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ABSTRACT 

 

 

ADAM RYAN PRICE. Understanding bias in next-generation sequence technologies and 

analyses. (Under the direction of DR. CYNTHIA GIBAS) 

 

 

Accurate and unbiased measurements are critical for a wide variety of studies that 

endeavor to understand the function and basis of biological features.  Next-generation 

sequencing has made it necessary to increase the pace of development for analysis 

methodologies, creating opportunities for bias to enter the system and influence 

downstream interpretation unless appropriate measures are taken.  This dissertation 

addresses several such points where bias can be introduced into analysis pipelines, and 

offers guidelines and tools for addressing and investigating bias in next-generation 

sequencing analysis.  First, we investigated the impact of GC bias in the Illumina 

sequencing platform, identifying RNA secondary structure as a large contributing factor.  

By identifying and quantifying this effect, assays that take structure into account can 

attempt to minimize the resulting GC bias when performing next-generation sequencing.  

Next, we examined the issue of using non-native reference genomes for read alignment.  

Using both in-house and publicly available data sets with different properties, and 

additionally simulating reference and read data with specific properties, we were able to 

show what factors introduce read alignment loss and misalignments, and outline what 

steps can be taken to avoid these biases when performing studies using a non-native 

reference genome.  Finally, we developed a powerful and user-friendly tool, Simulome, 

for simulating genomes and variants with specific properties.  Simulome makes it 

possible to control for variables in data such that the efficacy of analysis methodologies 

can be studied with regard to specific variations in data.  Using this tool we were able to 
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model the influence of specific causes behind false positives individually in the previous 

study of non-native reference genomes.   
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INTRODUCTION 

 

 

 The problem of bias resulting from biological and technological sources is one 

that must be consistently reexamined alongside the development of new technologies and 

methods of analysis.  While it is common practice, and necessary for the progress of 

science, to trust the tools that we use to make deductions and inferences about the 

complex and often subtle nature of biology, it is also imperative that we vigilantly 

monitor the efficacy and accuracy of our technologies and methods.  In recent years, 

next-generation sequencing technologies have been producing unprecedented amounts of 

data, which has subsequently lead to the development and application of many new 

algorithms and analysis methodologies.  A consequence of this rapid growth is that bias 

caused by biological and technological sources has the potential to propagate into future 

research unless the sources of bias can be identified and corrected for.    

 High-throughput sequencing is subject to sequence dependent bias.  A widely-

studied source of bias in sequencing is the GC content bias, in which levels of GC 

content in a genomic region effect the number of reads produced during sequencing. 

Single-stranded RNA molecules are known to fold on themselves due to free energy 

interactions to form complex three dimensional structures that will vary depending on 

molecular sequence (Brierley, Pennell and Gillbert 2007).  These structures are more than 

simply an artifact that has no relationship to biological function, and have been shown in 

some cases to be necessary for function (Buratti, et al. 2004; Lyubetsky, et al. 2005).  

While there is a distinct set of biological functionality for the formation of secondary 

structure in mRNA, this folding has the additional unintended consequence of 
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introducing bias when mRNA strands are subject to sequencing in next-generation 

sequencing technologies.  This effect has been observed in high throughput sequencing 

technologies, such as Illumina sequencers, that use PCR as a method of read replication 

(Quail, et al. 2012).  It has also been observed that regions of RNA with higher GC 

content have more stable secondary structures than RNA strands with lower GC content 

(Chan, et al. 2009).  Some research has been performed to correct for GC bias, but there 

has been so far been little effort to explicitly model the underlying mechanism.  Recently, 

a method for detecting secondary structure across the entire transcriptome has been 

developed called PARS. PARS uses a multiple enzyme digestion protocol to identify the 

specific location of single and double stranded structure in nucleic acid molecules and 

makes it possible to investigate the underlying molecular origin of observed GC bias in 

sequencing (Kertesz, et al. 2010).  Specifically, the PARS method makes it possible to 

identify folded and non-folded regions in mRNA molecules, which can then be compared 

with sequence read levels as produced by next-generation sequencing to quantify the bias 

that is caused by mRNA secondary structure. 

Sequence read alignment is currently the basis of many biological studies, 

including analysis of RNA-Seq transcriptome data. Many common analysis pipelines rely 

on proper alignment of reads to a corresponding reference genome for the target 

organism under investigation.  Differential expression studies, for example, typically 

proceed by aligning transcriptome reads to a reference and extracting count data based on 

the alignment to examine the differences in transcript read levels for the genome under 

study. In cases where multiple related organisms are being studied, it is not uncommon to 

map reads from all organisms to a common reference genome.  The assumption is that the 
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differences between these organisms are small enough that they will not influence 

analysis. In these sorts of experiments, it is generally assumed that genes that do not map 

in one sample or the other can be excluded, and other genes that do show seemingly 

reasonable levels of alignment in both organisms can be trusted and used in differential 

expression analysis.  Comparison of real bacterial genomes from closely related strains, 

however, calls these assumptions into question. While we have demonstrated that 

exclusion of peripheral genes from the analysis does not have a large impact on the 

overall differential expression results in the core genome, we show here that 

misalignment can lead to inaccuracies in reference alignment and subsequently read 

counts, especially when tolerance for mismatches is set low to increase specificity. This 

can result in false positive identification of genes as differentially expressed.  

Comparative investigations of microbial organisms since the data explosion of high-

throughput sequencing have shown that prokaryotic genomes are very dynamic and 

diverge rapidly, even for closely related strains of the same organism.  The dynamic 

nature of prokaryotes allows for a significant degree of gene content and sequence 

variation. The genomes used in this our comparative analysis differ from their near 

relatives by approximately 4% overall, with some homologous genes showing even 

greater divergence.  The practice of using common reference genomes as a basis of 

comparison will only increase as even more data becomes available.  Available data is 

not always sufficiently complete for use as a reference genome in an RNA-Seq 

experiment, and reference-free clustering methods for transcriptomics have their own set 

of interpretation challenges.  As a result, researchers often resort to using readily 

available, fully closed reference genomes in their studies, even when their data was 
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produced from a heterologous strain. This approach fails to consider factors that can 

influence read counts, such the frequency and density of mismatches due to natural 

divergence between strains, and how alignment algorithms handle reads with multiple 

possible mapping positions, especially when mutations decrease mapping position 

certainty.  By examining how this bias functions under controlled conditions and 

parameter selection, the bias caused by heterologous reference strain alignment can be 

quantified and corrected for in future studies. 

Many forms of bias are difficult to detect and their identification can often be 

compounded by many overlapping factors, making precise quantification and 

identification of the source of bias an extremely difficult task.  Simulation tools are 

becoming increasingly relevant to the development, testing, and benchmarking of 

bioinformatics research, by making it possible to separate factors and control conditions 

precisely.  They provide a valuable control case for a variety of topics, such as the 

identification of read mapping bias (Degner, et al., 2009), correction of read bias in 

RNA-seq mapping (Satya, et al., 2012), and analysis of the accuracy of gene expression 

profiling (Hirsch, et al., 2015).   

 In this dissertation, we address the complexities of bias identification, 

quantification, and correction in RNA-Seq studies that rely on next generation 

sequencing technologies and associated analysis methodologies, although the same 

considerations may also apply to other types of genome-scale sequencing experiments.  

First, we identify the cause of GC bias resulting from mRNA secondary structure 

formation in next generation sequencing platforms and quantify levels of bias in three 

bacteria spanning low, medium, and high GC content.  Next, we examine the problem of 
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heterologous reference genome usage when comparing closely related bacterial strains, 

providing multiple analyses of both real and simulated data, to provide a set of best 

practices for the use of non-native reference genome comparison.  Finally, we introduce 

Simulome, a simulation tool to generate synthetic reference genomes by sampling and 

restructuring data from existing genomic sequence data.  Simuome makes it possible to 

separate sources of bias and control for very specific factors by creating reference 

genomes with specific features and variants of the simulated genome containing 

controlled mutation events.  This functionality makes it possible to analyze the effect of 

specific mutation types on a large scale, providing researchers with the ability to 

investigate the efficacy of analysis methodologies and data integrity on many genes that 

contain similar mutation events, while providing a control genome by which comparisons 

can be made. 



 

 

 

 

 

 

CHAPTER 1: THE IMPACT OF RNA SECONDARY STRUCTURE ON READ 

START LOCATIONS ON THE ILLUMINA SEQUENCING PLATFORM 

 

 

1.1 Background 

Single-stranded RNA molecules are known to fold into complex three 

dimensional structures that vary depending on the molecular sequence (Brierley, et al. 

2007).  It has been shown that these structures are more than simply an artifact of free 

energy interactions occurring on an unstable single-stranded molecule, and that they are 

in some cases necessary for function (Buratti, et al. 2004; Lyubetsky, et al. 2005). Many 

methods have been developed to predict the folded conformations of RNA molecules, 

and several computational methods have become popular in recent years, such as MFold 

(Zuker, et al. 2003) and Vienna RNA (Lorenz, et al. 2011), which make predictions of 

RNA folding conformations based on free energy calculations.  An experimental method 

for detecting secondary structure across the entire transcriptome, called PARS, has also 

been developed recently (Kertesz, et al. 2010).  These technologies and methods make it 

possible to further investigate the role and effects of secondary structure.   

Here, we investigate the effect RNA secondary structure has on gene expression 

data that is generated through modern sequencing technologies.  It has been previously 

shown that there is a detectable dependence of read depth on GC content (Dohm, et al. 

2008). This effect has been observed in high throughput sequencing technologies, such as 

Illumina sequencers, that use PCR as a method of read replication (Quail, et al. 2012).  It 

has been observed that regions of RNA with higher GC content have more stable 
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secondary structures than RNA strands with lower GC content (Chan, et al. 2009).  It has 

also been shown that the speed at which polymerase moves along an associated RNA 

strand is dependent on the secondary structure the polymerase encounters, and that 

polymerase works at a slower pace when confronted with more secondary structure 

elements (Lyubetsky, et al. 2005). Because the frequency of stable secondary structure 

increases as GC content increases, the relative abundance of high GC reads produced by 

next-gen sequencing is likely to be lower due to intermittent pausing by polymerase 

during fragment amplification.  Additionally, amplification methods that rely on single 

stranded DNA with an associated primer correctly annealing to an oligo, such as flow cell 

cluster amplification in Illumina sequencing, may be subject to additional bias due to the 

initial single stranded fragments forming stable structures at the end of the strand.    

In our study, we hypothesize that RNA secondary structure formation is the 

underlying cause of GC bias.  We use the PARS assay to measure RNA secondary 

structure for three bacterial strains with varied levels of GC content (low, medium and 

high GC content). We show that secondary structure is the GC-correlated molecular 

property that impacts apparent gene expression levels as measured by transcript 

abundance.  We identify the extent of this effect and use that information to statistically 

model the relationship between GC content, RNA secondary structure, and the abundance 

of reads produced by Illumina sequencers.  

1.2 Materials and Methods 

The goal of this study was to examine the relationship between secondary 

structure in RNA transcripts and gene expression levels, with particular regard to GC 

content. To achieve this, it was first necessary to determine the presence or absence of 
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secondary structure for the entire transcriptome at a nucleotide-level resolution. We 

employed the PARS method, a procedure for measuring transcriptome wide secondary 

structure (Kertesz, et al. 2010) which has previously been demonstrated in 

Saccharomyces cerevisiae.  PARS works by exposing RNA molecules to enzymes that 

selectively cleave them depending on their folded state.  A sample of RNA was divided 

and one part was exposed to RNase V1 and another to RNase S1.  RNase V1 randomly 

fragments double-stranded RNA, leaving behind a 5’ phosphate at the cleavage site.  

RNase S1 works similarly but targets single-stranded RNA.  Adaptors that can ligate to 

these 5’ phosphoryl-terminated RNAs were then used to select against random 

fragmentation.  The result is that for the RNase V1 sample, the starting position of the 

aligned read corresponds to a double-stranded region of RNA, and similarly RNase S1 

read start sites corresponds to a single-stranded region.  In order to convert this 

Figure 1.1 Selective enzyme digestion is performed on each organism using S1 RNase 

and V1 RNase.  V1 RNase cuts selectively at double stranded positions, while S1 cuts at 

single stranded positions.  A 5’ phosphate is attached to the fragment and deep 

sequencing is performed.  The resulting data is then processed into profiles based on read 

start positions for each condition and then combined to create structural predictions. 
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information into a quantitative measure at single nucleotide resolution, the log ratio of the 

number of reads starting at any given position is calculated based on the RNase V1 and 

RNase S1 read sets.  A higher log ratio, also referred to as a PARS score, indicates a 

higher probability that nucleotides at a given position are in double-stranded 

conformations, while a lower score indicates a higher probability of single-stranded 

conformations (Kertesz, et al. 2010). An overview of this process can be seen in figure 

1.1.  

1.2.1 Bacterial Sample Selection 

Three gram positive bacterial strains with varying levels of genome-wide GC 

content were chosen from the from NCBI database for the PARS assay. Staphylococcus 

epidermidis ATCC 12228, with 32% GC, was chosen as a representative strain for low 

GC content, Exiguobacterium sp. AT1b ATCC-BAA 1283 was chosen as a medium GC 

content strain with 48.5% GC, and Micrococcus luteus ATCC-4698 was chosen as a 

representative strain for high GC with 73% GC content.  These strains were selected 

because they had similar genomic sizes and fairly simple culture requirements. 

1.2.2 PARS Assay and Sample Preparation 

S. epidermidis was cultured in LB, while M. luteus and Exiguobacterium sp. 

AT1b were cultured in trypticase soy agar.  All three cultures were grown to log phase 

and two volumes of RNA Protect were added to the culture. The cells were pelleted and 

the resulting pellet was either used directly for RNA extraction or saved at -80C for no 

longer than twelve hours following extraction.  Cell lysis was carried out by freshly made 

ultrapure lysostaphin, or 125 µl lysostaphin + 200 µl TE NaCl + 5 µl proteinase K in 15 

ml cell pellets. The cell pellet mix was vortexed with RLT and 0.1 mm for fifteen to 
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thirty minutes using the disruptor genie vortexer. Similar pretreatment was done for 

Exiguobacterium sp. AT1b, except that ultrapure Lysozyme was used in place of 

Lysostaphin during the lysis phase. For M. luteus an incubation period of thirty minutes 

was optimized for lysis with lysozyme. 

The RNAeasy midi kit (Qiagen) was used for final extraction of total RNA from 

the bacterial cell’s DNA contamination was then removed by treating the total RNA with 

4-8 units of DNAse I twice at 37C for thirty minutes in a total volume of 50 µl, with a 

total nucleic acid concentration of 10 µg.  Total RNA was checked for DNA 

contamination and integrity before proceeding with mRNA enrichment and PCR was 

subsequently carried out to check for DNA contamination after the DNAse treatment.  

Agilent 2100 bioanalyzer RNA 600 nano chip was used for total RNA integrity and 

quantification. Total RNA with RIN equal or greater than 9 was only further used for 

further experiments. mRNA enrichment was carried out using MICROBExpress kit 

(Ambion, Thermofisher Scientific) followed by QC on agilent bioanalyzer. mRNA was 

used to prepare directional paired end libraries of size 300 bp using modified 

methodology of directional library preparation and the TruSeq small RNA library 

preparation kit protocol (Illumina Inc.). Briefly, after fragmentation by S1/V1 enzymes, 

the 5' P end was capture by ligating to 5' adapters and only those fragments which have 

5'P end were captured in the cDNA and thus captured in the library. The final libraries 

were Ampure cleaned and ran on DNA 100 chip for QC before 200bp sequencing. 

Three replicates of each sample and condition were prepared and sequenced using 

the Illumina HiSeq 2500 sequencer. In addition, a control condition was also performed 
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for each organism, in which RNA-seq was performed using standard protocols.  Three 

replicates were also used for the control condition.  

1.2.3 Data Processing and Selection 

Raw sequence reads were aligned to their respective reference genomes using 

bowtie2 (Langmead, et al. 2012), with all samples showing a high rate of overall 

alignment.  The resulting files generated by bowtie2 were then filtered for quality and 

converted to sorted BAM format using samtools (Li, et al. 2009).  This process was 

performed for each of the three conditions: S1 RNase digestion, V1 RNase digestion, and 

a control sample, for each of the three bacteria used in the experiment.  This process was 

performed on all available replicate data sets, and replicate data were then merged.  The 

data were subsequently used to create a file tallying the number of read start sites for each 

position along the transcriptome.  These positional values were converted into PARS 

scores for each position along the transcriptome.   

The data were then filtered to select a subset of genes that had both the highest 

confidence PARS scores, due to having adequate data from each experimental condition, 

and few positions with unknown conformations. To select the most reliable data, data 

were filtered using a method based on the previously calculated positional values for all 

three organisms.  For each position, in cases where positional data was absent in an 

experimental condition or in the control condition, a value of 0 was assigned. If data were 

present in both experimental conditions and in the control condition, PARS scores, the 

log ratio of the positional data for the two experimental conditions, were calculated for 

that position. Then, if the PARS score for the position had an absolute value of 3 or 

greater, a value of 1 was assigned to the position. Positions assigned 1 were considered to 



 7 

be high quality positions, and positions assigned 0 were considered to be poor quality 

positions.  Finally, the percentage of high quality positions for each coding region was 

calculated, and regions with at least 80% high quality positions were retained for 

analysis. After this filtering step, fifty-nine genes were selected from Staphylococcus 

epidermidis, sixty-one genes were selected from Exiguobacterium sp., and eighty-one 

genes were selected from Micrococcus luteus.   

1.3 Results 

1.3.1 Secondary Structure and Read Depth 

In order to test one of the main hypotheses of this paper, that secondary structure 

is a possible cause of bias in the measurement of gene expression via high throughput 

sequencing, we first performed correlation testing. We compared read depth in a standard 

RNA-seq assay for each organism, to structural predictions at single nucleotide resolution 

generated in the PARS assay. The 23S rRNA genes for each organism were selected for 

initial inspection, as these genes were identified as having high quality data for all three 

organisms in the filtering step.  We used Pearson’s product-moment correlation testing on 

these genes to examine the relationship between read depth in the control experiment, and 

PARS scores.  In all three cases, significant positive correlation was found, such that 

higher levels of read depth corresponded to regions predicted to be in single stranded 

conformations, with Exiguobacterium sp. having a p-value of 8.944e-05, Staphylococcus 

epidermidis having a p-value of 0.04939, and Micrococcus luteus having a p-value less 

than 2.2e-16.  This result supports the hypothesis that RNA secondary structure 

contributes to bias in read depth. 
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1.3.2 Secondary Structure 

and GC Bias 

We next examined the 

relationship between GC bias and 

RNA secondary structure.  It has 

been shown previously that 

Illumina sequencers exhibit a bias 

in which A-T residues are 

sequenced with higher frequency 

than are G-C residues (Dohm, et 

al. 2008).  It has been further 

shown that elevated GC content 

negatively influences sequencing 

coverage overall, with regions 

having GC content greater than 70% becoming increasingly read sparse (Sendler, et al. 

2011).  As such, our investigation of GC content and secondary structure first attempted 

to confirm this finding, in order to validate subsequent findings in our data.  Using the 

same subset of high-quality genes selected in the analysis of secondary structure’s effect 

on read depth, read depth as generated from the standard RNA-seq assays was contrasted 

with GC content.  The results, shown in figure 1.2, show regions of lower GC content 

having a more widely varied range of read depth, and regions of higher GC content 

showing a much more narrow range of read depth, with a tendency toward the lower end 

relative to the dataset as a whole. Pearson’s product-moment correlation test was 

performed on these data as a whole to characterize this relationship between GC content 

Figure 1.2: Normalized read depth in relation to 

GC content for 201 genes across all three 

organisms. 
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and read depth.  The results of this test showed significant correlation between GC 

content and read depth with a p-value of 0.01436, which is consistent with previous 

research.  A closer examination of the data shown in figure 2 shows that regions with low 

GC content, less than 40%, is not correlated with read depth.  However, as GC content 

increases, an increasingly strong relation between read depth and GC content can be 

identified.  For regions with medium GC content, between 35% and 60%, a modest 

correlation between read depth and GC percentage is identified with a p-value of .02722.  

For regions of high GC content, however, the relationship is much stronger.  Regions 

with greater than 60% GC content showed a strong inverse correlation with read depth 

with a p-value of 0.000004638.  This result is consistent with previous research which 

has shown that regions with high GC content are more read sparse than medium and low 

GC content regions (Sendler, et al. 2011).   

Next, data for each strain were individually analyzed using linear regression 

analysis.  GC content in Staphylococcus epidermidis, the low GC strain, was not 

significantly correlated with read depth.  However, Exiguobacterium sp., the medium GC 

strain, showed significant correlation between read depth and GC content with a p-value 

of 0.03323.  Micrococcus luteus, the high GC strain, showed the strongest relationship 

between GC and read depth with a p-value of 0.0000130. Again, we observe that the 

relationship between GC content and read depth strengthens as the GC content of a strain 

increases.  The discrepancy between the significance levels of these tests is also to be 

expected, as the magnitude of GC bias correspondingly varies with the composition of 

each organism. Staphylococcus epidermidis has an overall GC content of 32% genome-

wide, which should not be strongly influenced by GC bias.  The lack of a significant 
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relationship between GC 

content and read depth in this 

organism shows that without 

the influence of GC bias that 

reads are more evenly 

distributed across a wider range 

of depth.  Micrococcus luteus, 

having an average GC level of 

48.5%, has a modest, though 

significant correlation between 

read depth and GC content.  

This level of correlation again 

shows the relationship between GC content and read depth, as some regions are 

beginning to be influenced by GC bias.  In the case of this organism, the level of GC 

content is just high enough that GC bias becomes apparent, though low enough that the 

effect is not excessive.  Exiguobacterium sp., with a 73% GC content level shows the 

strongest relation.  Here, the effects of GC bias are apparent with a strongly significant 

correlation indicated.  The reads are sparser and with increasing GC the read depth is 

correspondingly lower.  The combination of these results confirms the presence of GC 

bias in our data and provides a basis for understanding the strength of the effect.   

Finally, correlation testing was performed to compare the percentage of positions 

predicted to be in a folded conformation with the percentage of GC content for each 

respective gene.  The result of this analysis, shown in figure 1.3, was highly significant, 

Figure 1.3: Percent of double-stranded predictions 

by PARS in relation to GC content for 201 genes 

across all three organisms. 
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with a correlation of 74.1% and a p-value of less than 2.2e-16.  This strong relationship 

between read depth and GC content, in combination with the previously shown capacity 

of read depth as a predictor of secondary structure conformation, indicate RNA 

secondary structure as a strong contributing factor to GC bias. 

1.3.3 Secondary Structure and Read Start Bias 

Next, we investigated the hypothesis that bias is introduced due to secondary 

structure formation at fragment ends. To do this, binomial logistic regression was chosen 

to model the relationship between experimentally predicted secondary structure and the 

number of reads starting at corresponding positions in the control data.  Binomial logistic 

regression is used to model dichotomous output variables as a function of predictor 

variables, and makes it possible to measure if a predictor variable affects an outcome 

variable and to what extent (Long, et al. 1997).  The outcome variable is this case is 

binary: a position is in a secondary structure conformation or a position is in a single 

stranded conformation.  The predictor variable is the number of reads starting at the same 

position as measured by the control data. In this way, we are able to ask not only if there 

is a significant relationship between levels of reads produced and the presence of 

secondary structure, but to what extent it is expected that secondary structure exists at a 

position based on the number of reads starting at that position.  

Secondary structure conformational predictions were first calculated using PARS 

scores representing folded states or single-stranded states for each position of each gene. 

In this step, positions identified by PARS scores as being in secondary structure 

conformations were assigned a value of 1, and positions predicted to be single stranded 

were assigned a value of 0.  Logistic regression was then performed, wherein the logistic 
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regression coefficients calculated represented a change in the log odds for a one unit 

increase in the predictor variable. In this case, for an increase of one in our predictor 

variable, the number of reads starting at this position in the control experiment, the log 

odds of that position being in a secondary structure conformation, increased by a factor 

equal to computed logistic regression coefficient.  Using these logistic regression 

coefficients, confidence intervals and predicted probabilities were calculated across the 

range of possible values of for read starts.  This made it possible to model the relationship 

between read starts and RNA secondary structure at a nucleotide resolution. 

Figure 1.4 shows these predictions for the 23S rRNA genes of each organism.  

This result showed a clear pattern for all three organisms, in which the predicted 

probability of a position being in secondary structure decreased as the number of reads 

starting at that position increased. This result indicates that positions that are known to 

fold into secondary structure conformations typically have fewer associated read starts.  

Figure 1.4: PARS predicted probabilities of secondary structure with regard to read 

starts in 23S rRNA genes for each organism. 



 13 

1.3.4 Summary of Results 

A summary of the analyses performed for each of the 207 genes that passed the 

quality criterion previously discussed and a summary of the results can be seen in figure 

1.5. The PARS/Control subheading (pink), shows the distribution of p-values for 

correlation testing between experimentally predicted secondary structure by PARS and 

read depth in the control experiment.  The PARS/Vienna subheading (green) shows the 

results of correlation testing between experimentally measured secondary structure and 

free energy secondary structure predictions as calculated by the software package, 

Vienna2 (Lorenz, et al. 2011).  The prediction/control subheading (blue) indicates the 

distribution of p-values from the binomial logistic regression analysis.  In all cases, a 

majority of the genes studied showed significance across all three tests, with the 

significance becoming increasingly apparent with higher levels of GC content.   

Figure 1.5: Distribution of correlation and regression testing results for all genes passing 

quality threshold. Read depth and experimentally predicted PARS score correlation is 

represented as PARS/Control (red), PARS/Vienna shows correlation results from 

computationally modelled secondary structure predictions and experimentally computed 

structures (green), and Prediction/Control shows correlation significance based on 

Logistic Regression (blue).    
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1.4 Discussion 

GC content bias in has been shown to exist predominately in the stages before 

sequencing, specifically at the PCR stage (Aird, et al. 2011). However, the cause of GC 

bias exists as a combination of factors. It has been shown that polymerase pauses at the 

base of, or slightly before, secondary structure formation (Hillebrand, et al. 1985). 

Furthermore, changes in RNA secondary structures that occur after the structure is only 

partially unwound lead to the formation of new secondary structural elements 

downstream from the first, which leads to slower progress overall by polymerase (Suo, et 

al. 1997).    Other research has shown that sequences leading to stable secondary 

structure at fragment ends can cause adapter ligation to fail, leading to the failure of 

reverse transcription and introducing bias between the relative expression levels of 

fragments with secondary structure and those without (Tian, et al. 2010). The 

combination of these behaviors lead to a reduction in amplification efficiency, 

particularly in PCR based systems where relatively small differences before amplification 

may be represented exponentially afterwards.    

Efforts to correct for GC bias involving methods of eliminating secondary 

structure formation have proven to be effective.  Betaine is a zwitteronic osmoprotectant 

that alters DNA stability in such a way that stable secondary structure in GC rich regions 

melt at temperatures similar to those required to melt AT rich regions, and the 

introduction of betaine to PCR assays has been shown to suppress replication pausing by 

polymerase (Schwartz, et al. 2009). It has also been observed that increasing denaturing 

time in combination with the introduction of betaine substantially increases read coverage 

and depth in GC rich regions (Aird, et al. 2011).  These findings, in conjunction with the 
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findings of this study, indicate that the formation of RNA secondary structure is the 

primary cause of GC bias.   

Although reduction in levels of secondary structure addresses a substantial portion 

of GC bias, it does not eliminate bias in sequencing assays completely. The use of 

betaine, for example, while reducing secondary structure in GC rich regions, may cause 

early disassociation of the newly synthesized strand from AT rich templates (Aird, et al. 

2011).  In one study, PCR-free FRT-seq was used, in which reverse transcription 

occurred directly on the flow cell after adapter ligation (Mamanova, et al. 2010).  

Comparison of optimized PCR assays with the PCR-free experiment showed that the 

optimized assay performed nearly as well as eliminating the PCR phase altogether (Aird, 

et al. 2011).  Both assays, however, still produce fewer reads in GC rich regions, 

indicating that correction methods are yet imperfect or that other processes contribute to 

GC bias in ways that are not well understood.   

In this paper, we have generated a novel dataset that provides experimentally 

measured RNA secondary structure predictions at a nucleotide resolution and have used 

that data to examine the role of RNA secondary structure on GC bias as observed in 

modern sequencing technologies.  We have demonstrated that our dataset is consistent 

with previous research findings, and that the relationship between GC content and read 

depth in three bacterial strains spans a wide range of GC content.  We have described the 

relationships between RNA secondary structure and GC content and between RNA 

secondary structure and read depth.  We have shown that fragment counts are 

significantly biased, with a lower frequency of read starts at sites which are folded into 

RNA secondary structure conformations. Finally, we have shown that the relationship 
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between read depth and GC content causes increasing bias as GC content increases, with 

less significant biases being caused in lower GC sequences.  

One possible limitation of this method is that V1 nuclease can also cleave at 

stacked nucleotides formed due to intramolecular interaction at positions that are not 

double stranded (Novikova, et al. 2012). However, investigation into the possible bias of 

V1 in the PARS protocol has shown that there is a very small bias towards particular 

regions along the transcript.  However, it has been confirmed that signals generated by 

RNase V1 are highly distinct from those generated by RNase S1 and global inspection 

across all transcripts for the PARS protocol revealed that approximately 7 percent of V1 

and S1 peaks are shared.  These shared peaks could be the result of experimental noise 

introduced by nonspecific enzymatic activity, but could also correspond to dynamic RNA 

regions or transcripts that fold into more than one stable conformation (Kertesz, et al. 

2010).  We therefore believe that this is an acceptable limitation of the PARS method and 

by extension of this study and several others (Kertesz, et al. 2010; Wan, et al. 2013; Wan, 

et al. 2016).    

The findings of our study point to optimization of assays with regard to RNA 

secondary structure as an ideal method of reducing GC bias.  The identification and 

modeling of read fragment bias at positions predicted to be in secondary structure 

conformations is particularly novel and opens new avenues of research for the correction 

of GC bias.  Future work in this area may include the computational modeling of the 

relationship between read start sites and RNA secondary structure, as well as the 

application of corrections to read counts based on adjustments for observed start site bias. 

 



 

 

 

 

 

 

CHAPTER 2: READ MAPPING TO NON-NATIVE REFERENCE GENOMES IN 

RELATED BACTERIAL STRAINS   

 

 

2.1 Background 

Sequence read alignment to a reference genome is currently a key step in many 

common bioinformatics workflows.  Accuracy of alignment is therefore crucial for 

proper interpretation of biological data.  Researchers frequently encounter situations in 

which the most appropriate reference genome for a reference-based analysis is not 

available, and a homologous alternative must be used.  This can lead to inaccuracies in 

mapping and subsequently in quantitation and interpretation. These inaccuracies skew the 

results of otherwise sound analysis methodologies.  This study approaches the problem of 

non-native reference alignment by comparing the effects of read alignment to native and 

heterologous reference genomes.  We describe a method to identify false positives caused 

by improper alignments to the heterologous reference, and examine the underlying 

causes, to provide a set of best practices for research that makes use of non-native 

reference genomes. 

Comparative analysis of microbial genomes since the advent of high-throughput 

sequencing has shown that prokaryotic genomes are dynamic and can be highly diverse, 

even among closely related species or strains.   Analysis of bacterial genomes through 

sequencing-based methods such as RNA-Seq has made it possible to rapidly advance our 

understanding of basic biological function, identify host-pathogen interactions, and 

engineer microbes for industrial and pharmaceutical applications (Fraser-Liggett, 2005).  
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It has become apparent in recent years that the highly dynamic nature of prokaryotes has 

led to extensive genomic diversity.  In 2001, sequencing of E. coli O157:H7 identified 

over 1300 strain-specific genes when compared with E. coli K-12, the strain previously 

sequenced and thought at the time to be fairly representative of the model organism 

(Perna, et al. 2001). The identification of these genes, found to be involved primarily in 

virulence and metabolism, showed that even closely related strains can differ 

significantly. Since that time, the availability of sequencing data from multiple strains of 

the same organism has increased, but due to the vastness of biodiversity in prokaryotes, it 

is still not uncommon to find that the most appropriate reference genome is not available, 

or exists only as a draft.  Researchers then must resort to using finished evolutionary 

neighbor reference genomes in their studies, even when the sequence reads they wish to 

map were produced from a heterologous strain.  

Many common analysis pipelines rely on accurate alignment of reads to a 

corresponding reference genome.  Differential expression studies, for example, rely on 

aligning transcriptome reads to a reference, extracting count data, and examining the 

differences in transcript read levels for the genome under study. In cases where two or 

more closely related species or strains are being studied, a common approach is to simply 

map reads from all organisms to a common reference genome.  The assumption is that the 

differences between closely related microbes are insignificant enough that the results of 

differential expression will not be influenced, or otherwise, that genes that are absent in 

one sample or the other should simply be excluded from analysis, while shared genes that 

have seemingly reasonable read counts in both organisms can be used for differential 

expression analysis.  For example, we previously investigated differences in gene 
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expression in clinical strains of Vibrio vulnificus, when exposed to either artificial 

seawater or human serum environments, as a model for the expression changes the 

organism undergoes when infecting a human host. V. vulnificus CMCP6 and V. 

vulnificus YJ016 expression levels were compared by using the CMCP6 strain as a 

common reference genome (Williams, et al. 2014).  Using a common reference genome 

to make comparisons between different strains is also common in eukaryotic systems, 

and similar methods were used in a comparative study of strains of Bombyx mori (Bao, et 

al. 2009). The approach of using a common reference genome for different strains is 

unable to correctly represent factors that can influence read counts in the non-

homologous read set, such as the frequency and density of mismatches due to natural 

divergence between strains. The degree of error in these studies will be affected by how 

alignment algorithms handle reads with multiple possible mapping positions, especially 

when mutations decrease mapping position certainty.  Comparing data across strains 

becomes increasingly less sound as evolutionary distance between read sets and the 

reference genome increases, and this is particularly true of prokaryotic species, where 

divergence occurs at an accelerated pace.  In this study, we examine the potential impact 

of using a heterologous reference genome and the effects on read alignment, and by 

extension differential expression.  We show how differences in reference genomes 

influence read alignment and gene expression results when using common analysis 

techniques. We then provide an approach for identifying false positives caused when 

comparing multiple strains or species by means of alignment to a common reference 

genome, and outline best practices for the use of heterologous reference genomes in 

cross-strain analyses. 
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2.2 Materials and Methods  

2.2.1 Data and Heterologous Reference Distance   

For this study, transcriptome data from two different organisms were used.  RNA-

Seq data for two strains of Vibrio vulnificus, CMCP6 and YJ016, as described by 

Williams et al. were used. A publicly available data set, consisting of RNA-Seq data from 

Escherichia coli strains K12 (MG1655), a common laboratory strain, and strain IAI1, a 

commensal modal strain, under three experimental conditions (Vital, et al. 2015) was also 

analyzed.  The V. vulnificus data set consists of two experimental conditions, human 

serum and artificial seawater, each having two replicates, while the E. Coli data set 

consists of three experimental conditions, batch, chemostat, and starvation, with each 

condition having two replicates as well.  A summary of the data used in this study can be 

seen in table 2.1. In all cases sequencing was performed using the Illumina HiSeq 

platform. The same analysis workflow was applied to each data set. 

 

Table 2.1: Summary of read data 

Species Strain Condition Replicat

es 

Coverage (Native) Coverage 

(Heterologous) 

V. vulnificus CMCP6 Human Serum (HS) 2 628.5 / 671.2 678.9 / 522.9 

V. vulnificus CMCP6 Artificial Saltwater (ASW) 2 641.5 / 550.5 700.9 / 349.7 

V. vulnificus YJ016 Human Serum (HS) 2 715.8 / 544.4 595.3 / 611.8 

V. vulnificus YJ016 Artificial Saltwater (ASW) 2 709.3 / 350.1 616.1 / 531.2 

E. coli K12 (MG1655) Batch 2 169.2 / 206.6 175.7 / 214.6 

E. coli K12 (MG1655) Chemostat 2 194.4 / 136.8 201.9 / 142.4 

E. coli K12 (MG1655) Starvation 2 108.6 / 107.4 115.3 / 113.9 

E. coli IAI1 Batch 2 145.9 / 121.9 154.4 / 128.4 

E. coli IAI1 Chemostat 2 135.1 / 130.9 142.9 / 138.5 

E. coli IAI1 Starvation 2 98.9 / 95.5 104.4 / 101.1 

 

Initial comparisons were performed between reference genomes for both bacterial strains 

using Mauve (Darling, et al. 2004).  The E. coli K12 strain is 4,641,652 base pairs in 

length and the IAI1 strain is 4,700,560 long, for a difference in length of 58,908 base 
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pairs. 64,577 SNPs were identified across the span of both strains, making the 

approximate level of polymorphic sites 1.38%.  The combination of indel and 

polymorphic differences between these genomes is 2.64%.  Structural analysis shows 

relatively few rearrangement events and broad similarity between these genomes. 

V. Vulnificus CMCP6 and YJ016 are 3,281,866 and 3,354,505 base pairs in length 

respectively, for a difference in total length of 72,639 base pairs.  46,955 SNPs were 

identified between the two references, making the difference between the two genomes 

by polymorphic sites 1.42%.  Combining the total differences for polymorphisms and 

indel events, these strains are approximately 3.61% different from one another.  

Structural analysis of the V. Vulnificus genomes revealed more structural changes than 

were observed in E. coli, although overall structural similarity is still high.  Figure 2.1 

shows structural differences for both organisms. 

2.2.2 Orthology Mapping and Data Processing 

In order to make accurate comparisons of data as aligned to heterologous 

reference genomes, orthology relationships between genes were first determined. All-

against-all protein BLAST was used to find orthologous regions between strains.  

Figure 2.1: Structural differences between reference strains for E. coli (left) and V. 

Vulnificus (right). 
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Regions were determined to be orthologous if they showed greater than 95% identity, 

were at least 200 base pairs in length, and had no more than 5 mismatches at the protein 

level.  1570 orthologous regions, approximately 36% of annotated genes, were identified 

between V. vulnificus strains CMCP6 and YJ016. 2378 orthologous regions, 

approximately 55% of genes, were identified between E. coli strains K12 and IAI1. 

Annotation information for each strain was then applied to these orthologous regions, to 

determine correspondence in read counts between strains at a per-gene level.   

Each RNA-Seq read set was aligned to both potential reference genomes for their 

respective species using Bowtie2 (Langmead, et al. 2012).  In the case of E. coli, all 

replicates and conditions from both strains K12 and IAI1 were aligned to both the K12 

and IAI1 reference genomes.  Similarly, all read sets for V. vulnificus were aligned to 

both the CMCP6 and YJ016 reference genomes.  All alignments were performed using 

Bowtie2’s sensitive alignment (-M 3, -N 0, -L 22).  Raw read counts were then extracted 

from each alignment using the featureCounts Bioconductor package (Liao, et al. 2013).  

Next, the previously computed orthologous gene mapping information was used to map 

read count data for all conditions and replicates with orthologous genes.  This process 

was performed on all samples and replicates for both E. coli and V. vulnificus, so that 

each read set is counted for alignment to both their native reference genome and the 

heterologous reference genome for their respective species.  This makes it possible to 

make direct comparisons of the effects of mapping identical read data to heterologous 

genomes.  As the process was applied for all conditions to both native and heterologous 

alignments, cross effects can be identified to increase confidence in observations.  An 

overview of this data processing pipeline is shown in figure 2.2. 
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Next, differential expression analysis was performed for all strain/condition permutations 

for each organism.  By examining the results of differential expression analysis on 

identical read data, with the choice of reference genome being the only differential factor, 

any genes that are identified as being differentially expressed for the same condition can 

be marked as false positives caused by reference-based factors. For example, by aligning 

reads from E. coli strain K12, batch condition, to both the K12 reference genome and the 

heterologous IAI1 reference genome, and then performing differential expression 

analysis, any genes that are identified as being differentially expressed can be assumed to 

have been incorrectly identified, as the initial read set is identical and the only differential 

factor is the reference genome. When examining the reciprocal condition, in which reads 

generated from the IAI1 strain, batch condition, are aligned to both reference genomes, 

another set of false positives can be identified, many of which correspond to the false 

Figure 2.2: Data processing pipeline.  Orthology is identified between heterologous 

strains and reads are aligned to both reference genomes.  Using the orthology 

mapping information, extrapolated read alignment counts are compiled such that 

counts can be compared for each read set as aligned to each reference genome. 
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positives identified previously, creating a 

cross-identification effect for many false 

positives.  

Differential expression analysis 

was performed using DESeq2 (Love, et al. 

2014).  Initial investigation of each 

experimental condition aligned to native 

and heterologous reference genomes 

showed high similarity in all cases.  

Principal component analysis was 

performed to confirm the integrity of 

replicates for all read sets.  Figure 2.3 shows an example of the log-fold changes for all 

genes for the E. coli, strain K12, batch condition.  In this case, reads generated from 

strain K12, batch condition, were aligned to both the native reference and the 

heterologous reference, strain IAI1.  As the reads are identical, high correspondence is 

naturally expected, with variation only being caused due to differences in the reference 

genome. High correspondence such as this was observed for all conditions and read sets.  

This level of correspondence indicates that the assumption that these two genomes can be 

used interchangeably as a reference for read alignment is reasonable.  Had this data 

shown significant deviation, it would have indicated that heterologous alignment was not 

appropriate.  This comparison of alignment to orthologous regions should be applied in 

cases when a reference genome for a read set is unavailable, but a homologous alternative 

Figure 2.3: Log-fold changes of read 

counts for all E. coli strain K12 genes 

as aligned to both native and 

heterologous references. 
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exists, in order to determine if alignment to the homologous reference if viable.  This 

point will be covered in additional detail in the discussion section of this study.    

2.3  Results 

2.3.1 False Positive Identification 

Differential expression analysis was performed on all permutations of data sets 

for each organism as aligned to native and heterologous reference genomes.  False 

positives were identified in two ways.  When identical datasets were aligned to both 

references for a single condition, differential expression analysis was performed and the 

set of differentially expressed genes were taken as false positives.  For example, E. coli 

strain K12, batch condition was aligned to both native and heterologous genomes and 

differential expression was performed, identifying 15 false positives.  When identifying 

false positives across multiple conditions, differential expression for two conditions is 

performed with both conditions aligned to native and heterologous reference genomes, 

and false positives are then identified as the set difference between the two differential 

gene results.  For example, when comparing E. coli strain K12, batch condition to the 

K12 chemostat condition, differential expression is performed on the batch vs chemostat 

reads as aligned to the K12 genome, and then as aligned to the IAI1 genome.  True 

positives are considered to be the intersection of these two result sets, and false positives 

are considered to be the difference of the two sets.   This method generally identifies 

significantly more false positives than are identified when only a single condition is 

examined.  This compounding of false positives is to be expected as the first method 

relies on aligning only one read set to two references (2 replicates x 2 alignments each), 

and the second method must align two read sets to two references (2 replicates x 4 
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alignments each).  Table 2.2 shows a summary of all false positives identified through 

both methods.   

Table 2.2: Summary of false positives 

Species Native Reference Condition False Positives Cross-identified 

V. vulnificus CMCP6 Human Serum (HS) 0 0 

V. vulnificus CMCP6 Artificial Saltwater (ASW) 2 1 

V. vulnificus YJ016 Human Serum (HS) 1 0 

V. vulnificus YJ016 Artificial Saltwater (ASW) 2 1 

V. vulnificus CMCP6 HS vs ASW 14 1 

V. vulnificus YJ016 HS vs ASW 14 1 

E. coli K12 (MG1655) Batch 15 5 

E. coli K12 (MG1655) Chemostat 6 4 

E. coli K12 (MG1655) Starvation 1 1 

E. coli IAI1 Batch 9 5 

E. coli IAI1 Chemostat 16 4 

E. coli IAI1 Starvation 5 1 

E. coli K12 (MG1655) Batch vs Chemostat 58 6 

E. coli K12 (MG1655) Batch vs Starvation 17 0 

E. coli K12 (MG1655) Chemostat vs Starvation 32 2 

E. coli IAI1 Batch vs Chemostat 61 6 

E. coli IAI1 Batch vs Starvation 40 0 

E. coli IAI1 Chemostat vs Starvation 42 2 

 

Cross identification of false positives was also examined to determine if the same regions 

produce false positives across different read sets.  Several false positives were identified 

from multiple read sets; however, cross identification is not necessarily always present 

due to naturally occurring differences in expression levels between different strains.  

Even though a reduction in read counts is typically associated with alignment to a 

heterologous genome, genes will not necessarily be identified as differentially expressed 

unless the log-fold change is significantly different with regard to the expected 

concentration of fragments as determined by dispersion of counts across the entire read 

set (Love, et al. 2014).  For example, if an E. coli read set from the K12 strain is aligned 

to both a native and a heterologous genome, and a gene is identified as a false positive 

through differential expression, we can be confident that read alignment for that gene is 

being compromised by the reference genome.  While it is likely that the same gene will 
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be reciprocally compromised in the corresponding read set from the IAI1 strain, it may or 

may not be identified as differentially expressed because the overall expression levels in 

IAI1 may be naturally different from K12, and the log-fold change may not be extreme 

enough to identify the gene as differentially expressed with regard to fragment dispersion 

for the entire IAI1 read set.   For this reason, genes are considered to be false positives if 

they are identified in either case, though special attention was given to genes with cross 

identification as representative cases of false positive causes in later analysis. 

 Read counts for false positives tended to be significantly higher when aligned to 

their native genome than their heterologous counterpart.  This is to be expected, as it is 

likely that differences in genome cause alignment failures for non-native reads.  Once 

false positives were identified, sequence analysis was performed.  Nucleotide BLAST 

was performed on all ortholog pairs to examine the influence of reference sequences on 

read alignment.  For E. coli the mean number of polymorphic sites per gene was 13 

between the two reference genomes.  Similarly, V. vulnificus strains showed a mean of 

12 SNPs per ortholog pair.  In all cases, false positives contained two to three-fold 

increases in SNPs, with E. coli having an average of 28 SNPs per false positive and V. 

vulnificus having 26.  This ratio was also observed with regard to gene length, with the 

number of SNPs to length ratio for false positives being around three times that of true 

positives. 

Once false positives were identified through differential expression analysis, 

further examination of the identified genes was conducted to identify the underlying 

causes for false positive identification.  Two specific causes are identified as the primary 

contributing factors: indel/duplication events and high-density SNP windows.   
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2.3.2 Indel / Duplication Events 

One gene that was identified as a false positive of particular interest in E. coli was 

cusC. This gene was cross-identified for both batch and chemostat conditions for read 

sets generated from both the K12 and IAI1 strains. For this reason, this gene was selected 

as a representative sample for the explanation of duplication based false positive 

identification.  cusC is the first gene of an operon consisting of 4 genes.  Figure 2.4 

shows an overview of the operon structure (Castro-Gama, et al. 2016). 

The cusC operon encodes a two component signal transduction system that is 

responsive to copper ions, acting as a regulatory system to the pco operon, which 

provides copper resistance for E. coli (Munson, et al. 2000).  The cusC gene itself is 1373 

bases long and has 21 SNPs along its length between the K12 and IAI1 strains.  Overall 

expression for this gene is generally low relative to average expression levels for each 

genome, and the ratio of SNPs to gene length is also approximately half that of typically 

Figure 2.4: Operon structure containing the gene.  cusC -> cusF -> cusB -> cusA 
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identified false positives.  Other genes in the operon following cusC are not identified as 

false positives.   

Investigation into the cause of false positive identification of cusC found that 

incorrect expression levels are created due to an indel event between the two genomes.  

Figure 2.5 shows an example of read alignment to this operon for an identical read set as 

aligned to both native and heterologous genomes. 

Figure 2.5: Read alignment for cusC operon for IAI1 batch condition, replicates 1 and 

2.  The native IAI1 genome (top) shows a continuous operon with sparsely aligned 

reads, while the heterologous K12 genome (bottom) shows an insertion after the cusC 

gene that is highly expressed (outlined in red).   



 30 

The indel event that can be seen between cusC and cusF between the native 

(IAI1) and heterologous (K12) genomes causes reads that align to the gapped area that 

slightly overlap cusC to be counted as expression for the cusC gene, causing a log-fold 

change in expression between the true and false expression levels of approximately 3.4, a 

highly significant difference.  Examination of the overlapping region, as shown in figure 

2.6, shows that the reads map poorly to this region, especially in the area overlapping the 

cusC gene.  In addition, the reads in this example were generated from the IAI1 strain and 

therefore cannot have produced reads in these positions, which implies that these genes 

are most likely the result of a duplication event and have been mapped to multiple 

locations. This suggests that elsewhere in the genome a region where these reads map 

accurately should exist.  To investigate this possibility, BLAST was performed on the 

sequence from the indel point and found five matching positions in the K12 genome and 

only four in the IAI1 genome.   

Figure 2.6: Reads in the indel region slightly overlapping cusC, with particularly poor 

alignment in the overlapping area. 
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Each of these positions were individually inspected in both genomes and appear to be 

orthologous across references, with the additional matching region in the K12 strain 

being the observed location in cusC.  In both genomes, a single case was found where 

these reads map perfectly, with all other cases showing similarly poor alignments to that 

shown in figure 2.6.  It is likely that a duplication occurred in E. coli, in which sequence 

from this section of genome, showing perfect alignment for these reads, was inserted into 

other parts of the genome.  This specific sequence duplication has occurred in K12 in the 

cusC operon, but did not occur in the IAI1 strain.  When alignment is performed using 

either the IAI1 or the K12 based reads, because the original sequence that was duplicated 

still exists elsewhere in both genomes and is expressed, reads from that region incorrectly 

map to the duplicated region in one genome and not the other, causing a false positive.  

Interestingly, one of the positions identified as a duplicated region for this same sequence 

corresponded to another gene, yhbI, which was cross identified as a false positive in all E. 

coli conditions and read sets.   This gene shows the exact same expression profile, with a 

highly-expressed region of poorly mapped reads aligning near the end of the gene.   

 This type of improper alignment is due to how bowtie2 handles reads that map to 

multiple locations.  When multiple sites are identified for possible alignment by bowtie2, 

reads can be mapped to both positions.  For this reason, false positives are identified at 

points where small duplications have occurred within the genome and minimal 

divergence has occurred at the duplicated points.  One possible solution to this might be 

to consider only uniquely mapped reads, however this would have the effect of removing 

all reads that map to multiple locations from all possible mapping positions, which would 

bias the data for the actual mapping position from the opposite direction, removing the 
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false positive identification for cusC and yhbI, but changing the expression levels of the 

gene where the reads were truly expressed.  This is discussed in further detail later in this 

study. 

2.3.3 SNPs 

The other primary cause of false positive identification between native and 

heterologous genomes was read loss caused by SNPs in highly concentrated windows.  A 

majority of false positives identified for all conditions showed significantly higher 

proportions of polymorphic sites for false positives on average as compared to the mean 

level of polymorphic sites between genes for the genomes as a whole.  False positives 

Figure 2.7: hisD reads aligned to native genome (top) and heterologous genome 

(bottom). 
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identified due to read alignment loss due to SNPs showed a two to three fold increase in 

propensity of SNPs with regard to their length, while genes identified as being false 

positives due to indel/duplication events showed sequence correspondence more similar 

to average expected levels of difference. 

As a representative gene for false positives due to read alignment loss by SNPs, 

hisD, a gene which codes for histidinol dehydrogenase, was chosen.  This gene was 

selected because it showed very uniform coverage in the native reference genome and 

because SNPs were distributed widely in various concentrations across the length of the 

heterologous reference, which makes read loss more visually apparent.  Figure 2.7 shows 

read alignment for hisD from the E.coli batch condition, with the K12 strain being the 

native reference and the IAI1 strain being the heterologous reference.  This gene has 55 

SNPs between the native and heterologous genome across a length of 1305 bases.  Read 

loss can be observed particularly in regions of high SNP density, where read alignment 

becomes increasingly more difficult due to differences in the reference sequences.  The 

two flanking genes, hisG and hisC also show some moderate read loss, but these genes 

are not identified as false positives because the read loss is less severe and doesn’t cause 

a significant enough log-fold change to trigger differential expression flagging.  Other 

genes identified as false positives show similar read loss when windows of high-density 

SNPs are present, with some cases having very distinct windows of loss and otherwise 

similar coverage between genomes, and still others showing staggered read loss across 

the gene, as was shown here in the case of hisD. 

The type of read loss observed between native and heterologous genomes due to 

SNPs might be reduced by either relaxing read alignment parameters so that reads can be 
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aligned when higher levels of SNPs are present, or otherwise by through the application 

of sequencing technologies that produce longer reads.  One potential problem of 

approaching this issue by adjusting alignment parameters is that reads may incorrectly 

map with higher propensity to incorrect regions, further biasing the read set. This 

problem would be further compounded if only uniquely mapped reads were used, as the 

proportion of reads that map to multiple locations would necessarily increase as 

alignment parameters become less restrictive. 

2.4 Simulations 

2.4.1 Read Length 

A majority of the false positives identified were caused by read loss in regions 

with high levels of SNPs.   In order to examine if this effect can be mitigated by read 

length, several simulations were performed.   Using Simulome, a reference genome was 

simulated based on the E. coli K12 

strain (Price, 2017). The simulated 

reference genome contained 500 

genes, with lengths selected in a 

normal distribution around the 

mean length of genes for the K12 

strain.  Each simulated gene was 

separated from its neighbor by a 

randomly sized intergenic region.  

A heterologous version of this 

reference genome was also 

simulated, in which each gene 

Figure 2.8: Simulation of the relationship 

between SNPs and read length. Log-fold 

change in read alignment for native and 

heterologous genomes. 
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contained 35 SNPs, approximately 

the average number of SNPs 

observed for false positives 

identified for E. coli that were 

caused by SNP induced read loss.  

Read data was then simulated using 

the ART package (Huang, et al. 

2012).  Read data was created for 

the simulated reference genome 

based on ART’s Illumina HiSeq 

2500 model, with simulated fold 

coverage of 150, for read lengths of 

50,100, and 150.   These parameters were selected to mirror the properties of the actual 

data for the E. coli data set.  The simulated reads were aligned to the simulated reference, 

which was considered the native reference genome, and also to the mutated reference 

simulation, in which each gene contained 35 randomly distributed SNPs across the length 

of each gene.  Alignment and read count extraction methods were performed identically 

to those outlined in the methods section on the actual read data.  

 The simulations showed substantial improvement in accurate alignments between 

native and heterologous reference genomes as read length increases.  This relationship 

can be seen in figure 2.8.  Reads of length 50 performed the most poorly in simulations, 

with all genes showing read loss when aligned to the heterologous reference genome, and 

those with lower expression levels showing the greatest log-fold changes.  Reads aligned 

Figure 2.9: Log-fold differences in native vs 

heterologous alignment for different read 

lengths. 
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to the heterologous genome with length 50 had 19.77% read loss overall.  Reads of length 

100 performed significantly better, with log-fold changes in read alignment being 

substantially closer to expected values and becoming increasingly reliable as expression 

levels increase. These reads showed a significantly better alignment, with a read loss of 

8.33%.  Reads of 150 in length showed the best performance among simulations, with 

higher accuracy for all reads over the entire range of expression levels and complete 

accuracy being reached at lower expression levels than the 50 and 100 read length 

simulations. Alignment here was again the best of the simulations, with a read loss of 

only 3.09%.   Figure 2.9 shows an 

overview of log-fold differences 

between alignment to native and 

heterologous genomes for the three 

simulated read lengths.  Overall 

these simulations show that 

heterologous reference use is more 

reliable with longer read lengths, 

and that the expected number of 

false positives caused by 

polymorphisms will be reduced as 

read length increases. 

Figure 2.10: Simulation of the relationship 

between SNPs and read length shown using 

bowtie2’s –very-sensitive alignment settings. 



 37 

2.4.2 Alignment Sensitivity and Read Depth 

 An additional variation of this simulation was performed using bowtie2’s “--very-

sensitive” alignment parameter.  The use of this argument increased overall alignment in 

all cases, reducing read loss to 13.65% for the 50 read length simulation, 4.00% for the 

100 read length simulation, and to just 1.41% for the 150 read length simulation.  This is 

a modest improvement over the standard alignment parameters and can be seen in figure 

2.10 as each curve becoming slightly tighter and approaching accurate read levels across 

native and heterologous genomes from slightly lower expression levels.  The lower range 

of expression values, however, are not influenced strongly enough for this method to 

mitigate false positives completely, while it does have value and should be used for 

native and heterologous alignment issues, the stronger influence appears to come from 

increases in read length.  Next, the effect of read depth was examined.  In our sample 

data, E. coli had an average read 

coverage of 150x, V. vulnificus 

had a much greater read depth of 

around 600x.  Simulations of these 

conditions show that increasing 

read depth has little influence, 

simply compressing the range of 

depth toward the higher end, and 

maintaining similar ratios of log-

fold differences between native and 

heterologous genomes.  The results 

Figure 2.11: Simulation of the relationship 

between SNPs and read length shown at 600x 

coverage. 
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of this simulation can be seen in figure 2.11. 

2.4.3 Multiple and Unique Mapping Positions 

Some false positives were caused between native and heterologous genomes when 

insertion events that copied short segments into or adjacent to coding regions were 

present, causing reads from other regions of the genome to incorrectly map to some genes 

in the non-native genome.  One possible approach to removing these false positives is to 

consider only reads that uniquely map to a single position in the genome as valid reads.  

This would mean that reads that map incorrectly would not be included in read counts, 

but also that those reads would not correctly map to their proper location as well.  If the 

correct mapping location for these reads, however, was orthologous between the native 

and heterologous genomes, the bias introduced from removing these reads should be 

roughly the same, with the effect of eliminating false positives while maintaining a true 

ratio of gene expression for genes containing the correct mapping position.   

 To simulate the effects of this approach, Simulome was used to create a 500 gene 

simulated reference genome and a mutated variant with insertion events 100 bases in 

length, which were copied from other random positions in the original reference.  This 

means that in each gene in the variant genome, an insertion of 100 base pairs exists that 

also has a correct mapping location elsewhere in the genome.  Read data was created 

using ART for the simulated reference genome based on ART’s Illumina HiSeq 2500 

model, with simulated fold coverage of 150.   
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 Figure 2.12 shows the 

performance of read alignment for 

the native and heterologous 

genomes with ambiguously 

mapping positions included and 

only uniquely mapped positions.  

The condition in which multiple 

mapping locations were included 

performed much better, with most 

genes showing appropriate levels 

of read alignment across the native 

and heterologous genomes.  This 

scenario did show several genes 

that would likely be identified as false positives, which can be seen as being more highly 

expressed in the heterologous genome.  These genes were not present as false positives in 

the case of unique mapping and returned to a more appropriate read alignment ratio 

between the native and heterologous genomes, but overall the level of read alignment for 

the heterologous genome is reduced significantly overall, introducing a bias that is far 

more extreme than the problem it solves. 

2.5 Discussion 

The use of non-native references genomes relies on the distance between the 

native and heterologous genomes and the development of high-integrity data that can 

overcome the naturally occurring differences between those genomes.  Several factors 

Figure 2.12: Simulation of the reads with 

ambiguously mapping inserts. Log-fold 

change in read alignment for native and 

heterologous genomes. 
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should be taken into account by researchers intending to use non-native references for 

alignment of read sets.  The first step that must always be taken is to identify 

correspondence between orthologous regions.  For example, a researcher with a read set 

with no complete native reference genome available that has a potential heterologous 

genome available for read alignment should first investigate if the heterologous genome 

is viable for alignment.  To do this, de novo assembly of reads into contigs, followed by 

ortholog identification using BLAST should be performed. Then, by extracting read 

counts for orthologous regions, correspondence can be examined as shown in figure 2.3.  

It is important to mention that the parameters of ortholog identification here are highly 

relevant.  In this study, we performed ortholog identification using very strict parameters 

(95% identity, length > 200bp, max mismatch = 5) and were able to identify a large 

subset of orthologous regions with high confidence.  By relaxing these ortholog 

identification criteria, undoubtedly a larger subset of orthologous genes could be 

identified, however the false positive rate would also correspondingly increase with 

increased numbers of mismatching regions existing.  A researcher intent on using a non-

native reference genome for alignment should then properly tune their BLAST ortholog 

identification parameters to maximize the number of orthologs they can identify between 

their read set and non-native reference genome, while confirming viability by monitoring 

the correspondence of a single read set as aligned to both the non-native reference and 

their de novo assembled contig sets.  That is, as long as an identical read set produces 

strong correspondence when aligned to the native and non-native alignment target, such 

as that seen in figure 2.3 of this study, comparison between those orthologous regions can 

be considered viable.  If that alignment instead becomes increasingly dispersed, the 
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strictness of BLAST parameters for ortholog mapping should be increased.  Once the 

researcher has determined an appropriate level of ortholog identification, additional 

investigation can be performed, if desired, to further eliminate false positive outliers. 

In this study, we have observed that genomes with short reads are particularly 

vulnerable to false positives when using a heterologous genome for read alignment, even 

with very strict correspondence between orthologous regions.  Most false positives 

originate from sites with a high frequency of polymorphic sites, with a few false positives 

being caused by other mutation events. Our E. coli samples, which used 50 base reads, 

contained several false positives that we were able to identify and subsequently analyze 

to gain insight into underlying causes of incorrect information that must be considered 

when working with non-native reference genomes.  By contrast, our V. vulnificus data set 

showed that by using longer reads with more depth that false positives can be largely 

avoided, having almost no false positives at all between native and heterologous 

genomes.  With this being the case, researchers using non-native reference genomes 

should be aware of these issues and take appropriate precautions in their analyses by 

confirming both proper identification of orthologous regions and the use of longer reads 

to mitigate incorrect alignments that result in false positives for heterologous alignment.   

Additional accuracy can be achieved when necessary by researchers using 

heterologous reference genomes. By performing BLAST analysis between read sets and 

the reference genome to be used, potential false positives can be identified by searching 

for those reads which align with the highest ratio of polymorphic positions.  While 

increasing read length is certainly the best way to avoid false positives and incorrect 

information when using a heterologous genome for read alignment, it is likely that as the 
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distance between read data and reference genome increases, that the improvement 

observed through the use of longer reads would degrade.  In general, if it is known that a 

heterologous genome will be used in a study, longer reads should be generated whenever 

possible.   Additional improvements can be made by adjusting read alignment 

parameters, but these tend to be fairly modest, with false positives still being likely to 

occur even with strict alignment parameters. Overall the level of false positives in both 

cases is low, with the false positive discovery rate compounding as more complex 

comparisons involving more alignments of data are performed.  Using a non-native 

reference genome for research seems to be a safe endeavor in general if genetic distances 

between native and non-native conditions are not excessively large, however for very 

sensitive experiments the use of heterologous reference genomes should be approached 

with caution, as it is possible that some important genes may be subject to bias without 

the benefit of a native reference genome.   

In this study, we have examined the problems that can arise from the use of non-

native, heterologous genomes as references for RNA-Seq read alignment.  We have 

described a method for identifying false positives, outlined the underlying causes, and 

suggested a set of best practices for studies that use non-native reference genomes, that 

will allow researchers to make informed decisions about how they handle their data 

analyses. The analysis workflows described in this study can potentially be applied to 

novel data sets to help investigators estimate whether it is a safe assumption to use a 

common reference genome -- either for ease of analysis, or because complete reference 

genomes for all species or strains in the study are not yet available. In the case where 

partial genomic information is available, reciprocal mapping analysis can be applied to 



 43 

orthologous genes in the unambiguously alignable portions. These regions can be 

analyzed to determine the level of correspondence of results between alternate mappings, 

and to identify the fraction of potential false positives in the analyzable subset of the data. 

While this will not provide a complete reciprocal analysis, it does provide a quantitative 

basis by which to justify use of a heterologous common reference for multiple strains, or 

potentially to justify the expense of finishing additional strain genomes to provide a more 

accurate reference if available genomes are not sufficient. 



 

 

 

 

 

 

CHAPTER 3: SIMULOME: A GENOME SEQUENCE AND VARIANT SIMULATOR 

 

3.1 Background 

As new data types and methodologies for analysis of biological data are 

developed, simulation tools are becoming increasingly necessary to the development, 

testing, and benchmarking of bioinformatics research.  Simulations provide a valuable 

control case in many contexts, such as the identification of read mapping bias (Degner, et 

al., 2009), correction of read bias in RNA-seq mapping (Satya, et al., 2012), and analysis 

of the accuracy of gene expression profiling (Hirsch, et al., 2015).  It is therefore 

necessary to develop simulation software that is flexible, accessible, and able to model a 

wide range of different genomic conditions. 

Currently, several tools exist for simulating read data, such as ART (Huang, et al., 

2012) and Mason. Simulation tools such as these approach the problem of simulation 

from the perspective of reads, and are capable of producing impressive read sets that 

model variation and sequence errors for a variety of sequencing platforms.  Simulome, 

however, approaches the problem of simulation from the perspective of the reference 

genome, which expands on the set of potential problems that can be addressed using 

genomic simulation. When Simulome is used in used in combination with read 

simulation tools like ART and Mason, entirely simulated experimental scenarios become 

possible.   
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3.2 Features and Methods 

Simulome is a python-based tool that incorporates biopython (Cock, et al. 2009) 

to generate synthetic prokaryotic reference genomes by sampling and restructuring 

existing genomic sequence data.  Simulome provides to the ability to create pseudo-

reference genomes with a specified gene set and controlled intergenic regions, as well as 

versions of the simulated genome that contain user con-trolled mutation events.  This 

functionality makes it possible to analyze the effect of specific mutation types on a large 

scale, providing researchers with the ability to investigate the efficacy of analysis 

methodologies on a large number of genes that contain similar mutation events, while 

providing a control genome to which comparisons can be made.  Simulome’s variant 

simulations can also be applied to whole prokaryotic genomes, allowing researchers to 

create variants of existing genomes with mutations introduced according to user 

specifications.   

Simulome features four different run modes for simulating mutation events: SNP 

mode, synonymous/nonsynonymous mutation mode, insertion/deletion mode, and 

duplication mode.  These run modes can be combined to produce variant genomes 

containing any combination of mutation events.  Further customization of both the 

control and variant genome is possible through additional optional arguments. 

3.2.1 Reference Genome Simulation 

Creation of a simulated reference genome requires a nucleotide FASTA file 

containing the sequence of an existing organism, and an associated annotation file in 

GTF/GFF3 format.  Basing the simulation on the properties of a real genome ensures that 

simulated genomes accurately model natural sequence variation. and allows genomes 

with different properties to serve as the base for simulation.  For example, a researcher 
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studying the effects of GC bias in RNA-seq data may be interested in simulating genomes 

with low or high GC content, and could do so by providing a low or high GC content 

genome to Simulome as input. Users can either use the provided genomic data to create a 

pseudo-genome of arbitrary size and its mutated variant, or simply create a mutated 

variant of the entire existing genome. If a pseudo-genome is to be created, gene data is 

extracted from the base genome and a user-specified number of genes are randomly 

selected to be used in the simulation.  These genes are sampled so as to follow a normal 

distribution of gene length.  The mean length and the standard deviation of all genes in 

the base genome are calculated, and genes are then sampled such that the mean and 

standard deviation of the simulated reference genome approximates that of the base 

genome. Randomness is determined by a seed value, and in the event that a user wishes 

to repeat a simulation, an exact replication can be produced by reusing the same random 

seed.  Once target genes are selected, the simulated genome is created by interspersing 

intergenic regions and coding regions.  Intergenic regions can be simulated in a variety of 

ways. Users can either specify the use of randomly generated intergenic regions, or can 

use real intergenic sequence data from the base genome.  Random sequences are 

generated such that each base has a 25% chance of being selected for any given position.  

When real intergenic regions are used, all intergenic regions for the base genome are 

extracted and segments are randomly selected when needed.  In both cases, users can 

specify intergenic length or allow randomly sized intergenic regions to be selected. 

BLAST searches can optionally be performed on each simulated intergenic region to 

ensure that there are no unintended duplicate regions in the simulation (Altschul, et al., 

1990).  The simulated genome will be output in FASTA and GFF/GTF3 format.  
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Additional properties, such as operon inclusion and frequency, can be simulated by 

specifying optional arguments, which are covered in more depth in the Simulome 

manual, which is provided in Appendix B. 

3.2.2 Variant Genome Simulation 

Four run modes are available for simulating SNPs, synonymous/nonsynonymous 

mutations, indels, and/or duplication events.  These can be used in any combination and 

are applied to each gene in the simulated genome. For example, it is possible to simulate 

a reference genome and/or a variant genome in which each gene contains a specific 

number of SNPs and deletions.  Each run mode can be configured to introduce either an 

exact number of mutations in each gene, or otherwise to simulate variants in a range 

based on a Gaussian distribution with user-defined means and standard deviations.  Once 

mutation events are simulated, sequence and annotation files representing the variant 

simulated genome are written, as well as an additional file containing meta-data for the 

introduced variants. 

In SNP run mode, a specified number of SNP events are introduced at random 

locations for each gene in the variant genome.  By default, polymorphisms can occur at 

any position in a gene and no base will mutated more than once.  However, additional 

control is provided for SNP mode to allow for the control of SNP density.  Users can 

specify a window size in which SNP events can occur.  To simulate the effect of SNPs on 

read alignment, a user might create simulations with regions of increasingly dense SNPs.  

By specifying the same number of SNPs in a decreasingly small window size, it would be 

possible to quantify the effect of locally clustered SNPs on read alignment on a large 

number of samples. 
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In Synonymous/Nonsynonymous run mode, mutations are performed such that a 

specified percentage of mutations will be synonymous mutations.  This run mode 

assumes that the first position of each gene begins the open reading frame and requires 

that the user provide distribution parameters to determine the number of mutations that 

will occur in each gene. 

Insertion and deletion run mode allows users to simulate indel events for each 

gene in the simulated reference genome.  Users can choose to include insertion events, 

deletion events, or both, and can specify the number and length of each event. When both 

insertions and deletion events are specified, deletion events are performed first in order to 

preserve mutation integrity across all genes. 

Duplication run mode allows the user to simulate scenarios where multiple 

possible mapping locations for a read are present in a genome.  In duplication mode, a 

duplication percentage is specified by the user. A duplicate region of the specified size 

(e.g. 1000 nt if 10% of a base genome of 10000 nt is specified) is simulated and added to 

the base genome.  Genes are randomly selected for duplication, along with appropriate 

intergenic regions, until the desired duplication level is reached. 

3.3 Performance 

To test Simulome’s speed, simulations were performed for reference genomes and 

mutated variants using Escherichia coli strain K12. These tests were performed on the 

Red Hat Enterprise Linux 7.2 operating system, with an Intel Xeon 2.53 GHz processor.  

Results of performance testing can be seen in Table 3.1. 
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Table 3.1: Simulome execution time.  Speed for various run mode combinations for 

various simulations based on the E. coli genome. 

Number of Genes   Simulation Mode  Execution 
time 

1000   Reference only   3m5s 

1000   Reference + SNP variant   3m12s 

1000    Reference + SNP/Indel variant   3m18s 

1000   Reference + SNP/Indel/duplication variant   3m41s 

2000  Reference + SNP/Indel/duplication variant  10m5s 

3000  Reference + SNP/Indel/duplication variant  16m40s 

E. coli (full)  Synonymous/Indel variant  0m48s 

E. coli (full)  SNP/Indel variant  0m40s 

E. coli (full)   SNP/Indel/duplication variant   0m41s 

 

3.4 Conclusion 

Simulome provides a powerful and easy to use tool for creating pseudo-genomes 

and mutated variants for prokaryotes.  Simulome makes it possible to create genomes 

based on any bacterial species, while controlling for a variety of factors or to directly 

simulate variations in a complete genome based on user specifications.  Furthermore, it 

provides a range of options that can be used in combination to create mutated variants of 

the simulated genome, which allows for controlled testing of specific genomic 

conditions.  Simulome can be used in combination with reads generated from next-

generation sequencing platforms or alternatively with NGS read simulation packages.  



 

 

 

 

CHAPTER 4: CONCLUSIONS 

 

In this dissertation, we aimed for the identification, quantification, and correction 

of certain types of bias in next generation sequencing technologies and their associated 

analysis methodologies.  Our results presented in Chapters 1~3 indicate that we have 

largely achieved the goals.   

In chapter 1, we generated and analyzed data based on the PARS methodology to 

experimentally measure RNA secondary structure in three bacterial strains. This novel data 

set made it possible to identify the cause of GC content bias on the Illumina sequencing 

platforms as a function of RNA secondary structure formation.  We have described the 

relationships between RNA secondary structure and GC content and between RNA 

secondary structure and read depth.  We have also shown that fragment counts are 

significantly biased, with a lower frequency of read starts at sites that are folded into RNA 

secondary structure conformations. Finally, we have shown that the relationship between 

read depth and GC content causes increasing bias as GC content increases, with less 

significant biases being caused in lower GC sequences. 

In chapter 2 we approached the problem of non-native reference alignment of RNA-

seq reads by comparing the effects of read alignment to native and heterologous reference 

genomes.  We described a method to identify false positives caused by improper 

alignments to the heterologous reference, and examined the underlying causes to provide 

a set of best practices for research that makes use of non-native reference genomes.  The 

analysis workflows described in chapter 2 can potentially be applied to novel data sets to 
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help investigators estimate whether it is a safe assumption to use a common reference 

genome -- either for ease of analysis, or because complete reference genomes for all species 

or strains in the study are not yet available, providing a quantitative basis by which to 

justify use of a heterologous common reference in research studies. 

In chapter 3 we presented Simulome, a reference genome and variant simulator for 

creating pseudo-genomes and mutated variants for prokaryotic species.  Simulome makes 

it possible to control for a variety of factors, making it a valuable tool in the investigation 

of systemic bias in software and experimental methodologies.  It also provides a range of 

options that can be used in combination to create mutated variants of the simulated genome, 

which allows for controlled testing of specific genomic conditions. 

To summarize, we have addressed the complexities of bias identification, 

quantification, and correction in studies that rely on next generation sequencing 

technologies and associated analysis methodologies. We have identify the cause of GC bias 

resulting from mRNA secondary structure formation in next generation sequencing 

platforms and quantify levels of bias in three bacteria spanning low, medium, and high GC 

content, we have examined the problem of heterologous reference genome usage when 

comparing closely related bacterial strains, providing multiple analyses of both real and 

simulated data to provide a set of best practices for the use of non-native reference genome 

comparison, and have presented Simulome, a simulation tool to generate synthetic 

reference genomes and simulate mutations, allowing for investigation into biases caused 

my experimental and computational analysis methodologies. 
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APPENDIX A: Gene-RiViT: A visualization tool for comparative analysis of gene 

neighborhoods in prokaryotes 

 

ABSTRACT:  

The genomes of prokaryotes are dynamic and shuffling of gene order occurs 

frequently, along with horizontal transfer of genes from external sources. Local 

conservation of gene order tends to reflect functional constraints on the genome or on a 

biochemical subsystem. Comparison of the local gene neighborhoods surrounding a gene 

of interest gives insight into evolutionary history and functional potential of the gene. The 

Genomic Ring Visualization Tool (Gene-RiViT) is a high speed, intuitive visualization 

tool for investigating sequence environments of conserved genes among related genomes. 

Gene-RiViT allows the user to interact with interconnected global and local 

visualizations of gene neighborhoods and gene order, through a web-based interface that 

is easily accessible in any browser. The primary visualization is a wheel of nested 

rotating circles, each of which represents a single genome. This visualization is similar to 

common circular genome alignment views, except that the rings can be realigned with 

each other dynamically based on user selections within the ring view or one of the 

coordinated views. By allowing the user to dynamically realign genomes and focus on a 

locally conserved region of interest, and using orthology connections to highlight 

corresponding structures among genomes, this view provides insight into gene context 

and preservation of neighbor relationships as genomes evolve. Visualizations are linked 

into a coordinated multiple view interface to provide multiple selection methods and 



 59 

entry points into the data. These approaches make Gene-RiViT a flexible, unique tool for 

examining gene neighborhoods that improves on existing methods. 

INTRODUCTION  

It has long been known that multiple independent genes can be coordinately 

expressed and behave as a single unit in prokaryotic organisms. These units, called 

operons, encode functionally linked proteins, with a conserved gene order. It has been 

shown that gene order within operons is often conserved in both closely related and 

highly divergent organisms, and can therefore be used for making inferences about genes 

and their functions (Dandekar, et al. 1998; Jacob et al. 1961). For example, if the function 

of a single gene in a region of conserved gene order for multiple organisms is known, it is 

possible to infer information about neighboring genes and transfer functional annotation, 

even when function is known for only a single organism in the comparison (Aravind, et 

al. 2000). Conversely, if a gene is found in one genome outside of its previously observed 

functional context, this may be an indication that there is no longer selection pressure 

acting to keep components of an operon in their functional order. Several tools currently 

exist that allow their users to examine prokaryotic genes in the context of gene 

neighborhoods (Alm, et al. 2005; Carver, et al. 2005; Chaudhuri, et al. 2004; Fong, et al. 

2008; Uchiyama, et al. 2006). These existing tools are limited in a number of ways. Most 

lack the capacity for users to use their own data, and are confined to pre-loaded data sets. 

This may be helpful for studying broad concepts, but can be limiting when specific 

organisms are being examined and data for those organisms has not been pre-computed. 

It is also limiting if the user wishes to analyze unpublished data. The existing gene 

neighborhood analysis tools generally make use of visualizations based on linear 
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alignment to a fixed reference genome. The user queries the database using text-based or 

pulldown based queries, and then a visualization of a local region is generated. It is not 

possible to seamlessly move back and forth between the whole genome context and the 

local neighborhood, or to initiate a query in a comparative data set based on observed 

relationships in the summary visualization rather than by keyword access to a known 

region of interest. The Genomic Ring Visualization Tool (Gene-RiViT) is a web based 

visual analytic tool that uses emerging web technologies to provide a coordinated 

multiple view interface to a comparative genomic database. The current version of Gene-

RiViT combines a familiar, global 2D dotplot view with an adaptive local neighborhood 

view, demonstrating the potential of a visual analytic approach for real time exploration 

of conserved gene neighborhoods and their genomic context. 

2 GENE ORDER  

Comparison of gene order in closely related or even highly diverged genomes can 

suggest the biochemical context of a gene in a system, though conserved gene order does 

not necessarily provide complete biochemical information (Wolf, et al. 2001). When 

multiple prokaryotic genomes are being compared in order to understand gene content 

differences among strains that may lead to differences in pathogenicity, in host 

preference, or in survival in the environment, the first line of inquiry is often simply to 

examine genomic similarities and differences (Morrison, et al. 2012). For instance, if a 

component of an operon frequently associated with pathogenicity, such as the Type IV 

secretion system used by many bacteria to transport proteins and toxins out of the cell, is 

found as a differentiating feature between two bacterial strains with different levels of 

pathogenicity, this is potentially of interest. The next question, after we identify those 
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potentially interesting differences, is whether the complete Type IV secretion system is 

present or whether that gene is isolated out of its functional context, perhaps due to a 

horizontal transfer event or a reshuffling of the genome. The number of prokaryotic 

genome sequences available is growing rapidly, and comparative studies focusing on 

identifying core genome features common to a set of genomes, or dispensable features 

that distinguish them, are common. Gene-RiViT builds on an existing genomic 

comparative analysis platform (Cain, et al, 2012), adding the capability to dynamically 

examine the genomic context of these gene discoveries, as well as the gene-level effects 

of observed insertions, deletions, and inversions on a set of genomes. 

Typical sequence alignment visualizations assume that sequences are collinear, 

and don’t adequately display permutations in gene order, especially when multiple 

genomes are being compared. At the genome level, however, gene order is commonly 

rearranged and analysis of these permutations cannot be disregarded in a comparison 

procedure (Rogozin, et al. 2004). Analysis of gene order conservation using gapped local 

alignments of 25 prokaryote genomes has shown that 5-25% of the genes in bacterial and 

archaeal genomes belong to gene strings that are shared by at least two of the examined 

genomes, once closely related species were excluded (Wolf, et al. 2001). Gene-RiViT 

addresses the pervasive permutation problem associated with analysis of gene order, by 

providing visualizations that make rearrangements in gene neighborhoods obvious and 

comparable between multiple genomes. 

3 ORTHOLOGY  

In order to compare gene order and identify commonalities among different 

genomes, it is first necessary to determine orthology relationships between genes. 
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Orthologs are defined to be homologous genes that diverged from an ancestral gene in the 

most recent common ancestor of the species under comparison, while paralogs are genes 

that are related by a gene duplication event in an ancestral gene (Firch, 1970). Co-

orthology refers to paralogs produced by the duplications of orthologs subsequent to a 

given speciation event, a phenomenon which is commonly observed between distantly 

related species (Jordon, et al. 2001). Inparalogs are paralogs in a given lineage that 

evolved by gene duplications occurring after a given speciation event (Sonnhammer, et 

al. 2002). Gene-RiViT uses OrthoMCL to cluster genes by orthology, coorthology, and 

inparalology. OrthoMCL identifies orthologous groups from the results of all-against-all 

BLAST comparisons, identifying reciprocal best hits (Ochman, et al. 2000). This method 

of ortholog clustering is based on the principle that orthologous genes are the most 

similar among all compared pairs of genes (Li, et al. 2003). OrthoMCL has been shown 

to outperform other clustering methods in terms of efficiency and accuracy (Altenhoff, et 

al. 2009), however the modular design of the database that supports Gene-RiViT allows 

for straightforward substitution of other methods for identifying orthologs as new 

methods evolve. The use of orthoMCL to prepare genomic data for analysis in Gene-

RiViT allows any set of genomes to be compared to one another, regardless of whether or 

not they have been made publicly available or incorporated into existing orthology 

databases such as Clusters of Orthologous Groups of proteins(COG). 

4 GENE-RIVIT  

Gene-RiViT uses three main modules to process data and provide it to the user: an 

OLAP database, a custom-built web server, and the client-side visualization. Each of 

these modules is designed to be scalable and to allow for fast interaction with genome-
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scale data. Gene-RiViT incorporates multiple coordinated views that use state of the art 

web technologies to create a dynamic, visually appealing and intuitive interface that 

provides researchers with the ability to contrast the relationships between genes. The 

publically available interface requires no setup and is capable of visualizing any 

combination of prokaryotic genomes. Users can also set up GeneRiViT to run on local 

systems with relatively little setup. We currently provide support for importing any 

genome available in the EMBL database, however, the GenoSets back-end which 

supports the Gene-RiViT system also supports import and annotation of unpublished 

genome data.   

4.1 Web Server  

Gene-RiViT relies on custom-built middleware that functions as a web server and 

data processing hub between the database and the visualization. This module of Gene-

RiViT was developed using Node.js, an efficient and scalable platform for data-intensive, 

real-time applications. As the amount of genomic data processed can be quite substantial, 

it was important to address the issue of network latency when designing Gene-RiViT. 

Node.js achieves high performance when processing large amounts of data, by using the 

performance optimized javascript V8 engine along with a non-blocking, asynchronous 

model for data processing and communication. This allows Gene-RiViT to efficiently 

handle on-the-fly queries on genome-scale data sets and send results back to users over 
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the net at speeds sufficient  to allow for 

seamless interaction. Figure A0.1 shows 

the overall architecture of Gene-RiViT. Of 

particular interest is the central role of the 

web server in handling data processing 

and communication. When a user interacts 

with a gene of interest in the visualization, 

the web server will query the database for 

information about that gene, homologous 

genes in other organisms that are being 

examined, and their neighboring genes. 

The results are then processed into a 

format that can be recognized by the visualization and are returned over the network as 

they are processed. The asynchronous processing of node.js allows data to be effectively 

streamed back to the user, rather than returned as a single, large block. This allows users 

to interact with large amounts of complex data in real-time. 

4.1.1 GenoSets  

GenoSets is a comparative genomic analysis platform that supports annotation 

parsing, manages ortholog clustering via orthoMCL, assigns Gene Ontology (GO) terms 

to genes, and structures data in the database with consistent gene definitions for a set of 

genomes [5]. GenoSets provides functionality for Gene-RiViT that lets researchers 

specify any dataset in the EMBL-Bank public repositories (Kulikova, et al 2007). 

Through the Gene-RiViT interface, researchers can select any combination of genomes 

 
 

Figure A0.1: A central web server processes 

data between the database and the client-

side visualizations. New data is generated 

via GenoSets, which retrieves and clusters 

data before adding it to the database. 

 

. 
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from a list of completed microbial projects or 

EMBL accession id. User requests from the 

visualization layer are passed to the web 

server, which uses GenoSets to download the 

specified genome data, cluster the data using 

orthoMCL, and load the processed data into 

the database. When the process is complete, 

users are notified by e-mail that their data is 

ready for viewing. The amount of time 

required for processing is dependent on the 

size and number of genomes being loaded. A 

trial process that was run to cluster and load 

data of six different E. coli strains took 

approximately two hours to complete on a 

desktop computer, however, this is not an innate restriction on the system. Once data is 

loaded, users can switch between data sets through the Gene-RiViT interface and access 

any previously loaded data. The entire process of downloading, ortholog clustering, and 

loading data into the database, however, is a completely invisible process, which 

contributes to the ease of use of Gene-RiViT.  

4.2 Database  

Gene-RiViT uses a multi-dimensional architecture to support Online Analytical 

Processing (OLAP): a model typically used in business intelligence software to support 

real-time, ad hoc querying of data at different levels of granularity (Codd, et al 1993). 

 
 

Figure A0.2: Homologous genes in four 

strains of staphylococcus with respect to a 

reference strain. The dot plot view 

provides a global representation of 

homologous gene positions of multiple 

organisms as compared to any selected 

reference genome. The x axis represents 

the position of the gene in a selected 

reference and the y axis shows the 

position in selected query genomes. 

 

 

. 
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The database employs a star schema, in which source data is partitioned into facts that 

represent different dimensions of information. This database design facilitates the fast 

querying capacity that is necessary for interactivity with such a large amount of data. For 

example, information about a gene’s location in the genome is stored separately from 

information about the ortholog clusters that gene may belong to. Each table in the 

database stores a different type of information about the gene and all of these dimensions 

of information are relationally linked through a central table (Kimball, et al. 2002). By 

keeping the data separated and stored at this level of detail, it is possible for queries to be 

made for only the information that is necessary on tables that contain only the necessary 

information. This reduces the overhead that would otherwise slow down the querying 

process if the database were required to search for and parse out scattered chunks of 

information from several genomes worth of data. 

4.3 Visualization  

Gene-RiViT incorporates multiple views that are implemented using javascript-

based visualization libraries. The two main libraries used are Flot and D3 (Bostock, et al. 

2011). Flot is a javascript-based plotting library that uses the jQuery framework and 

HTML5 canvas to produce graphical plots on the fly on the client side. The Data Driven 

Documents library, or D3, is a fast and efficient javascript library for developing 

interactive web-based visualizations. Both of these readily available technologies ensure 

compatibility on almost any system with no setup or configuration for the user, in 

addition to providing fast interfaces that allow users to view and interact with genome-

scale data. 

 



 67 

4.3.1 Plot View  

Gene-RiViT provides researchers with multiple coordinated views of prokaryotic 

genome data. A global view is provided as a dot plot, in which positions of genes are 

plotted on a graph with respect to their positions in a reference organism. The reference 

organism can be selected from a list of any of the genomes that have been loaded into the 

database. Any number and combination of genomes can be selected for viewing with 

respect to the selected reference organism, and the reference genome can be changed 

dynamically. Each organism is represented as a different color in the plot and standard 

visualization features, such as panning and zooming, are incorporated. Figure A0.2 shows 

an example of four strains of Staphylococcus plotted with respect to a fifth strain. The 

strong main diagonal in this plot indicates that there is high gene-order similarity between 

these organisms, which is not unexpected as they are very closely related. However, the 

dot plot makes insertions, deletions and rearrangements easily visible as well as giving 

access to off diagonal similarities that would simply show up as gaps in a standard linear 

reference-based genome alignment. Considering the large amount of data represented in 

the dot plot, it is necessary to incorporate methods for locating areas that might be of 

interest. A number of methods for accessing the data presented in the dot plot are 

implemented. Annotation data stored in the database is provided to the user as a list of 

Gene Ontology terms. The interface provides a method for selecting GOterms, such as 

cell surface binding, from a menu, which results in all genes that are either annotated or 

homologous to genes with the selected function being highlighted in the plot, while all 

genes without the specified function will be colored grey to make the selected genes more 

obvious. This functionality can help researchers to identify genes in potentially 
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interesting functional categories as starting points for more detailed exploration, or to 

improve on the level of detail provided in annotation information. 

4.3.2 RiViT View  

While the dot plot view provides an overall picture of the organization of genes 

for selected organisms on a global scale, the RiViT view provides a local context in 

which to examine relative ordering and reshuffling of genes. The RiViT view consists of 

a series of nested, rotating semi-circles, each of which represents the ninety genes around 

a central gene that is aligned with homologous genes in other circles. A gap is 

incorporated at the nine o’clock position of the view to show that there is a discontinuity 

between the genes shown in the view and that the circles represent only a local view of a 

larger volume of information. When the circles rotate clockwise, genes from previously 

viewed regions of the genome fade into the circle from the gap, while genes entering the 

gapped region fade out. The opposite is true when rotation is counter clockwise. For 

cases where an alignment exists, but homologous genes are not found for every organism 

selected, the genes on an alignment for organisms with no matches are shaded grey to 

indicate that there is no alignment for that organism. In the opposite case, where multiple 

possible alignments are found in a single organism, navigation buttons are provided that 

allow users to rotate the circle for that organism through the set of existing matches. The 

number of rings displayed in the RiViT view is dependent on the number of organisms 

selected for investigation. The previous example of four staphylococcus strains aligned to 

a fifth reference strain would result in five color-coded rings representing the selected 

organisms. When a user interacts with genes in the dot plot view, these rings rotate to 

align homologous genes for all organisms at the three o’clock angle. A user specified 
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number of neighboring genes around the selected gene are also checked against 

neighboring genes in the query organisms for homology and color-coded accordingly. 

The RiViT view, then, provides researchers with information about relative restructuring 

or conservation that has occurred at a local level between organisms under study without 

regard to long-range structural changes. This allows genes and gene neighborhoods to be 

examined and compared in a local context that can provide information about how 

specific genes might be functionally linked. Figure A0.3a shows an example of the RiViT 

view aligning a set of genes from a conserved operon in staphylococcus. Users are also 

able to select any gene in the RiViT view to make that gene the new point of reference. In 

this way, gene neighborhoods can be smoothly explored by allowing users to switch 

between different organisms that have differing homology relationships, or move in steps 

 
 

Figure A0.3: A conserved operon examined using Gene-RiViT. Left(a): The RiViT view 

provides local context information about gene neighborhoods. Homologous genes are 

aligned in green. Genes shown in grey show that no homologs were found for an 

organism. Right(b): A zoomed view of the dot plot view shows a conserved operon for 

two query species. Five homologous genes are highlighted around a central selected 

gene. All other points are shaded grey to reduce visibility. 

 

 

. 
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along the genome to explore wider ranges of neighborhood information. For example, 

organisms a, b, and c may have an orthologous match that can be aligned by selecting any 

of the genes in a specific ortholog cluster. Organisms c and d, may have related genes in 

the same neighborhood that can be examined by switching focus to organism c. This sort 

of exploratory analysis could be particularly useful in comparing genomes of species at 

varying evolutionary distance. 

4.3.3 Details View  

In addition to the interactive views discussed above, a detailed list of information 

about genes is provided. This list provides details about each of the genes in the 

alignment, as well as a list of neighboring genes that can be selected to view details. By 

default, size, starting and ending positions in the genome, and annotation information are 

displayed, though users can select additional annotation information to view by selecting 

options from a menu. Selecting a new gene for investigation will automatically update the 

list to show information about genes and their neighbors in the new alignment. 

5 DISCUSSION  

Gene-RiViT is designed to be useful in a variety of research situations. In more 

recently divergent organisms, Gene-RiViT can be used to examine the effects of gene 

rearrangement by comparing multiple organisms. In more evolutionarily distant 

organisms, it can also be used to identify and examine the details of conserved sets of 

genes and for functional inference by association. A simple example of the utility of 

Gene-RiViT was performed to illustrate proof of concept. Figure 3 shows Gene-RiViT in 

use. In this instance, four strains of Staphylococcus are being examined: aureus Mu3, 

aureus COL, carnosis TM300, and epidermitis ATCC 12228. In this case, strain Mu3 was 
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selected as the reference strain. A region was selected based on a local alignment of 

genes, visible as a short diagonal, that was observed in the global dot plot view shown in 

figure A0.2. The area was zoomed in and a gene from the center of the aligned region in 

strain aureus COL(red) was selected. Points in the plot that were not homologous to one 

another in a range of one hundred genes around the selected gene were shaded grey in the 

plot, showing homologous genes in the region between the reference genome, strain 

Mu3, and strains TM300(blue) and COL(red). The RiViT view rotated to align the gene 

selected in the plot with the homologous genes in other organisms. Detail information 

about the aligned genes was then provided in the detail view. In the case of strain ATCC 

12228, no homologous genes were found and the visible genes from this species were 

shaded grey in the alignment to show that there were no gene neighborhood matches. The 

alignment, highlighted in green, shows that two genes prior to the selected gene are also 

homologous to one another, as is the following gene and another gene six gene positions 

away. 

Table A1: Gene neighborhood alignment annotation information 

Distance Mu3 COL TM300 ATCC 12228 

-2 hypothetical protein prophage L54a, terminase, large subunit,putative putative phage terminase, large subunit No match 

-1 hypothetical protein prophage L54a, Clp protease, putative putative Clp protease, phage associated No match 

0 hypothetical protein hypothetical protein hypothetical protein No match 

1 hypothetical protein conserved hypothetical protein conserved hypothetical protein No match 

6 phi PVL ORF 15 and 16 

homologue 

prophage L54a, tail tape meausure protein, TP901family truncated phiSLT orf2067-like protein No match 

     

 

Table A1 shows annotation information for the aligned genes, with the distance 

column indicating the distance in steps away a gene is from the selected gene, and zero 

indicating the gene that was selected. In this case, the gene selected was annotated as a 

hypothetical protein in each of the organisms under comparison. Examination of the 
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surrounding homologous genes, however, shows very similar annotation information 

between the COL and TM300 strains. Based on the homology information showing 

known orthology in a conserved range in multiple genomes with a lack of 

rearrangements, it is possible to infer with reasonable confidence that the function of the 

hypothetical proteins at the center of the alignment is related to prophage L54a, though 

this could be experimentally verified to obtain a higher level of confidence and precision. 

Because the information about the known genes shows that these genes are phage related 

and have a conserved order spanning multiple genes, most likely these genes exist as a 

result of a horizontal transfer event (Ochman, et al. 2000). Investigating prophage L54a 

revealed that the integration of prophage L54a results in a loss of lipase activity in 

Staphylococcus aureus PS54 due to insertion at the 3’ end of the lipase structural gene 

(Lee, et al, 2003). A researcher using Gene-RiViT could verify this result by navigating 

through the local context provided by the RiViT view to see if neighboring genes were in 

fact involved in lipase activity. 

Researchers can perform a variety of studies using Gene-RiViT. The previous 

example illustrates that Gene-RiViT can be used to identify local, functionally significant 

similarities among genomes even when genomes are not completely collinear. Gene-

RiViT is not restricted to only this use. Researchers could use Gene-RiViT, for example, 

to identify genes associated with pathogenicity in several related species and make 

observations about their functions and implications in other species who either share the 

same genes or are specifically lacking them. Gene-RiViT could also be used to make 

more intelligent decisions about evolutionary distance between closely related species in 
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cases where precision is a factor by allowing researchers to examine the scope of 

rearrangements that have occurred within a collection of genomes. 

6 CONCLUSION AND FUTURE WORK  

We presented Gene-RiViT, a visual analytic tool for the on-the-fly analysis of 

gene neighborhoods in bacterial genomes. Gene-RiViT provides a coordinated set of 

visualizations for examining genomic data at multiple levels of granularity, with 

particular focus on gene order in local gene neighborhoods. Gene-RiViT uses state of the 

art web technology to present data as a dynamic and adjustable alignment, rather than the 

more common presentation of a fixed alignment pegged to a reference genome. The ring 

visualization in GeneRiViT allows the user to pick any gene in any of the genomes in the 

set as the query, upon which the entire genomic alignment rapidly rearranges to bring 

orthologs in the other genomes into alignment with the query. Highlights on the genome 

then show orthology relationships in the neighborhood surrounding the query gene, 

giving insight into the conservation of local genome context and the preservation of 

functional operons. A second visualization of the genomes being compared as a familiar 

2D dot plot allows the user to pinpoint regions of interest based on observed features in 

the 2D alignment. Selections in the dot plot visualization can be used to control and 

highlight the dynamic genome ring visualization, and vice versa. Keyword searches and 

Gene Ontology based searches are also available as entry points to the data. Gene-RiViT 

has a wide variety of potential uses in comparative genomics studies and will be freely 

available and easily accessible to the public. The visualization tools in Gene-RiViT are 

designed to function as part of a coordinated multiple view interface that includes 

multiple methods for target gene selection. For instance, we have previously 
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implemented a java Parallel Sets visualization, used in conjunction with a visualization of 

Gene Ontology categories in a tree map view, to rapidly identify common and 

differentiating genes in multiple genome data sets and to further subdivide those gene 

lists by functional category. Gene-RiViT provides an intermediate level of detail between 

these high level abstractions of the genome data set and the literal linear views to which 

biologists are accustomed. Integration of Gene-RiViT with Parallel Sets and Gene 

Ontology hierarchy views is planned, along with incorporation of other feature markup 

such as operon predictions. 



 

APPENDIX B: SIMULOME MANUAL 
 

Simulome 

October 21, 2016 

Version: 1.2 

Title: Simulome: Prokaryote genome and variant simulator. 

Author: Adam Price 

Maintainer: Adam Price <price0416@gmail.com> 

Description: Simulome provides a powerful and easy to use tool for creating pseudo-

genomes and mutated variants for prokaryotes.  Simulome makes it 

possible to create genomes based on any bacterial species, while 

controlling for a variety of factors.  Furthermore, it provides a range of 

options that can be used in combination to create mutated variants of the 

simulated genome, which allows for controlled testing of specific genomic 

conditions.  Simulome can be used in combination with reads generated 

from next-generation sequencing platforms or alternatively with NGS read 

simulation packages.   

URL:  

Copyright: Adam Price, 2016 

License: MIT 

Permission is hereby granted, free of charge, to any person obtaining a copy of this software 
and associated documentation files (the "Software"), to deal in the Software without 
restriction, including without limitation the rights to use, copy, modify, merge, publish, 
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the 
Software is furnished to do so, subject to the following conditions: 

The above copyright notice and this permission notice shall be included in all copies or 
substantial portions of the Software. 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 
SOFTWARE. 
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Dependencies 

Simulome was developed in a linux/unix environment and requires the following 

libraries for proper functionality. 

 Python 2.7.2 

 Biopython 1.6.1+ 

 BLAST 2.3.0+  

 

Description 

Simulome takes an existing genome and the corresponding annotation 

information for that genome and samples a subset of the genes to use as a 

simulated genome.  Sampling is performed based gene length and genes are 

selected to approximate a normal distribution of read lengths.  That is, the mean 

length of all genes in the provided reference genome and the standard deviation 

are calculated, and genes are then sampled such that the mean and standard 

deviation of the simulated reference genome approximates that of the originally 

provided genome. An initial simulation is created by using these sampled genes 

in conjunction with non-duplicating intergenic regions, or by randomly sampling 

from the intergenic regions of the provided reference genomes.   Once the initial 

genome is simulated, a variant genome can be simulated to meet desired 

specifications.  Alternatively, users can specify not to simulate a pseudo-genome 

and can directly apply Simulome’s variant tools to create a mutated genome 

based directly on the provided reference genome.  Four run modes are available 

and can be used in any combination to produce variants containing SNPs, 

Synonymous/nonsynonymous mutations, indels, and/or duplicate regions.  

Additional optional arguments are available to allow direct control over selection 

criteria and genomic structure. The resulting simulations will each be provided as 

a FASTA nucleotide file, a GTF/GFF3 annotation file, and a variant metadata file. 
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Usage 

python simulome.py --genome <genome.fasta> --anno <genome.gff> --output 

<destination> <RUN MODE>  <OPTIONAL ARGUMENTS> 

Required Arguments 

--genome 

 

File representing genome. FASTA nucleotide format. 

 

--anno File containing genome annotation information in 

GTF/GFF3 format.  This file should correspond to the 

FASTA file representing the selected genome. 

 

--output Output destination.  This option will create a folder 

named with the supplied argument containing output 

files.  Providing a –o option of ‘ecoli’ will create the 

directory, ./ecoli/ and populate it with files such 

as: ./ecoli/ecoli_simulated.fasta 

 

SNP Run Mode Arguments 

--snp 

 

Boolean. Set this option to TRUE to enable SNP 

mutations in the variant genome.  

 

--num_snp The number of SNPs to simulate per gene.  This 

argument is required for SNP run mode. 

 

--snp_window Window size in which to simulate SNPs.  This option 

allows control over the density of SNP mutations.  If a 

window size is specified, the number of SNPs 

specified by the –s option will occur within a randomly 

determined range of this specified window size.   
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I.E. <-s 5 –w 10> will create 5 SNPs within a 10 base 

pair window.  If this option is not specified, SNPs will 

be distributed randomly over the length of each gene. 

 

--snp_distrib Boolean. Create different numbers of SNPs in each 

gene based on a Gaussian distribution. If this option 

is true, --num_snp will be used as the mean of the 

distribution.   

 

--snp_std_dev This option is required if –-snp_distrib=true. Standard 

deviation for the distribution of SNP counts for each 

gene.  A larger standard deviation will result in a 

wider range of SNP counts per gene, and a smaller 

deviation will result in a more condensed range.    

      Synonymous/Non-synonymous Run Mode 

--syn 

 

Boolean. Set this option to TRUE to enable 

Synonymous/Non-synonymous run mode.  This run 

mode allows you to specify a percentage of 

synonymous mutations to occur in each gene.  It 

assumes the start position of the gene to be the open 

reading frame. Requires “mutation_log.dat” file as 

provided, in $PATH or local directory. 

 

--syn_percent The percentage of mutations per gene that will be 

synonymous. 

 

--syn_mean The mean number of total mutations desired per 

gene. 

 

--syn_std_dev Standard deviation for the distribution of mutations 

counts per gene.  A larger standard deviation will 

result in a wider range of total number of mutations, 

and a smaller deviation will result in a more 

condensed range.   
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Insertion/Deletion Run Mode 

--indel 

 

This option specifies insertion/deletion for mutations in 

the variant genome.   

 

Possible values are:  

  1 = Insertions only.  

  2 = Deletions only.  

  3 = Both insertions and deletions. 

 

--ins_len 

 

Length of insertion events. Required for insertion 

mode. 

--num_ins 

 

Number of inserts to simulate in each gene.  Default = 

1. 

 

--is_copy_event Boolean.  If this option is true, insertions sequences 

will be randomly copied from existing regions of the 

genome. 

 

--ins_distrib Boolean. Create different length insertion sequences 

in each gene based on a Gaussian distribution. If this 

option is true, --num_ins will be used as the mean of 

the distribution.  

  

--ins_std_dev This option is required if –-ins_distrib=true. Standard 

deviation for the distribution of insertion lengths.  A 

larger standard deviation will result in a wider range of 

insertion lengths, and a smaller deviation will result in 

a more condensed range.    

 

--del_len Length of deletion events. Required for deletion mode. 

Deletions cannot be longer than the target genes, in 

which event, genes shorter than desired deletion 
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 length will be omitted from mutation and warnings will 

be displayed. 

 

--num_del 

 

Number of deletes to simulate in each gene.  Default 

= 1. 

 

--del_distrib Boolean. Create different length deletion events in 

each gene based on a Gaussian distribution. If this 

option is true, --num_del will be used as the mean of 

the distribution.  

 

--del_std_dev This option is required if –-del_distrib=true. Standard 

deviation for the distribution of deletion event lengths.  

A larger standard deviation will result in a wider range 

of deletion lengths, and a smaller deviation will result 

in a more condensed range.    

 

Duplication Run Mode 

--duplicate Boolean. Set this option to TRUE to create 

duplications in the variant genome.  Allows control for 

reads that map to multiple locations.  Uses the initial 

genome simulation and appends duplicate regions 

until the desired level of duplication is reached. 

 

--percent_dup Percent of duplicate regions to include in the genome. 

Required for duplication mode. 

 

 

Optional Arguments 

--whole_genome Boolean.  If this is true, the provided genome will be 

used instead of a simulated pseudo-genome and 

variants will be performed directly on the provided 

reference.  Cannot be used with –num_genes. 
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--num_genes Number of genes to simulate. Default = 100. 

 

--sort_log How to sort the variant log file.  Acceptable options 

are 'genome' and 'mutation'.  'Genome' will sort the 

output log by the order mutations occur in the 

genome, while 'mutation' will sort the output log in 

the order mutations were created. 

(Default=Genome) 

 

--intergenic_len Length of intergenic regions. For random length 

intergenic regions, specify 0 for this option. Random 

intergenic length range is 0-2000. Default = 500. 

 

--random_intergenic Boolean.  If this is true, intergenic regions will be 

randomly synthesized between genes.  If false, 

intergenic regions from the provided genome will be 

randomly sampled.  (Default=False) 

 

--operon_level Simulate operons.  Input should be approximate 

percentage of desired operon content. Default = 0. 

 

--seed Specifies a seed for the random number generator. 

By default a random seed will be selected for each 

run.  By specifying a seed, the same gene selection 

and mutations can be repeated identically across 

multiple runs.  

 

--type Feature type to simulate from annotation file. I.E: 

gene, exon, CDS. Case sensitive. Note that this 

must match the desired feature type in the 

annotation file provided. Default = gene. 
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--strict_dup Boolean. Allow duplicate sequence regions to exist 

in the initial genome simulation.  Selecting FALSE 

for this option will BLAST each gene and simulated 

intergenic region against the growing simulation and 

prevent duplicate regions from being included in the 

genome.  Depending on the level of natural 

duplication in the genome provided, this may result 

in fewer genes existing in the genome than 

specified. Can be memory intensive in some cases. 

Default = False. 

 

-v, --verbose Verbose level. Default = 1. 

[0 = Quiet, 1 = Verbose, 2 = Very Verbose]  

 

Examples 

 Simulate a genome based on e.coli containing 100 genes, output files to a folder 

called ecoli_simulation/. 

 
python simulome.py --genome=ecoli_genome.fasta --anno=ecoli_anno.gtf --output=ecoli_simulation --

num_genes=100 

 Simulate a genome based on e.coli containing 500 genes, and a variant of the 

simulated genome in which each gene contains 10 SNPs, output to a folder called 

ecoli_simulation/. 

 
python simulome.py --genome=ecoli_genome.fasta --anno=ecoli_anno.gtf --output=ecoli_simulation --

num_genes=500 --snp=TRUE --num_snp=10 

 Simulate a genome based on e.coli containing 500 genes, and a variant of the 

simulated genome in which each gene contains a variable number of SNPs based on 

a Gaussian distribution with a mean of 10 and a standard deviation of 3, output to a 

folder called ecoli_simulation/. 

 
python simulome.py –genome=ecoli_genome.fasta –anno=ecoli_anno.gtf –output=ecoli_simulation --

num_genes=500 --snp=TRUE --num_snp=10 --snp_distrib=true --snp_std_dev=3 
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 Simulate a genome based on e.coli containing 500 genes, and a variant of the 

simulated genome in which each gene contains a number of 

Synonymous/nonsynonymous mutations based on Gaussian distribution with a mean 

of 10 and a standard deviation of 3.  In each case, approximate 70% of mutations to 

be synonymous. Output to a folder called ecoli_simulation/. 

 
python simulome.py –genome=ecoli_genome.fasta –anno=ecoli_anno.gtf –output=ecoli_simulation --

num_genes=500 --syn=TRUE --syn_percent=70 --syn_mean=10 --syn_std_dev=3 

 Simulate a genome based on e.coli containing 500 genes, and a variant of the 

simulated genome in which each gene contains 10 SNPs that are concentrated in 50 

base pair windows, output to a folder called ecoli_simulation/. 

 
python simulome.py –genome=ecoli_genome.fasta –anno=ecoli_anno.gtf –output=ecoli_simulation –

num_genes=500 --snp=TRUE –-num_snp=10  --snp_window=50 

 Simulate a genome based on e.coli containing 100 genes, and a variant of the 

simulated genome in which each gene contains an insertion event of length 100, 

output files to a folder called ecoli_simulation/. 

 
python simulome.py --genome=ecoli_genome.fasta --anno=ecoli_anno.gtf –output=ecoli_simulation --

num_genes=100 --indel=1 --ins_len=100 

 Simulate a genome based on e.coli containing 100 genes, and a variant of the 

simulated genome in which each gene contains an insertion event of length 100, and 

two deletion events of length 25, output files to a folder called ecoli_simulation/. 

 
python simulome.py --genome=ecoli_genome.fasta --anno=ecoli_anno.gtf --output=ecoli_simulation --

num_genes=100 --indel 3 --ins_len=100 --del_len 25 --num_del=2 

 Simulate a genome based on e.coli containing 100 genes, and a variant in which 

10% of the genome is duplicated, output files to a folder called ecoli_simulation/. 

 
python simulome.py --genome=ecoli_genome.fasta --anno=ecoli_anno.gtf --output=ecoli_simulation --

num_genes=100 --duplicate=TRUE  --percent_dup=10 

 Simulate a genome based on e.coli containing 100 genes, with a variant genome in 

which each gene contains 5 SNPs, an insertion of length 500, a deletion of length 

100, 10% genome duplication, and random intergenic region lengths. Output files to 

a folder called ecoli_simulation/. 

 
python simulome.py --genome=ecoli_genome.fasta --anno=ecoli_anno.gtf --output=ecoli_simulation --

num_genes=100 --snp=TRUE --num_snp=5 --indel 3 --ins_len=500 --del_len=100 --duplicate=TRUE --

percent_dup=10  

 Using the whole reference genome, simulate a variant genome in which each gene 

contains insertions with lengths based on a distribution with a mean of 100 and a 

standard deviation of 20, and a number of codon mutations with a total mean number 
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of mutations of 15 and a standard deviation of 7, of which approximately 60 percent 

will be synonymous, output files to a folder called ecoli_simulation/. 

 
python simulome.py --genome=ecoli_genome.fasta --anno=ecoli_anno.gtf --output=ecoli_simulation --

indel=1 --ins_len=100 --ins_distrib=TRUE --ins_std_dev=20 --syn=TRUE --syn_percent=60 --syn_mean=15 

--syn_std_dev=7 

 Using the whole reference genome, simulate a variant genome in which each gene 

contains deletions with lengths based on a distribution with a mean of 50 and a 

standard deviation of 25, and a number of codon mutations with a total mean number 

of mutations of 10 and a standard deviation of 3, of which approximately 30 percent 

will be synonymous, additionally creating 10% genome duplication.  Use full verbose 

mode. Output files to a folder called ecoli_simulation/. 

 
python simulome.py --genome=ecoli_genome.fasta --anno=ecoli_anno.gtf --output=ecoli_simulation --

indel=2 --del_len=100 --del_distrib=TRUE --del_std_dev=50 --syn=TRUE --syn_percent=30 --

syn_mean=10 --syn_std_dev=3 --duplicate=TRUE --percent_dup=10 --verbose=2 

 

 


