
IMPROVING FAIRNESS AND THROUGHPUT OF A CMP PROCESSOR BY

OPTIMIZING THE UTILIZATION OF THE LAST LEVEL SHARED CACHE IN

REAL-TIME USING A CONSTRAINED-EXTENDED KALMAN FILTER

by

Ashish Panday

A dissertation submitted to the faculty of

The University of North Carolina at Charlotte

in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in

Electrical Engineering

Charlotte

2017

 Approved by:

Dr. Yogendra P. Kakad

Dr. Arindam Mukherjee

Dr. James M. Conrad

Dr. Srinivas Akella

ii

©2017

Ashish Panday

ALL RIGHTS RESERVED

iii

ABSTRACT

ASHISH PANDAY. Improving fairness and throughput of a CMP processor by

optimizing the utilization of the last level shared cache in real-time using a constrained-

extended kalman filter (Under the direction of DR. YOGENDRA KAKAD)

Cache Partitioning is a technique which maps the data pertaining to each core to a

corresponding partition in the cache memory exclusively. Cache partitioning has been

shown to improve performance metrics like fairness and throughput in most cases by

eliminating inter-core conflict misses in shared cache of modern multi-core processors.

Recently real-time management of cache partitioning is being studied to accommodate the

variations in the intrinsic behavior of threads running the cores; thereby further improving

cache utilization.

This dissertation presents a novel scheme for real-time management of cache partitioning

using a constrained-extended Kalman filter. This approach is named Predictive Model

based Cache Partitioning (PMCP). The design of PMCP utilizes an evolving approximate

model of the nonlinear relationship between observed performance of each thread and the

allocated cache partition size. The Gradient Projection method is used to model the

performance model which predicts the next partition configuration. It also utilizes the

history of the transient behaviors of the active threads to predict the cache partitioning for

a low computation and space overhead. The key contribution of the research is that the

cache performance curves are generated dynamically and is used to predict partitioning

strategies such that cache utilization is optimized. PMCP is evaluated on the GEM5

simulator using the SPEC CPU2006 benchmarks. The results show that the throughput of

the system improves by up to 35% with PMCP over shared cache.

iv

DEDICATION

This dissertation is dedicated to my advisor for the last 8 years, Dr. Bharatkumar S.

Joshi. He was an Associate Professor and the Graduate Coordinator of the Department of

Electrical and Computer Engineering at UNC Charlotte. Unfortunately Dr. Joshi passed

away on March 7, 2016.

Dr. Joshi was a highly dedicated and sincere person who cared immensely for all his

students and his profession as a professor. His famous words “I am not here to make

mediocre engineers” is an example of his dedication which resounds with many of us.

Personally, the inspiration for this research came from Dr. Joshi as he wanted to explore

the use of Control Theory concepts to optimize performance of computers. It was an honor

to have the opportunity to research on this topic with him. As my advisor, Dr. Joshi gave

me the freedom and encouragement to explore various approaches that I could use to

develop my PhD research. But he was always available to analyze my ideas with me.

Dr. Joshi will always be a role-model for me, professionally and personally, and I will

forever be indebted to him for all that he has taught me.

v

ACKNOWLEDGEMENTS

My thanks and appreciation to Dr. Yogendra P. Kakad for agreeing to accept me as his

advisee and persevering with me as I finish my PhD and write my dissertation. I am grateful

for the numerous conversations and brainstorming sessions he conducted with me so

patiently.

The members of my committee, Dr. Arindam Mukherjee, Dr. James M. Conrad and

Dr. Srinivas Akella, have generously given their time and expertise to better my work. I

thank them for their contribution and their good-natured support.

I am grateful for the staff members, present and past, of the Electrical and Computer

Engineering Department, Stephanie LaClair, Sharron Green, Nikki Redman, Jerri Price,

Eddie Hill, Michelle Wallace and Jerena McNeil for all their support.

A special thank you to the Late Dr. Joshua Stokell, Dr. Bushra Khan and Dr. Omera

Matoe for the special friendship we shared over the years. I must express my gratitude to

my dear friends Jerry Zacharias, Sam Shue, Jeremy Sabo, Lauren Johnson, John Wiley

Thompson, Reshmi Mitra, Shakti Shankar, Kushal Datta and Sushma S. Murthy whose

friendship, hospitality, knowledge, and wisdom have supported, enlightened, and

entertained me over the many years of our friendship. I must acknowledge as well the many

friends, colleagues, students and professors who have assisted, advised, and supported my

research over the years.

Lastly, the most important people that I’d like to thank my parents, Praveen K. Panday

and Neelam Panday, my sister, Natasha Seth, and my brother-in-law, Andy Seth whose

unconditional whole-hearted love and support gave me the strength to reach the finish line.

vi

TABLE OF CONTENTS

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF ABBREVIATIONS xi

1. INTRODUCTION 1

2. RELATED WORK 9

2.1. Comparing PMCP with other cache partitioning methods 11

3. CONSTRAINED EXTENDED KALMAN FILTER 13

3.1. Extended Kalman Filter (EKF) 14

3.2. Constrained-Extended Kalman Filter 15

4. ESTIMATING CACHE PARTITIONING USING C-EKF 17

4.1. System (Last Level Shared Cache) 17

4.1.1. Modifications in the cache 18

4.1.2. Allocating space to the partitions 19

4.1.3. Modified cache replacement policy 20

4.2. System Monitoring Unit 21

4.3. State Estimator 22

4.3.1. Choosing the Performance Model 22

4.3.2. Choosing the System Model 23

4.4. Constraint Surface Evaluation 23

4.5. Tuning the Error Covariance Matrices P0, Q and R 24

4.6. Time Quantum 25

5. RECAPITULATING C-EKF for PMCP 27

vii

6. SIMULATING PMCP in MATLAB 29

7. GEM5 SIMULATOR 35

8. EVALUATING PMCP on GEM5 40

8.1 Experimental Setup 41

8.2 Performance metrics 42

8.3 Workloads 43

8.4 Modifications in GEM5 44

8.1.1. C-EKF module 44

8.1.2. Modifications to the L2 cache design 46

8.1.3. Modifications to the the LRU replacement policy 46

8.1.4. Modifying the request packets 48

8.1.5. Measuring misses and hits 48

8.1.6. Scheduling events 49

9. RESULTS 53

9.1 Performace on throughput 53

9.2 Evaluation of the fair-speedup metric 56

10. IMPROVING PMCP BY EVALUATING PERFORMANCE MODEL

DYNAMICALLY 59

10.1 Defining the functional 60

10.2 Setting up GP 61

11. CONCLUSION AND FUTURE WORK 65

REFERENCES 67

viii

LIST OF TABLES

Table 1: Comparison of various cache partitioning techniques 12

Table 2: Symbols used to describe the cache and cache-performance models in PMCP 17

Table 3: Main characteristics of the simulated processor 40

Table 4: classification of the spec cpu2006 benchmark [3] 43

Table 5: Description and schedule of the various top level events as referred in the

simulation 49

Table 6: Location, description and schedule of the user defined events used to implement

the design of experiment 50

ix

LIST OF FIGURES

Figure 1: Moore’s Law history, future, limited factors, and Nanotechnology-Enhance

factors for Moore’s Law and compared with Dow Jones industrial average in the same

period of time (1971–2011). [24] 2

Figure 2: Organization of partitions in a cache partitioned using PMCP 4

Figure 3: Framework of PMCP for estimating cache partitioning 18

Figure 4: (a) displays the reallocation of the 4th block in each set from thread i to thread

i+1. (b) Displays the reallocation of the 4th block back to thread i. 20

Figure 5: Simulating PMCP for 4 active threads on a processor with cache size of 100.

Thread 1's miss-rate changes from 0.2 to 0.8. 30

Figure 6: Simulating PMCP for 4 active threads on a processor with cache size of 100.

Thread 1's miss-rate changes from 0.2 to 0.5. 31

Figure 7: Simulating PMCP for 4 active threads on a processor with cache size of 100.

Thread 1's miss-rate changes from 0.2 to 0.8 to 0.3. 32

Figure 8: Simulating PMCP for 4 active threads on a processor with cache size of 100.

Thread 1's miss-rate changes from 0.2 to 0.8 back to 0.2. 33

Figure 9: Simulating PMCP for 4 active threads on a processor with cache size of 100.

Thread 1's miss-rate changes from 0.2 to 0.5. Then all threads’ miss-rae change to 0.5 33

Figure 10: Simulating PMCP for 4 active threads on a processor with cache size of 100.

Thread 1's miss-rate changes from 0.2 to 0.8. Then the miss-rate for the threads follow

the order 0.3, 0.5, 0.8 and 0.2 respectively 34

Figure 11: Top level time profile of the simulation 42

Figure 12: Schedule of all events both user defined and system-level such that the design

of experiment s implemented efficiently. 52

Figure 13: IPC for various workloads simulated. The left bar in each cluster represents

the IPC for a processor where the with standard LRU replacement in the L2 cache. The

right bar in each cluster represents the IPC for a processor where the L2 cache is

partitioned using PMCP. The label of each cluster indicates the benchmarks for the

cluster. 54

Figure 14: Steady state partition sizes in each TQ for the fnts workload. Both HLTP and

HLSP are included in the figure. 55

x

Figure 15: miss-rate measured at the start of each TQ for the fnts workload. 56

Figure 16: Fair-speedup for various workloads simulated. The left bar in each cluster

represents the IPC for a processor where the with standard LRU replacement in the L2

cache. The right bar in each cluster represents the IPC for a processor where the L2 cache

is partitioned. 58

xi

LIST OF ABBREVIATIONS

IC Integrated Circuits

SoC System on Chip

SiP System in Package

ITRS International Technology Roadmap for Semiconductors

IPC Instructions Per Cycle

QoS Quality of Service

PMCP Predictive Model based Cache Partitioning

C-EKF Constrained - Extended Kalman Filter

TQ Time Quantum

UCP Utility based Cache Partitioning

EKF Extended Kalman Filter

LRU Least Recently Used

CPU Central Processing Unit

OS Operating System

SE Syscall Emulation

FS Full System emulation

SLICC Specification Language for Implementing Cache Coherency

ISA Instruction Set Architecture

SMU System Monitoring Unit

HLTP High Level Transition Period

HLSP High Level Steady-state Period

xii

IPCmti Instructions per cycle multi-threaded (thread i)

IPCsti Instructions per cycle single-threaded (thread i)

GP Gradient Projection

1. INTRODUCTION

Since the advent of computers, the semiconductor industry has been guided by Moore’s

Law which states that the density of transistors on a chip would double every two years.

Consequently the transistor size got smaller and the speed with which the transistors

switched from on state to off state also improved. Simultaneously manufacturing larger,

more complex integrated circuits using standardized building blocks became cheaper for

the semiconductor industry which was then in complete control of the rate of improvement

of technology. During the 60s, 70s and 80s, scaling the transistor density directly improved

the performance of the system at a very fast rate. In addition, the speed at which the

transistors operated was complemented by the speed at which the memory operated.

The last two decades also brought several new paradigms to improve the performance

of the system in the form of integrated circuits (ICs) like System on Chip (SoC), System in

Package (SiP) and multicore processors. Integrated Circuits allowed cost effective

integration of simple building blocks used in the design of several systems. Although these

features improved the performance of the system and are currently driving innovation, it

has, in many cases, reached the thermal and power limits on these devices. Still the

transistor count is keeping up with Moore’s Law but it is practically not possible to

conjunctly improve the frequency at which the transistors function due to physical

limitations on power dissipation and thermal thresholds. In 2015, International Technology

Roadmap for Semiconductors (ITRS) [23] presented the roadmap for the future of

2

transistor technology. Several companies have announced that since the horizontal space

is limited, efforts are being made to explore the vertical dimension. Even though such a

change in paradigm can improve transistor density, power still remains a critical factor and

it is predicted that technology will hit a similar limit in the near future. Wu et al.

complemented this philosophy [24] and presented a consolidated figure (Figure 1) where

the past, the present and the future of the transistor technology is mapped. It is clear that

we are at the precipice of reducing the transistors size to increase transistor density in a

cost effective way while still maintaining the desired physical properties.

Figure 1: Moore’s Law history, future, limited factors, and Nanotechnology-Enhance

factors for Moore’s Law and compared with Dow Jones industrial average in the same

period of time (1971–2011). [24]

Improving the transistor technology which in turn improved the processors’

performance in the past. But there are several other factors that affect the performance of

the system like memory, bandwidth, interconnect bus and other peripheral devices. This

3

research is focused on optimizing the utilization of these resources specifically the last

level shared cache memory. Further discussions in this chapter will therefore be directed

towards the effects of memory on performance of the system. It has long been known that

it is in fact memory that drives Moore’s Law. The rate at which memory operates directly

affects the number of operations that can be performed by the processing unit. Without the

improvement in memory it is very difficult to improve the processor performance even if

the transistor density is improved. In addition, typically, memory performs significantly

slower than the processor.

Historically, the improvement in transistor technology also improved the memory

performance and new computer systems were complemented with a new memory

technology. New configurations of memory hierarchy and utilization of different types of

memory technology also contributed towards a significant improvement in the

performance of the system. Indeed, advanced processors and the complementing memory

organization and technology has improved the overall performance of the systems.

However, due to the limits of Moore’s Law it is challenging to improve the processor and

memory technology in a way that is beneficial to the semiconductor industry.

An alternate way to improve system performance, which does not simply rely on

improving the transistor technology, can stem from improving the utilization of the existing

resources available to the processor. For example, modern multi-core processors, which

allow large number of threads to run in parallel, share the limited lower level cache in the

memory hierarchy which can cause conflicts between threads resulting in the eviction of

useful data of the competing threads. This may lead to degradation of performance metrics

for throughput like Instructions Per Cycle (IPC). In some cases where a few competing

4

threads have significantly large footprints in the shared cache may degrade performance of

other competing threads [20, 21] which in turn affects the Quality of Service (QoS) and

fairness performance metrics like fair-speedup. Perhaps, a restriction policy that can limit

the amount of footprint a thread can have in the shared space while organizing the space

itself can maintain the QoS for each threads in a judicial manner and improve the overall

performance of the processor.

CMP Processor

Core1 Core2 Core3 Core4

L1D L1I L1D L1I L1D L1I L1D L1I

Main Memory

Set 0
Set 1

Set m

Figure 2: Organization of partitions in a cache partitioned using PMCP

Cache partitioning has been shown to improve the performance of the overall processor

in such cases. In cache partitioning, the shared cache space is typically divided into

partitions and each thread’s data is mapped to a specific partition exclusively to avoid

conflict misses. By deciding the size of the partitions judiciously the QoS can also be

improved considerably. Consider a processor with 4 cores and a single threaded process

5

running on each core. Assume that each core has a local L1 cache and all cores share an n-

way set associative L2 cache (last level). Assume that cache partitioning was performed on

the shared L2 cache. Figure 2 elaborates on this example where the L2 cache space is

divided into 4 equal partitions, one for each core. Note that there is one physical shared L2

cache but the cache space is virtually divided into partitions and the data from the threads

are organized in their designated partitions.

By assigning exclusive access rights to the threads only to certain partitions, cache

partitioning facilitates fairer distribution of resources between the threads. Each thread’s

data is mapped to a specific partition; thereby eliminating conflict misses. Threads with

large strides in data access have a higher probability of exploiting temporal locality since

their data is maintained in their assigned partition. However, threads that require larger

space to exploit spatial locality may be penalized because of restricted access to only the

assigned partitions and not the entire cache space. A well-designed cache partitioning

scheme accommodates these trade-off in order to improve the overall system performance.

The primary goal of this research work is to explore the possibility of using System

Theory to design such a scheme. The shared cache is viewed as an open-loop system whose

inputs are the set of values that represent each thread’s partition size and the outputs are

the number of hits and misses of each core. It is assumed that the system has the ability to

identify the inputs and measure the outputs in real-time. The document presents the

proposed scheme to close the loop and update the inputs based on measured outputs in real-

6

time. The existing cache partitioning schemes that utilize feedback control are limited by

the lack of accuracy in either the state-transition models, which predict the partition sizes,

or the performance models that relate size of the available cache to performance metrics

(like miss-rates). Some other partitioning schemes are dependent on either prior knowledge

about the applications’ data access patterns or defined targeted performances. The method

described in this research, which is named as Predictive Model based Cache Partitioning

(PMCP), provides a unique way to predict partition sizes for each thread with simple

models without requiring any knowledge of the applications running on the system.

PMCP utilizes a Constrained-Extended Kalman Filter (C-EKF) as a state estimator to

estimate the partition sizes for each thread. Estimators are part of System Theory and have

been used to incorporate self-management and on-line estimation in many domains by

estimating the value of an unknown parameter using statistical models and measured inputs

or outputs. Through C-EKF, PMCP first estimates the state of the system (last level cache)

based on state-transition model, followed by updating the estimates based on observations.

The update process refines the estimates based on weighted difference between a measured

miss-rate and miss-rate evaluated using a performance model. The weights are decided by

evaluating the covariance of the errors in the state-transition model, performance model

and overall accuracy of the state estimator. The miss-rates are measured at regular intervals

referred as a Time Quantum (TQ) in this document. Once the miss-rates are measured,

PMCP estimates the new state of the system iteratively and is expected to converge to a

steady state as soon as possible. Only when the steady state is achieved, is the new

partitioning applied to the shared cache space. The system runs with the new set of

partitions until the end of the current TQ. Miss-rates are measured again at the start of the

7

 next contiguous TQ and PMCP estimates the next partitioning scheme based on current

partitioning scheme (state from the previous TQ), measured performance (current miss-

rates) and state-transition weights (error covariance matrices).

It is also observed that, if the threads do not change their access patterns throughout the

experiment, the steady state values over several TQs experience a convergence as well to

an overall stable state. With good state-transition and performance models, PMCP has the

potential to reach a well predicted overall steady state which partitions the cache space

such that cache utilization is optimized.

PMCP is evaluated on the GEM5 simulator with the SPEC CPU2006 benchmark. The

evaluations with a simple state-transition and performance model yield a maximum of

35.35% improvement in throughput and 5.5% improvement in fair-speedup when

compared to the throughput of a processor with standard shared cache. The simplicity of

the models allows PMCP to accommodate variations in the models of the applications that

can run simultaneously on the system. However, certain empirical evaluations had to be

included to guide PMCP through the state-space. An extension to PMCP is proposed with

a performance model that evolves at run-time. In the upgraded version, the performance

model is evaluated at run-time based on measurements using Gradient Projection with

fixed boundaries on cache partition size for each thread and miss-rate of each thread.

The rest of the document is organized as follows. In Chapter 2, detailed discussions on

related researches is presented. A brief overview of the construction of the Kalman filter

that leads to the construction of EKF and the C-EKF are discussed in Chapter 3. In Chapter

4, PMCP’s framework is presented and summarized in Chapter 5. Chapter 6 details the

simulations carried out in MATLAB to validate PMCP. The GEM5 simulator is introduced

8

in Chapter 7 and the evaluation of PMCP on GEM5 is discussed on Chapter 8. Chapter 9

presents the results of PMCP with the simple state-transition and performance models

while chapter 10 expands on how the performance model can be improved using gradient

projection method. The entire research work is concluded in Chapter 11 and the future

direction of the research work is discussed.

2. RELATED WORK

Cache partitioning was first introduced by Stone et al. [12] in 1992 where he discusses

the difference in the access patterns of instruction and data streams that later formed the

inspiration for the split L1 data and instruction cache. Stone et al. also proposed a greedy

algorithm to partition the cache in cases where multiple processes run on the processors.

The greedy algorithm has been shown to be optimal if the utility curves are convex. But in

cases where the utility curves are non-convex, the algorithm can have pathological effects.

Several cache partitioning schemes were proposed after Stone to improve throughput,

fairness and QoS [1-12, 18] including course grain partitioning techniques like Way

Partitioning [11] and software based techniques like virtual memory and page coloring [5,

6]. Way Partitioning is simple, but it supports a limited number of coarsely-sized partitions.

Virtual memory and page coloring have the advantage of being software based techniques

but the process of remapping is time consuming as it involves copying (recoloring) of

physical pages.

Dynamic cache partitioning was first investigated by Suh et al. [18] where they propose

the use of a variant of the greedy algorithm, similar to the one introduced by Stone et al.

[12]. Suh’s algorithm explores all non-convex points of the miss-rate curve of the

applications to minimize the total number of misses. However, an application’s miss-rate

curve can have several non-convex points and, in a multicore processor with several

threads, the number of non-convex points can increase significantly. To address this

10

limitation Qureshi et al. [18], introduced Utility-based Cache Partitioning (UCP) which

uses the Lookahead algorithm, similar to the Suh’s greedy algorithm. However, unlike

Suh’s greedy algorithm, the Lookahead algorithm evaluates the increase in marginal utility

for all possible number of allocable ways. So if the cache is an N-way cache with n cores

sharing the cache, UCP evaluates the utility of all N partition sizes for each core in parallel

and chooses the partitioning with the best utility. Vantage [3] uses UCP as its primary

partitioning algorithm. Jigsaw [1] uses the Peekahead Algorithm similar to the Lookahead

Algorithm of UCP that performs in linear time. However these algorithms and techniques

require some prior knowledge of the miss-rate curves of the applications running on the

processor.

Instead of relying on the miss-rate curve, PriSM [2] uses a hill-climbing approach to

partition the cache and reach targeted performance metrics by evaluating eviction

probabilities for all threads. Such a method precludes adaptability since the processor is

expected to reach a targeted performance. In addition, PriSM uses the same method as UCP

for monitoring the cache performance. Apart from relying on prior knowledge of miss-rate

curves, UCP is limited by the way it retains past information. UCP halves the measurement

from the previous TQ and adds it to the current TQ’s measurements. SHARP [22] comes

the closest to PMCP since it relies on a feedback controller. But, like PriSM, it relies on

targets defined for performance which renders it less adaptable. SHARP also limits the

tested workload suite to applications with convex miss-rate curves.

Like SHARP, PMCP also relies on mathematical models and empirical measurements

to evaluate efficient partitioning strategies using a feedback controller. However, PMCP

does not compromise on the historical state transitional trajectories nor does it rely on miss-

11

rate curves. PMCP is designed using a C-EKF that can estimate the sizes of the partitions

(next state) based on measured cache misses and accesses in order to optimize the cache

utilization thereby improving the system performance. C-EKF is a recursive estimator that

relies on statistical models as well as empirical observations to estimate the next state of

the system. Although there are many state estimators, there are several advantages of using

C-EKF. C-EKF is a very light weight estimator whose navigation through the state-space

is relatively inexpensive. The estimated next state of the system is dependent only on the

current state of the system. Therefore C-EKF’s space and time complexity are significantly

reduced.

A good statistical model can estimate the next state of the system independently and

accurately. However designing such a model for a cache is a monumental task. However,

a simpler model’s estimations complemented by updates based on real-time measurements

can certainly improve the estimate of the nest state of the system over a few iterations.

PMCP with C-EKF aims to make such real-time estimates iteratively such that cache

utilization is pareto-optimal in each TQ thereby improving the overall performance like

throughput and fairness.

2.1. Comparing PMCP with other cache partitioning methods

Table 1 compares the characteristics of the various cache partitioning schemes

discussed so far. Since cache memory is a significantly fast system, it is important that the

partitioning scheme does not have a large number of complex computations. It is also

critical that the partitioning method is scalable as threads can activate/deactivate

dynamically. The computations in all the methods are scalable with the number of threads

12

and are light weight computations with PMCP and SHARP being relatively more compute

intensive. The main advantage of PMCP over all the other methods is in the way PMCP

estimates cache partitioning for the shared cache without requiring prior knowledge of the

miss-rate curves. Chapter 10 explains in detail how PMCP can estimate cache partitioning

schemes while simultaneously training the performance model to make better estimates in

real-time.

 Table 1: Comparison of various cache partitioning techniques

UCP PriSM SHARP PMCP

Light-weight ~ ~ ~ ~
Scalable with number of

threads    
Not dependent on Miss-

rate curves    
Not dependent on accuracy

of system model    
Utilizes historical

information efficiently ~  ~ 

A detailed description of C-EKF is discussed in the next chapter. Note that this chapter

does not discuss how C-EKF is adapted in PMCP to optimize cache utilization. It simply

outlines the theory behind the working of C-EKF and highlights the appropriate set of

equations.

3. CONSTRAINED EXTENDED KALMAN FILTER

Constrained Extended Kalman Filter is a modified Kalman filter designed for non-linear

systems where the system dynamics are given in terms of state-space models subjected to

certain constraints. To understand C-EKF, it is important to understand the working of a

Kalman filter and the extended Kalman filter first.

Kalman filter is a minimum mean-square error estimator for a state vector X operating

recursively on streams of noisy input to produce statistically optimal estimates [16].

Kalman filter works under the assumptions that the underlying system is a linear dynamical

system and all error terms and measurements have a Gaussian distribution. The Kalman

filter model assumes that true state of the system at time step k is evolved from the state at

time step k-1 according to the state transition model (previously referred as to system

model) which can be described as

𝑿𝒌 = 𝑨𝒌𝑿𝒌−𝟏 + 𝑩𝒌𝑼𝒌 + 𝒘𝒌 (1a)

where

U: Control vector

A: State Transition Model

B: Control-input Model

w: Process noise assumed to be zero mean Gaussian distribution with

covariance Qk.

14

Also, at time k an observation vector Zk of the true state Xk is designed based on equation

1(b)

𝒁𝒌 = 𝑯𝒌𝑿𝒌 + 𝒗𝒌
 (1b)

where

H: Observation model that models the true state-space to the observed space

v: Observation noise assumed to be zero mean Gaussian distribution with

covariance Rk.

3.1. Extended Kalman Filter (EKF)

The EKF allows the state transition model and the observation model to be

differentiable non-linear functions. In our case, the state transition vector is a linear

function and the observation vector is a differentiable nonlinear function, h. We will

discuss more on the properties of the observation vector used in Section 3. Therefore (1a)

and (1b) are modified to (2a) and (2b).

𝑿𝒌 = 𝑨𝒌𝑿𝒌−𝟏 + 𝒘𝒌 (2a)

𝒁𝒌 = 𝒉(𝑿𝒌) + 𝒗𝒌 (2b)

Unlike Kalman filter, h cannot be used directly in the filter equations. Instead, the

Jacobian (also known as the output sensitivity matrix, H) of h is evaluated and used in the

filter equations. This process linearizes the nonlinear function h around the current

estimates allowing the use of Kalman filter equations in the state space around the current

estimate.

15

The following steps summarize the various steps involved in the evaluation of the

estimated state, �̂�𝒌, using EKF given initial state vector �̂�𝟎 with initial error covariance

matrix P0.

1. Project state ahead with wk = 0;

�̂�𝒌
− = 𝑨𝒌�̂�𝒌−𝟏 (3)

2. Project P, the estimated error covariance matrix

𝑷𝒌
− = 𝑨𝒌𝑷𝒌−𝟏𝑨𝒌

𝑻 + 𝑸𝒌 (4)

3. Compute Hk at �̂�𝒌
−.

𝑯𝒌 =
𝝏𝒉

𝝏𝒙
|𝑿=�̂�𝒌

− (5)

4. Compute Kalman gain Kk

𝑲𝒌 = 𝑷𝒌
−𝑯𝒌

𝑻(𝑯𝒌𝑷𝒌
−𝑯𝒌

𝑻 + 𝑹𝒌)
−𝟏

 (6)

5. Correct the state vector

�̂�𝒌 = �̂�𝒌
− + 𝑲𝒌(𝒁𝒌 − 𝑯𝒌�̂�𝒌

−) (7)

6. Correct the error covariance matrix P.

𝑷𝒌 = (𝟏 − 𝑲𝒌𝑯𝒌)𝑷𝒌
− (8)

Equations (1) – (6) are evaluated iteratively till the output reaches steady state.

3.2. Constrained-Extended Kalman Filter

Although EKF is a powerful tool for state estimation, some information about the

system cannot be incorporated in the filter design such as equality or inequality constraints.

Since Cache Partitioning is constrained by a linear equality constraint (see section 3.4), the

methods used to incorporate inequality constraints is not discussed in this section. In C-

16

EKF, an EKF estimates the state variables and projects them onto a constrained surface

(equality constraints) which can be generalized as

𝑫𝑿 = 𝑑 (9)

Estimate Projection method [17] is one of the ways of incorporating constraints in the

filter design to get the constrained estimates in the form of

�̃�𝒌 = �̂�𝒌 − 𝑾−𝟏𝑫𝑻(𝑫𝑾−𝟏𝑫𝑻)−𝟏(𝑫�̂�𝒌 − 𝒅) (10)

where

�̃�𝒌: Constrained estimate of the state variable X

�̂�𝒌: Unconstrained estimate of the state variable X as calculated by the EKF

W: Positive-definite weighting matrix

By setting W to 𝑷𝒌
−𝟏 we obtain the maximum probability estimates of the state

subjected to constraints. The equations for C-EKF are modified from those of EKF to

incorporate the constrained estimated into the filter design.

�̂�𝒌
− = �̃�𝒌−𝟏 (11)

X̂k = X̂k
- + Kk(Zk-HkX̂k

-) (12)

�̃�𝒌 = �̂�𝒌 − 𝑷𝒌𝑫
𝑻(𝑫𝑷𝒌𝑫

𝑻)−𝟏(𝑫�̂�𝒌 − 𝒅) (13)

Equations (11) - (13) are the primary equation that form the framework to model

PMCP. By adopting appropriate system and performance models in equations (2a) and (2b)

and subsequently evaluating equations (11) – (13), PMCP aims to estimate the optimal

partition sizes for each thread such that the cache utilization is optimized and overall

system performance is improved.

4. ESTIMATING CACHE PARTITIONING USING C-EKF

This section describes the framework of PMCP (Figure 3). Employing C-EKF as the

state estimator in PMCP requires correspondence of the filter setup with appropriate state-

transition and performance models for the cache. Table 2 presents the various symbols that

will be used to describe the state-transition and performance models.

Table 2: Symbols used to describe the cache and cache-performance models in PMCP

n Number of threads

Ci Size of cache partitioning for thread i

Mi Miss-rate of thread i

mi Number of misses of thread i

ai Number of accesses of thread i

4.1. System (Last Level Shared Cache)

The system under consideration is the last level shared cache to be partitioned. A state

of the system is defined by C, a column matrix where the ith row represents the size of

cache allocated to the ith thread. Similarly, measurements are defined by M, a column

matrix where the ith row represents the measured miss-rate of the ith thread. This section

elaborates on the requirements in the system to implement PMCP.

18

Constraint

Surface

Evaluation

State Estimator
System

Monitoring Unit

System

(Last Level

Shared Cache)

Cache reference

pattern

Miss-rates

Constrained size of

Cache partitions

U
n

co
n

st
ra

in
ed

 s
iz

e
o

f

ca
ch

e
p

ar
ti

ti
o

n
s

Figure 3: Framework of PMCP for estimating cache partitioning

4.1.1. Modifications in the cache

In order to capture the miss-rate of each thread, the cache is modified by adding an

extra field called tid to each block in the cache. The number of bits required for tid equals

𝑙𝑜𝑔2𝑛. This field stores information about the thread that owns the data in the block. For

example, if tid equals ‘1’ for a cache block, then the data mapped to this block is owned by

thread 1. This field allows us to measure individual thread’s hits and misses. Two registers

per thread, referred as measurement registers, are reserved to store the number of hits and

misses of each thread. Therefore the total number of measurement registers required is

equal to 2n.

19

4.1.2. Allocating space to the partitions

The fundamental philosophy behind PMCP is partitioning the cache and allocating the

space to each partition. Each thread is then assigned to the partitions and have exclusive

access only to the assigned partition. However, since the partition sizes can change in real-

time a reallocation policy needs to be defined to ensure that the partitions remain

defragmented. The reallocation policy is designed with the following properties

 After reallocation, the partitions are distinct and contiguous.

 After reallocation, the blocks in a partition are continuous per set.

 After reallocation, the first partition is always assigned to the thread tagged with

tid=1, the second partition to the thread with tid=2 and so on.

 After reallocation, there is at least one block in each partition.

Although such a reallocation policy makes it simpler to define distinct boundaries

between partitions (see Figure 2: Organization of partitions in a cache partitioned using

PMCP) thereby defragmenting the data, it can lead to certain issues with the way data is

accessed by threads after a reallocation. The data access patterns of the threads are typically

transient in real-time. Consequently the cache partition sizes for the threads may be transient

as well. Figure 4a elaborates this concept in more detail. A cache block B which previously

belonged to thread i+1 in TQj was reallocated to thread i in TQj+1. This can lead to redundant

and/or inconsistent data in the cache memory. For example, in Figure 4b, B was reallocated

from partition i+1 to partition i but not replaced in TQj+1 since thread i had no cache misses.

If thread i+1 requested for B in TQj+1 it will experience a miss since thread i+1 can access

partition i+1 only in TQj+1. Thread i+1 reads the value of B from the lower levels of

memory, where it may not have the most recently updated value of B. In other words, not

20

only are there multiple copies of the same data in the cache memory, it is possible that the

data read by the thread is not the last updated value.

B

Tid=i Tid=i+1

B

TQi TQi+1

Tid=i Tid=i+1

B B

Tid=i+1

B B

TQi TQi+1

Tid=iTid=i+1Tid=i

(a)

(b)

Figure 4: (a) displays the reallocation of the 4th block in each set from thread i to thread

i+1. (b) Displays the reallocation of the 4th block back to thread i.

4.1.3. Modified cache replacement policy

The simplest way to address this issue would be to writeback all blocks that are

reallocated followed by invalidating the same block in the cache. However, this process

could be very time consuming. Instead, small modifications in the baseline Least Recently

Used (LRU) replacement policy can achieve the same results without having to writeback

all reallocated data every time the cache is repartitioned. The following rules were designed

for the modified LRU replacement policy.

 All cpu-side requests (read and write) can access the entire cache.

 The cache can writeback data from any block in the entire cache.

21

 All memory side writes replace data from a block that belongs to requesting

thread’s partition only.

 In partition i, invalid blocks are used first.

 In partition i, if all block are valid, cache block that have tid ≠ i are replaced.

 In partition i, if all blocks are valid and have tid = i, LRU replacement policy is

enforced on blocks belonging to partition i.

In the modified cache replacement policy, all threads are allowed to read from the entire

cache. So even if a cache block is reallocated to a different partition, it can be read by all

the threads. Only the writes from the memory side are restricted to the owning threads’

partitions. There are two advantages of the modified replacement policy.

 It prevents mapping of redundant and inconsistent data in the cache memory

 It facilitates gradual defragmentation of data while significantly reducing the

intermittent writebacks required to maintain data consistency.

4.2. System Monitoring Unit

PMCP requires periodic sampling of the miss-rates of each thread. The most straight

forward way to realizing the miss-rates would be to monitor each thread’s misses and

accesses individually and derive the miss-rate of each thread. Miss rate of each thread is

defined as

𝑀𝑖
′ = 𝑚𝑖 𝑎𝑖⁄ (14a)

22

Since the bus connecting the shared cache to its neighboring units is shared, the access

patterns of each thread is affected by the traffic on the bus that is generated by other threads

as well. The probability that thread i accesses the cache is

p
i
= ai ∑𝒂𝒊⁄ (14b)

Therefore, from (14a) and (14b), the weighted miss-rate of thread i can be represented as

𝑀𝑖 = 𝑝𝑖 ∗ 𝑀𝑖
′

𝑀𝑖 = 𝑚𝑖 ∑𝑎𝑖⁄

(14c)

4.3. State Estimator

In Figure 3: Framework of PMCP for estimating cache partitioning, the state estimator

is essentially the EKF (equation (3) – (8)) part in the design of the C-EKF. To estimate

cache partitioning, the EKF is adapted by choosing an appropriate performance model and

state-transition model. As mentioned in Chapter 2, it is a rather difficult task to design

these models. However, one of the advantages of using a C-EKF is that the user is allowed

to use approximate models and compensate for the inaccuracy of the model by

progressively updating the next state of the system based on measured performances and

state-transition trajectories.

4.3.1. Choosing the Performance Model

The performance model is essentially a loss function that represents the cost (miss-rate)

associated with the state of the system. In PMCP, it is used to evaluate the cost associated

with the estimated next state of the system. The evaluated cost is compared with the

observed cost to estimate the next state of the system iteratively. In PMCP, the loss function

23

(performance model) describes the relation between cache sizes and miss-rates by

employing the power function described by Chow [13, 14] and examined by Hartstein et

al. [15]. Chow described the relationship between miss-rates and cache size as

𝑴 = 𝑴𝟎𝑪
−∝ (15)

where M is the miss-rate (measurement vector, Z in equation 2b), C is the cache size (state

vector, X in equation 2a) and α is approximated to 0.5 [15]. This is also called the √2 Rule.

Therefore, from equations (5) and (15) Hk is constructed as an n×n diagonal matrix with

𝑯𝒌 = 𝒅𝒊𝒂𝒈(𝑴𝟎(−∝)𝑪𝒌
−∝) (16)

Note that the model chosen is a very simple model. The effects of the model on other

aspects of the estimator will be discussed further in Section 4.5.

4.3.2. Choosing the System Model

For the first part of the dissertation, the model chosen is the simplest model where the

previous state of the system is projected to the next state of the system. In other words,

equation (2a) is rewritten as

𝑪𝒌 = 𝑪𝒌−𝟏 + 𝒘𝒌 (17)

4.4. Constraint Surface Evaluation

The output of the state estimator is not a practical partitioning scheme since it is

unaware of the limitation on the state-space. If left unbounded, each partition can

(theoretically) be infinitely large. However, since the cache space available in a system is

limited, the output of the state estimator has to be truncated to a realistic partitioning by

applying the constraint similar to equation (12). The constrained can be defined as– The

24

sum of all the partitions should be less than or equal to the total cache capacity. Without

loss of generality, this constraint can be redefined as – The sum of all partitioning should

be equal to the total cache capacity. Equation (18) models such a constraint where Ci

represents the cache partitioning allocated to the ith thread and Ctotal is size of the cache

which is usually fixed in a processor.

∑𝐶𝑖 = 𝐶𝑡𝑜𝑡𝑎𝑙

   2

1

1x 1x1

x1

1 1 1 tot

n

aln

n

C

C

C

 
 
  
 
 
 

C . (18)

Therefore from (9) and (18)

D = [1 1 1 … 1]1xn (19a)

d = Ctotal (19b)

The constrained estimates are evaluated similar to equation (13) and projected to the next

iteration of the state estimator.

4.5. Tuning the Error Covariance Matrices P0, Q and R

Q represents the expectation of the drift in the state variable and the inclination to

follow the drift. R represents the prediction errors due to measurement error rather than

parameter drifts. P0 is the initial error covariance. In a system, when the observations are

complete, the error covariance matrices P0, Q and R covariance matrices can be estimated

using sample covariance matrix. However, when the observation set is incomplete, deeper

considerations are required. Statistical analyses of multivariate data usually involves

exploratory studies about the interactions of the variables under consideration and is

25

explicitly followed by statistical models involving the covariance matrices of the variables.

Such estimations usually provide initial estimates that can be used to study the inter-

variable interactions at run-time. In the absence of an efficient models for the error

covariance matrices, the filter may not converge to the optimal states, the number of

iterations required for the filter to converge may increase and in the worst case, the filter

may even diverge. Furthermore, it is known that the Q and R matrices for non-linear system

and performance models may be dependent on the measurement vector and can evolve

dynamically.

Several simulations were implemented in Matlab to empirically realize a good model

to fit the definitions of these matrices. Note that the equations presented below need not

represent the error covariance of every process that can potentially run on the system.

However, our results will show that the system’s performance was significantly improved

nonetheless. This issue resurfaces again in Chapter 9 and is addressed in Chapter 10.

𝑷𝟎 = 𝑰

𝑸 = 𝒅𝒊𝒂𝒈(𝑨) ∗ 1000000

𝑹 = 𝒅𝒊𝒂𝒈((1. 𝑨⁄)./∑ (1. 𝑨)⁄)

4.6. Time Quantum

A Time Quantum (TQ) is defined as the time period after which PMCP monitors the

cache to measure hits and misses. It can be perceived as a sampling period provided the

system is monitored at regular intervals. However, based on the threads’ dynamic

variations in access patterns, the cache could be monitored at varying time intervals. Hence

the time difference between two consecutive samples is referred as Time Quantum. The

26

results presented in Chapter 9 were acquired by monitoring the cache at regular intervals

which was chosen empirically to be 500 million clock cycles. It is important to note that a

longer TQ can fail to isolate some of the major events but more time is available for the

estimator to converge to the optimal partitioning. A shorter TQ captures events more

closely but might be too short for the filter to converge to the steady state.

5. RECAPITULATING C-EKF FOR PMCP

In section 3, the Kalman Filtering algorithm is introduced which is based on linear

dynamical systems described by equations (1a) and (1b). A variant of Kalman Filter called

Extended Kalman Filter that linearizes a non-linear performance model about the current

mean and covariance is documented next since cache performance (miss-rate) scales in a

nonlinear fashion. Equations (2a) and (2b) describe such a system and the various steps

involved in EKF is summarized in equations (3) – (8). EKF is a good state-estimator but

sometimes it is difficult to account for all conditions and constraints in the state-transition

and performance models. C-EKF is introduced next to account for any physical constraints

that may exist in the system. Equations (11) – (13) apply such constraints of the type

equation (9) on the estimates produced by equations (3) – (8).

In Chapter 4, the framework for implementing PMCP using various models and

hardware modifications are identified. In order to utilize the models described in Sections

4.3.1 and 4.3.2 to perform PMCP, equations (15) – (19) are mapped onto equations (3) –

(13) appropriately. The subsequent equations for the algorithm are as follows

State Transition and Observation Models:

Ck = Ck-1 + wk (20a)

𝑴𝒌 = 𝑪𝒌
−∝ + 𝒗𝒌 (20b)

State Estimator :

Ĉk
- = C̃k-1 (20c)

28

Pk = Pk-1 + Qk (20d)

𝑯𝒌 = 𝒅𝒊𝒂𝒈((−∝)𝑪𝒌
−∝−𝟏) (20e)

Kk = Pk
-Hk

T(HkPk
-Hk

T + Rk)
-1

 (20f)

Ĉk = Ĉk
- + Kk(Mk-HkĈk

-) (20g)

Pk = (1-KkHk)Pk
- (20h)

Constraint Surface Evaluation :

C̃k = Ĉk-PkD
T(DPkD

T)-1(DĈk-d) (20i)

At the start of each TQ, the cache is monitored, miss-rates evaluated and equation (20)

is performed iteratively till the predicted state vector C reaches steady state. The steady

state vector C is applied to the cache and is maintained until the start of the next time TQ.

The following section elaborates on the various simulations that were performed in

MATLAB and is intended to elaborate on the real-time analysis of PMCP.

6. SIMULATING PMCP IN MATLAB

Several simulations were performed in MATLAB to understand the process of C-EKF

as it is adapted for PMCP in real-time. In all cases, the processor is assumed to be running

four threads. The simulations are based on hypothetical situations and each thread is

assigned equal partition at the start of the simulation. For example, if the system (last-level

shared cache) is assumed to consist of 100 blocks, the initial state for the system is

C=[25;25;25;25]. The miss-rates of each thread is also assumed to be the same and

randomly chosen as 0.2. The system is monitored and various scenarios are generated to

test the validity of C-EKF. The C-EKF estimates the cache partition sizes for each thread

over several iterations such that cache utilization is optimized. In other words, overall miss-

rate of the system is minimized. The outputs recorded are the states predicted by PMCP in

real-time. Although the simulation presents the estimated states in each iteration, only the

steady state values are finally applied on the system.

The simulation results presented in this section have the following characteristics. The

X-axis represents time and is measured in terms of the number of iterations (t). Each

iterations is assumed to have identical calculations thereby taking the same amount of time

for completion. The Y-axis represents the predicted cache partition sizes assigned to all the

threads measured in terms of blocks. As mentioned before, in each case, the system is

assumed to have the same initial condition with C=[25;25;25;25] and

M=[0.2;0.2;0.2;0.2].

30

Case 1:

The system is monitored at the end of TQ0 (first TQ) i.e. at t=5. Figure 5 and Figure 6

shows the states predicted by PMCP during every iteration till it reaches steady state when

M=[0.8;0.2;0.2;0.2] and M=[0.5;0.2;0.2;0.2] respectively at t=5. It is clear that more

cache space is allocated to thread 1 since it has the highest miss-rate in both cases. It should

also be noted that all the other threads are penalized equally even though they maintained

their miss-rate of 0.2. This is because thread 1’s miss-rate increased significantly which

triggers C-EKF to allocate more space to thread 1. However, since the total cache space is

limited to 100 blocks, allocating additional space to thread 1 required freeing some space

allocated to the other threads. Therefore threads 2, 3 and 4 are penalized.

Another key observation is the increase in the space allocated to thread 1 in Figure 5

compared to the space allocated to it in Figure 6. In addition, the space allocated to threads

2, 3 and 4 in Figure 5 is less compared to the space allocated to the same threads in Figure

6. These are obvious conclusions since thread 1’s miss-rate is higher in Figure 5. Note that

C-EKF reached steady state at different times in the two cases.

Figure 5: Simulating PMCP for 4 active threads on a processor with cache size of 100.

Thread 1's miss-rate changes from 0.2 to 0.8.

31

Figure 6: Simulating PMCP for 4 active threads on a processor with cache size of 100.

Thread 1's miss-rate changes from 0.2 to 0.5.

Case 2:

In this case, TQ is assumed to be equal to 10. The system is monitored at the end of

TQ0 (first TQ) i.e. at t=5 and TQ1 i.e. t=15. Figure 7 and Figure 8 show the states predicted

by PMCP during every iteration until it reaches steady state for this case study. The

measurement vector (miss-rate) M=[0.8;0.2;0.2;0.2] at the end of TQ0 in both figures but

M=[0.3;0.2;0.2;0.2] and [0.2;0.2;0.2;0.2] in Figure 7 and Figure 8 respectively at the end

of TQ1. At the end of TQ0, thread 1’s miss-rate increased prompting C-EKF to allocate

more space. At the end of TQ1, since the miss-rate for thread 1 reduces from 0.8 to 0.3 in

Figure 7 thread 1’s partition reduced such that other threads can benefit from more space

allocation. As expected thread 1’s partition size reduces and other thread’s partition sizes

increase. However, since thread 1’s miss-rate is still higher than other threads, it is allocated

more space in TQ1. In Figure 8 all threads return to miss-rate of 0.2 at the start of TQ1; so

all threads are reassigned equal partition.

32

Figure 9 depicts the result of a test case similar to the test whose results are presented

in Figure 8 except that at the end of TQ0, thread 1’s miss rate changes to 0.5 and at the end

of TQ1 all threads’ miss-rates change to 0.5. Despite an increase in all the miss-rates, all

threads experience the same penalty and have equal partitions since all threads have equal

miss-rates.

Case 3

In this case, thread 1’s miss rate is recorded as 0.8 at the end of TQ0 while all other

threads record a miss-rate of 0.2. And at the end of TQ1; miss-rates are recorded as

M=[0.3;0.5;0.8;0.2]. Figure 10 presents the predicted partition sizes for the threads. It is

clear that the partition sizes for the threads follow the trend that higher the miss-rate, more

space is allocated to the partition.

Figure 7: Simulating PMCP for 4 active threads on a processor with cache size of 100.

Thread 1's miss-rate changes from 0.2 to 0.8 to 0.3.

33

Figure 8: Simulating PMCP for 4 active threads on a processor with cache size of 100.

Thread 1's miss-rate changes from 0.2 to 0.8 back to 0.2.

Figure 9: Simulating PMCP for 4 active threads on a processor with cache size of 100.

Thread 1's miss-rate changes from 0.2 to 0.5. Then all threads’ miss-rae change to 0.5

34

Figure 10: Simulating PMCP for 4 active threads on a processor with cache size of 100.

Thread 1's miss-rate changes from 0.2 to 0.8. Then the miss-rate for the threads follow

the order 0.3, 0.5, 0.8 and 0.2 respectively

7. GEM5 SIMULATOR

The GEM5 simulator is a modular platform for computer-system architecture research,

encompassing system-level architecture as well as processor microarchitecture. GEM5’s

commitment to modularity allows the users to focus on particular aspects of the simulator

without having to understand all of the simulator’s code. GEM5 provides significant

flexibility to the user by providing four different CPU models for the simulated

architecture. The user can configure the architectures using multiple models and switch

between the modes at run-time.

 SimpleCPU - The SimpleCPU is a purely functional, in-order model that is suited

for cases where a detailed model is not necessary. This can include warm-up

periods, client systems that are driving a host, or testing to make sure a program

works. There are two models under SimpleCPU namely

o AtomicSimpleCPU - The AtomicSimpleCPU is the version of SimpleCPU

that uses atomic memory accesses. It uses the latency estimates from the

atomic accesses to estimate overall cache access time.

o TimingSimpleCPU - The TimingSimpleCPU is the version of SimpleCPU

that uses timing memory accesses. It stalls on cache accesses and waits for

the memory system to respond prior to proceeding.

 InOrderCPU - The InOrder CPU model is designed to provide a generic framework

to simulate in-order pipelines with the described ISA and pipeline. The generic

36

pipeline stages are provided but the user has the flexibility to add custom pipeline

stages, vary issue width and scale the number of hardware threads without having

to recreate the entire pipeline

 OutOfOrderCPU/O3CPU - The O3CPU model is pipelined out-of-order model that

simulates dependencies between instructions, functional units, memory accesses,

and pipeline stages. Parameterizable pipeline resources such as the load/store queue

and reorder buffer allow O3 to simulate superscalar architectures and CPUs with

multiple hardware threads. The O3 model is also “execute-in-execute”, meaning

that instructions are only executed in the execute stage after all dependencies have

been resolved. This model simulates the five stages which are fetch, decode,

rename, issue/execute/writeback and commit.

 TraceCPU - The TraceCPU model was introduced in GEM5 recently and is still

under development. The Trace CPU model plays back elastic traces, which are

dependency and timing annotated traces generated by the Elastic Trace Probe

attached to the O3 CPU model. The focus of the Trace CPU model is to achieve

memory-system (cache-hierarchy, interconnects and main memory) performance

exploration in a fast and reasonably accurate way instead of using the detailed but

slow O3CPU model. Currently traces have been developed for single-threaded

benchmarks and the model works with single-threaded simulations only.

Apart from CPU models, GEM5 also provides flexibility with the simulation mode with

respect to the involvement of the Operating System (OS) in the simulation. Any of the

above described CPU models can run in one of the following two modes.

37

 System-call Emulation (SE) mode - only the statically compiled binaries need to be

specified and no operating system is required to run the binaries since GEM5

emulates most of the system-level services in this mode. GEM5 simulates the most

common instructions from the executable in this mode but the system calls are

trapped and passed to the host machines OS to be executed. Since thread scheduling

is absent in the SE mode, the threads have to be statically mapped to the cores.

 Full System Emulation (FS) mode - In FS mode, a complete system with OS and

devices is modeled. The simulated system executes both user level and kernel level

instructions in the FS mode. The bare minimum environment for running the OS is

simulated that can support basic functionalities like interrupts, exceptions, I/O

devices and so on. Compared to SE mode, FS mode is slower but simulates a

working system more accurately while allowing a larger set of workloads to be

simulated.

GEM5 also simulates a variety of memory modules and interconnects as well. There

are two memory system available for the user to choose from namely

 Classic Memory System - The classic memory system provides GEM5 a fast,

flexible and easily configurable memory system at the cost of detail in the

coherency interactions. Cache coherence is maintained using an abstract MOESI

snooping protocol where state-transitions due to snoops occur instantaneously.

Although there is an inflexibility in choosing the coherency protocol, the classic

memory system allows the simulation to be fast-forwarded to the desired section of

the simulation. It is also easy to configure and is much faster than the system

described below.

38

 Ruby Memory System - In contrast to the classic model, the ruby memory system

sacrifices simulation speed to provide GEM5 a flexible infrastructure capable of

accurately simulating a wide variety of memory systems. In particular, Ruby

supports a domain specific language called SLICC (Specification Language for

Implementing Cache Coherence) where one can define many different types of

cache coherence protocols. Essentially SLICC defines the cache, memory, and dma

controllers as individual per-memory-block state machines that together form the

overall protocol. By defining the controller logic in a higher level language, SLICC

allows different protocols to incorporate the same underlining state transition

mechanisms with minimal programmer effort.

GEM5 also supports several Instruction Set Architectures (ISAs) and Operating Systems

for both FS and SE modes namely Alpha, ARM, MIPS, Power, Sparc and x86. GEM5’s

modularity allows the required ISA to plug into a generic CPU model and the memory

subsystem. It also supports several interconnection networks, devices and even allows the

host machine to communicate with the simulated architecture over tcp/ip.

GEM5 is featured as an event-driven simulator which generates the whole system at

run-time based on predefined object modules. These modules are typically developed in

C++ and the object oriented design provides modularity and flexibility to the system design

while significantly leveraging from inheritance. All major simulation components in

GEM5 are inherited from a SimObject that describes the basic configuration, initialization,

statistics and serialization. All major components of the system like the processor, cache,

memory, interconnects are SimObjects. Each SimObject has two classes, one in python

and one in C++. The C++ class describes the state and the remaining behavior of the

39

SimObject while the python class specifies the SimObject’s parameters and are used in

script-based configuration. The python integration provides a powerful front-end interface

that initializes and configures the system to be simulated and control for the simulation at

run-time.

Another very useful feature in GEM5 that allows the user even more control over the

simulation is the ability to define events in SimObjects and populate the event queue

throughout the simulation. These events can be scheduled based on the number of Ticks or

instructions simulated.

With all the features mentioned above a formal design of experiment is formulated to

test PMCP on GEM5. Indeed some modifications were applied to a few standard modules

of the simulator. The next chapter elaborates on the various modifications incorporated in

the standard GEM5 simulator such that the PMCP framework defined in Chapter 4 could

be simulated.

8. EVALUATING PMCP ON GEM5

PMCP is evaluated on the GEM5 simulator using a processor that consists of a four core

CMP processor modeled with the x86-64 ISA. Each core has private 64KB split L1 data

and instruction caches and a shared 2MB L2 cache. Table 2 shows the details of the

processor.

Table 3: Main characteristics of the simulated processor

Cores 4 cores, x86-64 ISA, in-order ideal Instructions per cycle =1 at 2GHz

L1 Cache 64KB, 4-way Set Associative, split L1/D1, 1 cycle latency

L2 cache 2MB, 32-way Set Associative, 4 cycles L1-L2 latency,

MCU 4 memory controllers, 200 cycles zero-load latency, 32GB/s peak BW

PMCP is performed on the shared L2 cache and the number of ways is divided between

the competing threads. As mentioned in Section 4.1.1, the L2 cache is equipped with

custom registers that update with every miss and hit. The SMU (see Figure 3) samples

these registers throughout the simulation to gather the number of hits and misses each

thread experiences in the L2 cache.

41

8.1 Experimental Setup

GEM5 simulates PMCP in the FS mode to simulate a real system. A similar run

procedure described in [3] is adopted to the simulation on GEM5. The simulation starts

with the assumption that all the threads have same priority and equal partitioning. The

cache is warmed by ensuring that at-least one thread has executed 20 billion instructions

before PMCP starts. During warmup the simulated processing cores run in

AtomicSimpleCPU mode where the latency due to memory is not included in the

simulation. However, the entire memory hierarchy is still updated with the data being

transferred between the main memory and the processor. This makes the warm-up process

significantly faster. GEM5 then switches to O3CPU mode to simulate an out-of-order CPU

while considering all caches and memory latencies. PMCP is activated as well and is

scheduled to run every 50 million clock cycles (TQ). At the start of each TQ, PMCP

monitors the custom performance registers and evaluates the miss-rates (equation 14c) of

all the threads. Using the measured miss-rates, the State Estimator with the constraint

execute iteratively until the cache partitions converge to a steady state value. During the

transient states, C-EKF is disconnected from the system. Only when the steady state value

is reached PMCP is connected back to the system and the steady state values are applied

to the system.

An interesting observation made during experimentation was that the steady state

values of the cache partitions make significant transitions during the first few TQ. This

period is named as “High level Transient Period” (HLTP) (see Figure 11) and is defined

as the number of TQ required such that the steady state values during five consecutive TQ

differ by more than 1%. During HLTP it is impractical to measure throughput and fairness

42

since the system would be making several writebacks to maintain data consistency. Once

the steady state values stabilize over several TQs, performance measures like throughput

and fairness are measured. This period is named “High Level Steady-State Period”

(HLSP). The simulator continues to simulate the processor in HLSP until all threads have

executed at least 10 million instructions. Note that PMCP spends significantly more time

in HLSP than HLTP. So the overhead due to writebacks during HLTP is significantly small

and can be ignored. Therefore all measurements are made in HLSP. Figure 11 shows the

top level time-profile of such an experiment.

HLTP HLSP

Operating System

booted

All threads finish

10 million

instructions

End of Simulation.

Start

measurements.

Cache warmed with

20 billion

instructions.

Start C-EKF.

Start simulation.

Load operating

system

Figure 11: Top level time profile of the simulation

8.2 Performance metrics

The simulation continues until all active threads execute 10 million instructions in

HLSP. The performance metric chosen to represent the performance of the system is

inspired by the standard metrics used by UCP [8], Vantage [3], PriSM [2] and Jigsaw [1].

43

They present the performance of the system as the aggregate IPC for throughput and fair-

speedup for fairness.

8.3 Workloads

SPEC CPU2006 benchmark suite was used to evaluate PMCP. Sanchez et al. [3]

divided the 29 benchmarks of the suite into 4 categories namely intensive (n), cache-

friendly (f), cache-fitting (t) and thrashing/streaming (s). Table 4 presents the description

of these 4 categories.

Table 4: classification of the spec cpu2006 benchmark [3]

n Applications with very low L2 misses per kilo instructions

f Applications that gradually benefit from increase in cache size

t Applications whose misses reduce abruptly with increase in cache size

s Applications that do not show any benefit when increasing the cache size.

The same classification of the benchmarks is assumed for designing the workload suite

to test PMCP on GEM5. The workload for the test cases are built by choosing one

application from each category as the representative application. Each core runs a single

threaded application choosing one of the 4 representative applications. Multiple cores are

allowed to execute the same application as long as the input set varies. Since each core

executes a single-threaded application and none of the threads share the same data set, all

threads ae independent of each other.

44

8.4 Modifications in GEM5

Several changes are made in the GEM5 software to accommodate PMCP. The modular

design aids with adding new features or modifying existing functionalities in the simulator.

Since the memory hierarchy is of interest in PMCP, as long as the fundamental interaction

of the memory hierarchy with the processing core and its pipeline is maintained, there is

no need to change the simulation methodology of the processors’ pipeline. Hence most of

the effort was directed towards introducing the following modifications and modules to the

simulator.

 Building the C-EKF module

 Modifications to the L2 cache design

 Modifications to the L2 cache’s replacement policy

 Modifications to the Data packets received and sent from L2 cache

 Introducing measurement registers to evaluate miss-rates for each thread

 Defining and scheduling various events

.

8.1.1. C-EKF module

The C-EKF module is built as a class named CEKalman. The equations described in

Chapter 5 are implemented in this module. These calculations are executed iteratively until

C-EKF converges to the steady state values. Typically it takes less than 10 iterations for

PMCP to reach the steady state values. Without loss of generality, each iteration of C-EKF

is scheduled to execute every simulated clock cycle until the steady state values are reached

since the computations are relatively simple and the system is monitored every 50 million

clock cycles. During the transient states, CEKalman module is disconnected from the cache

to avoid the application of the transient states and the cache continues to remain in the

45

steady state from the previous TQ. Only when CEKalman converges to a steady state, the

cache is updated with the new partitioning sizes.

All the variables are declared as float variables except for the state variable �̃�𝑘 which

is the output of C-EKF and is applied to the L2-cache. �̃�𝑘 is declared as in integer since

C̃k ∈ 𝑰. The following pseudo code describes the C-EKF module.

Cold4 ← Cold3

Cold3 ← Cold2;

Cold2 ← Cold1;

Cold1 ← Cold0;

Read current state (Cold0) of the system;

Read number of misses, hits for each thread;

Calculate miss-rate (Z) for each thread;

Calculate Q and R matrices;

If (Cold1 - Cold0) < 0.01 and (Cold2 - Cold1) < 0.01 and (Cold3 - Cold2) < 0.01 and(Cold4 -

Cold3) < 0.01 then

 Calculate C̃k;

 Schedule to run in next simulated clock cycle;

Else

 Update Cache partition sizes on the system

 Unscheduled any remaining iterations

46

8.1.2. Modifications to the L2 cache design

In GEM5 all the cache memory modules inherit their functionalities from the Cache

class (Cache inherits from MemObject which inherits from SimObject) and are

created/configured into the system at run-time. Therefore the instances of L1 d/i cache, L2,

L3 and so on; all inherit their functionalities from the same module. The code for the

generic cache module is modified to isolate the functionalities specific to the L2 cache such

that PMCP can be applied only to it This includes the modified LRU replacement policy

and some variables that are directly impacted by the changes included variables that

gathered statistics for the L2 cache, variables to measure misses and hits and

synchronization variables. Details on these variables are discussed later in the chapter.

From the simulated hardware point of view, the main modification to the L2 cache is the

addition of the threaded variable to each block in the cache. Each block in the L2 cache

keeps track of the thread whose data is written from the main memory into it.

Provisions are also applied to make sure that the modified replacement policy is

implemented correctly in the L2 cache specifically. Details on how this is achieved is

discussed in the next section.

8.1.3. Modifications to the the LRU replacement policy

There are four kinds of bus requests that are placed to the cache memory. Read/write

requests from a higher level memory/processing core (named “cpu-side” in GEM5) and

read/write requests from a lower level memory/ devices (named “memory-side” in GEM5).

The cache memory is designed as a stack in GEM5 with the least recently used block at

the head of the stack. When a block is requested by a bus and is a hit, the data in the block

is passed to the corresponding bus and the block is moved to the bottom of the stack. In

47

case of a miss, the block at the top of the stack is replaced with the new block and moved

to the bottom of the stack. Indeed the data in the block is written back to the lower level of

the memory before being replacement. Essentially the most recently used block is at the

bottom of the stack and the least recently used is at the top. In case of a set associative

cache, each set is implemented as a stack. When a set is referenced, the corresponding stack

is checked for a hit or a miss.

To implement the modified cache replacement policy, an exclusive “Head” and “Tail”

pointer is introduced for each thread. The pointers are positioned in the stack such that

ℎ𝑒𝑎𝑑𝑖 = ∑𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒𝑗−1

𝑖

𝑗=0

𝑡𝑎𝑖𝑙𝑖 = ∑𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒𝑗

𝑖

𝑗=0

− 1

Where i = 0, 1, 2, 3, …, n-1. Note that head0 always points at block 0.

When a request is placed from the cpu-side the cache performs the following steps

 Entire cache is searched for the requested data irrespective of which thread

requested the data.

 If the cache experiences a hit, the data from the block is read and the block is moved

to the bottom of the partition it belongs to irrespective of its threadid.

 If a miss is experienced, the incoming request’s threadid is checked first (say

threadid = i).

 The part of the stack between headi and taili is searched for any block where

threadid ≠ i.

o If a block with threadid ≠ i is found, the cache writebacks the block and the

new data is read into the partition.

48

o The block is moved to the taili position instead of the bottom of the entire

stack.

o If all blocks have threadid = i between headi and taili, the standard LRU

replacement policy is enforced. But the new block is moved to taili position

instead of the bottom of the stack.

To implement the replacement policy mentioned above, the bus requests have to

present to the cache the origin of the requests to be compared with the threadid of the

blocks. The design of the “request packets” had to be modified to include this

information.

8.1.4. Modifying the request packets

A new variable called tid is introduced in the Request packets class that holds

information about the origin of the request. Currently the coreid is stored as tid in every

packet based on its origin. Although the modified replacement policy requires the threadid,

it is acceptable to store coreid as threadid since all cores run independent single threaded

benchmarks. The requests generated from any other device or OS have tid = -1. Therefore

every request packet is equipped with the information about its origin. This information is

cross-checked in the L2 cache to implement the modified cache replacement policy.

8.1.5. Measuring misses and hits

New variables had to be introduced to measure the hits, misses and access for L2 cache

during the simulation. These variables are different from the statistical variables that exist

in GEM5. Redundant variables had to be introduced because the statistical variables of

GEM5 cannot be referenced at run-time. In fact, the creators of GEM5 call it “magic” when

49

they describe these variables. These variables measure the hits/misses/accesses of each

thread by monitoring the blocks with the corresponding threadids. This information is used

by PMCP to generate miss-rates to be used by the C-EKF module. The statistical variables

help in recording the overall trend in the system for data analysis.

8.1.6. Scheduling events

An acumen of the events that need to be scheduled in GEM5 in order to implement the

experimental setup is presented in Table 5. These events are system wide events and are

defined as part of the executable when running an experiment in GEM5.

Table 5: Description and schedule of the various top level events as referred in the

simulation

Event type Description Scheduled to end

Fast Forward Runs the experiment in

AtomicSimpleCPU mode

Until OS boots + all region

of interests reached

Warm-up Runs until the each thread

completes defined number

of instructions

At least 20 billion

instructions by each thread

after Fast-forwarding

HLTP Switches to O3CPU mode Dynamically realized

HLSP Remains in O3CPU mode At least 10 million

instructions by each thread

Apart from these events that guide the simulation in GEM5, some more events are

created to collecting data at appropriate intervals, measure misses/hits, start PMCP every

50

50 million simulated clock cycles, schedule the next iteration of C-EKF and update the

partition sizes in the cache. This section documents all the events as they are defined in the

various modules to achieve the desired design of experiment. All the events that appear in

the various classes in GEM5 to implement PMCP are listed in Table 6.

Table 6: Location, description and schedule of the user defined events used to implement

the design of experiment

Event variable Class Description

KalmanEvent CEKalman Run one iteration of C-EKF

StartInstructionCountEvent BaseCPU

Starts the 10 million instruction

count of HLSP

StartMesuringEvent BaseCPU

Schedules a statistics dump every

50million clock cycles

StartKFEvent BaseCPU

Starts StartInstructionCountEvent

and StartMesuringEvent

MissHitUpdateEvent Cache

Updates the Z vector with the

number of misses/hits at the end of

the current TQ

CacheAssocUpdateEvent Cache

Updates the number of blocks for

each partition in the L2 cache once

steady state is achieved

ResetMissHitUpdateEvent Cache Resets the misses/hits counters

51

InitSetupEvent Cache

Initializes the system with equal

partitions for each thread and

resets the misses/hits counters

Figure 12 shows the flowchart of all the events as they occur throughout the experiment

including the setup events as well as the individual events defined in the classes.

52

Start

Fastforward till

OS boots+ all

threads reach

Region of interest

Warmup till 20

billion instructions

executed by all

threads

Switch to O3CPU

mode

ResetMissHitUpd

ateEvent

Stop

MissHitUpdateEv

ent KalmanEvent

50 million

clockcycles?

CacheAssocUpdat

eEvent

Is steady state?

Start in

AtomicSimpleCP

U mode

No

No

No

Yes

HLSP?

StartInstructionCo

untEvent

StartMesurementE

vent

10 million

insts all

threads?

Yes

Yes

No

Yes

.

Figure 12: Schedule of all events both user defined and system-level such that the design

of experiment s implemented efficiently.

9. RESULTS

The performance of a processor where the L2 cache is partitioned using PMCP is

compared with the performance of a processor with the baseline shared L2 cache and the

standard LRU replacement policy. The results are presented as clustered bar graphs where

each cluster is the performance of a specific workload in both the processors. The left bar

in the cluster always represents the performance of the processor with the standard shared

L2 cache and the right bar represents the performance of the processor with the partitioned

cache with PMCP. The workloads are named based on their classifications (see Table 4).

For example, workload fnts is a workload where an f type benchmark runs on core 1, n type

on core 2, t type on core 3 and s type on core 4.

9.1 Performace on throughput

The most common way to represent the aggregate throughput is the sum of individual

IPCs.

𝐼𝑃𝐶𝑡𝑜𝑡𝑎𝑙 = ∑𝐼𝑃𝐶𝑖 where i =0, 1, 2, 3, … n-1

Figure 13 compares the aggregate throughput for the simulated workloads. Each

workload’s throughput is represented as a stacked bar where each stack in the bar is the

IPC for a benchmark in the workload. From bottom to top are the IPCs of the benchmarks

on core 0 to core 3 respectively. The total height of the stacked bar is the aggregate

54

throughput of the processor. The throughput in most cases improved in case of the

partitioned L2 cache with a maximum of 35.35% in the case of the fnts workload.

Figure 13: IPC for various workloads simulated. The left bar in each cluster represents

the IPC for a processor where the with standard LRU replacement in the L2 cache. The

right bar in each cluster represents the IPC for a processor where the L2 cache is

partitioned using PMCP. The label of each cluster indicates the benchmarks for the

cluster.

IPC for the system with partitioned cache is higher in cases where at least one

benchmark is f type and the other applications have a small footprint in the L2 cache. For

example, workloads fsss, nnff, fffn and fnts. In each case, IPCtotal improved primarily

because of improvement in the IPC for the core with the f type benchmark. It is also

interesting to observe the effect of the s type benchmarks. Very little to no improvement

was observed in IPC for the core with the s type benchmarks through PMCP. In fact the

presence of the s type benchmark in the workload limits the maximum achievable

improvement through PMCP. S type benchmarks are streaming or thrashing type

benchmarks. Such benchmarks require significantly more bandwidth but do not have a

large footprint in the cache. Miss-rate for these benchmarks were always 0.5 (since there’s

0

1

2

3

4

5

6

7

8

nntt ssst fsss nnff ffft fffn fnts

IP
C

workload

IPC for thread 3

IPC for thread 2

IPC for thread 1

IPC for thread 0

55

always one hit and one miss for every new block). This makes PMCP assign more space

for the core with the s type benchmark that its footprint. Figure 14 shows the cache partition

sizes assigned to the cores when the fnts workload is simulated on GEM5 with the s type

benchmark running on core 3. Indeed, a significant amount of space is allocated to core 3.

Although the space is not utilized efficiently, it is the smallest partition among all other

partitions. However, Figure 15 shows that s type’s miss-rate was the highest and should be

assigned the largest partition. This is because core 3 had the smallest number of accesses

made compared to other benchmarks. The number of accesses affect the Q and R matrices

(see Section 4.5). Indeed a core with low number of accesses can have a high miss-rate.

Therefore it is critical to account for not only the miss-rates but also the total number of

accesses for a benchmark. PMCP accounts for both when making its estimates.

Figure 14: Steady state partition sizes in each TQ for the fnts workload. Both HLTP and

HLSP are included in the figure.

0

2

4

6

8

10

12

14

1 11 21 31 41 51 61 71

n
u

m
b

er
 o

f
b

lo
ck

s

Time Quantum

core 0

core 1

core 2

core 3

56

Figure 14 also shows HLTP and HLSP as they occur on the timeline. Note that PMCP

is executed during HLSP too. However, the variations in the estimated partition sizes are

so small that they are rounded off to the nearest integer value. The spike in core 0’s partition

size during HLSP (TQ = 31) is because of the variation in miss-rate observed during the

same TQ (see Figure 15). However since the miss-rate dropped in the consecutive TQs, the

partition size dropped and is rounded off to the nearest integer.

Figure 15: miss-rate measured at the start of each TQ for the fnts workload.

9.2 Evaluation of the fair-speedup metric

The baseline sharing mechanism for the shared bus and space in the L2 cache causes

each thread in a multithreaded workload to observe a slowdown compared to when only a

single threaded version of the individual workloads run on the processors. A widely

accepted metric to quantify the slowdown is by comparing the performance of the entire

0

0.1

0.2

0.3

0.4

0.5

0.6

1 11 21 31 41 51 61 71

m
is

s-
ra

te

Time Quantum

core 0

core 1

core 2

core 3

57

workload running on a multithreaded processor to the single threaded individual workloads

involved with exclusive access to the entire processor. Fair-speedup (also known as H-

mean) is a way to quantify this slowdown when the same number of instructions can be

executed for each individual workloads. Section 8.1 describes the experimental setup and

dictates that the measurements are collected each time a thread completes 10 million

instructions in HLSP. This ensures that the run time for each thread to complete 10 million

instructions is recorded and utilized to evaluate IPCmti. IPC for the exact same 10 million

instructions is collected by running single threaded benchmarks individually on the same

simulated processor (IPCsti) individually. IPCmt and IPCst is measured for all n threads

running on the processor.

𝑓𝑎𝑖𝑟 − 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑛

∑ 𝐼𝑃𝐶𝑠𝑡𝑖
𝐼𝑃𝐶𝑚𝑡𝑖

⁄𝑛

Figure 16 compares the fair-speedup between a system where the L2 cache is

partitioned by PMCP and a system with baseline shared cache. Each cluster represents a

distinct test case. The organization of the figure follow the same rules as described in

Section 9. Among all the workloads, a processor with PMCP on L2 cache was fairer by a

maximum of 5.5% and an average of 2.3% better than a processor with standard shared L2

cache.

58

Figure 16: Fair-speedup for various workloads simulated. The left bar in each cluster

represents the IPC for a processor where the with standard LRU replacement in the L2

cache. The right bar in each cluster represents the IPC for a processor where the L2 cache

is partitioned.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

nntt ssst fsss ffnn ffft fffn fnts

fa
ir

-s
p
ee

d
u
p

workload

10. IMPROVING PMCP BY EVALUATING PERFORMANCE MODEL

DYNAMICALLY

Currently, the performance model used in PMCP is based on the √2 Rule (equation 15).

Although it is a good model it certainly generalizes the performance of all the processes

running on the system. It’s been documented [15] that 0.3 < α < 0.7 and M0 can be different

for each process running on the cores. In addition, equation (15) does not address processes

with discontinuous miss-rate curves directly. Despite these limitations, in its current form

PMCP is capable of predicting cache partitioning schemes such that throughput and fair-

speedup are improved in most cases. However, it requires certain empirical evaluations of

the error covariance matrices of the processes running on the cores. Empirically designed

error covariance models allow PMCP to customize to the active threads data access

patterns; but it limits PMCP’s performance in cases where no prior knowledge is available

for the user to design models for the error covariance matrices. A more accurate

performance model need not rely on models for the error vector (wk in equation 17 and vk

in equation 18). They can be treated as Gaussian error. But with limited information about

the different processes running on the system, designing an appropriate system model is

not trivial.

Gradient Projection (GP) is an optimization problem that has the potential to determine

miss-rate curves with respect to cache sizes (performance model) dynamically with limited

knowledge of the data access patterns of the active threads. GP starts with an initial miss-

rate curve and updates the curve iteratively based on measurements from the cache. To do

60

this GP redefines the performance model by including a control vector u(k) (equation 21)

which is determined in real-time.

𝑴(𝒌 + 𝟏) = 𝑴(𝒌) + 𝒖(𝒌) (21)

Where M(k) represents the miss-rate for the thread under consideration when cache size

equals k. In other words, 0< k ≤ Ct-1 and 𝑘 ∈ 𝐼. Ct is the total cache capacity.

GP estimates u(0), u(1), …, u(Ct-1) that is used to update M(1), M(2) … M(Ct) iteratively

while optimizing a relation, or a rule (called a functional) based on measured miss-rates

while maintaining the boundary conditions of the variables M and u.

10.1 Defining the functional

A functional J is defined as a rule of correspondence that assigns to each function f in

a certain class Ω a unique real number. Ω is called the domain of the functional and the set

of real numbers associated with the functions is called the range of the functional. Note

that Ω (the domain of the functional f) is a class of functions. In other words, a functional

J is a “function of functions”. By relating functions to real numbers the relationship

between two functions can be quantified and evaluated.

PMCP can include GP in designing the performance model by selecting a functional J

(equation 22) in the form of a mean square error function that compares the measured miss-

rates and the miss-rates evaluated in the previous TQ for each thread.

𝐽 = √
∑ (𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑀(𝑘))

2𝐶𝑡
𝑘=0

𝐶𝑡

(22)

61

where 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 is the measured miss-rate in the current TQ.

10.2 Setting up GP

To get the approximate miss-rate curves of all the threads in the system it is essential

to understand how GP generates miss-rate curves for a single thread first. Assume a single

core processor with a single thread running on the system. However, the user is unaware

of the last-level shared cache’s data access patterns of the thread or the miss-rate curve. In

such cases, the user is limited to certain general information about the miss-rate curves.

For all practical purposes, the cache can be assumed to be limited in capacity. Therefore

the miss-rate curve is evaluated by scaling the cache size c, such that

c ϵ I and

0 < 𝑐 ≤ 𝐶𝑡 (23)

where

Ct = cache size

I = set of all integers

Another information available to the users is the limits on the miss-rate M of the thread i.e.

M ϵ R and

0 ≤ 𝑀(𝑘) ≤ 1 (24)

Where R is the set of all real numbers.

Note that miss-rate is always assumed to be 1 when lim
𝑐=0

𝑐. Using GP, over several TQs,

PMCP has the capability of evaluating very accurate miss-rate curves. As mentioned in

equation (21),

𝑀(𝑘) = 𝑀(𝑘 − 1) + 𝑢(𝑘 − 1)

62

𝑀(𝑘) = 𝑀(𝑘 − 2) + 𝑢(𝑘 − 2) + 𝑢(𝑘 − 1)

𝑀(𝑘) = 𝑀(𝑘 − 3) + 𝑢(𝑘 − 3) + 𝑢(𝑘 − 2) + 𝑢(𝑘 − 1)

.

.

.

𝑀(𝑘) = 𝑀(0) + ∑ 𝑢(𝑘 − 𝑙)𝑘−1
𝑙=0

Without loss of generality, M(0) can be assumed to be always 1. Therefore based on the

above equation

𝑀(𝑘) = 1 + ∑ 𝑢(𝑘 − 𝑙)𝑘−1
𝑙=0 (25)

Since 0 ≤ M ≤ 1, the limits on u(k) can be defined as

−1 ≤ 𝑢(𝑘) ≤ 1 (26)

Equation (24) can be modified, by substituting equation (25) in equation (24), as

0 ≤ 1 + ∑ 𝑢(𝑘 − 𝑙)𝑘−1
𝑙=0 ≤ 1 (27)

In addition J can be modified by substituting equation (25) in equation (22) as

𝐽 = √
∑ (𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − (1 + ∑ 𝑢(𝑘 − 𝑙)𝑘−1

𝑙=0))
2

𝐶𝑡
𝑘=0

𝐶𝑡

(28)

Equations (26) and (27) define the limits on the control vector u(k). They can be

summarized as

1 + ∑ 𝑢(𝑘 − 𝑙)𝑘−1
𝑙=0 ≥ 0

−∑ 𝑢(𝑘 − 𝑙)𝑘−1
𝑙=0 ≥ 0

𝑢(𝑘) + 1 ≥ 0

−𝑢(𝑘) + 1 ≥ 0

63

GP requires all the coefficients to be normalized. Therefore the above constraints are

rewritten as

1

√𝑘
(1 + ∑ 𝑢(𝑘 − 𝑙))𝑘−1

𝑙=0 ≥ 0

−
1

√𝑘
∑ 𝑢(𝑘 − 𝑙)𝑘−1

𝑙=0 ≥ 0

𝑢(𝑘) + 1 ≥ 0

−𝑢(𝑘) + 1 ≥ 0

Since 0<k≤Ct, there are 4Ct constraint equations. These constraints can the combined

together in a vector and represented as

[

 𝐿(1 √𝑘⁄)𝐶𝑡𝑋𝐶𝑡

𝐿(−1 √𝑘⁄)𝐶𝑡𝑋𝐶𝑡

𝐼𝐶𝑡𝑋𝐶𝑡

−𝐼𝐶𝑡𝑋𝐶𝑡]

4𝐶𝑡𝑋𝐶𝑡

∗ [

𝑢(0)

𝑢(1)
⋮

𝑢(𝐶𝑡 − 1)

]

𝐶𝑡𝑋1

+

[

 1 √𝑘⁄

𝐶𝑡𝑋1

0𝐶𝑡𝑋1

1𝐶𝑡𝑋1

1𝐶𝑡𝑋1]

4𝐶𝑡𝑋1

≥ [0]4𝐶𝑡𝑋1

(29)

Where L is a lower matrix and I is the Identity matrix. Therefore the problem of

evaluating the miss-rate curve can be formulated as – Find the control values that satisfy

equation (29) and minimize the function represented by equation (28). Typically, J

(equation (28)) is minimized using the Gradient Projection Method until the norm of the

difference of two consecutive control vectors is less than a predefined value δ. In other

words, end the iterative process at the ith iteration if

‖𝑢𝑖 − 𝑢𝑖−1‖ ≤ 𝛿

Note that the entire process of GP is evaluating the values of u(k). The functional to be

minimized and the constraints are represented in terms of u(k). The values of u(k) is then

used to evaluate M(k) using equation (25). It should also be noted that the exact function

64

of M is never evaluated. GP simply evaluates the values of M for a set of discrete points

0<k≤Ct.

In processors where multiple threads run simultaneously, GP can be scaled easily by

evaluating the miss-rate curves for all threads as if the threads are mutually exclusive.

Indeed this can be used in conjunction with PMCP to evaluate optimal cache-partitioning

strategies dynamically. Note that, if GP takes t number of iterations to converge to the

miss-rate curve, the computation complexity of the GP would be O(ntCt) where n is the

number of threads. Typically t is a very small number (less than 10) and Ct, is constant in

a processor. Therefore, in a real system, the number of threads running on the processor

are the dominant factor in the scaling of the computations of GP.

11. CONCLUSION AND FUTURE WORK

As shown in this document, PMCP has the potential to improve the performance of the

system by partitioning the last level shared cache such that cache utilization is optimized.

PMCP is a light-weight and scalable technique that uses both statistical models and

measured observations to update the size of cache partitions and the weighing matrices

(error covariance matrices) dynamically. By iteratively updating the two factors, PMCP

makes predictions dynamically without needing information in advance about the data

access patterns of the combination of workloads before the.

Experiments were designed to test PMCP on GEM5, an event-driven multiprocessor

simulator. The simulation results demonstrate that PMCP can partition the cache efficiently

and improve the throughput of the processor by as much as 35% and fairness by 5.5%.

Although the results were satisfactory, a closer examination of the partition sizes

revealed that the partitions could be allocated in a better way to further improve the overall

processor’s performance. The suboptimal partitioning is the consequence of the error

covariance matrices Q and R’s empirical modelling that need not cater to every type of

workload. If the performance model is realized dynamically, PMCP’s dependence on the

empirically modeled error covariance matrices can be avoided and the covariance matrices

can be treated as Gaussian noise. A Gradient Projection method has been proposed to

evaluate the performance model dynamically. Note that the performance model only

estimates the distinct miss-rate values for the benchmarks when the cache size is scaled. It

does not evaluate the mathematical model for the performance of the system.

66

Theoretical the GP method of evaluating performance model holds a lot of promise. A

study of the timing effects of such an update in PMCP is necessary along with the study of

the physical implications and requirements of PMCP on the processor. However, in its

current state, this research should have presented enough evidence for an alternative

Control Theory based solution to optimizing cache utilization dynamically and, perhaps,

extend the framework towards other resources’ utilization.

REFERENCES

[1] N. Beckmann and D. Sanchez, "Jigsaw: scalable software-defined caches", in

Proceedings of the 22nd international conference on Parallel architectures and

compilation techniques, October 07-07, 2013, Edinburgh, Scotland, UK

[2] R. Manikantan, Rajan, K.; Govindarajan, R., "Probabilistic Shared Cache

Management (PriSM)," in Computer Architecture (ISCA), 2012 39th Annual

International Symposium on , vol., no., pp.428-439, 9-13 June 2012

[3] D. Sanchez , C. Kozyrakis, “Vantage: scalable and efficient fine-grain cache

partitioning”, in Proceedings of the 38th annual international symposium on

Computer architecture, June 04-08, 2011, San Jose, California, USA

[4] C. Wu and M. Martonosi. "A Comparison of Capacity Management Schemes for

Shared CMP Caches." In Proc. of the 7th Workshop on Duplicating,

Deconstructing, and Debunking, 2008.

[5] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang and P. Sadayappan, "Gaining insights

into multicore cache partitioning: Bridging the gap between simulation and real

systems," in High Performance Computer Architecture, 2008. HPCA 2008. IEEE

14th International Symposium in, vol., no., pp.367-378, 16-20 Feb. 2008

[6] D. Tam, R. Azimi, L. Soares, and M. Stumm. "Managing shared L2 caches on

multicore systems in software." In WIOSCA'07, Jun. 2007.

[7] M. Woodside, , T. Zheng, and M. Litoiu, "Service System Resource Management

Based on a Tracked Layered Performance Model", in Proceedings of the 2006 IEEE

International Conference on Autonomic Computing. 2006, IEEE Computer

Society. p. 175-184.

[8] M.K. Qureshi and Y.N. Patt, "Utility-Based Cache Partitioning: A Low-Overhead,

High-Performance, Runtime Mechanism to Partition Shared Caches", in

Proceedings of the 39th Annual IEEE/ACM International Symposium on

Microarchitecture. 2006, IEEE Computer Society. p. 423-432.

[9] S. Kim, D. Chandra and Y. Solihin, "Fair Cache Sharing and Partitioning in a Chip

Multiprocessor Architecture", in Proceedings of the 13th International Conference

on Parallel Architectures and Compilation Techniques. 2004, IEEE Computer

Society. p. 111-122.

[10] G.E. Suh, S. Devadas, and L. Rudolph, "Analytical cache models with applications

to cache partitioning", in Proceedings of the 15th international conference on

Supercomputing. 2001, ACM: Sorrento, Italy. p. 1-12.

68

[11] D.Chiou, P. Jain, L. Rudolph, and S. Devadas, "Application-specific memory

management for embedded systems using software-controlled caches" in Design

Automation Conference, 2000. Proceedings 2000. 2000.

[12] H.S. Stone, J. Turek, and J.L. Wolf, "Optimal partitioning of cache memory."

Computers, IEEE Transactions on, 1992. 41(9): p. 1054-1068.

 [13]C.K. Chow, "On Optimization of Storage Hierarchies" IBM Journal of Research

and Development, 1974. 18(3): p. 194-203.

[14] C.K. Chow, "Determination of Cache's Capacity and its Matching Storage

Hierarchy" in Computers, IEEE Transactions on, 1976. C-25(2): p. 157-164.

[15] A. Hartstein, V. Srinivasan, T.R. Puzak, and P.G. Emma, "Cache miss behavior: is

it √2", in Proceedings of the 3rd conference on Computing frontiers. 2006, ACM:

Ischia, Italy. p. 313-320.

[16] R.E. Kalman, "A New Approach to Linear Filtering and Prediction Problems"

Journal of Basic Engineering, 1960. 82(1): p. 35-45.

[17] D. Simon, "Kalman filtering with state constraints: a survey of linear and nonlinear

algorithms" Control Theory & Applications, IET, 2010. 4(8): p. 1303-1318.

[18] G.E. Suh, L. Rudolph, and S. Devadas, "Dynamic Partitioning of Shared Cache

Memory" J. Supercomput., 2004. 28(1): p. 7-26.

[19] F. Guo, H. Kannan, L. Zhao, R. Illikkal, R. Iyer, D. Newell, Y. Solihin, and C.

Kozyrakis. From Chaos to QoS: Case Studies in CMP Resource Management.

ACM SIGARCH Computer Architecture News, 35(1), 2007.

[20] F. Guo, H. Kannan, L. Zhao, R. Illikkal , R. Iyer, D. Newell , Y. Solihin , C.

Kozyrakis, “From chaos to QoS: case studies in CMP resource management”,

ACM SIGARCH Computer Architecture News, v.35 n.1, March 2007

[21] L. R. Hsu, S. K. Reinhardt, R. Iyer, S. Makineni, “Communist, utilitarian, and

capitalist cache policies on CMPs: caches as a shared resource”, Proceedings of the

15th international conference on Parallel architectures and compilation techniques,

September 16-20, 2006, Seattle, Washington, USA

[22] S. Srikantaiah, M. Kandemir, Q. Wang, "SHARP control: Controlled shared cache

management in chip multiprocessors," in Microarchitecture, 2009. MICRO-42.

42nd Annual IEEE/ACM International Symposium on , vol., no., pp.517-528, 12-

16 Dec. 2009

[23] M. Neisser, S. Wurm, "ITRS lithography roadmap: 2015 challenges." in Advanced

Optical Technologies, 4(4), pp. 235-240. Retrieved 22 Nov. 2016

69

[24] J. Wu, Y. L. Shen, K. Reinhardt, H. Szu, B. Dong, "A nanotechnology enhancement

to Moore's law." in Applied Computational Intelligence and Soft Computing, Frb.

2013

