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ABSTRACT 

 

KANCHINADAM TEJA SIMHA. A framework for the use of wearables to enable study 

of stress. (Under the direction of DR. YU WANG) 

 

Stress is a common condition that has major health impacts. Even though short-term stress 

helps people to react to danger immediately, chronic stress has larger health impacts such 

as early aging, post-traumatic stress disorder, and depression. In this thesis, I propose a 

continuous stress monitoring approach that can potentially lead to an improved 

understanding of stress. The approach applies machine learning algorithms to data 

collected from embedded sensors on a commercially-available wearable device in order to 

automatically recognize physiological symptoms of stress. Existing approaches for stress 

detection have typically required specialized sensor equipment or extensive manual 

labeling of data collected by a researcher in a laboratory setting. A distinguishing feature 

of our approach is the application of semi-supervised learning algorithms to a data set 

collected from study participants as they pursue their everyday activities in natural settings.  

Such an approach provides a foundation for a wearable system that can serve as a platform 

for use by researchers who wish to collect data about stress from a large population of study 

participants over extended periods of time, as well as a health and well-being application 

that alerts users to periods when they are experiencing physiological symptoms associated 

with stress. Preliminary results for a small study with 8 participants show that my approach 

can classify physiological symptoms of stress with an average accuracy of 86.3% in per-

subject analysis and 75.9% in between-subjects analysis. 
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CHAPTER I: INTRODUCTION 

 

Stress is a common condition that has major health impacts. In a scientific study of 

workplaces, over 77% of participants stated that they regularly experience physical 

symptoms caused by stress [1]. Numerous emotional and physical disorders have been 

linked to stress including depression, anxiety, heart attacks, stroke, hypertension, immune 

system disturbances that increase susceptibility to infections [1]. Even those who are 

physically fit are negatively impacted by stress in their personal and professional lives [2].  

An improved understanding of stress can potentially improve the health and well-

being of millions of people. While an extensive amount of research has examined the health 

impacts of stress [46—50], there are many questions posed that remain unexplored. 

Researchers who want to explore stress, however, are limited to time-intensive and 

expensive options that limit the duration of observation of study subjects. Many existing 

stress monitoring approaches require study in a laboratory or clinical setting, in which 

participants are required to wear clinical equipment while being observed by a medical 

professional. Other approaches to stress monitoring rely on participants to self-report their 

stress through daily stress diaries and batteries of questionnaires. It is quite challenging for 

participants to answer questionnaires in real-time, which can lead to forgotten or 

misreported activities  
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and stress-related experiences. In addition, the reporting required can be extensive and 

burdensome for the participants.  

An emerging approach that holds promise is the use of wearable devices for 

continuous and less obtrusive stress monitoring. As commercially-available smartwatches, 

like that shown in Figure 1.1, become more widely adopted, they offer opportunities to 

study stress across a larger population of study participants without the need for specialized 

equipment. Modern smartwatches are equipped with sensors that are capable of sampling 

some of the physiological characteristics associated with stress. Specifically, smartwatches 

commonly include a heart rate sensor, which can capture the kinds of irregular heartrate 

associated with stress, and a galvanic skin response sensor, which captures the electrical 

component variation in the skin and has been shown to be a useful indicator for measuring 

stress [8, 9, 12, 38]. The raw data extracted from these sensors can then be analyzed to 

identify signatures in the signals of stress experienced by the smartwatch wearer.   

 

 

Figure 1.1: Microsoft Smart Band-2 
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In this thesis, I explore the potential for a wearable system that applies machine learning 

algorithms to the raw data collected from embedded sensors on a commercially-available 

smartwatch device to automatically detect physiological symptoms of stress. A machine 

learning algorithm uses sample input data collected about a phenomenon to learn a model 

that can be used to make predictions.  While existing approaches have examined the 

application of supervised machine learning to wearable sensor data for stress detection, 

these approaches have required extensive observation and manual labeling of ground-truth 

data in a laboratory setting [8, 9, 10, 11, 12, 13, 38]. A distinguishing feature of my 

approach is the application of semi-supervised machine learning algorithms to a data set 

collected from study participants in natural settings.  Such an approach provides the ability 

to monitor study subjects as they pursue their everyday activities over an extended duration 

of time, without requiring extensive self-reporting, observation, or clinical equipment. 

Results of a pilot study with 8 users demonstrate the feasibility of this approach, which can 

classify periods of stress at 75.9% accuracy when learning a model that is generalized 

across all users and, on average, achieves 86.3% accuracy when the model is tailored to a 

particular user.    



CHAPTER II: MOTIVATION  

 

Machine learning is a well-suited and commonly applied approach to detect 

activities or conditions from sensor data [3—7].  Given a set of inputs, a machine learning 

algorithm will use those inputs to “learn” to produce the correct output when encountering 

a new input. Essentially, the machine learning algorithm is finding a model that fits the 

known data, and is then using the model to make predictions over new data. The 

algorithmic process of learning from inputs is called training and the process of predicting 

the associated outputs of new or unseen inputs is called testing. If the outputs associated 

with the learning task are continuous, the machine learning algorithm performs regression, 

which is the prediction of a real value. Predicting a value along a continuous spectrum that 

reflects the degree of stress that a person is experiencing is an example of a regression 

problem. If the learning task requires discrete outputs, the process of predicting the output 

is called classification. Predicting if an experience can either be labeled as belonging to the 

class “stress” or “not stress” is an example of classification. In this thesis, we perform 

classification to detect stress, where the inputs are physiological responses of stress 

measured by the Galvanic Skin Response sensor and Heart Rate sensors. 
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Supervised learning is a particular kind of machine learning approach in which, 

given a set of inputs and their corresponding ground truth output labels, the algorithm will 

learn to produce output labels for new or unseen inputs. Figure 2.1 shows the architecture 

of supervised learning, where stress and not-stress are the classes of labels given as part of 

the training input set to learn the classification model, and are the output labels produced 

as a result of applying the classification model to new sensor data inputs.  

 

 

Figure 2.1: Architecture of a supervised learning algorithm. 

The limitation of supervised learning is that it is tedious, expensive, and sometimes 

impossible to acquire a large collection of labeled inputs that can be used as ground truth 

to derive a model. With respect to the problem of getting input data for supervised stress 

detection, collecting real-time physiological responses from sensor data is easy but getting 

their corresponding outputs or labels is often difficult. To get ground truth for the collected 
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sensor data, labeling must be performed at each minute under real-time conditions, which 

is impractical. 

At the other end of the spectrum, an unsupervised learning approach requires no 

labeled inputs. In unsupervised learning, given a set of unlabeled inputs, the algorithm will 

learn to produce outputs for new inputs. Figure 2.2 illustrates an unsupervised classification 

approach for stress detection.  

 

Figure 2.2: Architecture of Unsupervised Learning algorithm. 

While unsupervised learning alleviates the need for training sets with large amounts 

of labeled data, this approach does not perform as well as supervised learning for 

classification [39]. Between these extremes is an approach called semi-supervised learning, 

which makes use of both labeled and unlabeled data in training. Figure 2.3 illustrates the 

architecture of a semi-supervised classification algorithm for stress detection. Semi 

supervised learning has many approaches and they work on certain assumptions which 

again depend on the type of semi supervised learning approach. Example of semi 

supervised learning approaches would be Label Propagation in which the unlabeled data 
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is classified first using labeled data as training set. Based on the classification, labels are 

assigned to the unlabeled data. The classified unlabeled data is added to the set of labeled 

data and will be used for training. Another approach of semi supervised learning would be 

K-means clustering in which the data is clustered or grouped based on the underlying 

structure of the data. The data will be labeled based on which cluster it belongs to and will 

be used for training. This approach is unsupervised in nature and labels are not used in this 

approach. The importance of using unlabeled input data for training has been demonstrated; 

semi-supervised learning results in lower misclassification rates when compared with 

supervised learning using only labeled data [15—17].  

 

Figure 2.3: Semi supervised learning pipeline 

In this thesis, I apply semi-supervised learning to the problem of stress detection 

over sensor data collected from users in natural settings with a small number of labeled 

examples.  



CHAPTER III: METHODS 

 

From the physiological point of view, stress is a physiological response triggered 

from the Autonomic Nervous System (ANS). The ANS has two components: The 

Sympathetic Nervous System (SNS) and Parasympathetic Nervous System (PNS). The SNS 

is responsible for the physiological responses of stress such as increase in heart rate, 

respiration activity (heavy breathing), and excessive secretion of sweat from sweat glands 

while the PNS is responsible for bringing these physiological responses to normal state. 

Most smartwatches include sensors that can capture the physiological responses triggered 

by the SNS and the PNS, including a heart rate sensor and galvanic skin response.  

First, a heart rate sensor, in theory, can be used to capture Heart Rate Variability 

(HRV). HRV is a physiological response which can be defined as the interval between two 

successive heartbeats. Under acute stress, HRV is increased for limited duration of time. 

The Heart Rate (HR) is also a physiological response and is defined as the number of 

contractions of heart per minute. Several parameters of HR and HRV can be used to 

measure the physiological response of stress. 

Second, Galvanic Skin Response (GSR) or Skin Conductance (SC) is a 

physiological response which is a measure of electrical characteristics of the skin. 

Typically, stress can 
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be measured by continuously monitoring the variation in the electro dermal activity of the 

skin. It has been demonstrated that even in adverse physical conditions, GSR response is 

not biased with respect to body activity. SC has two components namely Skin Conductance 

Response (SCR), which is a fast-changing component, and the skin conductance level. 

(SCL), which is a slow changing component. The maximum value of the SCR and the 

latency of SCL are important attributes that can be used to measure stress. 

To record physiological responses of stress, we conduct a study in which 

participants wear smartwatches that collect data related to heart rate variability and 

galvanic skin response. Specifically, participants in this study were asked to wear a 

Microsoft Band and carry an Android mobile phone for 3 consecutive days as they go about 

their normal daily routines. The mobile application deployed on an Android phone 

communicates with Microsoft Band smartwatch, which has embedded GSR and HR 

sensors. The Microsoft Band collects the raw sensor data and sends it to the Android 

application, which stores the data on the phone. To provide the small number of ground 

truth labels needed for a semi-supervised learning approach, the Android application also 

provides support for issuing surveys on stress and recording survey responses. Participants 

were asked to complete two types of surveys: 1) periodic surveys, in which users were 

asked to answer the questions in the survey in the morning, afternoon and evening of each 

day of the study and 2) on-demand surveys in which users were asked to participate in the 

survey right after a particular activity (in this case, smoking or eating) is performed. The 

surveys, included in Appendix A, are validated instruments related to capturing mood and 

stress. 
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Figure 3.1 shows the pipeline for applying machine learning to the data collected 

in this study for stress detection. In the remainder of this chapter, I describe each stage of 

the machine learning pipeline, detailing the approaches taken in each stage. The following 

chapter will present results of applying this pipeline. 

 

Figure 3.1: Continuous Stress Monitoring system. 

3.1 Preprocessing Step: Windowing Raw Data 

To detect stress based on the physiological responses, the sensor data needs to be 

passed to a semi-supervised learning as input (training). Stress is a physiological response 

and looking at single data point will not effectively capture the stress variation in the signal. 

Looking at a window of sampled data points will give us better information about the 

condition over time, as demonstrated in the use of windowed accelerometer data for 

activity recognition [13]. Using overlapping windows is a desirable approach that gives 

better performance in activity recognition because it captures information at different 
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phases of the signal; having several samples at different phases will improve the accuracy 

of the machine learning classification. Fig 3.1.1 and 3.1.2 shows the difference between a 

regular window and an overlapping window approach. In this study, a 60 second time 

window with 50% overlapping is implemented. The importance of using 50% overlapping 

window has been stated in [13] and is considered as the optimal overlapping percentage.  

 

 

Figure 3.1.1: Representation of regular time window. 
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Figure 3.1.2: Representation of an overlapping time window. 

3.2 Preprocessing Step: Feature Definition 

Input data to machine learning algorithms is defined in terms of features, or properties 

of the data that are likely important to the characterization of the associated phenomenon 

the data is collected about.  With respect to our data, a feature can be defined as a distinctive 

attribute of a signal or wave. Similarly, a feature vector can be defined as the set of such 

distinctive attributes in a signal or a wave. Since the data in each window corresponds to 

raw sensor data and since the data is time-variant, each window can be considered as a 

signal. Feature vectors from each window are defined to train a machine learning 

algorithm. In this study, features from each window are defined in two ways:  

- Using the domain knowledge of the physiological responses from GSR and HR, we 

have explicitly defined features, which are described in Section 4.2.1.  

- By understanding the structure of raw sensor data, features are learned using a 

machine learning algorithm in an unsupervised way. This approach and the 

resulting features are described in Section 4.2.2.  
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3.2.1 Explicitly Defined features 

Using the domain knowledge of the physiological responses, HR and GSR features 

are extracted from each window. HR features are calculated over time-domain and spectral-

domain analysis. First, Heart Rate Variability (HRV) is calculated from the HR by the 

formula (𝐻𝑅𝑉 =
60

𝐻𝑅
∗ 1000). Time-domain features such as mean-HR, mean-HRV, 

standard deviation of HRV and HR are calculated for each window. RMSSD which is the 

root mean square of the successive difference in heart-rate intervals and pnn50 which is 

the percentage of R peaks whose value in greater than 50ms are calculated over HRV. PSD 

estimate using Welch’s formula are calculated for HRV via LF and HF. Ratio of LF and 

HF is also calculated to estimate the signal to noise ratio. The importance of these features 

has been explained in [8, 9, 14].  
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Figure 3.2.1.1 Rutgers University (2003). Definition of waves, segments and intervals in 

the normal ECG waveform [Image]. Retrieved from 

rutgers.edu/classes/bme/bme305/ModelFitting/ModelFitting_HW.html 

 

The other important heart-rate features would be the QRS interval, P-wave length, 

Q-wave length, etc. as shown in the Figure 3.2.1.1. These features have not been calculated 

in this thesis because the sampling rate of MICROSOFT band is 1Hz which means it only 

gives us the average R-R interval value for each second. With wearables such as 

SHIMMER which have higher sampling rates, we can measure these features and the 

importance of these features have been demonstrated and are used in cardiology, medical 

field, etc. 

GSR features are calculated by estimating the startle responses in a given window. 

Stress is often associated with instant reflexes and when these reflexes occur there is a 

sudden change in the physiological symptoms in the body. Sudden change or stimuli in the 

body is defined as startle responses. The importance of startle responses and the method to 

extract these responses from skin conductance (GSR) has been demonstrated by Healey 

and Picard [9]. From Figure 3.2.1.2, startle responses of a signal can be seen as the onset 

to peak value in a signal. Features such as number of startle responses (number of such 

onset-peak values), sum of the duration of startle responses (SD), sum of the magnitudes 

of startle responses are calculated (SM) are extracted. 
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Figure 3.2.1.2 Massachusetts Institute of Technology (2000). An example of the startle 

responses occurring in a one and the results of the algorithm showing onset "X" and peak 

"0" detection. The features SM and SD are calculated as shown. [Image] Retrieved from 

J. A. Healey, “Wearable and Automotive Systems for Affect Recognition from 

Physiology,” Ph.D. dissertation, 2000. 

 

 

The startle response has been calculated from the same method described in [9] but 

instead of using an elliptical filter, but [14] have demonstrated the importance of Gaussian 

filter and after manually observing the startle responses of each user, we have used a sigma 

value often called as the smoothing function which attenuates the noise from the signal as 
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0.7 to filter out noisy data. Time-domain features like mean-GSR and standard deviation 

of GSR are also calculated [8, 9, 12, 14].  

All the HR and GSR features are normalized such that they are scaled in the range 

of [0,1). Normalization is a standard step that ensures that features that are measured in 

different units are comparable [8]. 

Table 3.2.1.1: Explicitly Defined Features from Heart rate 

Feature Feature Set 

Mean HR Time Domain 

Mean RR Time Domain 

RMSSD Time Domain 

pnn50 Time Domain 

STD HR Time Domain 

STD RR Time Domain 

LF Spectral Domain 

HF Spectral Domain 

LF/HF Spectral Domain 
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Table 3.2.1.2: Explicitly Defined Features from Galvanic Skin Response 

Feature Feature Set 

Number of startle events Spectral Domain 

Sum of duration of startle 

events 

Spectral Domain 

Sum of magnitudes of 

startle events 

Spectral Domain 

STD GSR Time Domain 

Mean GSR Time Domain 

We have extracted a total of 14 features (F1 – F14) from HR and GSR sensor data 

where F1-F9 are shown in Table 3.1 and F9- F14 are shown in Table 3.2. 

3.2.2 Feature Learning via Contrast Divergence 

In a second experiment, we have used Restricted Boltzmann Machines (RBM) [51] 

to automatically learn features from the raw window of sensor data points. Restricted 

Boltzmann Machines (RBM) belongs to the class of artificial neural network than can learn 

the probability distribution over its set of inputs [17]. Contrast divergence algorithm 

belongs to the class of RBM with a gradient-based approximation of log-likelihood on a 

short morkov-chain [17]. RBM’s learn the probability distribution of points over its set of 

given inputs and in this study, we have used the Contrast-Divergence (CD) algorithm to 

automatically learn the features over the window of raw GSR and HR data points. A total 
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of 100 features from each window have been learned using this algorithm. As before, 

features are normalized to fall in the range of [0,1). 

3.3 Preprocessing Step: Defining Labels Over Data 

The features computed over the (overlapping) windows of sensor data will serve as 

input to the machine learning algorithm. To provide labels for our training data set for our 

semi-supervised learning algorithm, we label each window using survey responses as 

ground truth. Specifically, we manually label each GSR and heart rate window with the 

corresponding survey responses as either “stressed” or “not stressed”. The labelling 

procedure for ground truth is shown in Figure 3.3.1, where L1, L2…, LN are the periodic 

surveys issued to the users. The surveys are optional to each user and he/she can choose to 

answer the survey it or not. If the survey responses are answered, then all the corresponding 

sensor data within a timeframe t of L are labeled with the user’s response of “stress” or 

“not stressed”. This approach assumes that the subject’s response of the stress condition is 

valid within time frame t. Experiments with various values of t = 60 min, 50 min, 40 min, 

30 min, 20 min, and 10 min have been conducted by manually observing the sensor data. 

Given then results of our experiments, we assume that the responses with the time frame 

t=20 min are valid and use this value for our labelling scheme. All the windows which fall 

within this time frame are labeled according to the survey response answered by the user 

and all the windows which does not fall into this timeframe are not labeled and are called 

unlabeled samples.  
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 Figure 3.3.1: Labeling sensor data based on survey responses 

3.4 Semi-Supervised Learning with Boosting  

Out of 222 survey responses, more than 133 survey responses are for not stress, 44 

responses are for slightly stressed, 20 responses are for somewhat stressed, 13 survey 

responses are for moderately stressed and one survey response is for very stressed. Nearly 

20-30 survey responses have no associated sensor data. Since we do not have equal 

distribution of classes and since not stress class is higher than 50% of all the other classes 

combined, we group reports for “moderately stressed” and “very stressed” into a single 

category with a label of “stressed”. All other reports are labeled “not stressed”. We can 

then treat this as a binary classification problem that learns a classification model that can 

differentiate between two classes: stressed and not stressed. 

Selection of the machine learning technique used for classification is an important 

consideration. My selection of algorithm addresses the challenge of label noise. Since the 



 

 

21 

labeling scheme we have set involves a fixed t=20min threshold, there is a good possibility 

that there is noise in the labels. Additionally, since the labels are from the survey responses, 

the responses are subjective and may not correspond as we would expect with physiological 

symptoms of stress. This kind of label noise will affect the classification accuracy as most 

classifiers are not robust to label noise. There are many approaches to handle label noise 

and [26] explains the comprehensive survey of different techniques that reduce label noise. 

In my approach, to reduce the label noise, I select boosting as the machine learning 

technique for stress detection. Boosting is a machine learning technique which comprises 

of an ensemble of weak learners primarily tasked to reduce overfitting, which is a machine 

learning problem in which the outputs produced are not correct even though the algorithm 

performs well during learning. Several algorithms of Boosting have been shown to be more 

robust to label noise such as Regularized AdaBoost, Logit Boost, Brown Boost [26-29].  

XGBoost is used for supervised learning problems which belongs to the class of 

Boosting and it considers boosting as an optimization problem over a cost function with a 

regularization factor [33]. In this study, I use XGBoost as our base classifier [35] to our 

semi-supervised learning approaches because of the presence of label noise in the dataset. 

We explore the use of several semi-supervised learning approaches to our labeled and 

unlabeled data. In each of our semi-supervised learning approaches, XGBoost as the base 

classifier. In our experiments, we compare two semi-supervised learning approaches: co-

training and self-learning. 
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3.4.1 Semi-Supervised Learning Approach 1: Co-Training  

Co-training belongs to a class of semi-supervised learning which is extensively 

used in text-mining.  It assumes that each example is described using two different feature 

sets that provide different, complementary information about the instance. Ideally, the two 

views are conditionally independent and each view is sufficient. Co-training first learns a 

separate classifier for each view using any labeled examples. The most confident 

predictions of each classifier on the unlabeled data are then used to iteratively construct 

additional labeled training data [21]. Figure 3.4.1.1 explains the architecture of co-training 

where labeled and unlabeled data is used as training data by the co-training algorithm and 

the classifiers C1 and C2 are the supervised machine learning algorithms.  

 

Figure 3.4.1.1: Co-training pipeline 

We have used XGBoost as the classifiers (C1 and C2) in our co-training algorithm 

because Boosting helps to overcome label noise and reduce the overall bias on the 

classification. 

https://en.wikipedia.org/wiki/Conditionally_independent
https://en.wikipedia.org/wiki/Training_set
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3.4.2 Semi-Supervised Learning Approach 2: Self-Training 

Self-training is one of the earliest techniques using both labeled and unlabeled data 

to improve learning [24, 25]. Given a set of labeled data L and unlabeled data U, self-

training proceeds as follows: train a classifier h using L, and classify U with h; select a 

subset U ⊂ U for which h has the highest confidence scores; add U to L and remove U 

from U. This process is repeated until the algorithm converges. Figure 3.4.2.1 describes 

the architecture of self-training where Clf is a supervised machine learning algorithm. 

 

Figure 3.4.2.1: Self-training pipeline 



CHAPTER IV: RESULTS 

 

We report results for subject-wise and between-subjects analysis.  In a subject-wise 

experiment, the machine learning algorithm considers only the inputs for a single user to 

learn a classifier that is tailored to that user. In our subject-wise experiments, we omit two 

participants as they do not have the required sensor data and labels needed for training a 

classifier. In a between-subjects experiment, the machine learning algorithm is given the 

labeled and unlabeled data from all study participants, which results in a generalized 

classification. 

We have applied the following methods to conduct subject-wise and between-

subjects experiments to understand the physiological symptoms of stress for each user: 

Methods: 

 Experiment with only labeled samples using explicitly defined features (F1 – F14). 

 Experiment with only labeled samples using learned features (L1 – L100). 

 Experiment with labeled and unlabeled samples using explicitly defined features 

(F1 – F14) using Co-Training algorithm. 

 Experiment with labeled and unlabeled samples using explicitly defined features 

(F1- F14) using Self-Training algorithm. 
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 Experiment with labeled and unlabeled samples using learned features (L1 – L100) 

using Self- Training algorithm. 

4.1 Performance Evaluation Metrics 

The accuracy of the classification model can be defined as the percentage of outputs 

which are correctly predicted by the machine learning algorithm given a set of inputs. 

Another tool used to evaluate the performance of a classification task is the confusion 

matrix shown in Figure 4.1.1, which shows the ground truth associated with a labeled input 

and the resulting predicted value.  

 

Figure 4.1.1 Confusion matrix.  



 

 

26 

The confusion matrix provides a visual representation of metrics that are commonly used 

to evaluate a classification model:  

 True Positives (TP) indicates the cases where the physiological symptoms states 

stress and the algorithm produces the outputs as stress. 

 True Negatives (TN) indicates the cases where the physiological symptoms states 

not stress and the algorithm produces the outputs as not stress. 

 False Positives (FP) indicates the cases where the physiological symptoms states 

not stress and the algorithm produces the outputs as stress. False Positives are often 

termed as Type-I error.  

 False Negatives(FN) indicates the cases where the physiological symptoms states 

stress and the algorithm produces the outputs as not stress. False Negatives are 

often termed as Type-II error. 

The following performance measures can be calculated based on the confusion matrix:  

 Misclassification rate which is the percentage of new inputs which are wrongly 

classified by the classifier can be calculated as (FP + FN)/Total-number-of-

inputs.  

 Accuracy can be calculated as (TP + TN)/Total-number-of-inputs. 

 Precision, which is the percentage of examples which are classified as stress 

are actually stress. 
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 Recall, which is the percentage of examples which are classified as not stress 

are actually not stress. 

 F1-measure which is the harmonic mean of precision and recall. F1-score is 

also a measure of classification accuracy. 

 Precision, Recall & F1-measures are calculated for individual classes. To get 

the combined metric value for the experiment, average is calculated. For 

classification, Average is estimated by finding the area under the curve using 

ROC analysis and the importance of this is described in [52].  

To evaluate the performance of our models, we have used Stratified K-fold 

validation where the data is divided into K-folds and each time one fold is used for 

validation and the remaining folds are used for training the algorithm, repeating the process 

for K-times. Stratification ensures that each fold has equal distribution of classes. 

Stratification is generally a better scheme, both in terms of bias and variance, when 

compared to a traditional cross-validation approach [35]. 

4.2 Performance Evaluation Results 

4.2.1 Method 1: Baseline with Defined Features 

To serve as a baseline, we apply supervised machine learning to explicitly defined 

features. With explicitly defined features (F1 – F14), we have trained a XGBoost classifier 

with maximum depth of base learners as 3, learning rate of 0.1 and number of boosted 

trees as 100.  The accuracy was examined using stratified 10-fold cross validation as the 

model was trained with 75% training and tested with 25% test set for 10 times.  
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The confusion matrices and the corresponding classification metrics for subject-wise 

experiments are shown below: 

 

Table 4.2.1.1: Confusion matrix for User 1 using Method 1 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 611 151 

Actual Stress 72 103 

 

Table 4.2.1.2: Classification metrics calculated from Table 4.2.1.1 

Class Precision Recall F1-measure 

Stress 58.9 40.6 48 

Not Stress 80.18 89.45 84.5 

Average 

(ROC) 

74 76 75 

 

Table 4.2.1.3: Confusion matrix for User 2 using Method 1 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 500 0 

Actual Stress 0 197 

 

Table 4.2.1.4: Classification metrics calculated from Table 4.2.1.3 

Class Precision Recall F1-measure 
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Stress 100 100 100 

Not Stress 100 100 100 

Average 

(ROC) 

100 100 100 

 

Table 4.2.1.5: Confusion matrix for User 3 using Method 1 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 239 10 

Actual Stress 15 55 

 

Table 4.2.1.6: Classification metrics calculated from Table 4.2.1.5 

Class Precision Recall F1-measure 

Stress 78.57 84.6 81.48 

Not Stress 95.98 94.09 95.02 

Average 

(ROC) 

92 92 92 

 

Table 4.2.1.7: Confusion matrix for User 4 using Method 1 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 10 3 

Actual Stress 5 79 

 

Table 4.2.1.8: Classification metrics calculated from Table 4.2.1.7 
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Class Precision Recall F1-measure 

Stress 94.04 96.34 95.18 

Not Stress 76.92 66.7 71.42 

Average 

(ROC) 

91 92 92 

 

Table 4.2.1.9: Confusion matrix for User 5 using Method 1 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 49 9 

Actual Stress 9 29 

 

Table 4.2.1.10: Classification metrics calculated from Table 4.2.1.9 

Class Precision Recall F1-measure 

Stress 76.31 76.31 76.31 

Not Stress 84.48 84.48 84.48 

Average 

(ROC) 

81 81 81 

 

Table 4.2.1.11: Confusion matrix for User 6 using Method 1 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 495 127 

Actual Stress 67 37 
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Table 4.2.1.12: Classification metrics calculated from Table 4.2.1.11 

Class Precision Recall F1-measure 

Stress 35.57 22.5 27.6 

Not Stress 79.5 88.07 83.61 

Average 

(ROC) 

70 71 71 

 

The confusion matrices and the corresponding classification metrics for between-subjects 

experiment is shown below: 

 

Table 4.2.1.13: Confusion matrix for the combined dataset using Method 1 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 1937 524 

Actual Stress 298 276 

 

Table 4.2.1.14: Classification metrics calculated from Table 4.2.1.13 

Class Precision Recall F1-measure 

Stress 48.08 34.5 40.17 

Not Stress 78.70 86.6 82.4 

Average 

(ROC) 

71 73 71 

 

4.2.2. Method 2: Baseline with Learned Features 

As a baseline, we implemented supervised learning using learned features (L1 – 

L100). Specifically, we have trained a XGBoost classifier with maximum depth of base 
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learners as 3, learning rate of 0.1 and number of boosted trees as 100.  The accuracy was 

examined using stratified 10-fold cross validation as the model was trained with 75% 

training and tested with 25% test set for 10 times.  

The confusion matrices and the corresponding classification metrics for subject-wise 

experiments are shown below: 

 

Table 4.2.2.1: Confusion matrix for User 1 using Method 2 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 583 156 

Actual Stress 100 88 

 

Table 4.2.2.2: Classification metrics calculated from Table 4.2.2.1 

Class Precision Recall F1-measure 

Stress 46.80 36.06 40.74 

Not Stress 78.89 85.35 81.99 

Average 

(ROC) 

69 72 70 

 

Table 4.2.2.3: Confusion matrix for User 2 using Method 2 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 500 0 

Actual Stress 0 197 
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Table 4.2.2.4: Classification metrics calculated from Table 4.2.2.3 

Class Precision Recall F1-measure 

Stress 100 100 100 

Not Stress 100 100 100 

Average 

(ROC) 

100 100 100 

 

Table 4.2.2.5: Confusion matrix for User 3 using Method 2 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 220 37 

Actual Stress 24 38 

 

Table 4.2.2.6: Classification metrics calculated from Table 4.2.2.5 

Class Precision Recall F1-measure 

Stress 61.29 50.7 55.47 

Not Stress 85.6 90.16 87.9 

Average 

(ROC) 

82 81 81 

 

Table 4.2.2.7: Confusion matrix for User 4 using Method 2 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 8 1 

Actual Stress 7 81 
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Table 4.2.2.8: Classification metrics calculated from Table 4.2.2.7 

Class Precision Recall F1-measure 

Stress 92.04 98.7 95.2 

Not Stress 88.9 53.3 66.7 

Average 

(ROC) 

93 92 91 

 

Table 4.2.2.9: Confusion matrix for User 5 using Method 2 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 41 20 

Actual Stress 17 18 

 

Table 4.2.2.10: Classification metrics calculated from Table 4.2.2.9 

Class Precision Recall F1-measure 

Stress 51.42 47.36 49.31 

Not Stress 67.21 70.7 69 

Average 

(ROC) 

61 61 61 

 

Table 4.2.2.11: Confusion matrix for User 6 using Method 2 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 478 117 

Actual Stress 84 47 
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Table 4.2.2.12: Classification metrics calculated from Table 4.2.2.11 

 

Class Precision Recall F1-measure 

Stress 35.87 26.65 31.8 

Not Stress 80.3 85.05 82.62 

Average 

(ROC) 

70 72 71 

 

The confusion matrices and the corresponding classification metrics for between-subjects 

experiment is shown below: 

 

Table 4.2.2.13: Confusion matrix for the combined dataset using Method 2 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 1843 550 

Actual Stress 392 250 

 

Table 4.2.2.14: Classification metrics calculated from Table 4.2.2.13 

Class Precision Recall F1-measure 

Stress 38.9 31.25 34.67 

Not Stress 77 82.46 79.64 

Average 

(ROC) 

67 69 68 
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4.2.3 Method 3: Semi-Supervised (Co-training) with Defined Features 

With explicitly defined features (F1 – F14), we have trained a co-training 

algorithm using two XGBoost classifiers in which F1- F7 are passed to first classifier and 

F8 – F14 are passed to the second classifier. The accuracy was examined using stratified 

10-fold cross validation as the model was trained with 75% training and tested with 25% 

test set for 10 times.  

The confusion matrices and the corresponding classification metrics for subject-wise 

experiments are shown below: 

 

Table 4.2.3.1: Confusion matrix for User 1 using Method 3 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 633 198 

Actual Stress 50 56 

 

Table 4.2.3.2: Classification metrics calculated from Table 4.2.3.1 

Class Precision Recall F1-measure 

Stress 52.82 22.04 31.11 

Not Stress 76.17 92.67 83.61 

Average 

(ROC) 

70 74 69 

 

Table 4.2.3.3: Confusion matrix for User 2 using Method 3 

 Predicted Not Stress Predicted Stress 
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Actual Not Stress 500 4 

Actual Stress 0 193 

 

 

Table 4.2.3.4: Classification metrics calculated from Table 4.2.3.3 

Class Precision Recall F1-measure 

Stress 100 97.96 98.97 

Not Stress 99.20 100 99.60 

Average 

(ROC) 

100 99 98 

 

Table 4.2.3.5: Confusion matrix for User 3 using Method 3 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 249 22 

Actual Stress 5 43 

 

Table 4.2.3.6: Classification metrics calculated from Table 4.2.3.5 

Class Precision Recall F1-measure 

Stress 89.58 66.15 76.10 

Not Stress 91.9 98.03 94.85 

Average 

(ROC) 

91 92 91 
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Table 4.2.3.7: Confusion matrix for User 4 using Method 3 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 11 3 

Actual Stress 4 79 

 

Table 4.2.3.8: Classification metrics calculated from Table 4.2.3.7 

Class Precision Recall F1-measure 

Stress 95.18 96.34 95.75 

Not Stress 78.57 73.3 75.86 

Average 

(ROC) 

93 93 93 

 

Table 4.2.3.9: Confusion matrix for User 5 using Method 3 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 48 13 

Actual Stress 10 25 

 

Table 4.2.3.10: Classification metrics calculated from Table 4.2.3.9 

Class Precision Recall F1-measure 

Stress 71.42 65.78 68.49 

Not Stress 78.68 82.7 80.67 

Average 

(ROC) 

78 78 78 
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Table 4.2.3.11: Confusion matrix for User 6 using Method 3 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 541 144 

Actual Stress 21 20 

 

Table 4.2.3.12: Classification metrics calculated from Table 4.2.3.11 

Class Precision Recall F1-measure 

Stress 48.78 12.19 19.51 

Not Stress 78.97 92.26 86.76 

Average 

(ROC) 

69 72 70 

 

The confusion matrices and the corresponding classification metrics for between-subjects 

experiment is shown below: 

 

Table 4.2.3.13: Confusion matrix for the combined dataset using Method 3 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 2065 564 

Actual Stress 170 236 

 

Table 4.2.3.14: Classification metrics calculated from Table 4.2.3.13 

Class Precision Recall F1-measure 

Stress 58.12 29.5 39.13 

Not Stress 78.54 92.39 84.9 
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Average 

(ROC) 

73 76 73 

 

4.2.4 Method 4: Semi-Supervised (Self-training) with Defined Features 

With explicitly defined features (F1 – F14), we have trained a self-training 

algorithm using an XGBoost classifier for 200 iterations. The accuracy was examined 

using stratified 10-fold cross validation as the model was trained with 75% training and 

tested with 25% test set for 10 times.  

The confusion matrices and the corresponding classification metrics for subject-wise 

experiments are shown below: 

 

Table 4.2.4.1: Confusion matrix for User 1 using Method 4 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 610 162 

Actual Stress 73 92 

 

Table 4.2.4.2: Classification metrics calculated from Table 4.2.4.1 

Class Precision Recall F1-measure 

Stress 55.75 36.22 43.91 

Not Stress 79.01 89.31 83.84 

Average 

(ROC) 

73 75 73 
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Table 4.2.4.3: Confusion matrix for User 2 using Method 4 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 500 4 

Actual Stress 0 193 

 

 

Table 4.2.4.4: Classification metrics calculated from Table 4.2.4.3 

Class Precision Recall F1-measure 

Stress 100 97.96 98.97 

Not Stress 99.20 100 99.60 

Average 

(ROC) 

100 99 98 

 

Table 4.2.4.5: Confusion matrix for User 3 using Method 4 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 240 13 

Actual Stress 14 52 

 

Table 4.2.4.6: Classification metrics calculated from Table 4.2.4.5 

Class Precision Recall F1-measure 

Stress 78.78 80 79.38 

Not Stress 94.86 94.48 94.67 
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Average 

(ROC) 

92 92 92 

 

Table 4.2.4.7: Confusion matrix for User 4 using Method 4 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 8 7 

Actual Stress 7 75 

 

Table 4.2.4.8: Classification metrics calculated from Table 4.2.4.7 

Class Precision Recall F1-measure 

Stress 91.46 91.46 91.46 

Not Stress 53.3 53.3 53.3 

Average 

(ROC) 

86 86 86 

 

Table 4.2.4.9: Confusion matrix for User 5 using Method 4 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 51 14 

Actual Stress 7 24 

 

Table 4.2.4.10: Classification metrics calculated from Table 4.2.4.9 

Class Precision Recall F1-measure 

Stress 77.41 63.15 69.56 
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Not Stress 78.46 87.93 82.9 

Average 

(ROC) 

73 75 73 

 

Table 4.2.4.11: Confusion matrix for User 6 using Method 4 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 499 130 

Actual Stress 63 34 

 

Table 4.2.4.12: Classification metrics calculated from Table 4.2.4.11 

Class Precision Recall F1-measure 

Stress 35.05 20.73 26.05 

Not Stress 79.33 88.79 83.79 

Average 

(ROC) 

69 73 71 

 

The confusion matrices and the corresponding classification metrics for between-subjects 

experiment is shown below: 

 

Table 4.2.4.13: Confusion matrix for the combined dataset using Method 4 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 2002 559 

Actual Stress 233 241 
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Table 4.2.4.14: Classification metrics calculated from Table 4.2.4.13 

Class Precision Recall F1-measure 

Stress 50.84 30.125 37.83 

Not Stress 78.17 89.57 83.48 

Average 

(ROC) 

71 74 71 

 

4.2.5 Method 5: Semi-Supervised (Self-training) with Learned Features 

With learned features (L1 – L100), we have trained a self-training algorithm using 

an XGBoost classifier for 200 iterations. The accuracy was examined using stratified 10-

fold cross validation as the model was trained with 75% training and tested with 25% test 

set for 10 times.  

The confusion matrices and the corresponding classification metrics for subject-

wise experiments are shown below: 

 

Table 4.2.5.1: Confusion matrix for User 1 using Method 5 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 583 166 

Actual Stress 100 88 

 

Table 4.2.5.2: Classification metrics calculated from Table 4.2.5.1 

Class Precision Recall F1-measure 

Stress 46.8 34.64 39.81 

Not Stress 77.83 85.35 81.42 
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Average 

(ROC) 

68 71 69 

 

Table 4.2.5.3: Confusion matrix for User 2 using Method 5 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 500 0 

Actual Stress 0 197 

 

 

Table 4.2.5.4: Classification metrics calculated from Table 4.2.5.3 

Class Precision Recall F1-measure 

Stress 100 100 100 

Not Stress 100 100 100 

Average 

(ROC) 

100 100 100 

 

Table 4.2.5.5: Confusion matrix for User 3 using Method 5 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 218 15 

Actual Stress 36 50 

 

Table 4.2.5.6: Classification metrics calculated from Table 4.2.5.5 
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Class Precision Recall F1-measure 

Stress 58.13 76.92 66.22 

Not Stress 93.56 85.82 89.52 

Average 

(ROC) 

79 71 74 

 

Table 4.2.5.7: Confusion matrix for User 4 using Method 5 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 8 23 

Actual Stress 7 59 

 

Table 4.2.5.8: Classification metrics calculated from Table 4.2.5.7 

Class Precision Recall F1-measure 

Stress 89.39 71.95 79.72 

Not Stress 25.80 53.3 34.7 

Average 

(ROC) 

80 69 73 

 

Table 4.2.5.9: Confusion matrix for User 5 using Method 5 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 44 22 

Actual Stress 14 16 
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Table 4.2.5.10: Classification metrics calculated from Table 4.2.5.9 

Class Precision Recall F1-measure 

Stress 53.3 42.10 47.05 

Not Stress 66.7 75.86 70.96 

Average 

(ROC) 

61 62 62 

 

Table 4.2.5.11: Confusion matrix for User 6 using Method 5 

 Predicted Not Stress Predicted Stress 

Actual Not Stress 480 129 

Actual Stress 82 35 

 

Table 4.2.5.12: Classification metrics calculated from Table 4.2.5.11 

Class Precision Recall F1-measure 

Stress 29.91 21.34 24.9 

Not Stress 78.81 85.40 81.98 

Average 

(ROC) 

68 71 69 

 

The confusion matrices and the corresponding classification metrics for between-subjects 

experiment is shown below: 

 

Table 4.2.5.13: Confusion matrix for the combined dataset using Method 5 

 Predicted Not Stress Predicted Stress 
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Actual Not Stress 1915 495 

Actual Stress 320 305 

 

Table 4.2.5.14: Classification metrics calculated from Table 4.2.5.13 

Class Precision Recall F1-measure 

Stress 48.4 38.125 42.80 

Not Stress 79.46 85.68 82.45 

Average 

(ROC) 

71 73 72 

 

 



CHAPTER V: RELATED WORK 

 

Physiological sensors have been widely used to detect stress response. In particular, 

the importance of sensors that capture Heart Rate Variability (HRV) and Skin Conductance 

(SC) has been demonstrated throughout the literature [8, 9 ,10, 11, 12, 13, 16, 38].  

Heart Rate variability (HRV) can be a non-invasive measurement to detect stress. 

Salahuddin et. Al in [14] have calculated important features of HRV that detect stress. In 

their experiment, they have used an ECG sensor. To induce stress , each subject was asked 

to perform a computer based Stroop test, in which users have to identify colors on a fast 

moving screen. The subjects’ response times were recorded as a baseline indicator and 

HRV values were recorded. The results show that the most promising features of HRV that 

detect stress were mean HRV, mean HR, the root mean square of the successive difference 

between RR intervals (RMSSD), pnn50 which is the percentage of peaks which are greater 

than 50ms, power spectral density using Welch’s method over high pass filter (HF)  and 

low pass filter (LF) to calculate strength of the signal and strength of the noise, LF/HF 

which is the ratio of signal-to-noise, normalized LF (LFnu) and normalized HF (HFnu). In 

addition to HRV, variation in breathing is considered as an important indicator of stress 

and Jongyoon et. Al in [40] has classified stress using a custom made respiratory sensor, 

heart-rate and accelerometer. As a baseline measurement for stress, users were asked to 
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perform a colored word test (CWT), a variation of a Stroop test in which the user has to 

identify the color of the word shown on the screen. They have extracted features spectral 

domain features: LF, HF from PSD and a total of 6 features from PDM. Using a supervised 

learning approach in a laboratory setting with researcher-labeled data, they were able to 

achieving an accuracy of 83% in a within subjects analysis and 69% a between-subjects 

analysis.  

Skin Conductance (SC) or Electro Dermal Activity (EDA) is another indicator that 

detects stress; unlike HRV, EDA features are not effected with respect to body’s motion 

[8]. Roberto et. al [41] have measured stress from the EDA response by discriminating 

cognitive load, which is the amount of mental effort being used in working memory. They 

have calculated EDA response using a custom-made sensor and as a baseline measurement 

for stress and to measure the cognitive load, Stroop test was conducted. Stress was 

classified using supervised machine learning algorithms with an accuracy of 82.8%. The 

significance of skin conductance (SC) in detecting stress was also described by Breslau et. 

Al in [12]. Their work has demonstrated that by measuring the amplitude of fast changing 

component (SCR) of SC and average latency of slow changing component (SCL) of SC, 

stress which is a physiological response often considered as a stimulus can be detected. 

Later, Healey and Picard in [9] have derived a measure of the startle responses (shown in 

Figure 3.2.1.2) from SCL and SCR components of the GSR signals. From the startle 

responses features such as the number of startle responses, duration of startle responses 

and magnitude of startle responses were derived. In addition to GSR sensor, they have used 

ECG (for HRV), EMG which measures the electrical activity in muscles, and extracted 
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their features in time and spectral domains and classified mental stress by labeling the 

sensor data with the subjective self-reports and video recordings for ground truth. Using a 

supervised learning approach, they were able to classify stress with an accuracy of 97%. 

Even though their methods have demonstrated continuous stress monitoring in a real-world 

setting, the amount of sensors the user has to wear, video recordings and extensive self-

reporting makes it difficult to implement their setting in everyday activities.  

A stress detection system based on physiological sensors and fuzzy logic using HR, 

ECG, GSR, electromyography, and respiration rate sensors attached to a participant’s 

finger, wrist and ankle detected stress with 97.4% accuracy [44]. David et. Al have also 

detected stress using wearable physiological sensors to capture photo plethysmograph 

(PPG), EDA and ECG [43]. The baseline measure for stress was calculated using a variety 

of public speaking and cognitive load tasks. Using a supervised machine learning approach, 

they have achieved an average accuracy of 79% on stress detection. Jacqueline et. Al in 

[42] has conducted an experiment which detects mental stress with sensors: ECG, GSR, 

respiration rate and EMG. The baseline measure for stress was calculated based on the 

user’s self-reports and stress was classified using a supervised machine learning approach 

with an average accuracy of 79%.  Continuous stress monitoring using off-the-shelf 

wearable devices by Sun et. Al in [8] were able to detect mental stress with the help of a 

SHIMMER wearable device. With just two physiological sensors: GSR and HR along with 

an accelerometer and Stroop tests for baseline measures, they classified stress using a 

supervised machine learning approach on three physical activities: sit, stand and walk with 

an average accuracy of 90.1%. Even though these experiments were promising, results 
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were obtained only for experiments in a laboratory based environment with extensive 

labeling. 

Continuous stress monitoring approaches using off-the-shelf wearable devices 

attached to a mobile phone are closely related to the experiments conducted in this thesis.  

Picard et. al [10] have measured stress with a mobile phone attached to a wearable device. 

Several features were extracted from sensors: GSR, HR and accelerometer and as a 

baseline measure for stress, extensive surveys were conducted for each participant. They 

have achieved an accuracy of around 75% using a supervised machine learning approach 

for stress classification.  

Again, supervised machine learning requires substantial manual labeling in a 

laboratory setting. Every approach mentioned above has used supervised machine learning 

for stress detection. 

Unsupervised learning approaches have also been used for stress detection. 

Continuous stress monitoring in a real-world driving task has been demonstrated by Rajiv 

et Al in [45]. With GSR and photo plethysmograph (PPG), which measures changes in 

light absorption of the skin sensors, they have classified stress using an unsupervised 

clustering approach and achieved an average accuracy of 71%. Ramos et. Al in [16] have 

implemented an approach intended to recognize stress as users perform physical tasks such 

as running, cycling, etc. Their approach used an unsupervised k-means clustering algorithm 

to label the data; with Naïve Bayes and Logistic Regression as base classifiers, they have 

achieved an accuracy of around 65%. Since stress is a physiological response, a raw 
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unsupervised clustering approach often underperforms because it is difficult to differentiate 

a stress response from a normal body’s response with no provided baseline measurement.  

Others have tried to measure stress using methods other than physiological sensors. 

Torabi et. Al in [15] have implemented semi-supervised learning on speech data to detect 

stress in speakers. They have calculated applied semi-supervised learning approach on 

speech data and extracted features like high pitch, LFPC’s, etc. and they’ve not used any 

physiological sensors.  

The classification results of various approaches that detect have been shown in 

Table below: 

Table 5.1: Comparison of other approaches for stress detection 

Citation Type of approach Experimental Design 

Accuracy 

on Stress 

detection 

[40] Supervised Learning 

Physiological Sensors + 

Stroop Test + Laboratory 

Setting 

69% 

[41] Supervised Learning 

Physiological Sensors + 

Cognitive Load + 

Laboratory Setting 

82.8% 
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[9] Supervised Learning 

Physiological Sensors + 

Self-reports + Video 

Recording + Real-World 

Setting 

97% 

[44] Supervised Learning 

Physiological Sensors + 

Label Based on Activity + 

Laboratory Setting 

97.4% 

[43] Supervised Learning 

Physiological Sensors + 

Cognitive Load & Public 

Speaking + Laboratory 

Setting 

79% 

[42] Supervised Learning 

Physiological Sensors + 

Self-reports + Laboratory 

Setting 

79% 

[8] Supervised Learning 

Physiological Sensors from 

Wearable Devices + Stroop 

tests + Laboratory Setting 

90.1% 

[10] Supervised Learning 

Physiological Sensors from 

Wearable Devices + Self-

75% 
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reports + Real World 

Setting 

[45] Unsupervised Learning 

Physiological Sensors + 

Laboratory Setting 

90.1% 

[16] Unsupervised Learning 

Physiological Sensors from 

Wearable Devices + Real 

World Setting 

65% 

[15] 

Semi Supervised 

Learning 

Speech data + voiced parts 

of data as labels 

72.3% 



CHAPTER VI: DISCUSSION, CONCLUSION AND FUTURE WORK 

 

Techniques in the past involved building a custom made sensor systems which is 

comprised of ECG, GSR and accelerometer involved participants to carry multiple, bulky 

sensors [8, 10]. In addition, since the sensors were custom-made, they are difficult to use 

widely to study participants in real-world scenarios and conditions. Most approaches to 

date have also required manual labeling of the entire training set [8, 9].  Stress recognition 

using wearable sensors and mobile phone [9] is closely related to our proposed work. Our 

proposed work is the first which uses a wrist worn off-the-shelf sensor with limited manual 

labeling and a semi supervised learning approach which detects perceived or actual stress 

in real time, reports detected stress to the user, and records the data for use by researchers. 

In subject-wise analysis, we have omitted two participants from because of lack of 

labeled samples and conducted experiments for six users. The stress detection rate for User 

2, User 3, User 4, User 5 is high as the experiments resulted in a good number of True 

Positives (TP). The stress detection rate of User 1, User 6 is and the number of False 

Positives (FP) is more in number. We have analyzed the data of these noisy users and 

observed that the data set contains sensor values as zeros for an extended duration of time. 

This may be because of low battery of wearable device; the user has not worn the wearable 

device or the wearable couldn’t capture the data. Since, the data was collected in real time  
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settings when the users were involved in their everyday activities, we cannot point out the 

exact reason for this. The accuracies for stress classification across different user is shown 

in Figure 6.1 

 

 
 

Figure 6.1: Analysis on Subject-Wise experiments  

 

From Figure 6.1, User-2 has shown the best classification accuracy of around 100% 

in all of the experiments conducted. Self-training using learned features has performed 

poorly in the experiments performed. Co-training with explicitly defined features has 

performed better in all cases except for User 1 and User 5. The learned features have 

performed better in all cases except for User-5.  

To find the common physiological symptoms of stress across all users, we have conducted 

a between-subjects experiment grouping 8 participants together and omitting a single 

participant because of lack of labeled samples. The results of this experiment are shown in 

Figure 6.2.  
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Figure 6.2: Analysis on Between-Subjects experiments 

 

From the Figure 6.2, we can see that co-training with extracted features has 

performed better across all users with the highest classification accuracy of 75.7%. Since 

we are taking advantage of unlabeled samples in our training, co-training and self-training 

models used in between-subject’s analysis are performing better than labeled samples using 

extracted features. The performance of learned features with labeled samples is poor in 

between-subject’s analysis. However, with the unlabeled data available for training, the 

performance of learned features is better than the performance of learned features with 

labeled samples alone. Based on the between-subjects experiments and within-subjects 

experiment, we have observed that the physiological symptoms of stress are different for 

different users. 

As mentioned before, we have observed the data for two User 1 and User 5 is noisy 

and if we exclude the samples of these users in the between-subjects experiment, the stress 

is detected with an accuracy of 85%. Even though we have achieved results that are 

competitive with the state of the art, our analysis is based on a small user study consisting 
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only of eight users. Moreover, the ground truth for our semi-supervised learning approach 

is based on user’s reports of perceived stress, which are subjective and may not correctly 

align with physiological symptoms of stress. Errors in labeling can be propagated by our 

semi-supervised learning approach, exacerbating the problem of having noisy labels.  To 

confirm and to address these drawbacks, we plan to run a larger user study in future, where 

we plan to collect data in a controlled environment by following an IRB-approved protocol 

for inducing stress and collecting both self-reported survey responses and researcher-

labeled sensor data as a baseline measure that can be used as ground truth in our semi-

supervised approach. 

Initially, on the day of the user study we would ask the user to listen to soft music 

to make him relax and to remove any traces of possible mental stress that he is going 

through at that moment. Then we plan to slowly induce stress by making him perform 

Stroop test, Public Speaking and various Cognitive load tasks [8, 9, 40, 41, 42, 43].  We 

want to learn about various levels of mental stress by collecting data from this user study. 

Therefore, we plan to follow the tentative pipeline of calm  stress  more stress  calm 

 stress  more stress  some more stress  calm for each user. We also plan to include 

accelerometer data in the future work as [8] pointed out that as how sensor data is effected 

with respect to motion. We plan to experiment with implementing Contrastive Pessimistic 

Likelihood Estimation (CPLE) [33] as our semi-supervised learning model.  

The semi supervised learning using physiological sensors from a wearable device 

with minimal self-reporting for ground truth on a real-world setting has achieved promising 

results on a short user study. As such, this approach can lead to the creation of a wearable 
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platform for use by researchers who wish to collect data about stress from a large 

population of study participants over extended periods of time as well as a health and well-

being application that alerts users to periods when they are experiencing physiological 

symptoms associated with stress. 
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APPENDIX A: STRESS QUESTIONNAIRE 

The application has detected that a smoking session is occurring. Are you currently 

smoking? 

● No 

● Yes, please continue to questions 

● Yes, please skip this question session 

○ If yes please continue is selected: 

■ How positive do you feel right now? (Scale of 1 to 7) 

■ How stressed are you right now? 

● Not Stressed 

● Slightly Stressed 

● Moderately Stressed 

● Highly Stressed 

● Extremely Stressed 
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