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ABSTRACT

PHILIP BROWN. Particle Tracking Applications of Vibrating Grains using
Thermal Imaging Filtration. (Under the direction of DR. RUSSELL KEANINI)

This thesis describes the development of a new macroscopic method to study the

diffusion of particles using thermal imaging as a means of filtration. Using research

previously conducted at The University of North Carolina at Charlotte as a basis

for the experiment, ceramic grains in a vibratory polishing machine were used as

a macroscopic analog for fluid molecules. A method of heating grains and using a

thermal imaging camera to isolate the heated grains as they diffused was developed.

Multiple methods of analyzing the video-data acquired during the experiment were

tested, eventually resulting in an average grain diffusion by frame. A method was

then developed to calculate the area of the diffusion event based upon the statistical

probability of a particle being at a specific pixel location. This method was then

modeled to determine the rate of particle diffusivity and, by using the Stokes-Einstein

Relation, a diffusion coefficient, Dexperimental, was calculated. It was observed that the

Dexperimental was orders of magnitude larger than expected; in attempting to explain

this unexpected outcome, Dtheoretical was calculated and it was discovered that the

diffusion does not appear to be thermally driven. Based on the highly dynamic

nature of vibrating grains, a model was created to determine a kinetically driven

diffusion coefficient we call ballistic self-diffusion, Dballistic. When comparing Dballistic

to Dexperimental, it was found that they were on the same order of magnitude and both

reflected within the linear modeling of the experimental data; this indicated that the

dispersion event is most likely kinetically driven.
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CHAPTER 1: INTRODUCTION

1.1 Background

When an outside influence disturbers a fluid, the fluid attempts to dissipate the

disturbance through a relaxation process [1]. On a macroscopic scale, the fluid can be

treated as a continuum and will dissipate as flow, diffusion, or thermal conduction [1].

On a microscopic scale, a disturbance results in a multitude of molecular collisions;

the seemingly random dynamic interactions between the fluid particles must be con-

sidered and the continuum assumption cannot be used [1, 2]. This originated based

on Smoluchowski’s proposition and was continued upon by Einstein, which considers

liquid as a continuous medium where inhomogeneities are created by thermal fluctu-

ation, resulting in density and concentration fluctuations [3, 4, 5, 6]. Einstein also

continued the work of Robert Brown, relating the molecular motion of particles to a

random walk process, this established the theory of Brownian motion [5, 6, 7]. The

1845 work of Sir George Stokes suggested that the friction of particle interaction is

proportional to viscosity and particle radius; Einstein built upon this to establish a

relationship between the particle diffusion coefficient and transitional friction known

as the Stokes-Einstien equation [5, 6, 7, 8]. Traditional methods for the study of

molecular hydrodynamics and the determination of the diffusion coefficient include

light scattering, molecular dynamic simulations, and, to an extent, neutron scattering

[1, 2].
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1.2 Traditional methods

1.2.1 Dynamic light scattering

As light passes through a medium, if its particles are smaller than the wavelength of

the light, the light is diffracted [9]. In the visual spectrum, this can be observed as the

blue color of the sky; this color is the result of sunlight scattering in a specific way as it

passes through the particles in the earth’s atmosphere [6]. In practice, light scattering

aims a laser at a sample and detects the angle that the laser’s light is diffracted.

The way the light scatters is a function of the size and shape of the molecules the

light encounters; this provides information about the material composition of what

is encountered [10]. If the molecules in the fluid of interest (FOI) are dynamic,

motion is able to be related to size based upon the fluctuations in the diffraction [10].

The fluctuations can then be processed using correlation to determine structural and

dynamical information about the FOI [10]. While light scattering is a useful method

to determine diffusion coefficients, the laser light may excite undesirable modes by

operating at a wavelength longer than the spacing between liquid molecules [2]. This

method also requires a laser, detection equipment, and specialized software.

1.2.2 Neutron scattering

Thermal neutrons have wavelengths and energies that correspond with the excita-

tion energies of condensed matter, such as liquids and solids; additionally, they only

weakly interact with matter, allowing for thicker samples to be used [11, 12]. Neutrons

have an integral magnetic moment property that causes them to spin in a very specific

way; this makes them susceptible to deflection from magnetic fields [11, 12]. An unin-

terrupted beam of neutrons will encounter a detector in a predictable way; however,

when a FOI is placed between the neutron source and the detector, the neutrons are

deflected and will encounter the detector in a way unique material composition [11].

Additionally, any motion/ vibration in the fluid will also affect the deflection pattern
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as a frequency, providing data that can be used to find the diffusion coefficient [11].

While an effective method for determining a diffusion coefficient, neutron scattering

requires a neutron source and complex instrumentation; this makes it a very costly

and inaccessible method for the determination of diffusion coefficients [13].

1.2.3 Molecular dynamic simulations

Molecular dynamic simulations use a computational method to define and calculate

probable particle interactions [1, 14]. There are numerous existing software packages

available to run these simulations or they can be created using freely available cod-

ing platforms like PYTHON [15]. These simulations are easily modified and avoid

unintended experimental impurities; however, all laws of energy, any variables, and

material properties must be accurately defined for the simulation to hold any level

of accuracy [15, 16]. The computing cost and time required increase based on the

complexity of the simulated system, often rising beyond the capabilities of commonly

available equipment [17]. Additionally, there are other spatial/ temporal domain lim-

itations, boundary conditions, and complex particle flow interaction conditions that

molecular simulations (MS) are not able to address [2].

1.3 Analog methods

Analog methods for researching molecular hydrodynamics use macroscopic substi-

tutes for molecules, allowing for the movements to be visually observed and recorded.

The dynamics of confined grains subjected to a vibratory force have been observed

to have fluid-like properties [14, 18]. With the obvious size difference between a

molecule and a stand-in grain analog, there is a noticeable difference in mass; how-

ever, the laws of classical mechanics can be applied in both cases [18]. Unlike true

molecular interaction where quantum-mechanics dictate completely elastic collisions,

grain collisions are dictated by the laws of classical mechanics and collision energy

is transferred as heat; however, the driving mechanism of the grain bed continues to
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input energy in the system, offsetting the system energy loss [18]. While molecules of

the same type are identical, grains contain imperfections causing them to be similar

but not identical; to simplify calculations, a spherical assumption is used, disregard-

ing potential grain imperfections [18]. The spherical assumption is also commonly

used when addressing real molecules, as they are not perfectly spherical [18]. In the

real or analog case, the non-spherical properties would cause rotational components

to collision interactions that are neglected by the spherical assumption in both cases

[18]. Even with the notable differences between actual molecular flow and analog

grain flow, no other method for the direct observation of a physical experiment that

reflected molecular hydrodynamic interaction was located.

1.3.1 PIV overview

The dominate method for flow visualization through grain tracking in a vibrating

bed is Particle Imaging Velocitmetry (PIV). PIV systems typically seed a fluid in

a flowing channel with a reflective media that is illuminated with a laser; the laser

illuminated field-of-view (FOV) is then recorded by a camera [19]. Another method

for obtaining images for analysis is known as adaptive PIV. Adaptive PIV can use a

standard video and does not require a laser; however, the objects being tracked must

be sufficiently visible for the PIV software to differentiate them from background [20].

In PIV, the camera’s FOV is calibrated to allow conversion between pixel size and a

physical length measurement; the frame rate of the camera is then used to determine

time [19, 20]. The software then converts pixel groups into interrogation areas and is

able to differentiate the particles from background [20]. By determining the change in

location and direction of particles between frames, the PIV software is able to create

a flow vector for each of the interrogation areas [20]. Combining the interrogation

areas, the PIV software is able to create a vector flow-field, providing a mathematical

and visual representation of the flow dynamics [20].
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1.3.2 Analog methods using PIV

Previously completed experiments have used a vibrated grain bed to simulate flow

by facing a camera at the surface of the dynamic grain bed and recording the move-

ment of the grain for further analysis. The University of North Carolina at Charlotte

proposed a method using vibrating grain beds as a means of studying molecular hy-

drodynamic flow [2]. This method used an annular shaped vibratory polishing bowl

filled with 10 mm thick, 10 mm equilateral triangle shaped media and a high-speed

camera oriented to record the grain surface; this is the exact vibratory polishing bowl

that would later be used in the experiment detailed in this paper [2]. The camera used

featured a resolution of 1504 x 1128 and recorded at a rate of 1000 frames per second

(FPS); this allowed the grain flow to be captured in great detail, increasing accuracy

during data processing [2]. A stationary plate was placed into the grain to deflect

the flow and the vibratory bowl was then turned on; the grains were then allowed

to achieve a steady-flow state [2]. After the steady-flow state had been achieved, the

camera was activated and recorded the grains flowing around the plate; this video

data was then processed using PIV software to create vector fields at each time incre-

ment, showing the flow dynamics of the grain system [2]. Results of the PIV analysis

were then compared to a Computational Fluid Dynamics (CFD) model of the same

system and found to be in agreement [2].

This experiment used the same general setup; however, the deflection plate pre-

viously used was replaced with a load cell mounted cylinder to determine drag [21].

Unlike the first experiment, this experiment tested 8 different types of grain media

as analogs, including the 2mm diameter spheres used in this experiment [2, 21]. This

experiment was also able to determine additional fluid properties from the grain bed,

such as the drag coefficient, Reynolds number, and Kinematic Viscosity [21].



CHAPTER 2: METHODOLOGY

2.1 Intent

Previous experiments conducted at The University of North Carolina at Charlotte

calculated fluid properties from granular flow using a high-speed camera and PIV

software; however, these calculations were made from a bulk-flow observation of all

particles in the flow field passing through the camera’s FOV [2, 14, 21]. To provide

an alternative method of conducting grain flow analog experiments and to further

support the use of vibrating grain beds in molecular dynamics research, it was desired

find a method of recording the dynamics of a single grain or relatively small number

of grains as they were affected by the dynamical motion of the bulk flow.

2.2 Proposed grain distinguishment methods

Multiple methods of distinguishing grains were proposed and evaluated. Since the

end goal of this project was the determination of a self diffusion coefficient, maintain-

ing the greatest amount of similarities possible between the grains of interest (GOI)

and all other grains was prioritized. Painting or coating the select grains was pro-

posed and dismissed due to the paint changing the surface properties of the select

grains from the bulk grain surface properties. Acquiring a different color grain with

the same physical properties was also proposed; however, removing one or a select

few grains from the thousands of other grains in the bed after each experimental run

was too impractical of a method.

The use of high-speed X-ray detection or fluoroscopy, a specialized form of com-

bining MRI technique with X-ray, was also considered as a non-invasive way to track

grain particles [22, 23]. While fluoroscopy shows promise as a potential method
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for tracking particle movement, even potentially tracking movement in 3-D, there

are multiple difficulties in experimentation [22, 23]. The first challenge was creat-

ing enough contrast between the particle(s) of interest and the bulk-flow particles.

The use of contrast agents is already commonly used with this technology; however,

achieving the necessary definition while minimally altering the grain properties from

the background grains proved difficult. Additionally, there are safety concerns due

to the radiation associated with x-ray technology [22, 23]. The second difficulty is

the accessibility and expense of the equipment necessary to pursue this method of

research, likely requiring the cooperation of a hospital or laboratory [22, 23]. While

this technique warrants future investigation as a potential method of non-invasive,

direct-observation study of 3-D flow dynamics, it was set aside to pursue a technique

that only required more accessible equipment.

Heating a grain or a few grains above the background temperature and using ther-

mal imaging technology to differentiate them from the other grains was also proposed.

As a basic thermal imaging camera was readily accessible, this method was tested by

heating a few ceramic grains on an available hotplate and dropping them on top of

the dynamic grain bed; a still image of this initial test is shown in Figure 2.1.
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Figure 2.1: Thermal Imaging Proof of Concept test

This test showed that heated grains could be effectively distinguished from other

grains that were identical in every other way. This method did not require the grain(s)

to be altered in any way aside from the addition of heat and avoided the need for the

grains to be retrieved after each iteration of testing. This method was also relatively

simple, efficient, and cost effective since it only required a thermal imaging camera

and a heat source. Based on the results of this initial test, this method was selected

for the experiment. After initial testing and based on the budgetary restraints of this

project, the best thermal camera available for this experiment was determined to be

a Fluke TiX580 Infrared Camera; this camera is shown if Figure 2.2.
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Figure 2.2: Multiple Views of the Fluke TiX580 Infrared Camera

The Fluke TiX580 recorded video in 640 x 480 at 24 FPS [24]. This pixel defini-

tion and recording FPS was a significant departure from the high-speed camera used

in other experiments where vibrating grains were used to model molecular hydrody-

namic processes; however, this was the best attainable camera at our disposal for this

experiment [2, 21, 24]. It was decided that, if this method worked with the TiX580

camera’s limitations, it would justify the acquisition of a high-speed infrared camera

that would only improve upon the accuracy of the experiment.

2.3 Experimental procedure and development

As in similar experiments, a metal structure would be assembled around the vibra-

tory grain bowl to allow the camera and other necessary items to be mounted without

being in contact with the vibrating bowl [2, 21]. The intended procedural flow of the

experiment was to turn on the vibratory grain bowl, allowing it to come to a steady,

dynamic, non-equilibrium condition. A preheated convection oven would be used to

heat the grain(s) for a short period of time; then, they would be introduced onto

the vibratory bowl grain surface using the funnel and down-tube setup. A recording
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by the thermal imagine camera was to be initiated immediately before the grains

were introduction and stopped after a period of about 20-30 seconds, long enough to

ensure that all the heated grains left the FOV with a margin of extra time included

in case of an abnormally long flow time. This experiment was to be repeated 100

times each for the single-grain and multi-grain methods to allow for later statistical

analysis. By performing multiple tests at different heating temperatures and grain

introductory points, this method was determined to work as intended, as outlined in

detail in Chapter 3.

2.4 Proposed data analysis method

Following the methodology of previous experiments that used vibrating grain beds

as molecular hydrodynamic analogs, the video data from the thermal imaging camera

was to be processed using the available Dantec Dynamics PIV software [2, 20, 21].

Using the MATLAB script seen in Appendix A.1, videos would be converted into

greyscale, single-frame images; these images would then be imported into the Dantec

DynamicStudio 6.5 software [2]. Using the adaptive PIV method, vector fields were

output for each experimental iteration and time interval [2, 20]. From the averaged

vector field data, a mean flow path (MFP) was created; this can be seen in Figure

2.3.
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Figure 2.3: A: Estimated mean flow Path on vector field. B: Estimated mean flow
path and vector field overlaying the camera’s FOV Image

As further analysis of the vector field data was being completed, it was noticed that

the image data appeared to lose resolution after being processed in the PIV program.

To verify this, a position based average of the runs was completed using the raw data

and post PIV processed data; this visually verified that the PIV software significantly

degraded the precision of the data, as seen in Figure 2.4.
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Figure 2.4: A: Position based averaged distribution processed using PIV software.
B: Position based averaged distribution without PIV software

As the image precision was so negatively affected by the use of the PIV software,

it was decided to avoid using PIV software and, instead, to code a method using

MATLAB. Using this method for the analysis, a MFP was calculated using a polyfit

function in MATLAB and a linear distribution was conducted along the line normal

to locations along the curve; a single-point example of this can be seen in Figure 2.5.
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Figure 2.5: A: Overall averaged distribution with best fit MFP line, tangent line
at location, and normal line at location. B: Overall averaged distribution along the
normal line at location

While this method resolved the resolution issue, provided a reasonable MFP, and

showed the average statistical distribution along the MFP, it did not account for

the spread with respect to time. When this method was attempted at individual

time intervals, the result became blob-like in nature, without a defined shape; a

visualization of this can be seen in Appendix B.1. Determining the instantaneous
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direction of travel without the vector fields created using PIV was difficult; however,

images like those seen in Appendix B.1 visually appeared to show a radial Brownian

distribution, as seen in Figure 2.6.

Figure 2.6: Visual observation of a select, cross-section of the blob-like distribution
show a radial Brownian distribution in the statistical particle spread

Upon further observation of Figure 2.6, it was also noted that, if a cross-sectional

plane was taken at any angle through the blob-like distribution, the Brownian like

distribution would remain essentially unchanged. These observations led to question-

ing if the MFP or the direction of travel was necessary to determine the diffusion

coefficient.

When considered from a Brownian motion perspective, the most critical aspect of

the movement between time intervals is not the specific direction but the ability to

compute the mean-squared particle displacement [25]. Using the blob-like distribu-

tions area expansion over time, the change in area over time could be calculated.

An existing MATLAB function called convex hull was found to work for these area

calculations; the convex hull function calculates the minimum area required to con-

tain a set of 2D points. Then, the known frame rate in conjunction with the convex

hull area calculations would be used to determine probable particle displacement at

a specific time. Upon testing and verification, this method was used to analyze the

experimental data, as detailed in Chapter 4.



CHAPTER 3: EXPERIMENTAL METHOD

Figure 3.1: General Experimental Setup

3.1 Preparation

The initial setup and protocol of this experiment, as seen in Figure 3.1, were based

upon previous experiments conducted at The University of North Carolina at Char-

lotte [2, 21]. As the experiment evolved, the development and progression described

in Chapter 2 served as the basis for the experimental procedure detailed below. Al-

though this procedure is detailed to the exact equipment used in this experiment, it

is intended to be easily modifiable to equipment available in other laboratories.

3.1.1 Preparation of the vibratory system

1. The vibratory system consisted of an annular polyurethane bowl with an OD

of 600 mm; this bowl was attached to a single-speed (1740 rpm), unbalanced

motor, as seen in Figure 3.2, which generated the necessary vibrations for the ex-
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periment [2]. The bowl was mounted to an assembly that consists of a weighted

base and supported by a group of eight springs, as seen in Figure 3.2 [2].

Figure 3.2: Annular shaped vibratory polishing bowl with a single-speed unbalanced
motor

2. The bowl was filled approximately half way with white, 2 mm spherical ceramic

polishing media.

3. A frame was constructed around the vibrating bowl assembly to mount a funnel

with down-tube and a thermal imaging camera. It was important that no part of

the frame assembly or anything affixed to it come in contact with the vibratory

system, as this would have transmitted vibrations to the camera and funnel,

affecting the accuracy of the data collected.

4. Before data collection began, the motor was plugged into a standard electrical

outlet and allowed to come to full speed, vibrating the grains at a constant rate

for the entirety of the experiment.
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3.1.2 Preparation of the thermal imaging system

1. Using a multi-axis arm, a Fluke TiX580 Thermal Imaging camera was mounted

to the frame assembly.

2. The TiX580 was connected to a standard electrical outlet, as the duration of

this experiment would likely exceed the capacity of the camera’s battery.

3. An SD card was inserted into the memory card port located at the bottom of

the TiX580 camera.

4. Ensuring that data was being saved to the SD card, TiX580 camera settings

were set to: MENU > Settings > Image Storage > SD Card.

5. To set the correct image format, TiX580 camera settings were set to: MENU

> Settings > File Format > Image > JPEG.

6. To set the correct video format, TiX580 camera settings were set to: MENU >

Settings > File Format > Video > AVI.

7. The TiX580’s lens was approximately centered over the expected flow-field.

3.1.3 Preparation of the heat source

1. A standard convection oven was connected to power and preheated to a constant

temperature; the oven that was used in this experiment is seen in Figure 3.3.

The preheated temperature was later adjusted based on the thermal filtering

band chosen (In this experiment, 350◦F was used for multigrain experiments

and 400◦F was used for single grain experiments).



18

Figure 3.3: Convection oven heat source

2. A small, low-form beaker, capable of withstanding the required temperature,

was placed in the oven. This beaker was used to hold the grains as they were

heated before being used to pour them into the funnel/ down-tube setup for

grain introduction. The beaker remained in the oven when it was not in use to

ensure a consistent temperature and to prevent grain cooling during transfer.

3.2 Calibration of the vibratory and thermal imaging systems

1. With the motor in the off position, the outlet end of the funnel and down-tube

was placed as close to the grain-bed and outer edge of the annulus as possible;

this allowed the grain(s) to be introduced into the flow without disturbing the

bulk-flow, as seen in Figure 3.4.
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Figure 3.4: Down-tube Placement

2. The motor was turned on; then, the down-tube placement was adjusted so that

it did not interact with the dynamical motion of the grains or the annulus.

3. The TiX580 camera was set to the visible spectrum by: MENU > Image >

IR-Fusion > IR Level; then the arrow on the touchscreen was moved to the

fully to visible spectrum.

4. The multi-axis arm was adjusted so that the cameras field of view included the

entire expected flow path of the grains that were introduced to the flow.

5. The TiX580 camera was adjusted to blend the visible and thermal spectrum by:

MENU > Image > IR-Fusion > IR Level. Then, the arrow on the touchscreen

was moved slightly towards the IR setting, so that the visible spectrum was still

clearly seen in the background.

6. The temperature threshold was set by: MENU > Measurement > Set Lev-

el/ Span > Check the Manual box > Set Level/ Span; then the max./ min.

arrows on the touchscreen were moved so that the the minimum temperature

setting was above background temperature but below the oven temperature.
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(The grain-bed temperature rose during the long amount of time that bowl was

vibrating during this experiment; to ensure a neutral image background, it was

important to maintain a high enough thermal floor threshold. This prevented

thermal noise in the recordings and ensured that the data was usable. In this

case, Single-grain used a temperature span of 96.6◦F-189.1◦F and multigrain

used 126.5◦F-275.9◦F.)

7. The TiX580 touchscreen was adjusted to display the image only by: MENU >

Image > Display > check the Image Only box.

8. The amount of grains desired for the experiment (1/4 teaspoon was used for

this multigrain experiment; however, the main importance here is that the same

measurement was used throughout the experiment.) were placed in the beaker;

then, the beaker was placed into the preheated oven.

9. The grains were heated for 2 minutes. (This amount of time was experimentally

determined and can be adjusted, as long as the grains absorb enough heat to

appear on camera for the duration of the experiment.)

10. Using thermal hand protection, the beaker was removed from the oven and it’s

contents were poured into the funnel. On the TiX580 camera screen, the ther-

mally illuminated grains were observed flowing across the screen. The visible

portion of the blended image was used to ensure that the entirety of the grain

flow path in the annulus was captured by the camera. The thermal portion of

the blended image was used to ensure that the grains appear clearly as they

moved across the screen, as seen in Figure 3.5. If the heated grains did not

clearly move across the FOV or if they flowed out of the FOV, adjustments

were made as needed until a clear calibration image was obtained.
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Figure 3.5: Thermal and Visible Spectrum, Blended Image of Heated Grains moving
across the Flow-Field

11. The motor was turned off and the grainbed was allowed to return to a static

position.

12. A scale of known length was placed on the surface of the static grain bed without

disturbing the bed; it was ensured that the scale measurements could be clearly

viewed by the camera, as seen in Figure 3.6.

Figure 3.6: Scale Calibration Image
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13. The green button on the lens side of the TiX580 Camera was depressed to take

a calibration picture; then, save on the touchscreen was pressed. It was of the

upmost importance that, once this picture has been taken, the camera was not

moved for the duration of the experiment; if the camera had been moved, there

would have been no way to determine the scale of the data collected.

3.3 Experimental procedure

1. The TiX580 camera was set to the IR Spectrum by: MENU > Image > IR-

Fusion > IR Level; then, the arrow on the touchscreen was set fully to the IR

end of the scale.

2. The TiX580 camera was set to record video by: MENU > Camera > Video >

check the Video ONLY box on the touchscreen; then, the Record Video button

was pressed on the touchscreen.

3. Using thermal hand protection, the beaker from the pre-heated oven was re-

moved and the desired number of particles was placed in the beaker ( single

particles were placed in the beaker by hand and a measuring spoon was used

for multigrain experiments); then, the beaker was returned to the oven.

4. A timer was set to ensure that the grains were heated uniformly for each iter-

ation of the experiment (2 minutes were for this experiment); when the timer

expired, using thermal hand protection, the beaker was removed from the oven.

5. The green button on the TiX580 camera was pressed to begin recording video.

6. The heated grain(s) were poured into the funnel.

7. The heated grains were observed moving across the FOV of the TiX580 camera.

(It was ensured that the camera did not re-calibrate during the recording, as

this may have caused data corruption; if the camera re-calibrate, the data was
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disregard and the experimental run was repeated.) To ensure that the entire

experimental run was captured in each video and that all video recordings were

at least as long as the longest experimental run, each video was recorded for

a period after the experiment had exited the FOV (In this experiment, each

recording was at least 20 seconds long).

8. To stop the recording, the green button was pressed again; then, done was

pressed on the touchscreen, followed by save.

9. The grain heating and recording process was repeated until the required num-

ber of experimental runs had been recorded (100 runs were recorded for this

experiment).

10. When the experiment was complete, power was secured to the oven, vibrating

polisher, and TiX580 camera. Then, the SD card was removed from the bottom

of the camera and kept for analysis.



CHAPTER 4: DATA ANALYSIS

4.1 Video file management

1. The SD card containing the data files from the experiment was inserted into a

computer SD card reader; the files were copied onto a secondary storage location

(A portable hard drive was used for this experiment) for analysis.

2. PowerRename was opened by right clicking the folder containing the video files

(If necessary, PowerRename was downloaded as a part of the Microsoft Power-

Toys utility); then, the drop-down menu was selected in the PowerRename drop

down menu.

3. The names of all the video files were changed from their default name into a

numerical sequence to assist upcoming MATLAB analysis; the PowerRename

commands that accomplished this can be seen in Figure 4.1.
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Figure 4.1: PowerRename Setup for mass video file renaming

4.2 Video to binary image conversion

A MATLAB program, shown in Appendix A.1, was created to trim all of the .AVI

videos to a uniform length; while, simultaneously, converting the videos into binary,

.tif images. An example of this binary conversion can be seen in Figure 4.2.

Figure 4.2: Binarized example of a single frame of an experimental run (Right:
Origional, Left: Binarized

This program created numerically ordered folders for each individual video; then,
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the individual video frames were numbered and placed within those video folders. The

purpose of the numerical ordering was to setup for subsequent MATLAB analysis of

the data files.

4.3 Event identification

A MATLAB program, shown in Appendix A.2, was created to identify the first and

last appearance of heated grains in the binarized video frames. Since the images had

already been binarized, this was accomplished be determining when one pixel value

differed from the rest of the pixels values. By identifying the first appearance of a

grain, FrameInitial, the start time of each respective grain introduction was able to

be identified and set as the first frame of each respective run; this created a unified

start time. Next, the last appearance of a grain, FrameFinal, in each respective run

was identified; Eqn. 4.1 was then applied to each video to determine the required

number of frames.

Framerequired = (FrameFinal − FrameInitial) + 1 (4.1)

By comparing the Framerequired value given by Eqn. 4.1 for each video, the largest

number calculated was used as the minimum length of frames necessary to complete

the experiment. Then, the same MATLAB program shown in Appendix A.2 extracted

the required number of frames, starting at FrameInitial, for each run and placed them

in a folder, keeping their previously assigned video number. Then, the frames were

numerically renamed using FrameInitial as frame 1. Since the original videos files

were recorded at 24 FPS, the files were able to be translated into seconds based

on Eqn. 4.2; in this experiment, 212 frames were required, which translated into

approximately 8.83 seconds.

4t = (FrameFinal − FrameInitial) ∗ (
1s

24frame
) (4.2)
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4.4 Calculating average position at each time interval

A MATLAB program was created to calculate the matrix, µ(t), which shows the

probability of a grain being at a location in the 640 x 480 pixel grid, P (x, y), at a

specific time increment, t ; this program can be seen in Appendix A.3. By using Eqn.

4.3, the previously binarized matrices are averaged at each respective time interval;

this calculates the probability that a grain will be at a specific pixel location at a

specific time.

µ(t) =
1

((RunFinal −RunInitial) + 1)
∗

RunFinal∑
i=RunInitial


P (x1, y1) . . . P (x640, y1)

... . . . ...

P (x1, y480) . . . P (x640, y480)


(4.3)

Where:

µ(t) =


P (x1, y1) . . . P (x640, y1)

... . . . ...

P (x1, y480) . . . P (x640, y480)

 (4.4)

Using the calibration image seen in Figure 3.6, the 640 x 480 pixel grid was con-

verted from pixel units to mm using the calibration function in Dantec Dynamics

Studio 6.5 PIV Software, as seen in Figure 4.3.



28

Figure 4.3: Dantec Dynamics Studio 6.5 software used to determine the conversion
factor between pixel length and mm. A: Measuring Scale Factor Screen with imported
calibration image. B: Zoomed in version of "A" down to individual pixel grid view.
C: FOV dimensions based on calibration image scaling.

Using the data obtained, width: 225.8
640

mm
pixel

= 0.3528125 mm
pixel

and height: 169.3
480

mm
pixel

=

0.352708333 mm
pixel

, a conversion factor of ≈ 0.353 mm
pixel

was used to covert the 640 x 480

pixel grid to a 225.8 x 169.3 mm FOV. Using Eqn. 4.2, Eqn. 4.3, and the pixel to mm

conversion seen in Figure 4.3, it was possible to calculate the statistical probability

of a particle being at a location in the FOV at a specific time; this was completed for

each time increment. For visualization purposes, select time increments are shown in

Appendix B.1.
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4.5 Determination of the grain dispersion area at each time interval

A MATLAB program was created to calculate the area of the statistical particle

spread at each time interval. This program utilized the convex hull (convhull) function

in MATLAB to calculate the area of the particle spread event at each time interval.

However, locations of statistically low probability caused the area calculations to

include large areas with no statistically determined grain appearances; additionally,

if the program was run for to great a time interval, as the event dissipated to very low

detection levels, the program also failed. Using trial and error, it was determined that

the program was able to calculate the area of the event at frames 20-70 (≈ 0.83−2.92

seconds in 1/24 second increments) by filtering out events below 10% and above 90%

probability. This program can be seen in Appendix A.4. For visualization purposes,

the effect of the filtration at select percentages with the outline of the convex hull

area calculation can be seen in Appendix B.2.

Filtering out low probability events allowed the dispersion area to be calculated;

however, a side effect of the filtration was a reduction in the area of the dispersion

event. The way that this affected the accuracy of the area calculation and the point of

filtration that the calculated areas were usable needed to be determined. To accom-

plish this, a linear fit of the area expansion at each achievable filtration percentage

was completed using the linfit and convex hull area calculations in MATLAB; the

results of this calculation can be seen in Appendix C.1. The R2 of the linear fit was

then plotted at each percentage filtered, as seen in Figure 4.4.
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Figure 4.4: R2 of the linear fit at varying % Filtered. Red vertical and horizontal
lines represent the final filtering criteria used for determining the region of data to be
used for final calculations.

Based on the results in Figure 4.4, it was observed that the accuracy of the linear

fit greatly decreased at high filtration levels. To further understand the relationship

of filtration to the linear fits, the slopes calculated from the linear fits were plotted

at each filtration level, as seen in Figure 4.5.
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Figure 4.5: Slope of linear fit at varying % Filtered. Red vertical lines represent
the final filtering criteria used for determining the region of data to be used for final
calculations.

Based on Figure 4.5, it was visually observed that the change in the calculated slope

became more linear as the filtration percentage increased. To determine the point

of filtration that the change in the slope of Figure 4.5 became sufficiently linear, a

linear fit was completed for the entire range of 10−90% filtration; then, the minimum

filtration point of this range was increased in 1% increments (Example: 11−90%, 12−

90%, 13− 90%, ..., 88− 90%, 89− 90%) for the entire filtration range. The R2 of each

of these linear fits was then plotted, as seen in Figure 4.6.



32

Figure 4.6: R2 of the linear fit between the % filtered indicated to 90 %. Red
vertical and horizontal lines represent the final filtering criteria used for determining
the region of data to be used for final calculations.

By choosing a high R2 value of 0.95, the data in Figure 4.6 showed that 43% was

the minimum amount of filtration needed to exceed 0.95 R2; this indicated that the

change in the slope of Figure 4.5 was sufficiently linear above 43% filtration. Next,

using Figure 4.4, the maximum R2 that allowed for no breaks in the data with respect

to filtration percentages and for all data to be above the 43% minimum determined

in Figure 4.6 was found to be an R2 of 0.705. This filtration method showed that a

range of 47−65% was an accurate range of filtered data that could be used to created

a linear fit. These filtration points were indicated by red boundary lines in Figures

4.4, 4.5, and 4.6; within this filter band, the data was determined not to be over or

under filtered. Using the slopes of the linear fit from the 47 − 65% range in Table

C.1, reflected in Figure 4.5, a liner fit was completed, as seen in Figure 4.7.
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Figure 4.7: Linear fit of the calculated slopes in the 47− 65% filtered band

The linear fit calculated in Figure 4.7 provided an approximation for determining

the slope (rate of area expansion) at 0% filtration at an R2 of 0.94196. By setting

x = 0, we calculated 187.244mm
2

s
at 0% filtration; this allowed us to overcome the

inability to complete convex hull area calculations without some level of filtration.

This linear expansion of area was described using the point-slope formula in Equation

4.5.

m̃ =
A1 − A
t1 − t

= 187.244
mm2

s
(4.5)

4.6 Determination of the diffusion coefficient

Mean squared displacement is defined in Equation 4.6.
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MSD ≡< (x(t)− x0)2 > (4.6)

Dropping the time dependence notation in Equation 4.6, the particle displacement

was shown as < x2 >. Using this notation, a generalized form of the mean squared

displacement of particles was related to the diffusion coefficient, as seen in Equation

4.7 [25].

< r2 >=< x2 > + < y2 > +... = 2nDt (4.7)

As our calculated area was blob-like in shape, without a clearly defined x2 or y2

diffusion, we idealized the expansion to a circular form by using the equation for the

area of a circle; this resulted in Equation 4.8.

< r2 >=
< A >

π
= 2nDt (4.8)

By reorganizing this equation to solve for D, we get Equation 4.9. As this exper-

iment was in 2-dimensions, we set n = 2; additionally, we rewrote the equation to

reflect that the time interval was constant and equal to the experimental frame rate.

D =
< A >

2πnt
=

A1 − A
4π(t1 − t)

(4.9)

Substituting Equation 4.5 into Equation 4.9, we get Equation 4.10.

Dexperiment =
1

4π
m̃ ≈ 14.9

mm2

s
(4.10)

Equation 4.10 provided our calculated diffusion coefficient, Dexperiment.
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4.7 Physical analysis: Ballistic self-diffusion

One of the principal objectives of this project centered on testing the validity of

the Stokes-Einstein relation, connecting the self-diffusion coefficient and the kinematic

viscosity, ν, in a fluid, at (absolute) temperature, T [5, 6, 7, 8]:

D =
kBT

3πρνdg
(4.11)

where kB, ρ, and dg are, respectively, Boltzmann’s constant, fluid density, and the

(effective) diameter of the fluid’s constituent molecules. An earlier investigation by

our research group measured the effective kinematic viscosities of nine different vi-

brated grain systems, including the 2 mm spherical grains studied here, all undergoing

fluid-like flow [21].

4.7.1 Evidence suggesting equipartition of energy in vibrated grain beds

In order to obtain a theoretical self-diffusion coefficient, which we labeledDtheoretical,

we first had to establish that the equipartition theorem approximately held for our

vibrated grain system. This requirement arose since:

a) The grain scale version of Equation 4.11 was used, along with the previously mea-

sured grain effective kinematic viscosity to estimate Dtheoretical [21].

b) The calculation required either determination or replacement of the difficult to

determine grain scale Boltzmann temperature, k′BTeffective; here, it proved much easier

to argue the validity of grain scale equipartition of energy, allowing replacement of

k′BTeffective with a readily estimated average grain kinetic energy.

First note that our systems existed in a state of near-freezing [21]: When stationary

objects are placed in one of our grain flows, a large region of (nominally) stagnating,

frozen, grains appear on the downstream side of the object. Focusing on grain bed
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energetics on time scales shorter than the inter-grain collision time scale, we approx-

imated that our N-grain system was at a solid in which each grain underwent a small

amplitude vibration about a nominally fixed equilibrium point. Assuming that the

pairwise (collision-induced elastic strain) potential between each pair of neighboring

grains was quadratic in relative displacement, then, using a normal mode decom-

position, the set of short-time scale vibrations were re-expressed as 3N statistically

independent, collective vibration modes. In other words, the time-average, statisti-

cally stationary system potential energy, PEsystem, was expressed as a sum over 3N,

statistically independent, collective (i.e., multigrain) potential energies. Similarly,

considering short-time scale grain kinetic energy, the same normal mode decomposi-

tion allowed us to express the (time-average, statistically stationary) system kinetic

energy, KEsystem, as the sum of 3N independent, collective, multigrain kinetic ener-

gies. [Note that on longer near- and multi-collision time scales, inter-grain friction

dissipates all (vibrational) input energy in excess of the stationary values of KEsystem

and PEsystem.]

Based on experimentally measured bed vibration spectra reported in [14], we as-

sumed that the normal mode decomposition produced a set of 3N eigen-frequencies,

ranging in magnitude from frequencies much smaller than the bed forcing frequency,

fo ≈ 30 Hz, up to n · fo, where n was on the order of 4 or 5. Importantly, measured

spectra showed that bed vibration was dominated by a large peak centered on fo, as

well as four to five weaker (smaller amplitude) harmonics of fo. Thus, we assumed: a)

that the normal mode mass matrix (the matrix multiplying normal mode velocities)

and normal mode potential matrix (the matrix multiplying normal mode displace-

ments) were both strongly diagonal, and b) that each matrix diagonal had one term -

corresponding to the eigen-frequency nearest fo - much larger than all other terms. In

other words, neglecting harmonics, experimental spectra indicated that all N grains

vibrate predominantly at fo. Likewise, spectra indicate that system (elastic strain)
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potential energy, PEsystem, was dominated by a single, whole-bed spring mode; if

other spring modes were (strongly) activated, these would have, presumably, broaden

the sharp spectral peak at/ near fo.

Based on this, we assert that the equipartition theorem held for all dynamical

degrees of freedom, kinetic and potential, in our system:

1

2
mq̇2i =

1

2
k′BTeff (4.12)

and
1

2
mω2q2i =

1

2
k′BTeff (4.13)

where, neglecting grain rotational kinetic energy, qi and q̇i are average displacements

(i.e., collision-induced grain elastic strains × effective grain diameters) and veloci-

ties in 3N coordinate directions, m is grain mass, and where, for simplicity, ω is a

fixed, system averaged inter-grain oscillation frequency (determined presumably by

the grains’ Young’s modulus, Poisson ratio and effective diameter, as well as the bowl

vibration frequency, fo, and amplitude, Ao). [Based on the discussion and scaling

analysis in section 4.8, we don’t need detailed expressions for displacements and the

elastic frequency, ω. The only parameters needed are fo and Ao.]

4.7.2 Hamiltonian (dissipationless) dynamics on sub-collision time scales and a

second argument suggesting the validity of short time scale equipartition

Based on the argument above, we noted as an important corollary, that the approx-

imate validity of the equipartition theorem implied that grain dynamics on the short,

sub-collision time scale were nominally dissipationless, i.e., Hamiltonian [26]. This im-

portant and physically reasonable observation was also made in our earlier study using

a different argument; there, we observed that the peculiar (random) velocity magni-

tude for all grains tested exhibited Maxwell-Boltzmann probability distributions [14].

Such distributions emerged in classical, interacting (as well as non-interacting) multi-
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molecule systems when: a) random single molecule kinetic energies are statistically

independent of all other single molecule kinetic energies, as well as being independent

of inter-molecular potential energies, and b) inter-molecular potential energies are

likewise independent of molecular kinetic energies.

Focusing on the sub-collision time scale, we assumed that, on this time scale, each

grain undergoes statistically independent, harmonic oscillations about nominally fixed

equilibrium points; then, in light of the evidence suggesting Hamiltonian dynamics,

we arrived at a second argument supporting the validity of the equipartition theorem

in vibrated grain systems [14, 26].

4.7.3 Scaling estimate of Dtheortical using the grain scale Stokes Einstein relation

Having established the apparent validity of the equipartition theorem to our vi-

brated grain systems, we used Equation 4.12 to replace the grain scale Boltzmann

temperature, k′BTeff , in the Stokes-Einstein relation, Equation 4.11, with the approx-

imate kinetic energy of individual grains:

k′BTeff ≈ mg (Aofo)
2 (4.14)

Using the replacement in Equation 4.11, we obtained an expression allowing an

estimate of Dtheory, under the critical, and apparently erroneous assumption that

measured grain self-diffusion is thrmally driven:

Dtheoretical ≈
mg (Aofo)

2

3πρgνgdg
(4.15)

where ρg = 1385 kg m−3 (packing density ≈ 55%), νg = 0.2 m2s−1, and dg =

2 (10−3) m, are, respectively, the effective/bulk density, kinematic viscosity, and con-

stituent grain diameter of the 2 mm grain flows used in our experiments, and where,

again, Ao ≈ 2 (10−3) m and fo ≈ 30 s−1, are the approximate imposed vibration
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amplitude and frequency [21, 27, 28]. In order to calculate the grain mass, we used

the specific weight of the grain material, ρswg = 2.52 g
cm3 , and the formula for the

volume of a sphere [27]:

mg =
ρswgπd

3
g

6
≈ 0.01g (4.16)

Using these parameter values in Equation 4.15 yielded:

Dtheoretical ≈ 7.3 (10−9) m2 s−1 = 7.3 (10−3) mm2/s−1 (4.17)

Comparing Dtheoretical with Dexperimental, we observe that the Stokes-Einstein relation

under-estimates D by approximately four orders of magnitude.

Crucially, this large discrepancy implies that experimentally observed diffusion was

not thermally driven by the random kinetic energy of grains in the vibrated bed.

Moreover, the large measured D suggests that the observed "super diffusion" may

reflect ballistic grain transport, i.e., sub-collision time scale, collision free, elastic-

deformation-driven motion of individual grains. We pursued this interpretation of

experimentally observed self-diffusion in the following section.

4.8 Ballistic self-diffusion and the inapplicability of the Stokes-Einstein relation

Close examination of the origin of the Stokes-Einstein relation, Equation 4.11,

revealed that it only applies to thermally-driven self-diffusion, specifically, the self-

diffusional random hopping of single particles at some location, x, driven by the

random kinetic energy of a (small) system of particles, near x, relative to the (system)

average (bulk) velocity at x. Unfortunately, measurement of (position-dependent)

thermal energy, i.e., the random component of kinetic energy, which was measured

by our group, was not possible in the present experiment [14].

Serendipitously, this limitation exposes what we believe may be a new, previously

unreported mode of particle self-diffusion, a mode we termed ballistic self-diffusion.

First, we used a simple scaling argument to show that measured self-diffusion coef-
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ficients are several orders of magnitude larger than those predicted by the Stokes-

Einstein relation. We then estimated the self-diffusion coefficient using its funda-

mental definition, stated in terms of the velocity autocorrelation function and given

below. This analysis led to a self-consistent explanation for the anomalously large

self-diffusion coefficients measured here.

4.8.1 A model of ballistic self-diffusion

In order to explain the large self-diffusion coefficient measured in our experiment,

we started with the Green-Kubo relationship, connecting D and the single particle

velocity autocorrelation function:

D =
1

2

∫ ∞
0

〈v (t) · v (0)〉dt (4.18)

where the factor of 1/2 reflects the strongly two-dimensional grain dynamics that

existed on planes parallel to the grain bed’s free surface, observed and reported in

[14].

The largeD measured above, coupled with the fact that transport of heated spheres

was driven, overwhelmingly, by the externally forced, rigid body-like vibrational mo-

tion of the entire bed, led us to the following picture of collision time scale single

grain dynamics [14]:

a) Over a short (grain pair) impact time scale, τimpact, much shorter than the collision

time scale, τc ∼ 1/fo, we assumed that a single grain, A, traveling at characteristic

speed vo ≈ Aofo, contacted a nominally fixed second grain, B, elastically deformed

B, then elastically rebounded, leaving the surface of B with the same speed it had on

impact, vo ≈ Aofo. A force balance on A :

mv̇ =
2mvo
τimpact

(4.19)
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applicable during the short impact time interval, 0 ≤ t ≤ τimpact, yielded a differential

equation describing the post-impact motion of A, over the much longer (average/char-

acteristic) time interval, 0 ≤ t ≤ τc/2, during which the grain underwent collision-free,

"ballistic" motion.

During any given grain bed vibration cycle, we assumed that on average, grain

A suffered no collisions until grain bed motion reversed itself half-way through the

cycle. Thus, we integrated Equation 4.19 from the instant A and B separate (t = 0),

to the cycle midpoint, t = τc/2, to obtain the time-dependent velocity of A during

its ballistic motion:

v (t) = vo +
2vo

τimpact
t (4.20)

Next, we assumed that on time intervals ranging from τc/2 to τc, the time-dependent

velocity of grain A, v (t), observed over many repeat trials, remained only weakly

correlated with vo = v (0). This assumption reflected the fact that, over the second

half of any given vibration cycle, τc/2 ≤ t ≤ τc, A began colliding with other grains

moving predominantly in the opposite direction, at a speed on the order of Aofo.

Similarly, for t > τc, due to numerous collisions between A and other grains, we

assumed that the velocity of A becomes uncorrelated with vo. Both of these features

were in fact observed by our group in [14].

Based on these assumptions and using the ballistic grain velocity in Equation 4.20,

we used Equation 4.18 to calculate a theoretical ballistic self diffusion coefficient:

Dballistic =
1

2
v2o

∫ τc/2

0

(
1 +

2

τimpact
t

)
dt (4.21)

or

Dballistic =
1

4
v2o

(
τc +

τ 2c
2τimpact

)
(4.22)
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4.8.2 Scaling estimate of the elastic impact time, τimpact, and estimated Dballistic

In order to obtain a theoreticalDballistic via Equation 4.22, we used a simple physical

analysis to estimate the elastic impact time, τimpact, between colliding grains. Thus,

imposing conservation of energy on the impact process, we first estimated the total

collision-induced elastic deformation, δr/2, of the radii of spherical grains A and B,

achieved halfway through the impact interval, t = τelastic :

mgAof
2
o

2
≈ Eg

δr

dg
πδr2 (4.23)

Here:

a) mg, Eg, and dg were, respectively, single grain mass, Young’s modulus, and diam-

eter,

b) the relative speed of A and B prior to impact was approximated as the product of

the imposed vibration amplitude and frequency, Aofo,

c) the total elastic deformation of δr was imposed on B, while A remaining rigid, and

d) the circular (collision-induced) contact area on B was the (approximate) radius δr.

Using Equation 4.23, we solved for δr :

δr ≈
[dgmgAof

2
o

2πEg

]1/3
(4.24)

Next, applying conservation of linear momentum to the collision process and using
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the same assumptions, we obtained an expression that was used to estimate τimpact :

2mgAofo
τimpact

≈ Eg
δr

dg
πδr2 (4.25)

Solving Equation 4.25 for τimpact finally yielded:

τimpact ≈
2mgAofodg
πEgδr3

(4.26)

Using Equation 4.24 to estimate δr, and then using δr in Equation 4.26 to ob-

tain τimpact, we finally used Equation 4.22 to obtain a rough theoretical estimate of

Dballistic. For these calculations, we used the following parameter values: mg = 0.01g,

Eg(estimated) = 300GPa, dg = 2 (10−3)m, fo ≈ 30 Hz, and Ao ≈ 2 (10−3)m ; this

resulted theoretical estimate of Dballistic = 33.75mm
2

s
[29].

4.8.3 Comparison of Dballistic with Dexperimental

A comparison of Dballistic and Dexperimantal can be seen in Equation 4.27.

Dratio =
Dballistic

Dexperimental

≈ 2.3 (4.27)

Dballistic was approximately double the value of Dexperimental and on the same order

of magnitude. Additionally, if Dballistic was substituted for Dexperimental in Equation

4.10, we approximated a m̃ballistic ≈ 424mm
2

s
; this value appeared within the span

of the experimental linear fit data seen in Appendix C.1 at approximately the 25%

filtration level, whileDexperimental more closely reflects the 37% filtration level fit. This

close comparison between Dballistic and Dexperiment suggested that the experimental

diffusion data is reflective of the externally forced, rigid body-like vibrational motion

of the entire bed that we have termed "Ballistic Self-Diffusion."



CHAPTER 5: CONCLUSIONS

5.1 Summery of completed work

This project, inspired by previous research conducted at The University of North

Carolina at Charlotte, endeavored to track a single or small number of grain particles

in order to determine if a diffusion coefficient could be obtained. Unlike previous

experiments of this type where the bulk-flow was analyzed, this experiment intended

to isolate and track only the introduced particles. After potential methods of grain

tracking were discussed and tested, it was determined that heating the introduced

grains and tracking them using a thermal video camera would be used.

After developing the experimental setup and procedure, 100 single-grain and 100

multi-grain experiments were conducted and filmed using the thermal video camera.

These videos were then exported to a computer where they were processed into sets

of single-frame images in binary and grey-scale; the image files were then processed

into PIV software. Analysis of the data exported from the PIV software showed a

low resolution; to visually test how much this affected the resulting data, a statistical

analysis of the pixel data was completed using a MATLAB script. Based upon this

test, it was determined that further PIV analysis would not be usable until a thermal

video camera with a greater resolution was available.

Using a statistical analysis of the data, multiple methods were attempted to deter-

mine if a Brownian distribution existed and, after several attempts, it was determined

that a radial Brownian distribution was present. Using filtration and the convex hull

function in MATLAB, the statistical area of the event was determined; however,

the required use of filtration dictated that a data fit be used to estimate the rate

that the event area grew over time with no filtration. Using the generalized form of
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means-squared displacement particles to relate to the diffusion coefficient and experi-

mentally derived rate of event growth over time, an experimental diffusion coefficient,

Dexperiment, was calculated; however, Dexperiment was a greater value than expected.

A theoretical diffusion coefficient, Dtheoretical, was calculated to test Dexperiment’s

validity. The results showed that Dtheoretical was approximately 4 orders-of-magnitude

smaller than Dexperiment. This large difference indicated that the event diffusion is

not thermally driven but more reflective of super-diffusion we termed "Ballistic Self-

Diffusion." In order to model Dballistic, we used the Green-Kubo relation and modeled

the grain impacts as elastic. The calculation of Dballistic showed that it is on the same

order-of-magnitude as Dexperiment; this demonstrated that this experiment is reflective

of the externally forced, rigid body-like vibrational motion of the entire bed.

5.2 Future work

As this experiment has demonstrated, the use of thermal video cameras to track

heated grains was successful, justifying the use of further funds and research time. The

next step would be to acquire a new thermal video camera with, at minimum, twice

the resolution and frame-rate of the TiX580 camera that was used in this experiment;

however, the highest resolution and frame-rate achievable would be preferred. If the

frame rate was, at minimum, doubled, it would allow the reintroduction of PIV

analysis, as the loss in resolution was exactly 1/2 the pixel resolution. Additionally, a

greater frame rate would decrease the time between event samples, improving the area

calculations and linear fits. The reinclusion of PIV methodology into this experiment

presents the potential to separate any thermally driven diffusion from the dominate

bulk-flow, a goal of the experiment that was disregarded in this work due to the low

image resolution of the current camera. Even if PIV methods were not reincluded,

at minimum, the new camera would improve the accuracy of the method as it is

currently outlined in this work.
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APPENDIX A: MATLAB PROGRAMS

A.1 MATLAB program to trim video length and convert images to binary

1 %Video length editing for vibrating grain data

2 %and bianary color conversion

3

4 %we will take the videos of varying length and edit them all to save

only

5 %the first 20 sec of data and convert to binary.tif files

6

7 %By: Philip Brown

8 %Date: 1/10/2024

9

10

11 clear all; close all; clc;

12

13 %Variable inputs

14 File1 =1;

15 FileEnd =100;

16 Frame1 =1;

17 FrameEnd =480;

18 %

19

20 for i=[File1:FileEnd]

21

22 filenamei= [ ’D:\ thesis_2024\Dec_2023_vids\Renamed_2023_vids\

multigrain\’ num2str(i) ’.AVI’ ];

23 obj=VideoReader(filenamei);

24 vid=read(obj);

25

26 destdir= strcat(’D:\ thesis_2024\bi_pics_20sec\multigrain\’ ,

num2str(i));
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27 mkdir(destdir);

28

29 for x=[ Frame1:FrameEnd]

30

31 imwrite (( imbinarize (( rgb2gray(vid(:,:,:,x))) ,.5)),strcat(

destdir , ’\’ ,num2str(i), ’_frame_ ’ , num2str(x), ’.tif’));

32

33 end

34

35 end
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A.2 MATLAB program to identify the first and last grain appearance of each

run; then, to set frame one to the first appearance in each video and include enough

frames to capture the longest run

1 %Find the first and last even occurance in a series of bianary

images

2 %Then; trim to required length to contain the entire event in all

runs

3 %making frame 1 the first appearance of the event in each run

4 %Author: Philip Brown , %1/11/2024 , Last Edited: 4/16/2024

5 clear all; close all; clc;

6 index_len =0;

7 count2 =0;

8 i_start =4;

9 i_end =104;

10 for i=[ i_start:i_end]

11 Events =0;

12 count =0;

13 for x=[1:438]

14 filenamei= [ ’D:\ thesis_2024\bi_pics_20sec\multigrain\’ , num2str(i)

, ’\’ , num2str(i) , ’_frame_ ’ , num2str(x) , ’.tif’ ];

15 pic=imread(filenamei);

16 val=sum(pic (:) ==0);

17 if val~0;

18 count=count +1;

19 Events(count ,:)=x;

20 end

21 end

22 count2=count2 +1;

23 index_len(count2 , 1)=i; %Puts run Number in Columb 1

24 index_len(count2 ,2)=Events (1,1); %Puts first event occurance in

Columb 2
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25 index_len(count2 ,3)=Events(length(Events) ,1); %Puts last event

occurance in columb 3

26 index_len(count2 ,4)=( index_len(count2 ,3)-index_len(count2 ,2))+1; %

Frame length of Event this run

27 end

28 Req_len=max(index_len (:,4))+0; %If nessisary , add 1 to make an even

number for PIV program use

29 count3 =0;

30 for i=[ i_start:i_end]

31 count3=count3 +1;

32 count4 =0;

33 destdir=strcat(’D:\ thesis_2024\trim2event_pics\multigrain\’,

num2str(i));

34 mkdir(destdir);

35 for x=[ index_len(count3 ,2):index_len(count3 ,2)+Req_len]

36 count4=count4 +1;

37 filenamei= [ ’D:\ thesis_2024\grey_pics_20sec\multigrain\’ ,

num2str(i) , ’\’ , num2str(i) , ’_frame_ ’ , num2str(x) , ’.tif’

];

38 pic=imread(filenamei);

39 imwrite(pic , strcat(destdir , ’\’ , num2str(i), ’_frame_ ’ ,

num2str(count4 , ’%03i’) , ’.tif’));

40 end

41 end
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A.3 MATLAB program to determine the probability of a particle being located at

a specific pixel grid location at a specific time

1 %Determines the probibility of a grain being at a pixel grid

location

2 %at a specific time interval

3 %Author: Philip Brown , 1/11/2024 , Last Edited: 4/16/2024

4 clear all;close all;clc;

5

6 file1 =2; % 1-multi

7 fileEnd =101; %101- multi

8 Num_Files =(fileEnd -file1)+1;

9

10 frame1 =1; % 1-multi

11 frameEnd =212; % 212-multi

12

13

14 for i=[ frame1:frameEnd]

15 trimsum_avgsum =0;

16 trimsum =0;

17 for j=[file1:fileEnd]

18 readinfile =[’D:\ thesis_2024\trim2event_pics\multigrain_bi\’

num2str(j) ’\’ num2str(j) ’_frame_ ’ num2str(i,’%03i’) ’.tif’];

19 hold=imread(readinfile);

20 hold=~hold;

21 for y=[1: height(hold)]

22 for x=[1: width(hold)]

23 if (hold(y,x)~=0)

24 hold(y,x)=1;

25 end

26 end

27 end

28 trimsum=trimsum+hold;
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29 end

30 trimsum_avg =(1/ Num_Files)*trimsum;

31 filenamei =[’D:\ thesis_2024\bi_pic_heatmapping\

multigrain_timestep_v3\frame_ ’ num2str(i) ’.csv’];

32 writematrix(trimsum_avg ,filenamei);

33 end
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A.4 MATLAB program to determine dispersion event area at each time interval

at varying location probability percentages

1 %Determines the area of the particle dispersion at varying

filtrations and

2 %times

3 %Author: Philip Brown , 3/23/2024 , Last Edited: 5/3/2024

4

5 clear all; close all;clc;

6

7 frame1 =20; % used 20 for excel slope workbook

8 frameEnd =70; %used 70 for excel slope workbook

9 step =1;

10 areaV =[0 0];

11 set(gca ,’YDir’,’reverse ’);

12 count3 =1;

13

14 for Percent =[.1:.01:.9]

15 count2 =0;

16 count3=count3 +1;

17 for i=[ frame1:step:frameEnd]

18

19 readinfile =[ ’E:\ thesis_2024\bi_pic_heatmapping\

multigrain_timestep_v3\frame_ ’ num2str(i) ’.csv’];

20 Tdata=readmatrix(readinfile);

21 TdataHold=Tdata;

22 M=max(Tdata ,[],"all");

23 threshold=Percent*M;

24 V=0;

25 count1 =0;

26 count2=count2 +1;

27

28 for wid =[1: width(Tdata)]
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29 for high =[1: height(Tdata)]

30 if Tdata(high ,wid)<threshold

31 Tdata(high ,wid)=0;

32 else

33 Tdata(high ,wid)=1;

34 end

35

36 if Tdata(high ,wid)==1

37 count1=count1 +1;

38 V(count1 ,1)=wid;

39 V(count1 ,2)=high;

40 end

41 end

42

43 end

44

45 [k,av] = convhull(V);

46 areaV(count2 ,1)=i;

47 mm2=av *((0.353) ^2); %converts pix^2 to mm^2

48 areaV(count2 ,count3)=mm2;

49 colormap(’turbo’);

50 imagesc(TdataHold);

51 hold on

52 plot(V(:,1),V(:,2),’.w’)

53 hold on

54 plot(V(k,1),V(k,2))

55 set(gca ,’YDir’,’reverse ’);

56 xlim ([0 640]);

57 ylim ([0 480]);

58 xlabel(’X (mm)’);

59 ylabel(’Y (mm)’);

60 %scale plots x axis only

61 xt=get(gca , ’XTick’);
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62 set(gca ,’XTickLabel ’,round ((0.353)*xt));

63 yt=get(gca ,’YTick’);

64 set(gca ,’YTickLabel ’,round ((0.353)*yt));

65 title([’Filtered: ’ num2str (100* Percent) ’%, Frame: ’ num2str(i)

’, Time: ’ num2str(round (((1/24) *(i-1)) ,2)) ’ seconds , Area: ’

num2str(av) ’ mm^2’]);

66 cb=colorbar;

67 tix=cb.Ticks;

68 cb.TickLabels =100* tix;

69 ylabel(cb,’%’);

70

71 end

72 end
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APPENDIX B: FIGURES

B.1 Select time instants of the statistically averaged particle spread for

visualization purposes

Figure B.1: Statistically averaged particle location at frame and time: A. Frame 1
- 0 seconds, B. Frame 11 - 0.42 seconds, C. Frame 21 - 0.83 seconds, D. Frame 31 -
1.25 seconds, E. Frame 41 - 1.67 seconds, F. Frame 51 - 2.08 seconds, G. Frame 61 -
2.5 seconds, H Frame 71 - 2.92 seconds, I Frame 81 - 3.33 seconds, J. Frame 91 - 3.75
seconds, K. Frame 101 - 4.17 seconds, L. Frame 111 - 4.58 seconds
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B.2 Select time instants of percentage based area analysis

B.2.1 10 percent filter

Figure B.2: Area calculated from convex hull analysis of the statistically averaged
particle location at frame and time with the lowest 10 percent filtered (above 10
percent appears white): A. Frame 20 - 0.79 seconds, B. Frame 24 - 0.96 seconds, C.
Frame 28 - 1.13 seconds, D. Frame 32 - 1.29 seconds, E. Frame 36 - 1.46 seconds, F.
Frame 40 - 1.63 seconds, G. Frame 44 - 1.79 seconds, H Frame 48 - 1.96 seconds, I
Frame 52 - 2.13 seconds, J. Frame 56 - 2.29 seconds, K. Frame 60 - 2.46 seconds, L.
Frame 64 - 2.63 seconds
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B.2.2 20 percent filter

Figure B.3: Area calculated from convex hull analysis of the statistically averaged
particle location at frame and time with the lowest 20 percent filtered (above 20
percent appears white): A. Frame 20 - 0.79 seconds, B. Frame 24 - 0.96 seconds, C.
Frame 28 - 1.13 seconds, D. Frame 32 - 1.29 seconds, E. Frame 36 - 1.46 seconds, F.
Frame 40 - 1.63 seconds, G. Frame 44 - 1.79 seconds, H Frame 48 - 1.96 seconds, I
Frame 52 - 2.13 seconds, J. Frame 56 - 2.29 seconds, K. Frame 60 - 2.46 seconds, L.
Frame 64 - 2.63 seconds
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B.2.3 30 percent filter

Figure B.4: Area calculated from convex hull analysis of the statistically averaged
particle location at frame and time with the lowest 30 percent filtered (above 30
percent appears white): A. Frame 20 - 0.79 seconds, B. Frame 24 - 0.96 seconds, C.
Frame 28 - 1.13 seconds, D. Frame 32 - 1.29 seconds, E. Frame 36 - 1.46 seconds, F.
Frame 40 - 1.63 seconds, G. Frame 44 - 1.79 seconds, H Frame 48 - 1.96 seconds, I
Frame 52 - 2.13 seconds, J. Frame 56 - 2.29 seconds, K. Frame 60 - 2.46 seconds, L.
Frame 64 - 2.63 seconds
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B.2.4 40 percent filter

Figure B.5: Area calculated from convex hull analysis of the statistically averaged
particle location at frame and time with the lowest 40 percent filtered (above 40
percent appears white): A. Frame 20 - 0.79 seconds, B. Frame 24 - 0.96 seconds, C.
Frame 28 - 1.13 seconds, D. Frame 32 - 1.29 seconds, E. Frame 36 - 1.46 seconds, F.
Frame 40 - 1.63 seconds, G. Frame 44 - 1.79 seconds, H Frame 48 - 1.96 seconds, I
Frame 52 - 2.13 seconds, J. Frame 56 - 2.29 seconds, K. Frame 60 - 2.46 seconds, L.
Frame 64 - 2.63 seconds
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B.2.5 50 percent filter

Figure B.6: Area calculated from convex hull analysis of the statistically averaged
particle location at frame and time with the lowest 50 percent filtered (above 50
percent appears white): A. Frame 20 - 0.79 seconds, B. Frame 24 - 0.96 seconds, C.
Frame 28 - 1.13 seconds, D. Frame 32 - 1.29 seconds, E. Frame 36 - 1.46 seconds, F.
Frame 40 - 1.63 seconds, G. Frame 44 - 1.79 seconds, H Frame 48 - 1.96 seconds, I
Frame 52 - 2.13 seconds, J. Frame 56 - 2.29 seconds, K. Frame 60 - 2.46 seconds, L.
Frame 64 - 2.63 seconds
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B.2.6 60 percent filter

Figure B.7: Area calculated from convex hull analysis of the statistically averaged
particle location at frame and time with the lowest 60 percent filtered (above 60
percent appears white): A. Frame 20 - 0.79 seconds, B. Frame 24 - 0.96 seconds, C.
Frame 28 - 1.13 seconds, D. Frame 32 - 1.29 seconds, E. Frame 36 - 1.46 seconds, F.
Frame 40 - 1.63 seconds, G. Frame 44 - 1.79 seconds, H Frame 48 - 1.96 seconds, I
Frame 52 - 2.13 seconds, J. Frame 56 - 2.29 seconds, K. Frame 60 - 2.46 seconds, L.
Frame 64 - 2.63 seconds
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B.2.7 70 percent filter

Figure B.8: Area calculated from convex hull analysis of the statistically averaged
particle location at frame and time with the lowest 70 percent filtered (above 70
percent appears white): A. Frame 20 - 0.79 seconds, B. Frame 24 - 0.96 seconds, C.
Frame 28 - 1.13 seconds, D. Frame 32 - 1.29 seconds, E. Frame 36 - 1.46 seconds, F.
Frame 40 - 1.63 seconds, G. Frame 44 - 1.79 seconds, H Frame 48 - 1.96 seconds, I
Frame 52 - 2.13 seconds, J. Frame 56 - 2.29 seconds, K. Frame 60 - 2.46 seconds, L.
Frame 64 - 2.63 seconds
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B.2.8 80 percent filter

Figure B.9: Area calculated from convex hull analysis of the statistically averaged
particle location at frame and time with the lowest 80 percent filtered (above 80
percent appears white): A. Frame 20 - 0.79 seconds, B. Frame 24 - 0.96 seconds, C.
Frame 28 - 1.13 seconds, D. Frame 32 - 1.29 seconds, E. Frame 36 - 1.46 seconds, F.
Frame 40 - 1.63 seconds, G. Frame 44 - 1.79 seconds, H Frame 48 - 1.96 seconds, I
Frame 52 - 2.13 seconds, J. Frame 56 - 2.29 seconds, K. Frame 60 - 2.46 seconds, L.
Frame 64 - 2.63 seconds
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B.2.9 90 percent filter

Figure B.10: Area calculated from convex hull analysis of the statistically averaged
particle location at frame and time with the lowest 90 percent filtered (above 90
percent appears white): A. Frame 20 - 0.79 seconds, B. Frame 24 - 0.96 seconds, C.
Frame 28 - 1.13 seconds, D. Frame 32 - 1.29 seconds, E. Frame 36 - 1.46 seconds, F.
Frame 40 - 1.63 seconds, G. Frame 44 - 1.79 seconds, H Frame 48 - 1.96 seconds, I
Frame 52 - 2.13 seconds, J. Frame 56 - 2.29 seconds, K. Frame 60 - 2.46 seconds, L.
Frame 64 - 2.63 seconds



68

APPENDIX C: CALCULATED DATA TABLES

C.1 Time dependent linear fit of area flux at varying low end filtration levels

Note: The values in Table C.1 are reported as displayed in MATLAB to allow for

the accurate reproduction of Figures 4.4, 4.5, 4.6, and 4.7; as the pixel measurements

used for area calculation were accurate to ±0.5 pixels in the x and y directions, the

values are precise to 1 decimal point.

Table C.1: Time dependent linear fit of area flux at varying low end filtration levels

Low End

% Filtered

Linear Fit - mm2(t)
R2

Slope Intercept

10 1876.10394721195 -1338.52660073808 0.747187200777043

11 1557.51118893611 -989.920171019909 0.863423671217023

12 1329.67442436489 -842.764196782202 0.859944803234521

13 1183.89691510588 -741.984290499999 0.877934754182034

14 1030.17397514824 -581.889701442157 0.904903851180303

15 951.711172389502 -547.824072347963 0.891546009937892

16 878.807667662986 -503.244150093589 0.862160778647703

17 790.921312098462 -416.345188351282 0.866339381011872

18 709.758970942262 -361.094497487330 0.839502286149033

19 659.680361751312 -315.315725764102 0.827738313361054

20 601.189460992941 -272.809537842157 0.796965204001926

21 545.686199150769 -215.651323760633 0.834482969468947

22 522.824225389683 -212.813931723303 0.804240988976333

23 472.695682384073 -167.420423587783 0.774565623296952

24 451.758799266244 -167.019785918326 0.755884210819413

25 438.112117766878 -159.887828332504 0.767298601659207
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Table C.1: Time dependent linear fit of area flux at varying low end filtration levels

Low End

% Filtered

Linear Fit - mm2(t)
R2

Slope Intercept

26 397.083302042715 -124.187274653620 0.757346538297199

27 377.928880189683 -114.003270522323 0.744961875230886

28 364.268531169231 -109.547991314857 0.724790210556525

29 351.127683272036 -107.340964821342 0.697970094278112

30 296.842860636380 -43.8522000559578 0.708353317544213

31 295.495459572489 -52.0165422670437 0.690138609627599

32 267.291108930679 -25.2853932744343 0.723002744984504

33 241.048250547692 0.247921164253463 0.695380007326182

34 226.809535337919 8.88820209434391 0.693595826660961

35 201.867527253937 32.9438661733786 0.714103463262417

36 190.759080338824 36.1766803450980 0.722526041765801

37 188.593387195656 30.0658399493213 0.723353053653515

38 178.032588377919 34.1104075168929 0.723913741652814

39 160.640058847059 51.3590653382353 0.713994690197195

40 162.506284424253 38.1868133417798 0.690527997559229

41 149.587364592217 49.7363197327301 0.710337148312981

42 134.637667641991 61.9025654947964 0.717124184192034

43 132.100650955656 57.8989704189291 0.677196068085232

44 120.149824646878 67.1458603655355 0.659734397025873

45 108.621202949864 76.3182292435144 0.682716728610115

46 99.0248439616290 83.4398779248869 0.691791450418490

47 92.5741799750226 87.5073656546757 0.728332924023440

48 90.0922393390046 83.1867130334842 0.710126976289243
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Table C.1: Time dependent linear fit of area flux at varying low end filtration levels

Low End

% Filtered

Linear Fit - mm2(t)
R2

Slope Intercept

49 81.9124309520362 90.0443334747361 0.706530917936498

50 85.4639566045249 79.2963373567119 0.722041384538694

51 78.1864752532127 80.7897940766969 0.834765691230540

52 73.7029870490498 83.1283648222474 0.831988396029756

53 71.6504230903168 79.2194011664405 0.788402550719859

54 70.3062697542082 74.8959669265460 0.824140891675796

55 66.6306538360181 73.2593602143288 0.781553859487518

56 67.0938610110407 66.0137979376320 0.785165925759689

57 62.6811462081448 66.9100523989442 0.785368955670166

58 62.9320331793665 60.6428775141780 0.779333974128394

59 60.4591591167421 57.3949429894419 0.773719416809532

60 59.9469653809955 53.2023575969080 0.763480509450878

61 60.0548170077828 46.4850397476621 0.774217196971288

62 57.4122491685068 45.8373360737557 0.716418051927422

63 53.4493446635294 45.6666330205882 0.754277731395690

64 54.7401811352036 39.4200853420815 0.768829147683924

65 52.5591966070588 36.9137059303922 0.708455291201153

66 47.8545922696833 39.2075264453243 0.676403003025785

67 46.8552393665158 36.1897990603318 0.704486750467449

68 43.2010043228959 37.6515396886878 0.642926946106799

69 41.0749605230769 35.5112626466818 0.627316219308478

70 41.2935055384615 31.9288478702866 0.624847651908137

71 37.2059694798190 33.6276275194570 0.568024875782857
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Table C.1: Time dependent linear fit of area flux at varying low end filtration levels

Low End

% Filtered

Linear Fit - mm2(t)
R2

Slope Intercept

72 35.2654521295928 32.4026815805430 0.523811883982374

73 33.8387523790045 30.3010652795626 0.505179718330852

74 32.0317978338462 29.3314550223228 0.487112452166637

75 30.7837231113122 26.8423855486425 0.451155426675655

76 26.8439586667873 28.3202896370287 0.348225662050140

77 24.9702903800905 27.0726208804676 0.319088587226705

78 22.1143197610860 27.0840386734540 0.293710383117160

79 21.6248601198190 23.9813027655355 0.265142499415512

80 20.7053471913122 21.8486187907994 0.279012549100947

81 16.9787148825339 23.5340635854449 0.193908599185708

82 15.7192731127602 22.6886676390649 0.198490068842455

83 13.2327315290498 21.9279982947964 0.187758305315371

84 10.8173693125792 22.4705361075415 0.142628503962125

85 10.0574010114027 20.0973454859729 0.129966107957181

86 9.20094813067874 17.5458963334087 0.110491299807982

87 6.11073514533937 18.1626638966063 0.0614039410667808

88 5.19122221683258 16.5015394708899 0.0485779664328587

89 3.41349722171946 15.1252866308446 0.0260382506614388

90 4.21825710190045 11.9133721888386 0.0403473316005814


