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ABSTRACT 

 

 

SOPHIA LIN. Establish highway bridge network resilience via multi-hazards 

susceptibility modeling. (Under the direction of DR. SHEN-EN CHEN) 

 

 

Climate change presents a pressing challenge for natural disaster management, to 

quantify its effects and associated disasters is a persistent challenge for regional climate 

risk studies.  As climate-induced hazards escalate in intensity and frequency, infrastructure 

in hazard-prone regions faces growing risks – A situation especially critical to 

transportation infrastructures. Recent events, such as Hurricane Helene in 2024, which 

caused widespread damage to life supporting infrastructures including washing out bridges 

resulting in roadway closures, underscore the urgency of addressing these combined 

hazards. This dissertation assesses multi-hazard risks to bridge infrastructure in North 

Carolina’s mountainous regions, focusing on the interplay between landslide, flooding, 

wildfire, and earthquake risks. We approach the multi-hazard issue using landslide as the 

basic quantifier and investigate the nesting effect of earthquake and rainfall triggered 

landslides.  

Because forest fire has the potential of diminishing soil moisture and can encourage 

landslides, wildfire risk is also included as a predictor.  Analysis identified key wildfire-

related variables, such as distance to roads, elevation, and proximity to populated areas, as 

significant contributors to landslide susceptibility, highlighting the role of remote sensing 

data in extreme weather event prediction. Soil type, included in the landslide model, had 

limited impact, suggesting the need for refined soil classification methods in future studies. 

Utilizing logistic regression (LR) and random forest (RF) models, this study 

develops predictive maps for landslide and wildfire susceptibility, achieving accuracy rates 



iv 

 

of 75.7% and 83.9% for landslide prediction and 68.5% and 72.9% for wildfire prediction, 

respectively. The higher sensitivity of the RF model, as shown in a ROC curve analysis, 

demonstrates its effectiveness for multi-hazard risk modeling. 

The wildfire susceptibility map is then incorporated as an independent variable in 

predicting landslide occurrences, revealing critical interactions between wildfire and 

landslide risks. The result are two different landslide susceptibility maps.  Finally, a novel 

index, the Assumed Flooding Potential (AFP), is introduced to quantify flood risk to a 

bridge.  Since it is hard to establish flooding scenarios for bridges in mountain regions. 

AFP is calculated as the mid-span clearance for bridges.  Furthermore, using a 30m radius 

as site topology calculation, bridges-in-valleys are identified for high flooding risk analysis.  

The integration of multi-hazard data allows for a dynamic understanding of bridge 

vulnerability, resulting in a shift in risk probability for certain structures. Specifically, the 

number of bridges with over a 50% probability of multi-hazard risk exposure decreased 

from 47 to 26, while four new bridges emerged in high-risk zones due to the addition of 

wildfire susceptibility data. These findings provide actionable insights for decision-makers, 

enabling proactive mitigation strategies tailored to bridges that face increased vulnerability 

from wildfire-triggered landslides. 

This research delivers a high-resolution multi-hazard risk map and model for 

infrastructure resilience planning, offering critical tools for bridge engineers and 

policymakers. The 2024 Hurricane Helene landslides and bridge damage data from the 

state have been used to validate the risk maps. The results indicated reasonable accurate 

predictions, thus, ascertaining the study contributed to the potential to anticipate future 

multi-hazard risks. However, it also highlighted the need to address the complex 
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interactions between environmental and anthropogenic factors and the urgency for future 

studies to advance our understanding of climate effects and to enhance our ability to 

anticipate and mitigate multi-hazard impacts on critical infrastructure in the face of 

evolving climate challenges. 
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Chapter 1: Introduction 

 

 

1.1 Introduction 

Climate change is a critical issue for natural disaster management, and 

quantification of climate effects and the associated disasters have always been a challenge 

for regional risk studies. The frequency and intensity of these events are expected to 

continue rising in the future, posing significant challenges to infrastructure resilience and 

public safety (Argyroudis & Mitoulis, 2021; Liang & Xiong, 2019). As a result, there is a 

growing need for accurate predictions and risk assessments to identify high-risk areas and 

prioritize mitigation efforts (Kavzoglu & Teke, 2022; Kim et al., 2021; Lee et al., 2017; 

Wubalem & Meten, 2020). 

Climate extremes can result in several disaster scenarios ranging from extreme 

flooding, torrential rain, intense earthquakes, draught, forest fires and landslides.  Some of 

the climate disasters are interrelated, for example, torrential rain can induce ground 

saturation and result in more landslides, and draught can induce forest fires and result in 

soil’s lack of ability to hold moisture which increase landslide risk. To better define the 

effects of climate change on natural disasters, we focus our efforts in a more traditional 

approach, namely, to collect historical data on significant events and study natural disasters 

that include hurricanes, floods, wildfires, and landslides (Chen et al., 2020; Kavzoglu & 

Teke, 2022; Lee et al., 2017; Milanović et al., 2021; Taalab et al., 2018).  

To establish the causality of different disasters, geospatial, geomorphic, and 

meteorological variables along with historical storm and seismicity data have been 

collected, analyzed, and used for disaster risk (Chen et al., 2020; Kavzoglu & Teke, 2022; 

Milanović et al., 2021; Sun et al., 2021; Taalab et al., 2018; Wubalem & Meten, 2020). 
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Different machine learning tools, including random forest (RF), have been used in the 

modeling of disaster risks (Milanović et al., 2021; Taalab et al., 2018). The outcomes can 

be applied to enhance the resilience of highway infrastructures, such as freight routings 

and bridges (Argyroudis & Mitoulis, 2021; Pervaiz & Hummel, 2023) .  

From the infrastructure management perspective, state departments of 

transportation (DOTs) across the country are facing increased maintenance costs and 

resource strains due to more frequent and intense extreme weather events, including floods, 

coastal storms, and heat waves, with impacts varying by regions (Nasr et al., 2021; Rowan 

et al., 2013).  For the past three years, extreme events in frequency, intensity, and duration 

have been studied at UNC Charlotte and the outcomes have been applied to various 

highway infrastructures such as bridges and freight routings (Wenwu Tang, 2023). Bridges 

are critical components of transportation infrastructure, supporting economies and societies 

worldwide (Koks et al., 2019; Li et al., 2020). However, roads and bridges are vulnerable 

to various hazards, and their failure can significantly disrupt transport networks 

(Argyroudis & Mitoulis, 2021; Pervaiz & Hummel, 2023).  

The escalating impacts of climate change, including more frequent extreme weather 

events and harsh environmental conditions, significantly challenge the resilience and 

durability of transportation infrastructure, particularly bridges, highlighting an urgent need 

for more research and adaptive strategies (Hunt & Watkiss, 2011; Mondoro et al., 2018; 

Pachauri et al., 2014; Schulz et al., 2017). As uncertainties in the life-cycle of civil 

infrastructure systems accumulate, there is a growing recognition among researchers, 

policymakers, and insurers of the critical importance of enhancing risk mitigation measures 
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and improving the performance and recovery capabilities of bridges to minimize losses 

(Biondini & Frangopol, 2016; Li et al., 2020). 

The concept of resilience has gained prominence in discussions about infrastructure 

management following significant damages to U.S. infrastructure by Hurricanes Katrina, 

Sandy, and Harvey (Minaie & Moon, 2017; Serre & Heinzlef, 2018). These events 

highlighted the critical role of transportation networks, particularly highway bridges, in 

maintaining the economic and social well-being of the nation (Andersson et al., 2021; 

Zhang et al., 2017). Bridges, identified as particularly vulnerable to climate changes, are 

crucial to the robustness and recovery of transportation systems during extreme hazards 

such as earthquakes, wind storms, floods, and landslides (Dong & Frangopol, 2016; Minaie 

& Moon, 2017; Zhang et al., 2017). Damage to these structures not only increases 

community vulnerability but also impedes emergency responses, such as effective 

evacuation and recovery efforts that heavily depend on reliable road infrastructure (Minaie 

& Moon, 2017). 

Resilience in infrastructure refers to the ability of infrastructure systems, such as 

utilities, communication system, medical facility and transportation system, to resist, 

absorb, recover from, and adapt to adverse events (Dong & Frangopol, 2016). Resilience 

is characterized by four key dimensions: a) Robustness, which is the ability to withstand 

extreme events and maintain a certain level of service afterwards; b) rapidity, referring to 

the speed at which recovery from a disaster occurs; c) redundancy, which involves having 

substitutable components within the system to ensure continuity; and d) resourcefulness, 

defined as the availability of resources to effectively respond to a disaster (Zhang et al., 

2017). In other words, robustness and rapidity are the objectives of resilience, while 
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redundancy and resourcefulness are the means to achieve the desired level of resilience 

(Minaie & Moon, 2017). Minaie and Moon (2017) defined a bridge resilience framework 

that includes disaster events including flood and earthquake.   

1.2 Statement of work 

This dissertation aims to assess multi-hazard risks, in particular, landslides and 

flooding, affecting bridge infrastructure in North Carolina’s mountainous regions. 

Specifically, it will develop a predictive model to map susceptibility to these hazards, using 

data from the USGS, NCDOT, and USDA. The scope is limited to roadway bridges situated 

in valleys, with special attention to those exposed to potential landslide and flooding risks. 

The methodology includes model risk using logistic regression (LR) and random forest 

(RF) modeling techniques, conducted in ArcGIS Pro and R, then validate model validation 

based on recent hurricane data. Major tasks include data collection, model development, 

validation, and analysis, leading to the delivery of a susceptibility model, a risk map, and 

investigation of potential bridge damage models. The findings are expected to ultimately 

provide resource for proactive bridge maintenance strategies, contributing to safer and 

more resilient infrastructure in climate-vulnerable areas. 

1.3 Problem Statement and Purpose 

With the increasing frequency and intensity of extreme weather events due to 

climate change, transportation infrastructure, particularly bridges, is facing unprecedented 

risks. In North Carolina (NC), bridges in mountainous regions are exposed to multi-hazard 

scenarios, including landslides, wildfire, earthquake and flooding, only limited research 

has specifically addressed the vulnerability of these bridges to the combined effect of all 

the extreme weather events. Despite advances in risk assessment for single hazards, there 
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is a critical gap in multi-hazard assessment that integrates both landslide and flooding risks 

for infrastructure resilience planning. Addressing this gap is essential for developing 

proactive maintenance and mitigation strategies that can improve bridge resilience in 

hazard-prone areas. 

The purpose of this study is to develop a nested multi-hazard susceptibility model 

for assessing landslide and flooding risks to bridges in NC’s mountainous regions. By 

integrating geospatial data and employing logistic regression and random forest modeling 

techniques, this research will create a high-fidelity risk map identifying bridges at high risk 

of multi-hazard exposure. The findings will provide valuable insights for bridge engineers 

and policymakers, enabling more effective infrastructure resilience planning and hazard 

mitigation in the face of increasing climate-related risks. 

1.4 Research of Objectives 

Through our prior post-disaster studies in Puerto Rico after 2017 Hurricane Maria, 

we recognized the effects of bridge location and the multiple hazard impacts.  Specifically, 

several bridges in Puerto Rico were damaged or washed out because they geographically 

situated in valleys and as a result, they suffered from the combined flooding from torrential 

rain and from congested stream bed from landslides.  The goals of this study are to predict 

landslide, wildfire, and flood events in NC and to recognize the high risk bridges to enhance 

disaster response. The specific objectives of this research are expected to have several 

significant implications in NC and are defined as:  

1. Develop predictors of multi-hazard susceptibility risk maps as functions of 

landslide for NC mountain region; 
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2. Using multi-hazard maps to identify critical highway bridges based on the 

physical locations; 

3. Investigate recent Hurricane Helene-induced slides and flooding scenarios; and  

4. Interpret bridge damage based on Helene landslide and flooding. 

The 2024 Hurricane Helene provided valuable opportunity to assess the product of 

current research. This natural disaster has enhanced the contributions of current study that 

included the following:  

1. Landslide, wildfire, and flood susceptibility maps for NC, are generated, thus, 

enabling more effective strategies and systems for disaster response and 

mitigation;  

2. This study offers first observation and assessment of the landside prediction after 

Hurricane Helene; 

3. Based on the variable consideration and the available data collected from state 

resource show the possibility of using ML for multi-hazard risk modeling for the 

western NC’s mountain region; and finally 

4. This study provides an insight to the possible damage mechanisms of the 79 

bridges. 

1.5 Research Methodology 

This study employs geospatial and statistical methods to analyze landslide 

susceptibility and bridge vulnerability within mountainous regions of North Carolina. 

Using datasets from the USGS, NCDOT, FHWA, and other agencies, we compiled a 

comprehensive landslide and bridge inventory. The landslide inventory includes 4,794 

points and 6,653 polygons, while the bridge dataset comprises 22,812 bridges. 
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Key conditioning factors for landslide susceptibility were determined, including 

elevation, slope, aspect, rainfall, and distances to faults and rivers, all derived using ArcGIS 

Pro tools. Elevation and slope were calculated from USGS DEM data, while rainfall totals 

were interpolated using the Inverse Distance Weighted method with NOAA data. To 

account for the influence of seismicity, distances to faults were included, and proximity to 

rivers was used to represent potential erosion risks. 

Two statistical models, Logistic Regression (LR) and Random Forest (RF), were 

applied to estimate landslide susceptibility. Logistic Regression was used to establish the 

probability of landslide occurrence, while the Random Forest model provided enhanced 

predictive accuracy and robust model validation through ROC curve analysis. 

For bridge susceptibility, we identified structures located in valleys using various 

ArcGIS Pro tools, calculating an Approximate Flooding Potential (AFP) for each bridge 

based on elevation data from DEM. This analysis considers landform classifications 

derived from geomorphons, slope, and elevation differences to determine vulnerability. 

Through these methods, the study provides a spatial analysis framework that 

combines environmental conditioning factors with advanced statistical models to assess 

multi-hazard risks to bridges in North Carolina's mountainous terrain. 

1.6 Scope of Work 

This study assesses multi-hazard risks, specifically landslides, wildfires, and their 

impact on bridge infrastructure within North Carolina's mountainous regions. As a 

southeastern coastal state, North Carolina (NC) is vulnerable to Atlantic hurricanes, similar 

to Puerto Rico, which exposes the state to related hazards. The study area encompasses one 



8 

 

regions of NC: Appalachian Mountains, with particular emphasis on the mountainous 

region where landslides and wildfires are prevalent. 

Landslides are a significant hazard in the Appalachian Mountains (26,572 km²), 

affecting infrastructure and leading to events like the 2005 Pigeon River Gorge rockslide, 

which incurred over $15 million in costs. Despite this risk, specific landslide assessments 

targeting roadway bridges are limited. To address this, we utilized landslide data from 1900 

to 2021, collected by the USGS, focusing on high-confidence landslide areas rated between 

5 and 8 on a susceptibility scale. 

Wildfire is another common hazard in NC, influenced by factors such as fuel 

accumulation, seasonal precipitation variability, and frequent droughts. Defined as "an 

unplanned and uncontrolled fire spreading through vegetative fuels" (Intini et al., 2019), 

wildfires have occurred annually from 1928 to 2023, as documented by the North Carolina 

Forest Service (NCFS). For this study, wildfire data from the U.S. Department of 

Agriculture (USDA) from 1995 to 2018 were compiled, focusing on human-induced and 

naturally occurring wildfire events, with undetermined causes excluded. The dataset 

contains 112,454 wildfire events across NC, including significant incidents like the 2011 

Pains Bay fire, one of the largest natural wildfire events in the state. 

Through this multi-hazard approach, the study aims to identify the susceptibility of 

bridges in NC’s mountainous region to landslides and wildfires, providing critical insights 

for infrastructure resilience and hazard management. 

1.7 Dissertation Outline 

This dissertation is organized into seven chapters, each addressing critical aspects 

of multi-hazard risks to transportation infrastructure in North Carolina, with a focus on 
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landslides and flooding vulnerabilities affecting bridges. Following this Introduction 

chapter, Chapter 2 assesses landslide and flooding risks to bridges located in valleys across 

North Carolina using logistic regression and random forest models, introducing the AFP 

metric to aid in risk visualization for bridge engineers. Building on Chapter 2, Chapter 3 

develops a nested multi-hazard model to assess susceptibility to landslides and flooding, 

refining AFP to prioritize high-risk bridges in the mountainous regions of North Carolina. 

Chapter 4 documents the structural impacts of Hurricane Helene on North Carolina bridges, 

highlighting vulnerabilities in bridge design exposed by landslide-induced flooding from 

extreme weather events. Chapter 5 provides that landslide events from Hurricane Helene 

are used to validate the susceptibility model, providing empirical support for the model’s 

reliability in predicting multi-hazard risks. Chapter 6 synthesizes the research findings, 

emphasizing their implications for multi-hazard risk management in bridge engineering 

and infrastructure resilience. The final Chapter 7 suggests avenues for expanding the 

research, including additional hazard types and refined flood risk analysis, to enhance 

infrastructure resilience strategies. 
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Chapter 2: Landslide Risks to Bridges-in-Valley in North Carolina 

 

 

2.1 Abstract 

This research delves into the intricate dynamics of landslides, emphasizing their 

consequences on transportation infrastructure, specifically highway and roadway bridges 

in North Carolina. Based on prior investigation of bridges in Puerto Rico after Hurricane 

Maria, we found bridges above water and situated in valleys can be exposed to both 

landslide and flooding risks.  These bridges faced heightened vulnerability to combined 

landslides and flooding events due to their low depth to water surface and the potential of 

raised flood height due to upstream landslides.  Leveraging a dataset spanning more than a 

century and inclusive of landslide and bridge infor-mation, we employed logistic 

regression (LR) and random forest (RF) models to predict land-slide susceptibility in North 

Carolina.  The study considered conditioning factors such as eleva-tion, aspect, slope, 

rainfall, distance to faults, and distance to rivers, yielding LR and RF models with accuracy 

rates of 76.3% and 82.7%, respectively.  

To establish the bridge location is in the bottom of a valley, data including landform, 

slope and elevation difference near the bridge location were combined to delineate bridge-

in-valley. The difference between bridge height and the lowest river elevation is established 

as an assumed flooding potential (AFP), which is then used to quantify the flooding risk.  

Compared to tradi-tional flood risk values, the AFP, reported in elevation differences, is 

more straightforward and helps bridge engineers visualize the flood risk to a bridge.  

Specifically, a bridge (NCDOT ID: 740002) is found susceptible to both landslide (92%) 

and flooding (AFT of 6.61 m) risks and has been validated by field investigation, which is 

currently being retrofitted by North Carolina DOT with slope reinforcements (soil nailing 
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and grouting).  This paper is a first report in evalu-ating the multi-hazard issue for bridges-

in-valleys.  The resulting high-fidelity risk map for North Carolina can help bridge 

engineers in proactive maintenance planning.  Future endeavors will extend the analysis to 

incorporate actual flooding risk susceptibility analysis, thus enhanc-ing our understanding 

of multi-hazard impacts and guiding the resilient mitigation strategies on transportation 

infrastructure.  

Keywords: bridges in valleys, landslide risk, flooding risk, multi-hazards 
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2.2 Introduction 

Landslides are influenced by geological, geomorphological, topographical, and 

hydrological factors and represent a substantial natural hazard with evolving consequences 

for hillslope morphology and human activities (Pourghasemi et al., 2018; Regmi et al., 

2014; Sun et al., 2021). According to the Global Landslide Catalog (GLC), which presents 

landslide events caused only by rainfall conditions, landslides can occur in any country 

(Kirschbaum et al., 2015; Kirschbaum et al., 2010). Figure 2-1 shows the distribution of 

landslides occurring around the world according to the GLC. The United States of America 

has the highest occurrence of landslides in the world. Reports from landslide-prone regions 

documenting substantial economic losses have been recorded in the United States, Italy, 

Japan, India, China, and Germany(Chen, Zhang, et al., 2018; Nhu et al., 2020). Impacts 

including fatalities, injuries, and extensive damage to infrastructure and land, as seen in 

Europe, Ethiopia, and China, underscore the widespread and varied consequences of these 

events(Chen, Zhang, et al., 2018; Ganga et al., 2022; Nhu et al., 2020; Wubalem & Meten, 

2020). For example, landslides cause in excess of $1 billion in damage and more than 25 

fatalities in the United States each year (USGS, 2023b).  

A landslide can be exacerbated by factors like seismic activity and global warming-

induced rainstorms, leading to escalating occurrence of landslides (Kim et al., 2018). The 

complex and challenging task of predicting landslides has driven the international focus on 

evaluating landslide susceptibility, leading to the development of diverse methods, 

including statistical, data mining, and soft computing-based techniques within geographic 

information systems (GIS), aiming to spatially identify vulnerable areas by establishing the 
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connection between landslide occurrence and relevant environmental factors (Pourghasemi 

et al., 2018). 

Landslides are typically caused by triggering mechanisms including: heavy rainfall, 

snowmelt, changes in ground water levels and discharge, earthquakes, volcanic activity, 

and disturbance by human activities (Highland & Bobrowsky, 2008).  Climate change 

resulted in increased magnitude and intensity of precipitation events and increased the risk 

of landslides and posed significant hazards towards infrastructure damage, human 

casualties, and economic losses (Ganga et al., 2022; Ozturk & Uzel-Gunini, 2022; 

Pourghasemi et al., 2018). For example, in 2017 elevated sea surface temperatures fueled 

the intensification of Hurricane Maria  which triggered more than 40,000 landslides in 

Puerto Rico (Bessette-Kirton et al., 2019).  Figure 2-2 and Figure 2-3 show examples of 

landslides triggered by Hurricane Maria. 

The inspiration for current paper is from the damaged bridges in Puerto Rico after 

Hurricane Maria as reported by FEMA (Ortiz, 2020).  Hurricane Maria’s intensity has been 

linked to climate change and is indicative of current tropical storm scenarios predicted by 

climate modeling, which predict fewer but more severe tropical storms with significantly 

increased precipitation (Keellings & Hernández Ayala, 2019).    

Figure 2-4 shows the torrential rain that resulted in flooding and caused the washout 

of a bridge structure and failure of river embankments in Las Marias, Puerto Rico.  In this 

particular case, the neighborhood near the bridge was totally cut off from the outside for 

several weeks and the villagers relied on cables suspended across the river to receive their 

food and supplies. 
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Close examination of the bridge in Figure 2-4 shows a combination of local scour 

from massive flooding and embankment slope failures that resulted in the bridge washout.  

(The bridge in Figure 2-4a andFigure 2-4b is a replacement bridge under construction). 

With a central mountain range (the Cordillera Central) that has a maximum elevation of 

1,338 m above sea level, Puerto Rico’s landscape is characterized by steep slopes in most 

central parts of the island and relatively flat coastal plains on the perimeter of the island.  

As a result, the landslides triggered by Maria were complicated by the mountainous 

riverine network. 

The Las Marias bridge (Figure 2-4) was exposed to severe flooding brought about 

by the torrential rain and congested water flow from the upstream landslides, resulted in 

the bridge failure.  The bridge is situated in the bottom of a valley or gully, which created 

a situation for combination of flooding and landslide risks. Thus, it may be possible to 

estimate the risk to a bridge by differentiating where the bridge is situated, whether in the 

bottom of a valley, in the middle of a valley or at a ridge top.  

Current study focuses on landslide impacts to highways and roadway bridges 

(Miele et al., 2021; Schlögl et al., 2019). When occurring near roadways landslides can 

suddenly block traffic, causing collisions and even direct loss of lives. The debris can 

further create unsafe road conditions, causing accidents due to drivers encountering 

obstacles.  Large landslides can cause the total collapse of bridges and overpasses, directly 

endangering vehicles and occupants, elevating the risk of accidents due to road closures, 

obstacles, and damaged infrastructure.  Therefore, landslides are critical geohazards that 

can undermine the structural stability of transportation infrastructure, which demand the 
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need to develop effective monitoring and new infrastructure resiliency strategies(Miele et 

al., 2021). 

An accurate landslide risk map would be extremely helpful to regional Departments 

of Transportation (DOTs) to improve maintenance planning, routing decision making, and 

future site preparation. Ultimately, the outcomes of those improvements can be lifesaving.  

However, existing landslide risk analyses do not differentiate bridge locations in terms of 

whether they are in valleys or on ridge tops. Hence, this paper attempts to determine the 

major storm risks to the bridges in North Carolina by combining the North Carolina 

landslide risk information and highway and roadway bridge locations to help identify 

critical bridges that may be exposed to the damaging effects of landslides.  These bridges 

can be differentiated into higher risk bridges depending on their geographical locations.  

As such, we can identify bridges that are likely to experience the combined risks of flooding 

and landslides. 

This paper explains the mapping methodology of the bridge landslide risks by 

identifying their geographical situations and validated by site visits.  The following section 

describes the study areas and the generation of the landslide database. 
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Figure 2-1. Number of landslide events from 2007 to 2023 by country (generated from 

NASA data). 

 

 
Figure 2-2. Landslide in Puerto Rico after 2017 Hurricane Maria: Surface observations 

indicated rotational slope failures with debris flows (Bedrock is mostly volcaniclastic 

sandstone and siltstone of Yauco formation and soils are Maricao Ultisols). (Photo credit: 

Shen-En Chen) 
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Figure 2-3. Landslide in Puerto Rico after 2017 Hurricane Maria: Surface observations 

indicated failure of rocky slopes (Bedrock is mostly serpentinite, chert and calcareous 

sandstone). (Photo credit: Shen-En Chen) 

 

 
Figure 2-4. A new bridge under construction in Las Marias - Heavy flooding resulted in 

localized landslides and the washout of the original bridge. (Photo credit: Shen-En Chen) 
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2.3 Study Area and Landslide Data 

As one of the US southeastern coastal states, North Carolina is often impacted by 

the same Atlantic hurricanes that hit Puerto Rico (such as the case of hurricane Maria).  

Because of the likelihood of exposing to the Atlantic hurricanes, we are interested in 

studying the same multi-hazard risks to bridges in North Carolina (NC). 

Figure 2-5a shows the three physiographic regions in North Carolina. North 

Carolina’s geography is composed of the eastern Coastal Plain Region (Figure 2-5d), the 

central Piedmont (Figure 2-5c), and the western Appalachian Mountains (Figure 2-5b).  

The mountain area (26,572 km2) encompasses the Blue Ridge and the Great Smoky 

Mountains (State, 2024). The Eastern Continental Divide separates the rivers that flow 

eastward into the Atlantic Ocean from those flowing westward towards the Tennessee and 

Ohio rivers (State, 2024). The Coastal Plain (59,363 km2) refers to the low-lying areas 

extending from the sandy farmland in the east to the Outer Banks, featuring barrier islands 

and three capes (State, 2024). Last, the Piedmont (43,288 km2), typically described as "the 

foothills," is characterized by rolling hills ranging from 90 to 450 m in elevation (State, 

2024). 

Landslides are a common hazard in the western mountains of NC. For example, the 

2005 Pigeon River Gorge rockslide event had direct (e.g. road repair, stabilization costs, 

etc.) and indirect (e.g. interruption of business, commerce, tourism because of lengthy 

detours, etc.) costs that exceeded $15 million (NCGS, 2006). To date, no attempt has been 

made to discern the probable landslide risks in North Carolina to specific roadway bridge 

structures. 
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To evaluate landslide risks, the landslide data from 1900 to 2021 were collected 

from the U.S. Geological Survey (USGS). The NC landslide prone area is roughly 320 km2, 

and approximately 99.7% of the landslides occurred in the western mountains with only 

0.03% of the landslides occurring in the Piedmont (Belair et al., 2022). Belair et al. (2022) 

developed the US landslide database (version 2.0) and based on the confidence levels, 

quality of input data, as well as the method used for identification and mapping of each 

landslide, they suggested a scale system for slope susceptibility to landslides (Mirus et al., 

2020).  In their database, the authors recommended that the lowest susceptibility value (1) 

is for “Possible landslide in the area” and the highest value (8) is for “High confidence in 

extent or nature of landslide” (Mirus et al., 2020). In our study, landslide areas with values 

5 (Confident consequential landslide at this location) to 8 were used. 

2.4 Materials and Methods 

2.4.1 Landslide and Bridges Inventory 

The landslide inventory used in this study is the USGS dataset (Belair et al., 2022). 

The dataset contains 4,794 landslide points and 6,653 landslide polygons from 1991 to 

2021 (Figure 2-6). The database is collected and maintained by different agencies and 

institutions, such as the National Aeronautics and Space Administration (NASA), USGS, 

and the North Carolina Geological Survey (NCGS). 

The bridges inventory for current study is collected from the North Carolina 

Department of Transportation (NCDOT) dataset and the Federal Highway Administration 

(FHWA) dataset. We used the bridge’s ID to combine the two datasets for our analysis. 

The combined dataset, updated to 2023, contains 22,812 bridges (Figure 2-7). 
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2.4.2 Conditioning Factors 

In defining a likely landslide area, we selected several variables known to influence 

the susceptibility of a slope to fail, including elevation, aspect, slope, rainfall, distance to 

faults, and distance to rivers for landslides (Abella & Van Westen, 2007; Chau & Chan, 

2005; Feizizadeh et al., 2013; Lee & Pradhan, 2007; Mondini, 2017). 

Elevation can significantly affect landslide occurrence; it can also interact with 

other factors, and their combined effects impact the probability of occurrence (Chau & 

Chan, 2005; Dai & Lee, 2002; Mousavi et al., 2011). Elevation data were obtained from 

the Digital Elevation Model (DEM) provided by the USGS (USGS, 2023a) at a resolution 

of 1 arc-second (Figure 2-8a). Contour lines that contain elevation values were used to 

construct a DEM layer with cell size of 30 m × 30m (USGS, 2023a).  

Using the DEM, we calculated the aspect variable with the ArcGIS Pro aspect tool 

(Figure 2-8b) and the slope variable with the slope tool (Figure 2-8c). Aspect related 

parameters such as exposure to sunlight, drying winds, and discontinuities may influence 

the occurrence of landslides (Feizizadeh et al., 2013). Following Ayalew and Yamagishi 

(2005) and Lee and Pradhan (2007), we reclassified the aspect variable and divided the 

aspect into nine classes: flat (-1°), north (0°–22.5° and 337.5°–360°), northeast (22.5°–

67.5°), east (67.5°–112.5°), southeast (112.5°–157.5°), south (157.5°–202.5°), southwest 

(202.5°–247.5°), northwest (247.5°–292.5°), and west (292.5°–337.5°). Based on the order 

of the classes, we assigned aspect values from 1 to 9 to each class. Aspect value is 

especially critical to landslide susceptibility of steep slopes.  

High rainfall amounts typically result in high hazard index values for 

landslides(Abella & Van Westen, 2007). Rainfall totals were calculated using observation 
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data from the National Oceanic and Atmospheric Administration (NOAA) and the Inverse 

Distance Weighted (IDW) tool in ArcGIS Pro (Figure 2-8d). 

It is important to recognize that several of the geological, geomorphological and 

hydrological factors are implied in the aspect variable [31].  As a result, the only other 

major factor in triggering landslides that needs to be explicitly investigated is 

seismicity(Ganga et al., 2022). Therefore, the distance to faults is an important 

susceptibility criterion (Feizizadeh et al., 2013) (Figure 2-8e). We used the Euclidean 

distance tool in ArcGIS Pro to generate distances to faults (NCDEQ, 2022). 

Slopes located closer to rivers are generally more vulnerable to landslides due to 

factors such as increased water infiltration, erosion, and the destabilizing effect of flowing 

water (Cebulski, 2022; Gómez & Kavzoglu, 2005). We used Euclidean distance tool to 

generate distance to river in ArcGIS Pro. The river data were collected from the USGS 

National Hydrography Dataset (NHD) (USGS, 2023c). 

Figure 2-9 illustrates the schematic of the workflow for our models and calculations, 

which will be further explained in the following section. 

2.4.3 Logistic Regression Model 

Logistic Regression (LR) allows for estimating the relationship between a 

categorical variable (e.g., occurrence and no occurrence of an extreme event) and its 

influential factors (Bai et al., 2010; VanderWeele & Knol, 2014). It is a useful tool to 

calculate the probability of occurrence of an event (Bai et al., 2010; Budimir et al., 2015; 

Kleinbaum et al., 2002). Kleinbaum et al. (2002) described the logistic model as: 

𝑝 =
𝑒𝑧

1+𝑒𝑧
=

1

1+𝑒−𝑧
                                                 (2.1) 
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where p is the probability of event occurrence (1: occurrence; 0: no occurrence). 

Logit z is assumed as a linear combination of the independent variables, and is defined as:  

𝑧 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +. . . . +𝛽𝑖𝑥𝑖                                      (2.2)                                                                

where β0 is the intercept of the model, xi is the ith variable, and βi is the coefficient 

of the variable xi. We used random forest tool in R (open-source statistical software) for 

the LR modeling and generated the probability map of event occurrence (Eq. 2.1) in NC in 

ArcGIS Pro 3.1.2. 

The Receiver Operating Characteristic (ROC) curve is a representation of the 

performance of a binary classification model (Nahm, 2022). Zhang et al. (2016) used ROC 

curve to determine the optimal discrimination threshold for predicting event occurrence. 

The ROC curve is created by plotting the True Positive Rate (TPR) against the False 

Positive Rate (FPR) for various threshold values of a model's predicted probabilities 

(Milanović et al., 2021; Park et al., 2004). Zhang et al. (2016) and Milanović et al. (2021) 

further used the Area Under Curve (AUC) values between 0.5–0.7 to indicate poor 

precision, values between 0.7–0.8 to indicate acceptable precision, values between 0.8–0.9 

to indicate excellent precision, and values higher than 0.9 to indicate outstanding model 

precision. We used R to fit the LR models and produced the LR results, ROC curve and 

AUC values. This model validation approach is used in the current study in the LR 

modeling. These model validation approaches will also be used in the Random Forest (RF) 

modeling as explained in the following section. 

2.4.4 Random Forest Model 

According to Alzubi et al. (2018), Machine Learning (ML) is about making 

computers modify their actions in order to improve the actions to attain more accuracy, 
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where accuracy is measured in terms of the number of times the chosen actions that results 

in correct values. ML can be defined as a category of artificial intelligence that enables 

computers to learn and do what comes naturally to humans, such as learn from past 

experiences (Alzubi et al., 2018). ML techniques have been extensively applied in spatial 

statistical analysis to predict and model extreme events (Chen, Peng, et al., 2018; Jain et 

al., 2020; Kavzoglu & Teke, 2022).  

Introduced by Breiman (2001), Random Forest (RF) is a computationally effectual 

ensemble ML method that constructs the combination of many decision trees that can be 

used to model the spatial distribution of extreme events and has been applied in 

geomorphological research, susceptibility mapping, and remote sensing data modelling 

(Breiman, 2001; Kavzoglu & Teke, 2022; Taalab et al., 2018). RF has strong algorithmic 

advantages such as rapid processing capability, easy hyper-parameter optimization, and 

success in achieving high predictive performance (Kavzoglu & Teke, 2022). This 

technique has been applied to spatial regression analysis to predict the likelihood of 

extreme events occurring in different regions(Chen et al., 2017; Milanović et al., 2021; 

Park & Kim, 2019; Taalab et al., 2018). It has been combined with multiple decision trees 

to improve the accuracy and robustness of the model (Breiman, 2001).   

An RF model can deal with a large amount of data, including both categorical and 

numerical data, and it can account for complex interactions and validate the predictions 

(Taalab et al., 2018). The data requirement is for data that represent both occurrence and 

non-occurrence areas (Taalab et al., 2018). Therefore, we assigned a value of 1 to 

occurrence landslide points and a value of 0 to non-occurrence landslide points in our 

dataset (Park & Kim, 2019). Identifying the areas and sample conditions from GIS spatial 
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locations is straightforward (Kim et al., 2018). However, the accuracy of data mining 

models, often considered 'black box,' should be rigorously tested due to the challenge of 

defining variable relationships (Taalab et al., 2018). In our study, it involved splitting the 

entire dataset into two parts where 80% of dataset was used for training, and the remaining 

20% of dataset was employed for validation (Kim et al., 2018; Taalab et al., 2018).  

The study by Kim et al. (2018), focused on landslide susceptibility mapping using 

ML models, specifically RF and boosted tree models. The performance of the models was 

evaluated using ROC analysis and AUC values. The results of the study showed that both 

the RF and boosted tree models performed well in predicting landslide susceptibility, with 

the RF model outperforming the boosted tree model in terms of accuracy. The study 

demonstrated the effectiveness of RF and boosted tree models for landslide susceptibility 

mapping and emphasized the importance of slope in landslide susceptibility analysis. Chen 

et al. (Chen, Zhang, et al., 2018) also tested the performance of RF to quantify landslide 

susceptibilities and concluded that RF can reach 95% confidence level with high AUC 

values (Chen, Zhang, et al., 2018). 

In this study, we used R software for the RF modelling and produced the RF result, 

the out of bag (OOB) error, the accuracy value, the ROC curve, the AUC values and finally, 

a map of the probability of landslide event occurrence in NC. 

2.4.5 North Carolina Highway Bridges 

In this study, we focused on bridges situated above water, with a length more than 

6 m, and excluded those bridges over pipes and culverts or those designed as ramps. A 

significant number of the bridges on the NC highway system are prestressed concrete 

stringer bridges and steel girder bridges with very few other bridge types.  However, bridge 
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construction materials are not the focus of current study. The elevation of the bridge plays 

a crucial role in determining its susceptibility to damage by streams and rivers. Our 

previous investigation in Puerto Rico revealed that bridges located in the bottom of valleys 

are particularly vulnerable to multi-hazard risks that include landslide and flooding events. 

Hence, similar to the bridge in Las Marias (Figure 2-4), the combined hazards can lead to 

bridge washout. Thus, we further identified bridges likely to be affected by landslides and 

selectively examined those situated in or near the bottom of valleys. 

Throughout this research, we employed various tools in ArcGIS Pro to 

automatically calculate the bridge's assumed flooding potential (AFP) based on their 

geographical locations. These tools included the buffer tool, zonal statistics tool, extract 

multi-values to points tool, split line to points tool, and bearing distance to line tool. We 

utilized these tools to generate elevation data for both banks of a bridge and the elevation 

of the river. Subsequently, these elevation data were incorporated into the bridge's AFP 

calculation, defined by the following equation:  

𝐵𝑖 =
𝐸1𝑖+𝐸2𝑖

2
− 𝐸𝐿𝑖                                                    (2.3) 

where Bi represents the bridge’s AFP, i denotes the bridge ID, E1i and E2i 

correspond to the elevations of the two sides of the bridge and ELi represents the elevation 

of the river. AFP is different from bridge clearance as it is physically the approximate 

bridge height (averaged from the two banks) minus the river elevation from DEM at the 

location of the bridge. Hence, AFP is not the exact bridge height to the water level, but the 

approximate bridge height to the DEM elevation.  Ignored are the actual heights from the 

bridge bottom to the bridge deck surface.   We utilized ArcGIS Pro tools to compute the 

AFP results (Eq. 2.3) and identified bridge locations within valleys in NC. 
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To identify bridge locations within a valley, we used several criteria, such as AFP 

value, landform, slope, and elevation difference. The landform were classified using the 

'Geomorphon Landforms' tool in ArcGIS Pro, which categorizes calculated geomorphons 

into common landform types(ESRI, 2023). Jasiewicz and Stepinski (2013) studied 

classification and mapping of landform elements and described geomorphon as the 

landscape representation based on elevation differences around a target cell. Comprising 

498 geomorphons, their data set encompassed all conceivable morphological terrain types, 

encompassing both common landscape elements and rare, unconventional forms found 

infrequently on natural terrestrial surfaces (Jasiewicz & Stepinski, 2013). The data were 

then classified into 10 common landform types: flat, peak, ridge, shoulder, spur, slope, 

hollow, footslope, valley, and pit (ESRI, 2023; Jasiewicz & Stepinski, 2013).  

In the current study, the slope values were determined based on the maximum slope 

degrees (see section 2.4.2) within a 30 m search area around the bridge. The elevation 

differences were calculated from the maximum elevation within the same 30 m search area 

around the bridge, compared to the bridge's elevation. 
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Figure 2-5. Study area with location map illustrating North Carolina’s three distinct 

physiographic regions. a. North Carolina distinct physiographic regions distribution, b. 

Blue Ridge Mountain area, c. Piedmont area, and d. Coastal Plain area. 
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Figure 2-6. Location of landslide points and polygons within the study area. a. Showing 

closer version in Ashe County, Watauga County, and Avery County. b. Showing NC 

statewide results. 

 

 
Figure 2-7. Location of bridges within the study area. 
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Figure 2-8.  Landslide conditioning factors used in this study: a. Elevation, b. Aspect, c. 

Slope, d. Rainfall, e. Distance to fault, f. Distance to river. 

 

 
Figure 2-9. A schematic of the calculation workflow for the probability of landslide 

occurrence map and bridges in the valley. 
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2.5 Results and Discussions 

We utilized 9,794 sample points for the LR and RF modelling (4,794 for historical 

landslide occurrences and 5,000 for no landslide occurrences). In our data set, we used 

random points tool in ArcGIS Pro to generate 5,000 points that had no landslide 

occurrences. 

2.5.1 Statistical results 

The variables of elevation, aspect, slope, rainfall, distance to faults, and distance to 

rivers were used in our analysis.  The results for the LR model are shown in Table 2-1. We 

used the slope interaction with the elevation model to analyze the landside sample points. 

The results for the LR model show that the elevation, aspect, rainfall, slope, aspect 2 to 

aspect 6 and the distance to rivers are considered positive and significant variables. This 

means that the landslides would occur more frequently in areas where the elevation is 

higher, the slope is steeper, the rainfall is larger, the location is far away from a river, and 

the facing slope is north (aspect 2), northeast (aspect 3), east (aspect 4), southeast (aspect 

5), or south (aspect 6). On the other hand, distances to faults and slope interaction elevation 

are negative and significant meaning that the high occurrence of landslide in the area is 

closer to the fault lines. In this case, negative slope interaction means that when the slope 

is steeper, the elevation will be lower. Furthermore, aspect 7 and aspect 8 are both identified 

as negative, but only aspect 8 is significant. The interpretation is that landslides will not 

frequently occur where the facing slope is westward (aspect 8).  Finally, it is not conclusive 

if landslides will likely occur for southwest (aspect 7) facing slopes. 
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Table 2-1. Coefficient values for LR in the case of each predictor variable in landslide. 

Variable Unit 
Aspect (Reclass) interact 

slope 
Significance 

Elevation* m 2.264e-03 *** 

Slope Degree 6.346e-01 *** 

Rainfall mm/year 3.399e-03 *** 

Distance to faults m -1.069e-05 *** 

Distance to rivers m 1.515e-04 ** 

Aspect2  5.706e-01 *** 

Aspect3  1.175e+00 *** 

Aspect4  1.362e+00 *** 

Aspect5  9.241e-01 *** 

Aspect6  5.366e-01 *** 

Aspect7  -1.296e-01   

Aspect8  -2.987e-01 * 

Slope: Elevation  -3.752e-04 *** 

Intercept  -5.523e+00 *** 

* Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 
 

2.5.2 Validation and comparison of models 

In Table 2-2, the LR model predicts a percentage of 76.3%, which is a measure of 

how well the model predicts the correct outcome. Further, in a sensitivity analysis, the 

model has identified an accuracy of 77.4% indicating the percentage of positive model 

identification.  In the case of AIC (Akaike information criteria) values, a lower AIC value 

indicates a better model fit. In our case, the 8,116.8 value is considered high (Typical 

reported AIC values are in the range of 200 (Quesada-Román, 2021) to 1,000,000 (Nowicki 

Jessee et al., 2018). As mentioned in Section 3.4, the ROC curve and AUC value have been 

widely used to validate the performance of the RF and LR models (Chen et al., 2019). A 

higher AUC value indicates better model performance, as it can distinguish between 

positive and negative cases. In our model, the AUC has a reported accuracy of 84.3%, 

indicating acceptable model performance.   

The OOB error estimate with lower values indicates better model performance, 

suggesting that the model can generalize well for new data. Users should optimize two a 

priori hyper-parameters: The number of trees in the forest (ntree) and the number of 



35 

 

variables tested at each node (mtry) and the optimization aimed to minimize the OOB error 

and achieve good model performance(Park & Kim, 2019).  

In our RF model, the optimized values were 500 for ntree and 3 for mtry, resulting 

in an OOB error of 16.5%. Our RF model correctly predicted outcomes with an accuracy 

of 82.7% meaning the model accurately predicted the outcomes. In a sensitivity test, the 

model correctly identified 86%, a measure of how well it identifies true positive cases. A 

higher AUC value indicated better model performance, with an accuracy of 90.9%, 

signifying outstanding model performance.  

In our research, we compare the LR model and RF model to select the best-

performing model. The choice of the best model often depends on the specific 

characteristics of the problem and the data at hand [54]. Based on the accuracy value, AUC 

value, and ROC curve (Figure 2-10), the RF model demonstrated superior performance in 

predicting landslide occurrence. Consequently, we chose the random forest model to 

generate the probability of landslide occurrence map.  

Table 2-2. Summary of model performances for LR model and RF model for landslides. 

Models Evaluation Value 

Logistic Regression 

AIC1 8116.8 

Accuracy 0.763 

Sensitivity 0.7736 

AUC 0.8431 

Random Forest 

OOB 16.52% 

Accuracy 0.8269 

Sensitivity 0.8592 

AUC 0.9092 
1 AIC: Akaike information criterion. 

2.5.3 Predicted probabilities and the susceptibility map 

In order to compare to the LR model, we used the trained RF model to generate the 

probability of landslide occurrence map and susceptibility map. We trained the RF model 

using R to map the predicted probability of landslide occurrence.  
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Figure 2-11. Landslide risk map in North Carolina.shows that the red color 

represents a higher probability of landslide occurrence, yellow indicates a medium 

probability, and green signifies a low probability. Figure 2-12 reveals that 47 bridges likely 

will experience over 50% of the landslide occurrences in the NC mountain region. 

Landslides are predicted to occur in over 80% of the area around Watauga County, Jackson 

County, Henderson County, and Polk County.  

2.5.4 Bridge-in-valley 

After bridge data were retrieved from NCDOT and the FHWA databases, 9,462 

bridges were identified in North Carolina.  

Several of the bridges (Figure 2-13 to Figure 2-17) were visited in September 2023. 

Figure 2-13 and Figure 2-14 showcase bridges situated at ridge tops. Figure 2-13a, Figure 

2-13b, Figure 2-14a, and Figure 2-14b depict the bridge structure, while Figure 2-13c, 

Figure 2-13d, and Figure 2-14d illustrate the river bedding. Figure 2-14c provides a 

representation of the situation next to the bridge. Despite a high landslide risk (95%), these 

bridges, built at higher elevations, exhibit a lower susceptibility to landslide impacts. 

Figure 2-15a, Figure 2-15b, Figure 2-16a, Figure 2-16c, and Figure 2-17a showing the 

bridge structure, while Figure 2-15c, Figure 2-16b, Figure 2-16d, and Figure 2-17b 

illustrate the circumstances of the river bed. Figure 2-15 illustrates a bridge constructed at 

an elevation high above a valley, presenting a 60% probability of landslide occurrence. 

Figure 2-16a, Figure 2-16b, and Figure 2-17 depict a specific area where several landslides 

occurred.  These two bridges are considered to be bridges at the bottom of valleys in our 

study.  One of these bridges (Bridge ID: 740002) (Figure 2-17) has experienced landslides 
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in its vicinity and slope repair works using soil nails were on-going during the field visit 

(Figure 2-17c and Figure 2-17d).  

To establish whether a bridge is in a valley or on a ridge, several criteria were 

established including landform (e.g., valley and pit) data, slope (e.g., above 9 degrees), 

elevation difference (e.g., above 15 meters), and AFP value (e.g., under 7 meters).  The 

results showed that 21 bridges were in a valley bottom setting (Figure 2-18).  It should be 

noted that AFP can be a misnomer because it does not exactly project the flooding level.  

Instead, in the current study, AFP is used by assuming the flooding will reach its full value.  

Hence, to assess the number of bridges that may be exposed to flooding danger, AFP up to 

30 m have been applied to the bridge data (Figure 2-19). 

Finally, we combine the bridge-in-valley data with the probability of landslide 

occurrence, indicating a bridges' landslide and flooding risk (Figure 2-18 and Figure 2-19). 

According to Figure 2-18, the results showed that three bridges have a lower than 10% 

chance of landslide occurrence; 12 bridges have a 10% to 20% chance of landslide 

occurrence; and 5 bridges have a 24% to 32% chance of landslide occurrence.  One bridge 

(ID: 740002) has a 92% chance of landslide occurrence (Figure 2-18, red square symbol). 

Bridge 740002 is a steel stringers/multiple girder bridge with a concrete deck. This bridge 

was built in 2010 and the last routine inspection of the structure was in September 2021. 

According to the inspection results, the deck, superstructure, and substructure were still in 

good condition in 2021. 

The risks posed to bridge 740002 are likely landslides near the bridge foundations 

as well as upstream and downstream, which may result in increased flood heights from 

congestions of the channel stream flow during torrential rains.  Such multi-hazard analysis 
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has not been previously attempted and should be included in evaluation of bridges in 

similar geographical settings.  This is especially important in addressing climate extremes 

where unprecedented storms are projected for the Carolinas. 

Further research was conducted on bridge data in valleys, combined with the 

probability of landslide occurrence and AFP (Figure 2-19 and Appendix A). In Figure 2-19, 

the bridges with AFP below 10 m indicate that 23 bridges have a 10% to 20% chance of 

landslide occurrence, 6 bridges have a 20% to 50% chance of landslide occurrence, and 

one bridge has a 50% to 100% chance of landslide occurrence. Appendix A shows the 

details of the bridge information, including bridge ID, longitude, latitude, AFP, our 

assessment (using four criteria for classification), extra observations (confirming the 

classification method), and the probability of landslide occurrence. When considering AFP, 

additional field observations were made (Appendix A), which indicates that bridges with 

AFP above 7 m and below 30 m are not necessarily located in the bottom of a valley.  As 

observed in Figure 2-13 and Figure 2-14, these bridges may be better classified as either 

bridges at mid-height of a valley or at a ridge top. The field observations were used to 

validate the bridges-in-valley in Appendix A, where only bridge 020021 does not fit our 

criteria for a bridge-in-valley (AFP less than 7 m). The classification method used in the 

current study achieved a 97% accuracy rate in bridge-in-valley selection. 

2.6 Conclusions 

The 2018 Hurricane Maria resulted in more than 40,000 landslides and damaged 

388 bridges in Puerto Rico.  Close examination of several of the damaged bridges revealed 

the danger of multi-hazard risks (landslide + flooding) for bridges-in-valleys.  North 

Carolina, on the east coast of the U.S., is also exposed to the impacts of seasonal Atlantic 
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hurricanes.  Hence, to investigate similar risks to bridges in North Carolina, a landslide risk 

susceptibility analysis has been conducted.  In this study, we identified that the majority of 

landslides occur in the mountainous region of North Carolina, thus posing a potential threat 

to numerous bridges in that region.  

Using Logistic Regression (LR) and Random Forest (RF) modeling, a landslide risk 

susceptibility map was created.  Conditioning factors included in current study are aspect 

variable and seismicity (distance to faults).  The geomorphic, geological and hydrological 

considers are inclusive in the aspect variable of the conditioning factors.   The results from 

the two models have accuracy rates of 76.3% and 82.7% for LR and RF models, 

respectively.  Using the ROC curves, RF model is also shown to be more sensitive than the 

LR model in predicting landslide risks. Combining highway and roadway bridge data, 

bridges of high landslide risk are then identified.   

Further analysis using landform data and bridge assumed flooding potential (AFP) 

helped identify bridges-in-valleys. The results showed 37 bridges exposing to both 

landslide and flooding risks. One particular bridge (ID: 740002) have been found to be 

exposed to high landslide and flooding risks. Observations from a field visit indicated that 

ongoing construction efforts have been carried out to address localized landslides near the 

bridge location. This confirmed our analysis result (Figure 2-18, red square symbol), and 

the observations on bridge 740002 (Figure 2-17) align with our findings, indicating the 

potential exposure to multi-hazard (landslide with flooding) dangers. This observation 

reinforced our confidence that the landslide risk map is accurate and can serve as a valuable 

tool for managers and decision-makers, enabling proactive measures to prevent potential 

bridge damage in the future.  
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The development of a landslide risk prediction model poses a challenge, if we are 

consideration of the complex nature of geo-environments, encompassing factors such as 

the geology, hydrology, topography, and human activities (land use) (Kirschbaum et al., 

2015). The current study covers a large area and only considered aspect variable and 

seismicity; hence, future work aiming for increased precision can delve into additional 

factors such as geology and lithology.  
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Figure 2-10. ROC curves of the LR model and RF model. 

 

 
Figure 2-11. Landslide risk map in North Carolina. 
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Figure 2-12. Bridges with landslide risk map in NC’s mountain area. Showing the bridges 

with a 50% or greater probability of being impacted by a landslide. 
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Figure 2-13. Example of bridge at ridge top (Bridge ID: 440375, a steel girder bridge). 

(Photo credit: Shen-En Chen and Sophia Lin) 
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Figure 2-14. Example of bridge sufficiently higher than the valley region (Bridge ID: 

740031, a prestressed concrete stringer bridge). (Photo credit: Shen-En Chen and Sophia 

Lin) 
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Figure 2-15. Example of bridge-in-valley (Bridge ID: 740027, a steel girder bridge). 

(Photo credit: Shen-En Chen and Sophia Lin) 
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Figure 2-16. Example of bridge-in-valley (Bridge ID: 100653, a steel girder bridge). 

(Photo credit: Shen-En Chen and Sophia Lin) 
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Figure 2-17. Example of valley bridge near a landslide with visible debris flow and rock 

slide (Bridge ID: 740002, a prestressed concrete stringer bridge). (Photo credit: Shen-En 

Chen and Sophia Lin) 
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Figure 2-18. Bridges in valley under 7m above stream elevation assuming flooding 

potential (AFP) in NC’s mountain area, indicating the potential of exposing to multi-

hazard (landslide with flooding) dangers. 

 

 
Figure 2-19. Probability of landslide occurrence combine with AFP. 
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Appendix A 

No Bridge ID Longitude Latitude AFP Our Assessment 
Extra 

Observation 

Probability 

of 

Landslide 

Occurrence 

1 860024 -83.31964644 35.47677134 1.02 Valley Bridge Valley Bridge 0.25 

2 990034 -82.37624068 35.95286913 1.05 Valley Bridge Valley Bridge 0.27 

3 860020 -83.41412095 35.43162131 1.73 Valley Bridge Valley Bridge 0.19 

4 430010 -82.82258403 35.39932611 1.79 Valley Bridge Valley Bridge 0.19 

5 600084 -82.27706725 36.08360385 1.89 Valley Bridge Valley Bridge 0.18 

6 440161 -82.55773367 35.1673545 2.59 Valley Bridge Valley Bridge 0.24 

7 580017 -81.97599594 35.57528782 2.62 Valley Bridge Valley Bridge 0.03 

8 550229 -83.6553343 35.25717623 2.82 Valley Bridge Valley Bridge 0.16 

9 860137 -83.51710646 35.39425632 2.85 Valley Bridge Valley Bridge 0.13 

10 550228 -83.6690064 35.26770495 3.00 Valley Bridge Valley Bridge 0.17 

11 490080 -83.10854232 35.29399205 3.40 Valley Bridge Valley Bridge 0.25 

12 210057 -83.91391948 34.9993788 3.90 Valley Bridge Valley Bridge 0.17 

13 860104 -83.51851741 35.39461143 3.92 Valley Bridge Valley Bridge 0.08 

14 550230 -83.65351494 35.24695009 4.24 Valley Bridge Valley Bridge 0.32 

15 560138 -82.77026923 35.83929582 4.62 Valley Bridge Valley Bridge 0.19 

16 600026 -82.22878565 36.04036643 5.28 Valley Bridge Valley Bridge 0.10 

17 020021 -81.02105795 36.54282685 6.20 Valley Bridge Not Valley Bridge 0.14 

18 190159 -84.06817913 35.11164097 6.23 Valley Bridge Valley Bridge 0.16 

19 740002 -82.34673092 35.21555685 6.61 Valley Bridge Valley Bridge 0.92 

20 040045 -81.57578897 36.44914354 6.73 Valley Bridge Valley Bridge 0.10 

21 560122 -82.8361671 35.87993609 6.74 Valley Bridge Valley Bridge 0.16 

22 190271 -84.00223354 35.070788 7.94 
Not Valley 

Bridge 
Not Valley Bridge 0.03 

23 100249 -82.62422335 35.71781996 9.14 
Not Valley 

Bridge 
Not Valley Bridge 0.13 

24 040039 -81.3365605 36.47373934 10.74 
Not Valley 

Bridge 
Not Valley Bridge 0.08 

25 040032 -81.49664884 36.55558414 11.18 
Not Valley 

Bridge 
Not Valley Bridge 0.40 

26 370033 -83.93801605 35.44444511 11.37 
Not Valley 

Bridge 
Not Valley Bridge 0.08 

27 190270 -84.02028287 35.07271993 11.42 
Not Valley 

Bridge 
Not Valley Bridge 0.19 

28 050026 -82.01580245 35.98178364 11.91 
Not Valley 

Bridge 
Not Valley Bridge 0.06 

29 100494 -82.30741992 35.61896287 12.44 
Not Valley 

Bridge 
Not Valley Bridge 0.16 

30 560547 -82.55788273 35.91704369 12.55 
Not Valley 

Bridge 
Not Valley Bridge 0.40 

31 600247 -82.08616795 35.9228022 15.85 
Not Valley 

Bridge 
Not Valley Bridge 0.07 

32 430098 -82.94589996 35.58069908 16.11 
Not Valley 

Bridge 
Not Valley Bridge 0.11 

33 580304 -82.21520267 35.63570163 22.58 
Not Valley 

Bridge 
Not Valley Bridge 0.13 

34 980035 -80.43227182 36.21614972 23.48 
Not Valley 

Bridge 
Not Valley Bridge 0.00 
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35 430207 -82.9947526 35.66607999 24.49 
Not Valley 

Bridge 
Not Valley Bridge 0.43 

36 850392 -80.86723297 36.25986437 24.55 
Not Valley 

Bridge 
Not Valley Bridge 0.02 

37 850391 -80.867459 36.259959 25.31 
Not Valley 

Bridge 
Not Valley Bridge 0.00 
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Chapter 3: Nested Multi-Hazard Susceptibility for Bridges in North Carolina Mountain 

Ranges 

 

 

3.1 Abstract 

This research investigates the nested multi-hazard susceptibility of highways and 

roadway bridges in the mountainous western region of North Carolina. Nested multi-

hazard (earthquake, wildfire, landslide and flooding) risks consider the causal-effect 

relations of different natural hazards, in this case, the consequences of forest fires are 

depletion of surface vegetation that reduces soil cohesion and leading to the risks of 

landslides and the potential flooding hazards to highway bridges. Earthquake-induced 

hazard can trigger landslides and is considered based on the distance to fault zone and the 

remote sensing data. Finally, bridges above water and situated in valleys can be exposed 

to heightened vulnerability of combined landslides and flooding events due to their 

proximity to the water surface and the potential for raised flood heights due to upstream 

landslides that caused constriction to waterways. To quantify flooding risks, the difference 

between bridge height and the lowest river elevation is established as an assumed flooding 

potential (AFP).  To model the nested multi-hazard risks, both linear regression (LR) and 

random forest (RF) models have been constructed considering several parameters 

including forest fire, soil types, slopes, AFP, rainfall, etc. This paper is the first report 

evaluating the multi-hazard issue of bridges in valleys using nested multi-hazard 

susceptibility analysis. The results indicate that the digital elevation model (DEM) derived 

parameters have the most significant effect in the modeling strategies.  Wildfire, while 

having some effects, is not the most significant factor for western North Carolina. The 

results further indicate that RF modeling performed slightly better than LR modeling. The 
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resulting high-fidelity risk map is important for proactive bridge maintenance and 

rehabilitation planning. 

 

Keywords: Nested Multi-Hazards, Bridges, Flooding Potential, Random Forest Modeling 
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3.2 Introduction 

Climate-related events can have significant adverse impacts on integrity and 

operation of civil infrastructure including freight routing, railroads and bridges (Caldwell 

et al.; Koetse & Rietveld, 2009; Rossetti, 2002). To include climate effects in risk modeling, 

several researchers suggested a downscale projection of Global Climate Models (GCM) to 

establish the potential hazards to infrastructure (Nasr et al., 2021; Palu & Mahmoud, 2019). 

However, due to many sources of uncertainties associated with GCM predictions, the 

disconnect between climate effect projections from GCMs and actual bridge hazard 

prediction can be quite substantial (Hurrell & Trenberth, 1999; Schulz et al., 2017). 

This paper considers a more classical approach using a nested multi-hazard (NMH) 

modeling approach, which is defined as the combined multi-hazard modeling that 

considers four different natural hazards (landslide, forest fire, earthquake and flooding) 

that have the potential of increasing risks to highway bridges.  Multi-hazard risk assessment 

have been an important topic for bridge infrastructure resilience (Banerjee et al., 2019; 

Kameshwar & Padgett, 2014), and quantifications of risks have been performed for 

different combinations of hazards including earthquake and scour, earthquake and 

corrosion, and earthquake and liquefaction (Banerjee et al., 2019).   

As Lin et al. (2024) indicated, landslide occurrences can be severe in North 

Carolina, which poses critical risks to highway bridges in the western mountain ranges.  In 

this study, we further investigate the risks of wildfire triggered landslides (Culler et al., 

2023; DeBano et al.; He et al., 2021). Wildfires increase the susceptibility of landscapes to 

landslides due to the removal of surface vegetation, which reduces soil cohesion and 

increases the potential for runoff-generated debris flows (Culler et al., 2023). Rengers et 
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al. (2020) suggested that post-wildfire landslides might occur earlier in the wet season 

when the ground is less saturated, indicating greater susceptibility at these times. Burn 

severity, slope aspect, and smaller precipitation events in burned areas significantly 

increase the likelihood of landslides (Culler et al., 2023; DeBano et al., 1979). 

Landslides are complex ground movements affected by several critical factors 

including site geology, geomorphology and hydrology, regional topography and hillslope 

morphology and anthropogenic activities (i.e. earthworks) (Highland & Bobrowsky, 2008; 

Kirschbaum et al., 2015; Regmi et al., 2014). With frequent forest wildfires, the landslide 

risks of a region can increase significantly.  However, such risks are hard to establish due 

to the difficult differentiation between static factors (burn severity, vegetation and soil 

types) and dynamic factors (soil moisture, meteorology and the time gap to the latest fire 

(Culler et al., 2023). Many such factors are unfortunately not documented. To help 

establish landslide susceptivity, a machine learning approach has been attempted (Di 

Napoli et al

Pourghasemi et al. (2023) used a machine learning to model multi-hazard risks 

(flood, landslides, forest fires and earthquake) for Khuzestan. In this case, several machine 

learning techniques including Support Vector Machine (SVM), Boosted Regression Tree 

(BRT), Random Forest (RF) and Maximum Entropy (MaxEnt) were attempted. RF was 

found to have the highest “Area Under the Curve” (AUC) values. 

In this paper, we consider the multi-hazard risks that may occur to the highway 

bridges in the mountain regions of western North Carolina (NC). As one of the US 

southeastern coastal states, North Carolina is often impacted by the Atlantic hurricanes as 

well as drought-induced forest fires (Campbell et al., 2018). At the same time, the mountain 
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ranges are recognized for their landslide hazards (Pourghasemi et al., 2023). Because of 

the likelihood of exposure to different hazards, we are interested in studying the multi-

hazard risks to highway bridges in North Carolina (Lin et al., 2024). 

Although earthquakes are considered in current study, North Carolina has very 

limited earthquake history - Between 1735 and 2014, the state has only experienced 22 

earthquakes that caused damage (B., 2014). The lack of seismographic data limited the 

capability to quantify risks due to seismicity. Hence, the earthquake risk is simplified to 

considering only the distance to fault lines and derived remote sensing data (elevation, 

slope and aspect parameters). For landslides due to recent and known seismic events, Wang 

et al. (2023) used the same parameters plus distance to epicenter and distance to 

seismogenic fault as triggering factors. 

To assess the landslide risks due to multi-hazards in North Carolina, multiple 

databases have been collected and compiled and both Linear Regression (LR) and Random 

Forest (RF) have been used in current study.  Because the focus of this study is the highway 

bridges in the mountain regions of North Carolina, the flooding risk is assumed using an 

assumed flooding potential (AFP), which will be explained in section 4. Because bridges 

are located at discrete locations, when compared to traditional flood risk values, the AFP, 

reported in elevation differences, is more straightforward and helps bridge engineers 

visualize the flood risk to a bridge (Lin et al., 2024). Since bridges may span over 

abutments of different elevations, digital elevation model (DEM) data is used to establish 

the AFP at the center of each bridge location, representing an average height to water level. 
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3.3 Study Area, Landslide Data and Wildfire Data 

NC is divided into three main physiographic regions, each characterized by unique 

environmental and geological features: the eastern Coastal Plain, the central Piedmont, and 

the western Appalachian Mountains (from right to left, Figure 3-1a). The current study 

focuses on the western mountain region (Figure 3-1b), which encompasses an area of 

26,572 km2 as part of the Appalachian Mountains (State, 2024). River flow directions are 

divided by the Eastern Continental Divide (State, 2024). 

U.S. Geological Survey (USGS) landslide database showed most landslides 

concentrated in the western NC region (Belair et al., 2022).  Lin et al. (2024) confirms that 

the mountainous areas of NC experience the highest occurrence of landslides. The landslide 

data selection in our study is based on the confidence rule system by USGS (Belair et al., 

2022). Following the confidence rule system used in the USGS landslide dataset (Belair et 

al., 2022) and Lin et al. (Lin et al., 2024) study, this paper uses susceptibility values ranging 

from 5, which indicates a confidence of a consequential landslide at a given location, and 

8, which refers a high confidence in extent or nature of landslide (Mirus et al., 2020). 

Wildfire is a common hazard due to fuel accumulation, seasonal precipitation 

variability, and frequent droughts (Li et al., 2019). Intini et al. (2019) described a wildfire 

as “an unplanned and uncontrolled fire spreading through vegetative fuels, including any 

structures or other improvements thereon.” Figure 3-2 shows the number of wildfire events 

from 1928 to 2023 in NC, as collected by the North Carolina Forest Service (NCFS)(NCFS, 

2024). Wildfire events have occurred every year during this period. 

To establish the wildfire database, U.S. Department of Agriculture (USDA) 

wildfire data from 1995 to 2018 were collected (Short, 2021). USDA cause classification 

showed that the reasons why the fire occurred are man-made, natural causes or 
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undetermined. Hence, the USDA database differentiated the wildfire causes as human - 

induced, nature-induced and missing data/not specified/undetermined. For our research 

purposes, we focused on both human-induced and natural wildfire events and 

undetermined wildfire events were not considered in this study. The wildfire database 

represents point features and includes 112,454 events in NC. The biggest natural wildfire 

event in NC was the Pains Bay fire in 2011 (Short, 2021). 
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Figure 3-1 Study area with location map illustrating North Carolina’s Mountain area. a. 

North Carolina distinct physiographic regions distribution, b. Blue Ridge Mountain area. 

 

 
Figure 3-2 Number of wildfire events from 1928 to 2023 in North Carolina (collected 

from North Carolina Forest Service). 
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3.4 Materials and Methods 

3.4.1 Wildfire, Landslide and Bridge Inventory 

The compiled landslide database contains 4,794 landslides and 6,653 polygons 

(Belair et al., 2022). Figure 3-3 shows the landslides considered in the western mountain 

region. Figure 3-4 shows the wildfire point features from 1995 to 2018 with 24,738 events 

(Short, 2021). 

Highway bridge inventory is compiled from data provided by the North Carolina 

Department of Transportation (NCDOT) and the Federal Highway Administration 

(FHWA). Bridge ID is used to combine the two datasets (up to 2023) containing 22,812 

bridges statewide (Figure 3-5). Out of which only 3,084 bridges were considered for the 

western mountain range. 

3.4.2 Conditioning Factors 

3.4.2.1 Landslide 

Landslide susceptibility variables considered include aspect, slope, elevation, 

distance to faults, distance to rivers, rainfall, soil type, etc. (Chang et al., 2023; Huang et 

al., 2024; Liu et al., 2023; Sengupta & Nath, 2024). Of which, remote sensing information 

such as elevation and derived factors such as slope have been recognized to affect landslide 

occurrences (Chang et al., 2023; Huang et al., 2024; Liu et al., 2023).  Using DEM data 

from the USGS  (USGS, 2023a) at a 1 arc-second resolution (Figure 3-6a) , a DEM layer 

with 30m × 30m cell dimensions was generated based on contour lines containing elevation 

values (USGS, 2023a). 

Slopes were determined from DEM using slope tool (Figure 3-6b) and the aspect 

variable with the aspect tool (Figure 3-6c) in ArcGIS Pro. The aspect variables were 

defined according to Ayalew and Yamagishi (Sengupta & Nath, 2024) and were divided 



66 

 

into nine classes including west (292.5–337.5°), northwest (247.5–292.5°), southwest 

(202.5–247.5°), south (157.5–202.5°), southeast (112.5–157.5°), east (67.5–112.5°), 

northeast (22.5–67.5°), north (0–22.5° and 337.5–360°), and flat (−1°), which is indicate 9 

to 1 values.  

Figure 3-6d shows different soil types which can contribute to landslides after 

severe wildfires (Culler et al., 2023; Rengers et al., 2020). Soil type also significantly 

influences slope instability and landslide occurrence based on the properties of the rocks 

and soils (Wubalem & Meten, 2020). Burned soils may lose organic content during the 

combustion process, reducing their water-holding capacity and increasing the risk of 

erosion (Wubalem & Meten, 2020). We classified the soil types into four groups: Most 

critical (4), medium critical (3), less critical (2), and least critical (1). The most critical 

group includes residuum weathered soil and organic matter found in clayey, sandy clay 

loam, and complex soils. The medium critical group does not include organic matter or 

residuum weathered soil in clayey, sandy clay loam, and complex soils. The less critical 

group consists of other soils or rocks that may include some organic matter or residuum 

weathered soil. The least critical group consists of all remaining soil types. The soil type 

data were collected from the USDA soil survey database (Staff, 2003). 

Rainfall observation data from the National Oceanic and Atmospheric 

Administration (NOAA) was analyzed in ArcGIS Pro. Using Inverse Distance Weighted 

(IDW) tool (Sengupta & Nath, 2024).  Finally, Euclidean distances tool were used for the 

distance to river and distance to faults calculation using USGS National Hydrography 

Dataset (NHD) (Figure 3-6h) and North Carolina Environmental Quality (NCDEQ) 

database (Figure 3-6i) (NCDEQ, 2022; USGS, 2023c). Seismicity and distance to rivers 
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are another key factor in triggering landslides that warrants explicit investigation (Liu et 

al., 2023). 

3.4.2.2 Wildfire 

To further elaborate on the effects of wildfire on the occurrence of landslides 

(Culler et al., 2023; Rengers et al., 2020; Staley et al., 2016), several variables were used 

to define wildfire areas including elevation, slope, forest cover, rainfall, temperature, 

distance to high population intensity, distance to rivers, and distance to roads (Busico et 

al., 2019; Jain et al., 2020; Milanović et al., 2021; Nhongo et al., 2019; Zhang et al., 2016). 

The justifications of the selected factors are as follows.  

Elevation (Figure 3-6a) and slope (Figure 3-6b) play critical roles in wildfire (Iban 

& Sekertekin, 2022; Leuenberger et al., 2018; Moayedi & Khasmakhi, 2023).  

Meteorological factors like temperature and precipitation may be influenced by these 

topographic features (Leuenberger et al., 2018). The slope can influence both airflow and 

the local microclimate, which in turn impacts the spread of fire (Chang et al., 2022; Kumi-

Boateng et al., 2021). 

Rainfall (Figure 3-6e) and temperature (Figure 3-6f) are also critical as higher 

temperature and less precipitation can generate more favorable conditions for triggering 

forest fire (Chang et al., 2022; Chuvieco & Salas, 1996). Dry leaves, grass, twigs, branches, 

and other debris on the forest floor, as well as the trees themselves increase the fuel load 

feeding forest fire (Kumari & Pandey, 2020). Therefore, certain forest types (Figure 3-6g) 

are identified as more flammable than others, leading to a higher risk of fire occurrence 

(Kumari & Pandey, 2020; Taylor et al., 2005). 
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In distance to rivers (Figure 3-6h), the presence of water courses and springs is 

considered a deterring factor to forest fire (Busico et al.). The majority of wildfires 

originate from human activities, whether intentional or accidental, suggesting a potential 

link between fire occurrence and socioeconomic factors, such as distance to roads (Figure 

3-6j) and distance to high population zones (Figure 3-6k) (Chuvieco & Salas, 1996; 

Nhongo et al., 2019; Zhang et al., 2016). 

3.4.3 Logistic Regression Model 

Our workflow schematic for models and calculations is illustrated in Figure 3-7. 

Here, logistic regression (LR) is used to estimate the relationship between a variable and 

its influential factors (Bai et al., 2010; Milanović et al., 2021) and to calculate the 

probability of an event occurrence (Bai et al., 2010; Milanović et al., 2021), which is 

described as: 

𝑝 =
𝑒𝑧

1+𝑒𝑧
=

1

1+𝑒−𝑧
                                                      (3.1) 

where p is the probability of the occurrence of an event (1: occurrence; 0: no 

occurrence). Logit z, defined as a linear combination of the independent variables, is 

expressed as: 

𝑧 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +. . . . +𝛽𝑖𝑥𝑖                                        (3.2) 

β0 is the intercept of the model, xi is the ith variable, and βi is the coefficient of the 

variable xi. The statistical package in RStudio 2021.09.2+382 was used for the LR 

modeling and the probability map of event occurrence was generated. The maps were then 

presented using ArcGIS Pro 3.1.2. 

The performance of a binary classification model is represented by the Receiver Operating 

Characteristic (ROC) curve (Iban & Sekertekin, 2022). Variable significance has been 
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widely applied for variable selection in numerous studies on extreme weather events 

(Milanović et al., 2021). The importance of individual variables selected through the LR 

procedure is assessed using the Wald statistical test (Martínez-Fernández et al., 2013; 

Milanović et al., 2021). The Wald statistic tests whether each variable contributes to the 

model and helps identify which predictors are most influential (Martínez-Fernández et al., 

2013). 

We used R to generate the models, producing the LR results, such as variable 

importance, variable significant, ROC curve, and AUC values. 

3.4.4 Random Forest Model 

Alzubi et al. (2018), defined Machine Learning (ML) as a subset of artificial 

intelligence allowing computers to learn from repetitions and has been used in geospatial 

modeling for extreme event predictions. It has been utilized in geospatial modeling for 

predicting extreme events (Jain et al., 2020; Liu et al., 2023). Random Forest (RF) is a 

well-known machine learning method that combines multiple binary decision trees, each 

built on random vector values, to model the spatial distribution of extreme weather events 

(Breiman, 2001; Sengupta & Nath, 2024). Extreme weather events have been analyzed 

using various methods, including hazard susceptibility mapping, remote sensing data 

modeling, and spatial information analysis (Iban & Sekertekin, 2022; Liu et al., 2023). RF 

has been applied in spatial regression analyses for risk modeling, where it is used to predict 

the likelihood of extreme events (Iban & Sekertekin, 2022; Milanović et al., 2021; 

Sengupta & Nath, 2024). 

  RF modeling requires data representing both occurrence and non-occurrence sets 

(Milanović et al., 2021). In our study’s dataset, landslide occurrence points were labeled 
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with a value of 1, while non-occurrence points were labeled as 0 (Milanović et al., 2021). 

RF modeling and analysis performed using RStudio 2021.09.2+382, which produced 

outputs such as out-of-bag (OOB) errors, accuracy metrics, ROC curves, AUC values, and 

a probability map illustrating landslide occurrence in North Carolina.   

In the RF modeling, variable importance is assessed using the Gini impurity 

function (Milanović et al., 2021; Sengupta & Nath, 2024), which is calculated across all 

decision trees and is then scaled with a higher value means that helps to make cleaner splits, 

thus improving the model's performance (Milanović et al., 2021). 

3.4.5 North Carolina Highway Bridges 

For our study, we focused on bridges over water with a length exceeding 6 meters, 

excluding those designated as ramps or over pipes and culverts. Using ArcGIS Pro, we 

calculated the bridge's flooding potential (AFP) from DEM data by utilizing various tools, 

including the split line to points tool, extract multi-values to points tool, bearing distance 

to line tool, buffer tool, and zonal statistics tool. These tools provided elevation data for 

both the riverbanks and the river itself. The elevation data were then incorporated into the 

calculation of the bridge’s AFP, which is defined as follows: 

𝐵𝑖 =
𝐸1𝑖+𝐸2𝑖

2
− 𝐸𝐿𝑖                                                     (3.3) 

where Bi denotes the bridge’s AFP, i represents the bridge’s ID, E1i and E2i represent 

the elevations on the two sides of the bridge, while ELi denotes the elevation of the river. 

Unlike bridge clearance, AFP is determined by subtracting the river elevation from the 

DEM at the bridge location from the average height of the bridge, calculated from the 

elevations of both banks. 
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We used several criteria, such as landforms, elevation differences, and slope to 

identify bridges situated within valleys (Lin et al., 2024). The landform factor was analyzed 

using the Geomorphon Landforms tool in ArcGIS Pro (ESRI, 2023). In our study, slope 

values were determined by calculating the maximum slope degree within a 30-meter radius 

surrounding each bridge. 

 
Figure 3-3 Location of landslide points and polygons within the study area. a. Showing 

closer version in Buncombe County, Henderson County, Polk County, Rutherford 

County, and Transylvania County. b. Showing NC’s Mountain areas. 
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Figure 3-4 Location of wildfire points within the study area. 

 

 
Figure 3-5 Location of bridges within the study area. 
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Figure 3-6 Conditioning factors used in this study: a. Elevation, b. Slope, c. Aspect, d. 

Soil type, e. Rainfall, f. Temperature, g. Forest cover, h. Distance to rivers, i. Distance to 

faults, j. Distance to roads, k. Distance to high population intensity, l. probability of 

wildfire occurrence. 
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Figure 3-6 (continued) 

 

 
Figure 3-7 A schematic of the calculation workflow for the probability of multi-hazard 

(wildfire, landslide, earthquake and flooding) occurrence map, the probability of wildfire 

occurrence map, and bridges in the valley. 
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3.5 Results and Discussions 

For landslide modeling, we utilized a total of 9,794 sample points of which 4,794 

represent landslide occurrences and 5,000 non-landslide occurrences.  For the wildfire 

events, we used 24,738 points for historical landslide occurrences and a total of 25,000 for 

non-wildfire occurrence for conducting the LR and RF modeling. 

3.5.1 Statistical Results 

Table 3-1 shows that most predictive variables are negative (except intercept) and 

significant indicating that the wildfire events are critical for areas with lower elevations, 

flatter slope, lower amounts of rainfall, lower temperature, closer to the roads, not covered 

by forest, or closer to areas with a higher population density (e.g., urban). The distance to 

rivers resulted in a negative correlation and was not significant, which implies that the 

factor is not reliable as a predictor. 

Table 3-1 Correlation coefficient values for LR predictor variable in wildfire occurrence. 

Variable Unit Coefficient Significance  Source 

Elevation m -6.637e-04 *** 
DEM 

Slope Degree -2.119e-02 *** 

Rainfall mm/year -6.016e-03 *** 
Weather 

Station 

Temperature ℉/year -2.101e-02 *** 
Weather 

Station 

Distance to roads m -6.926e-04 *** Road 

Distance to rivers m -4.432e-05 . Stream 

Forest cover 0/1 -3.262e-01 *** Forest Cover 

Distance to areas of high 

population density 
m -4.523e-05 *** Land Cover 

Intercept  3.510e+00 ***  

* Significance codes:  0‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

 

Table 3-2 presents the variables used in the analysis and the results for the LR 

model for landslide occurrence. The results show that several variables are positively 

correlated and statistically significant, suggesting that landslides are more likely to occur 
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in areas characterized by higher elevations, steeper slopes, heavier rainfall, greater 

distances to rivers, and slopes with northeast (aspect 3), east (aspect 4), southeast (aspect 

5), south (aspect 6), or southwest (aspect 7) orientations. 

In contrast, distance to faults, soil type, wildfire and the interaction between slope 

and elevation are negative correlated and statistically significant. This indicates that 

landslides tend to occur closer to the least critical of soil type, closer to less wildfire 

occurrence area, closer to fault lines, and the interaction effect suggests that higher slopes 

correspond to lower elevations in these areas. Additionally, aspects 2, 8 and 9 (northward-

facing, northwestward-facing and westward-facing slopes) are identified as a negative 

factor, with aspects 2 and 8 being more statistically significant. This implies that landslides 

are less likely on west-facing slopes, especially for aspect 9. Finally, the model does not 

provide conclusive evidence regarding landslide frequency on flat (aspect 1) slopes, as the 

mountainous region lacks flat or level surfaces without an incline. 

Table 3-2 Coefficient values for LR in the case of each predictor variable in landslide. 

Variable Unit Coefficient Significance Derive 

Elevation m 2.111e-03 *** 

DEM 

Slope Degree 6.869e-01 *** 

Aspect2  -6.261e-01 *** 

Aspect3  6.261e-01 *** 

Aspect4  1.165e+00 *** 

Aspect5  1.356e+00 *** 

Aspect6  9.098e-01 *** 

Aspect7  5.151e-01  *** 

Aspect8  -3.836e-01 ** 

Aspect9  -2.955e-01 * 

Rainfall mm/year 3.811e-03 *** 
Weather 

Station 

Distance to faults m -1.045e-05 *** Fault 

Distance to rivers m 1.415e-04 * Stream 

Soil Type  -1.313e-01 ***  

Wildfire  -1.101e+00 ***  

Slope: Elevation  -3.785e-04 ***  

Intercept  -4.989e+00 ***  

* Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 
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3.5.2 Importance of Variables 

Table 3-3 displays the importance of each variable for both the LR and RF 

modeling approaches for the prediction of wildfire occurrence and the LR result shows that 

distance to rivers is the most important variable followed by temperature and slope (Table 

3-3). However, distance to rivers does not display significant effects on the RF model 

(Table 1). In the RF model, distance to roads is the most important explanatory variable, 

followed by elevation and distance to high population density areas (Table 3-3). It is 

intriguing is that distance to roads has the lowest impact in the LR model, while distance 

to rivers has the second lowest impact in the RF model. 

Table 3-3 Wildfire risk modeling variable importance evaluation (Wald statistics for LR 

model and Gini impurity measures for RF model). 

Logistic Regression Random Forest 

Variable Wald Statistics Variable Gini Impurity 

Distance to rivers -1.79 Distance to roads 3748.30 

Temperature -3.82 Elevation 3117.71 

Slope -4.68 
Distance to high 

population intensity 
3072.96 

Rainfall -9.08 Temperature 2732.57 

Elevation -11.06 Rainfall 2605.56 

Forest cover -12.99 Slope 2544.97 

Distance to high 

population intensity 
-21.91 Distance to rivers 1705.21 

Distance to roads -40.84 Forest cover 264.12 

 

In the landslide modeling, the LR results indicate that slope is the most important 

variable for landslide occurrences, followed by rainfall and elevation (Table 3-4). Slope 

has a highly significant effect on the model (Table 3-2). Similarly, in the RF model, slope 

is also the most important variable, followed by rainfall and elevation (Table 3-4). In the 

LR model, the variable with the lowest impact is distance to faults, while soil type has the 

lowest impact in the RF model. Comparing the LR and RF models, slope, rainfall, and 
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elevation are consistently the most important variables and have significant effects on 

landslide susceptibility. 

Table 3-4 Variable importance evaluation based on Wald statistics for LR model and 

Gini impurity for RF model for landside risks. 

Logistic Regression Random Forest 

Variable Wald Statistics Variable Gini impurity 

Slope 24.40 Slope 1160.17 

Rainfall 10.48 Rainfall 630.71 

Elevation 9.94 Elevation 548.39 

Aspect 4.76 Distance to faults 481.95 

Distance to river 2.41 Wildfire 365.57 

Soil Type -4.57 Aspect 353.40 

Wildfire -5.52 Distance to rivers 263.52 

Distance to faults -6.32 Soil Type 96.13 

 

3.5.3 Validation and Comparison of Models 

Table 3-5 demonstrates that the LR model achieves an overall accuracy of 68.5%, 

indicating how effectively it predicts the correct outcomes. In terms of sensitivity, the 

model correctly identifies 58.2% of true positive cases. LR model also shows a low Akaike 

Information Criterion (AIC) value indicating a good model fit and a high AUC value with 

an accuracy of 74.6% for distinguishing between positive and negative cases. 

An OOB error estimate signifies improved model performance, indicating that the 

model has a strong capacity for generalization of new data. The goal of this optimization 

process is to minimize the OOB error while achieving robust predictive performance 

(Chowdhury et al., 2024). To enhance model performance, users must optimize two key 

hyperparameters namely, the number of trees in the forest (ntree) and the number of 

variables considered at each node (mtry)(Chowdhury et al., 2024). 

In the results from the RF model in wildfire, the performance of our study area 

surpasses that from the LR model. For accuracy, the correct predictions increased by 4.4% 

when compared to the LR model. Furthermore, the AUC for the RF model is 81.4%, 
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demonstrating superior model performance when compared to the LR model. The OOB 

error rate was 27.0%, achieved with optimized values of 500 for ntree and 3 for mtry. 

For the landslide analysis, Table 3-5 shows that the LR model has an accuracy of 

76.3%. Additionally, the sensitivity analysis shows a prediction accuracy of 77.4%, 

reflecting model’s ability to correctly identify positive instances. Regarding the Akaike 

Information Criterion (AIC), lower values typically indicate a better model fit. However, 

in our case, the AIC value is relatively high at 8,116.8. For reference, AIC values 

commonly range from 200 to 1,000,000 (Nowicki Jessee et al., 2018; Quesada-Román, 

2021). As highlighted in Section 3.4.3, the ROC curve (Figure 3-8) and AUC are widely 

accepted metrics for evaluating the performance of both RF and LR models (Chen et al., 

2019). In this study, the LR model achieved an AUC of 74.7%, indicating an acceptable 

level of model performance. 

In the RF landslide prediction, the OOB error was 15.98%. The model 

demonstrated an overall prediction accuracy of 83.9%. In sensitivity analysis, the RF model 

correctly identified 86.7% of the positive instances. Additionally, the model achieved an 

AUC value of 91.5%, indicating exceptional performance and a strong ability to distinguish 

between positive and negative cases. 

Table 3-5 Summary of model performances for LR model and RF model for wildfires 

and landslides. 

Models Evaluation Value of Wildfire Value of Landslide 

Logistic Regression 

AIC1 46,860 7805.9 

Accuracy 0.685 0.7567 

Sensitivity 0.5820 0.7505 

AUC 0.7464 0.8211 

Random Forest 

OOB 26.96% 15.98% 

Accuracy 0.7287 0.8386 

Sensitivity 0.7051 0.8671 

AUC 0.8104 0.9153 
1 AIC: Akaike information criterion. 
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In summary, as illustrated in Table 3-3, for the landslide modeling, the results from 

the landslide’s LR modeling indicate that slope is the most influential variable for 

predicting landslide occurrences, with rainfall and elevation following closely behind. 

(Table 3-4). Slope has a highly significant effect on the model (Table 3-2). Similarly, for 

the RF model, slope is also the most important variable, followed by rainfall and elevation 

(Table 3-4). In the LR model, the variable with the lowest impact is distance to faults, while 

soil type has the lowest impact in the RF model. Comparing the LR and RF models, slope, 

rainfall, and elevation are consistently the most important variables and have significant 

effects on landslide susceptibility. 

As shown in Table 3-4, Table 3-5, and Figure 3-8, the RF model outperformed the 

LR model in predicting both wildfire and landslide occurrences. Hence, the RF model was 

used to generate probability maps for wildfire and landslide occurrences. 

3.5.4 Predicted Probabilities and Susceptibility Map 

RStudio was used in the generation of probability maps for wildfire and multi-

hazard (wildfire + earthquake + landslide) susceptibilities and the results are presented 

separately in Figure 3-9 and Figure 3-10. Figure 3-9 displays the wildfire-only risk 

susceptibility map, where different colors are used to classify varying levels of 

susceptibility: red indicates a high probability of wildfire occurrence, yellow signifies a 

medium probability, and green represents a low probability. Figure 3-10 presents the 

combined hazard (wildfire + earthquake + landslide) susceptibility map where the color 

classification follows the same scheme as the wildfire susceptibility map. 

Using a landslide probability of 50% or greater, Figure 3-11 shows bridges that are 

most susceptible to the multi-hazard risks. Previous results without consideration of 

wildfire (Lin et al., 2024) were also presented for comparison.  The present study identifies 
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26 bridges located in areas with a probability of multi-hazard risks exceeding 50%, a 

reduction from the 47 bridges identified in Lin et al. (2024) study. In terms of significant 

findings, the landslide susceptibility map, which includes wildfire and earthquake data, 

reveals that four new bridges not identified in the Lin et al. (2024) study, while 25 bridges 

from the previous study no longer appear in high-probability zones. The differing results 

are due to the inclusion of wildfire risks and soil type variables. 

The bridges located in areas with over a 70% probability of multi-hazard 

occurrence are situated around Henderson County, Polk County, and Rutherford County. 

The highest probability, 87.4%, is found in Henderson County (Figure 3-1). 

3.5.5 Bridge in a Valley and Flooding Risk 

In the current study, 21 bridges were identified as being in valley settings (Figure 

3-12). To combine the multi-hazard risks with flooding risks, Lin et al. (2024) first 

identified bridges in a valley, which implied additional search criteria including slope (e.g., 

above 9 degrees), elevation difference (e.g., above 15 m), AFP value (e.g., under 7 m) and 

landform (e.g., valley and pit) data.  

Field observations (Lin et al., 2024) conducted to assess the classification of bridges 

based on AFP indicate that bridges with AFP between 7 m and 30 m are not all located in 

a valley and may be situated at mid-valley height or on a ridgetop. Hence, AFP less than 7 

m were used to identify bridges in valley and with flooding risks. 

The bridge-in-valley data with the probability of multi-hazard risks are presented 

in Figure 3-12 and Appendix B. According to Appendix B, the results indicate that four 

bridges have a landslide occurrence probability of less than 10%; 11 bridges have a 

probability between 10% and 20%; two bridges have a probability between 24% and 30%; 
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and four bridges have a probability between 31% and 78%.Additional analysis (Figure 

3-12) showed that over 31% of the areas surrounding Henderson, Jackson, Macon, and 

Polk Counties are predicted to experience landslides. The highest landslide probability is 

77.8%, located in Polk County. 

Landslides can be exacerbated by factors such as seismic activity and rainstorms 

intensified by global warming, leading to an increasing frequency of landslide events 

(Huang et al., 2024). Hurricane Helene provides evidence of this, as it brought heavy 

rainfall and high wind gusts that caused significant damage to the Western North Carolina 

and Eastern Tennessee regions (Pourghasemi et al., 2018). Figure 3-13 shows state 

highway bridge (ID: 100239) over Swannanoa River with damaged approaches during 

Hurricane Helene because of the heightened flooding (estimated over 3 m at bridge 

approach).  The heightened flood level was due to debris from both downed trees and rock 

falls from upstream.  The current study examines the impacts of landslides on highways 

and bridges, where debris and blockages can lead to collisions, unsafe conditions, and even 

fatalities (Ozturk & Uzel-Gunini, 2022). Large landslides can collapse bridges and 

overpasses, highlighting the need for improved monitoring and resilience strategies to 

protect transportation infrastructure (Ozturk & Uzel-Gunini, 2022). Therefore, it would be 

beneficial for regional departments of transportation to provide an accurate multi-hazard 

sustainability risk map to strengthen routing decision-making, optimize future site 

preparation, and improve planning for weather-related damage assessments. 

3.6 Conclusion 

To avoid multi-hazards associated with highway bridges in North Carolia, a risk 

susceptibility analysis is performed to identify vulnerable bridges in the western 



83 

 

mountainous region. Following the recent tragic hurricane event in western North Carolina 

(September 2024 Hurricane Helene), where numerous road closures and bridge damage 

led to injuries and fatalities due to flooding and landslides (NCDHHS, 2024; NCDOT, 

2008), it has become increasingly important to investigate such risks. 

The risk modeling focuses on landslide and flooding risks with inclusion of 

earthquake and wildfire risks forming a nested multi-hazard risk analysis strategy. Logistic 

Regression (LR) and Random Forest (RF) models were employed to generate wildfire and 

landslide susceptibility maps. In this study, the wildfire susceptibility map was used as an 

independent factor to predict landslide occurrences. The LR and RF models yielded 

wildfire prediction accuracy rates of 68.5% and 72.9%, respectively. Landslide prediction 

accuracy rates were 75.7% for the LR model and 83.9% for the RF model, respectively. As 

shown in the ROC curves (Figure 3-8), the RF model demonstrated higher sensitivity when 

compared to the LR model for both wildfire and landslide predictions. Bridges at high risk 

of landslide exposure were identified by integrating highway and roadway bridge data into 

the landslide risk data. 

Upon further examination of the variables in both events, the wildfire-related 

variables: distance to roads, elevation, and distance to high population density are 

identified as the most important in the Random Forest (RF) model. This suggests that 

remote sensing data, including elevation, slope and aspect, plays a significant role in 

predicting extreme weather events. We included soil type variable in the landslide model. 

However, it did not significantly increase the accuracy of the modeling. It might be caused 

by the soil type classification method and future studies should consider more complex soil 

types and smaller regions. 
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Further analysis of bridges located in valleys, in relation to the probability of multi-

hazard risks, reveals a decrease in both the probability values and the number of bridges 

with a multi-hazard risk probability exceeding 50%. Specifically, the number of such 

bridges decreased from 47 to 26 (Figure 3-11). Our study utilizes the bridge’s Assumed 

Flooding Potential (AFP) as an indicator of combined risks from multi-hazard events, such 

as landslides, wildfire, earthquake and flooding. If flood levels reach the AFP, uplift forces 

from rapid channel flow may lift the bridge deck, leading to a washout.  Twenty-five 

bridges identified in the previous study no longer appear in high-probability zones, while 

four new bridges are now located in areas with over a 50% probability of multi-hazard risk. 

This shift can be attributed to the inclusion of additional factors, such as wildfire 

susceptibility and soil type, which enhanced the accuracy and precision of the predictions. 

The reduction in bridges with over a 50% probability of multi-hazard risk is reasonable, as 

the focus is on areas where landslide events are likely to be triggered by wildfire activity. 

The increase in probability for some bridges indicates that these structures may be more 

vulnerable to wildfire-triggered landslides. This observation provides crucial insights for 

managers and decision-makers, allowing them to implement proactive strategies aimed at 

mitigating potential future bridge damage. 

The development of a landslide risk prediction model poses a challenge if we take 

into consideration the complex nature of geo-environments, encompassing factors such as 

geology, hydrology, topography, and human activities (land use) (Palu & Mahmoud, 2019). 

The current study covered a large area and only considered the aspect variable and 

seismicity; hence, future work aiming for increased precision that can delve into additional 

factors such as geology and lithology. 
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Figure 3-8 ROC curves of the LR model and RF model : a. Wildfire only, b. Landslide 

with earthquake risks. 

 

 
Figure 3-9 Wildfire susceptibility map in North Carolina. 
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Figure 3-10 Multi-hazard (Wildfire, landslide and earthquake) susceptibility map in 

North Carolina. 

 

 
Figure 3-11 Bridges with 50% or greater probabilities of multi-hazard risks (not 

considering flooding) in NC’s mountain area. 
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Figure 3-12 Bridges in valley under 7m above stream elevation assuming flooding 

potential (AFP) in NC’s mountain area, indicating the potential of exposing to multi-

hazard (landslide, flooding, wildfire and earthquake) dangers. 
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Figure 3-13 Damaged Bridge (ID:100239) after unprecedented flooding from Hurricane 

Helene above the Swannanoa River, Black Mountain, NC: a) Site Contour and Bridge 

ID100239 Location; b) Bridge (ID: 100239) showing one approach scoured from 

flooding and the upstream debris fall and congested river scene. 
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Appendix B 

No Bridge ID Longitude Latitude AFP 

Probability of 

Landslide 

Occurrence 

(Earthquake) 

Probability of 

Landslide 

Occurrence 

(Wildfire and 

Earthquake) 

1 550228 -83.6690064 35.26770495 0.67 0.17 0.19 

2 860024 -83.31964644 35.47677134 1.02 0.25 0.12 

3 990034 -82.37624068 35.95286913 1.05 0.27 0.22 

4 860020 -83.41412095 35.43162131 1.73 0.19 0.14 

5 430010 -82.82258403 35.39932611 1.79 0.19 0.29 

6 600084 -82.27706725 36.08360385 1.89 0.18 0.12 

7 440161 -82.55773367 35.1673545 2.59 0.24 0.35 

8 580017 -81.97599594 35.57528782 2.62 0.03 0.07 

9 550229 -83.6553343 35.25717623 2.82 0.16 0.15 

10 860137 -83.51710646 35.39425632 2.85 0.13 0.16 

11 490080 -83.10854232 35.29399205 3.40 0.25 0.34 

12 210057 -83.91391948 34.9993788 3.90 0.17 0.20 

13 860104 -83.51851741 35.39461143 3.92 0.08 0.04 

14 550230 -83.65351494 35.24695009 4.24 0.32 0.43 

15 560138 -82.77026923 35.83929582 4.62 0.19 0.15 

16 600026 -82.22878565 36.04036643 5.28 0.10 0.08 

17 020021 -81.02105795 36.54282685 6.20 0.14 0.11 

18 190159 -84.06817913 35.11164097 6.23 0.16 0.15 

19 740002 -82.34673092 35.21555685 6.61 0.92 0.78 

20 040045 -81.57578897 36.44914354 6.73 0.10 0.09 

21 560122 -82.8361671 35.87993609 6.74 0.16 0.19 
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Chapter 4: Landslides and Bridge Damages in Western North Carolina After Hurricane 

Helene 

 

 

4.1 Abstract  

Hurricane Helene, a Category 4 storm at landfall in 2024, caused extensive damage 

across the Southeastern United States, with sustained winds reaching 220 km/h. Helene 

resulted in over $9.8 billion in economic losses and claimed more than 200 lives, making 

it one of the most destructive hurricanes in recent history. Hurricane Helene was unique in 

its rapid intensification and its sustained strength as it reached the western Carolina 

mountains, bringing prolonged heavy rainfall that triggered multiple hazards, including 

widespread bridge failures. This paper reports ground observations and lessons learned 

from the structural damage associated with the hurricane event, highlighting the need to 

evaluate bridge approach designs for overtopped bridges and debris flows during extreme 

flooding. 

 

KEYWORDS: Hurricane Maria, Puerto Rico, Power Grid, Physical Resilience, Spatial 

Correlation Analysis 
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4.2 Introduction 

Atlantic tropical storms often develop within the North Atlantic basin near the 

Caribbean Sea, where limited open water and environmental conditions can hinder their 

intensification to hurricane strength. As a result, the eventual upgrading to hurricane 

classification is not as frequent as the Pacific tropical storms. Occasionally, intense storms 

that become name-bearing hurricanes form in the open Atlantic Ocean starting from near 

the western coast of Africa. Figure 4-1 shows the historical tropical storms and their paths 

over a 40-year period. Hurricane Helene, which occurred from September 25-28, 2024, is 

unique among storms originating in the Caribbean Sea because of its short period to 

intensify to a Category 4 hurricane. As a result, the storm impacted a significant portion of 

the continental US and became one of the most severe hurricanes in recent US history. As 

a contrast, both Hurricanes Irma and Maria of 2017 had their genesis from the west African 

coast (August 21 for Irma and September 12 for Maria) and they became a major storm 

several days later (11 days for Irma and 6 days for Maria). 

Helene started on September 22, 2024, as a tropical low-pressure disturbance within 

the western Caribbean Sea (Reinhardt 2024). The low-pressure zone started around 

September 17, 2024 (Blake 2024) and by September 23 it became a tropical depression and 

was named Helene.  By September 24th, Helene had an increased wind speed of 130 km/h 

and was officially named a hurricane. The hurricane traveled within the Gulf on a north-

bound path and within two days had become a category 4 hurricane with a maximum 

sustained wind speed of 220 km/h and a minimum barometric pressure of 938 millibars 

(Hagan 2024). On September 26, Helene made landfall southwest of Perry, Florida (from 

Apalachee Bay to Waccasassa Bay). Helene was downgraded to a post-tropical cyclone 
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after it travelled deeper inland traversing through Georgia and eventually reaching the 

western mountain region of North Carolina. In western North Carolina alone, Helene 

resulted in more than 100 deaths, caused historic flooding, landslides, and destroyed 

infrastructure, including numerous bridges and roads throughout western North Carolina. 

Specific to landslides, past tropical storm impacts including Hurricanes Opal 

(1995), Frances (2004), and Ivan (2004), have triggered similar landslides to western North 

Carolina but to smaller extents. Fuhrmann et al. (2008) reported that synoptic and cyclonic 

rainfalls for the Appalachian Mountain region can be as much as 593 mm for a two-day 

event and can continue to trigger landslides 4 to 90 days after the event. Lyons et al. (2014) 

and Wooten et al. (2016) stated that debris flows, which are often caused by intense periods 

of rainfall, are the most prevalent landslide type in the southern Appalachians. In the 

southern Appalachian Highlands, rainfall from cyclonic storms has triggered hundreds to 

thousands of debris flows on at least six separate occasions over the past century (Wooten 

et al. 2016). 

Post-hurricane disaster structural assessments are critical for hazard 

characterizations and lessons learned can help improve regional resilience via improved 

structural designs (Chen et al. 2016). However, not all hurricanes resulted in the same 

hazard risks: Some brought in torrential rains, while others resulted in significant storm 

surges and wind forces (Peraza et al. 2014, Joyce et al. 2019). The goal of this paper is to 

identify critical landslide and flooding hazards brought about by Hurricane Helene in 

western North Carolina and report preliminary observations regarding damage to 

infrastructure, in particular, bridge structures.  
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4.3 Hurricane Helene: Genesis and History 

Figure 4-2 depicts the path of Hurricane Helene (Category 1, September 12 to 14, 

2024) showing both wind intensity and central pressure (in mb). The genesis of Helene is 

very similar to Hurricane Humberto (2007), both were formed as local depressions in the 

Gulf of Mexico and migrated northward into continental inland. Humberto of 2007 was a 

Category 1 storm and was formed quickly and dissipated quickly (Blake 2007). To explain 

the rapid intensification of Humberto, Sippel and Zhang (2010) combined ensemble 

Kalman filter analyses and short-range ensemble forecasts. Their results suggested that the 

heavy moisture laden tropical depression along with a relatively unstable convection may 

cause the rapid intensification of the hurricane.  Emanuel (1986) and Rontunno and 

Emanuel (1987) stressed that a genesis environment with a deep layer of moisture with 

relative humidity exceeding 85% is a critical ingredient for tropical cyclones. Similarly, it 

took Helene three days from the low-pressure trough intensification to making landfall in 

the Big Bend area of Florida as a powerful Category 4 storm on Wednesday, September 

25, 2024 (at 8:15 UTC). Once making landfall, Helene traveled rapidly through Florida, 

Georgia and reached Tennessee and Carolinas before dissipating in Virginia. Other than 

torrential rain (some parts in North Carolina received more than 62 cm rain, (US 

Department of Commerce 2024)), Helene also traveled with sustained gusts of 110 km/h. 

The impact of Hurricane Helene in North Carolina was most evident in the western 

mountain region including Buncombe, Henderson, Yancey, Haywood, Rutherford and 

Madison counties, and municipals including Asheville, Chimney Rock and Black 

Mountain, etc. Examples of the types of damage observed after Helene are shown in Figure 
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4-3 to Figure 4-6. Observations on the damages to the built environment in the mountains 

can be summarized as: 

1) With a recorded maximum wind speed of 70 km/h, a significant number of trees 

were down. Figure 4-3 shows several trees were blown down by strong wind. 

2) With heavy rains, significant surficial erosions including landslides occurred. 

Figure 4-4 shows different size landslides triggered by the hurricane. 

3) Some parts of the valley regions such as Asheville valley experienced flooding 

resulting in mud flows and accumulation of debris. Figure 4-5 shows example of 

severe mud and debris flows that entrapped vehicles and damaged buildings.  

4) Due to unprecedented river flooding, several bridges were damaged. Figure 4-6 

shows scouring damaged buildings and bridges. 
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Figure 4-1 Seasonal hurricanes that either entered North Carolina or reached within 400 

miles of the state boundary during the period of 1981-2021. 

 

 
Figure 4-2 Path of Hurricane Helene (the hurricane reached Category 4 upon landfall 

near Perry, Florida). 
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Figure 4-3 Fallen trees indicate strong wind forces from Hurricane Helene. (Photo 

credits: Shenen Chen and Sophia Lin) 

 
Figure 4-4 Landslides of varied sizes triggered by Hurricane Helene. (Photo Credit: 

Shenen Chen, Sophia Lin) 
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Figure 4-5 Evidence of sustained flooding and rapid mud flows at the Asheville basin 

including Asheville watershed. (Photo Credits: Shenen Chen and Sophia Lin) 

 

 
Figure 4-6 Scour (red circle) of building and bridge foundations in Asheville region. 

(Photo Credits: Shenen Chen and Sophia Lin) 
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4.4 Observations on Landslides 

Landslides pose significant hazards in mountainous areas impacted by hurricanes. 

Debris flows are the most common form of landsliding in western North Carolina (Wooten 

et al. 2016). Debris flows are fast-moving mixtures of water, saturated soil, rock, and 

organic material that rapidly traverse downslope, often triggered by intense rainfall. Further, 

debris flows, and other forms of landslides, can block river basins and lowlands, which can 

lead to severe flooding and mudflows (Bessette-Kirton et al. 2019). For example, Ramos-

Scharron et al. (2021) reported more than 436,330 megagrams of sediments were deposited 

at a watershed in Puerto Rico during Hurricane Maria. Such mass transport plus the 

downing of large trees resulted in unprecedented flooding in the mountain regions. 

Debris flows are influenced by a combination of geologic, geomorphic, and 

meteorological conditions and are prone to develop in high-relief regions such as the 

mountains of western North Carolina. High-relief landscapes, especially those with 

intersecting bedrock discontinuities and differential weathering, often create convergent 

landforms such as colluvial hollows where debris flows are likely to initiate (Wooten et al., 

2016). These colluvial hollows often consist of loose unconsolidated sediments deposited 

via mass wasting. Underlying these colluvial soils, the site geology in the western mountain 

region is described as “metasedimentary slate, phyllite, marble, schist, and gneiss, and 

metaigneous amphibolite and greenstone (metabasalt), granitic gneiss, and relatively 

unmetamorphosed granitic rock” (Wooten et al. 2016 page 210). Many of these geologies 

(e.g., phyllite, slate, gneiss, schist) exhibit foliation and discontinuity planes, which serve 

as not only planes of weakness, but also preferential pathways for water migration to 

increase saturation in soils. Because debris flows are shallow failures, forest cover also 
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plays an important role in stabilizing hillslopes. Debris flows often occur where there is 

reduced hillside reinforcement from plant roots, whether due to lack of vegetation, 

anthropogenic changes, weakened root systems, or lack of connection between roots and 

underlying bedrock. Debris flows initiate when the forces acting downslope surpass the 

slope material's ability to resist movement (i.e., shear strength), a capacity determined by 

the friction and cohesion within the soil, rock fragments, and roots present. Numerous 

geological factors – such as slope, landform characteristics (which affect rainfall 

distribution, runoff, and water absorption in convergent areas), bedrock structure, soil 

properties, and vegetation/landcover – interact with meteorological factors, particularly 

rainfall, to initiate debris flows. Excessive rainfall is the primary trigger as it increases the 

driving force due to its weight while also reducing resistance by raising pore water pressure, 

which reduces the soil’s shear strength. 

Heavy rainfall in western North Carolina is typically the result of airmass moving 

and cooling over the high relief area, producing excess precipitation.  Prior to Hurricane 

Helene, heavy rainfall events have caused significant flooding and landslides in western 

North Carolina and the surrounding region in the past, including 10 times from 1924 to 

2013, giving an average frequency of about 9 years (Wooten et al. 2016). A common factor 

amongst the worst of these past storms was heavy rainfall from a hurricane in addition to 

multiple storms occurring within a short period of time. In 1916, 1940, and 2004, multiple 

storms, at least one of which was a hurricane, occurred within days to weeks of each other 

causing significant rainfall on already saturated soil, generating widespread flooding and 

hundreds to thousands of landslides. Hurricane Helene was similar to these past events. 

Helene hit western North Carolina days after a low-pressure system dropped up to 25.4 cm 
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of rain in some locations of western North Carolina (e.g., Asheville Regional Airport). The 

already waterlogged region experienced devastation as significant additional rainfall 

occurred during Helene where some areas like Asheville, North Carolina received an 

additional 35.6 cm of rain (National Weather Service, 2024). Like the past multi-storm 

events to impact western North Carolina, Hurricane Helene and its preceding storm 

produced thousands of landslides. At the time of writing this article, the USGS Helene 

landslide dashboard (2024) reports 1,984 landslides (including landslides reported in 

Tennessee) that are initially identified as debris flows, landslides, and unknowns. Of the 

1,984 landslides, 1,060 have currently been flagged as impacting rivers, roads, and 

structures, indicating the vast impact of the event. The following describes the landslide 

observations and their impacts on bridges made by the authors in the weeks following 

hurricane Helene. 

Figure 4-7 shows a large-scale mud (debris) slide with a base as wide as 33 m in 

Saluda, NC.  The debris slide occurred along a cut-slope along Pearson Falls Road where 

the previously vegetated slope failed without visible surface of rupture. Several similar 

localized debris slides were identified in the area with some extending into Joels Creek, 

which is on the downhill side of the road. These slides mobilized a significant amount of 

sediment. For example, Figure 4-8 shows the before and after images of Pearson Falls Road 

leading up to a resident building. After hurricane Helene, landslide debris completely 

covered Pearson Falls Road for approximately 50 meters. Figure 4-9 shows landslide debris 

surrounding the Saluda wastewater treatment plant along Joels Creek after Helene 

compared to what it looked like in September 2023. In addition to landslides, scours were 

also observed in the road to the wastewater treatment plant. 
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Figure 4-10 shows a large debris flow on highway 176 near Saluda Bear Creek 

originating from a slope with an incline of approximately 75o. The 40 m tall slide caused 

debris to cover the highway, deformed the highway’s guardrails (some portions dangling 

mid-air above the slope below), and emptied into the creek below. A mile upstream from 

the debris flow in Figure 4-10, near Melrose Falls, a large debris flow occurred between 

Highway 176 (slope top) and the Pearson Falls Road (Slope bottom) (Figure 4-11). Notably, 

Figure 4-11 shows the debris flow caused a portion of Highway 176 to be undermined 

while also covering Pearson Falls Road on its way to emptying into the stream below.  The 

debris flow resulted in multiple circular slip surfaces that can be identified. 

Figure 4-12 shows multiple slope failures occurring along both sides of a small 

stream. It is unclear whether these failures originated due to erosion from highwater 

flooding, landsliding, or a combination of both. The narrow passageway between the two 

banks and the large amount of rainfall that occurred over a short period of time indicates 

highwater flooding may have occurred in this area. The failure in the foreground of Figure 

4-12 appears to be a road embankment that has been eroded away by high flood waters 

while the failure on the other side of the stream appears to be a debris flow, potentially 

made less stable by erosion at the toe of the slope near the riverbed. This dual phenomenon 

of scour and landsliding results in complex slope movements. Several failure modes are 

closely associated with colluvial movements caused by river erosion, as described by 

Cebulski (2022). Cebulski referred to these debris movements as 'near-channel landslides,' 

which can be triggered by both fluvial erosion and high flood flows. Yuan et al. (2018) 

studied loess landslides induced by river erosion and found that erosion along the riverbank 

can alter the internal stresses within the slope, potentially leading to destabilization. 
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Figure 4-13 and Figure 4-14 show a landslide occurring at a previously repaired 

road embankment along Pearson Falls Road, which runs parallel to Joels Creek below. The 

embankment was stabilized in 2023 using a soil nail wall (Lin et al. 2024). However, after 

Hurricane Helene, landslides still occurred at this repaired embankment. In some areas, the 

concrete grout and the soil it held was eroded away and defeated the original slope 

reinforcement.  For example, Figure 4-13 shows scouring behind a nearly vertical wall and 

Figure 4-14 shows another wall with a section scoured away. 
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Figure 4-7 A large mud slide with a base width of 33 m in Saluda, NC. (Photo Credits: 

Sophia Lin and Shenen Chen) 

 

 
Figure 4-8 Transformation of a roadway due to massive landslide and mudflow along 

Pearson’s Fall Road in Saluda, NC. (Photo Credits: Sophia Lin and Shenen Chen) 
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Figure 4-9 Landslide and scour damage to the Saluda wastewater treatment plant in 

Saluda, NC. (Photo Credits: Sophia Lin and Shenen Chen) 

 

 

 
Figure 4-10 A large debris flow consisting of water, soil, rocks, and trees crossing 

Highway 176. (Photo Credits: Sophia Lin and Shenen Chen) 
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Figure 4-11 Large debris flows between Highway 176 (road above) and the Pearson Falls 

Road (road below) next to the North Pacolet River, Melrose Falls, NC. (Photo Credits: 

Sophia Lin and Shenen Chen) 

 

 
Figure 4-12 Multiple slope failures on both sides of a small stream. (Photo Credits: 

Sophia Lin and Shenen Chen) 
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Figure 4-13 Landslide at a previously grouted and repaired slope. (Photo Credits: Sophia 

Lin and Shenen Chen) 

 

 
Figure 4-14 Mass loss behind the grout wall after landslide. (Photo Credits: Sophia Lin 

and Shenen Chen) 
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4.5 Observations on Bridge Structure Damages 

The debris flow resulted in unprecedented highwater flooding and damaged several 

bridges in the mountain regions – North Carolina Department of Transportation (NCDOT) 

reported more than 654 bridges that are either washed-out, damaged, or closed due to debris 

accumulation (NCDOT 2024). Figure 4-15 shows bridge ID: 740037 on Highway 176 

(over a branch of the North Pacolet River) before and after Hurricane Helene. The bridge 

experienced loss of bridge approach support materials due to localized debris flow, despite 

no damage to the bridge piers.  Lin et al. (2024) predicted that the steel girder bridge has 

only a 10% to 20% chance of experiencing landslides.  But the landslides (at least two from 

upstream within 30 m from the bridge) in the surrounding resulted in significant debris 

such as tree trunks and loose rocks that raised the river water.  The high and rapid 

floodwater from the hurricane event, as indicated by the loss of graffiti between the before 

and after pictures, appear to have caused scouring of the bridge approach embankment 

slopes in addition to mass loss of the bridge approach itself, but landslides do not appear 

prevalent at the bridge location. While no major landslides seem to have occurred at this 

site, some shallow slides or slope erosion due to rainfall may have contributed to the 

damage to the approach. The primary cause, however, appears to be scour from the high 

floodwaters. Additionally, debris carried by floodwater from upstream likely worsened 

flooding around the bridge by blocking water flow. Although the bridge remains safe for 

crossing, repairing the approach is both necessary and critical.  

Figure 4-16 shows bridge ID: 100239 on Highway 70 (also identified as Tunnel 

Road), which sustained significant damage in Asheville, NC. The four-lane highway bridge 

resides spans the Swannanoa River and experienced severe mud flows and flooding as 
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shown in Figure 4-17. Figure 4-17 also depicts several damaged residences, including some 

downstream residential structures completely buried in mud. Similar to bridge ID: 740037 

shown in Figure 4-15, the main body of the bridge remained intact, however, one of the 

bridge approaches suffered substantial scouring. This scouring resulted in more than 5 

meters of mass loss beneath the concrete approach slab. In some areas, sections of the slabs 

have broken off from the approach, leaving a ½  meter wide gap between the approach and 

the bridge deck. Mud and debris on the bridge deck indicate that floodwaters likely reached 

the bridge deck. 

Several bridges experienced similar damage modes as shown in Figure 4-15 and Figure 

4-16, with bridge approaches and wingwalls affected by highwater flooding and mud and 

debris flows. For example, scouring is the most likely cause of mass loss at the abutment 

of the Tunnel Road bridge (Figure 4-16).  

However, scouring is not the only failure mode observed. Figure 4-18 shows the 

approach of a bridge ID: 740005 on I-176 (Main Street) in downtown Saluda, which failed 

due to a landslide occurring in the road embankment.  The bridge is not over water but over 

a railroad track.  The landslide did not impact the railroad tracks passing beneath the bridge, 

but there are multiple rail transportation networks that were affected by hurricane Helene 

in western North Carolina. In the case of bridge ID: 740005, the embankment failure led 

to significant soil loss behind the bridge’s wing wall, compromising the road embankments 

support. Although the bridge remains drivable, it requires repairs, as additional soil loss 

behind the wingwall is likely if no action is taken. 
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Figure 4-15 Bridge (ID:740027) on highway 176 experienced support mass loss at the 

bridge approach after Hurricane Helene. (Photo Credits: Sophia Lin and Shenen Chen) 

 

 

 
Figure 4-16 The Tunnel Road Bridge (ID:100239) over Swannanoa River in Asheville, 

NC, experienced support mass loss at the bridge approach after Hurricane Helene. (Photo 

Credits: Sophia Lin and Shenen Chen) 
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Figure 4-17 Massive debris filled floodwater resulted in mud caked cars and lots and 

damaged buildings and constricted the Swannanoa River, Asheville, NC. (Photo Credits: 

Sophia Lin and Shenen Chen) 

 

 

 
Figure 4-18 Damaged I-176 Bridge on Main Street, Saluda, North Carolina (The damage 

to the bridge abutment is due to a debris slide around the wing wall). (Photo Credits: 

Sophia Lin and Shenen Chen). 
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4.6 Discussion 

The 2024 Hurricane Helene is an extraordinary storm event for the western North 

Carolina mountain areas. The storm triggered numerous landslides with a majority 

classified as debris slides. Figure 4-19 shows a compilation of damaged bridges and 

landslides data from state agencies (USGS 2024 and NCDOT 2024). The data includes 

1,792 reported landslides and 79 reported damaged bridges. The geospatial data 

presentation is displayed over a landslide susceptibility map considering multiple trigger 

mechanisms (earthquake, rainfall, flooding) that was developed prior to current study (Lin 

et al. 2024).  It is shown that most of the damaged bridges are in close vicinities of the 

landslide areas and most of them are in the predicted high susceptibility zones.  At the time 

of this manuscript preparation, the state is still actively collecting data on both landslides 

and damaged bridges. 

Two critical issues raised by the observations made in this study both related to the 

design of bridges in the mountain areas include: 1) the differentiation between landslides 

and river scours and 2) the importance of bridge abutment design to avoid mass extraction 

underneath the bridge approaches. 

Because of the high elevations and landforms of the mountains, bridge and roadway 

safety can be critical during highwater floodings. The highwater flooding may be a result 

of upstream debris slides and downed trees that constricted the waterways at the bridge 

sites. This is a phenomenon that has been observed in prior disasters (Bessette-Kirton et al. 

2019). It is important to point out that the current scour depth estimation methods are 

largely based on clear water or live bed scenarios and not for debris-laden water scenarios 

(Ettema et al. 2010). Also, most of the abutment scour considerations do not include 
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scouring behind the abutments and water level close to or exceeding the bridge deck or 

roadway surface (Ettema et al. 2013). To illustrate Helene flooding to a bridge, Figure 4-20 

shows current considerations of bridge abutment scour and slope failure due to waterway 

erosion. The hypothetical water level due to Hurricane Helene is highlighted as a dashed 

line. As a result of bridge submerging under the floodwater, scours can be initiated behind 

the bridge embankment. Considering the failure modes of these bridges, it is critical that 

bridge design approaches should consider extending the continuity of bridge deck beyond 

the clear span of the river channel below the bridge, so that when excessive flooding occurs, 

there will not be the separation of bridge and roadway and hinder evacuation efforts or 

post-disaster support transports.  However, this recommendation would need to be further 

developed because of the potential of limiting bridge deck thermal expansions and the 

potential of elevating costs of bridge construction. Similar bridge failures were observed 

in other significant storms in mountainous regions such as Puerto Rico after Hurricane 

Maria where several bridges were washed out by flood water (Lin et al. 2024). 

The above failure mode consideration is also critical to bridges without pier supports. 

Figure 4-21 shows a collapsed bridge (ID: 100041) over Blue Ridge Road in Black 

Mountain, NC, washed out by Hurricane Helene flooding. The river channel width is about 

6 m and bridge clearance is not more than 1.7 m above river water. Significant scouring 

around the bridge approaches has resulted in the bridge completely collapsing into the river. 

To quantify the tractive force (shear stress) of the flooding water, Chow (1959) used 

assumed clear water and sediment filled fluid unit weights of 9.8 kN/m3 and 18 kN/m3, and 

the computed shear stresses are in the range from 0.00784 kN/m2 to 0.05 kN/m2. These 



121 

 

values are critical for silt or clay particles of erodible sediments typical in the mountain 

region and may result in the scour (Arneson et al. 2012, HEC-18). 

Because of the site geology, debris flows will always happen in the Appalachian 

Mountains.  However, existing bridges may not have the extra measures to address the 

excessive flooding and debris flow. The geo-risk may be further amplified by climate 

extremities such as extremely strong hurricanes, which can bring about multi-hazards that 

were not considered in current bridge designs (Schulz et al. 2017, Palu et al. 2019, and 

Nasr et al. 2021). Even though bridge pier scour was not observed in current study, post-

disaster investigation should include detailed investigation of the bridge foundation 

conditions and should also include mass loss around piers on banks that may be exposed 

to local scours (Chaven et al. 2022a and b). 
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Figure 4-19 A composite representation of damaged bridges and landslide locations after 

Hurricane Helene superimposing over the landslide susceptibility map for western North 

Carolina mountain regions. 

 

 
Figure 4-20 Helene flooding level and current abutment scour design considerations 

which do not include landslide behind the abutment walls. Left-side abutment represents 

conventional bridge design and right-side abutment represents the proposed extended 

bridge deck design. 
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Figure 4-21 Collapsed bridge (ID: 100041) washed out by Hurricane Helene flooding.  

(Photo Credits: Sophia Lin and Shenen Chen) 
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4.7 Conclusion 

The 2024 hurricane season has brought about two unprecedented hurricanes (Helene 

and Milton) that lead to severe damage to infrastructure and loss of human lives. Hurricane 

Helene was a Category 4 hurricane and traveled inland to Tennessee, Virginia, and Western 

Carolinas. This paper reported observations of landslides and bridge damage in the 

Appalachian Mountains and confirmed several debris slides due to the unprecedent level 

of rainfall brought by Hurricane Helene. More than 1,900 landslides, reported by USGS, 

were triggered and more than 600 bridges were damaged at the time of reporting. 

Detailed studies of the bridge failures indicated that scouring and slides at bridge 

approaches are a critical issue attributed to the damages of many bridges in the region, 

which eventually become a hindrance to the safety of the local population including 

inhibiting the transportation of sustenance and daily necessities to the trapped residents. 

Hence, to keep the bridges functional after the storm, there is a need to ensure the bridge 

approaches remain intact. One suggestion is to extend the bridge deck to reasonable length 

into the roadway section, so that the travelable bridge surface will not be significantly 

impacted by the scour or land slide at the bridge approach. However, further studies are 

needed to justify such measures to ensure safe designs. 
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Chapter 5: Landslide Prediction Validation in Western North Carolina after Hurricane 

Helene 

5.1 Abstract 

Hurricane Helene triggered 1,792 landslides across western North Carolina and has 

caused damage to 79 damaged bridges to date. Helene hit western North Carolina days 

after a low-pressure system dropped up to 10 inches of rain in some locations of western 

North Carolina (e.g., Asheville Regional Airport). The already waterlogged region 

experienced devastation as significant additional rainfall occurred during Helene where 

some areas like Asheville, North Carolina received an additional 14 inches of rain 

(National Weather Service, 2024). In this study, machine learning (ML)-generated multi-

hazard landslide susceptibility maps are compared to the documented landslides from 

Helene. The landslide models use the North Carolina landslide database, soil survey, 

rainfall, USGS digital elevation model (DEM), and distance to rivers to create the landslide 

variables. From the DEM, aspect factors and slope are computed. Because recent research 

in western North Carolina suggest fault movement is destabilizing slopes, distance to fault 

was also incorporated as a predictor variable. Finally, soil types were used as a wildfire 

predictor variable. In total, 4,794 landslides were used for model training. Random forest 

and logistic regression machine learning algorithms were used to develop the landslide 

susceptibility map. Furthermore, landslide susceptibility was also examined with and 

without consideration of wildfires. Ultimately, this study indicates heavy rainfall and 

debris-laden floodwaters were critical in triggering both landslides and scour, posing a dual 

threat to bridge stability. Field investigations from Hurricane Helene revealed that bridge 

damage was concentrated at bridge abutments, with scour and sediment deposition 



131 

 

exacerbating structural vulnerability. We evaluated the assumed flooding potential (AFP) 

of damaged bridges in the study area, finding that bridges with lower AFP values were 

particularly vulnerable to scour and submersion during flood events. Differentiating 

between landslide induced and scour induced damage is essential for accurately assessing 

risks to infrastructure. The findings emphasize the importance of comprehensive hazard 

mapping to guide infrastructure resilience planning in mountainous regions. 

Keywords: landslides, bridge failures, hurricane Helene, Random Forest 
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5.2 Introduction 

Western North Carolina is part of the Appalachian Mountain range that stretches 

from northern Maine to southern Alabama. The Appalachian orogeny started during the 

forming of the supercontinent Rodina where continental plate collisions resulted in the 

mountain-building process (Hatcher et al., 2010; Li et al., 2008). The upward process 

continued until 200 million years ago when North America and African continents started 

to drift away. Because of the Appalachian Wilson cycle process, three orogenies created 

the Appalachian Mountain chain. Figure 5-1 shows the western mountain region in North 

Carolina. A 3D land forming sketch is included to illustrate the forming of the mountain 

range. The region's distinctive landscape of valleys and ridges, combined with its climate, 

creates ideal conditions for landslides due to continuous weathering and erosion (Wooten 

et al., 2008; Wooten et al., 2016). Landslides are particularly common in western North 

Carolina, especially following periods of heavy rainfall. However, landslides are not the 

only natural hazard frequently affecting the state—hurricanes also pose a significant threat. 

When these hazards occur together, their combined impact intensifies the overall damage. 

Therefore, landslides pose significant hazards in mountainous areas impacted by 

hurricanes. 

September 25-28, 2024, Hurricane Helene traveled through the western mountain 

regions of North Carolina and triggered thousands of landslides. Hurricane Helene, which 

originated in the Caribbean Sea, started on September 22 as a tropical low-pressure 

disturbance and within a short period intensified to a Category 4 hurricane (September 

26th). By the time Helene arrived in Georgia, it was downgraded to a post-tropical cyclone 

and eventually reached the western mountain region of North Carolina following the path 
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shown in Figure 5-1. In western North Carolina alone, Helene resulted in 102 deaths, 

caused excessive flooding and landslides, and destroyed infrastructures, including 

numerous bridges and roadways throughout western North Carolina (NCDHHS, 2024). 

The storm impacted a significant portion of the southeastern continental US and became 

one of the most severe hurricanes in recent US history (Reinhart, 2024). 

Prior to Hurricane Helene, heavy rainfall events have caused significant flooding 

and landslides in western North Carolina and the surrounding region in the past, including 

10 times from 1924 to 2013, giving an average frequency of about 9 years (Wooten et al. 

2016). A common factor amongst the worst of these past storms was heavy rainfall from a 

hurricane in addition to multiple storms occurring within a short period of time. In 1916, 

1940, and 2004, multiple storms, at least one of which was a hurricane, occurred within 

days to weeks of each other causing significant rainfall on already saturated soil, generating 

widespread flooding and hundreds to thousands of landslides. Hurricane Helene was 

similar to these past events. Helene hit western North Carolina days after a low-pressure 

system dropped up to 25 cm of rain in some locations of western North Carolina (e.g., 

Asheville Regional Airport). The already waterlogged region experienced devastation as 

significant additional rainfall occurred during Helene where some areas like Asheville and 

Bat Cave received an additional over 35 cm of rain (NWS, 2024). Like the past multi-storm 

events to impact western North Carolina, Hurricane Helene and its preceding storm 

produced thousands of landslides, a majority of which are classified as debris flows. Debris 

flows, which are the most common form of landsliding in western North Carolina (Wooten 

et al., 2016)., are fast-moving mixtures of water, saturated soil, rock, and organic material 

that rapidly traverse downslope, often triggered by intense rainfall. At the time of writing 
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this article, the USGS Helene landslide dashboard (2024) reports 1,792 landslides are 

initially identified as debris flows, landslides, and unknowns (USGS, 2024). 

To assess the landslide susceptibility in the region, we used machine learning (ML) 

and parameters that may trigger a landslide to generate a landslide risk map (Lin, 2024; 

Lin et al., 2024).  The risk map considers multi-hazard scenarios including landslide, 

earthquake, wildfire and flooding. Figure 5-2 shows the different counties that are 

considered in the study. Wildfire is included in the study because it can result in soil losing 

moisture retention capability and make the slopes more susceptible to sliding (Culler et al., 

2023; DeBano et al., 1979; He et al., 2021; Rengers et al., 2020). The affecting variables 

included distance to rivers, digital elevation model (DEM) and its derivatives (different 

aspect parameters such as slopes and orientation of slopes), soil types, rainfall, forest cover, 

distance to faults, distance to high population density areas, and annual temperature. Two 

algorithms were considered: Random Forest (RF) and Logistic Regression (LR), where RF 

is a machine learning technique that uses supervised learning from a set of decision trees 

created from a bootstrap sampling approach (Breiman, 2001; Ho, 1998). RF has been used 

previously in landslide susceptibility analysis (Catani et al., 2013; Chen, Zhang, et al., 2018; 

Pourghasemi et al., 2018). LR is a machine learning algorithm and has been used by several 

researchers for landslide susceptibility analysis including Regmi et al. (Regmi et al., 2014), 

Sun et al. (Sun et al., 2021), and Rasanen and Maurer (2022).  

These landslide susceptibility models for the western North Carolina mountains are 

also used to determine the flooding risks to the highway bridges, since landslides can result 

in significantly raised water and cause flooding damages to the bridges (Lin et al., 2024). 

To quantify flooding potential, bridge to water clearance is defined as an assumed flooding 
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potential (AFP), which is the computed mid-span height of a bridge structure. AFP is used 

to determine if a bridge is in a valley and if it has high flooding potential. 

This paper compares the currently documented landslides in western North 

Carolina with the landslide susceptibility models (Lin et al., 2024). Furthermore, these 

landslide susceptibility models were modelled both with and without wildfire predictor 

variables. The results are further compared to field observations made by the authors after 

Hurricane Helene. This is the first validation report of the landslide susceptibility mapping 

based on newly documented landslides that the model was not trained upon. Additionally, 

this paper reports the damage to the bridge structures from the landslides and flooding 

caused by Hurricane Helene. We further discuss the issue of differentiating landslide versus 

scour in the valley regions.  

. 
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Figure 5-1 Path of Hurricane Helene moving through the Gulf of Mexico and landed near 

Perry, Florida as a Category 4 storm. 

 

Figure 5-2 Study area with location map illustrating North Carolina’s mountain area. a) 

North Carolina distinct physiographic regions distrbution, b) Blue Ridge Mountain area 

and c) hypothetical Appalachian mountain formation. 
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5.3 Study Area and Methods 

5.3.1 Study Area and Effects from Helene 

Figure 5-3 shows the study regions covering an area of 26,572 km2, in the 

Appalachian Uplands (State). Also shown in Figure 5-3 are the state reported landslide 

locations and damaged bridges after Hurricane Helene (NCDOT, 2008; USGS, 2024). 

Highlighted boundaries in Figure 5-3 are the ground truthing regions covered by the 

research team. Figure 5-4 shows some typical landslides from Hurricane Helene with size 

description using NASA’s slide identification technique (NASA, 2024). It should be noted 

that the disaster caused by Helene extended beyond North Carolina and included Tennessee, 

Georgia, Florida, South Carolina, and Southern Virginia.  However, the scope of study 

reported in this paper only considers the mountain region of western North Carolina. 

5.3.2 Landslide Susceptibility Modeling 

Historical landslide data was retrieved from the US national database and the 

landslide susceptibility modeling followed the confidence rule system and used 

susceptibility values ranging from 5 (a confidence of a consequential landslide at a given 

location) and 8 (high confidence in extent or nature of landslide)(Belair et al., 2022). The 

resulting landslide database included 4,794 landslides and 6,653 polygons. 

For the multi-hazard modeling, a nested approach is used: We assume that the risk 

of landslide is the critical risk-of-interest and consider other hazards including earthquake, 

rainfall and forest fire as contributing factors. 

For the multi-hazard modeling, wildfire database from U.S. Department of 

Agriculture (USDA) wildfire data were collected (NCFS, 2024): Considering, only human-

induced and natural wildfire events, our wildfire database consists of 112,454 events in NC. 
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The other wildfire-related variables include annual temperature (oF/yr), rainfall, forest 

cover, distance to roads, distance to high population density, elevation and slope. Forest 

cover only considers cover and non-cover types and is extracted from NC OneMap 2016 

dataset (Services, 2016). 

Some soil types are more receptive to loss of moisture and can increase the 

susceptibility of landslides (Short, 2021). Our approach for wildfire risk in the landslide 

modeling first included modeling wildfire susceptibility and then used the computed risk 

factor as a variable in the landslide susceptibility modeling (Lin, 2024). Due to limited 

available data, our wildfire susceptibility modeling is not as comprehensive as some other 

modeling reports (Abdollahi et al., 2024; Leuenberger et al., 2018). However, our wildfire 

susceptibility model has an accuracy of 72%, which is reasonably close to other more 

accurate (including more variables such as wind speed, surface roughness, fire history, 

minimum and maximum annual temperatures) models such as the 85.46% using 

convolution neural network (CNN) by Bjånes et al. (Bjånes et al., 2021). 

During model development, the multi-hazard landslide susceptibility model also 

included earthquake hazard via a distance to faults metric because the global landslide 

database the landslide susceptibility model was trained upon included both seismic and 

aseismic landslides (Belair et al., 2022). While the landslides caused by Hurricane Helene 

were aseismic, recent research (Langille et al., 2023)in the western North Carolina suggests 

that fault movement is currently destabilizing slopes. Therefore, some slopes in western 

North Carolina – those closer in distance to faults – Also, it looks like Figure 5-15i seems 

to indicate some correlation between distance to fault and landslides. However, this could 

just be because faults are located at locations where the mountains are at a greater elevation. 
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Furthermore, it is important for a multi-hazard landslide susceptibility model to also 

include earthquake hazard, especially considering seismic activity has drawn increased 

attention to the Carolina region. Notable examples include the 2011 moment magnitude 

(Mw) 5.8 Mineral, Virginia, and 2020 Mw5.1 Sparta, North Carolina earthquakes, which 

garnered national attention due to their damage and the significant population across the 

eastern U.S. exposed. The 2020 Sparta earthquake, for example, triggered rockfalls and 

slope bulge (pre-slide land deformation) in the Little River Valley region (Figueiredo et al., 

2022). In addition to these recent events, paleoseismic evidence indicates that the region 

has experienced significant seismic activity in the past, such as the ~Mw7-7.5 1886 

Charleston, South Carolina earthquake (Rasanen & Maurer, 2023). Moreover, the 

introduction of anthropogenic activities, such as increased natural gas production in 

Virginia, raises concerns about the potential for fracking-induced earthquakes in the future. 

Thus, while the effects of including an earthquake prediction variable in a landslide 

susceptibility model is important in North Carolina, it currently has a relatively small 

influence on the predictions for aseismic landslides and may indirectly serve as a predictor 

for them given fault movements link to slope destabilization.  

Both LR and RF modeling were conducted using RStudio and 9,794 sample points 

were used for the RF and LR modelling (4,794 for historical landslide occurrences and 

5,000 for no landslide occurrences). In our dataset, we used random points tool in ArcGIS 

Pro.   

Furthermore, to automate the computation of flooding potentials of bridges over 

water, ArcGIS Pro was used. A bridge's flooding potential is defined as the Assumed 

Flooding Potential (AFP), which is computed as: 
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𝐵𝑖 =
𝐸1𝑖+𝐸2𝑖

2
− 𝐸𝐿𝑖                                                    (5.1) 

where Bi denotes the bridge’s AFP, i represents the bridge’s ID, E1i and E2i 

represent the elevations on the two sides of the bridge, while ELi denotes the elevation of 

the river. AFP is in essence the averaged clearance of the bridge from the river level. State 

DEM data were used to quantify the bridge embankment heights using a 30 m radius 

around a bridge. Several ArcGIS tools, including the split line to points tool, extract multi-

values to points tool, bearing distance to line tool, buffer tool, and zonal statistics tool, were 

used in the calculation of the bridge’s AFP. 

The modeling workflow is shown in Figure 5-5, where the results (landslide 

susceptibility maps) are shown in Figure 5-6 and Figure 5-7 for landslides due to are shown 

in Figures 6 and 7 for landslides not considering wildfire effects and considering wildfire 

effects, respectively The comparison between LR and RF modeling has been published by 

Lin et al. (Lin et al., 2024) where RF results are shown to be more accurate than LR results. 

Hence, hereafter, only the RF results will be used for Helene landslide validation. 
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Figure 5-3 A composite representation of damaged bridges and landslide locations after 

Hurricane Helene. 

 
Figure 5-4 The locations after Hurricane Helene. (Photo credit: Shen-En Chen, Sophia 

Lin, and Qifan Zhao) 
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Figure 5-5 A schematic of the calculation workflow for the probability of multi-hazard 

(wildfire, landslide, earthquake and flooding)  occurrence map, the probability of wildfire 

occurrence map, and bridges of average flooding potential (AFP).  
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Figure 5-6 Multi-hazard (Landslide and earthquake) risk map in North Carolina. 
 

 

Figure 5-7 Multi-hazard (Wildfire, landslide and earthquake) susceptibility map in North 

Carolina. 
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5.4 Results 

In the following, we will first discuss the state reported landslide locations and the 

comparisons to the two multi-hazard susceptibility maps.  We then discuss detailed 

observations from field investigations. 

5.4.1 Model and Helene landslide comparisons 

Figure 5-8 shows the locations for the 1,792 landslides reported by the state 

superimposed on the multi-hazard susceptibility maps for a) not considering wildfire 

effects; and b) considering wildfire effects, respectively. The figures show that the 

landslide sites are clustered mostly in the central portion of western North Carolina and 

overlap several of the highly probable landslide susceptibility sites. The clustering of the 

landslides is probably due to the mountain range trapping the storm and forcing moisture 

dump in the region. Unfortunately, the meteorological record of Hurricane Helene did not 

have sufficient information to indicate the precise storm path through the mountain range. 

To better represent the prediction for each landslide site, the results are reversely presented 

using color coding of the landslide susceptibility at the location of each slide as shown in 

Figure 5-9. This helps in processing the quantitative analysis of the landslide validation. 

Figure 5-9a and Figure 5-9b show the landslide with different susceptibility 

probabilities for the multi-hazard scenarios landslide, with and without wildfire effects, 

respectively. The susceptibilities are reported in 10% intervals, such as 0–10%, 10–20%, 

and so on. In both L+E and L+W+E cases, the landslides of different susceptibilities are 

shown to be uniformly distributed throughout the middle region of the study area.  Critical 

counties with significant number of landslides are Allegheny, Ashe, Watauga, Avery, 
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Mitchell, Yancey, McDowell, Rutherford, Madison, Buncombe, Henderson, Polk and 

Haywood.  

The difference between the models with and without wildfire effects is presented 

in Figure 5-9c indicating that it is difficult to conclude if one case is more frequent than 

the other case.  Both cases seem to be distributed at the same locations. This observation 

indicates that wildfire is currently not a significant landslide factor for western North 

Carolina. 

 To show a better contrast between the number of slides of the two scenarios, a bar 

chart is presented in Figure 5-9d, which shows that the biggest differences between the two 

scenarios are in the probability ranges of 0 to 10% and 60 to 70%. Figure 5-9d also shows 

that Helene landslides occurred with all the susceptibility ranges with the most cases in the 

probability range of 60% to 70%. 

5.4.2 Ground Observations of Landslides and Damages to Transportation Infrastructures 

Field investigation of the landslides shows a mixture of different extents of 

landslides from small roadside runoffs to large sections of mountain slope with rolling 

rocks and debris flows (Figure 5-4). Several of the landslides resulted in damage to 

roadways and parking facilities (Figure 5-10) and endangered bridge structures (Figure 

5-11). Markings in Figure 5-10 and Figure 5-11 are added to show the likely boundary of 

the landslide. 

Damages to bridge structures showed a critical issue differentiating landsliding 

versus river water scouring. Landslides, specifically debris slides in the western North 

Carolina mountain case, are typically described as the ground movement due to an increase 

in soil moisture, which reduces the soil strength and resulted in land mass flow 
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(Easterbrook, 1999), whereas scour is described as “Erosion of streambed or bank material 

due to flowing water”(Arneson et al., 2012). Due to the rapid accumulation of rainwater 

during Helene, many of the roadway embankments experienced rapid runoff of rainwater 

that travelled downslope into the river, forming first gullies and eventually triggered slides 

that converged with the rapid river flow. As a result of the significant number of landslides 

in the mountains, severe debris flows emptied into rivers and streams and resulted in 

massive erosion of riverbanks, such as in the case of Chimney Rock, NC.  

Figure 5-12 shows a section of the Broad River (near Chimney Rock Village) that 

was washed away by the massive flooding during Hurricane Helene. Figure 5-12a shows 

the site of the washed-away bridge on Chimney Rock Scenic Road over the Broad River, 

and Figure 5-12b, Figure 5-12c, and Figure 5-12d show different views of the eroded 

riverbanks and basin of the Broad River. The entire Broad River basin from Bat Cave, 

Chimney Rock Village to Lake Lure experienced severe riverbank erosions. 
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Figure 5-8 Multi-hazard susceptibility map in North Carolina with reported landslide 

locations (a: landslide, wildfire and earthquake; b: landslide and earthquake). 
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Figure 5-9 Analysis of reported landslides with the corresponding susceptibility 

probabilities: a) Multi-hazard scenario with wildfire effects; b) multi-hazard scenario 

without wildfire effects; c) difference between with and without wildfire effects; and d) 

bar chart comparing the two scenarios by number of slides.  

 
Figure 5-10 Hurricane Helene landslides to transportation structure and facilities: a) By a 

roadside near lake Lure; b) by a parking space near Chimney Rock; c) near a parking lot 

in Chimney Rock; d) below a county highway in Henderson Co. (Photo credit: Shen-En 

Chen, Sophia Lin, and Qifan Zhao) 
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Figure 5-11 Hurricane Helene landslides damages to bridge structures: a) Main Street 

bridge over railroad, Saluda, NC; b) bridge near Lake Lure; c) ; d) Dam crossing, Lake 

Lure. (Photo credit: Shen-En Chen, Sophia Lin, and Qifan Zhao) 

 
Figure 5-12 Hurricane Helene flood-battered region in Chimney Rock Village, NC: a) 

Washed away bridge on the Chimney Rock Scenic Road over the Broad River, Chimney 

Rock, Village, NC; b) from Main Street looking over Broad River; c) scoured Broad 

River basin in front of Burnshirt Vineyards Bistro on Main Street, Chimney Rock, NC; d) 

parking lot in front of Burnshirt Vineyards Bistro on Main Street, Chimey Rock, NC. 

(Photo credit: Shen-En Chen, Sophia Lin, and Qifan Zhao)  



150 

 

5.5 Discussion 

Most ML-based landslide susceptibility studies are validated based on only 

sampled historical data; rarely does one get the opportunity to verify their prediction based 

on actual events [8, 9, 14, 15, 16, 37-39]. Most of the field surveys are performed to define 

the landslides [40]. The current research team was given a rare opportunity to validate our 

study with actual landslide events. 

The objectives of this paper are two-fold: 1) To evaluate the performance of the 

landslide susceptibility mapping in the western mountain regions of North Carolina with 

the landslides resulting from the severe rainfall due to Hurricane Helene; 2) to report the 

disaster resulted from Hurricane Helene that pertains to the landslides in the mountains and 

to correlate the landslides to the damaging mechanisms to the bridges. As such, we will 

divide the discussion section into two subsections. 

5.5.1 Landslide susceptibility mapping validation 

One of the challenges in machine modeling for landslide susceptibility assessment 

is the issue of sampling (Wu et al., 2024). Using the rigorous approach, different sampling 

and modeling approaches may result in different susceptibility probabilities.  Hence, the 

interpretation of what validates an ML-based susceptibility mapping is difficult to answer.  

This issue is further complicated by actual field investigation of landslides, since the 

interpretation of what is a landslide can be difficult due to the significant number of 

variables, both internal (i.e. lithology, slope angle, slope aspect, and slope profile) and 

external (e.g., rainfall and anthropogenic actions), that are required to characterize a 

landslide (Henriques et al., 2015). 
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As mentioned in section 3.1, the landslides resulting from Hurricane Helene 

matched different land susceptibility values and the outcomes are very similar for both for 

both with and without wildfire effects, indicating that wildfire effect may be minimal. 

Figure 5-8a and Figure 5-8b seem to indicate that there is not a big contrast between the 

wildfire affected landslides and the non-wildfire affected landslides. Both maps show that 

the landslides are clustered around the central regions of the maps with the most significant 

regions are in the Buncombe, Ash and Watauga Counties. Since the state database did not 

recognize the size of the landslides, it is hard to determine the extent of landslides.  Hence, 

to decide what degree of susceptibility qualifies as a “positive” prediction, Figure 5-13 

shows the accumulated distributions of both susceptibility values for both L+E and L+W+E 

cases. As shown, there are more than 50% of the landslides have higher than 60% (59.99%) 

landslide susceptibility values. If we define a 50% susceptibility value as a good prediction 

of landslide, then the confirmed landslides for Hurricane Helene are more than 50%. 

A closer look at the landslide data showed that only one landslide has 0% prediction 

(in Wilkes County), which may be interpreted as a false prediction.  There is also one case 

for 100% prediction (Polk County) for the L+E case. There are 9 cases and 18 cases of 

landslides that have more than 99% of predictions for both for both with and without 

wildfire effects cases, respectively. Figure 5-14 shows the locations of these landslides 

which are predominantly in Watauga, Henderson and Polk counties with one landslide in 

Avery County for both for both for both with and without wildfire effects cases (the same 

landslide). 

We further plot the landslides against the landslide modeling variables including 

elevation, slope, aspect, soil type, rainfall, temperature, forest cover, distance to rivers, 
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distance to faults, distance to roads, distance to high population intensities and probability 

of wildfires in Figure 5-15. The results show that the landslide distribution is most 

consistent with rainfall indicating that rainfall may be the most critical independent 

variable for Hurricane Helene.  However, more detailed information from Helene should 

be included for more precise analysis. 

5.5.2 Observations to Helene landslides 

Hurricane Helene triggered close to 2,000 landslides which contributed significant 

waste to the raised river water and flooded several valleys and lowlands in the mountain 

regions and damaged several bridges. To investigate the damage to the bridges, we 

computed the AFP described in section 2.2 to determine the flooding potential at each 

bridge. As shown in Appendix C, most of the damaged bridges have AFP less than 10 m, 

except bridge ID. 050026 over the North Toe River which has an AFP of 11.91 m.  The 

lowest AFP reported is bridge ID. 040342, which is 0.5 m. With such low AFP, it is very 

probable that most of the damaged bridges were submerged under the heavy debris-ladened 

flood water in the river and may have experienced scours at both bridge embankments and 

bridge piers, which can result in the destabilization of both the bridge super and 

substructures and ultimately bridge collapses due to deck failure. 

To illustrate the damaging effects of scour, Figure 5-16 shows the likely scouring 

of bridge structure during flooding: Figure 5-16a shows potential scour occurring at both 

bridge piers and bridge embankments, which can lead to increased stresses at the 

supporting soil medium around the bridge piers and cause instability to the super structure 

(Figure 5-16b). It is important to point out that most scour prediction models are either for 

clear water or for live beds (Figure 5-16c). The dashed line in Figure 5-16 represents the 
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possible scour from the heavily debris-ladened flood water from Helene. However, the 

hydrodynamic effects to bridge supporting soil medium remains to be investigated.  

Pregnolato et al. investigated the flooding impacts to bridge substructures and suggested 

that some of the flooding forces can damage beam supports and suggested that the 

consequences of bridge failure should be assessed by the number of days of closure [43]. 

Finally, to illustrate the difference between landslide and scour at the bridge 

embankments, we use a landslide over the Hungry River, Flat Rock, NC, as an example.  

Figure 5-17 shows the landslide with the whole view of the mass movement (Route 1802, 

Figure 5-17a) and our attempted indication of the debris slide (there is indication of a slip 

surface) and the scour recognized as deposition of waste (logs and large rocks) near the 

riverbed (Figure 5-17b). To differentiate landslide versus scour, Wu et al. (Wu et al., 2011) 

used Figure 5-17c to define a landslide, which ends at a distance, “b”, that extends from 

the slide toe to the stream edge. Similarly, the deep-seated landslide involving rock fall and 

colluviums in the Kaoping Watershed region, Taiwan, the debris slide at Big Hungry Road 

Bridge site also involves a long slip plane (Wu et al., 2011). Not shown in the figure is a 

continuation of the slide above the roadway 1889. However, because of the deposition of 

debris, it is hard to differentiate the slide toe of the scoured river zone of the Hungry River 

in Henderson County. 

Figure 5-18 shows the washed-out Big Hungry Road Bridge (ID: 4400055) over 

the Hungry River (upstream from the landslide).  As shown, the bridge has severe scours 

at both abutments and the bridge deck was washed out.  At the time of the photograph, 

construction is underway, and it is shown that the existing bridge abutments were damaged, 

but the pile foundation remained intact, although the bridge superstructure is gone. 
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5.6 Conclusions 

Hurricane Helene caused a significant disaster in western North Carolina (NC) 

during September 2024 that the region is still recovering from. This event triggered 

numerous landslides and flooding due to the heavy rainfall and strong winds brought by 

the hurricane. Reports and platforms documented 1,792 landslides, 79 damaged bridges, 

and 102 fatalities, based on data from the USGS, NCDOT, and NC Department of Health 

and Human Services (NCDHHS) as of November 10th (NCDHHS, 2024; NCDOT, 2008; 

USGS, 2024). We use data on landslides and damaged bridges to validate our susceptibility 

maps and conduct ground observations to support the results. 

In Figure 5-6 and Figure 5-7, although our two multi-hazard susceptibility maps 

yield similar results, placing the landslide locations from the USGS platform reveals a 

notable difference in probability ranges of 0 to 10% and 60 to 70% between the maps 

(Figure 5-9d). Our multi-hazard susceptibility maps include various variables (elevation, 

slope, aspect, soil type, rainfall, temperature, forest cover, distance to rivers, distance to 

faults, distance to roads, distance to high population intensities and probability of wildfires) 

(Figure 5-15). The distribution of landslide locations appears to be strongly correlated to 

rainfall (Figure 5-15e). The rainfall factor does not include data from September 25th-28th. 

Therefore, incorporating this data would enhance the accuracy of our future research.  

Ground observations have been made in Macon County, Polk County, Henderson 

County, Rutherford County, and Buncombe County (Figure 5-3). The observations 

confirmed those landslides not only damaged roadways and parking facilities but also 

posed a significant threat to bridge stability, underscoring the vulnerability of infrastructure 

in high-risk areas. Our investigation revealed that bridge damage in the region was caused 
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by both landslides and river scours. For most bridges, the damage is at bridge embankments. 

While landslides, particularly debris flows, resulted from increased soil moisture leading 

to slope destabilization, river scours resulted from the erosive power of flood water, 

exacerbated by debris-ladened current. This dual threat contributed to widespread 

riverbank erosion and infrastructure damage, as observed along the Broad River near 

Chimney Rock Village. The extensive erosion and sediment deposition at bridge sites 

highlighted the interaction between landslide debris flows and flooding during Hurricane 

Helene. 

In Appendix C, a lower average flood potential (AFP) bridges were especially 

vulnerable to submersion and scour, which we based on the damaged bridges from NCDOT. 

Most of the damaged bridges have AFP less than 10 m.  

Differentiating between landslide induced and scour induced damage is essential 

for understanding the mechanisms that threaten transportation infrastructure in 

mountainous regions. Our findings demonstrate that assessing and mapping susceptibility 

to landslides can improve risk management strategies and inform the design of more 

resilient infrastructure. Future research should focus on refining susceptibility models to 

incorporate real-time rainfall and hydrological data, enabling more accurate predictions 

and preventive measures in vulnerable regions. 
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Figure 5-13 Helene landslides and the associated susceptibility values as an accumulated 

functions. 
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Figure 5-14 Landslides with zero and 99%~100% predictions for a) without wildfire 

effects; and b) with wildfire effects. 
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Figure 5-15 Conditioning factors used in this study including reported landslides: a. 

Elevation, b. Slope, c. Aspect, d. Soil type, e. Rainfall , f. Temperature, g. Forest cover, h. 

Distance to rivers, i. Distance to faults, j. Distance to roads, k. Distance to high 

population intensity, l. probability of wildfire occurrence. 

 

Figure 5-16 Typical bridge scour damage mechanism including the forming of scour 

holes (local scour) around bridge piers which can result in increased stress in the 

supporting geo-medium (riverbed material): a) typical scour mechanism; b) geo-medium 

stressing due to scour hole formation; c) scour depths due to clear water scour vs live-bed 

scour. 
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Figure 5-17 Debris slide and scour combined mass waste mechanism of the Hungry 

River: a) Whole view of the landslide Cord Road (Route 1802); and b) close up of the 

slide and the river deposits, and c) Landslide assumption by (Wu et al., 2011). 

 

Figure 5-18 The reconstructing Big Hungry Road Bridge a) Flat Rock side; b) Flat Rock 

side; c) Flat Rock side and d) Opposite of Flat Rock. (Photo credit: Shen-En Chen, 

Sophia Lin, and Qifan Zhao)  
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Appendix C 

No Bridge ID Stream 
Bridge Length 

(m) 
AFP (m) Report State 

1 040342 North Fork New River 28 0.50 underwater 

2 040480 North Fork New River 18.8 0.51 underwater 

3 040296 North Fork New River 28 0.53 underwater 

4 040183 Cranberry Creek 15.2 0.56 underwater 

5 040093 North Fork New River 35.9 0.57 wash out 

6 040425 Grassy Creek 7.9 0.60 underwater 

7 040483 Helton Creek 9.4 0.69 underwater 

8 940089 South Fork New River 30.7 0.69 damage 

9 040047 Helton Creek 16.7 0.72 wash out 

10 040351 South Fork New River 49.3 0.76 underwater 

11 040509 South Fork New River 49.3 0.77 wash out 

12 040226 South Fork New River 31 0.80 underwater 

13 130161 Wilson Creek 14.3 0.82 wash out 

14 040354 Big Laurel Creek 9.4 0.83 underwater 

15 040466 South Fork New River 37.1 0.85 underwater 

16 040206 Helton Creek 28 0.87 underwater 

17 040304 Helton Creek 15.5 0.91 underwater 

18 040258 Middle Fork Horse Creek 7.6 0.91 damage 

19 040463 North Fork New River 50.9 0.94 underwater 

20 940178 Cove Creek 15.2 0.95 wash out 

21 040048 Helton Creek 12.8 0.99 underwater 

22 940271 Watauga River 32.9 1.00 underwater 

23 020132 Elk Creek 15.2 1.02 wash out 

24 940082 Watauga River 36.8 1.02 underwater 

25 040289 Helton Creek 18.5 1.07 underwater 

26 040140 Cranberry Creek 18.5 1.11 underwater 

27 040121 North Fork New River 73.7 1.14 wash out 

28 940161 Watauga River 23.1 1.15 underwater 

29 100866 Swannanoa River 42.9 1.25 damage 

30 100032 Swannanoa River 34.1 1.28 damage 

31 020062 Crab Creek 13.7 1.29 damage 

32 940058 Beech Creek 14.6 1.36 wash out 

33 040477 South Fork New River 28 1.40 wash out 

34 040337 North Fork New River 37.1 1.41 wash out 

35 940168 Cove Creek 15.8 1.42 wash out 

36 440041 Lewis Creek 10.6 1.49 closed by lane 

37 040343 Cranberry Creek 12.8 1.50 underwater 

38 040426 Grassy Creek 9.1 1.55 underwater 

39 050125 Elk River 40.5 1.56 wash out 

40 050101 Elk River 43.2 1.56 wash out 

41 940086 Howard Creek 9.4 1.64 underwater 

42 580285 North Fork Catawba River 21 1.66 wash out 
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43 100041 Swannanoa River 18.2 1.71 damage 

44 040177 South Beaver Creek 18.8 1.91 underwater 

45 050035 Elk River 36.8 1.97 wash out 

46 940187 Meat Camp Creek 7 1.98 damage 

47 940032 Meat Camp Creek 12.4 1.99 wash out 

48 040122 North Fork New River 79.5 2.06 wash out 

49 740037 Green River 47.8 2.08 closed by lane 

50 430046 Jonathan Creek 29.8 2.10 closed by lane 

51 440038 Clear Creek 43.2 2.22 wash out 

52 580119 North Fork Catawba River 22.2 2.27 wash out 

53 430225 Pisgah Creek 9.4 2.34 wash out 

54 940016 Middle Fork S.Frk. New River 20.7 2.35 damage 

55 430008 Pisgah Creek 10.9 2.36 wash out 

56 440055 Hungry River 41.4 2.51 closed by lane 

57 440026 Hoopers Creek 22.8 2.56 wash out 

58 100785 Swannanoa River 13.7 2.59 damage 

59 440063 Lake Summit 80.1 2.86 wash out 

60 100552 Swannanoa River 52.4 2.90 damage 

61 100890 Swannanoa River 46.9 3.10 damage 

62 440027 Hoopers Creek 32.3 3.12 wash out 

63 940280 Brushy Fork Creek 9.4 3.12 wash out 

64 580111 North Fork Catawba River 36.8 3.23 closed by lane 

65 800313 Broad River 53.6 3.28 wash out 

66 130318 Harper Creek 24.9 3.40 damage 

67 100380 Swannanoa River 61.5 3.72 damage 

68 580083 Buck Creek 35 3.73 wash out 

69 430111 East Fork Pigeon River 49.6 4.28 closed by lane 

70 990097 South Toe River 48.7 4.50 wash out 

71 740112 North Pacolet River 36.8 4.50 wash out 

72 800060 Broad River 37.7 4.97 damage 

73 990056 South Toe River 61.2 6.27 damage 

74 100517 Swannanoa River 61.8 6.48 damage 

75 040056 North Fork New River 101.1 6.99 damage 

76 110368 Lake James Canal 146.6 7.41 damage 

77 440214 Broad River 50.2 7.98 damage 

78 990044 Cane River 73.1 8.16 damage 

79 050026 North Toe River 85.3 11.91 damage 
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Chapter 6: Conclusion  

This dissertation provides a comprehensive multi-hazard risk assessment model 

targeting landslide, flood, wildfire, and earthquake vulnerabilities in bridge infrastructure 

across North Carolina’s mountainous regions. By integrating logistic regression (LR) and 

random forest (RF) modeling within ArcGIS Pro and RStudio, we demonstrated 

susceptibility maps that pinpoints high-risk bridges (bridge-in-valley), offering actionable 

insights for proactive maintenance and mitigation strategies. This study’s use of extensive 

geospatial and statistical methods provides a robust framework for understanding 

infrastructure vulnerability in climate-sensitive landscapes, guiding state transportation 

departments in risk management and resource allocation. 

The destructive impact of Hurricane Helene in 2024 exemplifies the multi-hazard 

risks faced by bridges under extreme weather events in NC. Field investigations revealed 

that landslide and scour-induced failures were particularly prevalent at bridge 

embankments, where sediment deposition and debris flows heightened structural 

vulnerabilities. This hurricane event further validates the importance of predictive multi-

hazard mapping and its role in identifying high-risk infrastructure, enabling more resilient 

designs and response strategies for future events. Based on our numerical research of the 

multi-hazard with bridges, the following conclusions and comments can be drawn in the 

following paragraphs: 

In chapter 2, we inspired by the extensive damage to Puerto Rican bridges during 

Hurricane Maria, a landslide risk susceptibility analysis was conducted for NC, where 

numerous bridges face multi-hazard threats from landslides and flooding. By applying LR 

and RF models, a landslide risk map was created, with RF proving more accurate and 
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sensitive, achieving an 82.7% accuracy rate. This chapter incorporated bridge data and 

assumed flooding potential (AFP), identified 37 bridges at high risk and in valley from 

both landslides and flooding. Field observations confirmed these risks, particularly for 

bridge 740002, affirming the model’s reliability as a proactive tool for infrastructure 

managers. Although this study primarily considered aspect and seismicity variables, future 

work could include geological and lithological factors to enhance precision. This approach 

offers a foundation for improving infrastructure resilience and guiding decision-makers in 

safeguarding vulnerable bridges.  

 In chapter 3, it conducted a risk susceptibility analysis to identify vulnerable 

highway bridges in NC's western mountainous region, a necessity underscored by the 

recent devastation caused by Hurricane Helene in September 2024, which led to fatalities, 

injuries, and significant bridge and road damage due to flooding and landslides. The multi-

hazard analysis focused on landslide and flooding risks and incorporated additional risks 

from earthquakes and wildfires, forming a comprehensive, nested approach. Using RF 

model, landslide and wildfire susceptibility maps were generated, achieving higher 

predictive accuracy (wildfire: 72.9%, landslide (with wildfire): 83.9%). Especially though 

soil type was included as a landslide predictor, it did not substantially increase model 

accuracy, suggesting a need for refined soil classifications in future studies. Compared with 

chapter 2 results, incorporating AFP as an indicator of multi-hazard vulnerability, revealed 

that the number of bridges with over a 50% probability of multi-hazard risk reduced from 

47 to 26. However, four additional bridges were newly identified as high-risk, suggesting 

increased vulnerability to wildfire-triggered landslides. 
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  In chapter 4, the 2024 hurricane season, marked by Hurricanes Helene and Milton, 

caused severe infrastructure damage and loss of life, especially in the Appalachian 

Mountains, where over 1,100 landslides and more than 400 bridge damages were reported. 

Observations highlight that scouring and landslides at bridge approaches are major 

contributors to bridge failures, disrupting essential transport and local safety.  

 In our last chapter, Hurricane Helene caused widespread destruction in western 

North Carolina in September 2024, triggering 1,792 landslides, damaging 79 bridges, and 

resulting in 102 fatalities. This study validated susceptibility maps against field 

observations and USGS data, revealing that bridge damage often occurred at embankments 

due to landslides and river scour. Landslide debris flows destabilized slopes, while flood-

induced scouring eroded bridge foundations, especially along rivers like the Broad River. 

Findings showed that bridges with lower AFP were particularly vulnerable to submersion 

and scour. Differentiating landslides induced from scour induced damage is crucial for 

infrastructure protection, emphasizing the importance of accurate susceptibility mapping. 
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Chapter 7: Recommended Future Research 

1. Developing accurate landslide risk models remains challenging due to the complex 

interplay of geological, hydrological, topographical, and human factors. While this 

study provides a foundational tool for proactive bridge management, future research 

could improve precision by incorporating additional geological and lithological data.  

2. To maintain bridge functionality during future storms, extending bridge decks further 

into roadway sections is recommended to reduce the impact of scouring and landslides 

on bridge approaches. However, more research are needed to provide quantitative 

design criteria for future bridges. 

3. It should incorporate real-time rainfall and hydrological data to improve predictive 

accuracy and resilience planning. 

4. The findings underscore the urgent need for adaptive infrastructure resilience 

planning, especially for critical transportation assets like bridges. The insights from 

this research contribute to a growing body of knowledge in multi-hazard assessment, 

reinforcing the concept of resilience as central to infrastructure management amidst 

escalating climate extremes. 


