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ABSTRACT

MD HASAN JAWAD CHOWDHURY. Leveraging domain knowledge for enhanced
causal structure learning and out-of-distribution generalization in observational data.

(Under the direction of DR. GABRIEL TEREJANU)

Causal modeling enables robust counterfactual reasoning and interventional mechanisms

to make predictions across different hypothetical scenarios. Nevertheless, uncovering

causal relationships from observational data presents a considerable challenge, as un-

observed confounders, limited sample sizes, and variations in distributions can give rise to

misleading cause-effect associations. Models relying on these relationships may perform

poorly when spurious correlations do not hold in test cases. To address these challenges,

researchers augment causal learning with known causal relations. This dissertation first

investigates the incorporation of domain knowledge in structure learning by introducing

additional constraints that convey qualitative knowledge about causal relationships. The

experimental designs are specifically equipped to evaluate the role of domain knowledge.

Secondly, a concept-driven approach is implemented to determine the advantages of incor-

porating concept-level prior knowledge. Given the invariant nature of causal relationships,

the study then showcases the broader applicability of incorporating domain knowledge by

employing a machine learning method for learning adsorption energies, illustrating the

advantages of harnessing domain knowledge to obtain invariant molecular representations

in catalyst screening. Finally, a novel approach is introduced to enhance robustness and

out-of-distribution generalization by leveraging gradient agreement across different envi-

ronments to identify reliable features. Collectively, these experimental designs advance

causal discovery and robust machine learning by utilizing prior knowledge and relational

invariances, paving the way for future research on integrating domain knowledge and

invariance principles into the learning process.
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CHAPTER 1: INTRODUCTION

In recent years, predictive machine learning models have achieved remarkable success

across a wide range of scientific domains. These models demonstrate exceptional power

when the underlying i.i.d. (independent and identically distributed) assumption holds true

in the test environments. Consequently, deep learning approaches have gained widespread

adoption in numerous scientific fields [3–9]. However, the primary objective of these mod-

els is to achieve accurate predictions, which often leads them to rely on spurious correla-

tions [10,11] that may not hold true if the data distribution differs between training and

application contexts. This dependence on superficial relationships or features can result

in poor generalization and subpar performance [12, 13]. Causality, which refers to the

relationship between cause and effect, presents a potential solution to address this issue.

Causality is the process of establishing a causal connection based on the conditions under

which an effect occurs. Naturally, one might wonder what constitutes a causal connection.

To address this, let’s consider two random variables X and Y as the variables of interest.

A causal connection between X and Y , or more specifically, X causing Y , can be inferred

if and only if intervening or manipulating X results in changes to Y , while keeping all

other variables constant or fixed [14]. In simpler terms, causality can be defined as the

relationship between an effect and its underlying cause. Inferring causal structures typ-

ically relies on interventions in the system variables, known as Randomized Controlled

Trials (RCTs). However, these interventions are often impractical, unethical, or costly.

For instance, consider a scenario where we aim to determine whether the positions of the

Earth and Moon have a causal effect on ocean tides. Conducting an intervention to reach

a conclusion would be impossible. Similarly, if we were to investigate whether smoking
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causes lung cancer or not, it would be unethical to conduct experiments on a group of

people to observe if they develop lung cancer after smoking. Due to these limitations, we

frequently resort to deducing causal implications based on available observations. Discov-

ering causal relationships purely from observational data, known as observational causal

discovery, offers a solution to address these challenges.

The significance of understanding data behavior and uncovering the underlying causal

structure cannot be overstated, as it plays a crucial role in making informed decisions

and analyzing various phenomena. Since causal relations are invariant in nature, they

are expected to hold true even when there are distributional changes. Causal analysis

allows us to reason under different interventional conditions, answer what-if questions,

and provides the foundation for effective action, policymaking, and learning from failures.

Relying solely on correlation or statistical association-based studies would not sufficiently

address these issues. Learning causal structures from purely observational data is a chal-

lenging task, with applications spanning various fields such as genetics [15], machine

learning [16, 17], economics [18], and biology [19]. While causality has been a topic of

study for many decades, recent advancements in machine learning, complex models, high

computational power, large storage systems, and in-depth analytical capabilities, coupled

with data availability, have opened new horizons in this research area. However, learn-

ing causal links from observational data presents numerous challenges due to limitations

such as finite sampling, unobserved confounding factors, selection bias, and measurement

errors, which can result in spurious cause-effect relationships [20–22]. To address these

issues in practice, researchers frequently enhance causal learning by inducing prior causal

knowledge [23–25]. Prior knowledge can come in different forms and can be utilized in

various ways to help identify the underlying structure more accurately. This disserta-

tion studies, emphasizes, and investigates various forms of domain knowledge, examines

different methods for incorporating these types of expertise, and assesses the impact of in-

tegrating such prior knowledge in causal structure learning and out-of-distribution (OOD)
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generalization. Furthermore, the application of these approaches is evaluated in a variety

of contexts.

1.1 Major Contributions

This dissertation makes significant contributions to the fields of causal structure learn-

ing and out-of-distribution (OOD) generalization in machine learning. The key advances

are as follows:

• Evaluation of Induced Expert Knowledge in Causal Structure Learn-

ing: This research extends the state-of-the-art score-based causal learning method,

NOTEARS [26], by incorporating domain knowledge. The enhancement allows for

more accurate causal structure learning by inducing expert knowledge and reveals

key insights in the learning process by evaluating the impact of qualitative domain

knowledge. The study assesses how expert-induced knowledge can influence the ro-

bustness of causal models. This work is published in the Proceedings of the 12th In-

ternational Conference on Pattern Recognition Applications and Methods (ICPRAM

2023) [27].

• Concept-Driven Causal Structure Learning: In this work, the NOTEARS [26]

method is adapted to learn causal structures in concept-driven data, which includes

both scalar-valued features and multidimensional vector-valued concepts. The ap-

proach is particularly beneficial for uncovering causal structures in complex, high-

dimensional conceptual data. This work also addresses challenges associated with

applying causal constraints in such contexts and explores potential solutions. This

research is published in the International Conference on Machine Learning and Ap-

plications (ICMLA 2023) [28].

• Invariant Molecular Representations for Heterogeneous Catalysis: This

study explores the use of domain knowledge to exploit the invariance property, fo-
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cusing on eliminating spurious correlations and learning invariant or causal relations.

It presents a method to develop robust predictors for adsorption energy in chemical

reactions by creating invariant representations of molecular species. The research

also highlights how these invariant representations can be extended to larger catal-

ysis datasets with multiple surface systems, addressing the challenges posed by the

complexity of larger reaction systems. A significant portion of this work is published

in the Journal of Chemical Information and Modeling (2024) [29].

• Consistent Gradient-Based Learning for OOD Generalization: This re-

search introduces CGLearn, a novel method that enhances robustness and general-

ization in machine learning by learning invariant predictors across different environ-

ments. The method relies on gradient agreement across environments to identify

reliable features and demonstrates its effectiveness in both linear and nonlinear set-

tings. The study shows the applicability of CGLearn across various regression and

classification tasks through experiments on synthetic and real-world datasets. This

research is currently under review at the 39th Annual AAAI Conference on Artificial

Intelligence (AAAI 2025).

1.2 Outline

This dissertation is structured as follows:

• Chapter 1: Provides an introduction to causal structure learning and delves into

the background information pertinent to the study. It covers essential concepts such

as graphical and causal terms, building blocks of causal graphs, and commonly used

causal assumptions in structure learning methods. This foundational knowledge sets

the stage for the subsequent chapters, which present original research and proposed

future work.

• Chapter 2: Presents the study titled "Evaluation of Induced Expert Knowledge in
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Causal Structure Learning by NOTEARS" [27].

• Chapter 3: Presents the study titled "CD-NOTEARS: Concept-Driven Causal

Structure Learning Using NOTEARS" [28].

• Chapter 4: Presents the study titled "Invariant Molecular Representations for

Heterogeneous Catalysis" [29].

• Chapter 5: Introduces the study titled "CGLearn: Consistent Gradient-Based

Learning for Out-of-Distribution Generalization" (under review at AAAI 2025).

• Chapter 6: Concludes the dissertation by synthesizing the key contributions and

insights from the presented studies, providing a summary of the overall contribu-

tions. This chapter also explores promising future work and new research directions

opened by the findings. This dissertation primarily emphasizes the significance

and explores different pathways of leveraging domain knowledge to enhance causal

structure learning and to improve the out-of-distribution (OOD) generalization of

machine learning models in observational data.

1.3 Graphical and Causal Terms

In this section, we will review some of the basic concepts and definitions related to

graph and causal structure learning. The following terms are expressed considering the

graph G = (V,E) over a set of vertices V and a set of edges E connecting these vertices.

Path: A path between two vertices X1 and X2 is a sequence of vertices where each

subsequent pair of vertices is connected through an edge E1 = (X1, X2) ∈ E in the graph

G.

Undirected path: An undirected path between two vertices X1 and X2 is a path or

sequence of variables where each subsequent pairs are connected through undirected edges

in the graph G.
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Directed path: A directed path between two vertices X1 and X2 is a sequence of

vertices where each subsequent pair of vertices are connected through a directed edge in

the graph G.

Acyclic path: An acyclic path is a path in the graph G if it does not contain any

vertex Xi more than once in the path. Otherwise, it is a cyclic path.

Undirected graph: An undirected graph is a graph G = (V,E) where all the edges

E = (E1, . . . , En) are undirected.

Directed graph: A directed graph is a graph G = (V,E) which has only directed

edges such as all Ei ∈ E are directed.

DAG: A directed acyclic graph or DAG is a graph where all the edges are directed and

all the paths are acyclic.

Mediator: A vertex Xm is a mediator on a directed path between vertex Xs and Xe

if the Xm is on the path but it is not the source (the path does not start with Xm) nor

the sink (the path does not end with Xm).

Latent variable: A latent variable Xl is a variable that is unmeasured to a graph

G = (V,E) where Xl 6∈ V but it is causally connected to the variables in V .

Confounder: A confounder is a latent variable that is also a common cause of two

variables in the vertex set V .

Exogenous variable: A variable Xex is considered exogenous with respect to a set of

variables V if it is not influenced by any variable Xi ∈ V . In other words, there are no

causal links from any variable Xi ∈ V to the exogenous variable Xex.

Endogenous variable: A variable Xen is considered endogenous with respect to a set

of variables V if it is influenced by at least one variable Xi ∈ V . In other words, there

exists a causal link from one or more variables in V to the endogenous variable Xen.

CGM: A causal graphical model CGM(Px, G) can be defined as a pair of a graph G

and an observational distribution Px over a set of random variables X = (X1, . . . , Xd).

The distribution Px is Markovian with respect to G where G = (V,E) is a DAG that
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encodes the conditional dependence structures among the random variables Xi ∈ X [30].

The node i ∈ V corresponds to the random variable Xi ∈ X and the edges (i, j) ∈ E

correspond to the conditional relations encoded by G. In a causal graphical model, the

joint distribution Px can be factorized as p(x) =
∏d

i=1 p(xi|xGpai) where XG
pai

refers to the

set of parents for the variable Xi in DAG G and for each Xj ∈ XG
pai

there is an edge

(Xj → Xi) ∈ E and based on additional causal assumptions the directed edges have

causal interpretations [30].

Unshielded triples: A triple of variables Xi, Xj, and Xk is considered unshielded

if Xi is connected to Xj, and Xj is connected to Xk, but Xi and Xk are not directly

connected.

Collider: Xc is considered a collider on a path between vertex Xs and Xt in graph G

if there is a substructure Xi → Xc ← Xj in the path, for some variables Xi and Xj on

that path.

d-separation: Consider two distinct vertices or variables, X and Y , in a graph G,

and let Z be a set of vertices such that X /∈ Z and Y /∈ Z. In this scenario, X and

Y are considered d-separated given Z if Z blocks all paths between them. A path U is

considered blocked if any of the following conditions hold:

1. The path U contains a chain (A→ B → C) or a fork (A← B → C) structure, where

B is an element of Z.

2. The path U contains a collider structure (A → B ← C), where B and all of its

descendants are not elements of Z.

MEC: A Markov Equivalence Class M is a set of DAGs that encode the same set of

conditional independencies.

SEM: A structural equation model (SEM) is defined as a (S, L(N)) where S =

(S1, . . . , Sd) is a collection of d structural equations over a set of random variables X =

(X1, . . . , Xd) [31].

Sj : Xj = fj(PAj, Nj), j = 1, . . . , d (1.1)
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and here L(N) = L(N1, . . . , Nd) is the joint distribution of the noises, L(N) is required to

be jointly independent. SEMs are considered mostly for the real valued random variable

X1, . . . , Xd but they can also be categorical. The corresponding graph of the SEM is

obtained simply by drawing direct edges from each parent node to its direct effects where

in Eq. 1.1, PAj defines the set of parents for variable Xj. SEMs are also called functional

models.

1.4 3 Building Blocks of Causal Graphs

The fundamental components of a causal structure can be categorized into three distinct

types, each with unique statistical implications. These types are as follows:

1.4.1 Chains

A chain is a substructure in a causal path between vertices A, B, and C where the

subsequent pairs of vertices are connected with edges that have the same direction.

Figure 1.1: Two possible chain substructures between three variables A, B, and C.

Rule 1 (Conditional Independence in Chains): Variables A and B are condition-

ally independent when conditioned on C, provided there exists only one directional path

U between A and B, with C being any set of variables that intercepts this path.

1.4.2 Forks

A fork is a substructure in a causal pathway between vertices A, B, and C where one

of them is a common cause or parent of the remaining two variables.

Rule 2 (Conditional Independence in Forks): When C acts as a common cause



9

Figure 1.2: A fork substructure between three variables A, B, and C where C is a common
cause of variables A and B.

of A and B, and there is a single path U connecting A and B, then A and B are condi-

tionally independent when conditioned on C.

1.4.3 Colliders

A collider is a substructure in a causal path between vertices A, B, and C where one

of them is the common effect or child of the remaining two variables.

Figure 1.3: A collider substructure between three variables A, B, and C where C is a
common effect of variables A and B.

Rule 3 (Conditional Independence in Colliders): Let C is a colliding node be-

tween A and B and there exist only single path U connecting A and B, then the variables

A and B are unconditionally independent. But they are dependent conditional on C and

any descendants of C.

1.5 Causal Assumptions

Causal discovery based solely on observational data relies on various causal assumptions.

The stability and precision of the inferred structure are significantly influenced by the

extent to which these assumptions are fulfilled in the observational data. Some of the
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most prevalent causal assumptions employed by numerous causal discovery algorithms

are outlined below:

1.5.1 Acyclicity

The data distribution Px is assumed to be generated by a causal graph G that is a

directed acyclic graph or DAG.

1.5.2 Causal Markov Assumption (CMA)

The causal Markov assumption assumes that a variable Xi is independent of its non-

descendants (non-effects) in the causal graph conditional to its parents (direct causes).

Based on this assumption, in a causal graphical model CGM(Px, G), the joint distribution

Px can be factorized as:

p(x) =
d∏
i=1

p(xi|xGpai) (1.2)

where XG
pai

refers to the set of parents for the variable Xi in DAG G.

1.5.3 Causal Faithfulness Assumption (CFA)

This assumption refers that the joint distribution Px is considered faithful to the causal

graph G if all conditional independence relationships in Px are reflected by the structure

of the graph G [32].

1.5.4 Causal Sufficiency Assumption (CSA)

The set of variables X = (X1, . . . , Xn) is assumed to be causally sufficient. Consid-

eration of the causal sufficiency assumption turns the causal graph complete and also

incomplete in two different senses. It assumes that there are no confounders such that the

pair {Xi, Xj} in X do not share a common cause outside of X\i,j, where X\i,j denotes the

set of all variables in X except Xi and Xj. However, having an unmeasured intermediate

variable in a path that does not satisfy the condition of a confounder is allowed.



CHAPTER 2: EVALUATION OF INDUCED EXPERT KNOWLEDGE IN CAUSAL

STRUCTURE LEARNING BY NOTEARS

2.1 Introduction

Machine Learning models have been consistently setting new benchmarks for predictive

accuracy. However, out-of-distribution (OOD) generalization continues to be a significant

challenge. One approach to address this is by employing causal structures [33] to con-

strain models and eliminate spurious correlations. The underlying causal knowledge of

the problem of interest can significantly help with domain adaptability and OOD gener-

alization [34]. Furthermore, causal models go beyond the capability of correlation-based

models to produce predictions. They provide us with powerful counterfactual reasoning

and interventional mechanisms to reason under various what-if scenarios [18].

Two of the most prominent approaches in observational causal discovery are constraint-

based and score-based methods [35–39]. Although these methods are quite robust if the

underlying assumptions are true, they are computationally expensive and their computa-

tional complexity increases with the number of system variables due to the combinatorial

nature of the DAG constraint. NOTEARS [40] tackles this problem with an algebraic

characterization of acyclicity which reduces the combinatorial problem to a continuous

constrained optimization. Different approaches [26,41–43] have been proposed as the non-

linear or nonparametric extensions of this linear continuous optimization, which provides

flexibility in modeling different causal mechanisms.

Learning the causal structure purely based on observational data is not a trivial task due

to various limitations such as finite sampling, unobserved confounding factors, selection

bias, and measurement errors [20–22]. These can result in spurious cause-effect relation-
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ships. To address these issues in practice, researchers frequently induce the structure

learning process with prior domain knowledge as featured in software packages such as

CausalNex1, causal-learn2, bnlearn [23], gCastle [24], and DoWhy [25]. Heindorf et al. [44]

in their work attempt to construct the first large scale open domain causality graph that

can be included in the existing knowledge bases. The work further analyzes and demon-

strates the benefits of large scale causality graphs in causal reasoning. Given a partial

ancestral graph (PAG), representing the qualitative knowledge of the causal structure,

Jaber et al. [45] in their study compute the interventional distribution from observational

data. Combining expert knowledge with structural learning further constrains the search

space minimizing the number of spurious mechanisms [46] and researchers often leverage

this background knowledge by exploiting them as additional constraints for knowledge-

enhanced event causality identification [47]. O’Donnell et al. [48] use expert knowledge

as prior probabilities in learning Bayesian Network (BN) and Gencoglu and Gruber [49]

use the linear NOTEARS model to incorporate knowledge to detect how different charac-

teristics of the COVID-19 pandemic are causally related to each other. Different experts’

causal judgments can be aggregated into collective ones [50] and Alrajeh et al. [51] in their

work, studied how these judgments can be combined to determine effective interventions.

An interesting exploration by Andrews et al. [52] defines tiered background knowledge

and shows that with this type of background knowledge the FCI algorithm [35] is sound

and complete.

However, understanding how to effectively incorporate and evaluate the impact of in-

duced knowledge is yet to be explored and knowledge regarding this can mitigate some

of the challenges of observational causal discovery. Human expertise is crucial in evalu-

ating the learned causal structure [53, 54]. In practice, the process of human assessment

and validation typically occurs in an iterative or sequential fashion [55–57]. In structure
1https://github.com/quantumblacklabs/causalnex
2https://github.com/cmu-phil/causal-learn
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learning, this approach is particularly feasible for large causal networks, where the pro-

cess involves learning, validating, and incorporating new knowledge sequentially through

iterative feedback loops. The goal of this study is not to create a new causal discovery

algorithm but rather to study this iterative interaction between prior causal knowledge

from domain experts that takes the form of model constraints and a state-of-the-art causal

structure learning algorithm. Wei et al. [46] have been the first to augment NOTEARS

with additional optimization constraints to satisfy the Karush-Kuhn-Tucker (KKT) op-

timality conditions and Fang et al. [58] in their work leverages the low rank assumption

in the context of causal DAG learning by augmented NOTEARS that shows significant

improvements. However, none of them have studied the impact of induced knowledge

on causal structure learning by augmenting NOTEARS with optimization constraints.

For completeness, Section 2.3 provides the formulation of nonparametric NOTEARS [26]

with functionality to incorporate causal knowledge in the form of known direct causal and

non-causal relations. Nevertheless, this work aims to study the impact of expert causal

knowledge on causal structure learning.

Most of the materials presented in this chapter have been published in a conference

paper [27]. The main contributions of the current study can be summarized as follows.

(1) This work demonstrates an iterative modeling framework to learn causal relations,

impose causal knowledge to constrain the causal graphs, and further evaluate the model’s

behavior and performance. (2) The current study empirically evaluates and demonstrates

that: (a) knowledge that corrects the model’s mistake can lead to statistically significant

improvements, (b) constraints on active edges have a larger positive impact on causal

discovery than inactive edges, and (c) the induced knowledge does not correct on aver-

age more incorrect active and/or inactive edges than expected. Finally, the impact of

additional knowledge in causal discovery is illustrated on a real-world dataset.

This chapter is structured as follows: Section 2.2 introduces the background on causal

graphical models (CGMs), score-based structure recovery methods, and a study using
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the score-based approach formulated as a continuous optimization and its recent non-

parametric extension. Section 2.3 presents the extension of the nonparametric continuous

optimization to incorporate causal knowledge in structure learning and detail the proposed

knowledge induction process. Section 2.4 shows the empirical evaluations and compara-

tive analyses of the impact of expert knowledge on the model’s performance. Finally, in

Section 2.5, a summary of the findings and a brief discussion on future work is provided.

2.2 Background

This section reviews the basic concepts related to causal structure learning and briefly

covers a recent score-based continuous causal discovery approach using structural equation

models (SEMs).

2.2.1 Causal Graphical Model (CGM)

A directed acyclic graph (DAG) is a directed graph without any directed cyclic paths

[35]. A causal graphical model CGM(PX ,G) can be defined as a pair of a graph G and

an observational distribution PX over a set of random variables X = (X1, . . . , Xd). With

respect to G this distribution PX is Markovian where G = (V,E) is a DAG that encodes the

causal structures among the random variables Xi ∈ X [30]. The node i ∈ V corresponds

to the random variable Xi ∈ X and edges (i, j) ∈ E correspond to the causal relations

encoded by G. In a causal graphical model, the joint distribution Px can be factorized

as p(x) =
∏d

i=1 p(xi|xGpai) where XGpai refers to the set of parents (direct causes) for the

variable Xi in DAG G and for each Xj ∈ XGpai there is an edge (Xj → Xi) ∈ E [30].

2.2.2 Score-based Structure Recovery

In a structure recovery method, with n i.i.d. observations in the data matrix X =

[x1| . . . |xd] ∈ Rn×d, the objective is to uncover the causal relationships represented by

the DAG G. Most of the approaches follow either a constraint-based or a score-based

strategy for observational causal discovery. A score-based approach typically concentrates
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on identifying the DAG model G that fits the observed set of data X according to some

scoring criterion S(G, X) over the discrete space of DAGs D where G ∈ D [38]. The

optimization problem for structure recovery in this case can be defined as follows:

min
G

S(G, X)

subject to G ∈ D
(2.1)

The challenge with Eq. 2.1 is that the acyclicity constraint in the optimization is combi-

natorial in nature and scales exponentially with the number of nodes d in the graph. This

makes the optimization problem NP-hard [59,60].

2.2.3 NOTEARS: Continuous Optimization for Structure Learning

NOTEARS [40] is a score-based structure learning approach that reformulates the com-

binatorial optimization problem to a continuous one through an algebraic characteriza-

tion of the acyclicity constraint in Eq. 2.1 via trace exponential. This method encodes the

graph G defined over the d nodes to a weighted adjacency matrixW = [w1| . . . |wd] ∈ Rd×d

where wij 6= 0 if there is an active edge Xi → Xj and wij = 0 if there is not. The weighted

adjacency matrix W entails a linear SEM by Xi = fi(X) +Ni = wTi X +Ni; where Ni is

the associated noise. The authors define a smooth score function on the weighted matrix

as h(W ) = tr(eW◦W ) − d where ◦ is the Hadamard product and eM is the matrix expo-

nential of M. This embedding of the graph G and the characterization of acyclicity turns

the optimization in Eq. 2.1 into its equivalent:

min
W∈Rd×d

L(W )

subject to h(W ) = 0

(2.2)

where L(W ) is the least square loss over W and h(W ) score defines the DAG-ness of the

graph.
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2.2.4 Nonparametric Extension of NOTEARS

A nonparametric extension of the continuous optimization suggested by a subsequent

study [26] uses partial derivatives for asserting the dependency of fj on the random

variables. The authors define fj over the Sobolev space consisting of functions that

are square integrable, along with their derivatives. The authors show that fj can be

independent of a random variable Xi if and only if ||∂ifj||L2 = 0 where ∂i denotes the

partial derivative with respect to the i-th variable. This redefines the weighted adjacency

matrix withW (f) = W (f1, . . . , fd) ∈ Rd×d where eachWij encodes the partial dependency

of fj on variable Xi. As a result, we can equivalently write Eq. 2.2 as follows:

min
f :fj∈H1(Rd),∀j∈[d]

L(f)

subject to h(W (f)) = 0

(2.3)

for all Xj ∈ X. Two of the general instances proposed by the study in Ref. [26]

are: NOTEARS-MLP and NOTEARS-Sob. A multilayer perceptron having h num-

ber of hidden layers and σ : R → R activation function can be defined as M(X;L) =

σ(L(h)σ(. . . σ(L(1)X)) where L(l) denotes the parameters associated with l-th hidden layer.

The authors in Ref. [26] show that if ||i-th column of L(1)
j ||2 = 0 then Mj(X;L) will be

independent of variable Xi which replaces the association of partial derivatives in Eq. 2.3

and redefines the adjacency matrix as W (θ) with W (θ)ij = ||i-th column of L(1)
j ||2 where

θ = (θ1, . . . , θd); θk denoting the set of parameters for theMk(X;L) (k-th MLP). With the

usage of neural networks and the augmented Lagrangian method [61] NOTEARS-MLP

solves the constrained problem in Eq. 2.3 as follows:

min
θ
F (θ) + λ||θ||1

F (θ) = L(θ) +
ρ

2
|h(W (θ))|2 + αh(W (θ))

(2.4)
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2.3 Knowledge Induction

In this current work, the multilayer perceptions network of NOTEARS-MLP proposed

by Ref. [26] is used as the estimator. This study extends this framework to incorporate

causal knowledge by characterizing the extra information as additional constraints in the

optimization in Eq. 2.3.

Knowledge Type. This study distinguishes between two types of knowledge: (i) known

inactive is knowledge from the true inactive edges (absence of direct causal relation),

and (ii) known active is knowledge from the true active edges (presence of direct causal

relation).

Knowledge Induction Process. The study adopts an interactive induction process,

where the expert knowledge is informed by the outcome of the causal discovery model.

Namely, the knowledge is induced to correct the mistakes of the model in the causal

structure, in the hope that the new structure is closer to the true causal graph. This

process is applied sequentially by correcting the mistakes of the model at each step.

In the following subsections, the formulation of the NOTEARS optimization with con-

straints and the sequential induction process are presented.

2.3.1 Expert Knowledge as Constraints

An induced knowledge associated with a true active edge, Xi → Xj (known active)

enforces the corresponding cell in the adjacency matrix to be non-zero, [W (θ)]ij 6= 0.

This study considers this knowledge as an inequality constraint in the extension of the

optimization such that the following statement holds:

hpineq(W (θ)) > 0 (2.5)

where p enumerates over all the inequality constraints due to induction from the set

of known active and hineq is the penalty score associated with the violation of these
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inequality constraints. On the other hand, knowledge associated with the true inactive

edge, Xi 9 Xj (known inactive) enforces the related cell in W (θ) to be equal to zero,

[W (θ)]ij = 0 if the induction implies there should not be an edge from Xi to Xj. This

knowledge is considered as an equality constraint in the optimization such as:

hqeq(W (θ)) = 0 (2.6)

where q enumerates over all the equality constraints, induced from the set of known inac-

tive and heq is the penalty score associated with the violation of these equality constraints.

With these additional constraints in Eqs. 2.5, 2.6 we can extend Eq. 2.3 to incorporate

causal knowledge in the optimization as follows:

min
f :fj∈H1(Rd),∀j∈[d]

L(f)

subject to h(W (θ)) = 0,

hqeq(W (θ)) = 0,

hpineq(W (θ)) > 0

(2.7)

NOTEARS uses a thresholding step on the estimated edge weights to reduce false dis-

coveries by pruning all the edges with weights falling below a certain threshold. Because

of this, in practice, even the equality constraints in Eq. 2.6 become inequalities to al-

low for small weights. Finally, slack variables are introduced in the implementation to

transform the inequality constraints into equality constraints (see detailed formulation in

Appendix A).

By using the similar strategy suggested by Zheng et al. [26] with augmented Lagrangian
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Figure 2.1: Knowledge induction process. Knowledge is induced by carrying over the
existing knowledge set along with a new random correction informed by model mistakes.

method the reframed constrained optimization of Eq. 2.4 takes the following form:

min
θ
F (θ) + λ||θ||1

F (θ) = L(θ) +
ρ

2
|h(W (θ))|2 + αh(W (θ))

+
∑
p

(
ρineq

2
|hpineq(W (θ))|2 + αph

p
ineq(W (θ)))

+
∑
q

(
ρeq
2
|hqeq(W (θ))|2 + αqh

q
eq(W (θ)))

(2.8)
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Figure 2.2: Expected graph formulation: (a) true graph, Gtrue, (b) predicted graph by
model at step k, Gkpred, (c) induced knowledge at step (k + 1), (d) expected graph at step
(k+ 1), Gk+1

exp . Three different examples of many possible predicted graphs at step (k+ 1),
Gk+1
pred where the model performs (e) less than expectation, (f) par with expectation, and

(g) more than expected.

2.3.2 Sequential Knowledge Induction

In the case of knowledge induction, the optimization is run in a sequential manner

where the constraints are informed by the causal mistakes made by the model in the

previous step. The process starts with the baseline model without imposing any additional

knowledge from the true DAG and get the predicted causal graph denoted by G0pred in

Figure 2.1. Then at each iterative step (k + 1), based on the mistakes in the causal

graph Gkpred predicted by the NOTEARS-MLP, one additional random piece of knowledge

is selected to correct one of the mistakes and add it to the set of constraints identified in

the previous k steps, and rerun NOTEARS. A batch of corrections can also be selected,

however, this work has focused on estimating the contribution of each piece of knowledge

in the form of known active/inactive edge. The major observations are illustrated in

Section 2.4.1, Section 2.4.2, Section 2.4.3, and Section 2.4.4.
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Expected Causal Graph. The expected causal graph, Gk+1
exp at step (k + 1) is formed

by considering the case where all the knowledge has successfully been induced without

impacting any other edges. Figure 2.2d illustrates an example of how to formulate the

expected graph for a particular step in the iterative process. It is to be noted that the

correction might yield a directed graph (Expected Causal Graph) that is not necessarily a

DAG. The objective is to compare the performance between the causal graph predicted by

NOTEARS and the expected causal graph. The intuition is that the induced knowledge

will probably correct additional incorrect edges, see Figure 2.2g, yielding a performance

better than expected.

2.4 Experiments

To empirically evaluate the impact of additional causal knowledge on causal learning

and to keep the experimental setup similar to the study in Ref. [26], this study has used

an MLP with 10 hidden units and sigmoid activation functions. In all the experimental

setups, it is assumed that the prior knowledge is correct (agrees with the true DAG). De-

spite the known sensitivity of the NOTEARS algorithm to data scaling, as demonstrated

in previous study [62], I have conducted experiments using both unscaled and scaled data

to ensure the robustness of the findings and I am pleased to report that the conclusions

remain unchanged regardless of the scaling of the data, indicating the stability and reli-

ability of the results. While this chapter presents the results using the unscaled data for

consistency with the original implementation of NOTEARS [26], it is important to note

that the conclusions hold true even when the data is scaled.

Simulation. The performance of the proposed formulation and the impact of induced

knowledge is investigated by comparing the DAG estimates with the ground truths. For

the simulations with synthetic data, I have considered 16 different combinations following

the simulation criteria: two random graph models, Erdos-Renyi (ER) and Scale-Free (SF),

number of nodes, d = {10, 20}, sample size, n = {200, 1000}, edge density, s0 = {1d, 4d}.
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Table 2.1: Performance metrics considered with their corresponding desirability.

Metric Desirability
∆FDR Lower is better
∆TPR Higher is better
∆FPR Lower is better
∆SHD Lower is better

Table 2.2: Results for inducing redundant knowledge.

Metric Mean ± Stderr. Remarks
∆ FDR −0.00030± 0.00017 No harm
∆TPR −0.00035± 0.00027 No harm
∆FPR −0.00097± 0.00059 No harm
∆SHD −0.00154± 0.00167 No harm

For each of these combinations, I have generated 10 different random graphs or true DAGs

(as 10 trials for a particular combination) and corresponding data by following a nonlinear

data generating process with index models (similar to the study in Ref. [26]) for which

the underlying true DAGs are identifiable. The results are summarized over all these 160

random true DAGs and datasets. In the simulations, I have considered the regularization

parameter, λ = 0.01. This study evaluates the performance of causal learning based on

the mean and the standard error of different metrics. For statistical significance analysis,

I have used t-test with α = 0.05 as the significance level.

Metrics. For the comparative analysis, the current study evaluates performance using

the following metrics: Structural Hamming Distance (SHD), True Positive Rate (TPR),

False Positive Rate (FPR), and False Discovery Rate (FDR). However, since the evalua-

tion is performed over all these 160 random graphs of varying sizes, this study considers

Structural Hamming Distance per node (SHD/d) as SHD measure scales with the number

of nodes (FDR, TPR, and FPR scale by definition). To evaluate the impact of induced

knowledge, the differences in the metrics at different steps are calculated (where we have

different sizes of induced knowledge set) and referred to as ∆FDR, ∆TPR, ∆FPR, and

∆SHD, see also Table 2.1. For example, based on the model’s prediction I calculate the
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Table 2.3: Results for inducing knowledge that corrects model’s mistake.

Metric Knowledge Mean ± Stderr. Improvement
∆FDR inactive −0.018± 0.002 Significant
∆FDR active −0.008± 0.001 Significant
∆TPR inactive −0.007± 0.003 Not significant
∆TPR active 0.024± 0.003 Significant
∆FPR inactive −0.023± 0.004 Significant
∆FPR active −0.008± 0.003 Significant
∆SHD inactive −0.032± 0.012 Significant
∆SHD active −0.071± 0.011 Significant

impact of inducing one additional piece of knowledge on the metric SHD (∆SHDpred) as

follows:

∆SHDpred = SHD(Gk+1
pred)− SHD(Gkpred) (2.9)

Sanity Check - Redundant Knowledge Does No Harm. As part of the sanity

check, this study investigates the impact of induced knowledge that matches the causal

relationships successfully discovered by the NOTEARS-MLP. Therefore, in this section,

I consider the set of edges that the baseline model correctly classifies as the knowledge

source. Here, the study does not distinguish between the edge types of the induced knowl-

edge (known inactive & active) since the goal is to investigate whether having redundant

knowledge as additional constraints affects the model’s performance or not. The results

are illustrated in Table 2.2. The empirical evaluation shows that adding redundant knowl-

edge does not deteriorate the performance of NOTEARS-MLP. The performed statistical

test reflects that the results after inducing the knowledge from the correctly classified edge

set are not statistically different than the results from the model without these knowledge

inductions. However, I have noticed that the performance gets worse with highly regu-

larized models. This is consistent with observations by Ng et al. [63] where sparse DAGs

result in missing some of the true active edges.
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2.4.1 Knowledge that Corrects Model’s Mistake

Here, I first investigate the role of randomly chosen knowledge that corrects the model’s

mistake based on the cause-effect relations of the true graph. Therefore, in this case, I

consider the set of misclassified edges from the estimated causal graph as the knowledge

source for biasing the model. The results are illustrated in Table 2.3. The empirical result

shows statistically significant improvements whenever the induced knowledge corrects

misclassified edges in the estimated causal graph except for the case of ∆TPR with known

inactive edges. However, this behavior is not totally unexpected since knowledge from

known inactive edges helps to get rid of false discoveries or false positives, which hardly

have an impact on true positives.

2.4.2 Known Inactive vs Known Active

In this subsection, I study the impact of different types of induced knowledge on causal

discovery to correct the mistakes in the estimated causal graph. As a result, the experi-

mental setup is similar to Section 2.4.1 where I consider the misclassified edge set as the

knowledge source. This section considers both known inactive and known active types of

knowledge to induce separately and analyze the differences of their impact on the per-

formance. The results are illustrated in Table 2.4. Based on the statistical test, I have

found that inducing known inactive is more effective when we compare the performance

based on FDR and FPR as misclassification of inactive edges has more impact on these

metrics. On the other hand, the results show that inducing known active is more effective

Table 2.4: Comparison between the impact of inducing knowledge regarding inactive vs
active edges.

Metric Inactive Active Better
∆FDR −0.019± 0.002 −0.008± 0.001 inactive
∆TPR −0.007± 0.003 0.024± 0.003 active
∆FPR −0.023± 0.004 −0.009± 0.004 inactive
∆SHD −0.033± 0.013 −0.072± 0.011 active
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Table 2.5: Comparison between the empirical performance vs expectation.

Metric Knowledge Empirical Expected Remarks
∆FDR inactive −0.019± 0.002 −0.016± 0.002 No difference
∆FDR active −0.008± 0.001 −0.006± 0.001 No difference
∆TPR inactive −0.007± 0.003 −0.002± 0.003 No difference
∆TPR active 0.024± 0.003 0.022± 0.002 No difference
∆FPR inactive −0.023± 0.004 −0.021± 0.004 No difference
∆FPR active −0.009± 0.003 −0.007± 0.003 No difference
∆SHD inactive −0.033± 0.013 −0.047± 0.010 No difference
∆SHD active −0.072± 0.011 −0.056± 0.010 No difference

on TPR as misclassification of active edges has more impact on this metric. Interestingly,

the study has found that known active provides a significant improvement over known

inactive in terms of SHD. This can be attributed to the fact that the induced knowledge

based on the true inactive edge (known inactive) between two random variables, i.e. from

Xi to Xj allows for two extra degrees of freedom since it is still possible to have no edge

at all or an active edge from Xj to Xi. However, the induced knowledge based on the

true active edge doesn’t allow any degrees of freedom. This type of knowledge is more

restraining for causal graph discovery and therefore carries more information.

2.4.3 Empirical Performance vs Expectation

In this subsection, I investigate in understanding whether inducing knowledge to cor-

rect the model’s mistakes exceeds the expected improvement. The experimental setup is

similar to Section 2.4.1 and Section 2.4.2 where I consider the misclassified edge set as the

knowledge source. I have conducted the experiments using both known inactive and known

active types of knowledge separately. The expected causal graph, Gexp is formulated in a

similar manner described in Fig. 2.2. Table 2.5 shows the summary of the performance

comparison in these cases with the expected results. The statistical test shows that the

induced correct knowledge does not correct on average more incorrect active and/or inac-

tive edges than expected. Therefore, using the information from induced knowledge does

not have an additional impact than expected in the global optimization scheme. How-
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ever, this is likely due to the fact that the structure of the expected causal graph, Gexp is

not well-posed. It’s worth noting that Gexp isn’t necessarily a DAG since there isn’t any

constraining mechanism to enforce acyclicity as compared to Gpred (NOTEARS imposes

hard acyclicity constraint in the continuous optimization). Although it is to be noted

here that solving an acyclicity-constrained optimization problem does not guarantee to

return a DAG and Ng et al. [64] in their study illustrates on this behavior and proposes

the convergence guarantee with a DAG solution.

2.4.4 Real Data

Here I evaluate the implication of incorporating expert knowledge on the dataset from

the study in Ref. [19], which is largely used in the literature of probabilistic graphical

models with a consensus network accepted by the biological community. This dataset

contains the expression levels of phosphorylated proteins and phospholipids in human

cells under different conditions. The dataset has d = 11 cell types along with n = 7466

samples of expression levels. As for the ground truth of the underlying causal graph,

the current study has considered s0 = 20 active edges as suggested by the study [19]. I

have opted for ∆TPR, the percentage difference of edges in agreement (higher is better),

and the percentage difference of reversed edges (lower is better) as the evaluation metrics

since the performance on these metrics would indicate the significance more distinctively.

Similar to the synthetic data analysis, this study had 10 trials that I used to summarize

the evaluation. The empirical results (Mean ± Stderr.) show: ∆TPR as 0.020±0.004, the

percentage difference of edges in agreement as 0.393±0.086, and the percentage difference

of reversed edges as −0.073±0.030. I have found that, with the help of induced knowledge,

the model demonstrates statistically significant improvement by correctly identifying more

active edges and by reducing the number of edges identified in the reverse direction. Due

to the limitation of having access only to a subset of the true active edges, my analyses

could not include a comparative study on known inactive edges as in the synthetic data
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case. It is assumed that the performance could have been improved by fine-tuning the

model’s parameters but since the main focus of this study is entirely based on the analyses

regarding the impact of induced knowledge of different types and from different sources

on structure learning, I kept the parameter setup similar for all consecutive steps in the

knowledge induction process.

2.5 Summary

In this study, I have investigated the impact of expert causal knowledge on causal

structure learning and provided a set of comparative analyses of biasing the model using

different types of knowledge. The findings show that knowledge that corrects the model’s

mistakes yields significant improvements and it does no harm even in the case of redundant

knowledge that results in redundant constraints. This suggests that the practitioners

should consider incorporating domain knowledge whenever available. More importantly,

I have found that knowledge related to active edges has a larger positive impact on causal

discovery than knowledge related to inactive edges which can mostly be attributed to

the difference between the number of degrees of freedom each case reduces. This finding

suggests that the practitioners may want to prioritize incorporating knowledge regarding

the presence of an edge whenever applicable. Furthermore, the experimental analysis

shows that the induced knowledge does not correct on average more incorrect active

and/or inactive edges than expected. This finding is rather surprising to me, as I have

expected that every constraint based on a known active/inactive edge to impact and

correct more than one edge on average.

This work points to the importance of the human-in-the-loop in causal discovery that

can be further explored. Also, I would like to mention that in this study I have adopted

hard constraints to accommodate the prior knowledge since I have assumed the priors to be

correct. An interesting future direction would be to accommodate continuous optimization

with functionality to allow different levels of confidence in the priors.



CHAPTER 3: CD-NOTEARS: CONCEPT DRIVEN CAUSAL DISCOVERY IN HIGH

DIMENSIONAL DATA USING NOTEARS

3.1 Introduction

In recent years, the field of causal discovery has gained significant traction, driven by

advancements in machine learning models that excel in handling large datasets and ap-

proximating intricate relationships. Consequently, numerous methods have emerged to

infer causal relationships from observational data. These methods can be categorized into

constraint-based algorithms e.g. PC [35], IC [18], and FCI [37], score-based approaches

e.g. GES [38] and FGES [39], and functional causal models e.g. LiNGAM [65] and

ANMs [66]. Constraint-based methods utilize conditional independence tests and rules

to detect edge directions, often pinpointing the Markov equivalence class of the genuine

causal graph. Meanwhile, score-based models target causal graph optimization over the

DAG space, a process that becomes computationally intensive due to its combinatorial na-

ture. NOTEARS, present in linear [40] and non-parametric [26] forms, adopts an algebraic

acyclicity characterization, transforming the combinatorial challenge into continuous con-

strained optimization. Variants of this continuous optimization approach have surfaced

in works Ref. [41,42,67], offering versatile causal mechanism modeling. While NOTEARS

stands out for its efficacy across diverse uses, it’s not limited to structure learning for

continuous or scalar data but extends to feature vectors of conceptual data as well.

For example, consider an IMDb movie dataset with three concepts: revenue (C1), genre

(C2), and synopsis (C3). Revenue (C1) represents movie-generated revenue (X1). Assum-

ing our dataset has only thriller and sci-fi genres, we can use one-hot encoding to represent

the genre (C2), creating a two-dimensional vector (X2 and X3) for these genres. For the
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Figure 3.1: Mapping of conceptual data to high-dimensional features for movie dataset.
The three main concepts considered are revenue (C1), genre (C2), and synopsis (C3). The
one-dimensional feature X1 corresponds to revenue, while the encoding of genre results
in two-dimensional features X2 and X3. Synopsis is represented by a three-dimensional
embedding with features X4, X5, and X6.

movie synopsis (C3), we can use NLP methods to produce a three-dimensional embed-

ding (X4, X5, and X6). Thus, our dataset has three concepts (C1, C2, C3) leading to a

six-dimensional feature vector for each movie (X1 through X6, as depicted in Fig. 3.1).

By applying NOTEARS to this vector-valued data, causal relationships within the high-

dimensional feature space can be discerned, shedding light on the interconnections be-

tween features X1 through X6. However, a general challenge with structure learning is

that uncovering the causal structure requires complete coverage of the data distribution.

Intuitively, without a comprehensive representation of the data distribution, one can miss

latent causal relationships or infer spurious ones due to sample biases. To address this

challenge, researchers often provide algorithms with additional knowledge to augment the

optimization with prior knowledge, as featured in software packages such as CausalNex 1,

causal-learn 2, bnlearn [23], DoWhy [25], and gCastle [24]. Previous studies have shown

that incorporating domain knowledge can be beneficial and lead to superior performance.

For example, the impact of prior knowledge on score-based causal learning algorithms

was evaluated in Ref. [27, 68]. Additionally, another recent study [69] presents KGS, a
1https://github.com/quantumblacklabs/causalnex
2https://github.com/cmu-phil/causal-learn
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novel knowledge-guided greedy score-based causal discovery approach that uses structural

priors to constrain the search space and guide the process.

This chapter presents CD-NOTEARS, an extension of the NOTEARS algorithm de-

signed for concept-driven causal structure learning in vector-valued data. This novel

approach integrates prior knowledge on relations between concepts and high-dimensional

features as meta-information, imposing DAGness on concept-level data, a departure from

the original NOTEARS which operates on raw high-dimensional features. Through ex-

tensive experiments on varied datasets, this study showcases the proposed method’s profi-

ciency in identifying causal relationships, highlighting its enhanced performance compared

to the original NOTEARS. The key contributions can be summarized as follows: (1) A

novel extension of the NOTEARS algorithm is proposed, that facilitates concept-driven

causal structure learning in vector-valued data while incorporating prior relations between

different concepts and high-dimensional features, preserving the non-parametric essence of

the original NOTEARS algorithm, (2) Departing from traditional methods, this approach

emphasizes DAGness at the concept level rather than focusing solely on high-dimensional

raw features, and (3) The proposed study illustrates empirical validation through com-

prehensive experiments on synthetic, benchmark, and real-world datasets.

Most of the materials presented in this chapter are published in Ref. [28]. The remain-

der of this chapter is organized as follows: Section 3.2 delves into the methodology of

CD-NOTEARS, Section 3.3 presents the experimental settings and evaluations. Finally,

Section 3.4 encapsulates the conclusions and highlights the significant takeaways.

3.2 Methodology

The proposed CD-NOTEARS method builds on the original nonparametric NOTEARS

algorithm [26], specifically the NOTEARS-MLP instance, to infer causal relationships

from vector-valued data. In this section, I summarize the background of linear [40] and

nonparametric [26] extensions of NOTEARS and then delve into the proposed adaptation:
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the CD-NOTEARS approach.

Observational causal structure learning aims to learn the causal relationships encoded

by a DAG G from n i.i.d. observations in the data matrix X = [x1| . . . |xd] ∈ Rn×d. The

score-based approach focuses on identifying the DAG model G that best fits the observed

data X based on a scoring criterion S(G, X) over the discrete space of DAGs D where

G ∈ D [38]. This optimization problem can be formulated as:

min
G

S(G, X)

subject to G ∈ D
(3.1)

The linear NOTEARS [40] algorithm reformulates the combinatorial optimization in

Eq. 3.1 to a continuous one through an algebraic characterization of the acyclicity con-

straint. This method encodes the graph G defined over the d nodes into a weighted

adjacency matrix W = [w1| . . . |wd] ∈ Rd×d where wi,j 6= 0 if there is an active edge

Xi → Xj and wi,j = 0 otherwise. The weighted adjacency matrix W entails a linear

structural equation model (SEM) by Xi = fi(X) + Ni = wTi X + Ni; where Ni is the

associated noise. The authors define a smooth score function on the weighted matrix as

h(W ) = tr(eW◦W )−d where ◦ is the Hadamard product and eM is the matrix exponential

of M. This reformulates Eq. 3.1 into its equivalent form:

min
W∈Rd×d

L(W )

subject to h(W ) = 0

(3.2)

where L(W ) is the least square loss over W and h(W ) score defines the DAG-ness of the

graph. The nonparametric NOTEARS [26] uses partial derivatives on the functional form

fj to determine the dependency of random variable Xj on other random variables. The

authors define fj over the Sobolev space consisting of functions that are square integrable,

along with their derivatives, and fj can be independent of random variable Xi if and only
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if ||∂ifj||L2 = 0 where ∂i denotes the partial derivative with respect to Xi. This redefines

the weighted adjacency matrix as W (f) with each Wi,j encoding the partial dependency

of fj on variable Xi and allows us to write Eq. 3.2 equivalently:

min
f :fj∈H1(Rd),∀j∈[d]

L(f)

subject to h(W (f)) = 0

(3.3)

Figure 3.2: Illustration of concept-driven adjacency matrix and graph formulation pro-
cess from high dimensional data: (a) graphical representation of relations between high
dimensional features in raw data, (b) corresponding adjacency matrix for high dimensional
graph relations, W , (c) intermediate matrix formulation obtained by applying row aggre-
gation based on the concept-level meta-information, (d) concept-driven adjacency matrix
obtained after full transformation using row and column aggregation, W con, (e) graphical
representation of the relations between concepts (C1, C2, C3), (f) Prior knowledge or
meta-information regarding the concepts and their representations in high dimensional
feature space. For the purpose of simplicity, this figure demonstrates the process using
binary adjacency matrices.

While NOTEARS deduces causal relationships among features by applying a contin-
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uous acyclicity constraint on the high-dimensional adjacency matrix, W , the proposed

method, CD-NOTEARS, adopts a concept-driven strategy. Firstly, the method obtains

the adjacency matrix similarly to NOTEARS. Instead of directly constraining this matrix,

CD-NOTEARS transforms it into an aggregated adjacency matrix, W con, using concept-

level prior knowledge. This matrix captures concept-level relationships, with aggregation

refining the optimization search space to guide the optimization. CD-NOTEARS im-

poses acyclicity on the concept-level relations captured in W con. Fig. 3.2 illustrates the

approach to derive concept-driven causal relations, W con, from the high-dimensional ma-

trix,W . In order to maintain consistency with the previous example presented in Fig. 3.1,

I here demonstrate the matrix transformation using the three concepts introduced ear-

lier. Therefore, C1 refers to the revenue of each movie, represented by a scalar-valued

one-dimensional feature X1. Meanwhile, C2 and C3 correspond to the genre and synopsis

concepts of the movie, represented by two-dimensional (X2 and X3) and three-dimensional

(X4, X5, and X6) feature spaces, respectively. Unlike the original NOTEARS imple-

mentation that imposes acyclicity on the raw-level high-dimensional graph as shown in

Fig. 3.2(a), CD-NOTEARS imposes acyclicity on the concept-level graph as in Fig. 3.2(e).

To achieve the concept-level matrix, this method first generates the high-dimensional

adjacency matrix (Fig. 3.2(b)). An intermediate matrix is then formed using row ag-

gregation informed by concept-level meta-information (Fig. 3.2(c)). The final transfor-

mation, integrating both row and column aggregation, yields the concept-driven matrix

W con (Fig. 3.2(d)), influenced by the relations between concepts and features shown in

Fig. 3.2(f). It is to be noted that various matrix transformation or aggregation meth-

ods can be employed to get the concept-level relations from the raw relations, as long

as they preserve the causal relationships from the raw level to the concept level. Such
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transformation or aggregation function should satisfy the following equation:

W con
m, n =


0 if ∀(Xi ∈ Cm, Xj ∈ Cn) Wi,j = 0

6= 0 otherwise
(3.4)

Eq. 3.4 allows us to aggregate the raw-level information in W and determine the rela-

tionship between concepts such as Cm and Cn. If any of the random variables Xi that

belong to concept Cm has a causal link in high-dimensional feature space to any other

random variable Xj that belongs to concept Cn, the corresponding cell in the concept-

level aggregated matrix, W con
m,n should reflect that relationship. Otherwise, the cell in the

concept-level matrix is set to zero. After applying the transformation using Eq. 3.4, the

optimization problem reformulates to:

min
f :fj∈H1(Rd),∀j∈[d]

L(f)

subject to h(W con(f)) = 0

(3.5)

To solve the optimization problem, I have used the augmented Lagrangian method [61],

similar to the strategy followed by the original NOTEARS. Therefore, the proposed CD-

NOTEARS method preserves the non-parametric nature of the original NOTEARS algo-

rithm while leveraging concept-level meta-information.

3.3 Experiments and Results

To evaluate the extended NOTEARS algorithm, CD-NOTEARS, I conducted case stud-

ies comparing its performance against the original NOTEARS model. Given the sensi-

tivity of the NOTEARS algorithm to data scaling, as shown in earlier studies [62, 70],

I have scaled the data using the standardization method from Python’s scikit-learn [71]

library. This study ensures consistent model structures by employing an MLP with 10

hidden units and sigmoid activations for both models. While CD-NOTEARS integrates
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meta-information during optimization, focusing on concept-level relations, the original

NOTEARS first learns the causal graph in the high-dimensional feature space, then post-

processes with meta-information. In this study, I have adopted the ‘mean’ as the aggre-

gation function in both models for concept-level causal graph learning. For comparative

analysis, I have utilized two key performance metrics: false discovery rate (FDR) and

structural hamming distance (SHD). The FDR, in particular, offers insights into the con-

servativeness of the method. A lower FDR indicates fewer unwarranted causal claims,

addressing the challenge highlighted by previous study [72] regarding non-conservative

error trade-offs seen in many causal discovery methods. On the other hand, the SHD, a

widely-recognized pattern metric for evaluating causal discovery methodologies [73], pro-

vides a holistic view of how closely the predicted graph aligns with the ground truth.

To emphasize reliability, I have conducted 50 different random trials for each case study,

evaluating the performance of both models based on the mean and standard deviation of

the performance metrics. The statistical significance analysis is then performed using a

t-test with α level of 0.05.

3.3.1 Synthetic Dataset

To compare the efficacy of CD-NOTEARS against the original NOTEARS method, I

first ran simulations on synthetic datasets. This study examined 16 combinations, varying

between Erdos-Renyi and Scale-Free graph models (gt = ER, SF), number of nodes (d

= 10, 20), sample sizes (n = 200, 1000), and edges (s0 = 1d, 4d), where d indicates

node count. Each combination yielded 50 random graphs or true DAGs, generated via

the Additive Noise Model (ANM) with MLPs following the methodology in the original

work [26]. For the experiments with synthetic datasets, I have considered two different

ranges for the dimension of each concept. In the first case, the range was limited to 1 to

3, and in the second case, the range was expanded to 1 to 5. The results are presented

in Table 3.1 and Table 3.2, respectively. The evaluation showcases the superiority of CD-
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Table 3.1: Performance evaluation of CD-NOTEARS and the original NOTEARS imple-
mentation on synthetic data considering random variables as concepts having dimension
ranges from 1 to 3.

n d s0 gt fdr shd
CD-NOTEARS NOTEARS CD-NOTEARS NOTEARS

200

10 10 ER 0.86 ± 0.04 0.89 ± 0.02 37.84 ± 2.20 47.36 ± 2.99
40 SF 0.89 ± 0.04 0.90 ± 0.03 38.90 ± 2.27 47.77 ± 2.55

20 20 ER 0.48 ± 0.11 0.56 ± 0.05 22.04 ± 4.90 35.78 ± 5.02
80 SF 0.58 ± 0.07 0.66 ± 0.05 26.20 ± 3.35 40.30 ± 4.43

10 10 ER 0.93 ± 0.01 0.94 ± 0.01 165.64 ± 6.34 188.09 ± 6.07
40 SF 0.94 ± 0.02 0.94 ± 0.01 167.82 ± 6.77 184.50 ± 6.06

20 20 ER 0.75 ± 0.04 0.77 ± 0.03 139.42 ± 6.91 166.78 ± 10.03
80 SF 0.78 ± 0.05 0.81 ± 0.03 142.90 ± 10.37 167.21 ± 9.06

1000

10 10 ER 0.83 ± 0.14 0.86 ± 0.07 22.12 ± 4.91 33.78 ± 8.07
40 SF 0.88 ± 0.09 0.86 ± 0.08 21.42 ± 5.58 30.70 ± 7.23

20 20 ER 0.48 ± 0.15 0.54 ± 0.09 30.80 ± 4.41 33.88 ± 5.13
80 SF 0.55 ± 0.18 0.63 ± 0.10 27.26 ± 4.57 32.54 ± 4.61

10 10 ER 0.93 ± 0.03 0.92 ± 0.02 122.26 ± 20.65 152.18 ± 19.26
40 SF 0.95 ± 0.03 0.94 ± 0.02 124.88 ± 14.90 149.30 ± 17.91

20 20 ER 0.72 ± 0.05 0.76 ± 0.03 119.34 ± 9.89 147.36 ± 11.28
80 SF 0.76 ± 0.07 0.78 ± 0.05 115.38 ± 15.17 140.56 ± 16.82

Table 3.2: Performance evaluation of CD-NOTEARS and the original NOTEARS imple-
mentation on synthetic data considering random variables as concepts having dimension
ranges from 1 to 5.

n d s0 gt fdr shd
CD-NOTEARS NOTEARS CD-NOTEARS NOTEARS

200

10 10 ER 0.86 ± 0.04 0.89 ± 0.01 37.70 ± 1.78 50.33 ± 2.16
40 SF 0.86 ± 0.03 0.90 ± 0.01 38.24 ± 1.66 50.39 ± 2.30

20 20 ER 0.48 ± 0.12 0.57 ± 0.04 21.92 ± 5.37 42.50 ± 5.17
80 SF 0.59 ± 0.10 0.67 ± 0.04 26.64 ± 4.79 45.16 ± 4.14

10 10 ER 0.93 ± 0.01 0.94 ± 0.01 161.68 ± 6.44 194.46 ± 5.92
40 SF 0.94 ± 0.02 0.95 ± 0.01 165.14 ± 6.15 195.42 ± 4.56

20 20 ER 0.76 ± 0.04 0.78 ± 0.01 139.66 ± 6.65 179.57 ± 7.04
80 SF 0.78 ± 0.05 0.81 ± 0.02 139.28 ± 10.15 180.54 ± 10.21

1000

10 10 ER 0.85 ± 0.06 0.87 ± 0.03 30.14 ± 4.89 43.60 ± 4.67
40 SF 0.89 ± 0.06 0.89 ± 0.03 29.90 ± 5.14 43.78 ± 5.33

20 20 ER 0.45 ± 0.12 0.55 ± 0.07 25.30 ± 5.23 37.88 ± 6.13
80 SF 0.56 ± 0.15 0.64 ± 0.08 26.48 ± 5.76 38.62 ± 6.90

10 10 ER 0.93 ± 0.02 0.93 ± 0.01 137.40 ± 13.93 177.26 ± 9.79
40 SF 0.94 ± 0.02 0.94 ± 0.02 136.46 ± 13.81 174.08 ± 12.48

20 20 ER 0.74 ± 0.04 0.78 ± 0.03 127.02 ± 10.89 169.86 ± 10.51
80 SF 0.77 ± 0.07 0.79 ± 0.04 123.34 ± 16.34 162.56 ± 15.12
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Table 3.3: Comparison of CD-NOTEARS and the original NOTEARS implementation
on binary benchmark datasets.

dataset fdr shd
CD-NOTEARS NOTEARS CD-NOTEARS NOTEARS

Lucas 0.76 ± 0.03 0.82 ± 0.02 12.16 ± 0.78 22.96 ± 1.37
Asia 0.75 ± 0.01 0.87 ± 0.04 9.02 ± 0.14 16.00 ± 1.13

NOTEARS over the original implementation. By integrating prior knowledge into the

graph formulation and imposing acyclicity at the concept level, CD-NOTEARS achieves

lower FDR and SHD in most scenarios. This underscores the merit of employing concept-

level knowledge for precise causal structure learning.

Figure 3.3: Causal graph for unmanipulated distribution of LUCAS0 [2]

3.3.2 Benchmark Dataset

Benchmark Datasets for Binary Variables Next, I compared CD-NOTEARS and

the original NOTEARS on two benchmark datasets for categorical variables: LUCAS and

ASIA. The LUCAS (LUng CAncer Simple set) dataset [2], sourced from the Causality

Workbench project, comprises 2000 instances of 12 binary variables detailing factors af-
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Table 3.4: Comparison of the CD-NOTEARS and original NOTEARS implementation
on multinary benchmark datasets using PyTorch [1] embedding layer to generate vector-
valued data from categorical variables.

dataset fdr shd
CD-NOTEARS NOTEARS CD-NOTEARS NOTEARS

Dutch 0.56 ± 0.29 0.69 ± 0.07 41.62 ± 1.74 46.84 ± 2.56
Adult 0.56 ± 0.20 0.73 ± 0.07 38.42 ± 1.34 44.70 ± 2.23

fecting lung cancer. The data is synthetically created by causal Bayesian networks and

in this study, I have used the unmanipulated distribution of the dataset referred to as

LUCAS0 3, as visualized in Fig 3.3. The second dataset, ASIA [74] depicts the inter-

play between tuberculosis, lung cancer, bronchitis, and Asia visits. Containing 8 binary

variables and 5000 samples generated following the causal Bayesian network, its causal

graph [75] and dataset [76] are available online. The evaluation, presented in Table 3.3,

shows CD-NOTEARS surpassing NOTEARS in terms of FDR and SHD values on both

datasets, emphasizing its effectiveness for concept-driven data with binary categorical

variables.

Benchmark Datasets for Multinary Variables In the next experimental study, I

have assessed CD-NOTEARS on two mixed numeric and multinary datasets: the Dutch

Census [77] and the Adult dataset [78]. The Dutch Census has 60,420 entries with 12

attributes utilized for structural learning, such as sex, age, household_position, coun-

try_birth, occupation, etc. Among these attributes, sex and occupation are binary, while

the remaining attributes can take multiple values. The Adult dataset comprises 32,561

samples with 11 attributes, including a combination of continuous and categorical vari-

ables such as age, working_class, sex, hours_per_week, marital_status, income, etc. Age

and hours_per_week are continuous variables, while the rest are categorical. Among the

categorical variables, sex and income are binary, and the remaining variables are multi-

nary. This study considered the causal graph from a prior study [79] for both datasets.
3http://www.causality.inf.ethz.ch/data/LUCAS.html
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To process multinary categorical variables, I have used PyTorch’s [1] embedding layer

to create vector embeddings for each concept. This technique efficiently manages mixed

data, leading to a compact dataset. As illustrated in Table 3.4, CD-NOTEARS outper-

forms NOTEARS in the identification of causal structures from mixed data. By leveraging

concept-level understanding and DAG properties, the proposed approach highlights the

significance of conceptual insights in high-dimensional causal learning.

3.3.3 Real Data

Figure 3.4: Causal relations obtained from the movie datasets using two different models:
(a) CD-NOTEARS and (b) the original implementation of NOTEARS. r. week stands
for the release week of the movie.

Finally, I have evaluated CD-NOTEARS and the original NOTEARS using the IMDb

movie dataset sourced from two Kaggle repositories: IMDB Movie data Analysis 4 and

Movie Scripts Corpus 5. The dataset, after cleaning, had data on 1764 movies, including

features like budget, cast, genre, release week, user rating, and revenue. Cast and genre

are vector-valued features, while the remaining features are scalar in nature. As each

movie sample can have one or more casts and genres, I have applied one-hot encoding to

generate embeddings for each sample followed by training an auto-encoder to retain max-

imum information with lower dimensional features from these concepts. This process was
4https://www.kaggle.com/code/robinjrjr/imdb-movie-data-analysis/data
5https://www.kaggle.com/datasets/gufukuro/movie-scripts-corpus
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applied independently to each of the multi-dimensional concepts in the dataset, namely

cast and genre. To ensure a fair comparison, I kept the common settings of both model

implementations similar. In total, CD-NOTEARS estimated six edges, which are budget

→ rating, cast → rating, genre → budget, genre → release week, genre → rating, and

revenue→ rating. Due to the absence of an established ground truth or consensus within

the dataset, in this study, I depended on my own assessment to evaluate the predicted

connections. Upon examination, I have discovered that the majority of causal relation-

ships estimated by CD-NOTEARS appeared to be reasonable and coherent. However,

the relationship between rating and revenue appears ambiguous as a higher rating of a

movie can draw more people to watch the movie, resulting in increased revenue, and

conversely, higher revenue could bias viewers to rate the movie higher. Despite this am-

biguity, both implementations agreed on the direction of this relationship, suggesting it

would not affect the comparative evaluation. Nevertheless, the original implementation

of NOTEARS estimated six additional edges, some of which appeared unlikely such as

cast → release week, rating → cast, and revenue → cast. Fig 3.4 illustrates the causal

relations retrieved by both these models. Notably, NOTEARS applies DAGness to the

raw-level high-dimensional features, which resulted in the generation of two self-loops for

the concepts cast and genre. While this violates the acyclicity assumption, I found this

characteristic intriguing as the selection of one cast may impact the selection of other

casts, and a similar phenomenon may apply to genres. Nonetheless, the proposed CD-

NOTEARS implementation, which enforces DAGness on the concepts, appears to surpass

the original NOTEARS implementation in terms of performance. Although this section

lacks a quantitative metric for assessing performance, the analysis of the IMDb movie

dataset presents persuasive evidence in favor of CD-NOTEARS.
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3.4 Summary

The proposed method, CD-NOTEARS, represents a significant advancement in the field

of causal discovery for concept-driven data. By emphasizing acyclicity constraints at the

concept level and leveraging prior feature-to-concept knowledge, it refines causal relation-

ship representation, bolstering reliability and accuracy. Through evaluations of diverse

datasets, this study has highlighted its efficacy, especially in sectors where conceptual

data is prevalent such as healthcare, finance, and social science. This research emphasizes

the benefits of integrating prior concept knowledge in causal structure learning, making

CD-NOTEARS a valuable addition to the causal discovery repertoire. Looking ahead,

there is potential to combine this concept-driven approach with other leading causal dis-

covery methods to further amplify its potency. In conclusion, I firmly believe that the

extension of the NOTEARS approach will be a pivotal asset for causal discovery across

various domains. I hope that this research will inspire further studies and advancements

in the field of causal discovery, ultimately leading to a better understanding of causality

in complex systems and guiding effective causal learning methods.



CHAPTER 4: INVARIANT MOLECULAR REPRESENTATIONS FOR

HETEROGENEOUS CATALYSIS

4.1 Introduction

The development of efficient and cost-effective catalysts is of great importance in the

chemical industry, as catalysts play a crucial role in a wide range of chemical reactions

to increase the efficiency and selectivity of these processes [80]. In recent years, compu-

tational catalyst screening has gained significant attention as a method for identifying

promising catalysts, as it allows for the rapid and efficient evaluation of large numbers of

potential catalysts [81,82]. Computational catalysis involves the use of density functional

theory (DFT) to compute the energy of the adsorption and transition states of the various

elementary chemical processes occurring on a catalyst surface [83]. Macroscopic observ-

ables similar to those measured experimentally are then computed using transition state

theory and a microkinetic model (MKM), taking the DFT computed adsorption and tran-

sition state energies as inputs [84]. However, the computation of adsorption and transition

state energies using DFT can be both cost and time-intensive; hence, for most reaction

systems of importance involving many intermediates or adsorbate species, the computa-

tion of adsorption energy is an arduous and expensive task [85]. DFT employs exchange

correlation functional approximations to account for the complex many-body electron-

electron interaction terms in the time independent Schrodinger equation (TISE) that

describes the stationary state of a quantum mechanical system. Therefore, many DFT

functionals exist with each differing in the level of theory and inherent approximations.

Hence, DFT-derived adsorption energies and consequently, macroscopic observations de-

pend on the choice of functionals. DFT functionals commonly used within the catalysis
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community include PBE-D3, RPBE, BEEF-vdW, and SCAN+rVV10. Adsorption en-

ergy, which quantifies a molecule’s binding strength to a catalyst’s surface, is directly

computable via DFT. While not directly indicative of catalysis speed, it provides insights

into molecule stability on the catalyst, influencing potential reaction pathways. For an

in-depth exploration of the fundamental principles of heterogeneous catalysis, readers are

referred to the seminal work, ‘Fundamental Concepts in Heterogeneous Catalysis’ [83].

Nevertheless, the computation of adsorption energies for a large number of intermediates

likely present and kinetically relevant in a chemical process can be computationally costly

and even prohibitive due to the expensive nature of these calculations [86].

To address the high computational cost of calculating adsorption and transition-state

energies for various active site models, linear scaling relations [86–88] have been devel-

oped for surface intermediates and transition states that use few computable descriptors

to generate volcano curves on catalyst activity [89]. Nevertheless, the effectiveness of

these relations for more complex chemistries remains uncertain. Additionally, the process

of selecting descriptors for these calculations often involves a trial-and-error approach.

In contrast, a more systematic approach was proposed in a previous study [90], which

used Principal Component Analysis (PCA) [91,92] to identify the optimal minimal set of

descriptors for the calculations, outperforming conventional descriptor selection methods.

To overcome the computational challenge and to predict properties of the chemical enti-

ties using machine learning [93,94], the commonly employed approach often takes place in

two major steps. Firstly, a suitable and effective descriptor is selected in the initial step,

followed by the use of machine learning techniques to predict these chemical properties

in the second step. Machine learning models can be trained using data obtained from

DFT calculations and can subsequently be used to predict adsorption energies for a broad

range of intermediates and catalysts [95, 96].

In addition to the computational cost, predicting the adsorption energy of reaction

intermediates and learning from multiple functionals can be a daunting task due to the
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intricate nature of the interactions between the intermediates and the catalyst surface,

as highlighted in previous literature [97, 98]. Machine learning models typically perform

well when applied to the same or similar domains or functionals on which they were

trained, but their performance can be severely compromised when extrapolated to different

functionals [99]. The efficacy of the prediction results is largely dependent on the selection

of the functionals used in the calculation and their inherent idiosyncrasies. The utilization

of different functionals can result in varying predictions and models, making it challenging

to determine the most accurate functional for a particular system. Moreover, the accuracy

of the predictions can be further hampered by the quality of the training data, which is

often obtained through experiments or DFT calculations. This limited set of training data,

combined with the peculiarities of the functionals, results in a high level of uncertainty in

the predictions, which poses a significant challenge to accurately predicting the adsorption

energy of reaction intermediates from different functionals [100, 101]. Therefore, despite

their capability to capture the complex interactions between intermediates and the surface,

existing machine-learning strategies are hindered by the differences in functionals and their

lack of generalization capability.

This study proposes a novel approach to address the limitations of current methods

for predicting the adsorption energy of reaction intermediates across different functionals.

The approach demonstrates that multiple functionals can benefit learning, rather than

impede it, and effectively overcomes the difficulties associated with the unique charac-

teristics of individual functionals. The proposed method involves capturing the relative

energy differences between pairs of intermediates calculated within the same functional

and training the model across all different functionals. This strategy results in a robust,

reliable, and generalizable molecular representation across different functionals, represent-

ing a significant advancement in this direction.

To achieve this, the proposed implementation involves the extraction of molecular fin-

gerprints and the training of Siamese neural networks on these fingerprints across dif-
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ferent functionals, with the aim of learning invariant molecular representations (IMR)

for catalysis. Molecular fingerprints provide numerical representations of molecules that

encode their chemical properties and can serve as inputs for machine learning models.

Several fingerprint generation schemes have been proposed in the literature, including

the Coulomb matrix [102] and bag-of-bonds [103] approaches that use distance metrics

based on the atomic coordinates of a species, along with atom-centered radial or angular

symmetry functions [104–107]. Additionally, non-coordinate-based fingerprints have been

developed that utilize molecular features derived from its chemical formula or SMILES

notation [108–111]. SMILES, which stands for Simplified Molecular Input Line Entry

System, is a compact and intuitive notation system for representing the molecular struc-

ture of a compound. SMILES notation can be used to generate fingerprints that capture

the structural and chemical features of a molecule. Fingerprints can also be generated

from the molecular graph structure, treating atoms and bonds as nodes and edges, respec-

tively [4,112]. They may also be tailored to correspond to a specific property to be learned

through back-propagation or other techniques. Notably, SMILES or graph-based finger-

prints offer an advantage over coordinate-based descriptors because DFT or semiempirical

methods are required only for the training data, unlike coordinate-based methods, which

require reliable atomic coordinates even for species in the prediction set, potentially neces-

sitating expensive calculations. Kernel-based models like kernel ridge regression [113], as

well as neural network-based approaches such as recurrent neural networks [114], graph

convolutional networks [4, 112], and 3D convolutional neural networks [115] have been

widely used in this context. Some studies have also employed additive atomic contribu-

tions through atomic subnetworks [93,104].

In this study, I have applied a novel approach by utilizing Siamese neural networks [116,

117], a type of neural network architecture well-suited for comparing pairs of input data

and determining their similarity, to learn from the relative comparison of molecular pairs.

The aim of the study is to generate molecular representations that capture inherent sim-



46

ilarities and dissimilarities between pairs of molecules, with the intention to enhance

the predictive capability of adsorption energies for reaction intermediates by leveraging

additional functionals. Most of the materials of this chapter have been published in a jour-

nal paper [29]. "Functionals" in the context of this study, refer to exchange-correlation

functionals within DFT. The exchange-correlation functional approximation makes Kohn-

Sham DFT a practical method for predicting the energy of a system. And when the study

refers to "invariant molecular representations," it indicates representations that are robust

to the variations introduced by these different DFT functionals, rather than the tradi-

tional invariance associated with rotation, translation, and exchange of atoms often seen

in molecular descriptor engineering. This approach allows us to capture the underlying

chemistry of the system in a manner that is insensitive to the choice of functional, while

being informed by the specific system the model is trained on. To validate the approach, I

have applied it to the prediction of adsorption energies for propane dehydrogenation [118]

on a platinum catalyst surface and found it to be significantly superior and reliable in its

predictive performance across different experimental settings. These results demonstrate

the potential of the novel approach in aiding the design and optimization of catalysts for

chemical reactions.

4.2 Methodology

The purpose of this section is to present a comprehensive overview of the proposed

approach for predicting the adsorption energies of reaction intermediates on a catalyst

surface. While the experimental case studies focused on the prediction of adsorption

energies for propane dehydrogenation on a platinum catalyst surface using three different

types of constant-size molecular fingerprints to generate invariant representations, it is

important to note that the proposed method is not limited to these specific choices of

data. This approach is more generalizable and can be applied to other types of molecular

descriptors as well.
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The section is structured as follows: First, I will provide an overview of the data collec-

tion and preparation process. Next, I will discuss the species descriptors or fingerprints

I have employed, the structure of the proposed model, and the training strategies used

to generate molecular representations. Finally, I will outline the process for predictive

modeling of adsorption energies from the IMR or invariant molecular representations gen-

erated.

4.2.1 Dataset - Data Collection and Preparation

It is well-established that adsorption energies of molecular species can vary significantly

depending on the metal surface being examined [83]. For the purpose of the experiments,

I utilized data on propane dehydrogenation on a platinum surface model [119]. This

work has been done in collaboration with researchers from the Department of Chem-

ical Engineering at the University of South Carolina, Columbia. The calculations for

the four DFT functionals, namely PBE-D3 [120, 121], RPBE [122], BEEF-vdW [101],

and SCAN+rVV10 [123] were performed using the Vienna Ab initio Simulation Package

(VASP) version 5.4.4 [124–126]. Additionally, data for training with random BEEF-vdW

ensembles was generated using an ensemble of 2000 non-self-consistent field (NSCF) ener-

gies. The NSCF energies are computed using various possible exchange-correlation func-

tionals (within the generalized gradient approximation) while using the RPBE electron

densities that are self-consistent only for the RPBE functional. This is the conventional

procedure in BEEF-vdW calculations. The data preparation step with training strategies

employed in the proposed model will be further elaborated upon in later sections. The

dataset consists of 46 intermediate species along with their SMILES notations. SMILES

notation is a naming convention for chemical species, with a set of rules allowing for a

unique representation of each chemical species. For instance, in SMILES nomenclature,

‘C’ represents a fully saturated and stable single-carbon molecule, i.e., CH4 (methane).

Unstable molecules or intermediates are denoted within square brackets, such as [CH3],
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[CH2], etc. Double and triple bonds are represented as ‘=’ and ‘#’, respectively, while

branched species are indicated within parentheses ‘()’. The dataset also includes the ad-

sorption energies for the Pt(111) metal surface calculated using all four DFT functionals

and the 2000 BEEF-vdW ensembles. Additional details on the DFT calculations can be

found in Appendix C.

4.2.2 Molecular Fingerprints

Molecular fingerprints can be broadly classified into two categories: 3D fingerprints

(coordinate based) and topological/2D fingerprints (non-coordinate-based). 3D finger-

prints suffer from the limitation that they require computationally expensive methods

such as DFT or other semi-empirical techniques for their generation. In contrast, topo-

logical/2D fingerprints offer an alternative means for generating molecular fingerprints

from SMILES notations that do not involve such computationally intensive processes.

Notably, the molecular fingerprints employed in this study do not include any informa-

tion regarding the catalyst since all species are adsorbed on the same Pt(111) catalyst

surface. In this study, I have utilized three different non-coordinate-based techniques to

obtain the fingerprints from SMILES notations of the molecular species. The following

section will provide a brief discussion of the three techniques.

4.2.2.1 Flat Molecular Fingerprints (24-length)

Molecular fingerprints are often used to represent the molecular structure of a species.

These fingerprints can be generated using various methods, including counting the differ-

ent bond types present around each atom in a molecular species. In this study, I have

employed constant-sized flat molecular fingerprints [127], similar to Ref. study [95], based

on the SMILES notation of each species. Specifically, I have generated 24-length flat

molecular fingerprints, which capture information about the number of different bond

types present in the molecule. An example of the molecular fingerprints generated using

this method is shown in Figure 4.1. These fingerprints provide more information than a
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Figure 4.1: 24-length flat molecular fingerprints for the species CH3CH2CH3. In this case,
C0 represents carbon atoms that are fully saturated (no free valence), while C1, C2, and
C3 represent carbon atoms with one, two, and three free valencies, respectively. This type
of fingerprint contains information based on the number of saturated and unsaturated
atoms and the number of bond counts between them.

basic bond count scheme, as they also take into account the number of free valencies and

more granular bond count information related to the free valencies. This enables a more

comprehensive understanding of the structural features of the molecule.

4.2.2.2 chEMBL Fingerprints (768-length)

In this study, I have adopted the pretrained chEMBL model [128] as an alternative

method for generating molecular fingerprints. The chEMBL model is an approximation to

the generative recurrent networks for de novo drug design in a prior study [129], primarily

intended to capture the syntax of molecular structure in terms of SMILES strings. The

resulting learned pattern probabilities can be used for de novo SMILES generation, making

these pretrained models widely employed in chemogenomics and de novo drug design. The

chEMBL model employed in this study is a masked language model (MLM). An MLM
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is basically a neural network trained to predict missing words in a text, enabling it to

learn the underlying structure and relationships between the words in the text. The

chEMBL model was trained from scratch using 438,552 SMILES notations, and generates

768-length molecular fingerprints for each species, yielding a rich representation of the

structural features of the molecule. These fingerprints have a broad range of applications,

including the prediction of chemical properties and the design of novel compounds.

4.2.2.3 Morgan Fingerprints (24-length)

Building on the exploration of molecular fingerprints, next I have incorporated the Mor-

gan fingerprints [130] for their unique approach to capturing molecular features. Circular

by design, Morgan fingerprints focus on the molecular environment of each atom within a

specified radius. By iterating over concentric bonds around each atom, this methodology

generates a descriptor that not only identifies the type of atom but also its distinct local

environment. In this study, I converted the SMILES notation of each species into 24-

length Morgan fingerprints by setting a radius of 2. This ensures the fingerprint captures

the molecular environment up to two bonds out from each atom (neighbors and neighbors

of neighbors). This choice in the descriptor, combined with the other fingerprint methods,

enhances the study’s depth, further enriching the comprehension of molecular structures

in the dataset.

4.2.3 Molecular Representations

Here in the current study, I have examined three distinct methods for generating molec-

ular representations from the fingerprints: the raw or the original fingerprints (Original),

PCA-based (PCA), and Siamese-based (IMR). The Original method involves using the

raw fingerprints obtained from SMILES notations without any additional transformation.

The second method employs principal component analysis (PCA) [91, 92] to transform

the raw fingerprints into lower dimensional molecular representations. This approach is

motivated by previous research [90] that found PCA to be effective in obtaining descrip-
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Figure 4.2: Three different methods were adopted to generate molecular representations
from molecular fingerprints. Top: (Original) No transformation or modification is done
on the original or raw fingerprints, Middle: (PCA) Molecular representations generated
based on principal component analysis, and Bottom: (IMR) Molecular representations
generated using the trained Siamese neural network model.

tors over other conventional descriptors. For the PCA-based molecular representations,

I have used the representation size that explains approximately 98% of the variance for

24-length flat molecular and Morgan fingerprints and 90% of the variance for chEMBL

model-based fingerprints. The third method referred to as IMR, utilizes a trained Siamese

neural network to generate invariant molecular representations from the raw fingerprints.

This allows for a comparison of the performance of different representation generation

methods and the identification of those that are most effective for predictive modeling

tasks. The process of generating these molecular representations from fingerprints is il-

lustrated in Figure 4.2. Overall, the current study enables the evaluation of the relative

effectiveness of various approaches for generating molecular representations, with poten-

tial applications in predictive modeling tasks. It is worth noting that the representations

obtained in this study are essentially transformed fingerprints, which either aim to reduce

the dimensionality of the fingerprints (PCA) or incorporate knowledge about the catalyst

(IMR).
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4.2.4 Structure of the Proposed Model

The fundamental aim of this study is to develop robust molecular representations for

reaction intermediates that are generalizable across multiple functionals. The Siamese

neural network [117] is selected for its ability to compare input data pairs and identify

their similarities and differences. The hypothesis is that training the network using all

functionals in the training set for a given surface will enable it to generate invariant and

informative representations of molecular species from raw fingerprints. These representa-

tions should be free from information specific to individual functionals but aware of the

surface system, allowing the resulting model to be more generalizable.

The Siamese neural network comprises two identical sub-networks with identical weights

and architecture, which are used to process and analyze the molecular fingerprints for each

pair of molecular species across all different functionals in the training set. These sub-

networks generate molecular representations that are then fed into a feedforward neural

network. These sub-networks are intended to identify informative information from the

raw fingerprints and provide an intermediate representation that the feedforward network

can use to learn the relative energy differences. The overall Siamese network is trained

to predict the relative difference in adsorption energies of the pair using Mean Absolute

Errors (MAEs) as the cost function.

Nonlinearity is incorporated through nonlinear activation functions [131–134] used in

the hidden layers of the Siamese networks. The sub-networks are randomly initial-

ized [135, 136] and their weights are updated during training to minimize the MAEs.

Figure 4.3(a) illustrates the overall training process of the proposed network. To ensure

a fair comparison, I have used the same representation size for the Siamese network to

generate representations (IMR) as the number of components used for the corresponding

PCA-based molecular representations (PCA).
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Figure 4.3: Two major steps of the proposed method/pipeline: (a) training Siamese neural
network to generate invariant molecular representations (IMR) across different functionals
using relative energy difference between species, and (b) predictive modeling of adsorption
energies using IMR generated by the Siamese model trained in step (a).

4.2.5 Training Strategies using the Proposed Model

The training of the Siamese neural network in this study involved three distinct strate-

gies. The first two strategies, namely (i) four functional model (FFM) training, and (ii)

BEEF-vdW ensemble model (BEM) training, made use of additional functional informa-

tion to generate more meaningful and concise molecular representations for the predictive

modeling tasks. The third training strategy, referred to as functional specific model (FSM)

training, served as a validation check for the results obtained. Further details on these

training strategies will be presented in the corresponding experimental result sections.
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4.2.6 Predictive Modeling with the Proposed Model

In this study, I propose a predictive modeling mechanism for adsorption energies, illus-

trated in Figure 4.3(b). The first step involves extracting molecular fingerprints based on

atomic bond types and counts (flat fingerprints) or utilizing the pretrained chEMBL model

(chEMBL fingerprints) or using the Morgan fingerprints. Subsequently, the Siamese neu-

ral networks are trained using the training strategies and steps outlined in the previous

section, as shown in Figure 4.3(a). The resulting trained sub-network generates IMR for

the training samples of molecular species. Finally, I utilize various machine learning algo-

rithms, including ridge, elastic net, kernel ridge, and support vector regression, to train

on the IMR generated by the trained sub-network and conduct predictive analysis of the

adsorption energies of corresponding molecular samples.

The motivation behind utilizing predictive modeling algorithms on top of the IMR, or

in other words, the representations obtained from the trained Siamese network, can be

explained as follows. Firstly, with the Siamese network, this work aims to learn molecu-

lar representations that are invariant across different functionals. I anticipate that these

representations would capture the relationship of the fingerprints to the adsorption ener-

gies without relying on the functional but rather considering only the surface system and

molecular structures. However, to evaluate the informativeness of IMR toward learning

the adsorption energies, I have employed functional-dependent predictive models as the

second step. In this study, I have used four machine learning algorithms, namely ridge,

elastic net, kernel ridge, and support vector regression, to generate functional-dependent

predictive models.

In summary, the input for the predictive ML models was the IMR or the invariant

molecular representations of the species generated by the proposed model and training

strategy from the raw fingerprints, and the outputs were the actual adsorption energies of

those species. Later on, I evaluate the performance of the IMR in comparison to raw or
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the original fingerprints (Original) and PCA-based representations (PCA) on predictive

analysis.

4.3 Results and Discussion

In the following sections, I have provided a detailed description of the simulation process

and results for all the case studies. The observations on the results are also presented.

4.3.1 Simulation

Given the inherent challenges posed by the dataset size of 46 molecules, this study

meticulously adopted a robust approach. For each of the experimental case studies, I

have conducted 10 random trials, with each trial utilizing a different randomly chosen

train and test set at a 2:1 ratio (i.e., approximately 67% of the data for training and 33%

for testing), ensuring enhanced variability and consistency in the results.

For each trial, the training data was further subjected to 5-fold cross-validation, where

the training set was divided into five subsets. Four of these subsets were employed to train

the ML models for predicting adsorption energies, while the fifth subset was designated

as the validation set. This process was iterated five times, with each subset taking its

turn as the validation set. Model parameters were optimized based on the performance

across these validation sets.

I have evaluated the three different molecular representations in predicting the adsorp-

tion energies of various species based on the mean and standard deviation of the mean

absolute errors (MAEs). To reinforce the reliability of the observations, I have employed a

t-test with α = 0.05 as the significance level. Furthermore, to safeguard against potential

biases and to encompass a broad spectrum of analysis, for each experimental case, this

study employed four distinct machine-learning algorithms: ridge regression (ridge), elastic

net regression (elastic), support vector regression (svr), and kernel ridge regression (krr).
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4.3.2 Four Functional Model (FFM) Training

I first employed a training and testing strategy utilizing data from four distinct DFT

functionals: PBE-D3, BEEF-vdW, RPBE, and SCAN+rVV10. I have designed four

experimental scenarios, each targeting predictive performance for one of these functionals.

For each case, the data from the test functional was reserved, and the Siamese network was

trained using molecular species pairs from the remaining three functionals to predict their

"relative energy difference". Once trained, this network effectively translates molecular

fingerprints into representations.

To assess these representations’ predictive capability for adsorption on the test func-

tional, I first randomly partitioned its data into training and test sets for each trial. I then

trained various ML models on the training data by using the representations derived from

the trained Siamese network. Subsequently, the performance of these ML models was eval-

uated on the held-out test samples from the test functional. The resulting Mean Absolute

Errors (MAEs) indicate the discrepancies between the predicted adsorption energies and

the DFT-calculated ones.

To evaluate the method’s generalization capacity, I have tested it using four ML mod-

els: ridge, elastic, krr, and svr. Each model was trained on three different representations

(Original, PCA, and IMR). The Originals are unmodified fingerprints; PCA representa-

tions come from principal component analysis applied to these fingerprints, while IMR

uses the Siamese network-trained representations.

By evaluating IMR’s performance on data excluded from the corresponding functional

during Siamese model training, this study assesses its capability to adapt to novel DFT

functionals, showcasing the proposed approach’s broad applicability.

4.3.2.1 Representations Generated from Flat Fingerprints

I initially examined the experimental results using the FFM training strategy and

representations generated from flat molecular fingerprints, which are based on atomic bond
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Table 4.1: Evaluation of three molecular representations (Original, PCA, IMR) using 24-
length flat molecular fingerprints and FFM strategy. Displayed values are Mean Absolute
Errors (MAEs) between predicted and DFT-calculated energies in electron volts (eV).
Lower MAEs signify better performance. Bold values are statistically significant based
on the t-test.

Test Functional ML Alg. Original PCA IMR

PBE-D3

ridge 0.31 ± 0.04 0.32 ± 0.04 0.26 ± 0.05
elastic 0.33 ± 0.04 0.34 ± 0.05 0.27 ± 0.06
krr 0.35 ± 0.05 0.33 ± 0.06 0.29 ± 0.03
svr 0.31 ± 0.06 0.30 ± 0.06 0.29 ± 0.04

BEEF-vdW

ridge 0.31 ± 0.05 0.31 ± 0.05 0.16 ± 0.03
elastic 0.32 ± 0.05 0.33 ± 0.04 0.16 ± 0.02
krr 0.33 ± 0.04 0.34 ± 0.05 0.15 ± 0.04
svr 0.31 ± 0.05 0.31 ± 0.06 0.14 ± 0.04

RPBE

ridge 0.31 ± 0.05 0.31 ± 0.05 0.22 ± 0.06
elastic 0.33 ± 0.05 0.33 ± 0.05 0.20 ± 0.05
krr 0.35 ± 0.05 0.36 ± 0.04 0.22 ± 0.05
svr 0.32 ± 0.07 0.34 ± 0.07 0.20 ± 0.04

SCAN+rVV10

ridge 0.37 ± 0.05 0.38 ± 0.04 0.25 ± 0.06
elastic 0.40 ± 0.04 0.39 ± 0.04 0.24 ± 0.03
krr 0.42 ± 0.08 0.42 ± 0.07 0.23 ± 0.05
svr 0.38 ± 0.08 0.39 ± 0.10 0.24 ± 0.06

types and counts in each molecular species (as mentioned in detail in the earlier section).

Table 4.1 presents the corresponding outcomes, which display the test functional used in

each experimental case (Test Functional), the machine learning algorithm employed for

predictions of adsorption energies (ML Alg.), and the type of input representations used,

namely Original, PCA, and IMR. The empirical findings indicate statistically significant

improvements in the use of molecular representations learned by the Siamese network

(IMR) compared to PCA-based representations (PCA) for three out of four functionals

(BEEF-vdW, RPBE, and SCAN+rVV10). For PBE-D3, I also observed improvements

when using IMR, although this was statistically significant in the case of the ‘ridge’ and

‘elastic net’ as the predictive algorithm.
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Table 4.2: Evaluation of three molecular representations (Original, PCA, IMR) using
768-length fingerprints from the chEMBL model and FFM strategy. The values presented
are Mean Absolute Errors (MAEs) between the predicted and DFT-calculated adsorption
energies, measured in electron volts (eV). Smaller MAEs signify better performance. Bold
values are statistically significant via t-test.

Test Functional ML Alg. Original PCA IMR

PBE-D3

ridge 0.39 ± 0.06 0.37 ± 0.05 0.24 ± 0.06
elastic 0.32 ± 0.07 0.32 ± 0.04 0.23 ± 0.04
krr 0.27 ± 0.07 0.28 ± 0.05 0.19 ± 0.07
svr 0.28 ± 0.06 0.28 ± 0.06 0.18 ± 0.06

BEEF-vdW

ridge 0.42 ± 0.07 0.36 ± 0.05 0.14 ± 0.04
elastic 0.34 ± 0.05 0.33 ± 0.04 0.14 ± 0.05
krr 0.34 ± 0.06 0.32 ± 0.05 0.15 ± 0.07
svr 0.32 ± 0.05 0.34 ± 0.04 0.14 ± 0.05

RPBE

ridge 0.46 ± 0.08 0.39 ± 0.05 0.18 ± 0.05
elastic 0.37 ± 0.05 0.38 ± 0.04 0.19 ± 0.06
krr 0.44 ± 0.07 0.37 ± 0.04 0.22 ± 0.06
svr 0.38 ± 0.05 0.39 ± 0.04 0.20 ± 0.05

SCAN+rVV10

ridge 0.44 ± 0.06 0.39 ± 0.05 0.23 ± 0.06
elastic 0.39 ± 0.05 0.38 ± 0.03 0.23 ± 0.06
krr 0.37 ± 0.04 0.39 ± 0.03 0.22 ± 0.03
svr 0.35 ± 0.05 0.40 ± 0.05 0.19 ± 0.03

4.3.2.2 Representations Generated from Transfer Learning

Subsequently, I investigated the performance of the FFM training approach, but this

time, with representations generated by using fingerprints from the chEMBL model. The

results of the experimental cases are presented in Table 4.2.

Notably, using representations generated from chEMBL fingerprints also demonstrated

a clear trend of statistically significant improvements when adopting IMR compared to

PCA representations for all four DFT functionals. However, if we consider the perfor-

mance of the Original representations, the errors varied more widely among the different

predictive machine learning algorithms (ridge, elastic, KRR, SVR) compared to those

obtained using the flat fingerprints. This indicates that in some instances, the machine

learning models struggled to fit properly into the Original representations, as the fea-
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Table 4.3: Performance evaluation of three molecular representations (Original, PCA,
IMR) using 24-length Morgan fingerprints and FFM training strategy. The values pre-
sented are Mean Absolute Errors (MAEs) between the predicted and DFT-calculated
adsorption energies, in electron volts (eV). A smaller MAE value indicates better perfor-
mance. Values highlighted in bold are determined to be statistically significant via the
t-test.

Test Functional ML Alg. Original PCA IMR

PBE-D3

ridge 0.34 ± 0.05 0.33 ± 0.05 0.34 ± 0.11
elastic 0.32 ± 0.05 0.31 ± 0.05 0.25 ± 0.04
krr 0.31 ± 0.05 0.33 ± 0.07 0.28 ± 0.05
svr 0.31 ± 0.05 0.31 ± 0.05 0.28 ± 0.06

BEEF-vdW

ridge 0.34 ± 0.04 0.34 ± 0.04 0.11 ± 0.04
elastic 0.33 ± 0.03 0.34 ± 0.04 0.11 ± 0.04
krr 0.33 ± 0.04 0.34 ± 0.04 0.10 ± 0.03
svr 0.33 ± 0.05 0.32 ± 0.05 0.10 ± 0.03

RPBE

ridge 0.37 ± 0.06 0.37 ± 0.06 0.18 ± 0.03
elastic 0.37 ± 0.05 0.38 ± 0.05 0.17 ± 0.03
krr 0.38 ± 0.05 0.39 ± 0.05 0.17 ± 0.04
svr 0.38 ± 0.06 0.38 ± 0.06 0.17 ± 0.04

SCAN+rVV10

ridge 0.39 ± 0.05 0.39 ± 0.05 0.22 ± 0.05
elastic 0.40 ± 0.03 0.40 ± 0.04 0.20 ± 0.06
krr 0.39 ± 0.04 0.39 ± 0.03 0.18 ± 0.03
svr 0.39 ± 0.05 0.39 ± 0.05 0.19 ± 0.04

ture dimension (d = 768) in these Original representations was much larger (d >> n)

compared to the number of samples/species (n = 46).

4.3.2.3 Representations Generated from Morgan Fingerprints

Moving on to the results derived from Morgan’s fingerprints, I have applied the same

FFM training strategy. The details of this analysis can be found in Table 4.3. Similar

to the previous findings, the molecular representations processed by the Siamese network

(IMR) stood out, demonstrating superior performance over the PCA-based representa-

tions, particularly for the BEEF-vdW, RPBE, and SCAN+rVV10 functionals. As for the

PBE-D3, while there was an evident improvement with the use of IMR, it was statistically

significant only in the case when I employed the ‘elastic net’ as the regression algorithm.
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4.3.3 BEEF-vdW Ensemble Model (BEM) Training

Next, I have adopted a similar approach to the FFM training, with a few key differences.

To train the predictive machine learning models namely ridge, elastic, krr, and svr, I have

utilized data from one of the four DFT functionals in each case focusing on learning

the predictive performance on that specific functional. However, instead of using the

remaining three DFT functionals to train the Siamese network (as we have seen in FFM

training), I used the BEEF-vdW ensembles, and the Siamese network was trained using

molecular species pairs from these BEEF-vdW ensembles to predict their "relative energy

difference".

The BEEF-vdW functional produces an ensemble of 2000 NSCF energies for each

species. In every trial, I randomly select an ensemble of 50 BEEF-vdW functional energies

from the available 2000. This allows us to treat each BEEF-vdW ensemble functional as

distinct, leveraging them as different functionals—a novel approach in physical chemistry.

Upon training, the Siamese network adeptly converts the molecular fingerprints into

representations. To assess the predictive power of these representations for adsorption on

a test functional, I partitioned its data into training and test sets for each trial. Different

ML models are trained on the training set by using the representations generated from the

trained Siamese network. These ML models’ performance is then evaluated on the held-

out test samples of the test functional, with the resulting Mean Absolute Errors (MAEs)

denoting the difference between predicted and DFT-calculated adsorption energies.

The primary objective in training the Siamese network on these ensemble functional

energies is to learn molecular representations that capture the inherent similarities and

variances between pairs of molecules across different BEEF-vdW ensemble energies. The

effectiveness of these learned representations is validated by using them to train ML

models that predict the adsorption energies on distinct DFT functionals.
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Table 4.4: Evaluation of three molecular representations (Original, PCA, IMR) generated
using 24-length flat molecular fingerprints with the BEM training strategy. Presented
values are Mean Absolute Errors (MAEs) between the predicted and DFT-calculated
adsorption energies, in electron volts (eV). A smaller MAE value indicates better per-
formance. Values that are statistically significant based on the t-test are represented in
bold.

Test Functional ML Alg. Original PCA IMR

PBE-D3

ridge 0.31 ± 0.04 0.32 ± 0.04 0.25 ± 0.04
elastic 0.33 ± 0.04 0.34 ± 0.05 0.26 ± 0.05
krr 0.35 ± 0.05 0.33 ± 0.06 0.23 ± 0.05
svr 0.31 ± 0.06 0.30 ± 0.06 0.24 ± 0.04

BEEF-vdW

ridge 0.31 ± 0.05 0.31 ± 0.05 0.19 ± 0.03
elastic 0.32 ± 0.05 0.33 ± 0.04 0.19 ± 0.03
krr 0.33 ± 0.04 0.35 ± 0.04 0.13 ± 0.04
svr 0.31 ± 0.05 0.31 ± 0.06 0.14 ± 0.05

RPBE

ridge 0.31 ± 0.05 0.31 ± 0.05 0.25 ± 0.07
elastic 0.33 ± 0.05 0.33 ± 0.04 0.23 ± 0.06
krr 0.35 ± 0.05 0.36 ± 0.04 0.19 ± 0.04
svr 0.32 ± 0.07 0.34 ± 0.07 0.21 ± 0.07

SCAN+rVV10

ridge 0.37 ± 0.05 0.38 ± 0.04 0.24 ± 0.05
elastic 0.40 ± 0.04 0.39 ± 0.05 0.23 ± 0.05
krr 0.42 ± 0.08 0.41 ± 0.07 0.20 ± 0.04
svr 0.38 ± 0.08 0.39 ± 0.10 0.22 ± 0.04

4.3.3.1 Representations Generated from Flat Fingerprints

To assess the performance of the approach in the context of BEEF-vdW Ensemble

Model (BEM) training, I first evaluated the performance of the model using flat molecular

fingerprints. Table 4.4 presents the corresponding outcomes for this experiment. In this

table, I present the test functional used in the experimental case (Test Functional), the

machine learning algorithm utilized for predicting adsorption energies (ML Alg.), and

the type of representations (Original, PCA, and IMR) that were used as input for the

predictive models.

As we can see, the molecular representations generated by the Siamese network (IMR)

exhibit noteworthy improvements for all testing functionals and across all predictive ma-

chine learning algorithms, as evidenced by the results. However, when the analysis was
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Table 4.5: Performance evaluation of three molecular representations (Original, PCA, and
IMR) using 768-length fingerprints derived from the chEMBL model, combined with the
BEM training strategy. The values are given in terms of Mean Absolute Errors (MAEs)
between the predicted and DFT-calculated adsorption energies, expressed in electron volts
(eV). A lower MAE value signifies superior performance. Bolded values indicate statistical
significance as determined by the t-test.

Test Functional ML Alg. Original PCA IMR

PBE-D3

ridge 0.39 ± 0.06 0.35 ± 0.05 0.26 ± 0.04
elastic 0.32 ± 0.07 0.32 ± 0.04 0.22 ± 0.04
krr 0.27 ± 0.07 0.29 ± 0.04 0.22 ± 0.05
svr 0.28 ± 0.06 0.29 ± 0.06 0.20 ± 0.06

BEEF-vdW

ridge 0.42 ± 0.07 0.37 ± 0.06 0.13 ± 0.05
elastic 0.34 ± 0.05 0.33 ± 0.04 0.13 ± 0.05
krr 0.34 ± 0.06 0.33 ± 0.04 0.11 ± 0.05
svr 0.32 ± 0.05 0.34 ± 0.05 0.15 ± 0.07

RPBE

ridge 0.46 ± 0.08 0.38 ± 0.03 0.17 ± 0.04
elastic 0.37 ± 0.05 0.38 ± 0.04 0.17 ± 0.03
krr 0.44 ± 0.07 0.37 ± 0.04 0.18 ± 0.04
svr 0.38 ± 0.05 0.39 ± 0.04 0.16 ± 0.06

SCAN+rVV10

ridge 0.44 ± 0.06 0.38 ± 0.04 0.25 ± 0.10
elastic 0.39 ± 0.05 0.39 ± 0.03 0.23 ± 0.07
krr 0.37 ± 0.04 0.39 ± 0.03 0.18 ± 0.05
svr 0.35 ± 0.05 0.39 ± 0.05 0.20 ± 0.04

compared to the findings presented in the section on FFM training with 24-length flat

fingerprints, I found no statistically significant difference in the IMR performance between

the FFM and BEM training strategies for the majority of cases; specifically, this was true

in 12 out of 16 cases.

4.3.3.2 Representations Generated from Transfer Learning

Next, in Table 4.5, I present the empirical results of the case study in which I used a

similar training strategy (BEM training), but with representations generated by finger-

prints from pretrained chEMBL model. Consistent with the earlier experimental findings,

the current results confirm the superiority of IMR over PCA-based representations across

all experimental cases. Notably, IMR showed exceptional performance specific to the

BEEF-vdW functional, compared to the other three DFT functionals. These phenomena
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Table 4.6: Performance evaluation of three molecular representations (Original, PCA,
and IMR) using 24-length Morgan fingerprints with the BEM training strategy. The
values are presented in terms of Mean Absolute Errors (MAEs) between the predicted
and DFT-calculated adsorption energies, expressed in electron volts (eV). A lower MAE
value denotes superior performance. Values highlighted in bold are determined to be
statistically significant via the t-test.

Test Functional ML Alg. Original PCA IMR

PBE-D3

ridge 0.34 ± 0.05 0.33 ± 0.04 0.31 ± 0.07
elastic 0.32 ± 0.05 0.31 ± 0.04 0.22 ± 0.04
krr 0.31 ± 0.05 0.34 ± 0.06 0.27 ± 0.06
svr 0.31 ± 0.05 0.32 ± 0.06 0.25 ± 0.05

BEEF-vdW

ridge 0.34 ± 0.04 0.34 ± 0.05 0.11 ± 0.02
elastic 0.33 ± 0.03 0.33 ± 0.04 0.12 ± 0.03
krr 0.33 ± 0.04 0.34 ± 0.04 0.10 ± 0.05
svr 0.33 ± 0.05 0.33 ± 0.05 0.10 ± 0.07

RPBE

ridge 0.37 ± 0.06 0.37 ± 0.07 0.18 ± 0.09
elastic 0.37 ± 0.05 0.39 ± 0.05 0.19 ± 0.13
krr 0.38 ± 0.05 0.38 ± 0.05 0.18 ± 0.06
svr 0.38 ± 0.06 0.38 ± 0.06 0.18 ± 0.05

SCAN+rVV10

ridge 0.39 ± 0.05 0.39 ± 0.05 0.23 ± 0.06
elastic 0.40 ± 0.03 0.39 ± 0.04 0.22 ± 0.05
krr 0.39 ± 0.04 0.39 ± 0.03 0.19 ± 0.03
svr 0.39 ± 0.05 0.39 ± 0.05 0.22 ± 0.05

can be attributed to the training strategy of the Siamese model, which is based on the

random BEEF-vdW ensembles.

4.3.3.3 Representations Generated from Morgan Fingerprints

Diving into the results from the Morgan fingerprints, as presented in Table 4.6, the

application of the BEM training strategy again demonstrated patterns in line with the

prior observations. Much like before, the IMR consistently outperformed the PCA-based

representations across all the experimental cases. Specifically, when using the BEEF-vdW

functional for testing, the performance spike was evident. As mentioned in the earlier

section, this enhanced performance particularly in the BEEF-vdW test functional can

likely be traced back to the Siamese model’s training approach, which heavily leverages

the random BEEF-vdW ensembles.
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Figure 4.4: Feature contribution analysis across different training strategies and DFT
functionals. This figure illustrates the mean absolute contribution of various molecular
fingerprints (e.g., H, C, C0) in a matrix format, where rows and columns represent train-
ing strategies for the Siamese network and DFT functionals, respectively. The 1st, 2nd,
and 3rd rows represent the FFM, BEM, and FSM training strategies, while the 1st to
4th columns correspond to PBE-D3, BEEF-vdW, RPBE, and SCAN+rVV10 function-
als, respectively. A dotted red line in each plot marks a threshold set at 50% of the
maximum contribution value for that specific scenario, delineating the top contributing
fingerprints. Fingerprints with negligible contributions were omitted for clarity. This
analysis underscores the significant fingerprints contributing to adsorption energies across
various training strategies and functionals.

4.3.4 Sanity Check

As a validation of the proposed approach, I have conducted four experimental case

studies using the four DFT functionals (similar to FFM and BEM) but these case studies

are designed to simulate the scenario of model training without additional functionals,

and the results are presented in detail in Appendix B, which includes information on the

experimental setup and the corresponding findings.
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4.3.5 Fingerprint Contribution Analysis

In this section, I present a comprehensive feature contribution analysis to examine the

impact of different molecular fingerprints on adsorption energy predictions. The analy-

sis includes all three training strategies for the Siamese network namely- the Four Func-

tional Model (FFM), the BEEF-vdW Ensemble Model (BEM), and the Functional Specific

Model (FSM), across all four distinct DFT functionals: PBE-D3, BEEF-vdW, RPBE, and

SCAN+rVV10. Figure 4.4 illustrates the mean absolute contribution of the fingerprints

(such as H, C, and C0) for each training strategy and functional. The attribution values

shown here were determined using integrated gradients, a method implemented in the

Python-based Captum library [137]. Notably, for functionals like PBE-D3, BEEF-vdW,

and RPBE, both FFM and BEM consistently identify the same top contributing finger-

prints (e.g., number of hydrogen atoms, number of carbon atoms, and carbon-hydrogen

bonds), indicating a shared understanding of key features. This agreement highlights

the robustness of the proposed training strategy to learn IMR that captures essential

characteristics from the original fingerprints, leading to superior predictive performance.

However, the FSM strategy, which lacks the benefit of leveraging additional functionals,

shows divergent feature contributions, underlining the effectiveness of FFM and BEM in

exploiting functional invariances. Interestingly, when testing on the SCAN+rVV10 func-

tional, we can see weaker agreement between FFM and BEM. This can be attributed to

the distinct characteristics of the SCAN+rVV10 as a meta-GGA functional, in contrast to

the other three GGA (Generalized Gradient Approximation) functionals (such as PBE-D3,

BEEF-vdW, and RPBE) used in obtaining the invariant molecular representations, high-

lighting the importance of using diverse functionals in generating the invariant and robust

representations. Notably, this aligns with findings by a prior study [138], that demon-

strated through Mahalanobis distance analysis that the SCAN+rVV10 is comparatively

less accurately captured by methods typically effective for GGA functionals, underscoring
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its unique functional properties. The fingerprint contribution analysis emphasizes the

capability of the proposed strategies to extract meaningful essence and insights from orig-

inal molecular fingerprints, thereby generating superior representations that ultimately

enhance the predictive accuracy of adsorption energies. A species-based breakdown of

fingerprint contributions is provided in Appendix D for one of the experimental case

scenarios.

4.3.6 Goodness-of-Fit Analysis (using D2-score)

Finally, I conducted a comprehensive goodness-of-fit analysis using the D2-score, im-

plemented in Python’s Scikit-learn [71] library. The D2-score is a metric that assesses how

well a model explains variance compared to a null model, where the null model is based

on using the median from the training samples as the predictions for the test samples.

Additional details on how this score is defined can be found in Appendix E. This approach

was utilized to evaluate the performance of the models across all three training strate-

gies, namely FFM, BEM, and FSM, along with the molecular representations used in the

study- Original, PCA, and IMR. The findings reveal that models based on Original and

PCA representations were no better than the null model, a behavior observed irrespective

of molecular fingerprints used, such as 24-length flat molecular fingerprints, 768-length

chEMBL fingerprints, and 24-length Morgan fingerprints, for generating molecular rep-

resentations. This phenomenon highlights the challenges posed by the dataset size and

complexity of the molecular interactions considered in this study. In contrast, models

trained with the IMR consistently led to significantly better-fitted models, in the case

of FFM and BEM training strategies, underscoring the benefit of leveraging additional

functionals to learn robust representations. Furthermore, aligning with the prior findings,

this study observed that models especially demonstrate a better fit to the BEEF-vdW

functional when tested, on both the FFM and BEM training strategies. Detailed re-

sults, including the D2-scores for each case study, are available in Appendix E for further
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reference.

4.4 Learning IMRs with Multiple Surface Systems

In this section, I proposed an extension of the Invariant Molecular Representation

(IMR) learning method to larger datasets and multiple surface systems, addressing the

limitations of the previous method [29] which used only one surface system - Pt (111) and

46 reaction samples.

4.4.1 Datasets

For this study, I have utilized the datasets from large repositories such as the Catal-

ysis Hub [139] and the Open Catalyst Project [140] to demonstrate the robustness and

scalability of the proposed extension.

Catalysis Hub: I have selected the "High-Throughput Calculations of Catalytic Prop-

erties of Bimetallic Alloy Surfaces" [141] from Catalysis Hub as one of the datasets for the

current study. The dataset includes chemisorption properties for key adsorbates across

2,035 bimetallic alloy surfaces, each in distinct stoichiometric ratios. This extensive col-

lection covers a wide and varied chemical space of importance for catalytic applications,

enabling the creation of machine learning-driven predictive models to accelerate theo-

retical catalysis research and discovery. Notably, the dataset uses the BEEF-vdW DFT

functional for calculating the adsorption energies, which is particularly suited for captur-

ing van der Waals interactions.

Open Catalyst 2020 (OC20): The OC20 dataset [98] is another comprehensive re-

source that provides adsorption energies for various reaction intermediates on different

catalyst surfaces. In this study, I have employed this dataset, particularly for the Initial

Structure to Relaxed Energy (IS2RE) task data, to further validate the efficacy of the

extension of the IMR learning method in diverse catalytic environments. The dataset

consists of 1,281,040 Density Functional Theory (DFT) relaxations and includes charac-

teristics related to bulk, adsorbate, and reaction site properties. The IS2RE task involves
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predicting the energy difference between an initial and a relaxed structure, which is crucial

for understanding the stability and reactivity of the adsorbates on catalyst surfaces.

4.4.2 Limitations of Previous Study

This section identifies a few limitations of the initial work presented previously when

learning invariant molecular representations with the datasets mentioned above:

1. Single Surface System: The original work on the IMR learning method [29]

focused on a single surface system - Pt (111). Therefore, it required generating

descriptors only for the adsorbate since all the reaction samples used the same

surface system. This approach is insufficient for reactions involving multiple surface

systems. With multiple surface systems, it is crucial to generate descriptors for both

the adsorbate and the surface to capture the interaction dynamics accurately.

2. Large Number of Reaction Samples: The previous study [29] used a Siamese

neural network, generating pairwise data by combining each pair of molecules and

training the model based on the relative energy differences for those pairs across all

environments or functionals. However, with more reaction samples in larger datasets

(e.g., OC20 data), generating pairwise samples would require training on billions of

samples, which is computationally prohibitive.

4.4.3 Methodology

I have gathered adsorption energy data from the selected datasets, ensuring a wide range

of surface systems and adsorbates. To address the limitations, the proposed approach is

implemented with the following steps:

1. Descriptor Generation: I have generated descriptors for both the adsorbates and

the surface systems as both contain invaluable information required to define the

characteristics of adsorption reactions properly. For the adsorbate, I have adopted
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Figure 4.5: Pipeline of the proposed study: (a) Generating descriptors for adsorbate
and surface, (b) Multitask learner for generating invariant representations and predicting
adsorption energies.

the pretrained chEMBL model [128] to generate 768-length molecular descriptors,

similar to the initial IMR method [29]. For the surface system, I utilized the pre-

trained DimeNet++ model from the Open Catalyst Project repository [142, 143].

For this study, I have generated similar 768-length surface descriptors to define the

surface. Figure 4.5 demonstrates the pipeline used to generate the surface and ad-

sorbate descriptors that were used in the machine learning model to predict the

adsorption energies.

2. Model Structure: As the large number of samples restricted us from forming

pairwise data, I have used a multitask learner where a common shared encoder

is used to learn the invariant molecular representations that were shared by both

tasks of predicting energies for both functionals. Separate headers are used to learn

functional-specific characteristics. The trained encoder generates richer represen-
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Figure 4.6: Multitask learner architecture: The encoder is shared for both tasks that
learn invariant molecular representations, and functional-specific heads are used to learn
functional-specific characteristics.

Table 4.7: Performance evaluation of three molecular representations (Original, PCA,
and IMR) in larger datasets with multiple surface systems. The section reports the mean
and standard deviation of the corresponding metric over 10 random trials. Statistically
significant results are in bold.

Metric Dataset Functional Original PCA IMR

R2 Catalysis Hub BEEF-vdW 0.894 ± 0.003 0.900 ± 0.004 0.931 ± 0.005
OC20 RPBE 0.634 ± 0.003 0.627 ± 0.003 0.678 ± 0.003

MAE Catalysis Hub BEEF-vdW 0.522 ± 0.006 0.505 ± 0.005 0.388 ± 0.016
OC20 RPBE 0.993 ± 0.002 1.000 ± 0.002 0.906 ± 0.002

tations by learning from the invariances of both functionals used. Finally, I have

used the linear regression model implemented in Python’s Scikit-learn [71] library

on top of Original, PCA, and IMR (learned and generated by the shared encoder) to

predict the adsorption energies. The two functionals I used to impose and learn the

invariances are BEEF-vdW for the data from Catalysis Hub, and RPBE for OC20

data. The architecture is illustrated in Figure 4.6.

4.4.4 Results

The performance of the extended IMR learning method was evaluated using metrics

such as R2 (the higher the better) and Mean Absolute Error (MAE) (the lower the better).
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Table 4.7 presents the results of the performance evaluation for three molecular represen-

tations (Original, PCA, and IMR) on larger datasets with multiple surface systems. The

evaluation is reported based on the mean and standard deviation of the corresponding

metrics over 10 random trials. Each trial utilized a different randomly chosen train and

test set at a 3:1 ratio (i.e., 75% of the data for training and 25% for testing), ensuring

enhanced variability and consistency in the results. For statistical significance tests, I

have used a t-test with α = 0.05 as the significance level.

The findings show that the proposed approach to learning invariant molecular repre-

sentations achieves substantially better performance than the Original and PCA-based

representations in predicting adsorption energies across various datasets and surface sys-

tems. By proposing a method that avoids the need for pairwise data, thus allowing the

IMR learning method to scale to large datasets, and accommodating diverse surface sys-

tems, this study addresses two major limitations of the original IMR work [29]. I believe

that this method of generating robust and reliable molecular representations holds great

promise for predictive modeling in catalysis research, offering substantial impact in the

design and optimization of catalysts for chemical reactions.

4.5 Summary

In this chapter, initially, I have introduced a novel learning method for predicting the

adsorption energy of reaction intermediates. The proposed approach demonstrates the

efficacy of learning from multiple functionals to overcome the challenges posed by the

idiosyncrasies of different functionals by capturing the relative energy difference between

pairs of intermediates calculated within the same functional and training the model across

all different functionals. This study has reached several key conclusions: (i) by incorporat-

ing additional functionals, the proposed method generates superior representations (IMR)

that lead to significantly improved performance compared to the Original and PCA-based

representations; (ii) throughout numerous test cases, the Siamese model consistently per-
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formed more effectively with BEEF-vdW as the test functional. Interestingly, this boost

in performance persisted not only in the BEM training strategy where I used BEEF-vdW

ensembles to train the Siamese model but also when the model was trained on the other

three DFT functionals (FFM training strategy); (iii) the performance of two different

training strategies with additional functionals (FFM and BEM) was found to be similar,

despite the fact that FFM employed only three training DFT functionals, whereas the

BEM employed 50 random ensembles or functionals. This can be attributed to the fact

that even though the number of BEEF-vdW ensembles employed in the training process

is large, they are less diverse compared to the DFT functionals, resulting in each DFT

functional being more informative for learning the invariant molecular representations

(IMR) of the species; and finally, (iv) a novel extension of the IMR learning method is

proposed to address the limitations of the initial pair-wise model. This extension gen-

erates descriptors for both the adsorbate and the surface, enabling accurate modeling of

interactions across multiple surface systems, and employs an efficient approach to han-

dle the large number of reaction samples in extensive datasets, thereby facilitating the

learning of invariant molecular representations from diverse functionals.

The proposed approach represents a significant advancement in the field of predicting

the adsorption energy of reaction intermediates, as it enables the capture of the underlying

chemistry of the system in a manner that is insensitive to the choice of functional and

aware of the system the models are trained on. The findings of the study highlight

the potential of the proposed approach to generating informative and robust molecular

representations, which can result in improved performance in predictive modeling tasks.

Moving forward, I anticipate the general applicability of the method to a broad spec-

trum of functionals. In addition, a key area of potential work is predicting reliable transi-

tion state energies through machine learning, as these are often the most time-consuming

steps for generating accurate chemical reaction models on catalysts. Incorporating these

transition states and reaction energies to generate better predictive models can help to
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generate accurate inputs with quantified uncertainty into microkinetic models, to better

predict key experimental data, and allow for accurate calibration of existing experimental

data into kinetic models. The objective is to learn molecular representations that are

invariant, robust, and reliable, which can inform the design and optimization of catalysts

for chemical reactions. I expect that the proposed method holds great promise in the

field of predictive modeling for the adsorption energy of reaction intermediates and has

the potential to make a substantial impact in this area.



CHAPTER 5: CGLEARN: CONSISTENT GRADIENT-BASED LEARNING FOR

OUT-OF-DISTRIBUTION GENERALIZATION

5.1 Introduction

The advent of large datasets, sophisticated algorithms, and highly advanced complex

models has propelled machine learning to achieve remarkable success across various do-

mains. Despite these advancements, the performance of these models is heavily reliant on

the assumption that the test data distribution is identical to the training data distribution.

However, this dependency often leads to overfitting, as models become overparameter-

ized and inadvertently learn spurious correlations from the training data [10–12]. Tradi-

tional models prioritize predictive accuracy without accounting for the causal relationships

within the data, which becomes problematic when there are discrepancies between the

training and test distributions. Consequently, models that rely on these spurious corre-

lations exhibit significant performance degradation when faced with out-of-distribution

(OOD) test data, undermining their robustness and generalization capabilities [13,144].

Understanding causal relationships is essential for model interpretability, as well as

enhancing generalization and robustness [145–147]. While Randomized Controlled Tri-

als (RCTs) are ideal for learning causal structures, they are often expensive, unethical,

or impractical. As a result, various methods for causal discovery have been developed.

Constraint-based methods utilize conditional independence tests to discern causal direc-

tions [18, 37, 148], often yielding the Markov Equivalence Class (MEC) of causal struc-

tures. Score-based methods aim to optimize causal graphs over Directed Acyclic Graphs

(DAGs) [38,39,149], but the search space’s combinatorial nature can be computationally

intensive. Methods like NOTEARS [40] have converted this combinatorial problem into
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continuous optimization, resulting in various effective adaptations [26, 41, 42, 46, 63, 67].

Nonetheless, learning causal structures from observational data remains challenging due to

different issues like selection bias, measurement errors, and confounders [22,150]. Further-

more, models solely based on empirical risk optimization can become reliant on spurious

correlations.

To address these issues in practice, studies often leverage prior domain knowledge to

enhance causal discovery [27,28,47–49,52]. Unfortunately, many causal discovery methods

depend on specific assumptions (e.g., linearity, non-Gaussian noise) that do not always

hold in real-world data. In addition to that some of these methods exploit variance

scales e.g. var-sortability to identify causal orderings, performing well on unstandardized

data but poorly after standardization [62, 151–153]. A recent line of study focuses on

exploiting the invariance property of causal relationships across different environments.

Methods like Invariant Causal Prediction (ICP) [154] aim to identify causal predictors by

ensuring the conditional distribution of the target given these predictors remains stable

across environments. This method leverages the invariance of causal relationships under

different interventions, iterating over feature subsets to find those invariant across envi-

ronments, considering them as potential causal parents of the target variable. Another

study, IRM [13] optimizes a penalty function to achieve OOD generalization for predictive

models, ensuring robust performance across environments. These methods significantly

reduce the absorption of spurious correlations by focusing on stable and invariant rela-

tionships. The invariant learning framework provides a promising strategy to enhance

model robustness and generalization in the presence of distribution shifts, with various

domains exploiting invariance to learn better predictors and robust models [29,155–157].

Motivated by this line of work and the current drawbacks of existing methods in

structure learning and OOD generalization, this chapter presents, CGLearn, a general

framework designed to enhance the generalization of ML models by leveraging gradient

consistency across different environments. The materials presented in this chapter are
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submitted as a conference paper and are currently under review. CGLearn does not re-

quire extensive domain knowledge or assumptions over data linearity or noise, making it

a versatile and practical approach for learning robust predictive models. By focusing on

feature invariance, emphasizing on reliable features, and reducing dependence on spurious

correlations, CGLearn enhances the reliability and robustness of the models. The main

contributions of this study are stated as follows:

• A novel general framework is proposed, which improves consistency in learning

robust predictors by focusing on features that show consistent behavior across en-

vironments.

• This study provides both linear and nonlinear implementations of CGLearn, demon-

strating its versatility and applicability across different model architectures.

• The current work demonstrates that CGLearn achieves superior predictive power

and generalization, even without multiple environments, unlike most state-of-the-art

methods that require diverse environments for effective generalization.

• The empirical evaluations on synthetic and real-world datasets, covering both linear

and nonlinear settings, as well as regression and classification tasks, validate the

effectiveness and robustness of the proposed method.

The remainder of this chapter is organized as follows: Section 5.2 delves into the

methodology of CGLearn, detailing its linear and nonlinear implementations. Section 5.3

presents the experimental settings and evaluations. Finally, Section 5.4 encapsulates the

conclusions, highlights the significant takeaways, and discusses future directions.

5.2 Methodology

This section presents the methodology of CGLearn, detailing both its linear and non-

linear implementations. The section starts by explaining the regular Empirical Risk Min-

imization (ERM) approach and then introduces the concept of gradient consistency used
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in CGLearn. The primary concept of CGLearn is to enforce gradient consistency for each

factor of our variable of interest across multiple environments to identify and utilize in-

variant features, thereby enhancing generalization and reducing dependence on spurious

correlations.

Figure 5.1: Illustration of three environments generated by intervening on the variable
e, which takes distinct values e = 0.2, e = 2, and e = 5 in environments e1, e2, and e3,
respectively. In each environment, X1 acts as a causal factor for the target variable Y ,
while X2 is a spurious (non-causal) factor with respect to Y . This figure exemplifies how
different interventions on e create distinct environments.

5.2.1 Empirical Risk Minimization (ERM)

Let’s consider a simple linear problem where the goal is to predict the target variable

Y using two features X1 (causal) and X2 (spurious) across multiple environments. Let

e1, e2, . . . , em represent different environments. Environments can be considered as distinct

distributions generated by different interventions, all of which share similar underlying

causal mechanisms (see Fig. 5.1).

In the ERM framework, the weights for the features are updated by minimizing the

empirical risk or the cost function (L), which is typically the mean squared error (MSE)

between the predicted and actual values for a regression problem and cross-entropy loss

for a classification task. Suppose the weights for the features at step t are wt1 for X1 and

wt2 for X2. The gradient of the loss with respect to these weights in environment ei is

given by ∇Leij , where j ∈ {1, 2} and i ∈ {1, . . . ,m} in our problem of interest.
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The aggregated gradient across all environments can be calculated as the mean of the

gradients:

µgrad
j =

1

m

m∑
i=1

∇Leij for j ∈ {1, 2} (5.1)

Using this aggregated gradient, the weights are updated as follows:

wt+1
j = wtj − ηµ

grad
j for j ∈ {1, 2} (5.2)

where η is the learning rate. In this setup of a standard Empirical Risk Minimization,

the weights for both X1 and X2 get updated in each step regardless of their consistency

across environments.

5.2.2 Linear Implementation of CGLearn

CGLearn modifies this approach by introducing a consistency check for the gradients.

The idea is to update the weights only if the gradients are consistent across the available

environments. This strategy focuses on invariant features and ignores spurious ones,

expecting better generalization.

First, the proposed approach calculates the gradient of each feature in every environ-

ment as shown in Section 5.2.1. The mean of the gradients can be calculated as described

in Eq. 5.1. Next, it computes the standard deviation of the gradients for each feature

across all environments as follows:

σgrad
j =

√√√√ 1

m

m∑
i=1

(
∇Leij − µ

grad
j

)2
(5.3)

The proposed method then calculates the consistency ratio, which is the absolute value

of the ratio of the mean gradient to the standard deviation of the gradients:

Cratio
j =

∣∣∣∣∣µ
grad
j

σgrad
j

∣∣∣∣∣ (5.4)
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The consistency ratio, Cratio
j defined in Eq. 5.4, is considered to be an indicator of

the invariance of the gradient of variable Xj across all the training environments. A

relatively larger mean compared to the standard deviation would indicate more similar or

invariant gradients across the environments for the feature Xj, resulting in a higher value

of Cratio
j . On the other hand, a larger standard deviation indicates more diversity across

the environments for Xj. Finally, this method formulates a consistency mask based on a

predefined threshold Cthresh:

Cmask
j =


1 if Cratio

j ≥ Cthresh

0 otherwise
(5.5)

The weights are updated only for the feature that has a nonzero mask and remains

unchanged otherwise as per the following equation:

wt+1
j = wtj − η

(
µgrad
j · Cmask

j

)
for j ∈ {1, 2} (5.6)

Considering our motivating example, where X1 is causal and X2 is spurious, we expect

Cmask
1 to be 1 and Cmask

2 to be 0, indicating that the gradients of the causal variable X1

are more consistent across the environments while they are not for the spurious variable

X2. Therefore, the weight for X1 is mostly updated throughout the training steps while

the weight for X2 is not. The model thus focuses on the features that show consistency

for learning the predictors of the target. This implementation strategy ensures to em-

phasis on reliable, invariant features while minimizing the impact of unreliable features

by keeping their weights unchanged (or keeping the changes to a minimum). As a result,

the contributions of the spurious features remain constant in the context of the model

updates. The next section extends the CGLearn method to a nonlinear setting using

multilayer perceptron (MLP) as an instance.
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5.2.3 Nonlinear Implementation

For the nonlinear implementation using a multilayer perceptron (MLP), this study

focuses on the gradients in the first hidden layer (h1), where feature contributions can be

distinctly identified. By controlling the contribution of spurious features at the first hidden

layer, this method ensures they do not influence the final output. The process involves

calculating the L2-norm of the gradients for each feature in each environment, followed

by determining the consistency ratio and mask to impose the consistency constraint.

‖∇Leijh1‖2 denotes the L2-norm of the gradients of the j-th feature Xj in the i-th envi-

ronment ei at the first hidden layer h1. We can compute the mean and standard deviation

of the L2-norm of the gradients across all environments as follows:

µgrad
j =

1

m

m∑
i=1

‖∇Leijh1‖2 (5.7)

σgrad
j =

√√√√ 1

m

m∑
i=1

(
‖∇Leijh1‖2 − µ

grad
j

)2
(5.8)

The consistency ratio, Cratio
j and the consistency mask, Cmask

j for feature Xj can be

calculated by following Eq. 5.4 and 5.5 respectively. All the weights that belong to a

particular feature, Xj in the first hidden layer h1, are updated by following a similar

strategy to Eq. 5.6. This updating strategy that depends on the consistency ratio, ensures

that only the features that show consistency across the environments are considered to be

updated. Otherwise, the weights remain unchanged, effectively treating them as constants

similar to the linear implementation. For weights corresponding to the rest of the model

other than the first hidden layer are updated as similar to ERM.

Fig. 5.2 illustrates a simple demonstration of the nonlinear MLP implementation of

CGLearn. In this figure, X1 and X2 represent causal and spurious features, respectively,

in accordance with our earlier motivating example. The gradient consistency is checked in



81

the first hidden layer (h1), and weights are updated only if the consistency ratio exceeds

the threshold, ensuring that features that behave consistently across environments are

utilized.

Figure 5.2: Nonlinear MLP implementation of CGLearn. X1 (causal) and X2 (spurious)
feed into the first hidden layer h1. Weight updates in h1 are performed based on gradient
consistency (using L2-norm) for each feature across all training environments. The rest of
the weights such as weights in h2, are updated similarly to ERM (without imposing any
consistency constraints).

In both implementations, the goal is to ensure that the model relies on features that

show invariance across different environments. This leads to more robust and generalizable

models by reducing dependency on spurious correlations.

5.3 Experiments and Results

In this study, I have considered three different major scenarios to assess the predic-

tivity, robustness, and generalization capabilities of CGLearn. The first two scenarios

are the ones where I considered linearly generated dataset-based experiments and in the

last experimental case I used the nonlinear implementation of CGLearn using multilayer
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perceptron (MLP) and applied it to different real-world regression and classification tasks.

For all evaluations, I have reported the mean and standard deviation of the perfor-

mance metrics considered. For statistical significance tests, t-test with α = 0.05 as the

significance level is used.

5.3.1 Linear Multiple Environments

To evaluate the performance of the proposed CGLearn method, I first generated syn-

thetic linear datasets inspired by the approach used in the Invariant Risk Minimization

(IRM) framework [13]. The goal was to create diverse environments to test the robustness

of the model under varying conditions.

This case study considers eight different experimental setups based on three key factors.

Each setup included datasets with one target variable Y and ten feature variables X1 to

X10. Features X1 to X5 acted as causal parents of Y , while X6 to X10 were influenced by

Y (non-causal). First, the study distinguished between scrambled (S) and unscrambled

(U) observations by applying an orthogonal transformation matrix S for scrambled data

and using the identity matrix I for unscrambled data. This scrambling ensures that the

features are not directly aligned with their original scales, making the learning task more

challenging. Secondly, it considers fully-observed (F) scenarios where hidden confounders

did not directly affect the features (i.e., no hidden confounder effects on features), and

partially-observed (P) scenarios where hidden confounders influenced the features with

Gaussian noise. Third, I have incorporated two types of noise for the target variable

Y : homoskedastic (O) noise, where the noise variance remained constant across different

environments, and heteroskedastic (E) noise, where the noise variance varied depending

on the environment, increasing with higher values of e. This distinction captures different

real-world scenarios where noise may or may not depend on external factors. For each of

these eight configurations (combinations of S/U, F/P, and O/E), I have generated datasets

corresponding to three distinct environments defined by the values e ∈ {0.2, 2, 5}. Each
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dataset consisted of 1000 samples. To ensure consistency with the IRM methodology and

experimental setup, I have used e = 5 as the validation environment and determined the

optimal consistency threshold (Cthresh) for the proposed method using the performance

based on this validation data. We selected the threshold Cthresh from the candidate

values {0.25, 1, 4, 16, 64} based on validation performance. This threshold is critical for

identifying the invariant and most reliable features across different environments. For

more details on the data generation process, readers are referred to the IRM paper [13].

Figure 5.3: Performance comparison of CGLearn, IRM, ICP, and ERM across various
linear multiple environment setups. Each subplot represents different configurations of
the data, showing the mean squared error (MSE) for causal and noncausal variables over
50 trials.

The study compares the performance of CGLearn with Empirical Risk Minimization

(ERM), Invariant Causal Prediction (ICP) [154], and IRM [13]. I have considered 50

random trials and reported the results in Fig. 5.3. In most of the cases, the proposed

CGLearn approach achieves the lowest mean squared error (MSE), demonstrating superior

performance across various test cases to distinguish the causal and noncausal factors of

the target by exploiting invariance across environments. IRM performs better than ERM
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but does not match the accuracy of CGLearn. ERM shows the highest errors in most

cases, as it fails to differentiate between causal and noncausal features, relying on spurious

correlations. Interestingly, ICP performs well in noncausal scenarios but poorly in causal

ones. This observation aligns with the findings from the IRM study [13], which noted that

ICP’s conservative nature leads it to reject most covariates as direct causes, resulting in

high causal errors.

5.3.2 Linear Single Environment

To evaluate the performance of the proposed method in scenarios with only one environ-

ment, I have generated synthetic linear datasets without relying on multiple environments

as in previous experiments. For each of the eight cases, I have used a single setting with

e = 2. The data generation process was similar to the previous section, with each dataset

consisting of 1000 samples and ten feature variables, X1 to X10. The first five features (X1

to X5) acted as causal parents of the target variable Y , while the remaining five features

(X6 to X10) were influenced by Y . Given the single environment setup, this experimental

case could not consider IRM and ICP methods, as they require multiple environments to

distinguish between causal and noncausal factors. Therefore, I compared the results of

CGLearn solely with Empirical Risk Minimization (ERM).

To impose invariance in the proposed study, I created multiple batches, with b = {3, 5}

representing the number of batches created from the dataset. The last batch was used as

the validation batch to determine the optimal consistency threshold parameter (Cthresh).

We selected the threshold Cthresh from the candidate values {0.25, 1, 4, 16, 64} based on

validation performance. The gradient consistency is imposed across different batches to

learn consistent and reliable factors of the target.

Table 5.1 demonstrates the evaluation in the single environment setup. Considering

the causal error across all eight cases, CGLearn consistently achieves significantly lower

mean squared errors (MSE) compared to ERM. For the noncausal error, CGLearn also
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Table 5.1: Performance evaluation of CGLearn and ERM in linear single environmental
setups. The table shows the Mean Squared Errors (MSE) for causal and noncausal vari-
ables across 50 trials for each configuration. Bold values indicate statistical significance.

Cases Causal Error (MSE) Noncausal Error (MSE)
CGLearn ERM CGLearn ERM

FOU 1.28 ± 0.40 1.57 ± 0.13 0.61 ± 0.19 0.54 ± 0.05
FOS 1.40 ± 0.43 1.61 ± 0.10 0.53 ± 0.17 0.52 ± 0.06
FEU 0.13 ± 0.05 0.20 ± 0.04 7.22 ± 2.15 8.28 ± 0.28
FES 0.16 ± 0.06 0.20 ± 0.04 7.47 ± 2.23 8.36 ± 0.30
POU 0.28 ± 0.11 0.37 ± 0.08 0.51 ± 0.18 0.48 ± 0.11
POS 0.34 ± 0.13 0.39 ± 0.07 0.46 ± 0.17 0.48 ± 0.10
PEU 0.24 ± 0.10 0.32 ± 0.07 5.11 ± 1.57 5.83 ± 0.43
PES 0.26 ± 0.10 0.31 ± 0.06 5.21 ± 1.58 5.81 ± 0.36

outperforms ERM in most cases, suggesting the superiority of CGLearn. Even in the

absence of multiple environments, the optimization strategy based on gradient consistency

across different batches enables CGLearn to achieve better predictive power than standard

ERM.

5.3.3 Nonlinear Multiple Environments

For the nonlinear experimental setups, in this study, I have considered two types of

supervised learning tasks: regression and classification, both on real-world datasets. This

approach allows us to evaluate the performance and robustness of the proposed CGLearn

method in different real-world contexts. Recent work has highlighted limitations in the

original Invariant Risk Minimization (IRM) framework, particularly in nonlinear settings

where deep models tend to overfit [158]. To address this, the current section includes

Bayesian Invariant Risk Minimization (BIRM) as a baseline, which has been shown to

alleviate overfitting issues by incorporating Bayesian inference and thereby improving

generalization in nonlinear scenarios [159].

Regression Tasks. For the regression tasks, I have used the Boston Housing dataset

[160] and the Yacht Hydrodynamics dataset [161] for the comparative analysis of the

nonlinear implementation of CGLearn with other baseline methods. The Boston Housing
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Table 5.2: Performance comparison in nonlinear experimental setups for regression tasks.
The table shows the RMSE for training and test environments across 10 trials. In test
cases, the statistically significant values are marked in bold.

Dataset # Optimal Envs. Method RMSE (Train) RMSE (Test)

Boston 7

ERM 3.57 ± 0.11 6.43 ± 0.45
IRM 3.79 ± 0.33 6.99 ± 0.74
BIRM 3.77 ± 0.50 7.70 ± 0.52
CGLearn 1.91 ± 0.26 5.49 ± 0.28

Yacht 5

ERM 0.21 ± 0.04 3.47 ± 1.15
IRM 2.90 ± 0.03 4.36 ± 0.38
BIRM 0.71 ± 0.19 3.15 ± 0.75
CGLearn 0.48 ± 0.23 2.29 ± 0.42

dataset consists of 506 instances and 13 continuous attributes. It concerns housing values

in suburbs of Boston, with the task being to predict the median value of owner-occupied

homes (MEDV) based on attributes such as per capita crime rate (CRIM), proportion

of residential land zoned for large lots (ZN), average number of rooms per dwelling, and

etc. The Yacht Hydrodynamics dataset consists of 308 instances and 6 attributes. The

task is to predict how much resistance a yacht experiences in the water, relative to its

weight, based on different factors related to the shape of the yacht’s hull and a specific

speed-related measurement. Since real-world datasets do not naturally come with different

environments, here I have followed a similar approach to the study by Ge et al. [162]. I used

the K-Means [163] clustering algorithm to generate diverse environments and determined

the optimal number of environments (between 3 to 10) using the Silhouette [164] method.

For each dataset, I created all possible test cases where each environment was considered

as for the test purpose once, and the rest were used for training. The evaluation is

done by averaging the results over all possible test cases and repeating the process for

10 random trials. The models were evaluated based on RMSE, with the results shown

in Table 5.2. For the Boston Housing dataset, I have found the optimal number of

environments was 7, while for the Yacht Hydrodynamics dataset, it was 5. From Table

5.2, we can observe that all four methods perform better in the training environments than
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the test environments, as expected. However, CGLearn shows significantly lower error in

the testing or unseen environments compared to the other methods, demonstrating that

imposing gradient consistency leads to less dependence on spurious features and thus

better generalization.

Classification Tasks. For the classification tasks, I have evaluated the performance

on two real-world classification datasets: the Wine Quality dataset for red and white

wines from the UCI repository [165]. The Wine Quality dataset for red wine has 1599

instances and 11 attributes, while the dataset for white wine has 4898 instances and 11

attributes. The goal is to model wine quality based on physicochemical tests, such as fixed

acidity, volatile acidity, citric acid, residual sugar, pH, and etc. Similar to the regression

tasks, I have used K-means clustering to generate diverse environments and determined

the optimal number of environments using the Silhouette method, finding 4 as the opti-

mal number of environments for both classification datasets. I then generated all possible

test cases where each environment was considered for the test purpose once, and the rest

were used for training (as similar to the regression tasks). The performances were then

averaged over all possible test cases and the process was conducted for 10 random trials.

I have used accuracy and F1-score as evaluation metrics, with the results shown in Table

5.3. As expected, all methods performed better in training environments compared to

test environments. However, the study finds that CGLearn achieved higher accuracy and

F1-scores, which are desirable, and the superior performance was statistically significant

for the F1-score on the Wine Quality Red dataset. It also had significantly better ac-

curacy on the Wine Quality White dataset. Similar to the regression tasks, CGLearn

demonstrated better predictive power and generalization over ERM, IRM, and BIRM for

the classification tasks.

Limitations of CGLearn with Invariant Spurious Features. For this section, I

have evaluated CGLearn on the Colored MNIST dataset, a synthetic binary classification

task derived from MNIST [166] and proposed in the IRM study [13]. This dataset intro-
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Table 5.3: Performance comparison in nonlinear setups for classification tasks. The table
shows accuracy and F1-score for training and test environments across 10 trials. The
statistically significant values are in bold for the test cases. WQR and WQW represent
the Wine Quality Red and Wine Quality White datasets respectively. # Opt. Envs.
indicates the number of optimal environments for each dataset determined using the K-
Means clustering algorithm.

Dataset # Opt. Envs. Method Accuracy (Train) Accuracy (Test) F1-score (Train) F1-score (Test)

WQR 4

ERM 62.07 ± 0.34 58.08 ± 1.72 0.692 ± 0.004 0.535 ± 0.010
IRM 63.68 ± 0.19 58.70 ± 1.54 0.644 ± 0.003 0.542 ± 0.014
BIRM 64.94 ± 0.37 57.97 ± 0.93 0.626 ± 0.004 0.536 ± 0.011
CGLearn 61.59 ± 0.44 59.60 ± 0.46 0.638 ± 0.008 0.553 ± 0.007

WQW 4

ERM 58.73 ± 0.22 51.15 ± 0.34 0.590 ± 0.002 0.447 ± 0.008
IRM 58.82 ± 0.26 51.60 ± 0.40 0.566 ± 0.003 0.450 ± 0.013
BIRM 58.04 ± 0.18 51.87 ± 0.32 0.530 ± 0.006 0.460 ± 0.026
CGLearn 58.23 ± 0.38 52.33 ± 0.32 0.555 ± 0.005 0.460 ± 0.007

duces color as a spurious feature that strongly correlates with the label in the training

environments but has the correlation reversed in the test environment. I have applied the

nonlinear implementation of CGLearn and compared it with the results of ERM and IRM

as reported in Ref. [13]. Over 10 trials, ERM achieved a training accuracy of 87.4 ± 0.2

and a test accuracy of 17.1 ± 0.6, while IRM achieved a training accuracy of 70.8 ± 0.9

and a test accuracy of 66.9 ± 2.5. In my experimental study, CGLearn achieved a training

accuracy of 93.1 ± 0.8 and a test accuracy of 29.1 ± 0.8. While CGLearn slightly outper-

formed ERM in the test environment, it still struggled to generalize. This limitation arises

because CGLearn imposes gradient consistency on the training environments to distin-

guish invariant features from spurious ones. However, in the Colored MNIST setup, the

spurious feature (color) is consistent across both training environments, leading CGLearn

to erroneously treat it as an invariant feature. Consequently, CGLearn relies on color and

performs poorly in the test environment. To improve CGLearn’s generalization, future

work should focus on adapting the method to account for the varying nature of spurious

features, even when they appear consistent across training environments.
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5.4 Summary

This chapter presents, CGLearn, a novel approach for developing robust and predictive

machine learning models by leveraging gradient consistency across multiple environments.

By focusing on the agreement of gradients, CGLearn effectively identifies and utilizes in-

variant features, leading to superior generalization and reduced reliance on spurious cor-

relations. The extensive experiments on both synthetic and real-world datasets, including

regression and classification tasks, demonstrated that CGLearn outperforms traditional

ERM and state-of-the-art invariant learners like ICP and IRM, achieving lower errors and

better generalization in diverse scenarios. Notably, even in the absence of predefined en-

vironments, this study demonstrated that CGLearn can be effectively applied to different

subsamples of data, leading to better predictive models than regular ERM. This flexi-

bility enhances the applicability of the proposed approach in a wide range of real-world

scenarios where many state-of-the-art methods require diverse and defined environments

for OOD generalization.

Despite its strengths, CGLearn has limitations, particularly in scenarios where spuri-

ous features are invariant across environments, as observed in the Colored MNIST ex-

periments. Such cases violate our assumption as generally we expect and observe causal

features to be stable and invariant in nature whereas spurious features do not [146, 167].

CGLearn erroneously considers these invariant but spurious features as reliable, impact-

ing its generalization performance. Addressing this limitation and adapting CGLearn to

better handle such cases is a promising direction for future research.

Overall, the proposed method provides a significant step forward in the field of robust

machine learning by effectively harnessing causal invariance. This work opens new avenues

for developing models that are not only highly predictive but also resilient to distribution

shifts, paving the way for more reliable applications in real-world settings.



CHAPTER 6: CONCLUSIONS AND FUTURE WORK

The goal of this dissertation is to highlight the different types of prior knowledge humans

possess that can be utilized to aid causal learning, how to integrate this knowledge to

enhance the learning process and to improve out-of-distribution (OOD) generalization,

and to provide novel tools and methods for this purpose. This chapter summarizes the

key findings and contributions of the dissertation, drawing conclusions on its impact.

Finally, I explore potential future research directions and possibilities that emerge from

the presented works.

6.1 Summary of the Dissertation and Contributions

This dissertation has explored various methods to enhance causal structure learning

and improve OOD generalization by integrating domain knowledge. By addressing the

challenges associated with inferring causal relationships from observational data, signifi-

cant advancements have been made in developing robust and accurate predictive models.

First, Chapter 1 provides the foundational knowledge necessary for understanding causal

structure learning, covering essential concepts such as graphical and causal terms, the

building blocks of causal graphs, and commonly used causal assumptions. This founda-

tion set the stage for the original research presented in the subsequent chapters.

Chapter 2 focuses on a study that extends the original NOTEARS model to incorporate

domain knowledge, enhancing its ability to learn causal structures. Key contributions

include demonstrating that expert knowledge can significantly improve causal discovery,

particularly when correcting active edges, and providing a comprehensive analysis of how

different types of knowledge impact the model’s performance. An interesting observation

is that even redundant knowledge does no harm, suggesting that practitioners should
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induce knowledge whenever available.

Chapter 3 adds another dimension to the causal learning and human-in-the-loop reper-

toire. It presents "CD-NOTEARS," a concept-driven structure learning method that in-

corporates conceptual knowledge into the learning process. The key contributions of this

chapter include developing a novel extension that outperforms the original NOTEARS

implementation and demonstrating its effectiveness in uncovering causal structures in

high-dimensional conceptual data.

Chapter 4 focuses on utilizing the invariance property to develop causal and robust

models. Since causal relations are invariant in nature, this research leverages prior knowl-

edge of environments or data distributions to exploit this property, eliminating spurious

correlations and learning robust causal relations. Significant contributions include the de-

velopment of a novel method for predicting adsorption energy by creating invariant molec-

ular representations, demonstrating superior performance over traditional approaches or

molecular representations. This chapter also introduces an extension to handle multiple

surface systems and large datasets effectively to learn the invariant representations.

Finally, Chapter 5 presents "CGLearn," a novel and general framework that enhances

robustness and generalization in machine learning models by learning invariant predictors

through gradient agreement across different environments. Key contributions include

the proposed linear and nonlinear implementation of the approach, and demonstration

of CGLearn’s superior performance, its robust applicability across various tasks, and its

effectiveness in leveraging gradient agreement for causal invariance.

To summarize, this dissertation has made substantial contributions to the field of causal

structure learning and robust machine learning by integrating domain knowledge and

employing advanced and novel techniques to enhance the learning process. The findings

and methodologies presented not only deepen our understanding of causal inference from

observational data but also open new avenues for future research. By paving the way for

more reliable and accurate predictive models, I believe this work lays a solid foundation
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for ongoing advancements in the intersection of causal learning and machine learning

modeling, ultimately contributing to the development of more resilient AI systems.

6.2 Looking Forward: New Research Directions and Future Work

This dissertation opens several promising avenues for future research in enhancing

causal structure learning and OOD generalization by integrating domain knowledge. One

significant direction is the development of techniques that incorporate varying levels of

confidence in prior knowledge, blending hard constraints with continuous optimization.

This approach could enhance model flexibility and robustness. Additionally, integrating

concept-driven methods with other causal discovery techniques and applying them to di-

verse domains like healthcare, finance, and social sciences could yield valuable insights

and improvements. Automated methods to derive conceptual knowledge from data could

also broaden the applicability of these approaches.

Expanding robust molecular representation methods to diverse reaction systems and

more complex processes, such as predicting reliable transition state energies through ma-

chine learning for chemical reactions, presents another future research direction. Address-

ing the limitations of current models, particularly in scenarios where spurious features

are invariant across environments, is crucial. Developing techniques to better distinguish

between causal and spurious features can enhance generalization performance. Exploring

the application of these models in various real-world scenarios without predefined environ-

ments will further broaden their impact. Overall, this dissertation provides a strong basis

for advancing causal learning and machine learning modeling and I believe this work will

facilitate the creation of dependable, adaptable, and causally informed predictive models

for better generalization.
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APPENDIX A: THRESHOLD INCORPORATION AND SLACK VARIABLES

In Eq. 2.5, we have seen that our inequality constraint takes the following form:

hpineq(W (θ)) > 0

where p enumerates over each induced knowledge associated with a true active edge

(known active) Xi → Xj imposing [W (θ)]ij 6= 0. NOTEARS uses a thresholding step

that reduces false discoveries where any edge weight below the threshold value, wthresh in

its absolute value is set to zero. Thus, for any induction from true active edges (Xi → Xj)

we have the following constraint:

[W (θ)]2ij ≥ W 2
thresh.

The current study converts inequality constraints in the optimization to equality by in-

troducing a set of slack variables yp such that:

− [W (θ)]2ij +W 2
thresh + yp = 0 s.t. yp ≥ 0 (A.1)

In a similar manner, using the threshold value, Wthresh the equality constraints (asso-

ciated with known inactive edges) take the form as:

[W (θ)]2ij −W 2
thresh + yq = 0 s.t. yq ≥ 0 (A.2)

where q enumerates over each induction associated with true inactive edge Xi 9 Xj

imposing [W (θ)]ij = 0.
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APPENDIX B: SANITY CHECK - FUNCTIONAL SPECIFIC MODEL (FSM)

In this section, I have conducted four experimental case studies for the four DFT

functionals (similar to the FFM and BEM). However, in all these cases, I have used both

the training samples for the Siamese network and samples for the predictive analysis

from the same functional. This simulates the scenario in which we do not have access to

information from additional functionals but the Siamese model training is specific to the

particular functional where it is tested.

Representations Generated from Flat Fingerprints

Table B.1: Performance evaluation of three molecular representation types (Original,
PCA, and IMR) derived from 24-length flat molecular fingerprints using the FSM training
approach. Values are given as Mean Absolute Errors (MAEs) between the predicted
and DFT-calculated adsorption energies, expressed in electron volts (eV). A lower MAE
signifies enhanced performance.

Test Functional ML Alg. Original PCA IMR

PBE-D3

ridge 0.31 ± 0.04 0.32 ± 0.04 0.33 ± 0.04
elastic 0.33 ± 0.04 0.34 ± 0.05 0.33 ± 0.04
krr 0.35 ± 0.05 0.33 ± 0.05 0.38 ± 0.10
svr 0.31 ± 0.06 0.30 ± 0.06 0.36 ± 0.08

BEEF-vdW

ridge 0.31 ± 0.05 0.31 ± 0.05 0.32 ± 0.04
elastic 0.32 ± 0.05 0.33 ± 0.04 0.32 ± 0.04
krr 0.33 ± 0.04 0.35 ± 0.04 0.37 ± 0.10
svr 0.31 ± 0.05 0.31 ± 0.06 0.37 ± 0.09

RPBE

ridge 0.31 ± 0.05 0.31 ± 0.05 0.32 ± 0.05
elastic 0.33 ± 0.05 0.33 ± 0.04 0.33 ± 0.05
krr 0.35 ± 0.05 0.36 ± 0.04 0.37 ± 0.11
svr 0.32 ± 0.07 0.34 ± 0.07 0.34 ± 0.10

SCAN+rVV10

ridge 0.37 ± 0.05 0.38 ± 0.04 0.38 ± 0.04
elastic 0.40 ± 0.04 0.39 ± 0.05 0.39 ± 0.04
krr 0.42 ± 0.08 0.42 ± 0.07 0.41 ± 0.13
svr 0.38 ± 0.08 0.39 ± 0.10 0.42 ± 0.12

The results of our experiments using FSM training and representations generated from

flat molecular fingerprints are presented first. These results are illustrated in Table B.1.

The empirical findings show no significant difference in the performance of molecular rep-
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resentations using our proposed model (IMR) compared to the PCA-based representations

(PCA). This suggests that even in the absence of information from additional functionals,

the performance of IMR is on par with that of baseline representations.

Representations Generated from Transfer Learning

Table B.2: Performance assessment of three molecular representation types (Original,
PCA, and IMR) derived from fingerprints of the pretrained chEMBL model via FSM
training. Values are presented as Mean Absolute Errors (MAEs) between predicted and
DFT-calculated adsorption energies, in electron volts (eV). A lower MAE suggests superior
accuracy.

Test Functional ML Alg. Original PCA IMR

PBE-D3

ridge 0.39 ± 0.06 0.35 ± 0.05 0.31 ± 0.05
elastic 0.32 ± 0.07 0.33 ± 0.06 0.31 ± 0.05
krr 0.27 ± 0.07 0.28 ± 0.04 0.30 ± 0.05
svr 0.28 ± 0.06 0.29 ± 0.06 0.31 ± 0.05

BEEF-vdW

ridge 0.42 ± 0.07 0.37 ± 0.04 0.34 ± 0.04
elastic 0.34 ± 0.05 0.33 ± 0.03 0.34 ± 0.04
krr 0.34 ± 0.06 0.32 ± 0.04 0.34 ± 0.04
svr 0.32 ± 0.05 0.34 ± 0.04 0.34 ± 0.05

RPBE

ridge 0.46 ± 0.08 0.39 ± 0.05 0.38 ± 0.04
elastic 0.37 ± 0.05 0.37 ± 0.04 0.37 ± 0.03
krr 0.44 ± 0.07 0.37 ± 0.04 0.38 ± 0.05
svr 0.38 ± 0.05 0.40 ± 0.04 0.38 ± 0.05

SCAN+rVV10

ridge 0.44 ± 0.06 0.38 ± 0.04 0.36 ± 0.06
elastic 0.39 ± 0.05 0.39 ± 0.03 0.36 ± 0.06
krr 0.37 ± 0.04 0.39 ± 0.03 0.35 ± 0.06
svr 0.35 ± 0.05 0.39 ± 0.05 0.36 ± 0.06

In Table B.2, the results of the experimental cases with representations generated by

using FSM training and chEMBL fingerprints are presented. Again, we can see no sta-

tistical difference between the IMR and the PCA representations for any of the cases.

Analogous to the scenario with flat molecular fingerprints, we can conclude that the pro-

posed method generates molecular representations (IMR) that perform equally well for

predictive modeling compared to the baseline methods (Original, PCA), even when the

training data is specific to only one functional.
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Representations Generated from Morgan Fingerprints

Table B.3: Evaluation of three molecular representation types (Original, PCA, and IMR)
derived from 24-length Morgan fingerprints through FSM training. The values are given
as Mean Absolute Errors (MAEs) between the predicted and DFT-calculated adsorption
energies, expressed in electron volts (eV). A lower MAE suggests enhanced accuracy.

Test Functional ML Alg. Original PCA IMR

PBE-D3

ridge 0.34 ± 0.05 0.33 ± 0.04 0.36 ± 0.05
elastic 0.32 ± 0.05 0.31 ± 0.04 0.34 ± 0.05
krr 0.31 ± 0.05 0.32 ± 0.05 0.36 ± 0.07
svr 0.31 ± 0.05 0.31 ± 0.05 0.36 ± 0.07

BEEF-vdW

ridge 0.34 ± 0.04 0.34 ± 0.05 0.34 ± 0.04
elastic 0.33 ± 0.03 0.33 ± 0.04 0.34 ± 0.05
krr 0.33 ± 0.04 0.34 ± 0.04 0.34 ± 0.05
svr 0.33 ± 0.05 0.33 ± 0.05 0.33 ± 0.05

RPBE

ridge 0.37 ± 0.06 0.38 ± 0.06 0.39 ± 0.07
elastic 0.37 ± 0.05 0.39 ± 0.05 0.39 ± 0.07
krr 0.38 ± 0.05 0.39 ± 0.05 0.42 ± 0.06
svr 0.38 ± 0.06 0.38 ± 0.06 0.39 ± 0.08

SCAN+rVV10

ridge 0.39 ± 0.05 0.39 ± 0.05 0.40 ± 0.05
elastic 0.40 ± 0.03 0.39 ± 0.04 0.41 ± 0.04
krr 0.39 ± 0.04 0.39 ± 0.03 0.41 ± 0.05
svr 0.39 ± 0.05 0.40 ± 0.05 0.40 ± 0.05

Turning attention to Morgan’s fingerprints, the findings from the FSM training are

documented in Table B.3. Again we can see the trend persists. The comparative evalu-

ation between our proposed IMR model and PCA representations reveals no significant

differences. Thus, it’s evident that, even when utilizing Morgan fingerprints, the IMR

continues to deliver performance on par with established baselines in the absence of ad-

ditional functionals.
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APPENDIX C: DFT CALCULATION DETAILS

All DFT calculations were performed using the Vienna Ab initio Simulation Package

(VASP) version 5.4.4. For geometric optimization, electron-exchange correlation was de-

scribed by the Perdew-Burke-Ernzerhof (PBE) [120] functional coupled with dispersion

corrections based on the D3-technique [121].

The Pt(111) catalyst site model, cleaved from an optimized Pt bulk crystal, comprised

of 4 layers of 4x4 atoms with a vacuum space of 20 Å between periodic slabs. Pt(111)

slab and intermediate species were relaxed until the Hellmann-Feynman force [168] per

atom was less than 0.03 eV Å−1. The Brillouin zone integration was sampled using a 5

× 5 × 1 Monkhorst-Pack [169] k-mesh with Methfessel-Paxton smearing [170] width (σ)

of 0.2 eV. Frequency calculations were performed on the optimized structures to obtain

the intermediate’s entropic properties and free energy. For the other functionals, single-

point calculations were done to obtain the corresponding energy of the PBE-D3 optimized

structures, and these VASP energies were combined with PBE-D3-based vibrational fre-

quencies to compute their free energies.

For all four functionals, the free energies were referenced to the bare catalyst slab,

gas-phase propane, and gas-phase hydrogen energies.



112

APPENDIX D: MOLECULAR SPECIES SPECIFIC FINGERPRINT

CONTRIBUTION

Figure D.1 illustrates an in-depth species-based fingerprint contribution breakdown em-

ploying the Four Functional Model (FFM) strategy with the PBE-D3 functional. This

heatmap visualization elucidates the contributions of individual fingerprints to the pre-

diction of adsorption energies across various molecular species. The attribution analysis

presented in this heatmap has been calculated using integrated gradients, as implemented

in the Python-based Captum library [137]. Through this analysis, we can observe signif-

icant insights into the model’s behavior; for instance, the C2 fingerprint shows increased

attribution in species such as CCC and CHCH2CH, where the presence of carbon atoms

with two free valencies is crucial. This analysis exemplifies how the proposed strategy

effectively capitalizes on functional invariances to learn invaluable patterns, thereby en-

hancing our understanding of molecular interactions within the dataset.
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Figure D.1: Species-based breakdown of fingerprint contribution for FFM training strat-
egy and PBE-D3 functional. Each cell in the heatmap signifies the contribution of a
specific fingerprint to the adsorption energy prediction for a particular molecular species.
Fingerprints with negligible contributions have been omitted for clarity. The color gra-
dient indicates the magnitude of contribution, emphasizing the impact of specific finger-
prints.
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APPENDIX E: GOODNESS-OF-FIT ANALYSIS ACROSS EXPERIMENTAL CASES

Table E.1: Mean and standard deviation based on D2-scores using Original, PCA, and
IMR representations derived from 24-length flat molecular fingerprints via FFM training,
across 10 trials. Higher scores indicate better-fitted models.

Test Functional ML Alg. Original PCA IMR

PBE-D3

ridge -0.01 ± 0.15 -0.02 ± 0.14 0.13 ± 0.21
elastic -0.07 ± 0.14 -0.09 ± 0.15 0.13 ± 0.17
krr -0.12 ± 0.19 -0.06 ± 0.11 0.06 ± 0.16
svr 0.00 ± 0.16 0.04 ± 0.14 0.06 ± 0.14

BEEF-vdW

ridge 0.05 ± 0.14 0.05 ± 0.14 0.51 ± 0.08
elastic 0.02 ± 0.11 0.00 ± 0.08 0.51 ± 0.06
krr -0.02 ± 0.12 -0.04 ± 0.15 0.55 ± 0.08
svr 0.05 ± 0.18 0.05 ± 0.20 0.59 ± 0.10

RPBE

ridge 0.17 ± 0.16 0.17 ± 0.15 0.43 ± 0.14
elastic 0.13 ± 0.10 0.12 ± 0.09 0.49 ± 0.11
krr 0.09 ± 0.10 0.05 ± 0.14 0.42 ± 0.15
svr 0.14 ± 0.21 0.09 ± 0.19 0.46 ± 0.12

SCAN+rVV10

ridge 0.08 ± 0.09 0.07 ± 0.08 0.40 ± 0.10
elastic 0.01 ± 0.07 0.03 ± 0.06 0.40 ± 0.07
krr -0.03 ± 0.19 -0.03 ± 0.19 0.44 ± 0.09
svr 0.05 ± 0.22 0.05 ± 0.17 0.40 ± 0.15

Finally, I have utilized the D2-score, implemented in Python’s Scikit-learn [71] library,

to quantify the goodness-of-fit for the models in all experimental cases. This score mea-

sures the fraction of deviance explained by the model relative to an intercept-only model

and is defined as follows:

D2(y, ŷ) = 1− dev(y, ŷ)

dev(y, ynull)
(E.1)

In this equation, y represents the true target values, ŷ denotes the predictions made by

the model, and ynull is the median of the targets calculated on the training samples.

Therefore, the term dev(y, ŷ) refers to the deviation of the model predictions from the

true target values which is the mean absolute error of the model. Similarly, dev(y, ynull)

signifies the mean absolute deviation of the true target values from the median calculated,

serving as the baseline comparison for the model’s predictive power. The best possible
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D2-score is 1.0, indicating a perfect prediction. Here, I present the mean and standard

deviation of the D2-score calculated across all 10 trials for each experimental case scenario

as in Table E.1, E.2, E.3, E.4, E.5, E.6, E.7, E.8, and E.9.

Table E.2: Mean and standard deviation based on D2-scores using Original, PCA, and
IMR representations derived from 768-length chEMBL fingerprints via FFM training,
across 10 trials. Higher scores indicate better-fitted models.

Test Functional ML Alg. Original PCA IMR

PBE-D3

ridge -0.28 ± 0.22 -0.20 ± 0.17 0.19 ± 0.33
elastic -0.02 ± 0.13 -0.04 ± 0.13 0.24 ± 0.18
krr 0.14 ± 0.14 0.10 ± 0.14 0.38 ± 0.18
svr 0.12 ± 0.08 0.10 ± 0.07 0.41 ± 0.18

BEEF-vdW

ridge -0.28 ± 0.20 -0.11 ± 0.15 0.58 ± 0.15
elastic -0.03 ± 0.15 0.01 ± 0.04 0.57 ± 0.16
krr -0.03 ± 0.21 0.02 ± 0.12 0.56 ± 0.18
svr 0.02 ± 0.11 -0.04 ± 0.12 0.58 ± 0.16

RPBE

ridge -0.21 ± 0.20 -0.04 ± 0.09 0.50 ± 0.18
elastic 0.01 ± 0.15 0.01 ± 0.05 0.47 ± 0.21
krr -0.17 ± 0.26 0.02 ± 0.10 0.42 ± 0.14
svr 0.00 ± 0.12 -0.04 ± 0.08 0.46 ± 0.12

SCAN+rVV10

ridge -0.10 ± 0.18 0.03 ± 0.14 0.43 ± 0.14
elastic 0.04 ± 0.09 0.05 ± 0.10 0.43 ± 0.15
krr 0.08 ± 0.07 0.03 ± 0.08 0.46 ± 0.07
svr 0.13 ± 0.10 0.01 ± 0.10 0.54 ± 0.09
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Table E.3: Mean and standard deviation based on D2-scores using Original, PCA, and
IMR representations derived from 24-length Morgan fingerprints via FFM training, across
10 trials. Higher scores indicate better-fitted models.

Test Functional ML Alg. Original PCA IMR

PBE-D3

ridge -0.08 ± 0.11 -0.07 ± 0.14 -0.08 ± 0.32
elastic -0.01 ± 0.06 -0.01 ± 0.08 0.19 ± 0.13
krr -0.01 ± 0.10 -0.04 ± 0.15 0.10 ± 0.11
svr -0.01 ± 0.11 0.01 ± 0.08 0.11 ± 0.14

BEEF-vdW

ridge -0.03 ± 0.10 -0.02 ± 0.10 0.66 ± 0.08
elastic 0.01 ± 0.04 -0.02 ± 0.05 0.66 ± 0.08
krr -0.01 ± 0.06 -0.02 ± 0.06 0.69 ± 0.06
svr 0.01 ± 0.11 0.02 ± 0.11 0.70 ± 0.06

RPBE

ridge 0.02 ± 0.09 0.03 ± 0.09 0.53 ± 0.09
elastic 0.02 ± 0.03 -0.01 ± 0.03 0.56 ± 0.07
krr 0.00 ± 0.06 -0.03 ± 0.06 0.54 ± 0.08
svr 0.01 ± 0.08 0.00 ± 0.07 0.56 ± 0.11

SCAN+rVV10

ridge 0.03 ± 0.14 0.04 ± 0.14 0.45 ± 0.12
elastic 0.01 ± 0.06 0.03 ± 0.06 0.52 ± 0.11
krr 0.04 ± 0.06 0.04 ± 0.07 0.57 ± 0.04
svr 0.03 ± 0.06 0.05 ± 0.07 0.54 ± 0.06

Table E.4: Mean and standard deviation based on D2-scores using Original, PCA, and
IMR representations derived from 24-length flat molecular fingerprints via BEM training,
across 10 trials. Higher scores indicate better-fitted models.

Test Functional ML Alg. Original PCA IMR

PBE-D3

ridge -0.01 ± 0.15 -0.02 ± 0.14 0.21 ± 0.11
elastic -0.07 ± 0.14 -0.10 ± 0.15 0.18 ± 0.08
krr -0.12 ± 0.19 -0.06 ± 0.11 0.25 ± 0.14
svr 0.00 ± 0.16 0.04 ± 0.14 0.22 ± 0.12

BEEF-vdW

ridge 0.05 ± 0.14 0.05 ± 0.14 0.42 ± 0.11
elastic 0.02 ± 0.11 0.00 ± 0.09 0.42 ± 0.12
krr -0.02 ± 0.12 -0.06 ± 0.15 0.59 ± 0.11
svr 0.05 ± 0.18 0.05 ± 0.20 0.58 ± 0.12

RPBE

ridge 0.17 ± 0.16 0.17 ± 0.16 0.33 ± 0.18
elastic 0.13 ± 0.10 0.13 ± 0.09 0.39 ± 0.15
krr 0.09 ± 0.10 0.04 ± 0.13 0.50 ± 0.09
svr 0.14 ± 0.21 0.09 ± 0.19 0.46 ± 0.13

SCAN+rVV10

ridge 0.08 ± 0.09 0.07 ± 0.08 0.42 ± 0.10
elastic 0.01 ± 0.07 0.03 ± 0.06 0.43 ± 0.11
krr -0.03 ± 0.19 -0.03 ± 0.19 0.51 ± 0.07
svr 0.05 ± 0.22 0.05 ± 0.17 0.47 ± 0.09
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Table E.5: Mean and standard deviation based on D2-scores using Original, PCA, and
IMR representations derived from 768-length chEMBL fingerprints via BEM training,
across 10 trials. Higher scores indicate better-fitted models.

Test Functional ML Alg. Original PCA IMR

PBE-D3

ridge -0.28 ± 0.22 -0.16 ± 0.21 0.18 ± 0.10
elastic -0.02 ± 0.13 0.00 ± 0.10 0.29 ± 0.12
krr 0.14 ± 0.14 0.09 ± 0.09 0.21 ± 0.14
svr 0.12 ± 0.08 0.06 ± 0.11 0.14 ± 0.18

BEEF-vdW

ridge -0.28 ± 0.20 -0.13 ± 0.16 0.60 ± 0.12
elastic -0.03 ± 0.15 -0.01 ± 0.04 0.59 ± 0.14
krr -0.03 ± 0.21 -0.01 ± 0.12 0.67 ± 0.12
svr 0.02 ± 0.11 -0.03 ± 0.12 0.56 ± 0.18

RPBE

ridge -0.21 ± 0.20 -0.01 ± 0.10 0.55 ± 0.09
elastic 0.01 ± 0.15 0.00 ± 0.04 0.57 ± 0.06
krr -0.17 ± 0.26 0.02 ± 0.10 0.54 ± 0.09
svr 0.00 ± 0.12 -0.03 ± 0.08 0.58 ± 0.14

SCAN+rVV10

ridge -0.10 ± 0.18 0.05 ± 0.13 0.40 ± 0.23
elastic 0.04 ± 0.09 0.03 ± 0.09 0.43 ± 0.13
krr 0.08 ± 0.07 0.04 ± 0.09 0.57 ± 0.09
svr 0.13 ± 0.10 0.03 ± 0.11 0.52 ± 0.08

Table E.6: Mean and standard deviation based on D2-scores using Original, PCA, and
IMR representations derived from 24-length Morgan fingerprints via BEM training, across
10 trials. Higher scores indicate better-fitted models.

Test Functional ML Alg. Original PCA IMR

PBE-D3

ridge -0.08 ± 0.11 -0.06 ± 0.12 0.01 ± 0.19
elastic -0.01 ± 0.06 -0.01 ± 0.08 0.28 ± 0.12
krr -0.01 ± 0.10 -0.08 ± 0.19 0.15 ± 0.13
svr -0.01 ± 0.11 -0.03 ± 0.15 0.20 ± 0.13

BEEF-vdW

ridge -0.03 ± 0.10 -0.03 ± 0.09 0.66 ± 0.05
elastic 0.01 ± 0.04 0.00 ± 0.06 0.64 ± 0.08
krr -0.01 ± 0.06 -0.03 ± 0.07 0.71 ± 0.13
svr 0.01 ± 0.11 0.00 ± 0.11 0.70 ± 0.15

RPBE

ridge 0.02 ± 0.09 0.02 ± 0.10 0.52 ± 0.20
elastic 0.02 ± 0.03 -0.02 ± 0.04 0.49 ± 0.34
krr 0.00 ± 0.06 0.00 ± 0.06 0.52 ± 0.17
svr 0.01 ± 0.08 0.01 ± 0.07 0.52 ± 0.10

SCAN+rVV10

ridge 0.03 ± 0.14 0.03 ± 0.13 0.44 ± 0.13
elastic 0.01 ± 0.06 0.03 ± 0.07 0.45 ± 0.14
krr 0.04 ± 0.06 0.03 ± 0.07 0.53 ± 0.06
svr 0.03 ± 0.06 0.03 ± 0.06 0.45 ± 0.13
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Table E.7: Mean and standard deviation based on D2-scores using Original, PCA, and
IMR representations derived from 24-length flat molecular fingerprints via FSM training,
across 10 trials. Higher scores indicate better-fitted models.

Test Functional ML Alg. Original PCA IMR

PBE-D3

ridge -0.01 ± 0.15 -0.02 ± 0.14 -0.08 ± 0.14
elastic -0.07 ± 0.14 -0.09 ± 0.15 -0.07 ± 0.14
krr -0.12 ± 0.19 -0.05 ± 0.10 -0.22 ± 0.25
svr 0.00 ± 0.16 0.04 ± 0.14 -0.13 ± 0.15

BEEF-vdW

ridge 0.05 ± 0.14 0.05 ± 0.14 0.04 ± 0.11
elastic 0.02 ± 0.11 0.01 ± 0.10 0.02 ± 0.11
krr -0.02 ± 0.12 -0.06 ± 0.16 -0.11 ± 0.27
svr 0.05 ± 0.18 0.05 ± 0.20 -0.11 ± 0.27

RPBE

ridge 0.17 ± 0.16 0.17 ± 0.15 0.15 ± 0.15
elastic 0.13 ± 0.10 0.13 ± 0.09 0.14 ± 0.12
krr 0.09 ± 0.10 0.04 ± 0.14 0.03 ± 0.28
svr 0.14 ± 0.21 0.09 ± 0.19 0.09 ± 0.27

SCAN+rVV10

ridge 0.08 ± 0.09 0.07 ± 0.08 0.07 ± 0.07
elastic 0.01 ± 0.07 0.03 ± 0.06 0.04 ± 0.05
krr -0.03 ± 0.19 -0.03 ± 0.19 0.00 ± 0.25
svr 0.05 ± 0.22 0.05 ± 0.17 -0.02 ± 0.24

Table E.8: Mean and standard deviation of D2-scores for models using Original, PCA,
and IMR representations derived from 768-length chEMBL fingerprints via FSM training,
across 10 trials. Higher scores indicate better-fitted models.

Test Functional ML Alg. Original PCA IMR

PBE-D3

ridge -0.28 ± 0.22 -0.15 ± 0.16 0.00 ± 0.11
elastic -0.02 ± 0.13 -0.06 ± 0.14 0.00 ± 0.12
krr 0.14 ± 0.14 0.10 ± 0.06 0.02 ± 0.09
svr 0.12 ± 0.08 0.09 ± 0.07 0.00 ± 0.09

BEEF-vdW

ridge -0.28 ± 0.20 -0.12 ± 0.14 -0.03 ± 0.12
elastic -0.03 ± 0.15 0.00 ± 0.03 -0.02 ± 0.12
krr -0.03 ± 0.21 0.02 ± 0.12 -0.04 ± 0.13
svr 0.02 ± 0.11 -0.04 ± 0.11 -0.04 ± 0.14

RPBE

ridge -0.21 ± 0.20 -0.03 ± 0.10 0.00 ± 0.12
elastic 0.01 ± 0.15 0.02 ± 0.05 0.01 ± 0.12
krr -0.17 ± 0.26 0.02 ± 0.10 0.00 ± 0.16
svr 0.00 ± 0.12 -0.05 ± 0.07 -0.01 ± 0.15

SCAN+rVV10

ridge -0.10 ± 0.18 0.05 ± 0.13 0.10 ± 0.16
elastic 0.04 ± 0.09 0.04 ± 0.10 0.11 ± 0.15
krr 0.08 ± 0.07 0.04 ± 0.09 0.13 ± 0.14
svr 0.13 ± 0.10 0.03 ± 0.10 0.12 ± 0.15
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Table E.9: Mean and standard deviation of D2-scores for models using Original, PCA,
and IMR representations derived from 24-length Morgan fingerprints via FSM training,
across 10 trials. Higher scores indicate better-fitted models.

Test Functional ML Alg. Original PCA IMR

PBE-D3

ridge -0.08 ± 0.11 -0.08 ± 0.13 -0.15 ± 0.16
elastic -0.01 ± 0.06 0.00 ± 0.04 -0.10 ± 0.22
krr -0.01 ± 0.10 -0.02 ± 0.11 -0.21 ± 0.39
svr -0.01 ± 0.11 0.01 ± 0.08 -0.26 ± 0.39

BEEF-vdW

ridge -0.03 ± 0.10 -0.03 ± 0.10 -0.02 ± 0.13
elastic 0.01 ± 0.04 0.00 ± 0.06 -0.04 ± 0.18
krr -0.01 ± 0.06 -0.02 ± 0.08 -0.04 ± 0.16
svr 0.01 ± 0.11 0.01 ± 0.12 -0.02 ± 0.16

RPBE

ridge 0.02 ± 0.09 0.02 ± 0.09 -0.01 ± 0.11
elastic 0.02 ± 0.03 -0.02 ± 0.03 -0.03 ± 0.12
krr 0.00 ± 0.06 -0.02 ± 0.08 -0.12 ± 0.16
svr 0.01 ± 0.08 0.01 ± 0.07 -0.04 ± 0.22

SCAN+rVV10

ridge 0.03 ± 0.14 0.03 ± 0.13 0.00 ± 0.19
elastic 0.01 ± 0.06 0.03 ± 0.07 -0.02 ± 0.14
krr 0.04 ± 0.06 0.03 ± 0.07 -0.01 ± 0.15
svr 0.03 ± 0.06 0.03 ± 0.06 0.00 ± 0.15
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