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ABSTRACT

ABHIJITH RAVI. Optimization and Learning-Enabled Integrated Cloud and Edge
Solutions for Control and Deployment of Fleet EV Charging. (Under the direction

of DR. LINQUAN BAI)

Transportation electrification is one of the core policies actively driven by countries

around the world. The strategic integration of electric vehicles (EVs) holds the key to

a reliable and resilient future for the power grid. To address the challenges of integrat-

ing EVs into distribution grid operation, this dissertation presents a comprehensive

framework with advanced optimization and machine learning techniques for the con-

trol and deployment of fleet EV (FEV) charging. This dissertation addresses the

challenges of integrating FEVs into distribution grid operations through cloud-based

and edge-based approaches. Cloud-based solutions provide centralized optimization

methods deployed on platforms operated by utilities or distribution system opera-

tors, while edge-based solutions enable decentralized control at the grid edge, where

advanced methods such as federated reinforcement learning can be applied.

In Chapter 2, this dissertation develops a two-stage stochastic optimization model

designed for the strategic placement of FEV charging stations (FEVCSs) to enhance

the resilience of distribution networks. By focusing on high-impact, low-probability

(HILP) events (such as hurricanes), this centralized optimization model that could

be deployed on a cloud platform of a utility system accounts for uncertainties in both

the power grid and transportation networks, ensuring operational efficiency and grid

reliability during outages.

In Chapter 3, the focus shifts to a cloud-based approach for aggregating EV charg-

ing and other distributed energy resources for market participation. A bilevel stochas-

tic optimization framework is developed to model the FEVCS, as part of a Distributed

Energy Resource Aggregator (DERA) of providing energy and ancillary services in

the ISO day-ahead market. This model demonstrates the potential of FEVCSs to pro-
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vide ancillary services and capacity reserves, accounting for their impact on locational

marginal prices (LMPs).

Chapter 4 introduces a novel cloud-edge collaboration framework based on feder-

ated reinforcement learning to enable decentralized control of FEVCSs in the distri-

bution system. The proposed Federated Learning-Enhanced Conflict-Aware Multi-

Agent Reinforcement Learning (FLE-CA-MARL) framework allows individual FEVs,

modeled as agents, to coordinate their actions locally at the edge of the grid, con-

tributing to voltage regulation and grid stability. This hybrid approach, which com-

bines cloud-level coordination with edge-based decision-making, effectively addresses

the computational complexity, latency, and data privacy challenges inherent in large-

scale EV charging management.

The work in this dissertation enables grid-optimized intelligent deployment and

management of FEV charging by developing a suite of cloud-based optimization mod-

els and edge-based distributed control using federated reinforcement learning. The

simulation results on different IEEE test cases demonstrate the effectiveness of this

work in enabling FEVs to improve grid resilience, voltage stability, and market partic-

ipation. This work offers a scalable and adaptive solution for the future deployment

of FEVCS in modern smart grids.
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CHAPTER 1: INTRODUCTION AND OVERVIEW

The electrification of transportation represents one of the most transformative tech-

nological shifts in the modern energy landscape. Fleet electric vehicles (FEVs), par-

ticularly medium- and heavy-duty vehicles (MH-DVs), are integral to this transforma-

tion, offering significant potential to enhance grid resilience and market participation.

This dissertation explores the optimal integration of Fleet Electric Vehicle Charging

Stations (FEVCS) into power distribution networks, focusing on the challenges of

managing grid resilience, strategic market participation, and overall voltage stability.

The ongoing decarbonization, digitalization, and decentralization of the power grid

are fundamentally reshaping how energy is generated, distributed, and consumed [1].

In the United States, vehicles powered by fossil fuels are responsible for 27% of total

greenhouse gas (GHG) emissions, promoting a nationwide shift toward the electri-

fication of the transportation sector to reduce emissions and achieve a sustainable

transportation system. MH-DVs alone account for 23% of the GHG emissions from

ground transportation, making them a critical target for electrification. These vehi-

cles are crucial for applications such as public transportation, logistics, and freight

delivery services that require high energy but offer limited flexibility in operation.

The strategic deployment and intelligent control of FEVCSs can play a crucial role

in enhancing power grid resilience and market participation [2]. Each MH-DV fleet

can have the potential to be a source or a sink of energy in the grid through vehicle-

to-grid (V2G) capabilities. Consequently, medium and heavy-duty FEVs have the

capacity to inject or draw power in the range of MWs, which makes them highly

energy-dense. Realizing this, several utilities have already included FEVs as a key

component of their grid modernization and decarbonization strategies [3].
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However, the rapid adoption of FEVs in the transportation sector can pose signif-

icant challenges to the power grid. The uncontrolled and uncoordinated charging of

numerous FEVs can lead to increased peak demand, voltage deviations, and power

quality issues in the distribution grid [4]. This highlights the critical need for strategic

planning and intelligent control of fleet EV charging stations to ensure grid reliability,

stability, and resilience. This has sparked the interest of academia and industry in

solving the challenges associated with the increased adoption of EVs. As a result,

optimal techno-economic integration of EV charging infrastructure into the existing

power systems is a key research area.

This dissertation explores optimal strategies for integrating FEVs into the grid,

highlighting the potential benefits, challenges, and innovative solutions necessary for

a successful transition. The aim of this chapter is to lay the groundwork for the

comprehensive approach presented in subsequent chapters, which address the optimal

deployment and control of FEVCS in the power grid.

The structure of this chapter of the dissertation is as follows: Section 1.1 presents

the background of FEVCS, introducing the components of FEVCS, the behavior of

FEVCS, and the difference between an FEVCS and a Transportable Energy Storage

System (TESS) from a power grid researcher’s perspective. Section 1.3 connects

FEVCS to different grid functionalities explored in this dissertation. Additionally,

Section 1.2 shares the challenges and motivations associated with FEVCS integration

into the grid. Section 1.4 presents the contributions of the work along with the outline

of the rest of the dissertation.

1.1 Background

Grid modernization presents a dynamic and multifaceted challenge for planners and

operators, driven by rapid innovation in power generation, the growing proliferation

of DERs, and the ongoing electrification of transportation. The integration of new

technologies such as FEVCS into this evolving grid requires careful planning to main-
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tain grid stability, reliability, and resilience [5]. Independent system operators (ISOs)

or the regulated utility that powers consumers in a region, are required to estimate

the growth of the load and the readiness of the existing infrastructure. As a result,

load forecasting of the feeder loads is a critical step for any entity involved in control-

ling the generation, transmission, and distribution of electrical energy. Other variable

resources, such as solar and wind, have been extensively explored, but the electrifica-

tion of transportation poses new challenges that need to be addressed. High-capacity

fast chargers, ranging from 50 kW to 350 kW, are being deployed to rapidly charge

heavy-duty vehicles, which can exacerbate peak load issues in the distribution system

[6]. Chargers of larger capacities are also being explored for FEVs to reduce charging

times. Such charging rates have significant impacts on the existing distribution grid,

causing voltage deviations, overloading of transformers and feeders, harmonics, and

power quality issues [7].

In this dissertation, the term "FEV" refers specifically to medium- or heavy-duty

trucks. These vehicles, with their large battery capacities and relatively regular charg-

ing schedules, can be considered DERs capable of providing various grid services, such

as peak load shaving, frequency control, energy mobility, and voltage support. Fig-

ure 1.1 illustrates a futuristic smart warehouse equipped with an FEVCS capable of

supporting 20 vehicles. The integration of FEVCS is not only critical in achieving

the zero-emission goals, but also in improving the overall stability of the power grid.

The different components of an FEVCS are presented in the following subsection.

1.1.1 Key Components of the FEVCSs

1.1.1.1 Battery System

The battery is the heart of an EV truck, determining its energy storage capacity and

operational range. In research, battery storage is commonly represented by the state

of charge (SOC). While the chemical composition of the battery is outside the scope

of this dissertation, the charging and discharging behavior represented by changes in
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Figure 1.1: A futuristic smart warehouse [8]

SOC plays a critical role in FEVCS performance and grid interaction. With current

technology, the battery life of an EV truck reduces with the increase in the number

of cycles of charging and discharging that it goes through.

1.1.1.2 Powertrain and Propulsion System

The powertrain converts the electrical energy of the battery into mechanical energy

to propel the vehicle. The powertrain, which includes the motor and the drivetrain, is

a key factor that determines the efficiency and energy consumption of the EV truck.

1.1.1.3 Control Systems

Control systems in FEVs regulate energy flow between the battery, the powertrain,

and the external connections of the grid, determining how the vehicle interacts with

the grid, including decisions on the direction of the transmission of power and the

management of the power quadrant. The charging control system is crucial for de-

termining the vehicle’s real-time interaction with the grid, including the choice of

charging or discharging, and hence is within the scope of this dissertation.
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1.1.1.4 Inverter Placement

The inverter converts DC power from the battery to AC power for grid interaction

and vice versa. Although the inverter can be located within the vehicle or in the

charging infrastructure, most vehicles use an on-board charger to offer flexibility for

the customer to choose the charging station they can charge from. Hence, for all the

works in this dissertation, it is assumed that the inverter is placed in the vehicle. In

the case where the inverter is in the charging station, the benefits to the grid are

enhanced.

1.1.1.5 Charging Infrastructure

FEVs typically use level-2 chargers or DC fast chargers for regular charging. The

choice of charging infrastructure for an EV is usually made by the fleet operator.

The duty cycle of the services that the FEVs provide and the battery storage of the

vehicle are two key factors that influence the choice of the charging infrastructure.

In the works of this dissertation, DC fast charger is assumed to be the choice of the

charging infrastructure. Bidirectional chargers enable vehicle-to-grid (V2G) services,

allowing the vehicle to inject or draw power during its interaction with the power

grid. This capability is essential in capturing the full potential of an FEV from the

grid’s perspective. In addition, the number of chargers in a charging infrastructure

is dependent on the size of the fleet. Most FEVCS systems are governed by a fleet

charging management system that optimizes charging schedules to limit peak load

impacts on the grid while simultaneously charging multiple vehicles. Although an ag-

gregated FEVCS is modeled in this dissertation, the fleet-level charging management

system is not within the scope of this dissertation.

1.1.1.6 Differentiating FEVCS from Transportable Energy Storage Systems

In power systems research, FEVCS and Transportable Energy Storage Systems

(TESS) serve distinct roles, each with its set of operational characteristics and impli-
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cations for grid management.

FEVCSs are primarily loads, serving the transportation demand of the customers

with fleet vehicles. The FEVCSs are not simply stationary infrastructures for charging

FEVs; they integrate a dynamic component through the mobility of the vehicles. The

mobility of FEVs introduces significant flexibility and complexity to power system

models. As vehicles connect and disconnect from the FEVCS, the SOC varies based

on their occupancy and usage patterns. The charging strategy adopted by the FEVCS

is dependent on the requirement to charge the battery to full charge by the time of

departure. Most fleet vehicles that use depot charging have patterns that can be

identified. Moreover, the mobility of the vehicles within the FEVCS can easily be

utilized by the grid using other charging stations on the power grid. Additionally, the

policy-driven approach to increasing the EV infrastructure and fleet electrification

incentivizes researchers, utilities, and the FEV customers to maximize the return

from FEVCS.

TESS, in contrast, are designed as relocatable energy storage units, often trans-

ported via tracks or other mobile platforms to locations where additional grid support

is required. Unlike FEVCS, TESS lacks integrated vehicle mobility and is typically

deployed in a fixed location until moved for strategic purposes. Their movement is

primarily intended for planned energy redistribution rather than dynamic, real-time

interaction with the grid. As a result, modeling TESS is less challenging compared

to FEVCS. Moreover, TESS requires high capital investment from the utility’s per-

spective. TESS is an interesting option for applications like strategic energy storage,

planned grid support, and emergency power supply.

1.1.2 Operational Modes of EV Charger Operation

This dissertation assumes that vehicles can operate in V2G mode with the ability to

support the grid for voltage regulation. The interaction between EV chargers and the

power grid can be represented through the four PQ quadrants shown in the Figure 1.2.
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Figure 1.2: Quadrants of EV charger operation

Operation mode 1 lies in quadrant 1 with the EV charging while absorbing reactive

power from the grid. However, in most cases in real life, the quadrant 1 operation

happens with minimal reactive power absorption from the grid. Operation mode 2

lies in quadrant 2 with the EV charger in the V2G mode, while absorbing reactive

power from the grid. This is a highly probable mode of operation since injecting active

power can increase the voltage at the charger’s node, which can then be regulated

by absorbing reactive power from the grid. Operation mode 3 enables the charger to

inject active power into the grid while injecting reactive power to elevate the voltage

of the grid. This provides energy and voltage support to the power grid. Operation

mode 4 provides reactive power support to boost the voltage of the grid while the EV

is being charged. Quadrant 4 may also be one of the most common quadrants EVs

will operate in once they are allowed to provide reactive power support to the grid.

The following subsection presents different strategies that fleet operators may use to

interact with the power grid.
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1.1.3 Management Strategies of FEVCS

The primary goal of all fleet operators is to provide transportation for customer-

specific applications. Hence, the flexibility of fleet operators in utilizing the FEVs

for grid services is highly dependent on the duty cycle of the vehicles. With the

long hours of idle time that conventional fleet vehicles have, providing grid services

is a good secondary goal that most fleet operators can integrate. This option of

a secondary goal is less attractive due to the possible loss in battery life with the

existing battery storage technology. On the other hand, as researchers, it is our

responsibility to pursue all approaches to optimize the integration of any emerging

technology on the power grid. This is also because technological bottlenecks can

be overcome in time. As a result, one domain where several researchers have tried

different assumptions is the modeling of FEVCS’s behavior on the power grid. This

dissertation employs three different options for fleet management in the assumptions

formed for the models implemented. The assumed fleet management strategies are

explained in the subsections below.

1.1.3.1 Aggregated Under a Third Party

FEVCSs can be aggregated under a third-party operator who manages their inter-

action with the grid. FEVCSs on their own may have large energy storage and power

injection capability, but aggregated under third-party service providers, they have a

high chance of being an important market player in deregulated electricity markets.

This strategy enables coordinated and large-scale provision of grid services, enhancing

the probability of maximizing their returns from the grid. Hence, the strategic bid-

ding model in this dissertation assumes FEVCSs that are aggregated under a DERA

or DSO.
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1.1.3.2 Controlled by the Fleet Operator

Some FEVCSs may opt to interact independently with the utility serving power.

This is highly probable in situations where the FEVCS is powered by a vertically

integrated utility. In such scenarios, the incentive for aggregation is reduced to a

great extent. Hence, fleet operators can choose to provide services to the utility

based on local requirements. This could be relevant for services like voltage support in

distribution networks. The distributed VVO framework proposed in this dissertation

assumes that FEVCSs will be controlled by their own fleet operator.

1.1.3.3 Hybrid Approaches

Some FEVCSs may employ strategies to use part of the fleet under third-party

services while fleet operators control the rest of the fleet. Other hybrid approaches

can be proposed through conditional agreements with the third party or utility. The

application discussed in Chapter 2 of this dissertation that highly suits this strategy is

the FEVs’ role in enhancing grid resilience during HILP events. Not all fleet operators

can afford to lose all their FEVs post-disaster, even if it is for the restoration of grid

service. Thus, a hybrid grid-support strategy may be suitable for numerous fleet

owners.

Given the unique capabilities of FEVCS, such as high power demand, energy den-

sity, and the ability to operate in V2G mode, their integration poses several opera-

tional challenges for the power grid. These challenges stem from the complex inter-

actions between FEVCS and the distribution network, which must be managed to

avoid compromising grid reliability and stability. The following section discusses the

key challenges of FEVCS integration and how these issues can be addressed through

strategic planning and control mechanisms.
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1.2 Challenges of FEVCS Integration on the Power Grid

The rapid electrification of fleets introduces substantial challenges for grid opera-

tors, particularly in managing the increased demand for high-capacity charging and

its impact on grid infrastructure. The Table.1.1 shows the average battery capacity

of a single FEV [9]. For a transit bus with an average battery storage of 345 kWh, a

fleet of 20 vehicles can hold up to 6.9 MWh energy. Similarly, for a medium-duty step

van with an average battery capacity of 163 kWh, a fleet of 50 such vehicles will store

up to 8.15 MWh. Moreover, the charger ratings for heavy-duty chargers range from

250 kW to over 1 MW per vehicle[9]. The high-power chargers are more essential for

the long-haul vehicles, which require ultra-fast mid-shift charging to replenish their

batteries in 30 minutes. The International Organization for Standardization (ISO) is

developing the ultra-fast charger CharIN Megawatt Charging System (MCS) with a

potential maximum power of 4.5 MW in Europe and the United States. The evidence

suggests that these chargers can potentially act as loads with high-power and short

duration at some locations on the grid. Hence, these large battery capacities and

high-power chargers pose a significant challenge to the distribution network if mul-

tiple FEVCS loads charge simultaneously during any time of the day. The author’s

master’s thesis explores the impact of light-duty EVs and MH-DEVs on the distribu-

tion network and the system-level load [10]. Even with FEVs modeled as load, the

demand variation FEVCS introduces into the distribution level and the transmission

level is significant. Furthermore, the V2G technology has enabled EVs to be loads or

generators based on the customer’s decision to absorb or inject power into the grid.

This further complicates the uncertainty involved in hosting these massive loads from

a DSO perspective. Hence, unmanaged, unchecked, and unplanned integration and

operation of FEVCS can be dangerous to the operation and planning of the power

grid [11]. Thus, it is essential to strategically plan the integration of FEVCS into the

power grid from a grid planner’s standpoint.
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Table 1.1: Average battery capacity in medium- and heavy-duty vehicle models

Vehicle Category Average Battery Capacity Change(kWh) 2019-20222019 2020 2021 2022
Transit bus 264 322 225 345 31%
School bus 155 141 207 137 -12%
Shuttle bus 104 119 120 150 45%

Coach 316 347 233 266 -16%
Cargo van 69 90 57 60 -13%

Medium-duty step van – 134 155 163 22%*
Medium-duty truck 124 139 99 92 -26%
Heavy-duty truck 293 232 372 311 6%

Yard tractor 150 184 160 197 31%

Additionally, the energy storage of MH-DEV fleets holds giant potential to be a

DER that can offer regular services or post-disaster services to the power grid. When

compared to other loads on the distribution feeders, these loads are highly dense in

energy and power. Thus, the FEVCS’s ability to influence the grid parameters would

be much better than smaller loads on the same network. Moreover, according to

NREL’s fleet DNA project, most trucks operate less than 5 hours a day [12]. As

a result, based on the duty cycle, a fleet operator can utilize FEVs for providing

ancillary services like peak shifting, demand response, reserves, frequency regulation,

and voltage regulation to the DSO or ISO.

Figure 1.3 shows the possible locations of different FEVCSs based on a real distribu-

tion feeder in the North Carolina state of the U.S[10]. The physical locations of several

fleets may not be highly flexibly, the point of interconnection (POI) of these FEVCSs

have the flexibility to be connected to either a different subnetwork or a different dis-

tribution feeder under the same or different substation transformer. Identifying the

strategic POI for FEVCS is crucial for enhancing grid resilience. Proper POI selec-

tion enables FEVCS to provide critical services such as peak load shaving and voltage

support while minimizing disruptions to local distribution networks.. Furthermore,
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Figure 1.3: Possible EV loads on a real distribution feeder

one of the bottlenecks in extensively using FEVCSs for the everyday operation of the

grid is degradation of battery life of the FEVs[13]. However, the ongoing research

and development in battery technologies are rapidly overcoming those bottlenecks.

The integration of ML and big data analytics into the optimization of battery further

accelerates this progress [14]. Therefore, it is also essential to research, identify and

define the role and potential of the FEVCS as a service provider on the grid. This

nature of the FEVCS motivates the holistic approach devised in this dissertation. The

following section will introduce several key grid functions and the roles of FEVCSs in

the power grid.

1.3 Motivations and Vision: Integrating FEVCS into Key Grid Functions

As FEVCS integration expands, these systems will play a key role not only in

infrastructure planning but also in energy markets and real-time grid operations.

Each of these areas requires tailored solutions that address the unique technical and
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economic challenges posed by FEVCS. This dissertation explores these challenges

through three primary approaches: cloud-based solutions for resilience planning and

market participation, and a cloud-edge collaboration framework for adaptive, real-

time control of Volt-VAR Optimization (VVO) in distribution networks.

The following sections outline how cloud-based and cloud-edge collaboration ap-

proaches are suited for addressing different aspects of FEVCS integration, as discussed

in Chapters 2, 3, and 4.

1.3.1 Infrastructure Planning and Resilience

The first key area of FEVCS integration is infrastructure planning, with a focus on

enhancing grid resilience through optimal siting of charging stations. Grid resilience

can be viewed from two complementary perspectives: planning resilience and oper-

ational resilience. While planning resilience focuses on planning measures that can

enhance the resilience of the power grid, operational resilience is about pre- and post-

diaster measures to enhance the resilience of the grid. In the pursuit of enhancing

the grid resilience, both planning and operational perspective have to be considered

while modeling the problem of strategically siting the FEVCS within the distribution

network.

Chapter 2 of the dissertation addresses the planning resilience perspective by devel-

oping a cloud-based solution for the optimal siting of FEVCS. This approach leverages

a two-stage stochastic optimization model to account for uncertainties in the distribu-

tion network, enabling utilities to strategically place FEVCS in locations that enhance

overall grid resilience. By carefully selecting sites for FEVCS, this model ensures that

charging stations not only serve transportation needs but also provide backup power

during emergencies, helping the grid recover from outages.
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1.3.2 FEVCS in Energy Markets

In addition to infrastructure planning, FEVCS can play a significant role in energy

markets, particularly through their participation as part of a price-maker Distributed

Energy Resource Aggregator (DERA). DERAs aggregate DERs, including FEVCS,

to participate in the ISO energy and reserve markets. By aggregating multiple DERs,

a DERA can strategically bid in the day-ahead market, influencing market prices and

offering essential grid services such as reserve power and voltage support.

The FEVCS is a DER with high power density, energy density, and mobility. Such

an FEVCS alone or as part of a DER aggregator, can act as a source of energy, reserve,

or both in the ISO markets. For strategic bidding in Chapter 3, this dissertation

assumes that a DERA can monitor and control all the resources that it owns or has

signed a contract for to be part of the aggregated DERs. Hence, the challenge of

strategic bidding for a DERA in the day-ahead energy and reserve market must be

addressed by a cloud-based solution at the DERA or DSO level to ensure that none

of the distribution-level constraints are violated during the strategic bidding process.

While the primary focus of Chapter 3 is on market participation, this cloud-based

approach also indirectly enhances grid resilience. By encouraging more DERAs to

participate in the energy and reserve markets, the solution strengthens the gridâs

generation and reserve portfolios, making it more resilient to fluctuations in supply

and demand. As more DERAs, including FEVCS, engage in market operations, the

grid benefits from increased flexibility and resource diversity, improving its ability to

respond to unexpected events.

1.3.3 Cloud-Edge Collaboration for Real-Time Control

The final key area of FEVCS integration is real-time grid edge control, where

the focus shifts from long-term planning and market participation to the dynamic

operation of the distribution network. FEVCS can introduce significant challenges to
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grid stability, particularly in managing voltage profiles and reactive power flow. To

address these challenges, Chapter 4 presents a cloud-edge collaboration-based solution

for unified, adaptive Volt-VAR Optimization (VVO) using FEVCS.

Cloud-edge collaboration leverages the strengths of both centralized cloud-based

control and decentralized edge-based decision-making. While the cloud provides a

high-level overview and coordination of the grid, edge devices, such as FEVCS, make

localized decisions based on real-time data, enabling faster response times and reduc-

ing communication latency.

In Chapter 4, the proposed cloud-edge framework uses Federated Reinforcement

Learning (FRL) to enable decentralized control of FEVCS, allowing them to operate

in real-time as part of the grid’s VVO system. This system ensures that FEVCS

not only charge efficiently but also provide reactive power support, which is crucial

for maintaining voltage stability in distribution networks. By dynamically adjusting

charging schedules and reactive power injection, FEVCS can mitigate the impact of

their own charging on the grid while actively contributing to voltage regulation.

The adaptive control framework presented in Chapter 4 significantly enhances oper-

ational resilience by enabling the grid to respond to real-time fluctuations in demand

and supply. The use of FL ensures that the system is scalable, capable of integrating

large numbers of FEVCS without overwhelming centralized control systems. This de-

centralized, real-time approach strengthens the grid’s ability to withstand and recover

from operational disturbances, further contributing to overall resilience.

1.3.4 Comprehensive Approach to FEVCS Integration

By integrating cloud-based solutions for infrastructure planning and market partic-

ipation with a cloud-edge collaboration framework for real-time control, this disser-

tation provides a holistic approach to FEVCS integration into the power grid. Each

chapter focuses on a specific aspect of FEVCS deployment, offering tailored solu-

tions that align with the technical and economic challenges posed by these systems.
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Chapter 2 presents a cloud-based solution for optimizing FEVCS placement to en-

hance grid resilience, particularly during HILP events. Chapter 3 introduces a cloud-

based solution for strategic bidding in energy markets, allowing FEVCS to participate

in the day-ahead market as part of a price-maker DERA, indirectly strengthening

grid resilience by expanding resource portfolios. Chapter 4 proposes a cloud-edge

collaboration-based solution for adaptive VVO using FEVCS, enhancing operational

resilience through real-time control and reactive power support.

This dissertation adopts a comprehensive approach to integrate FEVCS into the

power grid. The proposed solutions consider technical, economic, and strategic as-

pects to optimize FEVCS placement and operation, while addressing grid reliability,

resilience, and market interactions. The following section outlines the key contribu-

tions of this work, detailing the methods and findings presented in the subsequent

chapter

1.4 Contributions and Dissertation Outline

The contributions of this dissertation are structured across several chapters, each

focusing on different aspects of the research problem.

The first set of contributions is presented in Chapter 2, which investigates the

optimal placement of Fleet Electric Vehicle Charging Stations (FEVCS) within power

distribution networks. The results of this study were published in the special issue

"Towards a Sustainable Future: The Role of Electric Vehicles and Smart Grids in

the Energy Transition" of the journal Applied Sciences under the title Optimal Siting

of EV Fleet Charging Station Considering EV Mobility and Microgrid Formation for

Enhanced Grid Resilience [15]. The specific contributions of this chapter include:

1. Addressing a novel research problem by exploring the optimal placement of

FEVCS within a power distribution network, the research aims to enhance

grid resilience, considering both the power distribution and the transportation

network.
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2. Developing a two-stage stochastic optimization approach with an MISOCP

model for the optimal siting of FEVCSs, considering EV mobility and the im-

pact of extreme weather events. The first stage involves selecting the most

favorable location for FEVCSs, while the second stage minimizes the weighted

sum of the Value of Lost Load (VoLL) under potential fault scenarios, integrat-

ing transportation network considerations into the grid restoration scheme.

3. Evaluating the influence of renewable-supported BESS on the optimal place-

ment of FEVCS and demonstrating the potential of BESS to improve the flex-

ibility of the grid.

In Chapter 3, the focus shifts to the strategic participation of DERs in wholesale

markets and the role of an FEVCS within a DERA. The findings of this chapter were

initially published in the conference 2021 IEEE Power & Energy Society General

Meeting (PESGM) with the title Modeling the Strategic Behavior of an Active Dis-

tribution Network in the ISO Markets, and then extended to a journal published in

IEEE Transactions on Smart Grid with the title Stochastic Strategic Participation of

Active Distribution Networks With High-Penetration DERs in Wholesale Electricity

Markets [16]. The contributions in this chapter are as follows:

1. Proposing a stochastic bilevel optimization approach to model and analyze the

strategic participation of an active distribution network (ADN) with high pen-

etration of DERs in wholesale markets. The capability of DERs in providing

both energy and ancillary services is modeled.

2. Accounting for the availability, flexibility, and uncertainties of DERs in both

transmission and distribution systems and market operations. DERs contribute

to local voltage regulation in ADN operation while strategically participating

in the wholesale market.
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3. Analyzing the interactions between ADN and DER operation and the ISO en-

ergy and ancillary service markets. The model simulations present the impact

of a network-constrained strategic ADN’s influence on LMPs and reserve prices

in the ISO market.

4. Developing an FEVCS model that represents the V2G and reactive power sup-

port capability of aggregated EVs’ interaction with the ISO network.

Chapter 4 focused on proposing an AI-based distributed control framework for

VVO in FEVCSs. Contributions from this chapter have been submitted to IEEE

Transactions on Smart Grid, with the paper titled A Federated Learning-Enhanced

Conflict-Aware Multi-Agent Reinforcement Learning Framework for Decentralized Volt-

VAR Control in Distribution Networks with Fleet EV Charging Stations.

The contributions of Chapter 4 are as follows :

1. Introducing a Federated Learning-Enhanced Conflict-Aware Multi-Agent Rein-

forcement Learning (FLE-CA-MARL) control framework specifically designed

for FEV-level collaborative learning within a DN. By enabling decentralized

decision-making among FEV agents, the framework ensures that both local

voltage regulation and global voltage control are optimized, demonstrating scal-

ability and adaptability across diverse network configurations.

2. Utilizing a novel conflict-aware MARL (CA-MARL) environment is utilized, to

model the coordinated reactive-power support of multiple active FEV agents

connected within an FEVCS. This mechanism effectively penalizes conflicting,

and incorrect actions associated with the reactive power injections, ensuring

that the agents collectively contribute to the optimal control of charging in

the FEVCS while maintaining local voltage stability, avoiding convergence to

suboptimal policies.
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3. Incorporating a Partially Observable Markov Decision Process (POMDP) model

for an FEV agent, enabling decentralized optimization with limited grid state

information, a crucial advancement in managing real-world uncertainty and

improving grid stability, as agents make decisions with incomplete knowledge

of the overall grid state.

4. Testing the framework across scenarios involving both localized (single FEVCS)

and distributed (multiple FEVCSs) agent configurations. These tests validate

the framework’s effectiveness in coordinating agent actions, ensuring robust

voltage regulation and grid stability across varying conditions and load profiles.

Finally, the conclusions derived from the results and analysis of the aforementioned

works are compiled in Chapter 5.

In this chapter, the critical role that the FEVCSs can play in enhancing power

grid resilience and facilitating market integration has been presented. The increasing

transportation electrification and the unique capabilities of FEVCS as a DER offer

promising solutions to the challenges faced by the modern power grids. However,

the widespread deployment introduces complexities related to optimal siting, grid

interactions and handling uncertainties from extreme weather events.

Given the potential of FEVCS, a key challenge remains: how can they be strate-

gically deployed to maximize their benefits to the grid in improving resilience during

HILP events? To address this question, the following chapter presents a detailed

approach for the optimal deployment of FEVCS on the distribution grid. A two-

stage stochastic optimization model that incorporates both the mobility of FEVs

and the uncertainties in grid conditions, enabling the FEVCS to enhance grid-service

restoration, thus increasing the resilience. This model builds upon the foundation set

in Chapter 1 and begins by outlining the strategic deployment of FEVCS in power

distribution networks.



CHAPTER 2: STRATEGIC DEPLOYMENT OF FEVCS: A

RESILIENCE-ORIENTED APPROACH

2.1 Literature Review & Contributions

In power systems, resilience refers to the ability to recover quickly from disasters,

or, more broadly, to anticipate high-impact, low-probability, extraordinary events, re-

cover quickly from these disruptive events, and improve its operations and structure

for similar events in the future[27]. This paper focuses on post-disturbance degraded

state and restorative state of a high-impact low probability (HILP) event.[28] presents

an in-depth literature review of resilience enhancement strategies through EVs. The

authors emphasized the need to include EVs in public policies on disaster manage-

ment. According to [29], coordinated transformation of electricity and transportation

systems could enhance the resilience and environmental performance of energy sys-

tems. Although battery degradation and warranty issues are the most important

integration challenges, creating a market for ancillary services in vertically integrated

utility is essential. With the increasing frequency of HILP events, novel ancillary

services to support grid restoration while utilizing distributed generators (DGs) and

EVs need to be in place to achieve a highly resilient power grid.

The literature on enhancing grid resilience through various operational and plan-

ning measures reveals a diversity of approaches, as summarized in Table 2.1. A

significant portion of the existing work focuses on strategies like line hardening and

DG placement to fortify the grid against HILP events. Operational measures such

as network reconfiguration and dynamic microgrid formation are commonly adopted

to ensure rapid recovery during disruptions. However, relatively fewer studies have

incorporated the mobility and strategic placement of FEVCS within the distribu-
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tion network-a gap this research aims to address. The proposed model stands out

by integrating the transportation network into the grid resilience framework, provid-

ing a comprehensive approach to mitigating risks associated with both electrical and

transportation infrastructure.

Chapter 2 of this dissertation focuses on finding the optimal location of FEVCS

to enhance the resilience of the power grid. Building on the comprehensive analy-

sis of existing resilience enhancement strategies, this dissertation makes several key

contributions to the field. The following are the contributions of this paper:

1. This study addresses a novel research problem by exploring the optimal place-

ment of FEVCS within a power distribution network. The research aims to

enhance grid resilience, considering both the power distribution and the trans-

portation network, a perspective that has been largely unexplored in the existing

literature.

2. A two-stage stochastic optimization approach with a mixed integer second order

cone programming (MISOCP) model is developed for optimal siting of FEVCSs

considering EV mobility and the impact of extreme weather events. The first

stage deals with the selection of the most favorable location for FEVCSs, while

the second stage minimizes the weighted sum of the VoLL under potential

fault scenarios, integrating transportation network considerations into the grid

restoration scheme.

3. The study evaluates the influence of renewable-supported BESS on the optimal

placement of FEVCS and demonstrates the potential of BESS to improve the

flexibility of the grid.

2.2 Problem Statement

The total storage capacity of a fleet of 20 medium or heavy-duty electric vehicles

can reach 4-8 MWh. Since most trucks operate less than 5 hours a day [12],such a
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fleet can dedicate part of its fleet to provide ancillary services to the grid to enhance

the reliability and resilience of the power grid. HILP events such as hurricanes can

lead to the failure of distribution network infrastructure, causing power outages in

the network. Grid operators now have new options to resolve unplanned outages

Figure 2.1: Two-stage stochastic optimization model

due to the proliferation of distributed resources on the grid. The utilities monitor

significant weather events so that the maintenance team can respond to potential

faults in the distribution network. After a weather event has passed, several faults

may occur in a power distribution network. These faults can create multiple healthy

and faulty sections in the network. A smart grid can use DERs in the network to form

microgrids and power the healthy sections of the network. EV fleet storage can be

utilized to form and operate islanded networks, minimizing the impact of customer

outages. MEVs and HEV fleets can opt to support the grid during HILP events.

FEVCSs in strategic locations can enhance the resilience of the power distribution

network. The time required by the vehicles to charge and move energy from one

node to another should be considered. In this paper, the problem of strategically

placing FEVCSs to enhance the resilience of the distribution network is modeled as a

two-stage stochastic optimization model. Figure 2.1 presents the proposed two-stage
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stochastic optimization model.

Figure 2.2: Service restoration using DERs

A 3-node transportation network and a 39-node distribution network for the second

stage model are represented in Figure 2.2. The figure presents a scenario with faults

on three branches. The protection scheme on the distribution network is assumed to

isolate faults using reclosers and circuit breakers. With the fault repairs in progress,

the next step is to energize the maximum number of nodes. Microgrids can be formed

by employing DERs like renewable generators, energy storage, and fleet vehicles. In

this problem, fleet vehicles’ mobility can be considered using a transportation network.

The fleet vehicles can act as BESSs or can move energy from one microgrid to another

during grid-service restoration by microgrid formation. In the scenario shown in

Figure 2.2, three microgrids are used to power most nodes of the distribution network.

There is some flexibility in the node that can be used to power an energy consumer in

the real world. The problem addressed in this paper is to find the optimal location to

connect FEVCS customers to the grid. Building FEVCSs at strategic locations can

improve grid resilience while progressing towards the goal of reducing GHG emissions.
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2.2.1 Rationale for Model Selection

Among the various optimization techniques considered in the existing literature,

robust optimization models are designed to ensure resilience under the most adverse

conditions by focusing on worst-case scenarios. However, this approach often leads to

overly conservative decisions, which may not be economically viable. Deterministic

models, while offering computational efficiency, fail to account for the inherent un-

certainties in power systems, particularly those arising from extreme weather events,

making them less suitable for scenarios that require adaptability.

Risk-based models, on the other hand, offer a balanced approach by incorporating

risk metrics into the decision-making process. However, these models can be complex

to implement and require precise risk quantification, which can be challenging in

the dynamic and interconnected environment of grid operations, especially when the

exact distribution of risks is difficult to determine.

In contrast, the two-stage stochastic optimization model employed in this research

offers a more practical and effective framework for managing uncertainty. This model

leverages stochastic scenarios of distribution line failures to simulate the probabilistic

nature of such events, thereby capturing a wide range of possible outcomes. The

first stage of this model involves making pre-disruption investment decisions, such

as the optimal placement of FEVCSs, based on these scenarios. The second stage

then adapts these decisions after the actual event occurs, optimizing the response to

minimize the cost of load shedding and other disruptions.

By using scenario reduction techniques, this model maintains computational effi-

ciency while retaining the integrity of the risk representation, ensuring that the most

critical scenarios are considered without overwhelming computational resources. This

combination of scenario-based planning and adaptive decision-making makes the two-

stage stochastic model particularly well-suited for addressing the dual challenges of

grid and transportation network resilience, providing a balanced and robust solution
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in the face of uncertainty.

2.3 Modeling

In this chapter, a stochastic model is presented as a solution to a planning problem

aimed at enhancing the resilience of a distribution network. The first stage models the

investment decision with options of hardening and placement of FEVCS as methods to

improve resilience. In the second stage, a joint grid restoration scheme with network

reconfiguration and microgrid formation is modeled in the presence of DGs and fleet

vehicles. Investing decisions in the first stage are based on the expected cost of load

shedding, weighted by the probability distribution of line damage scenarios for the

second stage.

2.3.1 First Stage: Distribution System Planning

The distribution planning model minimizes the investment cost required for the

upgrade of the infrastructure. The options for investments to enhance the resilience

provided are hardening represented by Rb and installation of FEVCS represented by

Ee. In the third term, NH represents the number of HILP events in a year times the

weighted sum based on probability of the objective function of all fault scenarios in

the second stage. Eq(2.2) defines the budget limit in investment of infrastructure.

(2.3) indicates each EVCS can only be assigned to one bus.

min
∑
b

CR
b ×Rb +

∑
e

CE
e × Ee +NH ×

∑
s

πs × ρ(s) (2.1)

∑
b

CR
b ×Rb +

∑
e

CE
e × Ee ≤ B (2.2)

∑
e

Ee ≤ 1, ∀i (2.3)
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2.3.2 Second Stage : Joint Restoration Scheme

In the event of a natural disaster that affects the grid, there may be line damages in

the distribution network and also a failure in supply from the transmission substation.

Microgrids play a vital role in grid restoration during this crisis. The grid restoration

scheme considered in the model utilizes microgrid formation that uses available DGs

and fleet vehicles. The objective function of the joint restoration scheme is to minimize

the expected cost of load shedding, Eq. (2.4).

ρ(s) =min
∑
s

∑
t

∑
i

(V oLLi × sdi,t,s) +
∑
s

∑
t

∑
j

(lj,t,s × rl) (2.4)

ρ(s) represents the objective function, which is a function of scenario s. The objec-

tive function minimizes the sum of value of load lost (VoLL) times the load shedding

and I2r losses. V oLLi represents the VoLL at node i and pdi,t represents the load

at node i. The constraints for the joint restoration scheme are network reconfigura-

tion and microgrid formation constraints, DG constraints, time-space network (TSN)

constraints, and fleet vehicle constraints.

2.3.2.1 Network reconfiguration and Radiality constraints

Network reconfiguration constraints define the switching action that segregated the

nodes, ensuring the radiality of the microgrids. The binary variable Ai,m,s will be 1

if the i-th node belongs to the microgrid m ∈ SM in the scenario s ∈ SS. Here, SM

represents the set of all microgrids and SS the set of all scenarios considered in the

second stage.

Ari,s =

SM∑
m=1

Ai,m,s ≤ 1, ∀i,m, s (2.5)
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The node i can be connected to microgrid m in scenario s if the m-th member of SIDG

is selected as the root bus.

Ai,m,s ≤ Aj,m,s, j ∈ SIDG
∀i,m, s (2.6)

The binary variable Ol,s is set to zero if two nodes of a distribution line do not belong

to the same microgrid. i′ represents the index for the terminal bus of line l Eq.(2.7)

is linearized utilizing linear methods to eq.(2.9)-(2.11).

Ol,s ≤ Ai,m,s × Ai′,m,s, ∀i, i′,m, s (2.7)

Ol,s =
∑
m∈SM

Ol,m,s, ∀l, s (2.8)

Ol,m,s ≤
∑
i

Ai,m,s, i ∈ SIB, ∀l,m, s (2.9)

Ol,m,s ≤
∑
i′

Ai′,m,s, i
′ ∈ STB, ∀l,m, s (2.10)

Ol,m,s ≥
∑
i

Ai,m,s +
∑
i′

Ai′,m,s − 1, i ∈ SIB, i′ ∈ STB ∀l,m, s (2.11)

Constraints below represents the status of a line and a bus considering damaged

lines during scenario generation utilizing the binary variable Fl,s and hardening in

the first stage controlled by the binary variable Rl. Eq. (2.12) controls the effect of

hardening on line damage. Eqs. (2.13) and (2.14) ensure that the health status of
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the line and bus generated during the line damage scenario is applied to the model.

Ol,s ≤ 1− (1− Fl,s)× (1−Rl), ∀l, s (2.12)

Ai,m,s = Ai′,m,s, i ∈ SIB, i′ ∈ STB∀l′, LHl,s 6= 0, l, s (2.13)

Ai,m,s ≤ BHi,s, ∀i,m, s (2.14)

The radiality of each distribution network is ensured utilizing a necessary and suf-

ficient condition from [30]. The necessary condition requires the number of buses

minus the number of branches to be equal to one, which is ensured using constraints

(2.15)-(2.17).The sufficient condition is to ensure connectivity of each microgrid which

is included in the model employing constraints(2.18)-(2.21).κm,s is a binary variable

which is 1 if microgrid m is selected.βi,i′,l,m,s represents the fictional flow on line l

with nodes i&i′.β(2)
i′,m,s represents fictional supply of master DG m .

∑
i

Ai,m,s ≤M × κm,s, ∀l, s (2.15)

κm,s ≤M ×
∑
i

Ai,m,s, ∀l, s (2.16)

∑
l

Ol,m,s =
∑
i

Ai,m,s − κm,s, ∀l, s (2.17)

∑
i∈STB

∑
l

β
(1)
i,i′,l,m,s −

∑
i∈SIB

∑
l

β
(1)
i,i′,l,m,s = Ai′,m,s , i

′ 6= SIDG
∀m, s (2.18)



30∑
i∈STB

∑
l

β
(1)
i,i′,l,m,s −

∑
i∈SIB

∑
l

β
(1)
i,i′,l,m,s = −β(2)

i′,m,s , i
′ = SIDG

∀m, s (2.19)

−Ol,m,s ×M ≤ β
(1)
i,i′,l,m,s ≤ Ol,m,s ×M, i ∈ STB, i′ ∈ SIB∀l,m, s (2.20)

Ai′,m,s ≤ β
(2)
i′,m,s ≤M × Ai′,m,s, i′ ∈ SIDG

∀m, s (2.21)

2.3.2.2 DG constraints

DGs are utilized by microgrids as the primary source of energy during restoration

to reduce the load shedding.Constraints (2.22)-(2.24) models the active, reactive and

apparent power of limits of DGs.

0 ≤ PDG
g,t ≤ PDG,max

g (2.22)

QDG,min
g ≤ QDG

g,t ≤ QDG,max
g (2.23)

∥∥PDG
g,t QDG

g,t

∥∥ ≤ SDG,maxg (2.24)

2.3.2.3 Time-space network constraints

TSN model is utilized to represent the movement of fleet vehicles along the grid

during a disaster.The binary variable Gf,ee′,t is 1 if the vehicle f is on an arc from

FEVCS e to e′ during time t. The constraint (2.25) models movement during a period

of time. Eq. (2.26) models the relationship between the state of a vehicle and the
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progression of time. Eq. (2.27) defines the initial position of the vehicles.

Gf,ee′,t = 1, ∀f ∈ SF , t ∈ T (2.25)

∑
(m,e′)∈K−m

Gf,ee′,t =
∑

(m,e′)∈K+
m

Gf,ee′,t+1, ∀f ∈ SF , e ∈ SEV CS ∪ SV , t ∈ T (2.26)

∑
(m,e′)∈K+

m

Gf,ee′,1 = G0
f,e, ∀f ∈ SF , e ∈ SEV CS ∪ SV (2.27)

2.3.2.4 Operational constraints of fleet vehicles

If Ee,s is a binary variable which represents the choice to build an FEVCS at the

candidate location node e, γe,s is the binary variable that represents an active node

during microgrid formation with an FEVCS installed at the node e. Eq.(2.28) is

linearized using eq(2.29)-(2.31).

γe,s = Are,s × Ee,s, ∀e, s (2.28)

γe,s ≤ Are,s, ∀e, s (2.29)

γe,s ≤ Ee,s, ∀e, s (2.30)

γe,s ≥ Ee,s + Ae,s − 1, ∀e, s (2.31)
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Similarly, αf,e,t,s connects the active EVCS node to the fleet vehicle’s movement along

the grid. Gf,ee,t,s represents the active arc ee of the fleet vehicle f at a time t in the

scenario, s which means that the vehicle is connected to node e of the time-space

network. The constraint (2.32) is linearized using equations (2.33)-(2.35).

αf,e,t,s = γe,s ×Gf,ee,t,s, ∀f, s (2.32)

αf,e,t,s ≤ γe,s, ∀f, s (2.33)

αf,e,t,s ≤ Gf,ee,t,s, ∀f, s (2.34)

αf,e,t,s ≥ Gf,ee,t,s + γe,s − 1, ∀f, s (2.35)

The charging and discharging of fleet vehicles are represented by the constraints

(2.36)-(2.47).Constraints (2.36) and (2.37) restrict the charging and discharging of

fleet vehicles to happen only at an active node with FEVCS when the vehicle is on

the arc e− e. Constraints (2.38)-(2.40) control the charge mode of the vehicle to be

charging or discharging over a period of time. The constraint (2.41) defines a single

variable that represents the power transfer of the fleet vehicle. The constraint (2.42)

represents the apparent power limit of the fleet vehicles.

0 ≤ P FV,ch
f,e,t,s ≤ αf,e,i,s × PEV CS,max

e , ∀f, t, s (2.36)

0 ≤ P FV,dch
f,e,t,s ≤ αf,e,i,s × PEV CS,max

e , ∀f, t, s (2.37)
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0 ≤ P FV,ch
f,e,t,s ≤ Y ch

f,t,s × PEV CS,max
e , ∀f, t, s (2.38)

0 ≤ P FV,dch
f,e,t,s ≤ Y dch

f,t,s × PEV CS,max
e , ∀f, t, s (2.39)

Y dch
f,t,s + Y ch

f,t,s ≤ αf,e,i,s, ∀f, t, s (2.40)

P FV
f,e,t,s =

P FV,dch
f,e,t,s

ηdch
− ηdchP FV,ch

f,e,t,s , ∀f, t, s (2.41)

∥∥∥P FV
f,e,t,s Q

FV,dch
f,e,t,s

∥∥∥ ≤ αf,e,i,s × SEV CS,maxf (2.42)

The constraints related to the SOC of the fleet vehicles modeled in (2.43)- (2.47).

Constraint (2.43) defines the relationship of the initial SOC of the EV with the SOC

of hour 2 which is activated by αf,e,t,s. The constraint (2.44) defines the relationship

of the SOC of the EV when t is not equal to 1. The relationship between the SOC

of the EV when the EV is not connected to an FEVCS is shown in (2.45) and (2.46).

The upper and lower limit of the SOC of EV is defined in constraint (2.47).

−M × (1− αf,e,t,s) ≤ SOCFV
Initial − SOCFV

f,t,s −
∆T

BattFV,capf

× P FV
f,e,t+1,s ≤

M × (1− αf,e,t,s), ∀f, t = 1, s (2.43)
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−M × (1− αf,e,t,s) ≤ SOCFV
f,t−1,s − SOCFV

f,t,s −
∆T

BattFV,capf

× P FV
f,e,t+1,s ≤

M × (1− αf,e,t,s), ∀f, t 6= 1, s (2.44)

−M ×
∑
e

αf,e,t,s ≤ SOCFV
Initial − SOCFV

f,t,s −
∆T

BattFV,capf

× P FV
f,e,t+1,s ≤

M ×
∑
e

αf,e,t,s, ∀f, t = 1, s (2.45)

−M ×
∑
e

αf,e,t,s ≤ SOCFV
f,t−1,s − SOCFV

f,t,s −
∆T

BattFV,capf

× P FV
f,e,t+1,s ≤

M ×
∑
e

αf,e,t,s, ∀f, t 6= 1, s (2.46)

SOCmin
f ≤ SOCf,t+1,s ≤ SOCmax

f , ∀f, t, s (2.47)

2.3.2.5 Power flow constraints

Nodal active power balance is modeled using constraint (2.48). Since in the equa-

tion (2.48) pFVf,e,t,s is the product of P FV
f,e,t,s and αf,e,t,s,we use the constraints (2.49)-

(2.51) to linearize the equation. The constraint (2.52) and (2.53) defines decision

variables for switchable loads. The constraint (2.54) defines a decision variable to

represent the load shedding at each node in each scenario.

∑
i∈N1(j)

(pij,t − lij,trij)−
∑

k∈N2(j)

pjk,t +
∑
m∈SM

[∑
g∈SG

PDG
g,t +

∑
f∈SFV

pFVf,e,t,s − pdj,t

]
= 0

(2.48)
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pFVf,e,t,s ≤ PEV CS,max
e , ∀f, t, s (2.49)

pFVf,e,t,s ≤ P FV
f,e,t,s, ∀f, t, s (2.50)

pFVf,e,t,s ≥ P FV
f,e,t,s − PEV CS,max

e , ∀f, t, s (2.51)

pdj,t = Arj,s × P d
j,t, ∀j, t, s (2.52)

qdj,t = Arj,s ×Qd
j,t, ∀j, t, s (2.53)

sdj,t = P d
j,t − pdj,t, ∀j, t, s (2.54)

Similarly, nodal reactive power balance is modeled using the constraint (2.55) which

is linearized by (2.56)-(2.58) to linearize the equation.

∑
i∈N1(j)

(qij,t − lij,txij)−
∑

k∈N2(j)

qjk,t +
∑
m∈SM

[∑
g∈SG

QDG
g,t +

∑
f∈SFV

qFVf,e,t,s − qdj,t

]
= 0

(2.55)
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qFVf,e,t,s ≤ QEV CS,max
e , ∀f, t, s (2.56)

qFVf,e,t,s ≤ QFV,dch
f,e,t,s , ∀f, t, s (2.57)

qFVf,e,t,s ≥ QFV,dch
f,e,t,s −Q

EV CS,max
e , ∀f, t, s (2.58)

The upper and lower limits for nodal voltages of active nodes are modeled using

(2.59). The voltages of the master DGs are set using the constraint (2.60). The

nodal voltage drop constraints bounded by the Big-M method are modeled using

the (2.61).The relation between power flow, current, and voltage is defined using

(2.62). The constraint (2.63) is used to model the limits of branch current flow in

the distribution network. Constraints (2.64) and (2.65) model the active and reactive

power flow through the closed branches of the distribution network.

Ai,m,s × (V(i,min))
2 ≤ ui,t ≤ Ai,m,s × (V(i,max))

2, ∀i, t, s (2.59)

ui,t = Ai,m,s × (V DG,set
m )2, ∀i ∈ SIDG

,∀i, t, s (2.60)

−M × (1−Ol,s) ≤ ui,t,s − uj,t,s − 2(rijpij,t + xijqij,t) + ((rij)
2 + (xij)

2)lij,t ≤

M × (1−Ol,s), ∀l, t, s (2.61)

‖2pij,t 2qij,t (lij,t − ui,t)‖ ≤ (lij,t + ui,t) (2.62)
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0 ≤ ll,t,s ≤ Ol,s × (IMax)2, ∀l, t, s (2.63)

−Ol,s × (pMax
ij ) ≤ pij,t,s ≤ Ol,s × (pMax

ij ), ∀i, t, s (2.64)

−Ol,s × (qMax
ij ) ≤ qij,t,s ≤ Ol,s × (qMax

ij ), ∀i, t, s (2.65)

Model of BESS used in [31] was used to represent the behavior of BESS during

grid service restoration.

2.3.3 Scenario Generation & Reduction

It is clear from Figure 2.1 that distribution network’s line damage scenarios post

an HILP event links the first stage to the second stage of the model. Since hurricanes

are addressed in the problem, wind speed data from [32] was utilized to feed into

a custom PDF sampler and reconstructor from [33]. This custom-pdf reconstructor

was utilized to generate wind speeds to generate hurricane wind speeds. Fragility

functions from [24] were employed to generate 100 line damage scenarios. [34] was

used to reduce the 100 scenarios to 3 scenarios.

2.4 Numerical Results

2.4.1 Feeder & Case Description

The model was tested on a modified IEEE-33 node distribution network and a

4-node transportation network. The feeder has residential load connected to nodes

1-22, commercial load from nodes 22-33, and a hospital load at node 30. Figure 2.4

shows the load profiles utilized for the different load types. The loads and VoLL for
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all the nodes in the case are shown in Figure 2.5. The 33-node network is divided

into 4 zones shown as Z1, Z2, Z3, and Z4 in Figure 2.3.The distributed generation

available in the network includes three solar farms and a conventional gas generator of

1 MW each at nodes 18, 22, 25, and 33, respectively. A candidate node was selected

from each zone as a potential FEVCS location. nodes 18,22, 25, and 33 were selected

as the search window for the optimal location of the FEVCS. The fault is assumed to

be active for 8 hours. During a fault, it is assumed that the upstream substation does

not provide power to the network. The FEVCS is assumed to have more than three

charging ports available to support grid restoration. Only three representative EVs

are considered in all cases. A representative EV can be considered as several FEVs

with the same routing behavior. This assumption is to incorporate the variation of

usable EV storage with minimum computational load. The size of the chargers can be

varied to incorporate the increase or decrease in usable EV storage. The considered

FEVCS is made up of 125 kW capacity chargers. Vehicles are considered to have

usable storage of 300 kWh each. Six fleet vehicles are considered available for grid

restoration. To reduce the computational load, two fleet vehicles are considered to

follow the same behavior. Thus, the representative EV considered for the base cases

has a storage of 600 kWh and a charger rating of 250 kW. Cases 0,1, and 2 are cases

with zero, one, and two FEVCS on the distribution network, respectively.The above

cases do not have any BESS in the network. Cases 3, 4, and 5 are cases with zero,

one, and two FEVCS with solar farms supported by BESS.

2.4.2 Simulation Results & Analysis

Results from scenario-2 of the three scenarios considered in the second stage are

presented in this section. The faults in scenario 2 are on branches 16-17, 17-18, 21-22,

6-26, 9-15, and 22-12. The model’s response to these faults for Case-0 is shown in

Figure 2.6. The conventional generator is only capable of supporting loads on nodes

18 and 26-33.
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Figure 2.3: 4-node transportation and 33- distribution network of the test case

Figure 2.4: Load profiles for different load types

2.4.2.1 Case-1: Optimal location of the FEVCS

The optimal location of the first FEVCS for the presented network is node 25. As

shown in Figure 2.7a, nodes 18 and 25-33 are active during the fault. Since there are

no other EVCSs in this case, node 25 was selected as the FEVCS can act as energy

storage to power node 25. Node 25 was added to the active grid because the VoLL of

the nodes in Zones Z3 and Z4 is higher. Figure 2.7b shows the generation, load and

V2G during the fault. The SOC of the fleet vehicles and the power of V2G is shown

in Figure 2.7c. In the next subsection, the model solves the problem of second-best

location for FEVCS of the network in the presence of a FEVCS at node 25.
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Figure 2.5: Load and VoLL for different nodes

2.4.2.2 Case 2: Second-best locations for FEVCS

The second-best location of the FEVCS is estimated to be at node 22. In this

case, FEVCSs at nodes 22 and 25 act as energy storage for the grid. Compared to

case-1, one more node is active in the network, reducing the VoLL of case-1. The

mobility of the fleet vehicles is presented in the Table 2.2. The Fleet vehicle EV#1

is not used for restoration during the hours 14:00â16:00, the vehicle is located at

node 3 of the transportation network which overlaps with the distribution network

at node 25. From Figure 2.8b, it is clear that EV#1 is used from hour 18:00 to 21:00

during which the storage of EV#1 reduces to the minimum value. The mobility of

the vehicles is utilized by the model for vehicles EV#2 and EV#3. The demand

to keep up Microgrid-3 controlled by the DG at node 25 is higher than the demand

in Microgrid-2 controlled by node 22. Therefore, the model uses EV#3 at node

25 for hours 16:00 and 17:00 and then sends EV#3 to node 22 since the available

storage cannot provide sufficient energy to node 25. Then EV#2 with higher storage

is utilized to energize node 25 to provide sufficient energy to manage the supply

demand balance of the presented configurations.
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Figure 2.6: Grid service restoration in fault Scenario-2 Case-0

Table 2.2: Mobility of fleet vehicles in the transportation network-Case 2

Time 15:00 16:00 17:00 18:00 19:00 20:00 21:00
EV#1 2-3 3-2 2-3 3-3 3-3 3-3 3-3
EV#2 1-1 1-2 2-2 2-2 2-3 3-3 3-3
EV#3 4-3 3-3 3-3 3-2 2-2 2-2 2-2

2.4.2.3 Impact of BESS on the FEVCS Location

BESS of 1 MW capacity and 2.5 MWh storage was added to all solar farms in Cases

0, 1 and 2 to obtain Cases 3, 4, and 5. The network configuration of the restored

grid is presented in Figure 2.9. The active nodes in the restored distribution network

have increased from Case-2. In Case 4, the model solved the optimal location of

FEVCS in the presence of renewables backed by BESS. The optimal location of the

FEVCS is node 25 in the distribution network. It is clear from Figure 2.10a that

when compared to Case-3, Case-4 adds node 24 and sheds node 26. node 24 has a

higher VoLL compared to node 26 due to the commercial load capacity on node 26.

Compared to Case 2, EV#1 and EV#2 charge when there is surplus energy during

some hours to support the grid during other hours. As shown in Figure 2.10b, EV#1
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(a) Grid service restoration

(b) Generation-load balance in Microgrid 3 with
optimal EVCS

(c) Variation of SOC & charging power of FEVs

Figure 2.7: Results for fault Scenario-2 Case-1

discharges during hour 17:00, charges during hour 18:00, and discharges during hours

19:00â21:00. Adding BESS for the solar farm at node 25 has provided the network

with this flexibility compared to Case 2.

The model solved the problem in case 5 for the best two locations for FEVCS on

the presented network in the presence of renewables backed by BESS, with a MIP

GAP of 0.13%. The best two locations for the FEVCSs are node 25 and node 22.

In comparison to Case-4, Case-5 powers a lower number of nodes because the model

prioritizes loads with higher VoLL in Case-5. Both microgrids have one FEVCS each.

The configuration after service restoration of the distribution network in Case 5 is
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(a) Grid service restoration (b) Variation of SOC & charging power of FEVs

Figure 2.8: Results from fault Scenario-2 Case-2

shown in Figure 2.11. Table 2.3 shows the mobility and variation of SOC of the EVs.

EV#1 is called to node 3 at 16:00. At 17:00 hour, EV#1 is in the Arc 3-3 of the TSN,

indicating that EV #1 is connected to node 3 of the transportation network, which is

node 25 of the power distribution network. EV#1 discharges at the hours 17:00 and

18:00 supporting MG#3. At hour 19:00, EV#1 is called to node 2 to support MG#2

in hours 20:00 and 21:00. EV#2 is called to node 25 at 15:00. EV#2 discharges at

node 25 to support MG#3 and is called to node 22 to charge from MG#2 at hour

18:00. EV#2 goes back to node 25 during hour 19:00 and supports Microgrid MG#3

in hours 20:00 and 21:00. EV#2 transports energy from the MG#2 to MG#3 to

power more critical loads on MG#2. Similarly, EV#3 is called to node 22 in hour

14:00. EV#3 supports MG#2 during hour 15:00, recharges during hour 16:00 and

supports MG#3 during hours 18:00-20:00. Figure 2.12 shows the variation of the

objective function for all cases. Adding BESS to the mix has increased the impact of

FEVCS in improving the objective function.

2.4.3 SOCP Relaxation Gap & Simulation Setup

The accuracy of SOCP relaxation was tested to compare the power flow obtained

from conic relaxation with the original non-convex model by evaluating the relaxation
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Figure 2.9: Grid service restoration in fault Scenario-2 Case-3

(a) Grid service restoration (b) Variation of SOC & charging power of FEVs

Figure 2.10: Results for fault Scenario-2 Case-4

error defined as

Gap = max∀(i,j)
∣∣p2
ij + q2

ij − (lijui)
∣∣ (2.66)

The SOC gap for the case is in the order of 10−9 MW. Simulations were carried out

on an Apple Macbook with an Apple M2 Pro CPU, 12 cores, and 32 GB RAM. The

problem was modeled utilizing MATLAB with YALMIP and Gurobi. The MIP GAP

and the solution time of all simulated cases are shown in Table 2.4.
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Figure 2.11: Grid service restoration in fault Scenario-2 Case-5

Figure 2.12: Objective function of Cases 0 -5

2.5 Comparing Computational Complexity

2.6 Conclusion & Future Works

The present study provides a comprehensive assessment of a two-stage stochastic

model for optimizing the location of FEVCS within a distribution network. This in-

novative approach aims to improve network resilience and reliability, particularly dur-

ing operational faults or disaster management scenarios. The model was thoroughly

tested on a modified IEEE-33 node distribution network and a 4-node transportation

network, which included various types of loads and distributed generators.
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Table 2.3: Mobility & SOC of fleet vehicles in the transportation network-Case 5

Time 15:00 16:00 17:00 18:00 19:00 20:00 21:00
EV#1 1-4 4-3 3-3 3-3 3-2 2-2 2-2

EV1_SOC 600.0 600.0 350.0 100.0 100.0 81.8 56.3
EV#2 2-3 3-3 3-2 2-2 2-3 3-3 3-3

EV2_SOC 600.0 350.0 350.0 555.8 555.8 305.8 55.8
EV#3 2-2 2-2 2-3 3-3 3-3 3-3 3-4

EV3_SOC 513.3 600.0 600.0 427.6 216.8 50.0 50.0

Table 2.4: MIP gap & solution time

Case MIP GAP Solution Time (hours)
0 0 0.004
1 0 0.261
2 0.001 17.534
3 0 0.597
4 0.078 55.437
5 0.13 70.579

The optimal location of the FEVCS, as identified by the model, was at node 25.

This node was selected due to its potential to act as energy storage for powering

the node and its influence on zones Z3 and Z4 with higher VoLL. Furthermore, the

second-best location was determined to be node 22, which added an active node to

the network and reduced VoLL compared to the first case. This scenario also showed

a strategic utilization of the mobility and storage capabilities of the fleet vehicles,

providing energy supply demand balance.

In addition, renewable generators supported by BESS were also considered. The

model demonstrated an increased number of active nodes in the restored distribution

network, with the optimal FEVCS location remaining at node 25. The presence of

the BESS allowed for greater flexibility in the network, allowing the vehicles to charge

during periods of surplus energy and support the grid during other hours. When two

FEVCS were present alongside BESS-backed renewables, the model prioritized loads
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with higher VoLL, resulting in powering a fewer number of nodes, but catering to

more critical loads.

The proposed stochastic model presents a potential path for strategic planning and

optimization of FEVCS in a distribution network, enhancing the resilience and relia-

bility of the network. The results highlight the valuable role of FEVCS, particularly

when combined with BESS, in responding to network faults and managing supply

demand balances. Future work may further explore other factors that influence the

model and test the model on larger or more complex network configurations.

While the strategic deployment of FEVCS has demonstrated clear benefits in en-

hancing grid resilience, it is critical to recognize that these charging stations, due to

their bidirectional energy transfer capabilities, can also serve as active market partic-

ipants in the electricity markets. Chapter 3 will expand upon this by exploring how

FEVCS, integrated with other DERs, can strategically influence the wholesale energy

and reserve markets. This not only emphasizes the technical capabilities, but also

highlights the economic and operational impacts of these systems in market dynamics.



CHAPTER 3: AGGREGATING FLEET EVS TO PROVIDE ENERGY AND

ANCILLARY SERVICE IN WHOLESALE MARKETS

Building on the foundation laid in the previous chapter regarding the resilience ben-

efits of strategically deploying FEVCS, this chapter shifts focus to modeling FEVCS

providing energy and ancillary services in the wholesale markets. FEVCS, when ag-

gregated with other DERs, offers unique opportunities to engage in wholesale markets,

leveraging their ability to provide energy and ancillary services. This chapter will ex-

amine how FEVCS, as a part of DER aggregators, can contribute to grid stability

and play a strategic role as price-makers in the energy and reserve markets.

The growing demands for energy and the awareness of the environment have ac-

celerated the worldwide adoption and deployment of renewable energy generation.

This transformation has catalyzed the augmentation of DERs such as distributed

solar and wind, energy storage systems (ESS), and FEVCS. With the integration of

DERs, the role of traditional distribution networks as Load Serving Entities (LSEs)

that purchase energy from the wholesale electricity markets is evolving toward ADNs,

which can be proactive market players in the ISO market to buy and sell energy and

ancillary services.

FEVCSs are unique DERs that are highly dense in terms of power and energy,

offering the bidirectional energy transfer capability of the grid through V2G services.

Additionally, they can provide reactive power support and ancillary services. This

flexibility enables aggregated FEVCS to influence market prices in the day-ahead ISO

energy and reserve markets. With FERC Order 2222 allowing DERs to participate

alongside traditional generators, FEVCS can no longer be viewed solely as passive

consumers, but as active price-makers (PMs) capable of bidding strategically.



49

This chapter explores how FEVCS, as a part of DER aggregation, can act strate-

gically in the ISO day-ahead energy and reserve market. A stochastic bi-level opti-

mization framework is proposed to model the ADN’s interaction with the ISO mar-

ket, focusing on price-making capabilities and ancillary service provision by FEVCS.

The reactive power support and market flexibility provided by the FEVCS not only

enhances market participation, but also contributes to the stability of the ADN, ad-

dressing critical challenges in both market economics and operational resilience.

3.1 Literature Review & Contributions

The strategic behavior of an individual DER has the least impact on the electricity

market because of its relatively small size compared to conventional generators con-

nected to the transmission system. Aggregation of DERs can allow market players

at the distribution level to strategically influence the market prices. Research related

to aggregated DERs has emerged lately. Some existing works have modeled an ADN

as a price-taker in the wholesale market, which aims to maximize its profit by re-

sponding to market prices set by the ISO. Asimakopoulou et al. proposed a bilevel

optimization model in [35] to maximize the economic benefits of DER aggregation

that increase with the flexibility of load. [36] investigated the optimal operation of

distribution companies (DisCos) in a competitive electricity market. The results in-

dicate that DisCo operates optimally by varying DER outputs according to market

prices. Sarkhani et al. [37] analyzed the impact of distributed generation (DG) and

interruptible load (IL) on strategic bidding of a DisCo in the day-ahead market. [38]

models the optimal bidding strategy of a DER aggregator in a day-ahead energy

market in the presence of flexible demand as a stochastic mixed-integer linear pro-

gramming (MILP) problem. A bidding strategy for microgrids in joint energy, reserve

and regulation market is presented in [39]. In [40], a stochastic framework for DisCo’s

decision-making in day-ahead and real-time market is presented. [41] modeled distri-

bution networks with DERs as a virtual power plant (VPP) for integration with the



50

existing power grid. Strategic bidding of a VPP as a price-taker in the day-ahead

and real-time market is modeled as a two-stage problem in [42]. A VPP is mod-

eled as a service-centric aggregator which can provide ancillary services on demand

from the ISO in [43]. A conditional value-at-risk (CVaR) based model for electricity

purchase decisions of retailers in day-ahead market was presented in [44]. The afore-

mentioned models treat DER and distribution networks as a price-taker to maximize

the aggregator profit by responding to market prices. However, as DER penetration

is increasing, recent work has identified that an ADN can influence the day-ahead

energy and reserve market prices of the ISO market. It can also provide ancillary ser-

vices requested by the ISO[45, 46, 47, 48]. Uncertainty of renewable energy sources

have been incorporated in generation dispatch models in [49, 50, 51, 52, 53]. In [54],

Li et al. presented a price-maker model for DisCo in the wholesale energy market. In

[55], the strategic bidding of DisCo in day-ahead and real-time markets was modeled

by Zhang et al. Bahramara et al. in [56] has modeled the strategic behavior of a

DisCo in wholesale energy and reserve market as a bilevel problem. It considers the

DisCo as a strategic player; however, it fails to consider the network models and op-

eration constraints of distribution and transmission systems thus cannot reflect the

network congestion, voltage conditions, and market prices at different locations and

cannot guarantee the system operational security. A strategic bidding model for the

ADN as a price-maker in the ISO energy and reserve market was proposed in [57].

With more DERs being integrated into distribution networks, ADNs will play a

more important role in the future power grid operation and markets. In this chap-

ter, a stochastic bilevel optimization approach to model and analyze the strategic

participation of an ADN and its DERs to provide energy and ancillary services in

the wholesale electricity markets is proposed. To explore the ADN’s potential as a

price-maker in the day-ahead ISO market, ADN is modeled as the upper-level model.

Hence, ISO day-ahead energy and reserve market clearing problem is modeled as the
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lower-level problem. In the upper-level problem, a stochastic optimization model is

formulated for the ADN to optimally dispatch the DERs and make optimal deci-

sions on the bidding of energy and reserve considering the availability, uncertainties,

and flexibility of DERs. The lower-level problem is an optimization model for joint

market-clearing of energy and reserve in the ISO market. Using strong duality the-

ory and Karush-Kuhn Tucker (KKT) conditions, the proposed bilevel optimization

problem is reformulated as a mathematical programming with equilibrium constraints

(MPEC) problem and further converted into a computationally-solvable mixed inte-

ger second-order cone programming (MISOCP) model. The main contributions of

this chapter are summarized as follows.

1. A stochastic bilevel optimization approach is proposed to model and analyze

the strategic participation of an ADN with high penetration of DERs, including

FEVCSs, in wholesale markets. The capability of DERs in providing both

energy and ancillary services is modeled.

2. The availability, flexibility, and uncertainties of DERs, including FEVCSs, are

accounted for in the transmission and distribution system and market opera-

tions. The DERs will contribute to local voltage regulation in ADN operation

while strategically participating in the wholesale market.

3. The interactions between ADN and DER operation and the ISO energy and an-

cillary service markets are analyzed. The model simulations present the impact

of a network-constrained strategic ADN’s influence on the locational marginal

prices (LMPs) and reserve price of the ISO market.

4. An FEVCS model representing the V2G and reactive power support capability

of aggregated EVs’ interaction with the ISO network is modeled in this chapter.

The rest of the chapter is organized as follows. The problem description is presented



52

in Section II. The mathematical formulation of the model is described in Section III.

Numerical results are presented in Section IV. Section V concludes this chapter.

3.2 Problem Statement

The enhanced visibility and controllability of DERs allow the ADN to actively

control DERs to strategically bid into the ISO’s energy and reserve markets. As

shown in Figure 3.1, an ADN consists of DERs such as distributed solar generators

(DGs), wind DGs, energy storage systems (ESSs), and electric vehicle charging sta-

tions (FEVCSs). A substation connects an ADN to the transmission network. The

Figure 3.1: FEVCS’s role within a DER aggregator bidding in the ISO market

ADN needs to bid in the wholesale market and trade energy and ancillary services

with the ISO. Traditionally, distribution companies do not have much elastic load and

are risk-averse, the distribution system operator (DSO) only bids for the total load de-
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mand. However, with more DERs integrated into the distribution network, the ADN

can provide energy and ancillary services back to the wholesale market. This turns

the ADN into a prosumer and enhances the potential of the ADN to strategically

play in the wholesale market and impact LMP and reserve prices in the transmission

network to minimize its own operation costs by intentionally dispatching the DERs.

The ISO market will accept offers and bids from the market players. Generation

companies (GenCos) offer to sell energy and reserves to the ISO market. Retailers

or LSEs bid to buy energy and reserves from the ISO market. The ADN can either

buy or sell energy and reserves to the ISO market. The ISO optimally dispatches

available resources to maximize social welfare. In this work, the strategic behavior of

a price-maker ADN is modeled, and its behavior in a competitive wholesale market

is analyzed. Other market participants are modeled as non-strategic players.

In this chapter, the strategic bidding of an ADN is modeled as a stochastic bilevel

optimization problem considering the uncertainties of DERs. The structure of the

bilevel optimization model is shown in Figure 3.2. At the upper level, the ADN

optimizes the dispatch of active/reactive power of DERs in the distribution network

and develops the bidding strategies considering the uncertainties of DERs. The ADN

utilizes the DERs to impact the LMPs and the reserve prices in the wholesale market

to minimize the total operation cost. The DERs are the key components that are to

be optimized such that they can help the ADN achieve the desired market prices and

provide ancillary services in the wholesale market. The uncertainty of DERs’ avail-

able generation is crucial in the ADN’s decision-making process. The uncertainties

considered in the model include solar DG output, wind DG output, occupancy of the

FEVCS, and the change in the aggregated SOC of the FEVCS due to the arrival or

departure of EVs (SOCFEV CS,∆).

In the lower-level problem, the ISO jointly clears the day-ahead energy and re-

serve market and broadcasts the LMPs and reserve prices. The ISO market clearing
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problem optimizes the offers and bids from all market participants, considering social

welfare maximization as the objective, and then determines the energy and reserve

prices. In the upper-level problem, based on the input of LMP and reserve prices

from the ISO, the ADN solves an ACOPF problem to optimally dispatch the DERs

to determine the amount of energy and ancillary services to be traded in the ISO

market. The bids and offers submitted to the ISO market will impact the LMP and

reserve prices, and, in turn, the ISO market clearing results will impact the optimal

dispatch of the ADN. The data and information exchange between the two models

are illustrated in Figure 3.2. The ISO market clearing model requires the offers/bids

of the ADN for energy and reserve in the ISO market. Considering the inputs from

ADN, GenCos, and the non-strategic retailers/LSEs, the ISO market model will clear

the day-ahead energy and reserve market and determine the amount of energy and

reserve bought/sold from/to the ADN and the ISO market prices. The ADN needs

the market clearing results, including the LMPs and reserve prices, to optimally dis-

patch its DERs for providing reserve and energy. To facilitate the computation of

the optimal bidding strategy of the ADN, the bilevel optimization model is refor-

mulated as a single-level model by converting the follower problem into its MPEC

equivalent using KKT conditions and strong duality, resulting in a MISOCP model.

The mathematical formulation is presented in the next section.

3.2.1 Rationale for Model Selection

A bilevel optimization model is well suited for problems where two distinct decision-

making entities, with hierarchical interdependencies, such as interactions between the

ADN and the ISO. The ADN, being modeled as the price-maker, is selected as the

upper-level model, while the ISO is modeled as the lower-level since it reacts to the

bids from the ADN by clearing the market. The key reasons for using a bilevel model

include hierarchical decision-making, strategic interaction, and coordination of energy

and ancillary services. MPEC is used to convert the bilevel model into a single-level
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Figure 3.2: Model of the bilevel problem

optimization problem since the bilevel model, in its original form, is non-convex and

difficult to solve.

3.3 Modeling

3.3.1 Upper-Level Problem: Optimal Dispatch of DERs in the ADN

At the upper-level, the ADN will develop an optimal bidding strategy based on

the DER capacity/generation and distribution network operations to maximize total

profit or minimize total operational cost. As a market player, the ADN expects its

bidding to impact the energy and reserve prices in the ISO market so that it can

gain more profit from the ISO market transactions. The objective function of the

upper-level optimization model is to minimize the total expected operational cost

of the ADN, including the cost of active and reactive power and reserve from the
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renewable-based DERs, cost of purchasing power, and revenue from providing reserve

in the ISO market, as shown in Eq. (3.1).

min F (XLP )

=
∑
t

∑
γ

Γγ

(∑
s

CPV,Ps PPVs,γ,t + CPV,Ps αRMt rPVs,γ,t+
∑
w

CWE,P
w PWw,γ,t + CWE,P

w αRMt rWw,γ,t

+
∑
e

Cdege (PES,che,γ,t ηES,che ∆t+
PES,dche,γ,t

ηES,dche

∆t+ αRMt rESe,γ,t)

+
∑
f

Cdegf (PFEV CS,chf,γ,t ηFEV CSch ∆t+
PFEV CS,dchf,γ,t

ηFEV CSdch

∆t+ αRMt rFEV CSf,γ,t )

)

−
∑
t

(PADN,Outt − PADN,int )πLMP
t,k −

∑
t

(rADNt πRt + Πinc
t αRMt rADNt ) (3.1)

The first term in Eq.(3.1) represents the cost of active power and reserve for solar

DGs, where CPV,P
s represents the cost of active power generation for PV unit s, P PV

s,γ,t

is the active power generated by PV unit s, αRMt is the ISO reserve market’s prob-

ability of calling reserve, and rs,γ,t is the reserve from PV unit s. The second term

presents the cost function of wind DG. The third term includes the cost of degra-

dation of battery for ESS in the model. The fourth term includes Cdeg
f as the cost

of degradation of batteries of the EVs. The fifth term is the ADN’s profit from sale

of energy to the ISO market where πLMP
t,k is the ISO market’s LMP at the ADN’s

substation which comprises marginal costs of energy and congestion. Uncertainty

from the DERs is modeled in the upper level model using scenarios and stochastic

programming. The parameter Γγ decides the probability of the scenario γ to happen.

The variables PADN,Out
t , PADN,in

t and rADNt represent the expected power and reserve

exchanged with the ISO which is the weighted sum of the scenario-specific value de-

pendent on the probability of each scenario. The above-mentioned expected variables

link the stochastic upper-level model to the lower-level model. The sixth term is the

reserve sold to the ISO market at a price πRt with an incentive Πinc
t for providing re-
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serve. Constraints (3.2)-(3.6) of the ADN’s optimal dispatch model utilize convex AC

power flow in a radial distribution network. Second-order cone programming (SOCP)

relaxation is employed to maintain the convexity of the power flow constraints[58],

[59]. Eq. (3.1) is subjected to the following constraints:

3.3.1.1 Nodal power flow constraints

Nodal active power balance constraint

∑
i∈N1(j)

(pij,γ,t − lij,γ,trij)−
∑

i∈N2(j)

pij,γ,t + pPVj,γ,t + pWj,γ,t −
pES,chj,γ,t

ηES,ch
+ pES,dchj,γ,t ηES,dch

− pdj,t −
pFEV CS,chj,γ,t

ηFEV CS,ch
+ pFEV CS,dchj,γ,t ηFEV CS,dch − pADN,Outj,γ,t + pADN,inj,γ,t = 0 (3.2)

Nodal reactive power balance constraint

∑
i∈N1(j)

(qij,γ,t − lij,γ,txij)−
∑

i∈N2(j)

qij,γ,t + qPVj,γ,t + qWj,γ,t + qES,dchj,γ,t + qFEV CS,dchj,γ,t − qdj,t = 0

(3.3)

Apparent power limit constraint

‖2pij,γ,t 2qij,γ,t (lij,γ,t − ui,γ,t)‖ ≤ (lij,γ,t + ui,γ,t) (3.4)

Voltage drop equation

uj,γ,t = ui,γ,t − 2(rijpij,γ,t + xijqij,γ,t) + ((rij)
2 + (xij)

2)lij,γ,t (3.5)
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Nodal voltage limit

(V(i,min))
2 ≤ ui,γ,t ≤ (V(i,max))

2 (3.6)

Each constraint in the nodal power flow constraints is regarding node j in the

distribution network. Eq. (3.2) depicts the nodal active power balance constraint.

The incoming active power at the node j is equal to the outgoing power from the

node. Eq. (3.3) represents the nodal reactive power balance. Eq. (3.4) represents

the relation between active and reactive power flows at each node. Voltage drop is

defined in Eq. (3.5). Nodal voltage constraint is defined in Eq. (3.6).

3.3.1.2 Reserve balance constraint

rADNt,γ =
∑
s

rPVs,γ,t +
∑
w

rWw,γ,t +
∑
e

rESe,γ,t +
∑
f

rFEV CSf,γ,t (3.7)

Eq. (3.7) defines the equality constraint of the ADN’s reserve bid as the sum of

reserves provided by the renewable DERs, ESS and FEVCS in the ADN.

3.3.1.3 Solar DG constraints

P PV
s,γ,t + rPVs,γ,t ≤ P PV,Forecast

s,t (3.8)

0 ≤ P PV
s,γ,t (3.9)

0 ≤ rPVs,γ,t (3.10)
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QPV,min
s,t ≤ QPV

s,γ,t ≤ QPV,max
s,t (3.11)

∥∥P PV
s,γ,t + rPVs,γ,t, Q

PV
s,γ,t

∥∥ ≤ SPV,maxs (3.12)

Eqs. (3.8)-(3.10) define the maximum and minimum limits of solar PVs’ active power

generation and reserve outputs at time t. Eq. (3.11) defines the minimum and

maximum limits of solar PVs’ reactive power outputs at time t. Eq. (3.12) defines

the capacity limit on the active and reactive power outputs of the Solar PV at time

t. The wind unit utilizes a model similar to the solar PV model. The forecast data

utilized will define the difference in the nature of solar and wind DGs.

3.3.1.4 Energy Storage Constraints

0 ≤ PES,ch
e,γ,t ≤ PES,max

e (3.13)

0 ≤ PES,dch
e,γ,t ≤ PES,max

e (3.14)

EES,min
e ≤ eESe,γ,t ≤ EES,max

e (3.15)

(PES,dch
e,γ,t + rESe,γ,t)/η

ES,dch
e ≤ eESe,γ,t (3.16)

rESe,γ,t − P
ES,ch
e,γ,t + PES,dch

e,γ,t ≤ PES,max
e (3.17)
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0 ≤ rESe,γ,t ≤ PES,max
e (3.18)

eESe,γ,t = eESe,γ,t−1 + PES,ch
e,γ,t ηES,che −

PES,dch
e,γ,t

ηES,dche

(3.19)

QES,min
e ≤ QES

e,γ,t ≤ QES,max
e (3.20)

∥∥∥PES,ch
e,γ,t − P

ES,dch
e,γ,t + rESe,γ,t, Q

ES
e,γ,t

∥∥∥ ≤ SES,maxe (3.21)

Eqs. (3.13)-(3.15) represent the boundary constraints for charging power, discharging

power, and energy stored for the ESS, respectively. Eqs. (3.16) -(3.18) define the

relation between the scheduled power discharge and scheduled reserve. In Eq. (3.16),

the energy stored at time t limits the sum of scheduled power discharge and reserve

for time t. Moreover, Eq. (3.17) limits the reserve and power scheduled for a time

interval t by the maximum power output of the ESS. Equation (3.19) defines how

the power interactions of the ESS with the ADN at the time t-1 will affect the stored

energy during the time interval t. Eq. (3.21) shows the relation between the active

and reactive power discharge limited by the inverter capacity of the ESS.

3.3.1.5 Fleet Charging Station

The FEVCS model presented in this chapter is assuming that all the EVs connected

to the FEVCS can be controlled by the FEVCS. The FEVCS provides the data of the

available number of EVs and the dispatchable energy block in the individual EVs to

the ADN. Each time an EV arrives, there is an increment in FEVCS capacity which

is equivalent to the rating of the charging port available at the FEVCS and vice

versa when an EV departs the FEVCS. Similarly, the SOC of the FEVCS increases
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depending on the SOC of the vehicle arriving. Whereas, there is a decrement in the

FEVCS’s SOC, which is equivalent to the 100% SOC of an EV. In the presented

model, the active, reactive and apparent power capacity of the FEVCS is controlled

by the occupancy of the FEVCS represented by O. SOCFEV CS,∆ is utilized in the

FEVCS model to include the variation of SOC of the FEVCS due to the arrival or

departure of vehicles. An FEVCS model, which represents the aggregated capacity

of the EVs connected to the FEVCS at each period, is modeled in this chapter using

equations (3.22)-(3.31).

0 ≤ PFEV CS,chf,γ,t ≤ Of,γ,t × PEV,maxunit ×B1f,γ,t (3.22)

0 ≤ PFEV CS,dchf,γ,t ≤ Of,γ,t × PEV,maxunit ×B2f,γ,t (3.23)

B1f,γ,t +B2f,γ,t ≤ 1 (3.24)

SOCEV,minunit ×Of,γ,t ≤ SOCFEV CSf,γ,t ≤ SOCEV,maxunit ×Of,γ,t (3.25)

(PFEV CS,dchf,γ,t + rFEV CSf,γ,t )/ηFEV CS,dchf ≤ SOCFEV CSf,γ,t (3.26)
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rFEV CSf,γ,t − PFEV CS,chf,γ,t + PFEV CS,dchf,γ,t ≤ PEV,maxunit ×Of,γ,t (3.27)

0 ≤ rFEV CSf,γ,t ≤ PFEV CS,maxunit ×Of,γ,t (3.28)

SOCFEV CSf,γ,t = SOCFEV CSf,γ,t−1 + PFEV CS,chf,γ,t ηFEV CSch −
PFEV CS,dchf,γ,t

ηFEV CSdch

+ SOCFEV CS,∆f,γ,t (3.29)

QFEV CS,minunit ×Of,γ,t ≤ QFEV CSf,γ,t ≤ QFEV CS,maxunit ×Of,γ,t (3.30)

∥∥∥PFEV CS,chf,γ,t − PFEV CS,dchf,γ,t + rFEV CSf,γ,t , QFEV CSf,γ,t

∥∥∥ ≤ SFEV CS,maxunit ×Of,γ,t (3.31)

Eqs. (3.22)-(3.24) defines the charging and discharging capability of the FEVCS

being controlled by the occupancy. The FEVCS either charges or discharges at a point

of time. Eq. (3.25) represents the SOC of the FEVCS controlled by the occupancy

of the FEVCS. Eqs. (3.26)-(3.28) defines the constraints on FEVCS’s discharging

power and reserve contribution to the ADN. Eq. (3.29) defines the relation between

the SOC, discharging/charging power and the stochastic parameter SOCFEV CS,∆
f,γ,t .

Eq. (3.30) and (3.31) define the constraints for reactive power and apparent power

of the FEVCS.

The upper-level problem is as presented in Eqs. (3.1)-(3.21). The solution to the
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upper-level optimization problem yields the energy bid (EB), energy offer (EO), and

reserve offer (RO) of the ADN, which depend on the DER uncertainties, the expected

energy, and reserve prices in the ISO market.

3.3.2 Lower Level Problem: ISO’s Day-ahead Market Clearing

The ISO performs market clearing for the bids and offers from GenCos and the ADN

to meet the total demand and maximize social welfare. Equivalently, the objective

function (3.32) of the lower-level problem is to minimize the total operation cost of

the ISO energy and reserve market.

min F (XFP )

=
∑
t

(∑
g

Πgen,offer
g,t P gen

g,t + πt
ADN,offerPADN,out

t − πtADN,bidPADN,in
t

+
∑
g

(Πgen,res
g,t rgeng,t + Πinc

t αRMt rgeng,t )+πADN,rest rADNt + Πinc
t αRMt rADNt

)
(3.32)

3.3.2.1 Energy & Reserve Balance Constraints

∑
g

P gen
g,t −

∑
r

PRet
r,t − P

ADN,in
t + PADN,out

t = 0 : πEt (3.33)

∑
g

rgeng,t + rADNt = Rsys
t : πRt (3.34)

Eqs. (3.33) and (3.34) define the energy and reserve balance in the ISO market

clearing framework respectively.
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3.3.2.2 Transmission branch flow constraint

−PLTSOj,max ≤
∑
g

GSF TSO
j−g P

gen
g,t −

∑
r

GSF TSO
j−r P

Ret
r,t

+GSF TSO
j,k (PADN,out

t − PADN,in
t ) ≤ PLTSOj,max: µ

TSO,min/max
j,t (3.35)

Eq. (3.35) represents the transmission branch flow constraint.

3.3.2.3 GenCo’s constraints

0 ≤ pgeng,t : µgen,ming,t (3.36)

P gen
g,t + rgeng,t ≤ P gen,max

g : µgen,maxg,t (3.37)

0 ≤ rgeng,t ≤ Rgen,max
g : µgen,minresg,t , µgen,maxresg,t (3.38)

Eqs. (3.36)-(3.38) define the upper and lower bounds of the reserve and energy

provided by the GenCos.

3.3.2.4 ADN’s constraints

0 ≤ pADN,outt : µADN,outt (3.39)

PADN
t + rADNt ≤ PADN,max : µADN,maxt (3.40)

0 ≤ PADN,in
t ≤ PADN,max : µADN,minint , µADN,maxint (3.41)

0 ≤ rADNt ≤ RADN,max : µADN,minrest , µADN,maxrest (3.42)

Eqs. (3.39)-(3.42) define the upper and lower bounds of reserve and energy provided

by the ADN. The lower-level problem is incorporated into the upper-level problem
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and linearized using KKT conditions and the duality theorem in [60]. We will refor-

mulate the bilevel optimization model as a single-level MPEC presented in the next

subsection.

3.3.3 Mathematical Program with Equilibrium Constraints

The MPEC is obtained from the KKT conditions of the Lagrange equation of the

lower-level problem. Stationary constraints are obtained from the partial differential

of the Lagrange function with respect to the decision variables.

3.3.3.1 Stationary constraints

Πgen,offer
g,t − πEt −

Nl∑
j=1

µTSO,minj,t

∑
g

GSF TSO
j−g +

Nl∑
j=1

µTSO,maxj,t

∑
g

GSF TSO
j−g −

µgen,ming,t + µgen,maxg,t = 0 (3.43)

Πgen,res
g,t + Πinc

t αRMt − πRMt + µgen,maxg,t − µgen,minresg,t + µgen,maxresg,t = 0 (3.44)

πADN,offert − πEt − µADN,minoutt + µADN,maxoutt −
Nl∑
j=1

µTSO,minj,t GSF TSO
j,k +

Nl∑
j=1

µTSO,maxj,t GSF TSO
j,k = 0 (3.45)

−πADN,bidt + πEt − µ
ADN,minin
t + µADN,maxint +

Nl∑
j=1

µTSO,minj,t GSF TSO
j,k

−
Nl∑
j=1

µTSO,maxj,t GSF TSO
j,k = 0 (3.46)
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πADN,rest + Πinc
t αRMt − µADN,minrest + µADN,maxrest = 0 (3.47)

3.3.3.2 Complementary Constraints

0 ≤
∑
g

GSF TSO
j−g P

gen
g,t −

∑
r

GSF TSO
j−r P

Ret
r,t +GSF TSO

j,k

(
PADN,out
t − PADN,in

t

)
+PLTSOj,max ⊥ µTSO,minj,t ≥ 0 (3.48)

0 ≤
∑
g

GSF TSO
j−g P

gen
g,t −

∑
r

GSF TSO
j−r P

Ret
r,t +GSF TSO

j,k

(
PADN,out
t − PADN,in

t

)
+PLTSOj,max⊥µ

TSO,max
j,t ≥ 0 (3.49)

0 ≤ P gen
g,t ⊥µ

gen,min
g,t ≥ 0 (3.50)

0 ≤ (P gen,max
g,t − P gen

g,t − r
gen
g,t )⊥µgen,maxg,t ≥ 0 (3.51)

0 ≤ rgeng,t ⊥µ
gen,minres
g,t ≥ 0 (3.52)

0 ≤ (Rgen,max
g,t − rgeng,t )⊥µgen,maxresg,t ≥ 0 (3.53)

0 ≤ PADN,out
t ⊥µADN,minoutt ≥ 0 (3.54)

0 ≤ (PADN,max − PADN,out
t − rADNt )⊥µADN,maxoutt ≥ 0 (3.55)

0 ≤ (PADN,max − PADN,in
t )⊥µADN,maxint ≥ 0 (3.56)

0 ≤ PADN,in
t ⊥µADN,minint ≥ 0 (3.57)

0 ≤ (RADN,max − rADNt )⊥µADN,maxrest ≥ 0 (3.58)

0 ≤ rADNt ⊥µADN,minrest ≥ 0 (3.59)
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The complementary slackness constraints (3.48)-(3.59) are transformed as below in

the model[56].

0 ≤ x⊥y ≥ 0 =⇒ x ≥ 0, y ≥ 0, x ≤ H1U, y ≤ H2(1− U) (3.60)

U is a binary variable and H1 & H2 are large numbers.

3.3.4 Mixed-Integer Second-Order Cone Programming Model

The energy and reserve prices of the ISO market in Eq. (3.1) are unknown variables

for the upper-level problem. The quantities of energy and reserve that have to be

offered/bought are also unknown, leading to a non-linearity in Eq. (3.1). This non-

linearity is linearized employing KKT conditions and strong duality theory to obtain

the below objective function[61],[62].

MinF
(
XMP

)
=∑

t

[∑
γ

Γγ

(∑
s

CPV,P
s P PV

s,γ,t + CPV,P
s αRMt rPVs,γ,t+

∑
w

CWE,P
w PW

w,γ,t

+ CWE,P
w αRMt rWw,γ,t +

∑
e

Cdeg
e (PES,ch

e,γ,t ηES,che ∆t+
PES,ch
e,γ,t

ηES,dche

∆t+ αRMt rESe,γ,t)

+
∑
f

Cdeg
f (P FEV CS,ch

f,γ,t ηFEV CSch ∆t+
P FEV CS,ch
ef,γ,t

ηFEV CSch

∆t+ αRMt rFEV CSf,γ,t )

)
− Πinc

t αRMt rADNt +
∑
g

Πgen,offer
g,t P gen

g,t +
∑
g

(Πgen,res
g,t rgeng,t + Πinc

t αRMt rgeng,t )

+
∑
g

(P gen,max
g µgen,maxg,t +Rgen,max

g µgen,maxresg,t )−RSys
t πRMt

+ PLTSOj,maxµ
TSO,min
j,t + PLTSOj,maxµ

TSO,max
j,t

]
(3.61)

subject to constraints (3.2)-(3.21), (3.43)-(3.60).

The transformed problem will have the original constraints (3.2)-(3.21) of the
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upper-level problem. In addition to that, the model will have stationary and com-

plementary slackness constraints of the lower-level problem. The bilevel problem

has been transformed into a MISOCP model. Data used for simulation and results

obtained from the model are presented in the next section.

3.4 Numerical Results

In this section, the proposed model was tested on two test cases. A 9-bus distribu-

tion network connected to a modified PJM 5-bus transmission system (ISO5-ADN9)

and an IEEE 33-bus distribution system connected to an IEEE-30 bus transmission

system (ISO30-ADN33) were used for testing the performance of the model.

3.4.1 Case ISO5-ADN9

3.4.1.1 Case Data and Assumptions

The ISO market represented by a PJM 5-bus system has 5 GenCos and one ADN

connected to node 1 as market participants. Retailers are considered to be conven-

tional distribution networks with no flexibility in consumer demand. All data related

to the modified 9-node distribution network case and the modified PJM 5-bus case

are provided in [63]. The ADN has a radial topology with high penetration of renew-

able DERs. The peak load in the ADN is 53 MW. The 9-node distribution network

has been modified so that it will have enough DER capacity to influence the PJM-5

bus representing the transmission network, which hosts a peak load of 1070 MW.

It is assumed that the ADN has control of all the DERs that are connected to its

network. The probability of calling reserve and incentive for providing reserve can

be found in [56]. For modeling uncertainty of solar DG, wind DG, and FEVCS, 365

scenarios were generated for solar DG output, wind DG output, occupancy of the

FEVCS and change in aggregated SOC of FEVCS due to arrival or departure of EVs.

The scenarios for solar and wind generation were derived were obtained from National

Renewable Energy Laboratory (NREL) [?] and [64]. Similarly, 365 scenarios for vari-
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ation of occupancy and SOC of the FEVCS were generated. The ADN is assumed to

have control over the FEVCS. Hence, the data of occupancy and change in SOC of

FEVCS are generated using a case of a medium-duty fleet charging station for 20 EVs

of 200 kWh storage each. Usable storage of 150 kWh is considered for each EV. The

FEVCS has 20 chargers of 150 kW to charge these EVs. The time of arrival and time

of departure for a fleet charging station can be assumed to follow a normal distribu-

tion, since medium-duty vehicles are often utilized for delivering goods. A mean of

7 and a standard deviation of 1 hour were used for generating the time of departure

of EVs from the FEVCS. A mean of 19 and a standard deviation of 1 were used to

generate the time of arrival of EVs to the FEVCS. The SOC of vehicles arriving was

also generated based on a normal distribution with a mean of 45 kWh and a standard

deviation of 5. Using the provided data, scenarios for occupancy and SOCFEV CS,∆

were generated. These scenarios were reduced to 3 scenarios by the fast-forward sce-

nario reduction method based on Kantorovich distance [34]-[65]. Figure 3.3 presents

the scenarios for the occupancy of the FEVCS. The reduced scenarios are shown as

line plots in black. The scenarios and reduced scenarios for SOCFEV CS,∆ is shown in

Figure 3.4. The cost of degradation of battery for BESS and EV are assumed to be

30$/MWh and 50$/MWh respectively. The efficiency considered for BESS and EV

are 98% and 95% respectively [66], [67]. Two cases for the ISO5-ADN9 with different

DER generation costs were used to analyze the impact of DER generation cost on the

strategic behavior of the ADN. The generation costs of DERs are set to be 0 $/MWh

for both active and reactive power in Case 0 and a nonzero cost of DER generation

is considered in Case 1.

3.4.1.2 Simulation Results and Analysis

An ADN with a strategic bidding approach will use the available generation in a

time period to control the energy and reserve bidding prices to increase its profit.

The ISO energy market clearing can be observed in Figure 3.5. In the energy market,
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Figure 3.3: Scenarios and reduced scenarios for occupancy of the FEVCS

Figure 3.4: Scenarios and reduced scenarios for variation of SOC of the FEVCS

ADN acts as a strategic consumer in most of the hours. The marginal players in

the ISO energy market at each point in time are presented in Figure 3.5. GenCo#2,

GenCo#3, and GenCo#5 are the marginal players in the energy market. GenCo#5 is

the marginal player throughout the day. GenCo#3 is the marginal player in periods

1-4 and 10-24. Meanwhile, GenCo#2 is the marginal player in periods 15 and 16 only.

For n congested lines, there will be n + 1 marginal generators. There is congestion

on branches 1-5 during periods 1-4 and 10-24. There is congestion on branches 2-3

during periods 15 and 16. The ADN bids for energy strategically to reduce the LMP

at node 1 so that it can reduce the cost of purchasing energy from the ISO market.
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The ADN achieved so by reducing congestion in the ISO network.

Figure 3.5: ISO energy market clearing - ISO5-ADN9

Figure 3.6: ISO reserve market clearing - ISO5-ADN9

The power exchange between the ADN and the ISO market compared to the total

load of the system is small. However, the reserve provided by the ADN is sizeable

when compared to the total reserve requirement of the system. GenCo#2, GenCo#3,

GenCo#5, and the ADN are the marginal units at different time periods in the ISO

reserve market. GenCo#3 is the marginal player in periods 1-5, 10-15, and 21-24.

GenCo#5 is the marginal player in periods 6-9. GenCo#2 is the marginal player in

periods 16 and 17. The ADN is the marginal player in periods 18-20. The strategic
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Figure 3.7: ADN’s behavior in the ISO market for Case-0 and Case-1

behavior of the ADN in the reserve market is shown in Figure 3.6. The columns with

a red outline represent the marginal players in Figure 3.5 and Figure 3.6. With the

DERs, the ADN is able to provide reserve to the ISO reserve market. The ADN

attempts to gain more profits from the reserve market by increasing the reserve price

through its strategic bidding. The ADN acts as the marginal unit in the reserve

market for periods 18-20. The ADN’s optimal reserve offers raised the ISO’s reserve

price from the marginal reserve price of GenCo#3 to the marginal price of GenCo#2

even though GenCo#2 is not providing any reserve to the reserve market in periods

18-20. Without the strategic bidding of the ADN, the reserve price of the system is

the reserve offer price of GenCo#3. However, with the strategic reserve offering of the

ADN, the system’s reserve price is raised to the reserve bidding price of GenCo#2’s,

thus increasing the ADN’s profit from the sale of reserves. Irrespective of the relatively

small size in both markets, the ADN has the potential to be a strategic player in

the ISO market because of the low cost of the renewable DERs when compared to

conventional sources.

The strategic nature of ADN changes in behavior when the cost of DERs is con-

sidered in the model. The change in behavior can be analyzed by comparing the

energy and reserve transactions of the ADN in the ISO market. Figure 3.7 features
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the comparison between Case 0 and Case 1. In Case 1, the amount of reserve that

the ADN provides to the ISO market increases while the energy purchased from the

ISO market increases. This behavior is motivated by the ADN’s objective to decrease

the total generation cost of the DERs. The ADN allocates more of the available DER

generation capacity to the reserve market than to the energy market.

The ADN’s active and reactive power dispatches are presented in Figure 3.8. From

Figure 3.8, it is clear that solar DGs, wind DGs, ESSs, and FEVCS are utilized in

providing reserves in the ISO market. The ESSs are charged to their full SOC at the

first time period and are utilized as reserves as part of ADN’s strategy of maximizing

profit from the day ahead reserve market. The active power of the DERs is dispatched

based on the strategic behavior required to participate in the ISO market. The

reactive power is provided by the DERs for voltage regulation in the ADN. Hence, as

presented in Figure 3.9, the nodal voltages are within the tolerance range of +/- 0.05

per unit.

Figure 3.8: ADN’s power generation and demand - ISO5-ADN9

Modeled as a price-maker, the ADN needs to balance the DER dispatch for pro-

viding energy and reserve so that it can gain the maximum profits from the ISO

markets. It will try to minimize the cost of energy purchases from the ISO energy

market and maximize the revenue of providing reserve in the ISO’s ancillary service

market. The proposed price-maker model was compared with the conventional dis-
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Figure 3.9: ADN’s nodal voltages in ISO5-ADN9

Table 3.1: Comparison between the cost of price-maker and price-taker ADNs from
ISO interactions for ISO5-ADN9

Test case Payment to the ISO market ($)
PM-ADN PT-ADN

ISO5-ADN9 8720 21211

tribution network modeled as a price-taker, i.e., strategic ADN v.s. non-strategic

ADN. Both models were run for a 24-hour time period to obtain the ISO energy and

reserve prices for both test cases. In the ISO5-ADN9 test case, both PM-ADN and

the PT-ADN are net consumers in the ISO energy market. As presented in Table 3.1,

the PM-ADN reduced the cost to buy energy from the ISO market by 58.8% when

compared to the PT-ADN.

3.4.2 Case ISO30-ADN33

3.4.2.1 Case Description

The second test case consists of an IEEE 30-bus transmission network and an IEEE

33-node distribution system. In the transmission case, the peak load is 168 MW. The

maximum reserve capacity of each GenCo is set to 15% of its generation capacity.

The generation costs of GenCo#1, GenCo#2, GenCo#3, GenCo#4, GenCo#5 and

GenCo#6 are set to 35, 15, 17, 20, 25, and 30 $/MWh respectively. The cost of

providing reserve was considered to be 70% of the cost of energy. For the IEEE
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33-node distribution network that represents an ADN with high penetration DERs,

it has 3 MW wind power, 2.2 MW ESS, and FEVCS with 3 MW capacity in the

network. All other data were kept the same as in the standard case.

3.4.2.2 Simulation Results and Analysis

The case considers an ADN with extremely high DER penetration. When compared

to the Case ISO5-ADN9 where the net load of the ADN network is never negative,

this case has the DER capacity to sell power to the ISO market. The capability of the

ADN to control DER generation allows the ADN to be a net producer or consumer,

which is well reflected by the energy exchange between the PM-ADN and the ISO

market in Figure 3.11. As presented in Figure 3.11, periods 9, 13, and 16 showed

a decrease in the energy price at node 1 where the ADN is connected to the ISO

network. The PM-ADN acts as a strategic consumer during these periods, reducing

the LMPs for all the nodes when there is no congestion in the ISO30-ADN33 network

in these periods. Figure 3.11 also illustrates the reserve prices of the PM-ADN and

the PT-ADN. In the reserve market, the PM-ADN purchases energy from the ISO

energy market and provides reserve in the ISO reserve market, whereas the PT-ADN

generates maximum energy and sells energy in the ISO market. Similar to the ISO5-

ADN9 case, the ADN is capable of influencing the ISO reserve market to increase the

price in the periods 20 and 21 to the reserve price of the next marginal reserve. In

Case ISO30-ADN33, the profit from the ISO market increased when compared to the

PT-ADN. The comparison of the PM-ADN and the PT-ADN is presented in Table

3.2. The nodal voltage for the test case I30-A33 was in the security range.

The behavior of wind generation, ESS, and EVCS in the strategic ADN model

is as shown in Figure 3.10. The figure shows the optimal dispatch of the ADN for

scenario 3 in the stochastic model. The available wind energy is utilized to bid in both

energy and reserve markets. Whereas both ESS and EVCS are primarily used in the

reserve market to reduce the cost of degradation of the battery. The cost of providing
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Table 3.2: Comparison between the cost of price-maker and price-taker ADNs from
ISO interactions for ISO30-ADN33

Test case Payment to the ISO market ($)
PM-ADN PT-ADN

ISO30-ADN33 -1300 193.41

Figure 3.10: Behavior of DERs in the strategic ADN

reserve for EVCS and ESS is dependent on the cost of degradation of the battery.

The probability of calling reserve is high in periods 16, 18, 19, and 20. Since the

cost of generation of wind generation is considered 0, the model utilizes wind energy

in providing reserves in periods 16 and 18-21. During period 16, 3MW wind energy

is curtailed to provide 3MW in the reserve market. Similarly, energy is curtailed in

periods 18-21. The comparable price of energy and reserve in the ISO market during

this period is also the reason for this behavior. Similarly, even though the initial SOC

of the FEVCS is set at 50% of the total SOC, the FEVCS charges the connected

vehicles to their maximum capacity and then uses the stored energy to bid in the

reserve market. The reserve from the FEVCS (R-EVCS) is reduced during hours 8-

17 since the occupancy of the FEVCS is 0. After period 17, the charging power from

FEVCS increases as the occupancy increases. The EVs are charged as they arrive to

the FEVCS. FEVCS is the third choice of reserve, as the cost of battery degradation

in EVs is higher than that of ESS. The DERs which are not used for reserve or energy
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are used for reactive power support since the reactive power load is higher during the

period 18-22.

Figure 3.11: Comparison of PM-ADN with PT-ADN in the ISO30-ADN33 case

The strategic ADN model was tested at 40%, 70%, and 100% DER penetration to

understand the impact of DER penetration on the strategic behavior of the ADN.

The strategic behavior of the ADN with 40% and 100% DER penetration is shown

in Figure 3.12. At 40% penetration, the ADN was able to set the price in the reserve

market for period 18. The strategic behavior for the ADN with 40% DER penetration

is shown as the black marker in Figure 3.12 At 70% DER penetration, the ADN was

able to set reserve prices for periods 14, 16, and 17. At 100% DER penetration, the

ADN was able to set prices in periods 10, 14, 15, 16, and 17. The strategic behavior

for the ADN with 100% DER penetration is shown as red markers in Figure 3.12.

With an increase in DER penetration, there is an increase in the strategic behavior of

the ADN. This is due to the increase in the resources that can be optimally dispatched

in both energy and reserve markets.

3.4.3 Impact of Uncertainty’s in the ADN’s Decision-making

As mentioned in section II, the uncertainty of DERs has been included in the ADN’s

model utilizing scenarios for solar DG output, wind DG output, occupancy of the

FEVCS, and, SOCFEV CS,∆. Optimal scenario reduction for multivariate data from
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Figure 3.12: Strategic behavior of ADN with in increase in DER penetration

[34] is utilized for scenario reduction. As presented in [68], a set of scenarios is reduced

to a scenario tree. The tree structure is modified by bundling similar scenarios to

reduce the number of nodes of a fan of an individual scenario. The reduced scenarios

represent the most probable scenarios, each with a probability value linked to it. In

the case studies provided in this chapter, we have reduced 365 scenarios to the 3

most probable scenarios, which are then utilized in the stochastic model to obtain

the expected value of energy offer/bid and reserve offer to the ISO market. The

probabilities linked to Scenario 1, Scenario 2, and Scenario 3 are 0.4466, 0.3726, and

0.1808 respectively. Figure 3.13 shows the EB/EO and RO values in each scenario

and the expected value. The expected value of energy and reserve is optimized by

the model utilizing the integrated ISO market-clearing model.

3.4.4 SOCP Relaxation Analysis and Simulation Setup

The accuracy of SOCP relaxation was tested to compare the power flow obtained

from conic relaxation with the original non-convex model by evaluating the relaxation

error defined as

Gap = max∀(i,j)
∣∣p2
ij + q2

ij − (lijui)
∣∣ (3.62)
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Figure 3.13: Expected value of ADN’s energy and reserve bids

The SOC gap for the ISO5-ADN9 case is 1.5 · e−4 MW. The SOC gap for ISO30-

ADN33 is 6.3e−6 MW. The gaps obtained for both cases are small enough and do not

impact the optimal solution of the proposed model.

Simulations were carried out on a 64-bit Windows Laptop with Intel Core i5 CPU,

2.5 GHz, and 16 GB RAM. The problem was modeled utilizing MATLAB with

YALMIP and Gurobi. The stochastic model for the ISO5-ADN9 case with 6495

continuous variables and 168 binary variables was solved in 60 seconds. The stochas-

tic model for the ISO30-ADN33 case with 65928 continuous and 2832 binary variables

was solved in 147 seconds.

3.5 Conclusion & Future Works

In this chapter, the strategic bidding and behaviors of an ADN with high penetra-

tion DERs in wholesale electricity markets are modeled and investigated. Considering

the interactions between the ADN and the ISO, the DERs are optimized by the ADN

to coordinate the energy and reserve provision to the wholesale market to minimize

the total cost of the ADN considering network operation constraints and uncertainties

of solar and wind. The strategic behavior of the ADN with DERs in the ISO market

is formulated as a bilevel optimization problem, which is converted to a single-level
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MPEC problem and further reformulated as a computationally solvable MISOCP

model. The proposed model was tested using two cases and compared with a con-

ventional price-taker ADN model. The results indicate that a price-maker ADN can

increase the profit of an ADN while decreasing the LMPs of the ISO network during

peak load hours. An increase in the generation cost of DERs resulted in an increase in

reserve allocation of ADNs. With the increase in DER penetration, the ability of the

ADN to be a price-maker increase. This model can be utilized to study the behaviors

of an ADN and DERs in providing energy and reserve under the competitive ISO

markets. In future work, the DER control can be modeled in a decentralized manner

to incorporate the rapid restructuring and privatization of the power grid.

In conclusion, the results from the strategic market participation model have demon-

strated the significant influence that DER aggregators, specifically FEVCS, can exert

on market dynamics, such as LMPs and reserve prices. While the bilevel optimization

framework offers valuable insights into the operational strategies and market interac-

tions of FEVCS, these strategies are inherently centralized. To further improve grid

stability, particularly in a system with high DER penetration, decentralized control

mechanisms must be explored. As the complexity of managing FEVCS grows, espe-

cially in distributed networks, decentralized control schemes such as those provided

by multi-agent reinforcement learning (MARL) frameworks become increasingly im-

portant. The next chapter introduces a novel Federated Learning-Enhanced Conflict-

Aware Multi-Agent Reinforcement Learning (FLE-CA-MARL) framework, aimed at

addressing these challenges.



CHAPTER 4: FEDERATED REINFORCEMENT LEARNING AND

MULTI-AGENT DISTRIBUTED CONTROL FOR FLEET EV GRID SERVICES

Building upon the insights gained from the centralized market optimization model

in the previous chapter, this chapter delves into the decentralized control of FEVCS.

The proposed FLE-CA-MARL framework integrates FL and MARL to optimize the

voltage and reactive power support provided by FEVCS. This framework allows FEV

agents to make decentralized decisions, ensuring not only local grid stability but also

improving overall system resilience.

The growing integration of FEVCS into the power grid demands real-time, adap-

tive, and intelligent control mechanisms to ensure grid stability. With the increasing

number of FEVs, traditional methods struggle to manage the complexity of DERs

and bidirectional power flows. ML techniques have emerged as a promising solution,

particularly RL, which provide adaptive control for FEVCS by managing key grid

challenges, including voltage regulation and operational uncertainty.

As the grid becomes more decentralized and volatile due to the integration of DERs,

RL’s ability to learn optimal actions through interaction with the environment is cru-

cial to the power grid control. RL’s applications span across power system optimiza-

tion and control tasks such as energy management, demand response, and voltage

control, where RL enables the system and DER devices to operate autonomously

with minimal oversight.

4.1 Literature Review & Contributions

RL models offer a human-like approach to learning control strategies through the

RL agent’s interaction with the environment, using rewards and feedbacks. Integrat-
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ing deep neural networks into RL to create deep RL (DRL) has also enhanced the

exploration, convergence, and stability of the RL models. Optimization, planning,

management, and control problems can be formulated as RL problems and solved

using algorithms like Q-learning, deep deterministic policy gradient (DDPG) and soft

actor-critic (SAC).

Power system applications for energy management, demand response, operational

control, cybersecurity, economic dispatch, edge computing, etc. have been modeled

using the RL framework [69]. RL approaches can be single-agent or multi-agent (MA)

based on the number of agents learning from the same environment. Although single-

agent RL models have a single objective represented by a single reward function that

includes all rewards and penalties being considered, MARL models can have multi-

ple objectives with agents working alongside or against each other. As EV charging

stations often involve multiple chargers or FEVs, MARL is effective in managing the

collective behaviors of FEV agents, leading to more efficient and coordinated opti-

mization. [70] presents a MARL approach for controlling the charging of a large

population of EVs. In this paper, an MA-DDPG algorithm operating in a mixed

cooperative-competitive setting is implemented using centralized training and decen-

tralized execution. However, the centralized training approach presents challenges in

scalability, particularly in distributed large-scale environments. Furthermore, agents

are trained in a cooperative environment, leading to the possibility of suboptimal ac-

tions when multiple agents interact. An MARL framework for providing grid services

such as valley filling and minimizing power loss is presented in [71]. However, the au-

thors used a simplified grid model, ignoring reactive power from the action space. [72]

presented a MARL framework featuring DDPG algorithm and a parameter sharing

framework to solve the EV’s coordinated active and reactive power control problem,

addressing demand-side response and voltage regulations. This is a centralized ap-

proach with parameter sharing that produces a unified control policy for all agents



83

without considering their heterogeneity. [73] introduces Fleet RL, the first customiz-

able RL environment specifically designed to optimize the charging of commercial

EV fleets. Although it provides a flexible and customizable environment for EV fleet

operations, it lacks provisions for reactive power support, which is critical in voltage

regulation. A cooperative charging control strategy for EVs using a MARL approach

is presented in [74]. This model does not support reactive power management. Addi-

tionally, the use of a collective-policy model introduces the possibility of suboptimal

behaviors from the individual vehicle’s perspective. Cheng et al. in [75], propose a

delay adaptive Volt/VAR control (VVC) framework for ADNs with massive PV de-

vices. The authors address the challenge of communication latency in the distribution

network (DN).

In general, the literature reveals that while the RL and MARL approaches have

been applied to the optimization of FEVCS, key limitations remain: many works

rely on centralized training, lack scalability, or omit critical elements such as reactive

power management and conflict resolution between agents.

Most single-agent and multi-agent models require centralized training or central-

ized control to implement a coordinated response from the agents that are most likely

distributed in different locations on the transmission or distribution grid. Using an

agent trained in the local area alone provides optimal results based on the historical

experience of the agent, but limits the agent’s exposure to unfamiliar scenarios. Any

attempt to implement a much more global model increases the toll on the communica-

tion system exponentially. A hybrid approach to centralized and distributed control

is the way forward for efficient control of power distribution networks. Federated

learning (FL) addresses these concerns by enabling decentralized, privacy-preserving

collaborative learning across agents. FL is a form of distributed learning technique

introduced by Google AI in 2016, where data processing is decentralized, parallel

and collaborative among numerous client devices [76]. RL agents deployed in FL



84

framework forms federated RL (FRL) framework. FRL frameworks are emerging as

powerful tools for power system applications, offering solutions that preserve data

privacy and enhance scalability. Power system applications such as information secu-

rity [77], predictive maintenance[78], EV charging scheduling, transformer protection,

VVO have been implemented employing FDRL frameworks. Qian et al. have pro-

posed an FDRL algorithm, FedSAC, for multi-EV charging control on a DN [79].

Although FedSAC addresses active power control, fleet EV charging systems must

also handle reactive power to maintain voltage stability, which FedSAC does not ad-

dress. Building on this foundation, Danish et al. introduce a blockchain-based FL

approach to enhance privacy and security in EV load forecasting. However, these

models focus on prediction rather than real-time decision-making, leaving a gap in

adaptive control strategies for fleet-level charging optimization [80]. [81] proposes an

FL framework using the proximal algorithm and the transformer model to address

the challenges of non-IID data in the dispatch of V2G. Even though a system of pe-

riodic retraining with new data can update the transformer model to new data, the

above system lacks the self-learning capability of RL. These studies demonstrate the

potential of FDRL in power system applications, yet there remain gaps in providing

comprehensive solutions for FEVCS. Notably, none of the existing works incorporate

both active and reactive power control, with a focus on volt-VAR control using an

FRL architecture.

Existing work focuses primarily on active power optimization in multi-agent set-

tings but lacks integrated frameworks that handle both active and reactive power

control, which is essential for voltage stability in fleet EV charging stations [71],[73],

[82],[83]. Moreover, these frameworks often rely on centralized decision-making,

which limits their scalability [70],[72]. Although these studies demonstrate significant

progress in DRL, FL, and FDRL for grid management, crucial gaps remain, particu-

larly in the area of decentralized reactive power support mechanisms for FEVCS.
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Additionally, most studies focus on light-duty EVs or residential applications, over-

looking the unique challenges posed by commercial and industrial fleets, which have

higher power demands, more stringent operational constraints, and typically central-

ized depot-based charging strategies. Unlike residential EVs, FEVs must coordinate

their charging schedules to not only meet operational demands, but also to support

grid services like voltage control. This introduces a dual-layer complexity where both

the FEVCS level and the DN level must be modeled and coordinated for effective

control.

Hence, this chapter seeks to address these gaps by developing an adaptive, scalable,

decentralized framework that integrates both active and reactive power management

at the FEVCS level while ensuring that grid-wide voltage stability is maintained at

the DN level. This framework aims to provide a more comprehensive solution that

can be applied to commercial fleet EVs, which have been not explored in the existing

literature.

This work presents a novel FDRL framework for grid-managed distributed EV

charging for Volt/VAR control in distribution systems, with the following key contri-

butions that advance the state-of-the-art:

1. This paper proposes a Federated Learning-Enhanced Conflict-Aware Multi-

Agent Reinforcement Learning (FLE-CA-MARL) control framework specifically

designed for FEV-level collaborative learning within a DN. By enabling decen-

tralized decision-making among FEV agents, the framework ensures that both

local voltage regulation and global voltage control are optimized, demonstrating

scalability and adaptability across diverse network configurations.

2. A novel conflict-aware MARL (CA-MARL) environment is utilized, to model

the coordinated reactive-power support of multiple active FEV agents connected

within an FEVCS. This mechanism effectively penalizes conflicting, and incor-

rect actions associated with the reactive power injections, ensuring that the
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agents collectively contribute to the optimal control of charging in the FEVCS

while maintaining local voltage stability, avoiding convergence to suboptimal

policies.

3. This work incorporates a POMDP model for an FEV agent, enabling decentral-

ized optimization with limited grid state information, a crucial advancement in

managing real-world uncertainty and improving grid stability, as agents make

decisions with incomplete knowledge of the overall grid state.

4. The framework is tested across scenarios involving both localized (single FEVCS)

and distributed (multiple FEVCSs) agent configurations. These tests validate

the frameworkâs effectiveness in coordinating agent actions, ensuring robust

voltage regulation and grid stability across varying conditions and load profiles.

4.2 Problem Statement

As the integration of FEVs into DNs accelerates, the management of the charging

load poses significant challenges for Volt/VAR control. The challenges are present in

multiple layers of controls at individual FEV level, the FEV charging station level,

and the system level in modern DNs, as shown in Figure 4.1.

At the FEV level, each FEV agent manages its charging and VAR injection in a

decentralized manner while considering the local voltage of the point of interconnec-

tion on the grid. However, FEVs have limited visibility into the state of operation of

the system, leading to decisions that may not be in line with the needs of the system.

Since this work focuses on distributed optimization, each FEV is assumed to obtain a

signal for the net voltage deviation of the neighboring nodes that form a subnetwork

within the distribution network. The challenge is to ensure that even with limited

information, each FEVâs action contributes to local and global voltage stability.

At the FEVCS level, multiple FEVs are connected to the same FEVCS. The FEVCS

must avoid conflicting actions of individual FEV that may undermine the overall
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ability to maintain local voltage. The lack of coordination can also influence the sur-

rounding nodes in the DN. Hence, there is a need for a framework that can harmonize

the actions of co-located agents, ensuring that their collective behavior supports the

local voltage regulation without causing instability.

At the system level, multiple FEVCSs interact with the distribution network op-

erator, each unique with its characteristics like duty cycle, energy demand, and peak

demand. The FEVs at different FEVCSs at different nodes on the DN need to be

coordinated for distributed voltage control to maintain system-wide voltage stability.

The complexity lies in coordinating these distributed agents to achieve grid-wide

objectives. Given that FEVs operate under different conditions, a scalable solution

with the capability to generalize across these varying conditions while ensuring that

the decentralized decision-making of individual FEVs contributes positively to the

overall stability of the DN.

This paper addresses these multilayered challenges by presenting a novel FLE-CA-

MARL framework for distributed control of FEVCSs with individual FEV agents

cooperatively for Volt/VAR optimization in the distribution network. Firstly, the

individual FEV agent’s optimal charging with VVO is modeled using a POMDP that

allows for the learning of the FEV agents with limited grid visibility and operation

states. Secondly, the CA-MARL design ensures the actions of multiple FEVs at the

same FEVCS are harmonized to maintain local voltage regulation. Furthermore, indi-

vidual FEV agents at different FEVCSs at different locations in the DN are deployed

in a federate learning framework to enable collaborative learning while preserving

data privacy. The proposed FLE-CA-MARL framework integrating federated learn-

ing and CA-MARL is scalable to handle numerous EV agents and is adaptive to

different networks with different configurations of FEVCS, presenting a generalizable

solution for implementation in diverse DNs. Under the proposed framework, each

FEV contributes to the global system’s objective while optimizing its local environ-
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Figure 4.1: Layered challenges present in VVO of FEVCS

ment, resulting in a robust and flexible system for managing FEV charging across a

distribution network.

4.2.1 Rationale for Model Selection

MARL was selected for modeling the interaction of FEVs in an FEVCS because

it allows for decentralized decision-making in uncertain grid environments. The key

advantage of having RL over other ML-based optimization methods is the adapt-

ability that it offers, which can be advantageous for optimizing highly dynamic and

uncertain environments. RL allows agents to adapt to the dynamics by learning from

historical data and continuously updating their policies. In contrast, rule-based or

static optimization methods cannot adjust to these rapid changes. Additionally, the

horizontal nature of the proposed FL framework, FDRL enhances the adaptive na-

ture of the RL by connecting several RL agents with diverse experiences, accelerating

the learning of the global RL agent’s policy. Moreover, FEVCSs operate at various

locations with distributed agents, making centralized control both computationally

heavy and slow. However, FDRL frameworks are highly suitable for implementing

decentralized frameworks that require real-time adaptive control with periodic model
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synchronizations. Additionally, by using MARL, multiple FEV agents can learn to

act autonomously while coordinating their actions to support the grid. This coordi-

nation happens in a flexible manner, as the agents interact and learn through rewards

based on their collective impact on the grid’s stability. Finally, the most important

factor is the scalability of the proposed approach. Since the states and actions in the

framework remain constant for every agent, the model is highly scalable and gener-

alizable from a fleet EV perspective. Moreover, with increasing agents in the FDRL

framework, the policy becomes more optimal and generalized.

Model Predictive Control (MPC) is another powerful technique that could be con-

sidered for managing FEVCS, MPC works by solving an optimization problem at

each step, predicting future system states, and making control decisions accordingly.

Although MPC is well suited for handling constraints for short-term dynamics, it

has limitations when applied to a multiagent system like FEVCS. MPC requires an

accurate system model, which becomes difficult in complex multi-agent environments

where the behavior of each FEV agent and the overall grid interaction is challenging

to model. Moreover, while MPC excels in constrained optimization, it may struggle to

adapt to real-time changes in system dynamics as efficiently as RL. In an environment

where agents need to learn from, past interactions and adjust future actions based on

dynamic conditions, RL provides better adaptability. Heuristic optimization-based

techniques could be applied to optimize FEV scheduling and control tasks. However,

they lack the flexibility of RL in dealing with dynamic decision-making. Hence, out

of the existing ML-based optimization techniques, RL was chosen for optimization in

the proposed FL framework.

4.3 Modeling

This work systematically addresses the challenges presented by individual FEV

agents, multiple FEV agents at the same FEVCS, and the coordination of FEVCSs

across the DN. The structure of the proposed FLE-CA-MARL framework is presented
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Figure 4.2: Proposed FLE-CA-MARL model

in Figure 4.2, consisting of (1) the POMDP model for the control of FEV agents, (2)

the CA-MARL environment at the FEVCS level formed by multiple POMDP models

of the FEV agents to harmonize the actions of multiple FEVs at the same FEVCS,

and (3) the FL framework at the system level that connects all the RL agent’s models

of FEVs using a global RL model’s synchronized aggregation and updates. Subsection

4.3.1 presents the conflict-aware RL model using POMDP for the control of each FEV

agent. The CA-MARL environment for coordinating the controls of multiple FEV

agents within an FEVCS is presented in subsection 4.3.2. Then, the FLE-MA-TD3

algorithm, employed to solve the model for the whole DN, is presented in subsection

4.3.3.

4.3.1 Modeling a Conflict-Aware FEV Agent

The first step in modeling the framework is to model the problem from the per-

spective of a single FEV agent. The decision-making process for FEV agents involves

handling interactions between multiple agents operating in a shared environment.
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Although each FEV agent can observe its variables, which includes the signal that

provides the deviation of the neighboring nodes within it, it cannot observe the states

of other FEV agents connected to the same charging station. This uncertainty makes

the problem well-suited for modeling as a POMDP. Although the state transitions in

the model are deterministic, the agent’s partial observability creates a probabilistic

perception of the environment, which POMDPs are designed to handle effectively.

This framework captures uncertainty and helps to make optimal decisions despite

incomplete knowledge of the full state of the system. The MDP is defined by a set

of states S, a set of actions A, a reward function R, and a transition function of the

state T .

4.3.1.1 State Variables

The states represent the current state of the system, including the charging status,

the state of charge, the time to departure, the power injected into the bus and the

voltage deviations. The state s ∈ S at the time t is defined as:

s(t) : [Ct, Ct−1, SOCt, SOCt−1,TDt, Pbus,t, Qbus,t, Vbus,t,
∑
k∈K
|Vk,t − 1|,

Nagents,t, p
ch
t−1, q

dch
t−1] (4.1)

where Ct and Ct−1 indicate if the FEV is connected to the charger at the time t

and t − 1 respectively. SOCt indicates the state of charge of the FEV at the time

t. The departure time of the FEV is captured by the state TDt. Active power,

reactive power, and voltage at the agent bus are represented by Pbus,t, Qbus,t, and

Vbus,t respectively. The state
∑

k∈K |Vk,t− 1| represents the sum of voltage deviations

of all buses in the subnetwork K . Nagents,t presents the number of active agents

available at the agent’s node at time t. pcht−1 and qdcht−1 are states that record previous

actions of the agent.
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4.3.1.2 Action Variables

As shown in Eq.(4.2), the actions of the FEV agent include active power charging,

pcht and reactive power injection qdcht . The set of actions A at the time t is defined as:

a(t): [pcht , q
dch
t ] (4.2)

The agent selects the actions based on the current observation and the policy of the

DRL agent.

Additionally, to mitigate abrupt changes in the agents’ actions, particularly in

reactive power injections, a smoothing mechanism is introduced into the action space

by applying a weighted moving average to the current and previous actions, ensuring

smoother transitions. The smoothed action at time step t, at, is computed using the

following equation:

a(t) = α · a(t)new + (1− α) · a(t− 1) (4.3)

where a(t)new is the new action selected by the FEV agent, and α is the smoothing

factor that determines the weight of the current versus previous actions.

4.3.1.3 State Transition Equations

The state transition equations describe how the state variables evolve based on the

actions taken. The state transition function T : S × A→ S is defined as:

SOCt−1 = SOCt (4.4)

SOCt = SOCt−1 − (pcht · ηfv∆t) (4.5)

In Eq.(4.5), ηfv represents the charging efficiency factor and ∆t is the time step size.

In addition to the above transition equations, the agent’s transition includes storing

the previous actions as an observation for the next action using Eq. (4.6).
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[pcht−1, q
dch
t−1] = [pcht , q

dch
t ] (4.6)

4.3.1.4 Reward Function

The reward function R : S × A → R defines the objective of the optimization

problem, penalizing deviations and undesirable outcomes. The reward r(t) at time t

is given by:

RVF =


−CVF

∑
k∈K |Vk − 1| if C(t) = 1

0 otherwise
(4.7)

RVL =



−CVL |Vbus − 1.05| if Vbus > 1.05 and C(t) = 1

−CVL |Vbus − 0.95| if Vbus < 0.95 and C(t) = 1

0 otherwise

(4.8)

RCR =


CCR · exp

(
− (Pch−Pcr∗·Pmax)2

2·σ2

) if C(t) = 1

and SOC(t) < 1

0 otherwise

(4.9)

RSL =



−CSL if C(t) = 0 and C(t− 1) = 1

and SOC(t− 1) < 1

0 otherwise

(4.10)

Eq. (4.7) defines the penalty applied to the agent for the voltage deviation of all the
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nodes in the agent’s subnetwork K. The penalty RVL, defined to restrict the agent

node’s voltage within the acceptable range of 1 +/- 0.05 p.u is defined in Eq.(4.8).

Both Eq.(4.7) and Eq.(4.8) are applied to the agent when the FEV is connected to

the charger. Since the agent requires an incentive to charge the vehicle, Eq. (4.9)

is defined to introduce the reward RCR to motivate the agent to try charging at a

recommended rate to increase the SOC to avoid the sparse penalty that is defined

in Eq.(4.10). This approach is based on a Gaussian function, with σ controlling the

range of recommended charging rate. The penalty RSL, is introduced to penalize the

agent if the vehicle is forced to leave the charging station with a state of charge of

100%. The reward function also includes a penalty for conflicts arising from multiple

agents attempting to optimize their reactive power discharge simultaneously. The

conflict-aware reward function, designed to penalize conflicts with the other active

agents within the FEVCS and the incorrect actions of reactive power injections, can

be expressed by Eq. (4.11).

RC =
N∑

f ′ 6=f



−CC · |qdcht−1 − qdchf ′,t−1| if conflict detected

−CA if incorrect polarity

0 otherwise

(4.11)

where RC represents the reward associated with the conflict-awareness feature of

the agent, CC represents the coefficient of penalty for a detected conflict with another

agent in the same charging station, CA represents the coefficient of penalty for incor-

rect polarity of reactive power injection, qdcht represents the reactive power discharged

by the agent, and qdchf ′,t represents the actions related reactive power injection of all

the other agents.

R(t) = RVF(t) +RVL(t) +RCR(t) +RSL(t) +RC(t) (4.12)

As shown in Eq.(4.12), the final reward for each time step is the summation of all
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the rewards presented from Eqs.(4.7)-(4.11).

4.3.2 CA-MARL Environment

The CA-MARL environment integrates multiple POMDP models for FEV agents

within a single FEVCS. Each agent f operates under the POMDP framework, where

their interactions are managed collectively to ensure optimal voltage regulation at the

charging station level.

4.3.2.1 State Aggregation

The aggregated state for the FEVCS at the time t is given by:

SFEVCS(t) = {s1(t), s2(t), . . . , sN (t)} (4.13)

where sf (t) represents the state of each agent f as defined in equation (4.1).

4.3.2.2 Action Aggregation

The aggregated action set for the FEVCS is:

AFEVCS(t) = {a1(t), a2(t), . . . , aN (t)} (4.14)

where af (t) represents the action of each agent f as defined in Eq. (4.2).

4.3.2.3 State Transition Function

The state transition for the CA-MARL environment accounts for interactions among

agents:

TFEVCS(SFEVCS(t), AFEVCS(t)) = {T (s1(t), a1(t)), T (s2(t), a2(t)),

. . . , T (sN (t), aN (t))} (4.15)

where T (sf (t), af (t)) is the individual state transition function of each agent f .
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4.3.2.4 Reward Function

The reward for each individual agent f in the CA-MARL environment is defined

independently, based on the specific conditions at the location of each agent and their

interactions with other agents. The individual reward function for the agent f at time

t is presented in Eq. (4.12). To express the aggregated reward across all agents at

the FEVCS, we sum the individual rewards:

RFEVCS(t) =

N∑
f=1

Rf (t) (4.16)

This aggregated reward function reflects the combined performance of all agents

in the FEVCS while maintaining the independence of each agent’s decision-making

process.

This CA-MARL environment ensures that all FEV agents in a single FEVCS work

in coordination, managing both their individual objectives and the overall voltage

regulation of the FEVCS.

4.3.3 Federated Learning-Enhanced MA-TD3 Algorithm

The proposed FLE-MA-TD3 algorithm introduces a personalized update mecha-

nism to coordinate the learning of FEV agents at different charging stations. This

framework allows each agent to benefit from global knowledge while retaining local

adaptability. The architecture of the FLE-MA-TD3 algorithm in Figure 4.3 illus-

trates the CA-MARL environment for the FEV agents, the FL framework for the

TD3 agents, and the communication between the TD3 agents.
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Algorithm 1 Multi-Agent TD3 with Federated Learning
1: Initialize environment env, number of agents N , Replay Buffers Bi for each agent
i

2: Initialize actor networks πθi and target actor networks π′θi for each agent i
3: Initialize critic networks Qφi , Q′φi and target critic networks Q′φi for each agent i
4: Initialize central server for federated learning
5: for total steps t = 1 to T do
6: Sample actions ai = πθi(si) + ε for each agent i
7: Execute actions ai in environment, observe rewards ri and next states s′i
8: Store transitions (si, ai, ri, s

′
i, di) in replay buffer Bi for each agent i

9: if Bi is ready for training then
10: for each agent i do
11: Sample mini-batch of transitions from Bi

12: Compute target actions ãi = π′θi(s
′
i) + ε′

13: Compute target Q-values yi = ri + γ(1− di) min(Q′φi(s
′
i, ãi))

14: Update critic by minimizing loss L(φi) = 1
|Bi|
∑

(Qφi(si, ai)− yi)2

15: if mod(t, policy_delay) == 0 then
16: Update actor by maximizing J(θi) = 1

|Bi|
∑
Qφi(si, πθi(si))

17: Update target networks: θ′i ← τθi + (1− τ)θ′i
18: end if
19: end for
20: end if
21: if mod(t, sync_interval) == 0 then
22: Aggregate models across all agents at central server
23: Distribute aggregated models back to agents
24: end if
25: if any episode ends then
26: Reset environment
27: end if
28: end for
29: Save the model at the end of training
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Figure 4.3: Architecture of the FLE-MA-TD3 algorithm

4.3.3.1 Global Model Aggregation

The global model parameters θtg are computed by aggregating the local model

parameters θtf from each FEV f at iteration t:

θtg =
1

N

N∑
i=1

θtf (4.17)

4.3.3.2 Personalized Model Update

Each local model at the FEV f is updated by blending the global model parameters

with the local model parameters using the parameter τ , controlling the degree of

personalization:

θt+1
f = τθtg + (1− τ)θtf (4.18)

This update mechanism ensures that local models are influenced by global knowledge

while preserving local characteristics, which can be crucial for stability and adapt-

ability in diverse network environments.
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This framework allows for decentralized yet coordinated learning, enabling each

FEV to optimize local objectives while contributing to the global voltage of the DN.

The proposed FLE-MA-TD3 algorithm is presented in Algorithm 1.

4.3.4 Simulation Setup

Visual Studio Code IDE was used to code FLE-MA-TD3 algorithm in python. The

TD3 algorithm for a single agent was implemented based on the works [84] and [85].

The TD3 agent was converted to an MA-TD3 based on [86]. The FL framework

was custom-coded to execute model synchronizations for all the TD3 agents using a

central TD3 agent. Federated averaging was selected as the method of model data

aggregation in the FL framework. Power flow was carried out leveraging pandapower,

an open-source tool for power systems modeling[87]. The IEEE 33-bus test case re-

quired for the simulation was imported from pandapower. The numerical experiments

were conducted on a computer with an Apple M2 Pro processor and 32 GB of RAM.

4.4 Results of the FLE-CA-MARL framework

4.4.1 Case Description

The simulation setup was utilized to carry out on a modified IEEE 33 bus, as

shown in figure 4.4. FEVCSs are assumed to be located on the buses 14, 21, and

29 on the distribution network. Assuming that these FEVCSs are ready to provide

volt-VAR control services to the utility or the distribution system operator, the buses

indicated in orange color indicate controllable nodes, which are part of a subnetwork

that consists of neighboring nodes. Node 14 is the controllable node in subnetwork

SN#0 that consists of visible nodes 6-21. Similarly, controllable nodes 21 and 22 have

visibility to the subnetworks SN#1 and SN#2 respectively. From the FEV agent’s

perspective, the visibility of the subnetwork is in the form of aggregated voltage

deviations from the voltage set point of all the nodes in the subnetwork The training

environment depends on vehicle data and the load data on the feeder. The voltage
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Figure 4.4: Modified IEEE 33 bus test setup : Case TC3

set point considered for this work is 1.p.u. The FEV specific data such as charging

status Ct and time to departure TD are assumed to be known for the next time-step.

One year data of both Ct and TD were generated with a 15-minute granularity based

on the assumptions presented in the Table 4.1. A normal distribution with a mean

and standard deviation was used to generate the time of arrivals of the FEVs.

Three different test cases were crafted to test different configurations of multi-agent

interactions within in the FLE-CA-MARL framework. The first test case TC1 con-

sists of a scenario where three FEV agents are connected to the charging station

FEV CS#0 on node 14. This setup evaluates the performance of the multi-agent

environment of the FLE-CA-MARL framework for a single FEVCS. Table 4.2 shows

the data related to the TC1. These agents in the presence of a conflict-aware re-

ward function have to coordinate to improve voltage at the POI of the FEV CS#0.

Similarly, the second test case TC2 explores a scenario where the seven FEV agents
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Table 4.1: FEV data for arrival and departure of vehicles

FEV Arrival time Departure
time
(time)

Mean
(time)

Std
(hours)

0 17:00 0.5 8:00
1 17:00 0.5 8:00
2 17:00 0.5 8:00
3 16:00 0.75 7:00
4 16:00 0.75 7:00
5 18:00 0.5 9:00
6 18:00 0.5 9:00

Table 4.2: Test case TC1

FEV FEVCS Bus Charger Capacity
(kVA)

Battery Storage
(kWh)

0 0 14 100 400
1 0 14 100 400
2 0 14 100 400

Table 4.3: Test case TC2

FEV FEVCS Bus Charger Capacity
(kVA)

Battery Storage
(kWh)

0 0 14 100 400
1 0 14 100 400
2 0 14 100 400
3 0 14 100 400
4 0 14 100 400
5 0 14 100 400
6 0 14 100 400
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Table 4.4: Test case TC3

FEV FEVCS Bus Charger Capacity
(kVA)

Battery Storage
(kWh)

0 0 14 100 400
1 0 14 100 400
2 0 14 100 400
3 1 21 50 200
4 1 21 50 200
5 2 29 150 400
6 2 29 150 400

presented in Table 4.1 are connected to the FEV CS#0. The charging capacities and

the battery storage capacities of the agents for the test case TC2 are shown in Table

4.3. This scenario evaluates the scalability of the framework for a single charging

station. Finally, the third test case TC3 presented in Table 4.4 is the setup shown in

Figure 4.4. This scenario tests the framework in the presence of agents at multiple

FEVCSs. All the nodes on the feeder were assumed to have commercial customers

of the type of office, warehouse, and hotels. The 15-minute granularity end-user load

profiles from NREL from [88] were used for the load profiles. Out of 35,040 data points

which represent one-year data of 8760 hours with 15-minute granularity, 32,064 were

used for training the model and 2,976 were used for testing the model. .

4.4.2 Training and Tuning

The FLE-CA-MARL framework was implemented using multiple simulation sce-

narios, where tuning the hyperparameters of the TD3 agents played a critical role

in achieving convergence and optimal performance. Two key steps in tuning a TD3

agent are hyperparameter tuning and reward tuning. Both these tunings were carried

out manually for the three test cases. Each test case builds upon the previous one

by increasing the complexity of the number of agents involved or the scenario being

tested.
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The initial test case TC1 involves one CA-MARL environment with an FL frame-

work synchronizing the actor and critic of the three FEV agents at a set frequency.

The agents were trained with the same hyperparameters as the agents in the FL

framework can have equal influence on the global model. The tuned hyperparameters

for the Case TC1 are learning rate at 2e− 4, tau at 0.006, gamma at 0.92, memory

size at 300000, batch size at 256, policy noise at 0.1, noise clip at 0.5, and policy delay

at 1. With the episode length set at 144 time steps, with each time step representing

the environment variables with a 15-minute granularity, the training was carried out

for, 300000 time steps. The final agent models with the converged rewards and policy

losses were tested in a testing environment that simulates a similar environment to

validate the performance of the agents. For the next test case TC2, the same hyper-

parameters were used to evaluate the performance of the agents in the CA-MARL

environment with 7 FEV agents. The training was initiated using transfer learning of

a trained agent’s policy from TC1 , and then the training was carried out using the

proposed algorithm. The variation of hyperparameters yielded suboptimal rewards,

leading to the decision of the same training hyperparameters for the TD3 agents.

For the Case TC3 with multiple FEVCS’s on the distribution network, we have

multiple CA-MARL environments interacting with the grid simulation environment.

The same hyperparameters used in the Case TC1 and TC2 were employed for TC3

as well. Similarly, transfer learning was used to initiate the training of agents in the

TC3.The training was carried for, 350000 time steps until the agent’s reward and

losses converge.

4.4.3 Results from TC1: Performance at the FEVCS-level

The agents were trained within the framework based on the Case TC1 with three

FEV agents. In TC1, FEV agents 0-2 are connected to bus 14 within the subnetwork

SN#0. The schedule for the agents 0,1 and 2 are based on the Table 4.1 and capacities

are as shown in Table 4.2. The vehicles connect to the charger in the FEVCS after
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(a) Active power charging action taken by FEV agents

(b) VAr discharging action adopted by the FEV agents

(c) Variation of SOC based on the active power charging

(d) Voltage of the POI of the FEVCS

Figure 4.5: Actions of the FEV agents for Case TC1
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they arrive, based on their time of arrival. The model was tested by providing the

essential observations for each time step to match the testing scenario. The FEV agent

chooses the next action based on the previous time step’s voltage and grid condition

and the policy of how the next time step could change. The results from the Case

TC1 are after training for 300, 000 time steps, are presented in the figure 4.5. The

time step on the x-axis refers to time with 15 minute granularity. FEV#1 arrives

early at the charging station, followed by FEV#0 and, FEV#2. FEV#1 starts

charging, while injecting reactive power onto the grid to mitigate the voltage drop

and enhance the voltage on the POI. When FEV#0 and FEV#2 arrives, they start

charging, while providing VAR injections to the grid. The charging pattern of all the

agents are similar, with the magnitudes being different based on the required charge

and the time of departure. The rate of charging is dependent on the required energy

to fill the SOC and the coefficient RSC of the charging and the function controlling

the value of the penalty for not charging while the time to departure is approaching.

The rate of charging is also dependent on the recommended charging rate at 30% of

the rated capacity. While FEV#1 charges close to the recommended charging rate

for the majority of the time, it accelerates charging as the time of departure closes

by. The agent’s reward function is risk-averse, considering the high priority to fulfil

the energy required before time of departure goes to zero. The higher penalty and

the inability to see the future states makes the charging pattern more conservative,

with the FEV agents choosing to fulfil their SOC requirement with half of the time

to departure left. This is also because the agent can fulfill the SOC requirement,

limiting the voltage deviations within +/-0.03 p.u. The voltage of the POI reduces

marginally since the vehicles are injecting reactive power while charging the battery.

After meeting their energy requirements, the FEVs focus on boosting the system

voltage to 1 p.u. The zero values for SOC indicate the time during which the vehicles

are not connected to the charging station.
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It is valuable to note that the performance of the agents, as seen in the figure 4.5 is

suboptimal since the agents display an accelerated charging behavior with more time

to the time to departure, and agent FEV#1 injecting less than maximum capacity

of reactive power. This is because of the designed risk-averse reward function and the

lack of experience of the agents. This can be clearly identified from the analysis of

the results from the Case TC2 presented in the following subsection. The fact that

further training of the Case TC1 to 400, 000 time steps gets rid of the suboptimal

levels of reactive power injection from FEV#1 also establishes the value of experience

acquired during the agent’s interaction with the grid environment.

4.4.4 Results from the Case TC2 : Scaling up at the FEVCS-level

More agents were added to the FEVCS using the Case TC2. In TC2, FEV agents

0-6 are connected to bus 14 within the subnetwork SN#0. The actions and SOCs

and grid voltage at the POI of the FEVCS is shown in the figure 4.6. The vehicles

arrive at different point of time. The FEV agents start charging as soon as it reaches

the FEVCS. The charging pattern still follows the risk-averse approach of prioritizing

fulfillment of SOC requirements. For instance, FEV#3 and FEV#4 charges mostly

at the recommended charging rate, since they arrive early at the FEVCS. Similarly,

FEV#2 also avoids charging rate exceeding 60% of the rated capacity. Other agents

charge slow in the beginning before accelerating, the charging towards the end. Hence,

different FEV agents exhibit different charging behavior based on their time of arrival,

energy demand and the time to departure. Due to the agent’s ability to adapt to the

local environment, different agents connected to the same node of the DN, learns

different charging behavior that suits their individual requirements while satisfying

the FEVCS’s goal of regulating the voltage while charging the vehicles at the charging

station. Additionally, more agents are behaving optimally with the scale-up at the

FEVCS-level and the experience transferred from the trained agent in the Case TC1.

Hence, collaborative learning combined with the adaptive nature of the agents give
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(a) Active power charging action taken by FEV agents

(b) VAr discharging action adopted by the FEV agents

(c) Variation of SOC based on the active power charging

(d) Voltage of the POI of the FEVCS

Figure 4.6: Actions of the FEV agents for Case TC2



108

us the current performance of the framework. Moreover, further training and tuning

could lead to more optimal behaviors from the agents.

4.4.5 Results from the Case TC3: Performance at the Distribution Network-level

To test the performance of the framework when integrating multiple charging sta-

tions, the Case TC3 shown in figure 4.4 is implemented. Agents FEV#0, FEV#1,

and FEV#3 are connected to the FEV CS#0 in the subnetwork SN#0. Agents

FEV#3 and FEV#4 are connected to FEV CS#1, and agents FEV#5 and FEV#6

are connected to FEV CS#2. The actions of the FEV agents and the response of the

environment variables are displayed in Figure 4.7. FEV#0, FEV#1, and FEV#3

acts similar to the response observed in the Case TC1. Hence, FEV CS#0 charges all

the vehicles with a maximum deviation of +/-0.02 p.u. The deviation at FEV CS#0

is also since it is located on Bus 14 with pre-existing voltage sag conditions. More-

over, the deviation in bus voltage has reduced from the +/- 0.03 p.u deviation in

the Case TC1. Agents FEV#3 and FEV#4 are connected to, FEV CS#1 which

is very close to the DSO’s substation. The challenge for the agents located on Bus

21 is to regulate the voltage finely enough to cause the least disturbance on the bus.

The agents in FEV CS#1 successfully charged the vehicles with a voltage of 1 p.u at

the POI. Moreover, both agents FEV#3 and FEV#4 charged at the recommended

charging rate 80% of the charging period. Agents FEV#5 and FEV#6 connected to

FEV CS#2 at Bus 29 of the test case. Both the agents of FEV CS#2 charges at the

recommended charging rate throughout the charging period. Through reactive power

injections and controlled active power charging, agents of FEV CS#2 cooperatively

regulate the voltage at bus 29 by +/-0.01 p.u.

4.4.6 Scalability of the FLE-CA-MARL Framework

The case TC2 presented in subsection 4.4.4 presents the impact of scaling up at

the FEVCS level. It is essential to note that the performance of the agents improves



109

(a) Active power charging action taken by FEV agents

(b) VAr discharging action adopted by the FEV agents

(c) Variation of SOC based on the active power charging

(d) Voltage of the POI of the FEVCS

Figure 4.7: Actions of the FEV agents for Case TC3
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as the number of agents within the framework increases. Another instance of this

can be noted from the Case TC3, since the increased number of agents within the

framework is distributed among different nodes in the DN. This is due to the key

feature of horizontal FRL (HFRL) where the agents interacting within the framework

have identical features, contributing to accelerated learning of models within the

framework. The advantage that these agents do not need real-time coordination

is also a key advantage over other distributed optimization methods. As a result,

the proposed framework is highly scalable and can be deployed in larger networks.

Additionally, further analysis with a more heterogeneous agent distribution in the

framework needs to be investigated to explore the requirement for other enhancements

within the framework.

4.4.7 Synchronization Frequency Analysis for the FDRL Framework

The FDRL framework implemented in this study utilizes multiple agents interacting

through a federated learning process to achieve a coordinated policy across various

nodes. Each agent operates based on localized observations, such as the SOC and

bus voltage at the POI, while the global model is periodically synchronized across all

agents. A key element in determining the effectiveness of this approach is the number

of time steps between global updates, referred to as synchronization frequency (SF).

SF significantly affects the stability, learning performance, and convergence of the

agents. For the presented framework, the actor loss, critic loss, and the episode

reward were analyzed by varying the synchronization frequency was varied from 500

- 50, 000 steps.

Figure 4.8 presents the variation of rewards, actor losses, and critic losses of the

agent FEV0 with training time steps in the test setup TC1. The data of SFs 500, 1000,

3000, 5000, 10,000, 25,000, and 50,000 steps are shown in the figure. SF_500 in the

legend represents an SF of 500 steps. For a high SF of 500 steps, the actor loss remains

elevated and oscillates throughout the training period. The rapid synchronization
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(a) Comparison of actor losses

(b) Comparison of critic losses

(c) Comparison of rewards

Figure 4.8: Tuning synchronization frequency for Case TC1
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disrupts both actor and critic learning, causing high fluctuations by not allowing the

agent enough time to adjust to the environment, leading to the learning of suboptimal

policies that result in low rewards. In contrast, synchronizing too infrequently, like in

the case of SF_50000 leads to the divergence of the policies of the individual agents

involved in the federated learning process. From the presented options, the optimal

SF is 3000 steps, which achieves the lowest and the most stable actor and critic losses.

This is a result of both networks being given enough time to refine their policies and

value estimations between global updates, leading to smooth and effective learning.

Consequently, the episodic reward is also higher for the SF of 3000 steps. Hence, 3000

steps strike a good balance between global coordination and local learning, enabling

the agents to converge quickly and effectively. It allows sufficient time for individual

learning while maintaining regular global updates to harmonize the agent’s policy,

resulting in the best overall performance.

4.4.8 Soft-Synchronization in the FLE-CA-MARL framework

Soft synchronization in FL is an approach where local models are updated peri-

odically with a combination of local updates and a global model. The degree of the

synchronization is controlled by a synchronization coefficient, which determines how

much influence the global model exerts on each local agent. Soft synchronization

allows local agents to maintain autonomy and explore the local environment while

benefiting from periodic guidance from the global model, reducing overfitting to the

local environments and improving the overall performance of the distributed agents.

For the presented analysis, the coefficient of soft synchronization (CoSS) was varied

from 0.0001 to 1, and the performance of the training was evaluated based on the

metrics actor loss, critic loss and episodic rewards. The purpose of the evaluation

is to determine how different values of synchronization affect the stability and con-

vergence of the learning process in the context of VVO using FEVCS. As observed

in Figure 4.9, the actor loss and the critic loss of varies significantly throughout the
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(a) Comparison of actor losses

(b) Comparison of critic Losses

(c) Comparison of rewards

Figure 4.9: Impact of soft-synchronization on actor loss, critic loss and reward for the
Case TC1
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training for full synchronization, shown in the trend SOFT_1 and SOFT_0.5. This

indicates instability in learning of the actor and the critic. This is as a result of hard

synchronization or complete replacement of model data in the local models, forcing

them to continuously adapt to the global model, hindering their ability to fine tune

policies effectively. On the other hand, the trainings SOFT_0.1 and SOFT_0.01

configurations show much lower and more stable actor losses. These coefficients of

synchronization strike a balance, allowing the local agents to learn and adapt to their

environments while still benefiting from periodic synchronization. This stability to

leads to better convergence and rewards, with fewer oscillations in the actor and critic

losses over time. At the lower end, the coefficient values 0.001 and 0.0001, providing

better stability but slower convergence to the global policy. This is clear from the

relatively slower convergence of the actor loss when the CoSS becomes too small.

The results of the impact of the value of soft-synchronization in FEV#5 in the

case TC3 is presented in Figure 4.10. This case shows the impact of the value of

soft synchronization for the selected SF of 3000 timesteps in a case with agents from

different fleet charging stations. For the presented case, the training was initiated

without the initial transfer learning process, which was included for the TC3 case’s

results presented in the above sections. Some key observations from the figure are

that with the selected SF, we still see fluctuations in the actor loss and critic loss

agents FEV#5 and FEV#6 operating at the node 29. Both agents deviate out of

the training process for a value of 1 for the CoSS. This is clearly seen from the trend

SOFT_1 diverging or increasing heavily, while it stays at the same value for smaller

values of the coefficient. This is due to the diverse experiences of the agents from the

global model. Hence, heterogeneity in experience has can be addressed by setting the

appropriate value of the CoSS.

The stability achieved during the training of the models in the subsection 4.4.5

was through the power of transfer learning combined with a lower CoSS value. The
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(a) Comparison of actor losses

(b) Comparison of critic losses

Figure 4.10: Impact of the value of CoSS on actor loss and critic loss of agent 5 in
the Case TC3
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(a) Actor loss

(b) Critic loss

Figure 4.11: Training metrics of transfer learning initiated training of agent 5 in
FLE-CA-MARL framework for Case TC3
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training of agent FEV#5 using transfer learning with the value of CoSS at 0.005 is

shown in the figure. The critic loss converges after 150,000 time steps, leading to

consistent reduction in actor loss. This is due to a much generalized global model

to initiate the training and fine-tuning of the agent models. This further established

the requirement for a central or global TD3 model to achieve optimal VVO on the

distribution grid.

In a static training process, dependent on historical training data, the relevance

of soft synchronization is about learning the best policy in the local environment.

On the other hand, the role of soft synchronization in a dynamic environment will

be interesting due to the influence of soft synchronization on the stability and the

required rate of adaptation required in the control policy. This is one of the key

aspects that is to be studied for this policy to be implemented in real-life.

4.5 Conclusion and Future Works

This work presents a novel FLE-CA-MARL framework designed for decentralized

Volt/VAR control in the DNs with FEVCs. The proposed model does so by modeling

FEV agents employing a POMDP framework with a conflict-aware design to consider

FEVCS-level coordination. Furthermore, it utilizes an FLE-MA-TD3 algorithm to

train the FEV agents to enable privacy-preserving collaborative-learning among all

the agents throughout the DN, promoting a coordinated, generalized, and personal-

ized VAR response from the agents. The proposed framework was validated through

simulations on an IEEE 33-bus test system under various scenarios, demonstrating

its robustness in both single and multi-charging station configurations. The results

indicate that the FLE-CA-MARL framework can effectively manage voltage regula-

tion while accommodating diverse load profiles and FEV characteristics, contributing

to the overall voltage stability of the distribution system.

The proposed framework for VVO is part of the vision to have a coordinated and

unified response from the distributed FEVCS. The impact of scalability on a DN-
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level and the personalization level required at the FEVCS-level are challenges to

be explored as we carry further analysis. Although, soft-synchronization has been

integrated within the FL update mechanism to accommodate the possibility of rapid

changes in policy. The operational and update mechanism, the entry and exit of

agents/clients to the FL-frameworks are the underexplored research gaps this work

expects to fill in the future. Moreover, we plan to extend this framework to enable

DERs to provide other grid services such as frequency regulation and demand response

by introducing role-specific agents within a game-theoretic framework.



CHAPTER 5: CONCLUSIONS AND FUTURE WORKS

5.1 Conclusions from the Dissertation

This dissertation addresses various challenges associated with integrating FEVCSs

into power grids, with a focus on improving grid resilience, market participation, and

adaptive edge control-based grid services such as VVO. The research contributions

are structured into three key areas across the chapters:

5.1.1 Resilience-Oriented Strategic Deployment of FEVCS

The research in Chapter 2 developed a two-stage stochastic optimization model

to identify the optimal placement of FEVCS within a power distribution network.

The proposed model considers EVCS installation or line hardening in the first stage

and grid service restoration based on fault scenarios in the second stage. Moreover,

the model incorporated transportation network constraints and renewable-supported

BESS to enhance realistic service restoration utilizing FEV’s mobility. The uncer-

tainty associated with line damage due to the HILP event was integrated through

scenarios. The conclusions from the model indicate that optimally locating FEVCS

can enhance the post-disaster resilience of the power grid. The reactive power sup-

port capability of FEVs can contribute to the improvement of the overall stability of

the islanded microgrids. The results of this study were published in the special issue

"Towards a Sustainable Future: The Role of Electric Vehicles and Smart Grids in

the Energy Transition" of the journal Applied Sciences under the title Optimal Siting

of EV Fleet Charging Station Considering EV Mobility and Microgrid Formation for

Enhanced Grid Resilience [15].
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5.1.2 FEVCS as a Strategic Reserve Provider in the ISO Market

The research in Chapter 3 focused on modeling an optimal dispatch model for

FEVCS and other DERs within a DERA. By proposing a bilevel optimization frame-

work, the study modeled an aggregated FEVS and other DERs within an ADN that

interacts with the wholesale electricity markets. The research found that DERs could

significantly participate in wholesale electricity markets, reducing LMPs by avoiding

congestion in the transmission network. Moreover, optimally controlled DERs can

increase profits from the ISO reserve markets. This research also shows the potential

of the strategic DERA to be a price-maker in the ISO energy market. In the cur-

rent scenario, considering the cost of battery degradation, FEVCS can optimally be a

strategic reserve provider to the ISO. FEVCS could bid on the market as part of the

DERA’s resources or individually. The findings of this chapter were initially published

in the conference 2021 IEEE Power & Energy Society General Meeting (PESGM)

with the title Modeling the Strategic Behavior of an Active Distribution Network in

ISO Markets, and then extended to a journal published in IEEE Transactions on

Smart Grid with the title Stochastic Strategic Participation of Active Distribution

Networks With High-Penetration DERs in Wholesale Electricity Markets

5.1.3 Distributed, Adaptive, and Real-time Control of FEVCS using HFRL

The research in Chapter 4 introduced the FLE-CA-MARL framework, designed to

tackle decentralized VVO problems in distribution networks equipped with FEVCS.

By leveraging FL and conflict-aware reinforcement learning, the framework enabled

decentralized decision-making while ensuring that FEV agents collaboratively con-

tributed to grid stability. The results demonstrated the framework’s scalability,

adaptability, and effectiveness in local voltage regulation and harmonizing actions

across FEV agents to optimize the VAR injections, enhancing both local and global

voltage regulation. Results specific to FEVCS decentralized control have been sub-



121

mitted to IEEE Transactions on Smart Grid, with the paper titled A Federated

Learning-Enhanced Conflict-Aware Multi-Agent Reinforcement Learning Framework

for Decentralized Volt-VAR Control in Distribution Networks with Fleet EV Charging

Stations.

5.2 Future Works

Building on the foundations laid in this dissertation, future research could expand

the functionalities of the proposed frameworks in several directions. One promis-

ing area is the integration of energy market participation into the FLE-CA-MARL

framework. Extending the existing framework to enable FEVCS to participate in the

real-time energy markets and in ancillary services markets, which will enhance the

practical application of FEVCS as both grid stabilizers and active market partici-

pants.

Post-disaster restoration offers another significant extension, especially considering

the resilience-focused deployment strategies presented in this work. Further research

can explore how decentralized FEVCS control strategies could support real-time grid

restoration following HILP events. Future efforts may include optimizing coordina-

tion between FEVCS and renewable-supported BESS to restore critical services and

leverage FEV mobility for dynamic service provision during recovery.

Finally, the real-time operational challenges of a decentralized framework like FDRL

require continued attention. Ensuring dynamic adaptation of policies, managing the

frequent entry and exit of FEV agents, and overcoming communication delays be-

tween agents and the central aggregator are crucial areas of exploration. As FEVCS

penetration increases, scalability and the efficient operation of the FRL framework

under larger, more complex network conditions will need to be rigorously tested to

ensure robust performance across diverse real-world scenarios.
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