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ABSTRACT

RUI QI. Controlling Superoscillation Based Imaging with Polarization and
Coherence. (Under the direction of DR. GREGORY J. GBUR)

Superoscillation is a physical phenomenon, in which the local oscillations of a band-

limited signal fluctuate faster than the fastest Fourier component of the signal. In

recent years, superoscillation had lead to a method of super-resolution imaging, named

superoscillatory imaging, and it now plays an important role in many areas, such as

remote sensing and biomedical research. This dissertation investigated a key lens

element for achieving superoscillatory imaging. Then, a vector-superoscillatory field

provided a solution to a major problem associated with superoscillatory imaging.

Lastly, the partial coherence effect, specifically circular coherence, was studied for

vortex beam propagation in free space and can be considered in the quality of super-

oscillatory imaging.

This dissertation work began by studying the existing methods for designing filters

to create superoscillatory fields in the image plane. A design method by Smith and

Gbur tailors a superoscillatory field in two dimensions, from which a filter is calculated

with both an amplitude profile and a phase profile (a complex filter). Accordingly, the

first study of this dissertation aimed to simplify a complex filter into a filter with only

one profile: an amplitude profile or a phase profile, which make the filters fabrication-

friendly. This study derived the mathematical formula for generating simplified filter

profiles (leading to the same superoscillatory field by complex filters). A step-by-

step example of creating such simplified filters was demonstrated by following this

approach. Performance criteria of the designed filters were discussed, including but

not limited to energy efficiency. The designed phase-only filter showed an energy

efficiency same as that of the complex filter.

The second study of this dissertation provided a method to eliminate the sidelobes
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that are inevitable in superoscillatory fields and that causes problems in superoscil-

latory imaging. As light is a transverse electromagnetic wave, the orientation of

scattering patterns of Rayleigh scatterers is polarization-dependent. Then, super-

oscillatory fields with two polarization states (referred to as vector superoscillatory

fields) were created, so that the sidelobes can be avoided in the imaging process.

This study proposed an imaging system with vector superoscillatory illumination.

Super-resolved scattering images of Rayleigh scatterer patterns were simulated un-

der a vector superoscillatory illumination, whose resolution surpassed those obtained

from a conventional imaging system. A device was proposed for generating a vector-

superoscillatory field.

Light sources with circular coherence have perfectly coherent points on any con-

centric rings of their transverse planes. In the third study, we investigated various

properties of these beams, from their ability to carry optical vortices in free space to

the self-focusing effect. Circular coherence was imposed onto vortex beams (with spi-

ral phase structures). The free-space propagation of circularly coherent vortex beams

showed that optical vortices remained their positions on free-space propagation and

the beams revealed a focal region. This study also provided a model for propagating

rotationally symmetric beams using two-dimensional Hankel transforms. The self-

focusing effect of circular coherence can be considered for further reducing the spot

size of a superoscillatory field.

These three studies together make the superoscillatory imaging technique more

potential in implementation.
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CHAPTER 1: INTRODUCTION

Super-resolution optical imaging, which permits observers to visualize subwave-

length features of objects, plays an important role in pure scientific investigations as

well as applications such as medical imaging and diagnosis. For decades, tremendous

efforts have been made to enhance the resolution of imaging systems. This thesis is

focused on utilizing the phenomenon of superoscillations to perform super resolution

imaging, which is referred to as superoscillatory imaging. The goal of this thesis is to

investigate methods to achieve super-resolution imaging based on the superoscillation

technique under specified polarization and partial coherence conditions.

In the introduction, the Rayleigh criterion that characterizes the resolution of imag-

ing systems is explained, and a significant amount of research conducted in super-

resolution imaging is reviewed. Although it is impossible to discuss all approaches, the

principles of major technologies on super-resolution imaging are described in this the-

sis. A summary of theories of superoscillation using various mathematical approaches

and levels of complexity are provided, and previous studies on utilizing polarization

techniques and partial coherence to achieve super-resolution are reviewed.

1.1 Resolution of Imaging Systems

The resolution of an imaging system is defined as its ability to resolve two separated

points. Both lens systems and detectors affect resolutions; however, this thesis focuses

on lens systems-related resolution.

As a light field passes through a lens system, the image of a point object evolves

into a spread of light, instead of a point, due to the diffraction and aberrations of

the wavefront. The distribution of the spread of light defines a point spread function
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(PSF). For a lens system with a circular aperture and without aberrations, the PSF

is an Airy disk. The central spot of an Airy disk is called the diffraction-limited spot,

which provides the measure of optical resolution, referred to as the Rayleigh criterion.

This criterion was proposed by Lord Rayleigh as [1]

θmin = 1.22
λ

D
, (1.1)

where λ is the wavelength of light field, D is the diameter of the aperture stop, and

θmin is the angular separation between two resolvable points on the image. According

to Eq. (1.1), the minimal resolvable angular separation lies between two Airy disks

with the center of one Airy disk overlapping the first zero intensity of the other.

Unfortunately, for a traditional lens system, two image points with angular separation

smaller than θmin cannot be resolved. However, with super-resolution techniques,

this Rayleigh criterion can be beaten. Fig. 1.1 shows the lens system parameters

that describe the diffraction-limited spot and Rayleigh criterion. Fig.1.1a shows a

diffraction-limited spot generated by a traditional lens system. As shown in Fig. 1.1b,

the minimum spatial separation of two image points, dmin, is the radius of the first

zero ring a diffraction-limited spot.
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(a)

(b)

Figure 1.1: A lens system with parameters that describe (a) a diffraction-limited spot
and (b) the Rayleigh criterion.

Although there are many factors in a lens system affecting the resolving power,

the formula of resolution limit, proposed by Ernst Abbe, reveals that the resolution

is ultimately limited by diffraction and is inversely proportional to the aperture size

[2]:

d = λ/(2NA), (1.2)

where NA is the numerical aperture (NA) of the system. In terms of the relation

between the Rayleigh criterion and the Abbe condition, the former defines a quantity

to quantify the resolution of any imaging system which can be slightly modified and

used by modern imaging systems. The latter demonstrates that it is the wavelength

and the numerical aperture that eventually limit the resolution of traditional lens
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systems, which might apply to modern imaging systems.

1.2 Existing Super-resolution Imaging Techniques

To surpass the diffraction limit, several super-resolution methods have been devel-

oped in the field of microscopy and have been widely applied. We review some of the

most popular of these methods here.

1.2.1 Confocal microscopy

It is observed that when a detector is aimed at a single point of a three-dimensional

specimen, the rays of light deflected or scattered from other points are also detected.

Accordingly, an approach is needed to remove those rays that are not originally aimed

at the point of interest [3]. This idea led to the invention of confocal microscopy

and scanning confocal microscopy by Marvin Minsky in 1955. It applies a pinhole

aperture-objective lens set in front and back of a specimen, respectively, to remove

the extraneous rays and beat the Rayleigh criterion [3]. Fig. 1.2 shows a confocal

microscopy system, in which pinholes are applied to eliminate the extraneous rays.

Figure 1.2: A confocal microscopy system.
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1.2.2 Fluoresence microscopy

The idea of the confocal microscopy also led to the invention of super-resolution

fluorescence microscopy, such as stimulated emission depletion (STED) microscopy

and stochastic optical reconstruction microscopy (STORM). In addition to adding the

pinholes as in confocal microscopy, these fluorescence microscopy techniques eliminate

the scattered light from other points by using the molecules’ nonlinear responses to

light. STED microscopy is based on a two-photon excitation technique, which creates

a narrower PSF by overlapping two separated photon-induced regular PSFs [4]. In

practical setups, STED fluorescence scanning microscope applies an additional high

intensity laser beam to inhibit the fluorescence in the outer stimulated region based on

a nonlinear effect [5]. The STORM technique turns on a portion of the fluorophores at

a specific time, without overlapping with fluorescence from the turned-off neighboring

parts [6].

All these fluorescence microscopies are far field microscopies that can create three-

dimensional images. Accordingly, the reconstruction of the image of the whole fluo-

rophores is needed by the STORM technique. However, they also have disadvantages:

for example, the two-photon excitation used by the STED technique may cause larger

sidelobes in the PSF as the central peak becomes narrower and the high intensity laser

might damage the tissue.

1.2.3 Near field microscopy

Another technique, based on the idea of coupling evanescent waves, is called near

field microscopy. An evanescent wave is a wave that is closely bound to an interface

between materials and propagates along the surface, such as produced in total internal

reflection. The amplitude of an evanescent wave drops exponentially as it propagates

away from the surface; thus, it cannot be detected more than a few wavelengths away.

According to the theory of Fourier optics, the lack of angular spectrum components
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in the detecting field (with their direction cosines in the transverse plane satisfying

α2 + β2 > 1, which correspond to evanescent waves), is the fundamental reason why

imaging systems have limited resolutions. To solve the problem, near field microscopy

introduces a probe very close to the object’s surface to couple some evanescent waves

into the probe or scatter them to the far field for measurement [7].

Total internal reflection microscopy (TIRM), a little different from near field mi-

croscopy, explicitly uses a physical phenomenon, referred to as a frustrated total

internal reflection (TIR), to capture an evanescent wave produced by TIR for mea-

surement. Fig. 1.3 shows the experimental conditions to obtain a TIR and a frus-

trated TIR. However, it is difficult to accurately build the experimental setup and

conduct the scanning robustly. Also, this technique cannot be used to measure three-

dimensional structures. In recent years, lenses made of metamaterials with negative

refractive index have been created to cancel the decay of evanescent waves [8].

(a) (b)

Figure 1.3: Experimental conditions for achieving (a) TIR and (b) Frustrated TIR.

1.2.4 Polarization techniques for super-resolution imaging

Most studies of superoscillations look at scalar waveforms, even though light is a

transverse vector wave. However, for a system with very high NA (NA< 1), the field

distribution at the image plane cannot be well approximated by using Fourier analy-

sis. Instead, the vector nature of the focused beams becomes significant. Youngworth
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and Brown showed that a radially polarized beam leads to a focal region consisting

of an on-axis longitudinal field and an anulus-shaped transverse field (radially polar-

ized). In contrast, the azimuthally polarized beam only leads to an anulus-shaped

transverse field (azimuthally polarized) with an on-axis null, for high NA cylindrical-

vector beams [9]. Fig. 1.4 shows the focal region fields of radially polarized beam and

azimuthally polarized beam.

Subsequently, a series of studies developed methods to create a sub-wavelength

focus by using radially polarized beams, under the condition of high NA [10, 11,

12, 13]. For example, a radially polarized vortex beam can lead to nonzero on-

axis intensity [14]. By modulating the longitudinal focal spot by using polarization,

phase, and amplitude pupil masks, the spot size is further reduced [15]. However,

this technique only provides super-resolution in one dimension.

(a)

(b)

Figure 1.4: Focal region of fields of (a) radially polarized beam leading to a longitu-
dinally polarized focal spot and (b) azimuthally polarized beam leading to an on-axis
none.
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1.2.5 Label-free super-resolution microscopy

Label-free microscopy is a type of microscopy technique, in which imaging signals

are light scattered by nanostructures of objects, instead of fluorescence of stained

fluorophores. Several methods have pushed the resolution of label-free microscopy

beyond the Rayleigh criterion, named label-free super-resolution (LFSR) imaging.

In deep learning based super-resolution microscopy, high resolution images can be

reconstructed from multiple scattering images at different distances under different

illumination conditions by using an inverse problem solver. The reconstruction of

high-resolution images is also performed by trained neural network based artificial

intelligence using large physical or virtual image datasets with high resolution [16, 17].

Plasmonic structured illumination microscopy is another technique, which has

achieved super-resolution and might be applied for LFSR by utilizing metamateri-

als and interference [18]. In one of the studies, plasmonic structures, which consist

of narrow Ag slit arrays made by a lithography technique (7.6 µm period), generate

surface plasma with a wavenumber greater than that of structured illumination. In

the experiment, fluorescent beads are placed on top of the plasmonic structures as

objects, as shown in Figure 1.5.

Figure 1.5: A plasmonic structured illumination microscopy system.

Solid immersion lens (SIL) is a kind of lens, which is created by immersing several



9

layers of dielectric nano particles in liquid, is applied to reduce the diffraction-limited

spot size of label-free microscopy [19]. Another type of lens (named micro-spherical su-

perlens), which attaches dielectric microspheres to objects, has experimentally demon-

strated higher resolution than that of SIL. The experimental apparatus is simpler than

those of other LFSR microscopy techniques, such as plasmonic structured illumina-

tion microscopy. These dielectric microspheres typically have large focusing power,

and a higher refractive index can further enhance the resolution of super-resolved

images [20, 21, 22].

More studies and methods on label-free microscopy for super-resolution imaging are

detailed in a review paper and the book of "Label-Free Super-Resolution Microscopy"

for further reading [23, 24].

1.2.6 Other super-resolution techniques

Another idea for improving resolution is to predict positions of image points by

using statistical models. In early studies, the PSFs were approximated by Gaussian

functions from which the positions of image points were predicated by a least-square

estimator [25]. Later, PSFs, approximated by Airy functions, were used as inputs of

a statistical estimator based on maximum-likelihood for predicting an ideal image,

resulting in better accuracy [26]. This approach has been extended to reconstruct

high resolution images through atmospheric turbulence, which typically distorts an

image [27].

Similar to this idea, Fisher information has been applied as a statistical tool to

estimate the separation of two spatially incoherent sources, and it has been combined

with quantum metrology to achieve super-resolution imaging for incoherent point

sources [28]. In general, a process to form an image from multiple measurements

(reconstruction) is necessary for this approach.

Super-resolution imaging is also investigated in phase space [29]. The space band-

width information of an imaging system can be presented in phase space, such as
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Wigner space. In phase space, multiple parameters related to a system, such as

spatial resolution, spectral bandwidth, and field of view, are considered as a multi-

dimensional hyper-dimensional geometry with an invariant volume. An increase of

spatial resolution is seen as a squeezing of the size of the volume in the spatial co-

ordinate and extensions of lengths in other dimensions. Each optical element in the

system, such as lenses, apertures, and gratings, leads to a geometric transformation

operation on the multi-dimensional geometry. Therefore, by knowing the optical

elements in the system, the output multi-dimensional geometry can be calculated.

Conversely, by knowing the target output multi-dimensional geometry, including res-

olution, the optical elements needed can be identified.

1.3 Superoscillation Theories

As mentioned in the sections of each technique, inherent limitations and disad-

vantages exist in the process of forming super-resolution images, for instance, the

potential damage to tissues due to high intensity laser beam of STED and the diffi-

culty in building accurate experimental setup of TIRM, so researchers have continued

to invent new techniques.

Superoscillation is a physical phenomenon in which the local oscillations of a band-

limited signal (a signal that has negligible energy outside a finite frequency range)

that fluctuate faster than the fastest Fourier component of the signal. A band-limited

signal usually has a maximum rate of oscillation at its maximum or (negative) min-

imum frequency. A method of super-resolution imaging, utilizing superoscillatory

waves, was originated in research conducted in the field of electromagnetic radiation

by antennas by Schelkunoff. The research work on antennas was a precursor to the

modern studies of superoscillation and related theories and also paved an alternative

way to improve the resolution of imaging systems based on the mathematical methods

for antennas.
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1.3.1 Electromagnetism of antennas and super-resolution imaging

In 1943, Schelkunoff provided the mathematical theory of linear arrays of antennas

and investigated the mathematical formulas of a narrower far field central peak. The

instantaneous field is represented with complex numbers as

U(θ) = ΣN−1
n=0 ane

in(kl cos θ−∆ϕ) = ΣN−1
n=0 anz

n = (z − z1)...(z − zN−1), (1.3)

where θ is the direction of the emitted signal, l is the distance between antennas, the

term kl cos θ is the phase delay between each element, ∆ϕ is the oscillating phase of

signal emitted by each antenna. The equation is further expressed in the factored

form in which the roots represent the zero intensity of the field, where z = x + iy is

the complex number representing the field of antennas.

Fig. 1.6 illustrates the relation between (a) geometric pattern of an antenna array

and (b) the field of the antenna array on a complex plane. Since z is complex, it

is located in the range of an arc on the unit circle with the length determined by

the configurations of the antenna array. The root, zn, also lies on the unit circle in

the complex plane. The super-gain antennas theory, which is about a phenomenon

of obtaining high directionality from small antennas, suggests that by squeezing the

roots into a shorter arc of the unit circle, the antenna field can have a narrower peak.
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(a) (b)

Figure 1.6: Relation between (a) geometric pattern of an antenna array and (b) the
field of the antenna array on a complex plane. The root, zn, also lie on the unit circle
in the complex plane. The field, z, is located in the range of the orange arc on the
unit circle with the length determined by the configurations of the antenna array.
The super-gain antennas theory suggests that by squeezing the roots into a shorter
arc of the unit circle, the antennas field can have a narrower peak.

The intensity or directionality of the field is expressed by the norm of a polynomial

with complex variables. Zeros of polynomials also specify the location of zero inten-

sity. A radiation peak narrower than that of uniformly distributed antenna arrays is

demonstrated by manipulating the zeros of polynomials [30].

Woodward and Lawson further pointed out that the change of directionality might

be at the cost of having a large amount of evanescent wave power. In other words,

the directionality is enhanced by moving the zero points from the evanescent wave

region to the propagating wave region [31].

Toraldo applied the mathematical formula of antenna radiated power for imaging

systems because of the similar radiation patterns of A.C. antennas and an electric

dipole. According to Toraldo, each zero of the polynomials corresponds to a cone

or a ring of zero intensity in the radiation patterns at the image plane. In addition,

Toraldo created a super-resolved field at the image plane by overlapping multiple

Bessel functions (PSFs of ring-shaped apertures), whose amplitudes are calculated

using the specified zero positions [32].
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1.3.2 The first superoscillation

In 1990, Aharonov et al. conducted a study titled "Superpositions of Time Evo-

lutions of a Quantum System and a Quantum Time-Translation Machine"[33]. Fol-

lowing a suggestion of this study, in 1994, Berry introduced the concept of a super-

oscillation: a portion of a band-limited signal can oscillate faster than the fastest

Fourier component of the signal [34, 35]. In another study, Berry pointed out that

"it constitutes two-dimensional generalization of ’superoscillatory’ functions of a sin-

gle variable, which oscillate over arbitrarily long ranges arbitrarily faster than any

of their Fourier components. I have recently investigated the properties of these cu-

rious functions (Berry 1994) following a suggestion of Aharonov et al (1990)." [36].

Furthermore, Berry provided the first mathematical construction of superoscillation

given by [34]

g(x) =
1

a
√
2π

∫ ∞

−∞
eik(u)xe−

1
2a2

(u−iuc)2du, (1.4)

where k(u) = 1
1+u2 , u is real, and uc is a constant. The term eik(u)x behaves like

a Fourier kernel and the maximum frequency, k(u)max =1. When a approaches 0,

e−
1

2a2
(u−iuc)2 approximates to a delta function, δ(u). As a result, g(x) ≈ 1

a
√
2π
eik(iuc)x.

Then, k(u) = 1
1−u2

c
> 1, when uc< 1. Therefore, a local frequency k(u)> 1 that ex-

ceeds the bandlimit is achieved.

1.3.3 Simple mathematical methods of superoscillation

The Berry methods either involve complicated stationary phase methods or the

canonical function, which is obviously just one function. To use superoscillations

in applications, more methods of making superoscillations are needed. In 1996, a

simplified form of superoscillation was addressed by Qiao, showing that moving local

zeros closer together will not affect the overall bandwidth but will obtain a higher

local frequency [37]. According to the Paley-Winer theorem, a bandlimited function

in k space is entirely analytic in x space. For instance, the Fourier transform of a
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rectangular function, f(x), is a sinc function and is bandlimited. The sinc function

can be expressed as the infinite factorial form and each of the polynomials in the

function creates a zero point.

sinc(πx) =
1

2π

∫ π

−π

e−ikxdk = Π∞
n=1(1−

x2

n2
). (1.5)

Then, the Qiao method moves zeros of the first few polynomial terms closer to form

a superoscillatory waveform:

g(x) = Π2
n=1(1−

a2x2

n2
)Π∞

m=3(1−
x2

m2
). (1.6)

Fig. 1.7 shows superoscillatory waveform, g(x), after moving the first two zero points

of f(x) closer. It shows that, although superoscillatory waveforms are created, there

are significant strong sidelobes next to it. Thus, it can be seen that superoscillations

almost always come with sidelobes. Typically, sidelobes get relatively bigger the more

superoscillatory the waveform becomes, which is a major problem.
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(a)

(b) (c)

Figure 1.7: Superoscillatory waveform by moving first two zero rings closer. (a) f(x)
before moving first two zero rings closer, (b) g(x), with superoscillatory waveform,
by moving first two zero rings of f(x) closer and (c) g(x) under zoomed in condition.

Another simple mathematical representation is based on a straightforward appli-

cation of polynomials and their zeros [38]. We consider a polynomial that is given

by

PN (t) =
N∑

n=0

ant
n. (1.7)

We also introduce a band-limited envelope function, e(t), with its Fourier transform

of

E (ω) =

∫ ∞

−∞
e(t)e−iωtdt, (1.8)

where |ω| ≤ a and e(t) has at least N - 1 derivative and has a N th derivative of

bounded variant. A new function is given by the product of the envelope function

and the polynomial function as
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g (t) = e(t)PN (t) . (1.9)

According to the derivative property of a Fourier transform,

F ′(ω) =
1

2π

∫
f(t)

d

dω
eiωtdt =

1

2π

∫
itf(t)eiωtdt, (1.10)

the superoscillatory function g (t) can be created by properly choosing an and its

Fourier transform has the same bandlimit of e(t). Fig. 1.8 shows a superoscilla-

tory function created from the product of the envelope, e(t) = sinc( t
4
)4, and the

polynomial,P (t) = 3
√
3

2
( t2

0.13
−8)[38], and the superoscillatory region after zooming in.

(a)

(b) (c)

Figure 1.8: Superoscillations created by product of polynomials with their zeros and
an envelope function: (a) an envelope function, e(t), (b)superoscillatory waveform,
and (c) the superoscillatory region after zooming in.
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1.3.4 Prolate spheroidal wave functions and superoscillation

Another approach for mathematically constructing superoscillations is through the

use of prolate spheroidal wavefunctions, which are inherently bandlimited [39]. These

functions are orthonormal and form a complete set over −∞ to ∞. Also, the functions

are orthogonal and form a complete set over −T/2 to T/2:

λiψi(t) =

∫ T/2

−T/2

sinΩ(t− s)

π(t− s)
ψi(s)ds, (1.11)

where T is a positive real number and λn is an eigenvalue of the function for a sinc

operator. The solution of the prolate spheroidal wave equations is angular prolate

spheroidal functions, as plotted in Fig. 1.9. As the number of oscillations in a finite

interval increases with order, n, a linear combination allows you to make a super-

oscillatory spot, like in Fig. 2.4d. Another paper for the signal processing application

shows how the energy needed to fix superoscillatory fields that are formed by prolate

spheroidal wave functions will increase as the band limit increases. In other words, for

certain bandlimited signals to have a narrower superoscillatory wave, it is inevitable

to increase the total signal level by using stronger normal waveforms [40].

(a) (b)

Figure 1.9: Prolate spheroidal functions forming superoscillatory waveforms: (a) an-
gular spheroidal wave functions, (b) superoscillatory waveform by linear combination
of angular spheroidal wavefunctions.

Although some of the papers were written many decades ago and theories are deep,

a recent review paper analyzes all the theories in the literature thoroughly, which is
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very helpful to read [41].

1.4 Superoscillation for Imaging Application

1.4.1 Optical superoscillation

In 2006, Berry and Popescu introduced superoscillation in optics and investigated

how it evolves in space and time [42]. The superoscillation is given by the function

f (x) = (cos x+ i a sinx)N , (1.12)

where a > 1 and N ≫ 1 and f (x) is superoscillatory near x=0. This function is

often referred to as the "canonical function" for superoscillation. The Fourier series

of the function is expressed by

f (x) ≈
N∑

m=0

cme
iNkmx, (1.13)

where km = 1− 2m
N

and

cm =
N !

2N
(−1)m

(a2 − 1)
N/2

[(a− 1)(a+ 1)]Nkm/2[
N(1+km)

2

]
!
[
N(1−km)

2

]
!

. (1.14)

Thus, the maximum wave number of the function is N. However, the near zero ap-

proximation of f (x) is given by

f (x) = eiaNx, (1.15)

which shows that the local wavenumber of f (x) near x=0 is determined by a, and

thus demonstrates a superoscillation phenomenon. Fig. 1.10 shows the real parts

of the example function under different zoomed in conditions with a=5 and a=20,

respectively. As a increases, the degree of superoscillation will increase. The super-

oscillatory waveforms are demonstrated in Fig.1.10b and Fig.1.10d under zoomed in
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conditions. It can be seen that the amplitude is very small at the superoscillatory

wave region and is surrounded by huge sidelobes. These sidelobes is a problem for

utilizing superoscillatory waves.

(a) (b)

(c) (d)

Figure 1.10: Real and imaginary parts of f(x) of (a) a=5, (b) a=5 under zoomed
in condition, (c) a=20, and (d) a=20 under zoomed in condition, with N =10.

1.4.2 Superoscillation-based super-resolution imaging

Based on Berry and Popescu’s study, optical superoscillations have several basic

properties: they are rapid, sub-wavelength spatial variations of light’s amplitude,

phase, and intensity, which occur in electromagnetic fields and are formed by inter-

ference of several coherent waves; optical superoscillations can be arbitrarily fast and

come with large sidelobes [42].

Since optical waves can be arbitrarily narrow based on optical superoscillation the-

ories, optical superoscillations stimulated ideas of a new super-resolution technique,

named superoscillatory imaging. There are multiple concepts on superoscillation-

based super-resolution imaging. Zheludev reported superoscillation-based imaging by
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conceptualizing superoscillatory fields as topologically structured light, as topologi-

cally structured light is considered more effective in scattering nanostructures (react

to nanostructures stronger than plane waves). This technique has been developed

into deeply sub-wavelength topological microscopy, which can localize positions of

subwavelength object features through the light matter interaction, and the research

methods share similarities to those of the near fields of plasmonic nanostructures [43].

It should be noted that in most cases, the superoscillatory imaging technique points

a superoscillatory focal spot directly on objects or tissues and detects the scattered

or transmitted optical fields from sub-wavelength structures to form an image. This

approach is similar to that of near field optics and optical microscopy, but different

from that of traditional camera systems.

One of the important properties of superoscillatory imaging is that it is a coherent

imaging process, since a superoscillatory field is created by coherent interference.

Hence, the superoscillatory imaging technique needs to be distinguished from some of

the optical microscopy techniques, such as the bright field microscopy, which applies

incoherent illumination. Accordingly, we further investigate the interference effect

caused by closely positioned Rayleigh particles under a vector-superoscillatory field

illumination in Chapter 3.

Regarding the resolution of the superoscillatory imaging technique, the Rayleigh

criterion no longer applies to this technique. Instead, the resolution is primarily

specified by the size of a superoscillatory spot, which is used for resolution analysis in

the following chapters. Theoretically, a superoscillatory imaging system’s resolution

is expected to be limited by the detector of the system.

1.5 Spatial Coherence and Image Resolution

Coherence theory was traditionally about studying the observable characteristics of

"natural" light, which is very random. Many studies investigated optical coherence by

treating optical field fluctuations as a stochastic process. Important quantities, such
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as mutual coherence, degree of coherence, and the cross-spectral densities (CSD), were

defined and applied in the fields of microscopy and interferometry [44, 45, 46, 47, 48].

Further formulations of the propagation of coherence properties through Huygens’

principle, as well as the generalized wave equations, paved the ways for understanding

their characteristics in space and time domains [49, 50, 51].

1.5.1 Coherence effect in imaging

More recent work has investigated how structuring the statistical properties of light

can change its behavior in radical ways. A study by Visser and Gbur investigated the

effect of the state of coherence on the three-dimensional spectral intensity distribution

in the focal region [52]. In the study, a Gaussian-Schell model for partial coherence

was applied, which characterizes the CSD function in the form of

W0(ρ1, ρ2, ω) = S0(ω)e
−(ρ2−ρ1)2/2σ2

g , (1.16)

where S0(ω) is the spectral density and σg denotes the effective spectral coherence

length of the field in the aperture. ρ = (x, y) is a two-dimensional vector in the

transverse plane of the partial coherent field. The study shows that the maximum

spectral intensity at the geometrical focus decreases with decreasing spectral coher-

ence length, and the size of the focal spot increases as the spectral coherence length

decreases. Finally, with decreasing spectral coherence length, the spectral intensity

distribution becomes smoother. A follow-up study, however, showed that an appro-

priate choice of spatial can produce a local minimum of intensity at focus. This is

one of the first to note that coherence can have a huge effect on properties of light

[53].

Among the coherent quantities, cross-spectral density significantly simplifies math-

ematical calculation and is related to other quantities in space-time domain via Fourier

transform [54]. Cross-spectral density (CSD) is defined as the two-point correlation
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function of an ensemble of space-frequency realizations for any pair of points in the

field given by

W (r1, r2;ω) = ⟨U∗(r1;ω)U(r2;ω)⟩, (1.17)

where U(ri;ω), with i = 1, 2 represents a member of a statistical ensemble of monochro-

matic realizations of the field and the angular brackets denote an average over an

ensemble of monochromatic fields [54].

1.5.2 Superoscillation in coherence condition

Superoscillations in coherence functions have just begun to be studied [55]. It

has been demonstrated that superoscillations can propagate to far field under par-

tial spatial coherence condition. Furthermore, superoscillation behaviors might be

strengthened under a decreased spatial coherence condition through the use of the

Talbot effect.

1.6 Chapter Overviews

The remainder of this thesis is structured as follow:

Chapter 2 : Simplified superoscillatory lenses

Superoscillations have become a new method for creating superresolution imaging

systems. However, the design of superoscillatory wavefronts and their corresponding

lenses can be a complicated process. In the first study, we extend a recently-developed

method for designing complex superoscillatory filters to the creation of phase-only and

amplitude-only filters and compare their performance. These three types of filters can

generate nearly identical superoscillatory fields at the image plane.

Chapter 3 : Vector superoscillatory field illumination

Although spatial superoscillations show great potential for performing super-resolution

imaging, the superoscillatory waveforms are inevitably surrounded by high intensity
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sidelobes that severely limit the usable super-resolved area of an image. In the sec-

ond study, we demonstrate how polarization engineering can be used in some cir-

cumstances to suppress superoscillation sidelobes, taking advantage of the transverse

wave nature of light. We illustrate the principle by a model super-resolution imaging

system that can image Rayleigh scatterers with separations smaller than the classic

Rayleigh criterion.

Chapter 4 : Circularly coherent Gaussian and vortex beams

Circular coherence sources are perfectly coherent along any ring that is concentric

to the beam center. As circularly coherent beams demonstrate a focal region as a

result of the self-focusing property of circular coherence, it has the potential to pro-

vide a narrower focal spot than that of its coherent counterpart. In addition, circular

coherence sources have the potential to preserve the spiral phase structures of optical

vortices on propagation. In the third study, we create circularly coherent Gaussian

beam and vortex beams by imposing circular coherence on Laguerre-Gaussian (LG)

beams. Subsequently, the second order coherence properties and coherence singular-

ities of the circularly coherent Gaussian beam and vortex beams are investigated in

free-space propagation. The results show that the spiral phase structures of optical

vortices remain intact and stable in the transverse plane in free-space propagation.

Chapter 5 : Conclusion and future work

The main results of the thesis and potential future work are provided.



CHAPTER 2: SIMPLIFIED SUPEROSCILLATORY LENSES

2.1 Introduction

Developing practical superoscillatory field generation methods is important for su-

peroscillatory imaging; the calculated amplitude and phase are required to encode

optical field modulation devices, such as liquid crystal and spatial light modulators.

In 2016, Smith and Gbur extended the method by Chremmos and Fikioris, allow-

ing the creation of tailored superoscillatory fields consisting of closely-spaced optical

vortices in an image plane [56]. In 2020, this method was modified to design a

superoscillatory filter for imaging [57], in which zero rings were used to generate a su-

peroscillatory spot and to adjust the position of the sidelobes. Based on this method,

the Smith and Gbur filter was designed as a continuous complex transmission filter,

referred to as complex filters.

According to the Smith and Gbur method, for the first step, the optical field formed

by an objective lens in the image plane is the Fourier transform of the objective lens

transmittance multiplying two quadratic phase terms related to the object plane and

the image plane coordinates and a phase term related to image distance, then scaled

by the source amplitude, the wavelength, and the image distance:

UI(rI) =
iUoe

ikdI

λdI
e

ik
2

(
|ro|2
do

+
|rI|

2

dI

) ∫∫
A

t(rL)e
−ik

(
ro
do

+
rI
dI

)
·rLd2rL, (2.1)

where Uo is the object-field amplitude, λ is the wavelength of the optical field, and k

is the wave number. ro, rI, and rL are the position vectors of the object, the image,

and the lens plane.
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For the second step, a polynomial function is proposed in the form of

h(rI) =
N∏

n=1

(|rI|2 − r2n), (2.2)

where rn is the radius of the nth zero ring, and N is the total number of rings.

Here, h(rI) are zero rings in a two-dimensional space instead of zero points in a one-

dimensional space. If the diameter of the smallest zero ring is less than a wavelength,

the product of h(rI) and the Fourier transform of the lens transmittance, t̃(rI), forms

a superoscillatory field. It is worth noting that if h(rI) consists of a single zero ring,

the superoscillatory field will have a small central lobe and a large ring sidelobe.

Nevertheless, the large sidelobes can be pushed further away from the central lobe by

adding additional rings beyond the innermost zero ring.

For the third step, the inverse Fourier transform of the superoscillatory field gives

the transmittance needed by the lens to obtain the superoscillatory field, expressed

as

t′(rL) = F−1[t̃(rI)h(rI)]. (2.3)

This method will generally produce a transmittance function t′(rL) that has a

nontrivial phase and amplitude variance: a complex spatial filter. Such a filter is

usually difficult to achieve in practice and significantly reduces the transmitted field

intensity, a problem for superoscillations that inherently possess a low intensity image

spot.

This chapter modifies the complex filter to generate individual amplitude (sec-

tion 2.3) profile and phase (section 2.4) profile from a complex one, and investigate

the effect of these modifications on the superoscillations and the light throughput.

These changes indicate how the superoscillatory filter of Smith and Gbur can be

modified for practical use.

Other techniques for the realization of superoscillation can be found in a number
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of review articles [58, 41, 59].

2.2 Complex Filter

A complex superoscillatory filter is first created by using the method above. Then

this complex filter is modified to be phase-only or amplitude-only, and determine

whether the superoscillations are affected by the modification. The applied lens sys-

tem is accessible to laboratory environment. The lens has a diameter of 62.5 mm

and a focal length of 50 mm (F/#=1.25). The object distance is 150 mm, and the

image distance is 75mm. The wavelength of light is 500 nm. Here, the designed filters

are in two dimensions, though the complex filter is azimuthally symmetric, and the

transforms related to it were calculated as Fourier-Bessel transforms.

The design process of the complex filter is a straightforward implementation of the

Smith and Gbur method. The system setup is shown in Fig. 2.1.

Figure 2.1: Experimental setup for obtaining the transmittance of a superoscillatory
filter: (a) a superoscillatory filter, (b) a lens, and (c) a detector. The orange lines
show the wavefront of the optical field

2.2.1 Amplitude and phase profile

The expression for the transmittance of a complex filter is in the form,

C(rL) = W (rL)e
iϕ(rL), (2.4)
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where W (rL) is the amplitude transmittance, ϕ(rL) is the phase transmittance, and

rL is the coordinate vector in the filter plane.

According to the method proposed by Smith and Gbur, an example of a complex

filter is obtained as follows. For the first step, a windowed filter plane transmittance

is introduced as

t(rL) = cos8 (
rL

L
) ⊓ (

rL

L
), (2.5)

where cos8(rL
L
) is the lens transmittance. According to section 2.1, it is necessary

to have enough zero rings to create sufficient separation between the central and

sidelobes. As a result, we include 4 zero rings and choose cos8(rL
L
) as the lens trans-

mittance because we need a field that is 8-fold differentiable in order to include 4 zero

rings. ⊓(rL
L
) is a two-dimensional function that defines a circular aperture, and L is

the diameter of the lens. For the second step, the Fourier Bessel transform of this

lens transmittance at the image plane, F [t(rL)] is calculated as,

F [t(rL)] =

∫ L/2

0

cos8 (
rL

L
) ⊓ (

rL

L
)J0(r

krI

di
)rLdrL. (2.6)

For third step, four zero rings are introduced to this plane to give a superoscillatory

field,

S(rI) = F [t(rL)](r
2
I −∆2

1)(r
2
I −∆2

2)(r
2
I −∆2

3)(r
2
I −∆2

4), (2.7)

where the ∆i, the radius of a zero ring, have been taken as ∆1 =0.47µm (0.94λ),

∆2=1.0µm, ∆3 =1.48µm, and ∆4 = 2.0µm. The first zero ring at radius ∆1 defines the

radius of the superoscillatory spot; the second to the fourth rings push the sidelobes

further from this spot. For the objective lens alone without the superoscillatory filter,

the radius of the Airy disc, and thus the Rayleigh resolution limit, is 0.73µm (1.46

λ), which is about twice of that of the superoscillatory spot. Figure 2.2 shows the

intensity distribution of the superoscillatory field in the image plane with a small

superoscillatory wave located in the center surrounded by a large ring sidelobe with
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four zero rings in between. As expected, the large sidelobe is roughly three times the

size of the subwavelength central spot.

(a) (b)

Figure 2.2: A superoscillatory field (radius, rspot=0.94λ) located in the center of large
sidelobes: (a) a cross-sectional view and (b) a top view.

For the fourth step, the complex transmittance of the filter is given by the inverse

Fourier Bessel transform of S(rI). Since the superoscillatory field is a non-trivial

function, the inverse Fourier Bessel transform is achieved numerically, instead of an-

alytically as

t′(rL,m) = ΣN
n=0S(rI,n)J0(rI,n

krL,m

di
)rI,n∆rI. (2.8)

Figure 2.3 shows both the cross-sectional and three-dimensional amplitude transmit-

tance and the phase of the complex filter calculated for the two-dimensional super-

oscillatory field, with the total number of pixels M = 151 and pixel size ∆x = 0.4mm.

It can be seen that it has a nontrivial structure, with significant amplitude and phase

changes. The phase distribution is a circularly symmetric function, and its value is

either 0 or π. A relative phase delay of π causes an optical path difference (OPD) of

λ/2 . The shape of the amplitude profile and phase profile of the complex filter show

that they function as a Fresnel zone plate and a Fresnel phase plate, respectively.

Both types of Fresnel plates provide a single diffraction order at the image center.

The interference of the two fields formed by the two plates leads to a superoscillatory

spot.
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(a) (b)

(c) (d)

Figure 2.3: Designed transmittance of a complex filter: (a) cross-sectional amplitude,
(b) cross-sectional phase, (c) three-dimensional amplitude, and (d) three-dimensional
phase, with M = 151, ∆x = 0.4mm.

2.2.2 Superoscillatory image field

The superoscillatory image field is calculated by a numerical Fourier Bessel trans-

form as

Uimg,n = ΣM
m=0t

′(rL,m)J0(rI,n
krL,m

di
)rL,m∆rL. (2.9)

Figure 2.4 shows the image spots created by a regular lens, the designed complex

filter, the amplitude profile of the complex filter, and the phase profile of the complex

filter. The images in the figure demonstrate a tradeoff between the central peak width

and the relative energy contained in the central spot. Although the combination of

the amplitude profile and the phase profile produces a superoscillatory field, it is

difficult to fabricate such a filter. Therefore, we look into the device with only an

amplitude profile that can produce the identical superoscillatory spot.



30

(a) (b)

(c) (d)

(e)

Figure 2.4: Image spots formed by (a) a regular lens (rspot=1.46λ), (b) a complex
filter with the same aperture size of the regular lens (rspot=0.94λ), (c) the amplitude
profile of the complex filter (rspot≈1.46λ), (d) the phase profile of the complex filter
(rspot≈1.46λ); and comparison of spots with intensity normalized at the central peak
(e), with M =151, ∆x=0.4mm.

It is noted that the calculation of the filter transmittance and the image field is

achieved by a one-dimensional numerical Fourier Bessel transform. The reasons of

using this method are: (1) transmittance is rotationally symmetric, thus the results

by using one-dimensional numerical Fourier Bessel transform is identical to that by

using two-dimensional Fourier transform, (2) the superoscillatory field function is non-

trivial, for which is difficult to perform an analytical Fourier Bessel transform, and
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(3) numerical Fourier Bessel transform provides the flexibility to set the number of

points in the object and the image field, respectively, which can avoid the limitations

on the range and the resolution of images by using fast Fourier transform (FFT).

2.2.3 Estimation of the minimum number of pixels

As the pixel size increases and the pixel number M correspondingly decreases, it

is expected that the superoscillatory pattern will inevitably break down. One of the

effects of this change is that as the pixel number M decreases, the transmittance curve

of the filter will increasingly deviate from the shape of the ideal transmittance. As

a result, the central peak of the superoscillatory field will get smaller and eventually

cannot be resolved.

The complex filter profile with a limited number of pixels is obtained from the

interpolation of an approximated filter profile function. The interpolated amplitude

and phase is assumed to be constant across the window of the pixel, which leads to a

step-wise profile. The superoscillatory image field is calculated by a numerical Fourier

Bessel transform.

As a criterion for the minimum pixel number, the intensity ratio, r, of the sidelobe

to the central lobe is used as the first criterion for the minimum pixel number. For

example, if r ≤ 4 is required, then the minimum pixel number is M =23. Figure

2.5 shows the amplitude transmittance of complex filters with different pixel numbers

and the corresponding superoscillatory fields.
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Figure 2.5: Complex filter transmittance with different pixel numbers and the
corresponding superoscillatory fields: (a) amplitude transmittance with M =11,
∆x=5.7mm, and the corresponding (b) superoscillatory field, and (c) amplitude
transmittance with M =31, ∆x=2mm, and the corresponding (d) superoscillatory
field.

2.3 Amplitude-only Filtering Device

A method for designing an amplitude-only filter was detailed by Adzhalov et al.

[60]. This method has also been applied in an earlier study on binary computer-

generated holograms [61]. The complex exponential of Eq. (2.4) is replaced with a

cosine function, resulting in two images of the field; a baseline transmittance, often

called the DC term, is added to make the total transmittance real and positive. We

now investigate how a change from a complex filter to an amplitude filter affects the

superoscillation structure.

Figure 2.6 shows the proposed system for creating a superoscillatory field with an

amplitude-only filter, which has a sinusoidal amplitude profile that leads to three

diffraction orders, labeled the 0th order and ±1st orders. The 0th order is the trans-

mitted light from the DC term.
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Figure 2.6: Proposed system for creating superoscillatory field with an amplitude-
only filter: (a) an amplitude-only filter, (b) a lens, and (c) a detector.

2.3.1 Amplitude profile

The transmittance of the amplitude-only filter is given by

A(rL) = A0 + 2∆A(|W (rL)|/Wmax) cos{2πax+ ϕ(rL)}, (2.10)

where A0 is the DC term, and A0 = α0 +
∆α
2

, with 0< α0 ≤ 1 and 0< ∆α ≤ 1−α0.

∆A is a free parameter that controls the amplitude of the sinusoidal function. Here,

we take ∆A = β∆α/4, with 0 < β ≤ 1. The quantity |W (rL)| is the amplitude of

the complex filter calculated in section 2.2.1, Wmax is the maximum amplitude of the

complex filter, and ϕ(rL) is the phase of the complex filter. The additional term 2πax

in the cosine function creates a transverse shift of the ±1st orders from the 0th order;

therefore, a determines the separation of the three orders.

Taking into account the aperture size, the DC term is a two-dimensional circ func-

tion. Thus, under a Fourier relation, the 0th order diffraction produces an Airy pattern

expressed as the absolute square of a Jinc function whose cross-sectional distribution

is given by

I(x′) = I0

[
2J1(

kLx′

2R
)

kLx′

2R

]2
, (2.11)
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where x′ is a point in the image plane, and R is the distance between the center of the

aperture stop and x′. In the design, amust be chosen so that the ±1st orders lie outside

the central lobe of this function. In addition, since the Airy pattern is not monotonic

but oscillatory, the superoscillatory spot might interfere with the sidelobes of the

Airy pattern. Therefore, the sidelobe of the Airy pattern that superimposes with the

superoscillatory spot needs to be significantly smaller than that of the superoscillatory

spot. Here, we estimate the minimum shift of a as the position where the Airy pattern

has the maximum peak intensity Ijp less than 1/10 of that of the central lobe of the

superoscillatory field, Ic. Then, a is calculated by finding the value of x′ such that

Ijp(x
′) = I0

∣∣∣∣∣∣
2J1(

k0Lx′

2
√

x′2+d2I
)

k0Lx′

2
√

x′2+d2I

∣∣∣∣∣∣
2

≤ 1

10
Ic, (2.12)

where Ijp is the sidelobe intensity of the Jinc function, L is the aperture diameter,

I0 is the intensity of the central peak of the Jinc function and Ic is the intensity of

the central peak of the superoscillatory spot. To determine x′, a series of sidelobe

intensities are calculated by using the peak positions of the oscillating Jinc function,

x′p, which lie roughly between two adjacent zero points. Then, we find the largest

Ijp(x
′) ≤ 1

10
Ic. Finally, the shift parameter a in spatial frequency domain is converted

from the estimated separation in space domain, x′, based on the well-known relation

x = fxλz, by

a =
x′

λdI
, (2.13)

where dI is the image distance, and x′ is the desired shift of the ±1st orders in the

image plane.

The amplitude filter and the resulting image were calculated by inputting the

complex filter values into Eq. (2.10). Figure 2.7 shows the amplitude of the amplitude-

only filter, with α0 = 0, ∆α = 1, β = 1, a = 284m−1, M =151, and ∆x=0.4mm.

According to Eq. (2.13), a = 284 m−1 leads to a separation of ∆x′ = 10.6µm between
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the ±1st orders and the 0th order. The amplitude profile is essentially the that of the

complex filter enveloped by a cosine function.

(a)

(b)

Figure 2.7: Designed amplitude of an amplitude-only filter, with α0 = 0, ∆α=1,
β = 1, a=284 m−1, M =151, and ∆x = 0.4mm, (a) one-dimensional amplitude
profile and (b) three-dimensional amplitude profile.

2.3.2 Superoscillatory image field

Since the transmittance of the amplitude-only filter is non-symmetric, the super-

oscillatory field was calculated by use of FFT. In Mathematica, the transmittance

arrays are shifted so that the central element is located as the first element. Then,

the function Fourier is applied to conduct the FFT. Finally, the array is shifted back

to its original order.
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Figure 2.8 shows the intensity distribution of a superoscillatory field in the image

plane formed by the amplitude-only filter using the above parameters. It can be

seen from the cross-sectional plot (Fig. 2.8a) and the perspective view in full scale

(Fig. 2.8b) that the majority of the energy of the incident field is concentrated in

the 0th order. In the cross-sectional profile with a truncated 0th order (Fig. 2.8c),

superoscillatory spots of the ±1st orders are visible, though the shapes are distorted

by the underlying 0th order spot. From the zoomed-in top view of the +1st order

(Fig. 2.8e), other peaks exist in the xy plane near the desired superoscillatory spot

due to interference.
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(a) (b)

(c) (d)

(e)

Figure 2.8: Intensity distribution of a superoscillatory field in the image plane formed
by an amplitude-only filter with α0 = 0, ∆α = 1, β = 1, a=284m−1, M =151, and
∆x = 0.4mm: (a) cross-sectional profile in full scale, (b) perspective view in full scale,
(c) cross-sectional profile of a truncated 0th order and ±1st orders, (d) top view of a
truncated 0th order and ±1st orders, and (e) top view of 1st order, with (rspot=0.94λ).

A larger separation between the superoscillatory spot and the Airy pattern can

help to reduce their interference effect. However, it will lead to a larger parameter a

and a more oscillatory amplitude profile of the filter, which is harder to achieve in a
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fabrication process.

In addition, it is clear from the figure that the vast majority of the intensity goes

into the 0th order spot; though the superoscillations are maintained, this loss of energy

and large 0th order background are significant disadvantages of this filter. With this

in mind, we move on to the phase-only filter.

2.4 Phase-only Filtering Device

A method for designing the phase distribution of a phase-only filter was detailed

by Kirk and Jones [62]. Figure 2.9 shows the proposed setup for creating a super-

oscillatory field with a phase-only filter. As described below, the conversion to be

a phase-only filter results in an infinite number of transverse diffraction orders, only

one of which will precisely reproduce the desired superoscillatory field.

Figure 2.9: Proposed system for creating a superoscillatory field with a phase-only
filter: (a) a phase-only filter, (b) a lens, and (c) a detector.

2.4.1 Phase profile

The transmittance of the phase-only filter is written as

T (rL) = ei[ϕ(rL)+h(rL) cos(ax)], (2.14)

where ϕ(rL) is the phase of the designed complex filter and a is again a carrier fre-

quency used to separate orders. Generally speaking, the higher the carrier frequency
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is, the better an approximation of the ideal superoscillatory field will be. In a prac-

tical device, the filter will consist of finite-sized pixels, and the size and number of

pixels will also affect the structure of the superoscillatory pattern. We write the car-

rier frequency in the form of a = 2πb/∆x, where ∆x is the pixel size of the filter in

the x direction, and b is the number of sinusoidal cycles in each pixel. The quantity

h(rL) is taken as the form h(rL) = J−1
n′ [W (rL)], where n′ is the order of the inverse

of a Bessel function, and W (rL) is the amplitude transmittance of the complex filter.

The transmittance can be rewritten using the Jacobi-Anger expansion in the form,

T (rL) = eiϕ(rL)
∞∑

n=−∞

inJn[h(rL)]e
inax

= eiϕ(rL)
∞∑

n=−∞

inJn[J
−1
n′ [W (rL)]]e

inax.

(2.15)

This expression indicates that the phase-only transmission function results in a large

number of diffraction orders with carrier frequencies na. It can be seen that only

the order n = n′ will reproduce the transmittance of the designed complex filter,

with carrier frequency n′a. In other words, only one of the diffraction orders will

reproduce the designed superoscillatory field. For example, if h(rL) is the inverse of

the 1st order Bessel function, then the 1st order term in Eq. (2.15) will reproduce the

designed superoscillatory field.

Unlike the amplitude-only case, the 0th order of a phase-only filter may also be

used for imaging. In the calculations that follow, we set h(rL) = J−1
0 [W (rL)] and

thus let the filter’s 0th order carry the superoscillatory field.

Since the Bessel function is non-injective, it is impossible to obtain its inverse

directly. Instead, we approximate the Bessel function by the first fifty terms of its

power series expansion and calculate the inverse of each term respectively. Here, for
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simplicity’s sake, h(rL) with its first three terms is expressed by

h(rL) = −2
√

1−W (rL) +
1

4
(1−W (rL))

3/2 − 47

576
(1−W (rL))

5/2, (2.16)

where W (rL) is the amplitude of the complex filter and W (rL) < 1.

Figure 2.10 shows the phase distribution of a phase-only filter, with pixel size

∆x=2mm, M =31, b=1, and a=3116.5 mm−1. The phase distribution is calculated

from Eq. (2.14). The zoomed in figures show the sinusoidal profile within each pixel.
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(a)

(b)

(c)

(d)

Figure 2.10: Phase of the designed phase-only filter, with ∆x=2 mm, M =31,
b=1, and a=3116.5 mm−1, (a) one-dimensional phase profile, (b) three-dimensional
phase profile, (c) three-dimensional phase profile within (-10,10) mm, and (d) three-
dimensional phase profile within (-5,5) mm.
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2.4.2 Superoscillatory image field

The intensity distribution of a point source at the image plane can be calculated

through a window Fourier transform. Fig.2.11 shows the geometry and parameters

related with the calculation.

Figure 2.11: Setup and parameters for the window Fourier transform.

The window Fourier transform is expressed as

Ik,l =|Ak,l|2

=|L2∆x′∆y′
∫ p

0

∫ p

0

T (fx, fy)e
−2πi(kfx∆x′+lfy∆y′)dfxdfy|2,

(2.17)

where Ak,l is the field at a sampled point (k, l) in the image plane, L and p are the

lengths of the filter in the space domain and the spatial frequency domain, respec-

tively, fx and fy are coordinates of the filter in spatial frequency domain, and ∆x′

and ∆y′ are the sampling steps in the x′ and y′ directions at the image plane. By

substituting the phase of Eq. (2.14) into Eq. (2.19) and then discretizing the filter

transmittance, the field is expressed as

Ak,l =L
2∆x′∆y′

N−1∑
n=0

M−1∑
m=0

∫ (n+ 1
2
)∆fy

(n− 1
2
)∆fy

∫ (m+ 1
2
)∆fx

(m− 1
2
)∆fx

exp{iϕm,n+

ihm,n cos

(
2πbfx
∆fx

)
} exp{−2πi(kfx∆x

′ + lfy∆y
′)}dfxdfy,

(2.18)

where M and N are the total number of filter pixels in the x and y directions, and
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∆fx and ∆fy are the pixel sizes of the filter in the fx and fy directions. The integrals

can be evaluated independently of the sums, resulting in the expression for the field

in the image plane,

Ak,l =
L2

MN

N−1∑
n=0

M−1∑
m=0

exp{i[ϕm,n − 2π(mk/M + nl/N)]}Sm,n(k, l), (2.19)

where ϕm,n is the discretized phase of the complex filter of the pixel (m,n). Sm,n(k, l)

is a scattering function of both the filter position and the image position. According

to Eq. (2.19), Sm,n acts as the amplitude transmittance, W (r), which is expressed as

Sm,n(k, l) =
1

4π2

∫ π

−π

∫ π

−π

exp{i[hm,n cos(bu)− ku/M − lv/N ]}dudv

=
1

4π2

∫ π

−π

exp{i[hm,n cos(bu)− ku/M ]}du
∫ π

−π

exp{−ilv/N}dv,
(2.20)

where u = 2πfx/∆fx and v = 2πfy/∆fy. Appendix A gives a full step-by-step

derivation of these formulas. Here, the scattering function Sm,n is further sim-

plified. According to Hansen-Bessel Formula, Jn(x) = 1
2π

∫ π

−π
ein(τ−

π
2
)eix cos τdτ =

i−n

2π

∫ π

−π
ei(nτ+x cos τ)dτ ,

∫ π

−π

exp{i[hm,n cos(bu)− ku/M ]}du = J−k/M(hm,n) = (−1)n
′
Jn′(hm,n),

if n′ = k/M ∈ integer,

(2.21)

and ∫ π

−π

exp{−ilv/N}du = −2
sin (πl/N)

l/N
= −2πsinc(πl/N). (2.22)

Thus, Sm,n = (−1)n
′
(−2π)Jn′(hm,n)sinc(πl/N) when k/M is an integer. Therefore,

the intensity of the superoscillatory spot, located at point k, is exactly the same as

the designed order (hm,n = J−1
n′ (W (rL)) when k/M = n′ and l/N is 0. We can expect

infinite diffraction orders along x axis, among which again only one diffraction order
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matches that of the complex filter but no multiple diffraction orders along y axis.

According to the relation of a = 2πb/∆x = 2πMb/L, we can adjust the carrier

frequency through both b and the total number of pixels, M . Figure 2.12 shows the

intensity distributions of a superoscillatory field created by a phase-only filter, with

M = 31 and M = 61, and b = 1 for both cases. Since the ratio of the central lobe and

the side lobe is closer to that of the designed superoscilllatory field for the filter with

a larger number of pixels, we can say that the superoscillation is better preserved

with a higher carrier frequency, a.

(a)

(b)

Figure 2.12: Reproduced superoscilllatory field by a phase-only filter with (a) M =31,
∆x=2mm, b=1 and (b) M =61, ∆x=1mm, b=1; with superoscillatory spot size,
rspot=0.94λ.
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Our images so far have been cross-sections of the total field along the axis of diffrac-

tion x; it is also useful to see what the full two-dimensional intensity structure looks

like. Fig.2.13 shows the image field formed by a filter 31 pixels with one sinusoidal

period and two sinusoidal periods within each pixel, respectively. Doubling sinusoidal

cycles is equivalent to doubling the pixel number, and leads to a doubled separation

between each order.
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(a)

(b)

(c)

(d)

Figure 2.13: Superoscillatory field formed by a phase-only filter in the image space
with (a) M=31, ∆x=2mm, b=1 in two dimensions and (b) in one dimension, (c)
M=31, ∆x=1mm, b=2 in two dimensions, and (d) in one dimensio; with 0th order
superoscillatory spot size, rspot=0.94λ.

Fig. 2.14 shows a wide superoscillatory field formed by a phase-only filter in the

image space with M =31, ∆x=2mm, b=1 in 1D. It is noted that most of the energy

is distributed to the first four orders.
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Figure 2.14: A wide superoscillatory field formed by a phase-only filter in the image
space with M =31, ∆x=2mm, b=1 in one dimension.

It is to be noted that the calculation takes very long time by using this method.

As for a filter with M ∗ N pixels, to calculate the two-dimensional field with K ∗ L

points, M*N*K*L integrals associated with the scattering function Sm,n(k, l) need to

be calculated. For a filter with 31 ∗ 31 pixels, the field points are 31 ∗ 31 ∗ 5 in order

to cover 0,±1,±2 orders which involves 5 ∗ 314 = 4, 617, 605 integrals. Therefore, the

following method which approximates the phase profile by a step-wise binary filter is

applied for achieving a faster computation.

2.4.3 Estimation of the minimum number of pixels

As there are multiple orders in the image field, another effect of the change in pixel

number, and corresponding change in a, is that the different diffraction orders move

closer together and eventually overlap. The minimum pixel number needed to keep

the orders separate can be estimated by

M =
L

∆x
=

L

∆fxλdI
=
L× Limg

λdI
, (2.23)
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where Limg is the range of the designed superoscillatory field, L is the length of the

filter, ∆x is the pixel size, ∆fx is the pixel size in spatial frequency domain, and dI is

the image distance. In this study, the minimum range of the superoscillatory field is

the distance between the two side lobes is about 6µm. Thus, the minimum number

of pixels is calculated to be 10. In other words, when M≤ 10, the side lobes of the

adjacent orders will start colliding into each other. Apparently, when M =10, the

central lobe will not be resolved according to the pixel size criterion. Therefore, the

pixel size criterion is more stringent than the order separation criterion.

2.5 Step-wise Phase-only Filtering Device

2.5.1 Phase profile

A step-wise phase-only filter is step-wise approximation to the sinusoidal phase

profile of the phase-only filter. Fig.2.15 shows the profile of the step-wise filter with

each sinusoidal period approximated by 9 steps.
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(a)

(b)

(c)

(d)

Figure 2.15: Phase-only filter with (a) smooth sinusoidal phase profile of M =31,
∆x=2mm, b=1, (b) step-wise phase profile of 9 steps in each sinusoidal period,
(c) smooth sinusoidal phase profile zoomed in for the central area, and (d) step-wise
phase profile of 9 steps in each sinusoidal period zoomed in for the central area.
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2.5.2 Superoscillatory image field

For a step-wise phase-only filter, the field emitted from each step is considered

uniform across the window of a single step. Therefore, the two-dimensional super-

oscillatory field distribution is calculated using the Fast Fourier transform (FFT),

which is much more efficient than the window Fourier transform. Fig. 2.16 shows the

intensity distribution of the five lowest diffraction orders for a binary phase-only filter

approximated by 21 steps. As expected, only the 0th order reproduces the designed

superoscillatory pattern. Figure 2.17 shows the cross section of the intensity distri-

bution (y′ = 0) of (a) five orders and (b) the 1st order and 2nd order in more detail, in

the direction of x′. It can be seen that these higher orders do not possess an isolated

superoscillatory spot and are therefore unsuitable for imaging. It is noted that the

±1 order and ±2 order has different field distributions from that of the phase-only

filter, which might caused by the step-wise profile of the step-wise phase-only filter.

Figure 2.16: Three orders of superoscilllatory field formed by a step-wise phase-
only filter in two-dimensional image space with M =31, ∆x=2mm, and b=1; with
superoscillatory spot size, rspot=0.94λ.
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Figure 2.17: Cross section (y′ = 0) of superoscillatory field formed by a step-wise
phase-only filter of (a) three orders, (b) the 1st order and the 2nd, with M =31,
∆x=2mm, and b=1.

2.6 Comparison Between the Designed Filters

Though a phase-only filter transmits 100% of the energy incident upon it, and

would in principle seem to be more efficient than the complex filter, Figure 2.16

indicates that a significant amount of energy goes into the unused diffraction orders.

Therefore, we compare the energy efficiency of the complex filter, amplitude filter,

and phase filter.

2.6.1 Complex filter

The total energy efficiency of a filter is given by the ratio of the total transmitted

energy and the total input energy. By assuming the input energy is uniform across

the complex filter, the total energy efficiency is the integration of the amplitude
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transmittance in 2D divided by the filter area. For a pixelated complex filter, the total

energy efficiency is simply the numerical summation of the amplitude transmittance of

each pixel. As the complex filter produces a single 0th order without other diffraction

orders, the total energy efficiency is also that of the 0th order. Here, ηc is referred to

as the total efficiency and ηc0 is referred to as the “0th order” efficiency, which is given

by

ηc = ηc0 =

∫
L
|W (rL)|2 dr2L∫

L
dr2L

= ΣN
n Σ

M
mWm,n, (2.24)

where the integral is over the area of the lens L, Wm,n is the amplitude transmittance

of a single pixel. Table 1 lists the energy efficiency of the complex filter.

Table 2.1: Energy efficiency of the complex filter

Order Energy efficiency (%)
0 6.3

Total 6.3

2.6.2 Amplitude-only filter

For an amplitude-only filter, as the cosine term is expressed as the sum of two

exponential terms, it has 3 orders: 0th order, and ±1st orders.

Based on the expression of the transmittance of an amplitude-only filter:

A(rL) = A0 + 2∆A(|W (rL)|/Wmax) cos{2πax+ ϕ(rL)}, (2.25)

the energy efficiency of the ±1st orders is given by

ηa1 =
εa1
εin

= C2
a

∫
L
|W (rL)|2 d2rL∫

L
d2rL

, (2.26)

where ε1 is the energy of the 1st order and Ca = ∆A/Wmax, ∆A = β∆α/4, 0 < β ≤ 1.

Then, the total energy efficiency of an amplitude-only filter is given by
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ηa =A
2
0 + 2C2

a

∫
L
|W (rL)|2 d2rL∫

L
d2rL

=(α0 +
∆α

2
)2 + 2C2

a

∫
L
|W (rL)|2 d2rL∫

L
d2rL

,

(2.27)

where A0 = α0 +
∆α
2

, 0 < α0 ≤ 1, 0 < ∆α ≤ 1− α0.

The energy efficiency depends on α0, ∆α, and β; overall, we expect the energy

efficiency of an amplitude filter to be low. To estimate the maximum possible ef-

ficiency, we discretize the three parameters into three sequences, then calculate the

energy efficiency for all combinations of the three parameters. Table 2 lists the α0,

∆α, and β, which lead to the maximum energy efficiency of the ±1st order and the

corresponding total energy efficiency and the ±1st order efficiency. As can be seen

from the table, the vast majority of energy goes into the unusable 0th order spot.

Table 2.2: Energy efficiency of the designed amplitude-only filter

α0 0
∆α 1
β 1

Total energy efficiency (%) 25.7
Maximum 1st order efficiency (%) 0.37

2.6.3 Phase-only filter

Since phase-only filters transmit all incident light, they have a total energy efficiency

of one. As introduced in Section 2.4, the transmittance of a phase-only filter is given

by

T (rL) = eiϕ(rL)eih(rL) cos(ax). (2.28)

By applying the property eiz cos(x) =
∑∞

n=−∞ inJn(z)e
inx, we have

T (rL) = eiϕ(rL)
∞∑

n=−∞

inJn[h(rL)]e
inax, (2.29)
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where h(rL) is again taken to be h(rL) = J−1
0 [W (rL)]; thus the superoscillatory field

is carried by the 0th order of the designed filter. The transmittance of the 0th order is

T0(rL) = eiϕ(rL)J0[h(rL)]. (2.30)

The energy efficiency of the 0th order is

η0 =
ε0
εin

=

∫
L
|J0[h(rL)]|2 d2rL∫

L
d2rL

, (2.31)

where ε0 is the energy of the 0th order and εin is the input energy of the filter.

Similarly, the transmittance of the 1st order is

T1(rL) = eiϕ(rL)iJ1[h(rL)]e
inax. (2.32)

The energy efficiency of the 1st order is

η1 =
ε1
εin

=

∫
L
|J1[h(rL)]|2 d2rL∫

L
d2rL

, (2.33)

where ε1is the energy of the 1st order. Table 3 summarizes the energy efficiency of

the phase-only filter designed for the 0th order. The design of the phase-only filter

suggests that the energy efficiency of the filter should be effectively the same as the

corresponding complex filter.

Table 2.3: Energy efficiency of the designed phase-only filter

Order Energy efficiency (%)
0 6.3

+/-1 32.1
+/-2 12.7
Total 100

The energy distribution of different Bessel function orders of a phase-only filter is

determined by the n′ applied in the calculation of h(rL) = J−1
n′ [W (rL)]. Here, we also
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investigate the cases of phase-only filters designed with different n′. It is noticeable

that h(rL) = J−1
n′ [W (rL)] does not exist for some orders of n′ for W (rL) larger than

a certain value, since different Bessel function orders have different maximum values.

To solve the problem, one way is to scale the W (rL) to the range of the Bessel function

order of n′, which will affect the energy distribution of different Bessel function orders.

Figure 2.18 shows the energy efficiency distributions of phase-only filters designed

with n′ = 0, 1, 2, by taking out the points of h(rL) that do not exist to get a rough

estimation without scaling down W (rL). For the three filters, the superoscillatory

field is carried by the 0th, the 1st, and the 2nd Bessel function order, and the energy

efficiency is 6.3%, 5.7%, and 5.6% respectively. There is a slight decrease in the energy

efficiency when the filter is designed for higher orders.

Figure 2.18: Energy efficiency distribution of phase-only filters with different order
to carry superoscillatory field, with M =151, ∆x=0.4mm

.

Based on the energy efficiency results listed in Table 1, Table 2, and Table 3, a

phase-only filter will have energy efficiency comparable to the complex filter. The

amplitude-only filter always has a significantly lower energy efficiency.

2.7 Discussion and Conclusion

The design method in this study can be applied to a wide range of optical systems,

not limited to microscopes. The design method is universal and straightforward. By
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utilizing this method, theoretically, an infinitely small spot size can be achieved in the

image plane. However, the smaller the spot is, the less intensity remains in the central

lobe and more energy goes into the sidelobes. Therefore, there is a balance between

the image resolution and the image brightness. Admittedly, the sidelobe with high

intensity will affect the imaging process, thus the issue needs to be solved in following

studies. Furthermore, modifications can be made by combining the superoscillatory

filter with the refractive lens to simplify the imaging system.

In terms of manufacturing, among the three types of filters, the phase-only filter

is the easiest to make by etching a varying thickness across a transparent surface.

There are many possible ways to make such a filter, however. For example, sinusoidal

patterns can be formed by shining fringe patterns from interferometers on photoresist

materials. In addition, gradient index materials and electron beam lithography can

be applied. An amplitude-only filter is made by creating a varying transmittance

across the surface, which is more difficult to realize. Apparently, a complex filter

needs both techniques, thus it is most challenging to manufacture.

In terms of energy efficiency, a phase-only filter has a higher energy efficiency

compared with an amplitude-only filter. The total energy efficiency of the phase-only

filter is 100%. The total energy efficiency of the amplitude-only filter depends on

both the arbitrary settings of the filter parameters and the transmittance function of

the filter.

Our results show that it is possible to modify the design technique of Smith and

Gbur to phase-only or amplitude-only filters with a finite number of pixels, and that

these changes can be made without destroying the superoscillations of the transmitted

field. Criteria have been given to guide researchers in the design of such filters. It

is to be noted that there are other strategies for producing phase-only or amplitude-

only filters that might give improved performance; see, for example, Ref. [63]. Our

work will hopefully motivate additional research into analytic techniques for designing
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superoscillatory filters.



CHAPTER 3: VECTOR SUPEROSCILLATORY FIELD ILLUMINATION

3.1 Introduction

Since superoscillatory waveforms are inevitably surrounded by high intensity side-

lobes, the usable super-resolved area of an image is severely limited. A few earlier

studies have been done on eliminating the sidelobes. One approach is based on opti-

mization using algorithms, such as genetic algorithm [64]. The designed superoscilla-

tory field can have sidelobes eliminated, but the design of the superoscillatory lenses

relies excessively on optimization and faces challenges in mask fabrications. Another

study fabricated a pair of meniscus shape apertures, which lead to superoscillatory

wave without sidelobes based on the Poisson-Arago phenomenon [65]. The goal of

Chapter 3 is to use electromagnetic wave properties to get around the sidelobes.

In Chapter 3, section 3.2 describes transverse nature of light. Section 3.3 demon-

strates how polarization engineering can be used in some circumstances to suppress

superoscillation sidelobes by taking advantage of the transverse wave nature of light.

Section 3.4 and section 3.5 illustrate the principle by a model super-resolution imaging

system that can image Rayleigh scatterers with separations smaller than the classic

Rayleigh criterion. The factors that can affect the quality of the super-resolved image

are discussed. In section 3.6, the polarization distribution at the aperture plane is

calculated, and a device to form the vector superoscillatory field is proposed.

3.2 Transverse Nature and Polarization of Light

Light is an electromagnetic (EM) wave that consists of oscillations of both the

electric field and the magnetic field. In a homogeneous and isotropic medium, the

electric field and the magnetic field are perpendicular to each other and propagate in
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the direction perpendicular to both fields, thus the EM field is a transverse wave.

According to the Fresnel’s wave theory, the electric field can be described by two

orthogonal electric field components, Ex and Ey, which satisfy the wave equation and

their solutions, propagating in the z direction, are given by

Ex(r, t) = E0x cos(ωt− kz + δx), (3.1)

and

Ey(r, t) = E0y cos(ωt− kz + δy), (3.2)

where k is the wave number, E0x and E0y are the amplitude of the electric field

components, and δx and δy are arbitrary phases. Accordingly, by eliminating the

term ωt − kz, the two electric components in both directions form an ellipse in the

form of,

Ex(z, t)
2

E2
0x

+
Ey(z, t)

2

E2
0y

− 2Ex(z, t)Ey(z, t)

E0xE0y

cos(δ) = sin2(δ). (3.3)

In this case, the electric field is called elliptically polarized. The magnetic field is

elliptically polarized as well.

When δx − δy =mπ (m=0,± 1,±2,...), Ex and Ey oscillate in phase, and the

polarization ellipse degenerates to a line, for which light is linearly polarized. In this

thesis, linear polarization is applied as the polarization state of EM fields. When

δx − δy = (2m + 1)π/2 (m=0,± 1,±2,...) and E0x = E0y, Ex and Ey oscillate with

a phase difference of π/2, and the polarization ellipse becomes a circle, for which the

light field is circularly polarized.

3.2.1 Direction of polarization

Throughout the history of optics, the direction of the magnetic vector is often

called the direction of polarization.The plane containing the magnetic vector and the
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direction of propagation is called the plane of polarization. However, some places

define the two quantities with respect to the electric vector [66]. In this thesis, the

later definition is used.

3.2.2 Stokes parameters

Stokes parameters are four quantities that specify the polarization state of an

electromagnetic field, which are given in normalized form by

s1 = s0 cos(2χ) cos(2ψ), (3.4)

s2 = s0 cos(2χ) sin(2ψ) = s1 tan(2ψ), (3.5)

s3 = s0 sin(2χ), (3.6)

s20 = s21 + s22 + s23, (3.7)

where χ= arctan b
a

(b and a are the minor axis and the major axis of the polarization

ellipse) is the ellipticity and ψ is the orientation of the polarization ellipse (the angle

between the direction of the major axis and Ex). In this thesis, Stokes parameters are

calculated from the vector electric field components Ex and Ey. First, linearly polar-

ized electric fields at 45 and 135 degree, and left-handed and right-handed circularly

polarized fields are given by

E45 =

√
2

2
(Ex +Ey), (3.8)

E135 =

√
2

2
(−Ex +Ey), (3.9)

El =

√
2

2
(Ex + iEy), (3.10)

Er =

√
2

2
(Ex − iEy). (3.11)
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Second, the unnormalized Stokes parameters are given by

S0 = |Ex|2 + |Ey|2, (3.12)

S1 = |Ex|2 − |Ey|2, (3.13)

S2 = −(|E45|2 − |E135|2), (3.14)

S3 = −(|El|2 − |Er|2). (3.15)

Third, the normalized Stokes parameters are given by

s0 =
S0

S0

, s1 =
S1

S0

, (3.16)

s2 =
S2

S0

, s3 =
S3

S0

. (3.17)

The orientation angle ψ of polarization can be expressed by Stokes parameters as:

ψ = −1

2
arctan(s1 + i s2). (3.18)

3.2.3 Jones vector and matrix

Jones vector is a 2× 1 vector describes the electric field components, Ex and Ey,

and Jones matrix is a 2×2 matrix describes the polarizing components in the optical

system. The electric field transmitted by an optical component is given by

E′
x

E′
y

 =

a1 a2

a3 a4


Ex

Ey

 , (3.19)

where a1 to a4 are expressions that describe the polarizing element.
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3.3 Rayleigh Scattering and Concept of Sidelobe Suppression

3.3.1 Polarization dependence of Rayleigh scattering

Rayleigh scattering is the scattering of a linearly-polarized paraxial electromagnetic

wave by a subwavelength-size sphere lying in a transverse plane, where the radius of

the sphere is a and a ≪ λ. The intensity distributions of the scattered light at

distance l in the far field (l ≫ λ) in the plane perpendicular to the polarization

direction and in the plane parallel to the polarization direction satisfy the respective

equations [67]:

I1 = I0
16π4a6(n

2−1
n2+2

)2

λ4l2
, (3.20)

and

I2(θ) = I0
16π4a6(n

2−1
n2+2

)2

λ4l2
sin2 θ, (3.21)

where I0 is the intensity of the field incident on the particle and n is the refractive

index of the particle. θ is the angle between the polarization direction and the scatter-

ing direction. In the plane perpendicular to the polarization direction, the intensity

of scattered light is isotropic. In the plane parallel to the polarization direction, the

intensity changes as a function of angle θ. Figure 3.1 shows the scattering pattern of

a Rayleigh scatterer generated by an incident linearly polarized wave. The intensity

of the scattered light vanishes in the polarization direction and reaches the maximum

in the direction perpendicular to the polarization direction.

3.3.2 Sidelobe suppression under vector field illumination

The scattering pattern of a Rayleigh scatterer suggests a strategy for sidelobe sup-

pression: by patterning a superoscillatory field such that the central spot and sidelobes

are orthogonally polarized, a detector can be placed to select only the central spot

scattered light. Such a field is referred to as a vector superoscillatory field (VSF).

Figure 3.2 illustrates a superoscillatory field with four zero rings: r1 =0.47µm (su-
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Figure 3.1: Polarization-dependent Rayleigh scattering pattern: scattering pattern
of a scatterer by interacting with an electromagnetic wave.

peroscillatory spot radus; by assuming λ=500nm, r1=0.94λ), r2 =1µm, r3 =1.48µm,

and r4 =2µm; orthogonal linear polarization states are imposed for the central spot

and the sidelobes to make a VSF. Scatterers located in the two regions produce

Rayleigh scattering patterns with perpendicular orientations. The dashed arrows in-

dicate the directions where only the central spot scattered light. Thus, if a detector

is placed facing that direction, only the scattered light of the central spot will be

detected; the light from the sidelobes is scattered elsewhere.
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Figure 3.2: Scattering patterns of scatterers under the illumination of the central
spot and the sidelobes in a superoscillatory field with orthogonal linear polarization

states.

3.4 A Super-resolution System with Vector Superoscillatory Field Illumination

The observation of variations in scattering patterns under different polarization

states suggests a possible measurement scheme for creating super-resolution imaging

of Rayleigh particles. Figure 3.3 shows the front view and the perspective view of the

proposed imaging system. In this imaging system, a VSF is formed by a refractive lens

with a superoscillatory filter attached to it. Another lens for tailoring the polarization

states may be attached, which is described in the latter part of this chapter. The

central lobe is y-polarized and the sidelobes are x-polarized. Rayleigh scatterers are

placed on a translation stage. Since the sidelobes will not scatter light toward the x

direction for the given polarized superoscillatory field, the time-averaged energy flux

along the x direction, ⟨S⟩x, serves as the measurement signal. To receive the signal, a

detector facing the x direction is placed at a distance L from the center of the stage.

The stage performs a raster scan across the VSF in two-dimensional space to cover all
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of the scatterers. Here, the instability of the optical path during the scanning process

might limit the accuracy of the system.

(a)

(b)

Figure 3.3: A proposed super-resolution imaging system, with (a) the front view and
(b) the perspective view.

3.5 Images with Vector Superoscillatory Field Illumination

3.5.1 Foldy-Lax method for calculating multi-scattering

For particles close together (with separations comparable or less than a wave-

length) multiple scattering effects become significant and can potentially disrupt the
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proposed measurement scheme. Therefore, the total scattered field is evaluated using

the venerable Foldy-Lax method [68, 69].

For the first step of the Foldy-Lax method, each individual particle is treated as

a dipole in accordance with Rayleigh scattering. Figure 3.4 shows the scattering of

an incident wave by two Rayleigh scatterers, which are labeled with index j. Here,

both the incident illuminating wave and the scattered wave are vector fields. The

illuminating field is scattered off the two particles, producing the secondary spherical

wave E
(s)
j (r), where j represents α1 or α2.

Figure 3.4: Scattering of two Rayleigh particles

For the second step, a total field in regions of the system of particles is the sum of

the illuminating field and all scattering fields:

E(r) = Ei(r) +Es(r). (3.22)

To be more specific, the total electric field E(ri) at the location ri is taken as the

sum of the incident field Ei(ri) and the scattered fields from all the scatterers except

the self-energy in the case that a radiating particle is located at position ri, which is

expressed as

E(ri) = Ei(ri) + Σi ̸=j
αj

ϵ0
G(ri, rj) ·E(rj), (3.23)



67

where E(rj) is the total field at a scatterer’s location rj and ϵ0 is the vacuum permit-

tivity. The quantity G(ri, rj) is the Dyadic Green’s function representing the electric

field at the field point ri generated by a radiating dipole or a scatterer located at rj,

which is of the form,

G(ri, rj) = [I +
1

k2
∇∇]G(ri, rj), (3.24)

where G(ri, rj) is the scalar Green’s function, given by

G(ri, rj) =
exp(ik|ri − rj|)

4π|ri − rj|
, (3.25)

and I is the unit dyad. The quantity αj = 4πϵ0
ϵj−ϵ0
ϵj+2ϵ0

a2 is the polarizability of the

jth scatterer with ϵj as its permittivity. In the simulation, the mesh subdivision is

performed on the scattering field. Each scatterer is represented by a single node in

the mesh network, as the scatterers are point-like according to the Foldy-Lax method.

Eq. (3.23) can then be formulated as a matrix equation and solved for E(ri). E(ri)

is an array with the electric field at the scatterers as the array elements. In the

calculation, the detector is considered as one of the scatterers, with a polarizability

of 0. Thus, the electric field at the detector is one of the elements of the calculated

E(ri).

For the third step, the total magnetic field is calculated from the total electric field

by Faraday’s law,

H(ri) =
1

iωµ
∇×E(ri)

=H i(ri) +
1

iωµ
Σi ̸=j

αj

ϵ0
[∇×G(ri, rj)] ·E(rj),

(3.26)

where Hi(ri) is the incident magnetic field at ri.

For the final step, the time averaged Poynting vector of the total field is obtained
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by

S(r) =
1

2
Re{E(r)×H∗(r)}. (3.27)

At large scattering angles, the total Poynting vector will be entirely due to the scat-

tered field. The scattered power in the x direction is calculated as a function of the

position of the imaging stage.

3.5.2 Scattering pattern of a single scatterer

To test out the effectiveness of the proposed system in suppressing the sidelobes

of the superoscillatory field, the images of Rayleigh scatterers are simulated under

a number of illumination conditions. Here, the wavelength of the light source is

λ=500 nm. A refractive lens has a focal length of f =50mm, an object distance

of do =150mm, an image distance of di =75mm, and a diameter of D=62.5mm.

The scatterers have a radius of a=50nm=0.1λ and a refractive index of n=1.5.

Appendix B lists the calculation of the scattered electric and magnetic field with

explicit expression of the Dyadic Green function.

Figure 3.5 shows results for a single particle. Figure 3.5 (b) shows that the sidelobe

image is almost eliminated when a single scatterer is illuminated by a VSF; Figure 3.5

(c) shows that a superoscillatory field polarized only in the y-direction still manifests

large sidelobes.
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(a)

(b) (c)

Figure 3.5: Images of Rayleigh scatterers under different illumination conditions:
(a) ground truth of a single scatterer (a=50nm=0.1λ and n=1.5), (b) ⟨S⟩x of the
scatterer illuminated by a VSF, and (c) ⟨S⟩x as illuminated by a superoscillatory field
polarized in y direction; with superoscillatory spot radius, rsp = 0.94λ.

3.5.3 Super-resolved images of Rayleigh scatterer patterns

A robust imaging system should be able to image multiple particles and be sensitive

to both size and index variations. Therefore, images of various scatterer arrangements

are tested.

Figure 3.6 shows that two scatterers are better resolved when illuminated by a

VSF than when illuminated by a diffraction-limited spot. The separation between

the two scatterers is d0 =610 nm=1.22λ. The VSF is tailored to have a central

lobe radius of rs =470 nm=0.94λ, while the radius of the diffraction-limited spot
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is rd =732 nm=1.46λ. The two particles are resolved by the VSF illumination but

not the diffraction-limited spot.

(a)

(b) (c)

Figure 3.6: Images of Rayleigh scatterers under different illumination conditions: (a)
ground truth of two scatterers separated by d0 =610 nm, (b) ⟨S⟩x of the two scatterers
illuminated by a VSF with rs =470 nm=0.94λ, and (c) ⟨S⟩x when illuminated by the
diffraction-limited spot with rd =732 nm=1.46λ.

Figure 3.7 shows the simulated response for a five-scatterer system with a "Λ"

shape, with a=50nm, n=1.5, and d0 =610 nm=1.22λ. In Figure3.7 (b), the system

is imaged with a VSF, and in Figure3.7 (c), the image produced by a diffraction-

limited spot is shown for comparison. It is evident that the particles are better

resolved by the VSF illumination.

Figure 3.8 compares the images of a nanoparticle system under different illumi-
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(a)

(b) (c)

Figure 3.7: Images of Rayleigh scatterers under different illumination: (a)
ground truth of five scatterers with a "Λ" shape (a=50nm=0.1λ, n=1.5, and
d0 =610 nm=1.22λ) (b) ⟨S⟩x of the scatterers illuminated by a VSF, and (c) ⟨S⟩x
of the scatterers illuminated by a diffraction-limited spot.

nation conditions: Figure 3.8(a) shows the ground truth of the system, with n=1.5,

Figure 3.8 (b) shows the image illuminated by a VSF, and Figure 3.8 (c) shows the

image illuminated by a diffraction-limited spot. The image under the VSF shows

more clear boundaries of the nanoparticles.
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(a)

(b) (c)

Figure 3.8: Images of Rayleigh scatterers under different illumination: (a) ground
truth of nanoparticles with different shapes,with n=1.5, (b) ⟨S⟩x of the scatterers
illuminated by a VSF, and (c) ⟨S⟩x as illuminated by a diffraction-limited spot.

3.5.4 Factors affecting super-resolved image quality

There are several factors might affect the quality of the super-resolved images.

Figure 3.9 (a) shows, the five scatterers, with each numbered, are taken to have

an index ratio of n1 :n2 :n3 :n4 :n5 =1 : 2 : 3 : 4 : 1; acceptable resolution and index

discrimination is demonstrated. In Figure 3.9 (b), the scatterer size has been increased

to a=200 nm=0.4λ, and significant distortions of the scattered field can be seen; this

shows that multiple scattering effects become significant beyond a certain scattering

strength.
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(a) (b)

Figure 3.9: Images of Rayleigh scatterers under different illumination: (a) ⟨S⟩x
as illuminated by the VSF for five scatterers with a refractive index ratio of
n1 :n2 :n3 :n4 :n5 =1 : 2 : 3 : 4 : 1 and (b) ⟨S⟩x as illuminated by the VSF for five scat-
terers with a size of a=200 nm=0.4λ.

Scatterers aligned along the polarization direction could potentially have their im-

ages distorted by multiple scattering effects. Figure 3.10 shows the image of a five-

scatterer system with a cross shape illuminated by the VSF. The scatterers’ size

and refractive index are the same as those of the Λ system. The scatterers that are

vertically aligned along field polarization direction are linked by multiple scattering

artifacts. The effect is relatively small, however, and the objects remain well-resolved.

Overall, the minimum resolution of the system is subject to the detector’s sensitivity.

As the central spot becomes narrower, its amplitude decreases as well. System noise

could be included in the simulations in future studies.
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Figure 3.10: Multi-scattering due to scatterers pattern: ⟨S⟩x of five scatterers with a
cross shape illuminated by a VSF; scatterers’ size and refractive index are the same
as those of the Λ system.

It is natural to ask if the sidelobe suppression is due to the polarization engineering

or some other effect. As the selection of scattering signals from the y-polarized central

lobe or the x-polarized sidelobes is achieved by placing the detector facing x direction,

the image is also simulated by placing the detector with another orientation. In

Figure 3.11, the detector for detecting the five-scatterers system (with a "Λ" shape)

faces the y direction, and it can be seen that the image is overwhelmed by the scattered

light from the sidelobes.
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(a)

(b)

Figure 3.11: Imaging system and an obtained image with a detector facing y direction:
(a) experimental setup and (b) ⟨S⟩x of five scatterers illuminated by a VSF.

3.6 Creation of Vector Superoscillatory Field

In this section, to construct the desired vector superoscillatory field, the vector field

in the aperture plane is calculated from the desired vector superoscillatory field in the
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image plane. The polarization distribution in the aperture plane is then illustrated;

a polarization element is proposed for generating such a polarization distribution.

3.6.1 Vector superoscillatory field in image plane

The calculation of a scalar superoscillatory field has been demonstrated in Chapter

2. The vector superoscillatory field in the image plane is created by filtering the scalar

superoscillatory field by two window functions: one window function transmits the

central lobe of UI(rI) as E′
y(rI) and the other window function transmits sidelobes of

UI(rI) as E′
x(rI). The window functions are:

tEx(rI) =


0 rI ≤ 0.47µm

1 rI > 0.47µm
(3.28)

and

tEy(rI) =


1 rI ≤ 0.47µm

0 rI > 0.47µm
(3.29)

Then, E′
x(rI) and E′

y(rI) are:

E′
x(rI) = UI(rI)tEx(rI), (3.30)

and

E′
y(rI) = UI(rI)tEy(rI), (3.31)

where UI(rI) is the scalar superoscillatory field. Figure 3.12 shows the amplitude and

the phase of E′
x(rI) and E′

y(rI).
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(a) (b)

(c) (d)

Figure 3.12: Vector superoscillatory field in the image plane: (a) amplitude of E′
x(rI),

(b) phase of E′
x(rI), (c) amplitude of E′

y(rI), and (d) phase of E′
y(rI).

3.6.2 Vector field in aperture plane

The vector field, Ex(rL) and Ey(rL), which produces this vector superoscillatory

field can be determined by inverting the Fourier relationship. In the calculation,

the vector field is obtained by using Fourier Bessel transform over the interpolation

functions of E′
x(rL) and E′

y(rL) in the image plane:

Ex(rLi) =

(
iUoe

ikdI

λdI
e

ik
2dI

|rIi|2
)−1 ∫

rI

E′
x(rI)J0

(
−2πkrLirI

dI

)
drI, (3.32)

and

Ey(rLi) =

(
iUoe

ikdI

λdI
e

ik
2dI

|rIi|2
)−1 ∫

rI

E′
y(rI)J0

(
−2πkrLirI

dI

)
drI. (3.33)

Figure 3.13 shows the amplitude and the phase of Ex(rL) and Ey(rL) in the aperture

plane. The amplitude of Ey(rL) is significantly smaller than that of Ex(rL). When

the maximum amplitude of Ex(rL) is normalized to 1, that of Ey(rL) is around
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0.02. The phase of Ex(rL) contains two annuli of phase shift of value π. The phase

of Ey(rL) is near 0, with a shallow gradual change, across the aperture. Overall,

Ex(rL) dominates the vector field in the aperture plane, however, there is a minimal

amount of Ey(rL).

(a) (b)

(c) (d)

Figure 3.13: Vector field in the aperture plane: (a) amplitude of Ex(rL), (b) phase
of Ex(rL), (c) amplitude of Ey(rL), and (d) phase of Ey(rL).

3.6.3 Calculation of polarization distribution in aperture

To achieve the VSF in the image plane, a polarization-sensitive superoscillatory

filter is introduced to the aperture plane. First, Stokes parameters are calculated

from the vector electric field, Ex(rL) and Ey(rL), in the aperture plane. Second,



79

a polarization state distribution is calculated across the aperture. The ellipticity of

polarization ellipses is given by:

χ =
1

2
arcsin

s3
s1
, (3.34)

and the orientation angle of polarization ellipses is given by:

ψ = −1

2
arg s1 + is2. (3.35)

In Figure 3.14, the ellipticity plot shows that the polarization states are linear. Fig-

ure 3.15 (a) and (b) plot the orientation angle distribution in the range of [−π/2, π/2]

and [0, 2π], respectively. The orientation angle distribution consists of annuli with a

value near 0, which represent horizontal polarization. The sharp transition regions

between the annuli consist of non-horizontal polarization components.

Figure 3.14: Polarization states in the aperture plane.
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(a)

(b)

Figure 3.15: Orientation angle in the aperture plane in the range of (a) [-π/2,π/2]
and (b) [0,2π].

3.6.4 Device for generating vector superoscillatory field

A good variety of methods for creating such a polarization-sensitive filter in the

aperture plane have already been standardized, such as spatial light modulators,

custom diffractive optical elements, and geometric phase-based q-plates [70].

In this study, a liquid crystal device is proposed as following steps. For the first

step, Jones vector in the aperture plane is expressed as:



81

Ex

Ey

 =

Exe
−iϕx

Eye
−iϕy

 = e−iϕy

Exe
−iδ

Ey

 , (3.36)

where δ = ϕx − ϕy is the phase difference of Ex and Ey. In this study, δ ≈ 0||π. The

amplitude of the resultant field of Ex and Ey is given by

UL =
√
E2

x + E2
y . (3.37)

By setting the input polarization state as horizontal polarization in x direction, and

the amplitude as UL, the vector field before entering is given by

Eox

Eoy

 =

UL

0

 , (3.38)

where UL is generated by a scalar superoscillatory lens calculated in Chapter 2. As

shown in Figure 3.13, the electric field in x direction has a π phase shift in two annuli,

which is different from the case of scalar field UL. This difference can be compensated

by add another 90 degree rotation angle in the annulus regions in the liquid crystal

device, which will be described below.

For the second step, liquid crystal cells are applied as polarization rotators to twist

the incident field from horizontal polarization to the target polarization states across

the aperture plane. The output polarization is aligned with the scratch direction of

the output surface of each liquid crystal cell. The angle of twist is given by

θ = αd, (3.39)

where α is a coefficient of the liquid crystal material, d is the thickness of the liquid
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crystal cell. The phase retardation coefficient of the liquid crystal cell is given by

β = (ne − no)k, (3.40)

where ne and no are the extraordinary and the ordinary refractive indices, respectively,

and k is the wavenumber. Usually, β >> α. It has been shown that when the input

field is polarized in x direction, the field will keep linear polarization but obtain an

angle of rotation of θ after passing through a liquid crystal cell, as shown in figure

below. The blue cell array provides the rotation of polarization states. The green

cell array is to compensate the differences of the phase shift due to the thickness

variations among different liquid crystal cells.

Figure 3.16: Rotation of polarization states by liquid crystal cells.

Appendix C lists the calculation of the vector field after being transmitted by liquid

crystal cells.

3.7 Discussion and Conclusion

In this chapter, the transverse wave nature of light and the polarization-dependent

scattering of Rayleigh scatterers are utilized to produce sidelobe-free super-resolved

images. A liquid crystal device is proposed for creating the vector-superoscillatory
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field illumination. Other researchers have started investigating the use of vector fields

to improve superoscillatory imaging. Recently, Pant, Meena and Singh [71] filtered the

transverse electric field from a tightly focused beam, suppressing sidelobes and leaving

a longitudinal superoscillatory spot. These results highlight that direct consideration

of the vector properties of light can provide significant benefits to superoscillatory

imaging.



CHAPTER 4: CIRCULARLY COHERENT VORTEX BEAMS

4.1 Introduction

Circularly coherent sources, which are perfectly coherent on any ring that is con-

centric to the beam center, can preserve the spiral phase structures of optical vortices

on propagation, making them potentially useful for free-space applications such as

communications and remote sensing. In Chapter 4, section 4.2 describes basic quan-

tities applied in partial coherence theory, coherent optical vortices, and singularities

in partially coherent fields. Section 4.3 theoretically studies circularly coherent vortex

beams by imposing circular coherence on Laguerre-Gaussian (LG) beams. In section

4.4, the second-order coherence properties and coherence singularities of these circu-

larly coherent vortex beams are investigated in free-space propagation up to 3 km.

Section 4.5 discusses the noteworthy self-focusing feature of such beams that arises

due to the circular coherence. Section 4.6 shows an experimental setup for measuring

circularly coherent vortex beams.

4.2 Partial Coherence and Optical Vortices

4.2.1 Second-order coherence properties

The cross-spectral density (CSD) is defined as the two-point correlation function

of an ensemble of space-frequency realizations for any pair of points in the field given

by

W (r1, r2;ω) = ⟨U∗(r1;ω)U(r2;ω)⟩, (4.1)

where U(ri;ω), with i = 1, 2 represents a member of a statistical ensemble of monochro-

matic realizations of the field and the angular brackets denote an average over the
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ensemble [54].

When the two points r1 and r2 coincide, the CSD reduces to the spectral density,

which is the component of the irradiance at frequency ω, i.e.

S(r;ω) = W (r, r;ω) = ⟨|U(r;ω)|2⟩. (4.2)

The spectral degree of coherence, which characterizes the strength of correlations

and visibility of interference fringes produced by the field at points r1 and r2, is

defined as [72]

µ(r1, r2;ω) =
W (r1, r2;ω)√
S(r1;ω), S(r2;ω)

. (4.3)

The spectral degree of coherence is constrained to the bounds 0 ≤ |µ| ≤ 1, with 0

representing incoherence and 1 representing complete coherence.

For quasi-monochromatic fields of center frequency ω, the observable properties of

the field are well-approximated by the CSD at this single frequency. In this chapter,

the optical fields are considered as quasi-monochromatic and therefore the dependence

in ω is dropped for brevity going forward.

From Eq. (4.1), it follows that the CSD must be Hermitian with respect to r1 and

r2 and furthermore must satisfy the non-negative definiteness condition,

∫∫
ψ∗(r1)W (r1, r2)ψ(r2) d

2r1 d
2r2 ≥ 0, (4.4)

where ψ(ri) is an arbitrary function that is square-integrable. In general, it is difficult

to demonstrate that any particular function of r1 and r2 is non-negative definite. In

2007, however, Gori and Santarsiero showed [73] that any valid CSD can be written

in the mathematical form,

W (r1, r2) =

∫
H∗(r1,v)PN(v)H(r2,v)d

Nv. (4.5)
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This expression represents the CSD as an average over an ensemble of fields H(ri,v),

where v is in general an N -dimensional dummy vector that characterizes a particular

state of the field and PN(v) is a non-negative probability density that represents the

probability that the field is in state v.

One of the insightful ideas arising from Eq. (4.5) is that new coherence phenomena

can be generated by making unusual choices for the field ensemble and probability

density. For example, it is possible to add a partially coherent twist to a general

CSD for both circularly symmetric and non-symmetric beams [74], and it is possible

to make fields that are coherent in the radial direction and partially coherent in the

azimuthal direction [75]. Here, the interest is in circularly coherent beams, which

possess a spectral degree of coherence that only depends on the difference between

the squared radial coordinates of two points; here the shape of the degree of coherence

may be written as [76]

µ(r1, r2) = sinc
(
r22 − r21
δ2µ

)
, (4.6)

where δµ may be interpreted as the correlation length of the field and sinc = sinx/x.

Any pair of points located within a ring concentric with the center beam axis are

perfectly coherent.

4.2.2 Coherent optical vortex

The goal is to impose this circular coherence upon a vortex beam. The most

familiar class of vortex beams are the LG beams, which are characterized by a radial

order n and an azimuthal order m. We consider vortex beams with n = 0, which

possess a field ψm(r) in the source plane,

ψm(r) =

(√
2r

σs

)|m|

e−r2/σ2
seimϕ, (4.7)
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where σs is the waist size, m is the azimuthal (vortex) order, ϕ is the azimuthal angle,

and r is the modulus of the position vector r. The phase exp(imϕ) represents the

vortex phase twist of the beam. Figure 4.1 shows transverse profiles of LG beams

with a beam waist of σs =0.02 m, azimuthal orders of m=1 and m=3.

(a)

(b)

Figure 4.1: Amplitude and phase profiles of LG beams with an azimuthal order of
(a) m=1 and (b) m=3, with σs =0.02m.

4.2.3 Optical vortices in partially coherent fields

It has been assumed that there are intrinsic conflicts between optical vortices and

partial coherence. In partially coherent fields, optical vortices usually evolve into sin-

gularities of a correlation function with one fixed observation point, named correlation

vortices. Then, under some observing points, the vortex structure distorted and are

called non-deterministic vortices. In addition, positions of correlation vortices depend

on observation points and vortices center can have non-zero intensity which makes
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it hard to detect them. Correlation vortices in circularly coherent vortex beams are

demonstrated in section 4.3 and section 4.4.

4.3 Circularly Coherent Vortex Beam at Source Plane

4.3.1 Creation of circularly coherent vortex beam

One way to create a circularly coherent beam is to take the ensemble of fields

H(ri,v) to be of the form,

H(r, v) = ψ(r)eivr
2/δ2µ , (4.8)

where ψ(r) is interpreted as the deterministic field of the ensemble, which is taken to

be a LG beam. Here, the probability density function PN(v) is taken to be

PN(v) = ⊓ (v) , (4.9)

where ⊓(v) is a rectangular function that is equal to unity for |v| ≤ 1 and zero

otherwise, and v is taken to be a one-dimensional variable. These are the functions

employed by Santarsiero et al. [76], and the choice of H(r, v) indicates that the

ensemble consists of an identical set of beams with random focal lengths (or radii of

curvatures), as shown in Figure 4.2.

Figure 4.2: Component fields of H(r, v) with different radii of curvatures: (a) v<0,
(b) v=0, and (c) v>0.

By substituting these forms of H(r, v) and PN(v) into Eq. (4.5), the CSD in the
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source plane of a circularly coherent field is

W0(r1, r2) =

∫
⊓ (v)ψ∗(r1)e

−ivr21/δ
2
µψ(r2)e

ivr22/δ
2
µdv

= ψ∗(r1)ψ(r2)sinc
(
r22 − r21
δ2µ

)
.

(4.10)

In this form, it can be seen that the spectral degree of coherence is determined by

the Fourier transform of P
N
(v) with respect to v.

If ψ(r) = ψm(r), the CSD of the resulting circularly coherent LG beam is of the

form,

W0(r1, r2) =

(√
2r1
σs

)m

e−r21/2σ
2
se−imϕ1

×

(√
2r2
σs

)m

e−r22/2σ
2
seimϕ2sinc

(
r22 − r21
δ2u

)
.

(4.11)

According to Eq. (4.11), the CSD is characterized by the coherent vortex beam

structure and the radial spectral degree of coherence.

4.3.2 Spectral degree of coherence

Figure 4.3a shows the absolute spectral degree of coherence of circularly coherent

source with a diagonal symmetric stripe-shaped pattern, expressed in Eq. (4.6). It can

be derived that along the diagonal (r1 = r2) the source is perfectly coherent (µ=1);

this illustrates that the field at points on any ring concentric to the beam axis is

perfectly coherent, as shown in Figure 4.3b. In the off-diagonal region, the pattern

starts narrowing as r1 and r2 increase. Thus, if a pair of concentric rings is free to

move, as one of the two rings moves away from the beam center, the radial separation

needed between two rings to obtain a relatively high degree of coherence will become

smaller.
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(a)

(b)

Figure 4.3: Absolute spectral degree of coherence,µ(r1, r2), of (a) a circularly coherent
source, with δµ =0.044m,(b) with perfect coherence along any ring concentric to the
beam axis.

4.3.3 Cross-spectral density

The CSD of circularly coherent vortex beams exhibits a complex correlation struc-

ture, including a number of phase singularities. One type of coherence singularity,

now known as a correlation vortex, is a vortex of the CSD with one observation

point fixed. These are often directly related to the underlying phase singularity of

the members of the ensemble, and typically they are singularities of the two-point

correlation function and not zeros of intensity like a coherent optical vortex. Another

type of coherence singularity, called a ring dislocation, is related to the structure of

the spectral degree of coherence; ring dislocations manifest as circles of amplitude
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zero of a CSD under a fixed oberving point, and in some cases, as lines of amplitude

zero in the amplitude of a CSD.

Figure 4.4 shows the cross-spectral density of circularly coherent LG beams at the

source plane, with σs =0.02m and δµ =0.044m. It can be seen that there is a zero

of the cross-spectral density for either r1 = 0 or r2 = 0 for m > 0, which represents

a correlation vortex on the beam axis whose position is independent of the choice

of fixed observation point. It can be seen that ring dislocations appear as lines of

amplitude zero for higher-order vortex beams. Figure 4.4 also shows that the peak

of the CSD shifts away from the origin and the pattern becomes narrower as the

azimuthal order increases.

Figure 4.4: CSDs of circularly coherent LG beams at the source plane: CSD as
function of r1 and r2, with an azimuthal order of m=0, m=1, and m=3, with

σs =0.02m and δµ =0.044m.

4.3.4 Amplitude and phase under a fixed observing point

To clearly view the correlation vortices of the beam, we can project the four variable

source plane cross-spectral density W (r1, r2) into a two variable space by fixing one of

the two observing points. Fig. 4.5a and 4.5b show amplitude and phase distributions

for different azimuthal orders with a fixed observing point r1 at the source plane, with

observing points r1 =0.18mm, 0.27mm, and 0.44mm, respectively. Here, the fixed

observation point is shifted outward as the azimuthal order of the LG vortex beams
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increases to meet the expansion of the zero intensity region near the beam core and

the high intensity ring in the LG vortex beams. Since both the spectral density and

the spectral degree of coherence are circularly symmetric, the CSD is also circularly

symmetric even with a fixed observation point. In Fig. 4.5a, points and rings with

an amplitude of zero represent correlation vortices and ring dislocations, respectively.

In Fig. 4.5b, spiral phase structures at beam centers and phase jumps of π manifest

correlation vortices and ring dislocations, respectively.

(a)

(b)

Figure 4.5: Circularly coherent LG beams at the source plane: (a) amplitude , and
(c) phase of CSDs under a fixed observing point, r1, with an azimuthal order of
m=0, m=1, and m=3, with σs =0.02m and δµ =0.044m. Observing points are
r1 =0.18mm, 0.27 mm, and 0.44mm, respectively.
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4.4 Paraxial Propgation of Circularly Coherent Vortex Beam

4.4.1 Cross-spectral density

According to the Huygens-Fresnel principle [77], the propagation of the cross-

spectral density can be determined in the paraxial regime by the expression,

W (r1, r2; z) =
1

(λz)2

∫∫
W0(r

′
1, r

′
2)e

− ik
2z

(r1−r′1)
2

e
ik
2z

(r2−r′2)
2

d2r′1d
2r′2, (4.12)

where r′i is the position vector at the source plane, ri is the position vector in the

far field, z is the propagation distance, and k is the wavenumber. By substituting

Eq. (4.11) into Eq. (4.12) and separating r′1 and r′2, this may be written as

W (r1, r2; z) =
1

(λz)2

∫
⊓(v)dv∫ (√

2r′1
σs

)m

e−r′21 /2σ2
se−imϕ′

1e−ivr′21 /δ2µe−
ik
2z

(r1−r′1)
2

d2r′1∫ (√
2r′2
σs

)m

e−r′22 /2σ2
seimϕ′

2eivr
′2
2 /δ2µe

ik
2z

(r2−r′2)
2

d2r′2.

(4.13)

After some straightforward manipulations, the far-field CSD is given by

W (r1, r2; z) =
4π2

(λz)2

(
k2r1r2
z2

)|m|

e
ik
2z

(r22−r21)eim(ϕ2−ϕ1)∫
⊓(v) 1

(2|α|)2(|m|+1)
e−

(kr1/z)
2

4α∗ e−
(kr2/z)

2

4α dv,

(4.14)

where α = 1
2σ2

s
− iv

δ2µ
− ik

2z
. Appendix D shows details of the derivation, and Appendix E

lists a method to implement the calculation numerically.

Figure 4.6 illustrates the evolution of the cross-spectral density on propagation,

showing its behavior at the source plane, 1 km, 2 km, and 3 km, for three different

values of m . It can be seen that, in all cases, the CSD shifts toward the origin

at z ≈ 1 km (shown in the zoomed-in subplot); this is a manifestation of the self-



94

focusing effect of the beams. At z >1 km, CSDs start spreading as the free-space

diffraction becomes dominant. The correlation vortex of each beam stays at the

origin on propagation, which demonstrates that these correlation vortices are stable

on propagation. The ring dislocations, which appear as lines of amplitude zero in the

higher-order beams, diminish near the focal region (shown in the zoomed-in subplot)

and reappear for z >1 km.
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(a)

(b)

(c)

Figure 4.6: Cross-spectral densities of circularly coherent LG beams on propagation
with an azimuthal order of m=0, m=1, and m=3, with σs =0.02m, δµ =0.044m, and
λ=632.8 nm at the source plane, 1 km, 2 km, and 3 km, respectively.
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4.4.2 Spectral degree of coherence

Figure 4.7 plots the evolution of the spectral degree of coherence on propagation

for the same azimuthal orders. It can be derived that the spectral degree of coherence

remains unity along the diagonal (µ=1). The ring dislocations, which are represented

by lines of amplitude zero, can be seen clearly in the spectral degree of coherence,

demonstrating that they are a result of the correlation structure of the beam. It is

to be noted that the beams typically exhibit a higher coherence for small values of r1

and r2, representing a “plateau” of coherence. This indicates that circularly coherent

beams are highly coherent near the beam core. This plateau contracts at z ≈1 km,

coinciding with the overall focusing of the beam (as shown in the zoomed-in subplots),

and expands for z >1 km, indicating a larger coherent area at the beam center.
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(a)

(b)

(c)

Figure 4.7: Spectral degree of coherence of circularly coherent LG beams on propaga-
tion with an azimuthal order of m=0, m=1, and m=3, with σs =0.02m, δµ =0.044m,
and λ=632.8 nm at the source plane, 1 km, 2 km, and 3 km, respectively.
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4.4.3 Amplitude and phase under a fixed observing point

In Figs. 4.8 and 4.9, the amplitude and phase profiles of the beams on propagation

are shown, by fixing r1 and then plotting the CSD in Cartesian coordinates of r2

(x2 and the y2 directions). The fixed observing points are r1=0.18mm, 0.27mm, and

0.44mm for the three azimuthal modes. The circularly coherent beams maintain both

the zero amplitude and spiral phase structure on the beam axis, a property that makes

them intriguing candidates for applications such as free-space optical communication.

For long propagation distances, the phase pattern develops its own twist due to the

quadratic Fresnel operator, which is expected for any vortex beam on propagation.
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(a)

(b)

(c)

Figure 4.8: Amplitude of CSDs of circularly coherent LG beams on propagation with
an azimuthal order of m=0, m=1, and m=3 under a fixed observing point, r1, with
σs =0.02m, δµ =0.044m, and λ=632.8 nm at the source plane, 1 km, 2 km, and 3 km,
respectively. Observing points are r1 =0.18mm, 0.27mm, and 0.44mm, respectively.
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(a)

(b)

(c)

Figure 4.9: Phase of CSDs of circularly coherent LG beams on propagation with
an azimuthal order of m=0, m=1, and m=3 under a fixed observing point, r1, with
σs =0.02m, δµ =0.044m, and λ=632.8 nm at the source plane, 1 km, 2 km, and 3 km,
respectively. Observing points are r1 =0.18mm, 0.27mm, and 0.44mm, respectively.
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4.5 Self-focusing Effect of Circular Coherence

4.5.1 Self-focusing of circularly coherent vortex beams

As already noted, the self-focusing effect of circularly coherent vortex beams arises

from the quadratic phase term, exp(−ivr2i /δ2µ), in Eq. (4.13), which is the equivalent

to a paraxial lens transmittance exp(−ikr2/2f). By equating the two expressions, it

can be derived that δµ =
√
2vf/k, therefore a smaller δµ will lead to a smaller focal

length, f , or stronger focusing power of the circularly coherent vortex beams.

Figure 4.10 compares the propagation profiles of coherent vortex beams and the

circularly coherent vortex beam. The circular coherent beams clearly show a focusing

region. The focal length is determined by the coherence length, δµ. Appendix F

includes the numerical method for calculating the beam profiles on propagation.

(a) (b)

(c) (d)

Figure 4.10: Propagation profiles of (a) coherent LG01, (b) circularly coherent LG01,
and (c) coherent LG03, and (d) circularly coherent LG03, with σs =0.02m and
δµ =0.044m.
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4.5.2 Self-focusing of superimposed LG±04 beams

To better illustrate the self-focusing effect of the circular coherence, a comparison

of propagation profiles between the intensity of a coherent beam (constructed by the

superposition of two LG beams with an azimuthal order of m=±4, with a Rayleigh

distance of 3972 m) and the spectral density of the superimposed beams with circular

coherence is shown in Fig. 4.11. Circularly coherent superimposed beams show a

focal region in the range of z ∈ [0.5, 1.5] km. The focal length is determined by

both the beam width, σs, and the parameter, δµ, of the spectral degree of coherence:

the smaller δu, the stronger focusing power of the circularly coherent superimposed

beams.

(a)

(b)

Figure 4.11: Comparison of (a) intensity of a coherent beam and (b) spectral density
of the beam with circular coherence, constructed by the superposition of LG beams
with an azimuthal order of m=4 and m=-4, with σs =0.02m, δµ =0.044m, and
λ=632.8 nm, propagating from the source plane upto 3 km.
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4.5.3 Comparison of focal regions by a lens and a circular coherence beam

It is natural to ask if the self-focusing property of circular coherence can be uti-

lized for creating a focal spot for imaging application. Therefore, the propagation

profile of a coherent beam focused by a lens is compared to that of a self-focusing

circular coherence beam. For the coherent system, the lens has a focal length of 5m

and a lens transmittance of t(r) = cos 8(πr/D), where D is the aperture size. For

the self-focusing circular coherence beam, its component coherent field has the same

expression of the lens transmittance, U(r) = cos 8(πr/D), and its spectral degree of

coherence has a coherence length, δµ =0.0017m. Figure 4.12a shows the focusing

profile of the coherent beam and Figure 4.12b shows the focusing profile of the self-

focusing circular coherence beam. The intensity distribution in the focal region of the

self-focusing circularly coherent beam appears smoother (indicating a lower contrast)

than that of the coherent beam, which is common for partially coherent imaging.
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(a)

(b)

Figure 4.12: Comparison of focal regions of (a) a coherent beam focused by a lens and
(b) a self-focusing circular coherence beam, with δµ =0.0017m, and λ=632.8 nm.

4.5.4 Focal spot of superimposed circularly coherent LG±04 beams

As circularly coherent beams are perfectly coherent in the azimuthal direction of

any ring that is concentric to the beam axis, the contrast of a circularly coherent

focal spot in azimuthal direction near the beam axis is assumed be comparable to

that of a coherent focal spot. To verify this assumption, the propagation profiles of

a superposition of LG±04 beams (with a beam pattern consisting of petal-shaped

beamlets in azimuthal direction) focused by a lens (f =1 km) is compared to that

of a self-focusing circularly coherent counterpart beam (δµ=0.0025m), as shown in

Figure 4.13. The coherent beam is focused by a lens with a uniform transmittance,

and its focal spot maintains its original beam pattern (by assuming the focal region is
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free of aberrations). The focal spot of the circularly coherent beam shows a smoother

distribution in the radial direction. However, the contrast is comparable to that of the

coherent beam in the azimuthal direction near the beam central axis. The component

beamlets are clear without reduced contrast in between. This result shows that the

circularly coherent beam might be applied for lens-less imaging in cases where the

image contrast in azimuthal direction is important.

(a)

(b)

Figure 4.13: Comparison of focal regions of (a) the superposition of coherent LG±04
beam focused by a lens and (b) self-focusing circularly coherent counterpart beam,
with δµ =0.0025m, and λ=632.8 nm.
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4.6 Experiment for Measuring Circularly Coherent Vortex Beams

In the introduction of circular coherence by Santarsiero and Gori, a circularly

coherent field was generated by a longitudinal line source collimated an objective

lens [76], which was proposed to be formed by a lens-mirror-beam splitter system[78].

Here, an alternative configuration for generating circularly coherent vortex beams is

shown as below.

Here, the proposed source consists of a laser and two objective lenses, one which

moves back and forth along the optical path within a certain range, a, and one which

is fixed. The oscillation motion of the front objective lens shifts the position of the

focal point (an approximate point source) between the two objective lenses so that

optical fields have different radius of curvatures after transmitted by the rear objective

lens. The optical field at the back focal plane of the rear objective lens is expressed

by

U(r, z) =
−i
λf

eik(z+f)e
ik
2f

(1− z
f
)r2 , (4.15)

where z is the position offset of the moving objective lens, f is the focal length of the

rear objective lens, and the intensity of the focal point is normalized (by assuming

the focal point’s intensity is uniform as the objective lens moves). Subsequently, the

CSD is calculated by integrating over the two-point correlation of the optical field

over the traveling distance of the moving lens, which is given by

W (r1, r2) =
1

a(λf)2

∫ a/2

−a/2

e
ikz
2f2

(r22−r21)dz

=
1

a(λf)2
sinc

[
ka (r22 − r21)

4πf 2

]
.

(4.16)

Accordingly, the spectral degree of coherence, µ = sinc
[
ka(r22−r21)

4πf2

]
. In the experi-

ment, the moving objective lens can be carried by a stage, driven by a piezoelectric

motor with an oscillation frequency ω. Alternatively, a SLM can be a practical appa-
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ratus for creating the circular coherence. An experiment setup proposed to generate

and measure circularly coherent vortex beams is shown in Fig. 4.14. The circularly

coherent field is created by a laser source, a moving objective lens, and a fixed objec-

tive lens then reflected by a spatial light modulator (SLM) containing a binary fork

hologram to provide the spiral phase structure and the intensity profile of a vortex

beam. Subsequently, the circularly coherent beam goes through a pinhole mask to

project an interference fringe through an objective lens on the CCD camera. Pinhole

positions are adjustable so that the degree of coherence of any pair of concentric rings

are measurable.

Figure 4.14: Experiment setup for measuring circularly coherent vortex beams. A
circularly coherent field is created by (a) a laser and (b) a moving lens and a fixed
lens and reflected by (c) a SLM to impose the circular coherence upon a vortex beam.
The circularly coherent vortex beam goes through (d) a Young’s pinhole mask with
adjustable pinholes to measure the spectral degree of coherence of any concentric
rings. The interference fringe is projected by (e) an objective onto (f) a CCD.
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4.7 Discussion and Conclusion

This chapter demonstrates the paraxial propagation and coherence properties of

circularly coherent vortex beams, which are perfectly coherent for points located on

any concentric ring in the beam transverse plane. These beams are a generalization

of the original circularly coherent beams introduced by Santarsiero et al. [76]. The

simulation results show that the circular coherence is preserved on propagation, and

correlation singularities, in the form of correlation vortices and ring dislocations,

manifest for higher-order singularities.

These circularly coherent vortex beams show the self-focusing property of their

original non-vortex counterparts. The focal region formed by a coherent beam focused

by a lens and that formed by a self-focusing beam are compared: the circularly

coherent focal spot can have a contrast in azimuthal direction near the beam axis

comparable to that of a coherent beam, which illustrates a potential application in

imaging.

It is to be noted that these beams have already shown promise for propagation

through atmospheric turbulence, as a recent theoretical study demonstrated [79].

Furthermore, other researchers have looked at a broader class of self-focusing partially

coherent beams of which circular coherence is a special case [80]; those beams have

also been found to be resistant to turbulence effects in a recent study [81]. Most of

the beams considered in that self-focusing class, however, do not have perfect circular

coherence; the study described in this chapter is a complement to their work that

concentrates on the circular coherent case.

In future work, we hope to investigate the position stability of circularly coherent

vortex beams under a series of turbulence conditions. A study has demonstrated the

performance of these beams under turbulence conditions in terms of orbital angular

momentum (OAM) spectrum [79]. We want to further look at the amplitude and

the phase of CSDs under a fixed observing point, the spectral degree of coherence,
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and the amplitude of CSDs on propagation under turbulence conditions. We are also

interested in encoding a superoscillatory pattern onto these beams and evaluate their

performance, including but not limited to the effect of self-focusing of circular coher-

ence on superoscillatory fields. The results might indicate the potential of applying

circularly coherent superoscillatory fields with vortex structures for super-resolution

imaging.



CHAPTER 5: SUMMARY AND FUTURE WORK

5.1 Summary

This dissertation work developed the concept of controlling superoscillation-based

imaging with polarization and coherence. Superoscillation is a physical phenomenon

that shows local oscillations of a band-limited signal that fluctuate more rapidly

than the fastest Fourier component of the signal. Because the light spot from a

superoscillatory wave can be narrower than the Rayleigh spot of traditional lens

systems, superoscillatory imaging has been developed to achieve super-resolution.

As shown in the review of superoscillatory imaging methods in Chapter 1, although

superoscillatory imaging has demonstrated the ability to surpass the classic resolution

limit, problems associated with this technique need to be solved.

One of the problems that directly challenges the application of superoscillatory

imaging is the difficulty in designing and manufacturing a device to generate super-

oscillatory waves. In Chapter 2, mathematical formulas were applied to simplify filter

profiles based on a previous method. The new designed filters not only generated su-

peroscillatory field, but also had only one filtering profile, either a phase profile or

an amplitude profile, which provided a potential to reduce the difficulty in manu-

facturing. Simulation results illustrated the superoscillatory spots generated by the

designed filter. Energy efficiency of a phase-only type of filter was the same as that

of a complex filter.

Through literature reviews, it is immediately obvious that a significant problem of

superoscillatory imaging is large sidelobes coexisting with the superoscillatory central

lobe. Although optimization algorithms might be able to solve this problem, there

is a lack of explanation of how these methods work from a physics perspective. In
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Chapter 3, by considering the transverse electromagnetic wave nature of light, a vector

superoscillatory field was conceptualized to avoid sidelobes in the imaging process;

only light signals from the central lobe (with a unique polarization state from that of

sidelobes) are scattered toward a detector. A proposed imaging system incorporated a

light source to provide a vector superoscillatory field illumination in the image plane.

Simulated images of Rayleigh scatters under vector superoscillatory field illumination

showed a better visual resolution than those illuminated by the classic Rayleigh spot.

The final section of the chapter proposed a liquid crystal device to generate a vector

superoscillatory field.

Modern studies of impacts of partial coherence on imaging, and the most recent

study of behaviors of superoscillation on propagation, led to the study of circularly

coherent vortex beams in free-space propagation in Chapter 4. It shows how circular

coherence, with points on concentric rings that are perfectly coherent, can be consid-

ered for studying superoscillatory imaging. To achieve this goal, circularly coherent

vortex beams were created (with spiral phase structures located at beam centers),

which then demonstrates the second-order coherence properties of the beams, both

at the source plane and on free-space propagation. It is shown that the beams main-

tain a circular coherence, although their expression of degree of coherence changes

on propagation. It is also shown that the spiral phase structure remains intact. Fur-

thermore, an experiment setup shows how a circular coherence source can be created,

imposed on vortex beams, and measured for its degree of coherence. The maintained

circular coherence on propagation together with the self-focusing effect show the po-

tential of circularly coherent vortex beams for superoscillatory imaging.

5.2 List of Contributions

1. Theoretical derivation of two-dimensional image field by numerical window

Fourier transform.
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2. Design of phase-only and amplitude-only superoscillatory filter profiles.

3. Design of an imaging system incorporated with a vector superoscillatory field

illumination.

4. Extension of Foldy-Lax method for calculating the intensity of scattered field.

5. Development of a two-dimensional numerical Hankel transform algorithm for

optical beam propagation from Fresnel zone to Fraunhofer zone.

5.3 List of Related Publications

1. Qi, Rui, and Gregory J. Gbur. "Simplified superoscillatory lenses for super-

resolution imaging." JOSA A 39.12 (2022): C116-C125.

2. Qi, Rui, and Greg Gbur. "Super-resolution imaging system developed from

vector superoscillatory field illumination." Optics Letters 48.16 (2023): 4284-

4287.

3. Shiri, Arash, Rui Qi, and Greg Gbur. "Circularly coherent vortex beams opti-

mized for propagation through turbulence." JOSA A 41.6 (2024): B127-B134.

4. Rui Qi, Shiri, Arash, and Greg Gbur. "Circularly Coherent Vortex Beams with

Coherence Singularities in Free-space Propagation." Submit to JOSA.

5.4 Future Work

Several directions of future work are listed as follows.

Circularly coherent superoscillatory image field

As circularly coherent vortex beams have demonstrated self-focusing effect on prop-

agation, superoscillatory field with circular coherence might achieve a narrower super-

oscillatory spot than that of a coherent field. A circularly coherent superoscillatory

field be obtained in the following ways:
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1. Have the scalar field at the aperture plane (in Chapter 2) multiply an additional

phase factor (representing a lens transmittance) as the source plane field.

2. Have the source plane field multiply the degree of coherence of circular coher-

ence.

3. Propagate the field to an image plane in free space.

Circularly coherent beams under turbulence

Investigation is to be conduction for the stability of circularly coherent vortex

beams under a broad range of turbulence conditions, with an eye towards optimizing

them for free-space optical communications.

Binary superoscillatory filter

Unlike the step-like phase-only filter developed in Chapter 2, binary lenses, with

an amplitude transmittance of either 0 or 1, can be an alternative to the step-like

phase-only filter. In future work, mathematical formula for generating a binary profile

is to be investigated.
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APPENDIX A: DERIVATION OF TWO-DIMENSIONAL INTENSITY

DISTRIBUTION AT THE IMAGE PLANE

The intensity of the image point, (k,l), at the image plane, Ik,l, is obtained by

substituting the transmittance of the phase-only filter in spatial frequency domain

into Eq.(13), which is expressed as

Ik,l =|Ak,l|2

=|L2∆x′∆y′
∫ p

0

∫ p

0

exp{i[ϕ(fx, fy) + h(fx, fy) cos

(
2πbfx
∆fx

)
]}

exp{−2πi(kfx∆x
′ + lfy∆y

′)}dfxdfy|2.

(A.1)

Assume p = ∆fxM = ∆fyN , we express the integral over p as a summation of

integrals over ∆fx and ∆fy. Thus,

Ak,l =L
2∆x′∆y′

N−1∑
n=0

M−1∑
m=0

∫ (n+ 1
2
)∆fy

(n− 1
2
)∆fy

∫ (m+ 1
2
)∆fx

(m− 1
2
)∆fx

exp{i[ϕm,n(fx, fy) + hm,n(fx, fy) cos

(
2πbfx
∆fx

)
]}

exp{−2πi(kfx∆x
′ + lfy∆y

′)}dfxdfy.

(A.2)

We assume that ϕm,n(fx, fy) and hm,n(fx, fy) are constants within the rang of a

single pixel, {[(m − 1
2
)∆fx, (m + 1

2
)∆fx], [(n − 1

2
)∆fy, (n + 1

2
)∆fy]}, and then factor

out exp(iϕm,n). Ak,l is simplified as
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Ak,l =L
2∆x′∆y′

N−1∑
n=0

M−1∑
m=0

exp(iϕm,n)

∫ (n+ 1
2
)∆fy

(n− 1
2
)∆fy

∫ (m+ 1
2
)∆fx

(m− 1
2
)∆fx

exp{ihm,n cos

(
2πbfx
∆fx

)
} exp{−2πi(kfx∆x

′ + lfy∆y
′)}dfxdfy

=L2∆x′∆y′
N−1∑
n=0

M−1∑
m=0

exp(iϕm,n)∫ (n+ 1
2
)∆fy

(n− 1
2
)∆fy

∫ (m+ 1
2
)∆fx

(m− 1
2
)∆fx

exp{ihm,n cos

(
2πbfx
∆fx

)
}dfxdfy∫ (n+ 1

2
)∆fy

(n− 1
2
)∆fy

∫ (m+ 1
2
)∆fx

(m− 1
2
)∆fx

exp{−2πi(kfx∆x
′ + lfy∆y

′)}dfxdfy.

(A.3)

Since cos
(

2πbfx
∆fx

)
is periodic, the integral

∫ (n+ 1
2
)∆fy

(n− 1
2
)∆fy

∫ (m+ 1
2
)∆fx

(m− 1
2
)∆fx

exp{ihm,n cos

(
2πbfx
∆fx

)
}dfxdfy

=

∫ 1
2
∆fy

− 1
2
∆fy

∫ 1
2
∆fx

− 1
2
∆fx

exp{ihm,n cos

(
2πbfx
∆fx

)
}dfxdfy.

(A.4)
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Here, the integral

∫ (n+ 1
2
)∆fy

(n− 1
2
)∆fy

∫ (m+ 1
2
)∆fx

(m− 1
2
)∆fx

exp{−2πi(kfx∆x
′ + lfy∆y

′)}dfxdfy

=(− 1

2πik∆x′
) exp(−2πikfx∆x

′)
∣∣∣(m+

1
2
)∆fx

(m−1
2
)∆fx

(− 1

2πil∆y′
) exp(−2πilfy∆y

′)
∣∣∣(n+1

2
)∆fy

(n−1
2
)∆fy

=(− 1

2πik∆x′
) exp(−2πikm∆fx∆x

′)

[exp(−2πik 1
2
∆fx∆x

′)− exp(2πik 1
2
∆fx∆x

′)]

(− 1

2πil∆y′
) exp(−2πiln∆fy∆y

′)

[exp(−2πil 1
2
∆fy∆y

′)− exp(2πil 1
2
∆fy∆y

′)]

= exp(−2πikm∆fx∆x
′ − 2πiln∆fy∆y

′)∫ 1
2
∆fx

− 1
2
∆fx

∫ 1
2
∆fy

− 1
2
∆fy

exp(−2πik∆x′fx − 2πil∆y′fy)dfxdfy.

(A.5)

Substitute Eq.(31) and Eq.(32) into Eq.(30), we have

Ak,l =L
2∆x′∆y′

N−1∑
n=0

M−1∑
m=0

exp{iϕm,n − 2πi(km∆fx∆x
′ + ln∆fy∆y

′)}

∫ 1
2
∆fy

− 1
2
∆fy

∫ 1
2
∆fx

− 1
2
∆fx

exp{i[hm,n cos

(
2πbfx
∆fx

)
− 2π(k∆x′fx + l∆y′fy)]}dfxdfy.

(A.6)

Define u = 2πfx/∆fx and v = 2πfy/∆fy, then dfx = ∆fx
2π

du and dfy = ∆fy
2π

dv. As

a result,

Ak,l =L
2∆x′∆y′

N−1∑
n=0

M−1∑
m=0

exp{iϕm,n − 2πi(km∆fx∆x
′ + ln∆fy∆y

′)}

∆fx∆fy
4π2

∫ π

−π

∫ π

−π

exp{i[hm,n cos(bu)− k∆x′∆fxu− l∆y′∆fyv]dudv.

(A.7)
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Besides, with the relations of M = 1
∆x′∆fx

and N = 1
∆y′∆fy

, Ak,l is further simplified

as

Ak,l =
L2

MN

N−1∑
n=0

M−1∑
m=0

exp{iϕm,n − 2πi(
km

M
+
ln

N
)}

1

4π2

∫ π

−π

∫ π

−π

exp{i[hm,n cos(bu)−
k

M
u− l

N
v]}dudv.

(A.8)

Define Sm,n(k, l) as the scattering function, which is a function of position of the

image point. Sm,n(k, l) is expressed by

Sm,n(k, l) =
1

4π2

∫ π

−π

∫ π

−π

exp{i[hm,n cos(bu)−
k

M
u− l

N
v]}dudv. (A.9)

Substitute Eq. (36) into Eq. (35), we have

Ak,l =
L2

MN

N−1∑
n=0

M−1∑
m=0

exp{i[ϕm,n − 2π(
mk

M
+
nl

N
)]}Sm,n(k, l), (A.10)

which gives the two-dimensional field distribution at the image plane.

Finally, the intensity distribution at the image plane, Ik,l, is calculated by Ik,l =

|Ak,l|2.
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APPENDIX B: SCATTERING CALCULATION WITH FOLDY-LAX METHOD

FOR THREE PARTICLES

The scattered field is assumed to be a spherical wave, which relates to the illuminat-

ing field by a Green’s function. Since both the illuminating field and the scattering

field are vector field, we need to apply the Dyadic Green’s function. The Dyadic

Green’s function is expressed by

G(r, r′) =(I+
1

k2
∇∇)

exp ik|r− r′|
|r− r′|

=(I+
1

k
∇∇)

exp ikr12
r12

,

(B.1)

where r is the position of interest, r′ is the position of a scatter, ∇∇ is an operator of

a double partial derivative. Basically, this function characterizes the field scattered

by particles. If the incident field is E(i)(r), the field scattered by the particle is given

by

E(s)(r) = αG(r, r′)E(i)(r′), (B.2)

where α is the scattering potential of the scatterer. By calculating the ∇∇ operator

in G(r, r′), we get a G matrix with 9 components.

G(r, r′) =


Gxx(r, r

′) Gyx(r, r
′) Gzx(r, r

′)

Gxy(r, r
′) Gyy(r, r

′) Gzy(r, r
′)

Gxz(r, r
′) Gyz(r, r

′) Gzz(r, r
′)

 . (B.3)

By applying the relation in Eq. (B.2), we have the scattered field of a single scatter.

E(s)(r) = α


Gxx(r, r

′) Gyx(r, r
′) Gzx(r, r

′)

Gxy(r, r
′) Gyy(r, r

′) Gzy(r, r
′)

Gxz(r, r
′) Gyz(r, r

′) Gzz(r, r
′)



E

(i)
x

E
(i)
y

E
(i)
z

 , (B.4)
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For a field covering multiple scatterers, the total field is the sum of illuminating

field and the total scattered field of all the particles. To simplify the calculation, we

consider the detector as a scatterer, j = 3, with its scattering potential as 0. Then,

we neglect all the points without a scatterer. Here, we have a total of three points

involved in the calculation. In addition, we need to exclude the self-energy of each

scatterer. Finally, the expression for the total electric field at a position interest is

given by

E(ri) = Ei(ri) + Σi ̸=jαjG(ri, rj)E(rj). (B.5)

Then, we use matrix calculation to obtain the total field at the three positions (two

particles and a detector) simultaneously.


E(r1)

E(r2)

E(r3)

 =


E(i)(r1)

E(i)(r2)

E(i)(r3)

+


α1 α2 α3

α1 α2 α3

α1 α2 α3



G(r1, r

′
1) G(r1, r

′
2) G(r1, r

′
3)

G(r2, r
′
1) G(r2, r

′
2) G(r2, r

′
3)

G(r3, r
′
1) G(r3, r

′
2) G(r3, r

′
3)



E(r1)

E(r2)

E(r3)

 ,
(B.6)

Then, we have

(I−


α1 α2 α3

α1 α2 α3

α1 α2 α3



G(r1, r

′
1) G(r1, r

′
2) G(r1, r

′
3)

G(r2, r
′
1) G(r2, r

′
2) G(r2, r

′
3)

G(r3, r
′
1) G(r3, r

′
2) G(r3, r

′
3)

)

E(r1)

E(r2)

E(r3)

 =


E(i)(r1)

E(i)(r2)

E(i)(r3)

 (B.7)

Then, the electric field at positions of interest is


E(r1)

E(r2)

E(r3)

 = (I−


α1 α2 α3

α1 α2 α3

α1 α2 α3



G(r1, r

′
1) G(r1, r

′
2) G(r1, r

′
3)

G(r2, r
′
1) G(r2, r

′
2) G(r2, r

′
3)

G(r3, r
′
1) G(r3, r

′
2) G(r3, r

′
3)

)−1


E(i)(r1)

E(i)(r2)

E(i)(r3)


(B.8)
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Next, we expand the incident field and the total field with its x, y, and z components

as


E(r1)

E(r2)

E(r3)

 =



Ex(r1)

Ex(r2)

Ex(r3)

Ey(r1)

Ey(r2)

Ey(r3)

Ez(r1)

Ez(r2)

Ez(r3)



, (B.9)

and


E(i)(r1)

E(i)(r2)

E(i)(r3)

 =



E
(i)
x (r1)

E
(i)
x (r2)

E
(i)
x (r3)

E
(i)
y (r1)

E
(i)
y (r2)

E
(i)
y (r3)

E
(i)
z (r1)

E
(i)
z (r2)

E
(i)
z (r3)



, (B.10)

And, we construct the G matrix as shown in figure below
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Figure B.1: Construction of a G matrix

Then, we can write Eq. (B.10) in a simplified form as

Eq(ri) = (1− Σ3
p=1Σ

3
j=1Gp,q(ri, rj))

−1E(i)
p (rj), (B.11)

where p and q are the index of coordinates of x, y, and z, for electric field at positions

of interest and scatterers, respectively. ri and rj are position vectors of positions of

interest and scatterers, respectively.

Here, we show an example for deriving G matrix component Gxx.

Gxx(r, r
′) =(I+

1

k2
∇x∇x)

exp ik|r− r′|
|r− r′|

=(I+
1

k
∇x∇x)

exp ikr12
r12

,

(B.12)

where r12 = |r1 − r′2|. Then,

Gxx(r12) =
exp (ikr12)

r12
+

1

k2
∇x

∂

∂x

exp(ikr12)

r12

=
exp (ikr12)

r12
+

1

k2
∇x(

1

r12

∂ exp (ikr12)

dx
+ exp ikr12

∂r−1
12

dx
).

(B.13)

Here,

∂ exp (ikr12)

dx
=
ikx12 exp (ikr12)

r12
, (B.14)

and
∂r−1

12

dx
= −x12

r312
. (B.15)
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Then,

Gxx(r, r
′) =

exp (ikr12)

r12
+

1

k2
∇x(

ikx12 exp (ikr12)

r212
− x12 exp (ikr12)

r31
)

=
exp (ikr12)

r12
+

1

k2
(
∂

dx

ikx12 exp (ikr12)

r212
− ∂

dx

x12 exp (ikr12)

r31
)

=
exp (ikr12)

r12
+

1

k2
(
ik exp (ikr12)

r212
+
ikx12

r12

∂exp (ikr12)

dx

+ ikx12 exp (ikx12)
∂r−2

12

dx
− exp (ikr12)

r312
− x12

r312

∂exp (ikr12)

dx

− x12 exp (ikr12)
∂r−3

12

dx
).

(B.16)

Here,

∂r−2
12

dx
= 2

x12

r412
, (B.17)

and
∂r−3

12

dx
= −3

x12

r512
. (B.18)

Finally, we have

Gxx(r, r
′) =

exp (ikr12)

r12
+

1

k2
(
ik exp (ikr12)

r212
− k2x2

12 exp (ikr12)

r312
− exp (ikr12)

r312

− 3ikx2
12 exp (ikr12)

r412
+

3x2
12 exp (ikx12)

r512
).

(B.19)

Then, we can derive the other 8 components with the same method, as listed below.

Gyy(r, r
′) =

exp (ikr12)

r12
+

1

k2
(
ik exp (ikr12)

r212
− k2y2

12 exp (ikr12)

r312
− exp (ikr12)

r312

− 3iky2
12 exp (ikr12)

r412
+

3y2
12 exp (iky12)

r512
).

(B.20)
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Gzz(r, r
′) =

exp (ikr12)

r12
+

1

k2
(
ik exp (ikr12)

r212
− k2z212 exp (ikr12)

r312
− exp (ikr12)

r312

− 3ikz212 exp (ikr12)

r412
+

3z212 exp (ikz12)

r512
).

(B.21)

Gxy(r, r
′) =Gyx(r, r

′)

=
exp (ikr12)

r12
+

1

k2
(
3 exp (ikr12)x12y12

r512
− 3ik exp (ikr12)x12y12

r12

− k2 exp (ikr12)x12y12

r312
.

(B.22)

Gxz(r, r
′) =Gzx(r, r

′)

=
exp (ikr12)

r12
+

1

k2
(
3 exp (ikr12)x12z12

r512
− 3ik exp (ikr12)x12z12

r12

− k2 exp (ikr12)x12z12
r312

.

(B.23)

Gyz(r, r
′) =Gzy(r, r

′)

=
exp (ikr12)

r12
+

1

k2
(
3 exp (ikr12)z12y12

r512
− 3ik exp (ikr12)z12y12

r12

− k2 exp (ikr12)z12y12

r312
.

(B.24)
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APPENDIX C: VECTOR FIELD TRANSMITTED BY A LIQUID CRYSTAL

CELL

The Jones matrix represents of a liquid crystal cell, i, is given by [82]

Ti = R(−αdi)

e−iβdi/2 0

0 eiβdi/2

 , (C.1)

where R(−αdi) is a rotation matrix in the form of

R(θ) =

 cos θ sin θ

− sin θ cos θ

 . (C.2)

Thus, the Jones matrix is a wave retarder of retardation βdi with the slow axis along

the x direction, followed by polarization rotator of angle θ. The vector field after

passing through the liquid crystal cell, i, is given by

Exi

Eyi

 = Ti

ULi

0

 =R(−αdi)

e−iβdi/2 0

0 eiβdi/2


ULi

0


=R(−αdi)

ULie
−iβdi

0

 eiβdi/2.
(C.3)

As the input vector field is polarized along the x direction, the liquid crystal cell

only introduces a phase shift in the x direction other than in the y direction. By
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substituting the rotation matrix,

Exi

Eyi

 =

 cos θ sin θ

− sin θ cos θ


ULie

−iβdi

0

 eiβdi/2

=

 ULie
−iβdi cos θ

−ULie
−iβdi sin θ

 eiβdi/2

=

 ULi cos θ

−ULi sin θ

 e−iβdieiβdi/2

=

 ULi cos θ

−ULi sin θ

 e−iβdi/2

=

 Exi

−Eyi

 e−iβdi/2.

(C.4)

Therefore, θ = tan−1 Ey

Ex
is the angle of rotation. Figure below shows the relation

between U and Ex and Ey.

Figure C.1: Relation between U and Ex and Ey.

An additional lens array might be needed to compensate for the difference of phase
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shift due to the thickness variations among different liquid crystal cells by

Ex

Ey

 =

 Ex

−Ey

 e−iβdi/2e−iβ∆di/2

=

 Ex

−Ey

 e−iβ(di+∆di)/2.

(C.5)

We can see that the vector field passing through the liquid crystal cells matches the

calculated vector fields for realizing a polarized superoscillatory field in the aperture

plane in Eq. (3.36). Here, we set orientation angle α = α+π/2 in the annulus regions

of Ex to compensate the π phase shift in the annulus regions of Ex.
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APPENDIX D: DERIVATION OF A FAR-FIELD CSD

The CSD at distance z is given by substitute Eq. (4.10) into Eq. (4.12),

W (r1, r2; z) =
1

(λz)2

∫
⊓(v)dNv∫∫

S∗(r′1)S(r
′
2)e

iv
(r′22 −r′21 )

δ2u e−
ik
2z

(r1−r′1)
2

e
ik
2z

(r2−r′2)d2r′21 d
2r′2

=
1

(λz)2

∫
⊓(v)dNv∫

S∗(r′1)e
−ivr′21 /δ2ue−

ik
2z

(r1−r′1)
2

d2r′1∫
S(r′2)e

ivr′22 /δ2ue
ik
2z

(r2−r′2)
2

d2r′2.

(D.1)

For a vortex beam,

S(r) = r|m|eimϕe−r2/2σ2
s . (D.2)

By substituting Eq. (D.2) into Eq. (4.13),

W (r1, r2; z) =
1

(λz)2

∫
⊓(v)dNv

∫
r
′|m|
1

e−imϕ′
1e−r′21 /2σ2

se−ivr′21 /δ2ue−
ik
2z

(r1−r′1)
2

d2r′1∫
r
′|m|
2 eimϕ′

2e−r′22 /2σ2
seivr

′2
2 /δ2ue

ik
2z

(r2−r′2)
2

d2r′2.

(D.3)

The integral related with r′1 is expanded with polar coordinates as

∫
f(r′1)dr

′
1 =

∫∫
r
′|m|+1
1 e−imϕ′

1e−r′21 /2σ2
se−ivr′21 /δ2ue−

ik
2z

r21

e
ik
z
r′1r1 cos (ϕ1−ϕ′

1)e−
ik
2z

r′21 dr′1dϕ
′
1

=e−
ik
2z

r21eimϕ1

∫
r
′|m|+1
1 e−r′21 /2σ2

s−ivr′21 /δ2u− ik
2z

r′21 dr′1∫ 2π

0

ei(−m)(ϕ′
1−ϕ1)e

ik
z
r′1r1 cos (ϕ

′
1−ϕ1)dϕ′

1.

(D.4)

As Jn(z) = 1
2πin

∫ 2π

0
eiz cosϕeinϕdϕ,
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∫
f(r′1)dr

′
1 =2πi|m|e−

ik
2z

r21eimϕ1∫
r
′|m|+1
1 e

−r′21 ( 1

2σ2
s
+ iv

δ2u
+ ik

2z
)
J|m|(

kr1r
′
1

z
)dr′1.

(D.5)

Define α = 1
2σ2

s
− iv

δ2u
− ik

2z
,

∫
f(r′1)dr

′
1 =2πi|m|e−

ik
2z

r21eimϕ1∫
r
′|m|+1
1 e−α∗r′21 J|m|(

kr1r
′
1

z
)dr′1.

(D.6)

As
∫
xv+1e−αx2

Jv(βx)dx = βv

(2α)v+1 e
−β2

4α ,

∫
f(r′1)dr

′
1 =2πi|m|e−

ik
2z

r21eimϕ1
(kr1/z)

|m|

(2α∗)|m|+1
e−

(kr1/z)
2

4α∗ . (D.7)

Similarly, the integral of r′2 is simplified as

∫
f(r′2)dr

′
2 =2πi|m|e

ik
2z

r22e−imϕ2
(−kr2/z)|m|

(2α)|m|+1
e−

(kr2/z)
2

4α . (D.8)

By substituting Eq. (D.7) and Eq. (D.8) into Eq. (D.3),

W (r1, r2; z) =
4π2

(λz)2
(
kr1
z

)|m|(
kr2
z

)|m|e
ik
2z

(r22−r21)eim(ϕ1−ϕ2)∫
⊓(v) 1

(2α∗)|m|+1

1

(2α)|m|+1
e−

(kr1/z)
2

4α∗ e−
(kr2/z)

2

4α dv.

(D.9)
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APPENDIX E: FAR-FIELD CSD WITH LEVIN METHOD

A Levin method which was developed for numerical integration of functions with

oscillatory kernels is implemented for simulating the far-field CSDs derived in Ap-

pendix A. Assume the integration is given by

I =

∫ b

a

f(v)w(v)dv =

∫ b

a

⟨f, w⟩(v)dv, (E.1)

where f(v) is a n-vector non-oscillatory function and w(v) is a n-vector rapidly oscil-

latory function. The idea of Levin method is to approximate the integrand, ⟨f, w⟩, by

the derivative of the product of a polynomial function, p, and the oscillatory function,

w, as

⟨f, w⟩ = ⟨p, w⟩′, (E.2)

so that the integration is simplified as the difference between the product of p and w

at the two boundaries, as

I =

∫ b

a

⟨p, w⟩′(v)dv = pt(b)w(b)− pt(a)w(a). (E.3)

To identify the expression of the polynomial function, p, we expand ⟨p, w⟩′ as

⟨p, w⟩′ =⟨p′, w⟩+ ⟨p, w′⟩ = ⟨p′, w⟩+ ⟨p,Aw⟩

= ⟨p′ + Atp, w⟩ = ⟨f, w⟩,
(E.4)

where assume w′ = Aw, A is non-rapidly oscillatory and At is the transpose of A.

Then,

p′ + Atp = f. (E.5)
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Here, we approximate the nth order polynomial p(n)(v) as

p(n)(v) = Σn
k=1ckv

k, (E.6)

where coefficients, ck, are determined by the collocation condition of Eq. (E.5):

Σn
k=1kckv

k−1
j + AtΣn

k=1ckv
k
j = f(vj), (E.7)

where {vj}nj=1 are distributed in [a, b]. Finally, the integral of n-points approximation

is

In = p(n)(b)w(b)− p(n)(a)w(a). (E.8)

In this problem, according to Eq. D.9 the non-oscillatory function f(v) is

f(v) = ⊓ (v)
1

(2( 1
2δ2s

− iv
δu2 − ik

2z
)∗)|m|+1

1

2( 1
2δ2s

− iv
δu2 − ik

2z
)|m|+1

.

(E.9)

The oscillatory function w(v) is

w(v) = exp{− (kr1/z)
2

4( 1
2δ2s

− iv
δu2 − ik

2z
)∗
}

exp{− (kr2/z)
2)

4( 1
2δ2s

− iv
δu2 − ik

2z
)
},

(E.10)

and

w′(v) =

[
(kr1/z)

2(i/δ2u)

4( 1
2σ2

s
+ iv

δ2u
+ ik

2z
)2

− (kr2/z)
2(i/δ2u)

4( 1
2σ2

s
− iv

δ2u
− ik

2z
)2

]

w(x)

= Aw(x).

(E.11)
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By substituting A into Eq. (E.7), coefficients ck can be calculated by solving n linear

equations. Finally, W (r1, r2) can be calculated by substituting p(n)(v) and Eq. (E.10)

into Eq. (E.8).
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APPENDIX F: SPECTRAL DENSITY PROFILE WITH NUMERICAL HANKEL

TRANSFORM

The spectral density profile S(r; z) is given by

S(r; z) =
1

(λz)2

∫∫
W0(r

′
1, r

′
2)e

− ik
2z

(r−r′1)
2

e
ik
2z

(r−r′2)
2

d2r′1d
2r′2

=
k2

z2

∫∫
W0(r

′
1, r

′
2)e

ik
2z

(r′22 −r′21 )J0(
kr

z
r′1)

J0(
kr

z
r′2)r

′
1r

′
2dr

′
1dr

′
2.

(F.1)

Numerical Hankel transform is applied to calculate S(r; z). According to Yu [83], a

method is developed by approximating the input function by a Fourier-Bessel series

over a finite integration interval. Here, we extend the original method from a one-

dimensional transformation to a two-dimensional transformation. This method leads

to a symmetric transformation matrix for the Hankel transform. The output matrix

represents the CSD and diagonal elements represent the spectral density. Zero-order

two-dimensional Hankel transforms are

f2(u, v) =2π

∫∫ ∞

0

f1(x, y)J0(2πxu)J0(2πyv)xydxdy, (F.2)

and

f1(x, y) =2π

∫∫ ∞

0

f2(u, v)J0(2πxu)J0(2πyv)uvdudv. (F.3)

Expand f1(x, y) and f2(u, v) by zero-order Fourier-Bessel series and substitute u =

jp
2πX

and v = jq
2πY

, x = jm
2πU

, and y = jn
2πV

,

f2(
jp

2πX
,
jq

2πY
) =

1

πU2V 2

∞∑
n=1

∞∑
m=1

f1(
jm
2πU

,
jn
2πV

)

J−2
1 (jn)J

−2
1 (jm)J0(

jnjp
S2

)J0(
jmjq
S1

),

(F.4)
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and

f1(
jm
2πU

,
jn
2πV

) =
1

πX2Y 2

∞∑
q=1

∞∑
p=1

f2(
jp

2πX
,
jq

2πY
)

J−2
1 (jq)J

−2
1 (jp)J0(

jpjm
S1

)J0(
jqjn
S2

),

(F.5)

where jm, jn, jp,and jq are positive roots of the zero-order Bessel function, and S1 =

2πUX and S2 = 2πV Y . Define

F1(m,n) = f1(
jm
2πU

,
jn
2πV

)J−1
1 (jm)J

−1
1 (jn)XY, (F.6)

and

F2(p, q) = f2(
jp

2πX
,
jq

2πY
)J−1

1 (jp)J
−1
1 (jq)UV. (F.7)

Then,

f1(
jm
2πU

,
jn
2πV

) = F1(m,n)
J1(jm)J1(jn)

XY
, (F.8)

and

f2(
jp

2πX
,
jq

2πY
) = F2(p, q)

J1(jp)J1(jq)

UV
. (F.9)

Substitute Eq. (F.9) into Eq. (F.5) then Eq. (F.6),

F1(m,n) =
4

S1S2

∞∑
q=1

∞∑
p=1

F2(p, q)

J0(
jpjm
S1

)J0(
jqjn
S2

)

J1(jp)J1(jq)J1(jm)J1(jn)
.

(F.10)

Substitute Eq. (F.8) into Eq. (F.4) then Eq. (F.7),

F2(p, q) =
4

S1S2

∞∑
n=1

∞∑
m=1

F1(m,n)

J0(
jnjp
S2

)J0(
jmjq
S1

)

J1(jm)J1(jn)J1(jp)J1(jq)
.

(F.11)
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Define

Cpm = J0(
jpjm
S1

)J−1
1 (jp)J

−1
1 (jm), (F.12)

and

Cqn = J0(
jqjn
S2

)J−1
1 (jq)J

−1
1 (jn). (F.13)

Finally, the Hankel transform pairs are expressed by a matrix transformation as

F1(m,n) =
4

S1S2

Q∑
q=1

P∑
p=1

CT
pmF2(p, q)Cqn, (F.14)

and

F2(p, q) =
4

S1S2

N∑
n=1

M∑
m=1

CpmF1(m,n)C
T
qn. (F.15)

To implement this method, we simply substitute f1 = S∗(r′1)S(r
′
2)sinc

(
r′22 −r′21

δ2u
) exp{ ik

2z
(r′22 − r′21 )} for circularly coherent beams and f1 = S∗(r′1)S(r

′
2)

exp{ ik
2z
(r′22 − r′21 )} for coherent beams. For vortex beams of an azimuthal order, M ,

this method can be extended to the higher order by modifying the transformation

matrix as

Tpm = JM(
jpjm
S1

)J−1
M+1(jp)J

−1
M+1(jm). (F.16)


