive at 5.81 FBLS (Fig. 33).  $\tau_{Rb,w}$  showed a high level of variation, oscillating between -1 and 45.4 throughout the core. The maximum  $\tau_{Rb,w}$  value of 45.4 was found at 66.0 FBLS. There were distinct local  $\tau_{Rb,w}$  maximums of 5.1, 16.1, and 41.2 at 35.0, 45.7, and 84.9 FBLS, and  $\tau_{Rb,w}$  was weakly positively correlated with depth (Table 5).  $\tau_{Rb,w}$  in CH-2 showed a positive correlation with  $\tau_{Fe,w}$  only (Table 6).

In CH-4,  $\tau_{Rb,w}$  was negative from the land surface down to 12.0 FBLS at which point it became positive at 13.0 FBLS (Fig. 33). Throughout CH-4  $\tau_{Rb,w}$  varied between -1 and 42.7 with the maximum Rb enrichment found at 81.8 FBLS with a  $\tau_{Rb,w}$  value of 42.7. In CH-4,  $\tau_{Rb,w}$  was not correlated with depth (Table 5), and  $\tau_{Rb,w}$  was positively correlated with  $\tau_{Fe,w}$  only, similar to CH-2 (Table 6).



Figure 33 -  $\tau$  values for Rb as a function of depth in each core profile.

| <u>Correlation Coefficients (τ : depth)</u> |          |            |      |          |  |  |  |
|---------------------------------------------|----------|------------|------|----------|--|--|--|
|                                             | <u>C</u> | <u>H-2</u> | CH-4 |          |  |  |  |
| Ca                                          | 0.24     |            | 0.48 |          |  |  |  |
| Mn                                          | 0.07     | n = 365    | 0.03 | n = 250  |  |  |  |
| Fe                                          | 0.24     | p < 0.05   | 0.34 | n < 0.05 |  |  |  |
| Rb                                          | 0.14     |            | 0.11 | p < 0.05 |  |  |  |
| Sr                                          | 0.18     |            | 0.28 |          |  |  |  |

Table 5 -  $\tau$ : depth correlations. All correlations exceed critical values (CH-2 = ± 0.1027 and CH-4 = ± 0.1241) except Mn in both cores, and Rb in CH-4.

Table 6 -  $\tau$ :  $\tau$  correlations calculated based on XRF analyses. Values shaded orange indicate moderate to strong correlations. All CH-2 correlations exceed the critical value (CH-2 =  $\pm$  0.1027). All CH-4 correlations exceed the critical value ( $\pm$  0.1241) except Ca : Rb, Mn : Sr, and Fe : Sr.

| <u>CH-2 Correlation Coefficients (<math>\tau</math> : <math>\tau</math>)</u> |       |      |      |      |  |  |  |  |  |
|------------------------------------------------------------------------------|-------|------|------|------|--|--|--|--|--|
|                                                                              | Sr    | Rb   | Fe   | Mn   |  |  |  |  |  |
| Ca                                                                           | 0.65  | 0.16 | 0.80 | 0.61 |  |  |  |  |  |
| Mn                                                                           | 0.34  | 0.22 | 0.65 |      |  |  |  |  |  |
| Fe                                                                           | 0.52  | 0.55 |      |      |  |  |  |  |  |
| Rb                                                                           | 0.27  |      |      |      |  |  |  |  |  |
| CH-4 Correlation Coefficients ( $\tau$ : $\tau$ )                            |       |      |      |      |  |  |  |  |  |
|                                                                              | Sr    | Rb   | Fe   | Mn   |  |  |  |  |  |
| Ca                                                                           | 0.39  | 0.06 | 0.71 | 0.37 |  |  |  |  |  |
| Mn                                                                           | -0.05 | 0.20 | 0.60 |      |  |  |  |  |  |
| Fe                                                                           | 0.09  | 0.56 |      |      |  |  |  |  |  |
| Rb                                                                           | 0.13  |      |      |      |  |  |  |  |  |

# 3.3 Water Levels and Water Chemistry

USGS and NCDEQ continuously monitored groundwater levels at each coring site. The dataset we had access to spans the time periods June 1, 2007 - July 29, 2008 for CH-2 and May 12, 2006 - September 30, 2009 for CH-4. During the CH-2 measurement period, the depth to water ranged from 37.4 - 40.5 FBLS, and averaged 39.3 FBLS (Table 7). During the CH-4 measurement period, the depth to water ranged from 7.2 - 9.0 FBLS, and averaged 8.2 FBLS.

It should be noted that 60% and 54.5% of depth to water measurements in CH-2 and CH-4 were made during the growing season when the water table typically fluctuates the most due to increased evapotranspiration. Both CH-2 and CH-4 are sited in a forested area where it can be reasonably expected that plant transpiration drove such fluctuations during most of the measurement period. This undoubtedly influenced the temperature and amount of oxygen and other dissolved reactants in direct contact with bedrock and regolith, affecting bedrock weathering in general and FeO<sub>x</sub> formation specifically in addition to dissolved constituents. It is beyond the scope of this investigation to quantify what, if any, effect this had on results.

| <u>CH-2</u>                            |       |
|----------------------------------------|-------|
| Average Depth Below Land Surface (ft.) | 39.29 |
| Maximum Depth Below Land Surface (ft.) | 40.51 |
| Minimum Depth Below Land Surface (ft.) | 37.42 |
| Range (ft.)                            | 3.09  |
|                                        |       |
| <u>CH-4</u>                            |       |
| Average Depth Below Land Surface (ft.) | 8.24  |
| Maximum Depth Below Land Surface (ft.) | 8.97  |
| Minimum Depth Below Land Surface (ft.) | 7.22  |
| Range (ft.)                            | 1.75  |

Table 7 - Summarized water level data for each core hole

Measurements for a wide range of water chemistry variables were collected by NCDEQ and USGS, samples of which are included in tables 8 and 9. Of the data collected for this study, DO, pH, water temperature, and concentrations of dissolved Ca, Na, HCO<sub>3</sub><sup>-</sup>, K, and Mn were considered most relevant. All dissolved Fe concentrations were below the LOD for all water samples logged (N.C. Department of Environmental Quality, Undated).

In both cores a decreasing trend in DO was notable with oxic groundwater at the shallowest depths grading to suboxic and anoxic as depth increased. In CH-2, the highest

measured DO level occurred in March of 2009 (10.5 mg/L) at 33 FBLS, and the lowest DO level occurred in November of 2006 (0.7 mg/L) at 194 FBLS. Average DO levels in CH-2 were 8.6, 2.5, 1.0, and 1.5 mg/L at 33, 62, 140, and 194 FBLS, respectively (Table 8). In CH-4 the highest (10.6 mg/L) and lowest (0.0 mg/L) measured DO levels both occurred at 39 FBLS in July of 2007 and November of 2006, respectively. Average DO levels in CH-4 were 6.9, 7.2, 2.6, and 0.2 mg/L at 22, 39, 88, and 121 FBLS, respectively (Table 9).

Conversely, pH showed an increasing trend, from acidic to slightly basic, as depth increased in both cores. In CH-2 the lowest pH measured was 5.0 at 33 FBLS in March of 2009, and the highest pH was 7.6 at 194 FBLS in November of 2006. Average pH in CH-2 was 5.2, 7.0, 7.0, and 7.3 at 33, 62, 140, and 194 FBLS (Table 8). In CH-4 the lowest pH measured was 4.8 at 22 FBLS in November of 2006, and the highest pH was 8.4 at 121 FBLS in November of 2006. Average pH in CH-4 was 5.1, 6.2, 8.0, and 8.2 at 22, 39, 88, and 121 FBLS (Table 9).

| Sampling   | Sampling    | DO     | pH, Field   | Water     | [Ca]   | [Na]   | [HCO <sub>3</sub> ] | [K]    | [Mn]   |
|------------|-------------|--------|-------------|-----------|--------|--------|---------------------|--------|--------|
| Date       | Depth (ft.) | (mg/L) | (std units) | Temp (°C) | (mg/L) | (mg/L) | (mg/L)              | (mg/L) | (mg/L) |
| 11/28/2006 | 33          | 6.0    | 5.3         | 14.8      | 0.47   | 0.69   | 4.0                 | 1.2    | 22     |
| 3/5/2007   | 33          | 6.9    | 5.1         | 14.5      | 0.48   | 0.66   | 3.0                 | 1.1    | 16     |
| 7/10/2007  | 33          | 9.4    | 5.2         | 14.8      | 0.52   | 0.60   | 4.8                 | 1.2    | 11     |
| 11/5/2007  | 33          | 9.1    | 5.1         | 14.5      | 0.50   | 0.67   | 3.3                 | 1.2    | <10    |
| 5/27/2008  | 33          | 9.4    | 5.2         | 15.2      | 0.55   | 0.72   | n/a                 | 1.2    | <10    |
| 3/17/2009  | 33          | 10.5   | 5.0         | 14.4      | 0.50   | 0.64   | 3.3                 | 1.2    | <10    |
| Average    | 33          | 8.6    | 5.2         | 14.7      | 0.5    | 0.7    | 3.7                 | 1.2    | 13.2   |
| 11/28/2006 | 62          | 1.7    | 6.6         | 15.6      | 20     | 5.8    | 72                  | 5.4    | 150    |
| 3/5/2007   | 62          | n/a    | 7.2         | 16.5      | 23     | 5.5    | 79                  | 5.5    | 160    |
| 7/10/2007  | 62          | 1.9    | 7.0         | 16.2      | 17     | 4.1    | 60                  | 5.4    | 140    |
| 11/6/2007  | 62          | n/a    | 6.9         | 14.6      | n/a    | n/a    | 55                  | n/a    | n/a    |
| 5/27/2008  | 62          | n/a    | n/a         | n/a       | n/a    | n/a    | n/a                 | n/a    | n/a    |
| 3/17/2009  | 62          | 3.8    | 7.2         | 14.5      | 19     | 4.6    | 58                  | 5.9    | 350    |
| Average    | 62          | 2.5    | 7.0         | 15.5      | 19.8   | 5.0    | 64.8                | 5.6    | 200.0  |
| 3/16/2009  | 140         | 1.0    | 7.0         | 15.4      | 16     | 4.4    | 54                  | 4.8    | <10    |
| 11/28/2006 | 194         | 0.7    | 7.6         | 16.7      | 18     | 5.0    | 68                  | 5.0    | 10     |
| 3/5/2007   | 194         | 1.1    | 7.4         | 16.6      | 17     | 4.6    | 62                  | 4.7    | 10     |
| 7/9/2007   | 194         | 2.2    | 7.2         | 15.8      | 16     | 4.3    | 58                  | 4.7    | 10     |
| 11/5/2007  | 194         | n/a    | 7.4         | 16.5      | 17     | 4.7    | 56                  | 4.9    | <10    |
| 5/27/2008  | 194         | 1.8    | 7.1         | 16.1      | 17     | 4.6    | 52                  | 4.9    | <10    |
| Average    | 194         | 1.5    | 7.3         | 16.3      | 17.0   | 4.6    | 59.2                | 4.8    | 10.0   |

Table 8 - CH-2 Selected water quality data

Water temperature also increased with depth in both core holes. In CH-2, the lowest temperature (14.4 °C) was measured at 33 FBLS in March of 2009, and the highest temperature (16.7 °C) was measured at 194 FBLS in November of 2006. Average water temperatures in CH-2 were 14.7, 15.5, 15.4, and 16.3 °C at 33, 62, 140, and 194 FBLS (Table 8). In CH-4, the lowest temperature (13.9 °C) was measured at 22 FBLS in May of 2008, and the highest temperature (16.5 °C) was measured at 121 FBLS in March of 2007. Average water temperatures in CH-4 were 14.6, 14.4, 15.4, and 16.0 °C at 22, 39, 88, and 121 FBLS (Table 9).

| Sampling   | Sampling    | DO     | pH, Field   | Temp | [Ca]   | [Na]   | [HCO <sub>3</sub> ] | [K]    | [Mn]   |
|------------|-------------|--------|-------------|------|--------|--------|---------------------|--------|--------|
| Date       | Depth (ft.) | (mg/L) | (std units) | (°C) | (mg/L) | (mg/L) | (mg/L)              | (mg/L) | (mg/L) |
| 11/29/2006 | 22          | 2.6    | 4.8         | 15.5 | 7.3    | 3.6    | 6.0                 | 1.5    | <10    |
| 3/6/2007   | 22          | 5.5    | 5.3         | 14.2 | 0.76   | 1.1    | 2.0                 | 0.71   | <10    |
| 7/10/2007  | 22          | 8.4    | 5.2         | 14.6 | 0.77   | 1.1    | 5.9                 | 0.72   | <10    |
| 11/6/2007  | 22          | 8.6    | 5.4         | 15.4 | 0.87   | 1.3    | 5.3                 | 0.85   | <10    |
| 5/28/2008  | 22          | 8.0    | 5.0         | 13.9 | 0.75   | 1.2    | 4.3                 | 0.71   | <10    |
| 3/17/2009  | 22          | 8.0    | 4.9         | 14.0 | 0.72   | 1.2    | 5.8                 | 0.68   | <10    |
| Average    | 22          | 6.9    | 5.1         | 14.6 | 1.9    | 1.6    | 4.9                 | 0.9    | <10    |
| 11/29/2006 | 39          | 0.0    | 6.1         | 14.4 | 8.3    | 10     | 31                  | 4.2    | 200    |
| 3/6/2007   | 39          | 8.6    | 6.0         | 14.3 | 6.0    | 3.1    | 14                  | 1.4    | <10    |
| 7/10/2007  | 39          | 10.6   | 6.4         | 14.4 | 7.0    | 3.4    | 31                  | 1.5    | <10    |
| 11/6/2007  | 39          | 7.5    | 6.5         | 14.4 | 9.0    | 4.0    | 33                  | 1.7    | <10    |
| 5/28/2008  | 39          | 6.9    | 6.3         | 14.6 | 8.0    | 3.8    | 31                  | 1.5    | <10    |
| 3/17/2009  | 39          | 9.7    | 6.1         | 14.5 | 7.5    | 3.5    | 30                  | 1.5    | <10    |
| Average    | 39          | 7.2    | 6.2         | 14.4 | 7.6    | 4.6    | 28.3                | 2.0    | 200.0  |
| 7/10/2007  | 88          | 2.6    | 8.0         | 15.4 | 20.0   | 5.2    | 64                  | 3.5    | 16     |
| 11/29/2006 | 121         | 0.1    | 8.4         | 16.4 | 15     | 14     | 62                  | 5.3    | <10    |
| 3/6/2007   | 121         | 0.4    | 8.3         | 16.5 | 19     | 5.5    | 31                  | 3.4    | 19     |
| 7/10/2007  | 121         | 0.3    | 8.3         | 15.9 | 19     | 5.4    | 61                  | 3.4    | 22     |
| 11/6/2007  | 121         | 0.1    | 8.3         | 15.7 | 21     | 5.7    | 61                  | 3.8    | 24     |
| 5/28/2008  | 121         | 0.1    | 8.2         | 15.7 | 19     | 5.2    | 57                  | 3.5    | 25     |
| 3/17/2009  | 121         | 0.2    | 7.9         | 15.8 | 19     | 5.2    | 59                  | 3.7    | 26     |
| Average    | 121         | 0.2    | 8.2         | 16.0 | 18.7   | 6.8    | 55.2                | 3.9    | 23.2   |

Table 9 - CH-4 Selected water quality data

All dissolved ionic concentrations generally showed increasing trends in both core holes with maximum values observed at intermediate or maximum depths. Maximum Ca concentrations of 23 and 21 mg/L were found at 62 and 121 FBLS in CH-2 and CH-4, respectively. Minimum Ca concentrations of 0.47 and 0.72 mg/L were found at 33 and 22 FBLS, respectively. The same pattern held for HCO<sub>3</sub><sup>-</sup> in both cores with maximum concentrations of 79 and 64 mg/L at 62 and 88 FBLS in CH-2 and CH-4, respectively. Minimum HCO<sub>3</sub><sup>-</sup> concentrations of 3.0 and 2.0 mg/L were found at 33 and 22 FBLS. Maximum dissolved Na concentrations of 5.8 and 14 mg/L were found at 62 and 121 FBLS, and minimum dissolved Na

concentrations of 0.60 and 1.1 mg/L were found at 33 and 22 FBLS in CH-2 and CH-4, respectively (Table 8 and 9). Similarly, maximum K concentrations of 5.9 and 5.3 mg/L were found at 62 and 121 FBLS in CH-2 and CH-4. Minimum K concentrations of 1.1 and 0.68 mg/L were found at 33 and 22 FBLS in each, respectively. Mn concentrations showed high variability in both coreholes, with many values below the LOD (<10 mg/L). Mn was generally highest in CH-2 at 62 FBLS with a maximum concentration of 350 mg/L in March of 2009, but typically lowest from 140 – 194 FBLS. In CH-4, the highest Mn concentration (200 mg/L) was found at 39 FBLS in November of 2006, and the lowest concentrations were found at 22 FBLS. However, the high Mn concentration at 39 FBLS appears anomalous as all other values at that depth were recorded as below the LOD. More consistent Mn concentrations were found at 121 FBLS in CH-4 with an average of 23.2 mg/L.

### 4 DISCUSSION

# 4.1 How Mineralogical Changes Relate to Weathering Patterns

A primary goal of this study was to identify the PIM, the most soluble mineral that weathers first at depth whose reaction front delimits the boundary between HWR and UWR (Brantley et al., 2017). Biotite and pyrite oxidation in granites and pyroxene (e.g. augite) dissolution in diabase (mafic intrusive rock) are common examples of PIMs and their first reactions at depth (Bazilevskaya et al., 2013, 2015). Brantley et al. (2017) argued that oxidation is the more common PIM reaction in felsic rock compared to mafic rock because felsic rock consumes CO<sub>2</sub> faster than O<sub>2</sub>, leaving more O<sub>2</sub> available for reaction at depth. It is for the opposite reason that mafic rock (diabase) shows acid dissolution as its most common PIM reaction, because of higher O<sub>2</sub> consumption at shallower depths. In other words, the mafic rock contains electron donors, such as  $Fe^{2+}$ , in greater abundance than felsic rock. Brantley et al. (2017) also described porosity-initiating and soil-initiating minerals and reactions as complements to PIM. The porosity-initiating mineral is defined as an abundant, moderately soluble mineral that weathers above the PIM depth, resulting in density reduction and porosity formation, and denotes the boundary between hard-weathered rock and saprolite (Brantley et al., 2017). The porosity-initiating mineral and reaction in felsic (granite) rocks most often dissolve plagioclase (Bazilevskaya et al., 2013, 2015). Brantley et al. (2017) described the soil-initiating mineral as a low solubility mineral whose dissolution demarcates the soil – saprolite boundary through disaggregation and clay formation with alkali-rich minerals serving the role in granitic rock and plagioclase in diabase (Brantley et al., 2017). A key consideration is that for a mineral to be the PIM, it must be abundant enough for its weathering to have a material effect, and it

must be high enough in the Goldich weathering series (Fig. 34) (Goldich, 1938) to be reactive enough for substantial or complete removal.

As expected, both cores generally displayed a pattern of fresh unweathered rock at depth grading into highly weathered rock as depth decreased. This change with depth from primary minerals such as biotite and hornblende (an amphibole) to secondary minerals such as FeO<sub>x</sub> agrees with the Goldich weathering series (Fig. 34), and is supported by the negative FeO<sub>x</sub>-to-depth and ratio-to-depth correlations (Table 4).



Figure 34 - The Goldich weathering series provides a framework to predict the order in which minerals will break down and weather away (generally in the same order that they crystallized). From (Churchman and Lowe, 2011)

This weathering pattern is also consistent with decreased oxygen and water-rock contact as depth increases. As discussed above, notable spikes in  $FeO_x$  at depths containing otherwise

unweathered rock coincided with known water-bearing fractures which enabled water-rock contact and intrusion of DO that would not have otherwise been possible at such depths. While others have noted acid dissolution as the PIM reaction in mafic rock (Bazilevskaya et al., 2015; Brantley et al., 2017), their arguments were based on a gabbroic or diabase end member. CH-2 and CH-4, while described as mafic in the original core report (Huffman and Abraham, 2010), contain extensive felsic and intermediate zones (Fig. 18) and increased permeability due to foliation. This composition, permeability, and fracture zones at depth, most likely mean that oxidative dissolution is the PIM reaction in these cores. Considering that oxidative dissolution is the likely PIM reaction in this system, the PIM most likely contains a reducing agent such as  $Fe^{2+}$ , which is converted to  $Fe^{3+}$  during the weathering process (i.e. biotite and/or hornblende).

# 4.1.1 Mineral Correlations

Correlations for depth-to-mineral and mineral-to-mineral agree to the expected paradigm of the Goldich weathering series and lead to interesting inferences. In both cores, all FeO<sub>x</sub>-toprimary mineral correlations were negative, and greater than critical values, indicating statistical significance at the p<0.05 level. As primary mineral abundance decreased, FeO<sub>x</sub> abundance increased. However, the FeO<sub>x</sub> : (Biotite + Hornblende) correlation was strongest in both cores, rather than FeO<sub>x</sub>'s correlation to solely biotite or hornblende (Table 4). The strength of the FeO<sub>x</sub> : (Biotite + Hornblende) correlation, coupled with overlapping occurrence across lithologically variable bands, and their similar weathering behavior, suggests that some combination of biotite and hornblende should be considered as the PIM in this system. Both contain enough Fe to reduce O<sub>2</sub>, and are abundant in this system.

While  $FeO_x$  was negatively correlated with depth, it is notable that some  $FeO_x$  was still observed on fracture surfaces in both cores below 95 FBLS (Fig. 21). There is a possibility that

100 FBLS may not be deep enough to find the complete disappearance depth of  $FeO_x$ . Despite this notion, the negative correlations between  $FeO_x$  and depth (Table 4) in both cores supports the interpretations' reliability.

4.1.2 Mineral Ratios and Primary Mineral Weathering Depths

In CH-2, The biotite-oxide ratio and hornblende-oxide ratio peaked at the same depth (37.5 FBLS, Fig. 22), which is near the top of the water table depth range (37.4 FBLS, Table 7), representing the level the water table reaches after winter/spring recharge. This coincided with a secondary  $\tau_{Mn,w}$  peak at 37.3 FBLS (Fig. 32), and the top of the range over which  $\tau_{Ca,w}$  and  $\tau_{Sr,w}$  began to show positive (non-depleted or enriched) values (36.9 – 45.4 FBLS, Fig. 29 and 30). The HDD in CH-2 was found at 56.8 FBLS (Fig. 20), above which no further observations of hornblende were found. Interestingly, in the same way they peaked at the same depth, the biotite and hornblende-oxide ratios also showed a "quieting" trend over a narrow depth range in CH-2 (65.0 – 69.1 FBLS, Fig. 22). Over this depth range, both ratios showed rapid and abrupt spikes, followed by zero or near-zero values and local maxima much lower than at shallower depths. These local maxima were found to coincide with water-bearing fractures that were noted in the field (Huffman and Abraham, 2010). The settling of ratio values near zero suggests this depth range likely contains the bottom of the biotite and hornblende weathering fronts in CH-2.

In CH-4, the biotite and hornblende-oxide ratios also peaked near the same depth (29.2 and 28.7 FBLS, respectively, Fig. 22). This was shallower in the core profile compared to ratio peaks in CH-2, but much deeper when compared to the water table depth range (7.2 – 9.0 FBLS, Table 7). The ratio peaks coincided with the bottom of the range over which  $\tau_{Ca,w}$  and  $\tau_{sr,w}$  began to show positive values (21.0 – 30.0 FBLS) (Fig. 29 and 30). The HDD in CH-4 was found at

59.5 FBLS (Fig. 20). The biotite and hornblende-oxide ratios were not as tightly linked in CH-4 compared to CH-2. In CH-4, the biotite-oxide ratio dropped and stayed below 1 at 61.5 FBLS and all depths below (Fig. 22), suggesting this is the deepest depth of the biotite weathering front. The hornblende-oxide ratio in CH-4 never showed as quiet a pattern. At 75.0 FBLS the hornblende-oxide ratio spiked to 30 followed by a quick fall to zero or near zero values. Still, it again showed high values at lower depths (i.e., 40 and 20 at 94.0 and 94.8 FBLS, respectively, Fig. 22). It is for this reason it is difficult to identify the deepest depth of the hornblende weathering front in CH-4.

An initial goal of this project was to identify a BDD. Neither core ever displayed complete removal of biotite. Brantley et al. (2017) discussed a situation in which an easily erodible rock contains only moderately soluble minerals. In this case, mineral grains pass through the weathering front without completely dissolving before reaching the land surface, resulting in an "incompletely developed profile" and "weathering-limited" regime. However, at AWRS, the chemical weathering rate is likely faster than the erosion rate. While no attempt was made to analyze biotite abundance in soil layers (due to generally poor recovery), there is likely a depth in soil layers at which biotite becomes rare enough to be difficult to identify because of low abundance and weathering damage. 4.2 Changes in Elemental Concentrations and Their Relationship to Mineral Weathering Fronts

Several concepts should be reiterated concerning pXRF analysis. While care was taken throughout the XRF scanning process to avoid overweighting any specific mineral or rock type, due to the size of the XRF target size, scanning geometry, and core morphology, the possibility exists that only mafic or felsic mineral crystals were captured in any given scan. However, this is a minor consideration because of the degree of lithologic heterogeneity inherent in these cores. The alternation between felsic and mafic zones was abrupt in these cores, and zones ranged from meter to millimeters wide.

The choice of protolith is an important consideration for the  $\tau$  calculations used by this study. It sets the baseline by which weathered values are compared to produce  $\tau$  values. Because of the high lithologic variation fundamental to these gneissic rocks, it would have been difficult to find a representative section of the core. With that being the case, the protolith used here was determined by comparison to the original core report (Huffman and Abraham, 2010). The top of the protolith was taken to be the shallowest depth immediately below the last mention of weathered rock. Elemental concentrations from this depth to the lowest analyzed were averaged to arrive at nominal unweathered values.

# 4.2.1 Elemental correlations

 $\tau$  values were noisy along depth in both cores because of lithologic heterogeneity, and displayed ranges as great as -1 to 144 (i.e.,  $\tau_{Mn,w}$  in CH-2). At first glance, the  $\tau$  ranges found seemed unreasonable, but  $\tau$ -to-depth and  $\tau$ -to- $\tau$  correlations support the results.  $\tau_{Ca,w}$  in CH-4 showed the strongest correlation with depth, but all  $\tau$ -to-depth correlations were greater than critical values except for Mn and Rb (Table 5). While other  $\tau$ -to-depth correlations were noisy and weak, they were all positive. The positive nature of the  $\tau$ -to-depth correlations is in keeping with others' findings (Oh and Richter, 2005; Brantley et al., 2017) showing elemental depletion near the surface followed by enrichment with an increase in depth.  $\tau_{Ca,w}$  showed the strongest correlation with depth in both cores, which is most likely due to how early Ca-rich plagioclase weathers compared to other minerals in the Goldich weathering series (Fig. 34).

Interestingly, the  $\tau$ -to- $\tau$  correlations were much stronger than the depth correlations. In both cores, Fe : Ca, Fe : Mn, and Fe : Rb showed moderate to strong positive correlations (Table 6). The level of noise in the  $\tau$ -to-depth correlations is likely the result of lithologic heterogeneity, but the strength of the  $\tau$ -to- $\tau$  correlations implies a stronger link that may be more useful than just  $\tau$ -to-depth for future work. The fact that the two cores are so different lithologically, yet show similar  $\tau$ -to- $\tau$  correlations further supports the link.



Figure 35 - The interpreted weathering front profile of CH-2, scales on left and right denote feet below the land surface, Green = soil layers, Brown = Saprolite, Red = Partially Weathered Rock, Gray = Hard Weathered Rock, Blue = Unweathered Rock, middle column shows the approximate depths of important transitions, far right column shows the fronts over which redox states are changing and reactions are happening. Triangles numbered 1 thru 3 indicate the depths at which water quality samples were collected (1 = 33 FBLS, 2 = 62 FBLS, and 3 = 140 FBLS), The depth to water table shown is based on the average of levels observed during the data collection period.



Figure 36 - The interpreted weathering front profile of CH-4, scales on left and right denote feet below the land surface, Green = soil layers, Brown = Saprolite, Red = Partially Weathered Rock, Gray = Hard Weathered Rock, Blue = Unweathered Rock, middle column shows the approximate depths of important transitions, far right column shows the fronts over which redox states are changing and reactions are happening. Triangles numbered 1 thru 3 indicate the depths at which water quality samples were collected (1 = 22 FBLS, 2 = 39 FBLS, and 3 = 88 FBLS), The depth to water table shown is based on the average of levels observed during the data collection period.

### 4.2.2 $\tau$ Values as Indicators of Weathering Fronts

K is a fundamental component of biotite, muscovite, and orthoclase, all of which commonly occur in soil layers in the Inner Piedmont. Alkali-rich minerals, such as orthoclase, have been suggested as soil-initiating minerals by others (Brantley et al., 2017). In this study, Rb was used as a proxy for K. In both cores,  $\tau_{Rb,w}$  shows positive values at relatively shallow depths (Fig. 33). In CH-2,  $\tau_{Rb,w}$  flips from negative to positive at 5.81 FBLS, and in CH-4 at 13.0 FBLS. Both of these depths are comparable to those over which alkali-rich minerals were found to disappear (3 meters, or approximately 10 feet) by others (Bazilevskaya et al., 2013, 2015; Brantley et al., 2017). These changes from depletion to enrichment imply a transition from highly weathered to less weathered, or unweathered, mineral components. While the elemental concentrations and  $\tau_{\rm Rb,w}$  values do not give us information about what specific minerals Rb, and thereby K, are contained in, it does support the argument of a distinct change in the degree of weathering of those minerals. It is also of note that, according to the Goldich weathering series, muscovite and orthoclase are generally more stable than most other minerals. Given the shallow depths of the  $\tau_{Rb,w}$  flip to positive, and the general stable nature of K-containing minerals, this transition has been inferred to be the soil – saprolite boundary in both cores (Fig. 35 and 36).

Brantley et al. (2017) suggested a boundary between saprolite and weathered rock at which porosity formation is initiated as a specific mineral weathers. In felsic lithologies, plagioclase is believed to be the porosity-initiating mineral (Brantley et al., 2017). While plagioclase can have a wide range of compositions, its earliest forming, and earliest weathering, forms are dominated by Ca cations. As discussed above, in CH-2,  $\tau_{Ca,w}$  and  $\tau_{Sr,w}$  begin to show positive values at 45.4 and 36.9 FBLS, respectively, and rapid and abrupt oscillations between negative and positive values below these depths. In CH-4,  $\tau_{Ca,w}$  and  $\tau_{Sr,w}$  begin to show positive values at 21.0 and 30.0 FBLS, respectively, and the same rapid and abrupt oscillations between negative and positive values below as those seen in CH-2. These oscillations between depletion and enrichment imply a transition from the absence or presence of highly weathered plagioclase to less weathered plagioclase. Because of the implication that there has been a change from no (or highly weathered) plagioclase to present, but weathered, plagioclase the shallower limits of these ranges, in both cores, have been interpreted to represent the saprolite – PWR boundary (Fig. 35 and 36).

Brantley et al. (2017) do not differentiate between different forms of weathered rock. However, this study distinguishes between PWR, where porosity exists and advection is dominant, and HWR, where porosity is minimal and weathering occurs predominantly by diffusion. Plagioclase is important for the boundary between PWR and HWR. In CH-2,  $\tau_{Ca,w}$  and  $\tau_{Sr,w}$  stopped showing -1 values at, and below, 36.9 and 85.6 FBLS, respectively. In CH-4,  $\tau_{Ca,w}$ and  $\tau_{Sr,w}$  stopped showing any -1 values at, and below, 46.1 and 51.5 FBLS, respectively with the bottom of this range considered the deepest extent of the plagioclase weathering zone (PWZ) in CH-4 (Fig. 36). The PWZ is difficult to interpret in CH-2 because of the wide depth range (36.9 – 85.6 FBLS) over which  $\tau_{Ca,w}$  and  $\tau_{Sr,w}$  values imply the transitions from unweathered to partially weathered and partially weathered to highly weathered, or absent, plagioclase. This is most likely due to the high degree of heterogeneity in gneissic rock compared to granitic rock. Both  $\tau_{Ca,w}$  and  $\tau_{Sr,w}$  begin showing values greater than 2, implying significant enrichment at and below 45.7 and 42.5 FBLS, respectively in CH-2. Because of the high degree of lithologic variability, the deeper Other weathering indicators combine with the PWZ to imply the formation of porosity and new minerals in PWR. As noted, the biotite-oxide ratio peaks at 37.5 and 29.2 FBLS, and the hornblende-oxide ratio peaks at 37.5 and 28.7 FBLS in CH-2 and CH-4, respectively. These depths lie in the range over which  $\tau_{Ca,w}$  and  $\tau_{Sr,w}$  values imply the transition from absent, or highly weathered, to present but weathered plagioclase. Biotite and plagioclase are similarly situated on the Goldich weathering series (Fig. 34), and it makes sense that biotite and plagioclase begin to show changes at nearly the same depths. This is in combination with the general state of near complete depletion of Ca at depths shallower than 42.0 and 21.0 FBLS in CH-2 and CH-4, respectively. Additionally,  $\tau_{Mn,w}$  shows a strong secondary peak in CH-2 at 37.3 FBLS and a primary peak in CH-4 at 21.0 FBLS. The bottom of the range over which  $\tau_{Ca,w}$  and  $\tau_{Sr,w}$  values flip to positive (45.4 FBLS in CH-2 and 30.0 FBLS in CH-4), in combination with the depths at which  $\tau_{Mn,w}$  and the biotite and hornblende-oxide ratios peak, have been interpreted to represent the PWR – HWR boundary in both cores (Fig. 35 and 36).

The data support different interpretations each core's HWR – UWR boundary. In CH-2 the HDD was found at 56.8 FBLS which does not coincide with any other notable metric used in this study. The biotite and hornblende-oxide ratios show zones of local maxima from approximately 65.0 - 69.1 FBLS followed by either zero or near zero values or subdued local maxima that correspond to water-bearing fractures. These rapid and abrupt spikes followed by quiescence, imply the boundary of the biotite and hornblende weathering zone. This coincides

with the maximum observed  $\tau_{Mn,w}$  value of 144 at 67.4 FBLS. For this reason, 69.1 FBLS has been interpreted to be the HWR – UWR boundary in CH-2 (Fig. 35).

In CH-4, the HDD was found at 59.5 FBLS which is two feet above the depth at which the biotite-oxide ratio drops below 1 permanently (61.5 FBLS).  $\tau_{Ca,w}$  and  $\tau_{Sr,w}$  stopped showing -1 values over a much narrower range (46.1 – 51.5 FBLS) than that found in CH-2, better indicating the bottom of the plagioclase weathering front. The deepest indicator of weathering in CH-4 was the hornblende-oxide ratio which showed a local maximum at 73.3 FBLS followed by a general "quieting" trend denoting the likelihood of the deepest point of the hornblende weathering front. For that reason, 73.3 FBLS has been interpreted to be the HWR – UWR boundary in CH-4 (Fig. 36). In comparison to 69.1 FBLS in CH-2 and 73.3 FBLS in CH-4, Bazilevskaya et al. (2015) found PIM reactions that started at approximately 20 meters deep (65 FBLS) (Bazilevskaya et al., 2015).

# 4.2.3 Weathering Fronts Across the Hillslope Transect

These observations and interpretations highlight several notable differences and similarities between CH-2 and CH-4, the most obvious of which is the depth from the land surface to the water table in each core. The average depth to water is 31.1 feet greater in CH-2 than CH-4, and the water table lay in PWR layers in CH-2 compared to lying in the soil layers in CH-4. This is notable for the differences in type and thickness of highly weathered material water moves downward through in each core. The soil layers in CH-4 were more than twice as thick as the soil layers in CH-2 (12 feet compared to 5.8 feet). The thickness of the saprolite, HWR, and PWZs also showed marked differences between the two cores. Saprolite thickness was 23.1 feet greater in CH-2 than CH-4. However, HWR and the PWZ were 21.6 and 21.7 feet

thicker in CH-4 than CH-2, respectively. When viewed as a whole (Fig. 37), the saprolite thickness differences appear similar to the "pinched" or "bowtie" topography described by others using geophysical methods to investigate hillslope weathering (St. Clair et al., 2015). In these "pinched" settings, weathering fronts appear thicker in upslope positions compared to downslope positions.



Figure 37 - The "pinched" topography similar to that described by St. Clair et al. (2015) is seen in saprolite layers (brown). The saprolite to UWR thickness is comparable, but the depth of weathering is deeper in the valley (CH-4). It should be remembered that the land surface at CH-2 is approximately 34.3 feet higher in elevation than the land surface at CH-4. Green = soil layers, Brown = Saprolite, Red = Partially Weathered Rock, Gray = Hard Weathered Rock, Blue = Unweathered Rock

Conversely, the cores showed similar PWR (8.5 and 9.0 feet) thicknesses. At 56.8 and 59.5 FBLS, the HDD was found at similar depths and lay in HWR in each core. Despite the thickness difference noted above, the PWZ falls across both the PWR and HWR in both cores, and most interestingly, the total thickness of weathered rock (considered from the top of saprolite to the bottom of HWR here) was comparable in both cores (63.3 and 60.3 feet). Of note was the difference of the depth of  $\tau_{Mn,w}$  maxima in each core.  $\tau_{Mn,w}$  peaked at 67.4 and 21.0 FBLS in CH-2 and CH-4, respectively. However, a strong secondary  $\tau_{Mn,w}$  peak in CH-2 was found at 37.3 FBLS, just above the average depth to the water table. It is unknown whether a scanning error is the reason for the deep  $\tau_{Mn,w}$  spike in CH-2, but  $\tau_{Mn,w}$  peaks near the water table agree with others' observations (Sparrow and Uren, 2014; Gillispie et al., 2016; Jones et al., 2018; Bourgault et al., 2022). The general Mn weathering pattern implied by  $\tau_{Mn,w}$  seems reasonable, but the source minerals containing Mn at this site are unknown without further study.

As noted above, the depth of weathering initiation in the AWRS system was comparable to that of a biotite-containing granite system studied by Bazilevskaya et al. (2015), who found plagioclase dissolution to occur over a 9 - 10 meter depth range (30 - 33 feet) which almost exactly matches the range of the PWZ found in CH-4 (30.5 feet), but is larger than the range for plagioclase weathering in CH-2 (8.8 feet). Others have noted that weathering fronts in mafic rocks tend to lie within centimeters of each other, but can lie over tens of meters in felsic rock (Brantley and Lebedeva, 2021). The AWRS cores follow Brantley and Lebedeva's (2021) felsic pattern despite being more mafic than, for example, granite. This is most likely due to the high permeability levels resulting from foliation and fracturing in gneiss. Additionally, the AWRS cores display a large grain size comparable to a granite that enhances porosity as weathering proceeds. There is also the belief that weathering fronts in felsic rocks are enhanced by advection

through porosity propped open by quartz grains and intergrowths of mica and quartz after weathering (Brantley et al., 2017). The AWRS cores contain a not unsubstantial amount of quartz and micas that can serve this role of porosity preservation, allowing for the observed weathering pattern that more closely mimics felsic rock.

### 4.3 Mineral Weathering and Groundwater Evolution

Minerals weather and dissolve as long as the reacting minerals have not completely dissolved and the surrounding water has not equilibrated (Brantley and Lebedeva, 2021). The volume of water flow through a given rock matrix required to dissolve and remove a mineral is high, approximately 10<sup>3</sup> times the volume of the mineral being dissolved, which means that small differences in mineral volumes weathered across depths can record and magnify cumulative water flow (Brantley et al., 2017). A control of groundwater equilibration is the porosity and permeability of the surrounding bedrock that can enhance groundwater flow, allowing for removal of weathered solutes and maintaining favorable thermodynamic conditions. This means that where porosity and permeability are large enough, mineral weathering in the subsurface can be autocatalyzing. This is especially the case where biotite is oxidized. Biotite oxidation generally involves swelling of the mineral grains that further contribute to fracturing and permeability formation (Fletcher et al., 2006). This fracturing allows for greater exposure of fresh mineral surface and advective transport of weathering solutes with widening of weathering fronts and deeper penetration of weathering fronts into UWR (Brantley and Lebedeva, 2021).

As noted, the PIM reaction can be either incongruent dissolution (hydrolysis) or oxidation. In the AWRS system, it is believed that biotite and hornblende are the first minerals to be weathered at depth. Both biotite and hornblende contain  $Fe^{2+}$ , which weathers to  $FeO_x$  and consumes DO in the process. Recall equations (1) and (2):

#### **Biotite Hydrolysis:**

# $(Eq. 1) 4 KFe_{3}AlSi_{3}O_{10}(OH)_{2} + 32 H_{2}O + 3 O_{2}(aq) + 4 H^{+} \rightarrow 12 Fe(OH)_{3} + 2 Al_{2}Si_{2}O_{5}(OH)_{4} + 4 K^{+} + 8 H_{4}SiO_{4} + 4 K$

#### Hornblende Hydrolysis:

 $(Eq. 2) Ca_2Fe_4AlSi_7AlO_{22}(OH)_2 + 15 H_2O + O_2(aq) + 4 H^+ \rightarrow 4 Fe(OH)_3 + Al_2Si_2O_5(OH)_4 + 2 Ca^{2+} + 5 H_4SiO_4 + 2 Ca^{2+} + 5 H_4Si$ 

These reactions combine incongruent dissolution (proton exchange) and oxidation (electron exchange). In both cases, oxidation leads to the removal of an electron from ferrous Fe in the primary mineral resulting in the formation of ferric Fe in the product mineral (i.e.  $Fe^{2+}$  in biotite/hornblende  $\rightarrow$   $Fe^{3+}$  in FeO<sub>x</sub>). Both consume acidity and DO, leading to transitions in pH and oxic – anoxic conditions in groundwater.

CH-2 groundwater was highly oxic (8.6 mg/L) and acidic (pH = 5.2) near the water table (33 FBLS) (Table 8), and just above the saprolite – PWR boundary (Fig. 35). This was followed by DO depletion (and anoxic conditions) and a large increase to neutral pH at 62 FBLS, lying in HWR. Similarly large increases in dissolved Ca, Na, HCO3<sup>-</sup>, K, and Mn were noted across the same depth interval. Ca indicates hornblende and plagioclase weathering, Na of plagioclase weathering, and K of biotite weathering. Below 62 FBLS, there was little further evolution of ionic concentrations in groundwater in CH-2, and DO at 140 FBLS is nearly completely anoxic (1.0 mg/L). This implies that most weathering is taking place in PWR and HWR in CH-2, and supports the weathering front interpretations discussed above for CH-2. The peak in dissolved Mn at 62 FBLS is significant, and shows a sharp drop below that depth. As noted earlier, it is not known what Mn-bearing minerals exist in this system without further study, but the dissolved Mn peak aligns closely with the  $\tau_{Mn,w}$  maximum value found in CH-2 at 67.4 FBLS.

CH-4 groundwater showed a similar pattern, with a few exceptions. The shallowest depth for which water chemistry data was available was approximately 14 feet deeper than the average depth to the water below the land surface. With that being the case, DO was oxic (6.9 mg/L) and pH was acidic (5.1) at 22 FBLS (near the saprolite – PWR boundary, same as CH-2). There were again large increases in Ca, Na, HCO3<sup>-</sup>, K and Mn from 22 – 39 FBLS (Table 9). However, DO slightly increased, instead of decreasing, and the pH increase (5.1 to 6.2) was much more subdued than that found in CH-2 (5.2 to 7.0). The AWRS cores come from a low-order headwater catchment with local groundwater flow patterns. This, coupled with the small range (22 - 39 FBLS), suggests the DO increase and subdued pH increase are likely the result of oxygenated interflow infiltrating nearby and percolating through layers with low reactivity (i.e. soil and saprolite). At 88 FBLS in CH-4, DO was depleted and approaching anoxic (2.6 mg/L), but pH had settled at, and would stay near 8.0. There were large increases in dissolved Ca, Na,  $HCO_3^-$ , and K, but a large decrease in Mn from 39 - 88 FBLS in CH-4. The large decrease is due to a single high Mn concentration measured on one day, where Mn concentrations were otherwise below the LOD. Dissolved Mn was consistently highest at 121 FBLS in CH-4, which is in disagreement with others' findings of peak Mn concentrations occurring near the water table (Gillispie et al., 2016). DO was not found to be completely anoxic in CH-4 until a depth of 121 FBLS (Table 9). This complicates and somewhat detracts from the weathering front interpretations made for CH-4. Here, it seems that DO consumption is happening deeper in UWR rather than in HWR as would be expected. The large distance between measurements of DO in CH-4 hinders a better understanding of where exactly these DO transitions are occurring making interpretation difficult. However, the consistency of other solute concentrations from 88 FBLS downward implies that most weathering occurs in HWR in CH-4.

Despite the DO levels found in UWR in CH-4, there is a marked difference in DO levels in both cores across the HWR – UWR boundary, supporting this as the boundary of profile initiation. There is a large difference in the distance from the water table to UWR in the cores. This distance is approximately 29.8 feet in CH-2 compared to 65.1 feet in CH-4, which may be a factor in the difference in depths of anoxic waters. PWR thicknesses are similar between the two cores, implying they are likely not a factor in depth to anoxic water.

Biotite and hornblende weather to FeO<sub>x</sub> (specifically to Fe(OH)<sub>3</sub>, among other FeO<sub>x</sub>). As a result of FeO<sub>x</sub> formation, pH is raised and DO is consumed. Both variables affect the solubility of metals such as Mn, As, and Cr which play a role in human and environmental health. Specifically, Mn and As are tightly linked to the disappearance of DO, and others have noted that dissolved Mn and As commonly co-occur with dissolved Fe (Siegel et al., 2022; Arienzo et al., 2022), an intermediate product of the reactions shown above. Groundwater is an essential source of drinking water for many people (McMahon and Chapelle, 2008; Gillispie et al., 2016; Ying et al., 2017; Coyte and Vengosh, 2020), and its quality is subject to many controlling factors.

In many cases when hydrogeologists characterize an aquifer as a potential source of drinking water, they are most concerned with groundwater yield and discuss the "depth to competent rock" (i.e., Huffman and Abraham, 2010), which most closely relates here to the PWR – HWR transition discussed above. However, when we think about the chemical evolution of groundwater, the leading edge of DO transitions seems lie in HWR near the HWR – UWR boundary generally. With that being the case, the depth to UWR, rather than the depth to competent rock, may be more important for water quality with respect to metals such as Mn and As, among others.

### 4.4 Future Recommendations

Several gaps exist in the results of this study that would benefit from further investigation. Specifically, this study was based on an analysis of the composition of two of the four drill cores collected from this watershed (CH-2 & CH-4), representing the mid-slope and low-slope positions. Examining at least CH-1 (high slope/ridgeline) would provide more detail on mineral weathering and the evolution of groundwater along the entire hillslope transect. Analysis of CH-3 would provide similar information for an adjacent transect and flowpath for comparison to the results discussed here. Additionally, analysis of greater depths in the cores would be useful. FeO<sub>x</sub> were found in CH-2 and CH-4 at 98.1 and 98.3 FBLS, respectively. This suggests that 100 FBLS may not be deep enough to find the true disappearance depth of FeO<sub>x</sub> in these cores, and additional analysis may support different conclusions.

Higher data resolution would likely better illustrate the high levels of lithologic heterogeneity discussed here. Specifically, XRF data for lighter elements such as Na, K, and Mg would have been useful in interpreting weathering depths of albite, orthoclase, and phyllosilicates such as biotite and muscovite, with higher levels of certainty than those proposed here. XRF data for Ti would have been useful for utilization as a secondary immobile element in the  $\tau$  calculations made here. Any similarity or difference in  $\tau$  values calculated with Ti as the immobile element would have been useful in determining the reliability of the methods used during this investigation. Concerning the calibrated elemental concentrations obtained through XRF analysis, and used to calculate  $\tau$  values, a more significant number of known standards would have helped to narrow the range of acceptable concentration values and likely lower LODs. Higher resolution in the water level and water quality data would also have been helpful. A review of Tables 8 and 9 shows the large depth ranges between water samples collected for
solute concentration analysis. Had samples been collected at depths closer together, greater detail may have highlighted changes in solute concentrations that were occurring faster than those portrayed by the data available here.

Thin sections sourced from throughout the core profile could have been useful. Specifically, thin sections would provide greater detail for the abundance of sulfide minerals, quartz, feldspars, and possibly plagioclase transformation to clay minerals. However, due to the rapid and abrupt alternation in composition and extreme lithologic heterogeneity present in these cores, the number of thin sections required to capture an adequate level of detail would be time and cost-prohibitive. Thin sections would also be difficult to manufacture from shallower depths of these cores where highly weathered rock is present, and is too fragile to cut and polish. Even if possible, at these depths, the binocular microscope was adequate for the identification of weathering products such as FeO<sub>x</sub> and MnO<sub>x</sub>. Additionally, thin sections require destruction of the source material, and non-destructive testing was a goal of this project.

Finally, geophysical data collected along the AWRS hillslope transect may support this study's interpretations. Specifically, seismic and electrical resistivity data like that collected by St. Clair et al. (2015) would provide detail regarding depth to bedrock and interlayer wave velocities that may support or negate the weathering boundaries noted here. The seismic data would provide a valuable contrast to what we have accumulated through mineralogy and geochemistry, and would give another non-destructive means of testing. It may also allow for the creation of a 3D subsurface model similar to others' (Flinchum et al., 2018) showing weathering fronts over a greater area than that represented by the cores used here.

## **5** CONCLUSIONS

The goal of this study was to expand understanding of the relationships between landscape position and DO that link ferrous mineral oxidation and profile formation to groundwater quality in the critical zone of the Inner Piedmont terrane. Using comparative mineral ratios, abundances, and pXRF, interpretations were made of the depths at which profile boundaries occurred, including those separating soil, saprolite, PWR, HWR, and UWR in midslope and valley bottom landscape positions. These interpretations were accomplished with minimal destruction to the drill cores that would have otherwise been unavoidable.

The study's findings and interpretations offer generalized concepts that may be useful across different lithologies. Specifically, mineral ratios imply that rather than an individual PIM, a combination of biotite and hornblende is most likely the PIM in AWRS profiles. At both landscape positions the total ratio (FeO<sub>x</sub> / (biotite + hornblende)) was better correlated with FeO<sub>x</sub> abundance than either individual ratio.

pXRF proved a useful tool for identifying profile boundaries. Specifically,  $\tau$  values for Rb were found to be helpful in identifying the soil – saprolite boundary, and a combination of  $\tau$  values for Ca and Sr were useful for identification of the saprolite – PWR boundary. However,  $\tau$  values for Ca and Sr were not as useful for identifying the lower boundary of plagioclase weathering, most likely due to lithologic variability in gneissic rocks, and lack of detail regarding the specific minerals, other than plagioclase, in AWRS rocks that contain Ca and Sr.

Other similarities and differences were noted across the mid-slope and valley positions. While not indicative of a boundary, biotite and hornblende-oxide ratio maxima were always found to lie in PWR, while the HDD lay in HWR. The HWR – UWR boundary was found to coincide with biotite and hornblende-oxide ratio quiescence, and DO depletion, indicating oxidation of biotite and hornblende in HWR. Most weathering was found to occur in PWR and HWR at both landscape positions, but the depths over which weathering occurred differs. While weathering extended deeper into the subsurface at the valley position, the depth range of HWR was almost double that found on the hillslope.

An understanding of weathering front depths in low-order catchments is important both because of the local groundwater flow patterns that characterize them, and because of the ubiquity of groundwater well usage for drinking water that taps similar local groundwater flowpaths in the Inner Piedmont terrane. While the specific mineralogical and elemental observations discussed here may not apply to other lithologies, the methods and interpretations have utility in a wide range of settings. A central premise of this study was to understand where along the flowpath is DO consumption highest (i.e. the PIM weathering depth). Others have shown that different geologic formations exhibit different DO depletion characteristics (Tashnia et al., 2023) which implies lithology is exerting control on DO with corresponding effects on the solubility of metals such as As, Mn, etc. A link between the initiation of ferrous mineral oxidation and DO content at the HWR – UWR boundary has been shown here that has ramifications for metal solubility and contaminant transport that could affect groundwater, and the depth of DO depletion could be important for predicting water quality. This study provides an example of using rock cores to predict the depth of DO depletion that could potentially be used in different lithologies. As climate change progresses, populations grow, and the reliance on groundwater increases, a better understanding on the subsurface interaction of water and rock is essential.

## **6** REFERENCES

- Anderson, R.S., Rajaram, H., and Anderson, S.P., 2019, Climate driven coevolution of weathering profiles and hillslope topography generates dramatic differences in critical zone architecture: Hydrological Processes, v. 33, p. 4–19, doi:10.1002/hyp.13307.
- Anovitz, L.M. et al., 2021, Oxidation and associated pore structure modification during experimental alteration of granite: Geochimica et Cosmochimica Acta, v. 292, p. 532– 556, doi:10.1016/j.gca.2020.08.016.
- Arienzo, M.M., Saftner, D., Bacon, S.N., Robtoy, E., Neveux, I., Schlauch, K., Carbone, M., and Grzymski, J., 2022, Naturally occurring metals in unregulated domestic wells in Nevada, USA: Science of The Total Environment, v. 851, p. 158277, doi:10.1016/j.scitotenv.2022.158277.
- Bailey, S.W., Brousseau, P.A., McGuire, K.J., and Ross, D.S., 2014, Influence of landscape position and transient water table on soil development and carbon distribution in a steep, headwater catchment: Geoderma, v. 226–227, p. 279–289, doi:10.1016/j.geoderma.2014.02.017.
- Bazilevskaya, E., Lebedeva, M., Pavich, M., Rother, G., Parkinson, D.Y., Cole, D., and Brantley, S.L., 2013, Where fast weathering creates thin regolith and slow weathering creates thick regolith: Earth Surface Processes and Landforms, v. 38, p. 847–858, doi:10.1002/esp.3369.
- Bazilevskaya, E., Rother, G., Mildner, D.F.R., Pavich, M., Cole, D., Bhatt, M.P., Jin, L., Steefel, C.I., and Brantley, S.L., 2015, How Oxidation and Dissolution in Diabase and Granite Control Porosity during Weathering: Soil Science Society of America Journal, v. 79, https://www.proquest.com/docview/1647115669/abstract/4A8214A3024C4480PQ/1 (accessed January 2024).
- Bourgault, R.R., Ross, D.S., Bailey, S.W., Bullen, T.D., McGuire, K.J., and Gannon, J.P., 2017, Redistribution of soil metals and organic carbon via lateral flowpaths at the catchment scale in a glaciated upland setting: Geoderma, v. 307, p. 238–252, doi:10.1016/j.geoderma.2017.05.039.
- Bourgault, R.R., Ross, D.S., Bailey, S.W., Perdrial, N., and Bower, J., 2022, Groundwater input drives large variance in soil manganese concentration and reactivity in a forested headwater catchment: Soil Science Society of America Journal, v. 86, p. 1553–1570, doi:10.1002/saj2.20439.
- Brantley, S.L., and Lebedeva, M.I., 2021, Relating land surface, water table, and weathering fronts with a conceptual valve model for headwater catchments: Hydrological Processes, v. 35, p. e14010, doi:10.1002/hyp.14010.
- Brantley, S.L., Lebedeva, M.I., Balashov, V.N., Singha, K., Sullivan, P.L., and Stinchcomb, G., 2017, Toward a conceptual model relating chemical reaction fronts to water flow paths in hills: Geomorphology, v. 277, p. 100–117, doi:10.1016/j.geomorph.2016.09.027.

- Chapelle, F.H., 2001, Ground-Water Microbiology and Geochemistry: New York, John Wiley & Sons, Inc., 495 p.
- Chapelle, F.H., McMahon, P.B., Dubrovsky, N.M., Fujii, R.F., Oaksford, E.T., and Vroblesky, D.A., 1995, Deducing the Distribution of Terminal Electron-Accepting Processes in Hydrologically Diverse Groundwater Systems: Water Resources Research, v. 31, p. 359– 371, doi:10.1029/94WR02525.
- Chapman, M.J., Bolich, R.E., and Huffman, B.A., 2005, Hydrogeologic setting, ground-water flow, and ground-water quality at the Lake Wheeler Road research station, 2001-03: North Carolina Piedmont and Mountains Resource Evaluation Program: U.S. Geological Survey Scientific Investigations Report 2005–5166, 99 p., https://doi.org/10.3133/sir20055166.
- Churchman, G.J., and Lowe, D.J., 2011, Alteration, Formation, and Occurrence of Minerals in Soils, *in* Huang, P.M., Li, Y., and Sumner, M.E. eds., Handbook of Soil Sciences: Properties and Processes, Second Edition, Milton, UNITED KINGDOM, Taylor & Francis Group, p. 565–636, http://ebookcentral.proquest.com/lib/unccebooks/detail.action?docID=1449504 (accessed November 2024).
- Climate-Data.org, Undated, Statesville climate: Weather Statesville & temperature by month:, https://en.climate-data.org/north-america/united-states-of-america/northcarolina/statesville-17959/ (accessed January 2024).
- Coyte, R.M., and Vengosh, A., 2020, Factors Controlling the Risks of Co-occurrence of the Redox-Sensitive Elements of Arsenic, Chromium, Vanadium, and Uranium in Groundwater from the Eastern United States: Environmental Science & Technology, v. 54, p. 4367–4375, doi:10.1021/acs.est.9b06471.
- Daniel, III, C.C., and Dahlen, P.R., 2002, Preliminary hydrogeologic assessment and study plan for a regional ground-water resource investigation of the Blue Ridge and Piedmont provinces of North Carolina: U.S. Geological Survey Water Resources Investigations 02– 4105, 67 p., doi:10.3133/wri024105.
- Dunaetz, D., 2017, Critical Value of r Calculator (Excel):, doi:10.13140/RG.2.2.12146.81607.
- Eppes, M.-C., and Johnson, B.G., 2022, Describing Soils in the Field: A Manual for Geomorphologists, *in* Treatise on Geomorphology, Elsevier, p. 450–479, doi:10.1016/B978-0-12-818234-5.00180-2.
- Fisher, B.A., Rendahl, A.K., Aufdenkampe, A.K., and Yoo, K., 2017, Quantifying weathering on variable rocks, an extension of geochemical mass balance: Critical zone and landscape evolution: Earth Surface Processes and Landforms, v. 42, p. 2457–2468, doi:10.1002/esp.4212.
- Fletcher, R.C., Buss, H.L., and Brantley, S.L., 2006, A spheroidal weathering model coupling porewater chemistry to soil thicknesses during steady-state denudation: Earth and Planetary Science Letters, v. 244, p. 444–457, doi:10.1016/j.epsl.2006.01.055.

- Flinchum, B.A., Steven Holbrook, W., Rempe, D., Moon, S., Riebe, C.S., Carr, B.J., Hayes, J.L., St. Clair, J., and Peters, M.P., 2018, Critical Zone Structure Under a Granite Ridge Inferred From Drilling and Three-Dimensional Seismic Refraction Data: Journal of Geophysical Research: Earth Surface, v. 123, p. 1317–1343, doi:10.1029/2017JF004280.
- Gannon, J.P., Bailey, S.W., and McGuire, K.J., 2014, Organizing groundwater regimes and response thresholds by soils: A framework for understanding runoff generation in a headwater catchment: Water Resources Research, v. 50, p. 8403–8419, doi:10.1002/2014WR015498.
- Gazulla, M.F., Rodrigo, M., Ventura, M.J., Orduña, M., and Andreu, C., 2021, Development and validation of a WD-XRF method for quantitative trace analysis: Application in the food industry: X-Ray Spectrometry, v. 50, p. 197–209, doi:10.1002/xrs.3215.
- Gilkes, R.J., and Suddhiprakarn, A., 1979, Biotite Alteration in Deeply Weathered Granite. I. Morphological, Mineralogical, and Chemical Properties: Clays and Clay Minerals, v. 27, p. 349–360, doi:10.1346/CCMN.1979.0270505.
- Gillispie, E.C., Austin, R.E., Rivera, N.A., Bolich, R., Duckworth, O.W., Bradley, P., Amoozegar, A., Hesterberg, D., and Polizzotto, M.L., 2016, Soil Weathering as an Engine for Manganese Contamination of Well Water: Environmental Science & Technology, v. 50, p. 9963–9971, doi:10.1021/acs.est.6b01686.
- Goldich, S.S., 1938, A Study in Rock-Weathering: The Journal of Geology, v. 46, p. 17–58.
- Goldsmith, R., Milton, D.J., and Horton, J.W., 1988a, Geologic map of the Charlotte 1° x 2° quadrangle, North Carolina and South Carolina: U.S. Geological Survey IMAP USGS Numbered Series 1251, 6 p., https://doi.org/10.3133/i1251E.
- Goldsmith, R., Milton, D.J., and Horton, Jr., J.W., 1988b, Geologic map of the Charlotte 1° x 2° quadrangle, North Carolina and South Carolina: U.S. Geological Survey Geologic Map.
- Herndon, E.M., and Brantley, S.L., 2011, Movement of manganese contamination through the Critical Zone: Applied Geochemistry, v. 26, p. S40–S43, doi:10.1016/j.apgeochem.2011.03.024.
- Herndon, E.M., Jin, L., Andrews, D.M., Eissenstat, D.M., and Brantley, S.L., 2015, Importance of vegetation for manganese cycling in temperate forested watersheds: Biogeochemistry of Mn contaminants: Global Biogeochemical Cycles, v. 29, p. 160–174, doi:10.1002/2014GB004858.
- Homoncik, S.C., MacDonald, A.M., Heal, K.V., Ó Dochartaigh, B.É., and Ngwenya, B.T., 2010, Manganese concentrations in Scottish groundwater: Science of The Total Environment, v. 408, p. 2467–2473, doi:10.1016/j.scitotenv.2010.02.017.

- Huffman, B.A., and Abraham, J., 2010, Compilation of Water-Resources Data and Hydrogeologic Setting for the Allison Woods Research Station in Iredell County, North Carolina, 2005-2008: U.S. Geological Survey Open-File Report Open-File Report 2010– 1015, 56 p.
- Jones, M.E., Nico, P.S., Ying, S., Regier, T., Thieme, J., and Keiluweit, M., 2018, Manganese-Driven Carbon Oxidation at Oxic–Anoxic Interfaces: Environmental Science & Technology, v. 52, p. 12349–12357, doi:10.1021/acs.est.8b03791.
- Kadachi, A.N., and Al-Eshaikh, M.A., 2012, Limits of detection in XRF spectroscopy: X-Ray Spectrometry, v. 41, p. 350–354, doi:10.1002/xrs.2412.
- Li, H., Santos, F., Butler, K., and Herndon, E., 2021, A Critical Review on the Multiple Roles of Manganese in Stabilizing and Destabilizing Soil Organic Matter: Environmental Science & Technology, v. 55, p. 12136–12152, doi:10.1021/acs.est.1c00299.
- Lindsey, B.D., Zimmerman, T.M., Chapman, M.J., Cravotta, C.A., and Szabo, Z., 2014, Water Quality in the Principal Aquifers of the Piedmont, Blue Ridge, and Valley and Ridge Regions, Eastern United States, 1993–2009: U.S. Geological Survey Circular 1354, 107 p.
- Merschat, A.J., and Hatcher, R.D., 2007, The Cat Square terrane: Possible Siluro-Devonian remnant ocean basin in the Inner Piedmont, southern Appalachians, USA, *in* 4-D Framework of Continental Crust, Geological Society of America, GSA Memoirs, v. 200, p. 553–565, doi:10.1130/2007.1200(27).
- Merschat, A.J., Hatcher, R.D., Jr., Bream, B.R., Miller, C.F., Byars, H.E., Gatewood, M.P., and Wooden, J.L., 2010, Detrital zircon geochronology and provenance of southern Appalachian Blue Ridge and Inner Piedmont crystalline terranes, *in* Tollo, R.P., Bartholomew, M.J., Hibbard, J.P., and Karabinos, P.M. eds., From Rodinia to Pangea: The Lithotectonic Record of the Appalachian Region, Geological Society of America, v. 206, p. 0, doi:10.1130/2010.1206(26).
- Merschat, A.J., Hatcher, R.D., Jr, Giorgis, S.D., Byars, H.E., Mapes, R.W., Wilson, C.G., and Gatewood, M.P., 2023, Tectonics, geochronology, and petrology of the Walker Top Granite, Appalachian Inner Piedmont, North Carolina (USA): Implications for Acadian and Neoacadian orogenesis: Geosphere, v. 19, p. 19–46, doi:10.1130/GES02315.1.
- N.C. Department of Environmental Quality, Undated, Allison Woods Groundwater Monitoring and Research Station:, https://www.deq.nc.gov/about/divisions/waterresources/groundwater-resources/resource-evaluation-program/allison-woodsgroundwater-monitoring-and-research-station (accessed August 2024).
- N.C. Geological Survey, Undated, Terranes and Major Geologic Features of NC:, https://ncdenr.maps.arcgis.com/apps/MapSeries/index.html?appid=0a7ccd9394734ff6aa2 434d2528ddf12 (accessed December 2024).

- NRCS, U.S. Dept. of Agriculture, Undated, Web Soil Survey:, https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx (accessed January 2024).
- Oh, N.-H., and Richter, D.D., 2005, Elemental translocation and loss from three highly weathered soil-bedrock profiles in the southeastern United States: Geoderma, v. 126, p. 5–25, doi:10.1016/j.geoderma.2004.11.005.
- Pavich, M.J., Leo, G.W., Obermeier, S.F., and Estabrook, J.R., 1989, Investigations of the characteristics, origin, and residence time of the upland residual mantle of the Piedmont of Fairfax County, Virginia: U.S. Geological Survey Professional Paper Professional Paper 1352.
- Ramachandran, M., Schwabe, K.A., and Ying, S.C., 2021, Shallow Groundwater Manganese Merits Deeper Consideration: Environmental Science & Technology, v. 55, p. 3465– 3466, doi:10.1021/acs.est.0c08065.
- Richardson, J.B., 2017, Manganese and Mn/Ca ratios in soil and vegetation in forests across the northeastern US: Insights on spatial Mn enrichment: Science of The Total Environment, v. 581–582, p. 612–620, doi:10.1016/j.scitotenv.2016.12.170.
- Riedel, T., Kübeck, C., and Quirin, M., 2022, Legacy nitrate and trace metal (Mn, Ni, As, Cd, U) pollution in anaerobic groundwater: Quantifying potential health risk from "the other nitrate problem": Applied Geochemistry, v. 139, p. 105254, doi:10.1016/j.apgeochem.2022.105254.
- Sapkota, Y., Duball, C., Vaughan, K., Rabenhorst, M.C., and Berkowitz, J.F., 2022, Indicator of Reduction in Soil (IRIS) devices: A review: Science of The Total Environment, v. 852, p. 158419, doi:10.1016/j.scitotenv.2022.158419.
- Scott, D.T., McKnight, D.M., Voelker, B.M., and Hrncir, D.C., 2002, Redox Processes Controlling Manganese Fate and Transport in a Mountain Stream: Environmental Science & Technology, v. 36, p. 453–459, doi:10.1021/es010951s.
- Siegel, H.G., Soriano, M.A., Clark, C.J., Johnson, N.P., Wulsin, H.G., Deziel, N.C., Plata, D.L., Darrah, T.H., and Saiers, J.E., 2022, Natural and Anthropogenic Processes Affecting Domestic Groundwater Quality within the Northwestern Appalachian Basin: Environmental Science & Technology, v. 56, p. 13761–13773, doi:10.1021/acs.est.2c04011.
- Sparrow, L.A., and Uren, N.C., 2014, Manganese oxidation and reduction in soils: effects of temperature, water potential, pH and their interactions: Soil Research, v. 52, p. 483, doi:10.1071/SR13159.
- St. Clair, J., Moon, S., Holbrook, W.S., Perron, J.T., Riebe, C.S., Martel, S.J., Carr, B., Harman, C., Singha, K., and Richter, D. deB., 2015, Geophysical imaging reveals topographic stress control of bedrock weathering: Science, v. 350, p. 534–538, doi:10.1126/science.aab2210.

Swartz, M.E., and Krull, I.S., 2012, Handbook of Analytical Validation: CRC Press, 226 p.

- Tashnia, S.U., Vinson, D.S., Duckworth, O., Austin, R., Eaves, L.A., and Fry, R., 2023, Redox Classification Approach for Understanding Groundwater Redox State and Naturally Occurring As in a Large Water Quality Data Set (Piedmont and Blue Ridge, North Carolina):
- U.S. Department of Agriculture, Undated, USDA-NRCS Official Soil Series Desc.:, https://soilseries.sc.egov.usda.gov/ (accessed December 2024).
- U.S. Geological Survey, Undated, USGS Site Inventory:, https://waterdata.usgs.gov/nc/nwis/inventory?county\_cd=37097&format=station\_list&gr oup\_key=NONE&list\_of\_search\_criteria=county\_cd (accessed August 2024).
- Vengosh, A., Coyte, R., Karr, J., Harkness, J.S., Kondash, A.J., Ruhl, L.S., Merola, R.B., and Dywer, G.S., 2016, Origin of Hexavalent Chromium in Drinking Water Wells from the Piedmont Aquifers of North Carolina: Environmental Science & Technology Letters, v. 3, p. 409–414, doi:10.1021/acs.estlett.6b00342.
- Vinson, D.S., Vengosh, A., Hirschfeld, D., and Dwyer, G.S., 2009, Relationships between radium and radon occurrence and hydrochemistry in fresh groundwater from fractured crystalline rocks, North Carolina (USA): Chemical Geology, v. 260, p. 159–171, doi:10.1016/j.chemgeo.2008.10.022.
- Yager, D.B., and Bove, D.J., 2007, Geologic Framework, *in* Church, S.E., von Guerard, P., and Finger, S.E. eds., Integrated Investigations of Environmental Effects of Historical Mining in the Animas River Watershed, San Juan County, Colorado, U.S. Geological Survey, p. 823–835.

| CH-2 – Hand Lens Index Scores |         |            |          |                  |  |  |
|-------------------------------|---------|------------|----------|------------------|--|--|
| Depth (ft.)                   | Biotite | Hornblende | Sulfides | FeO <sub>x</sub> |  |  |
| 99.00                         | 4       | 1          | 1        | 1                |  |  |
| 98.13                         | 3       | 1          | 1        | 2                |  |  |
| 98.13                         | 5       | 1          | 1        | 2                |  |  |
| 98.10                         | 5       | 1          | 1        | 1                |  |  |
| 98.10                         | 5       | 1          | 1        | 1                |  |  |
| 96.82                         | 5       | 1          | 1        | 2                |  |  |
| 96.82                         | 5       | 1          | 1        | 2                |  |  |
| 96.78                         | 5       | 1          | 1        | 2                |  |  |
| 96.78                         | 5       | 1          | 1        | 2                |  |  |
| 96.58                         | 4       | 1          | 1        | 2                |  |  |
| 96.58                         | 4       | 1          | 1        | 1                |  |  |
| 96.54                         | 5       | 1          | 1        | 1                |  |  |
| 96.54                         | 5       | 1          | 1        | 1                |  |  |
| 95.92                         | 5       | 1          | 1        | 1                |  |  |
| 95.92                         | 5       | 1          | 1        | 1                |  |  |
| 95.17                         | 3       | 1          | 1        | 2                |  |  |
| 95.17                         | 3       | 1          | 1        | 2                |  |  |
| 94.63                         | 5       | 1          | 1        | 2                |  |  |
| 94.63                         | 5       | 1          | 1        | 1                |  |  |
| 92.48                         | 5       | 1          | 1        | 1                |  |  |
| 92.48                         | 5       | 1          | 1        | 1                |  |  |
| 91.60                         | 5       | 1          | 1        | 1                |  |  |
| 91.60                         | 5       | 1          | 1        | 1                |  |  |
| 90.85                         | 5       | 1          | 1        | 1                |  |  |
| 90.85                         | 5       | 1          | 1        | 1                |  |  |
| 90.00                         | 5       | 1          | 1        | 3                |  |  |
| 90.00                         | 5       | 1          | 1        | 3                |  |  |
| 89.31                         | 4       | 1          | 1        | 3                |  |  |
| 89.31                         | 4       | 1          | 1        | 3                |  |  |
| 88.38                         | 5       | 1          | 1        | 1                |  |  |
| 88.38                         | 5       | 1          | 1        | 1                |  |  |
| 87.58                         | 3       | 1          | 1        | 1                |  |  |
| 87.58                         | 4       | 1          | 1        | 1                |  |  |
| 87.50                         | 3       | 1          | 1        | 2                |  |  |
| 87.50                         | 5       | 1          | 1        | 2                |  |  |
| 87.42                         | 5       | 1          | 1        | 2                |  |  |
| 87.42                         | 5       | 1          | 1        | 2                |  |  |
| 87.31                         | 3       | 1          | 1        | 5                |  |  |

## APPENDIX A: Tabular Hand Lens Index Results

| CH-2 – Hand Lens Index Scores |         |            |          |                  |  |  |  |
|-------------------------------|---------|------------|----------|------------------|--|--|--|
| Depth (ft.)                   | Biotite | Hornblende | Sulfides | FeO <sub>x</sub> |  |  |  |
| 87.31                         | 3       | 1          | 1        | 5                |  |  |  |
| 87.29                         | 1       | 1          | 1        | 1                |  |  |  |
| 87.29                         | 3       | 1          | 1        | 3                |  |  |  |
| 87.09                         | 3       | 3          | 1        | 3                |  |  |  |
| 87.09                         | 3       | 1          | 1        | 4                |  |  |  |
| 85.84                         | 5       | 1          | 1        | 3                |  |  |  |
| 85.84                         | 5       | 1          | 1        | 2                |  |  |  |
| 85.56                         | 4       | 1          | 1        | 3                |  |  |  |
| 85.56                         | 4       | 1          | 1        | 3                |  |  |  |
| 85.46                         | 4       | 1          | 1        | 3                |  |  |  |
| 85.00                         | 3       | 4          | 1        | 2                |  |  |  |
| 84.98                         | 3       | 4          | 1        | 2                |  |  |  |
| 84.98                         | 1       | 4          | 1        | 3                |  |  |  |
| 84.96                         | 1       | 4          | 1        | 3                |  |  |  |
| 84.96                         | 4       | 4          | 1        | 2                |  |  |  |
| 84.88                         | 5       | 2          | 1        | 1                |  |  |  |
| 84.88                         | 5       | 1          | 1        | 2                |  |  |  |
| 84.75                         | 5       | 1          | 1        | 2                |  |  |  |
| 84.75                         | 5       | 1          | 1        | 2                |  |  |  |
| 84.04                         | 2       | 1          | 1        | 2                |  |  |  |
| 84.04                         | 2       | 1          | 1 1      |                  |  |  |  |
| 83.96                         | 3       | 3          | 1        | 1                |  |  |  |
| 83.96                         | 3       | 3          | 1        | 1                |  |  |  |
| 83.88                         | 2       | 5          | 1        | 1                |  |  |  |
| 83.88                         | 4       | 4          | 1        | 1                |  |  |  |
| 83.75                         | 4       | 4          | 1        | 1                |  |  |  |
| 83.75                         | 4       | 4          | 1        | 1                |  |  |  |
| 83.17                         | 3       | 4          | 1        | 1                |  |  |  |
| 83.17                         | 4       | 1          | 1        | 1                |  |  |  |
| 82.83                         | 4       | 1          | 1        | 3                |  |  |  |
| 82.83                         | 4       | 4          | 1        | 2                |  |  |  |
| 82.42                         | 4       | 4          | 1        | 3                |  |  |  |
| 82.42                         | 4       | 4          | 1        | 2                |  |  |  |
| 82.27                         | 3       | 1          | 1        | 2                |  |  |  |
| 82.27                         | 3       | 1          | 1        | 2                |  |  |  |
| 82.23                         | 4       | 3          | 1        | 3                |  |  |  |
| 82.23                         | 4       | 3          | 1        | 3                |  |  |  |
| 81.00                         | 5       | 1          | 1        | 1                |  |  |  |
| 81.00                         | 5       | 1          | 1        | 1                |  |  |  |
| 80.00                         | 5       | 1          | 1        | 1                |  |  |  |

| CH-2 – Hand Lens Index Scores |         |            |          |                  |  |  |
|-------------------------------|---------|------------|----------|------------------|--|--|
| Depth (ft.)                   | Biotite | Hornblende | Sulfides | FeO <sub>x</sub> |  |  |
| 80.00                         | 5       | 1          | 1        | 3                |  |  |
| 79.06                         | 5       | 1          | 1        | 1                |  |  |
| 79.06                         | 5       | 1          | 1        | 1                |  |  |
| 78.00                         | 5       | 1          | 1        | 1                |  |  |
| 78.00                         | 5       | 1          | 1        | 1                |  |  |
| 77.67                         | 3       | 1          | 1        | 2                |  |  |
| 77.67                         | 3       | 1          | 1        | 2                |  |  |
| 75.58                         | 4       | 3          | 1        | 2                |  |  |
| 75.58                         | 5       | 3          | 1        | 2                |  |  |
| 75.00                         | 5       | 3          | 1        | 2                |  |  |
| 75.00                         | 4       | 3          | 1        | 1                |  |  |
| 74.58                         | 4       | 1          | 1        | 1                |  |  |
| 74.58                         | 5       | 1          | 1        | 1                |  |  |
| 73.33                         | 4       | 2          | 1        | 3                |  |  |
| 73.33                         | 4       | 2          | 1        | 3                |  |  |
| 72.58                         | 3       | 1          | 1        | 1                |  |  |
| 72.58                         | 3       | 1          | 1        | 1                |  |  |
| 70.69                         | 4       | 1          | 1        | 1                |  |  |
| 70.69                         | 4       | 1          | 1        | 1                |  |  |
| 70.52                         | 2       | 4          | 1        | 1                |  |  |
| 70.52                         | 2       | 4          | 1        | 1                |  |  |
| 70.00                         | 4       | 4          | 1        | 1                |  |  |
| 70.00                         | 4       | 1          | 1        | 1                |  |  |
| 69.46                         | 3       | 5          | 1        | 2                |  |  |
| 69.46                         | 3       | 5          | 1        | 2                |  |  |
| 69.35                         | 3       | 5          | 1        | 2                |  |  |
| 69.35                         | 3       | 4          | 1        | 2                |  |  |
| 69.27                         | 3       | 4          | 1        | 2                |  |  |
| 69.27                         | 3       | 4          | 1        | 3                |  |  |
| 69.08                         | 2       | 5          | 1        | 3                |  |  |
| 69.08                         | 2       | 5          | 1        | 3                |  |  |
| 68.96                         | 2       | 5          | 1        | 2                |  |  |
| 68.96                         | 2       | 5          | 1        | 2                |  |  |
| 68.60                         | 4       | 1          | 1        | 4                |  |  |
| 68.60                         | 4       | 1          | 1        | 4                |  |  |
| 68.00                         | 4       | 1          | 1        | 3                |  |  |
| 68.00                         | 4       | 1          | 1        | 3                |  |  |
| 67.50                         | 3       | 3          | 1        | 3                |  |  |
| 67.50                         | 4       | 3          | 1        | 4                |  |  |
| 67.42                         | 2       | 4          | 1        | 4                |  |  |

| CH-2 – Hand Lens Index Scores |         |            |          |                  |  |  |  |
|-------------------------------|---------|------------|----------|------------------|--|--|--|
| Depth (ft.)                   | Biotite | Hornblende | Sulfides | FeO <sub>x</sub> |  |  |  |
| 67.42                         | 2       | 4          | 1        | 4                |  |  |  |
| 67.13                         | 4       | 1          | 1        | 3                |  |  |  |
| 67.13                         | 4       | 1          | 1        | 3                |  |  |  |
| 66.92                         | 4       | 1          | 1        | 2                |  |  |  |
| 66.92                         | 1       | 2          | 1        | 4                |  |  |  |
| 66.75                         | 4       | 1          | 1        | 4                |  |  |  |
| 66.75                         | 3       | 1          | 1        | 5                |  |  |  |
| 66.54                         | 1       | 1          | 1        | 5                |  |  |  |
| 66.54                         | 2       | 2          | 1        | 5                |  |  |  |
| 66.29                         | 2       | 3          | 1        | 5                |  |  |  |
| 66.29                         | 2       | 3          | 1        | 5                |  |  |  |
| 66.21                         | 2       | 3          | 1        | 5                |  |  |  |
| 66.21                         | 3       | 1          | 1        | 4                |  |  |  |
| 65.96                         | 3       | 1          | 1        | 5                |  |  |  |
| 65.96                         | 3       | 1          | 1        | 5                |  |  |  |
| 65.50                         | 3       | 1          | 1        | 5                |  |  |  |
| 65.50                         | 3       | 4          | 1        | 3                |  |  |  |
| 65.00                         | 4       | 4          | 1        | 2                |  |  |  |
| 65.00                         | 4       | 1          | 1        | 2                |  |  |  |
| 64.54                         | 3       | 3          | 1        | 4                |  |  |  |
| 64.54                         | 2       | 1          | 1        | 5                |  |  |  |
| 64.44                         | 2       | 1          | 1        | 5                |  |  |  |
| 64.44                         | 2       | 2          | 1        | 5                |  |  |  |
| 64.23                         | 2       | 2          | 1        | 5                |  |  |  |
| 64.23                         | 3       | 3          | 1        | 4                |  |  |  |
| 60.00                         | 2       | 1          | 1        | 5                |  |  |  |
| 60.00                         | 2       | 4          | 1        | 3                |  |  |  |
| 59.65                         | 3       | 1          | 1        | 3                |  |  |  |
| 59.65                         | 3       | 1          | 1        | 3                |  |  |  |
| 59.54                         | 3       | 1          | 1        | 3                |  |  |  |
| 59.54                         | 3       | 4          | 1        | 3                |  |  |  |
| 59.48                         | 3       | 1          | 1        | 4                |  |  |  |
| 59.48                         | 1       | 3          | 1        | 2                |  |  |  |
| 59.23                         | 3       | 1          | 1        | 5                |  |  |  |
| 59.23                         | 3       | 1          | 1        | 5                |  |  |  |
| 59.08                         | 3       | 1          | 1        | 5                |  |  |  |
| 59.08                         | 3       | 1          | 1        | 5                |  |  |  |
| 58.71                         | 2       | 2          | 1        | 3                |  |  |  |
| 58.71                         | 2       | 2          | 1        | 3                |  |  |  |
| 58.58                         | 2       | 4          | 1        | 3                |  |  |  |

| CH-2 – Hand Lens Index Scores |         |            |          |                  |  |  |
|-------------------------------|---------|------------|----------|------------------|--|--|
| Depth (ft.)                   | Biotite | Hornblende | Sulfides | FeO <sub>x</sub> |  |  |
| 58.58                         | 2       | 4          | 1        | 3                |  |  |
| 58.35                         | 2       | 2          | 1        | 5                |  |  |
| 58.35                         | 1       | 3          | 1        | 5                |  |  |
| 58.15                         | 3       | 1          | 1        | 4                |  |  |
| 58.15                         | 3       | 1          | 1        | 4                |  |  |
| 58.02                         | 2       | 3          | 1        | 4                |  |  |
| 58.02                         | 3       | 3          | 1        | 4                |  |  |
| 57.58                         | 2       | 4          | 1        | 4                |  |  |
| 57.38                         | 2       | 4          | 1        | 4                |  |  |
| 57.38                         | 2       | 4          | 1        | 4                |  |  |
| 57.23                         | 2       | 4          | 1        | 4                |  |  |
| 57.23                         | 2       | 4          | 1        | 4                |  |  |
| 57.15                         | 2       | 4          | 1        | 4                |  |  |
| 57.15                         | 2       | 4          | 1        | 4                |  |  |
| 56.96                         | 2       | 4          | 1        | 4                |  |  |
| 56.96                         | 2       | 4          | 1        | 4                |  |  |
| 56.92                         | 2       | 4          | 1        | 4                |  |  |
| 56.92                         | 2       | 4          | 1        | 4                |  |  |
| 56.90                         | 2       | 4          | 1        | 4                |  |  |
| 56.90                         | 2       | 4          | 1        | 4                |  |  |
| 56.87                         | 2       | 4          | 1        | 4                |  |  |
| 56.87                         | 2       | 4          | 1        | 4                |  |  |
| 56.85                         | 2       | 4          | 1        | 4                |  |  |
| 56.85                         | 2       | 4          | 1        | 4                |  |  |
| 56.83                         | 2       | 4          | 1        | 4                |  |  |
| 56.83                         | 2       | 4          | 1        | 4                |  |  |
| 56.58                         | 3       | 1          | 1        | 5                |  |  |
| 56.58                         | 3       | 2          | 1        | 4                |  |  |
| 56.33                         | 4       | 1          | 1        | 4                |  |  |
| 55.00                         | 3       | 3          | 1        | 4                |  |  |
| 54.75                         | 3       | 1          | 1        | 4                |  |  |
| 54.75                         | 3       | 1          | 1        | 4                |  |  |
| 54.38                         | 3       | 1          | 1        | 4                |  |  |
| 54.17                         | 2       | 3          | 1        | 4                |  |  |
| 54.08                         | 2       | 3          | 1        | 4                |  |  |
| 54.08                         | 2       | 4          | 1        | 4                |  |  |
| 53.88                         | 1       | 3          | 1        | 4                |  |  |
| 53.88                         | 2       | 3          | 1        | 5                |  |  |
| 53.71                         | 3       | 2          | 1        | 5                |  |  |
| 53.71                         | 3       | 2          | 1        | 5                |  |  |

| CH-2 – Hand Lens Index Scores |         |            |          |                  |  |  |
|-------------------------------|---------|------------|----------|------------------|--|--|
| Depth (ft.)                   | Biotite | Hornblende | Sulfides | FeO <sub>x</sub> |  |  |
| 53.25                         | 3       | 2          | 1        | 5                |  |  |
| 52.58                         | 3       | 1          | 1        | 5                |  |  |
| 52.21                         | 2       | 1          | 1        | 5                |  |  |
| 52.21                         | 3       | 1          | 1        | 4                |  |  |
| 52.17                         | 3       | 1          | 1        | 4                |  |  |
| 52.17                         | 3       | 1          | 1        | 4                |  |  |
| 52.00                         | 2       | 1          | 1        | 3                |  |  |
| 52.00                         | 3       | 1          | 1        | 4                |  |  |
| 51.65                         | 3       | 1          | 1        | 3                |  |  |
| 51.48                         | 3       | 1          | 1        | 3                |  |  |
| 51.21                         | 3       | 1          | 1        | 3                |  |  |
| 51.21                         | 3       | 1          | 1        | 4                |  |  |
| 50.92                         | 3       | 1          | 1        | 2                |  |  |
| 50.92                         | 3       | 1          | 1        | 2                |  |  |
| 50.75                         | 3       | 1          | 1        | 4                |  |  |
| 50.75                         | 4       | 1          | 1        | 4                |  |  |
| 50.50                         | 3       | 1          | 1        | 4                |  |  |
| 49.67                         | 3       | 1          | 1        | 3                |  |  |
| 49.67                         | 2       | 1          | 1        | 4                |  |  |
| 49.58                         | 3       | 1          | 1        | 3                |  |  |
| 49.58                         | 3       | 1          | 1        | 3                |  |  |
| 49.50                         | 3       | 1          | 1        | 3                |  |  |
| 49.50                         | 3       | 1          | 1        | 4                |  |  |
| 49.21                         | 3       | 1          | 1        | 4                |  |  |
| 49.21                         | 3       | 1          | 1        | 4                |  |  |
| 48.90                         | 3       | 1          | 1        | 4                |  |  |
| 48.90                         | 3       | 1          | 1        | 4                |  |  |
| 48.00                         | 3       | 1          | 1        | 4                |  |  |
| 47.75                         | 3       | 1          | 1        | 4                |  |  |
| 47.75                         | 3       | 1          | 1        | 4                |  |  |
| 47.56                         | 3       | 1          | 1        | 4                |  |  |
| 47.56                         | 1       | 1          | 1        | 2                |  |  |
| 47.40                         | 1       | 1          | 1        | 2                |  |  |
| 47.40                         | 1       | 1          | 1        | 2                |  |  |
| 47.08                         | 2       | 1          | 1        | 4                |  |  |
| 47.08                         | 2       | 1          | 1        | 4                |  |  |
| 46.56                         | 2       | 2          | 1        | 5                |  |  |

| CH-4 Hand Lens Index Scores |         |          |                  |  |  |  |  |
|-----------------------------|---------|----------|------------------|--|--|--|--|
| Depth (ft.)                 | Biotite | Sulfides | FeO <sub>x</sub> |  |  |  |  |
| 100.00                      | 5       | 1        | 2                |  |  |  |  |
| 98.26                       | 4       | 1        | 2                |  |  |  |  |
| 97.13                       | 5       | 1        | 2                |  |  |  |  |
| 96.38                       | 4       | 1        | 2                |  |  |  |  |
| 95.12                       | 4       | 1        | 2                |  |  |  |  |
| 94.76                       | 5       | 1        | 3                |  |  |  |  |
| 93.98                       | 4       | 1        | 3                |  |  |  |  |
| 93.21                       | 2       | 1        | 2                |  |  |  |  |
| 91.71                       | 3       | 1        | 1                |  |  |  |  |
| 90.00                       | 2       | 1        | 1                |  |  |  |  |
| 87.71                       | 2       | 1        | 1                |  |  |  |  |
| 86.71                       | 2       | 1        | 1                |  |  |  |  |
| 84.96                       | 2       | 1        | 1                |  |  |  |  |
| 84.08                       | 4       | 1        | 2                |  |  |  |  |
| 83.45                       | 3       | 1        | 1                |  |  |  |  |
| 81.79                       | 5       | 1        | 2                |  |  |  |  |
| 80.68                       | 4       | 1        | 3                |  |  |  |  |
| 80.00                       | 4       | 1        | 3                |  |  |  |  |
| 77.19                       | 3       | 1        | 2                |  |  |  |  |
| 76.46                       | 3       | 1        | 2                |  |  |  |  |
| 75.83                       | 3       | 1        | 1                |  |  |  |  |
| 75.03                       | 2       | 1        | 1                |  |  |  |  |
| 73.53                       | 2       | 1        | 1                |  |  |  |  |
| 73.42                       | 4       | 1        | 1                |  |  |  |  |
| 73.28                       | 3       | 1        | 3                |  |  |  |  |
| 72.53                       | 3       | 1        | 2                |  |  |  |  |
| 72.10                       | 1       | 1        | 1                |  |  |  |  |
| 70.00                       | 2       | 1        | 1                |  |  |  |  |
| 66.40                       | 5       | 1        | 3                |  |  |  |  |
| 65.73                       | 4       | 1        | 3                |  |  |  |  |
| 64.69                       | 4       | 1        | 3                |  |  |  |  |
| 64.38                       | 4       | 1        | 2                |  |  |  |  |
| 64.15                       | 4       | 1        | 3                |  |  |  |  |
| 62.93                       | 2       | 1        | 2                |  |  |  |  |
| 61.53                       | 2       | 1        | 1                |  |  |  |  |
| 60.71                       | 4       | 1        | 2                |  |  |  |  |
| 60.00                       | 4       | 1        | 2                |  |  |  |  |
| 59.48                       | 3       | 1        | 1                |  |  |  |  |
| 57.38                       | 4       | 1        | 3                |  |  |  |  |
| 56.44                       | 4       | 1        | 2                |  |  |  |  |

| CH-4 Hand Lens Index Scores |         |          |                  |  |  |  |  |
|-----------------------------|---------|----------|------------------|--|--|--|--|
| Depth (ft.)                 | Biotite | Sulfides | FeO <sub>x</sub> |  |  |  |  |
| 55.25                       | 4       | 1        | 4                |  |  |  |  |
| 54.81                       | 4       | 1        | 4                |  |  |  |  |
| 52.88                       | 4       | 1        | 4                |  |  |  |  |
| 52.46                       | 4       | 1        | 2                |  |  |  |  |
| 51.52                       | 4       | 1        | 4                |  |  |  |  |
| 50.79                       | 4       | 1        | 3                |  |  |  |  |
| 50.00                       | 2       | 1        | 2                |  |  |  |  |
| 49.43                       | 1       | 1        | 1                |  |  |  |  |
| 47.79                       | 4       | 1        | 4                |  |  |  |  |
| 47.78                       | 4       | 1        | 2                |  |  |  |  |
| 46.69                       | 3       | 1        | 3                |  |  |  |  |
| 45.48                       | 2       | 1        | 1                |  |  |  |  |
| 45.44                       | 2       | 1        | 1                |  |  |  |  |
| 45.17                       | 1       | 1        | 2                |  |  |  |  |
| 44.91                       | 1       | 1        | 2                |  |  |  |  |
| 43.31                       | 2       | 1        | 2                |  |  |  |  |
| 42.93                       | 3       | 1        | 1                |  |  |  |  |
| 41.69                       | 2       | 1        | 1                |  |  |  |  |
| 40.00                       | 5       | 1        | 2                |  |  |  |  |
| 37.07                       | 4       | 1        | 4                |  |  |  |  |
| 37.02                       | 2       | 1        | 3                |  |  |  |  |
| 36.75                       | 5       | 1        | 4                |  |  |  |  |
| 36.38                       | 4       | 1        | 4                |  |  |  |  |
| 36.08                       | 4       | 1        | 1                |  |  |  |  |
| 35.65                       | 4       | 1        | 3                |  |  |  |  |
| 35.63                       | 4       | 1        | 3                |  |  |  |  |
| 35.38                       | 3       | 1        | 3                |  |  |  |  |
| 35.00                       | 1       | 1        | 1                |  |  |  |  |
| 34.73                       | 3       | 1        | 3                |  |  |  |  |
| 34.33                       | 3       | 1        | 1                |  |  |  |  |
| 34.19                       | 3       | 1        | 4                |  |  |  |  |
| 33.88                       | 3       | 1        | 4                |  |  |  |  |
| 33.21                       | 2       | 1        | 4                |  |  |  |  |
| 33.17                       | 3       | 1        | 4                |  |  |  |  |
| 31.60                       | 2       | 1        | 1                |  |  |  |  |
| 30.50                       | 2       | 1        | 1                |  |  |  |  |
| 30.17                       | 2       | 1        | 2                |  |  |  |  |
| 30.08                       | 2       | 1        | 2                |  |  |  |  |
| 30.00                       | 2       | 1        | 3                |  |  |  |  |
| 29.83                       | 3       | 1        | 2                |  |  |  |  |

| CH-4 Hand Lens Index Scores |         |          |                  |  |  |  |  |
|-----------------------------|---------|----------|------------------|--|--|--|--|
| Depth (ft.)                 | Biotite | Sulfides | FeO <sub>x</sub> |  |  |  |  |
| 29.65                       | 2       | 1        | 2                |  |  |  |  |
| 29.21                       | 2       | 1        | 5                |  |  |  |  |
| 29.17                       | 1       | 1        | 4                |  |  |  |  |
| 29.15                       | 4       | 1        | 3                |  |  |  |  |
| 29.10                       | 3       | 1        | 3                |  |  |  |  |
| 29.04                       | 2       | 1        | 4                |  |  |  |  |
| 28.99                       | 4       | 1        | 4                |  |  |  |  |
| 28.85                       | 3       | 1        | 4                |  |  |  |  |
| 28.77                       | 3       | 1        | 4                |  |  |  |  |
| 28.71                       | 4       | 1        | 4                |  |  |  |  |
| 28.67                       | 4       | 1        | 4                |  |  |  |  |
| 28.52                       | 4       | 1        | 4                |  |  |  |  |

|       | CH-2 Binocular Microscope Mineralogy |            |          |      |             |             |       |
|-------|--------------------------------------|------------|----------|------|-------------|-------------|-------|
| Depth | Biotite                              | Hornblende | Sulfides | FeOx | Biotite-    | Hornblende- | Total |
| (ft.) | %                                    | %          | %        | %    | oxide ratio | oxide ratio | Ratio |
| 99.00 | 70%                                  | 0%         | 0%       | 0%   | 0.000       | 0.000       | 0.000 |
| 98.13 | 25%                                  | 0%         | 0%       | 10%  | 0.400       | 20.000      | 0.400 |
| 98.13 | 30%                                  | 0%         | 0%       | 3%   | 0.100       | 6.000       | 0.100 |
| 98.10 | 50%                                  | 0%         | 0%       | 0%   | 0.000       | 0.000       | 0.000 |
| 98.10 | 50%                                  | 0%         | 0%       | 0%   | 0.000       | 0.000       | 0.000 |
| 96.82 | 50%                                  | 0%         | 0%       | 10%  | 0.200       | 20.000      | 0.200 |
| 96.82 | 40%                                  | 0%         | 0%       | 10%  | 0.250       | 20.000      | 0.250 |
| 96.78 | 30%                                  | 0%         | 0%       | 3%   | 0.100       | 6.000       | 0.100 |
| 96.78 | 60%                                  | 0%         | 0%       | 5%   | 0.083       | 10.000      | 0.083 |
| 96.58 | 20%                                  | 0%         | 0%       | 0%   | 0.000       | 0.000       | 0.000 |
| 96.58 | 30%                                  | 0%         | 0%       | 0%   | 0.000       | 0.000       | 0.000 |
| 96.54 | 30%                                  | 0%         | 0%       | 0%   | 0.000       | 0.000       | 0.000 |
| 96.54 | 15%                                  | 0%         | 0%       | 0%   | 0.000       | 0.000       | 0.000 |
| 95.92 | 10%                                  | 0%         | 0%       | 0%   | 0.000       | 0.000       | 0.000 |
| 95.92 | 20%                                  | 0%         | 0%       | 0%   | 0.000       | 0.000       | 0.000 |
| 95.17 | 25%                                  | 3%         | 0%       | 5%   | 0.200       | 1.667       | 0.179 |
| 95.17 | 50%                                  | 0%         | 0%       | 15%  | 0.300       | 30.000      | 0.300 |
| 94.63 | 70%                                  | 0%         | 0%       | 2%   | 0.029       | 4.000       | 0.029 |
| 94.63 | 70%                                  | 0%         | 0%       | 2%   | 0.029       | 4.000       | 0.029 |
| 92.48 | 70%                                  | 0%         | 0%       | 2%   | 0.029       | 4.000       | 0.029 |
| 92.48 | 75%                                  | 0%         | 0%       | 0%   | 0.000       | 0.000       | 0.000 |
| 91.60 | 60%                                  | 0%         | 0%       | 0%   | 0.000       | 0.000       | 0.000 |
| 91.60 | 60%                                  | 0%         | 0%       | 0%   | 0.000       | 0.000       | 0.000 |
| 90.85 | 80%                                  | 0%         | 0%       | 0%   | 0.000       | 0.000       | 0.000 |
| 90.85 | 70%                                  | 0%         | 0%       | 0%   | 0.000       | 0.000       | 0.000 |
| 90.00 | 80%                                  | 0%         | 0%       | 0%   | 0.000       | 0.000       | 0.000 |
| 90.00 | 40%                                  | 0%         | 0%       | 0%   | 0.000       | 0.000       | 0.000 |
| 89.31 | 25%                                  | 0%         | 0%       | 3%   | 0.120       | 6.000       | 0.120 |
| 89.31 | 30%                                  | 0%         | 2%       | 3%   | 0.100       | 6.000       | 0.100 |
| 88.38 | 20%                                  | 0%         | 0%       | 0%   | 0.000       | 0.000       | 0.000 |
| 88.38 | 80%                                  | 0%         | 0%       | 0%   | 0.000       | 0.000       | 0.000 |
| 87.58 | 30%                                  | 0%         | 0%       | 0%   | 0.000       | 0.000       | 0.000 |
| 87.58 | 40%                                  | 0%         | 0%       | 0%   | 0.000       | 0.000       | 0.000 |
| 87.50 | 40%                                  | 0%         | 0%       | 0%   | 0.000       | 0.000       | 0.000 |
| 87.50 | 40%                                  | 0%         | 0%       | 0%   | 0.000       | 0.000       | 0.000 |
| 87.42 | 40%                                  | 0%         | 0%       | 0%   | 0.000       | 0.000       | 0.000 |
| 87.42 | 50%                                  | 0%         | 0%       | 2%   | 0.040       | 4.000       | 0.040 |

APPENDIX B: Tabular Binocular Microscope Mineralogy Results

|       | CH-2 Binocular Microscope Mineralogy |            |          |                  |             |             |       |
|-------|--------------------------------------|------------|----------|------------------|-------------|-------------|-------|
| Depth | Biotite                              | Hornblende | Sulfides | FeO <sub>x</sub> | Biotite-    | Hornblende- | Total |
| (ft.) | %                                    | %          | %        | %                | oxide ratio | oxide ratio | Ratio |
| 87.31 | 40%                                  | 0%         | 0%       | 30%              | 0.750       | 60.000      | 0.750 |
| 87.31 | 40%                                  | 0%         | 0%       | 30%              | 0.750       | 60.000      | 0.750 |
| 87.29 | 0%                                   | 0%         | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 87.29 | 20%                                  | 0%         | 0%       | 3%               | 0.150       | 6.000       | 0.150 |
| 87.09 | 20%                                  | 0%         | 0%       | 30%              | 1.500       | 60.000      | 1.500 |
| 87.09 | 20%                                  | 0%         | 0%       | 30%              | 1.500       | 60.000      | 1.500 |
| 85.84 | 20%                                  | 0%         | 0%       | 30%              | 1.500       | 60.000      | 1.500 |
| 85.84 | 40%                                  | 0%         | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 85.56 | 75%                                  | 0%         | 0%       | 5%               | 0.067       | 10.000      | 0.067 |
| 85.56 | 30%                                  | 0%         | 0%       | 3%               | 0.100       | 6.000       | 0.100 |
| 85.46 | 40%                                  | 0%         | 0%       | 10%              | 0.250       | 20.000      | 0.250 |
| 85.46 | 40%                                  | 0%         | 0%       | 10%              | 0.250       | 20.000      | 0.250 |
| 85.00 | 40%                                  | 0%         | 0%       | 10%              | 0.250       | 20.000      | 0.250 |
| 85.00 | 40%                                  | 7%         | 0%       | 20%              | 0.500       | 2.857       | 0.426 |
| 84.98 | 25%                                  | 0%         | 0%       | 5%               | 0.200       | 10.000      | 0.200 |
| 84.98 | 15%                                  | 70%        | 0%       | 10%              | 0.667       | 0.143       | 0.118 |
| 84.96 | 15%                                  | 70%        | 0%       | 10%              | 0.667       | 0.143       | 0.118 |
| 84.96 | 10%                                  | 40%        | 0%       | 10%              | 1.000       | 0.250       | 0.200 |
| 84.88 | 80%                                  | 0%         | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 84.88 | 80%                                  | 0%         | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 84.75 | 60%                                  | 0%         | 0%       | 5%               | 0.083       | 10.000      | 0.083 |
| 84.75 | 60%                                  | 0%         | 0%       | 5%               | 0.083       | 10.000      | 0.083 |
| 84.04 | 0%                                   | 0%         | 0%       | 3%               | 6.000       | 6.000       | 6.000 |
| 84.04 | 10%                                  | 0%         | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 83.96 | 50%                                  | 15%        | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 83.96 | 20%                                  | 15%        | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 83.88 | 20%                                  | 25%        | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 83.88 | 25%                                  | 15%        | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 83.75 | 25%                                  | 15%        | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 83.75 | 25%                                  | 25%        | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 83.17 | 40%                                  | 0%         | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 83.17 | 50%                                  | 0%         | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 82.83 | 50%                                  | 0%         | 0%       | 20%              | 0.400       | 40.000      | 0.400 |
| 82.83 | 10%                                  | 75%        | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 82.42 | 30%                                  | 30%        | 0%       | 20%              | 0.667       | 0.667       | 0.333 |
| 82.42 | 30%                                  | 30%        | 0%       | 20%              | 0.667       | 0.667       | 0.333 |
| 82.27 | 50%                                  | 0%         | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 82.27 | 50%                                  | 0%         | 0%       | 2%               | 0.040       | 4.000       | 0.040 |
| 82.23 | 25%                                  | 0%         | 0%       | 15%              | 0.600       | 30.000      | 0.600 |

|       | CH-2 Binocular Microscope Mineralogy |            |          |                  |             |             |       |
|-------|--------------------------------------|------------|----------|------------------|-------------|-------------|-------|
| Depth | Biotite                              | Hornblende | Sulfides | FeO <sub>x</sub> | Biotite-    | Hornblende- | Total |
| (ft.) | %                                    | %          | %        | %                | oxide ratio | oxide ratio | Ratio |
| 82.23 | 25%                                  | 0%         | 0%       | 15%              | 0.600       | 30.000      | 0.600 |
| 81.00 | 50%                                  | 0%         | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 81.00 | 50%                                  | 0%         | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 80.00 | 70%                                  | 0%         | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 80.00 | 70%                                  | 0%         | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 79.06 | 90%                                  | 0%         | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 79.06 | 90%                                  | 0%         | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 78.00 | 90%                                  | 0%         | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 78.00 | 75%                                  | 0%         | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 77.67 | 40%                                  | 0%         | 0%       | 20%              | 0.500       | 40.000      | 0.500 |
| 77.67 | 40%                                  | 0%         | 0%       | 20%              | 0.500       | 40.000      | 0.500 |
| 75.58 | 40%                                  | 0%         | 0%       | 20%              | 0.500       | 40.000      | 0.500 |
| 75.58 | 40%                                  | 15%        | 0%       | 5%               | 0.125       | 0.333       | 0.091 |
| 75.00 | 40%                                  | 15%        | 0%       | 5%               | 0.125       | 0.333       | 0.091 |
| 75.00 | 75%                                  | 0%         | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 74.58 | 75%                                  | 0%         | 1%       | 0%               | 0.000       | 0.000       | 0.000 |
| 74.58 | 75%                                  | 0%         | 1%       | 0%               | 0.000       | 0.000       | 0.000 |
| 73.33 | 75%                                  | 0%         | 1%       | 0%               | 0.000       | 0.000       | 0.000 |
| 73.33 | 40%                                  | 0%         | 0%       | 15%              | 0.375       | 30.000      | 0.375 |
| 72.58 | 30%                                  | 0%         | 0%       | 5%               | 0.167       | 10.000      | 0.167 |
| 72.58 | 30%                                  | 0%         | 0%       | 5%               | 0.167       | 10.000      | 0.167 |
| 70.69 | 30%                                  | 0%         | 0%       | 5%               | 0.167       | 10.000      | 0.167 |
| 70.69 | 60%                                  | 0%         | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 70.52 | 5%                                   | 30%        | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 70.52 | 5%                                   | 30%        | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 70.00 | 25%                                  | 20%        | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 70.00 | 80%                                  | 0%         | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 69.46 | 60%                                  | 15%        | 0%       | 3%               | 0.050       | 0.200       | 0.040 |
| 69.46 | 20%                                  | 25%        | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 69.35 | 20%                                  | 25%        | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 69.35 | 7%                                   | 30%        | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 69.27 | 7%                                   | 30%        | 0%       | 0%               | 0.000       | 0.000       | 0.000 |
| 69.27 | 10%                                  | 40%        | 0%       | 10%              | 1.000       | 0.250       | 0.200 |
| 69.08 | 20%                                  | 40%        | 0%       | 2%               | 0.100       | 0.050       | 0.033 |
| 69.08 | 7%                                   | 45%        | 0%       | 20%              | 2.857       | 0.444       | 0.385 |
| 68.96 | 0%                                   | 50%        | 0%       | 5%               | 10.000      | 0.100       | 0.100 |
| 68.96 | 2%                                   | 50%        | 0%       | 5%               | 2.500       | 0.100       | 0.096 |
| 68.60 | 40%                                  | 0%         | 0%       | 40%              | 1.000       | 80.000      | 1.000 |
| 68.60 | 40%                                  | 0%         | 0%       | 40%              | 1.000       | 80.000      | 1.000 |

| CH-2 Binocular Microscope Mineralogy |         |            |          |                  |             |             |        |  |
|--------------------------------------|---------|------------|----------|------------------|-------------|-------------|--------|--|
| Depth                                | Biotite | Hornblende | Sulfides | FeO <sub>x</sub> | Biotite-    | Hornblende- | Total  |  |
| (ft.)                                | %       | %          | %        | %                | oxide ratio | oxide ratio | Ratio  |  |
| 68.00                                | 20%     | 0%         | 0%       | 7%               | 0.350       | 14.000      | 0.350  |  |
| 68.00                                | 20%     | 0%         | 0%       | 7%               | 0.350       | 14.000      | 0.350  |  |
| 67.50                                | 60%     | 5%         | 0%       | 20%              | 0.333       | 4.000       | 0.308  |  |
| 67.50                                | 30%     | 15%        | 0%       | 30%              | 1.000       | 2.000       | 0.667  |  |
| 67.42                                | 10%     | 30%        | 0%       | 40%              | 4.000       | 1.333       | 1.000  |  |
| 67.42                                | 10%     | 30%        | 0%       | 40%              | 4.000       | 1.333       | 1.000  |  |
| 67.13                                | 25%     | 0%         | 0%       | 20%              | 0.800       | 40.000      | 0.800  |  |
| 67.13                                | 25%     | 0%         | 0%       | 20%              | 0.800       | 40.000      | 0.800  |  |
| 66.92                                | 30%     | 0%         | 0%       | 10%              | 0.333       | 20.000      | 0.333  |  |
| 66.92                                | 5%      | 0%         | 0%       | 50%              | 10.000      | 100.000     | 10.000 |  |
| 66.75                                | 15%     | 0%         | 0%       | 40%              | 2.667       | 80.000      | 2.667  |  |
| 66.75                                | 15%     | 0%         | 0%       | 60%              | 4.000       | 120.000     | 4.000  |  |
| 66.54                                | 3%      | 0%         | 0%       | 35%              | 11.667      | 70.000      | 11.667 |  |
| 66.54                                | 10%     | 2%         | 0%       | 75%              | 7.500       | 37.500      | 6.250  |  |
| 66.29                                | 15%     | 0%         | 0%       | 60%              | 4.000       | 120.000     | 4.000  |  |
| 66.29                                | 5%      | 0%         | 0%       | 40%              | 8.000       | 80.000      | 8.000  |  |
| 66.21                                | 10%     | 0%         | 0%       | 30%              | 3.000       | 60.000      | 3.000  |  |
| 66.21                                | 25%     | 0%         | 0%       | 30%              | 1.200       | 60.000      | 1.200  |  |
| 65.96                                | 25%     | 0%         | 0%       | 30%              | 1.200       | 60.000      | 1.200  |  |
| 65.96                                | 25%     | 0%         | 0%       | 30%              | 1.200       | 60.000      | 1.200  |  |
| 65.50                                | 15%     | 0%         | 0%       | 25%              | 1.667       | 50.000      | 1.667  |  |
| 65.50                                | 35%     | 0%         | 0%       | 15%              | 0.429       | 30.000      | 0.429  |  |
| 65.00                                | 40%     | 20%        | 0%       | 0%               | 0.000       | 0.000       | 0.000  |  |
| 65.00                                | 40%     | 20%        | 0%       | 0%               | 0.000       | 0.000       | 0.000  |  |
| 64.00                                | 20%     | 15%        | 0%       | 25%              | 1.250       | 1.667       | 0.714  |  |
| 64.00                                | 15%     | 0%         | 0%       | 40%              | 2.667       | 80.000      | 2.667  |  |
| 62.60                                | 10%     | 0%         | 0%       | 30%              | 3.000       | 60.000      | 3.000  |  |
| 62.60                                | 10%     | 0%         | 0%       | 30%              | 3.000       | 60.000      | 3.000  |  |
| 61.60                                | 30%     | 0%         | 0%       | 40%              | 1.333       | 80.000      | 1.333  |  |
| 61.60                                | 20%     | 0%         | 0%       | 45%              | 2.250       | 90.000      | 2.250  |  |
| 60.60                                | 10%     | 0%         | 0%       | 40%              | 4.000       | 80.000      | 4.000  |  |
| 60.60                                | 25%     | 0%         | 0%       | 30%              | 1.200       | 60.000      | 1.200  |  |
| 59.65                                | 5%      | 7%         | 0%       | 7%               | 1.400       | 1.000       | 0.583  |  |
| 59.65                                | 20%     | 0%         | 0%       | 10%              | 0.500       | 20.000      | 0.500  |  |
| 59.54                                | 15%     | 0%         | 0%       | 20%              | 1.333       | 40.000      | 1.333  |  |
| 59.54                                | 30%     | 0%         | 0%       | 20%              | 0.667       | 40.000      | 0.667  |  |
| 59.48                                | 15%     | 0%         | 0%       | 25%              | 1.667       | 50.000      | 1.667  |  |
| 59.48                                | 5%      | 0%         | 0%       | 0%               | 0.000       | 0.000       | 0.000  |  |
| 59.23                                | 10%     | 0%         | 0%       | 40%              | 4.000       | 80.000      | 4.000  |  |

| CH-2 Binocular Microscope Mineralogy |         |            |          |                  |             |             |       |  |
|--------------------------------------|---------|------------|----------|------------------|-------------|-------------|-------|--|
| Depth                                | Biotite | Hornblende | Sulfides | FeO <sub>x</sub> | Biotite-    | Hornblende- | Total |  |
| (ft.)                                | %       | %          | %        | %                | oxide ratio | oxide ratio | Ratio |  |
| 59.23                                | 15%     | 0%         | 0%       | 60%              | 4.000       | 120.000     | 4.000 |  |
| 59.08                                | 15%     | 0%         | 0%       | 60%              | 4.000       | 120.000     | 4.000 |  |
| 59.08                                | 30%     | 0%         | 0%       | 40%              | 1.333       | 80.000      | 1.333 |  |
| 58.71                                | 5%      | 15%        | 0%       | 15%              | 3.000       | 1.000       | 0.750 |  |
| 58.71                                | 10%     | 20%        | 0%       | 30%              | 3.000       | 1.500       | 1.000 |  |
| 58.58                                | 20%     | 0%         | 0%       | 20%              | 1.000       | 40.000      | 1.000 |  |
| 58.58                                | 20%     | 0%         | 0%       | 20%              | 1.000       | 40.000      | 1.000 |  |
| 58.35                                | 15%     | 0%         | 0%       | 30%              | 2.000       | 60.000      | 2.000 |  |
| 58.35                                | 30%     | 0%         | 0%       | 25%              | 0.833       | 50.000      | 0.833 |  |
| 58.15                                | 40%     | 0%         | 0%       | 15%              | 0.375       | 30.000      | 0.375 |  |
| 58.15                                | 25%     | 0%         | 0%       | 25%              | 1.000       | 50.000      | 1.000 |  |
| 58.02                                | 10%     | 0%         | 0%       | 7%               | 0.700       | 14.000      | 0.700 |  |
| 58.02                                | 35%     | 0%         | 0%       | 25%              | 0.714       | 50.000      | 0.714 |  |
| 57.58                                | 25%     | 0%         | 0%       | 30%              | 1.200       | 60.000      | 1.200 |  |
| 57.58                                | 15%     | 40%        | 0%       | 7%               | 0.467       | 0.175       | 0.127 |  |
| 57.38                                | 15%     | 40%        | 0%       | 7%               | 0.467       | 0.175       | 0.127 |  |
| 57.38                                | 15%     | 40%        | 0%       | 7%               | 0.467       | 0.175       | 0.127 |  |
| 57.23                                | 15%     | 40%        | 0%       | 7%               | 0.467       | 0.175       | 0.127 |  |
| 57.23                                | 15%     | 40%        | 0%       | 7%               | 0.467       | 0.175       | 0.127 |  |
| 57.15                                | 5%      | 60%        | 0%       | 15%              | 3.000       | 0.250       | 0.231 |  |
| 57.15                                | 5%      | 60%        | 0%       | 15%              | 3.000       | 0.250       | 0.231 |  |
| 56.96                                | 5%      | 60%        | 0%       | 15%              | 3.000       | 0.250       | 0.231 |  |
| 56.96                                | 5%      | 60%        | 0%       | 15%              | 3.000       | 0.250       | 0.231 |  |
| 56.92                                | 5%      | 60%        | 0%       | 15%              | 3.000       | 0.250       | 0.231 |  |
| 56.92                                | 5%      | 60%        | 0%       | 15%              | 3.000       | 0.250       | 0.231 |  |
| 56.90                                | 5%      | 60%        | 0%       | 15%              | 3.000       | 0.250       | 0.231 |  |
| 56.90                                | 5%      | 60%        | 0%       | 15%              | 3.000       | 0.250       | 0.231 |  |
| 56.87                                | 5%      | 60%        | 0%       | 15%              | 3.000       | 0.250       | 0.231 |  |
| 56.87                                | 5%      | 60%        | 0%       | 15%              | 3.000       | 0.250       | 0.231 |  |
| 56.85                                | 5%      | 60%        | 0%       | 15%              | 3.000       | 0.250       | 0.231 |  |
| 56.85                                | 5%      | 60%        | 0%       | 15%              | 3.000       | 0.250       | 0.231 |  |
| 56.83                                | 5%      | 60%        | 0%       | 15%              | 3.000       | 0.250       | 0.231 |  |
| 56.83                                | 50%     | 0%         | 0%       | 15%              | 0.300       | 30.000      | 0.300 |  |
| 56.58                                | 30%     | 0%         | 0%       | 30%              | 1.000       | 60.000      | 1.000 |  |
| 56.58                                | 30%     | 0%         | 0%       | 30%              | 1.000       | 60.000      | 1.000 |  |
| 55.75                                | 30%     | 0%         | 0%       | 30%              | 1.000       | 60.000      | 1.000 |  |
| 55.75                                | 20%     | 0%         | 0%       | 15%              | 0.750       | 30.000      | 0.750 |  |
| 55.00                                | 20%     | 0%         | 0%       | 15%              | 0.750       | 30.000      | 0.750 |  |
| 55.00                                | 25%     | 0%         | 0%       | 20%              | 0.800       | 40.000      | 0.800 |  |

| CH-2 Binocular Microscope Mineralogy |         |            |          |                  |             |             |       |  |
|--------------------------------------|---------|------------|----------|------------------|-------------|-------------|-------|--|
| Depth                                | Biotite | Hornblende | Sulfides | FeO <sub>x</sub> | Biotite-    | Hornblende- | Total |  |
| (ft.)                                | %       | %          | %        | %                | oxide ratio | oxide ratio | Ratio |  |
| 54.75                                | 30%     | 0%         | 0%       | 25%              | 0.833       | 50.000      | 0.833 |  |
| 54.75                                | 20%     | 0%         | 0%       | 20%              | 1.000       | 40.000      | 1.000 |  |
| 54.38                                | 20%     | 0%         | 0%       | 20%              | 1.000       | 40.000      | 1.000 |  |
| 54.38                                | 15%     | 0%         | 0%       | 30%              | 2.000       | 60.000      | 2.000 |  |
| 54.17                                | 15%     | 0%         | 0%       | 30%              | 2.000       | 60.000      | 2.000 |  |
| 54.17                                | 20%     | 0%         | 0%       | 15%              | 0.750       | 30.000      | 0.750 |  |
| 54.08                                | 30%     | 0%         | 0%       | 25%              | 0.833       | 50.000      | 0.833 |  |
| 54.08                                | 40%     | 0%         | 0%       | 30%              | 0.750       | 60.000      | 0.750 |  |
| 53.88                                | 20%     | 0%         | 0%       | 7%               | 0.350       | 14.000      | 0.350 |  |
| 53.88                                | 20%     | 0%         | 0%       | 7%               | 0.350       | 14.000      | 0.350 |  |
| 53.71                                | 15%     | 0%         | 0%       | 40%              | 2.667       | 80.000      | 2.667 |  |
| 53.71                                | 15%     | 0%         | 0%       | 40%              | 2.667       | 80.000      | 2.667 |  |
| 53.25                                | 15%     | 0%         | 0%       | 35%              | 2.333       | 70.000      | 2.333 |  |
| 53.25                                | 20%     | 0%         | 0%       | 50%              | 2.500       | 100.000     | 2.500 |  |
| 52.58                                | 15%     | 0%         | 0%       | 30%              | 2.000       | 60.000      | 2.000 |  |
| 52.58                                | 15%     | 0%         | 0%       | 40%              | 2.667       | 80.000      | 2.667 |  |
| 52.21                                | 25%     | 0%         | 0%       | 35%              | 1.400       | 70.000      | 1.400 |  |
| 52.21                                | 25%     | 0%         | 0%       | 35%              | 1.400       | 70.000      | 1.400 |  |
| 52.17                                | 25%     | 0%         | 0%       | 45%              | 1.800       | 90.000      | 1.800 |  |
| 52.17                                | 25%     | 0%         | 0%       | 45%              | 1.800       | 90.000      | 1.800 |  |
| 52.00                                | 20%     | 0%         | 0%       | 15%              | 0.750       | 30.000      | 0.750 |  |
| 52.00                                | 25%     | 0%         | 0%       | 30%              | 1.200       | 60.000      | 1.200 |  |
| 51.65                                | 30%     | 0%         | 0%       | 20%              | 0.667       | 40.000      | 0.667 |  |
| 51.65                                | 30%     | 0%         | 0%       | 20%              | 0.667       | 40.000      | 0.667 |  |
| 51.48                                | 30%     | 0%         | 0%       | 20%              | 0.667       | 40.000      | 0.667 |  |
| 51.48                                | 20%     | 0%         | 0%       | 30%              | 1.500       | 60.000      | 1.500 |  |
| 51.21                                | 30%     | 0%         | 0%       | 20%              | 0.667       | 40.000      | 0.667 |  |
| 51.21                                | 35%     | 0%         | 0%       | 30%              | 0.857       | 60.000      | 0.857 |  |
| 50.92                                | 15%     | 0%         | 0%       | 5%               | 0.333       | 10.000      | 0.333 |  |
| 50.92                                | 15%     | 0%         | 0%       | 5%               | 0.333       | 10.000      | 0.333 |  |
| 50.75                                | 25%     | 0%         | 0%       | 15%              | 0.600       | 30.000      | 0.600 |  |
| 50.75                                | 30%     | 0%         | 0%       | 25%              | 0.833       | 50.000      | 0.833 |  |
| 50.50                                | 10%     | 0%         | 0%       | 55%              | 5.500       | 110.000     | 5.500 |  |
| 50.50                                | 10%     | 0%         | 0%       | 15%              | 1.500       | 30.000      | 1.500 |  |
| 50.25                                | 10%     | 0%         | 0%       | 20%              | 2.000       | 40.000      | 2.000 |  |
| 50.25                                | 20%     | 0%         | 0%       | 10%              | 0.500       | 20.000      | 0.500 |  |
| 50.00                                | 20%     | 0%         | 0%       | 10%              | 0.500       | 20.000      | 0.500 |  |
| 50.00                                | 10%     | 0%         | 0%       | 15%              | 1.500       | 30.000      | 1.500 |  |
| 49.67                                | 10%     | 0%         | 0%       | 15%              | 1.500       | 30.000      | 1.500 |  |

| CH-2 Binocular Microscope Mineralogy |         |            |          |                  |             |             |       |  |
|--------------------------------------|---------|------------|----------|------------------|-------------|-------------|-------|--|
| Depth                                | Biotite | Hornblende | Sulfides | FeO <sub>x</sub> | Biotite-    | Hornblende- | Total |  |
| (ft.)                                | %       | %          | %        | %                | oxide ratio | oxide ratio | Ratio |  |
| 49.67                                | 10%     | 0%         | 0%       | 25%              | 2.500       | 50.000      | 2.500 |  |
| 49.58                                | 40%     | 0%         | 0%       | 40%              | 1.000       | 80.000      | 1.000 |  |
| 49.58                                | 40%     | 0%         | 0%       | 40%              | 1.000       | 80.000      | 1.000 |  |
| 49.50                                | 40%     | 0%         | 0%       | 40%              | 1.000       | 80.000      | 1.000 |  |
| 49.50                                | 20%     | 0%         | 0%       | 20%              | 1.000       | 40.000      | 1.000 |  |
| 49.21                                | 25%     | 0%         | 0%       | 20%              | 0.800       | 40.000      | 0.800 |  |
| 49.21                                | 25%     | 0%         | 0%       | 20%              | 0.800       | 40.000      | 0.800 |  |
| 48.90                                | 20%     | 0%         | 0%       | 20%              | 1.000       | 40.000      | 1.000 |  |
| 48.90                                | 20%     | 0%         | 0%       | 15%              | 0.750       | 30.000      | 0.750 |  |
| 48.67                                | 20%     | 0%         | 0%       | 15%              | 0.750       | 30.000      | 0.750 |  |
| 48.67                                | 20%     | 0%         | 0%       | 15%              | 0.750       | 30.000      | 0.750 |  |
| 48.38                                | 30%     | 0%         | 0%       | 25%              | 0.833       | 50.000      | 0.833 |  |
| 48.38                                | 30%     | 0%         | 0%       | 25%              | 0.833       | 50.000      | 0.833 |  |
| 48.21                                | 20%     | 0%         | 0%       | 30%              | 1.500       | 60.000      | 1.500 |  |
| 48.21                                | 20%     | 0%         | 0%       | 10%              | 0.500       | 20.000      | 0.500 |  |
| 48.00                                | 20%     | 0%         | 0%       | 25%              | 1.250       | 50.000      | 1.250 |  |
| 48.00                                | 20%     | 0%         | 0%       | 10%              | 0.500       | 20.000      | 0.500 |  |
| 47.75                                | 20%     | 0%         | 0%       | 10%              | 0.500       | 20.000      | 0.500 |  |
| 47.75                                | 30%     | 0%         | 0%       | 20%              | 0.667       | 40.000      | 0.667 |  |
| 47.56                                | 20%     | 0%         | 0%       | 15%              | 0.750       | 30.000      | 0.750 |  |
| 47.56                                | 20%     | 0%         | 0%       | 15%              | 0.750       | 30.000      | 0.750 |  |
| 47.40                                | 7%      | 0%         | 0%       | 15%              | 2.143       | 30.000      | 2.143 |  |
| 47.40                                | 7%      | 0%         | 0%       | 15%              | 2.143       | 30.000      | 2.143 |  |
| 47.08                                | 15%     | 0%         | 0%       | 40%              | 2.667       | 80.000      | 2.667 |  |
| 47.08                                | 5%      | 0%         | 0%       | 40%              | 8.000       | 80.000      | 8.000 |  |
| 46.56                                | 5%      | 0%         | 0%       | 45%              | 9.000       | 90.000      | 9.000 |  |
| 46.56                                | 7%      | 0%         | 0%       | 30%              | 4.286       | 60.000      | 4.286 |  |
| 46.33                                | 15%     | 0%         | 0%       | 25%              | 1.667       | 50.000      | 1.667 |  |
| 46.33                                | 7%      | 0%         | 0%       | 30%              | 4.286       | 60.000      | 4.286 |  |
| 45.92                                | 3%      | 0%         | 0%       | 3%               | 1.000       | 6.000       | 1.000 |  |
| 45.92                                | 3%      | 0%         | 0%       | 3%               | 1.000       | 6.000       | 1.000 |  |
| 45.67                                | 30%     | 0%         | 0%       | 15%              | 0.500       | 30.000      | 0.500 |  |
| 45.67                                | 30%     | 0%         | 0%       | 15%              | 0.500       | 30.000      | 0.500 |  |
| 45.38                                | 15%     | 0%         | 0%       | 15%              | 1.000       | 30.000      | 1.000 |  |
| 45.38                                | 15%     | 0%         | 0%       | 15%              | 1.000       | 30.000      | 1.000 |  |
| 45.00                                | 15%     | 0%         | 0%       | 15%              | 1.000       | 30.000      | 1.000 |  |
| 45.00                                | 20%     | 0%         | 0%       | 25%              | 1.250       | 50.000      | 1.250 |  |
| 44.79                                | 20%     | 0%         | 0%       | 25%              | 1.250       | 50.000      | 1.250 |  |
| 44.79                                | 20%     | 0%         | 0%       | 25%              | 1.250       | 50.000      | 1.250 |  |

| CH-2 Binocular Microscope Mineralogy |         |            |                 |                  |             |             |        |  |
|--------------------------------------|---------|------------|-----------------|------------------|-------------|-------------|--------|--|
| Depth                                | Biotite | Hornblende | Sulfides        | FeO <sub>x</sub> | Biotite-    | Hornblende- | Total  |  |
| (ft.)                                | %       | %          | %               | %                | oxide ratio | oxide ratio | Ratio  |  |
| 44.67                                | 20%     | 0%         | 0%              | 10%              | 0.500       | 20.000      | 0.500  |  |
| 44.67                                | 20%     | 0%         | 0%              | 7%               | 0.350       | 14.000      | 0.350  |  |
| 44.46                                | 25%     | 0%         | 0%              | 15%              | 0.600       | 30.000      | 0.600  |  |
| 44.46                                | 25%     | 0%         | 0%              | 15%              | 0.600       | 30.000      | 0.600  |  |
| 44.25                                | 25%     | 0%         | 0%              | 15%              | 0.600       | 30.000      | 0.600  |  |
| 44.25                                | 25%     | 0%         | 0%              | 20%              | 0.800       | 40.000      | 0.800  |  |
| 43.90                                | 5%      | 0%         | 0% 0% 20% 4.000 |                  | 40.000      | 4.000       |        |  |
| 43.90                                | 15%     | 0%         | 0%              | 40%              | 2.667       | 80.000      | 2.667  |  |
| 43.73                                | 15%     | 0%         | 0%              | 40%              | 2.667       | 80.000      | 2.667  |  |
| 43.73                                | 15%     | 0%         | 0%              | 40%              | 2.667       | 80.000      | 2.667  |  |
| 43.00                                | 3%      | 0%         | 0%              | 15%              | 5.000       | 30.000      | 5.000  |  |
| 43.00                                | 3%      | 0%         | 0%              | 15%              | 5.000       | 30.000      | 5.000  |  |
| 42.50                                | 15%     | 0%         | 0%              | 40%              | 2.667       | 80.000      | 2.667  |  |
| 42.04                                | 5%      | 0%         | 0%              | 20%              | 4.000       | 40.000      | 4.000  |  |
| 41.85                                | 5%      | 0%         | 0%              | 20%              | 4.000       | 40.000      | 4.000  |  |
| 41.85                                | 3%      | 0%         | 0%              | 15%              | 5.000       | 30.000      | 5.000  |  |
| 41.65                                | 15%     | 0%         | 0%              | 20%              | 1.333       | 40.000      | 1.333  |  |
| 41.65                                | 20%     | 0%         | 0%              | 30%              | 1.500       | 60.000      | 1.500  |  |
| 41.40                                | 20%     | 0%         | 0%              | 30%              | 1.500       | 60.000      | 1.500  |  |
| 41.40                                | 7%      | 0%         | 0%              | 15%              | 2.143       | 30.000      | 2.143  |  |
| 40.75                                | 2%      | 0%         | 0%              | 40%              | 20.000      | 80.000      | 20.000 |  |
| 40.75                                | 5%      | 0%         | 0%              | 25%              | 5.000       | 50.000      | 5.000  |  |
| 40.00                                | 10%     | 0%         | 0%              | 50%              | 5.000       | 100.000     | 5.000  |  |
| 40.00                                | 10%     | 0%         | 0%              | 50%              | 5.000       | 100.000     | 5.000  |  |
| 39.83                                | 7%      | 0%         | 0%              | 35%              | 5.000       | 70.000      | 5.000  |  |
| 39.83                                | 25%     | 0%         | 0%              | 45%              | 1.800       | 90.000      | 1.800  |  |
| 39.58                                | 5%      | 0%         | 0%              | 40%              | 8.000       | 80.000      | 8.000  |  |
| 39.58                                | 3%      | 0%         | 0%              | 40%              | 13.333      | 80.000      | 13.333 |  |
| 39.25                                | 20%     | 0%         | 0%              | 40%              | 2.000       | 80.000      | 2.000  |  |
| 39.25                                | 20%     | 0%         | 0%              | 20%              | 1.000       | 40.000      | 1.000  |  |
| 38.98                                | 25%     | 0%         | 0%              | 30%              | 1.200       | 60.000      | 1.200  |  |
| 38.98                                | 10%     | 0%         | 0%              | 45%              | 4.500       | 90.000      | 4.500  |  |
| 38.58                                | 20%     | 0%         | 0%              | 40%              | 2.000       | 80.000      | 2.000  |  |
| 38.58                                | 5%      | 0%         | 0%              | 25%              | 5.000       | 50.000      | 5.000  |  |
| 38.15                                | 10%     | 0%         | 0%              | 40%              | 4.000       | 80.000      | 4.000  |  |
| 38.15                                | 10%     | 0%         | 0%              | 40%              | 4.000       | 80.000      | 4.000  |  |
| 37.83                                | 2%      | 0%         | 0%              | 35%              | 17.500      | 70.000      | 17.500 |  |
| 37.83                                | 1%      | 0%         | 0%              | 10%              | 10.000      | 20.000      | 10.000 |  |
| 37.63                                | 1%      | 0%         | 0%              | 10%              | 10.000      | 20.000      | 10.000 |  |

| CH-2 Binocular Microscope Mineralogy |                                                                   |    |    |     |               |             |        |  |  |
|--------------------------------------|-------------------------------------------------------------------|----|----|-----|---------------|-------------|--------|--|--|
| Depth                                | Biotite Hornblende Sulfides FeO <sub>x</sub> Biotite- Hornblende- |    |    |     |               |             |        |  |  |
| (ft.)                                | %                                                                 | %  | %  | %   | oxide ratio   | oxide ratio | Ratio  |  |  |
| 37.63                                | 1%                                                                | 0% | 0% | 10% | 10.000        | 20.000      | 10.000 |  |  |
| 37.50                                | 1%                                                                | 0% | 0% | 10% | 10.000 20.000 |             | 10.000 |  |  |
| 37.50                                | 1%                                                                | 0% | 0% | 80% | 80.000        | 160.000     | 80.000 |  |  |
| 37.33                                | 1%                                                                | 0% | 0% | 80% | 80.000        | 160.000     | 80.000 |  |  |
| 37.33                                | 1%                                                                | 0% | 0% | 80% | 80.000        | 160.000     | 80.000 |  |  |
| 37.10                                | 1%                                                                | 0% | 0% | 35% | 35.000        | 70.000      | 35.000 |  |  |
| 37.10                                | 1%                                                                | 0% | 0% | 35% | 35.000        | 70.000      | 35.000 |  |  |
| 36.98                                | 0%                                                                | 0% | 0% | 7%  | 14.000        | 14.000      | 14.000 |  |  |
| 36.98                                | 0%                                                                | 0% | 0% | 7%  | 14.000        | 14.000      | 14.000 |  |  |
| 36.85                                | 15%                                                               | 0% | 0% | 50% | 3.333         | 100.000     | 3.333  |  |  |
| 36.85                                | 15%                                                               | 0% | 0% | 60% | 4.000         | 120.000     | 4.000  |  |  |
| 36.58                                | 7%                                                                | 0% | 0% | 20% | 2.857         | 40.000      | 2.857  |  |  |
| 36.58                                | 7%                                                                | 0% | 0% | 20% | 2.857         | 40.000      | 2.857  |  |  |
| 35.63                                | 7%                                                                | 0% | 0% | 20% | 2.857         | 40.000      | 2.857  |  |  |
| 35.63                                | 7%                                                                | 0% | 0% | 20% | 2.857         | 40.000      | 2.857  |  |  |
| 35.48                                | 15%                                                               | 0% | 0% | 25% | 1.667         | 50.000      | 1.667  |  |  |
| 35.48                                | 15%                                                               | 0% | 0% | 25% | 1.667         | 50.000      | 1.667  |  |  |
| 35.23                                | 10%                                                               | 0% | 0% | 55% | 5.500         | 110.000     | 5.500  |  |  |
| 35.23                                | 10%                                                               | 0% | 0% | 55% | 5.500         | 110.000     | 5.500  |  |  |
| 35.00                                | 10%                                                               | 0% | 0% | 55% | 5.500         | 110.000     | 5.500  |  |  |
| 35.00                                | 0%                                                                | 0% | 0% | 35% | 70.000        | 70.000      | 70.000 |  |  |
| 14.33                                | 20%                                                               | 0% | 0% | 25% | 1.250         | 50.000      | 1.250  |  |  |
| 10.00                                | 20%                                                               | 0% | 0% | 25% | 1.250         | 50.000      | 1.250  |  |  |
| 9.63                                 | 7%                                                                | 0% | 0% | 30% | 4.286         | 60.000      | 4.286  |  |  |
| 6.00                                 | 7%                                                                | 0% | 0% | 30% | 4.286         | 60.000      | 4.286  |  |  |
| 6.00                                 | 1%                                                                | 0% | 0% | 10% | 10.000        | 20.000      | 10.000 |  |  |
| 5.81                                 | 0%                                                                | 0% | 0% | 0%  | 0.000         | 0.000       | 0.000  |  |  |

| CH-4 Binocular Microscope Mineralogy |         |            |          |                    |             |             |       |
|--------------------------------------|---------|------------|----------|--------------------|-------------|-------------|-------|
| Depth (ft)                           | Biotite | Hornblende | Sulfides | FeO <sub>2</sub> % | Biotite-    | Hornblende- | Total |
|                                      | %       | %          | %        | 100x 70            | oxide ratio | oxide ratio | Ratio |
| 98.26                                | 40%     | 0%         | 0%       | 5%                 | 0.125       | 10.000      | 0.125 |
| 97.13                                | 80%     | 5%         | 0%       | 2%                 | 0.025       | 0.400       | 0.024 |
| 96.38                                | 40%     | 5%         | 0%       | 1%                 | 0.025       | 0.200       | 0.022 |
| 95.12                                | 60%     | 7%         | 0%       | 2%                 | 0.033       | 0.286       | 0.030 |
| 94.76                                | 50%     | 0%         | 0%       | 20%                | 0.400       | 40.000      | 0.400 |
| 93.98                                | 40%     | 0%         | 0%       | 10%                | 0.250       | 20.000      | 0.250 |
| 93.21                                | 20%     | 0%         | 0%       | 1%                 | 0.050       | 2.000       | 0.050 |
| 86.71                                | 0%      | 75%        | 0%       | 0%                 | 0.000       | 0.000       | 0.000 |
| 84.96                                | 0%      | 60%        | 0%       | 0%                 | 0.000       | 0.000       | 0.000 |
| 84.08                                | 20%     | 45%        | 0%       | 1%                 | 0.050       | 0.022       | 0.015 |
| 83.45                                | 15%     | 3%         | 0%       | 0%                 | 0.000       | 0.000       | 0.000 |
| 80.68                                | 50%     | 0%         | 0%       | 2%                 | 0.040       | 4.000       | 0.040 |
| 80.00                                | 40%     | 0%         | 0%       | 7%                 | 0.175       | 14.000      | 0.175 |
| 77.19                                | 20%     | 0%         | 0%       | 3%                 | 0.150       | 6.000       | 0.150 |
| 76.46                                | 10%     | 0%         | 0%       | 1%                 | 0.100       | 2.000       | 0.100 |
| 75.83                                | 10%     | 20%        | 0%       | 0%                 | 0.000       | 0.000       | 0.000 |
| 75.03                                | 40%     | 0%         | 0%       | 15%                | 0.375       | 30.000      | 0.375 |
| 73.53                                | 30%     | 0%         | 0%       | 2%                 | 0.067       | 4.000       | 0.067 |
| 73.42                                | 40%     | 0%         | 0%       | 0%                 | 0.000       | 0.000       | 0.000 |
| 73.28                                | 50%     | 0%         | 0%       | 25%                | 0.500       | 50.000      | 0.500 |
| 72.53                                | 75%     | 3%         | 0%       | 1%                 | 0.013       | 0.333       | 0.013 |
| 72.10                                | 1%      | 0%         | 0%       | 0%                 | 0.000       | 0.000       | 0.000 |
| 66.40                                | 40%     | 0%         | 0%       | 15%                | 0.375       | 30.000      | 0.375 |
| 65.73                                | 30%     | 0%         | 0%       | 15%                | 0.500       | 30.000      | 0.500 |
| 64.69                                | 30%     | 2%         | 0%       | 15%                | 0.500       | 7.500       | 0.469 |
| 64.38                                | 30%     | 0%         | 0%       | 15%                | 0.500       | 30.000      | 0.500 |
| 64.15                                | 30%     | 0%         | 0%       | 20%                | 0.667       | 40.000      | 0.667 |
| 61.53                                | 15%     | 0%         | 0%       | 15%                | 1.000       | 30.000      | 1.000 |
| 60.71                                | 40%     | 0%         | 0%       | 2%                 | 0.050       | 4.000       | 0.050 |
| 60.00                                | 15%     | 0%         | 0%       | 7%                 | 0.467       | 14.000      | 0.467 |
| 59.48                                | 30%     | 2%         | 0%       | 0%                 | 0.000       | 0.000       | 0.000 |
| 57.38                                | 50%     | 0%         | 0%       | 0%                 | 0.000       | 0.000       | 0.000 |
| 56.44                                | 40%     | 0%         | 0%       | 2%                 | 0.050       | 4.000       | 0.050 |
| 55.25                                | 70%     | 0%         | 0%       | 0%                 | 0.000       | 0.000       | 0.000 |
| 54.81                                | 60%     | 0%         | 0%       | 1%                 | 0.017       | 2.000       | 0.017 |
| 52.88                                | 25%     | 0%         | 0%       | 10%                | 0.400       | 20.000      | 0.400 |
| 52.46                                | 25%     | 0%         | 0%       | 10%                | 0.400       | 20.000      | 0.400 |
| 51.52                                | 30%     | 0%         | 0%       | 25%                | 0.833       | 50.000      | 0.833 |
| 50.79                                | 25%     | 0%         | 0%       | 5%                 | 0.200       | 10.000      | 0.200 |

| CH-4 Binocular Microscope Mineralogy |         |            |          |                      |             |             |        |
|--------------------------------------|---------|------------|----------|----------------------|-------------|-------------|--------|
| Depth (ft)                           | Biotite | Hornblende | Sulfides | FeO <sub>2</sub> %   | Biotite-    | Hornblende- | Total  |
| Deptii (it.)                         | %       | %          | %        | 1 CO <sub>X</sub> 70 | oxide ratio | oxide ratio | Ratio  |
| 50.00                                | 20%     | 0%         | 0%       | 25%                  | 1.250       | 50.000      | 1.250  |
| 49.43                                | 0%      | 0%         | 0%       | 0%                   | 0.000       | 0.000       | 0.000  |
| 47.79                                | 10%     | 0%         | 0%       | 3%                   | 0.300       | 6.000       | 0.300  |
| 47.78                                | 50%     | 0%         | 0%       | 15%                  | 0.300       | 30.000      | 0.300  |
| 46.69                                | 40%     | 0%         | 0%       | 20%                  | 0.500       | 40.000      | 0.500  |
| 45.48                                | 1%      | 0%         | 0%       | 1%                   | 1.000       | 2.000       | 1.000  |
| 45.44                                | 0%      | 0%         | 0%       | 1%                   | 2.000       | 2.000       | 2.000  |
| 45.17                                | 10%     | 0%         | 0%       | 5%                   | 0.500       | 10.000      | 0.500  |
| 44.91                                | 5%      | 0%         | 0%       | 3%                   | 0.600       | 6.000       | 0.600  |
| 43.31                                | 2%      | 0%         | 0%       | 10%                  | 5.000       | 20.000      | 5.000  |
| 42.93                                | 25%     | 0%         | 0%       | 3%                   | 0.120       | 6.000       | 0.120  |
| 41.69                                | 50%     | 0%         | 0%       | 30%                  | 0.600       | 60.000      | 0.600  |
| 41.69                                | 25%     | 0%         | 0%       | 15%                  | 0.600       | 30.000      | 0.600  |
| 40.00                                | 75%     | 0%         | 0%       | 7%                   | 0.093       | 14.000      | 0.093  |
| 40.00                                | 75%     | 0%         | 0%       | 7%                   | 0.093       | 14.000      | 0.093  |
| 37.07                                | 2%      | 0%         | 0%       | 20%                  | 10.000      | 40.000      | 10.000 |
| 37.07                                | 2%      | 0%         | 0%       | 20%                  | 10.000      | 40.000      | 10.000 |
| 37.02                                | 40%     | 0%         | 0%       | 30%                  | 0.750       | 60.000      | 0.750  |
| 37.02                                | 40%     | 0%         | 0%       | 30%                  | 0.750       | 60.000      | 0.750  |
| 36.75                                | 75%     | 0%         | 0%       | 20%                  | 0.267       | 40.000      | 0.267  |
| 36.75                                | 75%     | 0%         | 0%       | 20%                  | 0.267       | 40.000      | 0.267  |
| 36.38                                | 30%     | 0%         | 0%       | 60%                  | 2.000       | 120.000     | 2.000  |
| 36.38                                | 30%     | 0%         | 0%       | 60%                  | 2.000       | 120.000     | 2.000  |
| 36.08                                | 90%     | 0%         | 0%       | 1%                   | 0.011       | 2.000       | 0.011  |
| 36.08                                | 90%     | 0%         | 0%       | 1%                   | 0.011       | 2.000       | 0.011  |
| 35.65                                | 30%     | 0%         | 0%       | 60%                  | 2.000       | 120.000     | 2.000  |
| 35.65                                | 30%     | 0%         | 0%       | 60%                  | 2.000       | 120.000     | 2.000  |
| 35.63                                | 40%     | 0%         | 0%       | 25%                  | 0.625       | 50.000      | 0.625  |
| 35.63                                | 40%     | 0%         | 0%       | 25%                  | 0.625       | 50.000      | 0.625  |
| 35.38                                | 30%     | 0%         | 0%       | 20%                  | 0.667       | 40.000      | 0.667  |
| 35.38                                | 60%     | 0%         | 0%       | 20%                  | 0.333       | 40.000      | 0.333  |
| 35.00                                | 3%      | 0%         | 0%       | 0%                   | 0.000       | 0.000       | 0.000  |
| 35.00                                | 60%     | 0%         | 0%       | 20%                  | 0.333       | 40.000      | 0.333  |
| 34.73                                | 60%     | 0%         | 0%       | 10%                  | 0.167       | 20.000      | 0.167  |
| 34.73                                | 60%     | 0%         | 0%       | 10%                  | 0.167       | 20.000      | 0.167  |
| 34.33                                | 40%     | 0%         | 0%       | 15%                  | 0.375       | 30.000      | 0.375  |
| 34.33                                | 30%     | 0%         | 0%       | 25%                  | 0.833       | 50.000      | 0.833  |
| 34.19                                | 70%     | 0%         | 0%       | 0%                   | 0.000       | 0.000       | 0.000  |
| 34.19                                | 70%     | 0%         | 0%       | 0%                   | 0.000       | 0.000       | 0.000  |

| CH-4 Binocular Microscope Mineralogy |         |            |          |                    |             |             |        |
|--------------------------------------|---------|------------|----------|--------------------|-------------|-------------|--------|
| Denth (ft)                           | Biotite | Hornblende | Sulfides | FeO <sub>x</sub> % | Biotite-    | Hornblende- | Total  |
|                                      | %       | %          | %        | 100,70             | oxide ratio | oxide ratio | Ratio  |
| 33.88                                | 40%     | 0%         | 0%       | 30%                | 0.750       | 60.000      | 0.750  |
| 33.88                                | 60%     | 0%         | 0%       | 25%                | 0.417       | 50.000      | 0.417  |
| 33.21                                | 40%     | 0%         | 0%       | 50%                | 1.250       | 100.000     | 1.250  |
| 33.21                                | 60%     | 0%         | 0%       | 30%                | 0.500       | 60.000      | 0.500  |
| 33.17                                | 25%     | 0%         | 0%       | 40%                | 1.600       | 80.000      | 1.600  |
| 33.17                                | 30%     | 0%         | 0%       | 50%                | 1.667       | 100.000     | 1.667  |
| 31.60                                | 30%     | 0%         | 0%       | 20%                | 0.667       | 40.000      | 0.667  |
| 31.60                                | 30%     | 0%         | 0%       | 20%                | 0.667       | 40.000      | 0.667  |
| 30.50                                | 10%     | 0%         | 0%       | 0%                 | 0.000       | 0.000       | 0.000  |
| 30.50                                | 10%     | 0%         | 0%       | 0%                 | 0.000       | 0.000       | 0.000  |
| 30.17                                | 40%     | 0%         | 0%       | 10%                | 0.250       | 20.000      | 0.250  |
| 30.17                                | 50%     | 0%         | 0%       | 10%                | 0.200       | 20.000      | 0.200  |
| 30.08                                | 25%     | 0%         | 0%       | 10%                | 0.400       | 20.000      | 0.400  |
| 30.08                                | 25%     | 0%         | 0%       | 10%                | 0.400       | 20.000      | 0.400  |
| 30.00                                | 10%     | 0%         | 0%       | 5%                 | 0.500       | 10.000      | 0.500  |
| 30.00                                | 70%     | 0%         | 0%       | 0%                 | 0.000       | 0.000       | 0.000  |
| 29.83                                | 50%     | 0%         | 0%       | 15%                | 0.300       | 30.000      | 0.300  |
| 29.83                                | 50%     | 0%         | 0%       | 15%                | 0.300       | 30.000      | 0.300  |
| 29.65                                | 40%     | 0%         | 0%       | 20%                | 0.500       | 40.000      | 0.500  |
| 29.65                                | 40%     | 0%         | 0%       | 20%                | 0.500       | 40.000      | 0.500  |
| 29.21                                | 20%     | 0%         | 0%       | 70%                | 3.500       | 140.000     | 3.500  |
| 29.21                                | 15%     | 0%         | 0%       | 75%                | 5.000       | 150.000     | 5.000  |
| 29.17                                | 3%      | 0%         | 0%       | 70%                | 23.333      | 140.000     | 23.333 |
| 29.17                                | 30%     | 0%         | 0%       | 50%                | 1.667       | 100.000     | 1.667  |
| 29.15                                | 40%     | 0%         | 0%       | 15%                | 0.375       | 30.000      | 0.375  |
| 29.15                                | 40%     | 0%         | 0%       | 15%                | 0.375       | 30.000      | 0.375  |
| 29.10                                | 70%     | 0%         | 0%       | 7%                 | 0.100       | 14.000      | 0.100  |
| 29.10                                | 70%     | 0%         | 0%       | 7%                 | 0.100       | 14.000      | 0.100  |
| 29.04                                | 20%     | 0%         | 0%       | 40%                | 2.000       | 80.000      | 2.000  |
| 29.04                                | 20%     | 0%         | 0%       | 40%                | 2.000       | 80.000      | 2.000  |
| 28.99                                | 15%     | 0%         | 0%       | 40%                | 2.667       | 80.000      | 2.667  |
| 28.99                                | 25%     | 0%         | 0%       | 25%                | 1.000       | 50.000      | 1.000  |
| 28.85                                | 30%     | 0%         | 0%       | 25%                | 0.833       | 50.000      | 0.833  |
| 28.85                                | 20%     | 0%         | 0%       | 50%                | 2.500       | 100.000     | 2.500  |
| 28.77                                | 20%     | 0%         | 0%       | 50%                | 2.500       | 100.000     | 2.500  |
| 28.77                                | 20%     | 0%         | 0%       | 50%                | 2.500       | 100.000     | 2.500  |
| 28.71                                | 20%     | 0%         | 0%       | 50%                | 2.500       | 100.000     | 2.500  |
| 28.71                                | 20%     | 0%         | 0%       | 50%                | 2.500       | 100.000     | 2.500  |
| 28.67                                | 3%      | 0%         | 0%       | 50%                | 16.667      | 100.000     | 16.667 |

| CH-4 Binocular Microscope Mineralogy     |         |                    |    |                    |             |             |        |  |  |  |  |
|------------------------------------------|---------|--------------------|----|--------------------|-------------|-------------|--------|--|--|--|--|
| Donth (ft)                               | Biotite | Biotite Hornblende |    |                    | Biotite-    | Hornblende- | Total  |  |  |  |  |
| Depth (ft.)                              | %       | %                  | %  | reO <sub>x</sub> % | oxide ratio | oxide ratio | Ratio  |  |  |  |  |
| 28.67                                    | 7%      | 0%                 | 0% | 80%                | 11.429      | 160.000     | 11.429 |  |  |  |  |
| 28.52 7% 0% 0% 80% 11.429 160.000 11.429 |         |                    |    |                    |             |             |        |  |  |  |  |

| CH-2 pXRF Results (ppm) |         |        |       |         |     |     |     |  |
|-------------------------|---------|--------|-------|---------|-----|-----|-----|--|
| Depth (ft.)             | Si      | Ca     | Mn    | Fe      | Rb  | Sr  | Zr  |  |
| 99.00                   | 233,437 | 9,886  | 507   | 42,200  | 119 | 98  | 116 |  |
| 98.13                   | 224,722 | 19,941 | 460   | 58,829  | 60  | 194 | 76  |  |
| 98.13                   | 283,221 | 10,372 | 527   | 58,052  | 143 | 109 | 214 |  |
| 98.10                   | 248,975 | 6,816  | 550   | 82,250  | 187 | 66  | 137 |  |
| 98.10                   | 222,577 | 6,331  | 653   | 71,885  | 147 | 63  | 194 |  |
| 97.46                   | 348,619 | 21,924 | 297   | 40,579  | 82  | 200 | 193 |  |
| 96.82                   | 222,387 | 10,194 | 472   | 107,066 | 289 | 43  | 363 |  |
| 96.82                   | 179,374 | 8,501  | 0     | 78,992  | 192 | 45  | 219 |  |
| 96.78                   | 245,545 | 9,011  | 0     | 42,364  | 84  | 131 | 93  |  |
| 96.78                   | 171,278 | 10,557 | 0     | 64,407  | 147 | 153 | 285 |  |
| 96.58                   | 241,828 | 16,258 | 0     | 33,389  | 64  | 201 | 111 |  |
| 96.58                   | 223,720 | 13,007 | 0     | 57,623  | 144 | 109 | 90  |  |
| 96.54                   | 310,961 | 26,653 | 0     | 35,264  | 41  | 255 | 21  |  |
| 96.54                   | 206,639 | 11,992 | 0     | 59,008  | 148 | 122 | 89  |  |
| 95.92                   | 224,345 | 8,170  | 240   | 49,657  | 101 | 95  | 137 |  |
| 95.92                   | 229,528 | 16,577 | 498   | 70,404  | 107 | 244 | 106 |  |
| 95.17                   | 223,932 | 10,562 | 733   | 44,532  | 151 | 262 | 172 |  |
| 95.17                   | 207,038 | 8,054  | 823   | 46,169  | 164 | 276 | 147 |  |
| 94.63                   | 220,962 | 9,027  | 1,602 | 60,781  | 144 | 137 | 151 |  |
| 94.63                   | 228,878 | 8,154  | 303   | 53,008  | 160 | 163 | 247 |  |
| 93.91                   | 376,632 | 26,574 | 0     | 22,382  | 68  | 261 | 102 |  |
| 93.20                   | 350,695 | 16,313 | 0     | 27,034  | 101 | 303 | 177 |  |
| 92.48                   | 227,089 | 20,971 | 294   | 55,705  | 145 | 148 | 208 |  |
| 92.48                   | 244,801 | 16,204 | 465   | 60,911  | 185 | 164 | 228 |  |
| 91.60                   | 338,009 | 10,144 | 0     | 12,174  | 39  | 165 | 101 |  |
| 91.60                   | 260,237 | 16,947 | 0     | 46,230  | 140 | 196 | 223 |  |
| 90.85                   | 228,475 | 42,027 | 1,554 | 52,605  | 167 | 91  | 196 |  |
| 90.85                   | 233,551 | 12,027 | 408   | 42,656  | 133 | 124 | 134 |  |
| 90.00                   | 232,384 | 13,796 | 398   | 43,673  | 136 | 124 | 196 |  |
| 90.00                   | 200,498 | 15,236 | 366   | 46,164  | 153 | 130 | 179 |  |
| 89.31                   | 220,508 | 19,920 | 290   | 42,223  | 164 | 125 | 262 |  |
| 89.31                   | 233,318 | 18,525 | 347   | 41,874  | 175 | 125 | 314 |  |
| 88.38                   | 253,448 | 11,330 | 0     | 33,713  | 122 | 94  | 157 |  |
| 88.38                   | 306,366 | 9,653  | 0     | 44,735  | 134 | 157 | 283 |  |
| 87.58                   | 239,824 | 9,644  | 277   | 37,861  | 112 | 119 | 362 |  |
| 87.58                   | 209,759 | 10,108 | 226   | 51,407  | 143 | 189 | 279 |  |
| 87.50                   | 246,805 | 10,032 | 391   | 58,121  | 180 | 233 | 194 |  |

APPENDIX C: Tabular pXRF Results

| CH-2 pXRF Results (ppm) |         |         |       |         |     |       |     |  |  |
|-------------------------|---------|---------|-------|---------|-----|-------|-----|--|--|
| Depth (ft.)             | Si      | Ca      | Mn    | Fe      | Rb  | Sr    | Zr  |  |  |
| 87.50                   | 238,181 | 8,373   | 393   | 57,695  | 135 | 73    | 363 |  |  |
| 87.42                   | 212,597 | 8,624   | 615   | 84,390  | 249 | 116   | 513 |  |  |
| 87.42                   | 238,896 | 10,206  | 434   | 60,797  | 179 | 107   | 323 |  |  |
| 87.31                   | 256,058 | 27,867  | 662   | 49,311  | 102 | 1,064 | 184 |  |  |
| 87.31                   | 291,317 | 40,212  | 0     | 49,456  | 86  | 1,350 | 183 |  |  |
| 87.29                   | 276,320 | 58,339  | 1,073 | 36,732  | 0   | 2,519 | 215 |  |  |
| 87.29                   | 144,922 | 186,003 | 0     | 30,767  | 33  | 2,540 | 111 |  |  |
| 87.09                   | 166,864 | 152,091 | 0     | 46,930  | 69  | 3,118 | 151 |  |  |
| 87.09                   | 162,766 | 185,440 | 0     | 26,288  | 33  | 3,623 | 188 |  |  |
| 86.47                   | 278,851 | 127,591 | 0     | 33,400  | 123 | 2,382 | 208 |  |  |
| 85.84                   | 194,210 | 18,626  | 0     | 60,787  | 176 | 401   | 493 |  |  |
| 85.84                   | 203,476 | 11,215  | 0     | 39,598  | 107 | 221   | 289 |  |  |
| 85.56                   | 212,288 | 5,066   | 0     | 17,412  | 39  | 24    | 494 |  |  |
| 85.56                   | 229,003 | 8,699   | 1,543 | 96,567  | 342 | 18    | 20  |  |  |
| 85.46                   | 302,947 | 2,363   | 0     | 15,272  | 21  | 0     | 456 |  |  |
| 85.46                   | 286,465 | 6,086   | 0     | 36,268  | 59  | 5     | 420 |  |  |
| 85.00                   | 286,465 | 6,086   | 0     | 36,268  | 59  | 5     | 420 |  |  |
| 85.00                   | 259,887 | 30,927  | 589   | 72,186  | 70  | 150   | 16  |  |  |
| 84.98                   | 281,768 | 21,711  | 508   | 46,542  | 168 | 267   | 227 |  |  |
| 84.98                   | 243,700 | 36,190  | 383   | 59,167  | 15  | 141   | 16  |  |  |
| 84.96                   | 200,123 | 32,803  | 778   | 68,875  | 29  | 83    | 20  |  |  |
| 84.96                   | 249,850 | 37,038  | 935   | 66,997  | 23  | 150   | 20  |  |  |
| 84.88                   | 212,233 | 13,006  | 499   | 75,344  | 213 | 91    | 19  |  |  |
| 84.88                   | 183,825 | 10,905  | 0     | 67,921  | 217 | 153   | 9   |  |  |
| 84.75                   | 189,970 | 14,954  | 335   | 44,078  | 100 | 350   | 84  |  |  |
| 84.75                   | 163,024 | 12,586  | 1,183 | 101,267 | 310 | 64    | 70  |  |  |
| 84.04                   | 284,336 | 7,800   | 573   | 39,485  | 50  | 152   | 620 |  |  |
| 84.04                   | 157,122 | 8,404   | 519   | 53,660  | 54  | 179   | 231 |  |  |
| 83.96                   | 207,277 | 23,719  | 571   | 41,503  | 47  | 166   | 42  |  |  |
| 83.96                   | 306,749 | 34,386  | 0     | 31,406  | 9   | 212   | 46  |  |  |
| 83.88                   | 262,973 | 10,149  | 831   | 55,543  | 84  | 229   | 196 |  |  |
| 83.88                   | 194,980 | 18,593  | 0     | 48,538  | 112 | 173   | 13  |  |  |
| 83.75                   | 165,821 | 12,900  | 0     | 16,041  | 29  | 173   | 21  |  |  |
| 83.75                   | 208,229 | 12,705  | 3,351 | 43,431  | 79  | 187   | 107 |  |  |
| 83.17                   | 164,547 | 28,292  | 375   | 54,139  | 43  | 95    | 26  |  |  |
| 83.17                   | 215,682 | 25,843  | 0     | 39,864  | 34  | 400   | 24  |  |  |
| 82.83                   | 198,049 | 22,272  | 0     | 37,850  | 53  | 317   | 333 |  |  |
| 82.83                   | 218,239 | 40,965  | 818   | 59,335  | 61  | 144   | 22  |  |  |
| 82.42                   | 184,951 | 12,986  | 1,061 | 78,398  | 88  | 188   | 92  |  |  |
| 82.42                   | 234,220 | 45,056  | 1,096 | 61,200  | 42  | 155   | 25  |  |  |

| CH-2 pXRF Results (ppm) |         |        |       |         |     |     |       |  |  |
|-------------------------|---------|--------|-------|---------|-----|-----|-------|--|--|
| Depth (ft.)             | Si      | Са     | Mn    | Fe      | Rb  | Sr  | Zr    |  |  |
| 82.27                   | 180,581 | 19,776 | 758   | 68,023  | 226 | 131 | 28    |  |  |
| 82.27                   | 182,120 | 22,695 | 474   | 62,268  | 233 | 125 | 48    |  |  |
| 82.23                   | 211,977 | 18,415 | 464   | 30,374  | 69  | 147 | 193   |  |  |
| 82.23                   | 197,356 | 19,574 | 0     | 22,907  | 57  | 158 | 238   |  |  |
| 81.62                   | 334,312 | 37,006 | 690   | 50,584  | 81  | 218 | 227   |  |  |
| 81.00                   | 161,198 | 8,354  | 365   | 64,454  | 133 | 58  | 94    |  |  |
| 81.00                   | 202,765 | 10,542 | 665   | 64,900  | 154 | 134 | 221   |  |  |
| 80.00                   | 287,391 | 16,713 | 0     | 40,005  | 68  | 214 | 229   |  |  |
| 80.00                   | 192,757 | 13,112 | 391   | 71,231  | 122 | 106 | 631   |  |  |
| 79.06                   | 215,436 | 9,365  | 0     | 52,942  | 234 | 68  | 1,572 |  |  |
| 79.06                   | 220,563 | 9,732  | 0     | 43,861  | 223 | 68  | 1,590 |  |  |
| 78.53                   | 301,117 | 43,188 | 464   | 78,456  | 66  | 305 | 171   |  |  |
| 78.00                   | 183,877 | 25,103 | 0     | 69,053  | 69  | 110 | 125   |  |  |
| 78.00                   | 204,966 | 23,807 | 594   | 87,663  | 94  | 126 | 152   |  |  |
| 77.67                   | 187,365 | 16,633 | 0     | 65,401  | 83  | 137 | 166   |  |  |
| 77.67                   | 218,193 | 18,734 | 0     | 62,307  | 81  | 206 | 227   |  |  |
| 76.98                   | 344,504 | 15,180 | 408   | 40,217  | 53  | 412 | 264   |  |  |
| 76.28                   | 273,027 | 53,265 | 521   | 101,190 | 73  | 242 | 187   |  |  |
| 75.58                   | 138,613 | 44,451 | 0     | 40,927  | 85  | 52  | 95    |  |  |
| 75.58                   | 167,183 | 86,098 | 0     | 51,517  | 49  | 68  | 28    |  |  |
| 75.00                   | 190,557 | 49,772 | 682   | 64,159  | 43  | 133 | 19    |  |  |
| 75.00                   | 154,344 | 50,200 | 0     | 34,924  | 16  | 81  | 13    |  |  |
| 74.58                   | 159,487 | 8,140  | 0     | 58,543  | 158 | 53  | 45    |  |  |
| 74.58                   | 187,091 | 29,767 | 0     | 55,050  | 96  | 158 | 162   |  |  |
| 73.96                   | 251,808 | 64,455 | 585   | 81,353  | 17  | 85  | 14    |  |  |
| 73.33                   | 179,236 | 30,688 | 542   | 80,484  | 167 | 115 | 281   |  |  |
| 73.33                   | 163,475 | 29,606 | 0     | 89,597  | 97  | 147 | 212   |  |  |
| 72.58                   | 185,240 | 15,000 | 766   | 83,488  | 76  | 126 | 20    |  |  |
| 72.58                   | 179,839 | 24,035 | 777   | 86,131  | 31  | 59  | 17    |  |  |
| 71.64                   | 277,821 | 61,793 | 974   | 82,456  | 6   | 279 | 20    |  |  |
| 70.69                   | 179,491 | 12,939 | 0     | 54,248  | 175 | 92  | 143   |  |  |
| 70.69                   | 158,496 | 19,379 | 0     | 33,600  | 83  | 199 | 16    |  |  |
| 70.52                   | 156,806 | 34,949 | 0     | 29,113  | 0   | 170 | 19    |  |  |
| 70.52                   | 229,900 | 43,535 | 0     | 33,838  | 0   | 198 | 16    |  |  |
| 70.00                   | 167,663 | 22,165 | 0     | 48,255  | 132 | 136 | 17    |  |  |
| 70.00                   | 196,293 | 43,617 | 724   | 67,226  | 135 | 108 | 87    |  |  |
| 69.46                   | 259,718 | 53,160 | 1,015 | 50,332  | 17  | 167 | 24    |  |  |
| 69.46                   | 225,777 | 35,876 | 855   | 59,170  | 64  | 132 | 15    |  |  |
| 69.35                   | 240,981 | 26,876 | 875   | 73,794  | 173 | 157 | 30    |  |  |
| 69.35                   | 198,863 | 45,762 | 1,239 | 58,765  | 19  | 172 | 17    |  |  |

| CH-2 pXRF Results (ppm) |         |        |       |         |     |     |     |  |  |
|-------------------------|---------|--------|-------|---------|-----|-----|-----|--|--|
| Depth (ft.)             | Si      | Ca     | Mn    | Fe      | Rb  | Sr  | Zr  |  |  |
| 69.27                   | 281,600 | 59,050 | 1,153 | 52,090  | 22  | 222 | 15  |  |  |
| 69.27                   | 192,839 | 36,556 | 0     | 37,028  | 20  | 139 | 10  |  |  |
| 69.08                   | 218,282 | 45,038 | 1,997 | 45,043  | 8   | 154 | 12  |  |  |
| 69.08                   | 198,527 | 40,486 | 1,139 | 38,120  | 10  | 178 | 9   |  |  |
| 68.96                   | 202,161 | 37,929 | 805   | 34,308  | 10  | 179 | 12  |  |  |
| 68.96                   | 258,080 | 53,025 | 1,212 | 50,152  | 12  | 198 | 11  |  |  |
| 68.60                   | 191,631 | 13,502 | 775   | 56,582  | 145 | 148 | 59  |  |  |
| 68.60                   | 214,911 | 13,223 | 1,415 | 78,906  | 197 | 154 | 270 |  |  |
| 68.00                   | 230,230 | 17,007 | 0     | 27,656  | 57  | 373 | 43  |  |  |
| 68.00                   | 282,527 | 16,541 | 1,380 | 40,691  | 92  | 318 | 12  |  |  |
| 67.50                   | 235,664 | 21,174 | 853   | 72,726  | 196 | 253 | 230 |  |  |
| 67.50                   | 224,728 | 30,412 | 0     | 38,795  | 87  | 306 | 197 |  |  |
| 67.42                   | 202,320 | 36,668 | 3,023 | 58,743  | 31  | 117 | 10  |  |  |
| 67.42                   | 217,754 | 45,238 | 1,186 | 86,282  | 9   | 104 | 12  |  |  |
| 67.13                   | 270,273 | 10,100 | 0     | 62,457  | 124 | 177 | 604 |  |  |
| 67.13                   | 194,494 | 9,530  | 0     | 38,164  | 34  | 150 | 374 |  |  |
| 66.92                   | 220,162 | 14,784 | 649   | 44,318  | 75  | 68  | 188 |  |  |
| 66.92                   | 211,864 | 5,480  | 0     | 37,745  | 104 | 10  | 84  |  |  |
| 66.75                   | 240,368 | 7,609  | 0     | 91,647  | 91  | 50  | 153 |  |  |
| 66.75                   | 174,936 | 8,612  | 589   | 57,429  | 144 | 22  | 77  |  |  |
| 66.54                   | 215,949 | 4,895  | 1,015 | 47,800  | 123 | 14  | 215 |  |  |
| 66.54                   | 214,521 | 8,632  | 766   | 67,008  | 184 | 23  | 123 |  |  |
| 66.29                   | 230,809 | 21,004 | 422   | 70,201  | 124 | 110 | 203 |  |  |
| 66.29                   | 227,409 | 15,047 | 401   | 76,723  | 121 | 63  | 183 |  |  |
| 66.21                   | 176,676 | 16,179 | 0     | 36,196  | 140 | 116 | 151 |  |  |
| 66.21                   | 265,168 | 15,644 | 3,268 | 72,576  | 309 | 95  | 189 |  |  |
| 65.96                   | 250,531 | 8,647  | 1,181 | 86,973  | 643 | 60  | 24  |  |  |
| 65.96                   | 235,559 | 14,270 | 547   | 92,591  | 246 | 147 | 183 |  |  |
| 65.50                   | 254,394 | 7,872  | 1,160 | 78,842  | 367 | 42  | 38  |  |  |
| 65.50                   | 285,219 | 12,287 | 0     | 57,702  | 152 | 141 | 184 |  |  |
| 65.00                   | 272,906 | 25,091 | 0     | 58,990  | 123 | 124 | 163 |  |  |
| 65.00                   | 239,960 | 21,813 | 0     | 51,227  | 150 | 204 | 221 |  |  |
| 64.00                   | 177,965 | 9,645  | 1,221 | 125,393 | 55  | 98  | 98  |  |  |
| 64.00                   | 209,495 | 25,243 | 0     | 57,784  | 70  | 78  | 121 |  |  |
| 62.60                   | 258,321 | 43,825 | 0     | 31,886  | 25  | 300 | 444 |  |  |
| 62.60                   | 237,308 | 38,812 | 0     | 39,576  | 30  | 286 | 448 |  |  |
| 61.60                   | 207,408 | 10,817 | 568   | 74,161  | 219 | 62  | 217 |  |  |
| 61.60                   | 190,540 | 11,097 | 0     | 55,031  | 151 | 131 | 209 |  |  |
| 60.60                   | 206,388 | 14,657 | 0     | 47,612  | 109 | 169 | 164 |  |  |
| 60.60                   | 243,356 | 15,534 | 0     | 40,717  | 118 | 156 | 251 |  |  |

| CH-2 pXRF Results (ppm) |         |        |       |         |     |     |     |  |  |
|-------------------------|---------|--------|-------|---------|-----|-----|-----|--|--|
| Depth (ft.)             | Si      | Ca     | Mn    | Fe      | Rb  | Sr  | Zr  |  |  |
| 59.65                   | 336,920 | 12,734 | 0     | 20,267  | 6   | 30  | 14  |  |  |
| 59.65                   | 280,093 | 9,213  | 0     | 30,458  | 11  | 19  | 32  |  |  |
| 59.54                   | 260,231 | 57,794 | 474   | 42,794  | 35  | 258 | 100 |  |  |
| 59.54                   | 281,308 | 44,505 | 0     | 40,839  | 25  | 162 | 83  |  |  |
| 59.48                   | 233,531 | 21,137 | 844   | 36,628  | 69  | 143 | 85  |  |  |
| 59.48                   | 177,037 | 14,625 | 0     | 62,085  | 113 | 102 | 181 |  |  |
| 59.23                   | 195,015 | 13,653 | 1,044 | 77,621  | 127 | 57  | 191 |  |  |
| 59.23                   | 168,480 | 8,424  | 299   | 81,506  | 90  | 58  | 130 |  |  |
| 59.08                   | 165,691 | 5,972  | 218   | 97,074  | 114 | 40  | 151 |  |  |
| 59.08                   | 207,931 | 17,627 | 411   | 79,683  | 212 | 261 | 208 |  |  |
| 58.71                   | 201,373 | 16,606 | 0     | 9,041   | 0   | 282 | 9   |  |  |
| 58.71                   | 189,650 | 18,179 | 0     | 21,629  | 7   | 293 | 10  |  |  |
| 58.58                   | 249,430 | 49,260 | 540   | 64,366  | 22  | 391 | 119 |  |  |
| 58.58                   | 229,235 | 44,157 | 690   | 65,154  | 20  | 396 | 120 |  |  |
| 58.35                   | 180,008 | 18,985 | 0     | 42,769  | 95  | 233 | 183 |  |  |
| 58.35                   | 198,260 | 21,127 | 0     | 52,442  | 88  | 241 | 262 |  |  |
| 58.15                   | 226,783 | 10,756 | 0     | 40,949  | 141 | 215 | 156 |  |  |
| 58.15                   | 232,683 | 9,985  | 0     | 46,469  | 186 | 197 | 139 |  |  |
| 58.02                   | 213,457 | 18,909 | 0     | 31,827  | 69  | 246 | 311 |  |  |
| 58.02                   | 148,244 | 14,070 | 0     | 31,082  | 56  | 167 | 342 |  |  |
| 57.58                   | 175,565 | 8,402  | 0     | 50,500  | 148 | 125 | 99  |  |  |
| 57.58                   | 208,789 | 23,028 | 346   | 55,232  | 63  | 285 | 128 |  |  |
| 57.38                   | 247,653 | 40,679 | 1,421 | 80,240  | 31  | 422 | 149 |  |  |
| 57.38                   | 174,856 | 35,927 | 697   | 62,198  | 34  | 422 | 164 |  |  |
| 57.23                   | 191,430 | 39,115 | 1,052 | 60,446  | 26  | 485 | 129 |  |  |
| 57.23                   | 208,704 | 39,256 | 0     | 68,675  | 31  | 368 | 109 |  |  |
| 57.15                   | 271,062 | 51,499 | 909   | 83,475  | 25  | 376 | 162 |  |  |
| 57.15                   | 236,882 | 50,872 | 593   | 81,922  | 21  | 301 | 129 |  |  |
| 56.96                   | 233,228 | 32,589 | 598   | 62,412  | 43  | 358 | 116 |  |  |
| 56.96                   | 234,622 | 45,509 | 1,041 | 88,371  | 19  | 290 | 118 |  |  |
| 56.92                   | 257,017 | 29,359 | 890   | 72,197  | 61  | 359 | 139 |  |  |
| 56.92                   | 256,938 | 39,863 | 1,468 | 70,648  | 23  | 324 | 127 |  |  |
| 56.90                   | 197,993 | 34,228 | 0     | 51,233  | 26  | 294 | 101 |  |  |
| 56.90                   | 239,347 | 37,540 | 1,271 | 116,806 | 18  | 378 | 147 |  |  |
| 56.87                   | 155,945 | 16,114 | 2,743 | 210,495 | 32  | 319 | 74  |  |  |
| 56.87                   | 239,955 | 44,105 | 1,075 | 76,166  | 18  | 347 | 135 |  |  |
| 56.85                   | 270,623 | 44,650 | 1,023 | 67,570  | 41  | 578 | 69  |  |  |
| 56.85                   | 220,598 | 41,151 | 846   | 65,774  | 20  | 288 | 104 |  |  |
| 56.83                   | 228,688 | 32,855 | 613   | 62,092  | 31  | 349 | 124 |  |  |
| 56.83                   | 238,884 | 34,387 | 1,530 | 82,485  | 51  | 310 | 121 |  |  |
| CH-2 pXRF Results (ppm) |         |        |       |         |     |     |     |  |  |
|-------------------------|---------|--------|-------|---------|-----|-----|-----|--|--|
| Depth (ft.)             | Si      | Ca     | Mn    | Fe      | Rb  | Sr  | Zr  |  |  |
| 56.58                   | 254,311 | 25,093 | 0     | 33,931  | 51  | 341 | 214 |  |  |
| 56.58                   | 177,040 | 14,254 | 0     | 46,108  | 92  | 195 | 138 |  |  |
| 55.75                   | 210,806 | 10,135 | 0     | 54,442  | 208 | 115 | 108 |  |  |
| 55.75                   | 162,173 | 9,120  | 0     | 46,717  | 177 | 123 | 188 |  |  |
| 55.00                   | 194,912 | 12,579 | 352   | 41,776  | 135 | 138 | 129 |  |  |
| 55.00                   | 244,732 | 21,083 | 884   | 40,510  | 74  | 293 | 81  |  |  |
| 54.75                   | 203,295 | 12,536 | 0     | 49,289  | 138 | 160 | 270 |  |  |
| 54.75                   | 218,393 | 16,266 | 1,079 | 72,477  | 103 | 223 | 126 |  |  |
| 54.38                   | 176,399 | 12,947 | 0     | 42,627  | 95  | 166 | 271 |  |  |
| 54.38                   | 193,199 | 14,134 | 0     | 49,625  | 107 | 195 | 113 |  |  |
| 54.17                   | 295,072 | 29,737 | 741   | 73,618  | 43  | 272 | 151 |  |  |
| 54.17                   | 240,211 | 32,924 | 0     | 63,806  | 25  | 231 | 119 |  |  |
| 54.08                   | 244,149 | 31,057 | 707   | 66,045  | 37  | 225 | 130 |  |  |
| 54.08                   | 180,784 | 28,318 | 579   | 72,279  | 32  | 270 | 135 |  |  |
| 53.88                   | 226,667 | 34,257 | 1,123 | 49,417  | 15  | 249 | 82  |  |  |
| 53.88                   | 243,435 | 16,300 | 487   | 67,125  | 183 | 230 | 117 |  |  |
| 53.71                   | 213,715 | 17,908 | 0     | 66,395  | 74  | 327 | 224 |  |  |
| 53.71                   | 241,884 | 7,846  | 0     | 41,072  | 95  | 147 | 96  |  |  |
| 53.25                   | 234,977 | 19,723 | 306   | 70,360  | 127 | 398 | 193 |  |  |
| 53.25                   | 200,457 | 25,771 | 3,896 | 109,878 | 114 | 455 | 82  |  |  |
| 52.58                   | 261,985 | 25,093 | 0     | 54,786  | 97  | 462 | 120 |  |  |
| 52.58                   | 256,584 | 10,266 | 0     | 42,902  | 110 | 361 | 136 |  |  |
| 52.21                   | 198,687 | 50,805 | 2,150 | 51,317  | 0   | 397 | 68  |  |  |
| 52.21                   | 241,194 | 12,253 | 0     | 46,150  | 106 | 355 | 274 |  |  |
| 52.17                   | 178,410 | 9,485  | 640   | 51,393  | 206 | 251 | 171 |  |  |
| 52.17                   | 280,664 | 13,652 | 0     | 56,478  | 141 | 294 | 132 |  |  |
| 52.00                   | 263,658 | 10,334 | 0     | 49,275  | 120 | 296 | 335 |  |  |
| 52.00                   | 239,428 | 10,390 | 571   | 53,996  | 130 | 276 | 277 |  |  |
| 51.65                   | 193,061 | 10,373 | 0     | 43,453  | 89  | 446 | 205 |  |  |
| 51.65                   | 249,152 | 13,021 | 463   | 64,818  | 160 | 406 | 259 |  |  |
| 51.48                   | 193,268 | 10,012 | 0     | 25,386  | 68  | 693 | 194 |  |  |
| 51.48                   | 204,861 | 9,737  | 0     | 47,015  | 170 | 397 | 107 |  |  |
| 51.21                   | 176,600 | 11,706 | 0     | 30,776  | 83  | 287 | 435 |  |  |
| 51.21                   | 287,802 | 14,730 | 0     | 39,499  | 74  | 302 | 443 |  |  |
| 50.92                   | 261,343 | 37,133 | 0     | 12,713  | 26  | 475 | 64  |  |  |
| 50.92                   | 244,875 | 30,377 | 0     | 22,227  | 43  | 327 | 122 |  |  |
| 50.75                   | 305,609 | 13,919 | 0     | 42,021  | 88  | 230 | 277 |  |  |
| 50.75                   | 160,442 | 10,307 | 0     | 54,674  | 145 | 226 | 274 |  |  |
| 50.50                   | 229,907 | 13,329 | 0     | 34,138  | 67  | 312 | 323 |  |  |
| 50.50                   | 180,554 | 11,293 | 0     | 42,358  | 120 | 253 | 417 |  |  |

| CH-2 pXRF Results (ppm) |         |        |       |        |     |       |     |  |  |
|-------------------------|---------|--------|-------|--------|-----|-------|-----|--|--|
| Depth (ft.)             | Si      | Ca     | Mn    | Fe     | Rb  | Sr    | Zr  |  |  |
| 50.25                   | 197,854 | 11,313 | 783   | 53,210 | 50  | 176   | 470 |  |  |
| 50.25                   | 254,799 | 13,593 | 592   | 37,557 | 30  | 139   | 504 |  |  |
| 50.00                   | 221,181 | 12,476 | 0     | 37,252 | 101 | 392   | 260 |  |  |
| 50.00                   | 180,867 | 9,846  | 454   | 49,808 | 121 | 272   | 231 |  |  |
| 49.67                   | 301,960 | 12,950 | 732   | 26,314 | 42  | 266   | 292 |  |  |
| 49.67                   | 315,530 | 19,039 | 450   | 15,811 | 26  | 379   | 323 |  |  |
| 49.58                   | 212,252 | 7,558  | 2,979 | 86,734 | 117 | 186   | 150 |  |  |
| 49.58                   | 276,384 | 13,052 | 364   | 71,200 | 234 | 365   | 160 |  |  |
| 49.50                   | 190,362 | 8,076  | 0     | 64,770 | 65  | 76    | 278 |  |  |
| 49.50                   | 215,795 | 6,236  | 0     | 52,481 | 34  | 39    | 76  |  |  |
| 49.21                   | 195,736 | 9,208  | 0     | 66,745 | 85  | 190   | 225 |  |  |
| 49.21                   | 288,322 | 4,616  | 0     | 39,910 | 51  | 72    | 43  |  |  |
| 48.90                   | 306,242 | 11,857 | 0     | 36,989 | 72  | 239   | 295 |  |  |
| 48.90                   | 226,258 | 11,670 | 0     | 44,258 | 73  | 217   | 243 |  |  |
| 48.67                   | 227,773 | 11,281 | 0     | 40,514 | 108 | 230   | 279 |  |  |
| 48.67                   | 259,071 | 10,553 | 363   | 40,814 | 81  | 234   | 416 |  |  |
| 48.38                   | 249,766 | 15,245 | 357   | 56,890 | 109 | 244   | 261 |  |  |
| 48.38                   | 189,904 | 8,158  | 0     | 46,811 | 159 | 119   | 147 |  |  |
| 48.21                   | 280,787 | 11,598 | 0     | 29,756 | 60  | 298   | 56  |  |  |
| 48.21                   | 190,866 | 19,546 | 0     | 32,883 | 98  | 293   | 141 |  |  |
| 48.00                   | 300,858 | 13,988 | 0     | 46,201 | 111 | 235   | 410 |  |  |
| 48.00                   | 240,922 | 8,447  | 439   | 50,111 | 184 | 304   | 199 |  |  |
| 47.75                   | 247,480 | 14,049 | 727   | 39,313 | 97  | 256   | 297 |  |  |
| 47.75                   | 230,501 | 10,929 | 1,088 | 53,996 | 170 | 226   | 264 |  |  |
| 47.56                   | 199,532 | 24,767 | 0     | 32,067 | 88  | 461   | 361 |  |  |
| 47.56                   | 235,506 | 14,423 | 0     | 47,008 | 172 | 312   | 223 |  |  |
| 47.40                   | 187,739 | 24,931 | 0     | 39,404 | 101 | 990   | 169 |  |  |
| 47.40                   | 242,785 | 19,610 | 0     | 28,194 | 70  | 692   | 159 |  |  |
| 47.08                   | 199,552 | 17,081 | 0     | 25,475 | 89  | 693   | 541 |  |  |
| 47.08                   | 199,088 | 16,415 | 0     | 42,637 | 92  | 811   | 256 |  |  |
| 46.56                   | 219,717 | 11,587 | 259   | 41,426 | 111 | 389   | 302 |  |  |
| 46.56                   | 269,936 | 17,136 | 0     | 64,631 | 221 | 851   | 317 |  |  |
| 46.33                   | 207,401 | 15,409 | 0     | 45,052 | 113 | 885   | 272 |  |  |
| 46.33                   | 242,051 | 23,828 | 0     | 41,326 | 94  | 1,082 | 267 |  |  |
| 45.92                   | 212,659 | 7,378  | 0     | 10,531 | 127 | 313   | 25  |  |  |
| 45.92                   | 260,820 | 7,685  | 0     | 8,771  | 85  | 271   | 12  |  |  |
| 45.67                   | 229,133 | 7,914  | 0     | 20,488 | 166 | 278   | 17  |  |  |
| 45.67                   | 205,250 | 21,292 | 277   | 57,662 | 128 | 1,103 | 102 |  |  |
| 45.38                   | 205,890 | 16,389 | 0     | 53,274 | 137 | 1,155 | 100 |  |  |
| 45.38                   | 187,844 | 8,374  | 618   | 51,339 | 209 | 626   | 211 |  |  |

| CH-2 pXRF Results (ppm) |         |        |       |        |     |       |     |  |  |
|-------------------------|---------|--------|-------|--------|-----|-------|-----|--|--|
| Depth (ft.)             | Si      | Са     | Mn    | Fe     | Rb  | Sr    | Zr  |  |  |
| 45.00                   | 215,404 | 6,330  | 582   | 49,576 | 173 | 537   | 251 |  |  |
| 45.00                   | 235,667 | 3,754  | 592   | 44,247 | 143 | 444   | 282 |  |  |
| 44.79                   | 131,798 | 4,017  | 875   | 38,757 | 134 | 477   | 260 |  |  |
| 44.79                   | 182,524 | 4,271  | 0     | 43,558 | 161 | 590   | 288 |  |  |
| 44.67                   | 198,686 | 5,286  | 1,090 | 42,251 | 190 | 559   | 420 |  |  |
| 44.67                   | 224,185 | 6,232  | 3,701 | 62,174 | 252 | 807   | 340 |  |  |
| 44.46                   | 205,319 | 6,150  | 460   | 43,885 | 141 | 529   | 257 |  |  |
| 44.46                   | 208,037 | 5,738  | 0     | 27,939 | 125 | 670   | 443 |  |  |
| 44.25                   | 143,514 | 9,503  | 0     | 33,207 | 166 | 814   | 181 |  |  |
| 44.25                   | 182,219 | 9,893  | 330   | 50,175 | 183 | 760   | 200 |  |  |
| 43.90                   | 181,649 | 11,228 | 377   | 51,383 | 340 | 935   | 118 |  |  |
| 43.90                   | 253,664 | 9,519  | 0     | 40,550 | 180 | 742   | 299 |  |  |
| 43.73                   | 172,704 | 11,686 | 0     | 54,342 | 225 | 904   | 108 |  |  |
| 43.73                   | 258,488 | 3,006  | 0     | 26,293 | 153 | 372   | 90  |  |  |
| 43.00                   | 293,044 | 4,089  | 318   | 38,043 | 153 | 819   | 205 |  |  |
| 43.00                   | 153,826 | 6,539  | 0     | 21,288 | 94  | 490   | 173 |  |  |
| 42.50                   | 181,672 | 9,054  | 967   | 70,251 | 219 | 1,038 | 126 |  |  |
| 42.50                   | 176,414 | 2,993  | 824   | 48,179 | 146 | 93    | 339 |  |  |
| 42.21                   | 178,340 | 2,447  | 0     | 49,987 | 122 | 183   | 189 |  |  |
| 42.21                   | 151,003 | 2,915  | 0     | 35,269 | 141 | 345   | 116 |  |  |
| 42.04                   | 142,674 | 2,253  | 4,322 | 92,819 | 98  | 386   | 120 |  |  |
| 42.04                   | 182,452 | 2,246  | 1,172 | 52,942 | 141 | 461   | 351 |  |  |
| 41.85                   | 273,175 | 0      | 0     | 49,072 | 178 | 583   | 258 |  |  |
| 41.85                   | 206,377 | 0      | 2,386 | 41,784 | 176 | 721   | 338 |  |  |
| 41.65                   | 182,954 | 2,843  | 0     | 29,434 | 166 | 593   | 319 |  |  |
| 41.65                   | 200,353 | 2,460  | 0     | 33,602 | 119 | 481   | 358 |  |  |
| 41.40                   | 163,249 | 2,633  | 0     | 25,252 | 96  | 335   | 299 |  |  |
| 41.40                   | 254,849 | 0      | 0     | 11,678 | 205 | 954   | 493 |  |  |
| 40.75                   | 185,079 | 2,119  | 360   | 56,340 | 206 | 809   | 237 |  |  |
| 40.75                   | 220,679 | 0      | 492   | 32,986 | 108 | 447   | 378 |  |  |
| 40.00                   | 192,939 | 4,142  | 643   | 42,694 | 171 | 481   | 328 |  |  |
| 40.00                   | 155,136 | 2,953  | 0     | 42,566 | 177 | 17    | 173 |  |  |
| 39.83                   | 191,378 | 2,025  | 0     | 39,357 | 126 | 12    | 455 |  |  |
| 39.83                   | 203,555 | 0      | 0     | 50,517 | 141 | 16    | 379 |  |  |
| 39.58                   | 182,326 | 2,564  | 0     | 29,802 | 115 | 24    | 221 |  |  |
| 39.58                   | 250,410 | 0      | 0     | 36,640 | 78  | 16    | 332 |  |  |
| 39.25                   | 194,269 | 2,510  | 0     | 34,567 | 148 | 21    | 163 |  |  |
| 39.25                   | 146,474 | 2,768  | 0     | 34,851 | 107 | 76    | 135 |  |  |
| 38.98                   | 150,098 | 2,331  | 0     | 41,882 | 137 | 14    | 271 |  |  |
| 38.98                   | 166,904 | 2,176  | 0     | 58,637 | 118 | 11    | 252 |  |  |

| CH-2 pXRF Results (ppm) |         |       |        |         |     |     |     |  |  |
|-------------------------|---------|-------|--------|---------|-----|-----|-----|--|--|
| Depth (ft.)             | Si      | Ca    | Mn     | Fe      | Rb  | Sr  | Zr  |  |  |
| 38.58                   | 170,969 | 2,796 | 0      | 38,289  | 132 | 34  | 212 |  |  |
| 38.58                   | 161,526 | 2,437 | 0      | 40,269  | 140 | 9   | 107 |  |  |
| 38.15                   | 211,759 | 0     | 2,357  | 54,545  | 123 | 4   | 360 |  |  |
| 38.15                   | 222,351 | 2,335 | 779    | 43,521  | 159 | 6   | 290 |  |  |
| 37.83                   | 252,585 | 0     | 1,119  | 65,978  | 230 | 35  | 321 |  |  |
| 37.83                   | 189,364 | 2,498 | 0      | 45,182  | 157 | 203 | 211 |  |  |
| 37.63                   | 203,787 | 3,115 | 0      | 52,275  | 155 | 345 | 154 |  |  |
| 37.63                   | 267,068 | 0     | 0      | 36,423  | 173 | 657 | 419 |  |  |
| 37.50                   | 197,071 | 3,204 | 1,432  | 42,188  | 238 | 888 | 197 |  |  |
| 37.50                   | 197,672 | 0     | 1,347  | 92,132  | 65  | 14  | 195 |  |  |
| 37.33                   | 154,934 | 2,105 | 1,132  | 91,398  | 20  | 0   | 181 |  |  |
| 37.33                   | 197,860 | 0     | 13,176 | 66,101  | 89  | 3   | 96  |  |  |
| 37.10                   | 216,097 | 0     | 0      | 60,147  | 107 | 6   | 181 |  |  |
| 37.10                   | 193,539 | 1,947 | 0      | 53,070  | 97  | 4   | 163 |  |  |
| 36.98                   | 221,188 | 0     | 0      | 3,524   | 21  | 33  | 45  |  |  |
| 36.98                   | 268,880 | 0     | 0      | 14,352  | 32  | 102 | 44  |  |  |
| 36.85                   | 191,200 | 2,374 | 0      | 42,816  | 111 | 29  | 342 |  |  |
| 36.85                   | 248,384 | 0     | 614    | 69,509  | 244 | 20  | 687 |  |  |
| 36.58                   | 287,862 | 0     | 0      | 42,324  | 186 | 21  | 557 |  |  |
| 36.58                   | 265,416 | 0     | 0      | 45,251  | 184 | 23  | 396 |  |  |
| 35.63                   | 313,947 | 0     | 2,680  | 34,669  | 72  | 5   | 585 |  |  |
| 35.63                   | 272,426 | 0     | 532    | 46,704  | 35  | 2   | 259 |  |  |
| 35.48                   | 283,571 | 0     | 484    | 57,191  | 229 | 25  | 299 |  |  |
| 35.48                   | 253,077 | 0     | 636    | 57,862  | 209 | 18  | 232 |  |  |
| 35.23                   | 196,367 | 2,831 | 0      | 36,128  | 154 | 16  | 319 |  |  |
| 35.23                   | 274,403 | 0     | 483    | 71,083  | 281 | 23  | 245 |  |  |
| 35.00                   | 220,781 | 0     | 448    | 52,327  | 173 | 5   | 216 |  |  |
| 35.00                   | 320,442 | 0     | 1,482  | 76,216  | 93  | 9   | 27  |  |  |
| 30.00                   | 185,310 | 2,783 | 401    | 112,472 | 22  | 4   | 132 |  |  |
| 30.00                   | 202,946 | 0     | 612    | 50,069  | 158 | 18  | 186 |  |  |
| 25.00                   | 181,286 | 2,283 | 1,251  | 68,782  | 155 | 22  | 269 |  |  |
| 20.00                   | 242,597 | 0     | 531    | 41,387  | 77  | 21  | 277 |  |  |
| 15.00                   | 217,796 | 0     | 967    | 43,639  | 85  | 21  | 330 |  |  |
| 15.00                   | 177,335 | 2,408 | 0      | 49,286  | 109 | 30  | 275 |  |  |
| 14.33                   | 177,357 | 2,455 | 0      | 46,091  | 62  | 26  | 277 |  |  |
| 14.33                   | 271,744 | 0     | 583    | 70,841  | 123 | 21  | 217 |  |  |
| 10.00                   | 195,310 | 2,147 | 0      | 54,477  | 142 | 9   | 221 |  |  |
| 10.00                   | 257,467 | 0     | 6,540  | 89,599  | 217 | 20  | 449 |  |  |
| 9.63                    | 188,688 | 2,044 | 16,674 | 57,220  | 166 | 29  | 234 |  |  |
| 9.63                    | 189,850 | 2,210 | 0      | 55,420  | 132 | 31  | 211 |  |  |

| CH-2 pXRF Results (ppm) |         |       |       |        |     |    |     |  |  |  |
|-------------------------|---------|-------|-------|--------|-----|----|-----|--|--|--|
| Depth (ft.)             | Si      | Ca    | Mn    | Fe     | Rb  | Sr | Zr  |  |  |  |
| 6.00                    | 194,298 | 0     | 1,962 | 50,862 | 106 | 80 | 132 |  |  |  |
| 6.00                    | 203,155 | 0     | 1,283 | 50,895 | 111 | 14 | 119 |  |  |  |
| 5.81                    | 249,875 | 0     | 0     | 44,916 | 104 | 21 | 135 |  |  |  |
| 5.81                    | 177,041 | 0     | 0     | 20,928 | 38  | 13 | 62  |  |  |  |
| 5.00                    | 196,946 | 0     | 689   | 74,095 | 148 | 0  | 395 |  |  |  |
| 3.00                    | 192,185 | 2,416 | 0     | 41,958 | 66  | 39 | 327 |  |  |  |
| 1.50                    | 207,099 | 0     | 0     | 63,001 | 73  | 27 | 299 |  |  |  |
| 0.00                    | 173,833 | 0     | 0     | 71,974 | 77  | 10 | 176 |  |  |  |

| CH-4 pXRF Results (ppm) |         |         |       |         |     |     |     |  |  |
|-------------------------|---------|---------|-------|---------|-----|-----|-----|--|--|
| Depth (ft.)             | Si      | Ca      | Mn    | Fe      | Rb  | Sr  | Zr  |  |  |
| 100.00                  | 222,509 | 57,394  | 756   | 80,797  | 25  | 86  | 15  |  |  |
| 99.00                   | 192,000 | 24,457  | 0     | 4,329   | 15  | 227 | 35  |  |  |
| 98.26                   | 176,982 | 11,797  | 0     | 54,427  | 151 | 18  | 25  |  |  |
| 98.26                   | 223,763 | 10,373  | 0     | 49,239  | 121 | 118 | 23  |  |  |
| 98.00                   | 216,403 | 30,876  | 0     | 4,903   | 12  | 349 | 17  |  |  |
| 97.13                   | 208,092 | 39,078  | 629   | 113,430 | 44  | 97  | 228 |  |  |
| 97.13                   | 201,657 | 29,350  | 0     | 88,573  | 84  | 153 | 235 |  |  |
| 97.00                   | 147,789 | 27,939  | 0     | 36,543  | 17  | 393 | 75  |  |  |
| 96.38                   | 280,116 | 26,316  | 0     | 19,519  | 0   | 799 | 45  |  |  |
| 96.38                   | 256,595 | 66,861  | 591   | 92,871  | 8   | 341 | 248 |  |  |
| 96.00                   | 153,377 | 62,595  | 917   | 90,288  | 25  | 138 | 173 |  |  |
| 95.12                   | 265,846 | 42,114  | 900   | 93,463  | 127 | 170 | 223 |  |  |
| 95.12                   | 235,963 | 24,781  | 560   | 98,235  | 201 | 25  | 184 |  |  |
| 95.00                   | 191,414 | 24,769  | 2,703 | 51,716  | 49  | 178 | 126 |  |  |
| 94.76                   | 251,679 | 23,073  | 534   | 67,715  | 76  | 105 | 243 |  |  |
| 94.76                   | 234,005 | 16,989  | 0     | 84,239  | 138 | 94  | 352 |  |  |
| 94.00                   | 212,685 | 15,013  | 0     | 14,557  | 16  | 184 | 35  |  |  |
| 93.98                   | 321,016 | 5,964   | 0     | 39,790  | 19  | 54  | 36  |  |  |
| 93.98                   | 269,126 | 28,339  | 0     | 39,795  | 26  | 98  | 77  |  |  |
| 93.21                   | 186,092 | 60,066  | 970   | 66,835  | 0   | 385 | 129 |  |  |
| 93.21                   | 207,782 | 44,459  | 973   | 69,885  | 14  | 367 | 127 |  |  |
| 93.00                   | 184,464 | 30,271  | 0     | 41,710  | 41  | 208 | 307 |  |  |
| 92.00                   | 149,969 | 46,438  | 0     | 60,522  | 48  | 540 | 104 |  |  |
| 91.71                   | 231,324 | 33,909  | 1,824 | 100,811 | 128 | 84  | 353 |  |  |
| 91.71                   | 196,689 | 18,793  | 0     | 50,113  | 51  | 275 | 79  |  |  |
| 91.00                   | 186,061 | 22,389  | 0     | 10,646  | 29  | 320 | 505 |  |  |
| 90.00                   | 213,162 | 66,086  | 873   | 67,905  | 12  | 143 | 20  |  |  |
| 90.00                   | 243,620 | 56,555  | 0     | 50,738  | 11  | 196 | 20  |  |  |
| 89.00                   | 251,507 | 62,811  | 951   | 69,247  | 11  | 131 | 26  |  |  |
| 88.00                   | 232,076 | 64,881  | 951   | 67,045  | 11  | 187 | 26  |  |  |
| 87.71                   | 219,332 | 97,818  | 757   | 68,150  | 15  | 158 | 24  |  |  |
| 87.71                   | 230,484 | 102,272 | 1,031 | 74,186  | 16  | 146 | 26  |  |  |
| 86.71                   | 179,527 | 83,104  | 0     | 77,141  | 14  | 57  | 25  |  |  |
| 86.71                   | 229,688 | 73,663  | 0     | 89,952  | 13  | 105 | 27  |  |  |
| 85.84                   | 277,535 | 61,021  | 560   | 68,011  | 13  | 127 | 33  |  |  |
| 84.96                   | 238,610 | 71,389  | 709   | 64,936  | 12  | 126 | 17  |  |  |
| 84.96                   | 215,242 | 62,485  | 774   | 57,869  | 13  | 129 | 20  |  |  |
| 84.08                   | 195,920 | 67,024  | 0     | 59,405  | 12  | 66  | 18  |  |  |
| 84.08                   | 236,641 | 88,580  | 918   | 70,086  | 13  | 107 | 21  |  |  |
| 83.45                   | 247,643 | 29,080  | 0     | 3,529   | 11  | 309 | 17  |  |  |

| CH-4 pXRF Results (ppm) |         |         |     |        |     |       |     |  |  |
|-------------------------|---------|---------|-----|--------|-----|-------|-----|--|--|
| Depth (ft.)             | Si      | Са      | Mn  | Fe     | Rb  | Sr    | Zr  |  |  |
| 83.45                   | 286,118 | 27,133  | 0   | 7,631  | 22  | 327   | 17  |  |  |
| 82.62                   | 259,323 | 66,213  | 659 | 66,050 | 11  | 203   | 24  |  |  |
| 81.79                   | 242,516 | 15,644  | 889 | 98,543 | 384 | 8     | 15  |  |  |
| 81.79                   | 197,146 | 11,535  | 572 | 89,713 | 356 | 14    | 18  |  |  |
| 81.24                   | 273,304 | 37,364  | 0   | 35,323 | 10  | 603   | 93  |  |  |
| 80.68                   | 223,001 | 85,611  | 0   | 36,816 | 78  | 404   | 109 |  |  |
| 80.68                   | 252,278 | 74,922  | 0   | 41,311 | 107 | 446   | 174 |  |  |
| 80.00                   | 291,846 | 5,568   | 0   | 38,264 | 59  | 58    | 177 |  |  |
| 80.00                   | 183,420 | 16,115  | 0   | 56,179 | 125 | 227   | 171 |  |  |
| 79.00                   | 259,872 | 20,869  | 0   | 44,700 | 88  | 238   | 145 |  |  |
| 78.00                   | 277,821 | 30,069  | 0   | 52,275 | 122 | 205   | 146 |  |  |
| 77.19                   | 226,694 | 100,923 | 881 | 65,547 | 38  | 170   | 36  |  |  |
| 77.19                   | 257,093 | 44,382  | 0   | 39,778 | 33  | 274   | 82  |  |  |
| 76.46                   | 344,819 | 25,339  | 0   | 7,053  | 21  | 354   | 53  |  |  |
| 76.46                   | 299,028 | 25,505  | 0   | 10,922 | 30  | 348   | 59  |  |  |
| 75.83                   | 232,684 | 95,893  | 0   | 36,012 | 12  | 385   | 77  |  |  |
| 75.83                   | 218,532 | 103,860 | 733 | 55,457 | 21  | 380   | 135 |  |  |
| 75.03                   | 199,098 | 9,940   | 0   | 73,230 | 190 | 106   | 167 |  |  |
| 75.03                   | 231,837 | 38,501  | 0   | 53,923 | 181 | 117   | 242 |  |  |
| 74.25                   | 318,230 | 29,035  | 0   | 40,379 | 85  | 270   | 230 |  |  |
| 73.53                   | 241,108 | 9,550   | 0   | 49,296 | 158 | 291   | 151 |  |  |
| 73.53                   | 242,253 | 17,461  | 750 | 39,109 | 52  | 407   | 319 |  |  |
| 73.42                   | 189,870 | 6,718   | 0   | 44,977 | 47  | 92    | 74  |  |  |
| 73.42                   | 232,484 | 14,236  | 0   | 57,503 | 173 | 310   | 217 |  |  |
| 73.28                   | 226,580 | 9,947   | 0   | 61,169 | 152 | 841   | 203 |  |  |
| 73.28                   | 247,147 | 12,434  | 0   | 70,249 | 183 | 910   | 164 |  |  |
| 72.53                   | 263,615 | 17,507  | 0   | 56,798 | 198 | 719   | 25  |  |  |
| 72.53                   | 222,033 | 15,403  | 0   | 65,485 | 243 | 606   | 54  |  |  |
| 72.10                   | 184,871 | 208,323 | 0   | 32,180 | 87  | 2,319 | 120 |  |  |
| 72.10                   | 162,714 | 201,036 | 0   | 26,897 | 88  | 2,015 | 95  |  |  |
| 72.00                   | 299,897 | 104,648 | 0   | 24,102 | 105 | 1,409 | 216 |  |  |
| 71.00                   | 327,885 | 77,346  | 0   | 18,194 | 84  | 997   | 334 |  |  |
| 70.00                   | 300,377 | 93,164  | 0   | 3,649  | 64  | 742   | 271 |  |  |
| 70.00                   | 271,336 | 93,374  | 0   | 8,047  | 96  | 1,032 | 209 |  |  |
| 69.00                   | 252,102 | 120,836 | 0   | 20,589 | 101 | 1,662 | 304 |  |  |
| 68.00                   | 191,737 | 150,296 | 0   | 26,959 | 85  | 1,717 | 175 |  |  |
| 67.00                   | 285,979 | 27,348  | 0   | 36,337 | 123 | 387   | 225 |  |  |
| 66.40                   | 323,744 | 32,089  | 0   | 38,757 | 101 | 432   | 237 |  |  |
| 66.40                   | 273,490 | 36,607  | 0   | 22,578 | 100 | 339   | 266 |  |  |
| 65.73                   | 209,548 | 12,057  | 0   | 52,641 | 209 | 69    | 265 |  |  |

| CH-4 pXRF Results (ppm) |         |        |       |         |     |     |     |  |  |
|-------------------------|---------|--------|-------|---------|-----|-----|-----|--|--|
| Depth (ft.)             | Si      | Са     | Mn    | Fe      | Rb  | Sr  | Zr  |  |  |
| 65.73                   | 236,959 | 16,363 | 0     | 61,426  | 145 | 289 | 192 |  |  |
| 65.21                   | 268,560 | 25,896 | 0     | 50,327  | 155 | 379 | 241 |  |  |
| 64.69                   | 206,369 | 18,775 | 883   | 95,250  | 125 | 179 | 207 |  |  |
| 64.69                   | 277,615 | 20,847 | 0     | 36,623  | 83  | 361 | 518 |  |  |
| 64.38                   | 215,970 | 15,223 | 0     | 52,152  | 179 | 115 | 251 |  |  |
| 64.38                   | 274,815 | 18,589 | 0     | 51,219  | 161 | 228 | 356 |  |  |
| 64.15                   | 249,295 | 23,151 | 536   | 73,850  | 193 | 200 | 328 |  |  |
| 64.15                   | 194,952 | 19,599 | 561   | 63,975  | 171 | 145 | 320 |  |  |
| 63.50                   | 301,663 | 29,552 | 0     | 17,941  | 38  | 398 | 96  |  |  |
| 62.93                   | 198,933 | 24,910 | 0     | 70,240  | 53  | 105 | 29  |  |  |
| 62.93                   | 255,750 | 31,708 | 627   | 69,457  | 42  | 196 | 28  |  |  |
| 62.25                   | 272,780 | 33,170 | 0     | 4,458   | 29  | 353 | 33  |  |  |
| 61.53                   | 348,560 | 16,147 | 0     | 3,449   | 18  | 301 | 28  |  |  |
| 61.53                   | 280,555 | 18,091 | 0     | 7,696   | 32  | 311 | 48  |  |  |
| 60.71                   | 337,523 | 6,098  | 0     | 17,217  | 54  | 163 | 22  |  |  |
| 60.71                   | 319,444 | 3,255  | 0     | 30,971  | 56  | 50  | 19  |  |  |
| 60.00                   | 325,084 | 12,009 | 0     | 6,295   | 17  | 151 | 24  |  |  |
| 60.00                   | 364,272 | 22,085 | 0     | 4,860   | 15  | 360 | 21  |  |  |
| 59.48                   | 276,829 | 20,572 | 0     | 53,778  | 153 | 403 | 330 |  |  |
| 59.48                   | 252,798 | 18,147 | 0     | 50,141  | 116 | 335 | 283 |  |  |
| 59.00                   | 305,869 | 19,106 | 0     | 9,312   | 12  | 339 | 42  |  |  |
| 58.00                   | 254,880 | 13,309 | 3,616 | 112,315 | 200 | 180 | 500 |  |  |
| 57.38                   | 205,354 | 26,979 | 2,291 | 105,953 | 173 | 9   | 335 |  |  |
| 57.38                   | 258,975 | 19,587 | 928   | 53,986  | 80  | 219 | 186 |  |  |
| 56.44                   | 387,269 | 17,134 | 0     | 12,502  | 45  | 618 | 94  |  |  |
| 56.44                   | 307,699 | 13,989 | 0     | 38,090  | 99  | 519 | 138 |  |  |
| 56.00                   | 232,766 | 7,726  | 1,584 | 80,919  | 139 | 164 | 195 |  |  |
| 55.25                   | 242,885 | 13,655 | 0     | 90,319  | 257 | 41  | 197 |  |  |
| 55.25                   | 255,241 | 3,072  | 0     | 64,847  | 178 | 2   | 216 |  |  |
| 54.81                   | 229,875 | 7,307  | 0     | 67,132  | 166 | 152 | 359 |  |  |
| 54.81                   | 221,479 | 4,786  | 0     | 71,708  | 152 | 38  | 526 |  |  |
| 53.81                   | 292,497 | 12,475 | 771   | 61,374  | 142 | 277 | 237 |  |  |
| 52.88                   | 242,810 | 4,523  | 0     | 60,617  | 180 | 130 | 255 |  |  |
| 52.88                   | 337,224 | 7,886  | 0     | 17,119  | 122 | 234 | 39  |  |  |
| 52.46                   | 372,270 | 10,458 | 0     | 21,818  | 38  | 112 | 65  |  |  |
| 52.46                   | 295,813 | 12,425 | 0     | 54,442  | 119 | 165 | 233 |  |  |
| 51.52                   | 228,170 | 2,590  | 0     | 73,824  | 143 | 52  | 254 |  |  |
| 51.52                   | 214,392 | 2,672  | 0     | 70,954  | 110 | 0   | 107 |  |  |
| 50.79                   | 291,907 | 17,569 | 0     | 42,604  | 106 | 51  | 167 |  |  |
| 50.79                   | 215,077 | 28,178 | 0     | 82,516  | 162 | 8   | 220 |  |  |

| CH-4 pXRF Results (ppm) |         |        |       |        |     |     |     |  |  |
|-------------------------|---------|--------|-------|--------|-----|-----|-----|--|--|
| Depth (ft.)             | Si      | Ca     | Mn    | Fe     | Rb  | Sr  | Zr  |  |  |
| 50.00                   | 214,330 | 5,935  | 0     | 61,592 | 156 | 107 | 213 |  |  |
| 50.00                   | 298,881 | 10,322 | 560   | 51,545 | 147 | 330 | 231 |  |  |
| 49.43                   | 362,889 | 7,870  | 0     | 3,869  | 47  | 262 | 20  |  |  |
| 49.43                   | 378,146 | 7,925  | 0     | 4,673  | 48  | 327 | 19  |  |  |
| 48.50                   | 398,787 | 3,992  | 0     | 1,676  | 11  | 237 | 18  |  |  |
| 47.79                   | 216,562 | 4,856  | 0     | 49,272 | 94  | 147 | 95  |  |  |
| 47.79                   | 286,033 | 8,043  | 0     | 44,132 | 59  | 216 | 72  |  |  |
| 47.78                   | 247,125 | 20,256 | 0     | 57,237 | 113 | 263 | 250 |  |  |
| 47.78                   | 298,159 | 5,071  | 0     | 41,515 | 87  | 106 | 80  |  |  |
| 47.24                   | 313,811 | 4,792  | 1,371 | 62,051 | 121 | 266 | 149 |  |  |
| 46.69                   | 294,973 | 3,077  | 0     | 20,657 | 72  | 43  | 16  |  |  |
| 46.69                   | 331,668 | 18,315 | 0     | 12,748 | 72  | 68  | 17  |  |  |
| 46.09                   | 363,130 | 12,535 | 0     | 2,862  | 19  | 380 | 21  |  |  |
| 45.48                   | 382,295 | 0      | 0     | 9,674  | 38  | 21  | 17  |  |  |
| 45.48                   | 394,341 | 0      | 0     | 2,133  | 11  | 172 | 19  |  |  |
| 45.44                   | 354,537 | 7,642  | 0     | 2,240  | 97  | 358 | 17  |  |  |
| 45.44                   | 262,848 | 10,595 | 0     | 1,608  | 28  | 296 | 22  |  |  |
| 45.17                   | 313,906 | 3,637  | 0     | 6,335  | 24  | 114 | 19  |  |  |
| 45.17                   | 319,657 | 10,338 | 0     | 8,529  | 28  | 334 | 17  |  |  |
| 44.91                   | 374,643 | 12,384 | 0     | 1,476  | 22  | 379 | 19  |  |  |
| 44.91                   | 337,686 | 9,331  | 0     | 1,728  | 15  | 286 | 18  |  |  |
| 44.11                   | 377,694 | 7,856  | 0     | 3,570  | 55  | 320 | 20  |  |  |
| 43.31                   | 342,767 | 8,022  | 0     | 4,939  | 44  | 272 | 20  |  |  |
| 43.31                   | 286,094 | 8,473  | 0     | 5,591  | 36  | 234 | 23  |  |  |
| 42.93                   | 360,822 | 10,313 | 0     | 11,723 | 32  | 165 | 17  |  |  |
| 42.93                   | 311,453 | 8,123  | 0     | 18,776 | 50  | 176 | 33  |  |  |
| 42.31                   | 272,863 | 23,472 | 0     | 45,259 | 132 | 181 | 263 |  |  |
| 41.69                   | 260,756 | 31,843 | 0     | 55,467 | 143 | 156 | 272 |  |  |
| 41.69                   | 245,317 | 29,261 | 0     | 28,030 | 24  | 1   | 34  |  |  |
| 40.85                   | 320,647 | 29,891 | 0     | 17,098 | 51  | 338 | 89  |  |  |
| 40.00                   | 218,388 | 4,555  | 794   | 72,260 | 183 | 16  | 379 |  |  |
| 40.00                   | 190,795 | 5,654  | 0     | 77,339 | 237 | 42  | 474 |  |  |
| 39.00                   | 282,940 | 3,150  | 0     | 59,493 | 148 | 191 | 168 |  |  |
| 38.00                   | 384,651 | 0      | 0     | 13,259 | 34  | 82  | 68  |  |  |
| 37.07                   | 285,234 | 4,491  | 1,325 | 68,596 | 224 | 175 | 179 |  |  |
| 37.07                   | 240,703 | 4,868  | 798   | 45,708 | 146 | 178 | 97  |  |  |
| 37.02                   | 241,277 | 4,916  | 0     | 34,570 | 129 | 241 | 71  |  |  |
| 37.02                   | 221,143 | 5,115  | 800   | 40,382 | 126 | 198 | 39  |  |  |
| 36.75                   | 197,127 | 4,117  | 544   | 84,576 | 192 | 34  | 174 |  |  |
| 36.75                   | 215,185 | 5,682  | 0     | 82,517 | 199 | 103 | 218 |  |  |

| CH-4 pXRF Results (ppm) |         |        |       |         |     |     |     |  |  |
|-------------------------|---------|--------|-------|---------|-----|-----|-----|--|--|
| Depth (ft.)             | Si      | Ca     | Mn    | Fe      | Rb  | Sr  | Zr  |  |  |
| 36.38                   | 158,889 | 6,205  | 859   | 84,269  | 132 | 103 | 169 |  |  |
| 36.38                   | 178,730 | 6,907  | 0     | 82,777  | 182 | 107 | 257 |  |  |
| 36.08                   | 247,851 | 10,354 | 0     | 67,501  | 153 | 138 | 285 |  |  |
| 36.08                   | 272,690 | 20,473 | 0     | 39,946  | 106 | 244 | 191 |  |  |
| 35.65                   | 191,193 | 5,517  | 2,094 | 115,321 | 151 | 60  | 128 |  |  |
| 35.65                   | 196,433 | 8,825  | 0     | 93,974  | 157 | 144 | 330 |  |  |
| 35.63                   | 229,867 | 4,369  | 1,946 | 78,041  | 159 | 24  | 259 |  |  |
| 35.63                   | 193,513 | 7,862  | 462   | 107,287 | 130 | 155 | 258 |  |  |
| 35.38                   | 244,922 | 7,122  | 476   | 59,931  | 92  | 111 | 206 |  |  |
| 35.38                   | 202,611 | 11,151 | 0     | 2,981   | 0   | 188 | 22  |  |  |
| 35.00                   | 134,975 | 2,475  | 0     | 9,872   | 13  | 42  | 8   |  |  |
| 35.00                   | 216,460 | 5,165  | 0     | 44,774  | 84  | 72  | 266 |  |  |
| 34.73                   | 204,666 | 4,928  | 496   | 32,841  | 72  | 215 | 65  |  |  |
| 34.73                   | 221,274 | 9,004  | 1,457 | 68,034  | 141 | 235 | 315 |  |  |
| 34.33                   | 232,020 | 6,828  | 0     | 55,146  | 110 | 119 | 287 |  |  |
| 34.33                   | 218,329 | 9,313  | 1,751 | 62,480  | 134 | 119 | 275 |  |  |
| 34.19                   | 259,489 | 6,125  | 0     | 61,903  | 140 | 136 | 251 |  |  |
| 34.19                   | 194,381 | 5,649  | 0     | 56,597  | 134 | 61  | 318 |  |  |
| 33.88                   | 167,407 | 4,912  | 2,596 | 103,970 | 158 | 51  | 288 |  |  |
| 33.88                   | 187,972 | 4,215  | 692   | 101,196 | 197 | 15  | 298 |  |  |
| 33.21                   | 212,424 | 3,672  | 459   | 75,808  | 180 | 28  | 231 |  |  |
| 33.21                   | 195,960 | 5,104  | 807   | 75,270  | 147 | 91  | 177 |  |  |
| 33.17                   | 201,158 | 5,057  | 4,973 | 84,376  | 213 | 63  | 226 |  |  |
| 33.17                   | 155,820 | 4,330  | 559   | 45,528  | 107 | 96  | 109 |  |  |
| 32.39                   | 297,758 | 4,966  | 0     | 57,554  | 116 | 154 | 213 |  |  |
| 31.60                   | 156,727 | 4,113  | 2,309 | 66,558  | 113 | 23  | 124 |  |  |
| 31.60                   | 196,046 | 5,023  | 4,213 | 86,630  | 199 | 71  | 262 |  |  |
| 31.05                   | 301,685 | 4,332  | 797   | 64,052  | 144 | 145 | 210 |  |  |
| 30.50                   | 243,442 | 3,149  | 0     | 56,832  | 59  | 189 | 112 |  |  |
| 30.50                   | 221,194 | 4,271  | 0     | 64,152  | 111 | 152 | 218 |  |  |
| 30.17                   | 296,416 | 7,431  | 699   | 62,423  | 164 | 211 | 210 |  |  |
| 30.17                   | 210,782 | 4,833  | 0     | 40,265  | 88  | 191 | 77  |  |  |
| 30.08                   | 230,399 | 3,564  | 0     | 29,206  | 69  | 99  | 22  |  |  |
| 30.08                   | 241,400 | 4,825  | 0     | 28,152  | 52  | 112 | 31  |  |  |
| 30.00                   | 316,650 | 8,810  | 0     | 6,681   | 31  | 344 | 21  |  |  |
| 30.00                   | 263,735 | 3,878  | 837   | 71,351  | 143 | 193 | 127 |  |  |
| 29.83                   | 234,223 | 6,609  | 0     | 59,366  | 152 | 177 | 295 |  |  |
| 29.83                   | 246,601 | 3,584  | 1,692 | 89,443  | 207 | 29  | 326 |  |  |
| 29.65                   | 252,391 | 4,147  | 718   | 88,362  | 206 | 29  | 235 |  |  |
| 29.65                   | 214,930 | 4,524  | 0     | 54,424  | 131 | 79  | 353 |  |  |

| CH-4 pXRF Results (ppm) |         |        |       |        |     |     |     |  |  |
|-------------------------|---------|--------|-------|--------|-----|-----|-----|--|--|
| Depth (ft.)             | Si      | Ca     | Mn    | Fe     | Rb  | Sr  | Zr  |  |  |
| 29.21                   | 185,244 | 4,897  | 805   | 79,030 | 106 | 135 | 294 |  |  |
| 29.21                   | 217,306 | 0      | 0     | 8,900  | 17  | 2   | 50  |  |  |
| 29.17                   | 195,642 | 0      | 0     | 12,867 | 12  | 2   | 65  |  |  |
| 29.17                   | 175,019 | 6,894  | 0     | 25,707 | 42  | 194 | 113 |  |  |
| 29.15                   | 151,872 | 4,720  | 0     | 55,296 | 124 | 99  | 240 |  |  |
| 29.15                   | 150,003 | 5,839  | 1,345 | 59,528 | 105 | 122 | 303 |  |  |
| 29.10                   | 172,733 | 6,545  | 0     | 37,169 | 71  | 177 | 181 |  |  |
| 29.10                   | 179,306 | 6,620  | 0     | 49,753 | 130 | 116 | 458 |  |  |
| 29.04                   | 166,229 | 6,235  | 0     | 38,744 | 99  | 200 | 130 |  |  |
| 29.04                   | 194,565 | 7,447  | 2,105 | 61,863 | 119 | 181 | 188 |  |  |
| 28.99                   | 206,827 | 4,598  | 4,644 | 85,296 | 132 | 129 | 177 |  |  |
| 28.99                   | 157,876 | 5,529  | 2,533 | 65,151 | 110 | 89  | 170 |  |  |
| 28.85                   | 159,994 | 8,336  | 0     | 47,980 | 110 | 247 | 231 |  |  |
| 28.85                   | 145,786 | 6,470  | 0     | 35,229 | 73  | 207 | 153 |  |  |
| 28.77                   | 157,363 | 6,018  | 1,736 | 55,146 | 128 | 170 | 197 |  |  |
| 28.77                   | 134,183 | 2,256  | 0     | 12,982 | 0   | 10  | 32  |  |  |
| 28.71                   | 132,982 | 2,003  | 0     | 11,383 | 0   | 3   | 20  |  |  |
| 28.71                   | 164,215 | 6,243  | 677   | 65,796 | 103 | 159 | 257 |  |  |
| 28.67                   | 178,146 | 5,832  | 2,920 | 49,277 | 112 | 103 | 314 |  |  |
| 28.67                   | 139,077 | 2,829  | 0     | 15,545 | 23  | 22  | 51  |  |  |
| 28.52                   | 133,730 | 2,184  | 0     | 13,079 | 11  | 7   | 30  |  |  |
| 28.00                   | 127,235 | 7,609  | 0     | 37,960 | 53  | 52  | 74  |  |  |
| 27.00                   | 128,735 | 3,990  | 2,038 | 82,002 | 101 | 44  | 257 |  |  |
| 26.00                   | 199,308 | 3,417  | 2,281 | 69,153 | 171 | 31  | 921 |  |  |
| 25.00                   | 160,577 | 4,132  | 1,103 | 82,022 | 132 | 37  | 371 |  |  |
| 24.00                   | 129,122 | 6,090  | 1,025 | 45,255 | 14  | 18  | 27  |  |  |
| 23.00                   | 140,115 | 10,536 | 2,956 | 71,118 | 20  | 16  | 25  |  |  |
| 22.00                   | 140,667 | 3,835  | 2,670 | 58,625 | 50  | 19  | 74  |  |  |
| 21.00                   | 149,365 | 14,975 | 4,053 | 64,016 | 16  | 26  | 26  |  |  |
| 20.00                   | 196,843 | 0      | 0     | 5,136  | 30  | 32  | 148 |  |  |
| 19.00                   | 176,312 | 0      | 0     | 6,140  | 16  | 17  | 60  |  |  |
| 18.00                   | 178,397 | 3,348  | 0     | 36,423 | 129 | 32  | 34  |  |  |
| 17.00                   | 131,783 | 2,871  | 0     | 44,737 | 160 | 13  | 232 |  |  |
| 16.00                   | 174,703 | 2,111  | 970   | 89,788 | 198 | 8   | 222 |  |  |
| 15.00                   | 174,268 | 2,123  | 0     | 48,332 | 169 | 8   | 239 |  |  |
| 14.00                   | 152,641 | 2,462  | 0     | 43,118 | 109 | 7   | 232 |  |  |
| 13.00                   | 151,925 | 2,464  | 0     | 38,614 | 105 | 4   | 120 |  |  |
| 12.00                   | 159,226 | 2,258  | 916   | 53,964 | 140 | 41  | 293 |  |  |
| 11.00                   | 159,095 | 0      | 1,824 | 52,064 | 99  | 498 | 277 |  |  |
| 10.00                   | 228,150 | 0      | 557   | 52,759 | 79  | 161 | 394 |  |  |

|             | CH-4 pXRF Results (ppm) |       |       |         |    |     |     |  |  |  |  |
|-------------|-------------------------|-------|-------|---------|----|-----|-----|--|--|--|--|
| Depth (ft.) | Si                      | Ca    | Mn    | Fe      | Rb | Sr  | Zr  |  |  |  |  |
| 9.00        | 145,196                 | 0     | 1,230 | 70,107  | 60 | 52  | 168 |  |  |  |  |
| 8.00        | 164,869                 | 0     | 1,132 | 33,166  | 46 | 5   | 406 |  |  |  |  |
| 7.00        | 141,804                 | 2,117 | 560   | 63,929  | 50 | 216 | 248 |  |  |  |  |
| 6.00        | 141,141                 | 2,583 | 646   | 109,796 | 18 | 60  | 171 |  |  |  |  |
| 5.00        | 200,357                 | 0     | 0     | 74,038  | 41 | 28  | 689 |  |  |  |  |
| 4.00        | 175,122                 | 0     | 0     | 82,244  | 70 | 70  | 255 |  |  |  |  |
| 3.00        | 213,645                 | 0     | 1,589 | 66,505  | 37 | 41  | 318 |  |  |  |  |
| 2.00        | 231,389                 | 0     | 726   | 55,356  | 75 | 63  | 547 |  |  |  |  |
| 1.00        | 207,175                 | 0     | 858   | 76,184  | 29 | 58  | 570 |  |  |  |  |
| 0.00        | 240,163                 | 0     | 998   | 39,485  | 78 | 52  | 473 |  |  |  |  |