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ABSTRACT 

 

 

ASHISH PANDAY. Improving fairness and throughput of a CMP processor by 

optimizing the utilization of the last level shared cache in real-time using a constrained-

extended kalman filter (Under the direction of DR. YOGENDRA KAKAD) 

 

 

Cache Partitioning is a technique which maps the data pertaining to each core to a 

corresponding partition in the cache memory exclusively. Cache partitioning has been 

shown to improve performance metrics like fairness and throughput in most cases by 

eliminating inter-core conflict misses in shared cache of modern multi-core processors. 

Recently real-time management of cache partitioning is being studied to accommodate the 

variations in the intrinsic behavior of threads running the cores; thereby further improving 

cache utilization. 

This dissertation presents a novel scheme for real-time management of cache partitioning 

using a constrained-extended Kalman filter. This approach is named Predictive Model 

based Cache Partitioning (PMCP). The design of PMCP utilizes an evolving approximate 

model of the nonlinear relationship between observed performance of each thread and the 

allocated cache partition size. The Gradient Projection method is used to model the 

performance model which predicts the next partition configuration. It also utilizes the 

history of the transient behaviors of the active threads to predict the cache partitioning for 

a low computation and space overhead. The key contribution of the research is that the 

cache performance curves are generated dynamically and is used to predict partitioning 

strategies such that cache utilization is optimized. PMCP is evaluated on the GEM5 

simulator using the SPEC CPU2006 benchmarks. The results show that the throughput of 

the system improves by up to 35% with PMCP over shared cache.
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1. INTRODUCTION  

 

 

Since the advent of computers, the semiconductor industry has been guided by Moore’s 

Law which states that the density of transistors on a chip would double every two years. 

Consequently the transistor size got smaller and the speed with which the transistors 

switched from on state to off state also improved. Simultaneously manufacturing larger, 

more complex integrated circuits using standardized building blocks became cheaper for 

the semiconductor industry which was then in complete control of the rate of improvement 

of technology. During the 60s, 70s and 80s, scaling the transistor density directly improved 

the performance of the system at a very fast rate. In addition, the speed at which the 

transistors operated was complemented by the speed at which the memory operated.

The last two decades also brought several new paradigms to improve the performance 

of the system in the form of integrated circuits (ICs) like System on Chip (SoC), System in 

Package (SiP) and multicore processors. Integrated Circuits allowed cost effective 

integration of simple building blocks used in the design of several systems. Although these 

features improved the performance of the system and are currently driving innovation, it 

has, in many cases, reached the thermal and power limits on these devices. Still the 

transistor count is keeping up with Moore’s Law but it is practically not possible to 

conjunctly improve the frequency at which the transistors function due to physical 

limitations on power dissipation and thermal thresholds. In 2015, International Technology 

Roadmap for Semiconductors (ITRS) [23] presented the roadmap for the future of 
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transistor technology. Several companies have announced that since the horizontal space 

is limited, efforts are being made to explore the vertical dimension. Even though such a 

change in paradigm can improve transistor density, power still remains a critical factor and 

it is predicted that technology will hit a similar limit in the near future. Wu et al. 

complemented this philosophy [24] and presented a consolidated figure (Figure 1) where 

the past, the present and the future of the transistor technology is mapped. It is clear that 

we are at the precipice of reducing the transistors size to increase transistor density in a 

cost effective way while still maintaining the desired physical properties. 

 

Figure 1: Moore’s Law history, future, limited factors, and Nanotechnology-Enhance 

factors for Moore’s Law and compared with Dow Jones industrial average in the same 

period of time (1971–2011). [24] 

Improving the transistor technology which in turn improved the processors’ 

performance in the past. But there are several other factors that affect the performance of 

the system like memory, bandwidth, interconnect bus and other peripheral devices. This 
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research is focused on optimizing the utilization of these resources specifically the last 

level shared cache memory. Further discussions in this chapter will therefore be directed 

towards the effects of memory on performance of the system. It has long been known that 

it is in fact memory that drives Moore’s Law. The rate at which memory operates directly 

affects the number of operations that can be performed by the processing unit. Without the 

improvement in memory it is very difficult to improve the processor performance even if 

the transistor density is improved. In addition, typically, memory performs significantly 

slower than the processor.  

Historically, the improvement in transistor technology also improved the memory 

performance and new computer systems were complemented with a new memory 

technology. New configurations of memory hierarchy and utilization of different types of 

memory technology also contributed towards a significant improvement in the 

performance of the system. Indeed, advanced processors and the complementing memory 

organization and technology has improved the overall performance of the systems. 

However, due to the limits of Moore’s Law it is challenging to improve the processor and 

memory technology in a way that is beneficial to the semiconductor industry.  

An alternate way to improve system performance, which does not simply rely on 

improving the transistor technology, can stem from improving the utilization of the existing 

resources available to the processor. For example, modern multi-core processors, which 

allow large number of threads to run in parallel, share the limited lower level cache in the 

memory hierarchy which can cause conflicts between threads resulting in the eviction of 

useful data of the competing threads. This may lead to degradation of performance metrics 

for throughput like Instructions Per Cycle (IPC). In some cases where a few competing 
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threads have significantly large footprints in the shared cache may degrade performance of 

other competing threads [20, 21] which in turn affects the Quality of Service (QoS) and 

fairness performance metrics like fair-speedup. Perhaps, a restriction policy that can limit 

the amount of footprint a thread can have in the shared space while organizing the space 

itself can maintain the QoS for each threads in a judicial manner and improve the overall 

performance of the processor.  

 

CMP Processor

Core1 Core2 Core3 Core4

L1D L1I L1D L1I L1D L1I L1D L1I

Main Memory

Set 0
Set 1

Set m

 

Figure 2: Organization of partitions in a cache partitioned using PMCP 

 

 

Cache partitioning has been shown to improve the performance of the overall processor 

in such cases. In cache partitioning, the shared cache space is typically divided into 

partitions and each thread’s data is mapped to a specific partition exclusively to avoid 

conflict misses. By deciding the size of the partitions judiciously the QoS can also be 

improved considerably. Consider a processor with 4 cores and a single threaded process 
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running on each core. Assume that each core has a local L1 cache and all cores share an n-

way set associative L2 cache (last level). Assume that cache partitioning was performed on 

the shared L2 cache.  Figure 2  elaborates on this example where the L2 cache space is 

divided into 4 equal partitions, one for each core. Note that there is one physical shared L2 

cache but the cache space is virtually divided into partitions and the data from the threads 

are organized in their designated partitions.   

By assigning exclusive access rights to the threads only to certain partitions, cache 

partitioning facilitates fairer distribution of resources between the threads. Each thread’s 

data is mapped to a specific partition; thereby eliminating conflict misses. Threads with 

large strides in data access have a higher probability of exploiting temporal locality since 

their data is maintained in their assigned partition. However, threads that require larger 

space to exploit spatial locality may be penalized because of restricted access to only the 

assigned partitions and not the entire cache space. A well-designed cache partitioning 

scheme accommodates these trade-off in order to improve the overall system performance.  

The primary goal of this research work is to explore the possibility of using System 

Theory to design such a scheme. The shared cache is viewed as an open-loop system whose 

inputs are the set of values that represent each thread’s partition size and the outputs are 

the number of hits and misses of each core. It is assumed that the system has the ability to 

identify the inputs and measure the outputs in real-time. The document presents the 

proposed scheme to close the loop and update the inputs based on measured outputs in real-
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time. The existing cache partitioning schemes that utilize feedback control are limited by 

the lack of accuracy in either the state-transition  models, which predict the partition sizes, 

or the performance models that relate size of the available cache to performance metrics 

(like miss-rates). Some other partitioning schemes are dependent on either prior knowledge 

about the applications’ data access patterns or defined targeted performances. The method 

described in this research, which is named as Predictive Model based Cache Partitioning 

(PMCP), provides a unique way to predict partition sizes for each thread with simple 

models without requiring any knowledge of the applications running on the system. 

PMCP utilizes a Constrained-Extended Kalman Filter (C-EKF) as a state estimator to 

estimate the partition sizes for each thread. Estimators are part of System Theory and have 

been used to incorporate self-management and on-line estimation in many domains by 

estimating the value of an unknown parameter using statistical models and measured inputs 

or outputs. Through C-EKF, PMCP first estimates the state of the system (last level cache) 

based on state-transition model, followed by updating the estimates based on observations. 

The update process refines the estimates based on weighted difference between a measured 

miss-rate and miss-rate evaluated using a performance model. The weights are decided by 

evaluating the covariance of the errors in the state-transition model, performance model 

and overall accuracy of the state estimator. The miss-rates are measured at regular intervals 

referred as a Time Quantum (TQ) in this document. Once the miss-rates are measured, 

PMCP estimates the new state of the system iteratively and is expected to converge to a 

steady state as soon as possible. Only when the steady state is achieved, is the new 

partitioning applied to the shared cache space. The system runs with the new set of 

partitions until the end of the current TQ. Miss-rates are measured again at the start of the
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 next contiguous TQ and PMCP estimates the next partitioning scheme based on current 

partitioning scheme (state from the previous TQ), measured performance (current miss-

rates) and state-transition weights (error covariance matrices).  

It is also observed that, if the threads do not change their access patterns throughout the 

experiment, the steady state values over several TQs experience a convergence as well to 

an overall stable state. With good state-transition and performance models, PMCP has the 

potential to reach a well predicted overall steady state which partitions the cache space 

such that cache utilization is optimized. 

PMCP is evaluated on the GEM5 simulator with the SPEC CPU2006 benchmark. The 

evaluations with a simple state-transition and performance model yield a maximum of 

35.35% improvement in throughput and 5.5% improvement in fair-speedup when 

compared to the throughput of a processor with standard shared cache. The simplicity of 

the models allows PMCP to accommodate variations in the models of the applications that 

can run simultaneously on the system. However, certain empirical evaluations had to be 

included to guide PMCP through the state-space. An extension to PMCP is proposed with 

a performance model that evolves at run-time. In the upgraded version, the performance 

model is evaluated at run-time based on measurements using Gradient Projection with 

fixed boundaries on cache partition size for each thread and miss-rate of each thread.  

The rest of the document is organized as follows. In Chapter 2, detailed discussions on 

related researches is presented. A brief overview of the construction of the Kalman filter 

that leads to the construction of EKF and the C-EKF are discussed in Chapter 3. In Chapter 

4, PMCP’s framework is presented and summarized in Chapter 5. Chapter 6 details the 

simulations carried out in MATLAB to validate PMCP. The GEM5 simulator is introduced 
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in Chapter 7 and the evaluation of PMCP on GEM5 is discussed on Chapter 8. Chapter 9 

presents the results of PMCP with the simple state-transition and performance models 

while chapter 10 expands on how the performance model can be improved using gradient 

projection method. The entire research work is concluded in Chapter 11 and the future 

direction of the research work is discussed.  



2. RELATED WORK  

 

 

Cache partitioning was first introduced by Stone et al. [12] in 1992 where he discusses 

the difference in the access patterns of instruction and data streams that later formed the 

inspiration for the split L1 data and instruction cache. Stone et al. also proposed a greedy 

algorithm to partition the cache in cases where multiple processes run on the processors. 

The greedy algorithm has been shown to be optimal if the utility curves are convex. But in 

cases where the utility curves are non-convex, the algorithm can have pathological effects.

Several cache partitioning schemes were proposed after Stone to improve throughput, 

fairness and QoS [1-12, 18] including course grain partitioning techniques like Way 

Partitioning [11] and software based techniques like virtual memory and page coloring [5, 

6]. Way Partitioning is simple, but it supports a limited number of coarsely-sized partitions. 

Virtual memory and page coloring have the advantage of being software based techniques 

but the process of remapping is time consuming as it involves copying (recoloring) of 

physical pages.  

Dynamic cache partitioning was first investigated by Suh et al. [18] where they propose 

the use of  a variant of the greedy algorithm, similar to the one introduced by Stone et al. 

[12]. Suh’s algorithm explores all non-convex points of the miss-rate curve of the 

applications to minimize the total number of misses. However, an application’s miss-rate 

curve can have several non-convex points and, in a multicore processor with several 

threads, the number of non-convex points can increase significantly. To address this 
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limitation Qureshi et al. [18], introduced Utility-based Cache Partitioning (UCP) which 

uses the Lookahead algorithm, similar to the Suh’s greedy algorithm. However, unlike 

Suh’s greedy algorithm, the Lookahead algorithm evaluates the increase in marginal utility 

for all possible number of allocable ways. So if the cache is an N-way cache with n cores 

sharing the cache, UCP evaluates the utility of all N partition sizes for each core in parallel 

and chooses the partitioning with the best utility. Vantage [3] uses UCP as its primary 

partitioning algorithm. Jigsaw [1] uses the Peekahead Algorithm similar to the Lookahead 

Algorithm of UCP that performs in linear time. However these algorithms and techniques 

require some prior knowledge of the miss-rate curves of the applications running on the 

processor.  

Instead of relying on the miss-rate curve, PriSM [2] uses a hill-climbing approach to 

partition the cache and reach targeted performance metrics by evaluating eviction 

probabilities for all threads. Such a method precludes adaptability since the processor is 

expected to reach a targeted performance. In addition, PriSM uses the same method as UCP 

for monitoring the cache performance. Apart from relying on prior knowledge of miss-rate 

curves, UCP is limited by the way it retains past information. UCP halves the measurement 

from the previous TQ and adds it to the current TQ’s measurements. SHARP [22] comes 

the closest to PMCP since it relies on a feedback controller. But, like PriSM, it relies on 

targets defined for performance which renders it less adaptable. SHARP also limits the 

tested workload suite to applications with convex miss-rate curves. 

Like SHARP, PMCP also relies on mathematical models and empirical measurements 

to evaluate efficient partitioning strategies using a feedback controller. However, PMCP 

does not compromise on the historical state transitional trajectories nor does it rely on miss-
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rate curves. PMCP is designed using a C-EKF that can estimate the sizes of the partitions 

(next state) based on measured cache misses and accesses in order to optimize the cache 

utilization thereby improving the system performance. C-EKF is a recursive estimator that 

relies on statistical models as well as empirical observations to estimate the next state of 

the system. Although there are many state estimators, there are several advantages of using 

C-EKF. C-EKF is a very light weight estimator whose navigation through the state-space 

is relatively inexpensive. The estimated next state of the system is dependent only on the 

current state of the system. Therefore C-EKF’s space and time complexity are significantly 

reduced.  

A good statistical model can estimate the next state of the system independently and 

accurately. However designing such a model for a cache is a monumental task. However, 

a simpler model’s estimations complemented by updates based on real-time measurements 

can certainly improve the estimate of the nest state of the system over a few iterations. 

PMCP with C-EKF aims to make such real-time estimates iteratively such that cache 

utilization is pareto-optimal in each TQ thereby improving the overall performance like 

throughput and fairness. 

 

2.1. Comparing PMCP with other cache partitioning methods 

Table 1 compares the characteristics of the various cache partitioning schemes 

discussed so far. Since cache memory is a significantly fast system, it is important that the 

partitioning scheme does not have a large number of complex computations. It is also 

critical that the partitioning method is scalable as threads can activate/deactivate 

dynamically. The computations in all the methods are scalable with the number of threads 
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and are light weight computations with PMCP and SHARP being relatively more compute 

intensive. The main advantage of PMCP over all the other methods is in the way PMCP 

estimates cache partitioning for the shared cache without requiring prior knowledge of the 

miss-rate curves. Chapter 10 explains in detail how PMCP can estimate cache partitioning 

schemes while simultaneously training the performance model to make better estimates in 

real-time. 

 

 Table 1: Comparison of various cache partitioning techniques 

 

UCP PriSM SHARP PMCP 

Light-weight ~ ~ ~ ~ 
Scalable with number of 

threads     
Not dependent on Miss-

rate curves     
Not dependent on accuracy 

of system model     
Utilizes historical 

information efficiently ~  ~  
 

 

A detailed description of C-EKF is discussed in the next chapter. Note that this chapter 

does not discuss how C-EKF is adapted in PMCP to optimize cache utilization. It simply 

outlines the theory behind the working of C-EKF and highlights the appropriate set of 

equations.  

  



3. CONSTRAINED EXTENDED KALMAN FILTER 

 

 

Constrained Extended Kalman Filter is a modified Kalman filter designed for non-linear 

systems where the system dynamics are given in terms of state-space models subjected to 

certain constraints. To understand C-EKF, it is important to understand the working of a 

Kalman filter and the extended Kalman filter first.  

Kalman filter is a minimum mean-square error estimator for a state vector X operating 

recursively on streams of noisy input to produce statistically optimal estimates [16]. 

Kalman filter works under the assumptions that the underlying system is a linear dynamical 

system and all error terms and measurements have a Gaussian distribution. The Kalman 

filter model assumes that true state of the system at time step k is evolved from the state at 

time step k-1 according to the state transition model (previously referred as to system 

model) which can be described as 

𝑿𝒌 = 𝑨𝒌𝑿𝒌−𝟏 + 𝑩𝒌𝑼𝒌 + 𝒘𝒌  (1a) 

where 

U: Control vector 

A: State Transition Model 

B: Control-input Model 

w: Process noise assumed to be zero mean Gaussian distribution with 

covariance Qk. 
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Also, at time k an observation vector Zk of the true state Xk is designed based on equation 

1(b) 

𝒁𝒌 = 𝑯𝒌𝑿𝒌 + 𝒗𝒌 
 (1b) 

where 

H: Observation model that models the true state-space to the observed space 

v: Observation noise assumed to be zero mean Gaussian distribution with 

covariance Rk. 

 

3.1. Extended Kalman Filter (EKF) 

The EKF allows the state transition model and the observation model to be 

differentiable non-linear functions. In our case, the state transition vector is a linear 

function and the observation vector is a differentiable nonlinear function, h. We will 

discuss more on the properties of the observation vector used in Section 3. Therefore (1a) 

and (1b) are modified to (2a) and (2b). 

𝑿𝒌 = 𝑨𝒌𝑿𝒌−𝟏 + 𝒘𝒌 (2a) 

𝒁𝒌 = 𝒉(𝑿𝒌) + 𝒗𝒌 (2b) 

Unlike Kalman filter, h cannot be used directly in the filter equations. Instead, the 

Jacobian (also known as the output sensitivity matrix, H) of h is evaluated and used in the 

filter equations. This process linearizes the nonlinear function h around the current 

estimates allowing the use of Kalman filter equations in the state space around the current 

estimate. 
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The following steps summarize the various steps involved in the evaluation of the 

estimated state, �̂�𝒌, using EKF given initial state vector �̂�𝟎 with initial error covariance 

matrix P0. 

1. Project state ahead with wk = 0; 

�̂�𝒌
− = 𝑨𝒌�̂�𝒌−𝟏 (3) 

2. Project P, the estimated error covariance matrix 

𝑷𝒌
− = 𝑨𝒌𝑷𝒌−𝟏𝑨𝒌

𝑻 + 𝑸𝒌 (4) 

3. Compute Hk at �̂�𝒌
−. 

𝑯𝒌 =
𝝏𝒉

𝝏𝒙
|𝑿=�̂�𝒌

− (5) 

4. Compute Kalman gain Kk 

𝑲𝒌 = 𝑷𝒌
−𝑯𝒌

𝑻(𝑯𝒌𝑷𝒌
−𝑯𝒌

𝑻 + 𝑹𝒌)
−𝟏

 (6) 

5. Correct the state vector 

�̂�𝒌 = �̂�𝒌
− + 𝑲𝒌(𝒁𝒌 − 𝑯𝒌�̂�𝒌

−) (7) 

6. Correct the error covariance matrix P. 

𝑷𝒌 = (𝟏 − 𝑲𝒌𝑯𝒌)𝑷𝒌
− (8) 

Equations (1) – (6) are evaluated iteratively till the output reaches steady state. 

 

3.2. Constrained-Extended Kalman Filter 

Although EKF is a powerful tool for state estimation, some information about the 

system cannot be incorporated in the filter design such as equality or inequality constraints. 

Since Cache Partitioning is constrained by a linear equality constraint (see section 3.4), the 

methods used to incorporate inequality constraints is not discussed in this section. In C-
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EKF, an EKF estimates the state variables and projects them onto a constrained surface 

(equality constraints) which can be generalized as 

𝑫𝑿 = 𝑑 (9) 

Estimate Projection method [17] is one of the ways of incorporating constraints in the 

filter design to get the constrained estimates in the form of  

�̃�𝒌 = �̂�𝒌 − 𝑾−𝟏𝑫𝑻(𝑫𝑾−𝟏𝑫𝑻)−𝟏(𝑫�̂�𝒌 − 𝒅) (10) 

where  

�̃�𝒌: Constrained estimate of the state variable X 

�̂�𝒌: Unconstrained estimate of the state variable X as calculated by the EKF 

W: Positive-definite weighting matrix 

By setting W to 𝑷𝒌
−𝟏 we obtain the maximum probability estimates of the state 

subjected to constraints. The equations for C-EKF are modified from those of EKF to 

incorporate the constrained estimated into the filter design.  

�̂�𝒌
− = �̃�𝒌−𝟏 (11) 

X̂k = X̂k
- + Kk(Zk-HkX̂k

- ) (12) 

�̃�𝒌 = �̂�𝒌 − 𝑷𝒌𝑫
𝑻(𝑫𝑷𝒌𝑫

𝑻)−𝟏(𝑫�̂�𝒌 − 𝒅) (13) 

Equations (11) - (13) are the primary equation that form the framework to model 

PMCP. By adopting appropriate system and performance models in equations (2a) and (2b) 

and subsequently evaluating equations (11) – (13), PMCP aims to estimate the optimal 

partition sizes for each thread such that the cache utilization is optimized and overall 

system performance is improved.



4. ESTIMATING CACHE PARTITIONING USING C-EKF 

 

This section describes the framework of PMCP (Figure 3). Employing C-EKF as the 

state estimator in PMCP requires correspondence of the filter setup with appropriate state-

transition and performance models for the cache. Table 2 presents the various symbols that 

will be used to describe the state-transition and performance models. 

 

Table 2: Symbols used to describe the cache and cache-performance models in PMCP 

n Number of threads 

Ci Size of cache partitioning for thread i 

Mi Miss-rate of thread i 

mi Number of misses of thread i 

ai Number of accesses of thread i 

 

4.1. System (Last Level Shared Cache) 

The system under consideration is the last level shared cache to be partitioned. A state 

of the system is defined by C, a column matrix where the ith row represents the size of 

cache allocated to the ith thread. Similarly, measurements are defined by M, a column 

matrix where the ith row represents the measured miss-rate of the ith thread. This section 

elaborates on the requirements in the system to implement PMCP.  
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Figure 3: Framework of PMCP for estimating cache partitioning 

 

4.1.1. Modifications in the cache 

In order to capture the miss-rate of each thread, the cache is modified by adding an 

extra field called tid to each block in the cache. The number of bits required for tid equals 

𝑙𝑜𝑔2𝑛. This field stores information about the thread that owns the data in the block. For 

example, if tid equals ‘1’ for a cache block, then the data mapped to this block is owned by 

thread 1. This field allows us to measure individual thread’s hits and misses. Two registers 

per thread, referred as measurement registers, are reserved to store the number of hits and 

misses of each thread. Therefore the total number of measurement registers required is 

equal to 2n. 
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4.1.2. Allocating space to the partitions 

The fundamental philosophy behind PMCP is partitioning the cache and allocating the 

space to each partition. Each thread is then assigned to the partitions and have exclusive 

access only to the assigned partition. However, since the partition sizes can change in real-

time a reallocation policy needs to be defined to ensure that the partitions remain 

defragmented. The reallocation policy is designed with the following properties 

 After reallocation, the partitions are distinct and contiguous. 

 After reallocation, the blocks in a partition are continuous per set. 

 After reallocation, the first partition is always assigned to the thread tagged with 

tid=1, the second partition to the thread with tid=2 and so on.  

 After reallocation, there is at least one block in each partition. 

Although such a reallocation policy makes it simpler to define distinct boundaries 

between partitions (see Figure 2: Organization of partitions in a cache partitioned using 

PMCP) thereby defragmenting the data, it can lead to certain issues with the way data is 

accessed by threads after a reallocation. The data access patterns of the threads are typically 

transient in real-time. Consequently the cache partition sizes for the threads may be transient 

as well. Figure 4a elaborates this concept in more detail. A cache block B which previously 

belonged to thread i+1 in TQj was reallocated to thread i in TQj+1. This can lead to redundant 

and/or inconsistent data in the cache memory. For example, in Figure 4b, B was reallocated 

from partition i+1 to partition i but not replaced in TQj+1 since thread i had no cache misses. 

If thread i+1 requested for B in TQj+1 it will experience a miss since thread i+1 can access 

partition i+1 only in TQj+1. Thread i+1 reads the value of B from the lower levels of 

memory, where it may not have the most recently updated value of B. In other words, not 
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only are there multiple copies of the same data in the cache memory, it is possible that the 

data read by the thread is not the last updated value. 

B

Tid=i Tid=i+1

B

TQi TQi+1

Tid=i Tid=i+1

B B

Tid=i+1

B B

TQi TQi+1

Tid=iTid=i+1Tid=i

(a)

(b)

 

Figure 4: (a) displays the reallocation of the 4th block in each set from thread i to thread 

i+1. (b) Displays the reallocation of the 4th block back to thread i. 

 

4.1.3. Modified cache replacement policy 

The simplest way to address this issue would be to writeback all blocks that are 

reallocated followed by invalidating the same block in the cache.  However, this process 

could be very time consuming. Instead, small modifications in the baseline Least Recently 

Used (LRU) replacement policy can achieve the same results without having to writeback 

all reallocated data every time the cache is repartitioned. The following rules were designed 

for the modified LRU replacement policy.  

 All cpu-side requests (read and write) can access the entire cache. 

 The cache can writeback data from any block in the entire cache. 
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 All memory side writes replace data from a block that belongs to requesting 

thread’s partition only.  

 In partition i, invalid blocks are used first. 

 In partition i, if all block are valid, cache block that have tid ≠ i are replaced.  

 In partition i, if all blocks are valid and have tid = i, LRU replacement policy is 

enforced on blocks belonging to partition i.  

In the modified cache replacement policy, all threads are allowed to read from the entire 

cache. So even if a cache block is reallocated to a different partition, it can be read by all 

the threads. Only the writes from the memory side are restricted to the owning threads’ 

partitions. There are two advantages of the modified replacement policy.  

 It prevents mapping of redundant and inconsistent data in the cache memory 

 It facilitates gradual defragmentation of data while significantly reducing the 

intermittent writebacks required to maintain data consistency. 

 

4.2. System Monitoring Unit 

PMCP requires periodic sampling of the miss-rates of each thread. The most straight 

forward way to realizing the miss-rates would be to monitor each thread’s misses and 

accesses individually and derive the miss-rate of each thread. Miss rate of each thread is 

defined as  

𝑀𝑖
′ = 𝑚𝑖 𝑎𝑖⁄  (14a) 



22 

 

 

Since the bus connecting the shared cache to its neighboring units is shared, the access 

patterns of each thread is affected by the traffic on the bus that is generated by other threads 

as well. The probability that thread i accesses the cache is  

p
i
= ai ∑𝒂𝒊⁄  (14b) 

Therefore, from (14a) and (14b), the weighted miss-rate of thread i can be represented as  

𝑀𝑖 = 𝑝𝑖 ∗ 𝑀𝑖
′ 

𝑀𝑖 = 𝑚𝑖 ∑𝑎𝑖⁄  

 

(14c) 

 

4.3. State Estimator 

In Figure 3: Framework of PMCP for estimating cache partitioning, the state estimator 

is essentially the EKF (equation (3) – (8)) part in the design of the C-EKF. To estimate 

cache partitioning, the EKF is adapted by choosing an appropriate performance model and 

state-transition model. As mentioned in Chapter 2, it is a rather difficult task to design 

these models. However, one of the advantages of using a C-EKF is that the user is allowed 

to use approximate models and compensate for the inaccuracy of the model by 

progressively updating the next state of the system based on measured performances and 

state-transition trajectories.  

 

4.3.1. Choosing the Performance Model 

The performance model is essentially a loss function that represents the cost (miss-rate) 

associated with the state of the system. In PMCP, it is used to evaluate the cost associated 

with the estimated next state of the system. The evaluated cost is compared with the 

observed cost to estimate the next state of the system iteratively. In PMCP, the loss function 
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(performance model) describes the relation between cache sizes and miss-rates by 

employing the power function described by Chow [13, 14] and examined by Hartstein et 

al. [15]. Chow described the relationship between miss-rates and cache size as  

𝑴 = 𝑴𝟎𝑪
−∝ (15) 

where M is the miss-rate (measurement vector, Z in equation 2b), C is the cache size (state 

vector, X in equation 2a) and α is approximated to 0.5 [15]. This is also called the √2 Rule. 

Therefore, from equations (5) and (15) Hk is constructed as an n×n diagonal matrix with  

𝑯𝒌 = 𝒅𝒊𝒂𝒈(𝑴𝟎(−∝)𝑪𝒌
−∝) (16) 

Note that the model chosen is a very simple model. The effects of the model on other 

aspects of the estimator will be discussed further in Section 4.5.  

 

4.3.2. Choosing the System Model 

For the first part of the dissertation, the model chosen is the simplest model where the 

previous state of the system is projected to the next state of the system. In other words, 

equation (2a) is rewritten as  

𝑪𝒌 = 𝑪𝒌−𝟏 + 𝒘𝒌 (17) 

 

4.4. Constraint Surface Evaluation 

The output of the state estimator is not a practical partitioning scheme since it is 

unaware of the limitation on the state-space. If left unbounded, each partition can 

(theoretically) be infinitely large. However, since the cache space available in a system is 

limited, the output of the state estimator has to be truncated to a realistic partitioning by 

applying the constraint similar to equation (12). The constrained can be defined as– The 
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sum of all the partitions should be less than or equal to the total cache capacity. Without 

loss of generality, this constraint can be redefined as – The sum of all partitioning should 

be equal to the total cache capacity. Equation (18) models such a constraint where Ci 

represents the cache partitioning allocated to the ith thread and Ctotal is size of the cache 

which is usually fixed in a processor.  

∑𝐶𝑖 = 𝐶𝑡𝑜𝑡𝑎𝑙  

   2

1

1x 1x1

x1

1 1 1  tot

n

aln

n

C

C

C

 
 
  
 
 
 

C . (18) 

Therefore from (9) and (18) 

D = [1 1 1 …  1]1xn (19a) 

d = Ctotal (19b) 

The constrained estimates are evaluated similar to equation (13) and projected to the next 

iteration of the state estimator.  

 

4.5. Tuning the Error Covariance Matrices P0, Q and R 

Q represents the expectation of the drift in the state variable and the inclination to 

follow the drift. R represents the prediction errors due to measurement error rather than 

parameter drifts. P0 is the initial error covariance. In a system, when the observations are 

complete, the error covariance matrices P0, Q and R covariance matrices can be estimated 

using sample covariance matrix. However, when the observation set is incomplete, deeper 

considerations are required. Statistical analyses of multivariate data usually involves 

exploratory studies about the interactions of the variables under consideration and is 
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explicitly followed by statistical models involving the covariance matrices of the variables. 

Such estimations usually provide initial estimates that can be used to study the inter-

variable interactions at run-time. In the absence of an efficient models for the error 

covariance matrices, the filter may not converge to the optimal states, the number of 

iterations required for the filter to converge may increase and in the worst case, the filter 

may even diverge. Furthermore, it is known that the Q and R matrices for non-linear system 

and performance models may be dependent on the measurement vector and can evolve 

dynamically.  

Several simulations were implemented in Matlab to empirically realize a good model 

to fit the definitions of these matrices. Note that the equations presented below need not 

represent the error covariance of every process that can potentially run on the system. 

However, our results will show that the system’s performance was significantly improved 

nonetheless. This issue resurfaces again in Chapter 9 and is addressed in Chapter 10. 

𝑷𝟎 = 𝑰 

𝑸 =  𝒅𝒊𝒂𝒈(𝑨) ∗ 1000000 

𝑹 =  𝒅𝒊𝒂𝒈((1. 𝑨⁄ )./∑ (1. 𝑨)⁄ ) 

 

4.6. Time Quantum 

A Time Quantum (TQ) is defined as the time period after which PMCP monitors the 

cache to measure hits and misses. It can be perceived as a sampling period provided the 

system is monitored at regular intervals. However, based on the threads’ dynamic 

variations in access patterns, the cache could be monitored at varying time intervals. Hence 

the time difference between two consecutive samples is referred as Time Quantum. The 
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results presented in Chapter 9 were acquired by monitoring the cache at regular intervals 

which was chosen empirically to be 500 million clock cycles. It is important to note that a 

longer TQ can fail to isolate some of the major events but more time is available for the 

estimator to converge to the optimal partitioning. A shorter TQ captures events more 

closely but might be too short for the filter to converge to the steady state.  



5. RECAPITULATING C-EKF FOR PMCP 

In section 3, the Kalman Filtering algorithm is introduced which is based on linear 

dynamical systems described by equations (1a) and (1b). A variant of Kalman Filter called 

Extended Kalman Filter that linearizes a non-linear performance model about the current 

mean and covariance is documented next since cache performance (miss-rate) scales in a 

nonlinear fashion. Equations (2a) and (2b) describe such a system and the various steps 

involved in EKF is summarized in equations (3) – (8). EKF is a good state-estimator but 

sometimes it is difficult to account for all conditions and constraints in the state-transition 

and performance models. C-EKF is introduced next to account for any physical constraints 

that may exist in the system. Equations (11) – (13) apply such constraints of the type 

equation (9) on the estimates produced by equations (3) – (8).

In Chapter 4, the framework for implementing PMCP using various models and 

hardware modifications are identified. In order to utilize the models described in Sections 

4.3.1 and 4.3.2 to perform PMCP, equations (15) – (19) are mapped onto equations (3) – 

(13) appropriately. The subsequent equations for the algorithm are as follows 

State Transition and Observation Models: 

Ck = Ck-1 + wk (20a) 

𝑴𝒌 = 𝑪𝒌
−∝ + 𝒗𝒌 (20b) 

State Estimator :  

Ĉk
- = C̃k-1 (20c) 
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Pk = Pk-1 + Qk       (20d) 

𝑯𝒌 = 𝒅𝒊𝒂𝒈((−∝)𝑪𝒌
−∝−𝟏) (20e) 

Kk = Pk
-Hk

T(HkPk
-Hk

T + Rk)
-1

 (20f) 

Ĉk = Ĉk
- + Kk(Mk-HkĈk

- ) (20g) 

Pk = (1-KkHk)Pk
- (20h) 

Constraint Surface Evaluation :  

C̃k = Ĉk-PkD
T(DPkD

T)-1(DĈk-d) (20i) 

 

At the start of each TQ, the cache is monitored, miss-rates evaluated and equation (20) 

is performed iteratively till the predicted state vector C reaches steady state. The steady 

state vector C is applied to the cache and is maintained until the start of the next time TQ. 

The following section elaborates on the various simulations that were performed in 

MATLAB and is intended to elaborate on the real-time analysis of PMCP. 



6. SIMULATING PMCP IN MATLAB 

Several simulations were performed in MATLAB to understand the process of C-EKF 

as it is adapted for PMCP in real-time. In all cases, the processor is assumed to be running 

four threads. The simulations are based on hypothetical situations and each thread is 

assigned equal partition at the start of the simulation. For example, if the system (last-level 

shared cache) is assumed to consist of 100 blocks, the initial state for the system is 

C=[25;25;25;25]. The miss-rates of each thread is also assumed to be the same and 

randomly chosen as 0.2. The system is monitored and various scenarios are generated to 

test the validity of C-EKF. The C-EKF estimates the cache partition sizes for each thread 

over several iterations such that cache utilization is optimized. In other words, overall miss-

rate of the system is minimized. The outputs recorded are the states predicted by PMCP in 

real-time. Although the simulation presents the estimated states in each iteration, only the 

steady state values are finally applied on the system. 

The simulation results presented in this section have the following characteristics. The 

X-axis represents time and is measured in terms of the number of iterations (t). Each 

iterations is assumed to have identical calculations thereby taking the same amount of time 

for completion. The Y-axis represents the predicted cache partition sizes assigned to all the 

threads measured in terms of blocks. As mentioned before, in each case, the system is 

assumed to have the same initial condition with C=[25;25;25;25] and 

M=[0.2;0.2;0.2;0.2]. 
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Case 1:  

The system is monitored at the end of TQ0 (first TQ) i.e. at t=5. Figure 5 and Figure 6 

shows the states predicted by PMCP during every iteration till it reaches steady state when 

M=[0.8;0.2;0.2;0.2] and M=[0.5;0.2;0.2;0.2] respectively at t=5. It is clear that more 

cache space is allocated to thread 1 since it has the highest miss-rate in both cases. It should 

also be noted that all the other threads are penalized equally even though they maintained 

their miss-rate of 0.2. This is because thread 1’s miss-rate increased significantly which 

triggers C-EKF to allocate more space to thread 1. However, since the total cache space is 

limited to 100 blocks, allocating additional space to thread 1 required freeing some space 

allocated to the other threads. Therefore threads 2, 3 and 4 are penalized.  

Another key observation is the increase in the space allocated to thread 1 in Figure 5 

compared to the space allocated to it in Figure 6. In addition, the space allocated to threads 

2, 3 and 4 in Figure 5 is less compared to the space allocated to the same threads in Figure 

6. These are obvious conclusions since thread 1’s miss-rate is higher in Figure 5. Note that 

C-EKF reached steady state at different times in the two cases. 

 

Figure 5: Simulating PMCP for 4 active threads on a processor with cache size of 100. 

Thread 1's miss-rate changes from 0.2 to 0.8. 
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Figure 6: Simulating PMCP for 4 active threads on a processor with cache size of 100. 

Thread 1's miss-rate changes from 0.2 to 0.5. 

Case 2:  

In this case, TQ is assumed to be equal to 10. The system is monitored at the end of 

TQ0 (first TQ) i.e. at t=5 and TQ1 i.e. t=15. Figure 7 and Figure 8 show the states predicted 

by PMCP during every iteration until it reaches steady state for this case study. The 

measurement vector (miss-rate) M=[0.8;0.2;0.2;0.2] at the end of TQ0 in both figures but 

M=[0.3;0.2;0.2;0.2] and [0.2;0.2;0.2;0.2] in Figure 7 and Figure 8 respectively at the end 

of TQ1. At the end of TQ0, thread 1’s miss-rate increased prompting C-EKF to allocate 

more space. At the end of TQ1, since the miss-rate for thread 1 reduces from 0.8 to 0.3 in 

Figure 7 thread 1’s partition reduced such that other threads can benefit from more space 

allocation. As expected thread 1’s partition size reduces and other thread’s partition sizes 

increase. However, since thread 1’s miss-rate is still higher than other threads, it is allocated 

more space in TQ1. In Figure 8 all threads return to miss-rate of 0.2 at the start of TQ1; so 

all threads are reassigned equal partition. 
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Figure 9 depicts the result of a test case similar to the test whose results are presented 

in Figure 8 except that at the end of TQ0, thread 1’s miss rate changes to 0.5 and at the end 

of TQ1 all threads’ miss-rates change to 0.5. Despite an increase in all the miss-rates, all 

threads experience the same penalty and have equal partitions since all threads have equal 

miss-rates. 

 

Case 3 

In this case, thread 1’s miss rate is recorded as 0.8 at the end of TQ0 while all other 

threads record a miss-rate of 0.2. And at the end of TQ1; miss-rates are recorded as 

M=[0.3;0.5;0.8;0.2]. Figure 10 presents the predicted partition sizes for the threads. It is 

clear that the partition sizes for the threads follow the trend that higher the miss-rate, more 

space is allocated to the partition. 

 

Figure 7: Simulating PMCP for 4 active threads on a processor with cache size of 100. 

Thread 1's miss-rate changes from 0.2 to 0.8 to 0.3. 
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Figure 8: Simulating PMCP for 4 active threads on a processor with cache size of 100. 

Thread 1's miss-rate changes from 0.2 to 0.8 back to 0.2. 

 

 

Figure 9: Simulating PMCP for 4 active threads on a processor with cache size of 100. 

Thread 1's miss-rate changes from 0.2 to 0.5. Then all threads’ miss-rae change to 0.5 
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Figure 10: Simulating PMCP for 4 active threads on a processor with cache size of 100. 

Thread 1's miss-rate changes from 0.2 to 0.8. Then the miss-rate for the threads follow 

the order 0.3, 0.5, 0.8 and 0.2 respectively 



7. GEM5 SIMULATOR 

The GEM5 simulator is a modular platform for computer-system architecture research, 

encompassing system-level architecture as well as processor microarchitecture. GEM5’s 

commitment to modularity allows the users to focus on particular aspects of the simulator 

without having to understand all of the simulator’s code. GEM5 provides significant 

flexibility to the user by providing four different CPU models for the simulated 

architecture. The user can configure the architectures using multiple models and switch 

between the modes at run-time.  

 SimpleCPU - The SimpleCPU is a purely functional, in-order model that is suited 

for cases where a detailed model is not necessary. This can include warm-up 

periods, client systems that are driving a host, or testing to make sure a program 

works. There are two models under SimpleCPU namely 

o AtomicSimpleCPU - The AtomicSimpleCPU is the version of SimpleCPU 

that uses atomic memory accesses. It uses the latency estimates from the 

atomic accesses to estimate overall cache access time. 

o TimingSimpleCPU - The TimingSimpleCPU is the version of SimpleCPU 

that uses timing memory accesses. It stalls on cache accesses and waits for 

the memory system to respond prior to proceeding. 

 InOrderCPU - The InOrder CPU model is designed to provide a generic framework 

to simulate in-order pipelines with the described ISA and pipeline. The generic 
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pipeline stages are provided but the user has the flexibility to add custom pipeline 

stages, vary issue width and scale the number of hardware threads without having 

to recreate the entire pipeline 

 OutOfOrderCPU/O3CPU - The O3CPU model is pipelined out-of-order model that 

simulates dependencies between instructions, functional units, memory accesses, 

and pipeline stages. Parameterizable pipeline resources such as the load/store queue 

and reorder buffer allow O3 to simulate superscalar architectures and CPUs with 

multiple hardware threads. The O3 model is also “execute-in-execute”, meaning 

that instructions are only executed in the execute stage after all dependencies have 

been resolved. This model simulates the five stages which are fetch, decode, 

rename, issue/execute/writeback and commit.  

 TraceCPU - The TraceCPU model was introduced in GEM5 recently and is still 

under development. The Trace CPU model plays back elastic traces, which are 

dependency and timing annotated traces generated by the Elastic Trace Probe 

attached to the O3 CPU model. The focus of the Trace CPU model is to achieve 

memory-system (cache-hierarchy, interconnects and main memory) performance 

exploration in a fast and reasonably accurate way instead of using the detailed but 

slow O3CPU model. Currently traces have been developed for single-threaded 

benchmarks and the model works with single-threaded simulations only. 

Apart from CPU models, GEM5 also provides flexibility with the simulation mode with 

respect to the involvement of the Operating System (OS) in the simulation. Any of the 

above described CPU models can run in one of the following two modes. 
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 System-call Emulation (SE) mode - only the statically compiled binaries need to be 

specified and no operating system is required to run the binaries since GEM5 

emulates most of the system-level services in this mode. GEM5 simulates the most 

common instructions from the executable in this mode but the system calls are 

trapped and passed to the host machines OS to be executed. Since thread scheduling 

is absent in the SE mode, the threads have to be statically mapped to the cores. 

 Full System Emulation (FS) mode - In FS mode, a complete system with OS and 

devices is modeled. The simulated system executes both user level and kernel level 

instructions in the FS mode. The bare minimum environment for running the OS is 

simulated that can support basic functionalities like interrupts, exceptions, I/O 

devices and so on. Compared to SE mode, FS mode is slower but simulates a 

working system more accurately while allowing a larger set of workloads to be 

simulated. 

GEM5 also simulates a variety of memory modules and interconnects as well. There 

are two memory system available for the user to choose from namely  

 Classic Memory System - The classic memory system provides GEM5 a fast, 

flexible and easily configurable memory system at the cost of detail in the 

coherency interactions. Cache coherence is maintained using an abstract MOESI 

snooping protocol where state-transitions due to snoops occur instantaneously. 

Although there is an inflexibility in choosing the coherency protocol, the classic 

memory system allows the simulation to be fast-forwarded to the desired section of 

the simulation. It is also easy to configure and is much faster than the system 

described below. 
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 Ruby Memory System - In contrast to the classic model, the ruby memory system 

sacrifices simulation speed to provide GEM5 a flexible infrastructure capable of 

accurately simulating a wide variety of memory systems. In particular, Ruby 

supports a domain specific language called SLICC (Specification Language for 

Implementing Cache Coherence) where one can define many different types of 

cache coherence protocols. Essentially SLICC defines the cache, memory, and dma 

controllers as individual per-memory-block state machines that together form the 

overall protocol. By defining the controller logic in a higher level language, SLICC 

allows different protocols to incorporate the same underlining state transition 

mechanisms with minimal programmer effort. 

GEM5 also supports several Instruction Set Architectures (ISAs) and Operating Systems 

for both FS and SE modes namely Alpha, ARM, MIPS, Power, Sparc and x86. GEM5’s 

modularity allows the required ISA to plug into a generic CPU model and the memory 

subsystem. It also supports several interconnection networks, devices and even allows the 

host machine to communicate with the simulated architecture over tcp/ip. 

GEM5 is featured as an event-driven simulator which generates the whole system at 

run-time based on predefined object modules. These modules are typically developed in 

C++ and the object oriented design provides modularity and flexibility to the system design 

while significantly leveraging from inheritance. All major simulation components in 

GEM5 are inherited from a SimObject that describes the basic configuration, initialization, 

statistics and serialization. All major components of the system like the processor, cache, 

memory, interconnects are SimObjects. Each SimObject has two classes, one in python 

and one in C++. The C++ class describes the state and the remaining behavior of the 



39 

 

 

SimObject while the python class specifies the SimObject’s parameters and are used in 

script-based configuration. The python integration provides a powerful front-end interface 

that initializes and configures the system to be simulated and control for the simulation at 

run-time. 

Another very useful feature in GEM5 that allows the user even more control over the 

simulation is the ability to define events in SimObjects and populate the event queue 

throughout the simulation. These events can be scheduled based on the number of Ticks or 

instructions simulated.  

With all the features mentioned above a formal design of experiment is formulated to 

test PMCP on GEM5. Indeed some modifications were applied to a few standard modules 

of the simulator. The next chapter elaborates on the various modifications incorporated in 

the standard GEM5 simulator such that the PMCP framework defined in Chapter 4 could 

be simulated.   



8. EVALUATING PMCP ON GEM5

 

PMCP is evaluated on the GEM5 simulator using a processor that consists of a four core 

CMP processor modeled with the x86-64 ISA. Each core has private 64KB split L1 data 

and instruction caches and a shared 2MB L2 cache. Table 2 shows the details of the 

processor.  

 

Table 3: Main characteristics of the simulated processor 

Cores 4 cores, x86-64 ISA, in-order ideal Instructions per cycle =1 at 2GHz 

L1 Cache 64KB, 4-way Set Associative, split L1/D1, 1 cycle latency 

L2 cache 2MB, 32-way Set Associative, 4 cycles L1-L2 latency, 

MCU 4 memory controllers, 200 cycles zero-load latency, 32GB/s peak BW 

 

PMCP is performed on the shared L2 cache and the number of ways is divided between 

the competing threads. As mentioned in Section 4.1.1, the L2 cache is equipped with 

custom registers that update with every miss and hit. The SMU (see Figure 3) samples 

these registers throughout the simulation to gather the number of hits and misses each 

thread experiences in the L2 cache. 
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8.1 Experimental Setup 

GEM5 simulates PMCP in the FS mode to simulate a real system. A similar run 

procedure described in [3] is adopted to the simulation on GEM5. The simulation starts 

with the assumption that all the threads have same priority and equal partitioning. The 

cache is warmed by ensuring that at-least one thread has executed 20 billion instructions 

before PMCP starts. During warmup the simulated processing cores run in 

AtomicSimpleCPU mode where the latency due to memory is not included in the 

simulation. However, the entire memory hierarchy is still updated with the data being 

transferred between the main memory and the processor. This makes the warm-up process 

significantly faster. GEM5 then switches to O3CPU mode to simulate an out-of-order CPU 

while considering all caches and memory latencies. PMCP is activated as well and is 

scheduled to run every 50 million clock cycles (TQ). At the start of each TQ, PMCP 

monitors the custom performance registers and evaluates the miss-rates (equation 14c) of 

all the threads. Using the measured miss-rates, the State Estimator with the constraint 

execute iteratively until the cache partitions converge to a steady state value. During the 

transient states, C-EKF is disconnected from the system. Only when the steady state value 

is reached PMCP is connected back to the system and the steady state values are applied 

to the system. 

An interesting observation made during experimentation was that the steady state 

values of the cache partitions make significant transitions during the first few TQ. This 

period is named as “High level Transient Period” (HLTP) (see Figure 11) and is defined 

as the number of TQ required such that the steady state values during five consecutive TQ 

differ by more than 1%. During HLTP it is impractical to measure throughput and fairness 
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since the system would be making several writebacks to maintain data consistency. Once 

the steady state values stabilize over several TQs, performance measures like throughput 

and fairness are measured. This period is named “High Level Steady-State Period” 

(HLSP). The simulator continues to simulate the processor in HLSP until all threads have 

executed at least 10 million instructions. Note that PMCP spends significantly more time 

in HLSP than HLTP. So the overhead due to writebacks during HLTP is significantly small 

and can be ignored. Therefore all measurements are made in HLSP.  Figure 11 shows the 

top level time-profile of such an experiment. 

 

HLTP HLSP

Operating System 

booted

All threads finish 

10 million 

instructions

End of Simulation.

Start 

measurements.

Cache warmed with 

20 billion 

instructions.

Start C-EKF.

Start simulation.

Load operating 

system

 

Figure 11: Top level time profile of the simulation 

 

8.2 Performance metrics 

The simulation continues until all active threads execute 10 million instructions in 

HLSP. The performance metric chosen to represent the performance of the system is 

inspired by the standard metrics used by UCP [8], Vantage [3], PriSM [2] and Jigsaw [1]. 
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They present the performance of the system as the aggregate IPC for throughput and fair-

speedup for fairness.  

 

8.3 Workloads 

SPEC CPU2006 benchmark suite was used to evaluate PMCP. Sanchez et al. [3] 

divided the 29 benchmarks of the suite into 4 categories namely intensive (n), cache-

friendly (f), cache-fitting (t) and thrashing/streaming (s). Table 4 presents the description 

of these 4 categories. 

 

Table 4: classification of the spec cpu2006 benchmark [3] 

n Applications with very low L2 misses per kilo instructions  

f Applications that gradually benefit from increase in cache size 

t Applications whose misses reduce abruptly with increase in cache size 

s Applications that do not show any benefit when increasing the cache size. 

 

 

The same classification of the benchmarks is assumed for designing the workload suite 

to test PMCP on GEM5. The workload for the test cases are built by choosing one 

application from each category as the representative application. Each core runs a single 

threaded application choosing one of the 4 representative applications. Multiple cores are 

allowed to execute the same application as long as the input set varies. Since each core 

executes a single-threaded application and none of the threads share the same data set, all 

threads ae independent of each other. 
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8.4 Modifications in GEM5 

Several changes are made in the GEM5 software to accommodate PMCP. The modular 

design aids with adding new features or modifying existing functionalities in the simulator. 

Since the memory hierarchy is of interest in PMCP, as long as the fundamental interaction 

of the memory hierarchy with the processing core and its pipeline is maintained, there is 

no need to change the simulation methodology of the processors’ pipeline. Hence most of 

the effort was directed towards introducing the following modifications and modules to the 

simulator. 

 Building the C-EKF module 

 Modifications to the L2 cache design 

 Modifications to the L2 cache’s replacement policy 

 Modifications to the Data packets received and sent from L2 cache 

 Introducing measurement registers to evaluate miss-rates for each thread 

 Defining and scheduling various events  

. 

8.1.1. C-EKF module 

The C-EKF module is built as a class named CEKalman. The equations described in 

Chapter 5 are implemented in this module. These calculations are executed iteratively until 

C-EKF converges to the steady state values. Typically it takes less than 10 iterations for 

PMCP to reach the steady state values. Without loss of generality, each iteration of C-EKF 

is scheduled to execute every simulated clock cycle until the steady state values are reached 

since the computations are relatively simple and the system is monitored every 50 million 

clock cycles. During the transient states, CEKalman module is disconnected from the cache 

to avoid the application of the transient states and the cache continues to remain in the 
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steady state from the previous TQ. Only when CEKalman converges to a steady state, the 

cache is updated with the new partitioning sizes. 

All the variables are declared as float variables except for the state variable �̃�𝑘 which 

is the output of C-EKF and is applied to the L2-cache. �̃�𝑘 is declared as in integer since 

C̃k ∈ 𝑰. The following pseudo code describes the C-EKF module. 

 

Cold4 ← Cold3 

Cold3 ← Cold2; 

Cold2 ← Cold1; 

Cold1 ← Cold0; 

Read current state (Cold0) of the system; 

Read number of misses, hits for each thread; 

Calculate miss-rate (Z) for each thread; 

Calculate Q and R matrices; 

If (Cold1 - Cold0) < 0.01 and (Cold2 - Cold1) < 0.01 and (Cold3 - Cold2) < 0.01 and(Cold4 - 

Cold3) < 0.01 then 

    Calculate C̃k; 

    Schedule to run in next simulated clock cycle; 

Else 

    Update Cache partition sizes on the system 

    Unscheduled any remaining iterations 
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8.1.2. Modifications to the L2 cache design 

In GEM5 all the cache memory modules inherit their functionalities from the Cache 

class (Cache inherits from MemObject which inherits from SimObject) and are 

created/configured into the system at run-time. Therefore the instances of L1 d/i cache, L2, 

L3 and so on; all inherit their functionalities from the same module. The code for the 

generic cache module is modified to isolate the functionalities specific to the L2 cache such 

that PMCP can be applied only to it This includes the modified LRU replacement policy 

and some variables that are directly impacted by the changes included variables that 

gathered statistics for the L2 cache, variables to measure misses and hits and 

synchronization variables. Details on these variables are discussed later in the chapter. 

From the simulated hardware point of view, the main modification to the L2 cache is the 

addition of the threaded variable to each block in the cache. Each block in the L2 cache 

keeps track of the thread whose data is written from the main memory into it. 

Provisions are also applied to make sure that the modified replacement policy is 

implemented correctly in the L2 cache specifically. Details on how this is achieved is 

discussed in the next section. 

 

8.1.3. Modifications to the the LRU replacement policy 

There are four kinds of bus requests that are placed to the cache memory. Read/write 

requests from a higher level memory/processing core (named “cpu-side” in GEM5) and 

read/write requests from a lower level memory/ devices (named “memory-side” in GEM5). 

The cache memory is designed as a stack in GEM5 with the least recently used block at 

the head of the stack. When a block is requested by a bus and is a hit, the data in the block 

is passed to the corresponding bus and the block is moved to the bottom of the stack. In 
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case of a miss, the block at the top of the stack is replaced with the new block and moved 

to the bottom of the stack. Indeed the data in the block is written back to the lower level of 

the memory before being replacement. Essentially the most recently used block is at the 

bottom of the stack and the least recently used is at the top. In case of a set associative 

cache, each set is implemented as a stack. When a set is referenced, the corresponding stack 

is checked for a hit or a miss.  

To implement the modified cache replacement policy, an exclusive “Head” and “Tail” 

pointer is introduced for each thread. The pointers are positioned in the stack such that   

ℎ𝑒𝑎𝑑𝑖 = ∑𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒𝑗−1

𝑖

𝑗=0

 

𝑡𝑎𝑖𝑙𝑖 = ∑𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒𝑗

𝑖

𝑗=0

− 1 

 

Where i = 0, 1, 2, 3, …, n-1. Note that head0 always points at block 0. 

When a request is placed from the cpu-side the cache performs the following steps 

 Entire cache is searched for the requested data irrespective of which thread 

requested the data.  

 If the cache experiences a hit, the data from the block is read and the block is moved 

to the bottom of the partition it belongs to irrespective of its threadid. 

 If a miss is experienced, the incoming request’s threadid is checked first (say 

threadid = i). 

 The part of the stack between headi and taili is searched for any block where 

threadid ≠ i. 

o If a block with threadid ≠ i is found, the cache writebacks the block and the 

new data is read into the partition.  
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o The block is moved to the taili position instead of the bottom of the entire 

stack. 

o If all blocks have threadid = i between headi and taili, the standard LRU 

replacement policy is enforced. But the new block is moved to taili position 

instead of the bottom of the stack. 

To implement the replacement policy mentioned above, the bus requests have to 

present to the cache the origin of the requests to be compared with the threadid of the 

blocks. The design of the “request packets” had to be modified to include this 

information. 

  

 

8.1.4. Modifying the request packets 

A new variable called tid is introduced in the Request packets class that holds 

information about the origin of the request. Currently the coreid is stored as tid in every 

packet based on its origin. Although the modified replacement policy requires the threadid, 

it is acceptable to store coreid as threadid since all cores run independent single threaded 

benchmarks. The requests generated from any other device or OS have tid = -1. Therefore 

every request packet is equipped with the information about its origin. This information is 

cross-checked in the L2 cache to implement the modified cache replacement policy. 

 

8.1.5. Measuring misses and hits 

New variables had to be introduced to measure the hits, misses and access for L2 cache 

during the simulation. These variables are different from the statistical variables that exist 

in GEM5. Redundant variables had to be introduced because the statistical variables of 

GEM5 cannot be referenced at run-time. In fact, the creators of GEM5 call it “magic” when 
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they describe these variables. These variables measure the hits/misses/accesses of each 

thread by monitoring the blocks with the corresponding threadids. This information is used 

by PMCP to generate miss-rates to be used by the C-EKF module. The statistical variables 

help in recording the overall trend in the system for data analysis. 

 

8.1.6. Scheduling events 

An acumen of the events that need to be scheduled in GEM5 in order to implement the 

experimental setup is presented in Table 5.  These events are system wide events and are 

defined as part of the executable when running an experiment in GEM5. 

 

Table 5: Description and schedule of the various top level events as referred in the 

simulation 

Event type Description Scheduled to end 

Fast Forward Runs the experiment in 

AtomicSimpleCPU mode 

Until OS boots + all region 

of interests reached 

Warm-up Runs until the each thread 

completes defined number 

of instructions 

At least 20 billion 

instructions by each thread 

after Fast-forwarding 

HLTP Switches to O3CPU mode Dynamically realized 

HLSP Remains in O3CPU mode At least 10 million 

instructions by each thread 

 

Apart from these events that guide the simulation in GEM5, some more events are 

created to collecting data at appropriate intervals, measure misses/hits, start PMCP every 
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50 million simulated clock cycles, schedule the next iteration of C-EKF and update the 

partition sizes in the cache. This section documents all the events as they are defined in the 

various modules to achieve the desired design of experiment. All the events that appear in 

the various classes in GEM5 to implement PMCP are listed in Table 6.  

 

Table 6: Location, description and schedule of the user defined events used to implement 

the design of experiment 

Event variable Class Description 

KalmanEvent CEKalman Run one iteration of C-EKF 

StartInstructionCountEvent BaseCPU 

Starts the 10 million instruction 

count of HLSP 

StartMesuringEvent  BaseCPU 

Schedules a statistics dump every 

50million clock cycles 

StartKFEvent BaseCPU 

Starts StartInstructionCountEvent 

and StartMesuringEvent 

MissHitUpdateEvent Cache 

Updates the Z vector with the 

number of misses/hits at the end of 

the current TQ  

CacheAssocUpdateEvent Cache 

Updates the number of blocks for 

each partition in the L2 cache once 

steady state is achieved 

ResetMissHitUpdateEvent Cache Resets the misses/hits counters 
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InitSetupEvent Cache 

Initializes the system with equal 

partitions for each thread and 

resets the misses/hits counters 

 

Figure 12 shows the flowchart of all the events as they occur throughout the experiment 

including the setup events as well as the individual events defined in the classes. 
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Figure 12: Schedule of all events both user defined and system-level such that the design 

of experiment s implemented efficiently.



9. RESULTS 

The performance of a processor where the L2 cache is partitioned using PMCP is 

compared with the performance of a processor with the baseline shared L2 cache and the 

standard LRU replacement policy. The results are presented as clustered bar graphs where 

each cluster is the performance of a specific workload in both the processors. The left bar 

in the cluster always represents the performance of the processor with the standard shared 

L2 cache and the right bar represents the performance of the processor with the partitioned 

cache with PMCP. The workloads are named based on their classifications (see Table 4). 

For example, workload fnts is a workload where an f type benchmark runs on core 1, n type 

on core 2, t type on core 3 and s type on core 4. 

 

9.1 Performace on throughput 

The most common way to represent the aggregate throughput is the sum of individual 

IPCs. 

𝐼𝑃𝐶𝑡𝑜𝑡𝑎𝑙 = ∑𝐼𝑃𝐶𝑖 where i =0, 1, 2, 3, … n-1 

Figure 13 compares the aggregate throughput for the simulated workloads. Each 

workload’s throughput is represented as a stacked bar where each stack in the bar is the 

IPC for a benchmark in the workload. From bottom to top are the IPCs of the benchmarks 

on core 0 to core 3 respectively. The total height of the stacked bar is the aggregate 
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throughput of the processor. The throughput in most cases improved in case of the 

partitioned L2 cache with a maximum of 35.35% in the case of the fnts workload.  

 

Figure 13: IPC for various workloads simulated. The left bar in each cluster represents 

the IPC for a processor where the with standard LRU replacement in the L2 cache. The 

right bar in each cluster represents the IPC for a processor where the L2 cache is 

partitioned using PMCP. The label of each cluster indicates the benchmarks for the 

cluster.  

IPC for the system with partitioned cache is higher in cases where at least one 

benchmark is f type and the other applications have a small footprint in the L2 cache. For 

example, workloads fsss, nnff, fffn and fnts. In each case, IPCtotal improved primarily 

because of improvement in the IPC for the core with the f type benchmark. It is also 

interesting to observe the effect of the s type benchmarks. Very little to no improvement 

was observed in IPC for the core with the s type benchmarks through PMCP. In fact the 

presence of the s type benchmark in the workload limits the maximum achievable 

improvement through PMCP. S type benchmarks are streaming or thrashing type 

benchmarks. Such benchmarks require significantly more bandwidth but do not have a 

large footprint in the cache. Miss-rate for these benchmarks were always 0.5 (since there’s 
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always one hit and one miss for every new block). This makes PMCP assign more space 

for the core with the s type benchmark that its footprint. Figure 14 shows the cache partition 

sizes assigned to the cores when the fnts workload is simulated on GEM5 with the s type 

benchmark running on core 3. Indeed, a significant amount of space is allocated to core 3. 

Although the space is not utilized efficiently, it is the smallest partition among all other 

partitions. However, Figure 15 shows that s type’s miss-rate was the highest and should be 

assigned the largest partition. This is because core 3 had the smallest number of accesses 

made compared to other benchmarks. The number of accesses affect the Q and R matrices 

(see Section 4.5). Indeed a core with low number of accesses can have a high miss-rate. 

Therefore it is critical to account for not only the miss-rates but also the total number of 

accesses for a benchmark. PMCP accounts for both when making its estimates. 

 

 

Figure 14: Steady state partition sizes in each TQ for the fnts workload. Both HLTP and 

HLSP are included in the figure. 
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Figure 14 also shows HLTP and HLSP as they occur on the timeline. Note that PMCP 

is executed during HLSP too. However, the variations in the estimated partition sizes are 

so small that they are rounded off to the nearest integer value. The spike in core 0’s partition 

size during HLSP (TQ = 31) is because of the variation in miss-rate observed during the 

same TQ (see Figure 15). However since the miss-rate dropped in the consecutive TQs, the 

partition size dropped and is rounded off to the nearest integer. 

 

 

 

Figure 15: miss-rate measured at the start of each TQ for the fnts workload. 
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workload running on a multithreaded processor to the single threaded individual workloads 

involved with exclusive access to the entire processor. Fair-speedup (also known as H-

mean) is a way to quantify this slowdown when the same number of instructions can be 

executed for each individual workloads. Section 8.1 describes the experimental setup and 

dictates that the measurements are collected each time a thread completes 10 million 

instructions in HLSP. This ensures that the run time for each thread to complete 10 million 

instructions is recorded and utilized to evaluate IPCmti. IPC for the exact same 10 million 

instructions is collected by running single threaded benchmarks individually on the same 

simulated processor (IPCsti) individually. IPCmt and IPCst is measured for all n threads 

running on the processor. 

𝑓𝑎𝑖𝑟 − 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =  
𝑛

∑ 𝐼𝑃𝐶𝑠𝑡𝑖
𝐼𝑃𝐶𝑚𝑡𝑖

⁄𝑛

 

Figure 16 compares the fair-speedup between a system where the L2 cache is 

partitioned by PMCP and a system with baseline shared cache. Each cluster represents a 

distinct test case. The organization of the figure follow the same rules as described in 

Section 9. Among all the workloads, a processor with PMCP on L2 cache was fairer by a 

maximum of 5.5% and an average of 2.3% better than a processor with standard shared L2 

cache. 
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Figure 16: Fair-speedup for various workloads simulated. The left bar in each cluster 

represents the IPC for a processor where the with standard LRU replacement in the L2 

cache. The right bar in each cluster represents the IPC for a processor where the L2 cache 

is partitioned. 
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10. IMPROVING PMCP BY EVALUATING PERFORMANCE MODEL 

DYNAMICALLY 

Currently, the performance model used in PMCP is based on the √2 Rule (equation 15). 

Although it is a good model it certainly generalizes the performance of all the processes 

running on the system. It’s been documented [15] that 0.3 < α < 0.7 and M0 can be different 

for each process running on the cores. In addition, equation (15) does not address processes 

with discontinuous miss-rate curves directly. Despite these limitations, in its current form 

PMCP is capable of predicting cache partitioning schemes such that throughput and fair-

speedup are improved in most cases. However, it requires certain empirical evaluations of 

the error covariance matrices of the processes running on the cores. Empirically designed 

error covariance models allow PMCP to customize to the active threads data access 

patterns; but it limits PMCP’s performance in cases where no prior knowledge is available 

for the user to design models for the error covariance matrices. A more accurate 

performance model need not rely on models for the error vector (wk in equation 17 and vk 

in equation 18). They can be treated as Gaussian error. But with limited information about 

the different processes running on the system, designing an appropriate system model is 

not trivial. 

Gradient Projection (GP) is an optimization problem that has the potential to determine 

miss-rate curves with respect to cache sizes (performance model) dynamically with limited 

knowledge of the data access patterns of the active threads. GP starts with an initial miss-

rate curve and updates the curve iteratively based on measurements from the cache. To do 
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this GP redefines the performance model by including a control vector u(k) (equation 21) 

which is determined in real-time.  

𝑴(𝒌 + 𝟏) = 𝑴(𝒌) +  𝒖(𝒌) (21) 

 

Where M(k) represents the miss-rate for the thread under consideration when cache size 

equals k. In other words, 0< k ≤ Ct-1 and 𝑘 ∈ 𝐼. Ct is the total cache capacity. 

GP estimates u(0), u(1), …, u(Ct-1) that is used to update M(1), M(2) … M(Ct) iteratively 

while optimizing a relation, or a rule (called a functional) based on measured miss-rates 

while maintaining the boundary conditions of the variables M and u.  

 

10.1 Defining the functional 

A functional J is defined as a rule of correspondence that assigns to each function f in 

a certain class Ω a unique real number. Ω is called the domain of the functional and the set 

of real numbers associated with the functions is called the range of the functional. Note 

that Ω (the domain of the functional f) is a class of functions. In other words, a functional 

J is a “function of functions”. By relating functions to real numbers the relationship 

between two functions can be quantified and evaluated.  

PMCP can include GP in designing the performance model by selecting a functional J 

(equation 22) in the form of a mean square error function that compares the measured miss-

rates and the miss-rates evaluated in the previous TQ for each thread. 

𝐽 =  √
∑ (𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑀(𝑘))

2𝐶𝑡
𝑘=0

𝐶𝑡
 

(22) 
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where 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 is the measured miss-rate in the current TQ. 

 

10.2 Setting up GP 

To get the approximate miss-rate curves of all the threads in the system it is essential 

to understand how GP generates miss-rate curves for a single thread first. Assume a single 

core processor with a single thread running on the system. However, the user is unaware 

of the last-level shared cache’s data access patterns of the thread or the miss-rate curve. In 

such cases, the user is limited to certain general information about the miss-rate curves. 

For all practical purposes, the cache can be assumed to be limited in capacity. Therefore 

the miss-rate curve is evaluated by scaling the cache size c, such that 

c ϵ I and 

0 < 𝑐 ≤ 𝐶𝑡 (23) 

where  

Ct = cache size 

I = set of all integers 

Another information available to the users is the limits on the miss-rate M of the thread i.e. 

M ϵ R and  

0 ≤ 𝑀(𝑘) ≤ 1 (24) 

Where R is the set of all real numbers. 

Note that miss-rate is always assumed to be 1 when lim
𝑐=0

𝑐. Using GP, over several TQs, 

PMCP has the capability of evaluating very accurate miss-rate curves. As mentioned in 

equation (21),   

𝑀(𝑘) = 𝑀(𝑘 − 1) +  𝑢(𝑘 − 1) 
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𝑀(𝑘) = 𝑀(𝑘 − 2) +  𝑢(𝑘 − 2) +  𝑢(𝑘 − 1) 

𝑀(𝑘) = 𝑀(𝑘 − 3) +  𝑢(𝑘 − 3) +  𝑢(𝑘 − 2) +  𝑢(𝑘 − 1) 

. 

. 

. 

𝑀(𝑘) = 𝑀(0) + ∑  𝑢(𝑘 − 𝑙)𝑘−1
𝑙=0   

Without loss of generality, M(0) can be assumed to be always 1. Therefore based on the 

above equation 

𝑀(𝑘) = 1 + ∑  𝑢(𝑘 − 𝑙)𝑘−1
𝑙=0    (25) 

Since 0 ≤ M ≤ 1, the limits on u(k) can be defined as 

−1 ≤ 𝑢(𝑘) ≤ 1 (26) 

Equation (24) can be modified, by substituting equation (25) in equation (24), as 

0 ≤ 1 + ∑  𝑢(𝑘 − 𝑙)𝑘−1
𝑙=0 ≤ 1  (27) 

In addition J can be modified by substituting equation (25) in equation (22) as 

𝐽 =  √
∑ (𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − (1 + ∑  𝑢(𝑘 − 𝑙)𝑘−1

𝑙=0 ))
2

𝐶𝑡
𝑘=0

𝐶𝑡
 

(28) 

Equations (26) and (27) define the limits on the control vector u(k). They can be 

summarized as 

1 + ∑  𝑢(𝑘 − 𝑙)𝑘−1
𝑙=0  ≥ 0  

−∑  𝑢(𝑘 − 𝑙)𝑘−1
𝑙=0  ≥ 0     

𝑢(𝑘) + 1 ≥ 0  

−𝑢(𝑘) + 1 ≥ 0  
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GP requires all the coefficients to be normalized. Therefore the above constraints are 

rewritten as 

1

√𝑘
(1 + ∑  𝑢(𝑘 − 𝑙))𝑘−1

𝑙=0  ≥ 0  

−
1

√𝑘
∑  𝑢(𝑘 − 𝑙)𝑘−1

𝑙=0  ≥ 0     

𝑢(𝑘) + 1 ≥ 0  

−𝑢(𝑘) + 1 ≥ 0  

 

Since 0<k≤Ct, there are 4Ct constraint equations. These constraints can the combined 

together in a vector and represented as  

[
 
 
 
 𝐿(1 √𝑘⁄ )𝐶𝑡𝑋𝐶𝑡

𝐿(−1 √𝑘⁄ )𝐶𝑡𝑋𝐶𝑡

𝐼𝐶𝑡𝑋𝐶𝑡

−𝐼𝐶𝑡𝑋𝐶𝑡 ]
 
 
 
 

4𝐶𝑡𝑋𝐶𝑡

∗ [

𝑢(0)

𝑢(1)
⋮

𝑢(𝐶𝑡 − 1)

]

𝐶𝑡𝑋1

+

[
 
 
 
 1 √𝑘⁄

𝐶𝑡𝑋1

0𝐶𝑡𝑋1

1𝐶𝑡𝑋1

1𝐶𝑡𝑋1 ]
 
 
 
 

4𝐶𝑡𝑋1

≥ [0]4𝐶𝑡𝑋1 

(29) 

Where L is a lower matrix and I is the Identity matrix. Therefore the problem of 

evaluating the miss-rate curve can be formulated as – Find the control values that satisfy 

equation (29) and minimize the function represented by equation (28). Typically, J 

(equation (28)) is minimized using the Gradient Projection Method until the norm of the 

difference of two consecutive control vectors is less than a predefined value δ. In other 

words, end the iterative process at the ith iteration if 

‖𝑢𝑖 − 𝑢𝑖−1‖ ≤ 𝛿 

Note that the entire process of GP is evaluating the values of u(k). The functional to be 

minimized and the constraints are represented in terms of u(k). The values of u(k) is then 

used to evaluate M(k) using equation (25). It should also be noted that the exact function 
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of M is never evaluated. GP simply evaluates the values of M for a set of discrete points 

0<k≤Ct. 

In processors where multiple threads run simultaneously, GP can be scaled easily by 

evaluating the miss-rate curves for all threads as if the threads are mutually exclusive. 

Indeed this can be used in conjunction with PMCP to evaluate optimal cache-partitioning 

strategies dynamically. Note that, if GP takes t number of iterations to converge to the 

miss-rate curve, the computation complexity of the GP would be O(ntCt) where n is the 

number of threads. Typically t is a very small number (less than 10) and Ct, is constant in 

a processor. Therefore, in a real system, the number of threads running on the processor 

are the dominant factor in the scaling of the computations of GP.   



11. CONCLUSION AND FUTURE WORK 

As shown in this document, PMCP has the potential to improve the performance of the 

system by partitioning the last level shared cache such that cache utilization is optimized. 

PMCP is a light-weight and scalable technique that uses both statistical models and 

measured observations to update the size of cache partitions and the weighing matrices 

(error covariance matrices) dynamically. By iteratively updating the two factors, PMCP 

makes predictions dynamically without needing information in advance about the data 

access patterns of the combination of workloads before the.  

Experiments were designed to test PMCP on GEM5, an event-driven multiprocessor 

simulator. The simulation results demonstrate that PMCP can partition the cache efficiently 

and improve the throughput of the processor by as much as 35% and fairness by 5.5%. 

Although the results were satisfactory, a closer examination of the partition sizes 

revealed that the partitions could be allocated in a better way to further improve the overall 

processor’s performance. The suboptimal partitioning is the consequence of the error 

covariance matrices Q and R’s empirical modelling that need not cater to every type of 

workload. If the performance model is realized dynamically, PMCP’s dependence on the 

empirically modeled error covariance matrices can be avoided and the covariance matrices 

can be treated as Gaussian noise. A Gradient Projection method has been proposed to 

evaluate the performance model dynamically. Note that the performance model only 

estimates the distinct miss-rate values for the benchmarks when the cache size is scaled. It 

does not evaluate the mathematical model for the performance of the system.  
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Theoretical the GP method of evaluating performance model holds a lot of promise. A 

study of the timing effects of such an update in PMCP is necessary along with the study of 

the physical implications and requirements of PMCP on the processor. However, in its 

current state, this research should have presented enough evidence for an alternative 

Control Theory based solution to optimizing cache utilization dynamically and, perhaps, 

extend the framework towards other resources’ utilization.     
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