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ABSTRACT

SUJAY A. KALOTI. An Agent-Based Deep Reinforcement Learning Approach for
Networked Microgrid Scheduling to Improve Resilience. (Under the direction of DR.

BADRUL CHOWDHURY)

Because of climate change, the ageing power system infrastructure is under threat

due to the ever-increasing intensity and frequency of high-impact, low-probability

(HILP) events. Although, in most cases, these events are area-specific, the impact

of such events, if unaddressed, can lead to cascading failures. Therefore, it is vital

for the grid of tomorrow to not only be reliable but also be resilient in view of the

broad inter-dependencies. Despite being a widely researched topic, the applicability

of the concept of resilience, especially in power systems terms, is not a straightforward

task due to the lack of consensus on a consistent definition, or a set of robust metrics.

Therefore in this dissertation, an analysis of different definitions, frameworks, metrics,

and enhancement techniques related to resilience proposed by multiple researchers and

research organizations are discussed. Together, the aforementioned concepts set up

the fundamental basis of this dissertation.

Strengthening the existing system to withstand the extreme weather events (in-

frastructure resilience) or improving the operability of the system under emergency

conditions (operational resilience) are the two important aspects of power system

resilience improvement. While the infrastructure resilience improvement techniques

are effective, due to the inherent characteristic of extreme weather events (to be

spatio-temporal in nature), the benefits these improvement techniques provide are

unevenly distributed which hinders the applicability of such techniques. Therefore,

improving the operational resilience aspect of the distribution system under normal

and emergency conditions is the primary focus of this dissertation.

Microgrids (MGs) have emerged as one the solutions for improving operational

resilience. By supplying the critical loads using localized generating resources under
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emergency operating conditions, MGs can improve the survivability aspect of system’s

resilience. MGs that are closely located geographically can be interconnected with

each other forming a network of MGs called Networked Microgrids (NMGs). These

clusters of MGs further enhances the operational resilience by improving critical load

pickup through resources sharing under abnormal conditions.

With an aim to improve the operability under uncertainties (during normal oper-

ating condition) and resilience by supplying critical loads (during emergencies), we

introduce a novel Dual Agent-Based framework for optimizing the scheduling of DERs

and loads within a NMG that leverages the field of advanced machine learning. A

deep reinforcement learning (DRL) framework that aims to minimize operational and

environmental costs during normal operations while enhancing critical load supply

indices (CSI) under emergency conditions is developed in this dissertation. Model-

ing a robust reward function that provides a feedback to the agent regarding the

best control actions is pivotal in DRL frameworks. Therefore, a multi-temporal dy-

namic reward shaping structure along with the incorporation of an error coefficient

to enhance the learning process of the agents is designed.

To appropriately manage loads during emergencies, we propose a load flexibility

classification system that categorizes loads based on its criticality index. The scalabil-

ity of the proposed approach is demonstrated through running multiple case-studies

on a modified IEEE 123-node benchmark distribution network. We also test the pro-

posed method with different DRL algorithms to demonstrate its compatibility and

ease of application, whereas for validation we compared the results with the meta-

heuristic algorithms: particle swarm optimization (PSO) and genetic algorithm (GA).

To gain a deeper understanding of the developed model, we conducted a sensitivity

study. The key findings from this study align with the mathematical foundation of

the approach outlined in this dissertation, providing further support.
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CHAPTER 1: INTRODUCTION

An electric power system is the heart of today’s modern society as it is inextri-

cably interconnected with a multitude of the critical infrastructure sectors. Stable

operation of the electrical power system is essential, particularly during external dis-

ruptive events, for the societal well-being because of the interdependencies. Even

minor interruptions in the electricity supply may result in a considerable material as

well as economical losses. While modern electric power systems are designed to with-

stand short duration power disruptions, it’s the longer duration disturbance that is

of primary concern. The concept of power system resilience has gained significant at-

tention in recent years due to the increase in the amount of extreme weather-induced

long duration outages. Such extreme weather events that challenge the power system

resilience are called high-impact, low-probability (HILP) events for obvious reasons.

As climate change becomes more prevalent, the frequency and the severity of such

events will be more compelling [1].

The reliability concept is well established and is being widely used to define the

system performance during planned and unplanned events. The reliability standards

defined by NERC and IEEE, can be partially applied to quantify resilience. However

these standards are not sufficient to get a comprehensive view of a network’s resilience

as there are inherent differences between the concept of reliability and resilience. Some

of the distinctions between these two concepts are highlighted in Table 1.1.

In the past two decades, extreme weather events have caused major disruptions to

power system infrastructure and operations that have led to widespread social and

economic losses. The most recent Texas grid failure as a result of the winter storm

Uri caused about 4.5 million people to lose power [3]. The northeastern region of the
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Table 1.1: Reliability vs Resilience

Reliability Resilience
Applicable to low impact, high probability events Applicable to high impact, low probability events
Deals with the ability to provide power during the
normal operating conditions (blue sky days)[2]

Deals with the ability to operate fully or under
reduced form during abnormal operating condi-
tions (black sky days) [2]

The events that deal with the reliability of a sys-
tem are spread across the network area

The events that deal with resilience of a system
are area and time specific (spatiotemporal).

Outages/interruptions last for minutes to hours Outages/interruptions last for hours to days
Lower interruption costs Higher interruption costs
Systems are usually designed to have a certain
level of reliability based on the widely accepted
standards

Currently, there are no standards for designing
system that need to fulfill a certain level of re-
siliency

United States was hit by hurricane Irene in 2011 and hurricane Sandy in 2012 that

resulted in around 6.69 million and 8.66 million people losing power respectively [4].

The southern parts of the United States experienced loss of power to about 2 million

customers due to the landfall of category 4 hurricane Harvey in 2017 [5]. The tsunami

which was a consequence of the great earthquake in the eastern part of Japan caused

loss of power to roughly 8.5 million customers [6]. The California wildfire of 2018

also known as the "Camp fire" caused due to the negligence of aging transmission

infrastructure damaged approximately 18,804 structures and around 84 individuals

lost their lives [7]. This wildfire was a consequence of prolonged draught situation

in the area and human error. Reference [8] presents all the billion-dollar disaster

events that affected the United States between 1980 to 2021. Statistics shows that

frequency of the weather-related events was about 6.7 events/year in the 2000s (2000-

2009) which increased to about 18.7 events/year in the last three years (2019-2021).

During the period from 1980 to 2021, severe storms caused the highest number of

billion-dollar events (∼ 160 events) while tropical cyclones brought about the most

damages (∼ $ 1, 194.4 billion).

Although power system resilience is a widely studied concept, due the lack of gen-

eral consensus on the standard power system resilience definitions, framework, and
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metrics, the applicability of the resilience enhancement techniques is not straight for-

ward [9]. Hence, the subsequent subsection provides a comprehensive overview of the

concept of power system resilience, power system resilience assessment frameworks,

power system resilience evaluation metrics, and power system resilience enhancement

techniques.

1.1 Power System Resilience

1.1.1 Concept of Power System Resilience

In the United States’ Presidential Policy Directive-21 (PPD-21) [10] the term re-

silience is defined from the perspective of critical infrastructure where a resilient crit-

ical infrastructure is able to adapt to and withstand the changing conditions and/or

recover promptly from a disrupted state during any contingency event. This re-

silience definition can intentionally be applied to power systems since, apart from

being a critical infrastructure itself, a power system enables functionalities for other

critical infrastructures. The U.S. Department of Energy (DOE) proposed a model

called the North American Energy Resilience Model (NAERM) [11] which incorpo-

rates long-term energy planning and real-time situational awareness capabilities to

ensure reliable and resilient energy delivery. This framework adopts the resilience

definition proposed in the PPD-21. The Sandia National Laboratory (SNL) also used

the resilience definition proposed in PPD-21 to quantify and develop enhancement

strategies for power system resilience [12].

The Pacific Northwest National Laboratory (PNNL) has adopted a similar defini-

tion where resilience is defined as the ability to prepare for and adapt to changing

conditions, withstand and recover rapidly from disruptions for a number of disrup-

tive events [13]. Likewise, the authors in [14] from NREL have quoted the definition

proposed in PPD-21 in their work that involves improving distribution system re-

silience using Model Predictive Controlled (MPC) critical load restoration. It should

be noted that the above-mentioned national laboratories (in addition to a few others)
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are members of the Grid Modernization Laboratory Consortium (GMLC) [15] which

was established as a strategic partnership between the DOE and the national labs

for collaborative work on grid modernization. The resilience definition followed by

the labs, which are part of this consortium, is standard in all the studies performed

under the Grid Modernization Initiative (GMI) [16] and can be stated as “the ability

to anticipate, prepare for, and adapt to changing conditions and withstand, respond

to, and rapidly recover from disruption through adaptable and holistic planning and

technical solutions” [17].

A resilience definition applicable to the distribution system resilience was proposed

by the Electric Power Research Institute (EPRI) that constitute three components:

prevention, recovery, and survivability [18]. The United Kingdom Energy Research

Center (UKERC) [19] regards resilience as the capability of a system to tolerate and

continue to deliver affordable services during an extreme event. It further emphasizes

the recoverability aspect of resilience and highlights the importance of alternative

means to provide post-disastrous event services. In a report created for the National

Association of Regulatory Utilities Commissioners (NARUC) [20], the importance of

the robustness and recoverability characteristics is highlighted for a resilient utility

infrastructure operation that help avoid or minimize service interruptions. The In-

ternational Council of Large Electric Systems (CIGRE) [21] defines power system

resilience as the ability to limit the extent, severity, and duration of system degrada-

tion after an extreme event.

A generalized definition for resilience which is the ability to absorb, adapt to, and/or

recover rapidly from a degraded state was provided by the National Infrastructure

Advisory Council (NIAC) [22]. When it comes to critical infrastructures this defini-

tion can be extended to be the ability to maintain critical functions and operations,

prepare, respond, and manage resources during a crisis event, and to return to nor-

mal operating conditions as quickly and efficiently as possible. The North American
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Reliability Corporation (NERC) considers resilience as the time-dependent compo-

nent of reliability as defined in the Adequate Level of Reliability (ALR). The ALR

performance is determined by the stable operation of the Bulk Electric System (BES)

during normal and predefined disturbances [23]. The objective of the ALR assesses

the BES over four time horizons: 1) steady-state; 2) transient state; 3) operations

state; 4) recovery and system restoration state. These four states corresponds to the

four resilient power system characteristics defined by the NIAC in [22]. Hence, the

ALR definition filed by NERC is consistent with the NIAC resilience framework and

the FERC definition [24] for resilience that addresses the robustness, resourcefulness,

rapid recovery, and adaptability of the bulk power system.

In [25], Haimes introduced resilience as the flexibility of the grid to restore its

operation, with little or no human intervention, to a normal and reliable operating

state. This definition was adopted in [26] to quantify the resilience improvement

measures. Another definition for resilience was proposed by the North American

Transmission Forum (NATF) which is the ability of the system and its components to

minimize damage and improve recovery from a non-routine disruptions in a reasonable

timeframe [27]. From the power system’s standpoint, the authors of [28] have defined

resilience as the system’s ability to resist HILP events and rapidly recover from such

events and adapt its operation and structure to mitigate impact of such events in the

future.

Since there is no universally accepted definition for power system resilience, its

applicability largely depends on the type of problem being tackled. Nevertheless,

based on the review of the literature that solely focuses on defining power system re-

silience, resilience features can be standardized to form the building blocks of power

system resilience definition. These building blocks can be stated as: the ability to

anticipate and sustain a disruptive event or adapt to and recover efficiently after a

disruptive event (anticipate and sustain or adapt and recover). An important point
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to note is by standardizing power system resilience definition (characteristics), the

possibility of standardizing power system resilience metrics for quantifying resilience

improvement techniques and driving resilience oriented investments, increases drasti-

cally. Nonetheless, developing a “one size fits all" resilience metric is an arduous task

due to the inherent characteristics of resilience-oriented studies that largely depends

on the predefined set of resilience goals.

1.1.2 Power System Resilience Analysis Framework

Due to the increased importance of the concept of resilience as part of grid mod-

ernization operations and planning efforts, it is vital to develop a robust resilience

framework and quantification approaches. A resilience framework would help provide

a set of instructions to analyze the system’s resilience. The results of the analysis will

form the basis for the resilience-oriented system operations and planning decisions.

Metrics to quantify resilience improvement are required in order to weigh certain tech-

niques against others for supporting investment strategies. In this section, different

power system resilience assessment framework are discussed.

The authors of the report presented in [29] developed a method for assessing base-

line resilience and evaluating resilience improvement measures called the Resilience

Analysis Process (RAP). The RAP is a risk-based decision making process for stake-

holders and decision-makers that contains six steps (seven steps if the resilience im-

provement evaluation is included) for assessing system performance. The RAP pro-

cesses begins by defining high-level resilience goals which sets the foundation for the

following steps. Defining the system and resilience metrics that involves setting the

scope of the analysis is performed in the second step. Information from the stakehold-

ers regarding the type of consequences to be considered in the analysis is considered in

this step. Threat characterization is performed in step three. The extent of damage

to the system due to a specific threat (threat determined in step three) is estimated in

step four. Information related to the disrupted components is then used as an input
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to the system models for system’s state evaluation (in step five). In step six, the

results obtained from the system models are quantified and mapped to the resilience

metrics defined in step two. The evaluation of resilience improvement techniques is

performed in step seven, if the goals defined in step one involves proposing resilience

enhancement strategies. Figure 1.1 represents the steps involved in the RAP.

Organizations seeking to improve the resilience of the system can use the RAP to

streamline their resilience-oriented studies. First, the baseline level of the system’s

resilience to a specific threat can be estimated following the aforementioned six steps

of the RAP. The resilience goal defined by an organization can be to improve the

recovery of the system after an extreme event. Metrics that can quantify such im-

provement would then be defined to estimate the effects of such events on the system

at its current state (the measure of the consequences can be to determine the duration

for which customers were out of power). Once the baseline resilience is quantified,

improvement techniques can be applied and evaluated to ascertain the advancement

in the resilience metric (step seven). To summarize, the metrics defined in the RAP

can be used for two purposes: first, to provide the system’s baseline resilience perfor-

mance index, and second, to evaluate the improvement in the system’s resilience after

an improvement technique is applied by providing a means to compare the improved

performance vs the baseline performance.

A framework for power system resilience evaluation was proposed in [30] where the

system resilience evaluation was grouped into two categories: 1) Qualitative frame-

work 2) Quantitative framework. Qualitative framework can be used to evaluate the

power system resilience and other interdependent systems where capabilities such

as emergency preparedness, mitigation strategies, rapid response and recovery, etc.

are studied. Resilience evaluation methods include surveys and questionnaires ma-

trix development; a two-dimensional framework used to quantify improvement in

energy-related attributes due to measures taken in an interdependent sector [31],
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Figure 1.1: The Resilience Analysis Process

etc. Quantitative framework depends on the quantification of the system’s perfor-

mance attributes. Resilience metrics developed using the quantitative framework are

event-specific and provide a basis for decision making [29]. The approaches used for

resilience evaluation include simulations-based, analytical-based, and statistical-based

approaches.

Based on the above literature review, the main step in any resilience-oriented stud-

ies is to define a proper set of resilience goals. As mentioned earlier, it is unrealistic

to consider all resilience related issues to be addressed in these studies. Therefore, it

is crucial to have clearly defined resilience goals followed by the steps and a robust

set of metrics not only to achieve these goals but also to justify the applicable re-

silience enhancement strategies, as the implementation of such strategies involves a

considerable amount of initial investments. Moreover, having disaster preparedness

guidelines also helps the system operators to be ready for a certain set of consequences

by appropriately planning their system’s event response.
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1.1.3 Power System Resilience Metrics

Reliability and resilience oriented enhancement strategies are largely governed by

the extent of the benefits its implementation render to the society. To assess the ben-

efits of reliability improvement techniques, well-defined reliability metrics has been

defined for power distribution systems, eg. System Average Interruption Duration

Index (SAIDI), System Average Interruption Frequency Index (SAIFI), Customer

Average Interruption Duration Index (CAIDI), Momentary Average Interruption Fre-

quency Index (MAIFI) [32] as well as for the transmission systems, eg. Loss Of Load

Probability (LOLP) and Loss Of Load Expectation (LOLE) [33] which forms the ba-

sis for reliability improvements. On the other hand, to assess the benefits of resilience

improvement techniques, currently there are no standard well-defined set of metrics

that can guide resilience investments. Although, in many cases, a more reliable sys-

tem can be considered as a more resilient system and vice versa, that is not true in

every situation [34]. Moreover, application of reliability metrics to justify resilience

improvement techniques might fall short of evaluating certain key factors associated

with resilience (event impact, outage duration, etc.). Hence, knowing what factors

are important for developing resilience metrics is crucial in the metric development

process.

In [29] a set of recommendations for developing resilience metrics are presented.

These include:

1. Metrics should be defined considering a specific type of the HILP event.

2. Metrics should appropriately quantify the performance of the system under

study.

3. Metrics should capture the threat level associated with each extreme event.

4. Metrics used to quantify resilience must account for the uncertainties associated

with the HILP
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5. Metrics should effectively capture the resilience attributes like the ability to

anticipate, prepare, withstand, adapt, and recover

Additional guidelines/recommendations towards developing resilience metrics were

proposed in [9] where the authors emphasized that the metrics used should be able to

enumerate the system’s resilience for a particular category of consequences. From [35],

resilience metrics must also address the geographical and time-varying aspect that

an extreme event has on the system’s resilience. Several other desirable properties

of the resilience metrics were presented in [36] which includes ease of application,

comprehension, and interpretation. Although, the specified recommendations will

help develop resilience metrics, it is not a requirement for resilience metrics to include

all the above points as the metrics would depend on the resilience goals. Thus for

different applications/improvement strategies, different metrics can be proposed or

developed.

The authors in [37] proposed an extended version of the concept of resilience triangle

called a multi-phase resilience trapezoid which was used to develop the resilience

metrics. Figure 1.2 shows the proposed multi-phase resilience trapezoid. The different

phases of the multi-phase resilience trapezoid that characterize power system states

during an extreme event are described below:

1. Phase I indicates the disturbance phase (t ∈ [toe, tee]) with two key elements

of the resilience metrics linked to this phase. The first element describes how

quickly the systemâs resilience decreases (from [P0 to Ppd]) during the extreme

event whereas the second element gives the magnitude of the drop in resilience

[P0 − Ppd].

2. Phase II indicates the disturbed or degraded state (post extreme event) of the

power system. During this state the time, for which the system remains in the

degraded state, is considered as the resilience measure (t ∈ [tee, tre]).



11

Figure 1.2: Multi-phase Resilience Trapezoid

3. Phase III is associated with the recovery phase post extreme event (t ∈ [tre, tr]).

The measure of resilience depends on how quickly the system recovers from the

degraded state to the pre-fault or acceptable level (state).

On the basis of the multi-phase resilience trapezoid concept, the authors developed a

ΦΛEΠ (FLEP) metric. Φ and Λ metric measures how fast and how low the resilience

drops, E represents how long the post-event degradation lasts and the Π metric

quantifies the promptness of the network recovery. In addition to the four metrics, an

area metric was also proposed that essentially considers the integral of the trapezoid

for the event duration. Based on the applicability, the standard multi-phase resilience

trapezoid concept cane be extended to consider the operational and infrastructure

aspects of system resilience.

The mathematical expression associated with each of the aforementioned metrics

is presented below. The Φ metrics is calculated using Equation (1.1) where the

measuring unit could be the MW/hours lost or Number of lines tripped/hour.

Φ =
Ppd − P0

tee − toe
(1.1)
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The mathematical expression for the Λ metrics, which measures the total MW or

Number of lines tripped during an event, is given by Equation (1.2)

Λ = P0 − Ppd (1.2)

The metric E that measures the hours for which the system remains in the degraded

state can be expressed by Equation (1.3)

E = tre − tee (1.3)

The MW (load) or the number of lines restored per hour is quantified by the Π metric

whose mathematical expression is given by Equation (1.4)

fb(x) =
P0 − Ppd

tr − tre
(1.4)

Equation (1.5) provides the Area metrics’ mathematical expression, which is used to

determine the performance of the system during an extreme event

Area =

∫ tr

toe

P (t) (1.5)

A similar approach was used in [38] where a standard resilience trapezoid was con-

sidered and the system resilience was quantified as the reciprocal of the systemâs loss

of performance. The loss of performance was determined using the largest deviation

from the normal level of performance and the integration of the relative deviation

during the degradation phase. The metrics also considers the rapid recovery aspect

by considering performance degradation duration. The authors in [28], developed a

Severity Risk Index (SRI) as a metric to determine whether the proposed resilience

enhancement technique should be implemented. The SRI depends on the probability
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Figure 1.3: Code-based Resilience Metric

of an extreme event and the consequences associated with a specific extreme event.

A majority of extreme events has a spatiotemporal aspect associated with it. To

address this aspect, the authors of [39] have proposed a time-series analysis approach

to assess current and future system resilience. The metrics used for the analysis

include time to repair (TTR) which is a function of the severity of the event, and

reliability-based metrics like the loss of load frequency (LOLF), expected energy not

served (EENS), and loss of load expectation (LOLE). To analyze the improvement in

the power system resilience due to the use of microgrids, the authors in [40] proposed

four indices that are combined to form a power grid resilience metric âΘâ. The

indices include an index K for expected number of line outages, an index for loss

of load probability (LOLP) to measure load loss probability, an index for energy

demand not served (EDNS) to enumerate expected demand that was not satisfied,

and an index G for measuring the level of difficulty in grid recovery.

A code-based resilience metric was proposed in [36] where the measure of the net-

workâs resilience was governed by an empirical equation which is designed to capture

the impact of an unfavorable event. The authors proposed six variables A, B, . . . ,

F that correspond to the event’s time duration in 10i secs (where i = 0, 1, 2. . . , 6)

of an extreme event shown in Figure 1.3 and has a resilience value between 1 to 9

associated with it.

m′ = c(α + ef )(1 + f) (1.6)



14

f =
Load unaffected by an extreme event (kW)

Total load (kW)
(1.7)

The unscaled resilience value is calculated using Equation (1.6), where c is the binary

indicator for extreme event occurrence, α is the event duration time, and f is the frac-

tion of unaffected loads given by Equation (1.7). The calculated unscaled resilience

value is appropriately scaled using Table 1.2 to get a resilience value between 1 to 9.

The authors of [41] proposed a resilience vector that included five resilience indices

which were used to quantify the resilience of the network. The first index was associ-

ated with the load shedding cost saved ($), whereas the second index considered the

cost saved during the restoration process ($/hr). The next two indicators were graph

theory-based indices which were the weighted algebraic connectivity and weighted

betweenness centrality. The last index was a function of the first two indices and was

termed as the adaptability index. In [42], the authors developed a multi-temporal

resilience metrics that quantifies the anticipate, withstand, and recovery aspects of

power system resilience. In that paper, each aspect of power system resilience has

its own set of indices/impacting factors that are used to develop the resilience score.

The anticipate metric score relies on the weighted sum of the three domains namely,

threat and vulnerability, power delivery and loads, and restoration and recovery. For

the withstand aspect, the resilience score Rw depends on the critical loads not served,

total available generation, critical load demand, topological robustness, and threat

impact (here topological robustness was determined using graph theory concepts).

Lastly, the score of recovery metrics depends on the critical load restored, path re-

dundancy, generation redundancy, switching operations, and switching time.

Table 1.2: Scaling of code-based resilience metrics

m’ 1.00- 3.72- 6.43- 9.14- 11.86- 14.57- 17.28- 19.99- 22.71-
3.71 6.42 9.13 11.85 14.56 17.27 19.98 22.70 25.41

m 1 2 3 4 5 6 7 8 9
Low resilience Moderate resilience High resilience
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In [26], the authors used three metrics to define the system’s operational resilience.

The first metric was system flexibility index that measured the demand served after

each recovery iteration given by Equation (1.8).

Rλ
i,n,d,t =

∑
i∈I

∑
n∈N

P
t|ϵ
dn,i

P T
d

(1.8)

The second metric was the outage cost recovery which is the amount of customer

costs regained after each corrective action - Equation (1.9)

Rµ
i,n,d,t =

∑
i∈I

∑
n∈N

Cdn (P
t|ϵ
dn,i+1 − P

t|ϵ
dn,i

) (1.9)

The percentage of demand recovered in each recovery step compared to the total

demand lost was the last metric named as the outage recovery capacity metric given

by Equation (1.10).

Rϑ
i,n,d,t =

∑
i∈I

∑
n∈N

(P
t|ϵ
dn,i
− P

td|ϵ
dn

)

(P T
d − P

td|ϵ
dn

)
× 100 (1.10)

Here, the Rλ
i,n,d,t, R

µ
i,n,d,t, and Rϑ

i,n,d,t are the flexibility, recovery capacity, and outage

cost recovery metrics of load demand d (∀d ∈ D: System demands) at load node n

(∀n ∈ N : System buses) after the adoption of the ith (∀i ∈ I: Iteration count for

recovery process) network reconfiguration plan at time t (∀t ∈ T : Time step). Also,

Cdn is the value of lost load d at node n , P t|ϵ
dn,i

is the active power demand at bus n

after the ith recovery action for ϵ extreme event, P td|ϵ
dn

is the active power demand at

node n when the extreme event ϵ ends, and P T
d is the total active power demand at

node n during normal conditions.

Resilience of the distribution system is measured in terms the critical load restora-

tion capability in [43]. It is governed by the integral of the performance function F (t)

given in Equation (1.11) which is proportional to total power supplied to the critical
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loads weighted by their priority.

R =

∫ tr+T 0

tr

F (t)dt (1.11)

The resilience metric R is defined for the restoration period [tr, tr + T 0] where T 0 is

the duration of the outage and tr is the time at which the first restoration action is

taken.

Authors of[37] and[38] proposed a way to quantify the resilience during the Phase

II of the multi-phase trapezoid, where[37] used the duration of Phase II as a metric

while[38] calculated the area under the curve bounded by the duration of Phase II

to quantify resilience. The aforementioned works consider the recovery phase (Phase

III) of power system resilience as one of the most important phase of the resilience

trapezoid.[37] and[38] used a recovery rate function to determine how quickly the

system returns to the normal or acceptable operating limits. In[39] the time to repair

(TTR) is used to quantify the resilience during this phase. This TTR was expressed

as a function of wind speed (fw(w(s))) and normal time required for a power system

component to repair (TTRnorm). A grid recovery index was proposed in[40] which

essentially provides information regarding the severity associated with the recovery

efforts. Here, the authors assigned weights (wi) and values (ηi) to each (ith) factor

affecting the recovery of the system. The metric proposed to quantify Phase III of the

resilience trapezoid in[41] deals with evaluating the restoration cost savings (∆CR
T ).

The higher the restoration cost saving, the quicker is the system recovery (shorter

Phase III). Different researchers use different metrics to quantify resilience based on

their research question. Nonetheless, these metrics can be categorized based on the

respective resilience phases to which it is being applied to. For example: the Phase I

metric might include reliability based metric, or a probability based metric whereas

the Phase III metric might consist of a cost-based or a time-based metric. Considering
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an approach that uses resilience phases to standardize a set of metrics for each of these

phases can help regulate how resilience is quantified.

Additional work on developing resilience metrics was conducted by the Grid Mod-

ernization Laboratory Consortium (GMLC) Metrics team [44] who proposed a re-

silience metric comprising of two main categories. The first category is the multi-

criteria decision analysis (MCDA) which provides a baseline understanding of the

networkâs resilience in the form of a resilience index (RI) and facilitates improve-

ment options consideration. The second category is a performance-based metric that

quantitatively describes the effect of a certain extreme event on the network. Key

indicators for the performance-based metric include cumulative customer-hours of

outage, time to recovery, loss of utility revenue, etc. In [34], the authors present two

metrics where the first metric focuses on the recovery aspect during the first 12 hours

of a storm, while the second metric quantified the robustness and ability to withstand

the event.

Although performance and attribute-based quantification of power system resilience

is important, it is not sufficient to capture holistic significance of resilience enhance-

ment strategies. One of the key factors according to the resilience enhancement circle

[35] is the benefit/cost analysis for selecting the appropriate enhancement strategy.

Typically, there are two approaches for appraising resilience, namely the bottom-

up approach and the economy-wide approach [45]. The bottom-up approach uses

customer preferences, responses, or behavior in determining the value of resilience

whereas the economy-wide approach estimates resilience value by considering the ef-

fects of a power outage on regional economies using appropriate indicators. The chart

presented in Figure 1.4 shows the subcategories and different models used in each of

these subcategories for valuing resilience.

One of the concepts (which is based on the bottom-up approach) used to perform

economical evaluations of power systems is the concept of Value of Lost Load (VoLL).
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Figure 1.4: Resilience Valuation Approaches

Monetizing the value that represents the importance of electricity continuity helps in

informed decisions-making. VoLL is the “perceived” value that a consumer places

on the convenience of having uninterrupted supply of electricity [46]. The VoLL is

generally estimated using the stated preference approach where customer response

to certain outage situations are recorded via. customer surveys and converted into

a monetary metric. However, using the VoLL calculated for a short-term outage

cannot be used to justify the resilience-oriented investments as it does not capture the

compounding effects of a long-term outage on the customer damage cost estimation

[47]. Moreover, in a majority of studies that incorporate VoLL for resilience decision

assessment, VoLL has been assumed to be a static or a constant value [48] which

is not an accurate representation of customer outage cost as it over-simplifies the

damage cost.

In [49] a new way of calculating the customer damage cost is presented which

considers the effect of a long-term power interruption called the customer damage
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function. The customer damage function provides the damage cost as a function of

outage duration. The factors/characteristics that contribute toward estimating the

customer damage cost are the outage characteristics, customer characteristics, and

some other factors [50]. Outage characteristics include the elements that account for

the outage duration, frequency, time of day, day of week, season of the year, etc. The

customers characteristics that influence the customer damage cost are the type of

customer (commercial, residential, etc,), number of customers, in each of these types,

affected and the criticality index of the affected customers.

Although this subsection provides a comprehensive review of the resilience eval-

uation metrics, the application of these metrics highly depends on the type of en-

hancement technique being used. As the concept of power system is multi-phased, a

standard metric that can quantify the resilience improvements is a challenging task.

At the same time, standardized metric might not offer the most accurate measure of

resilience improvement compared to a customized metric tailored for a specific en-

hancement technique. Nonetheless it is essential to understand what are the different

metrics that are being used to quantify resilience as it can provide invaluable insights

into the development of these custom resilience metrics.

1.1.4 Power System Resilience Enhancement Techniques

There is a wide range of literature published that highlights the resilience improve-

ment techniques. In this subsection, some of the most commonly-used and upcom-

ing techniques for resilience improvement are discussed. The resilience enhancement

strategies can be applied in regards to the two aspects of resilience as suggested in

[51] which are the infrastructure resilience improvement aspect and the operational

resilience improvement aspect. As the name suggests infrastructure resilience im-

provement deals with boosting the robustness of the system components whereas the

operational resilience improvement deals with maintaining secure supply to the loads

during an imminent disaster. The decisions to improve infrastructure resilience are
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mainly planning-based decisions which require a broader time horizon for implemen-

tation. On the other hand, use of smart grid technologies like the use of automatic

switches for network reconfiguration which isolates the faulty sections of the network

thus improving operational resilience can be treated as a real-time decisions.

Equipment hardening is the most common and effective (not a cost-effective solu-

tion) way to improve infrastructure resilience by bolstering network’s robustness and

resistance to change. In [37], hardening techniques were applied on the transmission

network to reduce network degradation during an event. As these measures are not

cost-effective, targeted hardening is performed using the fragility curves (which gives

the probability of failure as a function of the weather element) for the components

to be hardened. Additionally, the importance of undergrounding the distribution

lines, upgrading poles and structures, and increasing redundancy to improve infras-

tructure resilience is presented in [52, 53, 54, 55]. Majority of distribution system

outages during an extreme event are vegetation-induced outages. A report published

by EPRI [56] provides an insight into current utility practices for vegetation man-

agement and how it helps in improving overall resilience. As a part of the wildfire

damage mitigation strategy, PG&E an investor-owned utility company, has proposed

an enhanced vegetation management (EVM) program [57] that specify standards for

minimum power line clearance as well as enable conducting additional inspections be-

yond routine patrols to remove hazardous vegetation. Coastal substations, especially

the ones on the east coast of the United States, are vulnerable to storm surges and

flooding. To address this issue, alternative design approaches for modeling substation

are presented in [58, 59].

One of the most common techniques to improve operational resilience is the network

reconfiguration that makes use of automatic switches, microgrids (MGs), demand

response programs, mobile emergency resources and priority-based load restoration

strategies [60]. In [26, 61] optimal topology control was presented that enhances
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network’s emergency operation while [28] discusses a defensive islanding strategy to

avoid cascading failure. A framework to improve critical load pick-up using MGs

was developed in [43, 62, 63]. MGs can also be used to reduce the load restoration

times [64], with optimal remote-controlled switch placement [65], being an alternate

approach. Efficient use of Mobile Emergency Resources (MERs) [66], and energy

storage devices [67] are some of the other techniques discussed in the literature.

A Networked MG (NMG) can be developed by interconnecting closely located MGs

to form a reliable cluster of MGs. This enables resource sharing and critical loads

support during emergency conditions [68, 69, 38], thus improving overall reliability

and resiliency. An energy management strategy for day-ahead scheduling of the NMG

is presented in [70] where the scheduling problem is formulated as a mixed integer

linear programming problem to minimize the operational cost. [71] developed a bi-

level optimization model for sizing the energy storage system that can be used in a

NMG setup. As more and more renewable energy resources (like solar PV systems,

distributed wind energy systems, etc.) come online on the distribution side, the

challenge of addressing the uncertainties associated with such resources arises. In

[72] consideration was given to these uncertainties associated not only with renewable

generation but also to the unintentional islanding scenario while formalizing a NMG

scheduling problem.

1.2 Rationale

The majority of operational resilience improvement techniques employ mathemat-

ical optimization frameworks that require strict adherence to the specifications of the

optimization algorithm, which in turn requires a detailed model of the network under

analysis [73]. The complexity of the formulation increases as the network becomes

more intricate. Moreover, to ensure optimal results under uncertainties, running a

large number of scenarios using mathematical frameworks can lead to a consider-

able amount of computational load. Therefore, certain assumptions or relaxations



22

are needed to strike a balance between the number of scenarios considered vs the

required computation time. Methods like reinforcement learning (RL) and/or deep

reinforcement learning (DRL) offer an alternative approach to addressing such com-

plexities. Various research works explore the use of such techniques in the power

system operations [73] and controls [74, 75] domain.

Such techniques can also be applied to the field of energy management and resource

scheduling of a single or multi-MGs, especially in situations that involve uncertainties.

Table 1.3 some of the works with discrete and continuous state/action spaces that

employ the RL/DRL frameworks for applications like demand response, demand-side

energy management, and MG energy management. Majority of these works falls

short as the actions space selected does not necessarily represent real-world scenarios.

Moreover, approaches presented in [76, 77] considers a single MG setup where only

the normal operating conditions are modeled. In today’s day and age, it is important

for a framework to focus not only on the normal operating conditions but also on the

emergency operating conditions. Therefore, in our work, we aimed to address these

concerns.

Table 1.3: Literature review: Use of RL/DRL framework for Power System applica-
tions

Ref. No. Application Learning Algorithm Control
Actions

[78] Demand Response Q-learning Discrete
[79, 80] Energy Management

(Demand-side)
Deep Q-learning Discrete

[81, 82] Energy Management
(Demand-side)

Policy Gradient-based Continuous

[76] Energy Management (MG
Control)

Proximal Policy Gradient Continuous

[77] Energy Management (MG
Control)

Deep Q-learning Discrete

In this dissertation, we introduce a Dual Agent-Based (DA) framework that uti-

lizes the principles of DRL to enhance the operational resilience. The proposed DA
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framework aims at minimizing the operational costs and environmental impacts un-

der normal operating conditions, while maximizing the critical load supply indices

(CSI) under emergency operating conditions. Several research works utilize a multi

agent-based approach to manage resources in multi-MGs, such as in [83]. The con-

cept of multi-agent deep reinforcement learning (MA-DRL) framework requires that

agents to operate within a shared environment. However, the environment dynam-

ics, observations, and actions associated with the normal and emergency operating

conditions, respectively, are different. Therefore, in this approach, each agent within

the DA set-up will reside in its own environment with its own set of state and action

vectors.

In DRL frameworks, a reward function plays a pivotal role. This dissertation in-

troduces a dynamic reward shaping approach to develop the reward function that

integrates the environment’s multi-temporal fluctuations. This approach enhances

the DA’s decision-making process by providing supplementary information regarding

the actions taken in specific states. We also developed a training architecture that

utilizes day-ahead forecasts combined with an error coefficient that resembles real-

world forecasting errors. This enables the DAs to explore a wide range of scenarios

during training allowing it to develop a robust policy. The DAs are trained using

the day-ahead forecasts and deployed online to provide real-time control. Therefore,

to assist with the real-time application, we propose a one-shot episode termination

approach (diverging from the conventional episode termination approach based on

time-series) which additionally enables faster convergence with relatively lower com-

putational burden.

During emergency conditions, more specifically when the clustered microgirds are

operating in an islanded mode, prioritizing power supply to the critical loads is of

utmost importance. However, due to constrained resource availability (due to DER

disconnection and islanded operation) a thorough understanding of load flexibility is
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required. Determining the flexibility of each load individually in real-world systems

would be an arduous task. Hence, this dissertation introduces a multi-tier classi-

fication system for load categorization based on the load criticality index enabling

efficient load allocation during emergency scenarios. The contributions of this work

include:

• A novel Dual Agent-based Deep Reinforcement Learning (DA-DRL) framework

that automates real-time resource scheduling and load allocation during normal

and emergency operating conditions, respectively.

• A multi-temporal dynamic reward shaping approach that enhances the agent’s

decision-making process.

• A training paradigm that integrates an error coefficient into the day-ahead

forecasts to prepare the DAs for a multitude of scenarios.

• A one-shot episode termination method that enable faster convergence, reduce

computational load, and ease real-time application.

• A multi-tier classification system for load categorization based on the load crit-

icality index that aids in critical load allocation.

1.3 Dissertation Organization

The rest of the dissertation is structured as presented in Figure 1.5. An overview

on MGs, NMGs, and Agent-based modeling is presented in Chapter 2. This chapter

discusses the basic structure and control architectures of MGs and NMGs along with

the mathematical basis of RL and DRL methods which enables the agent’s learning.

Chapter 3 offers an insight in to the methodology of the proposed framework. It

further highlights the MDP modeling and the problem formulation of the respective

agents. Additionally, this chapter expands on the DA’s training paradigm developed

in this work along with the DG’s testing structure. To test the DA framework,
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multiple case studies were run whose results are depicted in Chapter 4. Comparison

of the agent’s learning with different DRL algorithms and the validation of the results

with the metahueristics techniques is also included in this chapter. Moreover, a

section that deals with evaluating the sensitivity of the model with respect to certain

learning parameters, is also detailed in this chapter. Lastly, Chapter 5 encompasses

the concluding remarks accompanied by the discussion on major contributions of the

proposed work, and possible future works.
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CHAPTER 2: BACKGROUND

2.1 Microgrids

This section provides a high-level overview of MGs and its components. A MG is a

localized energy system consisting of a group of interconnected loads and Distributed

Energy Resources (DERs) that operate as a single controllable entity [84]. MGs have

the ability to operate in both a grid-connected mode and an islanded mode (where

the MG is disconnected from the main grid). Due to proliferation of DERs at the

distribution level in recent years, MGs provide a flexible and an efficient way to

integrate these growing resource interconnections. Additional advantages of the MGs

include [85]:

• MGs reduces power losses due to it using the localize energy resource for load

delivery.

• MGs can enhance the network’s reliability and resilience especially under ex-

treme conditions.

• MGs improves local energy management thereby reducing the operational and

the resource planning costs.

• MGs provide platform to integrate carbon-zero resources thus advocating the

carbon neutral energy generation initiative.

MGs have the capability to transform the traditional paradigm of energy generation

and consumption that incorporates local DERs and advance energy management

systems. The Department of Energy (DOE) Office of Electricity (OE) considers MGs
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to be the building blocks of the electricity delivery system of the future [86] making

it a key player in the grid modernization efforts.

2.1.1 Components of Microgrids

A standard MG layout is demonstrated in Figure 2.1 that highlights the crucial

components of a MG. These components include:

• Distributed Energy Resources (DERs)

• Network Loads

• Point of Common Coupling (PCC)

• Energy Management System (EMS)

Conventional Generation

Renewable Generation

Critical Loads

Energy Storage Systems

Non-critical Loads

Microgrid 
Operator

Main Grid

Point of Common 
Coupling (PCC)

Communication line

Figure 2.1: Standard MG structure

2.1.1.1 Distributed Energy Resources (DERs)

Distributed Energy Resources (DERs) can be considered as small-scale energy gen-

erating resources that are interconnected at the distribution level. These resources
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can be further categorized into conventional DERs, renewable DERs, and storage

systems.

Conventional DERs can also be called as controllable/dispatchable DERs as the

output of such units can be controlled by the operator. These set of DERs include a

micro gas turbines (MTs), diesel generators (DGs), combined heat and power systems

(CHP), fuel cells, etc. MTs are small combustion gas turbines that uses ignition of a

mixture of compressed air and fuel creating combustion gases which are used to drive

the turbines [87]. Typically the output of the MTs ranges between 30 kW to 200 kW.

DGs on the other hand use a diesel engine to convert diesel fuel energy into mechanical

energy which is coupled to an alternator that generates electrical energy [88]. CHP

systems are also called cogeneration systems due to its ability to generate heat and

electricity from a single energy source and reuse the excess heat to further improve its

operational efficiency [89]. Fuel cells are energy conversion devices that combines the

gaseous fuel (hydrogen) with oxidant gas (oxygen) to generate heat and electricity [90].

Availability of controllable/dispatchable DERs in the MG structure helps minimize

the operational cost in grid-connected mode coupled with an improvement in MG’s

overall reliability and resilience in an islanded mode.

Most common renewable DERs include the solar photovoltaic (PV) systems and

wind turbines. As the output of such DERs depend on the external intermittent fac-

tor (solar irradiance for solar PV systems and wind energy for wind turbines), these

resources are considered to be non-controllable/non-dispatchable resources. More-

over, some of the controllable/dispatchable renewable DERs include small scale steam

power plants that use geothermal energy or biomass energy to generate electricity.

Micro (Small) hydropower systems that converts the energy of running water into

electricity can also be considered as a controllable renewable DERs [91].

In a MG comprising of only renewable DERs, storage systems provides the neces-

sary controllability. Moreover, any excess generation from these renewable DERs can
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be stored and used in later hours of the day to provide peak shaving or serve as a

back-up source under emergencies. Different energy storage technologies are discussed

in [92] out of which the ones suitable to use in a MG setup are [93]:

• Battery Energy Storage (BES) System: A system that uses an assembly of elec-

trochemical cells connected in series and parallel to generate electricity through

an electrochemical reaction.

• Hydrogen Storage System: A type of chemical energy storage system that uses

electricity to produce and store hydrogen through the electrolysis of water [94].

The stored hydrogen can then be used in a fuel cell or can be burnt directly to

generate electricity [95].

• Flywheel Energy Storage: A type of mechanical energy storage that stores

the rotational kinetic energy which is transferred in and out of the flywheel

through an electrical machine operating as a motor or a generator depending

on charge/discharge operation [96].

• Supercapacitor Energy Storage System: An electrochemical energy storage sys-

tem that stores energy through electrostatic charge separation and provides a

higher power density option compared to other electrochemical storage systems,

like BESs [97].

• Thermal Energy Storage System: A system that enables storage of energy in

the form of heat or cold for later dispatch [98].

Out of all the aforementioned energy storage types, BES systems are the most

commonly used technology in a MG setup that provides necessary services. Different

types of BES systems are discussed in [99] which includes Li-ion batteries, Lead-acid

batteries, Flow batteries, etc. Lead-acid batteries were traditionally used for MG
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operations. However due to the higher efficiency and energy density, Li-ion batteries

are mostly preferred.

2.1.1.2 Network Loads

In a MG, network loads comprises of the facilities or infrastructure that require

electrical energy to function appropriately. Network loads can be broadly classified

into critical and non-critical loads [100]. Each of the load classes consist of control-

lable, deferrable, and non-controllable load types. Controllable loads means the MG

operator has the ability to alter the behavior of such loads. Deferrable loads can be

scheduled to be served in a different operating window. Controllable and deferrable

loads provide operators with an option to manipulate the load’s consumption profile

unlike non-controllable loads. These loads need to be served (if in critical load class)

or to be shed (if in non-critical load class) if at all required, to maintain load and

generation balance.

Examples of the critical non-controllable loads can be hospitals, emergency lighting,

data centers, etc. Majority of the critical loads can be considered as non-critical loads

as the load power required by such loads must be served all the time. Instances of the

non-critical controllable loads are HVAC systems of non-essential facilities, industrial

equipment that can be temporarily turned off, etc. Moreover, an updated water

heater or electric vehicle charging schedule can be considered as an example of a

deferrable load.

2.1.1.3 Point of Common Coupling (PCC)

An electrical link that serves as an interfacing point between a MG and the main

grid is called as a Point of Common Coupling (PCC) [101]. The PCC enables power

exchange between the main grid and the MG during grid-connected mode. Addition-

ally, it acts as an isolation switch for the MGs to transition from grid-connected to

islanded mode.
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2.1.1.4 Energy Management System (EMS)

Energy Management System (EMS) can be considered at the central processing

unit of a MG where information is collected and control tasks are initiated. EMS is

a control system that is responsible for optimizing the overall operation of a MG by

appropriately adjusting the DERs power output to economically supply the network

loads [102]. EMS also monitors the operating conditions and addresses the challeng-

ing task of balancing the loads with intermittent generation by efficiently deploying

dispatchable generating units during islanded operations [103]. The EMS control ar-

chitectures for a typical MG can be classified into a Centralized Control Architecture

and a Decentralized Control Architecture.

Centralized Control Architecture

In this type of control architecture, a main central controller (MCC) controls the

operation of all the components of a MG. The MCC collects the necessary information

regarding the DER units and loads along with other relevant information that contains

forecast entities, network parameter limits, operation modes, etc. [104]. A typical

centralized control architecture is presented in Figure 2.7. A local controller (LC)

interacts with the MCC by sharing the necessary data that is required to optimize

the overall operation of the MG. In centralized control, the job of local controller is

only to share the localize DER/load information with the MCC.

Optimization of a MG through a centralized control architecture is computationally

extensive due to the exchange of high volume of real-time data. However, it has a

simple structure which is enables ease of implementation.

Decentralized Control Architecture

In a decentralized control system, an optimized operation is obtained through the

autonomous behavior of the DERs and loads in which each of these entities seek to

maximize the overall objective [100]. Figure 2.8 represents the decentralized control
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Figure 2.2: Centralized Control Architecture

architecture, where the LC (of the DERs/loads) has the ability to make intelligent

operational decisions independently. The LCs communicate with the neighboring

LCs, exchanging information to reach a consensus on the optimal control actions

under a given situation. Although MCC does not govern any control actions in

decentralized control architecture, it can still provide electricity pricing signal and

under contingencies can take over control if required [102].

Advantage of using a decentralized control architecture is its computational effec-

tive. However, it can be potentially inefficient when comes to resource allocation due

to a lack of global optimizing entity.

Communication in MG

To exchange the necessary information between the essential components of a MG,

EMS has to rely on a fast, secure, and reliable communication system. IEC 61850

can be used for satisfying the communication requirements for a MG operation [103].

Although this standard was originally developed to regulate the communication pro-

tocol in substation automation systems (SAS) [105], due to its flexibility it can be

easily adopted for MG operation and communication.
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Figure 2.3: Decentralized Control Architecture

The objective of IEC 61850 standard is to provide a framework that enables inter-

operability between intelligent electronic devices (IEDs) [106]. Moreover, it charac-

terizes the way each of the devices must organize the information to maintain data

exchange consistency thus making it a viable solution to the communication problem

within a multi-device MG set-up.

2.2 Networked Microgrids

Another efficient approach to effectively use the DERs is to interconnect multi-

ple MGs to form a Networked Microgrid (NMG) [38]. NMGs are a cluster of self-

regulating MGs that are responsible for providing robust infrastructure for DER inte-

gration thereby aim to improve system’s reliability and resilience [107]. Depending on

the operating conditions, NMGs can operate either independently optimizing individ-

ual MG’s objectives or in a cooperative manner where each MG operates collectively

to achieve the global objective.

NMGs bolsters grid modernization by enabling interoperability of various smart
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grid technologies [108]. It ensures reliable power supply to the critical loads during

emergencies, while maintaining a high power quality standard. The interconnected

nature of NMG provides a high level of network redundancy which significantly en-

hances network’s reliability and resilience.

In general there are three basic interconnection architectures that essentially stan-

dardize different MGs connection with each other (in a NMG) or with the Grid

[109, 110].

• Serial Interconnection Architecture:

MG #2

MG #n

MG #1 MG #3Main 
Grid

MG #4

Figure 2.4: Serial Interconnection Architecture

In this architecture, two or more MGs are networked in series with each others.

Figure 2.4 demonstrates the serial interconnection architecture where there is

only one MG (from the NMG setup) that has a direct connection with the grid.

• Parallel Interconnection Architecture:

The parallel interconnection architecture enables multiple MGs of the NMGs

to have a direct connection with the grid, separately, as shown in Figure 2.5. A

connection between these MGs can be achieved through an interconnection tie.

• Interconnected MG Architecture:

In an interconnected MG architecture, multiple MGs are connected to multiple

feeders, separately, as depicted in the Figure 2.6. Similar to a parallel intercon-
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Figure 2.5: Parallel Interconnection Architecture

nection architecture, an interconnection tie can be used to provide a possible

interconnection between these MGs.

MG #2

MG #n

MG #1 MG #3Feeder 
#2

MG #4

Feeder 
#1

Feeder 
#3

Figure 2.6: Interconnected MG Architecture

2.2.1 Control Architectures for NMGs

2.2.1.1 Centralized Control Architecture

Centralized control architecture used for the NMGs shares the same operating

characteristics as the centralized control architecture that controls a single MG. As in

single MG control structure, a MCC has the authority to develop control strategies by

collecting the necessary information from various NMG’s components [111]. Figure

2.7 represents the centralized control architecture from a NMG standpoint.

The MCC determines optimal control actions that achieve the overall objective and

communicates those to the individual MG controller. In this structure, the primary

task of the individual MG controller is to locally implement the control actions by
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Figure 2.7: Centralized Control Architecture for NMGs

accordingly adjusting the DERs or loads set-points (it cannot operate autonomously

except under contingencies). A centralized structure provides a cohesive and inte-

grated approach to solving the energy management problem.

The advantages of a centralized control architecture includes ease of implementation

due to a simplistic structure and a relatively low computational burden. However, one

of the major concerns with centralized control is the its susceptibility to a single-point

failure.

2.2.1.2 Decentralized Control Architecture

In a decentralized control architecture, the authority of decision-making is assigned

to the individual components like individual MG controllers. These individual MG

controllers can have its own structure (including communication) that would enhance

the decision making process.

The basic structure of a decentralized control architecture is shown in Figure 2.8

where a MG controller can communicate and exchange appropriate information with

the individual DERs to provide localized optimal control. Additionally, depending on

the structure, these individual DERs can also communicate with neighboring DERs
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Figure 2.8: Decentralized Control Architecture for NMGs

(as explained in previous the section under decentralized control architecture for single

MG) to provide a balance between coordination and autonomy.

One on the major advantages of a decentralized control architecture is it eliminates

the vulnerability to single-point failure. On the top of that this control architecture

has an improved adaptability and scalability. However, achieving global optimality

at a system-level is a major concern.

2.2.1.3 Distributed Control Architecture

Distributed control architecture is an extension of the decentralized control archi-

tecture that enables parallel data processing and control [112]. A robust commu-

nication between the local DERs bolsters the decision-making process by enhanced

coordination at an individual MG level. Moreover, distributed control architecture

enables communication with the neighboring MGs that allows regulation of power

exchanges amongst them.

Figure 2.9 presents the distributed control architecture for NMG operation. Indi-

vidual DERs can communicate with each other as well as with the individual MG
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Figure 2.9: Distributed Control Architecture for NMGs

operator (or a pinned DER as per [112]). These individual DERs follow respective

individual MG operator for appropriate control and operation.

Although distributed control architecture enhances the coordination and increases

the likelihood of achieving global optimality, its implementation remains relatively

complex due to its dependence on advance algorithms and sophisticated coordination

requirement.

2.3 Agent-Based Modeling

Another important concept that forms the basis of this dissertation is the use

of Agent-based DRL framework for solving the NMG’s scheduling problem. This

section provides an overview of Agent-based modeling from its inception to the present

day. Moreover, it includes the details regarding the mathematical background of

modern Agent-based RL framework. Lastly, this section discusses the advancements

in the applicability of the RL frameworks to real-world problems by introducing DRL

paradigm that uses deep neural networks (DNN) for performance enhancement and

scalability improvement of the agent-based systems.
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2.3.1 History of Agent-Based Modeling

Agent-based Modeling (ABM) is a multi-disciplinary computational simulation

technique that relies on an autonomous agent’s interactions to evaluate a complex

system [113, 114]. An agent is a self-regulating decision-making entity which collec-

tively forms an ABM system. These agents follow a set of predefined rules/objectives

to assess its environment and perform necessary tasks.

The first application of an ABM system was observed in the field of social sciences.

An ABM was developed in [115] to study racial segregation in an urban set-up that

showcases the correlation between individual preferences and the extent of segrega-

tion. Although this work did not exclusively use the ABM terminology or computa-

tional tools, it laid the groundwork for future ABM advancements by demonstrating

how individual decisions can influence overall system’s behavior. Another work that

provided the foundational grounds for social simulation is presented in [116] which

uses ABM for studying social experiences through agents interaction.

Furthermore, ABM was also used in the field of economics and finance to simulate

financial systems, replicate trading behaviors, or model markets. An agent-based

market model was developed in [117] that evaluates observed parameters by the use

of interacting agents to aggregate macroeconomics with the financial data. ABM

also finds it use in the health sector especially to ascertain disease progression as a

consequence of individual interactions. In [118] an ABM approach was used to develop

a model that leverages geographical information to study spread of communicable

diseases in an urban environment.

Technological advancement in the field of computer science led to a paradigm shift

in the way agents in an ABM are viewed. As computational power increases, incor-

poration of adaptable and intelligent agents that learn from their own experiences

by interacting with a dynamic environment became more manageable. Emerging ap-

proaches that combine ABM with advance machine learning techniques like RL can
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help develop complex systems. Here the ABM provides a platform for the agents to

interact and gather experiences while RL provides learning algorithms to learn from

these experiences. This framework enables development of intelligent agents that ex-

hibit dynamic and adaptive behavior, which is particularly important in the systems

that are evolving in nature (like an electric power system).

2.3.2 Reinforcement Learning

Reinforcement Learning (RL) is a branch of a machine learning framework that

teaches agents to take intelligent decision that maximizes the overall returns [119].

The agent learns to take optimal actions through trial-and-error interactions with the

dynamically changing environment [120]. At the beginning of the learning process,

the agent explores the environment by taking random actions. However, as learning

progresses, it tends to prefer actions that yield higher returns providing a testament

to the knowledge it has acquired throughout the training process.

Environment

Agent

state
𝑆!

reward
𝑅!

𝑅!"#

𝑆!"#

action
𝐴!

Figure 2.10: Reinforcement Learning Framework

A diagrammatic representation of a RL framework are depicted in Figure 2.10.

There is an agent that, after encountering state Si ∈ S: where S is set of possible

states, interacts with an environment by taking action Ai ∈ A(Si): where A(Si) is a

set of action available in state Si, for which it receives reward Ri ∈ R ⊂ R. Upon

taking the action Ai, the states of the environment transition from Si to a transitioned

state Si+1. The main components of a RL framework are:

• Agent: An agent is software program that is modeled to learn and take intelli-
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gent decisions.

• Environment: An environment is a set-up where the agent resides and with the

agent interacts. An environment is modeled in such a way that it captures the

change in the states space dynamics when an agent takes a specific action a. It

is also responsible to provide a feedback in the form of reward r to the agent.

• State space (S): A set of state values (s) or observations encountered by the

agent that contains essential information about the environment’s characteris-

tics.

• Action space (A): A set of action values (a) that the agent can choose to interact

with the environment.

• Reward: A scalar value (r) received by the agent as a feedback from the envi-

ronment that indicates how good the agent’s action a was given a state s.

• Value function: A value function provides a value of an agent’s specific state. It

essentially provides a measure of future expected rewards that agent will receive

when in state s. There are two type of value functions:

– State value function: Provides the measure of expected returns when at

state s following a policy π. State value function is represented by Vπ(s).

It quantifies the value of being in a specific state s.

– Action value function or Q-value function: Provides the measure of ex-

pected returns when at state s following policy π and taking action a.

Action value function is represented by Qπ(s, a). It quantifies the value of

an action a taken given a state s.

• Policy: Policy π of an agent governs the action a the agent takes given a state s.

A policy of an agent directly maps a specific state s to an action a: π(si)→ ai.
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An optimal policy selects an action that would provide the maximum reward r:

π∗(si)→ ai where: ai = argmaxai∈A Qπ∗(si, ai). Here Qπ∗(si, ai) is the optimal

action value or Q-value which will be discussed in the subsequent sections.

Another aspect of a RL environment is an episode. An episode is the Agent-

Environment interactions from the initial state to the terminal state. Therefore, the

goal of an agent is to learn a policy π that maximizes the overall reward received over

span of an episode.

2.3.2.1 Markov Decision Process

The basis to formulate a RL problem must comply with the mathematical frame-

work used to model sequential decision making problem called the Markov Decision

Process (MDP) [121]. The basic assumption of an MDP is that the process must

satisfy the Markov property. A Markov property suggests that the future state si+1

only depends on the current state si and the action ai taken in that state si and not

the preceding sequences [122]. The dynamics of the system modeled as MDP can

be considered as memoryless where the current state values essentially captures the

information of the past states.

In RL, the learning problem is modeled as an MDP. An MDP consists of a tuple

of five components: (S,A, P, r, γ). Again, S and A represents the state space and the

action space of the agent. P is the conditional probability expressed as P (si+1|si, ai)

that signifies the probability to transition to state si+1 taking an action ai given a

state si. Reward function r → ri, which can be expanded as r(si, ai, si+1), represents

the reward or incentive received by the agent after taking action ai given a state si.

The discount factor γ ∈ [0, 1] characterizes the inclusion of future states the agent

must consider to compute its returns.

The aim of the agent is to develop a policy (π → π(s)) that maximizes the cumula-

tive returns. These returns are given by Equation 2.1 which is the sum of discounted

rewards.
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Gi = ri+1 + γ.ri+2 + γ2.ri+3 + γ3.ri+4 + · · · =
∞∑
k=0

γk.ri+k+1 (2.1)

Using the concept of MDP and leveraging on the above equation, two important

function of RL (as described earlier) i.e. the equations for the state-value function

(Vπ(s)) and the action-value function (Qπ(s, a)) can be derived. State-value function

that provides a measure of how valuable being is certain state is, is given by Equation

2.2 (i.e. the expected returns when in state si = s).

Vπ(s) = E

[
∞∑
k=0

γk.ri+k+1

∣∣∣∣si = s

]
(2.2)

The action-value function that signify the value of an action taken in a specific

state is given by Equation 2.3 (i.e. the expected returns when action ai = a is taken

in state si = s).

Qπ(s, a) = E

[
∞∑
k=0

γk.ri+k+1

∣∣∣∣si = s, ai = a

]
(2.3)

The action-value function or the Q-value function has been used in many learning

algorithms like Q-learning that focuses on developing the policy by maximizing the

Q-value rather than the policy itself.

2.3.2.2 Bellman Equations

The value functions defined in Equations (2.2) and (2.3) must satisfy the recursive

relationship called the Bellman Equations [123], which forms the cornerstone of many

RL algorithms. It enables recursive decomposition of the value function of a policy by

expressing the value of a state in terms of immediate and discounted future rewards

associated with the successive states.

For a policy π and state s, the value of the possible successive states can be ascer-

tained by Equation 2.7.
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Vπ(s) = Eπ

[
∞∑
k=0

γk.ri+k+1

∣∣∣∣Si = s

]
(2.4)

= Eπ

[
Ri+1 + γ.

∞∑
k=0

γk.ri+k+2

∣∣∣∣Si = s

]
(2.5)

=
∑
a

π(a|s)
∑
si+1

∑
r

p(si+1|s, a)

[
r + γ.Eπ

[
∞∑
k=0

γk.ri+k+2

∣∣∣∣Si+1 = si+1

]]
(2.6)

=
∑
a

π(a|s)
∑
si+1,r

p(si+1|s, a)
[
r + γ.Vπ(si+1)

]
(2.7)

Equation 2.7 provides a relationship between the value of the current state and

that of its successor states. The term π(a|s).p(si+1|s, a) computes the probability

for each a, si+1, and r → (a, si+1, r). By weighing each → a, si+1, r; with its respec-

tive probability, Equation 2.7 determines the state value by averaging over all the

possibilities.

Optimal Value Functions

Again, the end goal of a RL agent is to develop a policy π that would maximize it

overall expected returns. If the expected returns of a policy π are greater than that of

another policy π′ then and only then it can be considered that policy π will perform

better than another π′. Therefore, π ≥ π′ if and only if Vπ(s) ≥ Vπ′(s) ∀ s ∈ S. A

policy that is at least better than or equal to all other policies is called an Optimal

policy denoted by π∗. The optimal state-value function associated with an optimal

policy is given by Equation 2.8.

V∗(s) = max
π

Vπ(s), ∀ s ∈ S (2.8)
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Similarly, the optimal action-value function can be computed using Equation 2.9.

Q∗(s, a) = max
π

Qπ(s, a), ∀ s ∈ S and a ∈ A(s) (2.9)

Equation 2.9 quantifies the expected return when the agent take action a in a state

s following an optimal policy. The Bellman optimality equation supports the idea

that the state value under an optimal policy must equal the expected returns for

the best action taken in that state. This equation in terms of state-value function is

expressed in Equations (2.13) and (2.14).

V∗(s) = max
a∈A(s)

Qπ∗(s, a) (2.10)

= max
a

Eπ∗

[
∞∑
k=0

γk.ri+k+1

∣∣∣∣Si = si, Ai = a

]
(2.11)

= max
a

Eπ∗

[
ri+1 + γ.

∞∑
k=0

γk.ri+k+2

∣∣∣∣Si = si, Ai = a

]
(2.12)

= max
a

E[ri+1 + γ.V∗(si+1)|Si = s, Ai = a] (2.13)

= max
a∈A(s)

∑
si+1,r

p(si+1|s, a)
[
r + γ.V∗(si+1)

]
(2.14)

Similarly, the Bellman optimality equation for optimal action-value function is given

by Equations (2.15) and (2.16).

Q∗(s, a) = E
[
ri+1 + γ.max

ai+1

Q∗(si+1, ai+1)|Si = s, Ai = a
]

(2.15)

=
∑
si+1,r

p(si+1|s, a)
[
r + γ.max

ai+1

Q∗(si+1, ai+1)
]

(2.16)

The Bellman optimality equations especially Equations (2.15) and (2.16) forms the

basis for the development of numerous RL and DRL algorithms.
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2.3.3 Deep Reinforcement Learning

Environment with low dimensional state and action spaces are well-suited for tra-

ditional RL techniques to work effectively. However, as the complexity of the tasks

increases with state and action spaces requiring high-dimensional or continuous val-

ues, the traditional RL techniques tend to struggle [124, 125]. Most famous RL

algorithms like the Q-learning or SARSA can only operate or help develop an agent’s

policy when the state and action spaces are discrete in nature [126]. The reason being

these techniques employ a tabular approach to map the states with value functions

of all the possible actions. This approach is impractical when it comes to state and

action spaces that are continuous in nature, which is the case with a majority of

real-world problems.

DRL provides a solution to the aforementioned limitations that the tradition RL

techniques exhibit. DRL leverages DNN [127] to handle complex, high-dimensional

state and action spaces enabling the base RL techniques to be applied to more com-

plicated real-world problems. DNNs in DRL framework are used as a function ap-

proximator meaning the DNNs are trained to approximate the optimal policy (π∗)

and/or the optimal value functions (V∗, Q∗, and A∗) [128]. A detailed explanation of

how the DNNs are trained and how the model parameters are optimized is provided

in the Appendix D

2.3.4 Learning Algorithms (RL and DRL)

There are numerous RL and DRL algorithms that can be used to train the agent.

These algorithms can be classified into two categories: 1) Model-free algorithm, 2)

Model-based algorithms. In Model-free algorithms the agent directly learns the value

function or the policy by interacting with the environment. These algorithms use

the experience it gained through trial and error interaction with the environment

to maximize the rewards. Conversely, Model-based algorithms relies on creating a
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model of the environment that predicts the next state and reward value given the

current state and actions. The goal of these algorithms is to build an internal model

of the environment dynamics and reward function which is used for decision making.

Due to the complexity involved in explicitly modeling the environment dynamics of a

real-world system, model-free algorithms are preferred over model-based algorithms.

Model-free algorithms can be further classified as two sub categories, based on the

entity they are trying to optimize. An algorithm that directly optimizes the policy

of the agent are the Policy Optimization algorithms. These algorithms use policy

gradient updates to optimize the model’s parameter. These updates are almost always

done on-policy, meaning the updates only use the data that was collected while acting

based on the latest updated policy. Another subcategory of model-free algorithms

include the algorithms that rely on the approximation of the action-value (Q-value)

of the agent’s actions also called as Q-learning algorithms. The updates in the Q-

learning algorithms are almost always performed off-policy, meaning the agent can

use samples of collected data at any point during the learning process regardless of

when that data was gathered.

There are another set of algorithms called the Actor-critic algorithms, that com-

bines the advantages of: 1) Policy optimization algorithms → in the form of policy

updates that essentially governs agents actions (also termed as Actor network), 2) Q-

learning algorithms → in the form of Q-value updates that essentially evaluates the

actions taken by the policy or actor network by ascertaining its Q-value (also known

as the Critic network). The Actor-Critic group of algorithms also perform updates

using off-policy approach essentially using the experience it gathered to optimize the

networks (actor and critic) parameters.

To train the agent and to perform comparative analysis, in this dissertation, actor-

critic based algorithms are used. There are three actor-critic algorithms that are most

commonly used for continuous state and action spaces which are:
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• Deep Deterministic Policy Gradient (DDPG) [129]

• Twin-Delayed Deep Deterministic Policy Gradient (TD3) [130]

• Soft Actor-Critic (SAC) [131]

Details of each of these algorithms are presented in the Appendix C.



CHAPTER 3: METHODOLOGY

In this chapter, the complete methodology used to develop the DA framework is dis-

cussed. This includes introduction to the DA framework followed by the MDP model

of the DAs. The DA’s environment dynamics and reward function modeling is pre-

sented in the problem formulation section. The training paradigm developed for the

DAs along with the mathematical formulation for the one-shot episode termination

approach is explained subsequently. Next, a brief explanation of the real-time testing

structure for evaluating the DAs is provided. Lastly, the test set-up information is

highlighted in the concluding section of this chapter.

3.1 Dual Agent Framework

To manage the NMGs, a centralized control strategy, as described in [132], is imple-

mented. A central controller interacts with all the interconnected MGs by collecting

and transferring vital information which it then uses to perform necessary control

tasks. It is also equipped with a backup unit to provide redundancy in case of pri-

mary control failure. Moreover, an additional layer of individual MG controllers are

provided that enable each MG’s independent operation in case of backup controller

failure. Figure 3.1 demonstrates the centralized control structure for NMGs.

Depending on the operating conditions, the objective of a MG operator varies.

Normal Operating Agent (NOA) is the term (as the name suggests) used to describe

the agent that is deployed under normal operating conditions whereas Emergency

Operating Agent (EOA) is the agent that is deployed during an emergency operating

phase. The objectives of each of these agents are:

• Normal Operating Agent (NOA): To minimize the operational cost of the NMG
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Figure 3.1: Centralized control strategy for NMGs

by determining appropriate set-points for the dispatchable DERs in the NMGs.

• Emergency Operating Agent (EOA): To maximize the critical load supply index

by allocating power to the essential loads of the NMG.

The state space, action space, and reward function are the major components of

any agent’s design. While the reward function for each of the DAs will be discussed

in the problem formulation section, the state space and action space for the NOA and

EOA are discussed in the following (MDP modeling) section.

3.2 MDP Modeling

3.2.1 NOA’s MDP components

Under normal operating conditions, the MG operator will try to minimize the oper-

ational cost by appropriately deploying the resources. To achieve the aforementioned

task, the MG operator or (in this case) the NOA must have information about the

states of these resources (along with some additional information). Therefore, the

NOA’s observation or state space consists of the information given by Equation (3.1).
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For every hour or a time step t, the state values are updated to replicate the varying

nature of these values over a 24-hr period.

St = {PPV
t,m,p, P

DG
t,m,j, λ

DG
t,m,j, E

cap
t,m,k, P

BES
t,m,k,

λBES
t,m,k, P

load
t , PG

t , P loss
t , λG

t , V
count
t , νt}

(3.1)

The action space of NOA includes the control actions that operates the DG set-points

and the charging/idling/discharging of the BESs as presented in Equation (3.2).

At = {αDG
t,m,j, α

BES
t,m,k} (3.2)

These action variables governs the amount power dispatched by the DGs and sup-

plied to/by the BESs at any given time step by the NOA. Figure 3.2 shows the com-

plete framework of the NOA. This framework also demonstrates how the transition

between state S to S ′ is governed when the NOA takes a specific action.

Figure 3.2: NOA’s Framework

The initial states values for PPV
t,m,p, ∀ m, p and P load

t are obtained from the day-

ahead forecasts. In order to account for the forecasting errors, these forecasts are

integrated with the an error coefficient ϵ similar to the typical error values. This

inclusion of ϵ into the day-ahead forecasts enhances the learning process of the NOA

by providing a range from which the state values for the PV power output and load

power can be sampled. One point to note is the policy learnt by the agent highly
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depends on the states (training sample) it encounters during the training process. A

biased training sample will point the agent towards developing a biased policy which

will perform accurately for more frequent states whereas it will under-perform for

less frequent states. Therefore as Equation (3.3) suggests, a uniform random value

generator is used to sample these states.

SPV,load = U
(
[1− ϵ] .Sforecast

PV,load, [1 + ϵ] .Sforecast
PV,load

)
(3.3)

The DG power output and the BES status are kept at zero and idle, respectively.

These initial values of the resources are the input to OpenDSS for power flow calcu-

lations. These calculations provide the P loss
t , V count

t , and PG
t . Combining all these

state values results in the initial state S. Once the agent takes actions A, the next

state S ′ is achieved where the transition between S to S ′ is governed by the transition

equations Equations (3.10), (3.18) and (3.19) which will be discussed in the problem

formulation section. During normal operation, the states that demonstrates transi-

tion directly due to the actions are the DG power state and the states associated with

BES. Similarly, these new state values are sent to OpenDSS engine for power flow

calculations which in turn returns P loss
t , V count

t , and PG
t . These state values along

with the updated state values for the DG and BES form S ′ which is the transitioned

state. Along with transitioned state, another important component that essentially

determines how good the action taken by the agent is, is the reward value R. Again,

a detail discussion about the reward function is presented in the problem formulation

section.

3.2.2 EOA’s MDP components

During the emergency conditions, caused due the extreme weather events, the

NMGs might have to be operated in an islanded mode. Moreover, these conditions

increase the possibility of multiple NMG resources to be disconnected from the net-
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work due infrastructure failure, thereby creating a deficiency in the availability of

power generating sources. Initiating rolling blackouts can be a possible solution,

however it is pivotal to understand the criticality aspect of the loads being shed.

Hence, the EOA is designed so that it can allocate power to the loads based on its

criticality index.

Therefore, the state space for the EOA is given by Equation (3.4). One important

state value that is unique to the EOA is the generation unit’s status value. Each of

the generating resources available in the NMG is accompanied by this status value

that determines whether a specific resource is connected to the network or not.

St = {uPV
t,m,p, P

PV
t,m,p, u

DG
t,m,j, P

DG
t,m,j, u

BES
t,m,k, E

cap
t,m,k, P

BES
t,m,k,

P load
t , P

allocated_load
t,x , PM

t , P loss
t , V count

t , νt}
(3.4)

A typical distribution network contains a large number of loads and hence it would

be an arduous task to allocate individual load. Hence, in this work, a multi-tier

classification system is developed that categorizes the loads based on its criticality

index. The loads will be categorized into multiple tiers which will take into account

how critical a specific load is for the well-being of the community. The classification

includes:

• Tier I loads: Loads that are critical for the community’s safety and functionality

• Tier II loads: Loads that are critical and can provide emergency accommodation

services

• Tier III loads: Medium/Large loads that are non-critical from the community

service perspective

• Tier IV loads: Residential loads

A hospital load or a police station load can be considered as a Tier I loads whereas

a supermarket or a warehouse load can be considered to be Tier II loads. An indus-



54

trial load which is relatively non-essential from the standpoint of community welfare,

can be considered as Tier III loads. Tier IV loads mostly will consist of single or

a multi-family homes or apartment complexes which has a lower criticality during

emergency conditions. Thus the action space for the EOA can be represented by the

Equations (3.5) and (3.6). In a distribution network, the number of residential loads

is considerably higher than all other categories of loads. Hence the Tier IV loads can

be further sub-divided into different zones depending on the topological location of

these loads on the network, given by Equation (3.7).

At = {αload
t,x } (3.5)

αload
t,x = {αload

t,TierI, α
load
t,TierII, α

load
t,TierIII, α

load
t,TierIV} (3.6)

αload
t,TierIV = {αload

t,TierIV,ZONE_1, α
load
t,TierIV,ZONE_2, . . . , α

load
t,TierIV,ZONE_z} (3.7)

Each of the these tiers will have a minimum and maximum of load power that sig-

nifies the load flexibility of that tier. To determine load flexibility, we used the load

consumption data published in [133]. We looked at different building type for ex-

ample a hospital, or a warehouse and identified the amount of power consumed by

each of the load types such as cooling load, fan load, lighting load etc. An educated

assumption about which load types would be essential and non-essential during an

emergency period was made. Equation (3.8) was used to get load flexibility factor

which when multiplied with the base load of the specific building type will provide

the load flexibility range. An example of estimating the load flexibility factor and

load flexibility range of a specific building type is included in Appendix A.

LFIt,o,c =
O∑

o=1

lo.εo (3.8)

Here, LFIt,o,c is the load flexibility index of cth building type with lo as the decimal
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equivalent of portion of total load consumed by the oth load type (lo ∈ [0, 1]) and εo

as the decimal equivalent of percent of essential loads present in the oth load type

(εo ∈ [0, 1]). So, the load flexibility range for a specific tier is essentially the sum of

all the load flexibility ranges of the building types in that specific tier.

Figure 3.3: EOA Framework

The complete framework for the EOA is shown in Figure 3.3. The program flow

of getting from initial state S to the transitioned state S ′ after taking action A is

similar to that of the NOA. The difference is in some of the initial state values and

the actions that the EOA take to ensure improvement in the CSI. As the action space

for the EOA is different from that of the NOA the corresponding state transition

equations are different as well. These transition Equations (3.29) and (3.30) will be

discussed in the problem formulation section along with EOA’s reward function.

3.3 Dual Agents Formulation

3.3.1 NOA’s Formulation

As mentioned in the earlier section, the objective of the NOA is to minimize the

operating of the interconnected MGs. Therefore the NOA’s optimization problem can

be formulates as a minimization problem given by Equation (3.9).
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fNOA
t = minimize

(
PG
t .λG

t +∑
m

∑
j

[
PDG
t,m,j

(
λDG
t,m,j + λENV−CO2

t,m,j

)]
+

∑
m

∑
k

[
PBES
t,m,k .λ

BES
t,m,k − βBES

t,m,k

]
+
∑
m

∑
n

V count
t,m,n .νt

) (3.9)

In RL/DRL framework, the agent end goal is to maximize its reward. Hence, the

objective function can be converted into the reward by simply taking a negative of

the minimization problem i.e. rt = −fNOA
t . A key component of the NOA’s reward

function is the time-dependent dynamic reward shaping variable βBES. This variable

is modeled in such a way that it can help the agent take the most appropriate BES

actions at a given hour of the day. Moreover, this variable can capture the variation

in the day-ahead forecasts and the BES states by appropriately adjusting its value,

thus assisting agent’s policy development. Use of such dynamically varying scalar

quantity can help agent consider the actions that can have an impact on the future

states as well in addition to the next states.

Equation (3.10) represents how the DG power is calculated while Equations (3.11)

and (3.12) specify the operating limits of the DG units.

PDG
t,m,j = αDG

t,m,j .P
DG,max
t,m,j (3.10)

PDG,min
t,m,j ≤ PDG

t,m,j ≤ PDG,max
t,m,j (3.11)

ϕDG
t,m,j = 0.85 (3.12)

Equation (3.13) estimates the social or the environmental cost associated with

running a DG.

λENV−CO2
j = f

DG_fuel
j .γfactor

CO2
.λcost

SC−CO2
(3.13)
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One important point to note is that the learning algorithms (used for agent’s train-

ing in this approach) require the action values to be within a range from [−1, 1].

Therefore, the raw action space for the DG actions is given by Equation (3.14). This

requirement of the learning algorithm can be changed by using appropriate activation

function in the output layer of the neural network. However, after multiple trial and

errors it was determined that keeping the raw action space between [−1, 1] is the best

approach.

α
DG_raw
t,m,j ∈ [−1, 1] (3.14)

However, during the actual deployment of the DGs these action values need to be

converted into the ones ranging between [0, 1]. Thus, Equation (3.15) provides a way

to rescale the action space of the DG to be between [0, 1] as given in Equation (3.16)

where a and b are the rescaling coefficients.

α
DG_raw
t,m,j · a+ b = 0

α
DG_raw
t,m,j · a+ b = 1

(3.15)

α
DG_rescaled
t,m,j ∈ [0, 1] (3.16)

So, Equation (3.10) becomes Equation (3.17) which is then used in the objective

function to calculate the operating cost.

PDG
t,m,j = α

DG_rescaled
t,m,j .PDG,max

t,m,j (3.17)

The amount of power supplied by the BES whether it will be for charging or

discharging is given by Equation (3.18) whereas the BES capacity is updated using

Equation (3.19). The raw action space for a BES system is given by Equation (3.20).

For BES operation, the raw action space is the actual action space as it captures the

charging and discharging aspect of a BES.
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PBES
t,m,k = αBES

t,m,k .P
BES,max_rate
t,m,k (3.18)

Ecap
t,m,k = Ecap

t−1,m,k + PBES
t,m,k ·∆t (3.19)

αBES
t,m,k ∈ [−1, 1] (3.20)

In the formulation of the BES, we are considering 3 operating mode that are charg-

ing, discharging, and idling. In order for the agent to appropriately select the BES’s

operating mode, semi-discretization of the action space was performed which is given

by Equation (3.21). For charging or discharging of the BES Equation (3.18) is used.

P
BES,max_rate
t,m,k =


P

BES,max_ch_rate
t,m,k , if αBES

t,m,k ≥ 0.5

0, if − 0.5 < αBES
t,m,k < 0.5

P
BES,max_disch_rate
t,m,k , if αBES

t,m,k ≤ −0.5

(3.21)

Equations (3.22) and (3.23) provide the charging and discharging limit based on

the available BES capacity or state of charge (SOC).

P
BES,max_ch_rate
t,m,k = min

(
P

BES,max_ch_rate
t,m,k ,

E
max_cap
m,k − Ecap

t,m,k

ηBES,ch
m,k

)
(3.22)

P
BES,max_disch_rate
t,m,k = min

(
P

BES,max_disch_rate
t,m,k ,∣∣∣ (Emin_cap

m,k − Ecap
t,m,k

) ∣∣∣ .ηBES,disch
m,k

) (3.23)

Other constraints that guide agent to develop a policy that provides a valid solution

are given in Equations (3.24) and (3.25) which are the power balance and the voltage

violation constraints, respectively.
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PG
t +

∑
m

[∑
j

PDG
t,m,j +

∑
p

PPV
t,m,p +

∑
k

PBES,disch
t,m,k

]
=

∑
m

[∑
l

P load
t,m,l +

∑
k

PBES,ch
t,m,k

]
+ P loss

t

(3.24)

vmin
t,m,n ≤ vt,m,n ≤ vmax

t,m,n

vmin
t,m,n = 0.95 p.u.; vmax

t,m,n = 1.05 p.u.

(3.25)

The voltage constraints are enforced as soft constraints where if the solution pro-

vided by the agent violates the voltage limits, it will receive a penalty which is directly

integrated into its reward function. This will ensure agent provides a solution that

satisfies the network’s operational requirements.

3.3.2 EOA’s Formulation

The goal of the EOA is to maximize the critical load supplied during the emergency

operating conditions. In addition to the critical load supplied, the EOA must also

ensure the network operation constraints are met. Therefore, the optimization objec-

tive of the EOA is modeled by Equation (3.26) whose negative will give the reward

function for the EOA, i.e. rt = −fEOA
t .

fEOA
t = minimize

(
f(PM

t ) +∑
m

∑
x

λload
t,m,x .P

allocated_load
t,m,x +

∑
m

∑
n

V count
t,m,n .νt +NLSload

t

) (3.26)

The function f(PM
t ) is the mismatch penalty function which given by Equation

(3.27). The mismatch power PM
t is calculated using the Equation (3.28)

f(PM
t ) = −

∣∣∣(λunder
t − λover

t

)
2

.
∣∣PM

t

∣∣+ (
λunder
t + λover

t

)
2

.PM
t

∣∣∣ (3.27)
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PM
t = min

(∑
m

∑
s

P
actual_load
t,m,x ,

∑
m

∑
d

P
DER_available
t,m,d

)
−

∑
m

∑
x

P
allocated_load
t,m,x (3.28)

NLSload
t is the no load supply penalty which gets allocated if the EOA doesn’t

allocate any load even when there is enough generation to at least supply minimum

allowed load of a specific tier. Another important aspect of EOA’s formulation is it’s

ability to consider load criticality while allocating the loads. Therefore in the objective

function formulation, a load supply penalty factor λload = 1
Cload is introduced which

is essentially an inverse of the criticality of a specific load tier.

Like NOA’s BES action values, the EOA’s action space is semi-discretized using

Equation (3.29). The load allocation function given in Equation (3.30) is used to

allocate power to the tiered loads.

P
allocated_load
t,m,s =


P

load_min
t,m,x , if αload

t,m,x < 0.25

P
load_min_allowed
t,m,x , if 0.25 ≤ αload

t,m,x < 0.5

f
(
P

load_limit
t,m,x

)
, if αload

t,m,x ≥ 0.5

(3.29)

f
(
P

load_limit
t,m,x

)
=

[
P

load_min_allowed
t,m,x +

αload
t,m,x ·

(
P

load_max
t,m,x − P

load_min_allowed
t,m,x

) ] (3.30)

Additional constraint to which EOA is subjected to is the voltage constraint given

by Equation (3.25). The power that is allocated to the load either lies between a

specified range for that particular tier or it is set to zero. This may lead to higher

mismatch values under scenarios where there is generation available but not enough

to meet the minimum allowable load of any of the load tiers. Therefore CSI, which

is given by Equation (3.31), along with the mismatch is used to evaluate the EOA’s
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performance.

CSIt =

∑
x C

load
t,x .P

allocate_load
t,x∑

xC
load
t,x .P

load_max
t,x

(3.31)

CSI serves as a metric to quantify the critical load supply during an emergency

condition that weighs the load allocated with respect its criticality.

3.4 Dual Agents Training

3.4.1 Training Data

The proposed framework implements a decoupled training approach where each

DA is trained independently as the operating environment of each of these DAs vary.

The training of each of the DAs is performed for every hour of the day (or time step)

where the end of the training checkpoints are stored in a local directory. Each of these

checkpoints contain information about the trained model’s weights and structure.

These checkpoints are then recalled at the time of real-time application during a

specific hour of the day. The complete training paradigm is presented in the flowchart

represented by 3.4.

For instance: Let T (T = 24h) be the total number of hours in a day with t being

the index for each hour of day. Consider f t
a and f t

e to be the checkpoints stored at t

at the end of the training for the respective agents (index a for NOA and index e for

EOA) where f t
a ∈ Fa and f t

e ∈ Fe. Here Fa and Fe are the set of checkpoints for the

NOA and EOA respectively, stored in the directory. During the real-time application

at hour t, depending on the operating conditions, appropriate checkpoint (either f t
a

or f t
e) will be called. Operating conditions or states observed at t will be provided as

an input to the model called from the checkpoint to initiate necessary control actions.

3.4.2 Episode Termination

A one shot episode termination approach was developed which allows for training

the agent for every time-step. Therefore, at the time of training the learning algorithm
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Figure 3.4: Training Flowchart

will collect samples that will consist of initial state s, action a, transitioned state s′,

and the reward r generating a tuple (s, a, s′, r). The learning algorithm used to train

the agent uses Q-value estimation to determine whether a specific action is better

than the other at given state. This Q-value is essentially ascertained by Equation

(3.32).

Q(s, a)← Q(s, a) + α.[r(s, a) + γ.max
a′

Q(s′, a′)−Q(s, a)] (3.32)

Here, α is the learning rate whereas Q(s, a) is the Q-value associated with the state-

action pair. As discussed earlier, in DRL framework this value is estimated by DNNs.

Since, in the proposed MDP a one shot episode termination criteria is developed, the

transitioned state is the terminal state of that episode. If the transitioned state is

the terminal state, the Q-value associated with that state is considered to be zero i.e.

max
a′

Q(s′, a′) = 0. Therefore, Equation (3.32) can be modified as Equations (3.33)
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and (3.34) which signify preference to the immediate returns.

Q(s, a)← Q(s, a) + α.[r(s, a)−Q(s, a)] (3.33)

Q(s, a)← (1− α).Q(s, a) + α.r(s, a) (3.34)

Let us look at how the one-shot episode termination MDP works from an actor-

critic setup perspective as those are the set of algorithms used to train the agents in

this dissertation. In an actor-critic set-up, actor network takes actions and the critic

network criticizes those actions by specifying how good those actions are. Additionally

there are two other network namely, target actor and target critic networks used that

essentially provide stability to the training process.

The critic network updates its network parameters by minimizing the loss function

given in Equation (3.35)

L(θQ) =
(
y −Q(s, a|θQ)

)2

(3.35)

Here, θQ are the critic network parameters and y is given by Equation (3.36).

y = r(s, a) + γ.Q(s′, a′|θQ′
) (3.36)

The Q(s′, a′|θQ′
) is determined by the target critic network where θQ′ are the target

critic network parameters. However as the transitioned state s′ is the terminal state,

Q(s′, a′|θQ′
) = 0 (as explained earlier). Therefore, Equation (3.36) essentially contains

the r(s, a) value which is the immediate rewards the agent receives by taking action

a given a state s. Now, the updated loss function is given by Equation (3.37).

L(θQ) =
(
r(s, a)−Q(s, a|θQ)

)2

(3.37)
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The actual update of the critic network parameters is performed using gradient

descent on the loss function which is given by Equation (3.38).

θQ ← θQ − αQ.∇θQL(θ
Q) (3.38)

Thus, the critic network update is not only influenced by the immediate reward

which is reflected in the loss function (Equation (3.37)) but also the critic learning

rate αQ (which also represented as αcritic in the later sections).

Similarly, the actor network which updates its policy gradient through Equation

(3.39) incorporates the gradient of the Q-value (Q(s, a|θQ)) estimated and subse-

quently updated by the critic network using Equations (3.35) to (3.38).

∇θµJ ≈ ∇aQ(s, a|θQ).∇θµµ(s|θµ) (3.39)

Here, µ(s|θµ) is the action value generated by the actor network given a state s

and θµ are the actor network parameters which are updated by using gradient ascent

due reward maximization as given in Equation (3.40).

θµ ← θµ + αµ.∇θµJ (3.40)

Again, it can be observed that αµ which is the actor learning rate (represented

by αactor in later sections) along with αQ plays a key role in the model’s parameter

update and consequently the agent’s policy development (this can be verified in the

Sensitivity Analysis section).

So without loss of generality, it can be said that the one-shot episode termination

criteria prioritizes the immediate returns as it eliminates the discount factor γ and the

Q-value of future states (Q(s′, a′)). However, the mathematical basis of this approach

may vary depending on the type of learning algorithm used. Nonetheless, the idea that



65

immediate returns are prioritized remains unchanged. Thus, this episode termination

criteria is suitable for the DA-framework and the training paradigm being proposed

in this dissertation.

3.5 Dual Agents Testing

To test the DAs, the saved training checkpoint (for a specific hour of day) is loaded.

Real-time operating conditions are sent as an input to the trained actor network

model. These operating condition are treated as the initial state values that the

agent encounters → S. Observing these values the agent instantly outputs the best

action values that it has learnt during the learning/training process. These action

values either include the DERs set-points or the load allocation values, depending

on the agent being deployed. Figure 3.5 shows the complete interaction between

real-time states and the control action generation.

Scenario #1 at ‘t’

Load Trained Agent 
checkpoint at ‘t’
𝑡: Hour	of	day

𝑆

Initial 
state 

values

Actor Network

Input 
Layer

Output 
Layer

Hidden Layer

𝒔𝟏

𝒔𝒚

𝒂𝟏

𝒂𝒉
𝐴

Action
values

Figure 3.5: Testing Framework

Additionally, the transitioned state values → S ′ after the agent takes necessary

actions, although not mentioned in the Figure 3.5, are tracked and sent to OpenDSS

as well, to verify the satisfaction of the operational constraints.

3.6 Test Setup

A modified IEEE-123 node test feeder equipped with multiple interconnected MGs

was used as the test setup. Each of these MGs consist of multiple DERs. Figure

3.6 shows the boundary of the five NMGs and the location and type of the DERs
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connected to the network. In total there are 27 DERs (when all five MGs are inter-

connected) out of which 14 are solar PV systems, 6 are BES systems, and 7 are the

DG systems. Additionally, the Tier IV zones for EOA’s testing are also presented.
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Figure 3.6: Modified IEEE-123 Node Test system

The ratings of each of the DERs are presented in Tables 3.1 and 3.2. The discharge

rate (equal to charge rate) of the BESs is determined in such a way that the BES

is (at its rated capacity) able to supply power continuously for 12-hrs. The day-

ahead forecasts for the PV system output were generated using NREL PVWatts tool,

whereas (as mentioned in the previous section) [133] was used to develop the load

forecasts.

The operating cost for the DG #1 of MG #1, and all DG units of MG #2, #4

and #5 is considered to be 0.3 $/kWh while that of DG #2 of MG #1 and DG unit

of MG #3 is assumed to be 0.34 $/kWh. To determine the levelized cost of energy

(LCOE) for PV systems, NREL System Advisor Model (SAM) was used. The LCOE

was calculated to be 0.0859 $/kWh.

To provide a time varying cost signal for grid power import, a time-of-use rate
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Table 3.1: DER Ratings (MG #1 - #3)

MG #1 MG #2 MG #3
DER Rating DER Rating DER Rating DER Rating
PV #1 400 kW DG #1 750 kW PV #1 400 kW PV #1 200 kW
PV #2 300 kW DG #2 500 kW PV #2 350 kW PV #2 150 kW
PV #3 250 kW BES #1 480 kWh DG #1 500 kW DG #1 500 kW
PV #4 150 kW BES #2 600 kWh BES #1 720 kWh BES #1 600 kWh

Table 3.2: DER Ratings (MG #4 and #5)

MG #4 MG #5
DER Rating DER Rating DER Rating DER Rating
PV #1 200 kW DG #2 300 kW PV #1 100 kW BES #1 600 kWh
PV #2 250 kW BES #1 480 kWh PV #2 300 kW
PV #3 100 kW PV #3 250 kW
DG #1 500 kW DG #1 300 kW

(TOU) was considered. The TOU period and the rates used for the case-studies are

presented in Table 3.3 which were obtained from the local utility company. These

TOU rates and periods along with load and PV forecasts used for the case studies

were for the city located at the east coast of the United States.

Table 3.3: TOU period and rates

Summer Months
Discount period Off-peak period On-peak period

TOU period 1AM-6AM 6AM-6PM; 9PM-1AM 6PM-9PM
TOU Rate 0.06814 $/kwh 0.10467 $/kWh 0.27653 $/kWh

Winter Months
Discount period Off-peak period On-peak period

TOU period 1AM-3AM; 3AM-6AM; 9PM-11AM; 6AM-9AM
11AM-4PM 4PM-1AM

TOU Rate 0.06814 $/kwh 0.10467 $/kWh 0.27653 $/kWh



CHAPTER 4: RESULTS

Multiple case studies were run using the test setup described in the previous section.

First two case studies involve two interconnected MGs, namely MG #1 and #2. In

the subsequent case studies, all five MGs are interconnected which encompasses the

complete IEEE 123 node test network. To provide varying operating conditions, a

TOU rate and period for summer and winter months is used for NOA’s performance

evaluation. For the EOA’s testing, it was assumed that the NMGs are operating

in an islanded mode as consequence of a transmission level event that essentially

disconnected the distribution feeder from the main grid. Additionally, we considered

the NMG to be either in an abnormal condition or an extreme condition. An abnormal

condition occurs when majority of the DERs are available while an extreme condition

occurs when most of the DERs are unavailable. The unavailability of the DERs can

be a result of infrastructure damage caused due to extreme weather events. This can

be ascertained by using fragility curves or prediction based algorithms, however in

this work, these scenarios are generated randomly (using uniform distribution) as it

helps the EOA learn and develop a policy for a multitude of scenarios.

4.1 Layout I.A: Two NMGs for NOA testing

In this section, Layout I.A described in the Figure 4.1 was used to test the NOA.

Only MG #1 and #2 are interconnected for this case study. For the evaluation of the

NOA, the time varying grid power cost signal used for the summer and winter months

is presented in Table 3.3. Therefore the case studies that test the NOA performance

are:

1. NOA Operation on a Summer Day
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2. NOA Operation on a Winter Day

There are 12 DERs connected in Layout I.A which includes 6 PV systems, 3 BES

systems, and 3 DG units. The information regarding the location of these DERs and

its rating is provided in Figure 4.1 and Table 3.1 (column MG #1 and MG #2),

respectively.
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Figure 4.1: NMG #1 - #2 setup for NOA

4.1.1 Case I.A.1: NOA Operation on a Summer Day

The performance of the NOA for a day in a summer month is presented in this

section. Figure 4.2 shows the overall operation of the N-MGs over the 24-hr period.

The NOA is responsible to charge/discharge/idle the BES and/or deploy the DG

units in an economical way. The BES capacity variation over a day is also shown in

Figure 4.2. It can be seen that the NOA charges the BES only during the discount

period or when the total PV generation is higher than the load whereas it discharges

the BES only during the on-peak period. For the off-peak period the BES remains

in an idle state.
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Figure 4.2: NMG #1 - #2 Operation (Summer Month)

From the NOA’s action values plot in Figure 4.3, the aforementioned behavior can

be confirmed. At around 11AM, the total PV generation is higher than the total

load during off-peak period. Therefore, the NOA decides to charge (even in off-peak

period) the BES while at 12PM the total PV generation becomes lower than the total

load which is addressed by setting the BES in an idle mode. Similarly, at 1PM, when

the total PV generation again becomes higher than the total load, the NOA charges

the BES. The charging of the BES during the discount period is done at the minimum

allowable charge rate signified by the action value between 0.5 to 0.75. However if the

charging action occurs when the total PV generation exceeds the total load, the BES

is charged at the maximum charging rate to minimize the power export to the grid.

Furthermore, it was observed that at no point in time over the 24-hr period does the

NOA deploys any DG units.
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Figure 4.3: Agent’s actions NMG #1 - #2 (Summer Month)

4.1.2 Case I.A.2: NOA Operation on a Winter Day

To further test the NOA’s performance, it was deployed online to provide necessary

control during a day in a winter month. The NOA’s overall operation, presented

in Figure 4.4 and its action values, presented in Figure 4.5 demonstrates a similar

behavior as observed during the summer months of testing. The difference is the

period during which the NOA is charging/discharging/idlying the BES as the TOU

periods are different during winter months. Nonetheless, the NOA charges the BES

(at its minimum charge rate) only during discount period, discharges during on-peak

period and idles during off-peak period.

During the winter months of testing, the total PV generation was consistently lower

than the total load. Hence the NOA only charges the BES during the discount period.

Important point to note is that the reward function of the NOA is integrated with a

dynamic variable that can appropriately provide a reward/penalty signal that enables

BES charging at it’s rated capacity (even during the discount period) under low state

of charge conditions.
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Figure 4.4: NMG #1 - #2 Operation (Winter Month)

Figure 4.5: Agent’s actions NMG #1 - #2 (Winter Month)
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4.2 Layout I.B: Two NMGs for EOA testing

In this section, the testing of the EOA is performed for a 10-hr outage starting at

7AM and lasting till 5PM during which the NMGs are operating in an islanded mode.

As described in the earlier sections, in order to aid in the load allocation process, the

NMG setup is divided into multiple tiers based the load criticality. Moreover, the Tier

IV loads mainly residential loads, are further divided into different zones depending

on its topological location. Figure 4.6 shows the different Tier IV zones that were

considered in this part of the case study. In total there are four Tier IV zones with

an action value associated with each zone.
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Figure 4.6: NMG #1 - #2 setup for EOA

The islanded NMGs were operated under abnormal and extreme conditions for a

summer and a winter day, respectively. The list of case studies performed to test the

EOA’s critical load allocation ability are:

• EOA Operation on a Summer Day under Abnormal Conditions

• EOA Operation on a Summer Day under Extreme Conditions
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• EOA Operation on a Winter Day under Abnormal Conditions

• EOA Operation on a Winter Day under Extreme Conditions

The available DER power depends on the operating conditions. Under abnormal

conditions, majority of the time the available generator power will be more than the

total available load (even though some of the DERs will be out of service) whereas

under extreme conditions, the available generator power will almost always be less

than the total available load.

4.2.1 Case I.B.1a: EOA Operation on a Summer Day under Abnormal Conditions

The available DERs during abnormal condition are highlighted in Figure 4.7 that

suggests PV #1, #4, DG #1 and BES #1 from MG #1 and PV #2 and DG #1

from MG#2 are available to supply power to the loads.
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Figure 4.7: NMG #1 - #2: DER status information under abnormal conditions
(Summer Month)
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Figure 4.8: NMG #1 - #2: Load and generation information under abnormal condi-
tions (Summer Month)

The load and generation information is provided in Figure 4.8. Since majority
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of the generating units are available (i.e. generation is higher than the load), the

mismatch value (given by Equation (3.27)) is almost equal to zero. Figure 4.9 shows

the tiered allocated load and the CSI information. The CSI (given by Equation (3.31))

observed during the abnormal conditions is almost always 1 which means that all the

loads (including the critical and non-critical loads) are being supplied by the EOA.
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Figure 4.9: NMG #1 - #2: Tiered allocated load and CSI information under abnormal
conditions (Summer Month)

4.2.2 Case I.B.1b: EOA Operation on a Summer Day under Extreme Conditions

Under extreme conditions on summer day, fewer generating units are available to

supply the load which creates a generation deficit. Due to this deficit, the EOA will

have to shed some loads while maintaining a higher level of CSI. A higher CSI means

more critical loads are being supplied during the outage. Figure 4.10 shows the status

of the available DERs. Here, only PV #1, DG #1, BES #1 and BES 2 from MG 1

and PV 2 from MG 2 are online.
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Figure 4.10: NMG #1 - #2: DER status information under extreme conditions
(Summer Month)
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Figure 4.11: NMG #1 - #2: Load and generation information under extreme condi-
tions (Summer Month)

The generation and load information along with the mismatch information is pro-

vided in the Figure 4.11. It can be seen that the mismatch value is relatively higher

under extreme conditions. As explained earlier (in EOA’s problem formulation sec-

tion), this can be attributed to a situation where partial load power can be supplied,

however, this partial load power is lower than the minimum allowable load power for

that specific load tier.

0.80

0.85

0.90

0.95

1.00

1.05

0
200
400
600
800

1000
1200
1400

7 8 9 10 11 12 13 14 15 16 17

CS
I

PO
W

ER
 IN

 K
W

HOUR OF DAY

Tier I Allocated Load Tier II Allocated Load
Tier III Allocated Load Tier IV Zone I Allocated Load
Tier IV Zone II Allocated Load Tier IV Zone III Allocated Load
Tier IV Zone IV Allocated Load Critical Load Supply Index (CSI)

Figure 4.12: NMG #1 - #2: Tiered allocated load and CSI information under extreme
conditions (Summer Month)

The tiered allocated load and the CSI information is presented in Figure 4.12. The

total load and generation value is almost equal at the beginning of the outage. Hence

the CSI value is close to 1 with the highest value observed to be 0.9987 at 10AM.

The lowest CSI of 0.9063 was observed at around 5PM when the PV generation
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is considerable low and the total available load is high. Nonetheless, Figure 4.12

highlights the fact that the EOA only sheds the Tier IV loads which have the least

criticality.

4.2.3 Case I.B.2a: EOA Operation on a Winter Day under Abnormal Conditions

Similar to the Case I.B.1a, an abnormal condition was simulated for an outage that

occurred on a winter day. The available DERs for supplying power to the load are

presented in Figure 4.13. MG #1 has PV #3, PV #4, DG #1, DG #2, and BES

#1 available whereas MG #2 has PV #1, PV #2, and BES #1 connected to the

network.
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Figure 4.13: NMG #1 - #2: DER status information under abnormal conditions
(Winter Month)
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Figure 4.14: NMG #1 - #2: Load and generation information under abnormal con-
ditions (Winter Month)

The load and generation information can be seen in Figure 4.14 which depicts the

mismatch value equal to zero over the outage period (similar to what was observed

in Case I.B.1a). Likewise, the CSI was observed (from Figure 4.15) to close to 1 for
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Figure 4.15: NMG #1 - #2: Tiered allocated load and CSI information under abnor-
mal conditions (Winter Month)

all the hours except one which is at 5PM. During this hour, the total generation was

slightly lower than the load hence the EOA shed some loads making the CSI equal

to 0.9896. Nonetheless, this value is still close to one signifying the power allocation

to all the critical loads.

4.2.4 Case I.B.2b: EOA Operation on a Winter Day under Extreme Conditions

In this case, only PV #1, DG #1, and BES #1 from MG #1 and PV #1 from

MG #2 are available to supply the loads as seen from Figure 4.16. The generation

and load information plot (Figure 4.17) shows difference between the total generation

power and the total load available over the outage period. Similar to the Case I.B.1b,

because of the power deficit and the tiered load classification structure, the mismatch

value is slightly higher compared to the abnormal conditions case (winter day).
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Figure 4.16: NMG #1 - #2: DER status information under extreme conditions
(Winter Month)

From Figure 4.18 it can be seen that initially, the CSI value was lower. However
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Figure 4.17: NMG #1 - #2: Load and generation information under extreme condi-
tions (Winter Month)

as the total PV generation starts to increase, the CSI value increases reaching its

maximum of 0.9934 at 10AM over the outage period. Moreover, as the total PV

generation lowers in the later stages of the outage, the CSI value decrease highlighting

load shedding initiated by the EOA. Despite that, the EOA is able to maintain a high

CSI value over 10-hr outage period with the lowest CSI of 0.9109 observed at 5PM.
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Figure 4.18: NMG #1 - #2: Tiered allocated load and CSI information under extreme
conditions (Winter Month)

4.3 Layout II.A: Five NMGs for NOA testing

In this section of the case study, all five MGs are interconnected as shown in Figure

4.19 for the NOA’s testing. The cases run in this section similar to that run for NOA’s

testing with two NMGs setup.
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Figure 4.19: NMG #1 - #5 setup for NOA

The difference being in the number of DERs considered. In this layout, there are

in total 27 DERs out of which 14 are PV systems, 6 are BES systems, and 7 are DG

units. The location of the DERs can be seen in Figure 4.19 as well while the details

regarding the ratings of each of these units are provided in Tables 3.1 and 3.2.

4.3.1 Case II.A.1: NOA Operation on a Summer Day

The NOA’s operation along with the BES system’s capacity variation in a five NMG

setup for summer day is presented in Figure 4.20. It was observed (similar to the

two NMGs setup) that the TOU govern the NOA’s action where the BES charging,

discharging, and idling are a consequence of the discount, on-peak, and off-peak TOU

periods, respectively.

Important point to note is that due to numerous voltage violations observed in

later hours of the day (4PM to 8PM), the NOA decides to dispatch DGs to elimi-

nate these violations. Table 4.1 provides information about the number of voltage

violations before and after the NOA takes actions (for 6PM and 7PM). The detailed

table showing the voltage violations for all hours from 4PM to 8PM is presented in
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Figure 4.20: NMG #1 - #5 Operation and Agent’s actions (Summer Month)

Appendix B (Table B.1). These violations can be attributed to the increase in load

while the PV generation decrease. Additionally, apart from the main grid, the DGs

are the only source of reactive power support in the N-MG setup. Hence, the NOA

decides to deploy the DGs to satisfy the operational requirements of the network.

Table 4.1: NOA’s (Summer Month) voltage violation check (6PM and 7PM)

At 6PM (Before NOA’s Actions)
Total PV power Total load Total grid power Voltage violation count

147.15 3182.89 3109.84 44
At 6PM (After NOA’s Actions)

Total PV power Total load Total grid power Voltage violation count
147.15 3182.89 2269.81 0

At 7PM (Before NOA’s Actions)
Total PV power Total load Total grid power Voltage violation count

0 3054.47 3128.31 34
At 7PM (After NOA’s Actions)

Total PV power Total load Total grid power Voltage violation count
0 3054.47 2370.25 0
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4.3.2 Case II.A.2: NOA Operation on a Winter Day

Similar behavior (as that in Case I.A.1) was observed in this case as well. Figure

4.21 shows the NOA’s operation and action values, respectively.

Figure 4.21: NMG #1 - #5 Operation and Agent’s actions (Winter Month)

Voltage violation were also observed as a part of the initial conditions in the NOA’s

observation space. Like in previous case, the NOA appropriately deploys the DGs

to satisfy the network constraints by eliminating these voltage violations. Details of

these voltage violation before and after NOA took actions are presented in Table 4.2

(for 6PM and 7PM). (A detailed table is presented in Appendix B: Table B.2)

4.4 Layout II.B: Five NMGs for EOA testing

The five NMGs setup used for testing the EOA’s capabilities is shown in Figure

4.22. The Tier IV zones are also highlighted on this figure. In total there are 10 Tier

IV zones making the total action vector length to 13 (Three base tiers i.e. Tier I,

Tier II and Tier III along with 10 zones of Tier IV loads).

Similar outage of 10-hrs starting at 7AM lasting till 5PM was considered, however

the operating conditions were different. It was considered that the outage occurred on

an overcast summer day thereby simulating low PV generation conditions. The testing
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Table 4.2: NOA’s (Winter Month) voltage violation check (6PM and 7PM)

At 6PM (Before NOA’s Actions)
Total PV power Total load Total grid power Voltage violation count

0 3174.16 3253.97 44
At 6PM (After NOA’s Actions)

Total PV power Total load Total grid power Voltage violation count
0 3174.16 2694.33 0

At 7PM (Before NOA’s Actions)
Total PV power Total load Total grid power Voltage violation count

0 2804.22 2866.29 6
At 7PM (After NOA’s Actions)

Total PV power Total load Total grid power Voltage violation count
0 2804.22 2627.96 0
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Figure 4.22: NMG #1 - #5 setup for EOA
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scenarios were randomly generated where each scenario varies in the availability of

different DERs to supply power (similar to EOA testing with two NMGs setup).

4.4.1 Case II.B.1: EOA Operation on a Low PV production day (Scenario #1)
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Figure 4.23: NMG #1 - #5: DER status information for Scenario #1
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Figure 4.24: NMG #1 - #5: Load and generation information for Scenario #1

The available DERs under Scenario #1 are depicted in Figure 4.23. It can be seen

that majority of DERs are connected to the network and hence this scenario can be

considered as an abnormal conditions. Based on the aforementioned results, under

abnormal conditions the mismatch value observed is almost zero over the outage

period, which can be verified in Figure 4.24. Similarly, the CSI was observed to be

close to 1 which evident from Figure 4.25. To re-emphasize, higher proportion of the

critical loads are supplied as the CSI value reaches 1.

4.4.2 Case II.B.2: EOA Operation on a Low PV production day (Scenario #2)

Figure 4.26 represents the DERs available under Scenario #2. Under this scenario,

the actual load is always higher than the available generation (seen in Figure 4.27).
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Figure 4.25: NMG #1 - #5: Tiered allocated load and CSI data for Scenario #1

Hence this scenario resembles extreme condition where due to generation deficit, the

EOA has to shed some loads at the same time the EOA ensures that the most critical

loads are still being supplied.
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Figure 4.26: NMG #1 - #5: DER status information for Scenario #2

Due the nature of the operating conditions a fluctuation in the CSI value was ob-

served in Figure 4.28 with the lowest CSI of 0.9196 was observed at 5PM. Nonetheless,

Figure 4.28 confirms that the EOA is only shedding the Tier IV loads.

4.4.3 Case II.B.3: EOA Operation on a Low PV production day (Scenario #3)

The DER status information presented in Figure 4.29 for Scenario #3 again signifies

extreme operating conditions (available generation lower than the actual load as in

Figure 4.30).
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Figure 4.27: NMG #1 - #5: Load and generation information for Scenario #2
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Figure 4.28: NMG #1 - #5: Tiered allocated load and CSI data for Scenario #2
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Figure 4.29: NMG #1 - #5: DER status information for Scenario #3
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Figure 4.30: NMG #1 - #5: Load and generation information for Scenario #3

This scenario provided the worst CSI observed across all the scenarios. The lowest

CSI of 0.8864 was observed at around 12PM. This low CSI can be attributed to a

sudden drop in total PV generation at this hour, as majority of the power (in this

scenario) is generate by the PV systems. Again, considering the tiered load allocation

plot, it is visible that even at lowest CSI point (at 12PM), the most critical tiered

loads i.e. Tier I and Tier II loads, are being supplied by the EOA.
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Figure 4.31: NMG #1 - #5: Tiered allocated load and CSI data for Scenario #3
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4.4.4 Case II.B.4: EOA Operation on a Low PV production day (Scenario #4)
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Figure 4.32: NMG #1 - #5: DER status information for Scenario #4
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Figure 4.33: NMG #1 - #5: Load and generation information for Scenario #4

From Figure 4.32 it can be seen that Scenario #4 is an example of mixed conditions

where at certain hours the available generation is higher than the actual load an vice

versa. Hence when the the available generation is higher than the actual load a low

mismatch was observed whereas in converse situations, a relatively higher CSI was

observed (as seen in Figure 4.33).

Similarly, the EOA performs load shedding during the later stages of the outage

to maintain balance between load and generation as seen from Figure 4.34. In this

scenario, the lowest CSI of 0.9664 was observed at the final hour of the outage.

4.5 Comparison with other training algorithms

To verify the versatility and efficacy the proposed framework, a comparative study

was performed where we used three different training algorithms to observe how the
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Figure 4.34: NMG #1 - #5: Tiered allocated load and CSI data for Scenario #4

agent performs. We specifically looked at differentiating the operating cost observed

with different algorithms. Off-policy model-free DRL algorithms that combines policy

optimization and Q-learning in an actor-critic set-up were used for the comparative

analysis. The algorithms that are in this class include, Deep Deterministic Policy

Gradient (DDPG), Twin-Delayed DDPG (TD3), and Soft Actor-Critic (SAC) algo-

rithm. The cost comparison of a day’s operation of the N-MG for a summer and a

winter month under normal operating conditions was performed.

Figure 4.35: NMG #1 - #5: Operation cost comparison (Summer Month)
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Figure 4.36: NMG #1 - #5: Operation cost comparison (Winter Month)

The results of the summer month’s cost comparison are presented in Figure 4.35

while Figure 4.36 shows the results of the winter month’s cost comparison. The best

performing algorithm in terms of the operating cost values was the DDPG. Hence,

the results presented in the Case Study and Results section were the ones obtained

using this algorithm. However, the difference between the operating cost observed for

SAC and DDPG is not much. Also, the training time required for SAC is much lesser

than the DDPG (≈ 2-3 mins/per time-steps for SAC compared to ≈ 7-8 mins/per

time-step). So, from the stand point of computational time and getting comparable

results, SAC will be a better option. The TD3 algorithm performed the worst out

of all the algorithms that were tested. The majority of the differences were observed

during the discount period in the BES operation and during the later hours from

4PM-8PM in the DG operation.

TD3 is the improved version of the DDPG algorithm, so in theory it should outper-

form DDPG. However, TD3 is highly sensitive to its hyperparameters which makes

hyperparameter tuning the most important task while using the TD3 algorithm. The

TD3 algorithm’s results can be improved by running the hyperparameter tuning for

every operational hour of the day and choosing the best hyperparameters for training.

However, this was not the case with the other algorithms. To ensure the comparison

of the results of all three algorithms follow similar tuning, training and test structure,
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the aforementioned approach was not adopted for TD3 algorithm which may cause it

to under-perform.

4.6 Validation with metaheuristic algorithms

We have validated the operating cost results obtained from DDPG and SAC against

two well-known metaheuristic algorithms, namely, particle swarm optimization (PSO)

and genetic algorithm (GA). Similar to the DRL algorithms comparison, a summer

and a winter day’s operation were considered. Figure 4.37 and Figure 4.38 show

the comparison of the cost results for the two DRL algorithms along with the two

metaheuristic algorithms. It can be observed that the cost values are comparable

with the PSO algorithm providing the best results.

Figure 4.37: NMG #1 - #5: Cost function validation (Summer Month)

One important point to note is the emphasis on the application of the proposed

DA framework in real-time. The results obtained from the PSO or GA are valid

only for the initial states/inputs provided to the model. If results for any other

state/initial conditions are required, then the PSO or GA needs to be re-run which

would consume invaluable time. In contrast, once a DRL agent is trained using

the day-ahead forecasts, it can be easily deployed online to provide real-time control

where the control actions are instantaneously received as soon as the initial/input
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Figure 4.38: NMG #1 - #5: Cost function validation (Winter Month)

states are provided to the agent. The main intention for validation step is to ensure

the control actions (to minimize or maximize its objective function) that the agent

take are comparable to the more traditional techniques, which is proven from the

results presented in this section.

4.7 Sensitivity Analysis

Learning of the RL/DRL models highly depends on the hyperparameter values

being used. Therefore, it is imperative to determine whether the hyperparameters

being used for training the model generates the most optimal results. Moreover

knowing which hyperparameters provides the best training statistics further validates

the model’s accuracy and performance. Hence, in this section, a sensitivity analysis

is performed to ascertain which hyperparameters can be considered most crucial to

the agent’s learning process along with its actual values.

While sensitivity analysis usually refers to a study that assesses how changes in

the model’s input or certain assumptions affect the model’s outcome, in the context

of machine learning, especially in this work, sensitivity analysis predominantly in-

volves understanding how variation in hyperparameters impact model’s performance.

In other words, the sensitivity analysis performed in this section can be considered

synonymous to hyperparameter tuning which is an essential aspect of any machine
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learning modeling framework.

4.7.1 Methodology for sensitivity analysis

Tuning of the hyperparameters involve meticulously searching for different param-

eter values and evaluating its effect on the model performance. There are essentially

two ways to perform the hyperparameter tuning:

1. Manual trial and error: A manual trial and error method, as the name suggests,

involves manually changing each of the parameter values which is not ideal

as a multitude of permutations and combinations of the parameter values are

involved.

2. Systematic search: A systematic search provides an automatic way to search

the best possible values for the hyperparameters. Hence, this approach is used

in this work to determine the appropriate hyperparameter values.

Figure 4.39 demonstrates the complete hyperparameter tuning process that uses

a systematic search approach. The central piece of the hyperparameter tuning is a

study: that controls the experiments that will be performed to discover the best hy-

perparameters. A typical study aims to optimize the objective function by running

multiple trials and evaluating the objective function during each of the trials. A trial

consists of hyperparameters to be tested whose values are generated through a sam-

pler. For each of these values, the objective function is evaluated to ascertain which

values provides the best results. Moreover these values are tracked and relayed to the

study so that at the end of each experiment/trial, a report that contains objective

function value and the associated hyperparameter values can be generated. The tun-

ing process also consists of a pruner that basically stops a specific trial prematurely

if it is underperforming.

There are multiple hyperparameter tuning libraries available that provides easy

to implement APIs for performing hyperparameter tuning. However in this work,
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Figure 4.39: Hyperparameter Tuning Process

we used Optuna [134] which is an open source hyperparameter optimization frame-

work that automates hyperparameter search. Optuna is compatible with most of the

modern machine learning tools and can be easily integrated with the state-of-the-art

RL/DRL algorithms.

One of the main attributes of hyperparameters tuning is the process of sampling

the parameter values. Optuna provides multiple ways to sample the parameter as

given below:

1. Grid search

2. Random search

3. Tree-structured Parzen Estimator (TPE)

4. Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

In this work, we use the TPE for generating samples as it can efficiently handle

complex search spaces, compatible with continuous hyperparameter spaces, prioritizes
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promising search areas by adapting over time, and is less computationally expensive

(compared to CMA-ES and/or Grid search) [135, 136].

4.7.2 Result and Analysis of the sensitivity analysis

The study that was set up for tuning the hyperparameter includes training statistics

for an hour of day on a winter day under normal operating conditions. The objective

function for the hyperparameter optimization is the reward function of the NOA.

Following is the list of hyperparameters that were optimized:

• Learning rate (α)

• Discount factor (γ)

• Neural Network’s (NN) hidden layers

• Epsilon End value (ϵend)

Since the learning algorithm used for training the agents were actor-critic based

approaches, the learning rate was further classified as the Actor learning rate (αactor)

and the Critic learning rate (αcritic). The actor learning rate controls the policy

updates. If this rate is smaller, the policy updates will be slower leading to a slow yet

stable policy convergence. On the other hand if this rate is high, an unstable policy

might be learned by the agent. The critic learning rate (αcritic) signifies the Q-value

update rate. The range from which the sampler can sample αactor and αcritic was set

to be between 10−5 to 10−1, respectively. In practice, αactor must be set lower than

αcriticfor a stable policy learning.

Discount factor, γ provides the significance of the future rewards in relation to the

immediate rewards. The range for the sampling of γ was considered to be from 0 to

1. Four different NN hidden layer sizes: {32, 64, 128, 256}; were examined during the

hyperparameter tuning. Lastly, Epsilon End value, ϵend which is incorporated into

the noise function applied to the actor’s output layer, that balances the exploration
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and exploitation aspect was assessed. The range for this value was considered to be

between 0 to 0.3.

A total of 20 trials were run where the reward function (objective function) for

different set of hyperparameter was tracked. Out of 20, we are presenting results of

the 16 trials which are classified in to three categories: 1) Unstable training statistics

2) Early Convergence training statistics, and 3) Best training statistics.

Figure 4.40 shows how the objective function value for Trial #2, #3, #6, and #9

varies over the training period. Moreover, the hyperparameters associated with each

of the trials are presented in Table 4.3. It is clear that the training of the agent

using these hyperparameters led to an unstable policy development. This behavior

can be attributed to the fact that in all the trials (except Trial #9), αactor is higher

than αcritic. Because of these values, the actor network undertake large policy changes

before the critic network gets to learn the value of the actions taken, thus leading to

an unstable policy. In Trial #9 the hyperparamters used appear to be ineffective as

the agent demonstrate no sign of learning, as seen in the Figure 4.40.

Figure 4.40: Unstable Training Statistics
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Table 4.3: Unstable Training Statistics

Parameter Trial #2 Trial #3 Trial #6 Trial #9
αactor 0.000182 0.00454 0.000374 0.00185
αcritic 0.0000222 0.000101 0.0000305 0.0544

γ 0.5981 0.000770 0.529 0.150
NN hidden layer size 32 128 128 256

ϵend 0.1027 0.0625 0.2278 0.2244
Reward -485.983 -1856.582 -629.473 -305.711

Similarly, as αactor > αcritic (from Table 4.4) in Trial #1, #4, #5, and #19, an early

policy convergence is observed as demonstrated in Figure 4.41. The critic network

needs time to develop an understanding of the values associated with each of the

action in a specific state. If the actor updates the policy at a higher rate, the policy

may converge to a suboptimal value becuase of not having sufficient information

about the environment dynamics. Early convergence can also be attributed to the

agent not exploring the environment enough. However, in these trials, a low value

of ϵend signifies that enough weight is assigned to the exploration of the environment

thereby eliminating that to be a contributing factor towards early policy convergence.

Table 4.4: Early Convergence Training Statistics

Parameter Trial #1 Trial #4 Trial #5 Trial #19
αactor 0.00152 0.000676 0.0182 0.0959
αcritic 0.0000932 0.000647 0.000324 0.0390

γ 0.637 0.0159 0.489 0.912
NN hidden layer size 256 256 32 64

ϵend 0.0203 0.0354 0.1023 0.2008
Reward -327.733 -312.269 -819.723 -249.563

Table 4.5 provides the hyperparameters for the trials that provided the best train-

ing results. In all these trials, αactor < αcritic thus providing us a stable and near

optimal policy convergence as depicted in Figure 4.42. One point to mention is that

γ (discount factor) does not play any significant role. The reason being the one-shot

episode termination approach developed in this work. Additionally, the size of the
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Figure 4.41: Early Convergence Training Statistics

Table 4.5: Best Training Statistics

Parameter Trial #10 Trial #11 Trial #15 Trial #18
αactor 0.0000157 0.0000160 0.0000714 0.000154
αcritic 0.0232 0.0188 0.0809 0.0234

γ 0.9407 0.9701 0.8196 0.7679
NN hidden layer size 256 256 256 256

ϵend 0.1634 0.1681 0.2899 0.1297
Reward -38.946 -64.348 -37.177 -67.399

hidden layers for the neural networks that provide the best results was observed to

contain 256 neurons (again from Table 4.5).

In majority of RL/DRL models it is very difficult to discern how the input and

output relationship is developed due to the use of DNN. However, this analysis pro-

vides valuable insights into how certain parameters influence the model’s behavior,

strengthening the overall understanding of the model. Furthermore, the results of

the sensitivity analysis bolster the accuracy and validity of the proposed model as

it runs additional scenarios (as part of trails) with varied sets of model parameters,
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Figure 4.42: Best Training Statistics

providing an additional layer of verification.



CHAPTER 5: CONCLUSION AND FUTURE WORK

The concept of power system resilience has become more and more prevalent due

to the evolving weather patterns. Even though it is a widely researched topic, there

is no common consensus on some of the core components of power system resilience.

This dissertation bridged the gap by presenting an extensive study of the concept

of power system resilience that includes the proposed power system resilience defini-

tions, analysis frameworks, and quantification metrics. The resilience definitions and

frameworks used by some of the prominent research organizations were highlighted

which demonstrated encouraging indications regarding standardizing the resilience

definition. As more and more research organizations adopt a certain resilience defi-

nition for conducting studies, it is just a matter of time before an accord is reached

on a standard power system resilience definition that encompasses all aspects.

Quantifying resilience improvement is one of the vital aspects of resilience assess-

ment. Hence, some of the key factors to be considered during the development of

resilience metrics were documented. Although building a standard resilience metric

is exceedingly difficult, additional efforts are needed towards developing a set of guide-

lines that would guide researchers through a process of resilience assessment. There

are some general guidelines that help in the metrics development process; however,

these guidelines cannot address the variety of the resilience improvement objectives.

Moreover, metrics development will become much easier once a consensus on the

power system resilience definition is reached.

A brief review of some of the resilience enhancement techniques was presented. This

literature survey provided insights into one of the core rationales of this dissertation

i.e. to primarily focus on the enhancement of operational resilience of the system.
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Thus, an amalgamation of all the preceding ideas pertaining to the concept of power

system resilience, its evaluation frameworks, quantifying metrics and enhancement

techniques formed the foundational basis for the remainder of the dissertation.

The core essence of this dissertation is the proposed unique Dual Agent based DRL

framework that performs resource scheduling during normal operating conditions and

load allocation during emergency operating conditions thereby improving the oper-

ational resilience of the network. This framework incorporated a time-dependent

dynamic reward shaping variable, that bolsters agent’s policy development. To fur-

ther improve the agent’s policy development, a training structure integrated with

an error coefficient was developed in this work. Moreover, diverging from the con-

ventional episode termination methods based on time series, we proposed a one-shot

episode termination approach that facilitates the real-time application of our frame-

work. To effectively allocate loads under emergency operating conditions, a distinctive

approach that helps with determining load flexibility along with a multi-tier load clas-

sification system that categorizes loads into tiers based on the criticality index was

also discussed.

To test the proposed framework, multiple case studies that considered varying

NMG layouts and the operating conditions were performed. Based on the results of

the case studies, the following conclusions were drawn:

1. Under normal operating conditions, the agent is able to appropriately schedule

resources by minimizing the operational cost at the same time satisfying the

operational limits of the network.

2. Under emergency operating conditions, the agent successfully allocates the most

critical loads in the network which is highlighted by a high CSI value, by that

means enhancing the survivability aspect of the operational resilience.

The concluding remarks were further supported by the comparative studies per-
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formed using multiple DRL algorithms. These studies substantiate that ease of appli-

cability of the proposed framework to any DRL algorithm. Furthermore, a result val-

idation step was implemented to differentiate the DRL approach results with a more

traditional metaheuristic optimization algorithm based approach. The consequence

of this step supplemented the aforementioned remarks by providing exceptionally

comparable outcomes.

From the one-shot episode termination proof it was evident that the most important

component affecting agent’s learning is the reward function. However, there are

other parameters specifically associated with the DNN model that, if not modeled

appropriately, would largely hinder agent’s learning. Therefore, in order to identify

and accordingly tune these parameters, sensitivity analysis was performed. As a part

of this study, learning rates, neurons count in the DNN hidden layers, discount factor,

and parameters addressing the exploration/exploitation dilemma were evaluated. All

the trials that demonstrated the best returns had the following things in common:

• The Actor learning rate αactor was lower than the Critic learning rate αcritic.

• The neurons count in each of the hidden layer of the DNN were 256.

• The parameter ϵend the govern exploration/exploitation dilemma was observed

to be between 0.1 to 0.3.

Despite the fact that DNN are considered to be black-boxes especially when it

comes to ascertaining the input-output relationship, studies (comparison, validation,

and sensitivity analysis) performed in this dissertation bolster the reliability and

accuracy of the model, and by doing so further endorses the proposed framework.

5.1 Contributions

The major contributions of this dissertation are highlighted below:

• A novel Dual Agent-based DRL framework designed to automate resource schedul-

ing and load allocation, addressing both normal operational conditions and
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emergency scenarios is proposed. The following are the modeling objectives of

the respective DAs:

– Normal Operating Agent (NOA): Objective to minimize the operational

cost under standard operating conditions.

– Emergency Operating Agent (EOA): Objective to maximize the CSI during

emergency operating conditions.

• A reward function that utilizes a multi-temporal dynamic reward shaping ap-

proach is developed. This approach enhances the agent’s decision-making pro-

cess by capturing the time-varying dynamics of a power system environment.

• A training paradigm that integrates an error coefficient into the day-ahead

forecasts that replicates forecasting errors was introduced. Incorporating the

forecasting error coefficients into the training phase prepares the DAs for a

multitude of scenarios thereby enhancing its learning capabilities.

• A one-shot episode termination MDP was designed for ease of real-time appli-

cation. Furthermore, this developed approach enables faster convergence, and

reduces computational load.

• A multi-tier classification system was created for load categorization based on

the load criticality index that aids in efficient critical load allocation.

To summarize, this research provides a progressive approach, that leverages the

advancements in the field of advanced machine learning, to solving two of the most

critical problems of the modern power systems which are: 1) the problem of resource

scheduling under uncertainty, and 2) the problem of resilience improvement by sup-

plying critical loads under emergencies.



104

5.2 Future Work

This research opens new avenues for state-of-art research opportunities by uniting

the field of power system analysis with the ever-evolving field of advanced machine

learning. This research work is especially important in today’s era, where a modern

power grid can capitalize on the advancements in artificial intelligence (AI) to enhance

its operational intelligence.

The load allocation problem addressed by the EOA can be further enhanced by

adding supplementary load control capability. Currently, the proposed multi-tier load

classification system has simplified the task of critical load allocation or load allocation

in general to some extent. However, under certain situations, a higher mismatch has

been observed, meaning that some of the non-critical tier loads were shed despite

the availability of the generation capacity to support partial loads in these tiers. As

a part of future work, a methodology that can consider such scenarios and develop

a supplementary load allocation strategy to power these partial loads would greatly

enhance the EOA’s operating framework.

Furthermore, it will be important to analyze how the proposed framework operates

when ran on a system with higher computing capabilities. At present, the training,

testing, and validation of the DAs has been performed on a 2020 M1 MacBook Pro

with 8 GB of RAM without the MPS (GPU) support. Although the training process

was relatively quick, it will be interesting to study how faster (or slower) the model

can train when it is deployed on a system with GPU or TPU support. Additionally, it

would be fascinating to observe the hyperparameters variations, especially the number

of training epoch required for convergence and training samples required to develop

a robust policy, when a parallel computing approach is used.

As the NMGs become more prevalent and their operational structure grow increas-

ingly sophisticated, with multiple entities interconnecting their MGs together to form

a larger network of MGs, alternative paradigms, such as game-theory based multi-
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agent systems (GT-MAS), need to be explored. The concept of game theory can help

set-up a transactional system between the competing (under normal operating con-

ditions) and cooperating (under emergency operating conditions) entities that builds

on the dual agent environment set-up developed in this dissertation. The resultant

framework can be termed as the Dual-Agent-based Multi-Agent system (DA-MAS)

that uses the current DA set-up and modify its inner operations with multiple agents

representing different MGs operated by different organizations.

Lastly, an agent-based DRL approach can be applied to the MG restoration problem

that utilizes the available DERs with black start capabilities. The main objective of

the agent would be to exploit the multi-tiered load classification introduced in this

dissertation to restore Tier I through Tier IV loads. This approach can extend the

EOA’s environment to account for line outages, adding an extra layer of uncertainty

to the formulation. These outages can be modeled using fragility curves or historical

data, if available. The state space will include similar parameters as the EOA with

inclusion of a marker that indicates the black start units. Additionally, we can leverage

the concepts of graph theory to develop supplementary states that allow the agent to

interpret the connectivity or the adjacency matrix of the complete network thereby

enhancing its restoration planning. The agent’s action space will be similar to that

of the EOA which is focused on allocating the most critical loads in the network.

However, this approach would place a special emphasis on line outages, making it

pivotal to consider the availability of black start capable DER units in the network

while allocating or restoring the loads.
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APPENDIX A: Load Flexibility Estimation

In this appendix section, an example that provides insight into the process of

ascertaining the load flexibility index and the load flexibility range for a specific

building type is presented. Lets consider a hospital load (building) type (load data

was obtained from [133]) to determine its flexibility factor and range. Ideally, all the

loads in a hospital building need to be considered as essential, hence must be supplied

continuously. For the purpose of conceptual explanation, we are considering a flexible

demand for a hospital load. The load value associated with each of the load types in

a hospital building is specified in Table A.1.

Table A.1: Hospital Building Loads in kW (Hourly)

Time Fan Cooling Heating Light Equipment Miscellaneous equipment
01:00:00 93.63 469.64 0 46.10 113.31 136.96

Leveraging Equation (3.8), the lo values and the εo values computed for the hospital

buildings, are presented in Table A.2. Again lo is the decimal equivalent of portion of

total load consumed by the oth load type (lo ∈ [0, 1]) and εo as the decimal equivalent

of percent of essential loads present in the oth load type (εo ∈ [0, 1]).

It can be seen that the fan load (lfan) is 11%, cooling load (lcooling) is 54%, light load

(llight) is 5%, interior equipment load (lintEquip) is 14% and miscellaneous equipment

(lmiscEquip) load a 16% of the total load. The values associated with εo represents

the criticality of a specific load type, with 1 indicating the highest level of critical-

ity. A value of 1 also means that specific load type must be served in its entirety.

However, certain load types, such as miscellaneous equipment loads, come with a

Table A.2: Rescaled values for Load Flexibility Estimation

Fan Cooling Heating Light Equipment Miscellaneous equipment
lo 0.11 0.54 0 0.05 0.14 0.16
εo 1 1 0 1 1 0.3
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degree of flexibility. For instance, some equipment within this load category may not

be as critical and can therefore contribute to determining the overall load flexibility

for that particular building type. In this example, the percentage of operationally

critical miscellaneous equipment was considered to be 30% making its εmiscEquip: 0.3.

Therefore, the following Equations (A.1) to (A.3) provides the load flexibility index

of a hospital load.

LFI1,o,hosp =
O∑

o=1

lo.εo (A.1)

= 0.11 · 1 + 0.54 · 1 + 0 · 0 + 0.05 · 1 + 0.14 · 1 + 0.16 · 0.3 (A.2)

= 0.889 (A.3)

To estimate the range [P
load_min_allowed
t , P

load_max
t ] for a specific building type (hos-

pital), Equation (A.4) can be used which essentially determines the P
load_min_allowed
t

by making use of the load flexibility index calculated previously.

P
load_min_allowed
1 = LFI1,o,hosp · P load_max

1 (A.4)

Important point to note is that the εo associated with a specific load type in a

building can be computed by conducting surveys based on conjoint analysis. This

approach would yield a more accurate εo estimations thereby improving the estimated

load flexibility index.
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APPENDIX B: Additional Results

B.1 Case II.A.1: Complete Voltage Violation Table

The complete voltage violations associated with Case II.A.1 are presented in the

Table B.1 below:

Table B.1: NOA’s (Summer Month) voltage violation check (4PM - 8PM)

At 4PM (Before NOA’s Actions)
Total PV power Total load Total grid power Voltage violation count

1073.58 2946.46 1910.02 3
At 4PM (After NOA’s Actions)

Total PV power Total load Total grid power Voltage violation count
1073.58 2946.46 1794.65 0

At 5PM (Before NOA’s Actions)
Total PV power Total load Total grid power Voltage violation count

598.14 2980.19 2431.68 7
At 5PM (After NOA’s Actions)

Total PV power Total load Total grid power Voltage violation count
598.14 2980.19 2236.29 0

At 6PM (Before NOA’s Actions)
Total PV power Total load Total grid power Voltage violation count

147.15 3182.89 3109.84 44
At 6PM (After NOA’s Actions)

Total PV power Total load Total grid power Voltage violation count
147.15 3182.89 2269.81 0

At 7PM (Before NOA’s Actions)
Total PV power Total load Total grid power Voltage violation count

0 3054.47 3128.31 34
At 7PM (After NOA’s Actions)

Total PV power Total load Total grid power Voltage violation count
0 3054.47 2370.25 0

At 8PM (Before NOA’s Actions)
Total PV power Total load Total grid power Voltage violation count

0 2709.09 2766.96 5
At 8PM (After NOA’s Actions)

Total PV power Total load Total grid power Voltage violation count
0 2709.09 2419.11 0
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B.2 Case II.A.2: Complete Voltage Violation Table

The complete voltage violations associated with Case II.A.1 are presented in the

Table B.2 below:

Table B.2: NOA’s (Winter Month) voltage violation check (4PM - 8PM)

At 4PM (Before NOA’s Actions)
Total PV power Total load Total grid power Voltage violation count

461.64 3037.75 2632.11 12
At 4PM (After NOA’s Actions)

Total PV power Total load Total grid power Voltage violation count
461.64 3037.75 2330.94 0

At 5PM (Before NOA’s Actions)
Total PV power Total load Total grid power Voltage violation count

0 3127.86 3205.33 44
At 5PM (After NOA’s Actions)

Total PV power Total load Total grid power Voltage violation count
0 3127.86 2681.56 0

At 6PM (Before NOA’s Actions)
Total PV power Total load Total grid power Voltage violation count

0 3174.16 3253.97 44
At 6PM (After NOA’s Actions)

Total PV power Total load Total grid power Voltage violation count
0 3174.16 2694.33 0

At 7PM (Before NOA’s Actions)
Total PV power Total load Total grid power Voltage violation count

0 2804.22 2866.29 6
At 7PM (After NOA’s Actions)

Total PV power Total load Total grid power Voltage violation count
0 2804.22 2627.96 0

At 8PM (Before NOA’s Actions)
Total PV power Total load Total grid power Voltage violation count

0 2762.41 2822.60 6
At 8PM (After NOA’s Actions)

Total PV power Total load Total grid power Voltage violation count
0 2762.41 2618.80 0



121

APPENDIX C: DRL Algorithms Pseudo-code

C.1 Deep Deterministic Policy Gradient (DDPG) Algorithm

Algorithm 1 Deep Deterministic Policy Gradient (DDPG) Algorithm

1: Randomly initialize the critic network Q(s, a|θQ) and actor network µ(s|θµ) with
weights θQ and θµ

2: Initialize the target networks Q′ and µ
′ with the weights θQ

′ and θµ
′

3: Initialize the replay buffer R
4: for episode = 1, M do
5: Initialize a random process N for exploration of the action space
6: Get initial state values s1
7: for t = 1, T do
8: Select action at = µ(st|θµ) +N⊔
9: Execute action at and observe at+1, rt+1

10: Insert transition (st, at, rt, st+1) into the replay buffer R
11: Sample random batch of N transitions from R
12: Set yi = ri + γ.Q′(si+1, µ

′(si+1|θµ
′
)|θQ′

)
13: Update critic network by minimizing the loss:

L =
1

N

∑
i=1

(yi −Q(si, ai|θQ))2

14: Update actor policy using sampled policy gradient:

∇θµJ ≈
1

N

∑
i=1

∇aQ(s, a|θQ)|s=si,a=µ(si).∇θµµ(s|θµ)|s=si

15: Update the target network:

θQ
′ ← τ.θQ + (1− τ).θQ′

θµ
′ ← τ.θµ + (1− τ).θµ′

16: end for
17: end for

In DDPG algorithm [129] there are four DNNs: 1) Actor Network, 2) Critic Net-

work, 3) Target Actor Network, and 4) Target Critic Network. Actor and Critic

networks are updated as specified in the Algorithm 1 whereas a delayed parameter

update which slowly maps the Actor-Critic NN parameters to the target networks is

applied.
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C.2 Twin-Delayed DDPG (TD3) Algorithm

Algorithm 2 Twin-Delayed DDPG (TD3) Algorithm

1: Randomly initialize the critic networks Q(s, a|θQ1 ), Q(s, a|θQ2 ) and actor network
µ(s|θµ) with weights θQ1 , θQ2 and θµ

2: Initialize the target networks θQ
′

1 ← θQ1 , θQ
′

2 ← θQ2 and θµ
′ ← θµ

3: Initialize the replay buffer R
4: for episode = 1, M do
5: Initialize a random process N for exploration of the action space
6: Get initial state values s1
7: for t = 1, T do
8: Select action with exploration noise a ∼ µ(s) + ϵ, ϵ ∼ N (0, σ)
9: Observe reward r and next state st+1

10: Insert transition (st, at, rt, st+1) into the replay buffer R
11: Sample random mini-batch of N transitions from R
12: ã← µ′(st+1) + ϵ, ϵ ∼ clip(N (0, σ̃),−c, c)
13: y ← r + γ.mini=1,2Q

′(st+1, ã|θQ
′

i )
14: Update critic network by:

θi ← argmin
θi

1

N

∑
(y −Q(s, a|θQi ))2

15: if t mod d then
16: Update actor policy by deterministic policy gradient:

∇θµJ =
1

N

∑
∇aQ(s, a|θQ1 )|a=µ(s|θµ).∇θµµ(s|θµ)

17: Update the target network:

θQ
′

i ← τ.θQi + (1− τ).θQi
′

θµ
′ ← τ.θµ + (1− τ).θµ′

18: end if
19: end for
20: end for

TD3 algorithm [130] is modified version of DDPG which uses six DNN: 1) Actor

Network, 2) Two Critic Networks, 3) Target Actor Network, and 4) Two Target Critic

Networks. However, while computing the loss, only one Critic network’s estimated

Q-value is used (minimum between the two critic networks) to eliminate the over

estimation issues observed with DDPG (Algorithm 2).
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C.3 Soft Actor-Critic (SAC) Algorithm

Algorithm 3 Soft Actor-Critic (SAC) Algorithm

1: Randomly initialize the critic networks Q(s, a|θQ1 ), Q(s, a|θQ2 ) and actor network
µ(s|θµ) with weights θQ1 , θQ2 and θµ

2: Initialize the target networks θQ
′

1 ← θQ1 , θQ
′

2 ← θQ2 and θµ
′ ← θµ

3: Initialize the replay buffer R
4: for episode = 1, M do
5: Observe the state s and select an action a ∼ µθµ(·|s)
6: Execute a in the environment and observe the next state and reward
7: Store (st, at, rt, st+1) in the replay buffer R
8: for t = 1, T do
9: Sample random batch of N transitions from R

10: Compute the targets for the Q functions:

y(r, st+1, d) = r + γ.(1− d)
(
min
i=1,2

Q′(st+1, ãt+1|θQ
′

i )− α. log µ′(ãt+1|st+1)|θ=θµ′

)
,

ãt+1 ∼ µ′(·|st+1)|θ=θµ′

11: Update Q-functions by one step gradient descent using::

∇θQi

1

|N |
∑

(st,at,rt,st+1)∈R

(Q(s, a|θQi )− y(r, st+1, d))
2

12: Update the the policy by one step gradient ascent using

∇θµ
1

|N |
∑
s∈B

(
min
i=1,2

Q(s, ãθµ(s)|θµ)− α. log µ(ãθµ(s)|s)|θ=θµ

)
13: Update target networks with:

θQ
′

i ← τ.θQi + (1− τ).θQi
′

θµ
′ ← τ.θµ + (1− τ).θµ′

14: end for
15: end for

SAC algorithm [131] is slightly different from DDPG and SAC in the sense that

instead of developing a deterministic policy, it develops a probabilistic policy, meaning

it outputs probabilities of taking a specific actions. However the Actor and Critic

structure is similar to that of TD3 algorithm with network update equations provided

in Algorithm 3.
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APPENDIX D: Neural Networks

Neural Network (NN) is a computational model that derives its inspiration from

the inner structure and working of a human brain. It is a type of machine learning

framework that comprises of multiple layers of interconnected nodes called as artificial

neurons (neurons). These neurons are responsible to process and transform the input

data that can be used to generate output predictions [127].

Input 
Layer

Output 
LayerHidden Layer

𝑤!𝑓" 𝑓#
𝑓$

	𝐵

Figure D.1: Typical Neural Network

A typical NN is presented in Figure D.1 highlighting its structure that comprises

of an input layer, multiple hidden layers, and an output layer. Key components of a

NN are enlisted below:

• Neurons: Neurons are the basic building blocks of a NN that processes the input

data using an activation function and propagates the processed data to the next

layer.

• Layers: Layers in a NN provide a structure to interconnect neurons. There are

three types of layers:

1. Input layer: The layer that directly receives the input data.
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2. Hidden layer: Intermediate layers that performs the computation to trans-

form input data to a more appropriate representation.

3. Output layer: The layer that generates the final prediction value.

• Weights: A weight (wi) in a NN is a component that signifies the importance of

a specific neuron in the model development. Each of the connections between

the neuron has a weight component associated with it which is optimized during

the training process.

• Biases: Biases are constant values that are added to the computation to offset

the results and to ensure zero value processing.

• Activation Function: An activation function (fx, fy, fz) is a non-linear function

applied at each neuron of the hidden and output layer to transform input data in

a format that enables the network to recognize patterns and make appropriate

decisions. The most commonly used activation function are:

– ReLU function (Rectified Linear Unit)

– Sigmoid function

– Tanh function (Hyperbolic Tangent)

D.1 Training Process

The training of NN involve a multi-step process where the weights and the biases

of the NN are adjusted to minimize the loss functions. A trained NN is capable of

recognizing relationship between the input and output data that enables accurate

predictions.

Step #1 of the training process involves random initialization of the NN where the

weights of the NN are stochastically (or using certain methods) assigned. In Step

#2, a forward propagation step is performed where the input data is passed through

all the layers of the NN. Figure D.2 shows the forward propagation step of NN. The
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values x1, x2, x3 are the inputs whereas w1, w2, w3 are the randomly assigned weights

of the NN. At a specific neuron in a layer, the inputs are multiplied with weights and

summed together (z from the Figure D.2). This sum-product is then passed through

an activation function which provides a rescaled non-linear output (y) that is further

forwarded to the other neurons which has a similar structure.
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Figure D.2: Forward Propagation Step

Step #3 includes loss minimization where the output generated through the forward

propagation is compared with actual value to evaluate how far off the predicted value

is using a loss function. There are numerous loss functions out of which the most

commonly used loss functions are:

• Mean Squared Error (MSE): MSE = 1
N

∑N
i=1(yi − ŷi)

2

• Cross-Entropy Loss (CE): CE = − 1
N

∑N
i=1(yi. log(ŷi) + (1− yi). log(1− ŷi))

To minimize the loss function, an algorithm called Back propagation is used which

calculates the gradient of the loss function with respect to the individual weights of

the NN by using the chain rule. Figure D.3 demonstrates different gradients that are

computed along with the application of chain rule.

Let’s assume the loss function used is MSE which is given by Equation (D.1). Here

S(yki ) is the rescaled output from the activation function activated neuron predicted

by the NN; dki is the actual value to be predicted; ϵk is the MSE value; N total
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Figure D.3: Back Propagation and Chain Rule

number of values to be predicted (essentially the count of neurons); k is the index

for the training epochs and h is the index for the sending end neuron (w1,2: mean

weight of the connection between Neuron #1 from previous layer and Neuron #2 of

the current layer).

ϵk =
1

N

N∑
i=1

(
dki − S(yki )

)2

(D.1)

The goal of Step #4 is to ascertain the discrepancy between the predicted value

and the actual value, which is done by calculating the gradient of the loss function

with respect to the rescaled output, given by Equation (D.2) (the first term in the

chain rule equation).
∂ϵk

∂S(yki )
= − 2

N
(dki − S(yki )) (D.2)

The second term is the gradient of the output from the neuron S(yki ) with respect

to the raw output value yki . Equation (D.3) computes the aforementioned entity

which is basically a partial derivative of the activation function. It is assumed that

the activation function used is the Sigmoid function whose equation is represented as

y in Figure D.2.
∂S(yki )

∂yki
= − e−yki

(1 + e−yki )2
(D.3)

The third term signifies how much the raw input yki is changing with respect to the
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weights wk
h,i, where this relationship is expressed as Equation (D.4). Taking the partial

derivative of Equation (D.4) with respect to weights provides us the interdependence

between the NN’s weights and the input values (Equation (D.5)).

yki =

Q∑
h=1

wk
h,i.S(z

k
h) (D.4)

∂yki
∂wk

h,i

= S(zkh) (D.5)

Here, S(zkh) is the output from the hth neuron (activation function included). Using

chain rule on Equations (D.2), (D.3) and (D.5), the relation between the change in

loss function with reference to the NN’s weights can be established as seen in Figure

D.3 and Equation (D.6).

∂ϵk
∂wk

h,i

=
∂ϵk

∂S(yki )
· ∂S(y

k
i )

∂yki
· ∂yki
∂wk

h,i

(D.6)

Once these values are computed the final step of the training process can be initiated

which involves updating the weights of the NN. The weight update of a neuron is

performed using gradient descent (if minimizing the loss function) or gradient ascent

(if maximizing the total gains). As in the previous discussion, in this example, loss

minimization is the aim. Therefore, Equation (D.8) provides the gradient descent

equation to update the NN’s weights.

wk+1
h,i = wk

h,i −∆wk
h,i (D.7)

= wk
h,i − α.

( ∂ϵk
∂wk

h,i

)
(D.8)

Where, α is the learning rate for weight update rule that signifies how fast we

update the weights. Thus, setting an appropriate α is crucial as it defines the NN

optimization step size.
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