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ABSTRACT

ADAM HUDSON. Strategic Path Optimization in Partially Known Environments.
(Under the direction of DR. DIPANKAR MAITY)

This thesis addresses the challenge of autonomous navigation in partially known en-

vironments, focusing on mobile robots equipped with limited sensing capabilities.

Path planning and sensor usage are closely linked in such environments, as each sen-

sor activation incurs a cost. Thus, the robot faces a trade-off: it can either follow

longer, sensor-free paths or activate sensors to take shorter, more efficient routes. To

address this, we develop two joint decision-making frameworks integrating path plan-

ning with strategic sensor activations to optimize navigation efficiency under resource

constraints.

A Regret-aware Joint Sensing and Path Planning presents a combined sensing and

control framework designed to minimize path length while efficiently using sensing.

This methodology employs a joint cost map to evaluate the value of the information

gained from each potential sensor activation, prioritizing sensing only where substan-

tial information gain or path improvement is likely. Initial results demonstrate that

this approach allows the robot to allocate sensors effectively, avoiding unnecessary

activations and improving navigation efficiency compared to simpler controllers.

A Sensor-aware Planner and Regret-based Cost Function method builds on the

first by expanding the robot’s planning capability to incorporate sensor use as part of

the path planner’s state space. This methodology includes a modified A* algorithm

that operates within an enlarged, multi-dimensional search space, representing the

environment and the robot’s real-time available sensing budget. An edge-based cost

function dynamically evaluates local decisions based on regret and information value.

The proposed sensor-aware A* planner enables the robot to anticipate future sensor

activations, strategically utilizing the sensor across its path. Repeated simulation
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shows statistical evidence that this approach enhances the robot’s ability to priori-

tize critical sensing locations, improving path efficiency while reducing overall sensor

usage.

Together, these methodologies advance the robot’s capacity to navigate unknown

environments by balancing short-term and long-term sensing strategies, providing

a scalable framework for resource-limited exploration in complex, partially mapped

environments.
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CHAPTER 1: INTRODUCTION

On Mars, every movement counts. Autonomous robots exploring uncharted ter-

rains must make critical decisions with every step, often with limited knowledge of

what lies ahead [7, 8]. Unlike Earth-based systems, which can rely on rapid human

oversight, Mars rovers must operate independently in a landscape where communi-

cation delays stretch for minutes and resources are scarce [9]. Each movement and

sensor activation brings them closer to their destination but also closer to depleting

their power reserves. The challenge becomes clear: how can a robot efficiently ex-

plore the unknown, gathering just enough information to make intelligent

decisions while conserving the resources required to reach its destination?

Navigating a partially known environment with limited information and resource

constraints is a crucial task for autonomous systems [10, 11], not only in space ex-

ploration but also in diverse real-world applications, from disaster response to envi-

ronmental monitoring. In these scenarios, the robot’s ability to balance exploration

(to reveal unknowns) with efficiency (to conserve resources) defines its success. This

thesis dives into this problem, proposing solutions for how an autonomous robot can

manage sensor usage and path planning in partially known and resource-limited en-

vironments.

1.1 Problem Statement and Research Scope

The core focus of this research is developing an efficient joint perception and plan-

ning algorithm for a partially known environment with explicit sensing constraints.

This thesis addresses the challenge of optimizing path planning under conditions of

uncertainty and limited sensor availability. An autonomous robot, tasked with mov-
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ing from a defined starting point to a goal, must make strategic decisions about when

and where to activate its sensors, revealing unknown regions only when necessary.

The aim is to develop an algorithm that balances two priorities. First, Percep-

tion: using sensors selectively to gather crucial information about unknown areas.

Second, Planning: ensuring efficient, goal-directed movement to conserve resources.

This balance is particularly challenging due to the robot’s partial knowledge of the

environment and its limited sensor activations. Navigating under these constraints re-

quires a control system that dynamically adjusts its sensing and movement strategies

based on the operating environment, resource availability, and mission objectives.

1.2 Research Motivation and Real-World Relevance

The significance of this research extends beyond theoretical exploration, encom-

passing practical applications in diverse and challenging environments. Mars explo-

ration serves as a prime example, where autonomous robots face strict limitations on

sensor usage due to power and time constraints. These constraints mirror challenges

on Earth, such as disaster response scenarios, where robots must navigate through

hazardous areas with finite resources while balancing urgent mission objectives. Mil-

itary operations further highlight the relevance of this work, as autonomous systems

are increasingly deployed in contested environments where sensor activations must

be carefully managed to avoid detection, conserve energy, and maintain operational

efficiency.

Figure 1.1 illustrates the breadth of this research’s applications and its potential

extensions. The applications range from off-road navigation and space exploration to

search-and-rescue missions, all of which require precise management of sensing and

navigation resources. Meanwhile, the extensions include innovative advancements

such as incorporating rechargeable resources (e.g., solar panels or radiothermal gen-

erators), adapting to dynamic obstacles in the environment, and scaling to multi-agent

systems for coordinated exploration and decision-making.
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No matter the application–be it Mars exploration, disaster response, or military

navigation–an autonomous agent will always operate under constraints such as lim-

ited sensors, finite power, or strict time budgets. The strategies proposed in this

research directly address these challenges by integrating sensor-aware path planning

with real-time navigation, enabling robots to adapt to dynamic and uncertain en-

vironments while maintaining mission objectives. By grounding these strategies in

practical scenarios, this work lays the foundation for advancements in space explo-

ration, search-and-rescue operations, and military applications, ensuring that robots

can operate effectively in even the most demanding and resource-constrained envi-

ronments.

1.3 Research Objectives

The objectives of this thesis align with the goal of creating a joint perception and

planning algorithm capable of navigating partially known environments efficiently.

The specific objectives are as follows:

1. To develop a control system that dynamically balances exploration and goal-

directed movement, optimizing both long-term gains and short-term decisions

to minimize overall path length. The system aims to prioritize efficient naviga-

tion by adjusting its approach based on the terrain and resource availability.

2. To implement an adaptive balance between sensing and control, allowing the

system to determine when sensor activation is necessary based on the robot’s

position, environmental uncertainty, and resource constraints. This dynamic

approach will enable the robot to adapt to varying levels of uncertainty and

respond effectively to the need for information.

3. To evaluate the algorithm’s performance across environments with different lev-

els of uncertainty. This evaluation will assess path length, sensor usage, and

adaptability to ensure the algorithm is robust and efficient under diverse condi-
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Figure 1.1: Applications and extensions of the thesis. Application image sources
[1, 2, 3]. Extension image sources [4, 5, 6].

tions. By analyzing performance across these metrics, the research will provide

insights into the tradeoffs between exploration and efficiency in practical navi-

gation tasks.

1.4 Thesis Contribution

This thesis contributes to the field of autonomous robotic navigation by introducing

solutions that address the challenges of resource-constrained exploration in partially

known environments. The key contributions, depicted in Figure 1.1, outline three

major advancements and their potential applications, alongside promising extensions

for future exploration.

1. Joint Perception and Planning Algorithm: A novel algorithm that balances

perception and planning, enabling efficient navigation in environments with

explicit constraints on sensor usage and energy consumption. This algorithm is
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designed to handle uncertainty and resource limitations effectively, providing a

method for robots to achieve mission goals with minimal resource expenditure.

2. Dynamic Control Approach: This thesis demonstrates a control approach that

optimizes decision-making in both the short and long term. By dynamically

adjusting the robot’s behavior based on immediate conditions, the control sys-

tem ensures efficient, adaptable navigation even in challenging, resource-limited

scenarios.

3. Abstract Simulation Environment : An abstracted simulation replicates real-

world terrains, including forests, rough landscapes, and extraterrestrial surfaces.

This environment serves as a flexible testing platform for autonomous navigation

strategies, allowing for rigorous evaluation under conditions that closely mirror

practical challenges.

The contributions of this thesis lay a robust foundation for developing autonomous

systems capable of balancing exploration and efficiency under constraints, advancing

the potential for real-world applications such as off-road navigation, space exploration,

and search and rescue. By enabling autonomous systems to operate effectively in di-

verse and demanding environments, this research also sets the stage for impactful

extensions, including incorporating rechargeable resources from power sources like

solar panels and radioisotope thermoelectric generators, adapting to dynamic obsta-

cles, and leveraging multi-agent systems for coordinated exploration. Together, these

advancements highlight the versatility and transformative potential of the presented

methodologies, paving the way for autonomous exploration in challenging settings

like Mars, dense forests, or disaster zones.
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1.5 Thesis Structure

The thesis is organized as follows:

Chapter 2: Literature Review - This chapter surveys existing work in au-

tonomous navigation and sensor usage, covering historical approaches,

modern methodologies, and a critical analysis of challenges and gaps

in the field.

Chapter 3: Problem Formulation - A detailed definition of the problem, in-

cluding core concepts, assumptions, and the formal problem state-

ment. This chapter clarifies the fundamental components and con-

straints that shape the research.

Chapter 4: Preliminary Work - Description of initial experiments and ex-

ploratory work, including the development of basic strategies for

navigating partially known environments.

Chapter 5: Methodology 1: Regret-aware Joint Sensing and Path Planning-

This chapter presents the joint sensing and control framework, de-

tailing how sensor usage and path planning integrate to achieve

optimal navigation. (Paper under review)

Chapter 6: Methodology 2: Sensor-aware Planner and Regret-based Cost

Function- Introduction of a global-local planning approach that up-

dates dynamically based on new environmental information. (Paper

in progress)

Chapter 7: Overall Results and Analysis - Comparative analysis of both

methodologies, evaluating tradeoffs between sensing and control

across varied scenarios.
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Chapter 8: Conclusion - Summary of findings, limitations, and suggestions

for future research, including recharging mechanisms and extensions

to dynamic and multi-agent systems.



CHAPTER 2: Literature Review

Navigating partially known environments while balancing sensing and control re-

quires innovative strategies that adapt to uncertainty. Prior research spans themes

such as reinforcement learning, active sensing[12], value of information (VOI) [13],

and high-dimensional path planning. These efforts have contributed foundational

theories, practical methodologies, and key insights, but a conclusive, unified solution

remains elusive. This review synthesizes these contributions to establish the state of

the art, highlight gaps, and position the existing work.

2.1 Foundations of Sensing and Planning

Historical advances in sensing and planning algorithms have provided the theoreti-

cal backbone for modern approaches. Dijkstra’s algorithm [14] laid the foundation for

shortest-path planning, offering a deterministic solution that inspired heuristic meth-

ods like A* [15]. Stentz [16] extended these foundational ideas to partially known

environments with the introduction of the D* algorithm. D* efficiently replans paths

in dynamic and uncertain environments, addressing the limitations of global replan-

ning and local reactive adjustments. This advancement marked a significant milestone

in enabling optimal and computationally efficient navigation for exploratory robots.

Bajcsy [12] introduced active perception, emphasizing the interplay between con-

trol strategies and information gain–a concept that underpins much of modern active

sensing research. Similarly, Howard’s information value theory [17] formalized the

relationship between probabilistic uncertainty and economic decision-making, while

Khatib [18] pioneered artificial potential fields for real-time obstacle avoidance. To-

gether, these methods laid the groundwork for integrating sensing and planning in
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autonomous systems.

Dynamic environments further highlighted the need for efficient replanning algo-

rithms. Koenig and Likhachev [19] optimized D* Lite for real-time applications, pre-

serving D*’s optimality while improving computational performance. Chadhurbala

et al.’s comparative study [20] evaluated A*, D*, and D* Lite, demonstrating their

applicability to grid-based path planning. These algorithms collectively illustrate

the evolution from static to dynamic planning solutions, emphasizing adaptability to

partial or changing knowledge.

In the controls community, the duality between estimation and control (analogous

to sensing and planning in robotics) has been well established [21, 22]. Todorov [21]

demonstrated that certain classes of problems reveal a direct duality between optimal

estimation and control in the traditional optimization sense. Pearson’s earlier work

[22] further explored this equivalence, showing how optimal strategies in one domain

inform solutions in the other.

Joint sensing and control problems are often formulated as single optimization

problems, incorporating both sensing and control costs [23, 24]. Baras and Bensous-

san [23] and Maity and Baras [25] highlighted how sensing impacts the controller’s

information structure and how control actions influence the state, requiring further

sensing to estimate new states. This interaction mirrors the joint sensing and planning

framework envisioned for robotics.

These works provide critical theoretical insights into combining estimation and

control, influencing modern strategies for integrated sensing and planning. By ex-

tending these ideas, our goal is to develop a planning framework that incorporates

both sensing constraints and path-planning objectives into a unified cost map.

2.2 Reinforcement Learning and Policy-Based Planning

Reinforcement learning (RL) and policy-based planning approaches have been

pivotal in addressing the complexities of sensing, decision-making, and control in
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robotics, particularly under uncertainty. These methods often rely on policies to

balance trade-offs, leveraging POMDPs (Partially Observable Markov Decision Pro-

cesses) to model partially observable environments. Zubek and Dietterich [26] intro-

duced a POMDP-based framework to optimize sensor activation decisions, demon-

strating the effectiveness of policies in navigating resource constraints. Bonet and

Geffner [27] further developed sensor-aware planning through heuristic search in be-

lief spaces, offering a scalable alternative to cost maps.

Chrisman and Simmons [28] explored static sensing policies, optimizing sensing

operations by weighing their cost against expected utility. Cassandra et al. [29]

extended this paradigm by applying discrete Bayesian models to navigation tasks,

showcasing heuristic control strategies for partially observable environments. Lim

[30] built upon these ideas by integrating POMDP algorithms with modern machine

learning techniques, enabling visual navigation tasks. Langley [31] demonstrated

how RL algorithms could selectively reduce sensory load while maintaining control,

focusing on efficient coupling of sensing and actions.

RL also excels in optimizing exploration and path planning. You and Wu [32] pro-

posed Geometric RL, which balances exploration and path efficiency by dynamically

updating reward matrices. Stein et al. [33] introduced subgoal-based navigation to

reduce cost-to-go metrics, while Uppal et al. [34] developed SPIN, which integrates

active visual perception with navigation for mobile manipulation in unstructured

environments. Kiran et al. [35] provided a comprehensive survey on deep RL tech-

niques for autonomous driving, emphasizing the integration of behavior modeling and

trajectory optimization to enhance policy efficacy. These approaches highlight RL’s

flexibility in adapting policies to diverse challenges, including structured and dynamic

scenarios.

Applications of RL in real-world settings further underscore its utility. Delmerico

et al. [36] integrated active aerial exploration with ground robot path planning,
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minimizing response time in search-and-rescue missions. Similarly, Wang et al. [37]

applied deep RL to aerial robots for environmental monitoring, showcasing its scala-

bility in high-dimensional planning problems. Additionally, Lluvia et al. [38] surveyed

active mapping techniques, bridging RL and SLAM (Simultaneous Localization and

Mapping) strategies to enable autonomous exploration. These works emphasize RL’s

capability to navigate complex decision spaces where sensing and control are inter-

twined.

While RL and policy-based methods offer practical solutions, they often lack the

mathematical rigor required for generalization. Your work complements these ap-

proaches by introducing structured cost maps to formalize trade-offs between sensing

and control. This integration bridges the gap between empirical RL approaches and

optimization-based methodologies, offering a robust framework for navigating par-

tially known environments.

2.3 Active Sensing and Perception

Active sensing focuses on dynamically acquiring information to reduce uncertainty

and improve decision-making. Bajcsy [12] established active perception as a corner-

stone of this field, highlighting the need to integrate sensing with control strategies.

This seminal work laid the foundation for modern active sensing approaches that aim

to balance sensing costs with the value of information (VoI) gained. For example, Lu

et al. [39] used information potential functions to maximize sensing efficiency dur-

ing navigation tasks, aligning sensing with areas of high information gain. Similarly,

Wang et al. [37] demonstrated how mobile robots could optimize data collection by

considering deployment time and historical sensing data to guide measurements.

Recent advancements have extended active sensing to multi-agent systems, dy-

namic exploration, and cost-aware strategies. Kim et al. [40] developed a cooperative

strategy for quadrotor teams to explore unknown environments, optimizing coverage

and efficiency through a selective graph exploration framework. Manjanna and Dudek
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[41] proposed an adaptive approach for marine robots to cover spatial fields, focusing

on multi-scale paths to balance information acquisition with energy costs. Lluvia et

al. [38] conducted a comprehensive survey of active mapping techniques, emphasizing

the integration of simultaneous localization and mapping (SLAM) with exploration

for autonomous navigation. These examples showcase the diversity of active sens-

ing methods, from single-agent optimization to collaborative multi-agent exploration,

underscoring its role in navigating complex, resource-constrained environments.

Cost-effective approaches to sensing have also emerged, addressing challenges in

resource management during decision-making. Hansen [42] introduced a dynamic

sensing strategy using Markov decision theory, balancing sensing costs and planning

benefits. This strategy dynamically adjusts sensing intervals based on uncertainty,

aligning closely with modern active sensing paradigms. Similarly, Maity [24] explored

optimal intermittent sensing for pursuit-evasion games, where constrained sensing

budgets necessitated equilibrium strategies for effective sensing and motion. These

works highlight the significance of cost-aware strategies in guiding sensing decisions

under uncertainty.

In search-and-rescue scenarios, active sensing enables rapid and efficient naviga-

tion. Delmerico et al. [36] introduced an active aerial exploration framework that

combines mapping with terrain classification to guide ground robots through unknown

terrains. By integrating 3D reconstruction and on-the-spot learning, this approach

optimizes response times while ensuring robust path planning. This emphasis on

real-time decision-making aligns with Todorov’s [21] concept of duality between esti-

mation and control, where sensing (estimation) and planning (control) are treated as

complementary processes.

Langley [31] explored selective sensing through statistical learning, enabling sys-

tems to reduce sensory loads while maintaining control. This notion of integrating

learning with active perception resonates with broader efforts to optimize sensing and
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decision-making in robotics. For instance, Todorov’s insights into linear-quadratic

Gaussian (LQG) control provide a theoretical framework for linking sensing and plan-

ning under uncertainty, further underscoring the value of unified approaches to active

perception.

Active sensing continues to evolve, with applications ranging from data-driven

adaptive sampling [41] to cooperative UAV exploration [43]. These works collec-

tively highlight the potential of active perception to drive efficient decision-making

in partially known and dynamic environments. By building on these principles, your

approach to integrating cost maps and sensor activation constraints provides a novel

lens for understanding and optimizing the interplay between sensing and planning.

2.4 Value of Information (VoI) and Regret-Based Planning

Value of Information (VoI) and regret-based methodologies play crucial roles in

decision-making under uncertainty, particularly in robotics and autonomous systems

operating in incomplete environments. VoI quantifies the utility of additional infor-

mation to reduce uncertainty, while regret measures the difference between the cost

of an actual plan and the optimal plan that would have been possible with perfect

knowledge. These complementary approaches help balance the trade-offs between

exploration and exploitation, often critical in sensor-based path planning.

The theoretical foundations for VoI can be traced back to Howard [17], who for-

malized the interplay between probabilistic uncertainties and economic impacts in

decision-making. Low et al. [44] extended this theory to robotic exploration by formu-

lating adaptive path planning as a reward-maximization problem. Their information-

theoretic framework emphasizes efficiency by prioritizing observations that maximize

information gain while minimizing computational overhead, a critical requirement for

large-scale environmental sensing.

Practical applications of VoI often involve planning under uncertainty with con-

straints on computational resources or sensing capabilities. Spaan et al. [45] de-
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veloped a POMDP-based framework for active cooperative perception, integrating

information rewards into planning to achieve specific belief-state goals. This ap-

proach demonstrated the feasibility of using VoI to drive optimal policies in collabo-

rative scenarios, such as robot-assisted surveillance. Similarly, Likhachev and Stentz

[46] proposed an information-driven approach to path clearance, where scout robots

gather data on potential hazards to inform a primary robot’s navigation. These meth-

ods underscore VoI’s versatility in optimizing sensing and planning in diverse robotic

applications.

In regret-based planning, Zhao et al. [47] introduced a Linear Temporal Logic

(LTL) framework to minimize regret in partially known environments, allowing robots

to balance exploration and exploitation. Building on this work, Zhao et al. [48] pro-

posed an autonomous exploration planner for UAVs, focusing on efficient mapping

in unknown environments. By dynamically adapting yaw trajectories and leverag-

ing frontier exploration sequences, this method reduces back-and-forth maneuvers

and optimizes path planning. These advancements highlight how regret minimiza-

tion strategies can enhance exploration efficiency, particularly in resource-constrained

scenarios.

Recent studies also explore the integration of VoI and regret to address multi-

objective planning challenges. For instance, Likhachev et al. [49] developed a multi-

objective variant of D* Lite, leveraging incremental graph search to optimize metrics

like risk, cost, and time. Such approaches demonstrate the potential for combining

VoI and regret to improve decision-making frameworks, ultimately enabling robots to

operate more effectively in uncertain and resource-limited environments.

2.5 Sensor Constraints and Budget-Aware Planning

Resource limitations play a critical role in shaping effective sensing and planning

strategies. Planetary exploration, for example, requires careful management of lim-

ited computational resources, energy, and sensor capabilities. Gerdes et al. [11] illus-
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trate this challenge with a navigation system for Mars rovers, where efficient sensing

and hazard detection allow for longer traverses in uncertain terrains. By leveraging

lightweight sensing architectures and stereo vision systems, their approach demon-

strates how sensing constraints can be addressed to achieve practical autonomy in

resource-limited environments. Similarly, Tunstel and Howard [50] discuss sensing

and perception challenges faced by planetary rovers, emphasizing the need for sensor

solutions tailored to strict mass, power, and operability constraints. These examples

underscore the importance of incorporating sensor budgets into planning frameworks

to ensure feasibility and robustness in real-world applications.

Several studies propose frameworks for optimizing sensing while minimizing re-

source expenditure. Tzoumas et al. [51] address this issue through sensing-constrained

Linear-Quadratic-Gaussian (LQG) control, which integrates sensor selection, estima-

tion, and control. Their scalable algorithm selects the most critical sensors to op-

timize system performance, demonstrating how constraints on sensing resources can

be balanced with control objectives. Similarly, Singh et al. [52] use submodular op-

timization to plan informative paths for multi-robot systems under energy and time

budgets. Hansen [42] takes a cost-effective approach, dynamically adjusting sensing

intervals based on uncertainty and cost. These results emphasize the trade-offs be-

tween information gain and resource consumption, which are central to budget-aware

planning.

In contexts where sensing is intermittent or costly, strategies must adapt dynami-

cally to maximize efficiency. Maity [24] explores optimal intermittent sensing strate-

gies in pursuit-evasion games, demonstrating how limited sensing budgets impact

a player’s decision-making and overall performance. Aggarwal et al. [53] expand on

this concept by introducing threshold-based policies for differential games, optimizing

performance under intermittent sensing constraints. Their work, alongside Krishna-

murthy’s [54] game-theoretic strategies for decentralized sensor activation, provides
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valuable insights into balancing sensing and resource constraints in complex, dynamic

environments.

Adaptivity is another critical aspect of sensor-constrained planning. Johnsen and

Levorato [10] present NaviSlim, a neural navigation model that dynamically ad-

justs sensing and computational complexity based on the current environment. This

framework demonstrates how real-time adaptability can optimize performance in con-

strained scenarios, such as micro-drone navigation. Wang et al. [37] extend this idea

to active sensing for autonomous mobile robots, where path planning accounts for

limited deployment time and measurement value, ensuring efficient sensing while re-

specting resource constraints. Both studies highlight the potential of adaptive models

to enhance sensing efficiency without compromising mission objectives.

These methods highlight the importance of modeling sensing budgets and resource

constraints in planning and control frameworks. However, fully integrating such mod-

els with adaptive decision-making systems remains challenging, particularly in dy-

namic and unpredictable environments. By advancing the interplay between sensing

constraints and planning, these works provide a foundation for building robust, effi-

cient autonomous systems that operate effectively within resource-limited contexts.

2.6 High-Dimensional and Probabilistic Path Planning

High-dimensional and probabilistic path planning addresses challenges inherent in

navigating complex and uncertain environments. Foundational methods such as Prob-

abilistic Roadmaps (PRMs) introduced by Kavraki et al. [55] and Rapidly-Exploring

Random Trees (RRTs) by LaValle [56] revolutionized planning in high-dimensional

spaces by employing sampling-based techniques. PRMs sample configurations to con-

struct a graph representation of free space, enabling efficient multi-query planning.

RRTs complement this by rapidly expanding towards unexplored regions, excelling

in single-query scenarios. Together, these algorithms provide a basis for planning in

domains where the configuration space is vast and analytically intractable.
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Extensions of these methods often incorporate probabilistic reasoning to manage

environmental uncertainty. Singh et al. [52] and Low et al. [57] utilized Gaussian Pro-

cesses to model uncertain fields and optimize paths that maximize information gain.

Singh’s eSIP algorithm demonstrates submodular optimization for multi-robot scenar-

ios, balancing efficiency and sensing cost. Low’s iMASP framework redefines planning

under uncertainty by optimizing information-theoretic reward functions, highlighting

the potential of probabilistic models for large-scale exploration. Banfi et al. [58]

expanded on these principles by incorporating hypothesis paths within probabilistic

occupancy grids, dynamically refining plans as new data is acquired. These contri-

butions bridge theoretical approaches with practical applications, emphasizing the

versatility of probabilistic frameworks.

Recent advancements explore decision-making frameworks that integrate proba-

bilistic insights with adaptive strategies. Ren et al. [49] extended the D* Lite algo-

rithm to handle multi-objective path planning, balancing competing criteria like risk

and travel time while maintaining computational efficiency through Pareto-optimal

pruning. Guzzi et al. [59] analyzed the Canadian Traveller Problem to optimize

navigation under uncertain edge traversability, while Manjanna et al. [41] employed

adaptive sampling to efficiently cover spatial fields, showcasing applications of proba-

bilistic modeling. Conner et al. [60] introduced a novel approach to composing local

potential functions for global navigation, demonstrating the importance of blending

localized strategies with overarching objectives to achieve robust solutions in con-

strained environments.

Collaborative and hierarchical planning strategies further enhance the capabili-

ties of probabilistic approaches. Panov and Yakovlev [61] proposed a behavior-based

model for coalition planning, where multiple agents dynamically modify their environ-

ment to achieve shared objectives. This framework leverages hierarchical state-space

exploration and constrained path planning to ensure feasibility under diverse condi-
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tions. These strategies, alongside innovations in adaptive sensory feedback, underline

the significance of integrating probabilistic reasoning with flexible decision-making

frameworks to tackle the challenges of high-dimensional and uncertain environments

effectively.

2.7 Similar Problems

Research addressing related challenges provides complementary insights into sens-

ing and path planning under uncertainty. Bonet and Geffner [27] formulated planning

with incomplete information as heuristic search in belief space, leveraging probabilis-

tic reasoning to navigate unknown environments. While their approach effectively

balances probabilistic actions and sensing, it does not incorporate explicit sensor

budget constraints, which are critical in resource-limited scenarios. Similarly, Singh

et al. [52] employed Gaussian Process-based submodular optimization to maximize

information gain in multi-robot systems, and Kim et al. [40] proposed a cooperative

graph-based exploration framework for UAVs, optimizing coverage in complex envi-

ronments. These works focus on efficiency but lack explicit mechanisms to balance

sensing costs against long-term navigation goals.

Several works highlight adaptive and reinforcement learning (RL)-based strategies

for sensing and planning. Langley [31] introduced statistical learning techniques to

selectively reduce sensory load while maintaining control, offering insights into cou-

pling sensing efficiency with control actions. You and Wu [32] proposed a Geometric

RL framework that balances field reconstruction and path planning through real-time

updates of reward matrices. Both approaches showcase the adaptability of RL in op-

timizing exploration, but they do not address multi-objective scenarios where sensing

budgets and regret-based planning play significant roles.

Other researchers emphasize uncertainty-aware and multi-objective approaches.

Banfi et al. [58] developed an uncertainty-aware planner using probabilistic occu-

pancy grids, dynamically refining paths based on new sensory data. However, their
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method does not incorporate sensing budgets or regret trade-offs, limiting its appli-

cability in highly resource-constrained environments. Ren et al. [49] extended D*

Lite to handle multi-objective optimization, balancing risk, arrival time, and other

factors, but their approach focuses on Pareto fronts rather than integrating dynamic

sensing updates into path planning.

Lim [30] explored POMDP-based sequential decision-making, combining theoretical

guarantees with machine learning techniques for real-world applications. Spaan et

al. [45] expanded POMDP frameworks to reward information gain in cooperative

perception scenarios, bridging planning and active sensing. These works provide

robust theoretical foundations but often overlook the computational overhead and

practical constraints of sensor-limited environments.

2.8 Gaps in the Literature

Despite notable advancements, key challenges persist in bridging theoretical and

practical approaches to sensing and planning under uncertainty. Many reinforcement

learning (RL)-based methods, such as Lim’s exploration of POMDP solvers [30], lever-

age neural networks to implicitly address partially observable environments but lack

interpretability. As Lim highlights, "many deep reinforcement learning algorithms are

implicitly solving a POMDP...by learning a neural network representation," which

complicates their application in safety-critical domains where explainable decision-

making is essential. The absence of mathematically grounded or explicitly explain-

able solutions limits broader adoption, especially in fields like planetary exploration

or autonomous navigation.

Additionally, the integration of sensing budgets into existing frameworks remains

underdeveloped. While methods like Banfi et al.’s uncertainty-aware planner [58]

and Bonet and Geffner’s belief-space planning [27] excel in probabilistic reasoning,

they fail to explicitly incorporate resource constraints, such as limited sensor us-

age. Furthermore, most approaches overlook the potential synergy between value of
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information (VoI) and regret-based principles, which could enhance adaptability by

quantifying the trade-offs between immediate exploration and long-term performance.

Addressing these gaps requires solutions that are not only explainable and budget-

aware but also integrate VoI and regret to create robust, resource-efficient strategies

for real-world autonomous systems.



CHAPTER 3: Problem Formulation

This section introduces the foundational concepts and assumptions that under-

pin this research, defining the environment, sensor behaviors, and robot capabilities.

These elements are essential for understanding how the robot navigates partially

known environments while balancing limited resources.

3.1 Core Concepts

This research operates under a set of assumptions that define the robot’s environ-

ment, movement capabilities, and sensor characteristics. These assumptions ensure

that the robot has a fallback strategy, even in highly uncertain scenarios, by guaran-

teeing that a safe but potentially less efficient path is always available.

3.1.1 World Definition

The environment, denoted as grid world W , is composed of a grid of cells classi-

fied into three distinct categories: free (F), obstacle (O), and unknown (U). This

classification helps guide the robot’s path planning and sensing decisions by defin-

ing different levels of certainty and risk. The layout of this world is illustrated in

Figure 3.1.

Free cells (F) are known traversable cells in the grid that the robot can move

through safely without requiring additional sensor input. These cells are already

mapped as accessible and pose no risk in terms of obstacles.

Obstacle cells (O) are cells the robot has identified as untraversable and must

avoid during navigation. Attempting to move through an obstacle cell results in

failure, making it essential for the robot to exclude them from its planned route.

Unknown cells (U) represent cells where the robot has no prior knowledge of the
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Figure 3.1: An example world. O is shown in black. U is shown in blue. F is shown
in white.

status. These cells could be either free or obstacle, and their true nature remains

unknown until the robot activates its sensor. Unknown cells are areas of high uncer-

tainty and risk but may also offer the potential benefit of shorter paths if they turn

out to be free.

The worldW is designed so that as the robot navigates and gathers information, cell

classifications can dynamically change from unknown to either free or obstacle. This

reclassification allows the robot to update its path-planning approach as it collects

data about its environment, enhancing its ability to navigate effectively toward the

goal.

3.1.2 Robot Definition

The robot operates by moving through W and gathering information to resolve

unknown cells. It is equipped with a sensor that can be selectively activated to reveal
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Figure 3.2: Sensor operation being demonstrated. The green point is cell xt, the
origin of the sensing action.

details about cells within a specific sensing region. At any given time t, the robot can

execute one of four movement actions, denoted at ∈ {up, down, left, right}, each

allowing it to traverse to an adjacent cell in the specified direction. Movement is

restricted to cells classified as free (F), and the robot must avoid cells identified as

obstacles (O). The robot is equipped with a costly sensor capable of identifying the

actual status of unknown cells within a given radius, rs, of its current location, xt.

This sensing region, S(xt), includes all cells x that satisfy:

S(xt) = {x | dist(x, xt) ≤ rs}, (3.1)

where dist(·, ·) is a distance metric applied within grid world W . This thesis uses

the Manhattan distance metric, resulting in a circle-shaped sensing region around xt.

The operation of the sensor is illustrated in Figure 3.1. When activated, the sensor

reveals whether each cell within S(xt) is free or an obstacle. This information updates

the robot’s understanding of W , allowing it to refine its path choices and adapt as

new data is collected. The sensing decision at time t is represented by θt ∈ {0, 1},

where θt = 1 indicates active sensor usage.
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3.1.3 Information Structure

The robot relies on the knowledge it accumulates during navigation to inform its

actions. At any time t, the robot’s information aboutW is captured by the sets Ft,Ot,

and Ut, representing the cells known to be free, obstacles, or unknown, respectively.1

These sets change over time as the robot gathers more information:

Ft ⊇ Ft−1, Ot ⊇ Ot−1, Ut ⊆ Ut−1. (3.2)

This cumulative knowledge, denoted as It = {Ft,Ot,Ut}, provides the robot with an

evolving understanding of its environment, shaping its navigation decisions. Given the

robot’s current location xt, a planned path p = {xt, xt+1, . . .} is deemed executable if

every cell along p lies within the set of known free cells Ft. Thus, the set of executable

paths to the goal g at time t, starting from xt, is denoted as P(xt, g, It). This set of

paths relies on the robot’s sensing strategy and represents an under-approximation

of all feasible paths to the goal. Paths within P(xt, g, It) are executable under the

robot’s current information structure, informing it of feasible routes given its limited

knowledge at time t.

3.1.4 Traversal Cost

The traversal cost framework provides a flexible and adaptable means of defining

the robot’s path-planning objectives, allowing it to optimize for various criteria such

as minimizing path length, avoiding detection, or adhering to mission-specific con-

straints. The cost of traversing a free cell x ∈ F from an adjacent cell is denoted as

c(x), while cells in O (obstacles) are considered untraversable, with their cost set to

c(x̄) =∞,∀ x̄ ∈ O. This cost formalism is intentionally kept vague, enabling it to be

tailored to the specific requirements of different applications. For instance, c(x) could

represent the time required to traverse a cell, the risk of detection in a militaristic
1W = Ft ∪ Ot ∪ Ut and Ft ∩ Ut = Ot ∩ Ut = Ft ∩ Ot = ∅ for all t.
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scenario, or a general measure of environmental difficulty.

The total cost of a given path p = {x1, . . . , xt, . . . , xH} is calculated as the sum of

the traversal costs for each cell along the path:

c(p) ≜
H−1∑
t=1

c(xt+1), (3.3)

where H represents the length of the path.

For simplicity in this thesis, c(x) is defined as 1 for all x ∈ F , reducing the frame-

work to the objective of minimizing the length of the path. This simplification allows

for straightforward testing and evaluation while demonstrating the methodology’s

core principles. However, the formulation is sufficiently general to accommodate a

wide range of cost functions, enabling future extensions to more complex optimization

objectives.

In addition to traversal costs, the total sensor activations along a path of length H

are given by:
H∑
t=1

θt, (3.4)

where θt is a binary indicator of whether the sensor is activated at time step t. This

metric quantifies the resource cost–such as energy or computation–incurred by reduc-

ing environmental uncertainty through sensing. Together, traversal and sensing costs

provide a comprehensive framework for defining the robot’s navigation objectives

and balancing path efficiency with strategic sensor usage. This dual optimization

highlights the versatility of the approach, making it applicable to various real-world

scenarios with diverse constraints and goals.

3.2 Formal Problem Statement

With these definitions in place, the problem can be formally stated. Figure 3.3

shows an example of what this solution may look like for the environment in Fig-

ure 3.1.
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Figure 3.3: An example solution on the example world (See Figure 3.1). The start
position is shown in the green square near the top right corner. The goal position is
the red square near bottom left corner. The path taken is shown in red.

Problem Statement: For given start and goal locations, s and g, respectively, and a

sensing budget N , the objective is to find the optimal path from s to g while ensuring

the robot remains within the free cells and uses the sensor no more than N times.

3.3 Assumptions

This is an incomplete information decision-making problem where the robot does

not have prior knowledge about which locations are ideal for sensor activation. The

robot also lacks knowledge of the obstacle density within the unknown regions, mean-

ing its choices in both path and sensor usage directly impact the feasibility and cost of
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reaching the goal. Due to this incomplete information, finding a feasible path within

the sensor budget is challenging. To ensure a well-posed problem, we introduce the

following assumption:

Assumption 1: P(s, g, I0) ̸= ∅.

In other words, there exists at least one feasible path between the start and goal

locations at t = 0. This assumption ensures the problem remains solvable within the

given constraints, enabling the robot to navigate from the starting point to the goal

while managing its limited sensing resources.



CHAPTER 4: Preliminary Work

The preliminary work provides insights into the robot’s decision-making process

in two experimental setups: the World with a Single Unknown and Worlds with

Scattered Unknowns. These scenarios illustrate the impact of varying levels of envi-

ronmental complexity on the robot’s strategy for managing uncertainty and sensor

usage.

4.1 World with a Single Unknown Cell

The world with a single unknown cell i.e., |U0| = 1, is designed to explore the

impact of a single point of uncertainty on the robot’s path planning and sensor use.

By focusing on a single unknown cell, this setup highlights the fundamental decision-

making strategies—pessimistic and optimistic—and provides a simpler environment

to analyze the effects of each strategy in isolation. Since only one cell is unknown at

the start, we can simplify the problem without considering a sensing budget, allow-

ing us to focus solely on the strategic implications of this uncertainty. This setup,

illustrated in Figure 4.1, enables us to examine the robot’s decision-making process

when it navigates toward a goal with minimal unknown information.

4.1.1 Strategies: Pessimistic and Optimistic Paths

To address the unknown cell’s uncertainty, the robot can adopt one of two fun-

damental strategies: a pessimistic path, which assumes that the unknown cell is

an obstacle, or an optimistic path, which assumes the unknown cell is free. These

strategies allow the robot to explore two opposing approaches to decision-making in

uncertain environments.
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Figure 4.1: World with one unknown cell in it

Definition 1 (Optimistic Path) An optimistic path is a path through W treating

the unknown cells as free cells, allowing the robot to proceed as if all potential routes

are traversable. While this approach can lead to shorter, more efficient routes if the

assumptions prove correct, it risks encountering obstacles that would invalidate the

planned path.

The set Q(x, y, It) represents all optimistically executable paths from a starting

cell x to a target cell y, given the current environmental knowledge of the robot It.

Unlike P(x, y, It), which contains only feasible paths restricted to known free cells,

Q(x, y, It) extends this concept by including paths that traverse both known free

cells (Ft) and unknown cells (Ut). This optimistic assumption treats unknown cells

as traversable, enabling the robot to explore potential routes that could be feasible if

the unknown regions turn out to be unobstructed.

Mathematically, Q(x, y, It) is defined as the set of paths q such that:

Q(x, y, It) = {q | q = {x, x1, . . . , xn, y}, xi ∈ Ft ∪ Ut, ∀ i ∈ [1, 2, . . . , n]}. (4.1)

Here, each path q in Q consists of a sequence of cells starting at x and ending at
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y, where all intermediate cells xi belong to either the set of known free cells Ft or

unknown cells Ut. This formulation allows the robot to compute potential paths under

optimistic assumptions and is the foundation for evaluating optimistic strategies in

uncertain environments.

At any time t, the optimistic path to the goal g from a cell x ∈ Ft ∪Ut is the path

in Q(x, g, It) with the minimum cost:

popti
t (x) = argminp∈Q(x,g,It)c(p). (4.2)

The optimistic cost-to-go captures the entire cost from x to g. This provides a quan-

titative cost for the cells. For a cell x ∈ Ft ∪ Ut is defined as:

coptit (x) =


c(popti

t (x)), x ∈ Ft ∪ Ut,

+∞, x ∈ Ot,

(4.3)

Figure 4.2 presents the color-map of copti, representing the cost-to-go under the

optimistic strategy. The gradient shows the shortest path cost from each cell to

the goal, with darker colors (near black) indicating lower costs close to the goal

and brighter colors representing higher costs. White cells signify regions that were

not evaluated under the optimistic strategy, emphasizing areas beyond the robot’s

consideration in this strategy.

Definition 2 (Pessimistic Path) The pessimistic path represents a cautious strat-

egy in which the robot treats unknown cells as obstacles. This approach leads the robot

to avoid unknown areas, potentially resulting in a longer but guaranteed safe path that

avoids uncertainty entirely.

At any given time t, the pessimistic path to the goal g from a cell x ∈ Ft is the path
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Figure 4.2: The color-map of copti.

in P(x, g, It) with the minimum cost:

ppess
t (x) = argminp∈P(x,g,It)c(p). (4.4)

The pessimistic cost-to-go for a cell x at time t is defined as:

cpesst (x) =


c(ppess

t (x)), x ∈ Ft,

+∞, x /∈ Ft.

(4.5)

Figure 4.3 depicts the cost-to-go map cpess under the pessimistic strategy. The

colors and meaning are identical to those in Figure 4.2 except this representation

assumes all unknown cells are obstacles. This leads to longer paths and higher-value

cells, reflecting the robot’s avoidance of uncertain regions under this cautious strategy.

These two strategies represent contrasting risk management philosophies. The

optimistic path tackles the unknown optimistically by assuming they are free and

traversable cells, while the pessimistic path takes a conservative approach, assuming

unknown cells contain obstacles. A distinct set of actions can be derived from ppess
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Figure 4.3: The color-map of cpess.

and popti, indicating the best actions to take at any cell. Thus, each strategy cor-

responds to a different policy or best actions to take when following either strategy.

The optimistic approach, which assumes that all unknown cells are free, encourages

the robot to take the shortest path, even through unknown regions, as shown in Fig-

ure 4.4b. Conversely, the pessimistic approach, shown in Figure 4.4a, assumes that

unknown cells are obstacles and encourages the robot to avoid unknown areas entirely,

taking a potentially longer but guaranteed safe route.

(a) Pessimistic policy. (b) Optimistic policy.

Figure 4.4: Policy actions shown for both strategies.
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4.1.2 Regret

In uncertain environments, regret provides a quantitative measure to evaluate the

impact of decision-making on path efficiency [62]. It captures the trade-offs between

optimistic and pessimistic strategies at a given moment and evolves as the robot

gathers more information about the environment. Regret is particularly valuable in

uncertain scenarios where the robot must balance risk and caution, as it reflects the

potential benefit of the actions. Regret does not directly influence sensor usage or

path decisions, but instead serves as a benchmark for understanding the consequences

of past choices and the potential benefits of alternate strategies.

Formally, regret at a cell x is defined as the difference between the pessimistic and

optimistic path costs:

cregt (x) = cpesst (x)− coptit (x). (4.6)

As the pessimistic path cost (cpesst (x)) assumes the path will only be within Ft, and

the optimistic path cost (coptit (x)) assumes the path through ideal conditions through

both Ft and Ut, it follows that cpesst (x) ≥ coptit (x). This relationship ensures that

regret is always non-negative.

As shown in Figure 4.5, regret is calculated for every cell in the environment to

reflect the difference in the costs of the path in each location. Positive regret indicates

that the optimistic path would result in a shorter route to the goal compared to the

pessimistic path. In other words, it quantifies the potential improvement in path

length if the robot were to act optimistically from its current position onward. A

high regret value may reflect suboptimality in the current decision-making process or

highlight areas where sensing to follow an optimistic path could significantly improve

efficiency.

Positive regret indicates that the optimistic path would result in a shorter route

to the goal than the pessimistic path. In other words, it quantifies the potential
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Figure 4.5: Color map of creg (see equation (4.6)).

improvement in path length if the robot were to act optimistically from its current

position onward. A high regret value may reflect suboptimality in the current decision-

making process or highlight areas where sensing to follow an optimistic path could

significantly improve efficiency.

Zero regret occurs when the pessimistic and optimistic paths are identical in length,

signaling that the robot has complete knowledge of the remaining environment to the

goal. Further sensing does not affect the shortest available path, allowing the robot

to proceed confidently without additional exploration.

Regret provides valuable insights into the robot’s decision-making, but has limita-

tions. It does not capture all aspects of the robot’s strategy, such as how long-term

goals or constraints like the sensing budget influence sensing decisions. Addition-

ally, regret values alone cannot fully explain the interplay between exploration and

efficiency, as they primarily reflect the difference between two predefined cost met-

rics. Despite these limitations, regret serves as an essential tool for evaluating the

impact of uncertainty on path planning and identifying areas where improvements in

decision-making could lead to better outcomes.
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Through these interpretations, regret offers the robot a clear metric to guide

decision-making. Positive regret highlights situations where exploration could be

advantageous, and zero regret confirms that the robot’s path is optimal under the

current conditions. By tracking regret, the robot can dynamically adjust its strategy,

balancing risk and efficiency to optimize its path toward the goal.

4.1.3 Simple Controller

The Simple Controller offers an efficient and streamlined approach to navigating

the simple environment using the intersection of pessimistic and optimistic policies.

By identifying actions where both policies agree, the controller provides the robot

with a reliable path forward, minimizing the need for excessive sensor usage. This

shared action set represents a valid best-case path regardless of the unknown cell’s

true nature.

As illustrated in Figure 4.6, the agreed-upon actions between the pessimistic and

optimistic strategies are represented by green arrows. These green arrows indicate

where both actions intersect, offering the robot a confident route to follow. By adher-

ing to this path, the robot can proceed without activating its sensor, as the consistency

between the strategies ensures a safe and reliable course of action.

However, situations arise where the two strategies disagree, leading to null sets of

actions. We call these indecision points. These points, visually marked by yellow

cells in Figure 4.6, occur when neither strategy offers a universally reliable action.

At these locations, the robot faces uncertainty about how to proceed, as the lack of

alignment between the optimistic and pessimistic strategies creates ambiguity.

To resolve this uncertainty, the Simple Controller activates the robot’s sensor at

these indecision points. By revealing the true status of the unknown cell, the sensor

reduces environmental ambiguity and realigns the pessimistic and optimistic strate-

gies. This realignment transforms the indecision point into an agreed-upon path,

allowing the robot to continue along the unified route marked by green arrows.
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Figure 4.6: Agreed upon policy. See Figure 4.4 for Optimistic and Pessimistic Policies.

The Simple Controller thus achieves a balance between caution and efficiency. It

follows the agreed path, bypassing sensor activation when the pessimistic and opti-

mistic strategies intersect, and activates the sensor only when necessary at indecision

points. By minimizing unnecessary sensor usage, the controller operates efficiently,

making it particularly well-suited for environments with limited uncertainty, such as

scenarios involving a single unknown. This approach ensures robust and effective

control while optimizing the robot’s resources and actions.

4.1.4 Single Group of Unknown cells

The scenario of a single group of unknown cells extends the principles explored in

the case of a single unknown cell to environments where multiple adjacent cells are

unknown. This setup introduces slightly more complexity by clustering uncertainty

into a single contiguous region rather than isolating it to a single cell. Despite this

increased complexity, the impact on the planning strategies remains identical, as the

robot’s fundamental decision-making process remains largely unchanged.

When navigating a single group of unknown cells, the robot still employs pessimistic
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and optimistic strategies to determine its path. The critical difference is changing the

indecision points along the boundary of the unknown group. These indecision points

arise as the robot evaluates whether to activate its sensor to reveal the group’s status

or to proceed cautiously along a longer, safer path. The increase in indecision points

does not alter the underlying strategies but adds to the indecision points where sensor

activation may be necessary to resolve ambiguity.

(a) Extending unknown vertically. (b) Extending unknown horizontally.

Figure 4.7: Examples of the single unknown group.

From a decision-making perspective, the presence of a single group of unknown

cells highlights the scalability of the approaches discussed for a single unknown cell.

The Simple Controller, for instance, continues to function effectively by identifying

intersections between pessimistic and optimistic strategies and activating the sensor

only at critical indecision points. This ensures that the robot conserves its resources

while making informed decisions that balance exploration and efficiency.

In summary, transitioning from a single unknown cell to a single group of unknown

cells primarily introduces more indecision points, without fundamentally changing the

robot’s strategies or controller operation. This setup provides a stepping stone for

understanding how the framework scales to more complex environments, reinforcing

the robustness of the methods in managing clustered uncertainty while maintaining

efficient navigation.
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4.2 World with Scattered Unknown Cells

This section explores the challenges of navigating environments with scattered un-

known cells, scaling up from simple cases to more complex scenarios. By introducing

multiple areas of uncertainty, these experiments highlight the limitations of the sim-

ple controller and emphasize the need for strategies that account for sensor budget

and global regret. As the number of unknown cells increases, the interconnectedness

of regret and its global nature become apparent, along with the growing inefficiency

of the simple controller in handling cumulative uncertainties.

4.2.1 Scaling Up To Multiple Unknown Areas

Environments with two and three unknown cells introduce increasing complexity

by adding layers of uncertainty and more indecision points. Figures 4.8 and 4.9

illustrate these setups, showing the worlds, their corresponding agreed-upon policies,

and regret maps. For the two-cell environment (Figure 4.8), the robot navigates

a zigzag obstacle pattern with two strategically placed unknown cells. The regret

map (Figure 4.8e) shows distinct bands of regret forming around each unknown area,

reflecting the potential inefficiencies caused by incorrect assumptions. These regret

bands correlate directly with the agreed-upon policy (Figure 4.8d), where the simple

controller consistently activates sensors at each indecision point to resolve uncertainty.

As the complexity increases with the three-cell environment (Figure 4.9), the chal-

lenges compound. The regret map (Figure 4.9c) demonstrates that regret is no longer

isolated to individual unknown cells but becomes a global measure, capturing the cas-

cading effects of decisions made at one location on other parts of the map. Each regret

band aligns with a distinct policy action, emphasizing the interplay between local and

global decision-making. The simple controller, while functional, continues to activate

sensors at each indecision point without consideration of the overall sensing budget,

resulting in inefficient sensor usage as the environment scales in complexity.
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(c) The world. (d) Agreed upon policy.

(e) Regret color map.

Figure 4.8: Environment with two unknown areas.

The regret maps across both scenarios emphasize regret’s global nature. In the

three-cell environment (Figure 4.9c), note how the regret near the bottom-right un-

known cell mirrors the regret band above it. This visual indicates that decisions

regarding one unknown area affect regret across the map, even in seemingly unre-

lated regions. These cumulative effects highlight the limitations of strategies that

do not account for global implications when navigating environments with multiple

unknowns.

The simple controller, while effective in resolving local uncertainty at indecision

points, lacks a mechanism to prioritize sensor activations strategically. It treats each

indecision point independently, leading to suboptimal path efficiency and an inability
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(a) The world. (b) Agreed upon policy.

(c) Regret color map.

Figure 4.9: Environment for three unknown areas.

to conserve sensor budget. These findings motivate the need for advanced strategies

that integrate global regret into decision-making, ensuring more effective navigation

in environments with extensive unknown areas.

4.2.2 Larger Environment

In the larger, more realistic environment, illustrated in Figure 4.10a, is shown. The

best case is shown for the starting portion of the map, illustrated in Figure 4.10b. The

limitations of the simple controller become pronounced. This environment features

extensive blotches of unknown regions with varying densities, presenting a highly
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(a) The world. (b) Agreed upon policy.

Figure 4.10: Showcase of a more complex environment used for testing.

intricate decision-making landscape. The increased density of unknown cells results

in a proliferation of indecision points, which overwhelms the simple controller. As

some indecision points are positioned far from the robot’s immediate path, activating

the sensor at each one yields minimal or no new information, further straining the

controller’s effectiveness.

The regret map for this larger environment (see Figure 4.11) visualizes the com-

pounded impact of uncertainty across numerous decision points, with high-regret re-

gions highlighting the areas where incorrect assumptions could lead to costly detours

or inefficient paths. In this scenario, the simple controller’s strategy of treating each

indecision point independently no longer suffices. The sheer number of unknowns

creates an unsustainable demand for resources, and the robot’s sensor activations

lack prioritization, resulting in wasted energy and suboptimal navigation. The limi-

tations of this approach reveal the need for a mechanism that can assess and prioritize

indecision points based on their overall importance to the robot’s mission.
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Figure 4.11: Regret colormap of the environment in Figure 4.10a.

4.2.3 The Need for Valuing Information: Toward a Utility/Cost Function

The scaled-up environments illustrate that the robot cannot afford to rely on a

simple controller that activates sensors at every indecision point due to resource con-

straints and the increased number of decision points. As complexity grows, each

sensor activation must be justified by its potential benefit to ensure efficient use of

limited resources. This necessity reveals two primary factors for valuing information

gained from sensor activations: information gain and path cost reduction.

First, information gain measures the number of unknown cells revealed by activat-

ing the sensor at a specific indecision point. In regions dense with unknown cells, a

sensor activation that uncovers a significant portion of the environment offers high

information value. By directing resources toward actions that yield substantial infor-

mation gain, the robot can maximize the value of each activation, focusing on areas

where the new information will most enhance its understanding of the environment.

For instance, a sensor activation in a high-density area of unknowns could reveal key
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paths or obstacles that directly impact the robot’s navigation choices, making this

information especially valuable for path planning.

Second, path cost reduction assesses how sensor activation can lower the total cost

of the robot’s path by revealing shorter, feasible routes through unknown regions or

by avoiding costly detours. This factor aligns with the goal of minimizing regret over

areas with unknown information, as the regret map highlights regions where incorrect

assumptions lead to inefficiencies in navigation. Sensor activations that reduce path

cost by uncovering shorter, feasible routes help the robot avoid potential penalties

associated with unverified assumptions about unknown cells. Therefore, prioritizing

activations based on their potential to decrease path length supports the robot’s

overarching goal of achieving efficient and optimal navigation.

Together, these two factors-information gain and path cost reduction – underscore

the necessity for a utility or cost function that can weigh each indecision point’s

relative importance to the robot’s mission. Such a function would allow the robot

to evaluate each activation choice according to both immediate and long-term bene-

fits, enabling it to allocate sensor usage based on an assessment of total navigation

efficiency rather than treating each indecision point in isolation. By valuing sen-

sor activations according to these criteria, the utility/cost function would serve as a

mechanism for balancing exploration and path optimization, supporting the robot’s

resource-limited operation in partially known environments.

4.3 Summary of Preliminary Work

The preliminary work demonstrates how the robot’s decision-making process changes

as environmental complexity increases. Beginning with a single unknown cell, the

robot could experiment with simple strategies: a pessimistic approach that treats the

unknown cell as an obstacle and an optimistic approach that assumes it is free. In

this low-complexity setting, the simple controller proved effective, resolving uncer-

tainty by activating the sensor at a single indecision point where the pessimistic and
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optimistic paths diverged. Here, the concept of regret-measuring the cost of incor-

rect assumptions – provided valuable feedback for evaluating the efficiency of each

strategy, highlighting the costs associated with incorrect decisions.

As complexity increased with two and three unknown cells, more indecision points

emerged, challenging the simple controller to manage multiple uncertainties. The

regret map illustrated how each assumption’s impact began accumulating across the

environment, revealing regret as a global measure influencing overall navigation ef-

ficiency. The simple controller’s binary sensor activation approach remained semi-

functional in these moderately complex setups. However, it struggled to determine

sensor usage with the large volume of indecision points.

The simple controller’s limitations became evident in the larger, realistic environ-

ment with dense patches of unknown cells. The environment presented so many

indecision points that activating the sensor at each one became inefficient, consum-

ing resources without significantly improving navigation. The regret map for this

environment highlighted regions where incorrect assumptions led to considerable cost

penalties, underscoring the need for a more selective approach to sensor activation.

The simple controller’s inability to evaluate which indecision points held the highest

value indicated that a more advanced prioritization mechanism was necessary.

These findings collectively reveal that, while the simple controller is effective in

low-uncertainty environments, it cannot scale to handle dense or complex areas of

unknown cells. This challenge points toward a utility or cost function to prioritize

sensor usage. By assessing each potential activation based on information gain (num-

ber of unknown cells revealed) and path cost reduction (impact on total travel cost),

a utility-based approach would enable the robot to make informed, strategic decisions

about when to activate sensors. Such a framework could balance exploration with

path efficiency, allowing the robot to manage uncertainty effectively and navigate

complex environments with limited resources.
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This summary of the preliminary work thus establishes the foundation for a more

adaptive control strategy, paving the way for further research into utility-driven ap-

proaches that optimize information gathering and resource conservation.



CHAPTER 5: Methodology 1: Regret-aware Joint Sensing and Path Planning

In this chapter, we present a decision-making framework that integrates path plan-

ning with sensor usage, allowing an agent to navigate through partially known en-

vironments while dynamically balancing exploration and efficiency. This joint sens-

ing and control methodology leverages a real-time cost map that evaluates multi-

ple metrics, guiding the robot’s decisions on when and where to activate its sensor

for maximum strategic value. The framework addresses limitations identified in the

preliminary work by constructing a value-of-information (VoI)-based cost function,

enabling the robot to bypass simple indecision points and actively pursue beneficial

information.

5.1 Objective

The primary objective of this methodology is to develop an integrated framework

for sensing and control, designed to navigate partially known environments effectively.

Unlike traditional methods that address path planning and sensing independently,

this approach seeks to combine these elements dynamically, balancing path length

minimization with efficient sensor use. The ultimate aim is to address limitations

observed in simpler controllers, especially in complex and partially mapped envi-

ronments, where a naive approach to sensor usage may lead to inefficient or costly

navigation.

In particular, this framework introduces a joint cost function that quantifies the

value of information (VoI) gathered from each potential sensor activation. By as-

signing a calculable value to the information each cell might yield, the system deter-

mines optimal locations for sensor activation, thereby enhancing the robot’s situa-
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tional awareness and navigation efficiency. In essence, this joint sensing and control

map is designed to adapt in real-time, making strategic use of the robot’s limited

sensing resources to reveal high-impact areas within the environment and navigate

toward its goal with minimal unnecessary exploration.

5.2 Approach

This methodology introduces a joint framework for sensing and control that com-

bines path planning and sensor activation within a unified system, dynamically adapt-

ing to real-time changes in the environment. By embedding a joint cost map, the

framework equips the robot to make efficient, informed decisions on navigation and

sensor usage, effectively addressing the complexities of partially unknown terrains.

Central to this approach is the Unified Cost Map, which integrates path planning

with sensor activation strategies by quantifying the potential value of information

(VoI) for each sensor activation. Each cell in this map has an associated cost, rep-

resenting both real-time sensing information and anticipated travel costs. This cost

map serves as a foundation for all subsequent path planning and exploration deci-

sions, enabling the robot to prioritize paths and sensor activations that maximize

overall efficiency and minimize redundant exploration.

The approach further emphasizes Prioritization of Information Gain to ensure that

sensing actions are focused on regions of the map where the benefits of exploration

are highest. By utilizing key metrics, including information gain, local regret, and

estimated sensing requirements, the framework directs sensor resources toward cells

that hold the most significant potential to improve path efficiency. This strategy

reduces unnecessary exploration and aligns sensor usage with navigation objectives,

enhancing the robot’s ability to navigate effectively through unknown areas.

A critical feature of this framework is its Weight-Driven Adaptability, which allows

the system to adjust to varying environmental conditions by tuning the influence of

each metric on the cost map. The weights associated with each metric can be set to
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positive or negative values to either discourage or encourage specific actions. This

tuning capability enables the system to meet diverse strategic goals, such as prior-

itizing exploration in highly uncertain areas or preserving resources by focusing on

paths through known regions. Through this adaptability, the framework can opti-

mize the balance between exploration and caution to achieve mission objectives more

effectively.

As the robot progresses through its environment, the system performs Dynamic

Updates and Real-Time Sensing to refine the navigation path based on newly ac-

quired data. Each sensor activation feeds additional information into the cost map,

allowing the robot to recalibrate its route based on the current understanding of

the environment. When the sensor budget is exhausted, unknown cells are treated

as effectively impassable, encouraging the robot to rely on known paths and avoid

potentially risky unknown areas. This dynamic approach enables the robot to tog-

gle between conservative and exploratory strategies as needed, optimizing both path

length and sensor usage under evolving constraints.

By combining adaptive cost mapping with real-time decision-making, this frame-

work enables efficient exploration in complex environments, balancing path efficiency

with information gain. Building on preliminary methods, this VoI-based approach

addresses the limitations of simpler controllers, guiding the robot through partially

known environments with enhanced precision, adaptability, and resource efficiency.

5.3 Information Metrics and Components

The joint sensing and control framework utilizes several key information metrics to

inform the decision-making process as the robot navigates partially unknown environ-

ments. These metrics quantify the potential value of sensing, the trade-offs between

optimistic and pessimistic path planning, and the costs associated with exploring or

bypassing unknown regions. By integrating these components, the framework enables

the robot to prioritize sensor usage and optimize its path through the environment



49

(a) gsense (b) ℓ (c) cest−sense

(d) creg (e) creg−loc

Figure 5.1: Graphs representing various cost components: (a) sensing gain (5.1), (b)
estimated path length through unknown segment (5.2), (c) estimated sensing usage
(5.5), (d) regret cost (4.6), and (e) local regret (5.4).

based on the expected information gain, regret costs, and potential sensing require-

ments.

5.3.1 Information Gain from Sensing

The information gain metric quantifies the amount of new data revealed when the

robot activates its sensor. This is crucial in guiding the robot to strategically gather

information in regions where unknown cells are likely to impact the path planning.

Formally, the information gained at a cell x at time t is given by:

gsenset (x) =
|Su

t (x)|
|S(x)|

=
|S(x) ∩ Ut−1|
|S(x)|

, (5.1)

where S(x) denotes the sensor’s radius around cell x, Ut−1 is the set of unknown cells

at the previous time step, and | · | denotes the cardinality (or number of cells) in a set.
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A value of gsenset (x) = 1 indicates maximum information gain, meaning that all cells

within the sensor’s radius were previously unknown. Conversely, a value of 0 implies

that no additional information is obtained by sensing at that cell. Information gain,

therefore, helps the robot prioritize sensor activations in regions where significant

new data could be acquired, improving navigation decisions and potentially reducing

detours.

5.3.2 Global Regret

Global regret measures the overall cost discrepancy between optimistic and pes-

simistic paths across the environment, providing insight into the cumulative impact

of cautious versus exploratory decision-making. Regret1 is a critical metric as in-

troduced in Section 4.1.2 for quantifying the potential inefficiency introduced by un-

certain regions, particularly in areas where unknown cells force the robot to choose

between pessimistic and optimistic strategies. Global regret indicates the additional

steps incurred by choosing a cautious approach (pessimistic strategy) over an adven-

turous one (optimistic strategy). High regret values suggest areas where the robot

might benefit from further sensing, as the difference in path costs signals significant

decision-making uncertainty. In essence, global regret measures the efficiency loss

due to incomplete information and encourages exploration of regions with substantial

potential cost savings.

5.3.3 Local Regret and Related Metrics

In contrast to global regret, local regret provides a focused measure of the uncer-

tainty of decision-making for one region by not considering the global factor around

particular cells. This metric extends the concept of regret from a global scope to a

local context, allowing the robot to assess the impact of unknown regions directly sur-

rounding it. We define several supporting metrics to calculate local regret, including

1Regret cost was defined as: cregt (x) = cpesst (x)− coptit (x) in Eqn (4.6).
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unknown length and partial pessimistic cost, which capture the traversal challenges

and sensing requirements of areas near the robot’s current position.

The first supporting metric, unknown length, denoted as ℓt(xk), measures the dis-

tance across a contiguous segment of unknown cells that an optimistic path would

need to cross to move from a known free cell to a goal. This value is calculated by

following the optimistic path from a given cell x back to the start location s, stopping

at the first known cell xk encountered along the way. Formally, unknown length is

expressed as

ℓt(xk) = |popti
t (x→ xk)|, (5.2)

where popti
t (x → xk) represents the segment of the optimistic path from x to xk.

The length ℓt(xk) provides insight into the potential benefit of exploring unknown

segments, as longer unknown paths suggest regions where sensor activation may sig-

nificantly improve path efficiency. Figure 5.1b illustrates unknown length as a spatial

distribution across the environment, helping the robot prioritize sensing in regions

with extensive, contiguous unknown segments.

The partial pessimistic cost, cpartial−pess
t (xk), combines the optimistic length through

an unknown region with the pessimistic path to the goal, creating a hybrid metric

that balances exploratory and cautious path planning. Defined as

c
partial−pess
t (x) = ℓt(xk) + cpesst (xk), (5.3)

where cpesst (x) is the pessimistic path cost to the goal, this metric enables the robot

to explore unknown cells up to a certain point and then follow a safe, known path

to reach the goal. By combining both optimistic and pessimistic approaches, partial

pessimistic cost helps the robot make informed choices about when to activate sensors

and when to avoid unknown areas. This balance allows the robot to approach naviga-

tion with both safety and efficiency, leveraging revealed information while managing
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the risks of unknown regions.

With these components in place, we define local regret, denoted as c
reg−loc
t (xk), to

quantify the potential benefit of sensor activation in the robot’s immediate vicinity.

Local regret is the difference between the full pessimistic path cost through xk and

the partial pessimistic path through the same point:

c
reg−loc
t (x) = cpesst (x)− c

partial−pess
t (x). (5.4)

A high value of local regret indicates that sensor activation at xk would likely re-

duce travel costs by revealing unknown cells that could shorten the overall path to

the goal. This encourages sensor use in areas of high regret, where exploration would

yield immediate path improvements. Figure 5.1e shows a map of local regret in the en-

vironment, illustrating potential locations where sensor activation could meaningfully

improve navigation efficiency. By utilizing local regret and its supporting metrics, the

robot can make targeted, data-driven decisions to explore specific unknown regions,

ultimately balancing exploration with efficient path planning.

5.3.4 Estimated Sensing Requirement

The estimated sensing requirement metric provides an approximation of the number

of steps required to traverse a given unknown area. Calculated as the ratio of the

unknown length ℓt(xk) to the sensor radius rs, this metric prioritizes areas where a

single sensor activation could reveal a large portion of unknown cells. Formally:

c
est−sense
t (xk) =

ℓt(xk)

rs
, (5.5)

This metric estimates the number of sensor steps necessary to explore an unknown

region, helping the robot allocate sensor resources more effectively, particularly in

complex environments with numerous unknown segments.
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5.3.5 Transition Penalty

The transition penalty component discourages unnecessary entries into unknown

regions unless there is a compelling reason to explore. Defined by the indicator

function ctrant (x), the transition penalty applies an additional cost to cells that lie on

the boundary between known and unknown regions:

ctrant (x) =


1, if x ∈ Ut and ∃ y ∈ Ft s.t. dist(x, y) = 1,

0, otherwise.
(5.6)

This term is instrumental in shaping the robot’s path to minimize unnecessary ex-

ploration, as it applies a cost for moving into the unknown unless the path planning

objectives justify such an action. By incorporating transition penalty, the robot avoids

high-risk areas without sufficient potential benefits from sensing, effectively balancing

exploration and caution.

5.4 Mathematical Formulation of the Cost Map Ct(x)

The joint cost map Ct(x) serves as the central framework for guiding the robot’s

navigation and sensing decisions, dynamically integrating various information metrics

to balance exploration and path efficiency. Each cell x in the environment is assigned

a cost that reflects its classification (free, obstacle, or unknown) and the influence of

specific metrics, such as information gain, regret, and estimated sensing requirements.

The cost map is governed by the following piecewise function:

Ct(x) =



∞, if x ∈ Ot,

w0, if x ∈ Ft, cpesst (x) = coptit (x),

w1 + w2 · creg−loc
t (x) + w3 · cregt (x) + w4 · gsenset (x), if x ∈ Ft, cpesst (x) ̸= coptit (x),

w5 + w6 · gsenset (x) + w7 · ctrant (x) + w8 · cest−sense
t (x), if x ∈ Ut, Nt < N,

∞, if x ∈ Ut, Nt = N.

(5.7)
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Here, the weights w0 through w8 act as tuning parameters that control the influence

of each term in the cost function. While their specific roles and effects are thoroughly

discussed in the subsequent chapter, they are introduced here as they appear explicitly

in Ct(x).

The cost map Ct(x) evolves as the robot explores its environment, with costs updat-

ing dynamically based on newly acquired information. This adaptability enables the

robot to adjust its navigation strategy in real time, reflecting changes in both known

terrain and strategic priorities. For example, as sensor activations reveal unknown

areas, the robot’s path planner recalculates the cost map, balancing the immediate

cost of exploration against the long-term benefits of revealing new information.

5.5 Example of Ct(x) Adaptation

Figure 5.2 illustrates the dynamic behavior of Ct(x) in a test environment as the

number of sensors used (Nt) changes. The series of subfigures demonstrates how the

cost map evolves over time, with the weights influencing the planner’s decision-making

process. The red line represents the planned path, which adapts to the updated

costs as more sensors are used. Importantly, while the map shapes remain constant

due to unchanged environmental knowledge (It), the cost values differ, reflecting the

planner’s dynamic prioritization based on sensor usage.

Notably, in Figure 5.2e, the yellow cells are assigned infinite cost (Ct(xt) = ∞

where xt ∈ Ft

⋃
Ut) once the sensing budget is exhausted (Nt = N). At this point,

the planner defaults to basic A* behavior, treating all remaining unknown cells as

obstacles. This ensures that the robot prioritizes safe navigation when additional

sensing is no longer feasible.

5.6 Explanation of Weights and Their Roles

The weights w0 through w8 play a critical role in shaping the behavior of the cost

map by defining the impact of various metrics on the robot’s decision-making process.
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(a) Nt = 0 (b) Nt = 1 (c) Nt = 2 (d) Nt = 3 (e) Nt = 4

Figure 5.2: Cost map of the environment, with the proposed path marked by the
red line. The color scale represents the cost values, where purple indicates the lowest
cost regions and yellow indicates the highest cost regions. Note that the path doesn’t
change between (b) and (d) because new info has been revealed.

These weights can be positive or negative, which affects how the robot interprets costs

and incentives within the environment.

Positive weights act as cost additions, effectively discouraging the robot from se-

lecting actions or paths associated with the respective metric. For example, a positive

weight on global regret (e.g., w3) increases the cost in areas of high regret, thereby

discouraging routes where the pessimistic and optimistic paths diverge significantly.

This positive weight drives the robot toward more conservative decisions, favoring

known, safer paths. Likewise, a positive transition penalty weight (e.g., w7) raises

the cost of transitioning into unknown areas, signaling the robot to avoid entering

such regions unless absolutely necessary. Positive weights can thus enforce a cautious

approach, ensuring the robot remains in safer zones while using sensors sparingly and

only where they add significant value.

Conversely, negative weights act as cost reductions, incentivizing exploration and

the use of sensors in areas with promising metrics. Negative weights provide a ’dis-

count’ on cost in regions where the corresponding weighted metric is high, promoting

the exploration of unknown regions when the potential gains justify the use of the

sensor. For instance, a negative weight on information gain (e.g., w4) lowers the

cost for cells with high information potential, encouraging sensor activations in these

regions. Similarly, a negative weight on local regret (e.g., w2) decreases the cost in
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areas of high local regret, where bypassing unknown cells could lead to missed path

improvements. By reducing the costs associated with these areas, negative weights en-

able the robot to take calculated risks and prioritize information gathering, especially

when the likelihood of improved path efficiency or reduced overall regret outweighs

the potential downsides of exploration.

The weights can also be dynamically adjusted over time to enhance adaptability.

For example, weights could be functions of the sensing budget Nt

N
, where Nt is the

number of sensors used at time t and N is the total sensing budget. Which would

allow the robot to prioritize certain actions as its sensing resources are depleted.

This dynamic weight adjustment could be beneficial when the robot needs to be

increasingly cautious or conservative as it approaches its sensing budget limit.

Each weight plays a distinct role in guiding the robot’s navigation and decision-

making in the joint sensing and control map. The weight w0 represents the base

traversal cost for regions with no potential for path improvement, specifically cells

with identical optimistic and pessimistic paths. These cells are fully known, making

them safe for traversal without requiring further exploration or sensor activation. The

cost associated with w0 maintains consistency across known areas, offering a stable

base for path planning.

The weight w1 applies a base traversal cost to regions with potential path improve-

ment. In these cells, the optimistic and pessimistic paths diverge, indicating that

additional exploration might reveal a more efficient route. As the base cost for these

areas, w1 signals the possibility of discovering shorter paths, while other factors, such

as local regret and information gain, may further influence the decision to explore.

This setup allows the robot to evaluate whether the potential for path improvement

justifies sensor activation in regions of unknown cells.

The local regret weight w2 adjusts the impact of the local regret metric c
reg−loc
t (x),

which quantifies missed opportunities associated with not exploring nearby unknown
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cells. When this weight is set higher, it encourages the robot to prioritize areas with

substantial local regret, where sensor usage could prevent costly detours and optimize

the path. By promoting exploration where it is likely to yield better routes, w2 plays

a crucial role in identifying high-value areas for sensor activation, focusing on local

regions that offer immediate path efficiency gains.

The global regret weight w3 modulates the influence of global regret cregt (x), rep-

resenting the accumulated penalty for paths that traverse high-regret zones. These

zones have significant discrepancies between the optimistic and pessimistic paths,

suggesting a high degree of uncertainty. Positive values of w3 discourage the robot

from taking paths through these high-regret areas, thereby enforcing a more conser-

vative strategy where long-term navigation safety is prioritized over potentially risky

shortcuts. By assigning cost penalties to high-regret regions, w3 supports the robot’s

cautious approach to areas with considerable unknown elements.

Information gain weights, specifically w4 for free cells and w6 for unknown cells,

encourage sensor activation in areas with high information potential. These weights

control the value assigned to newly revealed cells when sensors are activated. If these

weights are negative, they reduce the cost for cells with significant information gain,

guiding the robot to prioritize exploration in areas that yield substantial insights into

the environment. By distinguishing between free and unknown cells, w4 and w6 adapt

sensor usage to the type of region, ensuring sensors are deployed strategically where

new information is most valuable.

The base cost for unknown cells with sensor access is set by w5. This weight reflects

the default cost of entering unknown areas and can be adjusted to either encourage

or discourage exploration. A lower value for w5 promotes exploration by lowering the

barrier to accessing unknown regions, while a higher value limits sensor use to only

essential situations. By setting an appropriate baseline cost for unknown areas, w5

helps balance exploration with caution, ensuring sensors are used judiciously based
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on the surrounding context.

The transition penalty weight w7 applies cost adjustments to transitions into un-

known regions, especially near the boundaries of known cells. This weight discour-

ages unnecessary entries into unknown regions, particularly where the potential for

valuable information is low. By adding cost to boundary cells adjacent to known

regions, w7 moderates the robot’s movements, reducing the likelihood of arbitrary

sensor activations near familiar areas. This weight is particularly effective for manag-

ing boundary control between known and unknown regions, conserving sensor usage

for areas with higher information value.

Lastly, the estimated sensing length weight w8 assigns cost to the estimated sensing

length c
est−sense
t (x), a metric representing the potential benefit of revealing longer

unknown segments. By prioritizing paths where a single sensor activation can reveal

larger unknown regions, w8 ensures efficient use of the robot’s sensor budget. This

weight allows the robot to weigh the impact of each sensor activation, selecting cells

where revealing a continuous unknown segment provides meaningful benefits for path

planning and situational awareness.

Altogether, these weights form a balanced system within the joint sensing and

control map, enabling the robot to navigate complex environments by integrating

cautious planning with strategic exploration. Each weight’s configuration can be

tailored to specific mission goals, ensuring that the robot’s path choices are well-

informed and aligned with environmental constraints and resource availability.

5.7 Controller Operation: Flow and Execution

This section outlines the specific steps and strategies that guide the robot’s navi-

gation, from initialization through to reaching the goal. The controller operates by

leveraging the joint cost map, which dynamically combines path planning with sensor

activation to navigate through environments with partial knowledge.

To begin, the initialization process sets the framework for the robot’s operation,
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defining the starting point s, goal g, and a sensing budget N that limits the total

number of sensor activations available. The joint cost map Ct(x) is initialized with

weights w0 through w8, each representing a different aspect of the environment’s cost

structure. These weights are input parameters that can be fine-tuned for specific con-

ditions or strategic goals, such as minimizing path length or maximizing information

gain. The initial path is generated using the A* algorithm (details of A* operation

are outlined in Appendix A), which finds the least-cost path from s to g based on

the initial cost map configuration. This path is then stored in a queue, allowing the

robot to begin its journey towards the goal.

Each sensor activation triggers cost map updates as the robot proceeds along this

path. When the sensor is activated, it reveals information about nearby unknown

cells, which is used to update the cost map dynamically. By recalculating the val-

ues for affected cells, the controller can adapt to newly revealed obstacles or free

paths, recalibrating the planned route to prioritize areas with lower costs or higher

information value. If the sensing budget N is exhausted, the cost of unknown cells is

updated to infinity (see Equation (5.7)), effectively making them untraversable obsta-

cles. This fallback strategy ensures that, in the absence of sensing, the robot defaults

to a conservative planning approach where unknown cells are treated as obstacles.

During its journey, the robot continuously evaluates each next move in the path,

checking whether the upcoming cell lies within a high-cost region influenced by un-

known cells, global or local regret, or estimated sensing needs. When transitioning

into an unknown area with a high associated cost, the robot evaluates whether to

activate the sensor based on a predefined cost threshold. If the sensor is activated,

the controller updates critical metrics based on the new data, including local and

global regret, information gain, and estimated sensing requirement. After updating

these values, the cost map Ct(x) is recalculated, and the robot re-plans its path from

the current position. This iterative recalibration ensures the robot makes informed
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choices in real time, balancing exploration with path efficiency.

The controller’s operations are demonstrated in a series of figures that show the

evolving cost map and the robot’s path as it progresses through the environment.

These figures highlight how the joint sensing and control map adapts with each sen-

sor activation, illustrating the recalculated path and areas where sensor usage has

influenced the decision-making process. Additionally, snapshots of the cost map at

various stages of the journey show the changing cost structure as new information is

gathered, visually demonstrating the cost adjustments that guide the robot’s adaptive

navigation.

The system’s performance is evaluated using three key metrics: the pessimistic

ratio, the optimistic ratio, and the closeness-to-optimal ratio. The pessimistic ratio

is calculated as the actual path length divided by the pessimistic path cost cpess0 (s),

which measures the system’s effectiveness relative to an entirely cautious approach. A

lower pessimistic ratio indicates that the controller makes intelligent path selections

by leveraging sensing to avoid unnecessary detours. The optimistic ratio is the actual

path length divided by the optimistic path cost copti0 (s). The optimistic ratio pro-

vides insight into the efficiency of path choices; it is less reliable in heavily unknown

environments due to the optimistic assumption of free unknown cells. Finally, the

closeness-to-optimal ratio compares the controller’s decisions relative to both the pes-

simistic and optimistic paths, offering a comprehensive view of the balance between

exploration and path efficiency.

In summary, the controller operation is structured around an adaptive joint cost

map, which combines sensing and path planning to guide the robot through uncertain

environments. By dynamically recalculating path costs based on real-time informa-

tion, the controller optimizes the use of sensors and navigational choices, achieving a

balanced approach to exploration and efficiency. The adaptive nature of the system,

coupled with the use of performance metrics, demonstrates the controller’s ability to
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make intelligent and resource-conscious decisions in complex, partially known envi-

ronments.

5.8 Performance Evaluation Metrics

The effectiveness of the joint sensing and control system is quantitatively assessed

using several key performance metrics. These metrics evaluate the system’s path

efficiency, sensor usage, and adaptability in navigating partially known environments.

By comparing the actual path with theoretically optimal and conservative paths, these

metrics provide a comprehensive view of the controller’s ability to balance exploration

and efficiency.

The pessimistic ratio measures the actual path length relative to a conservative

path that assumes all unknown cells are obstacles. Mathematically, this ratio is

defined as:

Pessimistic Ratio =
H

cpess0 (s)
, (5.8)

where cpess0 (s) represents the pessimistic path cost from the starting location s to the

goal and H denotes the actual path length, this ratio offers a baseline for evaluating

the controller’s effectiveness in circumventing cautious routes by leveraging sensor

information.

A lower pessimistic ratio indicates efficient decision-making, allowing the controller

to reduce path length by making selective sensor activations rather than avoiding

unknown cells entirely. This metric is particularly useful in environments with a

large amount of unknowns, where the system’s ability to navigate through unknown

regions drastically reducing the path length is crucial.

The optimistic ratio serves as a comparison between the actual path length and

a theoretical path that treats all unknown cells as free. This optimistic path cost is
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represented as copti0 (s), where the ratio is:

Optimistic Ratio =
H

copti0 (s)
, (5.9)

where copti0 (s) represents the optimistic path cost from the starting location s to the

goal g and H denotes the actual path length. This ratio measures the efficiency

relative to an idealized, risk-tolerant strategy. While this metric captures the theo-

retical best-case scenario, it may overestimate efficiency in dynamic environments, as

the optimistic path is not always feasible due to potential obstacles within unknown

regions. However, it is valuable for comparing the system’s performance against an

idealized benchmark, particularly in environments where exploration costs are low

and risk can be tolerated.

The closeness-to-optimal ratio provides a comprehensive metric for assessing the

controller’s ability to balance caution and exploration. This ratio evaluates how much

closer the actual path is to the optimistic strategy than the pessimistic one, offering

insight into the system’s effectiveness in navigating uncertainty. Ideally, a value near

0% indicates that the chosen strategy aligns more closely with the optimistic path,

demonstrating efficient exploration and reduced conservatism. In contrast, values

closer to or exceeding 100% suggest a reliance on the more cautious, pessimistic

approach.

This metric is particularly sensitive to system setting variations, such as the sensing

budget and the true nature of unknown cells. Significant changes in these factors can

dramatically alter the ratio, making it a valuable but context-dependent measure.

Although not an absolute determinant, the closeness-to-optimal ratio serves as a

useful indicator of the qualitative success of the method in striking the right balance
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Table 5.1: Weight values for the cost function

variable w0 w1 w2 w3 w4 w5 w6 w7 w8

value 0.2 1 −0.3 1.5 −0.1 1.75 −1 0.3 2.5 ·Nt

between optimistic and pessimistic strategies. The ratio is formally defined as:

Closeness-to-optimal Ratio =
H − copti0 (s)

cpess0 (s)− copti0 (s)
(5.10)

where H is the actual path length, copti0 (s) represents the optimistic path cost, and

cpess0 (s) represents the pessimistic path cost. A ratio near zero percent signifies a

strategy closer to the optimistic approach. In contrast, values approaching or greater

than 100% reflect a more cautious, pessimistic strategy or the need to back down due

to the information revealed.

Together, these metrics provide a robust framework for assessing the controller’s

navigation and sensing decisions in complex, uncertain environments. Each metric

offers unique insights into path efficiency, sensor use, and adaptability, comprehen-

sively evaluating the controller’s performance across different operational scenarios.

These quantitative metrics enable the fine-tuning of the joint cost map, optimizing

path selection while balancing exploration with resource conservation.

5.9 Results

This study tested the joint sensing and control framework using a series of environ-

ments to evaluate its capacity to balance path efficiency with intelligent sensor usage

in uncertain settings. The framework was tuned using a set of calibrated weights,

which were essential to directing the agent’s behavior by controlling the relative im-

portance of each component in the cost map. These final weights, listed in Table 5.1,

were adjusted to balance exploration and caution, with positive weights discouraging

risky paths and negative weights encouraging sensor activation in information-rich

regions.
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The initial tests were conducted in a controlled map environment (see Figure 5.5a),

which provided a baseline for observing the agent’s behavior (see Figure 5.3) and the

dynamic adjustments of the cost map (see Figure 5.4). In this setting, the agent’s cost

map was updated in real-time with each sensor activation, highlighting the adaptive

nature of the framework. A sequence of figures illustrates how the cost map evolves

with each new activation, incorporating newly revealed information and recalculating

the path accordingly. This sequence demonstrates the framework’s ability to prioritize

sensor use at strategic locations, optimizing both path efficiency and resource usage.

Through this iterative updating process, the framework enabled the agent to navigate

efficiently by responding to new environmental insights while minimizing detours.

(a) Nt = 0 (b) Nt = 1 (c) Nt = 2

(d) Nt = 3 (e) Nt = 4 (f) final path

Figure 5.3: Demo of the as the controller (N = 4, s = bottom left in green, g =
bottom right in right) navigates the environment with snapshots after every sensor
activation. The path is in red, while the proposed path is the purple dashed line.

Following these initial tests, the framework was applied to four more complex eval-
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(a) Nt = 0 (b) Nt = 1 (c) Nt = 2

(d) Nt = 3 (e) Nt = 4 (f) final path

Figure 5.4: Demo of the cost map as the controller (N = 4, s = bottom left in green,
g = bottom right in right) navigates the environment with snapshots after every sen-
sor activation. The path is in red, while the proposed path is the purple dashed line.

uation environments, illustrated in Figure 5.5. Each environment presented unique

challenges, from dense clusters of obstacles to scattered unknown areas that required

the agent to balance exploration with caution. The diverse layouts in these maps

allowed for comprehensive testing of the framework’s adaptability, especially under

conditions where sensor usage had to be rationed carefully to avoid depletion. In each

of these environments, the framework was tasked with finding the most efficient path

while managing limited sensor activations, simulating realistic constraints that could

be encountered in exploratory missions with finite resources.

To provide a robust measure of the framework’s performance, 500 trials were con-

ducted in each of the evaluation environments, with the results averaged to yield

reliable performance metrics. These trials measured three primary ratios: the pes-
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(a) Env 0 (b) Env 1 (c) Env 2 (d) Env 3

Figure 5.5: Environments used to evaluate the proposed framework.

Table 5.2: Results averaging the pessimistic ratio, optimistic ratio, and closeness-to-
optimistic ratio for methodology 2

Optimistic Ratio Pessimistic Ratio Closeness-to-optimistic Ratio
Env 0 1.2501 0.9173 0.8479
Env 1 2.1500 0.5809 0.4260
Env 2 1.0669 0.8741 0.5527
Env 3 1.0784 0.7623 0.3351

simistic ratio, optimistic ratio, and closeness-to-optimal ratio, which offer insights into

the framework’s effectiveness in navigating partially known environments. The pes-

simistic ratio compares the actual path length to the cost of an entirely cautious (pes-

simistic) approach, indicating the efficiency gained by integrating sensing decisions.

The optimistic ratio, comparing the actual path length to an idealistic (optimistic)

path assuming all unknowns are free, serves as a theoretical benchmark, though it is

less reliable in complex environments. The closeness-to-optimal ratio balances these

two metrics, showing how well the framework navigates between caution and ex-

ploration. The compiled results, shown in Table 5.2, indicate that the framework

consistently optimized path length while preserving sensor resources, demonstrating

a clear advantage over strategies that rely on fixed or extreme assumptions about

unknown areas.

Overall, these findings suggest that the joint sensing and control framework enables

robust and adaptable navigation in partially unknown environments. By dynamically

adjusting the path based on real-time data and effectively prioritizing high-value
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sensing opportunities, the framework provides a balanced approach that leverages

both exploration and caution to achieve efficient navigation.

5.10 Conclusion

The Regret-aware Joint Sensing and Path Planning approach introduced a joint

sensing and control framework designed to navigate partially known environments

by integrating path planning with sensor activation. Empirical results demonstrated

its effectiveness in balancing exploration and efficiency, particularly in simpler envi-

ronments. The methodology succeeded in dynamically leveraging information gain,

regret metrics, and sensor properties to guide the robot’s immediate decisions. By

focusing on local costs and benefits, the system provided an efficient, reactive solu-

tion that reduced unnecessary exploration and enabled the robot to traverse unknown

regions with minimal detours.

However, Regret-aware Joint Sensing and Path Planning lacked the ability to plan

for long-term sensor allocation. This limitation was most evident in cases where

large uncertain areas appeared early in the robot’s path. Without a mechanism

to anticipate future sensing demands, the system occasionally exhausted its sensor

budget prematurely. While this occurred infrequently, it had a significant impact

when it did, leaving the robot unable to handle subsequent unknown areas effectively.

These failures highlight the method’s reliance on immediate cost reductions at the

expense of broader path planning considerations.

To address this limitation, future systems must incorporate strategies that antic-

ipate long-term sensor use. By projecting sensing demands across the entire envi-

ronment and prioritizing high-impact areas, the robot can better conserve resources

for critical sections later in its journey. This forward-planning capability forms the

foundation for the next methodology, which explicitly integrates sensor use into the

planning process. Together, these methodologies illustrate the evolution of sensing

and control strategies from reactive to strategic, paving the way for more robust
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solutions to autonomous navigation in complex environments.



CHAPTER 6: Methodology 2: Sensor-aware Planner and Regret-based Cost

Function

6.1 Objective

The primary objective of this methodology is to integrate sensor usage directly

into the path-planning process, enhancing the robot’s ability to make strategic long-

term decisions in partially known environments. Previous methods, such as the one

outlined in Chapter 5, provided effective real-time decision-making but lacked the

foresight to allocate sensor usage in a way that maximized the efficiency of the overall

path. Here, we address this limitation by introducing a global planner that integrates

sensor use into the state space, transforming the approach to one that considers

sensor activations as an integral component of the path planning itself. This edge-

based framework leverages a new state space and cost function, allowing for more

deliberate sensor usage that aligns with long-term navigation goals.

6.2 Expanded State Space for Sensor-Aware Planning

The expanded state space in this methodology incorporates additional dimensions

beyond the conventional environment space, allowing the planner to factor in the

implications of sensor usage and the locations of previous sensor activations. This

approach is implemented by defining a new State class, where each state encompasses

three key attributes:

class State:

pose: Point

sensor_use: int

last_activation: Point
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In this configuration, the pose attribute represents the robot’s current position as

a Point in the environment. This is analogous to traditional path planning, where

the robot’s location is a primary component of the state.

The second attribute, sensor_use, is an integer that tracks the number of sensor

activations used. This enables the planner to account for the limited sensor use

budget directly within the state, ensuring that the path planning process respects the

constraints on sensor activations. By including sensor_use, the system can make

informed decisions about future sensor usage based on the remaining budget, thus

integrating sensor management as part of the planning process.

Finally, last_activation records the location of the most recent sensor activation.

This Point serves as a reference for the planner, allowing it to understand the spa-

tial relationship between current movements and past sensing decisions. Tracking

last_activation ensures that the planner can avoid redundant sensor activations in

areas that have already been explored, optimizing sensor allocation by leveraging

prior sensing information.

Together, these three attributes—pose, sensor_use, and last_activation—expand

the state space into a multidimensional framework that captures the robot’s spatial

progression and strategic sensor usage. By embedding sensor management within the

state definition, the planner can better navigate complex, partially known environ-

ments, where strategic sensor allocation is critical for efficient path planning.

6.3 Algorithm - Sensor-Aware Multi-dimensional A* Search

The algorithm for this Methodology employs an A* search adapted for Sensor-

Aware Planning searching a multi-dimensional space (outlined in Section 6.2), en-

abling the planner to incorporate sensor constraints into the path planning process.

This adaptation of A* addresses the critical need for dynamic sensor management

in partially known environments, where efficient sensor use directly impacts naviga-

tion efficiency. The core difference between traditional A* and this Sensor-Aware A*
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algorithm is the integration of checks for sensor usage at each step of neighbor eval-

uation, ensuring that the path planner adheres to the available sensor budget while

optimizing exploration.

6.3.1 Core Algorithm Structure

The structure of this Sensor-Aware A* is designed to manage sensor usage dynami-

cally while maintaining the classic A* search methodology for shortest-path planning.

In this structure, each state in the search includes attributes for the position, sensor

use, and last sensor activation, as previously defined in the State class. Starting from

the initial state, each state is evaluated based on its cumulative path cost (g_score)

and its estimated total cost to the goal (f_score), prioritizing states with the lowest

f_score.

6.3.2 Neighbor Evaluation

In evaluating each neighboring cell, the algorithm determines whether exploring

that cell would require a new sensor activation. Specifically, it assesses if moving into

the neighbor cell would involve transitioning from a known to an unknown region.

If the distance between the neighbor and the robot’s last sensor activation location

(last_activation) is greater than the sensor’s radius, a sensor activation is required

to proceed.

If moving into the neighboring cell surpasses the remaining sensor budget, that

neighbor is excluded from further consideration. This constraint ensures that the path

planner evaluates only those paths that remain within the sensor budget, prevent-

ing premature exhaustion of sensor resources and preserving them for high-priority

exploration.

6.3.3 Advantages of Sensor-Aware Planning

One of the primary advantages of this Sensor-Aware A* is its ability to estimate

sensor activation points along the path. As each neighbor is evaluated, the algorithm
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provides an implicit estimate of where the sensor will need to activate in order to

proceed, based on the current remaining sensor use N − Nt. This feature allows

the planner to allocate the sensor resources strategically, avoiding unnecessary sensor

activations and reserving the budget for high-value exploration points. By integrating

sensor considerations into the path-planning process, this methodology enables more

resource-efficient navigation and maximizes the robot’s exploratory capabilities in

environments with limited sensing capacity.

6.3.4 Algorithm Block

The detailed steps of this Sensor-Aware A* are provided in Algorithm 1, where

the implementation highlights the neighbor evaluation process and sensor budget

checks. This algorithm begins with initializing the start state. It continues by iterat-

ing through the open list until the goal is reached or no feasible paths remain within

the sensor budget. Through each iteration, it assesses neighbors, updates scores, and

adds viable states to the open list. Algorithm 1 showcases the explicit steps in dy-

namically managing sensor activation decisions as part of the path planning process,

illustrating how each component contributes to intelligent sensing in partially known

environments.

To illustrate the outputs of the Sensor-Aware A* algorithm, Figure 6.1 depicts

the resulting path and the estimated sensor activation positions along that path.

The purple dashed line represents the path, guiding the robot to the goal, while the

estimated_sensor_positions are shown as red dots, marking the locations where the

algorithm predicts sensors will be activated to gather necessary information.

6.4 Edge-Based Cost Function

The edge-based cost function is designed to evaluate the incremental costs between

two adjacent cells in the environment: the current cell xt and the neighboring cell

xt+1. This function considers the robot’s sensor-aware path requirements by assess-
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Algorithm 1 A* with Sensor-Aware Planning (astar_sense)
1: Input: Start position s, goal position g, remaining sensor uses

sensor_uses_remaining, sensor radius rs, environment env, cost function
cost_function

2: Initialize start state start_state using s
3: Initialize open list open_list← {(0, start_state)} (priority queue)
4: Initialize dictionaries came_from, g_score, and f_score with initial values for

start_state
5: while open_list is not empty do
6: curr ← state with lowest f_score in open_list
7: if curr.pose = g then
8: final_state← curr
9: Reconstruct path and estimated_sensor_positions by backtracking

came_from
10: end if
11: for all neighbors neighbor of curr.pose do
12: Initialize prev_sensor_pose ← curr.last_activation and

new_sensor_uses← curr.sensor_use
13: if neighbor is unknown then
14: if prev_sensor_pose not within rs of last activation or curr.pose is known

then
15: prev_sensor_pose← curr.pose, increment new_sensor_uses
16: else
17: prev_sensor_pose← None
18: end if
19: end if
20: if new_sensor_uses > sensor_uses_remaining then
21: continue
22: end if
23: Calculate tentative_g_score using cost_function(curr.pose, neighbor)
24: Create neighbor_state ← State(neighbor, new_sensor_uses,

prev_sensor_pose)
25: if neighbor_state is not in g_score or tentative_g_score <

g_score[neighbor_state] then
26: Update came_from, g_score, and f_score for neighbor_state
27: Add neighbor_state to open_list
28: end if
29: end for
30: end while
31: Output: path and estimated_sensor_positions
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Figure 6.1: Visualization of the Sensor-Aware A* algorithm’s outputs, showing the
path (purple dashed line) and estimated_sensor_positions (red dots) along the path.

ing changes in regret and partial pessimistic costs, adapting dynamically based on

whether the next cell is known or unknown. By calculating cost differentials, the

function directs the robot toward paths that maximize efficiency while strategically

managing sensor activations.

The cost calculation for each edge is based on delta formulations that quantify

shifts in the robot’s information landscape. The first, ∆creg, captures the change in

regret between the current and next cells. Defined as

∆creg = creg(xt+1)− creg(xt), (6.1)

this metric allows the planner to assess the potential cost increase associated with

exploring or bypassing the unknown, reflecting the cost of moving from a potentially
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safer route to one with higher uncertainty.

The second key component, the delta in partial pessimistic cost (∆cpartial−pess),

measures how the cumulative cost of taking an exploratory path changes when tran-

sitioning between cells. This delta is computed with an adjustment based on the

known or unknown status of xt. If xt is known, the change is calculated as

∆cpartial−pess =


cpess(xt)− cpartial−pess(xt+1), if xt ∈ Ft,

cpartial−pess(xt)− cpartial−pess(xt+1), otherwise.
(6.2)

This differentiation enables the planner to weigh the benefits of revealing unknown

areas against the certainty of following known paths.

The comprehensive edge-based cost function combines these delta values alongside

other weighted parameters to produce the final cost for moving between xt and xt+1.

As shown in (6.3), the function applies specific weights to each term, incorporating

global and local regret values, information gained from sensing, and adjustments for

moving into unknown cells. For instance, if the neighboring cell xt+1 is an unknown

cell (xt+1 ∈ Ut) and sensor activation (θt = 1) is triggered, the function includes terms

for estimated information gain and the delta in partial pessimistic cost, balanced

by the weight parameters w4, w5, and w6. Alternatively, if no sensor activation is

required, the transition incurs fewer costs by omitting specific terms associated with

sensing.

Ct(xt, xt+1) =



∞, if xt+1 ∈ Ot

w0, if xt+1 ∈ Ft & cpess = copti,

w1 + gsense(xt+1) · w2 +∆creg · w3, if xt+1 ∈ Ft & cpess ̸= copti,

w4 + gsense(xt+1) · w5 +∆cpartial−pess · w6 + w7, if xt+1 ∈ Ut & θt = 1,

w4 + gsense(xt+1) · w5 +∆cpartial−pess · w6, if xt+1 ∈ Ut & θt = 0.

(6.3)
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Therefore, the edge-based cost function serves as a critical tool in the robot’s path

planning. Integrating incremental information-based metrics with traditional cost

components enables a nuanced approach that optimizes both path efficiency and

strategic information acquisition, ensuring the robot’s sensor use aligns with long-

term navigation goals.

6.5 Controller Operation with New Planner

The controller in this methodology operates with a similar framework to the Regret-

aware Joint Sensing and Path Planning described in Chapter 5, maintaining an itera-

tive path selection and update process but now utilizing the edge-based cost function

and sensor-aware planner. As the robot navigates, it relies on the enhanced cost func-

tion to make more refined decisions at each step, considering both the incremental

cost of moving between cells and the potential value of sensor activations. When new

information is gathered through sensor use, the controller dynamically updates the

path, recalculating costs based on the latest data. This adaptive approach ensures

that the path remains optimized in real time, reflecting the most current understand-

ing of the environment and allowing the robot to navigate efficiently while conserving

sensor resources.

6.6 Results

The results from the Sensor-aware Planner and Regret-based Cost Function ap-

proach reveal significant improvements in sensor efficiency and path optimization

compared to Regret-aware Joint Sensing and Path Planning. The final weights tested

in this evaluation, shown in Table 6.1, were selected to effectively balance path length

minimization, sensor usage, and prioritization of critical cells based on the edge-based

cost function. These weights emphasized areas with high information gain while

strategically navigating unknown cells, ensuring that sensor resources were utilized

in locations that provided maximal insight into the environment.
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Table 6.1: Weight values for the cost function

variable w0 w1 w2 w3 w4 w5 w6 w7

value 0.15 1.0 -2.63 0.75 1.5 -4.0 0.20 0.26

In the first test environment (see Figure 6.3a), the agent’s performance exemplifies

the refined path selection process enabled by this new approach. Using the updated

cost function, the agent adapts dynamically to the environment, selecting paths that

minimize traversal costs while balancing the need for sensor activation. Figure 6.2

shows a sequence of operations within this environment, capturing how the cost map

evolves as the robot explores. Each sensor activation recalibrates the map, guiding

the robot toward increasingly optimized paths with every update, showcasing the

system’s real-time adaptability and the advantages of sensor-aware planning.

Across all evaluated environments, the agent’s performance metrics—measured

through path length ratios and sensor usage—highlight the framework’s robustness

and adaptability. Averages of these performance ratios across multiple environments

are presented in Figure 6.3, demonstrating the scalability of the methodology in var-

ied, complex terrains. Table 6.2 summarizes the quantitative results, with metrics

averaged over 50 runs to ensure statistical reliability. This new approach consistently

achieved lower path lengths and more strategic sensor activations than prior meth-

ods, validating the utility of the integrated edge-based cost function and the expanded

search state space in efficiently managing resources while optimizing navigation paths.

Table 6.2: Results averaging the pessimistic ratio, optimistic ratio, and closeness-to-
optimistic ratio for Methodology 2.

Optimistic Ratio Pessimistic Ratio Closeness-to-optimistic Ratio
Env 0 122.24% 92.50% 70.78%
Env 1 174.89% 52.43% 28.92%
Env 2 116.82% 96.82% 74.65%
Env 3 113.29% 75.68% 33.85%
Env 4 129.21% 92.60% 78.67%
Env 5 123.91% 81.87% 57.13%
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(a) Nt = 0 (b) Nt = 1 (c) Nt = 2

(d) Nt = 3 (e) Nt = 4 (f) final path

Figure 6.2: Demo of the controller (N = 4, s = bottom left in green, g =
bottom right in red) navigating the environment with snapshots after every sensor
activation. The path is in red, while the proposed path is the purple dashed line.
The estimated sensing points are shown in red dots along the path

6.7 Conclusion

The Sensor-aware Planner and Regret-based Cost Function build on the joint sens-

ing and control approach of the Regret-aware Joint Sensing and Path Planning by

incorporating long-term sensor planning directly into the path planner’s state space.

This enhanced approach accounts for not only the robot’s position but also its re-

maining sensor uses and last activation location, expanding the state space from

a two-dimensional search to a more complex five-dimensional model. By including

sensor usage in the planning algorithm, the Sensor-aware Planner and Regret-based

Cost Function allows for a more strategic allocation of sensors throughout the robot’s

journey, helping prevent the early exhaustion of sensing resources.
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(a) Env 0 (b) Env 1 (c) Env 2

(d) Env 3 (e) Env 4 (f) Env 5

Figure 6.3: Environments used to evaluate the proposed framework.

One key advantage of this approach is its ability to anticipate and optimize sensor

activations based on projected paths, allowing the robot to prioritize high-impact

sensing actions and avoid unnecessary activations. The edge-based cost function

further enhances this strategic planning by calculating incremental costs for moving

between cells, considering changes in regret and partial pessimistic costs. This enables

the robot to assess not only the immediate cost of moving into an unknown cell but

also the potential value of the information it might gain by doing so, ultimately

leading to more efficient navigation through complex environments.

However, the expanded state space also significantly increases computational de-

mands, which can impact real-time performance in larger environments. Future re-

finements to the Sensor-aware Planner and Regret-based Cost Function could focus

on optimizing the computation of the expanded state space or implementing more effi-
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cient data structures to manage the increased dimensionality. Despite this limitation,

Sensor-aware Planner and Regret-based Cost Function demonstrates a promising ad-

vancement in strategic sensor allocation, allowing the robot to conserve resources for

crucial decisions along the path and achieve a better balance between exploration and

path efficiency.



CHAPTER 7: Overall Results and Analysis

In this chapter, we present a comparative analysis of the two methodologies—

Methodology 1 (Regret-aware Joint Sensing and Path Planning) and Methodology 2

(Sensor-aware Planner and Regret-based Cost Function). Each approach has its

strengths and limitations, particularly regarding sensor usage and path planning

strategy, which become evident when deployed in partially unknown environments

with limited sensing resources.

7.1 Comparison of Sensor Use Strategy

The Regret-aware Joint Sensing and Path Planning methodology excels in balanc-

ing sensor activation with path planning in a localized manner, utilizing a joint cost

map that prioritizes information gain and short-term path efficiency. This approach,

however, lacks a long-term view of sensor usage, which means it may overutilize sen-

sors early in the journey. As a result, in environments where unknown areas are

spread over a large space, this can lead to rapid depletion of the sensing budget,

making it unsuitable for scenarios requiring long-term sensor management.

The Sensor-aware Planner and Regret-based Cost Function addresses this by inte-

grating the sensor state directly into the planner’s state space, effectively embedding

a long-term sensor allocation strategy within the path-planning process. By factoring

in sensor availability over the entire journey, the Sensor-aware Planner and Regret-

based Cost Function methodology allows the robot to conserve sensors for critical

regions where unknown areas must be explored. This foresight minimizes early sen-

sor exhaustion and supports more strategic sensing throughout the path. However,

this approach has an increased computational cost due to the expanded state space,
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which can impact real-time performance.

The comparative figures highlight consistent trends across the performance metrics,

demonstrating that Methodology 2 typically outperforms or matches Methodology 1

in most environments. For the Optimistic Ratio, Methodology 2 achieves lower or sim-

ilar ratios, as seen in Figure 7.1, indicating that it is better aligned with the optimistic

path strategy, especially in environments with greater complexity. Methodology 1,

while occasionally matching Methodology 2 in simpler cases, tends to fall short in

environments requiring long-term planning and strategic sensor allocation.
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Figure 7.1: Comparison of Optimistic Ratio.

In the Pessimistic Ratio, both methodologies perform similarly across all environ-

ments (Figure 7.2), underscoring that both approaches handle pessimistic paths with

comparable effectiveness. This suggests that the enhancements in Methodology 2

primarily improve optimistic alignment without compromising cautious navigation.

For the Closeness-to-Optimistic Ratio, Methodology 2 demonstrates a clear ad-

vantage in earlier environments, achieving ratios closer to zero and indicating better

balance between optimistic and pessimistic strategies (Figure 7.3). However, there are

isolated cases where Methodology 1 slightly outperforms Methodology 2, emphasizing

the importance of task-specific tuning.
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Figure 7.2: Comparison of Pessimistic Ratio.
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Figure 7.3: Comparison of Closeness-to-Optimistic Ratio.

7.2 Comparative Analysis: Method 1 vs. Method 2 in a Shared Environment

To further evaluate the performance of Regret-aware Joint Sensing and Path Plan-

ning and Sensor-aware Planner and Regret-based Cost Function, we analyze their

respective paths through the same environment with identical starting and goal loca-

tions. This direct comparison highlights the practical differences in their sensor use

strategies and path-planning efficiency.



84

(a) Methodology 1 (b) Methodology 2

Figure 7.4: Direct comparison of the 2 methodologies and resulting paths.

As shown in Figure 7.4a, the path generated by Regret-aware Joint Sensing and

Path Planning demonstrates its localized optimization strategy. While the robot suc-

cessfully navigates to the goal, the lack of long-term planning results in suboptimal

sensor allocation and a longer overall path. Specifically, the produced a path length of

134 steps. The over-reliance on short-term decision-making and higher sensor activa-

tions early in the path are evident from the route taken, which deviates significantly

to explore unknown areas unnecessarily.

In contrast, Figure 7.4b illustrates the path generated by Sensor-aware Planner

and Regret-based Cost Function, which integrates sensor use into the planning state

space. The robot achieves a shorter path length of 116 steps, reflecting more strategic

sensor activations and better long-term planning. By conserving sensors for critical

points along the path, Sensor-aware Planner and Regret-based Cost Function mini-

mizes unnecessary exploration and ensures efficient navigation toward the goal. This

improvement represents a difference of 18 steps and underscores the advantage of

incorporating long-term sensor allocation strategies.

The comparison clearly demonstrates that Sensor-aware Planner and Regret-based
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Cost Function outperforms Regret-aware Joint Sensing and Path Planning in this

scenario, achieving a more efficient path with fewer steps. These results align with

broader trends observed in the quantitative metrics, reinforcing the importance of

strategic planning in environments with limited sensing resources.

7.3 Path Planning Efficiency

The simpler design of Regret-aware Joint Sensing and Path Planning facilitates

quicker path calculations, making it suitable for larger environments with limited

computational resources, and long-term sensor planning may not be feasible. By fo-

cusing on localized information gain and incremental path optimization, it effectively

navigates through expansive spaces without extensive computational overhead. This

characteristic allows Regret-aware Joint Sensing and Path Planning to handle larger

maps with relatively fast processing times, albeit without a strategic long-term sensor

allocation approach.

Conversely, Sensor-aware Planner and Regret-based Cost Function’s edge-based

cost function and expanded state space provide a more comprehensive navigation

strategy, optimizing sensor usage across larger environments with multiple unknown

regions. This enables the Sensor-aware Planner and Regret-based Cost Function to

perform well in scenarios requiring careful sensor allocation and strategic exploration.

However, the increased computational requirements of the Method can impact real-

time performance, particularly in large-scale environments where resource constraints

may become an issue.

7.4 Summary of Findings

Both methodologies successfully integrate sensing with path planning in unique

ways. Regret-aware Joint Sensing and Path Planning method demonstrates robust

performance in environments with fewer unknown regions, where short-term decision-

making aligns well with the available sensing resources. On the other hand, the
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Sensor-aware Planner and Regret-based Cost Function while computationally heav-

ier, provides a long-term planning capability that supports sensor conservation and

efficient navigation across more extensive and complex environments. The choice

between the two approaches ultimately depends on the environment’s size and the

computational resources available, with the method offering a more comprehensive

solution where long-term sensor management is critical.



CHAPTER 8: Conclusions

This thesis presented two methodologies for improving autonomous navigation

through joint sensing and control in partially known environments. Both methodolo-

gies sought to optimize resource use and path efficiency by integrating path planning

with strategic sensor activation. The first methodology (Regret-aware Joint Sensing

and Path Planning) established a more straightforward and agile approach to nav-

igate unknown regions while balancing sensor activations to minimize path length

and avoid unnecessary exploration. The second methodology (Sensor-aware Plan-

ner and Regret-based Cost Function) built on this foundation by incorporating sensor

usage into the state space and applying an edge-based cost function, which allowed

for more precise long-term planning of sensor activations. These approaches highlight

the potential of combining perception and planning to create more adaptable, efficient

navigation strategies in resource-constrained environments.

8.1 Summary of Contributions

This thesis aimed to develop efficient joint perception and planning algorithms to

navigate partially known environments with explicit sensing constraints. The research

presented two primary methodologies: Regret-aware Joint Sensing and Path Planning,

which emphasized simplicity and computational efficiency, and Sensor-aware Planner

and Regret-based Cost Function, which introduced a more complex state space for

strategic, long-term sensor planning.

Regret-aware Joint Sensing and Path Planning created a unified sensing and control

framework capable of dynamically balancing path length minimization and intelligent

sensor usage in partially unknown terrains. Its simplified design allowed fast path
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Table 8.1: Summary and comparison of both methodologies.

Methodology 1: Methodology 2:
Aspect

Regret-aware Joint Sensing
and Path Planning

Sensor-aware Planner and
Regret-based Cost

Function
• Localized optimization. • Long-term sensor allocation.Sensor Use

Strategy • Prioritizes short-term
efficiency.

• Strategic sensing for critical
areas.

• Uses joint cost map to
control path planning.

• Uses custom path planner to
plan sensor use.

• Cost function linearly
combines weights with various
metrics.

• Edge-based cost function
based on change of regret and
information gain.

Path
Planning
Approach

• Can combine with any path
planner.

• Path planner using
expanded state space.

• Fast calculations for
real-time use.

• Conserve sensors for critical
regions.

• Well-suited for environments
with sparse unknowns.

• Excels in complex and
highly uncertain environments.

Strengths

• Handles large maps
efficiently.

• Provides more strategic and
long-term decisions.

• Lacks long-term sensor
strategy.

• Higher computational cost.

Limitations • Risk of early sensor
depletion with complex
uncertainty environments.

• Limited real-time
performance in large-scale
maps.

• Introduces joint cost
function that linearly combines
regret and VoI based planning

• Extends the cost function to
edge-based calculations,
capturing changes in regret and
sensor gain between cells.

• Defines cost based on cell
classification, decision
uncertainty, and sensing
budget.

• Integrates sensor activation
into the planner state space,
creating a dynamic,
sensor-aware A*.

Method
Contribu-

tions

• Enables cost-based
trade-offs for path efficiency
and information gain.

• Outputs both the path and
anticipated sensor positions,
enabling resource-efficient
navigation.

calculations suited for more extensive, computationally constrained environments.

The joint cost map that prioritized sensor activations enabled the robot to make
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effective short-term decisions regarding path and sensing. This approach, however,

did not consider long-term sensor use, potentially exhausting sensor resources too

quickly in dense, unknown regions.

The Sensor-aware Planner and Regret-based Cost Function addressed this limita-

tion by integrating sensor use directly into the path planning state space. The method

enabled the strategic allocation of sensor resources through an expanded search space

and an edge-based cost function, optimizing for longer-term navigation goals. Includ-

ing edge-based costs, driven by incremental changes in regret and partial pessimistic

costs, allowed the robot to evaluate the potential value of sensor activation between

cells. This methodology enhanced strategic planning and allowed for more judicious

sensor use across the environment. Both methodologies, therefore, contribute to the

advancement of autonomous navigation in resource-limited environments, particularly

useful for planetary exploration and challenging terrains on Earth.

8.2 Limitations

While both methodologies advance joint sensing and path-planning strategies, they

also face notable limitations. The expanded state space of Sensor-aware Planner and

Regret-based Cost Functionrequires significantly higher computational resources, lim-

iting their applicability in real-time or larger-scale environments. Additionally, both

methodologies assume static environments, meaning the robot cannot respond ef-

fectively to dynamically changing obstacles or terrain. This reliance on static as-

sumptions constrains the scope of both methods to scenarios with relatively stable,

predictable obstacles, such as planetary exploration or pre-mapped disaster zones.

However, dynamic environments are typical in real-world scenarios, from shifting ter-

rain to moving obstacles, necessitating more efficient replanning capabilities. Since

the implementation is based on A*, it lacks the efficient replanning that algorithms

like D* Lite offer, making dynamic updates costly in terms of computation [19].

Another limitation is simplifying the traversal cost, c(x) = 1, which was chosen
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to focus on path length minimization for demonstration purposes. While this sim-

plicity is valuable for analyzing core decision-making strategies, it inherently limits

the applicability of the methodologies to real-world scenarios where cost functions

may need to account for more complex factors, such as energy consumption, stealth

requirements, or terrain difficulty. Adapting c(x) to reflect these nuanced applica-

tions is a logical next step, particularly in environments where minimizing detection

or conserving energy are mission-critical goals.

Sensor allocation also presents a significant constraint. Although Sensor-aware

Planner and Regret-based Cost Function integrates sensor use into the path-planning

state, neither methodology accounts for the recharging or replenishing of sensor re-

sources. Robots with a fixed sensor budget are unable to take advantage of inter-

mittent energy sources, such as solar panels or radioisotope thermoelectric genera-

tors [63], which could extend mission durations and improve adaptability. The lack

of such resource management systems limits the applicability of the methodologies to

prolonged missions or highly resource-constrained environments.

Finally, while the regret and cost metrics used in this work provide valuable mea-

sures for balancing exploration and caution, they may not capture all aspects of nav-

igation efficiency, particularly in highly stochastic or adversarial environments. For

example, environments with unpredictable hazards or adversarial interference might

require additional metrics to evaluate safety, robustness, or long-term mission success.

Addressing these limitations would require several enhancements. Incorporating

efficient replanning algorithms like D* Lite could allow the robot to respond dy-

namically to environmental changes. Expanding the definition of c(x) to include

multidimensional cost factors could improve the framework’s applicability to diverse

scenarios. In addition, introducing adaptive resource management strategies, such

as forecasting sensor usage or integrating recharging capabilities, would allow the

system to operate in more demanding or prolonged missions. By addressing these
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constraints, the methodologies could evolve into a more comprehensive framework for

real-world autonomous navigation.

8.3 Future Work

Future research can extend these methodologies in several ways to address the

noted limitations and enhance autonomous navigation capabilities. One promising

direction is adapting these frameworks to dynamic environments where obstacles or

unknown areas change over time. Integrating adaptive path recalculations and real-

time cost map updates would allow the robot to respond proactively to environmental

shifts, improving reliability in complex, shifting terrains.

Another significant direction involves simulating a rechargeable power system, such

as a radioisotope power source or solar power, to manage sensor usage over extended

missions. Implementing a rechargeable sensor model could simulate the energy lim-

itations of space missions, requiring the robot to balance energy conservation with

recharging cycles. This would allow for intermittent periods of sensor activity, en-

hancing the robot’s capacity to explore while preserving energy.

Extending these methodologies to multi-agent systems offers exciting cooperative

exploration and navigation possibilities. Agents could coordinate sensor activations

and share information in a multi-agent framework, optimizing path planning across

multiple robots. Distributed sensing strategies and collaborative planning would en-

able teams of robots to map larger areas, reduce redundant sensor usage, and improve

resource allocation in expansive or complex environments. These enhancements could

pave the way for more sophisticated, cooperative navigation systems that are instru-

mental in remote exploration or large-scale mapping tasks.

Another promising direction involves extending the methodology to include prob-

abilistic beliefs about the unknown environment, reducing the search space and im-

proving computational efficiency. By incorporating an initial belief about the en-

vironment, the system could focus its sensing resources on areas with the highest
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potential gain. This probabilistic belief framework would refine the sensor-aware A*

search, narrowing the regions of interest and significantly reducing computational de-

mands. Additionally, this approach could enhance decision-making by incorporating

confidence levels into the path-planning process, ensuring that sensing actions are

prioritized where they will significantly impact overall navigation efficiency.

In summary, addressing the current limitations and exploring these avenues of re-

search would significantly broaden the scope and effectiveness of the proposed method-

ologies, making them more adaptable, scalable, and capable in a wider range of real-

world applications.
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APPENDIX A: A* Algorithm

The A* algorithm is a widely used path-planning algorithm that combines features

of Dijkstra’s algorithm and greedy best-first search to find an optimal path from a

start node to a goal node. This appendix provides a concise overview of the algorithm,

covering its pseudocode, greedy behavior, and optimality.

A.1 Algorithm Overview

A* is a graph traversal and path search algorithm that uses a heuristic function to

estimate the cost from a given node to the goal. It maintains two primary components:

• Cost-to-come (g(n)): The exact cost of the path from the start node to the

current node n.

• Cost-to-go (h(n)): A heuristic estimate of the cost from the current node n

to the goal node.

The total estimated cost for each node is given by:

f(n) = g(n) + h(n)

Nodes are prioritized in a priority queue based on their f(n) values, ensuring the

algorithm explores paths that are most promising according to the combined cost.

See Algorithm 2 and Algorithm 3 for algorithm definitions.

A.2 Greedy Behavior

A* incorporates greedy planning by using the heuristic function h(n), which es-

timates the cost to reach the goal. When h(n) is highly optimistic, the algorithm

behaves like a greedy best-first search, prioritizing nodes that are closer to the goal

based on the heuristic alone. While this can lead to faster solutions, it may sacrifice

optimality if the heuristic is not admissible.
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Algorithm 2 A* Algorithm
1: open_set ← priority queue containing start with priority 0
2: came_from ← empty map
3: g_score ← map with default value ∞
4: g_score[start] ← 0
5: f_score ← map with default value ∞
6: f_score[start] ← heuristic(start, goal)
7: while open_set is not empty do
8: current ← node in open_set with the lowest f_score
9: if current = goal then

10:
11: return ReconstructPathcame_from, current
12: end if
13: Remove current from open_set
14: for neighbor in neighbors(current, graph) do
15: tentative_g_score ← g_score[current] + cost(current, neighbor)
16: if tentative_g_score < g_score[neighbor] then
17: came_from[neighbor] ← current
18: g_score[neighbor] ← tentative_g_score
19: f_score[neighbor] ← g_score[neighbor] + heuristic(neighbor, goal)
20: if neighbor not in open_set then
21: Add neighbor to open_set with priority f_score[neighbor]
22: end if
23: end if
24: end for
25: end while
26:
27: return failure {No path found}

Algorithm 3 Reconstruct Path
1: total_path← current
2: while current in came_from do
3: current← came_from[current]
4: Prepend current to total_path
5: end while
6:
7: return total_path
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