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ABSTRACT

AHMED AL SALIH. Byzantine Fault Tolerant Consensus For Hyperledger Fabric.
(Under the direction of DR. YONGGE WANG)

Decentralized systems play a crucial role in both the public and private sectors,

addressing a wide range of organizational needs. At the core of these systems is the

dissemination protocol. Hyperledger Fabric is a leading platform for production-ready

distributed network systems. Although Hyperledger Fabric is designed to support

pluggable consensus protocols, it needs more detailed technical guidance on integrat-

ing new consensus modules. Initially, Fabric employed Kafka as its consensus protocol

but later transitioned to Raft. Both Kafka and Raft are Crash Fault-Tolerant (CFT)

protocols that do not account for Byzantine fault-tolerant participants. This research

explores the necessary steps to integrate a consensus protocol into Hyperledger Fab-

ric, focusing specifically on incorporating the Byzantine Fault Tolerant (BFT) BDLS

protocol. Our proposed BFT solution, inspired by the initial Dwork, Lynch, and

Stockmeyer (DLS) protocol and adapted as the Blockchain DLS (BDLS) protocol, is

recognized as one of the most efficient and promising BFT protocols for blockchain

systems. This study provides a comprehensive technical analysis of integrating BDLS

into Hyperledger Fabric, highlighting the complexities and advantages of this inte-

gration. Chapter five presents a performance comparison between Raft-based and

BDLS-based Hyperledger Fabric. The findings demonstrate that Hyperledger Fabric,

when utilizing the BDLS protocol, achieves performance levels comparable to those of

the Raft-based Fabric. In 2024, Hyperledger Fabric announced a new BFT solution,

SmartBFT, in the beta release of Fabric version 3.0. However, SmartBFT, which

originates from the Practical Byzantine Fault Tolerance (PBFT) protocol, faces sig-

nificant scalability challenges due to its high message complexity. This complexity

severely impacts network efficiency, particularly in large-scale deployments in sectors
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such as healthcare, finance, and education. Our research shows that the message

complexity of SmartBFT increases quadratically with the number of ordering nodes,

resulting in substantial communication overhead. In contrast, our proposed BDLS

protocol maintains linear message complexity, making it more scalable and efficient

for large networks. Furthermore, our research proposes a solution to enhance the

security of IoT-Edge servers and Cloud replicas within the new Fabric-BDLS frame-

work. The experimental results indicate that BDLS provides consistent performance

advantages. Throughput analysis of Fabric 3.0 reveals a significant performance drop

for SmartBFT, achieving only 40% and 20% of Raft’s throughput in LAN and WAN

environments, respectively. Conversely, BDLS-based Fabric achieves 90% to 95% of

Raft’s throughput, underscoring its superior scalability and efficiency and instilling

confidence in its suitability for large-scale deployments. All the codes are available in

the GitHub repository: https://github.com/BDLS-bft/fabric.
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CHAPTER 1: INTRODUCTION

The enterprise blockchain market, which includes permissioned platforms like Hy-

perledger Fabric, is projected to grow significantly from $4.9 billion in 2021 to

an estimated $50 billion by 2030, with a compound annual growth rate (CAGR)

of 33.6% reported by Fortune Business Insights [1] and MarketsandMarkets [2].This

rapid expansion highlights the increasing adoption of blockchain technology in various

industries, driven by its ability to provide secure, decentralized, and efficient solutions

for business operations. As enterprises scale their blockchain deployments, the de-

mand for robust consensus mechanisms, such as Byzantine Fault Tolerant (BFT)

models, will continue to grow to ensure system security, trust, and fault tolerance.

In specific sectors, blockchain adoption is also accelerating. For instance, the

blockchain market within the supply chain sector is expected to reach $15 billion

by 2028, as organizations increasingly rely on distributed ledger technologies to

enhance transparency, security, and traceability across global supply chains (Allied

Market Research, 2023) [3].

Similarly, the healthcare sector is forecasted to see blockchain integration grow to

$5.61 billion by 2027, driven by the need for secure and tamper-resistant systems

for managing patient data and pharmaceutical supply chains (ResearchAndMarkets,

2023) [4].

These projections underscore the critical role of secure consensus protocols in ensur-

ing the reliability and scalability of permissioned blockchain networks like Hyperledger

Fabric in enterprise applications.

Hyperledger Fabric Orderer system plays a crucial role in ensuring the consistency

and reliability of transactions within a Hyperledger Fabric network. The selection
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of an appropriate consensus protocol is paramount to achieving these objectives.

This research delves into the technical aspects of implementing the mechanism for

ordering Hyperledger Fabric with an emphasis on the Raft consensus. Furthermore,

it explores the steps required to plug any consensus protocol into the Hyperledger

Fabric Orderer service, exemplifying this process by integrating the Byzantine Fault

Tolerance protocol BDLS [5]. The Raft protocol [6], known for its simplicity and

crash fault-tolerance characteristics, has gained prominence in distributed systems.

By understanding its inner workings, participants can grasp how it enhances the

resiliency and performance of the Orderer system. Additionally, exploring the steps

required to integrate the BDLS protocol is a foundation for seamlessly incorporating

other consensus protocols. This research will go beyond theoretical concepts and

provide practical insights into technical implementation. We will share our firsthand

experience integrating the BDLS consensus protocol, proposing precise steps for the

integration phases. By showcasing this integration, the reader will better understand

the intricacies and advantages of combining alternative consensus protocols with the

Hyperledger Fabric Orderer system. Overall, this research provides a comprehensive

knowledge of the technical implementation of the Hyperledger Fabric Orderer system,

with a particular focus on the Raft protocol. By demonstrating the integration of the

BDLS protocol, readers will gain valuable insights into the steps required to plug any

consensus protocol into the Hyperledger Fabric Orderer service.

Furthermore,In this research we presents a comprehensive analysis of the BDLS

consensus protocol, with a focus on its application in blockchain systems. The key

contributions include the introduction of an optimized message complexity model that

enhances the scalability of BDLS in comparison to traditional Byzantine Fault Toler-

ant (BFT) protocols. Additionally, we provide detailed performance results, demon-

strating that BDLS achieves a significantly higher throughput in terms of transactions

per second (TPS) under realistic network conditions. Specifically, our experiments
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demonstrate that BDLS reaches 90% to 95% of Raft’s TPS, outperforming existing

BFT solutions in similar environments. These results underline the potential of BDLS

for improving the efficiency of large-scale, production-grade blockchain deployments.

At the end of the introduction, this thesis is structured as follows: Chapter 1 pro-

vides a comprehensive overview of blockchain technology, with a focus on Hyperledger

Fabric, including its architecture, components, transaction flow, and consensus proto-

cols. It also explores security issues and relevant attacks, concluding with a review of

related work. Chapter 2 delves into the structure and function of the Fabric Orderer,

detailing the history of consensus algorithms and the mechanics of the Raft consensus.

Chapter 3 presents the core contribution of this research, which involves integrating

the Byzantine Fault Tolerant BDLS protocol into Hyperledger Fabric by examining

BDLS’s integration and implementation within Fabric, including code changes and

network setup. Chapter 4 focuses on securing IoT, Edge, and Cloud systems through

the use of BDLS, addressing performance and security challenges in these environ-

ments. Chapter 5 evaluates the performance of BDLS within Hyperledger Fabric

through a series of experiments comparing it to Raft and SmartBFT, highlighting

BDLS’s superior scalability and efficiency in large-scale deployments. Chapter 6

presents the complete BDLS-Fabric architecture. Finally, Chapter 7 presents the

conclusions drawn from this research, summarizing the key findings and discussing

their implications for future work in the field.
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1.1 Literature Review

The proliferation of technology has enabled several trends, including blockchain

technology, which is very promising for developing decentralized networks where par-

ticipants can cooperate to verify and endorse each transaction instead of relying on

central authority. Blockchain technology brings profound benefits to businesses and

individuals that could improve human lifestyles in many industrial sectors, such as

finance transactions, health, and supply chains. A recent study indicated that the

Hyperledger Fabric framework is one of the frameworks that has witnessed a notice-

able growth among open source developers [7]. The decentralized technology relies on

distributed ledgers that are managed by a group of nodes (peers) in lieu of a central-

ized authority that validates new transactions in the chaincode. By the end of 2024,

it is expected that corporations will spend approximately $20 billion US dollars per

year towards blockchain technical services [7]. The decentralized mechanism elimi-

nates the necessity of a trusted intermediary entity [8] at the same time, it is widely

distributed among the networks, ensuring the immutability, traceability, and trust-

worthiness of every newly added transaction. Based on Forbes Blockchain 50 2021 in

their third annual, Blockchain 50 recognizes companies that have at least $1 billion

in revenue or market capitalization who are pioneers in the use of distributed ledger

blockchain [9]. In fact, the Hyperledger Fabric is permissioned to enable nodes to con-

firm which one approves the newly added transactions. It is still an open source to

enable researchers and practitioners to design their own customized smart contracts.

This brings several benefits: nodes run tamper-proof consensus algorithms, broad-

cast transactions to other network peers, and update the chaincode state. Despite

the great benefits of the decentralized. This chapter objective is to shed light on the

current security challenges in decentralized blockchain technology, specifically focus-

ing on investigating the security attacks and threats impacting the Hyperledger Fabric

framework. The purpose of this chapter is to discuss and investigate current litera-
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ture on permissioned blockchain, specifically Hyperledger Fabric security challenges.

We further review the security approaches comparatively, discuss their advantages,

and highlight their shortcomings. In addition, due to the variety of security research

problems related to the consensus protocols, we aim to present a comparative study

of the consensus protocols. We also focused on the partially synchronized network

model such as Raft, which serves as a Hyperledger Fabric consensus protocol. Our

study provides insight on several relevant security threats, including Denial of Service

attacks (DoS), and discusses a literature review on a possible solution.

The rest of this chapter as follows: section 2 introduces the Hyperledger Fabric major

concepts. In section 3, we shed some light on Hyperledger Fabric vulnerabilities and

the impact on the HLF system. In section 4, we further discuss the attacks that im-

pact Hyperledger itself. Then, in section 5, continued efforts are needed to investigate

new directions and open problems that are worth examining. Finally, in section 6,

we conclude the literature review chapter.

1.2 Hyperledger

Hyperledger is an open-source project that maintains a distributed ledger [10] typ-

ically implemented within a peer-to-peer network [8] and code base [11]. Hyperledger

developed several frameworks as a business blockchain. All the frameworks are open

source and for general uses, implying that the business is free to store any form of

asset that serves the organization’s needs, except for Hyperledger Indy, which is a

framework for decentralized identity management. Hyperledger is a collaborative ef-

fort that maintains a ledger of record as it is named “blocks”. The blocks contain the

transactions per that particular asset [12]. The blocks are safeguarded against tamper-

ing. The cryptographic hashes, as well as a consensus process, prevent blocks against

manipulation. To provide an adequate definition of the Blockchain, which is an im-

mutable ledger that records transactions in a distributed network [13]. In the different

use cases, distributed ledgers may have radically different needs. When participants
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have a high level of confidence, such as between financial institutions with Human

Resources, blockchains can use a faster consensus process to add blocks to the chain

with quicker confirmation periods. When there is less trust between players, on the

other hand, they must accept slower processing for additional security. Hyperledger

supports a wide range of use cases [14]. The members of Hyperledger’s networks are

called peers [13]. Peers normally in a Hyperledger network are untrusting peers. Each

individual peer maintains a copy of the ledger. In order to validate the transactions,

the peer uses a consensus protocol for validation [13]. The type of participation that

allows any peers within the network to participate is called permissionless or public.

Based on the economic incentives or the (PoW) proof of work, public networks using

native cryptocurrency also involve a consensus. The Cryptocurrency trading platform

are open and decentralized. Therefore, the ownership of the actual Cryptocurrency

transfers from one to another is a permissionless blockchain [15] as Bitcoin [8] and

Ethereum [16]

It is now well established that the nature of Blockchain security remains unclear.

However, the influence of Hyperledger Fabric on Blockchain has brought potential so-

lutions to enhance the security of the blockchain. In this survey chapter, we present

a combination of common security issues and possible solutions. As in, the decentral-

ized system does not depend on the trusted party but on cryptographic proof. [8].

1.2.1 Permissionless Vs Permissioned blockchains

Permissionless Blockchain is a public blockchain open for anyone to participate in,

with no permission needed to gain access to the blockchain network. The identity re-

mains unknown to the participants. Permissionless blockchain’s main characteristics:

• Decentralized Permissionless blockchain architecture is fully decentralized, and

there is no centralized unit that controls the network or is able to shut down

the network.
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• Anonymousness permissionless blockchain opens for everyone, resulting in any-

one joining the network, and the participant can choose to stay relatively anony-

mous, as there is no need to declare the identity in order to get an address that

allows performing transactions.

• The transparency for all the transactions is accessible by the public nodes and

could also be defined as the data on permissionless blockchains being publicly

visible.

• The performance depends on the gigantic number of participants in the network.

To some extent, it is slower than the permissioned blockchain network, and the

scalability is difficult.

• Consensus transaction cost is higher as the mining algorithm utilizes a lot of

computing resources and electricity to solve the complicated mathematical equa-

tion. The consensus algorithm usually uses Proof-of-Work (PoW), Proof-of-

Stake as we see that in cryptocurrency Bitcoin [17] [8] [18] and Ethereum [19].

A permissioned Blockchain is also called a private network that operates within a

predefined set of known and identified participants. The following are some distinct

characteristics:

• Fluctuating decentralized or partially decentralized since the concept of blockchain

consensus validation or participation gives the network the nature of decentral-

ized theory, which allows the admin to control who controls adding new nodes

to the blockchain network.

• The consensus algorithm within the private network. The traditional algorithm

should satisfy the validation criteria, which do not use and consume costly

mining as Byzantine fault-tolerant (BFT), or crash fault-tolerant (CFT). Since
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the participants in the network require permission to be granted, that offers

more flexibility and gives the freedom of choice.

• Identified any participant needs to have permission to participate in the network.

Based on the pre-determined access, the permissioned blockchain is also called

a private network.

• The network performance is efficient. The transaction speed is faster, and the

scalability is easy in the permissioned blockchain. The reason all the network

members are predetermined includes a small set of participants. What makes

the networks easy to scale is that the network participants are not an exception

for unexpected growth since the access is controlled and not open to the public.

1.2.2 Hyperledger Fabric

Hyperledger Fabric is the most mature framework among the enterprise distributed

ledger technology(DLT) platforms and operates as a permissioned network. The Hy-

perledger Fabric was established by IBM and then adopted by the Linux Foundation

to become an open source. Then multiple technology providers joined a collaborative

work, including IBM, Samsung, and Oracle, which had grown to over 60 organi-

zations [20] providing an open-source enterprise-grade platform that operated and

supported by the Linux Foundation [21]. Hyperledger Fabric is a framework involv-

ing a modular blockchain and configurable architecture, this includes key components

such as consensus mechanisms and membership services. Fabric is a distributed oper-

ating system [22] [13] that enables network members to be recognized and must have

permission granted in order to have access to the ledger. This type of Hyperledger is

known as permissioned blockchain [13]. The benefit of the permissioned blockchain is

to serve the business needs by maintaining the privacy and secrecy of the organization

data [23]. One of the intriguing features Fabric brings is the ability to create subnet

networks within the organization called channels. The network channels maintain
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access levels for the network’s members for isolating and managing peers’ access to

the resources by either grouping peers or an organization into an isolated subnet

within the main network. The architecture of the Fabric network emphasizes the

confidentiality of the resources and secure access control.

1.2.3 Hyperledger Fabric Architecture

The fabric architecture facilitates a distributed system that is composed of mul-

tiple nodes connected to form a permissioned blockchain. Then, the permissioned

blockchain Hyperledger Fabric provides numerous APIs for creating chaincode (smart

contracts) in a variety of computer languages, including Go, Node.js, or Java. Fabric

goal is to record transactions activity in an immutable ledger.

In Figure 1.1, the data life-cycle with Fabric framework components shows the se-

quence of the operation, starting with the client submitting the request and ending

with updating the ledger in every single node [24]. The blockchain in the Fabric

framework running software contains the business logic called a smart contract,

commonly referred to as chaincode within the Hyperledger Fabric framework, de-

fines the business logic that governs transactions and interactions between partici-

pants in the network [24]. The chaincode stores the ledger and the state date for

the operation task. The chaincode is also responsible for executing the transactions.

These transactions will not have an impact on the ledger state until they become “en-

dorsed” since only transactions that were endorsed are allowed to be committed on the

state. Hyperledger Fabric allows for the existence of one or more specialized chain-

codes designed for management functions and configuration parameters.The term

“system chaincode” encompasses all chaincodes specifically designed for management

purposes within the Hyperledger Fabric framework. These chaincodes play a crucial

role in overseeing and regulating various aspects of the network, ensuring efficient

governance and operational integrity. [24]. Each component has a specific role to

achieve different purposes. The transaction data flow could be represented in four
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Figure 1.1: Hyperledger Fabric Architecture

main phases: endorsement, ordering, validation and committing.

1.2.4 Hyperledger Fabric components

• Assets is anything with monetary value or information that is considered an

asset. Each asset contains two components: ownership and state [25]. In Hy-

perledger Fabric, assets are represented as a set of key-value pairs.

• Peer Nodes is hosting and storing the smart contracts and the ledgers, which

made it a critical and major component of the Fabric network. The peer node

maintains the transaction log and the State. The log is immutable once it’s
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added, it cannot be changed or deleted, state database and the chaincode de-

ployed to it. The peer node exposes a service, and those services are built on a

Google Remote procedure call (gRPC). The services are available to be invoked

by clients, peers, and by the Orderers. The Order service uses the service to

send a block to the peer. Peers exchange block data by using gossip [26] data

communication protocol by utilizing randomized block swaps between peers,

which gives the ordering nodes the operation and the responsibility to dissem-

inate newer transaction blocks consistency to all network peers, as introduced

in [26]. The performance of the gossip can be enhanced up to 10 times as

presented in ICDCS 2021 conference [26], As shown in Fig. 2.0.

• Ledger is the component that maintains the state and ownership of an asset

recorded in the ledger. The ledger is composed of two parts:

1. World state It is the ledger’s database. It describes the ledger’s state at a

specific point in time. To provide direct access to the current or latest value

of a state, for each valid transaction, the peers update the ledger world

state by committing the most recent values as key-value pairs. The fabric

default database is LevelDB [27], which is used for the world state [28].

Also commonly uses CouchDB [29].

2. Blockchain serves as a comprehensive transaction history log that meticu-

lously tracks every transaction that occurs within the network. In contrast

to traditional databases, the data recorded on the blockchain is unchange-

able, often referred to as immutable, meaning it cannot be altered or mod-

ified once it has been entered into the system [28]. This characteristic

ensures the integrity and authenticity of the transaction history, making

blockchain a trusted solution for maintaining secure records in various ap-

plications.
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• Smart contract is an application that holds the business logic for the blockchain

systems. In the Hyperledger Fabric framework, it’s referred to as chaincode.

It is the software responsible for the assets and the transactions of the assets. it

uses the ledger to interact with [25]. The smart contract operates as a depend-

able distributed application along with the blockchain. The blockchain grants

the chaincode security, trust, and the underlying peers’ consensus to guarantee

a secured system. One of the essential factors to mention when it comes to

smart contracts is that the application code is considered vulnerable. The ma-

jority of blockchain platforms that support smart contracts currently use The

order-execute architecture signifies that the consensus protocol is designed

to first arrange transactions in a specific order before they are executed. This

approach is crucial for ensuring that all participants in the network agree on

the sequence of transactions, thereby maintaining the integrity and consistency

of the blockchain. (1) Orders the transaction, validates it, and finally broad-

casts the transaction to all other peer nodes, (2) The transactions are executed

progressively by each peer after another. A new architecture approach that

Fabric introduced is called execute-order-validate (EOV). breaking down

the transaction process into three stages claimed it solved the scalability, ren-

dering, flexibility, and confidentiality that the order-execute has to deal with

a lot of those issues, (1) execute Carry out a transaction and ensure that it is

accurate to endorse it, (2) order is a (pluggable) consensus mechanism to ar-

range transactions, (3) validate, Before committing transactions to the ledger,

a verification trigger in opposition to an endorsement policy that is specific to

the application [28].

• Channel is a type of logical organization to group a set of peers. Channel has

the authority to access an independent ledger that can belong to multiple orga-

nizations. Fabric defines a channel as a private communication subnet between
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two or more specific network members. A channel is defined by members of

one or more organizations, ordering service nodes (OSNs), shared ledgers, and

chaincode applications [28].

• An organization is a set of peers representing a department or agency sharing

their particular resources with the collective network, which makes it possible

for the Fabric network to exist. The Fabric’s network fundamental hosting

peers who participate in the network are members of different organizations.

The organization’s Membership Service Provider assigns a digital certificate to

give identity to each peer member [28].

• Membership Services Provider (MSP) manages Hyperledger Fabric net-

work participants IDs and authentications. The MSP implemented a Certificate

Authority(CA) to keep track of the certificates that are used to verify a mem-

ber’s identity and roles. There is no unknown identity that can participate in

the Hyperledger network, as it is a permission network or private [28].

• Ordering Service Another name for it is an “ordering node” and Orderers [28].

The Ordering service implements the transaction’s order, and the primary re-

sponsibility of the Orderer node is to ensure a consistent state of the ledger

across the Hyperledger Fabric network [28]. Ordering Service provides a consen-

sus mechanism and makes sure that the order of the transactions is maintained.

Interacting with peers and endorsing peers ensures the network transaction de-

livery [28]. The transactions are packaged into blocks and transmitted to peers

through a channel. The previously supported configuration messaging systems

for the Ordering Service are Solo (deprecated in v2.x), it is composed of just one

ordering node, and Kafka crash fault-tolerant (CFT) solution that makes use

of leader and followers nodes also deprecated in Fabric version 2.x. Raft is the

recommended protocol option by Hyperledger as Raft is a crash fault-tolerant
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(CFT) ordering service that is new as of version 1.4.1 [28]. according to Raft

implementation [30] by etcd library [31]. The list of organizations that are per-

mitted to build channels is also maintained by the ordering service. The term

“consortium” refers to a group of organizations. The list of the organization’s

group is stored in the ordering system channel configuration. The basic channel

access control is also enforced by Orderers. Hyperledger’s consensus type is

deterministic consensus algorithms, this implies that any block that has been

peer-validated is guaranteed to be final and accurate.

1.2.5 Digital signature

It is a method based on mathematics that verifies a message’s integrity and va-

lidity by devising a construct that verifies both the source and the content of the

message in a manner that can be demonstrated to an impartial third party [32].

The blockchain network consists of three main components: the Smart contract,

the ledger, and the ordering node. However, there is one more crucial compo-

nent that holds everything together, which is the cryptography and, to be more

particular, the digital signatures [33]. With the digital signature, we achieved

confidentiality and authentication. The recently reported security vulnerability

of Hyperledger Fabric was recorded in July 2021 regarding the RSA security is-

sue in section 5.5, we list a survey for the different signature models or schemes.

Starting In 1984, Shamir [34] introduced identity-based encryption, aiming to

simplify certificate management. Since that time, many schemes were proposed

but kept the issue open till 2001 when Boneh and Franklin [35] proposed an

identity-based encryption scheme that is fully functioning (IBE).

In the following paragraph, we discuss several digital signature schemes in the

blockchain network.
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1.2.5.1 Single Signature

It is the default mode for most implementations as a default approach, which

is still used for most transactions today. One approver uses a private key to

create one signature on a transaction record. Regardless of the fact that the

implementation is simple and low-cost, The Single Signature has the lowest

levels of security because if the holder of the key gets hacked, their funds are

effectively gone.

1.2.5.2 Multi-signature

It is an alternative scheme that introduces the idea of having multiple approvers,

each with their own private key to generate their own signature where each

approver signature is recorded as part of the transaction record [36]. Multi-

signature is exponentially more secure than the standard single-party approval

scheme. However, it does introduce some undesirable attributes, primarily as-

sociated with the recording of each signature of the approvers as part of the

transaction record.

1.2.5.3 Threshold signatures

are widely embraced in blockchain applications. It enables approvers to co-

operatively share a secret known as a private key with other participants in

the blockchain network, disregarding the need for a Certificate Authority(CA).

Then, the signature shares are all combined to verify and reveal any single

transaction. One of the prominent digital signature schemes is called the El-

liptic Curve Digital Signature Algorithm(ECDSA) [37], which is the standard

signature scheme used for the Bitcoin transaction system. The ECDSA scheme

runs four distinct algorithms Setup, keygenerattion and Signaturegeneration

and lastly, V erification. To illustrate, ECDSA requires several approvers to



16

combine their signatures to have control over a blockchain transaction jointly.

ECDSA also uses a technique called multi-party computation(MPC). The tech-

nique generates one key share for each approver. The keys are never recon-

structed or tampered with. The multi-party approval scheme allows at least M

of n shares to be available to generate the ECDSA signatures. The threshold

cryptographic scheme could suffer from having a corrupted approver or poten-

tial peer collusion, though the ability to establish and distribute lost key shares

and Devising the signature to append a new transaction in the order of mil-

liseconds is a great security enhancement. Nevertheless, ECDSA Scheme lacks

dealing with a forged certificate and the ability to delete or drop off a malicious

participant. It is important to note that recent surveys [38], [39] discussed in

detail the threshold signature schemes.

1.2.6 Transaction Flow

Transactional mechanisms [40] that occur during a typical asset trade or ex-

change. Assuming a real-life scenario for two clients A and B, each client has

its own peer access to interact with the network in order to communicate by

sending and querying the transactions to and from the ledger. In order to clarify

the process, the steps are the following:

1. The client initiates a transaction.

2. Endorsing peers validate the signature and execute the transaction.

3. The proposal responses are reviewed.

4. The client compiles the endorsements into a complete transaction.

5. The transaction undergoes validation and is then committed.

6. The ledger is updated accordingly.
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Figure 1.2: Peer node architecture and communication nodes

1.3 Consensus

For fault-tolerant distributed systems, consensus is a fundamental model. Each

transaction proposes a value to the other nodes. All valid transactions processed

by different nodes must reach a consensus on the same value, which should match

the originally proposed values [41]. The blockchain technology is released on quorum-

based consensus in order to commit the transaction. The number of valid peers varies

from one consensus algorithm to another. Quorum represents the minimum number

of votes needed from node peers for a distributed transaction to gain authorization to

execute an operation in a distributed system. The quorum is designed to ensure that

a distributed system operates consistently. The Hyperledger Fabric utilizes Raft as

an order service algorithm that requires half of the nodes to verify and endorse a new

block. The formula is represented as Q = 1
2
n, (Q is the quorum, n is the total node).

Hyperledger Fabric is a private blockchain. Therefore, the consensus mechanism

requires a central authority or group of endorsers to validate and approve updating

the ledger by writing the transaction in the sequence of each new transaction. The

main goal of the consensus process is to decide on the validity and authenticity of the

new block while also checking the consistency of every replica and then synchronizing

them throughout the network peers. One of the popular protocols that is discussed

in the literature is called Crash Fault Tolerance(CFT), similar to Raft. It suffers

from malicious attacks and faults since only half of the nodes are needed to validate

new blocks. On the other hand, Practical Byzantine Fault Tolerance (PBFT) requires
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two-thirds of the nodes to endorse a new block to be added to the ledger. Block Height

is the number of a specific block location of a transaction that has been completed

in the past in the blockchain or the present size of the blockchain. As the block

height identifies the number of the blocks currently proceeding in the blockchain,

The majority of consensus algorithms work by agreeing to mine the chain with the

largest block height. The Genesis block, like other blocks in the network, is the

inaugural block in a blockchain and serves as the foundational reference point. There

are no blocks to proceed in the blockchain, it has a block height of zero.

1.3.1 CFT Crash fault-tolerance

Crash fault-tolerance (CFT) is the de-facto consensus algorithm for the Hyper-

ledger Fabric, its mandates half of the node to validate and confirm new transac-

tions. Raft [42] was built as an enhancement of what Leslie Lamport introduced the

Paxos [43] [44] to provide a convenient way for students to learn about consensus

than Paxos [30]. Paxos is the primary research material used for students teaching

about consensus. Two commonly used consensus protocol frameworks that have been

used for Hyperledger Fabric are Apache Kafka and Raft. In the next subsection, we

thoroughly describe each consensus protocol:

1.3.1.1 Apache Kafka

Beginning with its initial release, the ordering service was developed utilizing the

Apache Kafka messaging system. Apache Kafka is designed with crash fault tolerance

(CFT) and operates on a leader-follower node configuration. To begin with, the client

sends transactions to the ordering service nodes (OSNs) to submit transactions to the

Kafka topic as one topic per channel and vice versa, the ordering service node will

consume from the Kafka topics. Kafka has now been deprecated from Hyperledger

Fabric since release 2.0, and for this reason, we are not surveying the system in this

chapter in detail.
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1.3.1.2 Raft

[30] It is a new consensus protocol for Hyperledger Fabric that started to be used

as version 1.4.1. Raft is a crash fault-tolerant (CFT) ordering service [28] based on a

Raft protocol implementation [30] in etcd library [31]. Raft imposes a higher level of

coherence in order to decrease the number of states that must be taken into account

to validate the transactions. As mentioned above, Raft [42] was built as an alternative

to Paxos by Leslie Lamport [43] [44] to provide a convenient way for students to learn

about consensus than Paxos [30] [45]. Paxos was the primary research material used

for students teaching about consensus. There are several problems with RAFT:

1. RAFT consensus is not a Byzantine fault tolerance algorithm.

2. The client setting in RAFT is only required to submit a single order with a

transaction proposal.

3. The followers nodes to the Raft Ordering service nodes trust the leader’s block

proposal without validation as it can be a “crash fail”.

4. In Raft consensus, the transaction reaches consensus then delivered to the node

to be signed prior to being saved to the block store.

1.3.2 BFT

The Byzantine Fault Tolerance (BFT) consensus mechanism is a fundamental ap-

proach used in distributed systems to achieve agreement among nodes despite the

presence of Byzantine faults, which can manifest as arbitrary or malicious behavior

by a subset of participants. BFT consensus protocols ensure that the network can

reach a consistent decision even if some nodes fail or act in a Byzantine manner.

BFT consensus mechanisms are essential for ensuring the security and integrity of

distributed ledger systems, particularly in settings where trust among participants
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cannot be assumed. BFT consensus plays a crucial role in enabling decentralized

networks to function reliably in the presence of adversarial actors.

1.3.2.1 PBFT

It is called Practical Byzantine Fault Tolerance (PBFT). In private and permis-

sioned blockchains, PBFT is widely utilized. In PBFT-based blockchain systems, the

network architecture consists of a set of active and inactive participants or nodes [46].

Within the live node, a primary one is designated to handle incoming messages from

clients and subsequently disseminate them to the other nodes [46]. This system ex-

hibits a more robust trust model in comparison to PoS and PoW. Similarly, the PBFT

provides a solution that solves the issue of the Byzantine Generals Problem in [47],

Lamport, L., Shostak, R., & Pease, M indicated that no solution of presents of 1
3

or greater potential malicious nodes as the potential traitor generals called Byzan-

tine node. The PBFT is also discussed in [48] [49] [50], in 1999 by Miguel Castro

and Berbara Liskov [50] proposed a paper with a solution for the Byzantine generals

problem, to solve the Byzantine faults in a network or a system includes:

n = 3f + 1

n represents the total number of valid nodes and consider f is the maximum expected

malicious nodes. PBFT is commonly used for the permissioned blockchains. PBFT is

a fundamental concept that has been included in the design of numerous commonly

used BFT systems. [51] The BFT failure could be categorized into two sections:

1. Fail-stop: nodes can crash, no values to be returned from that node.

2. Byzantine node: nodes can send malicious values that are incorrect or manip-

ulated.

The PBFT protocol suffers from some deficiencies elaborated in [52]:
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1. PBFT consensus protocol standard mechanism allows the system to process the

client requests one by one at a time in order. Still, when the system exposes

numerous requests, the protocol performance will drop and become inefficient.

2. Assuming N is the total nodes, PBFT requires delivering messages:

N = 2N2 +N

times to achieve consensus, and it will become a high cost for message trans-

mission.

3. Master node selection in PBFT consensus relies on round-robin as it considers a

simple mechanism, and the location of the master node will be easily identified

by a malicious attack, which exposes the system to the attack.

1.3.2.2 Tendermint BFT protocol

Tendermint protocol [53] is one of the consensus algorithms that the Hyperledger

team considered to be used in Fabric [54] as it is founded on PBFT protocol. To

achieve consensus, the system nodes need to be three times grater than the expected

total malicious nodes, plus one n = 3t + 1. The Tendermint platform open source

is available in [55]. In this section, we aim to present a literature review on how

the Tendermint works. The protocol at runtime has five variables maintained by

each node or participant (step, (2-locked V&R) lockedV, lockedR, (2-valid V&R)

validV, and ValidR) [51]. To achieve consensus at height h, the protocol operates in

a round-robin manner, transitioning from one round to the next. [51]. Those steps

propose, prevote, and pre-commit are required in each round. [51] introduce three

types of attacks that will transit the state of the consensus to deadlock before GST

as well after GST, which basically means no more blocks that could be added to the

blockchain. That type of attack is categorized as DoS as the most important property,
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which is the liveness that cannot be achieved. In other words, the consensus cannot

be achieved.

1.3.2.3 BFT-SMART consensus

Another interesting feature of PBFT is its compelling design as a state machine

replication (SMR) for the distributed consensus systems [56]. It was first introduced

in 2007 to devise effectively a BFT total order. BFT-SMART adopts the commune

system model for BFT n ≥ 3f + 1 nodes, where n is the number of nodes and f

represents the Byzantine faults. BFT-SMART gave the ability to change n and f

at runtime over join and leave operations, which allow the consensus protocol to be

configured to be only n ≥ 2f + 1 replicas to tolerate f crash faults [56].

Regardless of the configuration, for communication, the distributed systems require

steady point-to-point connection links among processes. the connections are imple-

mented over TCP/IP using Message Authentication Codes (MACs). The replica-

to-replica channels using symmetric keys are generated throughout Signed Diffie-

Hellman, each replica utilizing a pair of RSA keys [56]. The client-replica channel

keys are produced using the endpoint IDs, and the clients do not require storing or

holding the key pairs [56]. Nevertheless, the mechanism of the BFT-SMART consen-

sus has a presumption of non-malicious non-malicious Byzantine errors exist [56].

At the latest attempt in 2018 by Joao Sousa and Alysson Bessani and Marko

Vukolic in [12] [57], The authors investigated Fabric with a BFT ordering service,

then modified the Apache Kafka-based ordering service and replaced Kafka with a

cluster of BFT-SMART servers [54]. The Fabric community did not accept that

attempt [58]. That decision regarding the rejection was made on several reasons

will be elaborated in future sections. The primary reason was the PBFT consensus

tool was not built as a stand-alone ordering service, but it was built on top of BFT

mechanisms that were already in place [12]. It was literally built based on Apache

Kafka infrastructure.
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1.3.3 Networks and Synchrony

When the message is propagated over the network, it uses different models to guar-

antee the liveness property. In previous work [59], the author discussed synchronous

networks, indicating the duration required to transmit a message between nodes is

constrained by a predetermined fixed upper bound. However, In an asynchronous net-

work, there are no established fixed upper limits. The Hyperledger Fabric consensus

protocol, Raft, operates within a partially synchronous network model. Another de-

centralized consensus model is called Partially Synchronous Network. This concept

is known in a distributed system where the upper bound is unknown, which is the

time needed for a message that node N1 sent to another node N2. It is important

to mention that the time period cannot be infinite. The upper bound is different by

△, the time required for a message to be sent. Where △ <∞. The message can be

received by delta. In [51] [59]considered two types of partial synchronous networks

Type I: The upper bound, or basically the delivery estimate time before timeout,

is unknown to the participants, and it has to hold a positive integer value less than

infinite. the total estimated delivery time = △.

Type II: The amount of the upper bound △ is known to the participant, but the

protocol designer adds an unknown period of time, called Global Stabilization Time

(GST) [51] triggers first then triggers the counter for the known fix △ when the up-

per bound it has to be a positive integer value less than infinite, the total estimated

delivery time = GST +△

where the GST is unknown and the △ <∞ is known. In Type I, It was impossible

to overlook the message with Denial of Service (DoS) attacks. The delivery of all

messages is assured. Therefore, the DoS is not possible or not allowed to occur on a

system that uses the Type I partially synchronous network [51]. In Type II, there are

two time periods. The first one is an unknown GST, and the second one is known as

△. After the unknown period GST, the model will transfer from partial synchronous
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networks to synchronous networks. Therefore, the DoS is not allowed. Still, the issue

becomes when the attacks happen before the unknown time periods or before the

GST that will cause a DoS that cannot be removed even after the GST [51].

1.4 Attacks and Security issue

The below addresses a couple of research papers to discuss the security issues

collected from several papers. The next section presents a literature review on the

common open issues that each one is considered a research area.

1.4.1 Cryptographic Weakness. Invalid RSA PKCS signatures

By reviewing the Jira dashboard of Hyperledger Fabric, a new critical vulnerability

has been reported in Fabric Jira board on July-14-2021 also recorded into the National

Vulnerability Database (NVD) CVE-2021-30246 [60] some invalid RSA PKCS# 1 v1.5

signatures are mistakenly recognized to be valid. This vulnerability has been handled

as CVE-2021-30246 since 04/07/2021. The exploitation of that type of attack is

known to be difficult. The attack needs to be done within the local network. This

is possible for the Hyperledger Fabric since they have the authority to participate in

the network and submit valid transactions.

1.4.2 Impact of Network Latency on Hyperledger Fabric

Thanh Son, Guillaume Jourjon, Maria Potop-Butucaru and Kim Loan Thai [61] ex-

periment the Hyperledger Fabric network performance, finding a huge network delay

after examining a wide network setup for the Hyperledger Fabric between Germany

and France however by monitoring the delay of the network over time increases signif-

icantly average 3.5 seconds among two clouds systems. In the paper, the researchers

noticed that approximately 134 seconds offset when they complete adding 100 blocks

to the blockchain from one cloud to another or the time it takes to deliver the last

block to the other peer. This is a significant proof of consistency issues that critical

businesses can suffer, such as bank or exchange business. That impact caused network
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delays on a PBFT based blockchain. In their paper, going over the main components

of Hyperledger Fabric and the Execute-Order-Validate architecture go into the details

of the limitations of Order-Execute architecture.

1.4.3 Malleability Attack

This attack started with Bitcoin. In February 2014 MtGox, The once-largest Bit-

coin exchange, shut down and filed for bankruptcy, saying that attackers drained its

accounts using malleability attacks [62]. This incident was Bitcoin’s $460 Million

Disaster [63]. The attacker gains the ability to mount a malleability attack, which

gives him the ability to intercept, modify, and rebroadcast a transaction. When that

happens, the transaction issuer will not receive the confirmation and believe that

the original transaction was not sent successfully [62]. The logic behind this attack

is that the signatures that contain the ownership of bitcoins being transferred in a

transaction are not immutable, and it can be modified and do not provide any in-

tegrity guarantee [62]. In Hyperledger Fabric [49], when the Orderer broadcasts the

transactions to the peers, the attacker within the network can modify the transac-

tion information, modify the receiver identity, and generate a new transaction hash

to be rebroadcast again. At this point, the original transaction by the client who

submitted it will be on hold since the client is waiting for a confirmation response

for the submitted transaction by the endorsement, which will never happen since the

adversary has already modified the transaction hash [64]. The timeout will trigger a

resent activity for the lost transaction.

1.4.4 Wormhole Attack

The peer that is part of the private Hyperledger Fabric network can create a virtual

private network with another network outside the Fabric for leaking information of

the network that the peer is a member of its private network. The wormhole attack

appeared only within a private network. The attacker is already getting access and
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creating a virtual private network within his peer network, which could be his lap-

top. This laptop is connected to the company network from its private network with

the outside network and leaked information [64]. This attack does not require any

knowledge of honest members to be launched on the Fabric private network [64].

1.4.5 Private Key Leakage

In the Hyperledger Fabric, each participant is responsible for maintaining the se-

crecy of their private keys. It is possible that an external malicious entity gets hold

of the private keys (in case it is stored in a container or a compromised host). The

implications of this leak cause further attacks such as message tampering and man-

in-the-middle attacks, which allow malicious users to obtain more credentials, infer

sufficient information about security events, and cause insider threat in the Peer to

Peer Network [65].

1.4.6 Third Party Digital Certificate

In Hyperledger Fabric, the service provider relies on both the certificate authority

(CA) and the identity manager to securely distribute cryptographic keys to partic-

ipants within a peer-to-peer (P2P) network. The role of the CA is critical, as it is

responsible for issuing certificates that authenticate the identities of network partici-

pants, ensuring that only legitimate entities can join and interact with the blockchain

network. The service provider, in turn, trusts that the certificates issued by the CA

are valid and reliable. However, recent research has highlighted potential vulnerabil-

ities in this trust model. Specifically, it has been demonstrated that a third-party

entity, such as the CA, can be compromised, leading to the generation of fraudulent

certificates and fake identities among P2P nodes. This presents a significant security

risk to the overall integrity of the network, as malicious actors could exploit these fake

identities to carry out attacks or unauthorized transactions, undermining the trust

and reliability of the blockchain infrastructure.
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1.4.7 Censorship Attack

Censorship attack is a variant of > 50% or 51% Attack [66]. This type of attack

in prevailing blockchains is ubiquitous. [67] There are different types of censorship

attacks in consensus algorithms [66]. The common definition of the censorship attack

is defined as a “majority attacking” mechanism to establish a chain that denies the

transactions that the regular validator, client, or minor would approve [66]. At the

time of this survey, there was no efficient solution. The attack occurred in permis-

sioned and permissionless blockchains. Recent incidents targeting the permission-

less blockchain, including Ethereum and Bitcoin. Yet it threatens the permissioned

blockchain indicated in recent research [66] introduced two methods to enhance the

consensus protocol mechanism in partial synchronize network for PoW and PoS algo-

rithms, that explained in detail regarding the proposed solutions in the related work

section. The attack happens when a single ordering node controls a group of nodes

to maliciously impact the majority of the node’s decision to validate and propagate

the new transaction. One variant of this attack is called censorship attack, proposed

by Vitalik et al [68].

1.4.8 Hijacking Attack

This attack occurs at the networking level. The attacker seizes control of the

communication. It is considered an attack on the network security. In [25], the

researchers expose two hijacking methods in their paper. The one that could be a

threat to the Hyperledger Fabric is the delaying propagation. The authors exhibited

that “any network attacker can hijack few (< 100)BGP prefixes to isolate 50% off the

mining power” and “slow down block propagation by interfering with few key Bitcoin

messages” [61]. Due to the fact that the full-fledged attack type on the Ethereum

blockchain is based on the hijacking assault to burglarize cryptocurrency [25]. The

researcher group in [61] considers hijacking PBFT based blockchains. Perform a
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hijack attack targeting Hyperledger Fabric by postponing the spread of blocks [61].

Remarkably, the permissioned blockchain behavior of Hyperledger Fabric does not

prevent this type of attack, and it could be exposed to it easily [61].

1.5 Related Work

1.5.1 Using BFT-SMART consensus protocol

As the latest attempt to update the consensus by Joao Sousa and Alysson Bessani

and Marko Vukolic in 2018 [12], in their most recent attempt to offer Fabric with

a BFT ordering service, modified Fabric v1.1. Kafka-based ordering service and

replaced Kafka with a cluster of BFT-SMART servers. The Fabric community did

not accept that attempt [58]. That decision regarding the rejection was made on

several reasons will be elaborated in future sections. The primary reason was the

PBFT consensus tool was not built independently, but it was designed on top of

existing BFT systems. It was literally built based on Apache Kafka infrastructure.

Proposing the work. After we investigated, we don’t see core enhancement of the

previous implementation in 2017 [57].

1.5.2 Censorship Attack Protection

The existing implementation of Hyperledger Fabric client SDK sends the proposed

transactions to one Orderer service within the organization, which gives the single

organization admin the ability to manipulate the validator rule. This type of at-

tack disseminates dishonest transactions while the other honest validators will not be

able to verify. Another research in [66] proposed two methods to improve consensus

mechanisms against censorship attacks. The first technique adds three types of mes-

sages and an auxiliary role for network nodes to the Tendermint consensus process.

It can identify attackers and automatically organize the approved blocks by honest

validators into a trustworthy chain. The Second method is using a network that must

manually switch to a blockchain established by more trustworthy validators compared
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to a suspicious percentage of censorship attacks. The related work has never been

researched or implemented on permissioned blockchain. Despite the fact that the sec-

ond technique is not automated, it is still more efficient than relying on the market to

select the honest chain. The second method was based on the Casper FFG consensus

mechanism by applying the same theory, making the client JDK submit the proposed

transaction to all ordering service nodes for validation.

1.5.3 Hiding Leader Node Identity

Nitish Andola, Raghav, Manas Gogoi and S. Venkatesan, Shekhar Verma release

a research paper with zero knowledge in [64] indicating two security limitations of

Hyperledger Fabric and introduce a possible solution. First, when an endorser’s

identity is made public to all members of a channel, it becomes vulnerable to denial-

of-service (DoS) attacks directed at blocking client-related operations or undermining

network performance. In next section of this paper I added more in-depth details

about the attacks that caused the DoS. The key reason for the denial of service (DoS)

is that the endorser’s identity is known to all peers. The authors in [64] proposes two

solutions to solve this attack, by hiding the leader node identity since the nodes are

available to the public by using Verifiable Random Function (VRF), or pseudonyms

leader identity. Either of the presented solutions improves the network performance

and efficiency, reducing the network throughput with the effects of response time that

took longer. Second, in Hyperledger Fabric, the peer’s identity is known to other peers

within the channel, making the system susceptible to wormhole attacks. Leakage

of its ledger information occurs when a peer member is compromised outside the

channel, resulting in exposing all peer’s info since the ledger is the same for all network

members. The author propose this function as verifiable random with a primary

process is to choseover a random endorsers. In the second proposal, the solution uses

pseudonyms to anonymize the endorsers. Also, inside the channel, the identity of

either the sender or receiver has been anonymized. The researcher used a group set of
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a signature approach. An anonymous method that uses bilinear pairing to create zero

knowledge about the recipient [64]. The sender’s identity is anonymized by a bilinear

pairing [64]. With that approach, the network gains protection from the malleability

attack as well. In [64], researchers provide proof for Signature Unforgeability and

Unlinkability in Ciphertext (UN-C). The results were provided by measuring the

effects of the DoS attack on the Hyperledger Fabric network. The team works on

recording the transaction rate without DoS on two peers with a transaction rate of

100 TPS at a send rate of 123 TPS. After applying the DoS, it causes a lack of

performance to drop to 100 TPS. The send rate response time has increased from

1.396 s to 2.44 s [64].

1.6 Future Work

One of the significant findings to emerge from this study is that we need to replace

the RAFT consensus protocol with another protocol that leverages the predecessor

DLS algorithm with a successor algorithm called BDLS protocol [51] that was intro-

duced by Dr. Wang. Provide a proof of concept regarding the well integration with

the Hyperledger Fabric regarding the security concerns, especially against the DoS

attack. The aim is to provide end-to-end stand-alone BDLS protocol consensus.

1.6.0.1 Replacing RAFT with BDLS

In order to solve the security issue of the partially synchronous network in Crash

Fault Tolerance (CFT), we replace the Raft consensus protocol with a BDLS consen-

sus based on the DLS protocol algorithm.

This study has raised important questions about the nature of the Malleability At-

tack in section 1.4.3 since the keys are not available for the attacker in order to be

replaced as the technology has been used in BDLS is a Threshold signature scheme.

I aim to provide approval on this area in future research.
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1.6.0.2 Replacing SDK

The Second goal for the future direction is to provide an end-to-end network system

that utilizes PBFT as a consensus protocol. We plan to design and build a new client

Software development kit (SDK) for Hyperledger Fabric to disseminate the proposed

transactions to all Orderer nodes. This can be achieved by establishing a connection

to the Orderer Services, which contains the information for the other Orderer nodes,

with the network. The decentralized network includes mutable organizations. to force

all the organization’s validators nodes to validate the transactions, which provides a

security layer to the Hyperledger Fabric network against the censorship attack in

section 1.4.7.

1.6.0.3 Performance Speed assessment

Although this study focuses on Hyperledger Fabric transactions speed. In other

words, setting an experimental environment to collect data to analyze the transac-

tion throughput is also called the transactions per second(TPS). This study has a

bearing on BDLS participants with linear communication/authenticator complexity

who could reach an agreement in 4 steps [51]. On the other hand, at least seven

steps are involved in the best linear communication/authenticator complexity meth-

ods currently in use to reach consensus [51].

1.6.0.4 New Platform

In the upcoming chapters, we will demonstrate how to develop a new platform for

the Hyperledger Fabric framework for the network. This platform will utilize the

BDLS consensus protocol to run the ordering service node (OSN). Furthermore, we

will measure the performance speed throughput.

1.7 Conclusions

In conclusion, this literature review chapter, we presents several security challenges

in Hyperledger Fabric consensus protocols and discusses relevant attacks that impact
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the safety of the consensus protocols to approve and append new transactions to

the ledger. Undoubtedly, this research domain is fast-developing and offers future

opportunities to investigate and contribute to developing more secure consensus al-

gorithms and practical decentralized blockchain systems. In general, decentralized

applications bring innovative ways to store, update, and read data. However, the

service’s blockchain provides can be hindered due to the security flaws that exist in

blockchain consensus algorithms. In this chapter, we discussed Hyperledger Fabric’s

basic concepts and the relevant security attacks that impact decentralized blockchain

applications. We also comparatively studied each consensus algorithm, highlighting

its strengths and weaknesses. We aim to extend our work in BDLS protocol imple-

mentation to replace RAFT protocol in Hyperledger Fabric with end-to-end BFT

secure tamper-proof decentralized consensus ordering services.



CHAPTER 2: Hyperledger Fabric Orderer

This material is reprinted with permission from Ahmed Al Salih, “Pluggable Con-

sensus in Hyperledger Fabric,” Proceedings of the 2024 6th Blockchain and Internet

of Things Conference (BIOTC 2024), ACM, ©2024. DOI: 10.1145/3688225.3688237

2.1 Introduction

The Hyperledger Fabric Orderer system is integral to the consistency and reliabil-

ity of transactions within a Hyperledger Fabric network or distributed nodes. The

selection of a relevant consensus protocol is essential to achieving these objectives.

This research delves into the technical aspects of implementing the Hyperledger Fab-

ric Orderer system, focusing on the Raft consensus protocol. Furthermore, it explores

the steps required to plug any consensus protocol into the Hyperledger Fabric Or-

derer service, exemplifying this process by integrating the BDLS protocol [5]. The

Raft protocol [6], known for its simplicity and Crash fault-tolerance characteristics,

has gained prominence in distributed systems. By understanding its inner work-

ings, participants can grasp how it enhances the resiliency and performance of the

Orderer system. Additionally, exploring the steps required to integrate the BDLS

protocol is a foundation for seamlessly incorporating other consensus protocols. This

research will go beyond theoretical concepts and provide practical insights into tech-

nical implementation. We will share our firsthand experience integrating the BDLS

consensus protocol, proposing precise steps for the integration phases. By showcasing

this integration, a real production-ready example provides a deeper understanding

of the intricacies and advantages of combining alternative consensus protocols with

the Hyperledger Fabric Orderer system. Overall, this research aims to provide a
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comprehensive knowledge of the technical implementation of the Hyperledger Fabric

Orderer system. The chapter focuses on the last supported consensus protocol, the

ETCD Raft protocol. Indicating the integration of the new BFT protocol, the BDLS

protocol, guarantees practical insights into the steps required to plug any consensus

protocol into the Hyperledger Fabric Orderer service (OSN).

2.2 Fabric Orderer

The Orderer, also known as the ordering node service (OSN) in Hyperledger Fabric

[13], is the main component responsible for ordering and validating transactions before

committing to the blockchain. It guarantees that every node in the network has an

identical perspective of the transaction order by offering a distributed ordering service.

The Orderer maintains the ledger’s integrity and guarantees that transactions are not

tampered with or duplicated.

The Hyperledger Fabric’s Orderer uses a consensus mechanism to order transac-

tions. There are several consensus mechanisms available, including Solo [13], Kafka

[69], and Raft [6] as of Fabric’s latest release 2.5 [70]. Solo is a simple consensus

mechanism that is suitable for testing and development environments, while Kafka

and Raft are robust and suitable for production environments.

The Orderer in Hyperledger Fabric architecture is supposed to be modular and

pluggable [11]. Therefore, organizations can choose the consensus mechanism that

best serves operation needs. Additionally, the Orderer can be run as a standalone

service or as a part of a more extensive network.

In the Hyperledger Fabric’s network, the client submits a transaction through an

individual node. Therefore, the node that receives and validates the transaction then

submits the transaction to the Orderer node. The Orderer receives these transactions,

assembles them into blocks, and guarantees to achieve consensus among all Orderer

nodes. After achieving consensus on a block by all Orderer’s nodes, the block is ready

for broadcast to all Peer nodes. The Orderer has the following tasks:
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• Network: Utilizing gRPC [71], the Orderer accepts transactions, broadcasts,

and transmits the blocks to the Peers.

• Packaging: Encapsulate the transactions into blocks based on predefined rules.

• Consensus: All Orderer nodes achieve a consensus agreement.

2.2.1 Consensus in Fabric Orderer

The consensus service in Hyperledger Fabric architecture is a pluggable module

that allows for the integration of new consensus protocols, thereby enabling the oper-

ation of the Hyperledger Fabric network with these protocols. In the latest version of

Hyperledger Fabric, the consensus module incorporates three implemented consensus

algorithms: Solo, Kafka, and Raft. While the Raft consensus algorithm is the recom-

mended choice, it’s crucial to understand the Solo and Kafka consensus algorithms

as they provide a broader context and help in comprehending the evolution of the

consensus module in Fabric.

The Solo consensus algorithm operates in a network environment with a single

ordering node. In this system, peer nodes send messages to the single ordering node,

which then creates blocks. While Solo ensures consistency, it lacks high availability

and scalability, making it unsuitable for production environments. Its inclusion in

Fabric is primarily for development and testing purposes.

Kafka is a distributed streaming information processing platform designed to offer

unified, high-throughput, and low-latency performance for real-time data. The previ-

ous version of Hyperledger Fabric implemented the core consensus algorithm through

a Kafka cluster.

Hyperledger Fabric integrated Raft consensus algorithm in version 1.4.1. Based

on the etcd library as a crash fault tolerance (CFT) ordering service, Raft follows a

“leader and follower” model. Within a channel, a leader is dynamically elected from

the Orderers, the consenter set, which is the list of the Orderer’s nodes. In the
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Raft protocol, follower nodes receive messages exclusively from the leader node. Raft

ensures the ecosystem is able to provide services to the external world even in the

presence of (N − 1)/2 failure nodes, where N is the total number of Orderer nodes.

2.2.2 Fabric Consensus protocol History

The present section aims to provide a comprehensive list of Hyperledger Fabric

releases and their corresponding consensus algorithms. The following versions of

Hyperledger Fabric have been released:

• In 2015, IBM initialized the project called Open Blockchain (OBC) [72] [73]

utilized the Practical Byzantine Fault Tolerance PBFT protocol [50].

• In 2016, The code evolved to open source and moved from the OBC reposi-

tory to a Hyperledger foundation repository and named Fabric, referred to as

“v0.5-developer-preview” [11] [73] using the PBFT protocol [50].

• In 2017, Versions 1.0 released of Hyperledger Fabric integrated the Kafka con-

sensus protocol [69] as an out-of-the-box solution for production environment

and Solo consensus algorithms being available for development purposes. Con-

sidering this release is the first production-ready Fabric system.

• In 2018, Version 1.4., Fabric introduced [13] the Raft consensus protocol in Etcd

library [31].

• As of 2024, the latest Fabric’s Version 2.5 maintains the Kafka and Raft consen-

sus algorithms for the production environment. The Solo consensus algorithm

runs on one node [13] and is used for the development environment, while Kafka

is deprecated due to performance issues [74].

2.3 Orderer Node Structure

Hyperledger Fabric Orderer service, code implementation includes the server’s main

function and the consensus protocols. All Orderer code files are in the Fabric core in
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the orderer folder. The entire system, including the Orderer service and the consensus

protocols, is coded in the Go Programming Language [75].

The Orderer and Peer equivalent compare to a publishing and subscribe mechanism,

representing the dynamic interplay between production and consumption.

The registrar’s core implementation encompasses various components such as the

ChainSupport and Consenter. The architecture engineering of the Consenter is plug-

gable. That allows for flexibility in integrating and implementing various consensus

mechanisms. On the other hand, ChainSupport serves as a representative entity for a

chain and provides the ability to reference the consensus instance associated with the

same chain. Consenter creates the consensus instance that aligns with the specific

consensus type. To see the complete dependency relation that the consensus instance

depends on ConsenterSupport the flowing sections will explain each in detail.

2.3.1 Registrar

The registrar operates as a point of entry and managing for the respective channel

resources. Its primary role involves managing each channel resource’s access and

control mechanisms. Essentially, any actions or decisions about a specific channel

originate from this pivotal location (Orderer node). The GitHub source code in [76]

is shown in Listing 2.1.

The Registrar struct contains the following key variable references:

1. config in Listing 2.1, type of localconfig.TopLevel This struct is the map to

the orderer.yaml file as an external file outside the Fabric software that sets

the Orderer’s settings and manages the Orderer peer. The Fabric network

administrator can set the configuration of the Orderer by making changes in

the YAML file. Config variables provide the ability for direct access to the

values in the orderer.yaml file

2. chains: The chainSupport variable represents and stores the chain in the Or-
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derer.

3. consenters: Each consenter represents a single consensus protocol as the con-

senters map contains the available consensus set. Nevertheless, it is the Orderer

Nodes within the Fabric network. For Fabric 2.5, the available consensus list is

Solo, Kafka, and EtcdRaft consensus protocols. However, today’s new Fabric

3.0 and the main branch only support Raft and SamrtBFT.

4. Ledger Factory: type of blockledger.Factory In order to read and create new

chins in the ledger.

5. signer: It is accountable for signing the block that encapsulates the message’s

envelope in the Orderer node and generating the Signature Header.

6. System Channel ID and System Channel: These refer to the unique channel ID

and instance of the system chain, respectively.

7. bccsp: The implementation of the blockchain cryptographic service provider

Hyperledger Fabric uses.

47 // The Registrar acts as the individual channel resources ’ point of

access and control.

48 type Registrar struct {

49 config localconfig.TopLevel

50 lock sync.RWMutex

51 chains map[string ]* ChainSupport

52 followers map[string ]* follower.Chain

53 pendingRemoval map[string]consensus.StaticStatusReporter

54 systemChannelID string

55 systemChannel *ChainSupport

56 consenters map[string]consensus.Consenter

57 blockcutterMetrics *blockcutter.Metrics

58 ledgerFactory blockledger.Factory
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59 signer identity.SignerSerializer

60 templator msgprocessor.ChannelConfigTemplator

61 callbacks [] channelconfig.BundleActor

62 bccsp bccsp.BCCSP

63 clusterDialer *cluster.PredicateDialer

64 channelParticipationMetrics *Metrics

65 joinBlockFileRepo *filerepo.Repo

66 }

Listing 2.1: Registrar struct

2.3.2 ChainSupport

Maintaining the respective channel resources by grouping interfaces capsulizes all

the essential resources a channel requires, serving as a chain’s representative entity. In

other words, ChainSupport consolidates the resources required for a channel, serving

as a representative entity for the individual chain. The GitHub source code in [77] is

demonstrated in Listing 2.2. In other words, ChainSupport consolidates the compre-

hensive array of resources required for a channel, thereby serving as a representative

entity for the respective chain.

24 // The resources for a specific channel are stored in ChainSupport.

25 type ChainSupport struct {

26 *ledgerResources

27 msgprocessor.Processor

28 *BlockWriter

29 consensus.Chain

30 cutter blockcutter.Receiver

31 identity.SignerSerializer

32 BCCSP bccsp.BCCSP

33 consensus.MetadataValidator

34 consensus.StatusReporter
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35 }

Listing 2.2: ChainSupport struct in file chainsupport.go

The ChainSupport’s interfaces can be grouped as a ledger, message, consensus, and

signature modules.

1. ledgerResources, responsible for reading the ledger info.

2. msgprocessor.Processor, which handles transaction processing

3. cutter, cutting the data into blocks to be ready for the Block Writer step.

4. BlockWriter, writes data blocks into the ledger.

5. consensus.Chain, represents the consensus instance of the Orderer as it holds

the consensus protocol implementation and is responsible for starting the con-

sensus protocol.

6. identity.SignerSerializer, utilized to sign the data in Orderer and create

SignatureHeader.

7. BCCSP, it is the implementation of the blockchain cryptographic service provider

Hyperledger Fabric uses.

2.3.3 Chain

Chain is an interface. Implementation is a consensus instance of a chain. The

Chain functionality is to define an approach for injecting messages into the ordering

process. The chain interface functions are flexible, based on the implementer’s pref-

erence to architect and develop the integration of the consensus protocol, overwriting

the chain interface functions. The implementer of the chain interface function is re-

sponsible for handling the ordered messages and then pushing the messages to the

blockcutter.Receiver. to cut the blocks and write the block to the ledger. Both
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functions for cutting and writing the block are available by HandleChain. This design

enables two primary workflows:

1. Receive the messages encapsulated with envelope struct a- ordered the messages

into a stream, b- cut the stream to blocks, c- the blocks are committed to the

ledger. This approach is deprecated. The Orderer no longer supports as was

used for solo and Kafka

2. Receive the messages encapsulated with envelope struct a- cut the messages

into blocks, b- Ordered the blocks, c- Finally, commit the ordered blocks by

creating and writing the block. This approach is the current etcdraft protocol

uses.

The chain interface includes a set of functions the consensus team must implement

in order to run the chain and receive the proposed message. The implementer of

the consensus protocol’s responsibility is to overwrite those functions declared in the

interface. See the Chain interface functions list in Figure 2.1

Figure 2.1: Fabric Orderer Chain interface functions

2.3.4 Consenter

The Consenter interface includes one function HandleChain. It creates a Chain

object by returning a NewChain() function in the chain.go file. Each consensus

protocol has an individual consenter implementation. The Consenter interface es-

tablishes the initialization process for the ordering mechanism. The HandleChain
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function generates and returns a reference to a Chain tailored to the specific collec-

tion of resources provided. As shown in 2.2, It is important to note that within a given

execution process, HandleChain calls once the Orderer node starts. A visual code

review for the type Consenter interface and its HandleChain function is demonstrated

in Listing 2.3.

1 type Consenter interface {

2 // HandleChain is the only function required to implement the

interface. HandleChain returns the Chain object

3 HandleChain (...) (Chain , error)

4 }

Listing 2.3: Fabric Orderer Consenter interface HandleChain method

2.3.5 ConsenterSupport

ConsenterSupport Interface is responsible for providing the available resources to

a Consenter implementation. The interface defines a set of functions as demonstrated

in Listing 2.4.

1 type ConsenterSupport interface {

2 identity.SignerSerializer

3 msgprocessor.Processor

4

5 // Evaluates a block ’s signature utilizing // an optional setting

that can be null.

6 VerifyBlockSignature ([]* protoutil.SignedData , *cb.ConfigEnvelope)

7

8 // Gives this channel ’s block cutting helper back.

9 BlockCutter () blockcutter.Receiver

10

11 // Return the Config Block of the current node to be shared

12 SharedConfig () channelconfig.Orderer

13
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14 // The channel configuration is obtained from the config block of

the channel.

15 ChannelConfig () channelconfig.Channel

16

17 // Accepts a messages array , builds the subsequent block by

referencing the block in ledger with the highest block number.

18 // It should be noted that calling WriteBlock or

WriteConfigBlock is required prior to calling this function.

19 CreateNextBlock(messages []*cb.Envelope) *cb.Block

20

21 // Returns null if there is no such block or a block with the

specified number.

22 Block(number uint64) *cb.Block

23

24 // Write the block data into the ledger.

25 WriteBlock(block *cb. Block , encodedMetadataValue []byte)

26

27 // Applies the configuration modification within and Write the

block data into the ledger.

28 WriteConfigBlock(block *cb.Block , encodedMetadataValue []byte)

29

30 // Displays an integer number of the current configuration seq.

31 Sequence () uint64

32

33 // Provides back the channel ID that corresponds to this support.

34 ChannelID () string

35

36 // Returns an integer number of the last committed block.

37 Height () uint64

38

39 // In contrast to WriteBlock , which also modifies the clock

metadata , Append Write the block data into the ledger , but in

raw form.



44

40 Append(block *cb.Block) error

41 }

Listing 2.4: ConsenterSupport interface

2.4 Orderer main function

The main function is the entry point of the Orderer node in the main.go file located

in the Fabric core project in this directory path /orderer/common/server/main.go.

Once the necessary configurations and settings have been loaded either from the

YAML file or the pre-created blocks, the aim is to create the chain object and initiate

the node using a particular consensus implementation. Within the Main function,

several functions are called to instantiate the necessary components for the consentor

and chain objects, which both support initializing the consensus protocol according

to the selected consensus algorithm. The consensus module takes control of the

ordering service and processing of the incoming messages. The Orderer node status

is set to running once the chain and node are successfully created. This means this

Orderer node is ready to participate in the network, handle transaction ordering, and

create a new block according to the consensus rules defined by the chosen consensus

mechanism.

The execution of the main function process involves the following steps:

1. Load the configuration file.

2. Set up the Logger.

3. Establish a local Membership Service Provider (MSP).

4. Perform core startup tasks:

• Load the genesis block.

• Create the ledger factory.
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• Create a native gRPC server.

• Create a cluster gRPC server. If the consensus requires a cluster (e.g.,

raft),

• Set up the Registrar, which includes configuring the consensus plug-in,

initiating each channel, and if the consensus is Raft, defining the cluster’s

gRPC interface processing function.

• Create a local server, which serves as the processing service for atomic

broadcast. It integrates functions for broadcast processing, deliver pro-

cessing, and registrar.

5. Enable profiling.

6. Start the cluster gRPC service.

7. Start the native gRPC service.

The listed functionality above all gets executed inside the main function implemen-

tation for each Orderer node under the server package.

2.4.1 Main function

The main function initializes all the required attributes for the particular Orderer

node to run the consensus protocol and join the other Orderer nodes. Upon starting

the Fabric network, the network administrator has the ability to designate a spe-

cific consensus protocol to govern the consensus mechanism for the Orderer. This is

achieved by defining a set of key-value parameters, allowing for flexibility and cus-

tomization in selecting the appropriate consensus protocol. service as demonstrated

in Listing 2.5.

1 // The Orderer process entry point is the ’Main’ function.

2 func Main() {}

Listing 2.5: Fabric Orderer Main method
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The following steps outline the process of running the full Orderer node with the

Raft consensus algorithm:

1. load()

2. initializeLogging()

3. loadLocalMSP(conf).

4. GetDefaultSigningIdentity()

5. newOperationsSystem()

6. initializeServerConfig()

7. initializeGrpcServer()

8. createLedgerFactory()

9. initializeBootstrapChannel()

10. initializeClusterClientConfig()

11. initializeMultichannelRegistrar()

12. NewServer()

1. load() [78] function loading the orderer.yaml configuration file, the initial

action involves invoking the Load() function. This function is responsible for

loading the orderer.yaml configuration file located outside the Fabric code

as external configuration input that can be pointed within the environment

variables that Fabric checks to read the file information. Upon loading the file,

the configuration information is extracted and stored in the conf variable of type

TopLevel struct. This process gives the Orderer node access to the configuration
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information for its proper functioning. TopLevel directly corresponds to the

Orderer config YAML. The configuration file of the TopLevel struct located in:

/fabric/orderer/common/localconfig/config.go

The details step helps understand the flow of the data from the out-source con-

figuration file. The implementers and researchers of the Orderer will understand

what the steps needed or changes in order to pass a customized or new variable

from the orderer.yaml file, including the required changes in the TopLevel

struct. The initial step in the process involves loading the orderer.yaml con-

figuration file. This file contains essential configuration parameters and settings

specific to the Orderer node. By loading this configuration file, the Orderer

node gains access to crucial information necessary for its proper operation and

behavior.

• The process of initializing the Viper component and reading the locating of

the configuration YAML file by the InitViper function. This function sets

up the Viper component, which is a popular configuration management li-

brary, and determines the path to the configuration file. By executing

InitViper, the system initiates Viper to handle configuration-related op-

erations and ensures that the correct configuration file is pinpointed for

the following usage.

• The ReadInConfig operation is responsible for loading the configuration

file’s contents, parsing its data, and storing it within the Viper component.

This process reads the configuration orderer.yaml file, and its values are

accessible through Viper’s configuration management functionality. By

executing ReadInConfig, the system retrieves and integrates the configu-

ration file’s information, enabling subsequent retrieval and manipulation
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of its settings.

• The process of parsing the Viper configuration into the TopLevel struct

type is accomplished through the use of the

EnhancedExactUnmarshal function. This function facilitates the transfor-

mation and mapping of the Viper data structure to the TopLevel structure.

By executing EnhancedExactUnmarshal, the system ensures that the con-

figuration data stored in Viper is accurately transformed and represented

in the desired TopLevel format.

• In the absence of the completeInitialization setting, default values are

utilized to supplement the missing attribute values. Additionally, upon

program termination, the file path is reset to its default state to ensure

the integrity of the system.

The TopLevel struct contains all the configurations and sub-configurations

present within the orderer.yaml file. It serves as a full container that holds all

the individual configurations, providing a direct representation of the various

configuration data types and access to the entire configuration information. as

demonstrated in Listing 2.6

1 // The orderer configuration YAML immediately correlates to the

TopLevel.

2 type TopLevel struct {

3 General General

4 FileLedger FileLedger

5 Debug Debug

6 Consensus interface {}

7 Operations Operations

8 Metrics Metrics

9 ChannelParticipation ChannelParticipation
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10 Admin Admin}

Listing 2.6: TopLevel in orderer/.../config.go

2. initializeLogging Initializes the logging globally for the Fabric network to

be in the same format and at the same logging level as it loads and sets the

logging configuration at the startup of the Orderer. This function reads the

environment variables. The first environment variable can set the logging level,

and the second one can control and customize the logging format:

1 FABRIC_LOGGING_SPEC

2 FABRIC_LOGGING_FORMAT

The default level for logging in the Hyperledger Fabric framework is INFO.

3. loadLocalMSP initializes local MSP components. The Membership service

provider of the Fabric network is an essential process for a permission-type

decentralized network and requires access to the crypto materials for the nodes.

This function receives the config object type of TopLevel to load the needed

properties from the orderer.yaml file to initialize local MSP components. First,

the GetLocalMspConfig function must execute and load the configuration and

initialize the default BCCSP (Blockchain Cryptographic Service Provider) for the

local MSP (Membership Service Provider).

4. newOperationsSystem function is also called “Orderer node running health

monitor”. During the Orderer node startup, it generates a series of metrics

through the metricsProvider. These metrics continuously track the system’s

performance in real-time, such as the status of the nodes, the process by which

the message envelopes status, the creation of the block status. and other critical

indicators. The operating system manages and updates the data to be visible

to the system administrator via a web browser using the HTTP protocol.
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5. initializeServerConfig Load the gRPC server configuration to start the gRPC

server. gRPC’s configuration requires access to the config object mentioned

earlier in this chapter responsible for loading the orderer.yaml file, ultimately

populating the secureOpts to set up the TLS security authentication con-

figuration option. This step ensures configuring the gRPC server with the

necessary security measures. To enable TLS (Transport Layer Security), the

secureOpts.UseTLS set the flag to “true”. The default value is “false”. How-

ever, when enabled, it indicates the necessity to read the server-side signature

private key, identity certificate, and root CA certificate list. It loads the related

crypto materials from the specified configuration location in the orderer.yaml

file. The heartbeat message configuration item KaOpts facilitates the configu-

ration of heartbeat parameters between the client and server.

This item allows for the specification of heartbeat-related settings, enabling the

control of intervals and other relevant parameters to ensure effective communi-

cation and synchronization between the client and server.

The secureOpts.RequireClientCert flag is responsible for enabling the client

certificate authentication feature. By default, the flag default value is “false”.

Suppose you set it to “true”. In that case, the clients must connect to the server

with a valid certificate for authentication, improving the security of the com-

munication channel by guaranteeing that only authorized clients can establish

a connection.

6. initializeGrpcServer Initializes the gPRC server instance. The initializeGr-

pcServer function is responsible for creating a gRPC server using the earlier

loaded conf object encapsulates the orderer.yaml and ServerConfig parame-

ters by the initializeServerConfig. It initializes and configures the gRPC server

based on the specified configuration settings, ensuring the server is correctly set

up and ready to handle incoming client requests. The process involves several
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steps, demonstrating the necessary components and configurations to set up

and initialize the gRPC server for the Orderer node communication.

• Constructing a listener on the specified IP address and port to listen for

incoming connections.

• Creating an instance of grpcServerImpl type, referred to as grpcServer,

using the listener and serverConfig.

• Invoking the grpc.NewServer to bind the server object of the gRPC server.

7. createLedgerFactory Create the ledger factory. The conf.FileLedger.Location

parameter in the config object that loads the ordererd.yaml file specifies

the location path for storing the ledger data. Trigger the execution of the

fileledger.New function to create the ledger factory object. In the NewProvider

function, a subdirectory with the name “chains”, and inside this directory, this

function creates a subdirectory with the name of the channel ID as the directory

name. This directory stores the ledger data containing the block data files. The

name of the block files will be according to its corresponding blockfile number.

The Ledger Factory saves the block data in a structured form with separate

directories for each channel’s ledger data.

8. initializeBootstrapChannel (deprecated) initializes the system channel.

Note: This function was deprecated and removed from the main function in

Fabric Orderer 3.0. Due to the fact that there is no longer support for the

system channel [79]. However, I uphold this function explanation since the

long-term support (LTS) release remains in Fabric version 2.5 and still uses the

system channel.

Fabric checks the value of the conf.General.BootstrapMethod configuration

parameter that loads from the orderer.yaml file to determine whether it is

set to “file.” This indicates that the block data is stored using the file method.
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Based on the provided configuration file or the genesis block file, the system

constructs the genesis block genesisBlock for the system channel.

9. initializeClusterClientConfig /clusterGRPCServer Initialize Cluster

Client Config when utilizing a consensus protocol that runs multiple nodes.

Moreover, Fabric Orderer peers operate those consensus nodes as the etcdraft

consensus protocol. Message communication is required among the consensus

protocol nodes. In contrast, the Kafka and Solo modes involve solely communi-

cation between Orderer and peer nodes. Even though Kafka maintains multiple

nodes, the Kafka nodes are maintained by the Kafka cluster, not embedded or

maintained by the Fabric Orderer node. Consequently, under the etcdraft con-

sensus protocol, each Orderer node operates as a gRPC server and a gRPC

client. Each node runs two gRPC servers: one for handling messages sub-

mitted by peer nodes as envelopes or proposed messages and another for pro-

cessing message verification and communication among other Orderer nodes.

In the code, these are referred to as grpcServer and clusterGRPCServer,

respectively.

10. initializeMultichannelRegistrar Initializes the multichannel registration. It

serves the purpose of creating a manager instance, facilitating the deployment

of various submodules. This manager contains Consenter instances for all con-

sensus protocols provided in the fabric release. It runs the consenter initial-

ization of the consensus within this function. Note that the consensus selec-

tion for the network is a configuration key-value pair in the configtx.yaml

file. However, the return consenter object will be a function parameter for

the registrar.Initialize(consenters). Finally, this function returns the

registrar.

It is essential to understand what the registrar Initialize does. To narrow it down
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for the consensus protocol implementer, two important functions will trigger to

run:

• func (c *Consenter) HandleChain() The HandleChain() function

in the consentor.go of the selected consensus returns NewChain() in the

chain.go.

• func (c *Chain) Start() The Start() function in the chin.go of the

selected consensus also runs to start the consensus and the chain object,

indicating that the Orderer node is up and running.

793 func initializeMultichannelRegistrar(

794 cluster -Dialer *cluster.Predicate -Dialer ,

795 srvConf comm.Server -Config ,

796 srv *comm.GRPC -Server ,

797 conf *local -config.TopLevel ,

798 signer identity.SignerSerializer ,

799 metricsProvider metrics.Provider ,

800 lf blockledger.Factory ,

801 bccsp bccsp.BCCSP ,

802 callbacks ... channelconfig.BundleActor ,

803 ) *multichannel.Registrar {

804 dpmr := &DynamicPolicyManagerRegistry {}

805

806 policyManagerCallback := func(bundle *channelconfig.Bundle) {

807 dpmr.Update(bundle)

808 }

809 callbacks = append(callbacks , policyManagerCallback)

810

811 registrar := multi -channel.New -Registrar (*conf , lf, signer ,

metrics -Provider , bccsp , cluster -Dialer , call -backs ...)

812

813 consenters := map[string]consensus.Consenter {}
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814

815 // the orderer can start without channels at all and have an

initialized cluster type consenter

816 etcdraftConsenter , cluster -Metrics :=

etcdraft.New(cluster -Dialer , conf , srvConf , srv , registrar ,

metrics -Provider , bccsp)

817 consenters["etcdraft"] = etcdraftConsenter

818

819 consenters["BFT"] = bdls.New(dpmr.Registry (), signer ,

cluster -Dialer , conf , srvConf , srv , registrar ,

metrics -Provider , cluster -Metrics , bccsp)

820

821 registrar.Initialize(consenters)

822 return registrar

823 }

Listing 2.7: initializeMultichannelRegistrar() in

main.go

11. NewServer The NewServer function initiates a server to provide AtomicBroad-

cast services. The server consists of two handlers, one for processing the broad-

cast data stream and another for delivering the data stream. The server service

is registered into the gRPC server grpcServer using the

ab.RegisterAtomicBroadcastServer function. Fabric running the Start function

of the gRPC server after initializeGrpcServer, starting the listening process on

the specified port. Make it ready for the coming connections from gRPC clients.

Note: that the registration of the clusterGRPCServer service, which is specific

to multi-node consensus mechanisms such as etcdraft and BDLS, is configured

in the consenter.go file for each specific consensus protocol.

1 //The ab.AtomicBroadcastServer that is returned by this

NewServer function is generated by NewServer using the
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ledger reader and broadcast target.

2 func NewServer(

3 mutualTLS bool ,

4 timeWindow time.Duration ,

5 debug *localconfig.Debug ,

6 metricsProvider metrics.Provider ,

7 r *multichannel.Registrar ,

8 expirationCheckDisabled bool ,

9 ) ab.AtomicBroadcastServer {

10 s := &server{

11 dh: deliver.NewHandler( deliverSupport{Registrar: r},

timeWindow , mutualTLS , deliver.NewMetrics(metricsProvider),

expirationCheckDisabled),

12 bh: &broadcast.Handler{

13 SupportRegistrar: broadcastSupport{Registrar: r},

14 Metrics: broadcast.NewMetrics(metricsProvider),

15 },

16 debug: debug ,

17 Registrar: r,

18 }

19 return s

20 }

Listing 2.8: NewServer() in orderer/.../server.go

The NewServer function initializes and returns a new instance of the

AtomicBroadcast server. The function is configuring the server, registering the

necessary services, and starting the gRPC server to listen for incoming client

connections.

2.4.2 Registrar-Consenture Wiring

In the initializeMultichannelRegistrar function, which we explained earlier

in 2.4.1 No. 10. The function reads the consensus value that has been pre-configured



56

in the configtx.yaml file to trigger building the new consenter object for the specific

consensus protocol.

1 consenters["bdls"] = bdls.New (...)

2 consenters["etcdraft"] = etcdraft.New (...)

3 consenters["solo"]= solo.New()

The above-selected consensus consenter initialization is the corresponding imple-

mentation of the consenter interface. by executing the New() function, for example

bdls.New(...) and etcdraft.New(...) receiving the required parameters to build the

consenter object. The registrar.Initialize(consenters) initialize the Register, also

executing the newChainSupport function from the ChainSupport by passing the ini-

tialized consenters object to the Initialize function.

func(c ∗ Consenter)HandleChain()

The last function triggers the chain interface implementation and returns a new chain

object as NewChain() located in the chain.go for the specific consensus protocol.

1 func (r *Registrar) Initialize(consenters

map[string]consensus.Consenter) {

2 r.init(consenters)

3 r.lock.Lock()

4 defer r.lock.Unlock ()

5 r.startChannels ()

6 }

Listing 2.9: Initialize() in registrar.go

1 func (r *Registrar) startChannels () {

2 for _, chainSupport := range r.chains {

3 chainSupport.start()

4 }

5 for _, fChain := range r.followers {
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6 fChain.Start ()

7 }

8

9 if r.systemChannelID == "" {

10 logger.Infof("Without a system channel , the Registrar starts

with %d application channels , %d consensus , and %d follower.",

11 len(r.chains)+len(r.followers), len(r.chains),

len(r.followers))

12 }

13 }

Listing 2.10: startChannels() in registrar.go

2.5 pluggable consensus algorithm

Hyperledger Fabric is declared as a pluggable consensus protocol [80], which gives

the ability for the end organization to integrate their preferred or customized con-

sensus protocol as it is in charge of sending the message to the entire network peers.

The pluggable architecture nature of Fabric is obtained by a predefined standard set

of operations, and the implementer must implement core interfaces. The interface

functions are required for the chain and consenter, start the Orderer chain, receive

the submit messages, and the consensus message communication along other core

interfaces must be implemented. This chapter will deeply explain the technical steps

required to integrate any consensus protocol [81].

• channel artifact configuration

• func main()

• Chain Interface

• Consenter Interface
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Figure 2.2: Fabric Orderer protocols Raft / BDLS. © 2024 ACM.

2.6 Fabric Raft consensus

In the Hyperledger Fabric architecture, the Orderer node is responsible for receiv-

ing transactions, packaging messages into blocks, and disseminating the newly created

block to the network’s peers for validation and inclusion in the blockchain. The Raft

consensus algorithm is used to coordinate this process and ensure that each of the

Orderer nodes comes to a consensus over the order of transactions. Raft [6] etcd [31],

also known as the Raft-based etcd consensus protocol, is an implementation of the



59

Raft consensus algorithm used in the Hyperledger Fabric Orderer node. It is the un-

derlying consensus mechanism for maintaining agreement and ordering transactions

within the Orderer service node OSN. The etcd project, developed by the CoreOS

team, provides a distributed key-value store within the Hyperledger Fabric context.

Hyperledger Fabric contribution chooses etcdRaft to operate as a Fabric Orderer

service consensus protocol. Fabric long-term supported release uses Raft consensus

algorithms. Check figure 2.4 for the complete Raft implementation and functions

relation in a data flow diagram within the Fabric Orderer node. The code core im-

plementation for the Raft algorithm in Hyperledger Fabric resides in the Hyperledger

Fabric open-source project directory:

fabric/orderer/consensus/etcdraft/

This specific location houses the essential code responsible for executing the Raft

consensus algorithm within the Hyperledger Fabric framework. package etcdraft

2.6.1 Orderer Node Startup Process

A comprehensive understanding of the end-to-end startup process of the Fabric

Orderer Node and the data flow is essential to replace or add a new consensus protocol

into the Hyperledger Fabric network system. This knowledge enables developers and

administrators to configure and deploy consensus protocols in the network effectively.

This section provides an overview of the startup process, the data flow involved

within the Fabric Orderer node, and, specifically, the consensus protocol into the

Hyperledger Fabric network. Understanding the startup process helps set up the

necessary configurations and ensure the consensus protocol’s proper functioning.

Running the fabric-samples/first-network project. The configtx.yaml file shown

in Figure 3.5.2, utilized in the creation of the genesis.block [82] for Orderer-related

configurations.
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Figure 2.3: The Orderer section in configtx.yaml file

The genesis.block includes the channel configuration information. Under the

Orderer section, the OrdererType and consensus-related configuration information.

The startup command for the Orderer node is executed as ordererstart, which

initiates the execution of the main() function within the main program. as described

in 2.4.1. This command serves as the entry point for launching the Orderer node and

initializing its core functionalities.

Reading the genesis.block to get the preset OrdererType value. Suppose the

OrdererType is etcdraft. In that case, the system will utilize clusterGRPCServer

and pass it as a parameter to initializeMultichannelRegistrar. In this function,

the ConsensusType is re-evaluated. Suppose it is determined to be etcdraft,

initializeEtcdraftConsenter(...) is invoked to initialize the Consenter instance

object of etcdraft. This Consenter object is responsible for implementing the core

interface called ClusterServer.

1 genesisBlock := extractBootstrapBlock(conf)
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2 consenterType := consensusType(genesisBlock , bccsp)

3 switch consenterType {

4 case "etcdraft":

5 }

6

In the consenterType based on the case set of the consensus, the implementation

of the consenter interface implementation running the New() function located in

orderer/consensus/etcdraft/consenter.go.

1 consenters["etcdraft"] = etcdraft.New(clusterDialer , conf , srvConf ,

srv , registrar , nil , metricsProvider , bccsp)

Finally, multichannel. Initialize receives all consenters as input and initializes them

there. This process involves calling HandleChain() of etcdraft.Consenter, which

corresponds to the core interface mentioned earlier.

The code now enters the core of etcdraft, where it automatically sets the raftID. The

process starts with HandleChain and concludes with... In the HandleChain function,

the most recent configuration data is obtained for the system channel or the channel

that is currently in use from the ConsensusMetadata. The system sets the raftID

based on the index of the certificate assigned to the current Orderer in this array.

The RPC component implements the ClusterClient core interface mentioned ear-

lier, indicating a one-to-many relationship between ClusterServer and ClusterClient.

The HandleChain function returns the NewChain() function found in

etcdraft.Chain.go to create an instance of etcdraft.Chain, which implements the

Chain core interface. At this stage, all the core interfaces mentioned above in section

2.3 are now implemented.

The newChainSupport function is responsible for creating a chain support object

ChainSupport, and performs the following steps:

• ledgerResources.SharedConfig().ConsensusType() retrieves the consensus



62

component type, which in this case is the “raft” type.

• consenters[consenterType] retrieves the consensus component object, con-

sensus, from the consensus component dictionary.

• The consenter.HandleChain function is called to initialize the consensus com-

ponent chain object, consensus.Chain, and assigns it to the cs.Chain field as

demonstrated in Listings (2.11, 2.12).

1 func (cs *ChainSupport) start() {

2 cs.Chain.Start()

3 }

Listing 2.11: start() in orderer/common/multichannel/chainsupport.go

The chain.start function starts the Orderer chain object that gives the ability for

the Orderer node to start participating in the network and actively capable of receiv-

ing the submitted messages and handling the requests, creating the block, and writing

to the ledger, also starting the consensus protocol by calling the Start() function of

the consensus component chain within the chain support object, ChainSupport. As

demonstrated in Listing 2.11.

1 func (c *Chain) Start () {

2 c.logger.Infof("Starting Raft node")

3 // Orderer nodes connection verification check: if there is an

error , the Start function will not continue the initialization.

4

5 c.configureComm ();

6 // Execute the above function with an ’if’ condition. If an error

occurs during the execution of the statement , check if the error

is not null.

7

8 // proper log for the error and continue statement

9
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10 //This logic check indicates that the node block height > 1 once

it joins the network.

11 // 1. The variable isJoin is set to true if the height of the

current chain (c.support.Height ()) is greater than 1, meaning

the node is joining an existing chain.

12

13 // 2. The code then checks if both the node is joining (isJoin

is true) and if MigrationInit (a flag in c.opts) is set to true ,

indicating that a migration is being initialized.

14

15 // 3. If both conditions are met , isJoin is reset to false ,

implying that although the node is joining , it’s not considered

a regular join due to the migration.

16

17 // 4. A log message is then generated to indicate that a

consensus type migration is detected and a Raft the new node is

starting on the existing channel , also displaying the current

height of the chain.

18 // Trigger the consensus start function in the Node.go file.

19 c.Node.start(c.fresh , isJoin)

20 // Trigger running Two Go routines concurrently within the

start function

21 go c.gc()

22 go c.run()

23 close(c.startC)

24 close(c.errorC)

25 interval := Default -Leader -less -Check -Interval

26 es := c.newEvictionSuspector ()

27

28 if c.opts. Leader -Check -Interval != 0 {

29 interval = c.opts. Leader -Check -Interval

30 }

31 // initialize the PeriodicCheck struct.
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32 c.periodicChecker = &PeriodicCheck{

33 CheckInterval: interval ,

34 ReportCleared: es.clearSuspicion ,

35 Report: es.confirmSuspicion ,

36 Condition: c.suspectEviction ,

37 Logger: c.logger ,

38 }

39 c.periodicChecker.Run()

40 }

Listing 2.12: start() in orderer/consensus/etcdraft/chain.go

The main three functions to start the Ordering service node are:

1. c.Node.start() The executing of the c.Node.start(c.fresh, isJoin) in line

(19) in Listing 2.12 initiates the etcdraft.Node and launch a go routine for con-

tinuous message processing. The code was in chain.go then moves the raft logic

to its own file node.go for better organization and separation of concerns. in

the same package etcdraft.

2. go c.gc() referring to chain garbage collection, in line (21) in Listing 2.12 In-

voking the c.gc() is responsible for creating a snapshot, recycling resources,

and blocking on the c.gcC channel. Whenever there is a message in the gcC

channel, the snapshot action is executed, allowing for the deletion of redundant

logs or updating the snapshot.

3. go c.run() in Line (22) in Listing 2.12. Invoking c.run() initiates the chain

loop and handles message processing.

2.7 Orderer messages life-cycle

The core function of the Hyperledger Fabric system is to receive messages from

nodes, with the Orderer node assigned the task of distributing these messages to all
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nodes across the network. Below is an outline of the key steps involved in the lifecycle

of a message within the Hyperledger Fabric Orderer process.

1. The Broadcast function returns Handle function as indicated in Line (10) -

Listing 2.13. It reads and processes requests from a broadcast stream accord-

ingly, ultimately to be forwarded to the corresponding responses back to the

stream. This enables both the server and the clients to communicate in both

directions through the broadcast stream.

The Broadcast processes normal messages and configuration messages sepa-

rately, ensuring that each type of message is handled appropriately and in ac-

cordance with its specific requirements. This segregation allows for efficient and

accurate processing of different message types within the system.

1 // A client sends a stream of messages to Broadcast requesting

an order to be processed.

2 func (s *server) Broadcast(srv

ab.AtomicBroadcast_BroadcastServer) error {

3 log.info("New Broadcast handler Starting")

4 defer func() {

5 ...}()

6 return s.bh.Handle (& broadcastMsgTracer{

7 AtomicBroadcast_BroadcastServer: srv ,

8 msgTracer: msgTracer{

9 debug: s.debug ,

10 function: "Broadcast",

11 },

12 })

13 }

Listing 2.13: Broadcast() in orderer/common/server/server.go

2. Order & Configure The application sends a broadcast request message to

the orderer, which forwards it to the leader node in the raft cluster. The Order
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function handles normal messages, while the Configure function handles con-

figuration messages. as demonstrated in Listing 2.14.

1 // The order function handles the normal message and processes

it to the Fabric network.

2 func (c *Chain) Order(env *common.Envelope , configSeq uint64)

error {

3 return c.Submit(env)

4 }

5 // The Configure function handles the configuration type

message and processes it to the Fabric network.

6 func (c *Chain) Configure(env *common.Envelope , configSeq

uint64) error {

7 return c.Submit(env)

8 }

Listing 2.14: Order() and Configure() functions in chain.go

3. Submit the income message The Submit function in Listing 2.16 encapsu-

lates the request message into a submit struct as Listing 2.15 and assigns the

request to the channel c.submitC as indicated in Line (6) - Listing 2.16 within

the current Chain instance to process the submitted transaction message.

1 // submit struct used to capsulate the req

2 type submit struct {

3 req *orderer.SubmitRequest

4 leader chan uint64 }

Listing 2.15: Submit struct in orderer/consensus/etcdraft/chain.go

The submit function checks whether the current Orderer node is the leader.

Suppose the current node is not the leader. In that case, it must forward the

message to the leader node by invoking the forwardToLeader function, passing

the current request object that encapsulates the message. as indicated in Line
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(14) - Listing 2.16.

1 func (c *Chain) Submit(req *orderer.SubmitRequest , sender uint64)

error {

2 // Check if the actual node is interrupted and not running. Assign

the result of c.isRunning () to the error variable , then check if

it is null. If not null , update the ProposalFailures in the

Metrics by calling Add (1). Finally , return the error.

3 leadC := make(chan uint64 , 1)

4 select {

5 // Encapsulates the req in a SubmitC struct for further processing.

6 case c.submitC <- &submit {req , leadC }:

7 lead := <- leadC // Populate the lead with value from leadC

channel

8 if lead == raft.None {

9 // update the "Proposal Failures" in the Metrics by

calling Add(1). Return the error of absent leader within Raft.

10 }

11 if lead != c.raftID {

12 // Forward the req object to Raft leader node if current node is

Not leader.

13 c.forwardToLeader(lead , req) {

14 //if error != null the return from the forward To Leader function

15 }

16 }

17 case <-c.doneC:

18 // Return error message if the node has been stopped.

19 // update the ProposalFailures in the Metrics by calling Add(1).

Return the error of stopping the chain.

20 }

21 return nil

Listing 2.16: Submit() in chain.go
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4. c.submitC The c.submitC channel is the key channel that listens for the in-

coming transaction from the Submit function. The mechanism of the listener is

by running the run() function in a go routine with an infinite loop to listen on

a list of channels once receiving a value, to perform the logic on the particular

channel data, c.submitCis one of those channels. once c.submitC receives a

value. It performs the following actions:

• ordered Passing the request message to the c.ordered(s.req) function for

sorting the messages, returning the messages as batches and a boolean

value in the pending variable if envelopes are pending to be ordered. as

indicated in Listing 2.17 - Line (17).

• propose Use c.propose to submit the block. as indicated in Line (37) -

Listing 2.17. See Figure 2.4 for the overall process picture.

1 case s := <-submitC:

2 // Once the channel submitC receives an envelope as req.

3 // the case s will excute.

4 if s == nil {

5 continue

6 }

7 if soft.Raft_State == raft.State_Pre_Candidate ||

soft.Raft_State == raft.State_Candidate {

8 s.leader <- raft.None

9 continue

10 }

11 s.leader <- soft.Lead

12 // checks if the soft.Lead is not equal to the Raft ID

13 if soft.Lead != c.raftID {

14 continue

15 }

16 // This is a critical step in which all the received messages will
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be sent for ordering.

17 batches , pending , err := c.ordered(s.req)

18 // Sending the s.req.

19 // recieving: batches , which include the ordered request.

20 // pending a boolean indicator.

21 // err if exist and not equal null. logging the error and exist

this case.

22

23

24 if !pending && len(batches) == 0 {

25 // In this check , verify if there is a pending or the

batches do not reach the corresponding size or message number

limit to continue receiving messages for ordering.

26 continue

27 }

28 if pending {

29 // pending is true will trigger the startTimer () function

30 startTimer ()

31 } else {

32 stopTimer ()

33 }

34

35 // If there are no pending batches , this means the batches have

reached the configured limit and is ready to be proposed to the

plug -in consensus protocol.

36

37 c.propose(propC , bc, batches ...) // THIS IS A VERRY Importent

to NOTE.

38

39 if c.configInflight {

40 log.Info("Configuration transaction received; halt transaction

acceptance until fully committed.")

41 submitC = nil
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42 } else if /* This check is with the pre deffined value*/ block In

flight >= opts Max In flight Blocks {

43 log.Debug("halt transaction acceptance , reaches limit (%d) of

in -flight blocks number (%d)",

44 c.blockInflight , c.opts.MaxInflightBlocks)

45 submitC = nil

46 }

Listing 2.17: submitC chan case in run() function, file chain.go

5. c.ordered sorting

• When dealing with a configuration message, the message is cut into blocks

by directly invoking the BlockCutter.Cut() function. This approach is

adopted to handle the configuration information, divided into separate

blocks.

• During processing a normal message, the BlockCutter.Ordered() func-

tion is invoked to perform cache sorting. Based on the block generation

rules, a decision is made whether to generate a block or not.

• The moment the processing of c.ordered is completed, the BlockCutter

returns the data package batches, which are the data that can be packed

into blocks, along with information about whether there is any remaining

data in the cache. The timer is started if there is still data in the cache

that has not been generated. On the other hand, if there is no remaining

data in the cache, the timer is reset. In this case, the timer handling is

performed by the timer.C mechanism.

6. c.propose

• The propose function packing the block invokes createNextBlock to

package the block based on the data packets in batches.
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• Then, the block is passed to the c.ch channel, where a separate thread

is initiated to process the message. This functionality is restricted to the

leader, as only the leader has the authority to propose blocks.

• In the case of configuration information, it becomes essential to annotate

the status of the ongoing configuration update.

7. c.ch The data is transmitted to the underlying raft state machine by invoking

the c.Node.Propose function as indicated in Line (10) - Listing 2.18.

To prevent potential blocking, the leader should invoke the Propose method

within a separate go routine as indicated in Line (1) - Listing 2.18. This allows

for concurrent execution of the proposal while avoiding any potential delays or

interruptions in the main execution flow.

1 go func(ctx context.Context , ch <-chan *common.Block) {

2 // Infinite loop that keeps listening to the channel ’ch’ if a

block or batches are received within a separate Go routine.

3 for {

4 select {

5 case b := <-ch:

6 // Marshal the block or batches to binary format.

7 data := protoutil.MarshalOrPanic(b)

8

9 // Send the Marshal data to the consensus to be proposed.

10 c.Node.Propose(ctx , data)

11 // Execute the function Node.Propose with an ’if’ condition.

If an error is raised during the execution of the statement ,

check if the error is not null and handle it accordingly.

12 // Log the error with a proper message of the blocks will

be discarded

13

14 // Otherwise running Node.Propose with no error , a log

statment is trigger to track the block number that been proposed.
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15

16 // Exit if the context is done.

17 case <-ctx.Done():

18 // log a meesage informing that:

19 "Stopped block proposals along with the blocks ignored %d

from queue", len(ch))

20 }

21 }

22 }(ctx , ch)

Listing 2.18: ch chan in run() functionfile chain.go

8. c.Node.Propose Proposing entails broadcasting the log to ensure widespread

preservation among the nodes without immediate submission. Once the leader

receives acknowledgments from more than half of the nodes, indicating success-

ful log preservation, the leader can proceed with the submission and obtain the

committed index during the next readiness phase. as indicated in Listing 2.19.

1 func (n *node) Propose(ctx context.Context , data []byte) error {

2 // In Propose function is the first interaction with Raft by

proposing the Marcheled block as data for consensus.

3 return n.stepWait(ctx , pb.Message{Type: pb.MsgProp , Entries:

[]pb.Entry {{Data: data }}})

4 }

Listing 2.19: c.Node.Propose in:

vendor/go.etcd.io/etcd/raft/v3/node.go

9. Save blocks

(a) n.Ready() Ready is a channel return by etcdraft core code. The concept

of “Ready” encompasses the available entries and messages prepared for

reading, saving to stable storage, committing, or transmitting to other
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peers. A channel returns by “Ready” to access the current state at a specific

moment. It is essential for users of the Node to invoke the "Advance"

function after obtaining the state provided by "Ready." in the node.go run

function func (n *node) run (campaign bool).

• In the run() function, there is a (for select case) to keep checking until

receiving the message in the specified channel. Once we receive the

n.Ready message from the node.

• Upon receiving the “Ready” signal, it is crucial to locally store the

Entries, HardState, and Snapshot. Raft ensures the appropriate

application of these components to the state machine. As the Raft

library lacks built-in storage support, it necessitates integration with

the application to handle storage-related operations.

• In the presence of a snapshot, it is important to notify the snapC com-

ponent. As indicated in Line (150) in Listing 2.20. snapC refers to

a snapshot channel within the Raft consensus mechanism, responsi-

ble for managing the snapshotting process. Snapshotting is a critical

function used to periodically capture the state of the ledger, thereby

reducing the size of the Raft log by discarding older, already applied

entries. This process is essential for optimizing memory usage and

ensuring efficient recovery of peers in the event of failure. By utiliz-

ing snapshots, Hyperledger Fabric enhances system performance and

maintains the scalability of the Raft protocol over time.

• Condition is satisfied,

len(rd.CommittedEntries)! = 0||rd.SoftState! = nil

It signifies that there has been a change in either the CommittedEntries
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or the SoftState. In such a case, updating the applyC channel is nec-

essary. As indicated in Line (155) in Listing 2.20.

• Once all the processing tasks have been completed, invoking the Advance

function will notify Raft that the current processing is finished, and it

is now ready to receive the next set of updates through the “Ready”

mechanism. As indicated in Line (168) in Listing 2.20.

• The send function initiates a remote procedure call (RPC) interface

to transmit the specified "Message". It facilitates the communication

and exchange of messages between different nodes in the system. As

indicated in Line (170).

129 for {

130 select {

131 case <-raftTicker.C():

132 // To ensure that the {RecentActive} characteristics are

not reset , capture the raft Status before ticking it.

133 status := n.Status ()

134 n.Tick()

135 n.tracker.Check (& status)

136 // n.Ready() indicates that the protocol is ready to return the

proposed data.

137 case rd := <-n.Ready ():

138 startStoring := n.clock.Now()

139 // Execute the following function and check for any errors.

If an error is returned , handle it.

140 // The storage will save Entries , HardState , and Snapshot

from rd.

141 n.storage.Store(rd.Entries , rd.HardState , rd.Snapshot);

142 // If an error occurs , the panic function will be triggered ,

logging the error message as shown below:

143 log.Info("Data from etcd/raft failed to persist: %s",
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err)

144 duration := n.clock.Since(startStoring).Seconds ()

145 n.metrics.Data -Persist -Duration .Observe(float64(duration))

146 if duration > half -Election -Timeout {

147 n.log.Warning("The synchronization process for WAL

brought %v seconds. Network stands scheduled to start

elections behind %v seconds", duration , election -Timeout)

148 }

149 // if Is -Empty -Snap is not true , encapsulate the rd.Snapshot in

n.chain.snapC.

150 if !raft.Is -Empty -Snap(rd.Snapshot) {

151 n.chain.snapC <- &rd.Snapshot

152 }

153 // applyC is channel for write the Block , recive the block

data the achived concensus from Raft protocol

154 if len(rd.CommittedEntries) != 0 || rd.SoftState != nil {

155 n.chain.applyC <- apply{rd.Committed -Entries ,

rd.Soft -State}

156 }

157 if campaign && rd.SoftState != nil {

158 leader := atomic.LoadUint64 (&rd.Soft State.Lead)

159 // Exclusive access to this variable is necessary for etcdraft

to function properly.

160 if leader != raft.None {

161 log.Info("Stopping the campaign ,Leader already

exist , Id: %d", leader)

162 //Next two line to stop the campaign

163 campaign = false

164 close(elected)

165 }

166 }

167 // n.Advance function call , Must be triggered within etcd -raft.

168 n.Advance ()
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169 // sending the messages that are extracted from the n.Ready().

170 n.send(rd.Messages)

Listing 2.20: n.Ready() channel in run() function in file etcdraft/node.go

(b) n.chain.applyC

• If the SoftState change message is received, it means that the role is

about to change. Call becomeLeader or becomeFollower to change

the role.

• If a message that CommittedEntries is not empty is received, call

c.apply to process it.

(c) c.apply

• once the apply channel gets notified from the previous step the apply

case in function:

func (c *Chain) run() in /etcdraft/chain.go

get triggered and run the function:

func (c *Chain) apply(ents []raftpb.Entry)

• case raftpb.EntryNormal: Once receive a normal message,

the writeblock function in Line (1139) / Listing 2.21, is invoked to

write the block locally.

1126 case raftpb.EntryNormal:

1127 if len(ents[i].Data) == 0 {

1128 break

1129 }

1130 ....

1131 // Reapplying regular entries must be rigorously avoided to

prevent writing a duplicate block.

1132 if ents[i]. Index <= c.applied_Index {

1133 c.logger.Debugf("Ignored: Raft index (%d) of the

incoming block is less than or equal to the current
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index (%d).", ents[i].Index , c.appliedIndex)

1134 break

1135 }

1136 // This next step is when Fabric unmatched the achieved

consensus proposed data to the Fabric block.

1137 block := protoutil .UnmarshalBlockOrPanic(ents[i].Data)

1138 // Writing the block to the ledger.

1139 c.writeBlock(block , ents[i]. Index) /* writeBlock */

1140 //Set Metrics the CommittedBlockNumber with block Header

number))

Listing 2.21: Switch case for raftpb EntryNormal channel in apply function, file -

chain.go

• case raftpb.EntryConfChange: In case the received block is a con-

figuration block, it is written into the orderer’s ledger.

The c.Node.ApplyConfChange(cc) in Listing 2.22- Line (1156), call-

ing the ProposeConfChange function of Raft core code is called to

apply the new configuration change.

As the Configuration Change has been introduced by a previously com-

mitted configuration block, the Orderer node unblocks the submission

channel, submitC, to start accepting envelopes. as commented in the

code block in Listing 2.22, Line (1167-1178).

1145 case raftpb.EntryConfChange:

1146 var cc raftpb.ConfChange

1147 // Unmarshal the configuration changes.

1148 cc.Unmarshal(ents[i].Data);

1149 // Execute the above function with an ’if’ condition. If

an error occurs during the execution of the statement ,

check if the error is not null.

1150

1151 /*** proper log for the error and continue statement ***/
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1152

1153 // Keep the WAL entries on the file disk.

1154 c.Node.storage.WALSyncC <- struct {}{}

1155 // applying the configuration changes to the orderer nodes.

Which add or remove nodes.

1156 c.confState = *c.Node.ApplyConfChange(cc)

1157 switch cc.Type {

1158 // There is no actual add node here; log a message.

1159 case raftpb.ConfChangeAddNode:

1160 c.logger.Infof("Added node %d through a

configuration change. existing nodes in the network:

%+v.", cc.NodeID , c.confState.Voters)

1161 // There is no actual remove node here; log a

message.

1162 case raftpb.ConfChangeRemoveNode:

1163 c.logger.Infof("Removed node %d through a

configuration change. Current nodes in the channel:

%+v.", cc.NodeID , c.confState.Voters)

1164 default:

1165 log.Panic("Error - Raft configuration modification

unsupported")

1166 }

1167 //The config block that was previously committed caused this

ConfChange; as a result , resume submitC to receive

envelopes.

1168 var configureComm bool

1169 if c.confChangeInProgress.Type == cc.Type &&

1170 c.confChangeInProgress.NodeID == cc.NodeID &&

1171 c.confChangeInProgress != nil {

1172

1173 c.configInflight = false

1174 c.confChangeInProgress = nil

1175 configureComm = true
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1176 // new cluster size must reported.

1177 c.Metrics.ClusterSize

1178 .Set(length val of ConsenterIds from

c.opts.BlockMetadata)))

1179 }

1180 shouldHalt := cc.Type == raftpb.ConfChangeRemoveNode &&

cc.NodeID == c.raftID

1181 // To let the application maintain consuming Raft messages ,

unblock the ‘run ‘ go routine.

1182 go func() {

1183 if configureComm && !shouldHalt { // If this node

will be removed , there is no need to set up

communication.

1184 c.configureComm ();

1185 {

1186 /*Check for error if its not null to be handle

and panic */

1187 log.Panicf("Error: Communication configuration fail: %s",

err)

1188 }}

1189 //Turn Off the node is the actual removal of the existing

node by trigger c.halt().

1190 if shouldHalt {

1191 log.Info("The replica set will no longer include this

node")

1192 c.halt()// Node is offline/deleted.

1193 return }}

1194 ()}

Listing 2.22: case raftpb.EntryConfChange channel in apply function, file chain.go

• In the last section of the apply function in Listing 2.24, When the

accumulated received block data reaches the threshold defined by:
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SnapshotIntervalSize,

c.accDataSize >= c.sizeLimit

A garbage collection (gc) signal is triggered to initiate the state ma-

chine’s preparation for generating a snapshot.

1203 if c.accDataSize >= c.sizeLimit && ents[position ].Type ==

raftpb.EntryNormal && len(ents[position ].Data) > 0 {

1204 b := protoutil.UnmarshalBlockOrPanic( ents[position ].Data)

1205 select {

1206 case c.gcC <- &gc{index: c.appliedIndex , state: c.confState ,

data: ents[position ].Data}:

1207 c.logger.Infof("%d bytes have been added since the last

snapshot , surpassing the size limit of %d bytes , capturing a

snapshot at block [%d] (index: %d), the last block number to

be snapshotted is %d, and the current nodes are %+v",

1208 //The actual garbage collection (GC) signal is triggered.

1209 case c.gcC <- &gc{index: c.appliedIndex , state: c.confState ,

data: ents[position ].Data}:

1210 log.Info("A total of %d bytes has been accumulated since

the previous snapshot , surpassing the specified size limit of

%d bytes. A snapshot is being captured at block [%d] (index:

%d). The latest block number captured in the snapshot is %d.

Current nodes include: %+v.",

1211 ... params)

1212 c.Metrics.SnapshotBlockNumber.Set(float64(b.Header.Number))

1213 c.lastSnapBlockNum = b.Header.Number

1214 c.accDataSize = 0

1215 // The default logging message with this select statement.

1216 default:

1217 c.logger.Warnf("The current state of snapshotting

indicates that the SnapshotIntervalSize is probably too
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little")}}

Listing 2.23: c.accDataSize >= c.sizeLimit in apply function, file chain.go

10. Generate a snapshot

• The function c.apply dispatches the garbage collection (gc) signal to the

channel c.gcC for further processing. Subsequently, c.Node.takeSnapshot

and n.storage.TakeSnapshot are invoked in sequence to generate snapshots.

1219 func (c *Chain) gc() {

1220 // Infinite loop implementation in go language to select which

channel will receive data to implement the corresponding

select cases.

1221 for {

1222 select {

1223 // If c.gcC channel get triggered.

1224 case g := <-c.gcC:

1225 c.Node.takeSnapshot(g.index , g.state , g.data)

1226 // If c.doneC channel gets triggered , it means the node gets

stopped.

1227 case <-c.doneC:

1228 c.logger.Infof("garbage collecting is Stopped")

1229 return }}}

Listing 2.24: gc() function in file: orderer/consensus/etcdraft/chain.go

• n.storage.TakeSnapshot A snapshot is generated, encompassing the term,

last log subscript, and block information. The rs.gc() function is in-

voked, and if the number of snapshot files exceeds the threshold defined by

MaxSnapshotFiles, it becomes necessary to clean up both WAL files and

expired snapshot files.
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Figure 2.4: Raft flow in Fabric.
©2024 ACM. Reprinted with permission from Ahmed Al Salih, Pluggable Consensus
in Hyperledger Fabric, BIOTC 2024.



CHAPTER 3: Contribution Fabric-BDLS

3.1 BDLS Introduction

The Byzantine fault-tolerant (BFT) consensus protocol is a fundamental compo-

nent of blockchain systems, enabling distributed networks to agree on ordering and

validating transactions without relying on centralized authorities. Despite its many

advantages, the BFT protocol faces significant scalability, efficiency, and security chal-

lenges, particularly in large-scale networks with a high degree of Byzantine faults [51].

Researchers have recently proposed several improvements to the BFT protocol

to address these challenges. The BDLS protocol [5] is one of the most promising

BFT protocols [51]. The BDLS protocol is an enhancement to the traditional BFT

consensus protocol evolved from the DLS protocol proposed by Dwork, Lynch, and

Stockmeyer, for Type II networks [59] that minimizes the total number of rounds

of communication needed for consensus, thereby increasing efficiency and scalability

while maintaining a high degree of security. [83]

The BDLS protocol achieves its performance gains by leveraging distributed ledger

signatures to reduce the number of signature verifications required during the consen-

sus process. This technique allows the protocol to reach consensus in fewer rounds,

reducing the overall time and resource requirements for achieving agreement [83].

Motivation: The integration of the Byzantine Fault Tolerance (BFT) protocol BDLS

into Hyperledger Fabric Orderer presents significant opportunities for the advance-

ment of distributed systems across various industries. Given the current limitations

of the Raft protocol and the modest performance of Fabric 3.0’s SmartBft, there is

a clear need for a more robust and high-performance BFT solution. BDLS not only

meets the crucial consensus properties of liveness and safety but also demonstrates
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superior throughput (TPS) compared to existing BFT solutions. This makes BDLS

an attractive alternative for industries that require high-speed, secure, and reliable

distributed systems.

The successful implementation and promising experimental results of BDLS in Hy-

perledger Fabric Orderer highlight its potential for broader applications. Integrating

BDLS into other systems or using it as a standalone protocol could significantly en-

hance the security and performance of distributed networks. This paves the way for

further research and development, encouraging innovation in the field of consensus

protocols. By leveraging BDLS, organizations can achieve greater data integrity, op-

erational continuity, and resilience against malicious activities, ultimately leading to

more secure and efficient service delivery in sectors such as healthcare, education, and

finance. This motivation drives the exploration and adoption of BDLS, setting a new

benchmark for the future of distributed systems and consensus protocols

3.2 BFT - Fabric Orderer

3.2.1 BFT - Fabric Related Work Review

PBFT: Hyperledger Fabric incorporates several consensus protocols. Starting in

2015, IBM initiated a project called Open Blockchain (OBC) [72] [73], which uti-

lized the Practical Byzantine Fault Tolerance (PBFT) protocol [50]. In 2016, the

code evolved to be open source. The Fabric source code moved from the OBC-IBM

repository to a Hyperledger Foundation repository, named Fabric v0.5-developer-

preview [11] [73], still using the PBFT protocol [50]. However, the BFT module was

never released for production due to its slowness and performance issues [84] [85]. The

primary challenge with PBFT and similar protocols lies in their message complexity

and the substantial network traffic generated during message validation operations,

which severely limits scalability. Refer to Figure 3.4 for a detailed view of the PBFT

message complexity.

BFT-SMART: BFT-SMART’s message pattern in typical scenarios is similar to
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the PBFT protocol, lacking support for transaction pipelining. There is only one

transaction in BFT-SMART can be proposed by a leader at any given moment. In

the first proposal in 2018, Sousa et al. attempted to integrating the protocol to

establish a Byzantine Fault Tolerant (BFT) ordering service, replacing the Kafka

service with a cluster of BFT-SMART servers [12]. However, this approach was not

adopted by the community due to both fundamental and technical issues, such as high

message complexity and poor performance, since BFT-SMART is PBFT enhanced

protocol.

Smart-BFT: In September 2023, Hyperledger Fabric announced the new Orderer

version 3.0, which uses a BFT algorithm but is not an official release. Furthermore,

as of 2024, the recent stable release of Fabric is version 2.5, maintains Raft consensus

algorithms and no BFT model. however Hyperledger Fabric announced the Byzantine

Fault Tolerant (BFT) ordering service, This protocol still suffers from the same lim-

itations as exactly PBFT algorithm protocols as indicated using the same message

pattern. Including high message complexity. Recent results show that this imple-

mentation achieves only 20% of Raft’s throughput in WAN environments and 40% in

LAN environments [54] [86], demonstrating significant performance drawbacks.

3.2.2 Fabric v3.0 (BFT) Limitation

Message complexity: Hyperledger Fabric recently announced a new BFT solu-

tion in its first release to incorporate Byzantine Fault Tolerance (BFT) [87]. Fabric’s

initial design intended to use Practical Byzantine Fault Tolerance (PBFT). However,

Fabric 3.0 embedded the SmartBFT consensus library, which belongs to the PBFT

family and suffers from similar message complexity issues as the network grows. In

Figure in Figure 3.4 we listed a common BFT protocols are proposed for Fabric and

their message complexity, including HotStuff [88] adopted in Facebook’s Libra [89]

blockchain, required only seven steps as we reference in our previous work [5], whereas

BDLS required only four steps.
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This limitation undermines the goal of maintaining a securely distributed network

among institutions. For instance, healthcare systems spanning multiple hospitals

at the country, state, or city level cannot effectively incorporate Fabric 3.0. Simi-

lar constraints apply to financial, retail, education, and other sectors where multiple

organizations must join together to share a ledger. In BFT-SMART, the message pat-

tern typically mirrors that of the PBFT protocol, encompassing the PRE-PREPARE,

PREPARE, and COMMIT phases/messages. Analyzing the messages required in the

network for each step: - PRE-PREPARE: One node sends the transaction to all

nodes, represented as n (the number of Orderer nodes). - PREPARE: All nodes send

the transaction to all nodes, resulting in n2 messages. - COMMIT: Similarly, all nodes

broadcast to all nodes, resulting in n2 messages. Similar to MirBFT and other PBFT

branches. Thus, the total messages required to achieve consensus for one transaction

is 2n2 + n.

For a network containing 100 Orderer nodes, submitting a single transaction (i.e.,

creating a single block) requires:

Total Messages = 2(100)2 + 100 = 20, 100

This indicates that hundreds of orderer nodes can significantly burden the network

traffic, causing delays. For the minimum network requirement of four orderer nodes

in Fabric 3.0 BFT, the messages required to write a single transaction are:

Messages = 2(4)2 + 4 = 36

Our research presents BDLS, which preserves message complexity irrespective of

the growth in the number of ordering system nodes. Demonstrating with 100 Orderer

nodes, BDLS maintains efficiency. In this example, Pi is the leader node, and OSNs

are all other nodes in the ordering system. Both Pi and OSNs belong to the ordering
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system.

Pi ← Tx from 100 OSNs

Pi
broadcast−→ 100 OSNs

100 OSNs send−→ Pi

Pi
broadcast−→ 100 OSNs

In each step, BDLS utilizes 100 messages sent to or broadcast by the leader to the

other nodes. The total transactions for the BDLS four steps is 4n, resulting in:

Total BDLS Messages for 100n = 4× 100 = 400

Comparing BDLS’s 400 messages to Fabric 3.0 BFT’s 20,100 messages illustrates

a significant reduction in network load.

For a simple network with at least four orderer nodes, the steps required to write

a single transaction using BDLS are:

Total BDLS Messages for 4n = 4× 4 = 16

In contrast, Fabric 3.0 requires 36 messages. Refer to Figure 3.1 for a detailed

explanation of the message complexity in PBFT and its derivative protocols. This

complexity arises especially during phase 2 (prepare) and phase 3 (commit), where

every node communicates with all other nodes.

TPS performance limitation The throughput results of Fabric 3.0, based on the

recently published paper [54] and the Fabric 3.0 announcement homepage, demon-

strate significant performance limitations, in a LAN environment, SmartBFT achieves

only 20% of Raft protocol performance (2,500 vs. 13,000 transactions per second) [54].
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Figure 3.1: PBFT consensus algorithm - PBFT-Hyperledger Fabric full lifecycle data-
flow. © 2024 IEEE.

In a WAN environment, BFT-OS achieves 40% of Raft-OS’s performance (1,200 vs.

3,000 transactions per second) [54]. This is because SmartBFT [54], which is based on

the Practical Byzantine Fault Tolerance (PBFT) algorithm, requires multiple rounds

of communication between all pairs of nodes to ensure agreement on the order of

transactions and to tolerate Byzantine faults. This communication pattern results

in a quadratic increase in the number of messages as the number of nodes increases.

However, not all BFT protocols suffer from these issues. Many researchers are con-

strained by the same protocol implementation that suffers from message complexity

as listed a popular protocols proposed for Fabric in Figure 3.4. On the other hand,

BDLS utilizes a digital signature scheme for cryptographic operations and message

verification, avoiding these pitfalls. The BDLS TPS results demonstrated in our ex-

perimental section show a significant performance improvement. BDLS achieves 95%

of Raft’s throughput, illustrating that with the right implementation, BFT protocols

can be both efficient and secure. This highlights the potential of BDLS as a superior

alternative for achieving high performance and robust fault tolerance in Hyperledger

Fabric.

Denial of Service (DoS) attack: Proven by Wang in [5] that a PBFT type
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protocol cannot achieve liveness in Type II networks, which is exactly Tendermint

BFT [33]. showing several attacks that can suspend and lockdown the network and

reach a deadlock state and cannot achieve consensus. We pick Tendermint BFT

protocol which is based of PBFT and modern popular one. presenting the mes-

sage complexity and reduces the authenticator complexity to O(n) utilizing threshold

cryptography in Figure 3.4.

3.2.3 BDLS Protocol

The Byzantine fault-tolerant (BFT) consensus protocol is a fundamental compo-

nent of distributed systems. [47] such as blockchain systems, enabling distributed

networks to agree on ordering and validating transactions without relying on cen-

tralized authorities. Despite its many advantages, the BFT protocol faces significant

challenges in terms of scalability, efficiency, and security, particularly in large-scale

networks with a high degree of Byzantine faults.

In partially synchronous networks, we introduce a Byzantine Fault Tolerance Proto-

col that robustly guarantees both safety and liveness. This approach can be extended

to various applications, including State Machine Replication (SMR). The protocol is

introduced as a blockchain finality gadget, featuring a unique block proposal mecha-

nism designed to generate child blocks for finalized blocks within the BFT framework.

We’re assuming there are n = 3t + 1 nodes labeled N0, to, Nn−1 in the Byzantine

Fault Tolerance (BFT) protocol, with at most t of them being malicious. Additionally,

each participant has a public-private key pair, with all participants are aware of the

public key. We’ll use the notation ·i to indicate that participant Ni signs a message

digitally.

The data flow of the proposed transaction into the BDLS node replicas requires

four phases. Figure 3.3 illustrates the complete consensus process, which includes

four steps: propose, lock, commit, and decide.

The BDLS protocol is established by systematically proving a sequence of lemmas,
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as detailed in previous work [5]. The following points explain the consensus process

protocol, which is detailed in the protocol’s Figure 3.2, as depicted in Figure 3.3.

Figure 3.2: BDLS Protocol (Normal Protocol Operation). © 2024 IEEE.

The BDLS protocol operates through four critical phases: leader propose, lock,

commit, and decide, each designed to ensure efficient Byzantine Fault Tolerant con-

sensus in a distributed network. These phases work in sequence to guarantee that
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all non-faulty nodes reach agreement despite the presence of Byzantine actors. The

following section details these phases, as each phase addresses a critical component of

the consensus process. For each phase, a corresponding algorithm is presented in the

appendix section, including appendix (A.1,A.2,A.3,A.4), detailing the specific steps

required to execute the protocol efficiently and securely. These algorithms outline the

message flows, leader roles, and conditions for progressing to the next phase, ensuring

robustness and scalability in the network.

1. Request: The client is responsible for submitting the transaction to all BDLS

nodes to initiate the decision-making process on the proposed block. The BDLS

protocol steps commence once the client submits the block to all BFT replica

members (BDLS nodes), or at least the minimum number of live replicas re-

quired by the BFT protocol, which is 3f + 1 total nodes.

2. Phase 1 propose is the first phase, all BDLS participants Nj (Includes leader

Ni) send the transaction block with the proper signature to the changeable

leader Ni :

⟨h, r⟩j, ⟨h, r, B′
j)j⟩

In this context B′
j ∈ BLOCKj represents the highest eligible candidate block

for Nj. In case of round change info. it will be within the first part as denotes

(h, r)j. Nj will no longer accept any additional messages, with the exception of

a “decide” message pertaining to a round r ′ < r.

In the context of this research, let h denote the height, r denote the round

number, and B’ denote the candidate block. The algorithm that represent

phase one in appendix A.1.

3. Phase 2 lock, the leader Ni receives total messages from at least 2t + 1 nodes,

each containing the same candidate block in signed messages. The leader then
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updates the block flag by adding the lock keyword. Finlay disseminates the

block message to all Nodes. The Nodes Nj (including the leader Ni) must

receive this message from the leader Ni.

⟨lock, h, r, B ′, proof⟩i

The node digitally signs and stamps the message with a proof flag. The algo-

rithm that represents phase two is in appendix A.2.

4. Phase 3 commit All nodes Nj (including the leader Ni) receives message:

⟨lock, h, r, B ′, proof⟩i Subsequently, all nodes Nj (including the leader Ni) up-

date the block flag, adding the commit keyword. Then, each participant sends

the updated block flag to the leader Ni with the message:

⟨commit, h, r, B ′⟩j

The algorithm that represent phase three in appendix A.3.

5. Phase 4 decide After a total node of 2t+1 send the same message with commit

flag to the leader Ni, Once the leader verify that, Then:

(a) Ni decides on the value B ′ by update the flag from commit to decide.

(b) The leader Ni broadcasts the decided message to all nodes, including him-

self.

⟨decide, h, r, B ′, proof⟩i

At this stage, the system is reaching consensus, indicating that, in the realm of

information technology, it is deemed suitable to record the communication or

restrict it to the proximate system. The algorithm representing phase four is in

appendix A.4.
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6. The replay step notifies the client or system of the committed block that all

BDLS participants have decided on. The current BDLS protocol does not no-

tify the client. Instead, it is the client’s responsibility to call the CurrentState()

function, which returns the last state (block), block height and round for check-

ing new blocks. This functionality is successfully implemented in Hyperledger

Fabric, as detailed in the Implement Consenter Interface section 3.4.3, specifi-

cally within the GetLatestState function.

Figure 3.3: BDLS consensus algorithm - BDLS-Hyperledger Fabric full lifecycle data-
flow. © 2024 IEEE.

The BDLS protocol [5] is one of the most promising consensus BFT protocols.

The BDLS protocol is an enhancement to the traditional BFT consensus protocol

derived from the initial DLS protocol proposed by Dwork, Lynch, and Stockmeyer,

for Type II networks [59] that reduces the number of communication rounds required

for consensus, thereby increasing efficiency and scalability while sustaining a high

degree of security [83].

The BDLS protocol achieves its performance gains by leveraging distributed ledger

signatures to reduce the number of signature verification’s required during the con-
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sensus process. This technique allows the protocol to reach consensus in fewer rounds,

reducing the overall time and resource requirements for achieving agreement [83].

Figure 3.4: BFT protocols message complexity. © 2024 IEEE.

3.3 BDLS - Fabric integration

Technical overview of integrating BDLS that makes integrating any consensus pro-

tocol doable with this guide, along with the required code change and providing the

code repository for references and practices. The change required to integrate the

consensus protocol, especially BDLS, into Hyperledger Fabric applied not only to the

Hyperledger Fabric core system but also to the change needed for the test network

project and into the SDK project.

Hyperledger Fabric core project [90]. The change required to integrate a consensus

protocol is a heavy technical effort as it contains importing the consensus protocol

package and adding the particular consensus implementation.

Hyperledger fabric-samples project [91]. The change here is for running the test

network, as it is not required if you plan to build the production network from scratch.

Hyperledger fabric-sdk project [92]. This change is required as the BDLS con-
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sensus protocol’s conduct works require the client to submit the transaction to all life

nodes, in this case, all Orderer nodes. This change is considered a requirement for

the most common BFT mechanism protocol. Contrary to the work of the existing

Raft system, as the client submits the transaction throws the SDK to one Orderer

node.

Fabric SDK is the library required to communicate with the Fabric node.

I will provide an overview of the reasons for a change in each project, followed by

a detailed explanation of the technical changes in each project.

3.4 BDLS code change

In this section, we will delve into the significant modifications made within the

Fabric project to facilitate the import and implementation of the BDLS consensus

protocol. These core changes are essential for enhancing the overall functionality and

performance of the blockchain framework.

We will explore the specific areas of the code that have been updated, including

adjustments to the consensus layer, alterations in the communication protocols, and

enhancements to transaction validation mechanisms. By detailing these changes, we

aim to provide a comprehensive understanding of how the BDLS protocol integrates

with the existing infrastructure and improves the system’s robustness and efficiency.

Additionally, we will discuss the rationale behind these changes, emphasizing their

importance in achieving greater scalability, reliability, and security within the Fab-

ric project. This analysis will not only highlight the technical aspects of the code

modifications but also demonstrate their implications for future developments in the

blockchain ecosystem.

3.4.1 Import BDLS

1. Importing the Fabric project by cloning the Fabric project for the Hyperledger

GitHub organization or fork the same repository to have the freedom of pushing
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and tracking your changes on the cloud.

1 $ git clone https :// github.com/BDLS -bft/fabric

2. The main function of the Orderer node in a research context requires knowledge

of the selected consensus protocol that will be utilized for processing incoming

messages. By incorporating the ability to select the BDLS as a consensus pro-

tocol, the Orderer node within the Hyperledger Fabric network can establish

and maintain its consensus mechanism during the initialization of the network.

This enhancement empowers users to choose BDLS as the preferred consensus

protocol for the Hyperledger Fabric orderer. Implementing this change involves

including the key-value pair ’bdls’ within the variable section. See code in

Listing 3.1, as map[string]struct in the clusterTypes.

File path: orderer\common\server\main.go Line 70 [93]

1 var (

2 clusterTypes = map[string]struct {}{

3 "etcdraft": {},

4 "bdls": {},

5 }

6 )

Listing 3.1: Fabric Orderer var section

In Fabric Orderer version 3.0, the integration of BDLS into Fabric did not re-

quire any change in this section as we use the generic BFT value that is predefined

in the cluster Types.

3. The consensus protocol algorithm software can be imported similar to any li-

brary or package into the Fabric project, executing the provided command

within the Fabric’s root directory at the same directory level of the go.mod

file location. Note: those steps are common for importing any consensus pro-
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tocol or any go package that you intended to utilize the package functions

Import the BDLS library by executing the following commands line code:

1 # Downloads and installs the BDLS Go package and its

dependencies.

2 $ go get github.com/BDLS -bft/bdls

3 # Update the go.mod file to accurately reflect the dependencies

utilized in the codebase.

4 $ go mod tidy

5 # Copy of the BDLS module to the vendor directory.

6 $ go mod vendor

To effectively manage dependencies in a Go project within the realm of re-

search academics, it is crucial to employ two indispensable commands: go mod

vendor and go mod tidy. The combined utilization of these commands ensures

the presence of accurate dependencies and versions in your project, thereby

guaranteeing its proper building and flawless execution.

By adhering to these steps, researchers and developers can seamlessly integrate

the consensus package and the BDLS library into the Fabric project. This inte-

gration facilitates the utilization of their respective features and functionalities,

enhancing the research endeavors.

3.4.2 Bdls-fabric package

In order to incorporate the BDLS protocol’s logic and initialize the necessary

consensus configuration for starting the consensus and processing of received

messages, a new folder named “bdls” is created within the Fabric core project.

This folder serves as the repository for the BDLS package and is located at the

directory path:

orderer/consensus/bdls
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To plug in and write the implementation of the consensus protocol logic, it

is necessary to create a folder that is associated with the new protocol. This

designated folder will serve as the package name decoration for the Go files

within the bdls directory. The bdls folder acts as the root directory for the

protocol implementation files of the BDLS consensus. All files created within

this folder are considered members of the bdls package.

3.4.3 Consenter interface implementation

Create a new go file consenter.go in the new bdls folder as:

orderer/consensus/bdls/consenter.go

• The primary purpose of creating the HandleChain function as the only

function that needs to be overridden in ordere to implement the Consenter

interface. The function returns another function NewChain responsible

for creating the New Chain object from the chain.go file, as explained in

the next section.

• Create the ’New’ function responsible for creating the BDLS Consen-

ter. The New() function is the first consensus-related function that will be

called during the Orderer running. The flow from the Orderer main.go file,

the initializeMultichannelRegistrar function passing the required pa-

rameters to the new function to create the BDLS Consenter as demon-

strated in Listing 2.7 in Line (837), then pass the BDLS’s consenter object

to the registrar.Initialize(consenters) as demonstrated in Listing

2.7 in Line (850) explained in 2.4.2, 2.4.1:10 and the Orderer Node Startup

Process 2.6.1.

1 consenters["bdls"] = bdls.New(clusterDialer , conf , srvConf ,

srv , registrar , nil , metricsProvider , bccsp)
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2 registrar.Initialize(consenters)

3 return registrar

3.4.4 MessageReceiver interface implementation

MessageReceiver: This provides functions to handle the messages the Orderer

node expects. In general, there are two types of messages that the OSN ex-

pects: one is the submitted message from the peer node, and the second is

the messages between other Orderer nodes to verify the message. As shown in

figure 3.5. In Raft, a new go file called “dispatcher.go” contains the MessageRe-

ceiver interface. For the Orderer 3.0 release, they renamed the file used in Raft

to “Ingress.go”. The interface’s functions are the Consensus function, which

handles the delivered ConsensusRequest message to the MessageReceiver. The

second one is the Submit function, which handles the provided SubmitRequest

message to the MessageReceiver. In the chain interface, implementing both

functions is to implement the MessageReceiver interface fully.

The (OnConsensus and OnSubmit) functions notify the dispatcher of the re-

ception messages. As shown in figure 3.6.

The related interface in the “dispatcher.go” file is the “ReceiverGetter” interface

shown in figure 3.7. which includes only one function. This function is Re-

ceiverByChain. This function returns MessageReceiver. The implementation of

this function in consenter.go shown in figure 3.8, function code in Listing 3.2.

Note if any missing implementations of the MessageReceiver’s functions in the

chain.go file, an error will occur in the ReceiverByChain function.

1 // For each channelID , ReceiverByChain returns the

MessageReceiver; if not found , it returns nil.

2 func (c *Consenter) ReceiverByChain(channelID string)

MessageReceiver {

3 chain := c.ChainManager.GetConsensusChain(channelID)
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Figure 3.5: type MessageReceiver interface

Figure 3.6: OnConsensusl() - OnSubmit() functions BDLS

4 if chain == nil {

5 return nil

6 }

7 if bdlsChain , isBDLS := chain .(* Chain); isBDLS {

8 return bdlsChain // error will occured if chain not

implement the MessageReceiver interface functions

9 // In chain.go (HandleMessage & HandleRequest) for Orderer

3.0

10 // Or Submit () & Consensus () functions.

11 }

12 c.Logger.infof("Type %v for chain %s, Not bdls.Chain , ",

reflect.TypeOf(chain), channelID)

13 return nil

14 }

Listing 3.2: ReceiverByChain Function in consentor.go

The implementation of the MessageReceiver interface functions in the chain.go
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Figure 3.7: type ReceiverGetter interface

Figure 3.8: ReceiverByChain Function in consentor.go

file. First, the Submit function in Listing 3.3. This function is to handle the

submitted request by the peer node and pass it to the consensus protocol. This

function gets the envelope encapsulated in an *orderer.SubmitRequest struct.

We rap the ’req’ object with a submit struct declared in the chain for simplicity

of implementation.go file

1 type submit struct {

2 req *orderer.SubmitRequest

3 }

Populate the c.submitC channel with the loaded request to be processed and

proposed to the consensus protocol in the ’run’ function. An infinite loop works

as a channel listener, and if one of those channels receives a value, the logic for

the code block will be triggered.

casec.submitC < −submitreq :

1 // Submit function get called by two functions , Order () and

Config (). This function will process all submitted messages
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(normal or configuration).

2 func (c *Chain) Submit(req *orderer.Submit_Request , sender

uint64) error {

3 select {

4 // Encapsulate the req in a submit struct , then send it to the

c.submitC channel for processing(Ordering and proposing).

5 case c.submitC <- &submit{req}:

6 return nil

7 case <- c.doneC:

8 // Anything populate this channel doneC , this case will update

the Metrics and return an error.

9 c.Metrics. Proposal -Failures.Add (1)

10 return errors.Error("The chain Now is Down")

11 }

12 }

Listing 3.3: Submit Function in chain.go

The second function must add the implementation of the MessageReceiver in-

terface to the chain.go file. The ’Consensus’ function in Listing 3.4. This

function handles the message request by other Orderer nodes and passes it to

the consensus protocol.

1 // Consensus implements MessageReceiver.

2 func (c *Chain) Consensus(req *orderer.ConsensusRequest , sender

uint64) error {

3 c.consensus.ReceiveMessage(req.Payload , time.Now())

4 return nil

5 }

Listing 3.4: Consensus Function in chain.go
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3.4.5 Chain interface implementation

As part of the integration process for the BDLS consensus protocol into the

Fabric framework, the next step involves creating a new Go file specifically for

the chain logic. This file will be named chain.go and placed within the newly

created bdls package folder, located at the following directory: orderer/con-

sensus/bdls/chain.go.

The purpose of the chain.go file is to define the core structure and functionality

of the BDLS consensus algorithm as it interacts with the broader Fabric system.

This file will encapsulate key elements such as the initialization of the BDLS

protocol, handling of consensus messages, block proposal and validation logic,

and the overall orchestration of the protocol during transaction processing.

By placing the file in the orderer/consensus/bdls/ directory, we ensure that

it fits neatly within the existing Fabric architecture, following the same modular

approach used by other consensus mechanisms like Raft or Kafka. This not only

maintains the consistency of the project structure but also facilitates easier

maintenance and future updates to the consensus layer.

Once the chain.go file is established, the next steps will involve implementing

the necessary methods to process blocks, manage state transitions, and ensure

fault-tolerant operation in line with BDLS Byzantine fault-tolerant design. By

clearly defining these processes in the chain.go file, we can effectively integrate

BDLS into the Fabric framework, advancing towards more robust and secure

consensus protocol.

To implement the Chain interface, we need to define all the functions specified

in the interface using the ChainStruct type that we created earlier. This

ensures that our implementation conforms to the Golang syntax standards for

interfaces. Listed below are all the functions that are required to implement
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the Chain interface.

(a) Start()

(b) Configure(config *Envelope, config-Seq uint64)

(c) Order(env *Envelope, config-Seq uint64)

(d) Halt()

(e) Errored()

(f) WaitReady()

The three main functions that operate, run, and process transactions are Start,

Order, and Configure.

• The Start function serves as an instruction for the Orderer node to initi-

ate the process of serving the chain and maintaining its up-to-date state.

Moreover, make the Orderer node active to participate in the network and

handle the submitted transaction by invoking the Start function. Orderer

is prompted to begin executing the necessary actions to guarantee the ac-

curate processing of transactions and the continuous synchronization of

the chain with the network. Also, verify the other Orderer node’s connec-

tions are configured correctly by the configureComm function, which can

successfully accept the channel ID and a list of nodes as parameters within

the Configurator interface. If any verification fails, an error will be

returned. A BDLS config object is created for our implementation, and

the required config object for the BDLS consensus is populated accord-

ingly to initiate the protocol. These steps ensure the proper configuration

of the communication layer and the initialization of the BDLS protocol.

Important steps for the Orderer nodes to establish the connection and

join the networks is to create a slice of cluster remote nods as indicated
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in Line (10) in Listing 3.6, then configure the connection for All Orderer

nodes by passing the cluster.RemoteNode. as indicated in Line (13) List-

ing 3.6. Note: Get the slice of cluster.RemoteNode for other Orderer

nodes gets generated in a separate function by looping through the slice

of the: [] ∗ common.Consenter to take a deep look at the node object cre-

ated for each Orderer node check listing 3.5. generally, RemoteNode object

contains two properties: NodeAddress and NodeCerts. The NodeAddress

encapsulates the node ID and the node Endpoint. The Endpoint is essen-

tially a formatted string representing the node IP Address and the Port.

The second property NodeCerts encapsulates the server TLS certificate

as ServerTLSCert and the client TLS certificate as ClientTLSCert. The

BDLS-fabric running source code is available in order to review the full

remotePeers() function source code and implementation.

1 nodes = append(nodes , cluster.RemoteNode{

2 NodeAddress: cluster.NodeAddress{

3 ID: uint64(id),

4 Endpoint: fmt.Sprintf("%s:%d", consenter.Host ,

consenter.Port),

5 },

6 NodeCerts: cluster.NodeCerts{

7 ServerTLSCert: serverCertAsDER ,

8 ClientTLSCert: clientCertAsDER ,

9 },

10 })

Listing 3.5: RemoteNode Object

1 // Create a BDLS consensus config to validate this message

at the correct height

2 config := &bdls.Config{

3 Epoch: time.Now(),
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4 CurrentHeight: c.lastBlock.Header.Number - 1, //0 can

use Zero for testing.

5 StateCompare: func(a bdls.State , b bdls.State) int {

return bytes.Compare(a, b) },

6 StateValidate: func(bdls.State) bool { return true },

7 }

8

9 //Get the [] cluster.RemoteNode for other Orderer nodes.

10 nodes , err := c.remotePeers ()

11

12 // Configure the connection for All orderer nodes.

13 c.Comm.Configure(c.support.ChannelID (), nodes)

Listing 3.6: BDLS config cluster.RemoteNode

To begin utilizing the BDLS consensus protocol within the Hyperledger

Fabric framework, the first step is to initialize the BDLS consensus object.

This is done by passing the configuration parameters to the NewConsen-

sus function, which is responsible for creating and configuring the BDLS

instance with the necessary settings.

The NewConsensus function plays a crucial role in the setup process,

as it ensures that the BDLS protocol is correctly instantiated based on

the provided configuration object. This configuration object contains key

parameters, such as the network topology, node identities, timeout settings,

block generation intervals, and other protocol-specific options that are vital

for the smooth functioning of the consensus mechanism.

By carefully passing the appropriate configuration object to the NewCon-

sensus function, we ensure that the BDLS consensus instance is tailored

to the specific needs of the blockchain network in which it operates. The

code snippet below demonstrates how the NewConsensus function can
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be used to kick-start the BDLS protocol:

1 config.Participants = append(config.Participants ,

c.participants ...) // &bdls.DefaultPubKeyToIdentity ())

2 // create BDLS consensus Object

3 consensus , err := bdls.NewConsensus(config)

4 if err != nil {

5 c.logger.Error("bdls.NewConsensus", "err", err)

6 return

7 }

8 // Set the BDLS consensus Latency time

9 consensus.SetLatency (200 * time.Millisecond)

In this example, the config object encapsulates all the necessary informa-

tion required by BDLS to establish a secure and efficient consensus process.

Once this function is invoked, the consensus object is fully initialized, and

the protocol is ready to manage transactions, propose blocks, and achieve

consensus across participating nodes.

Furthermore, this step marks the beginning of the consensus workflow,

where the BDLS engine takes control of coordinating the order of transac-

tions and ensuring that the blockchain remains consistent and resilient to

faults. This initialization process sets the stage for subsequent tasks such

as handling communication between nodes, managing state transitions,

and ensuring Byzantine fault tolerance during consensus rounds.

By properly initiating the BDLS consensus object with the NewConsen-

sus function, we lay the foundation for the successful integration of the

protocol into the Hyperledger Fabric framework, enabling the blockchain

network to operate efficiently and securely under the BDLS consensus

model.

In the context of Hyperledger Fabric, the run function in the chain.go
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file plays a crucial role in managing the lifecycle of the chain and handling

consensus operations. To ensure that these operations are executed con-

currently without blocking the main thread, we utilize Go’s lightweight

concurrency model by calling the run function within a goroutine.

1 go c.run()

In this snippet, the go keyword is used to launch the c.run() function in a

new goroutine, where c refers to the chain instance in the Fabric ordering

service. This allows the run function to operate concurrently with the

main thread, enabling the system to manage consensus operations, message

queues, and transaction flow without delay.

This non-blocking behavior is especially important in a distributed system

like Fabric, where multiple nodes need to communicate and coordinate to

achieve consensus. The chain’s run function oversees the continuous opera-

tion of the chain, listening for incoming blocks, validating them, and coor-

dinating with the consensus protocol. Running this in a separate goroutine

ensures that other operations, such as submitting new transactionsâare not

hindered, thereby improving the overall throughput of the network.

The use of goroutines also allows the system to scale efficiently as more

transactions are processed and as the network grows. Since goroutines

are lightweight, many can be spawned simultaneously, allowing Fabric to

maintain high performance and scalability without being bogged down by

heavy concurrent processes.

By leveraging Go’s concurrency model in this manner, Hyperledger Fab-

ric ensures that its chain management and consensus operations can run

smoothly and efficiently, even under heavy loads. The run function oper-

ating in a goroutine enables seamless integration of the chain’s operational

tasks with the overall performance requirements of a distributed ledger.
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• The Order function is a fundamental component in the interaction be-

tween the Orderer node and the consensus protocol, responsible for re-

ceiving and processing standard messages within the Hyperledger Fabric

architecture. This function facilitates the orderly transmission of transac-

tion data into the consensus layer, ensuring that the system can process

and validate transactions in a consistent manner.

The first parameter passed to the Order function is the Envelope ob-

ject, denoted as env. The Envelope is a crucial data structure within

Hyperledger Fabric, as it encapsulates the Payload, is the core transac-

tional data to be ordered and committed to the ledger. In addition to the

Payload, the Envelope includes a digital signature, for verifying the mes-

sage’s authenticity and integrity is crucial, ensuring it remains unaltered

and from a legitimate source. This cryptographic guarantee is essential for

securing the consensus process.

The use of the Envelope structure, with its combination of Payload and

digital signature, enables the system to securely transfer messages between

nodes while preventing unauthorized or malicious modifications. By wrap-

ping the transaction data in an Envelope, the consensus protocol can

confidently process and validate messages, ensuring that only authenti-

cated and verified transactions are accepted for ordering and inclusion in

the blockchain.

The role of the Order function in this process is to act as the entry point

for these encapsulated messages, triggering the subsequent steps of val-

idation and ordering within the consensus mechanism. This makes the

Order function not only a critical point of interaction between the Orderer

node and the consensus protocol but also a key component in ensuring the

integrity and reliability of the overall transaction flow within the Hyper-
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ledger Fabric network, as illustrated in Listing 3.7.

1 // The envelope holds the message submitted by the client.

2 type Envelope struct {

3 // The Payload received in marshaled format.

4 Payload []byte ‘protobuf :..." ‘

5 // An author signature in the Payload header signature.

6 Signature []byte ‘protobuf :".., omitempty"‘

7 XXX_NoUnkeyedLiteral struct {} ‘json:"-"‘

8 XXX_unrecognized []byte ‘json:"-"‘

9 XXX_sizecache int32 ‘json:"-"‘

10 }

Listing 3.7: Envelope struct

• The Configure function is responsible for processing messages related

to network configuration updates, typically initiated by an administrator.

These updates include operations such as adding or removing nodes from

the blockchain network. The Configure function ensures the system re-

mains consistent and functional while applying these changes. It plays a

crucial role in maintaining network flexibility and scalability.

This function must adhere to the Chain interface, located in consensus.go,

which defines the necessary methods for consensus protocols within Hyper-

ledger Fabric. The Chain interface provides the structure for block propos-

als, message handling, and configuration management, ensuring seamless

interaction between the consensus protocol and the ordering service.

The implementation of the Configure function for the BDLS consensus

protocol requires creating a chain.go file in the following directory:

1 orderer\consensus\bdls\chain.go
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By implementing the Chain interface in chain.go, the BDLS protocol

can efficiently manage network configuration changes while ensuring com-

patibility with the Fabric ordering service. This approach allows the BDLS

consensus to handle dynamic network updates, ensuring smooth operation

while adding or removing nodes and providing resilience in the face of

evolving network conditions.

Below is a core function required to initialize the Orderer node, specifically the

NewChain function. Additionally, other essential functions, such as GetLat-

estState, must also be utilized within the BDLS protocol described in detail

below.

• The NewChain function is designed to instantiate a new chain object.

This function is called upon as the return value from the “HandleChain”

function. It is employed to manage and initialize chain objects, ensur-

ing seamless integration and functionality in blockchain operations. By

utilizing this mechanism, the NewChain function facilitates the creation

and organization of chain structures, contributing to the system’s overall

efficiency and operability within distributed ledger environments.

• GetLatestState function Within the chain.go module, verifying the BDLS

state value is necessary to determine the appropriate time to write a block.

The algorithm must achieve a consensus and update the state value to be

decide.

To access the latest BDLS state, you can utilize the CurrentState() function

in BDLS core code. Additionally, A new function called GetLatestState

returns three parameter values: height number, current round, and the

latest state. The CurrentState() shown in Listing 3.8. Also, check the

architecture diagram of BDLS flow in Fabric in Figure 3.9.
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1 func (c *Consensus) CurrentState () (height uint64 , round

uint64 , data State) {

2 return c.latestHeight , c.latestRound , c.latestState}

Listing 3.8: CurrentState returns the latest (height, round, state)

Figure 3.9: BDLS flow in Fabric

• Adding required interfaces:

RPC interface: The RPC interface encapsulates the functions that are

utilized by the Fabric Orderer node for sending the message. For fabric

OSNs, there are two types of message transport. The first one is by sending

the message to the leader Orderer node; however, in such a BFT-type

consensus protocol, the BDLS protocol library will handle forwarding the

submitted request to the leader internally, so there is no need for the

Orderer node to forward the request to the leader node. The second type

of message transport is the consensus message among the protocol peers

to verify the message and agree on the same message to achieve consensus.
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BlockPuller interface: The BlockPuller component is utilized to re-

trieve or fetch blocks from other OSNs (Ordering Service Nodes). This

functionality allows the system to efficiently acquire blocks from remote

OSNs, enabling the synchronization and replication of block data across

the network. By employing the BlockPuller, the system can retrieve

blocks from various sources, ensuring the availability and consistency of

data throughout the distributed network nodes.

Configurator interface: The Configurator module is responsible for

configuring the communication layer at the initiation of the chain. It

ensures that the necessary settings are appropriately set up to facilitate

seamless communication between the cluster of remote nodes within the

chain. The Configurator is crucial in establishing the communication

infrastructure and ensuring that the chain’s participants can effectively

exchange information and interact. In Fabric Orderer 3.0, we successfully

implemented the connection among the network without the need to create

or implement this interface as we handle the node connection configuration

in the Start function.

Note: In Fabric Orderer version 3.0, the following changes are not required:

the BDLS-Fabric integration uses the default BFT value, and the changes are

required only in the Main.go function and create the required implementation

files in:

orderer/consensus/bdls/

4. This is the fourth step required for integrating a protocol into Hyperledger

Fabric: adding the protocol name to the configuration file, config.go adding the

type key for BDLS-based consensus in the constant declaration Bdls = “bdls′′

creating profile key value, [94].
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Note: In Hyperledger Fabric Orderer 3.0, we used the BFT key value that

comes out of the box and ignored the entire step four and five implementations.

(a) The profile ChannelUsingBdls is designed for testing the BDLS-based

ordering service using the channel participation API. It serves as a reference

for configuring and assessing the service’s capabilities within application

channels and development environments.

Note: In this research experiment, the BFT key profile provided within

Fabric Orderer version 3.0 is used as a default out-of-the-box solution for

BFT protocols.

1 // SampleDevModeBdlsProfile

2 SampleDevModeBdlsProfile = "SampleDevModeBdls"

3

4 // SampleAppChannelBdlsProfile ordering service sample profile.

5 SampleAppChannelBdlsProfile = "SampleAppChannelBdls"

Within the Orderer struct, it is important to include the BDLS key and a pointer

to the BDLS’s ConfigMetadata. The bdls.ConfigMetadata is imported from

an independent project that has been incorporated into the Fabric codebase.

This metadata encompasses the generated Protocol Buffers (protobuf) files es-

sential for implementing the BDLS protocol. Including the BDLS key and the

ConfigMetadata pointer ensures seamless integration of the BDLS protocol and

grants access to the relevant protobuf files required for the proper functioning

of the Orderer component.

1 // Channel -related configuration is contained in the orderer.

2 type Orderer struct {

3 OrdererType string ‘yaml:" OrdererType"‘

4 Organizations []* Organization ‘yaml:" Organizations"‘

5 Addresses [] string ‘yaml:" Addresses"‘



115

6 Capabilities map[string]bool ‘yaml:" Capabilities"‘

7 Bdls *bdls.ConfigMetadata ‘yaml:"Bdls"‘

8 BatchSize BatchSize ‘yaml:" BatchSize"‘

9 MaxChannels uint64 ‘yaml:" MaxChannels"

10 BatchTimeout time.Duration ‘yaml:"BatchTimeout"‘

11 ConsenterMapping []* Consenter ‘yaml:"ConsenterMapping"‘

12 EtcdRaft *etcdraft.ConfigMetadata ‘yaml:"EtcdRaft"‘

13 Policies map[string ]* Policy ‘yaml:"Policies"‘

14 }

Including the case of BDLS in the completeInitialization function in [94],

demonstrated in the config.go file path in the Fabric project:

internal/configtxgen/genesisconfig/config.go

5. In util.go file, appending the function MarshalBDLSMetadata [94] is respon-

sible for serializing BDLS metadata, as demonstrated below. It expects the

user to specify the configuration significance for client and server certificates,

pointing to the local path where these files are permanently kept on the file

system. Subsequently, the function loads these certificate files into memory for

further processing. This approach ensures that the BDLS metadata is serialized

correctly and prepared for subsequent operations. The util.go file location in

the Fabric project:

common/channelconfig/util.go

1 // MarshalBDLSMetadata serializes BDLS metadata.

2 func MarshalBdlsMetadata(md *bdls.ConfigMetadata) ([]byte ,

error) {

3 copyMd := proto.Clone(md).(* bdls.ConfigMetadata)

4 for _, c := range copyMd.Consenters {

5 // After loading these files into memory , anticipate that
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the user will set the client/server cert configuration value

to the path where they are locally stored.

6 clientCert , err := os.ReadFile(string(c.GetClientTlsCert ()))

7 Check err if not null {

8 return null with the error message("Client cert cannot

loaded for the consenter host:port %s:%d: %s", c.GetHost (),

c.GetPort (), err)

9 }

10 c.ClientTlsCert = clientCert

11 // loads the server certificate by reading the pre defined file

12 serverCert , err := os.ReadFile(string(c.GetServerTlsCert ()))

13 Check err if not null {

14 return null with the error message ("Server cert cannot

loaded for the consenter host:port %s:%d: %s", c.GetHost (),

c.GetPort (), err)

15 }

16 c.ServerTlsCert = serverCert

17 }

18 return proto.Marshal(copyMd)

19 }

3.5 Fabric test Network

Hyperledger Fabric test network is a pre-configured project using a minimal set of

bash scripts. It offers a platform for testing smart contracts and applications in var-

ious programming languages. Provide and run the network on the selected ordering

service provider. Moreover, it is capable of running a multi-node based on the user

configuration. The fabric-samples repository project includes out-of-the-box test net-

work projects. We will demonstrate in this section the “test-network-nano-bash”

project. The nano-bash project allows developers and researchers to bring up the

network using the Fabric source code directly with no need to build Docker images.

The functionality of the running Fabric network is equivalent to the docker-based Test
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Network offering multi-node, and the TLS layer is enabled. It required a one-time

configuration for the development environment. It advocates for Fabric’s developers

and researchers to make changes in the Fabric source code and use the generated Fab-

ric binaries. That will eliminate the time spent building the fabric images. Equally

important is using the Fabric source code bindery that could generate quickly rather

than the image binary [95].

3.5.1 Cryptogen Tool

Cryptogen is a utility tool for generating crypto material for Hyperledger Fab-

ric network nodes in the developer environment to generate self-signed keys. The

cryptogen utility tool is a binary tool that provides the ability to generate a sample

configuration file.

1 cryptogen showtemplate > crypto -config.yaml

The new crypto-config.yaml or any name based on your choice makes it easy for

review and modification as the output in YAML format. to adjust the number of the

Orderer and network nodes. In order to generate the crypto materials, you specify

two parameters: First, the input configuration YAML file, and Second, the output

directory for the actual crypto materials.

1 cryptogen generate --config =./ crypto -config.yaml

--output =./crypto -config.

The cryptogen first checks for the environment variable in the operating system.

The environment variable FABRICCFGPATH specifies the file path to the YAML

configuration file, whether located on the system or within the network, to facilitate

the loading of the configuration. If this environment variable is not set, the cryptogen

tool will check for the configuration YAML file in the directory from which it is being

executed. It also provides the ability to extend the existing generated materials

without regenerating or touching the old crypto. For our work, we have recently used

The test-network-nano-bash project. As mentioned earlier, it provides a set of



118

out-of-the-box script for the network setup. The generate_artifacts.sh script

is used to generate the entire certificates for the Fabric network nodes. The nature of

the BDLS protocol requires a specific setup. Regarding that, We pass the BFT key

while running the generate_artifacts.sh script.

1 ./ generate_artifacts.sh BFT

Incorporating the BFT key with the aforementioned script involves the establishment

of an environment variable to facilitate the loading of the configuration through a des-

ignated configtx.yaml file. This will trigger the export of the environment variable

FABRIC_CFG_PATH, assigning it the path of the current BFT directory, which

contains the corresponding configtx.yaml file required for the BFT configuration.

3.5.2 Configtxgen Tool

The configtxgen command is a binary utility tool that enables Fabric developers

to create and examine artifacts associated with channel configuration [79]. These

artifacts play a crucial role in defining the structure and properties of a channel

within the Hyperledger Fabric network [96]. The specific contents of the generated

artifacts are determined by the configuration specified in the configtx.yaml file.

By configuring the various parameters and settings in the configtx.yaml file, the sys-

tem administrator can tailor the channel’s characteristics, including the participating

nodes for each organization, their governance policies, the consensus algorithm gov-

erning the ordering service, and other critical configuration details. The configtxgen

command, in conjunction with the configtx.yaml file, empowers users to generate

and examine artifacts associated with channel configuration, providing a toolset for

channel configuration.

Note: Fabric 3.0 BDLS integration and testing use the “test-network-nano-bash”

project for testing and configuring the Fabric network artifacts. The bellow section to

the end of this chapter is for a deep understanding of the use of the configtx tool for

manual network artifact setup, which is what we used for the BDLS-Fabric integration
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progress prior to fabric 3.0 and prior to the “test-network-nano-bash” project.

In the Hyperledger Fabric ecosystem, there is flexibility in overriding the gener-

ated configuration by setting environment variables for any primary section in the

configtx.yaml file. When an environment variable is set, it takes precedence over

the corresponding configuration in the YAML file. For example, the network can

be forced to use the BDLS protocol or the generic BFT by setting the environment

variable:

CONFIGTX_ORDERER_ORDERERTY PE = bdls

, thereby overriding the default ordering service configuration.

configtx.yaml The configuration settings for the BDLS orderertype is defined

within the Orderer section. This configuration is necessary when opting for the

BDLS-based implementation in the network. In the Orderer:Bdls:Consenters sec-

tion, a list of BDLS replicas for the network is specified. It is important to note that

for the BDLS-based implementation, each replica is expected to function as both

an Orderer service node OSN and a replica. Consequently, the object displayed for

host:port within this replica set is appropriate and must be duplicated beneath the

Orderer.Addresses key, illustrated in Figure 3.10. These configuration specifications

ensure the correct deployment and functionality of the BDLS-based Orderer. In the

configtx.yaml file, an Options section is included to provide developers with the

flexibility to set a value that can be utilized as a differentiation factor within the

Option struct in the chain.go implementation. In the Go (Golang) programming

language, a struct is a composite data type that facilitates grouping related values of

different types. This option allows developers to configure specific attributes or be-

haviors based on the provided value. By incorporating this option in the configtx.yaml

file as illustrated in Figure 3.10 last line, researchers and developers can easily cus-

tomize and adjust the behavior of the chain implementation based on their specific

requirements and experimental needs. This enhances the configurability and adapt-
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ability of the system, enabling researchers to explore various scenarios and evaluate

the distributed network performance. The configtx.yaml in the fabric project can be

found at:

sampleconfig/configtx.yaml

The fabric-samples project repository [97], which utilizes the Fabric test network

Figure 3.10: configtx.yaml - BDLS configuration settings

[95], has undergone a configuration folder restructuring. The configuration folder is

now located in the /test-network/configtx directory instead of the repository’s root

directory. This updated configuration folder now includes only the configtx.yaml file,
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which contains essential configuration parameters for the network.

Furthermore, the process of setting the environment variable FABRICCFGPATH

has been automated to eliminate the need for manual interaction. Upon executing

the network.sh file to start the test network, the environment variable will be auto-

matically set, ensuring the correct configuration path is utilized.

1 FABRIC_CFG_PATH=${Fabric root path}/ configtx

Suppose the environment variable FABRICCFGPATH has not been set up. In

that case, the configtxgen binary command will attempt to locate the configtx.yaml file

in the system directory from which the command is executed. To set the utilization

of a new consensus algorithm in the network, a specific change needs to be made in

the configtx.yaml file. This change involves modifying the Orderer section by setting

the OrdererType to “Bdls” and adding a BDLS key section under the Orderer. Within

the BDLS section, a Consenters subsection should be included, which comprises the

details of the participating nodes. Each Consenter entry should include the Host,

Port, ClientTLSCert and ServerTLSCert parameters, specifying the corresponding

network configuration for the BDLS consensus algorithm.

This configuration change allows for the explicit declaration of the BDLS consen-

sus algorithm as the chosen consensus mechanism in the network. By specifying

the Consenters and their associated parameters, the network can effectively estab-

lish the necessary communication and security configurations required for the BDLS

consensus protocol. This modification to the configtx.yaml file plays a crucial role,

particularly in enabling the adoption of the BDLS consensus algorithm.

• Channel Transaction file

There are two profiles for BDLS created in the configtx.yaml file, as a sub-

section under the Profiles main section as illustrated in Figure 3.11. To build

the Tx file using the SampleAppChannelBdls profile.
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Figure 3.11: configtx.yaml - BDLS profile’s configuration

1 configtxgen

2 -outputCreateChannelTx ./ channel.tx

3 -profile SampleAppChannelBdls

4 -channelID myChannel

Listing 3.9: Generate Channel Transaction file

To examine the TX Transaction file generated in binary format and convert it

into a human-readable JSON file, the following command should be executed.

1 configtxgen

2 -inspectCreateChannelTx channel.tx > ./temp/channel.json

Listing 3.10: Inspect Channel Transaction file

• Generate the genesis block
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1 configtxgen -outputBlock ./first -channel.block

2 -profile TwoOrgsChannel

3 -channelID myChannel

Listing 3.11: Generate the genesis block

To examine the genesis block file generated in binary format and convert it into

a human-readable JSON file, the following command should be executed.

1 configtxgen -inspectBlock first -channel.block >

./temp/channel.json

Listing 3.12: inspect the genesis block

BDLS The type key for BDLS-based consensus. that will be used in TopLevel consists

of the Golang struct, used by the configtxgen tool. Include BDLS for the Orderer

struct as Bdls ∗ bdls.ConfigMetadata‘yaml : ”Bdls”‘

1 internal/configtxgen/genesisconfig/config.go

Build Fabric Docker Images and Binaries

1 # Strop all running docker container

2 docker stop $(docker ps -a -q)

3 docker system prune -f ; docker volume prune -f ;docker rm -f -v

$(docker ps -q -a)

4 docker rmi -f $(docker images -q)

5 make clean

6 make unit -test

7 make configtxgen configtxlator cryptogen orderer peer osnadmin

docker

Starting from Fabric version 2.3, the command osnadmin introduces new function-

ality. Administrators can utilize the “osnadmin channel” command line binary tool

to execute operations pertaining to channels on an orderer. The osnadmin provides

several operations on the Orderer node to control Orderer membership, such as giving
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the ability to (add or remove) the Orderer from the channel. Also, it can display the

list of the channels in which an Orderer has participated [98]. In order to set up

the Admin endpoint for every orderer and activate the channel participation API,

adjustments must be made in the orderer.yaml file [98].

Two distinct categories of build artifacts are generated during the build process:

binaries and Docker images. These artifacts are located within the newly created

build folder, which is situated in the root directory of the fabric project. The binaries

can be found in the build/bin/ directory, while the Docker images reference are

stored in the build/images/ directory.

To verify the integrity of the build artifacts for the binary, proceed to the build/bin

folder and examine the list of binary artifacts. Refer to Figure 3.12 for the compre-

hensive list of expected binary artifacts. To validate the generated Docker images,

execute the command “docker images” and ensure that the generated Docker images

are displayed, aligning with the visual representation depicted in Figure 3.12.

Figure 3.12: Build Fabric binary and docker images

For the independent construction of the Orderer docker image, you can execute

the following command-line instruction. This process allows for the creation of the

Orderer docker image in isolation.
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1 cd images/orderer/

2 docker build -t hyperledger/fabric -orderer:latest .

Figure 3.13: Hyperledger Fabric docker images

3.6 Deployment of the Ordering Service

In order to establish an ordering service comprising a set of ordering nodes, com-

monly referred to as orderers, the following steps outline the procedure for creating

a BDLS ordering service with four nodes, all affiliated with the same organization.

As illustrated in Figure 3.14.

3.6.1 Orderer initialization

The Orderer node initialization and starting can be done through two distinct ap-

proaches. The first approach involves utilizing the system channel, which necessitates

the presence of the genesis block. This first approach is deprecated on September

2023 for the releases after version 2.5. Alternatively, the second approach entails

initializing the Orderer without a system channel. This second approach is the only

technique for the new Orderer version 3.0, Which is Fabric’s latest version of the

BDLS integration process.
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Figure 3.14: BDLS Ordering Service nodes (OSN)

3.6.2 Running the Orderer node

Utilizing the test-network-nano-bash [99] project administered by the fabric

maintainers, this study investigates the direct execution of the Fabric network from

the source code within the fabric-samples project. Clone the “fabric-samples” repos-

itory at an equivalent organizational directory level as the Fabric. This proximity

facilitates the compilation and incorporation of modifications targeting the Orderer

node. The procedure involves removing the existing Orderer binary file if it exists

within the fabric project’s build/bin folder, generating a new Orderer binary file by

executing the command:

1 cd fabric/

2 rm -f build/bin/orderer & make orderer

The command line mentioned above deletes the existing Orderer binary and creates
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a novel Orderer binary file that the BDLS protocol enables. This new binary file

is the execution file of the Orderer node in the sample network. By following these

steps, you will successfully obtain the Fabric binaries and the related configuration

files, allowing you to proceed with the subsequent steps of the deployment process.

Orderer startup required Genesis Block to run the first time and the runtime char-

acteristic maintained in the orderer.yaml file. The orderer.yaml is required to run

the Orderer node. [100]

To facilitate the accessibility of the Orderer binary executable. Including the Or-

derer binary location within the operating system’s local desk in the environment

variable is advisable. This practice ensures that the Orderer binary can be easily

recognized and utilized without the necessity of explicitly specifying the full path.

1 export PATH=UNCC -Fabric/bin:$PATH

Before initiating the Orderer within a production network, it is imperative to under-

take specific preparatory tasks. These tasks encompass creating and organizing es-

sential certificates, generating the genesis block, determining suitable storage options,

and configuring the orderer.yaml file. These steps ensure the requisite foundational

elements and configurations are in place to facilitate the successful deployment and

operation of the Orderer in the production environment.

Override the ledger location that is configured in the orderer.yaml file by running

the shell command:

1 export ORDERER_FILELEDGER_LOCATION=

$HOME/ledgers/orderer/org1/ledger

Change the log level by running the shell command:

1 export ORDERER_GENERAL_LOGLEVEL=debug

2 # For enabling Advance logging:

3 export FABRIC_LOGGING_SPEC=debug:cauthdsl ,policies

,msp ,common.configtx ,common.channelconfig=info



CHAPTER 4: Securing IoT, Edge, and Cloud Systems

4.1 Introduction

This chapter contains material reprinted, with permission, from Ahmed Al Salih,

Yongge Wang, Securing the Connected World: Fast and Byzantine Fault Tolerant

Protocols for IoT, Edge, and Cloud Systems, 2024 IEEE 24th International Sympo-

sium on Cluster, Cloud and Internet Computing Workshops (CCGridW), May 2024.

© 2024 IEEE.

In an era marked by rapid technological advancement, the landscape of our world

has been fundamentally transformed. Among the most influential innovations is the

Internet of Things (IoT), which has emerged as a powerful catalyst for change, par-

ticularly in revolutionizing visibility across diverse domains. By furnishing real-time

data and insights, IoT has bestowed upon businesses the ability to refine operations

and elevate overall efficiency to unprecedented levels. However, amidst this wave of

progress, a pressing concern has surfaced: security. This concern is compounded by

the decentralized architecture inherent in IoT systems, posing significant challenges

to safeguarding devices and the data they generate. Indeed, security has become the

paramount issue accompanying the ascent of technology. It is essential to mitigate

unauthorized access, prevent data breaches, and avert potential harm.

However, as the demand for real-time data streaming intensifies, a need arises for

rapid dissemination protocols to complement stringent security measures. In addition

to the challenges mentioned earlier, we consider the most vulnerable industry, which

is the supply chain, illuminates further complexities inherent in IoT deployments.

The distributed nature of supply chain operations necessitates extensive collabora-

tion among geographically dispersed entities to deliver goods to customers effectively.
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However, this very nature renders the network susceptible to potential attacks, height-

ening the importance of robust security measures. Presently, the industry relies on

secure distributed ledger technology systems like Hyperledger Sawtooth, which priori-

tize Byzantine Fault Tolerance (BFT) behavior through the Practical Byzantine Fault

Tolerance (PBFT) protocol. This chapter proposes an alternative approach by inte-

grating Hyperledger Fabric with Byzantine fault tolerance with BDLS, a promising

BFT protocol. Our study entails collecting and analyzing data comparing the per-

formance of BDLS and Raft, shedding light on the efficacy of our proposed solution.

Additionally, we provide empirical evidence demonstrating the performance disparity

between PBFT and BDLS, underscoring our proposed integration’s advancements

and benefits in enhancing security and efficiency within IoT ecosystems, particularly

in supply chain management, smart cities, health departments, and global industries.

In this chapter, we reviewed the Blockchain-IoT in Section 4.2. Then, we discuss

the challenges of distributed ledger technology platforms of the IoT and Edge server

in section 4.3. We identified the main challenges related to the (security and perfor-

mance) aspects. In section 4.4 we demonstrate the performance evaluation. Last but

not least, we conclude in the last section of this chapter.

4.2 Blockchain-IoT

IoT incorporates physical devices [101], computers, servers, and small objects em-

bedded within a network system [102]. The variety of industries for which IoT devices

can be beneficial, such as healthcare, technology, financial, and supply chain indus-

tries, is distinguished by the attributes of distributed ledger technology. In other

words, the integration of IoT and blockchain technology ensures the data transmit-

ted by the IoT devices are recorded in the right sequence and tamper-prof in the

blockchain ecosystem [102].

The distributed ledger technologies are relaid particularly on the consensus

algorithm [103] [104] [105] type. We elucidate various consensus types, focusing on
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those commonly employed in distributed ledger technology and IoT.

4.2.1 Edge-IoT

The IoT system is a collection of tiny devices with attached sensors that can trans-

mit the data to the system. However, the power of the physical IoT device is limited in

the cases of memory, storage, and battery. The edge server technology is responsible

for collecting the data from the edge sensors and then pushed to the cloud. The edge

server must protect the data from being tampered with using blockchain technology.

Many blockchains or distributed ledger technologies (DLT) platforms are integrated

into the Edge servers technology. We will review the technologies used in those DLT

systems and the review of the challenges in the next section.

4.3 Distributed ledger platforms Challenges of the IoT

The challenges of IoT security and performance have received considerable critical

attention [106]. Based on the broad use of IoT Blockchain consensus problem [107].

We categorize the challenges into two main sections: Security in 4.3.1 and Perfor-

mance in 4.3.2.

4.3.1 Security

IoT edge characteristics, combined with the presence of devices outside institutions’

locations, might reduce protection enforcement. The small size of the devices gives

us the ability to distribute them in places that may be public or open, such as fields

and farms, or they may be mobile in transportation. The geographic nature of IoT

devices makes them vulnerable to thread attacks, which could harm the data and

the network. A system that can identify incoming malicious attacks is essential in

the IoT ecosystem. The Byzantine Fault Tolerance (BFT) system is the cutting-edge

technology in the system that has the feature to identify malicious threads [108].

The Linux Foundation considers Hyperledger Fabric the best framework for enterprise-

level technology regarding distributed ledger technology (DLT) in blockchain. How-
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ever, Fabric’s lack of support for the BFT mechanism makes It not a secure solution

for the IoT industries.

Corda [109] is a distributed ledger, unlike a blockchain. Mainly using the Raft

protocol, a CFT-type protocol, as we will review in the next section. However, the

Corda development team officially declared that Corda with BFT-SMaRt [56] is un-

stable after a few failed attempts to deploy it [107]. Indicating challenges in achieving

stability with this configuration [107].

4.3.2 Performance

The natural behavior of the IoT devices that are used in industries, including smart

cities, supply chains, agriculture, and other industries, requires a wide geographic

area and a higher number of IoT devices in general. This makes the need for a fault-

tolerant discrimination protocol essential. The fault-tolerant type keeps operating in

the absence of a certain number of network participants. The number of active nodes

that should be active in the distributed system is different from protocol to other,

also known as Quorum, as we explained in Chapter One.

However, PBFT [50] is the primarily used protocol or IoT-Blockchain [110] tech-

nology that enables the BFT [47] mechanism, or an enhanced version of it such as

G-PBFT, [111], Smart-Bft [56], MirBft [112]. Alternatively, several proposed research

for securing the IoT technology is about adapting PBFT to support frameworks serv-

ing the IoT Systems. [113], [114] The researcher innovated protocols by adding a dy-

namic leader or multi-leader [112] [56] or adding a reservation phase [113]. Most of the

enhanced PBFT studies do not change the message complexity in most of the PBFT

inherited protocols as Wang compared in this paper [5] PBFT involves the standard

three phases (Per-prepare, Prepare and Commit), starting from the leader proposing

to all nodes (Per-prepare) phase, then all nodes send to all nodes(Prepare)phase. Fi-

nally, repeating the second phase, in which all nodes send the transaction to all nodes

(Commit) phase.
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2n2 + n

The challenges of security in 4.3.1 and performance in 4.3.2 demonstrated above

occurred in the Cloud and Edge servers for the IoT technology since Cloud and Edge

servers are servers that hold accurate data for recording, alerts, or further AI modules

for analysis, prediction, Etc.

4.3.3 BDLS-IoT edge integration

Selecting the high availability enterprise-level framework for the distributed ledger

technology, Hyperledger Fabric. Enhance the performance and security of the IoT

technology. We successfully integrated the BDLS BFT protocol with Fabric and

evaluated the performance in the following subsections. The integration of BDLS with

Fabric based on the Fabric Latest LTS Version 2.5, also with the current main branch,

contains the up-to-date upgrades. The traditional IoT implementation transmits to

the server or cloud server directly. As shown in Figure4.1.

4.3.4 Edge risk prevention

The different natures of IoT edge systems in Smart cities, supply chains, health,

manufacturing, or any industry will be in a similar fundamental IoT-edge architecture

diagram, as depicted in Figure 4.2. This addition emphasizes the universality of the

IoT-edge architecture across various industries, as depicted in the referenced diagram.

The nature of this work renders the devices susceptible to potential hacking threats.

In cases where these devices are situated in public or disparate locations, there exists

a risk of system malfunction or inadvertent entry of erroneous data. Denial of Service

(DoS) attacks are common by proposing data to the BFT system that puts the system

in loops that cannot make decisions.

Our implementation and proposed BDLS protocol is to reject the malicious transi-

tion. Start from the last decided block height without putting the system in a Denial
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Figure 4.1: IoT SDK connected to Fabric network. © 2024 IEEE.

of Service (DoS) state.

By implementing Hyperledger Fabric-BDLS, we have tailored a Byzantine Fault

Tolerance (BFT) solution to ensure the secure processing of data. This adaptation

addresses the critical challenge of integrating Edge servers into the system architec-

ture. These servers play a vital role in collecting data from IoT sensors and transmit-

ting it to the cloud. In Figure 4.2, we highlight the significance of the Edge server,

which acts as a crucial intermediary. It is essential to note that the Edge server must

handle incoming data with caution, as it cannot inherently trust the information it

receives. Moreover, leveraging blockchain technology in the cloud offers enhanced

efficiency in handling high throughput Transaction Per Second (TPS) rates. This

is particularly beneficial for real-time data processing from a diverse array of Edge

systems, as shown in Figure 4.2.

In this version, I clarified the role of the Edge server and its significance in the

system architecture. Additionally, I emphasized the importance of blockchain tech-



134

Figure 4.2: IoT-Edge - Fabric-BDLS cloud network. © 2024 IEEE.
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nology in improving efficiency and handling high throughput rates, especially when

processing data from various Edge systems in real-time.

4.3.5 Cloud risk prevention

Edge servers or individual IoT devices pose a potential threat of malicious attack,

capable of inducing a Denial-of-Service (DoS) state on the cloud replica or introducing

incorrect or misleading data, thereby impacting the integrity and accuracy of the

system’s analysis. Safeguarding the cloud servers with a secure and efficient Byzantine

Fault Tolerance (BFT) protocol, such as the BDLS protocol proposed by us, presents

the optimal solution for ensuring dual-edge security (both at the edge server-side and

the cloud side). As shown in Figure 4.2.

4.4 IoT Performance Evaluation

4.4.1 Experimental Setup

We have developed a comprehensive benchmark tool that enables the concurrent

execution of multiple clients, simulating the behavior of anticipated IoT-edge de-

vices transmitting data to the system. This benchmark interacts with each BDLS

replica within the network, submitting or proposing message data to evaluate their

performance under varying conditions. Our testing environment utilizes the Fabric

maintainer test platform known as “Test Network Nano bash” [99]. This platform

provides the necessary infrastructure for operating the network using the Fabric core

source code, facilitating seamless testing and evaluation of our system’s performance.

The hardware specifications of our system are configured to accommodate average

to minimal computing power. This choice is deliberate, as we do not anticipate all

the edge servers to be high-performance “super servers” capable of scaling computing

power efficiently, as might be found with cloud services (IaaS, PaaS, or SaaS). Our

server runs on Ubuntu 22.04.3 LTS with 8GB of RAM and an Intel(R) Core(TM)

i5-9400 CPU @2.90 GHz. These specifications were chosen to align with the ex-
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pected workload and to ensure optimal performance and scalability during testing.

The experimental message configuration is based on a comprehensive review of recent

IoT-blockchain research, specifically focusing on experiments that examine the total

number of messages per block, network latency, and message size.

4.4.2 Experimental test results

For the evaluation, we identify the consensus protocol competitors. The Raft pro-

tocol is at the top of the list. Raft is the official protocol operating Fabric. Also,

existing published throughput TPS results recently by the Hyperledger website [115].

Incorporating a batch size of 500 and two message sizes (100 bytes and 1000 bytes)

[115]. BDLS has an average latency of 100ms. A minimum of 20ms. The max latency

Table 4.1: Benchmark results 100 Byte Asset Size, TX 100K (IoT configuration)

Protocol Succ Fail Max Latency Min Latency Throughput
(TPS)

Raft 100000 0 2.13 0.18 1153.00
BDLS 100000 0 2.0 0.20 1130.00

set in the BDLS consensus core is 200ms.

The experimental data is collected by running a Fabric test network [99] operating

four BDLS Orderer nodes and proposing 100,000 messages. The data size for a single

message is 100 bytes. The total time from proposing the first block until writing

the last proposed message is 88 seconds with 1135.64 TPS. Using the same network

configuration, we ran the Fabric test network operating three Raft Orderer nodes,

proposing the same number and sizes of message numbers. The total time from

proposing the first block until writing the last proposed message is 86.7 with 1158.75

TPS. The results mentioned are demonstrated in Table 4.1.

The second competitor is the Hyperledger Sawtooth, including the best Perfor-

mance Scalability published results [116] applying work switching from a serial sched-

uler to a parallel scheduler. In their experiment and Performance Scalability section,
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The throughput has increased by over 30%, with the maximum figure rising from

11.68 tps to 16.37 tps [116].

Note that Hyperledger Sawtooth configuration can be adjusted regarding the batch

size referred to as Maximum Batches Per Block (MBPB). Similar to Hyperledger

Fabric, permitting the user to choose the maximum amount of messages that can be

grouped in a batch “MaxMessageCount”. The results of the two systems cannot be

compared even if we duplicate the last enhanced results for Hyperledger Sawtooth

200 TPS versus Fabric-BDLS 1,130 TPS throughput.

Conclusion

The novel architecture for interfacing with BDLS core functions is distinct, pro-

viding enhanced memory efficiency and performance optimization. It specifically uti-

lizes c.consensus.Update(time.Now()) and direct access to c.consensus.CurrentState()

within an infinite loop in Hyperledger Fabric, replacing the conventional Go routine

implementation. Furthermore, the periodic execution of these functions via a preset

ticker timer acts as the heartbeat mechanism for BDLS. This design not only exem-

plifies an optimal framework for BDLS-Fabric integration, particularly in terms of

performance efficiency and implementation efficacy, but it also aligns the interaction

with BDLS functions in the startConsensus function with Fabric’s standard functions,

facilitating easier customization.

In conclusion, the integration of Hyperledger Fabric with the BDLS Byzantine

fault-tolerant (BFT) consensus protocol presents a compelling solution for enhanc-

ing the security and performance of distributed ledger technology, particularly in the

context of large-scale networks vulnerable to Byzantine faults. The BDLS protocol,

with its optimized message complexity and enhanced efficiency, scalability, and se-

curity, offers a promising approach to addressing the challenges faced by traditional

BFT consensus mechanisms. Compared to other protocols, such as PBFT family

protocols and other non-BFT protocols, BDLS demonstrates superior performance
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with fewer communication steps. By integrating BDLS with Hyperledger Fabric, a

high-availability enterprise-level framework for distributed ledger technology, we can

leverage the resilience of both systems to create a robust and secure environment for

transaction processing. This integration is particularly valuable in IoT edge envi-

ronments, where data integrity and security are paramount. Utilizing Fabric-BDLS

integration enables the deployment of secure and efficient IoT solutions. Data col-

lected from sensors at the edge is processed and validated securely before transmission

to the cloud. The edge server plays a crucial role in this architecture, ensuring the

trustworthiness of incoming data and mitigating potential threats. Overall, the inte-

gration of Hyperledger Fabric with the BDLS protocol represents a significant step

towards achieving secure and high-performance distributed ledger systems, especially

in scenarios where trust among participants cannot be guaranteed, such as large-scale

IoT deployments.



CHAPTER 5: Performance Evaluation

5.1 Introduction

Integrating BDLS into the Fabric Orderer architecture aligns closely with the Raft

Orderer implementation. It represents the pioneering instance of successful BFT

protocol integration within the standardized Fabric Orderer architecture, constituting

a novel consensus protocol amalgamation. The recent release of Fabric-BDLS allows

system administrators to operate the network by choosing between BDLS Orderer

and Raft-type Orderer nodes. BDLS offers the flexibility to coexist with Raft within

a unified build, making it an adaptable choice. BDLS-Fabric is a valuable guide

for integrating various consensus protocols, facilitated by its transparent Orderer

implementation. The parallelism between BDLS and Raft Orderer implementations

encompasses protocol initiation, message reception, order orchestration, batching,

proposal submission to the core protocol, and the receipt of blocks, all within the

same channel. Notably, the implementation within the Fabric core code remains

transparent, devoid of concealed logic or migration of implementation details to the

protocol code, enhancing the clarity and reliability of the integrated system.

5.2 Experimental Environment

The test network facilitates Fabric’s learning process by enabling developers to

deploy nodes on their local machines. It also offers a platform for testing smart

contracts and applications, allowing developers to validate system functionalities. [95].

The fabric-samples project repository [97], which utilizes the Fabric test network

[95], has undergone a configuration folder restructuring. The configuration folder has

been relocated from the repository’s root directory to the /test-network/configtx
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folder. This updated configuration folder now includes only the configtx.yaml file,

which contains essential configuration parameters for the network.

The procedure for configuring the environment variable involves assigning a specific

key-value pair, where the key is:

FABRIC_CFG_PATH

This has been automated to eliminate the need for manual interaction. Upon execut-

ing the network.sh file to start the test network, the environment variable will be

automatically set, ensuring the correct configuration path is utilized.

1 export FABRIC_CFG_PATH=${PWD}/ configtx

Build Fabric Docker images and binaries in the fabric root directory

1 make configtxgen configtxlator cryptogen orderer peer osnadmin

docker

Starting from Fabric version 2.3 and above, a new binary command osnadmin was

released. Administrators can utilize the “osnadmin channel” command to execute

operations pertaining to channels on an Orderer. These operations include the pro-

cesses of joining a channel, enumerating the channels linked to a specific Orderer,

and deleting a channel are important functionalities [24]. To activate the channel

participation API and set up the Admin endpoint for each Orderer, it is necessary to

modify the configuration within the orderer.yaml file [24].

Two distinct categories of build artifacts are generated during the build process:

binaries and Docker images. These artifacts are located within the newly created

build folder, which is situated in the root directory of the fabric project. The binaries

can be found in the build/bin/ directory, while the Docker images references are

stored in the build/images/ directory.

Verify the integrity of the build artifacts for the binary, proceed to the build/bin
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folder, and examine the list of binary artifacts. The generated docker images can be

listed by executing the command “docker images” and ensuring that the generated

docker images are displayed.

To establish an ordering service comprising a set of ordering nodes, commonly

referred to as orderers, the following steps outline the procedure for creating a

BDLS ordering service with four nodes. Note that the minimum node number to

run the BDLS protocol is four. For most of the BFT protocols, including BDLS, the

Quorum rule is 3f + 1.

The transaction submitted by a client peer node will be broadcast to all Orderer

nodes throughout the SDK. Affiliated with the same organization. As illustrated

earlier in Figure 3.14.

5.2.1 Running the Orderer node

Utilizing the test-network-nano-bash [99] project, maintained by the fabric de-

velopers and maintainers. In our test, we recommend a direct execution of the Fabric

network from the source code within the fabric-samples project. Clone the “fabric-

samples” repository at an equivalent organizational directory level as the Fabric. This

proximity facilitates the compilation and incorporation of modifications targeting the

Orderer node. The procedure involves removing the existing Orderer binary file if it

exists within the fabric project’s build/bin folder, generating a new Orderer binary

file by executing the command:

1 cd fabric/

2 rm -f build/bin/orderer & make orderer

The operating system we used for the test evaluation is Ubuntu 22.04.3 LTS. The

hardware properties of the system are 8GB of memory, and the processor is Intel(R)

Core(TM) i5-9400 CPU @2.90 GHz.
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5.2.2 Benchmarking Setup and Tools

The benchmarking tool employed in this study is designed to run multiple clients

concurrently. Each client can submit several transactions, and each transaction is

created by generating a common.Envelope object. Within the payload, the message

type is specified in the Header, and the message size is defined in the Data section.

The Data section contains plain text, which dynamically updates each message to

verify the data written into the block.

Each Envelope object is sent to the Order function in the chain to submit the

transaction.

5.2.3 Performance Measurement: TPS Calculation

The principle of TPS (Transactions Per Second) calculation for Hyperledger Caliper

[117] is to measure the throughput, which is the total number of transactions divided

by the total time in seconds [118].

The calculation process begins by setting the start time immediately before calling

the function responsible for creating the Envelope object. The end time is recorded

after the last message is received and written into the block file. This ensures an

accurate measurement of the time taken to process all transactions.

The benchmark measures TPS by determining the number of transactions pro-

cessed per second.

TPS =
(TotalTxNumber)

(Tx submission time - block write time)

Where ( float64(Tx submission time - block write time)) represents the total time

in nanoseconds taken to process the transactions. This approach ensures precise and

reliable measurement of the TPS, which is critical for evaluating the performance of

different consensus protocols in Hyperledger Fabric.

For example, during our experiments, we recorded the start time once creating the
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Tx to be sent and the end time after the last Tx message was written to the block.

By applying the above formula, we obtained the TPS values, which provided insights

into the efficiency of the consensus protocols under test.

By adopting this method, we can compare the performance of various consensus

mechanisms, such as Raft, SmartBFT, and BDLS, under different network conditions.

The principle of TPS Calculation for Hyperledger Caliper [117]. is calculated as

Throughput. which is the total number of transactions divided by the total time per

second [118]. The benchmark measures the Transactions Per Second (TPS) duration

by setting the start time once the first transaction is submitted; the end time is set

after the last message received is written in the block.

5.3 Experimental Results (BDLS-Raft)

In our performance evaluation, the benchmark is configured based on the latest

performance test specifications published by Hyperledger in February 2023 [115]. In-

corporating a batch size of 500 and two message sizes (100 bytes and 1000 bytes) [115].

BDLS has an average latency of 100ms. A minimum of 20ms. Raft utilized a

Fabric network with three Orderer nodes, while BDLS ran four. The Fabric release

operated in the tests is the latest main branch, including Orderer 3.0.0, up to date as

of December 2023. The Fabric Orderer configuration used for the benchmark in our

experimental assessment is similar to the configuration used by the latest Hyperledger

published result [115], as preferred max bytes is 2 MB, the block size is 500, and

block cut time is 2s [115]. The evaluation starts by proposing 100,000 messages with

a size of 100 bytes to BDLS, which took 1m28 with 1135.64 TPS, compared to Raft

with identical message numbers and sizes, which took 1m33 with 1158.75 TPS. As

demonstrated in Figure 5.1a.

In the second test round, we examined both protocols with a big message size of

1000 bytes. Sending 100,000 messages, the Fabric network that runs four Orderer

nodes operates BDLS, a total time of 1m41, which gives 980 TPS to write all the
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(a) msg size=100 byte, batch
size=500

(b) msg size=1000 byte,
batch=500

(c) msg size=100 byte,
batch=1,500

Figure 5.1: BDLS vs Raft TPS/Time
Transaction number (txNumber)= 100,000

submitted messages in the ledger blockchain. On the other hand, Raft’s total time is

1m32, which is 1082 TPS. As demonstrated in Figure 5.1b.

To simulate the recently published Raft TPS result. We increased the max batch

size to 1500, as shown in 5.1c. When Raft gives 3083 TPS, BDLS is 2717

Finally, We evaluate the BDLS integration by proposing a high-volume message of

500,000 messages. The single message size is 1000 bytes. Raft TPS is 1022 in 8m9,

while BDLS TPS is 964 in 8m38. As demonstrated in Figure 5.2.

In the observed scenario, the BDLS consensus algorithm has considerably narrowed

the gap between the Byzantine Fault Tolerant (BFT) model and the Crash Fault

Tolerant (CFT) model. Concerning the Transaction Per Second (TPS) metric, BDLS

has achieved a TPS score that closely approximates and nearly matches Raft’s.

5.3.1 Experimental (Single node evaluation)

We collect data from each participating node involved in decision-making and eval-

uate their Transactions Per Second (TPS) for each single node in each consensus

algorithm. We conduct two rounds of testing. The transaction number (txNumber)

is 100,000 messages submitted to the Fabric network. First, three Orderer nodes

operating Raft consensus protocol run. Second, the same message number is submit-

ted to the Fabric network that runs four Orderer nodes operating BDLS consensus
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Figure 5.2: BDLS vs Raft 500,000 messages, 1000 byte

protocol. Each message size is 100 bytes. The following results pertain to nodes

that achieved consensus successfully. Providing the total time required to write all

submitted messages in blocks, calculating the Transactions Per Second (TPS). The

results include four BDLS nodes, followed by three Raft nodes test results.

The minimum number of nodes required to run the Raft protocol is three, whereas

the BDLS minimum node number is four. In Figure 5.3, each Orderer node displays

the (TPS) over time required to conclude the writing of the final block in the node

ledger. The four orange circles represent the BDLS nodes. As indicated, a couple

of BDLS nodes archived consensus almost simultaneously, as one of the Raft nodes

with TPS rang around 1130. In the current case study, the emphasis is on data
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Table 5.1: Four BDLS nodes TPS

Protocol replica Node ID TPS Time

BDLS 01 1092.583 1 min 31.526 sec
BDLS 02 1115.181 1 min 29.671 sec
BDLS 03 1124.490 1 min 28.929 sec
BDLS 04 1132.310 1 min 28.315 sec

Table 5.2: Three Raft nodes TPS

Protocol replica Node ID TPS Time

RAFT 01 1134.266 1 min 28.162 sec
RAFT 02 1145.711 1 min 27.282 sec
RAFT 03 1158.240 1 min 26.337 sec

collection at the single-node level. The data presented for this case research included

an estimated one-second latency among nodes to simulate wide network traffic. The

test configuration proposes a total TxNumber of 100,000 and a message size of 100

bytes. This plot of the data collected in Figure 5.3 uses the timeline per second.

5.3.2 Experimental setup

The infrastructure for our test uses the operating system Windows 11 Pro Version

22H2, running Windows Subsystem for Linux (WSL2). WSL is a Windows feature

that allows users to run a Linux environment on their Windows machine without

needing a dual boot or an independent virtual machine. We installed Ubuntu 22.04.3

LTS as the operating system used for the test evaluation.

The Fabric network configuration is based on the latest published performance test

results by Hyperledger Foundation [115]. We configure the Fabric network exactly

similar to the configuration referenced in the published results [115], which includes

the following parameters:

block_cut_time = 2seconds

block_size = 500

preferred_max_bytes = 2MB.
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Figure 5.3: (3 Raft / 4 BDLS) nodes TPS/time

The above configuration parameters are adjustable in the configtx.Yaml file [24]. Ex-

amine the performance with two message sizes of 100 bytes and 1000 bytes.

5.4 Experimental Results

We collect data from the test implemented in three phases, allowing us to present

three dataset results in Figure 5.4. We proposed 100,000 messages. The message

size is 100 bytes. The transaction per second (TPS) result for BDLS and Raft is

represented in blue bars and the time in green bars in Figure 5.4.

BDLS TPS is 1135, whereas The TPS result for RAFT is 1158 in Figure 5.4(a),

The time taken to execute the Fabric test network is around 88 seconds using BDLS

and 86.7 seconds in the case of RAFT.

The second experimental data collected is represented in Figure 5.4(b). We in-

creased the message size from 100 bytes to 1,000 bytes. The Fabric test network

using the BDLS protocol score for TPS is 980. Running the same test on a network

using the Raft protocol produces a TPS of 1082.
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In the third test shown in Figure 5.4(c), we adjust the batch size equal to 1500,

which increased the RAFT TPS to 3083 to simulate the latest published results

by Hyperledger Foundation [115], whereas the same test configuration using BDLS

produced TPS is 2717.

Figure 5.4: BDLS vs Raft TPS/Time.
©2024 ACM. Reprinted with permission from Ahmed Al Salih, Pluggable Consensus
in Hyperledger Fabric, BIOTC 2024

We developed the benchmark to calculate individual node throughput in the quo-

rum, which is the minimum required number of nodes participating in the consensus

protocol to make a decision. In Figure 5.5, the plot diagram represents two test re-

sults, showing the throughput per node and the time that node completed the task

in milliseconds for more details per node. The task is Fabric OSNs member of the

network participated in achieving consensus and wrote the block. Proposing 100,000

messages with 100 bytes message size and batch size of 500 is the exact test network’s

configuration by the latest published results from Hyperledger Foundation [115]. The

first experimental test shows BDLS node throughput in green. The second through-
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put results are for the OSNs run Raft, which is represented in blue, as shown in

Figure5.5. Furthermore, We noticed from the experimental results that the through-

put of the (raft1) node achieved consensus in 88.162 seconds, a divergent outcome

from the throughput of the (bdls4 and bdls3) nodes, which reached throughput at

88.315 and 88.929, respectively.

Figure 5.5: BDLS/Raft Nodes Throughput.
©2024 ACM. Reprinted with permission from Ahmed Al Salih, Pluggable Consensus
in Hyperledger Fabric, BIOTC 2024

Our research results clearly showed the performance result of the BFT module

using the BDLS protocol, bringing us closer than ever to a CFT module for the

first time in terms of performance speed or TPS results. Note: Given the absence of

publicly available BFT protocols for examination and comparison, we are constrained

to utilize the Raft protocol, which is widely recognized as a prevailing and best-

practice solution.
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5.5 Byzantine Fault Tolerance Experimental

5.5.1 Byzantine Fault Tolerance in BDLS: Node Targeting and Message

Divergence

To evaluate Byzantine behavior within the Ordering Service Nodes (OSNs), it is

necessary to introduce divergent data, which is subsequently verified by a separate

node. In our experimental setup, the test program runs alongside each OSN, enabling

us to examine any number of OSNs within the network. There is a need to target

specific nodes, which presents certain challenges since each OSN instance is a replica of

the first. We address this by assigning different IP addresses, ports, and cryptographic

materials to each node.

A key aspect of our test implementation involves embedding a condition in the

test client that utilizes the C.chain to access the Order() function, allowing us to

interact with the c.BDLSID. By using conditional if statements, we can effectively

target specific nodes or a subset of nodes. Additionally, we modify specific messages

within the message counter to send targeted messages to particular nodes. This

approach enables us to monitor system behavior for deadlock conditions and examine

the resulting block messages.

As shown in Listing 5.1, this experiment specifically targets BDLS node 2. The

client sends a divergent message, where the message with ID 500 is proposed to this

node with modifications. As a result, the modified message is excluded from the final

block, and the system instead incorporates the message with ID 500 from the other

three honest BDLS nodes.

92 func (c *Chain) TestOrderClient4(wg *sync.WaitGroup) {

93 c.Logger.Infof("From Client %v", 4)

94 for i := 0; i < 10000; i++ {

95 if c.bdlsId == 2 && i == 500 {

96 env := &common.Envelope{
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97 Payload: protoutil.MarshalOrPanic (& common.Payload{

98 Header: &common.Header{ChannelHeader:

protoutil.MarshalOrPanic (& common.ChannelHeader{Type:

int32(common.HeaderType_MESSAGE), ChannelId: c.Channel })},

99 Data: []byte(fmt.Sprintf("TEST_BAD -data -Client -4-%v",

i)),

100 }),

101 }

102 c.Order(env , uint64 (0))

103 } else {

104 env := &common.Envelope{

105 Payload: protoutil.MarshalOrPanic (& common.Payload{

106 Header: &common.Header{ChannelHeader:

protoutil.MarshalOrPanic (& common.ChannelHeader{Type:

int32(common.HeaderType_MESSAGE), ChannelId: c.Channel })},

107 Data:

[]byte(fmt.Sprintf("TEST_MESSAGE -UNCC -Client -4-%v", i)),

108 }),

109 }

110 c.Order(env , uint64 (0))

111 }

112 }

113 wg.Done()

114 }

Listing 5.1: Byzantine Behavior Experimental

5.5.2 Byzantine Fault Tolerance Experimental Summery

This experiment demonstrates the Byzantine fault tolerance of the BDLS pro-

tocol within Hyperledger Fabric. The test program, implemented in the function

TestOrderClient4, simulates client behavior by sending 10,000 messages to the

network. The program includes a condition that, when the BDLS ID is 2 and the mes-
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sage ID is 500, the client sends a modified message (“TEST_BAD-data-Client-4-

500”). The remaining messages follow the standard format (“TEST_MESSAGE-

UNCC-Client-4-x”), where x is the message number. The experimental results

confirm that the system successfully rejects the divergent message sent by the com-

promised node and instead utilizes the honest messages proposed by the other nodes.

This behavior validates the ability of BDLS to tolerate Byzantine faults by ensuring

that the consensus process remains correct despite the presence of faulty or malicious

nodes.

5.6 Fabric BFT Experimental (BDLS vs Raft vs SmartBft)

The operating system used for the experimental evaluation is Ubuntu 22.04.3 LTS.

The hardware properties of the system are 8GB of memory.

The expected delay is a common property for a distributed system protocol, known

as latency. we set the latency for BDLS based on the average expected. The latency

to the followers currently stands at an average of 100ms, with a minimum of 20ms

recorded in NYC and a maximum of 200ms in Tokyo.

The experimental setup involves comparing the performance of the BDLS, Raft,

and SmartBFT protocols in terms of Transactions Per Second (TPS) across different

clusters and varying transactions per block. The results are represented in graphs as

Figure 5.6 a, b, and c.

The Fabric Orderer configuration used for the benchmark in this experimental is

exactly the same data matrix used by the latest Hyperledger published result [115].

The Fabric release operated in the tests is the latest main branch, including Orderer

3.0.

5.6.1 1. BDLS Performance Assessment

The BDLS protocol, designed as a Byzantine Fault Tolerant (BFT) solution, showed

remarkable performance in the experiments that were conducted. In various config-
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(a) Raft Experimental (b) BDLS Experimental

0
(c) SmartBft Experimental(HLF Orderer 3.0)

Figure 5.6: Throughput (TPS) for Hyperledger Fabric network running: BDLS vs
Raft vs Fabric Orderer v3.0 (smartBft). © 2024 IEEE.
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urations, including clusters of 4, 5, and 6 nodes, BDLS achieves high TPS values

across different transaction loads. For instance, with 1500 transactions per block,

BDLS achieves up to 2860 TPS in a 4-node cluster, 2830 TPS in a 5-node cluster,

and 2800 TPS in a 6-node cluster. These results indicate that BDLS can efficiently

handle high transaction throughput while maintaining the robustness required for

BFT systems.

When comparing the performance of BDLS to Raft, as shown in Figure 5.6b and

Figure 5.6a, BDLS achieves approximately 89.38% to 93.33% of Raft’s transactions

per second (TPS) across various cluster configurations. These results indicate that

while BDLS introduces Byzantine Fault Tolerance (BFT) capabilities, it maintains a

throughput that is closely comparable to that of Raft, even in different cluster setups.

5.6.2 2. SmartBft/Fabric 3.0 BFT Performance Assessment

Our experimental findings regarding SmartBFT closely align with the test results

published in [54] by the protocol developers: “In a LAN, BFT-OS achieves 20% the

performance of a Raft protocol (2,500 vs. 13,000 tx/sec, respectively in a WAN,

SmartBft achieves 40% the performance of a Raft protocol (1,200 vs. 3,000 tx/sec,

respectively.” [12] [54].

When compared to Raft’s performance, SmartBFT in Figure 5.6c achieves ap-

proximately 33.33% to 38.71% of Raft’s TPS in Figure 5.6a, across different clusters

setup.

5.7 Experimental Summery

This section presents a comparative evaluation between BDLS and SmartBFT/-

Fabric 3.0, two Byzantine Fault Tolerant (BFT) protocols integrated into Hyperledger

Fabric. As the recently proposed beta solution, BDLS has been specifically designed

to enhance the ordering service within Fabric by introducing BFT capabilities, offering

a more resilient and high-performance alternative to existing consensus mechanisms.
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The experimental results demonstrate that BDLS is a highly efficient BFT solu-

tion for Hyperledger Fabric’s ordering service, delivering both robustness and high

throughput. Its performance closely rivals that of Raft, a consensus algorithm tra-

ditionally known for its efficiency but not designed for Byzantine Fault Tolerance.

Despite Raft’s non-BFT nature, BDLS manages to achieve comparable throughput,

making it a strong candidate for environments where both high performance and fault

tolerance are critical [119].

On the other hand, SmartBFT, although effective in providing BFT properties,

exhibits lower transactions per second (TPS) compared to BDLS. This disparity

highlights BDLS’s superior performance, especially in high-throughput environments

where maintaining efficiency under Byzantine conditions is essential. Figure 5.7 illus-

trates the performance comparison, showing BDLS’s clear advantage over SmartBFT

in terms of TPS.

The inclusion of BDLS into Fabric marks a significant step forward in the evolution

of BFT protocols within the platform, offering a robust and scalable solution that

meets the demands of modern distributed ledger systems.

Discussion

The experimental results clearly demonstrate that BDLS offers a substantial per-

formance advantage over SmartBFT, with transaction per second (TPS) rates nearly

on par with Raft. Specifically, BDLS’s TPS values are only slightly lower than those

of Raft, making it a highly efficient Byzantine Fault Tolerant (BFT) solution. This

efficiency is particularly significant for Hyperledger Fabric’s ordering service, where

both high throughput and robustness are essential.

The superior performance of BDLS over SmartBFT can be attributed to its op-

timized consensus mechanism, which effectively handles transaction validation and

block generation while ensuring Byzantine Fault Tolerance. BDLS manages to achieve

a balance between performance and fault tolerance, optimizing processes to maintain
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Figure 5.7: Throughput Comparison of BDLS, Raft, and SmartBFT. © 2024 IEEE.

high TPS rates. In contrast, Raft, although not a BFT solution, excels in envi-

ronments where Byzantine Fault Tolerance requirements are less stringent, thereby

maintaining higher TPS under similar conditions. Despite these promising results,

there is still considerable room for enhancement. One potential improvement is tran-

sitioning the communication among BDLS nodes from using TCP connections to

gRPC services. gRPC, with its advantages in performance and scalability, could

further enhance the efficiency and reliability of BDLS’s communication protocol.

In summary, our experimental results demonstrate the effectiveness of integrating

the BDLS protocol into Hyperledger Fabric.

Furthermore, the integration of BDLS with Hyperledger Fabric shows significant

potential for future growth. This integration is hosted as an open-source project in

the Hyperledger Fabric lab, inviting contributions from the community to further

enhance and develop this promising protocol.



CHAPTER 6: Fabric-BDLS Architecture

6.1 Fabric-BDLS Network System Architecture

The BDLS-Fabric architecture demos the end-to-end system architecture and trans-

action flow. This model integrates BDLS consensus algorithm within the Hyperledger

Fabric framework. This architecture leverages the modular and scalable design of

Hyperledger Fabric, introducing enhanced fault tolerance and security mechanisms

essential for enterprise-grade blockchain systems.

6.1.1 Key Components

1. Certificate Authority (CA): The CA server issues digital certificates that

authenticate and verify the identities of different network participants, such as

peers, ordering nodes, and client applications. These certificates are essential

for establishing trust within the network and enforcing cryptographic security

protocols. The Membership Service Provider (MSP) manages these identities

so that only authorized participants can engage in the transaction processes.

2. Software Development Kit (SDK): The SDK serves as the primary in-

terface between client applications and the blockchain network. Through the

SDK, developers and users can invoke chaincode (smart contracts), propose

transactions, query the ledger, and submit transactions to peers and the order-

ing system. The SDK abstracts the underlying complexity of the blockchain

network, allowing seamless interaction with various components of the BDLS-

Fabric system.

3. Peer Nodes: Peer nodes are central to the operation of the BDLS-Fabric

network, functioning in two primary roles: Endorser and Committer.
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• Endorser Peers execute chaincode and validate transaction proposals

against the current data state in the ledger. These peers ensure that trans-

actions conform to the defined business logic before they are submitted to

the Orderer.

• Committer Peers receives ordered blocks from the Orderer and com-

mits the block in the ledger database, updating the blockchain state. The

distinction between endorsing and committing peers allows for scalable

transaction processing, where different peers handle validation and ledger

updates.

4. Ordering Service (BDLS Consensus Algorithm): The ordering service

guarantees the correct sequencing of transactions and packaging them into

blocks. The BDLS algorithm, a Byzantine Fault-Tolerant (BFT) consensus

mechanism, allows the system to tolerate faulty or malicious nodes while main-

taining the integrity of the transaction ordering process. The presence of multi-

ple ordering nodes (denoted as BDLS 01, BDLS 02, BDLS 03, BDLS 04 in the

diagram) ensures that the ordering process remains decentralized, resilient, and

resistant to a range of faults, including node failures and adversarial behavior.

5. Ledger and Chaincode: Each peer node hosts a copy of the ledger, which

contains the complete history of the transactions that are executed on the dis-

tributed system network, and the chaincode, or the smart contract logic. The

ledger is updated when new blocks are committed, ensuring that all peers main-

tain a consistent view of the blockchain. Chaincode execution is initiated by

client applications through the SDK, and its results are validated by endorsing

peers before being submitted to the ordering service for final commitment.

In summary, BDLS-Fabric’s architecture combines Hyperledger Fabric’s strengths

in modularity and permissioned access with BDLS’s fault-tolerant consensus, pro-
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viding a scalable, secure, and robust solution for distributed ledger applications in

high-trust environments.

The overall architectural view of the Hyperledger Fabric-BDLS network is depicted

in Figure 6.1. The process commences with the client initiating a transaction to the

peer node that is accessible to them. The peer node then validates the transaction,

which is subsequently proposed to all ordering service nodes by the Software Devel-

opment Kit (SDK). The ordering service is composed of a minimum of four BDLS

nodes.

Figure 6.1: BDLS architecture in the complete Fabric system, © 2024 IEEE.
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6.1.2 Fabric-BDLS Integration Architecture

The architecture of BDLS integrated with Fabric 3.0, depicted in 6.2, illustrates

the data flow from the SDK to the block being written and broadcasted to other

orderer nodes.

1. SDK Interaction: The process begins when the SDK initiates a transaction

(TX) and submits it to the orderer node via “Order TX,” where the transaction is

queued for processing.

2. Ordering and Pending: The orderer node batches and orders the transac-

tions, moving them to propose block for consensus.

3. Proposing and BDLS Invocation: After ordering, the transactions are

proposed to the consensus mechanism, invoking the BDLS protocol to coordinate

with other nodes.

4. Consensus via TCP Agent: The TCP Agent manages communication be-

tween BDLS nodes, ensuring synchronized state updates and decision-making during

consensus.

5. BDLS State Updates and Decision: Nodes exchange information via the

comm component, updating the BDLS state and confirming the correct block height

and transaction state.

6. Block Validation and Writing: After consensus, the validated block under-

goes state validation, comparison, and latency adjustments before being finalized and

moved to the Write Block phase.

7. Block Writing and Local Storage: The block is committed to the orderer

node’s ledger, ensuring secure storage and system updates.

8. Broadcast to Other Nodes: Through gRPC, the finalized block is broad-

cast to other orderer nodes, with the comm module ensuring all BDLS nodes are

synchronized with the latest state.

This flow guarantees the ordered, validated, and secure management of transactions
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using BDLS as the consensus protocol, ensuring system consistency and performance.

Figure 6.2: Hyperledger Fabric Ordering Service BDLS Architecture

6.2 Fabric BDLS Transaction Flow in the (OSN)

The transaction flow in the BDLS-Fabric architecture involves a series of steps

that ensure both the correctness of the transaction and to be written in the ledger

(blockchain system). As illustrated in Figure 6.3

In the Fabric BDLS ordering service, client transactions are encapsulated in an

envelope object before being submitted to the ordering service. This process begins

when transactions are passed to the Order() function, which subsequently invokes

the Submit() function.

Within the Submit() function, the envelope is encapsulated as a Payload key-

value pair inside a SubmitRequest object, which is then sent to the submitC

channel. Each Ordering Service Node (OSN) includes a Goroutine executing the

run() function, which continuously listens to a set of channels, awaiting incoming

data to trigger the appropriate logic.
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Figure 6.3: Transaction flow in Fabric-Bdls Orderer node

Upon receiving a transaction in the submitC channel, it is passed to the Ordered()

function. Since this research focuses on normal transactions, the Ordered() function

validates the message type and forwards it to the ProcessNormalMSG() function

within the c.support. The ProcessNormalMSG() function checks the message’s

validity against the current system configuration.

The validated message is then sent to the BlockCutter.Ordered() function,

which handles two key steps: ordering the transactions and batching them into blocks.

The function returns two values: the first is the set of transaction batches, and the

second is a boolean indicating whether there are any pending transactions. These

values are returned when Ordered() is called within the run() function.
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Once the batches are received, they are forwarded to the Propose() function along

with a channel (CH) and a block creator context (BC). The Propose() function

loops through the batches, treating each as an equivalent to a block. Each block is

marshaled, converting it into binary format, and then sent via the CH channel. At

this point, the block has entered the BDLS protocol library through this channel.

Additionally, a timer (Timer.C()) is used to ensure that transactions are processed

promptly, even if only a single small transaction is submitted. For example, if a timer

is configured for 2 seconds, a block will be created within 2 seconds of submission.

When the timer expires, it triggers the support.BlockCutter().Cut() function,

which creates a block using the data from the currently received transaction. This

process sends the batch to the Propose() function for block creation, completing the

first phase of the transaction lifecycle in the OSN.

The second phase involves verifying if the block reaches consensus. The startCon-

sensus() function sets up a timer ticker that triggers every 20 milliseconds, simulating

a heartbeat for the BDLS node. At each heartbeat, the BDLS library’s Update()

function is called with the current time, followed by a call to the CurrentState()

function. This function returns the height, round, and state of the blockchain. The

height returned by BDLS is compared to the current Fabric system’s height. If the

BDLS height is greater, it indicates that consensus has been achieved on the block

state, and the proposed block is confirmed.

The third and final step involves writing the block to the ledger database. The

state is sent to the applyC channel, encapsulated within an Apply structure. Upon

receiving the state, the applyC channel triggers the Apply() function, which un-

marshals the state to retrieve the original block. This block is then sent to the

writeBlock() function.

The writeBlock() function passes the block to the multi-channel package in the

blockwriter.go file. The block is then written to the ledger through the
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c.support.writeBlock() function, followed by a call to the commitBlock() func-

tion, which appends the block to the ledger using the Append() function in the

ledger.go file.



CHAPTER 7: CONCLUSIONS

In conclusion, integrating Hyperledger Fabric with the BDLS Byzantine fault-

tolerant (BFT) consensus protocol presents a compelling solution for enhancing the

security and performance of distributed ledger technology, particularly in large-scale

networks vulnerable to Byzantine faults. The BDLS protocol, with its optimized mes-

sage complexity and enhanced efficiency, scalability, and security, offers a promising

approach to addressing the challenges faced by traditional BFT consensus mecha-

nisms. Compared to other protocols, such as PBFT family protocols and other non-

BFT protocols, BDLS demonstrates superior performance with fewer communication

steps.

In this research, we have provided an in-depth exploration of the Fabric ordering

service, the integration points of the Raft protocol, and an analysis of the Fabric

message life cycle. This comprehensive discussion lays the groundwork for integrating

any protocol into the Fabric framework. We used the integration of the BDLS protocol

as a practical example to demonstrate the application of a Byzantine Fault Tolerance

(BFT) module within Fabric.

Our research reveals that BDLS shows exceptional performance, comparing favor-

ably with the RAFT protocol, whether handling low or high transaction volumes

and maintaining this superiority across various message sizes. This enhancement in

performance firmly positions BDLS as a viable and practical choice for systems that

require efficient, reliable, and secure transaction processing capabilities.

Moreover, the notable performance of the BDLS BFT module represents a signif-

icant advancement in our understanding and implementation of decentralized net-

works. More than ever, it narrows the gap between Byzantine Fault Tolerance (BFT)
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and Crash Fault Tolerance (CFT) modules, particularly regarding transaction speed

and TPS efficiency. Consequently, BDLS stands out as the optimal BFT module

choice for decentralized networks, offering a combination of high efficiency, scalabil-

ity, and robust transaction processing.

By integrating BDLS with Hyperledger Fabric, a high-availability enterprise-level

framework for distributed ledger technology, we can leverage the resilience of both

systems to create a robust and secure environment for transaction processing. This

integration shows valuable advantages in IoT edge environments, where data integrity

and security are paramount. Utilizing Fabric-BDLS framework enables the deploy-

ment of secure and efficient IoT solutions, where data collected from sensors at the

edge is processed and validated securely before transmission to the cloud. The edge

server plays a crucial role in this architecture, ensuring the trustworthiness of incom-

ing data and mitigating potential threats. Overall, the integration of Hyperledger

Fabric with the BDLS protocol represents a significant step towards achieving secure

and high-performance distributed ledger systems, especially in scenarios where trust

among participants cannot be guaranteed, such as large-scale IoT deployments.

Our research underscores the limitations of Hyperledger Fabric’s newly integrated

SmartBFT protocol, particularly its high message complexity and scalability issues.

The BDLS protocol, in contrast, demonstrates superior scalability and efficiency,

maintaining linear message complexity regardless of network size. Our comparative

analysis reveals that BDLS-based Fabric achieves comparable throughput to Raft-

based Fabric while offering enhanced Byzantine fault tolerance. This makes BDLS a

promising alternative for large-scale decentralized applications across various indus-

tries. Future work should focus on further optimizing BDLS integration and exploring

its performance in diverse real-world scenarios to validate its practical benefits. Our

findings advocate for broader adoption of BDLS in Hyperledger Fabric to achieve

more robust and scalable blockchain solutions.
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APPENDIX A: QUADRATIC FIT COMPARISON GRAPHS

A.1 Phase 1: New block Propose

Algorithm 1 Phase 1: New block Propose
Data: B ′

Result: Pi ← (⟨h, r⟩j, ⟨h, r, B ′
j)j⟩

Pj ← B ′

Pi ← B ′

where B ′
j ∈ BLOCKj

while r ′ < r do
if (⟨h, r⟩j, ⟨h, r, B ′

j)j⟩ signed then
Pi ← (⟨h, r⟩j, ⟨h, r, B ′

j)j⟩
where B ′

j ∈ BLOCKj

round change ← (h, r)j
end
; /* Pj will not accept messages except a “decide” */
if messages is “decide” then

Pj ← messages
end

end
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A.2 Phase 2: Lock

Algorithm 2 Phase 2: Lock
Data: B ′

Result: ⟨lock, h, r, B ′, proof⟩ior⟨select, h, r, B ′′, proof⟩i
WhereB ′

j ∈ BLOCKj

while B ′ ̸= NULL. do
if Pi ← 2t+ 1 signed then

Pi ← ⟨lock, h, r, B ′, proof⟩i
broadcast−→ message to all participants Pj

“proof” ∈ ⟨h, r, B ′⟩
end
else

Where B ′′ is the candidate block
B ′′ = max{B : B ∈ BLOCKi}
PiBroadcast⟨select, h, r, B ′′, proof⟩i
“proof” ∈ ⟨h, r⟩

end
end
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A.3 Phase 3: commit

Algorithm 3 Phase 3: commit
Data: ⟨lock, h, r, B ′, proof⟩i or ⟨select, h, r, B ′′, proof⟩i
Result: ⟨commit, h, r, B ′⟩i
Pi, Pj ← 2t+ 1 signed messages
Pi ← B ′

Where B ′
j ∈ BLOCKj

while 2t+ 1 signed messages. do
if Pi, Pj ← ⟨lock, h, r, B ′, proof⟩i then

1. locks on B ′ from the previous round are released,
No other potential locks are released

2. locks B ′ the candidate block

3. /*All nodes send commit message to the leader*/

Pi ← ⟨commit, h, r, B ′⟩j
end
else

if Pi, Pj ← ⟨select, h, r, B ′′, proof⟩i then
Add B ′′ to BLOCKj

end
end

end
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A.4 Phase 4: decide

Algorithm 4 Phase 4: decide
Data: ⟨commit, h, r, B ′⟩j
Result: ⟨decide, h, r, B ′, proof⟩i
Pi ← 2t+ 1
Pi ← B ′

WhereB ′
j ∈ BLOCKj

while Pi decides on the value B ′ do
if Pi ← 2t+ 1 commit messages then

Pi ← ⟨decide, h, r, B ′, proof⟩i
Pi

broadcast−→ ⟨decide, h, r, B ′, proof⟩i to all participants Pj, Pi

“proof” ∈ ⟨h, r, B ′⟩
end

end


