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ABSTRACT

MD REZAUR RASHID. Beyond Causal Pairs: A Probabilistic Approach to
Causal Structure Learning From Cause-Effect Pair Relationships Using Graph

Neural Network. (Under the direction of DR. GABRIEL TEREJANU)

Machine learning has risen to the forefront of scientific research due to its unpar-

alleled predictive capabilities. As a result, researchers have become increasingly

interested in uncovering the underlying causal structures that govern the relation-

ships between variables in a system. These causal structures, often represented as

directed acyclic graphs (DAGs), provide insights into how changes in one variable

may directly or indirectly affect other variables, enabling a deeper understanding

of the complex interactions within the system. While it is essential to constrain

a model by minimizing spurious correlations and conducting "What-If" analyses,

learning causal relationships from observational data, known as causal discovery,

remains an active and challenging research area. This is due to factors like finite

sampling, unobserved confounding factors, and measurement errors. Current ap-

proaches, including constraint-based and score-based methods, often struggle with

high computational complexity because of the combinatorial nature of estimating

DAGs. Inspired by the workshop on the Causality Challenge ’Cause-Effect Pair’

at the Neural Information Processing Systems in 2013, this dissertation adopts a

novel approach, generating a probability distribution over all possible graphs based

on cause-effect pair features proposed in response to the workshop challenge.

The primary goal of this study is to develop new methods that leverage this

probabilistic information and assess their performance. Furthermore, this work

introduces a novel causal feature selection (CFS) algorithm using this approach

and the establishment of a new evaluation criterion for CFS. To further enhance

experimental performance, this dissertation proposes the use of a Graph Neural

Networks (GNNs)–based probabilistic predictive framework for causal discovery.
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Conventional causal discovery algorithms face significant challenges in dealing with

large-scale observational datasets and capturing global structural information. The

GNN-based approach addresses these limitations, enabling the learning of complex

causal structures directly from data augmented with statistical and information-

theoretic measures. The proposed framework represents a significant leap forward

in causal discovery, offering improved accuracy and scalability in both synthetic

and real-world datasets, as well as introducing a novel synergy between probabilis-

tic learning and causal graph analysis.

In addition to the methodological advancements, this dissertation includes an ap-

plication of counterfactual analysis to study affective polarization on social media.

By comparing scenarios with and without specific influencer-led conversations on

platforms like Twitter, I analyze the impact of these conversations on public senti-

ment. This application highlights the practical implications of the proposed causal

modeling techniques, demonstrating their utility in understanding real-world issues

and contributing to the broader field of social media analysis.
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CHAPTER 1: INTRODUCTION

The concept of causality, which involves causal relationships between variables,

is fundamental in multiple fields such as medicine, economics, and social sciences.

It pertains to the relationship between cause and effect, where one variable impacts

the outcome of another variable [1–3]. Understanding these relationships is crucial

for making informed decisions and accurate predictions. Causality is a vast field

of study that consists of various subfields and branches. It is typically divided into

two main domains: causal inference and causal discovery, as depicted in Figure 1.1.

Causal inference is concerned with comprehending the effects of actions taken.

It provides tools that enable the isolation and calculation of the impact of a change

within a system, even if the change did not occur in practice. Causal inference can

address various types of queries, including identifying whether taking a specific

medication leads to an improvement in an individual’s health, determining how

much advertising spend is needed to achieve specific revenue targets, and assessing

the effect of classroom size on educational attainment.

Conversely, causal discovery is a discipline within causal inference that endeavors

to infer the causal topology of a system from observational data, striving to dis-

cern the causal connections and directional influences that shape the data. Unlike

statistical correlations, causal discovery methods reveal relationships that repre-

sent the fundamental basis for understanding a system and are invariant to change.

Therefore, the primary focus of this dissertation is to explore in-depth causal struc-

ture learning, which is a key aspect of causal discovery through the use of causal

graphs.
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Figure 1.1: The world of causality. Image used from Ferrand (2023) [4].

1.1 Background

Causal Graph Discovery

Causal graph discovery identifies causal relationships among variables in a com-

plex system using directed acyclic graphs (DAGs) to represent these relationships.

This technique relies on observational data and statistical methods rather than

experimental manipulation [5–9]. For instance, in investigating the causal rela-

tionship between physical exercise and mental health, researchers analyze data on

various factors like exercise frequency and mental health status to uncover causal

links.

One approach to causal graph estimation involves cause-effect pairs, which test

whether one variable causes another, especially when experimental manipulation

is impractical [10–12]. Despite its potential, causal graph discovery faces chal-

lenges like high-dimensional data, computational complexity, and confounding vari-
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ables [5, 13]. Hybrid methods that combine constraint-based and score-based ap-

proaches attempt to mitigate these issues but still rely on local heuristics without

a standard way of selecting score functions and search strategies [14,15].

Causal Feature Selection

Causal feature selection addresses some challenges of causal graph discovery by

identifying a subset of features with a causal effect on the outcome variable, re-

ducing data dimensionality, and eliminating confounding variables [16–18]. This

technique employs a causal score to evaluate and select features that demonstrate

the most robust causal associations with the outcome variable, enabling the iden-

tification of key drivers and causal factors. On the contrary, traditional feature

selection methods often overlook causal relationships, leading to suboptimal re-

sults [19]. Effective evaluation of causal feature selection requires a reliable crite-

rion that accurately measures prediction accuracy.

Graph Neural Networks for Causal Discovery

Graph Neural Networks (GNNs), encompassing architectures such as Graph

Convolutional Networks (GCNs) and Graph Attention Networks (GATs), have

demonstrated exceptional proficiency in learning from data represented as graphs,

effectively capturing complex relational patterns and structural information [20–

23]. Despite their success, GNNs’ application in causal discovery is limited due to

challenges like enforcing the acyclic nature of causal graphs, as traditional GNNs

handle general graph structures without this constraint [24, 25]. DAG-GNN ad-

dresses this by using a variational autoencoder to learn DAGs, but it focuses on

deterministic structures and misses causal relationship uncertainties [26]. Another

challenge is integrating local and global information in the causal graph [3,26,27].

While GNNs capture local interactions through node-to-node message passing,

they often struggle with global structural information. This dissertation develops

a probabilistic framework incorporating both node and edge features to address
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these challenges.

Application: Affective Polarization on Social Media

Affective polarization, characterized by increasing emotional divide and animos-

ity between opposing political groups, is amplified by social media platforms like

Twitter [28–31]. Influencers on these platforms significantly impact public senti-

ment and contribute to polarization through their large followings and frequent

interactions [32]. This dissertation employs counterfactual analysis to compare

scenarios with and without influencer-led conversations, providing insights into in-

fluencers’ impact on social media dynamics. This analysis highlights the practical

implications of advanced analytical techniques in studying complex social phenom-

ena and their utility in real-world contexts.

1.2 Proposed Approach and Contribution

The challenges in causal discovery and causal feature selection have motivated us

to study several research questions to address the causal graph learning problem.

The contributions are multi-faceted: a novel probabilistic approach is proposed to

uncover causal structures using cause-effect pairs; a new method for causal feature

selection is introduced, leveraging causal graphs and causal metrics to enhance

model accuracy and reliability; a Graph Neural Network (GNN)-based framework

is developed to incorporate global information and overcome the limitations of

causal-pairs methods; and counterfactual analysis is applied to social media data

to provide insights into affective polarization. The objectives of this study are to

investigate and provide insights into the following research questions:

1. How can predictions of cause-effect pairs be utilized to efficiently and accu-

rately discover the causal graph of a set of variables?

2. Given a high-dimensional observational dataset, how can a subset of variables

that are causally related to the target variable be selected?
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3. What is an appropriate evaluation framework for causal feature selection

algorithms?

4. How can Graph Neural Networks (GNNs) be leveraged to enhance causal

discovery by incorporating global information beyond local causal pairs?

5. What is the impact of influencer-led conversations on public sentiment, and

how can counterfactual analysis provide insights into affective polarization

on social media?

The first two chapters, addressing research questions 1-3, have already been pub-

lished as two papers in peer-reviewed conferences, ICMLA 2022 [33] and DSAA

2023 [34]. Furthermore, preliminary findings related to question 4 have been pub-

lished in an extended abstract in the 2024 UAI Causality workshop [35], and a

final manuscript is also ready for submission. Furthermore, a manuscript address-

ing question 5 has been submitted to another peer-reviewed conference for review.

1.3 Potential Significance and Outline of Dissertation

The proposed solutions have significant potential in various fields, including

healthcare, economics, and social sciences. They can identify causal relationships

for decision-making and improve machine learning algorithms by providing a causal

framework, leading to more accurate and interpretable models. The causal feature

selection method aids in dimensionality reduction and identifies influential fea-

tures, offering computationally faster solutions. The GNN-based framework for

causal discovery extends the applicability and scalability of causal inference meth-

ods, benefiting fields dealing with complex and high-dimensional data, such as

genomics, environmental science, and social network analysis. The counterfactual

analysis of affective polarization on social media provides insights into the im-

pact of influencer-led conversations on public sentiment, highlighting the practical

implications of advanced analytical techniques.
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Chapter 2 details the proposed approach to causal graph estimation using cause-

effect pairs, covering datasets, algorithms, and evaluation metrics. This approach

generates a probability distribution over all possible graphs based on cause-effect

pair features.

Chapter 3 describes the methodology for causal feature selection, combining

causal graph discovery and causal metrics to identify features with a causal effect

on the outcome variable. The performance is evaluated on synthetic and real-world

datasets compared with other benchmark methods.

Chapter 4 introduces a GNN-based probabilistic predictive framework for causal

discovery, refining the probability distribution from the causal-pairs approach.

This framework is evaluated on various synthetic, benchmark, and real-world

datasets.

Chapter 5 explores the application of the concept of counterfactual analysis to

study affective polarization on social media. By comparing scenarios with and

without specific influencer-led conversations on Twitter, the study highlights the

practical implications of advanced analytical techniques.

Finally, Chapter 6 presents the main conclusions and contributions to machine

learning and causal discovery. The dissertation discusses potential future work,

including enhancing the proposed methods and exploring their applications in di-

verse fields.



CHAPTER 2: FROM CAUSAL PAIRS TO CAUSAL GRAPHS

2.1 Introduction

Machine learning methods, deep learning in particular, have achieved unparal-

leled predictive performance in the past two decades. Nevertheless, these correlation-

based models exhibit significant limitations when applied to out-of-distribution

data and prescriptive analytics, which is grounded in causal inference. Learning

the underlying causal structure is an important task to both constrain a model

by reducing spurious correlations [2] and perform What-If analysis [1]. Learn-

ing causal relationships from observational data, also known as causal discovery,

remains an active and challenging research topic [1, 3, 5].

Several causal discovery methods have been proposed in the literature. Constraint-

based approaches learn the causal skeleton using conditional independence test

using the joint probability distribution of the data and identify edge directions up

to their Markov equivalence class [5–9].

Score-based approaches learn the causal graph G by optimizing a score func-

tion generally computed with respect to observational data [13, 36, 37]. Unfortu-

nately, these methods suffer from super-exponential computational complexity in

the number of nodes. Tsamardinos et al. [14] propose a hybrid method where they

use a constraint-based approach to reduce the search space in score-based meth-

ods. However, this method relies on local heuristics and lacks a standard way of

choosing score functions and search strategies [15].

A promising direction, NOTEARS [38], formulates a smooth characterization

of acyclicity that can be incorporated into a continuous optimization and solved



8

using well-known numerical methods. NOTEARS was later extended to paramet-

ric nonlinear models and nonparametric models [39]. GOLEM [40] also adopts a

continuous optimization framework, however, it makes use of a linear DAG learn-

ing model and doesn’t capture non-linear relationships. A different approach looks

at identifying cause-effect pairs using the statistical techniques from observational

data [41,42]. Singh et al. [11] use deep convolutional neural network (CNN) mod-

els to determine the directions of pairwise causal edges from observational data.

Hassanzadeh et al. [12] formulate the pairwise causal discovery techniques as bi-

nary causal problems where they try to answer if there exist any causal relations

between two variables in the context of Natural Language Processing (NLP). Nev-

ertheless, they have not studied how the predicted edge directions can be used to

provide a solution to causal graph identification.

Motivated by applications in biological networks, Medvedovsky et al. [10] pro-

pose an approximation algorithm to orient a graph by maximizing the number of

pairs that admit a directed path from known pairs of sources and targets. Neverthe-

less, given the peculiarities of the application based on prior knowledge constrains,

this approach falls short from identifying the entire causal graph. Therefore, dis-

covering the causal graph, including pairwise causal relations from observational

data remains a challenging task due to various factors such as finite sampling

and measurement errors. In general, identifying cause-effect relationships requires

controlled experimentation which is expensive and/or technically and ethically im-

possible to perform [43].

I propose a probabilistic approach to discover causal structures using the cause-

effect pairs features proposed in response to the ‘Cause-Effect Pair’ at the NIPS

2013 Workshop on Causality challenge. This chapter introduces the following

novel contributions: (1) generate a probability distribution over all the edges of a

digraph using various statistical and information-theoretic features that describe
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the relationships between any two variables in the dataset; (2) generate the most

likely probability distribution of directed acyclic graphs (DAG) using the maximum

spanning DAG; (3) generate an approximate solution to the causal graph prob-

lem by estimating the digraph and DAG using maximum likelihood estimate with

the probability distributions in (1) and (2) respectively; (4) overall, my proposed

methods are comparable with traditional ones (PC, GES), while benefiting from

polynomial time complexity as compared to super-exponential time complexity;

and (5) finally, by comparing with state-of-the-art methods such as NOTEARS-

MLP, I show that future improvements are possible by further leveraging global

graph information.

Section 2.2 introduces the problem formulation and details of my causal discov-

ery approach based on causal-effect pairs. The empirical evaluation of my methods

is described in Section 2.3. Lastly, in Section 2.4 I present my findings in brief and

opportunities for future improvements.

2.2 Methodology

Given n i.i.d. observations in the data matrix X = [x1 . . .xd] ∈ Rn×d, the goal

of causal discovery is to estimate the underlying causal relations encoded by the

directed acyclic graph (DAG), GDAG = (V,E). V comprises of nodes corresponding

to the observed random variables Xi for i = 1 . . . d and the edges in E correspond

to the causal relations encoded by GDAG. Namely, the existence of the edge i→ j

corresponds to a direct causal relationship between Xi (the cause) and Xj (the

effect).

The approach is to leverage the work on cause-effect pairs which uses a classifier

model to predict the probability distribution p(yij|f) of causal relation between

two variables Xi and Xj given the observational dataset [xi,xj] ∈ Rn×2.

p(yij|f) = f([xi,xj]), for i < j (2.1)
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Here, I assume that f(·) is a pre-trained machine learning model and yij ∈

[−1, 0, 1].

yij =



−1 : j → i, causal relation exists from Xj to Xi

0 : i ̸→ j and j ̸→ i, no direct causal relation

between Xi and Xj

1 : i→ j causal relation exists from Xi to Xj

After calculating the probability distributions of causal relations between all the

pairs in the dataset, a naive approach to construct the probability distribution

of a digraph G is to assume that the causal-pairs are independent. In Section

2.2.2, I show that my proposed approach of enforcing DAGness does correlate

these causal-pairs and provides us with additional global information to constrain

the graph probability distribution and allows us to move beyond the initial edge

independence.

p(G|f) =
∏
i<j

p(yij|f) (2.2)

Given this rich probabilistic information on all the causal relationships in the

dataset, one may choose to generate the maximum likelihood digraph.

GML = argmax
G

p(G|f) (2.3)

Note that the samples from the probability distribution, Eq. 2.2, and the maximum

likelihood estimate, Eq. 2.3, are digraphs with no guarantees that they are acyclic.

In the following, I propose to generate the most likely probability distribution of

directed acyclic graphs (DAG) using the maximum spanning DAG approach [44]

as well as estimate a representative DAG using the maximum likelihood estimate.
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2.2.1 Developing causal-pair models

The model f(·) in Eq. 4.1 can be trained using synthetic datasets or real datasets

with known causal relations. Given a set of labeled datasets {([xi,xj], yij)k}, in

this study I take the approach of engineering features from this dataset using vari-

ous statistical and information-theoretic measures such as: minimum or maximum

value of a variable; number of unique samples of a variable; entropy, mutual in-

formation, uniform divergence; slope-based information geometric causal inference

(IGCI), Hilbert Schmidt independence criterion (HSIC); Pearson R coefficient;

Spearman’s rank coefficient; moments and mixed moments such as skewness and

kurtosis. Therefore, the machine learning model f(·) can be trained on the new

engineered dataset with features previously introduced. Note that my proposed

methodology is agnostic to the features deployed and it works with any causal-

pairs model. Also, the computational runtime of calculating any of these features

such as HSIC, Pearson R coefficient has no effect asymptotically on the computa-

tional complexity - it just increases the constant of the polynomial runtime. I also

note that additional improvements might be brought by developing deep neural

network architectures capable to extract informative representations for predicting

the target yij ∈ [−1, 0, 1] directly from the sample dataset, but it is left as future

work.

2.2.2 Enforcing DAGness

In this section, I propose to derive a probability distribution that guarantees that

the sample graphs are DAGs. This takes the form of the probability distribution

in Eq. 2.4 which unlike Eq. 2.2 contains the DAGness condition.

p(G|f,DAG) =
∑
π

p(G|f,DAG, π)p(π|f) (2.4)
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Due to computational intractability, I have chosen to build this conditional distri-

bution not using the Bayes rule and utilizing Eq. 2.2 as prior, but rather as the law

of total probability where I integrate out the topological ordering π of the vertices.

I note that for a topological ordering where node i comes before node j, it implies

that a directed edge can only happen from i to j. I also note that the possibility

of no causal relation between i and j is not excluded in this context. Both causal,

i→ j, and noncausal, i ̸→ j and j ̸→ i, are possible.

To generate a representative DAG one can use the maximum likelihood estimate.

This however is intractable, and I do assume that there is a topological sorting of

vertices that also covers the maximum likelihood DAG.

GDAG = argmax
G

p(G|f,DAG) (2.5)

≈ argmax
G

p(G|f,DAG, πML) (2.6)

I propose to approximate the topological ordering, πML, by the topological sorting

of the Maximum Spanning DAG (MSDAG) [44] of the induced weighted graph by

the probability of causal relations.

πML = argmax
π

p(π|f) (2.7)

≈ toposort(MSDAG(GA)) (2.8)

I build the following weighted adjacency matrix A ∈ Rd×d, which contains the

probability of all directed edges as weights.

A[i, j] = p(yij = 1|f)

A[j, i] = p(yij = −1|f)
(2.9)

Let GA be a weighted graph induced by the adjacency matrix A. The goal is to find



13

the topological sorting of the MSDAG of GA. The motivation is to accommodate

as many directed edges with large probabilities as possible. I use the approach

introduced by [45] to approximate the MSDAG by first constructing the maximum

spanning tree and greedily adding edges in the descending order of the weights as

long as no cycles are formed. Note that a topological sorting derived this way still

accommodates the possibility of no edges to account for their probability in the

maximum likelihood DAG, Eq. 2.6.

p(G|f,DAG, πML) =
∏

π−1
ML[i]<π−1

ML[j]

p(yi→j|f) (2.10)

Given the maximum likelihood of topological ordering, one can easily calculate

the probability distribution in Eq. 2.6 by constraining the direction of the edge

based on the node ordering, see Eq. 2.10. In this context, I are left with only two

possibilities when node i appears before j in πML. Either there is an edge from i

to j or there is no edge between them.

yi→j =


1 : i→ j, causal relation exists from Xi to Xj

0 : i ̸→ j and j ̸→ i, no direct causal relation

between Xi and Xj

By constraining the direction of edges I need to re-normalizing the edge probabil-

ities as follows.

p(yi→j = 1|f) = p(yij = 1|f)
p(yij = 1|f) + p(yij = 0|f)

(2.11)

Enforcing DAGness in Eq. 2.10 and consequently Eq. 2.6 provides us with addi-

tional global information to constrain the graph probability distribution and allows
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us to move beyond the initial edge independence in Eq. 2.2 and Eq. 2.3 respectively,

which was derived from just pair-wise (local) information.

2.3 Experiments

I show the empirical results of my approaches applied to both synthetic and

real-world datasets. I have used the following labels for my approaches: PG given

by Eq. 2.2, MLG given by Eq. 2.3, PDAG given by Eq. 2.10, and MLDAG given

by Eq. 2.6.

2.3.1 Prior Work Used in Numerical Results

I compare my methods’ performance with two traditional approaches: the PC

algorithm [5] and the GES algorithm [13] and with a state-of-the-art approach,

NOTEARS-MLP [39].

PC Algorithm [5]. The PC (Peter and Clark) algorithm is based on the concept

of conditional independence. It takes a dataset consisting of variables and their

corresponding values as input such as the data matrix, X = [x1 . . .xd] ∈ Rn×d given

n i.i.d. observations. The algorithm then analyzes the statistical relationships

between variables to identify causal connections. The PC algorithm generates a

causal graph (DAG), that visually encapsulates the inferred causal connections and

directional dependencies between variables, providing a graphical representation of

the underlying causal structure.

GES Algorithm [13]. The GES (Greedy Equivalence Search) algorithm tests

conditional independence and incorporates a search strategy to explore different

causal structures. It aims to find the most likely causal graph that fits the observed

data matrix, X. The algorithm uses a score-based approach to evaluate and com-

pare different causal graph structures. These score-based metrics penalize complex

models and favor simpler explanations that fit the data well. The output of the

GES algorithm is also a causal graph or DAG that captures causal connections.
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It is important to note that both the PC and GES algorithms are capable of

outputting a Partially Directed Acyclic Graph (PDAG) alongside a causal graph

or DAG. In these outputs, directed edges indicate causal relationships, while undi-

rected edges signify conditional independence relationships among the variables.

NOTEARS [38]. The NOTEARS algorithm offers a promising approach for

inferring the causal structure of variables from observational data. It is specifi-

cally designed with the assumption that the causal relationships within the data

are acyclic, ensuring the absence of cycles in the causal graph. To capture both

linear and nonlinear causal dependencies, NOTEARS incorporates a nonlinear

transformation of the data. Furthermore, the algorithm promotes sparsity in the

estimated causal graph by imposing a constraint that encourages a sparse represen-

tation of significant causal connections. By employing an optimization algorithm,

NOTEARS estimates the causal structure by optimizing an objective function that

strikes a balance between data fit, sparsity, and acyclicity. These two properties,

sparsity, and acyclicity, are essential characteristics of causal graphs that the ob-

jective function aims to capture. Therefore, given the observational data matrix,

X, the objective function used by NOTEARS is defined as follows:

min
W∈Rd×d

F (W) =
1

2n
∥ X−XW ∥2F + λ∥W ∥1 (2.12)

where,

• W is the causal graph adjacency matrix

• ∥ · ∥2F denotes the squared Frobenius norm

• λ is a regularization parameter that controls the sparsity of the graph by

using smaller edge weights

• ∥ · ∥1 denotes the l1 norm, which serves as a penalty term
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The objective function is composed of two primary terms: the first evaluates

the model’s ability to replicate the observed data, driving the learning of a graph

structure that accurately represents the conditional dependencies; the second term

introduces a penalty for complex graph structures, promoting sparsity by discour-

aging large edge weights and unnecessary edges.

In this study, I utilize the NOTEARS-MLP [39] variant of the algorithm where

the input is the same observational data matrix, X = [x1 . . .xd] ∈ Rn×d that I

use for my method to derive causal pairs features and the output is a estimated

causal structure represented by a DAG or a weighted adjacency matrix. However,

Reisach et. al. [46] in their paper highlight that continuous score-based approaches

i.e. NOTEARS-MLP [39] in particular suffer highly from data scaling which was

addressed from a theoretical perspective. Therefore, I standardize the features for

both the synthetic and real-world datasets by removing the mean and scaling to

unit variance.

2.3.2 Data Sets

Cause-Effect Pair Train Data. To train my model, I have used the Cause-

effect pairs dataset1 from the NIPS 2013 Workshop on Causality. The train data is

a set of labeled datasets {([xi,xj], yij)k} where [xi,xj] ∈ Rn×2 and k = 4050 with

known causal relationships. Namely, this is a set of variable pairs (variable Xi

and variable Xj) with known ground truth such that label, yij ∈ [−1, 0, 1] where

-1: causal relation exists from Xj to Xi, 0: no causal relationship exists between

Xi and Xj, and 1: causal relation exists from Xi to Xj. I trained the model

f(·) in Eq. 4.1 on this set of labeled causal pairs using the engineering features to

calculate the probability distribution of causal relations between all the pairs in the

testing datasets. In addition, these known ground truths are derived from expert

domains such as chemistry, ecology, engineering, medicine, physics, sociology, etc.,
1Cause-Effect Pair Dataset: https://www.kaggle.com/c/cause-effect-pairs/data
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and these pairs are intermixed with controls such as pairs of independent variables

and pairs of dependent variables but not causally related.

Synthetic Test Data. To evaluate the performance of my methods on causal

graph estimation, I have generated synthetic data for testing. Synthetic graphs pro-

vide a benchmark for evaluating the performance of causal discovery algorithms. In

addition, synthetic graphs offer control over the complexity of the causal relation-

ships where I can design the graphs with varying degrees of complexity, including

the number of nodes, edge density, and type of causal relationships (e.g., direct,

indirect).

In this study, I have considered 16 types of different graph combinations having

similar criteria: number of nodes, d = [10, 20], number of edges, e = [1d, 4d],

number of data samples per node, n = [200, 1000], and graph models from Erdos-

Renyi(ER) and Scale-Free (SF). I have generated non-linear data samples for the

graph nodes similar to data generation utilities available in the NOTEARS-MLP

implementation. In addition, for each of these 16 graph types, I have generated

10 random graph structures with ground truths to test my methods. The outputs

are then summarized over these 10 graph structures to report my results for all 16

graph combinations.

2.3.3 Metrics

I consider three performance metrics to evaluate the causal graphs: True Positive

Rate (TPR), False Positive Rate (FPR) and Structural Hamming Distance (SHD).

A lower SHD and FPR indicate a better performance whereas a higher TPR is

better. However, since both PC and GES may generate outputs with undirected

edges, I treated an undirected edge as a true edge with a probability of 0.5 and a

false edge with the same probability. SHD, TPR, and FPR were implemented by

their definition for PC, GES, NOTEARS-MLP, and my two maximum likelihood
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estimates (MLG given by Eq. 2.3 and MLDAG given by Eq. 2.6).

As for my probabilistic approaches (PG given by Eq. 2.2 and PDAG given by

Eq. 2.10), given a true graph Gtrue and an adjacency matrix A with edge probabil-

ities, I calculate SHD using Eq. 2.13, TPR using Eq. 2.15 and FPR using Eq. 2.17.

SHD =
∑
i<j

(i,j)∈E(Gtrue)
(j,i)̸∈E(Gtrue)

(1−A[i, j]) +
∑
i<j

(i,j) ̸∈E(Gtrue)
(j,i)∈E(Gtrue)

(1−A[j, i])

+
∑
i<j

(i,j) ̸∈E(Gtrue)
(j,i)̸∈E(Gtrue)

(A[i, j] +A[j, i])
(2.13)

TP =
∑
i<j

(i,j)∈E(Gtrue)
(j,i) ̸∈E(Gtrue)

A[i, j] +
∑
i<j

(i,j)̸∈E(Gtrue)
(j,i)∈E(Gtrue)

A[j, i]
(2.14)

TPR =
TP

max(|E(Gtrue)|, 1)
(2.15)

FP =
∑
i<j

(i,j)∈E(Gtrue)
(j,i) ̸∈E(Gtrue)

A[j, i] +
∑
i<j

(i,j)̸∈E(Gtrue)
(j,i)∈E(Gtrue)

A[i, j]

+
∑
i<j

(i,j)̸∈E(Gtrue)
(j,i) ̸∈E(Gtrue)

(A[i, j] +A[j, i])
(2.16)

FPR =
FP

max((M − |E(Gtrue)|), 1)
(2.17)

Here, M = d(d−1)
2

is the number of possible edges of the graph Gtrue and d is the

total number of nodes in the graph.

Note that since I am calculating these metrics over 160 different graph structures

of various sizes in my test data, I report a normalized SHD over the number of

graph nodes (SHD/d) as my SHD measure. TPR and FPR are normalized by

definition.
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Table 2.1: Edge probability model trained on cause-effect pairs data provided at
the NIPS 2013 Workshop on Causality. The means and standard errors of the
performance metrics are based on the 80 Erdos-Renyi (ER) graph structures in
the test data.

Metrics PG (Eq. 2.2) MLG (Eq. 2.3) PDAG (Eq. 2.10) MLDAG (Eq. 2.6) PC GES NOTEARS-MLP

SHD/d 2.38±0.14 2.32±0.17 2.30±0.15 2.18±0.16 2.40±0.21 1.78±0.13 1.33±0.10

TPR 0.39±0.02 0.15±0.02 0.38±0.02 0.28±0.02 0.17±0.02 0.48±0.02 0.58±0.02

FPR 0.72±0.10 0.07±0.01 0.61±0.09 0.29±0.05 0.22±0.04 0.87±0.15 0.32±0.06

Table 2.2: Edge probability model trained on cause-effect pairs data provided at
the NIPS 2013 Workshop on Causality. The means and standard errors of the
performance metrics are based on the 80 Scale-Free (SF) graph structures in the
test data.

Metrics PG (Eq. 2.2) MLG (Eq. 2.3) PDAG (Eq. 2.10) MLDAG (Eq. 2.6) PC GES NOTEARS-MLP

SHD/d 2.02±0.12 1.97±0.13 1.96±0.12 1.88±0.13 1.93±0.15 1.43±0.11 1.36±0.11

TPR 0.31±0.01 0.12±0.01 0.30±0.01 0.20±0.01 0.17±0.02 0.51±0.03 0.47±0.02

FPR 0.26±0.02 0.03±0.01 0.21±0.02 0.09±0.01 0.08±0.01 0.26±0.04 0.12±0.02

2.3.4 Simulation

For my implementation, I first extract features from the data-pairs using the fea-

ture extraction method of Team-Jarfo [42], the second winner from the NIPS 2013

Workshop on Causality challenge. I have also used the causal pairs model of the

third winning team from the above-mentioned competition and I have found that

it doesn’t have better performance than Team-Jarfo [42] as expected. I couldnât

run a performance analysis with the model proposed by the No.1 team due to the

lack of availability of their implemented code. I have extracted 130 features from

the pairs for all training and testing datasets using the code2 of Team-Jarfo [42].

This feature set contains some standard statistical features as well as new mea-

sures based on variable measures of the conditional distribution. I train a multi-

classifier model based on LightGBM [47] which is a Gradient Boosting Decision

Tree (GBDT) algorithm developed by Microsoft. LightGBM speeds up the training
2Team-Jarfo Code: https://github.com/jarfo/cause-effect
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process by using a histogram-based algorithm [48,49] and combines weak learners

into strong ones using an iterative approach [50] to optimize parallel learning. I

create the LightGBM classifier from the Python library PyCaret [51] and select the

hyper-parameters by tuning the model using the PyCaret ‘tune_model()’ function

optimized over AUC.

I train my classifier model on cause-effect pairs data using the 130 extracted

features and make predictions on the synthetic testing data. I predict a probability

distribution over the three classes of edge directions (backward edge, no edge,

forward edge) for all edges in the testing dataset. Finally, using the methods

described in Section 2.2 I calculate the metrics of my causal graph estimation

methods from the predicted probability distribution and compare the results with

the benchmark approaches.

Table 2.1 and Table 2.2 show the empirical results of my methods applied to

80 different Erdos-Renyi graph structures and 80 different Scale-Free graphs, re-

spectively. From these two tables, we see that estimating causal graphs is more

challenging for Erdos-Renyi graph structures than Scale-Free graphs for all the

methods. I also note that the performance of NOTEARS-MLP is superior to all

other methods in terms of SHD and TPR in particular and it does have implica-

tions for further developing my proposed methods as detailed later.

Regardless of the graph structure, I make the following observations. (1) PG

performs better than PC in terms of SHD and TPR and is better than GES in

terms of FPR. (2) MLG does improve the FPR but at the cost of degrading the

TPR. (3) I do see a significant improvement by enforcing DAGness. Namely, PDAG

does improve FPR over PG, but not sufficient to be statistically better/similar to

PC. (4) However, this does happen when I take the maximum likelihood of the

conditional probability. Namely, MLDAG performs at the same FPR level as PC.

From these results, it becomes clear that using global information by constrain-
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ing the graphs to be DAGs does improve the performance compared to using the

pair-wise probabilities naively. However, when I compare it with NOTEARS-MLP,

it also becomes clear that this is not sufficient and that the next iteration of meth-

ods needs to develop features that intrinsically exploit global information.

Nevertheless, one of the distinguishable advantages my methods have over PC

and GES is that they not only perform statistically better/similar but also they

have significantly low computational complexity. While both PC and GES have

exponential time complexity due to their combinatorial approach, my methods run

in polynomial time O(d2) in the number of nodes d as they exploit local node pairs

information.

2.3.5 Real-World Data

For real data, I consider the dataset published by [52], which is based on the

expression level of proteins. This signaling network is largely used in the scien-

tific community as a real application due to the consensus ground truths. It has

11 different protein cells represented as nodes d and the causal relationships were

represented as directed edges (e = 17) between the nodes. This direction of the

edge indicates the direction of influence, where the activity or behavior of one pro-

tein (cause) directly influences the activity or behavior of another protein (effect).

Added, I aggregated the 9 different data files, resulting in a sample size n = 7466

in my experiment. The intensive details about this dataset are presented in the

appendix.

Table 2.3: Comparison of my probabilistic methods with GES and NOTEARS-
MLP that were applied on protein network dataset using cause-effect pairs as
training data.

Metrics PG (Eq. 2.2) MLG (Eq. 2.3) PDAG (Eq. 2.10) MLDAG (Eq. 2.6) GES NOTEARS-MLP

Predicted Edges 36.14 9.82 33.16 18.48 34 42.23

Correct Edges 6.7 3.04 7.42 4.91 5.5 5.83

Reversed Edges 7.77 4.26 6.62 5.41 9.5 7.18
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Table 2.4: Comparison of my probabilistic methods with GES and NOTEARS-
MLP (results reported from the original manuscript [39]). These methods were
applied to a non-standardized protein network dataset.

Metrics PG (Eq. 2.2) MLG (Eq. 2.3) PDAG (Eq. 2.10) MLDAG (Eq. 2.6) GES NOTEARS-MLP

Predicted Edges 38.01 10.41 34.81 20.60 34 13

Correct Edges 6.21 1.52 6.47 4.71 5.5 7

Reversed Edges 8.26 4.04 7.49 6.32 9.5 3

Unlike synthetic data sets, I have considered three different metrics for this

protein dataset: the total number of predicted edges, the number of correct edge

predictions, and the number of reversed edge predictions. Since this protein net-

work uses a consensus over the number of true edges (17 known edges as ground

truth), I do not know the actual true graph for the entire network. Therefore,

a metric such as SHD becomes meaningless. Furthermore, since GES algorithms

generate graphs that contain bidirectional edges, similarly to the synthetic results,

I considered the bidirectional edge as increasing the number of corrected edges

with 0.5 and the number of reversed edges with 0.5 as well.

In Table 2.3, I show the performance evaluation of my methods applied to the

protein network dataset. I note that both PG and PDAG perform better than

GES and NOTEARS-MLP in terms of predicting the number of correct edges. In

addition, I find that taking the maximum likelihood estimates, MLG and MLDAG,

significantly reduce the number of false edge predictions but their performances

in predicting correct edges also degrade. The degradation is less severe between

PDAG and MLDAG than PG and MLG.

PG, PDAG, as well as GES have the best performance in terms of the total

number of predicted edges than NOTEARS-MLP, but MLDAG has the best total

number of predicted edges which is close to the number of true edges in the dataset.

I also note that MLG and MLDAG have better performance than NOTEARS-

MLP in terms of fewer reversed edges. Finally, PGDAG shows an overall better
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performance than PG, further demonstrating the impact of enforcing DAGness.

Sensitivity to data scaling. Table 2.4 shows the results of my methods as

well as GES and NOTEARS-MLP [39] applied on protein dataset before scaling

them. We observe that my methods: PG, PDAG, MLG, MLDAG have almost

similar results in both Table 2.3 (after data scaling) and Table 2.4 (before data

scaling). GES is not affected by the data scaling. However, as expected, we

see that NOTEARS-MLP has very different results in these two tables where it

suffers highly from data-scaling, which is consistent with the sensitivity to scaling

results in Ref. [46]. It is to mention that in Table 2.4, NOTEARS-MLP results are

reported from the original manuscript [39], whereas in Table 2.3, I use the same

implementation?? of NOTEARS-MLP [39] with default parameters and applied

on the standardized protein dataset by removing the mean and scaling to unit

variance.

2.4 Summary

In this study, I have introduced a novel approach to causal discovery by lever-

aging the probabilistic information of pairwise causal edges. I have proposed to

go beyond the naive approach to generate graph probabilities from causal pair

probabilities by enforcing the graph to be acyclic and approximating its solution

using the maximum spanning directed acyclic graph approach. Enforcing acyclic-

ity clearly improves the performance on both synthetic and real datasets compared

with the naive approach.

I have shown that my methods have statistically better and/or similar perfor-

mances than some traditional methods. More importantly, this performance comes

with just polynomial run-time as compared with the exponential run-time of tra-

ditional methods that are combinatorial in nature which presents a promising and

feasible approach for approximating the solution to the NP-hard problem of causal
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graph discovery using a novel probabilistic framework. To further enhance compu-

tational efficiency and lower complexity, I want to leverage the concept of a Markov

blanket approach as well as the subgraph decomposition in my future work.

Moreover, these promising results prompt us to further look into improving the

causal pair feature generation to intrinsically capture global information which

I plan to implement using graph neural networks that have been discussed in

chapter 4. Based on this causal graph learning, the next chapter addresses the

challenge of the high dimensionality of data and I propose an approach called

causal feature selection, which involves selecting a subset of features that have a

causal effect on the outcome variable.



CHAPTER 3: CAUSAL FEATURE SELECTION USING DIRECTED

ACYCLIC GRAPHS

3.1 Introduction

The rise of big data has led to a rapid increase in data collection and database

creation across various industries, including healthcare, social media, finance, and

retail. Consequently, high-dimensional data has become more publicly available,

with widespread usage in numerous applications, presenting new challenges for

research communities [53]. Real-world high-dimensional datasets, such as gene ex-

pression datasets in bioinformatics, can contain hundreds of thousands of features.

This large number of features poses significant challenges for machine learning

models, which often struggle to handle such high dimensionality effectively [54].

To address the challenges posed by high-dimensional data, feature extraction

and feature selection methods have emerged as essential data pre-processing tech-

niques with demonstrated effectiveness. Feature extraction involves transforming

a large set of original (raw) features into a new, lower-dimensional, and meaningful

feature set, which retains essential information from the original data while reduc-

ing computational requirements. In contrast, feature selection methods directly

identify a subset of features from the original dataset that carry relevant informa-

tion about the target concept for model building [55,56]. While feature extraction

generates a new feature space, feature selection preserves the interpretability of the

original features by retaining relevant ones and removing irrelevant or redundant

ones, ultimately enhancing model interpretability [57].

Machine learning models applied to real-world high-dimensional data often suf-
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fer from significant information loss, which can degrade their learning performance

due to the presence of numerous irrelevant or redundant features. Feature selec-

tion methods have been widely employed as a potential solution to this issue, as

they reduce storage and memory requirements, increase computational efficiency,

and enhance the performance of machine learning models. However, most feature

selection techniques rely on correlations or associations between features and the

target variable, without providing any direct or causal relationships [19]. Con-

sequently, causal feature selection algorithms have gained increased attention in

recent years, aiming to identify a subset of features with a causal effect on the tar-

get variable [16]. These algorithms employ causal inference techniques to discern

the Markov blanket (MB) of class attributes or a subset thereof, distinguishing

between causal and non-causal relationships to improve the interpretability and

performance of machine learning models [17,18,58].

Yu et al. [59] recently introduced a novel feature selection algorithm, framing it as

a local causal structure learning problem. This algorithm is formulated as a multi-

label feature selection approach that learns the underlying causal mechanisms of

data and selects causally informative features shared by common class labels. In a

separate study, Yu et al. [60] presented a multi-source feature selection algorithm

leveraging the concept of causal invariance in causal inference. Similarly, Peters

et al. [61] proposed a method to identify all ’direct causes’ of a target variable of

interest by exploiting the invariance of a prediction under a causal model. Paul

(2017) [62] suggested a matching technique for identifying meaningful features

using causal inference in document classification, despite the fact that the concept

of causality may not apply as naturally to document classification as it does to

other tasks.

Many existing algorithms, both causal and non-causal, evaluate their perfor-

mance based on correlation-based metrics such as accuracy, AUC, mean-squared
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loss, etc. [63–66]. However, causal metrics are necessary for evaluating causal

feature selection methods, as they offer a rigorous and principled approach to as-

sessing the effectiveness of these algorithms. Recently, Panda et al. [67] proposed

an instance-wise causal feature selection method for interpreting black-box models.

In their work, they utilized a variant of the average causal effect (ACE) as a causal

evaluation metric, although their formulation was specifically tailored for image

data.

In this chapter, I investigate the application of causal inference methodologies

for reducing redundant features and selecting optimal relevant features in obser-

vational data. My approach involves constructing a directed acyclic graph (DAG)

to represent the causal relationships among variables, with edges indicating direct

causal effects. This chapter: (1) presents a novel formulation of a causal feature

selection (CFS) algorithm that leverages causal structure learning techniques; (2)

introduces a new evaluation criterion for CFS using causal metrics; and (3) provides

quantitative comparisons on several synthetic and real-world datasets, demonstrat-

ing that the truncated subsets of features selected by the CFS algorithm yield

comparable or improved performance relative to baseline methods while utilizing

fewer causal features.

In Section 3.2 of this chapter, I present the methodology that I use to address the

problem at hand. I leverage the existing prior work outlined in Section 3.3 to obtain

numerical results. The experimental evaluation of my approach is presented in

Section 3.4, where I provide empirical evidence to support my approach. Finally, I

summarize my findings and provide insights for future enhancements in Section 3.5.

3.2 Methodology

Causality refers to a relationship between two events, where one event causes

the other event to occur. In statistical terms, a dependent variable’s value is
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determined by the value of an independent variable [68]. This relationship can

be observed in the causal network depicted in Figure 3.1, where features X1, X2,

X3 have a direct causal effect on feature Y , while features X4, X5, X6 have an

indirect causal effect. However, features X7, X8, and X9 are only correlated with

Y , and not causally related. It is important to note that while causal relationships

involve correlation, not all correlations imply causality. Therefore, a causal feature

selection method should ideally select only a subset of features from X1 to X6

based on their relevance and importance, while ignoring correlated features X7 to

X9.

Figure 3.1: Example of a causal network.

The causal effect refers to the distinction between an actual outcome and the

alternative outcome that would have arisen if a specific treatment or intervention

had not been applied. In the context of causal feature selection evaluation, it is

vital to appraise the causal effect of selected features, rather than merely focusing

on their predictive power. This is crucial because a feature may have a strong

predictive association with the outcome variable, even though it may not have a
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causal connection. To address this, causal metrics such as average causal effect

(ACE), total causal effect (TCE), and average treatment effect (ATE) can be

utilized to determine the causal influence of chosen features on the outcome in

question. In this study, I employ TCE, which encompasses both the direct and

indirect consequences of the treatment on the outcome. Figure 3.1 illustrates the

causal relationships between features X1 to X9 and the outcome variable Y , where

features X1 to X3 have a direct causal effect on Y while features X4 to X6 have

an indirect causal effect. Features X7 to X9 have no causal effect on Y as there is

no path from these features to Y . It is important to note that the causal effect of

a grandparent feature on a variable is often mediated through its parent(s), which

can result in a dampening of the causal effect of the grandparent on the variable

compared to the direct causal effect of the parent. TCE measures the difference

between a hypothetical scenario where all individuals receive the treatment and an

alternative scenario where none do. Therefore, in evaluating the causal influence

of selected features, it is important to consider their causal effect rather than just

their predictive power.

3.2.1 Causal Feature Selection (CFS)

This section introduces a method for causal feature selection (CFS) based on

causal graph discovery and the total causal effect (TCE) metric. The TCE of

features can be computed by identifying all possible paths between the treatment

variable and the outcome (target) variable and aggregating the direct and indirect

effects along each path, utilizing randomized controlled trials, natural experiments,

or observational studies with adjustments for confounding variables such as DAGs

and the do-calculus, Structural equation modeling (SEM), and propensity score

matching, etc. This methodology provides a ranking of features that have a higher

causal impact on the target variable, indicating the importance of each feature.
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A similar ranking of feature importance can also be obtained using a cause-effect

pairwise model based on the probability of direction from each feature to the target

variable. However, using such a model to get the ranking may be biased if there

are confounding factors that affect both the features and the target variable. On

the other hand, the causal feature selection using TCE isolates the effect of the

features on the target variable while controlling for other factors that may affect

the outcome.

However, selecting a subset of features from the TCE ranking requires domain

knowledge, which may not always be available. To address this issue, the ’Kneedle’

algorithm is proposed, which uses the mathematical definition of curvature for

continuous functions to identify the optimal cut-off point for selecting a subset of

features from the TCE ranking. The algorithm is explained in more detail in the

following paragraph.

It is worth noting that a similar procedure can be applied to non-causal feature

selection methods to obtain a ranking of feature importance based on their score

criteria. By applying the ’Kneedle’ algorithm, a subset of features can be selected

from the ranking. For instance, for the correlation-based feature selection method

Maximum Relevance - Minimum Redundancy (mRMR), the FCQ score of each

feature can be used to obtain a similar ranking.

Kneedle Algorithm. The ’Kneedle’ algorithm was proposed by Satopää et

al. [69], which detects the optimal cut-off point in a curve by identifying the knee

or elbow point, where the curve changes from a steep slope to a flatter one. It is a

computationally efficient method with a complexity of O(n log n), where n is the

number of points in the curve. The algorithm works by computing the change in

slope at each point along the curve, and then looking for the point where the change

in slope is maximal, indicating the knee point. The algorithm then uses a statistical
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Figure 3.2: An example of the Kneedle algorithm for knee/elbow detection applied
to two of the 10-node graph datasets. Given the TCE-based sorted ranking for the
features, the algorithm selects the first 6 features for the Erdos-Renyi graph and
the first 5 features for the Scale-Free graph as important causal features.

test to determine if the maximal change in slope is statistically significant, and if

so, returns the knee point. Otherwise, it continues searching for the next maximal

change in slope. Figure 3.2 shows an example of the ’Kneedle’ algorithm detecting

the cut-off point.

3.2.2 CFS Evaluation Methodology

In the literature discussed in Section 3.1, many causal feature selection (CFS)

methods are evaluated without using causal metrics as their criterion [60, 64–66].

To address this issue, I propose a new evaluation criterion for CFS methods based

on their causal effect, leveraging the Rank Biased Overlap (RBO) similarity mea-

sure algorithm [70]. This new approach offers a different way to assess the per-

formance of causal graph discovery methods compared to traditional evaluation

metrics, such as Structural Hamming Distance (SHD), True Positive Rate (TPR),
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and False Discovery Rate (FDR).

My proposed causal feature selection method uses observational data to identify

the subset of causal features through a causal graph discovery method and the total

causal effect (TCE) metric, as described in Section 3.2.1. I then identify a baseline

ranking of feature importance by applying the same procedure to the ground truth

graph. Next, I apply the RBO measure to compare the subset of features given

by the CFS method with the baseline subset of features given by the true graph

in terms of their ranking positions. The RBO measure produces a similarity score

between 0 and 1, with a score of 1 indicating identical subsets and a score of 0

indicating no common features between the two subsets. Figure 3.3 illustrates the

steps of my causal feature selection method using the new evaluation criterion.

Rank Biased Overlap. Rank Biased Overlap (RBO) is an intersection-based

similarity measure that compares two ranked lists of items. The measure is pro-

posed by Webber et al. in their paper on similarity measures [70]. Similar to

Jaccard similarity, RBO counts the proportion of overlapped items as the depth

of the ranking increases. However, RBO differs by introducing weights for each

rank position. The weights are derived from a convergent series, which means that

items with (dis)agreement appearing at the top of the two lists will weigh more

than those at the bottom. Given two infinite ranked lists L and M , the RBO score

can be calculated using the equation 3.1:

RBO(L,M, p) = (1− p)
∑

(pd−1)Ad (3.1)

Here, d is the depth of the ranking examined, ranging from 1 to ∞. Ad is the

agreement between L and M , determined by the ratio of the size of the overlap

up to depth d, represented by (|L : d ∩M : d|)/d. The tunable parameter p ranges
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Figure 3.3: Causal feature selection method and the new evaluation criteria using
RBO score. First, on the left side box, I estimate a causal graph using a suitable
method and select the ranking of the causal features subset. Next, on the right
side box, I extract another ranking of causal features subset using the true causal
graph as a baseline. Finally, I compare the two rankings of selected features using
the Rank-Biased Overlap (RBO) similarity measure to evaluate the performance
of my method.

from (0, 1) and contributes towards the final RBO score by determining the top d

ranks’ contribution.

It is notable that the Rank Biased Overlap (RBO) measure addresses three com-

mon issues associated with correlation-based similarity measures, such as Kendall

Tau. Firstly, unlike Kendall Tau, RBO does not require the two ranking lists to

be conjoint. Secondly, RBO is a weighted measure that assigns greater weight to

items with (dis)agreement appearing at the top of the two lists than those appear-

ing at the bottom. Finally, the contribution of a single discordant pair does not

decrease as the depth of the ranking increases. A more comprehensive discussion

of these advantages can be found in the paper by Webber et al. [70].
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3.3 Prior Work used in Numerical Results

In this section, I will review prior work on feature selection methods that I will

compare with my proposed causal feature selection (CFS) method. Specifically, I

will examine correlation and mutual information based methods such as Maximum

Relevance - Minimum Redundancy (mRMR) [71], Information Gain (IG) [72], and

Lasso regularization [73] as well as causality-based methods such as Linear Non-

Gaussian Acyclic Models (LINGAM) [74], Causal-pairs model [42], and Maximum

Likelihood DAG (MLDAG) [33] method. I will explain each method and discuss

how they will be used to obtain numerical results for my proposed CFS method.

3.3.1 Maximum Likelihood Directed Acyclic Graph (MLDAG)

MLDAG is a causal graph learning approach introduced by Rashid et al. [33].

The authors describe causal discovery as the process of estimating the underlying

causal relations encoded by the directed acyclic graph (DAG), GDAG = (V,E),

given n i.i.d. observations in the data matrix X = [x1 . . .xd] ∈ Rn×d.

The method predicts the probability distribution p(yij|f) of the causal relation

between two variables Xi (cause) and Xj (effect) given the observational dataset

[xi,xj] ∈ Rn×2, where yij ∈ [−1, 0, 1] is the directions of edges between variable

pairs Xi and Xj (1 = causal edge from Xi to Xj, -1 = causal edge from Xj to

Xi and 0 = no causal relation between pairs), and f(·) is a pre-trained machine

learning model.

p(yij|f) = f([xi,xj]), for i < j (3.2)

p(G|f) =
∏
i<j

p(yij|f) (3.3)

The author constructs a probability distribution of all possible digraphs, G, using
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equation 3.3 assuming that the variable pairs Xi and Xj are independent, where G

is not always a DAG. To enforce DAGness, the author constrains the conditional

distribution in equation 3.3 by integrating out the topological ordering π of the

vertices, resulting in equation 3.4. This ensures the probability distribution of

digraphs to be DAGs. Using the maximum likelihood estimate from equation 3.5,

a representative DAG can be extracted, which I intend to use in my study to

estimate a causal graph.

p(G|f,DAG) =
∑
π

p(G|f,DAG, π)p(π|f) (3.4)

GDAG = argmax
G

p(G|f,DAG) (3.5)

3.3.2 Linear Non-Gaussian Acyclic Model (LiNGAM)

Linear Non-Gaussian Acyclic Models (LiNGAM) is a statistical technique for es-

timating the structural equation models that assume the linear and non-Gaussian

relationship between variables and identify the underlying causal structure of ob-

served data. It was introduced by Shimizu et al. [74]. LiNGAM applies statistical

tools to estimate the parameters of the model, which separates the observed vari-

ables into their causal and non-causal components. This separation helps LiNGAM

identify the structure of the causal graph. To do this, LiNGAM assumes that there

are no unmeasured (latent) confounding variables that influence both the causal

variables and the outcome variables. Note that, this is a hard assumption to make

and in many real-world scenarios this will not hold. Although I will use LiNGAM

estimation methods in this study since this assumption simplifies the modeling

process, I plan to go beyond this limitation in the future by considering alter-
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native modeling approaches that can account for the confounding latent variable

and their influences such as Structural Equation Modeling (SEM) or other causal

inference techniques.

3.3.3 Cause-Effect Pair Model

The cause-effect pair model is designed to identify the most relevant features

that have a strong cause-effect relationship with a specific effect or target variable.

The model I focus on is the one proposed by Fonollosa (2019) [42] in response to

the 2013 NIPS Workshop on Causality Challenge. According to the author, a new

set of features is generated for every feature-target pair, which includes standard

statistical features combined with information-theoretic measures and conditional

distribution variability measures. The model then predicts the probability of causal

direction from each feature to the target using a machine learning model for classi-

fication. The higher the probability, the more relevant the feature is to the target.

The cause-effect pair model has the potential to be an effective tool for identify-

ing causal relationships in high-dimensional datasets, which can have important

applications in various fields, including healthcare, finance, and social sciences.

3.3.4 Maximum Relevance - Minimum Redundancy (mRMR)

The mRMR algorithm is a mutual information-based feature selection method

that aims to select the most informative features while minimizing redundancy

between them. This algorithm was proposed by Zhao et al. [71], who claim that

selecting just a few features from tens of thousands can achieve maximum accuracy

for the task at hand. In this study, I will work with the FCQ variant of the mRMR

algorithm, which stands for F Statistic to target / Correlation between features.

The relevance of a feature f at the i-th iteration is calculated as the F-statistic

between the feature and the target variable, while the average Pearson correlation

between the feature and all the features selected in earlier iterations is used to
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calculate redundancy. This is expressed by the following equation:

FCQ(f) =
F(f, y)

1
k

∑k
j=1 corr(f, fj)

(3.6)

where y is the target variable, fj represents the j-th feature already selected in

previous iterations, k is the number of features selected so far, and F(f, y) and

corr(f, fj) denote the F-statistic between feature f and target variable y and the

Pearson correlation between feature f and feature fj, respectively. By using this

criterion, mRMR selects the feature with the highest FCQ value and iteratively

adds features that provide maximum information gain while minimizing redun-

dancy with the previously selected features.

3.3.5 Information Gain

Information Gain (IG) or InfoGain is a feature selection technique that quan-

tifies the amount of information provided by a feature in predicting the target

variable [72]. It measures the reduction in entropy achieved when the dataset is

split based on the feature. By calculating the entropy of the original dataset and

the weighted average entropies of the feature’s values, Information Gain captures

the usefulness of a feature in terms of the predictability it offers. Higher Infor-

mation Gain values indicate more important features. This technique enables the

identification and removal of irrelevant or redundant features, resulting in a more

concise and informative feature set for subsequent analysis or modeling tasks.

3.3.6 Lasso Regularization

Lasso regularization [73] is an embedded method utilized to incorporate the l1-

norm of the coefficient of a linear model as a penalty term. The objective function

for Lasso regularization is defined as follows:
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1

2N

N∑
i=1

(yitrue − yipred)
2
+ α

n∑
j=1

|aj| (3.7)

In this equation, aj represents the coefficient of the j-th feature. The last term

represents the l1 penalty, while α is a hyperparameter that adjusts the strength

of the penalty term. The cost function aims to optimize by reducing the absolute

values of the coefficients. Higher coefficients contribute to a larger value of the

cost function.

Consequently, the objective is to minimize the cost function by shrinking the

coefficients toward zero. In cases where two features exhibit linear correlation,

their joint presence leads to an increase in the cost function value. Therefore, Lasso

regression actively works to shrink the coefficient of the less significant feature to

zero, effectively selecting the most relevant features. This property enables feature

selection, where features associated with non-zero coefficients are retained, while

those with zero coefficients are discarded.

3.4 Experiments

In this section, I will begin by introducing the datasets employed in my experi-

ment, followed by the presentation of the novel evaluation methodologies, where I

empirically assess and discuss the efficacy of my methods in comparison to several

existing feature selection algorithms and approaches discussed in Section 3.3.

3.4.1 Datasets

Synthetic Data. The benefit of using synthetic data in causal estimation lies

in the ability to control and know the true relationships between features when

compared to real data. To this end, I generated small graphs that encompassed 16

different combinations of graph characteristics with similar criteria, including the

number of nodes, d = [10, 20], the number of edges, e = [1d, 4d], the number of

data samples per node, n = [200, 1000], and graph models from Erdos-Renyi (ER)
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and Scale-Free (SF). Non-linear data samples for the graph nodes were generated,

similar to the data generation utilities provided in the NOTEARS-MLP [39] im-

plementation. Furthermore, I generated 10 random graph structures with ground

truths for each of these 16 graph types to test my methods.

Similarly, large graphs were generated using comparable criteria, including the

number of nodes, d = [100, 500], and the number of data samples per node, n =

[2000, 10000].

Real-world Data. I utilized a combination of real-world and semi-synthetic

datasets to present the new evaluation criteria. The Protein Expression Network

Dataset, as presented in Sachs et al. [52], and the widely employed Lung Cancer

Simple Set (LUCAS) data set presented in the Causality Challenge (2008) [75],

were the primary real-world datasets used. The same evaluation criteria as the

synthetic datasets, as presented in Table 3.3, were employed to evaluate the per-

formance of the CFS methods on these datasets.

Additionally, I employed four datasets from the UCI Machine Learning reposi-

tory [76], including Communities and Crime, Tom’s Hardware (a dataset in Buzz

social media), Heart Disease, and Parkinson’s Disease, to assess the predictive per-

formance of my method and compare it with other methods. The details of the

datasets are presented in Table 3.1.
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Table 3.1: A description of the real-world data sets

Dataset #Dimensions #Instances

Sachs 11 7466

LUCAS 12 2000

Communities and Crime 123 1994

Tom’s Hardware 96 28179

Heart Disease 14 303

Parkinsons Disease 23 197

3.4.2 Evaluation Metrics

In this study, I evaluate the performance of my proposed causal feature selec-

tion method using both causal and correlation-based metrics. To quantify the

performance, I introduce a new evaluation approach for causal feature selection.

Following the methodology prescribed in section 3.2, I first evaluate the perfor-

mance of the causal feature selection methods using the Total Causal Effect (TCE)

of features on the target variable, which is extracted using the causal graph, as a

ranking criterion for the features. I then apply a modified version of the Kneedle

algorithm [69] to identify the subset of selected features for each method based

on the estimated TCE ranking. I compare the subsets of selected features given

by the Kneedle algorithm for each method with the subsets of features extracted

using the true graph ranking (as baseline) using the Rank Biased Overlap (RBO)

similarity measure. In addition to the causal metrics, I use the scores from equa-

tion 3.6 for mRMR, the mutual-information score for InfoGain, and the magnitude

of feature coefficients for Lasso regularization as ranking criteria to select features

subset using the Kneedle algorithm.

To compare the performance of my causal feature selection method with corre-
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lation based methods, I evaluate the predictive performance of different models. I

report the number of features selected by each method along with the performance

metrics of the predictive models. I use the root mean squared error (RMSE)

for the regression data sets (Communities and Crime, Tom’s Hardware) and the

area under the curve (AUC) score for the classification data sets (Heart Disease,

Parkinson’s Disease).

3.4.3 Setup and Simulation

To quantify the TCE of features for each method, I utilized the DirectLiNGAM1

Python tool and used the true graph as prior knowledge to establish the baseline

ranking based on the TCE value. Likewise, I used MLDAG causal graph estimation

approach proposed by Rashid et al. [33] as prior knowledge to derive the TCE-based

feature ranking for the MLDAG method. Subsequently, I utilized DirectLiNGAM 1

to learn a causal graph from the data, which provided a TCE-based feature ranking

for the LiNGAM method. In addition, I implemented a modified version 2 of

the cause-effect pair method proposed by Fonollosa (2019) [42] (hereafter referred

to as ’Causal Pairs’ method) and mRMR-based feature selection algorithms. I

implement the Kneedle algorithm [69] in Python to identify the knee/elbow point

and select a subset of features from the TCE-sorted rankings given by each method.

Lastly, I implement the variant3 of Rank Biased Overlap (RBO) algorithm to

compare the subsets of selected features.

To compare the predictive performances of the selected features by each method

on the selected data sets I have used the scikit-learn implementation of Linear

regression, Logistic regression, K-Nearest Neighbours (KNN), and Random Forest

models for regression and classification data sets respectively.
1DirectLiNGAM: https://lingam.readthedocs.io/en/latest/tutorial/lingam.html
2Jarfo Cause-effect Pair Model: https://github.com/jarfo/cause-effect
3RBO implementation: https://github.com/dlukes/rbo
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3.4.4 Results

Table 3.2 presents the outcomes of my novel evaluation criteria applied to syn-

thetic data for various causal feature selection methods. The table provides infor-

mation on the number of features selected by each method and the RBO (Rank

Biased Overlap) score of the selected feature subset, compared to the subset of

features selected based on the true graph ranking as the baseline. Our observa-

tions indicate that the causal probability-based method, ’Causal Pairs’, outper-

forms the correlation-based methods. Moreover, causal graph discovery methods

demonstrate superior performance compared to causal probabilities. Specifically,

MLDAG and LiNGAM outperform Causal Pairs and other methods across all

graph structures. While MLDAG exhibits superior performance for small graph

structures, LiNGAM performs better for larger graphs. Notably, the correlation-

based method mRMR achieves comparable performance to the causality-based

method for small graphs. These findings suggest that MLDAG and LiNGAM esti-

mate distinct causal structures from the data, resulting in different feature rankings

based on their Total Causal Effect (TCE) outcomes. Therefore, combining both

methods to create a hybrid causal feature selection approach can yield a robust

set of selected features that outperforms correlation-based methods.

It is worth noting that the mRMR feature selection ranking score curve is un-

usual for these datasets. The modified f-score calculated in each feature selection

for the ranking is independent of the others. Therefore, a feature with a lower

rank can have a higher f-score than the previously selected higher-rank feature,

which results in a steep rise-fall of peaks in the middle of the curve. To address

this, I used the same number of features selected by the baseline true graph for

the mRMR method in Table 3.2.
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Table 3.2: Comparison of my causal feature selection method with other methods
applied to synthetic data in terms of the number of features selected and the RBO
similarity measure against the ranking of selected features by the true graph. The
means and standard errors of the performance metrics are based on the 40 different
graph structures for each category in the test data.

Graph Type ↓
Graph Size → 10 Nodes 20 Nodes 100 Nodes 500 Nodes

Method ↓ #feat. RBO score #feat. RBO score #feat. RBO score #feat. RBO score

Erdos-Renyi

Causal Pairs 6.05 0.327±0.03 13.88 0.248±0.02 49.00 0.205±0.06 312.25 0.150±0.05

LiNGAM 3.30 0.419±0.04 5.63 0.409±0.03 12.50 0.239±0.06 21.25 0.277±0.08

MLDAG 4.30 0.514±0.04 8.35 0.454±0.03 33.25 0.138±0.04 107.25 0.159±0.07

mRMR 4.25 0.417±0.04 6.93 0.370±0.03 24.75 0.169±0.05 46.25 0.189±0.08

InfoGain 3.70 0.382±0.03 7.23 0.311±0.04 21.25 0.161±0.07 90.25 0.072±0.02

Lasso 4.00 0.420±0.03 7.13 0.397±0.03 9.25 0.208±0.07 12.00 0.218±0.09

Scale-Free

Causal Pairs 5.98 0.369±0.03 13.35 0.284±0.03 62.00 0.308±0.09 244.75 0.193±0.08

LiNGAM 3.65 0.521±0.04 5.73 0.523±0.03 12.50 0.343±0.05 50.25 0.206±0.06

MLDAG 3.50 0.550±0.04 5.70 0.516±0.03 24.25 0.269±0.09 61.75 0.171±0.08

mRMR 3.95 0.453±0.03 7.13 0.399±0.03 14.50 0.253±0.03 30.75 0.142±0.04

InfoGain 4.48 0.368±0.04 7.60 0.342±0.02 27.00 0.127±0.05 97.50 0.085±0.06

Lasso 4.03 0.462±0.03 7.05 0.446±0.03 6.50 0.263±0.04 8.00 0.170±0.05

Table 3.3: Comparison of my causal feature selection method with other methods
in terms of the number of features selected and the RBO similarity measure against
the ranking of selected features by the true graph for Sachs and LUCAS data sets.
Note, the Sachs data set does not have any defined target, therefore, probable 3
different targets from the protein signaling network proposed in the manuscript [52]
have been experimented

Graph Dataset
Total

#feat.

MLDAG Causal Pairs LiNGAM mRMR InfoGain Lasso

#feat. RBO score #feat. RBO score #feat. RBO score #feat. RBO score #feat. RBO score #feat. RBO score

Sachs (P38) 10 5 0.341 9 0.344 4 0.392 5 0.368 3 0.161 2 0.407

Sachs (ERK) 10 3 0.357 5 0.577 8 0.727 2 0.614 3 0.583 2 0.614

Sachs (AKT) 10 3 0.161 5 0.358 2 0.581 2 0.581 3 0.322 2 0.133

LUCAS 11 2 0.416 8 0.674 5 0.502 5 0.633 5 0.652 6 0.462
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Table 3.4: Prediction performance of different methods using several machine
learning models applied to classification data sets. The mean and standard er-
rors of testing AUC shown here are based on 10 different test runs for each data
set.

Dataset HEART Disease Parkinson’s Disease

Methods #features Logistic Reg. KNN Random Forest #features Logistic Reg. KNN Random Forest

Original 13 0.822±0.01 0.818±0.01 0.834±0.01 22 0.769±0.02 0.828±0.03 0.711±0.03

Causal Pairs 7 0.808±0.01 0.782±0.01 0.835±0.01 2 0.785±0.03 0.740±0.03 0.819±0.02

MLDAG 6 0.814±0.03 0.812±0.01 0.826±0.01 4 0.776±0.03 0.721±0.03 0.812±0.02

Lingam 2 0.776±0.01 0.725±0.02 0.749±0.03 2 0.766±0.03 0.774±0.02 0.775±0.03

mRMR 7 0.827±0.01 0.810±0.01 0.838±0.01 4 0.763±0.03 0.812±0.03 0.811±0.02

InfoGain 3 0.814±0.01 0.771±0.01 0.810±0.01 8 0.777±0.03 0.803±0.03 0.772±0.03

Lasso 3 0.819±0.01 0.801±0.02 0.845±0.01 5 0.785±0.03 0.787±0.03 0.756±0.03

Table 3.5: Prediction performance of different methods using several machine
learning models applied to regression data sets. The mean and standard errors
of testing RMSE shown here are based on 10 different test runs for each data set.

Dataset Communities and Crime Tom’s Hardware

Methods #features Linear Reg. KNN Random Forest #features Linear Reg. KNN Random Forest

Original 122 0.599±0.01 0.652±0.01 0.596±0.00 96 0.196±0.00 0.267±0.01 0.216±0.01

Causal Pairs 15 0.607±0.00 0.633±0.01 0.604±0.01 48 0.199±0.00 0.223±0.01 0.215±0.01

MLDAG 98 0.604±0.01 0.663±0.01 0.599±0.01 54 0.224±0.00 0.245±0.01 0.233±0.00

Lingam 30 0.608±0.01 0.652±0.01 0.603±0.01 12 0.204±0.00 0.177±0.01 0.215±0.01

mRMR 99 0.602±0.01 0.656±0.00 0.595±0.00 55 0.197±0.00 0.232±0.01 0.215±0.01

InfoGain 28 0.597±0.01 0.632±0.01 0.599±0.01 9 0.206±0.00 0.155±0.01 0.216±0.01

Lasso 26 0.579±0.01 0.632±0.01 0.596±0.01 17 0.199±0.00 0.195±0.01 0.215±0.01

In Table 3.3, I present the results obtained from applying various causal feature

selection methods to the Sachs and LUCAS datasets. The findings reveal that

LiNGAM and mRMR exhibited superior performance on the Sachs dataset, while

Causal Pairs outperformed other methods on the LUCAS dataset, utilizing a larger

set of features. These results demonstrate the enhanced efficacy of incorporating

causal inference techniques compared to traditional correlation-based approaches

for feature selection. Notably, we observed that mRMR can achieve comparable

or even superior performance to causality-based methods in the context of causal

network datasets. This compelling finding motivates us to explore the potential
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benefits of combining mRMR with other causal discovery methods.

To assess the predictive capabilities of the causal feature selection methods in

comparison to other techniques, I employed various machine learning predictive

models on UCI datasets, utilizing the subset of features selected by each method.

The results of the classification and regression tasks are presented in Table 3.4 and

Table 3.5, respectively. Interestingly, we observed that causality-based methods

exhibit similar performance to correlation-based approaches in terms of predictive

accuracy. Moreover, incorporating causality generally leads to a reduction in the

number of features while maintaining comparable predictive performance. Addi-

tionally, I found that correlation-based methods, such as mRMR and Lasso regu-

larization, perform equally well or better than other techniques in the regression

task. These findings open up possibilities for integrating such correlation-based

methods into causal discovery frameworks.

3.5 Summary

This study proposed the causal feature selection (CFS) method as an approach to

select informative and relevant features from observational data. The use of causal

graphs provided a unique advantage over traditional correlation-based metrics.

I introduced new CFS evaluation criteria using causal metrics, such as the total

causal effect and the Kneedle algorithm. The experimental results on synthetic and

real-world datasets demonstrated that the proposed CFS method is statistically

better or on par with other baseline and traditional approaches.

In future work, I plan to explore other causal graph estimation methods to

calculate the total causal effect and use additional causal metrics to improve the

efficiency of my method which I will explain in brief in the next chapter. More-

over, I aim to apply my method to different domain datasets such as vision and

text data to evaluate its effectiveness in various applications. Overall, this study
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contributes to the development of causal feature selection methods and highlights

the importance of causal inference in feature selection for machine learning tasks.



CHAPTER 4: A GRAPH NEURAL NETWORK-BASED PROBABILISTIC

FRAMEWORK FOR CAUSAL DISCOVERY

4.1 Introduction

Causal inference from observational data is a fundamental task in many disci-

plines [3,52,77–79] and forms the backbone of many practical decision-making pro-

cedures as well as theoretical developments. Classical causal discovery algorithms

test hypotheses of conditional independences to learn causal structure [80]. Score-

based causal discovery algorithms optimize fit scores over various graph struc-

tures [81]. While effective in many situations, these approaches suffer from expo-

nential run-times and combinatorial explosions in statistic complexity as the data

sets grow [82]. Recent advancements in machine learning, such as the NOTEARS

algorithm, employ continuous optimization to enforce acyclicity, enhancing com-

putational efficiency [83]. These approaches typically identify a single best causal

graph rather than a probability distribution over multiple possible graphs, which

can limit its ability to account for uncertainty in the causal discovery process.

The emergence of graph neural networks (GNNs) has revolutionized the field

of supervised learning on graph-structured data, enabling powerful representa-

tions and insights from complex networks and relationships. From social network

analysis to molecular property prediction (e.g., modeling interactions of atoms in

a chemical molecule) [20, 21], Graph Convolutional Networks (GCN) and other

sophisticated variants such as Graph Attention Networks (GAT), have success-

fully exploited node and edge features to learn deep and hierarchical representa-

tions [22,23]. Despite their success in areas such as network analysis and bioinfor-
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matics [24,25], these methods have yet to be fully integrated into causal discovery

frameworks. Such developments strongly motivate and justify the idea of utilizing

GNNs for causal learning tasks [3, 26, 27]. DAG-GNN, for instance, focuses on

deterministic structure learning, while my methods use a probabilistic framework

to better capture the inherent uncertainties in causal relationships [26].

This paper proposes a novel GNN-based probabilistic framework for causal dis-

covery that goes beyond the existing causal pairs methods, including the work

by Rashid, Chowdhury, and Terejanu [33], by capturing global information in the

graph structure.

This work makes several key contributions:

• This research enhances causal structure learning by refining the probability

distribution of all possible digraphs.

• It provides a comprehensive understanding of causal discovery by learning a

spectrum of causal graphs instead of producing a single deterministic graph.

• It outperforms conventional non-GNN-based methods in terms of accuracy

and scalability.

The proposed framework’s capabilities are validated through a comprehensive

evaluation process, involving the analysis of both synthetic data derived from non-

linear SEMs, benchmark datasets, and real-world datasets, demonstrating its effec-

tiveness in diverse scenarios. My approach surpasses benchmark methods, includ-

ing traditional techniques (PC [80], GES [81]) and recent non-GNN-based methods

(LiNGAM [74], NOTEARS-MLP [83]) and GNN-based method: DAG-GNN [26],

in terms of accuracy and scalability on synthetic datasets, while also perform-

ing favorably compared to DAG-GNN and NOTEARS-MLP, and outperforming

LiNGAM and GES for real-word dataset.
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Section 4.2 reviews the related work, followed by the problem formulation and

a detailed explanation of my causal discovery approach using GNNs in Section

4.3. The empirical evaluation of my methods is presented in Section 4.4. Finally,

Section 4.5 summarizes the findings and discusses potential future improvements.

4.2 Related Work

Structure learning from observational data typically follows either constraint-

based or score-based methodologies. Constraint-based approaches, like the PC

algorithm [80], start by employing conditional independence tests to map out the

underlying causal graph’s skeleton. Alternatively, score-based strategies, such as

those implemented by GES [81], involve assigning scores to potential causal graphs

according to specific scoring functions [82, 84], and then systematically exploring

the graph space to identify the structure that optimizes the score [14,85]. However,

the challenge of pinpointing the optimal causal graph is NP-hard, largely due to the

combinatorial nature of ensuring acyclicity in the graph [86, 87]. Although these

methods provide theoretical performance guarantees under certain conditions, their

practical application often falls short, particularly when faced with the complexities

of real-world data.

Another approach focuses on identifying cause-effect pairs using statistical tech-

niques from observational data. Fonollosa’s work on the JARFO model [42] is a

notable effort in this direction, employing a conditional independence-based ap-

proach to infer causal relationships from pairs of variables. Despite the promise of

these pairwise methods, they often fail to leverage global structural information,

limiting their effectiveness in constructing comprehensive causal graphs.

Recent advancements, such as the NOTEARS algorithm [88], incorporate contin-

uous optimization techniques to ensure the acyclicity of the learned graph without

requiring combinatorial constraint checks, representing a significant improvement
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in computational efficiency and scalability. However, experiments indicate that

this method is highly sensitive to data scaling [89].

On the other hand, geometric deep learning, specifically GNNs, combined with

causality has revolutionized learning paradigms in domains dealing with graph-

structured data [20,21,24]. Despite the success of GNNs in various domains, their

application in causal discovery remains limited. A few pioneering works have be-

gun exploring this avenue, each with its own perspective [11, 90–92]. Li et al. [93]

propose a probabilistic approach for whole DAG learning using permutation equiv-

ariant models. This method demonstrates how supervised learning can be applied

to structure discovery in graphs. DAG-GNN [26] uses a variational autoencoder

parameterized by GNNs to learn directed acyclic graphs (DAGs), focusing on de-

terministic structure learning and primarily utilizing node features. My methods,

in contrast, emphasize a probabilistic framework, incorporating both node and

edge features. Interestingly, my algorithm can complement DAG-GNN by provid-

ing a probabilistic distribution over possible DAGs, potentially refining its causal

structure learning. Another study presents a gradient-based method for causal

structure learning with a graph autoencoder framework, accommodating nonlinear

structural equation models and vector-valued variables, and outperforming exist-

ing methods on synthetic datasets [94]. Furthermore, the Gem framework provides

model-agnostic, interpretable explanations for GNNs by formulating the explana-

tion task as a causal learning problem, achieving superior explanation accuracy

and computational efficiency compared to state-of-the-art alternatives [95].

However, these attempts have often not fully exploited the capabilities of GNNs,

particularly in learning complex causal structures dynamically from data. This is

primarily because many of these studies either focus on deterministic approaches

or do not incorporate the rich information available from graph structures (e.g.

edge features, probabilistic nature of causal relationships), leading to a lack of
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comprehensive modeling of causal dependencies. My proposed work seeks to bridge

this gap by developing a GNN-based probabilistic framework specifically tailored

for causal graph learning, which utilizes both the intrinsic graph-based nature

of causal relationships and the powerful representational learning capabilities of

GNNs.

4.3 Methodology

Assuming I have n i.i.d. observations in the data matrix X = [x1 . . .xd] ∈ Rn×d,

causal discovery attempts to estimate the underlying causal relations encoded by

the di-graph, G = (V,E). V contains of nodes associated with the observed random

variables Xi for i = 1 . . . d and the edges in E associate the causal relations encoded

by G. In other words, the presence of the edge i→ j corresponds to a direct causal

relation between Xi (cause) and Xj (effect).

This approach uses a graph neural network model to predict the probability

p(eij|f) of an edge eij between nodes Xi and Xj given their feature representations.

p(eij|hi,hj, eij) = f([hi,hj, eij]), for i < j (4.1)

Here,

• hi and hj represent the feature vectors of nodes Xi and Xj after the GNN’s

message passing and aggregation operations.

• eij represents the feature vector of the edge eij between nodes Xi and Xj.

• [hi,hj, eij] denotes the concatenation of the feature vectors of nodes Xi and

Xj and the edge features eij.

• The function f represents the GNN classifier that outputs the probability

p(eij|hi,hj, eij) of there being an edge eij ∈ [−1, 0, 1].
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eij =



−1 : j → i, causal relation exists from Xj to Xi

0 : i ̸→ j and j ̸→ i,

no direct causal relation between Xi and Xj

1 : i→ j, causal relation exists from Xi to Xj

Figure 4.1: Graph representation of observational data and predicting Edge di-
rections. Each node in the graph is initialized with node features and each edge
between node pairs is initialized with aggregated edge features of extracted new
edge features from attribute pairs and probabilities of edge directions from Causal-
Pairs model [33].

4.3.1 Feature Engineering and Graph Construction

I first construct a fully connected graph G = (V,E), where V is the set of all

attributes in the observational dataset, and E is the set of edges between nodes

(attributes) such that every node is connected with every other node which leads

to d(d− 1)/2 edges in the graph for a dataset with d attributes.

Initially, a comprehensive graph G = (V,E) is constructed, wherein V denotes

the set of all attributes present in the observational dataset, and E represents

the set of edges connecting nodes (attributes) in a manner that ensures complete
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interconnectivity. Consequently, the graph comprises d(d−1)/2 edges for a dataset

comprising d attributes, thereby establishing a fully connected structure.

The construction of the graph G = (V,E) begins with a complete graph, where

V is the set of attributes from the observational dataset, and E consists of all

possible edges between nodes, yielding a total of d(d − 1)/2 edges for a dataset

with d attributes, thereby ensuring that every attribute is connected to every other

attribute. I then extract statistical and information-theoretic measures, such as

mutual information, entropy, and conditional independence test, on the attributes

in the observational dataset to represent each node with 11 features and each edge

with 115 features between node pairs in the graph.

For node features, I include measures such as normalized entropy, skewness,

kurtosis, and log of the number of unique samples, providing a comprehensive

representation of each attributeâs distribution. For edge features, I use metrics

like mutual information, conditional entropy, poly-fit error, and normalized error

probability, which capture the relationships between pairs of attributes. Addition-

ally, features like conditional distribution entropy variance and Pearson correlation

coefficient are used to further enrich the edge feature set. I also incorporate the

probability distribution over the edge direction using the causal-pairs model [33]

as an additional edge feature aggregated with the extracted 115 edge features. In

total, I have 118 features for each edge in the graph.

A simplified illustration is shown in Figure 4.1. The intuition behind this ap-

proach is that by creating a comprehensive feature set that includes both node

and edge features, I can capture a rich representation of the underlying dependen-

cies and interactions between variables. The fully connected graph ensures that

all possible relationships are considered, allowing the model to learn from a wide

range of potential causal connections. Furthermore, incorporating the probability

distribution from the causal-pairs model adds another layer of probabilistic rea-



54

soning, enhancing the model’s ability to infer causal directions accurately. This

multi-faceted feature representation enables the GNN to leverage both local and

global information, leading to more accurate and reliable causal predictions.

4.3.2 Developing the Graph Neural Network (GNN) Model

Graph neural networks (GNNs) are a family of architectures that leverage graph

structure, node features, and edge features to learn dense graph representations.

GNNs employ a neighborhood aggregation strategy, iteratively updating node rep-

resentations by aggregating information from neighboring nodes. For example, a

basic operator for neighborhood information aggregation is the element-wise mean.

In this study, I utilize a GNN model to predict edge directions by training it on

synthetic datasets with underlying causal graphs. The GNN model, serving as an

edge classifier, infers the probability distribution over edge directions through su-

pervised learning. I specifically adopt the GraphSAGE framework, which performs

the message-passing operation and iteratively updates node features. GraphSAGE

samples a fixed number of neighbors for each node rather than using the entire

neighborhood, enhancing scalability for large graphs and making neighborhood

aggregation computationally tractable since I am using a complete graph as input.

Although GraphSAGE is primarily designed to update node features based on

neighboring node features, I extend it to incorporate edge features in the message-

passing process.

To integrate both node and edge features, I define the message m
(k)
uv as a combi-

nation of the feature vectors of nodes u and v at layer k − 1, along with the edge

feature vector euv. The updated equations for message passing and node feature

updates are as follows:

m(k)
uv = CONCAT(h(k−1)

u , h(k−1)
v , euv) (4.2)
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m(k+1)
v =

1

|N(v)|
∑

u∈N(v)

m(k)
uv (4.3)

h(k+1)
v = σ

(
W · CONCAT(h(k)

v ,m(k+1)
v )

)
(4.4)

Here,

• For each neighboring node u of node v, I calculate a message m
(k)
uv by con-

catenating the feature vectors of node u and node v at layer k−1 along with

the edge feature vector euv.

• The messages m
(k)
uv from all neighbors u ∈ N(v) are aggregated by summing

them and normalizing by the number of neighbors |N(v)|. This normalization

ensures that contributions from all neighbors are equally weighted.

• The aggregated message m
(k+1)
v is concatenated with the current feature vec-

tor of node v (h(k)
v ).

• The concatenated vector is then passed through a linear transformation de-

fined by the learnable weight matrix W , followed by a non-linear activation

function σ (e.g., ReLU).

This model captures both local and global dependencies in the graph structure,

enhancing the accuracy of inferred causal relations between nodes considering their

relationships with neighbors. After multiple rounds of message passing, the final

node embeddings represent each node and edge in the graph, allowing for the

prediction of edge direction probabilities (forward, reverse, or no edge) between

any pair of nodes.
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4.3.3 Probabilistic Inference

The probabilities on edges (edge directions) predicted by the GNN model rep-

resent a distribution over all possible graphs, rather than a single p(GDAG). This

approach captures a comprehensive view of potential causal structures instead of

committing to a single deterministic graph.

To estimate a sample digraph (PG), a maximum likelihood digraph (MLG), a

sample DAG (PDAG), and a maximum likelihood DAG (MLDAG) from the GNN-

derived probability distributions over all possible graph structures, I employ the

method described in [33], involving several steps:

Sample Digraph (PG). After calculating the probability distributions of causal

relations between node pairs or edge directions, a straightforward approach to

construct the probability distribution of a digraph G is to assume that the directions

of edges are independent (Eq. 4.5).

p(G|f) =
∏
i<j

p(eij|f) (4.5)

Maximum Likelihood Digraph (MLG). By selecting the edge directions with

the highest probabilities, I construct a maximum likelihood digraph, representing

the most probable causal structure using Eq. 4.6.

GML = argmax
G

p(G|f) (4.6)

Note that the samples from the probability distribution, Eq. 4.5 and Eq. 4.6,

are digraphs with no guarantees of acyclicity. To ensure the graphs are acyclic,

I incorporate DAG constraints using the maximum spanning DAG approach [44]

and topological sorting:
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p(G|f,DAG) =
∑
π

p(G|f,DAG, π)p(π|f) (4.7)

Here, π represents the topological ordering of the vertices, ensuring acyclicity.

Due to computational intractability, I use the law of total probability, integrating

out π. I approximate the topological ordering, πML, by the topological sorting of

the Maximum Spanning DAG (MSDAG):

πML = argmaxπ p(π|f) ≈ toposort(MSDAG(GA)) (4.8)

To find the topological sorting of the MSDAG of GA, I use the approach in-

troduced by [96], constructing the maximum spanning tree and adding edges in

descending order of weights while avoiding cycles using the following equation:

p(G|f,DAG, πML) =
∏

π−1
ML[i]<π−1

ML[j]

p(ei→j|f) (4.9)

Sample DAG (PDAG). I ensure acyclicity by sampling edges based on their

probabilities and enforcing the DAG constraint using MST and topological sorting

methods as described in Eq. 4.9).

Maximum Likelihood DAG (MLDAG). Similar to the MLG, but with the

added requirement of acyclicity, this graph (a deterministic representation) is con-

structed by selecting the most probable edges and adjusting to ensure no cycles

using Eq. 4.10.

GDAG ≈ argmax
G

p(G|f,DAG, πML) (4.10)
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Detailed derivations for these equations are provided in [33].

4.4 Experiments

I use the following labels for my approaches: GNN-PG (sample graph from the

probability distribution), GNN-MLG (maximum likelihood estimate graph), GNN-

PDAG (sample DAG from the probability distribution), and GNN-MLDAG (DAG

using the maximum likelihood estimate).

I present empirical results from both synthetic and real-world datasets, com-

paring my methods with traditional approaches (PC [80], GES [81]), CausalPairs

approaches [33] and recent methods (LiNGAM [74], DAG-GNN [26], NOTEARS-

MLP [88]). Public implementations of PC, GES, and LiNGAM were used and

for DAG-GNN and NOTEARS-MLP, I followed the provided implementations in

their respective manuscript and git repository. Default settings and hyperparam-

eters were used for all implementations.

4.4.1 Datasets

Synthetic Data. I generated synthetic data to train my GNN model on causal

graph estimation, producing 200 graphs with 72 different combinations of nodes

(d = [10,20,50,100]), edges (e = [1d, 2d, 4d]), data samples per node (n = [500,

1000, 2000]), and graph models (Erdos-Renyi and Scale-Free). Non-linear data

samples were generated similarly to the NOTEARS-MLP implementation, with

random graph structures and ground truth for training. The process for generating

synthetic test data follows the methodology outlined in [33], where 160 types of

graph combinations were considered, each with varying numbers of nodes, edges,

graph types, and data samples per node.

CSuite Data. In addition to the synthetic test datasets, I employed two bench-

mark datasets from Microsoft CSuite, a collection designed for evaluating causal

discovery and inference algorithms [97]. The CSuite data is generated from well-
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defined hand-crafted structural equation models (SEMs), which serve to test var-

ious aspects of causal inference methodologies. The five datasets utilized in this

study are: large_backdoor (9 nodes, 10 edges); weak_arrows (9 nodes, 15 edges);

mixed_simpson (4 nodes, 4 edges); nonlin_simpson (4 nodes, 4 edges); sym-

prod_simpson (4 nodes, 4 edges);. Each dataset includes 6000 data samples, and

a corresponding ground truth graph, providing a basis for performance evaluation.

Real-World Data. I used the dataset from [52], based on protein expression

levels. This dataset is widely used due to its consensus ground truth of the graph

structure, consisting of 11 protein nodes and 17 edges representing the protein

signaling network. I aggregated 9 data files, resulting in a sample size of 7466 for

my experiments.

4.4.2 Metrics

I evaluated the causal graphs using True Positive Rate (TPR), False Positive

Rate (FPR), and Structural Hamming Distance (SHD). A lower SHD and FPR

indicate better performance, while a higher TPR is preferable. SHD, TPR, and

FPR were calculated as defined for PC, GES, and NOTEARS-MLP, with GNN-

based and CausalPairs-based methods following the implementation procedures

used in [33].

4.4.3 Results

Table 4.1 showcases the superior performance of my GNN-based methods on

80 Scale-Free (SF) and 80 Erdos-Renyi (ER) graph structures. My methods con-

sistently outperform traditional and recent approaches, demonstrating improved

recovery of causal structures through reduced Structural Hamming Distance (SHD)

and increased True Positive Rate (TPR). Key observations across both graph struc-

tures include:

1. My GNN-based methods, especially GNN-PDAG and GNN-MLDAG, con-
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Table 4.1: Comparison of edge probability model trained on GNN framework.
The means and standard errors of the performance metrics are based on the 80
Scale-Free (SF) and 80 Erdos-Renyi (ER) graph structures in the test data.

Dataset type → Scale-Free (SF) Erdos-Renyi (ER)
Method ↓ / Metrics → SHD/d TPR FPR SHD/d TPR FPR
GNN-PG 1.88±0.08 0.51±0.02 0.30±0.01 2.08±0.11 0.52±0.02 0.52±0.06
GNN-MLG 1.85±0.13 0.20±0.02 0.01±0.00 2.17±0.17 0.25±0.02 0.01±0.00
GNN-PDAG 1.55±0.07 0.56±0.02 0.19±0.01 1.75±0.11 0.61±0.03 0.28±0.03
GNN-MLDAG 1.40±0.11 0.48±0.03 0.08±0.01 1.66±0.15 0.54±0.03 0.13±0.02
CausalPairs-PG 2.02±0.12 0.31±0.01 0.26±0.02 2.38±0.14 0.39±0.02 0.72±0.10
CausalPairs-MLG 1.97±0.13 0.12±0.01 0.03±0.01 2.32±0.17 0.15±0.02 0.07±0.01
CausalPairs-PDAG 1.96±0.12 0.30±0.01 0.21±0.02 2.30±0.15 0.38±0.02 0.61±0.09
CausalPairs-MLDAG 1.88±0.13 0.20±0.01 0.09±0.01 2.18±0.16 0.28±0.02 0.29±0.05
PC 1.93±0.15 0.17±0.02 0.08±0.01 2.40±0.21 0.17±0.02 0.22±0.04
GES 1.43±0.11 0.51±0.03 0.26±0.04 1.78±0.13 0.48±0.02 0.87±0.15
LiNGAM 1.68±0.11 0.35±0.02 0.34±0.04 1.97±0.13 0.43±0.02 1.04±0.17
DAG-GNN 1.75±0.12 0.24±0.02 0.02±0.00 2.10±0.17 0.27±0.02 0.06±0.00
NOTEARS-MLP 1.36±0.11 0.47±0.02 0.12±0.02 1.33±0.10 0.58±0.02 0.32±0.06

sistently achieve lower SHD and higher TPR values compared to CausalPairs

methods and traditional methods such as PC and GES. They also perform

favorably or better than advanced methods such as LiNGAM, DAG-GNN,

and NOTEARS-MLP. Notably, they significantly improve TPR while main-

taining low SHD.

2. The GNN-MLG method significantly minimizes false positive causal relation-

ships but at the cost of a lower TPR. Other GNN-based methods balance

TPR and FPR.

3. Enforcing DAG constraints in GNN-PDAG and GNN-MLDAG improves per-

formance metrics relative to GNN-PG and GNN-MLG, highlighting the ben-

efit of integrating global structural information to enhance accuracy.

Figure 4.2 presents a comprehensive comparison of the Structural Hamming

Distance (SHD), True Positive Rate (TPR), and False Positive Rate (FPR) per-

formance metrics for different methods on 160 SF and ER graphs with node-to-edge

ratios of 1:1 and 1:4.
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Figure 4.2: Comparison of SHD (A), TPR (B) and FPR (C) for different methods
on ER and SF graph structures illustrating their mean results and standard error
of metrics, plotted against varying Node-to-Edge ratios.
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The GNN-based methods, specifically GNN-PDAG and GNN-MLDAG, consis-

tently achieve lower SHD values than traditional methods (PC and GES), Causal-

Pairs methods, and advanced methods (NOTEARS-MLP and DAG-GNN). No-

tably, my proposed methods (GNN-PG, GNN-PDAG, and GNN-MLDAG) demon-

strate significantly higher TPRs than all other methods, indicating improved ac-

curacy in identifying true causal relationships. GNN-PDAG and GNN-MLDAG

exhibit robust performance across both sparse (1:1) and dense (1:4) graphs, show-

casing their ability to accurately recover causal structures with fewer errors. The

improvement is more pronounced in denser graphs (1:4 node-to-edge ratio), show-

ing promise in handling complex, highly connected networks.

Table 4.2: Comparison of GNN-based edge probability model (trained on synthetic
train data) on the Microsoft CSuite datasets.

Dataset Name → large_backdoor weak_arrows
Method↓ / Metrics → SHD/d TPR FPR SHD/d TPR FPR
GNN-PG 0.59 0.42 0.20 0.56 0.66 0.24
GNN-MLG 0.68 0.32 0.17 0.82 0.51 0.09
GNN-PDAG 0.56 0.44 0.19 0.67 0.6 0.29
GNN-MLDAG 0.55 0.44 0.18 0.66 0.6 0.28
CausalPairs-PG 2.42 0.88 0.80 2.24 0.85 0.93
CausalPairs-MLG 1.77 0.88 0.55 1.89 0.82 0.68
CausalPairs-PDAG 2.28 0.97 0.75 2.06 0.95 0.85
CausalPairs-MLDAG 2.14 0.96 0.70 1.97 0.94 0.81
PC 1.00 0.53 0.29 0.89 0.44 0.22
GES 1.33 0.67 0.67 0.88 0.88 0.37
LiNGAM 2.22 0.20 0.91 1.67 0.22 0.56
DAG-GNN 0.89 0.53 0.05 0.67 0.44 0.04
NOTEARS 1.00 0.47 0.19 0.89 0.44 0.19

Tables 4.2 present the results of applying my methods to five datasets from

the Microsoft CSuite. The GNN-based methods achieve significantly lower SHD,

higher TPR, and lower FPR compared to all other methods, demonstrating the ro-

bustness and generalizability of the GNN-based framework across diverse datasets.

Compared to the synthetic datasets presented in Table 4.1, the Microsoft CSuite

datasets have fewer nodes and edges. Additionally, the three smaller datasets
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from Microsoft CSuite allow us to demonstrate the method’s capability to recover

various graph structures learned directly from data.

In these datasets, which include graphs with four nodes and four edges, my

methods accurately identified V structures such as A → B ← C. This ability to

capture fork or collider structures highlights the method’s precision in determining

causal directions and understanding interactions between variables. We also ob-

served that in datasets like mixed_simpson and nonlin_simpson, with confounder

structures such as A → B and A → C, the methods demonstrated the ability

to recognize common causes affecting multiple outcomes. Chain structures like

A → B → C were also accurately recovered, showcasing the capability to model

sequential causal relationships. For instance, among two of these datasets, my

GNN-based methods achieved a SHD score of 0 and a TPR score of 1, perfectly

identifying the true graph, and validating the methods’ effectiveness in learning

complex causal structures directly from data.

Notably, as shown in Figure 4.3, the GNN-based methods not only identified

the true graph structure but also avoided predicting extraneous edges. In con-

trast, while CausalPairs methods were able to identify the true edges, they also

predicted all possible edges, leading to higher false positives. This underscores the

precision of the GNN-based approach in distinguishing true causal relationships

from spurious ones.

In Table 4.3, my methods, particularly GNN-PG and GNN-MLDAG, demon-

strate strong performance on the real-world protein network dataset, accurately

predicting edge counts. Notably, they outperform LiNGAM and GES in terms

of correct edge predictions, and even match or surpass the performance of recent

methods like NOTEARS-MLP and DAG-GNN. The incorporation of global struc-

tural information through GNNs enables accurate edge prediction, while my ap-

proach also shows improved directional accuracy, as evident from the lower number
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GNN-MLDAG CausalPairs-MLDAG

Correct
Reversed

Extra
Missing

(a) nonlin_simpson

GNN-MLDAG CausalPairs-MLDAG

Correct
Reversed

Extra
Missing

(b) symprod_simpson

GNN-MLDAG CausalPairs-MLDAG

Correct
Reversed

Extra
Missing

(c) mixed_simpson

Figure 4.3: Performance comparison between GNN-based methods and Causal-
Pairs methods on smaller CSuite datasets: (a) nonlin_simpson, (b) sym-
prod_simpson, and (c) mixed_simpson. The plots illustrate the number of correct,
reversed, extra, and missing edges for each method with respect to ground truth
graphs.
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Table 4.3: Comparison of my GNN-based probabilistic methods with GES,
LiNGAM, DAG-GNN and NOTEARS-MLP that were applied to both standard-
ized and non-standardized protein network datasets. DAG-GNN and NOTEARS-
MLP results for non-standardized data are reported from the original manuscripts
[26, 88]. The edge probability model based on the GNN framework is trained on
synthetic train data.

Dataset type → Standardized Non-standardized

Method ↓ / Metrics → Predicted
Edges

Correct
Edges

Reversed
Edges

Predicted
Edges

Correct
Edges

Reversed
Edges

GNN-PG 19.68 6.60 6.98 19.40 5.86 7.79
GNN-MLG 12.07 5.13 5.64 13.81 5.48 6.86
GNN-PDAG 17.09 6.96 5.81 16.74 4.14 8.62
GNN-MLDAG 14.12 6.96 5.81 12.54 4.71 7.77
CausalPairs-PG 36.14 6.70 7.77 38.01 6.21 8.26
CausalPairs-MLG 9.82 3.04 4.26 10.41 1.52 4.04
CausalPairs-PDAG 33.16 7.42 6.62 34.81 6.47 7.49
CausalPairs-MLDAG 18.48 4.91 5.41 20.60 4.71 6.32
GES 34.00 5.50 9.50 34.00 5.50 9.50
LiNGAM 36.00 4.00 11.00 36.00 4.00 11.00
DAG-GNN 6.00 1.00 5.00 18.00 8.00 3.0
NOTEARS 42.33 5.83 7.18 13.00 7.00 3.00

of reversed edges achieved by GNN-MLDAG and GNN-PG.

A notable aspect is that DAG-GNN and NOTEARS-MLP exhibit sensitiv-

ity to data scaling, with performance variations between standardized and non-

standardized data. This sensitivity arises because their continuous optimization

processes can be disrupted by changes in data magnitude and distribution, po-

tentially losing important information related to the data’s mean and variance.

Additionally, LiNGAM, which is designed for non-Gaussian linear models, may

struggle with the non-linear relationships present in the protein network dataset.

In contrast, my GNN-based methods show consistent performance across both

standardized and non-standardized datasets, demonstrating robustness to data

scaling. This robustness is attributed to the effective capture and utilization of

both local and global structural information by GNNs.
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4.5 Summary

In this work, I introduce a probabilistic causal discovery framework that har-

nesses the power of Graph Neural Networks (GNNs). My results on synthetic

and real-world datasets demonstrate the efficacy of my GNN-based approach, sur-

passing the previous CausalPairs methods across various graph types and densities.

By leveraging global structural information, my method overcomes traditional lim-

itations and enhances causal graph learning precision. My GNN-based methods

significantly advance the state of causal discovery, effectively capturing complex

dependencies through node and edge feature integration. This integration en-

ables more accurate and reliable causal inference, showcasing GNNs’ potential to

enhance scalability and generalization. Moreover, the GNN-based framework rep-

resents a significant breakthrough in causal structure learning, offering improved

performance. Future research directions will explore the integration of acyclicity

constraints within the Graph Neural Network (GNN) framework, aiming to im-

prove the model’s robustness and accuracy by enforcing causal consistency. Explor-

ing advanced GNN architectures may further elevate this approach’s performance,

expanding its applicability to diverse and complex datasets.



CHAPTER 5: CAUSAL MODELING OF SOCIAL MEDIA POLARIZATION:

QUANTIFYING INFLUENCER EFFECTS ON AFFECTIVE POLARIZATION

5.1 Introduction

The transformative impact of social media on political communication cannot

be overstated. As a platform for instantaneous information exchange, social media

has redefined the way individuals engage with political content, debate policy,

and form community bonds [98, 99]. However, this digital revolution has also

given rise to a less auspicious phenomenon: affective polarization [28–30]. The

term, affective polarization refers to the phenomenon where individuals feel more

positively towards members of their political group while simultaneously harboring

negative sentiments towards those of opposing groups [100,101].

Affective polarization on social media is particularly pernicious due to its poten-

tial to erode the foundations of democratic discourse, replacing reasoned debate

with hostile confrontation. It transforms disagreement into contempt, making

compromise and consensus-building increasingly elusive [102, 103]. The implica-

tions of this trend extend beyond the digital realm, influencing real-world political

engagement and the broader societal fabric [31,32].

At the heart of this polarization are influential usersâindividuals and entities

with significant followings and the ability to shape public discourse. These influ-

encers can act as catalysts, amplifying existing divides or bridging gaps in under-

standing through their engagement with contentious topics [104, 105]. Nowadays,

the reach and impact of such figures are greater than ever before, making it essen-

tial to closely examine their role in the process of affective polarization. [106].
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In this study, we aim to measure the impact of conversations started by influen-

tial users on the polarization seen in Twitter/X discussions. Our paper makes the

following contributions to understand how these influencers shape public sentiment

and contribute to polarization in online communities.

• This research presents a new framework using counterfactual analysis to

quantitatively measure how conversations led by influencers affect polariza-

tion on Twitter/X. By comparing polarization scores with and without these

influential conversations, the study reveals their impact on public discourse.

• It offers a detailed analysis of how influential users shape emotional dynamics

within contentious topics (e.g. gun control and climate change), providing

quantifiable measures of their influence on affective polarization.

By identifying the influential figures and the factors that exacerbate or mit-

igate polarization, platform designers and policymakers can better navigate the

challenges posed by this phenomenon and work towards a more informed and less

divided public discourse.

5.2 Related Work

The phenomenon of affective polarization has been extensively documented in

political psychology, with recent studies revealing its escalation on social media

platforms [107, 108]. Affective polarization extends beyond ideological disagree-

ments, encapsulating emotional responses that manifest as mutual dislike and dis-

trust among those with opposing political allegiances [109].

Research highlights a complex interplay between media, political figures, and

entrenched ideologies that magnifies societal divisions. Social media platforms en-

hance these divisions through algorithmically curated content that often promotes

inflammatory and polarizing material [110–112]. Echo chambers, a topic of much
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debate, are often criticized for reinforcing ideological conformity and shielding users

from opposing viewpoints, which can intensify affective polarization [113]. Con-

versely, some research suggests that even when individuals are exposed to contrary

opinions, this exposure does not necessarily mitigate polarization and may, under

certain conditions, actually exacerbate it [114,115].

Advancements in quantifying affective polarization have led to the development

of metrics that capture the emotional content and toxicity in social media inter-

actions [31, 116]. Studies now classify users by political partisanship and analyze

the emotions and language used in their communications, providing a subtle un-

derstanding of the affective component of polarization [100, 117]. This line of re-

search highlights that negative emotions and toxicity are not randomly distributed

but correlate with the network distance in social media interactions, suggesting

structural properties of these networks influence the emotional tone of online dis-

course [118].

Kramer et al. [119] assert that emotional states are contagious so whether ex-

pressed by other people or appears on Newsfeed (a personalized stream of content

provided by social media platforms) has a direct impact on our emotions. Another

finding of their study is that as opposed to prevalent perception, non-verbal lan-

guage, and inter-personal interactions are not required for contagion of emotions.

The study by Cha et al. [120] explores influence patterns on social media and iden-

tifies the most important role-playing factors. Betts and Bliuc [121] shows that an

influencer with extreme opinions will invariably accelerate the pace of polarization,

and this impact grows in proportion to their influence and level of engagement.

The impact of a neutral influencer, however, depends on the society’s openness to

differing viewpoints.

Despite extensive research on affective polarization, much of the current litera-

ture focuses on the consequences of polarization without a clear methodology to
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quantify its emergence and escalation directly from influencer interactions. In ad-

dition, there is a limited exploration into the specific role of influential users within

these divisive dynamics, particularly in how their conversations shape public sen-

timent over time [106].

This research builds upon these findings by specifically examining how influen-

tial figures impact the affective landscape of online discourses. By systematically

evaluating the presence and absence of high-profile conversations, I offer a unique

perspective on the role influencers play in either mitigating or exacerbating affec-

tive polarization. Through this lens, I contribute to a deeper understanding of

the dynamics at play in social media’s political discourse to provide insights into

digital communication strategies aimed at reducing polarization.

5.3 Methodology

The goal of this study is to methodically quantify the impact of influencers on

affective polarization on social media platforms. To achieve this, I implement a

counterfactual analysis framework, which involves constructing hypothetical sce-

narios to understand what might happen if certain influencer-led conversations did

not occur. This approach, illustrated in Figure 5.1, allows us to isolate the effects

of these conversations on polarization dynamics, providing a clearer picture of

their influence. The subsequent subsections will provide an in-depth examination

of the methodological approach and analytical techniques utilized in this study,

including data collection strategies, interaction network construction, sentiment

analysis, and polarization metric quantification, offering a detailed understanding

of the procedures employed to assess the impact of influencers on online social

dynamics.
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Figure 5.1: Interaction networks with and without a specific conversation. The
left panel displays the network including the conversation (circled), while the right
panel shows the network without it, highlighting the dense areas where ongoing
interactions among the influencer’s followers persist through other conversations.

5.3.1 Data

5.3.1.1 Data Collection

For this research, I assembled a large-scale dataset from Twitter, focusing on

tweets related to two contentious political issues that spark intense debate: climate

change and gun control. I used specific Hashtags relevant to each topic to scrape

the initial set of tweets using the Twitter API before its restrictions were imposed in

2023. To ensure a thorough capture of conversation cascades and user interactions,

I expanded this data collection by recursively retrieving all referenced tweets linked

to the initial set. This method allowed us to include all pertinent discussions,

capturing the depth and breadth of conversations. User metadata such as the

number of likes, replies, and retweets was also retrieved, as shown in Table 5.1.

Table 5.1: Dataset details

Dataset Timeline Total Tweets
(million)

Total Conversations
(million)

Total Users
(million)

#likes
(billion)

#replies
(million)

#retweets
(billion)

Gun Control 2022.01.01 - 2022.12.31 2.65 2.26 0.94 1.46 120.69 7.49
Climate Change 2021.06.01 - 2022.05.31 7.24 6.46 2.04 30.39 149.05 2.64
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5.3.1.2 Data Exploration

In analyzing the dataset, I identified a significant number of conversation threads

with limited active engagement, defined as the number of distinct users replying

within each thread. This measure focuses on direct interactions rather than pas-

sive activities like retweets and likes, aiming to capture meaningful exchanges.

Many threads exhibited minimal interaction, often involving less than ten partici-

pants (Figure 5.2). To ensure the analytical robustness of this study, I established

minimum engagement criteria based on discussions with domain experts. Only

threads with at least 20 tweets and participation from at least 10 distinct users

were included.

5.3.1.3 Influential Users

This methodology involved identifying influential users within each dataset based

on their ability to engage substantial audience interactions, primarily measured by

the total number of likes their posts received. Influential users were determined by

sorting all users in descending order based on their like counts and selecting those

at the top of this list (Table 5.2), which indicates a significant impact on online

discourse. Although Table 5.2 showcases only the top five for illustrative purposes,

this analysis included a broader set of influential figures, with 2,103 users for the

dataset related to gun control and 3,701 users for climate change. I examined 5,500

gun control and 8,421 climate change conversations initiated by these users over a

period of one year.

5.3.2 Quantifying Polarization with E/I Index

This study employs a multi-model sentiment analysis approach using VADER,

BERTweet, and RoBERTa to evaluate the emotional content of tweets. This com-

prehensive sentiment profiling forms the basis for the subsequent analysis of affec-

tive polarization.
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(a) Gun Control Dataset

(b) Climate Change Dataset

Figure 5.2: Bar chart distributions of conversation characteristics: (a) Gun Con-
trol and (b) Climate Change topics, displaying the frequency of conversations by
number of tweets (left) and number of users (right).
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Table 5.2: Top 5 influential users for each dataset

Dataset Twitter Account Tweet Count Total Likes
(million)

Total Retweets
(million)

Total Replies
(million) Stance

Gun Control

User 1 1,241 272.40 25.55 19.69 anti
User 2 1,665 66.79 10.35 10.77 pro
User 3 1,750 37.74 4.75 2.75 pro
User 4 1,760 31.75 5.07 4.15 pro
User 5 746 22.81 5.25 1.15 pro

Climate Change

User 1 1,766 190.47 16.64 11.84 believe
User 2 76 185.99 48.82 9.99 believe
User 3 1,945 57.79 8.05 6.79 believe
User 4 33 26.43 7.53 0.65 believe
User 5 55 24.12 5.61 1.14 believe

I utilize the E/I Index methodology, adopted from Tyagi et al. [31], to quantify

affective polarization by measuring the ratio of external (between-group) to internal

(within-group) interactions within Twitter discourse networks. This method allows

us to assess the degree of in-group cohesion and out-group engagement. The E/I

Index is derived by evaluating the balance of positive and negative interactions

within and between groups. I compute the difference between the E/I indices of

positive and negative interactions to discern the polarization valence. For further

details on the computations and equations underlying the E/I Index, I refer readers

to the original work by Tyagi et al. [31].

This approach is akin to the P-Index proposed by Guerra et al. [122], albeit tai-

lored specifically for Twitterâs unique interaction dynamics. Through this frame-

work, I focus on:

• In-group Solidarity: Gauged through the frequency and sentiment of in-

teractions within a group.

• Out-group Engagement: Characterized by the nature of interactions across

different stance groups, often highlighting conflict or disagreement.

In practical applications, such as in gun control debates, this index helps us

identify and describe patterns like Pro-Anti and Anti-Pro, indicating shifts from

passive support or opposition to active advocacy or contention. While Bestvater et
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al. [123] caution against using sentiment as a standalone measure for polarization

or stance, this study integrates these insights as part of a broader, multi-faceted

approach to understanding affective polarization.

5.3.3 User Stance Labeling using Graph Neural Networks (GNNs)

My approach to user stance labeling employs a two-stage pipeline that integrates

textual and social interaction data, as established in [124].

Initial Label Generation. The stance labeling process begins with the con-

struction of a user-hashtag bipartite graph, where one set of nodes represents

users and the other set represents hashtags used in their tweets. This graph forms

the basis for applying a reciprocal label propagation algorithm, initially assigning

stance labels based on users’ engagements with specific hashtags. I identify seed la-

bels from a subset of users who frequently use hashtags that are strongly associated

with known stances. This preliminary method generates labels for approximately

500,000 gun control dataset users and 1.6 million climate change dataset users,

providing an initial but incomplete picture of user stances. Social interactions

among users are not factored into this analysis.

Expanding Stance Labeling with GNNs. To enhance and refine this stance

labeling, I construct a comprehensive user-user interaction network. In this net-

work, nodes represent users and edges signify direct interactions such as retweets

or replies. Leveraging BERTweet, I embed the textual content of tweets into node

features to capture linguistic nuances. Subsequently, I trained a GNN classifier

(GraphSAGE) on the interaction graph with seed labels derived from the initial

hashtag-based method. This two-stage approach integrates both textual content

and interaction patterns to predict user stances more accurately, resulting in ex-

panded stance labels for 2.6 million users in the gun control context and 4.7 million

users in the climate change context. Moreover, the GNN predicts node labels by
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generating a probability distribution over possible stances for each user. Detailed

information on the GNN’s architecture, parameter settings, and performance eval-

uation can be found in the work by Melton et al. [124].

Optimization of Classification Thresholds. To more accurately delineate

users into distinct stance groups, I adopted a dual-threshold strategy for classi-

fying user stances based on their stance probability scores. I identified optimal

thresholds, Threshold_1 and Threshold_2, through a comprehensive grid search

methodology designed to refine the decision boundary by optimizing the F1 score.

This process entailed meticulously comparing predicted labels against a bench-

mark set comprising both heuristic stances derived from the initial hashtag-based

labeling and a subset of users manually annotated by domain experts. This dual-

source validation approach ensured robustness in threshold selection by integrat-

ing empirical data with expert judgment. The final thresholds were determined

as follows: Threshold_1 (≤ 0.40) for identifying ’pro’ or ’believers’ stances, and

Threshold_2 (≥ 0.60) for ’anti’ or ’disbelievers’. Users with probabilities falling

between these thresholds were classified as ’undecided’, and subsequently, their

data were excluded from further analysis in both datasets.

5.3.4 Approach to Quantifying Influencer Impact on Affective Polarization

I center my methodology around the concept of a counterfactual scenario within

a subgraph of influence, where polarization scores are calculated in scenarios both

with and without specific influencer-led conversations, as illustrated in Figure 5.1.

This comparative method is crucial for isolating the shifts in polarization at-

tributable to these conversation networks, providing insights into how individual

conversations can sway public sentiment.

To enhance my analysis, I focus on constructing subgraphs around specific influ-

encers and their follower networks, recognizing that the comprehensive interaction
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graphs on platforms like Twitter, which involve millions of daily interactions, can

obscure the effects of smaller-scale conversation networks. For instance, in my de-

tailed case study of ’User X’s Twitter interactions, I selectively identified a subset

of approximately 1,000 followers from a larger pool of 15,000 active users. I con-

structed a subgraph that included these followers and their adjacent connections,

encompassing around 2,000 users in total.

This subgraph methodology provides a focused lens through which we can ob-

serve and analyze the polarization dynamics more clearly. Initially, I compute

the polarization within this subgraph by including ’User X’s conversation. Subse-

quently, to distinctly understand the conversation’s specific impact, I recalibrated

the polarization after removing the 400 users directly involved in the conversation.

This technique of contrasting polarization scores with and without the conversa-

tion offers a transparent view of how specific conversations influence the network’s

polarization dynamics.

By focusing on influencer-centric subgraphs, I uncover the subtle yet significant

impacts of specific conversations on affective polarization, avoiding the dilution of

findings by the broader network’s noise.

5.4 Results

My analysis reveals a temporal sensitivity in polarization, underscored by fluc-

tuations that correspond closely with real-world events and influencer-led conver-

sations. Specifically, the temporal examinationâillustrated in Figures 5.3 and 5.4

highlights notable shifts in polarization within the contexts of gun control and

climate change discourse.

For instance, in Figure 5.3a during the summer of 2022, the gun control dataset

exhibited significant spikes in the daily Twitter conversation, correlating with high-

profile shooting incidents in the United States. This period, notably marked by the
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tragic Texas Robb Elementary School shooting, saw intensified influencer activity

leading conversations that either amplified or attempted to bridge divides in public

sentiment. Similarly, in the climate change discourse (Figure 5.3b), pivotal events

such as the release of the Intergovernmental Panel on Climate Change (IPCC)

report and the United Nations Climate Change Conference were mirrored by peaks,

pointing to the reactive nature of online discourse to global climate events.

Following these events, Figure 5.4 illustrates how influential-led conversation

changes the dynamic of polarization. For both, gun-control and climate-change

datasets, we observe that when a certain event occurs, the polarization score in-

creases compared to the situation it was before the event happened. Statistical

significance tests confirm that many of these observed shifts are significant, rein-

forcing polarization’s temporal alignment with external events. These observations

highlight the critical role of influencers in steering the conversation and the power-

ful impact that influencers and real-world events can have affecting the polarization

landscape.

5.4.1 Effect of an Influential-led Conversation

The shifts in polarization are quantified by examining the changes in polarization

scores when specific influencer-led conversation is either included or excluded from

the analysis. This approach helps isolate the direct impact of a single conversation

on the overall polarization score that day.

For example, as illustrated in Table 5.3, the removal of a conversation by ’User

3’, a prominent disbeliever in climate change, resulted in a notable shift in the po-

larization scores. Specifically, the polarization score for the believer-to-disbeliever

direction increased from 0.471 to 0.633, indicating a more pronounced divide when

the disbeliever’s influence was absent from the conversation. This change, repre-

senting a magnitude of 0.162 in the polarization score, underscores the significant
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(a) Gun Control Dataset

(b) Climate Change Dataset

Figure 5.3: Frequency distributions of daily conversation counts over the specified
time frame, stratified by topic: (a) Gun Control and (b) Climate Change.
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(a) Texas Shooting (b) Hurricane Ida

(c) Illinois Shooting (d) Heat Wave

(e) Colorado Shooting (f) IPCC Annual Report

Figure 5.4: Temporal dynamics of polarization scores in response to events. The
left trio of subfigures (a,c,e) illustrates changes in polarization preceding and follow-
ing events related to gun control, with ’(P → A)’ denoting shifts from pro-to-anti
gun control stance and ’(A → P)’ denoting shifts from anti-to-pro stance. The
right trio (b,d,f) depicts similar changes for climate change-related events, with
’(B → D)’ representing shifts from believe-to-disbelieve in climate change and ’(D
→ B)’ for shifts from disbelieve-to-believe stance direction. P-values indicate the
statistical significance of changes, confirming that these shifts are not random but
are influenced by the events.
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role that influencer-led interactions play in shaping public sentiment and polariza-

tion.

Similarly, in the context of gun control as detailed in Table 5.4, the exclusion of

a conversation led by an anti-gun control user (i.e. ’User 2’) resulted in a decrease

in the anti-pro polarization score. This demonstrates how conversations led by

users opposed to gun control amplify polarization towards anti-gun stances when

present, and reduce it when removed.

Table 5.3: Climate Change Dataset: The effect of a single conversation by influ-
ential users on daily polarization score.

User User’s
Stance

Number of Tweets
in the Conversation

Number of Followers
in the Conversation

(#disbelieve / #believe)

Number of Followers
Interacting on That Day
(#disbelieve / #believe)

Stance
Direction

Polar. Score
Without Conv.

Polar. Score
With Conv.

User 1 believe 104 41 / 50 904 / 1,332 disbelieve → believe -0.091 -0.135
believe → disbelieve 0.463 0.398

User 2 believe 187 131 / 24 457 / 333 disbelieve → believe 0.115 0.185
believe → disbelieve 0.378 0.402

User 3 disbelieve 157 68 / 14 302 / 100 disbelieve → believe -0.137 -0.136
believe → disbelieve 0.633 0.471

User 4 believe 134 51 / 37 356 / 356 disbelieve → believe 0.149 0.181
believe → disbelieve -0.228 -0.247

User 5 disbelieve 66 43 / 2 395 / 86 disbelieve → believe 0.144 0.152
believe → disbelieve 0.248 0.237

Table 5.4: Gun Control: The effect of a single conversation by influential users on
daily polarization score.

User User’s
Stance

Number of Tweets
in the Conversation

Number of Followers
in the Conversation

(#anti / #pro)

Number of Followers
Interacting on That Day

(#anti / #pro)

Stance
Direction

Polar. Score
Without Conv.

Polar. Score
With Conv.

User 1 pro 746 334 / 325 1,211 / 1,040 anti → pro 0.147 0.252
pro → anti 0.247 -0.200

User 2 anti 1,333 497 / 391 856 / 707 anti → pro 0.079 0.229
pro → anti 0.220 -0.087

User 3 pro 57 20 / 22 312 / 356 anti → pro 0.085 0.099
pro → anti -0.022 0.121

User 4 anti 164 37 / 100 176 / 286 anti → pro 0.247 0.121
pro → anti 0.204 0.241

User 5 pro 129 16 / 50 867 / 1,879 anti → pro 0.043 0.041
pro → anti 0.069 0.085

5.4.2 Insight of Influential Users

In this section, I examine the collective influence of conversations initiated by in-

fluential users on shaping public sentiment and polarization across various themes.

I employ a systematic approach to quantify the impact of these users by assessing

the frequency and effect of their conversations on polarization shifts.

Tables 5.5 and 5.6 present data on influential users who actively engage in



82

discussions and initiate several conversations related to gun control and climate

change, respectively. These tables reveal the percentage of conversations that

increase or decrease polarization, given a specified number of conversations within

the context of these topics, thereby illuminating the effects of influential users on

social media dynamics.

Table 5.5: Gun Control Dataset: Impact of conversation initialized by influential
authors (Twitter users) on polarization scores. The ’% increase’ or ’% decrease’
denotes the percentage of cases, (how) polar score changes upon adding a conver-
sation compared to the total number of conversations.

Twitter User User Type Stance
(Gun Control)

Number of
Conversations

Polarization: Change
(pro → anti)

Polarization: Change
(anti → pro)

User 1 Media Outlet anti 5 100.0 % - decrease 100.0 % - increase
User 2 Media Outlet pro 6 66.67 % - decrease 100.0 % - decrease
User 3 Commentator pro 9 88.89 % - decrease 77.78% - decrease
User 4 Journalist anti 18 88.89 % - decrease 61.11% - increase
User 5 Politician pro 7 85.71 % - increase 85.71% - decrease
User 6 Politician pro 14 64.29 % - decrease 78.57% - decrease
User 7 Legal Analyst pro 38 76.32 % - decrease 71.05% - increase
User 8 Media Outlet anti 12 66.67 % - increase 75.00% - increase
User 9 Attorney anti 7 71.43 % - increase 71.43% - increase
User 10 Politician pro 26 53.85 % - decrease 61.54% - decrease

Table 5.6: Climate Change Dataset: Impact of conversation initialized by influen-
tial authors (Twitter users) on polarization scores. The ’% increase’ or ’% decrease’
denotes the percentage of cases, (how) polar score changes upon adding a conver-
sation compared to the total number of conversations.

Twitter User User Type Stance
(Climate Change)

Number of
Conversations

Polarization: Change
(believe → disbelieve)

Polarization: Change
(disbelieve → believe)

User 1 Scientific Org. believe 5 60.00% - decrease 100.0 % - increase
User 2 Public Figure disbelieve 5 80.00% - decrease 100.0 % - increase
User 3 Media Personality disbelieve 8 50.00% - increase 87.5 % - decrease
User 4 Politician believe 7 85.71% - decrease 57.14 % - decrease
User 5 Media Outlet believe 41 51.22% - decrease 85.37 % - increase
User 6 Actor believe 6 83.33% - decrease 50.0 % - increase
User 7 Climate Activist believe 9 77.78% - increase 55.56 % - decrease
User 8 Media Personality disbelieve 8 75.00% - increase 62.5 % - increase
User 9 Climate Advocate believe 7 57.14% - decrease 71.43 % - decrease
User 10 Politician believe 19 57.89% - decrease 63.16 % - increase

5.4.3 Insight of Conversations Within Stance-Group

Table 5.7 provides a more comprehensive view by analyzing all the conversa-

tions initiated by users within a certain stance. Interestingly, it is observed that

conversations led by users with anti or disbeliever stances often result in decreased
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polarization compared to their opposing stance group. However, it’s important to

note the observational nature of our approach; while it reveals significant insights

into the dynamics of influencer conversations, it does not assert direct causation.

Overall, the insights gleaned from these influencer-led conversations across differ-

ent thematic areas demonstrate the critical role of influential users in modulating

the affective landscape of online communities.

Table 5.7: Details of conversations’ effects based on stances for both gun control
and climate change. The ’% increase’ or ’% decrease’ denotes the percentage of
cases, (how) polar score changes upon adding a conversation compared to the total
number of conversations.

Dataset Stance Number of
Conversations Polarization Score: Change

Gun Control
(pro → anti) (anti → pro)

pro 1,940 63.40% - decrease 52.99% - increase
anti 1,704 55.52% - decrease 53.28% - decrease

Climate Change
(believe → disbelieve) (disbelieve → believe)

believe 1,561 50.99% - decrease 64.25% - increase
disbelieve 596 50.67% - decrease 58.22% - decrease

5.5 Summary

This study provides a detailed analysis of the mechanics of affective polarization

on social media, particularly highlighting the crucial role of influential users in mod-

ulating public sentiment on platforms like Twitter. By implementing a counterfac-

tual framework, which evaluates scenarios with and without specific influencer-led

conversations, this work offers a unique methodological contribution that allows

us to isolate and quantify the influence of such conversations on the dynamics of

polarization. The findings demonstrate that influencers have the potential to am-

plify or mitigate divisiveness across polarizing topics like gun control and climate

change. It reveals how subtle shifts in influencer-driven dialogues can significantly

affect public discourse by employing a comparative analysis coupled with compu-

tational techniques, such as subgraph construction. This approach deepens our

understanding of how specific conversations impact polarization that are critical
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to social media dynamics.

Despite these promising results, this study faced methodological challenges, par-

ticularly due to the limitations inherent in calculating the polarization scores based

on sentiment analysis. This depends on the presence of positive or negative words

in tweets and it is negatively impacted by the sporadic nature of meaningful social

media interactions. These challenges underscore the complexity of capturing the

sophisticated landscape of online discourse and point to the need for developing

more refined metrics and methodologies that leverage current advancements in

language understanding that go beyond sentiment analysis.



CHAPTER 6: CONCLUSIONS

In this dissertation, I focused on the field of causal structure learning, which

is a crucial aspect of causal discovery. Specifically, I proposed to go beyond the

naive approach of generating graph probabilities from causal pair probabilities by

enforcing acyclicity and approximating its solution using the maximum spanning

directed acyclic graph approach. I showed that leveraging GNNs and enforcing

acyclicity improved performance on both synthetic and real datasets compared

with the causal pairs and traditional approach and had statistically better and/or

similar performance than some state-of-the-art methods. I discussed the challenges

associated with this task, such as the high dimensionality of data, computational

complexity, and the presence of confounding variables.

Furthermore, I introduced the causal feature selection (CFS) method to select

informative and relevant features from observational data, using causal graphs to

provide a unique advantage over traditional correlation-based metrics. I demon-

strated the effectiveness of the proposed CFS method with new evaluation criteria

on synthetic and real-world datasets of various domains and compared its perfor-

mance with other baseline and traditional approaches. This approach can help

reduce the dimensionality of the data and eliminate confounding variables, leading

to more accurate and reliable causal models.

Overall, the contributions of this dissertation include:

• A comprehensive review of the field of causal structure learning, including

causal inference and causal discovery.

• A novel causal graph learning approach with probabilistic information using



86

cause-effect pairs

• A proposed approach of causal feature selection method that incorporates

the causal relationships between variables in the selection process.

• A novel evaluation criteria for causal feature selection using causal metrics

• The introduction of a GNN-based probabilistic framework for causal discov-

ery.

• An application of counterfactual analysis to study affective polarization on

social media.

6.1 Future Work

One promising area of research is to investigate the combination of causal feature

selection with other correlation-based methods, such as LiNGAM and mRMR, to

improve the accuracy and efficiency of selecting causal features, especially in high-

dimensional datasets. It would also be interesting to explore the applications of

causal structure learning and causal feature selection in various domains e.g. public

health, to inform decision-making processes.

Specifically, I plan to apply my machine learning and causal modeling expertise

to cancer research. Building on the methodologies developed in this dissertation,

I will use causal discovery techniques to analyze patient data can identify causal

links between genetic mutations, lifestyle factors, and cancer progression. This

aligns with my upcoming role at the University of Tennessee Health Science Cen-

ter (UTHSC), where I will focus on predicting cancer outcomes by integrating

clinical and social determinants of health datasets. These efforts aim to enhance

personalized treatment strategies and improve equity in cancer care.

Furthermore, extending from my research on polarization, I aim to develop

methods to analyze how misinformation spreads and influences public opinion,
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identifying causal relationships between influencer activities and the dissemination

of misinformation. To address this, I will collect and analyze data from social

media posts, shares, comments, and user engagement metrics to identify patterns

and sources of misinformation. Additionally, I will gather data from news articles,

fact-checking organizations, and user reports. Using techniques such as large lan-

guage models and graph neural networks, I plan to develop algorithms to detect

misinformation based on linguistic cues, network analysis, and source credibility.

This research will provide actionable insights for mitigating the harmful impacts

of misinformation and fostering healthier online discourse.

Overall, there is still significant potential for research in the field of causal mod-

eling and causal structure learning. Future research in these areas promises to

make substantial contributions to various fields and deepen our understanding of

causality.
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APPENDIX A: Implementation of Methods Used in Numerical Results

To implement the PC and GES algorithms in my study, I have considered the

publicly available implementations for both algorithms. I used the code from the

following git repositories for the implementations.

• PC: https://github.com/keiichishima/pcalg

• GES: https://github.com/juangamella/ges

In addition, for the NOTEARS-MLP [39] approach, I followed the implementa-

tion stated in the paper and git repository: https://github.com/xunzheng/notears.

As for LiNGAM, I followed the Python package from the LiNGAM library:

https://lingam.readthedocs.io/en/latest/index.html

Furthermore, for the DAG-GNN approach, I followed the implementation from

the git repository: https://github.com/fishmoon1234/DAG-GNN

I used the default settings and default hyper-parameters for all these three im-

plementations.

To implement the InfoGain and Lasso regularization, I have followed the scikit

learn implementation.
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APPENDIX B: Sachs Protein Network Dataset

The protein network presented by Sachs et al. [52] aims to investigate the sig-

naling interactions among proteins involved in a cellular immune response. The

authors measured the phosphorylation levels of 11 proteins over time, which re-

flect the degree of protein activation. This phosphorylation is a process that can

impact protein activity, stability, and interactions with other molecules. In the

network, each node represents a protein, and the connections between nodes de-

pict the causal relationships among them.

To identify the causal relationships among the proteins the authors performed a

combination of experimental perturbations and Bayesian structure learning. These

perturbed experiments involved manipulating the activity or expression of proteins

to observe the resulting changes in phosphorylation levels to identify causal influ-

ences. The authors collected data on the phosphorylation levels of the proteins

before and after the perturbations. Next, the author applied Bayesian network

analysis to infer the causal relationships. Based on the inferred causal relation-

ships, the authors constructed a causal network that represents how the activation

of one protein influences the activation of others. Therefore when I refer to one

node causing another within the causal network, it means that the activation of

a particular protein (the cause) leads to observable changes in the activation of

another protein (the effect) within the protein signaling network.

This protein network dataset is considered a trusted benchmark in causality due

to its rigorous experimental design, comprehensive measurements, and extensive

validation. The network inferred from the data represents a model average from

500 high-scoring results with high-confidence arcs that appear in at least 85% of
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the networks. Besides, the authors were able to correctly infer the direction of

causal influences in almost all cases (one exception, in which case the direction

was inferred in the reverse order) that align with the consensus domain expertise.


