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ABSTRACT 

 

 

RICHARD ARTHUR ALAIMO. Overlap Packing Optimization for Spacecraft Layout 

Design. (Under the direction of DR. CHURLZU LIM) 

 

 

 Packing optimization is a common problem that is encountered on a day-to-day 

basis and has led to an extensive study over the years. One variant of the packing 

problem that is beginning to emerge is the overlap cuboid packing problem (OCPP), 

which allows for items that need to be packed to share space in order to further minimize 

the dimensions of the container. The objective of this study is to investigate a 

mathematical model, specifically a mixed-integer linear program (MILP), that can 

effectively provide an overlap packing solution in the context of designing the layout for 

a spacecraft module. For this particular layout design problem, the items that need to be 

packed are represented as task volumes, known as gradient cuboids, where astronauts 

perform various tasks and the container is the spacecraft module. A bi-objective function 

was proposed to allow the dimensions of the module to be minimized, as well as 

enforcing specific adjacency requirements that might exist between gradient cuboids. 

Following the formulation of the model, the efficacy of the model is evaluated on 

test problems that consist of 20 randomly generated small-scale instances with seven 

cuboids and one full-scale instance with 24 cuboids. In this numerical study, each of the 

test instances were solved under 10 different design scenarios, which varied depending 

on the enforced vertical overlap and restrictions on the dimensions of the container. To 

obtain solutions of the MILPs, a commercial solver, Gurobi, was called from Matlab. The 

visualization of results demonstrates how the proposed model effectively generates layout 
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designs. We also observed how the proposed model can accommodate prioritization 

between two criteria: size of the container and enforcement of adjacency requirements. 

Noting that OCPP is a generalization of the NP-hard packing problem, it is 

unlikely to efficiently find an optimal solution as the problem size increases. It consumed 

81.02 seconds on average to solve small-scale instances. However, the solution of the 

full-scale problem had to be terminated after a 4-hour run, when the optimality gap was 

62.53% on average for 10 layout designs. Observing the large optimality gap, we turned 

our attention to further enhance the model to help reduce the computational burden when 

finding a solution. As a result, seven additional sets of constraints were proposed. 

An additional numerical study was performed where each constraint was added to 

the base model individually using the test problem in order to determine which 

constraints provide the most benefit to solving the model across a set of scenarios. 

Following this, combinations of constraints were created for different layout designs on 

the randomly generated problems to determine if further improvement was possible. It 

was observed that there was an average improvement of 65.12% in solution time when 

applied to small-scale instances. These combinations were applied to the full-scale 

problem, where it was observed that there was an average improvement of 14.92% in 

optimality gap after 4-hours. 
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CHAPTER 1: INTRODUCTION 
 

 

Consider the problem of packing a set of items into a container, where items are 

cuboids with various sizes. The primary objective of this problem is to minimize the total 

volume of the container once all items have been packed. However, it is possible for this 

problem to be multi-objective by considering other criteria such as desired adjacency 

between items and packing costs. This problem is known as the packing problem [5].  

 The packing problem considered in this research stems from the effort to generate 

spacecraft interior layout designs. The container in this context will be referred to as the 

spacecraft module and the items to be packed will be referred to as gradient cuboids. A 

gradient cuboid represents a task volume where astronauts perform a task assigned to the 

volume. It is possible that there are multiple occurrences of the same gradient cuboid, 

e.g., multiple ‘sleep’ task volumes, to accommodate multiple astronauts. It is also 

important to astronauts that certain task volumes are placed next to one another for 

efficiency ,(i.e., kitchen and eating area), as well as certain task volumes being as far 

apart from each other (i.e., sleeping quarters and bathroom). In order to incorporate two 

performance criteria, the total volume of the module and adjacency preferences between 

task volumes, this study will propose a mathematical optimization model, called a mixed-

integer linear program (MILP), where these two criteria are embodied in the objective 

function. 

There are three layout design configurations that are considered for this study. 

The first case is where the dimensions of the module are unbounded in three-dimensions 

(which implies that no restriction on the size of the module is necessary). The second 

case is where the height and width dimensions of the module are limited (so-called 
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horizontal layout design configuration). The final case is where the floor dimensions of 

the module are limited (so-called vertical layout design configuration).  These layout 

designs depend on the design requirements that set are set forth prior to executing the 

optimization. 

Unlike conventional packing problems, a distinctive feature of the considered 

problem is to allow cuboids to overlap to a certain extent. This is because of the fact that 

it is not necessary to occupy the entire task volume exclusively when performing some 

tasks. Besides, some tasks can be performed at exclusively different times. In an initial 

base scenario, it is assumed that only side-to-side overlap between cuboids is allowed, 

while vertical overlap is prohibited. Overlap percentages between all pairs of cuboids are 

required before the optimization can be executed and are computed based on the 

probabilistic usage of the volume for a task [1]. Allowing overlap also presents the 

opportunity to further minimize the volume of the module since the gradient cuboids are 

allowed to share space. This problem variant can be identified as the overlap cuboid 

packing problem (OCPP). 

 It should be noted that the conventional cuboid packing problem is NP-hard. 

Adding overlap will create extra complexity. Therefore, one big issue with finding an 

optimal solution to this problem is the computational effort that is required to find an 

optimal solution. Although the problem of interest may not sound difficult for only a few 

items, (in which many feasible solutions still exist), it can become much more 

complicated very quickly as the number of items to pack grows. There are numerous 

heuristic methods that can provide solutions in a reasonable amount of time. However, 

heuristic methods fail to guarantee an optimal solution, but are preferred by many 
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decision makers due to their computational efficiency. Nonetheless it is desired to find an 

optimal solution via exact methods and this research aims at not only proposing exact 

formulations for the overlap packing problem but also alleviating computational burden 

to help improve the convergence rate of the solution method. This thesis is organized as 

follows. 

In Chapter 2, an overview of existing literature within the problem domain of 

packing optimization will be discussed. In Chapter 3, the MILP will be formulated in the 

base case where the dimensions of the module are unbounded. Also, additional 

constraints will be introduced that allow for the other layout designs mentioned earlier to 

be constructed. In Chapter 4, a computational study will be presented, including analysis 

on the base model efficiency for small-scale and large-scale problems by using randomly 

generated cuboids, as well as comparing various layout design alternatives based on the 

weighted preference between adjacency and volume. In Chapter 5, model enhancements 

and reformulations to the base model will be introduced that are intended to reduce the 

computational efforts. In Chapter 6, an additional computational study will be presented, 

including a comparison between the MILP without the time-saving constraints and the 

MILP with the time-saving constraints. In Chapter 7, a conclusion to this research will be 

presented, as well as to discuss further extensions to this research. 
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CHAPTER 2: LITERATURE REVIEW 

 

 

Extensive research has been performed in the field of packing problems with the 

primary objective of minimizing the volume of a container that holds a set of items. 

Cuboid packing problems can be applied to various industries due to their broad 

applicability, primarily in manufacturing and distribution, to assist in minimizing 

logistics costs [2]. While packing cuboids in a minimally sized container is the goal of 

packing problems there can be additional requirements depending on the application of 

the problem. Examples of such requirements include ensuring vertical stability such that 

items are placed on the base of the container or above other items, arranging items such 

that edges of each item are parallel or perpendicular to the container, and enabling 

rotation, which is dependent on the type of objects that are packed. Various problems 

may require additional or fewer constraints depending on its context. Efforts have been 

made to categorize such various types of packing problems to assist in determining which 

problem type is most applicable for a certain situation. As a result of these efforts, a 

typology was developed by a group of researchers. 

According to [5], packing problems can be modeled under two distinct 

frameworks both with unique objectives. The first framework is known as output 

maximization, which follows the concept of maximizing the assignment of a set of items 

to a large container of limited size (i.e., pack as many items into a container as possible). 

The second framework is known as input minimization, which follows the concept of 

assigning a set of items while minimizing the dimensions of the large container (i.e., pack 

all items of interest into a container such that the size of the container is minimized). 
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Although both frameworks are slightly different from one another the underlying concept 

is similar which is packing a set of items into a container. 

In general, there are three cases to describe the relationship between items that are 

to be packed. First, all items are identically sized to one another so that they possess the 

same dimensions (identical items). Second, items can be categorized such that items 

having same dimensions are grouped together in the same category while items from 

different categories have different sizes (weakly heterogenous assortment). Third, items 

are all treated as individual from one another even if there exist a small number of items 

that are identical to one another (strongly heterogenous assortment). For the third case, it 

makes sense to treat all items as unique from another since it may not be worth the effort 

to categorize the items if only a few of them are identical to one another. To expand upon 

the nature of items to be packed there is no restriction as to what the shape of the items 

can be. In the two-dimensional case, items can be rectangular, circular, etc. and in the 

three-dimensional case items can be rectangular prisms, spherical, etc. It is also possible 

for items to have irregular shapes [5]. 

Within the problem domain of packing optimization, there exist several problem 

types that can be applied depending on the context of a given problem. According to [5], 

these problem types include the identical item packing problem, placement problem, 

knapsack problem, open dimension problem, cutting stock problem, and the bin packing 

problem (where the first three problem types are classified as output maximization 

problems, and the rest are classified as input minimization problems). The identical item 

packing problem involves packing a set of identical items into a container. The placement 

problem involves packing a set of items belonging to multiple categories, where 
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categories are formed such that identical items are in the same category, into a container. 

The knapsack problem involves packing a set of items into a container with a fixed size. 

Assuming that all items cannot be packed into the container only a subset can be placed 

into the container such that the total value of packed items is maximized. The open 

dimension problem involves packing a set of items into a container that can have a 

variable size in one or more dimensions. In this type of problem, it is desired to fit all 

items into the container while changing one or more dimensions of the container such 

that its total volume is minimized. In the context of the packing problem, the cutting 

stock problem can be interpreted as packing multiples of assorted items into a set of 

containers with minimally wasted space. The bin packing problem is a special case of the 

cutting stock where assorted items are packed in a way that the total number of 

identically-sized containers is minimized. 

In complexity theory, there are two distinct classes that are used to classify 

problems, P and NP [31]. Members of class P can be solved in polynomial time, whereas 

it has not been determined whether members of class NP are solvable in polynomial time 

of the problem size [31]. There are certain problems belonging to NP that by default 

require all similar problems to belong to the same class. Problems that have this 

characteristic are known as NP-complete [31]. If it can be proven that a problem 

belonging to NP requires exponential time to solve, an NP-complete problem will require 

it as well [31]. Similarly, the complexity of algorithms can be classified by their solution 

times and/or storage requirements. Exponential time algorithms consume exponential 

time of the problem size and require for a large solution space of exponential size if 

searched exhaustively, which is referred to as a brute-force search [31]. Polynomial time 
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algorithms are more useful due to their efficiency, whereas exponential time algorithms 

are rarely useful due to how computationally demanding they are [31]. When proving that 

an algorithm belongs to class P, it is necessary to provide its performance in the worst-

case on a specific input length, and then analyze each step in the algorithm in order to 

verify that it can be implemented in polynomial time on a deterministic model [31]. 

Packing problems in the two-dimensional case have been deemed to be NP-complete [3], 

as well as in the three-dimensional case where the height of the container is unbounded 

[4]. As a result, heuristic methods are more predominant for the packing problem in order 

to quickly find a solution. 

For many packing optimization problems, various algorithms and heuristic 

methods are used to assist in finding a good solution in a reasonable amount of time. In 

[11], the largest area first-fit algorithm was formulated in which a set of rectangular 

prisms are packed into a container where its height is unbounded. The item with the 

highest surface is placed first so the width and length dimensions of the container can be 

determined, and then the remaining items are placed accordingly so the height of the 

container is minimized. In [12], a tree-search algorithm was formulated which allows for 

a set of rectangular prisms to be packed. Computational complexity is reduced using this 

algorithm by decomposing the problem into a set of lower dimensional problems, when 

appropriate, until a good solution is found. In [13], a simulated annealing algorithm was 

formulated that allows for a solution to be found after a finite number of iterations have 

been performed, or if an acceptable wasted space threshold is satisfied for a set of 

objects. However, by the nature of heuristics, these methods fail to guarantee that an 

optimal solution to the problem can be found. Within these algorithms, various solution 
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strategies have been studied including, but not limited to, layering, cutting and residual 

space strategies. 

The layering strategy requires the container to be separated into a set of layers and 

in order to progress to a new layer existing layers must be packed to the maximum 

capacity. This allows for items to be placed along the base of the container first, and then 

other items are placed above [6]. In [7], a layering strategy was utilized in solving a one-

dimensional packing problem where the width and length of the container are fixed and is 

composed of two-dimensional packing problems where items are packed such that the 

usage of the surface area for a layer is best utilized. The layering strategy is also known 

as a block-building strategy, where the width of the container is filled to maximum 

capacity first, then its length and finally its height [19]. In [22], an algorithm was 

formulated that packs a set of items, called blocks, inside of a container during each 

iteration using a best-fit heuristic while ensuring that a reference length threshold is 

satisfied. The reference length is measured for each iteration, like the layering strategy, 

until all items are packed into the container. 

The cutting strategy requires the container to be cut into horizontal and vertical 

strips. Once these strips are made, items are packed into them with the final 

representation of the container being classified as a pattern [18]. In [21], a single 

dimension open dimension problem was considered where the container is cut into 

horizontal and vertical strips. Items are placed within these generated strips until a 

solution is found. 

 The residual space strategy allows for the generation of small-sized containers to 

be generated inside of the large container each time an additional item is packed. 
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Typically when using this strategy, it is required for additional items to be packed along 

one of the corner points for each residual space in hopes of minimizing the number of 

residual spaces that are created [16]. The residual space strategy is also known as the 

bottom-left with fill approach, where it is desired to place the first item at the bottom-left 

hand corner of the container and place additional items beside one another until the 

container is packed [20].  

It is possible for an algorithm to utilize several solution strategies throughout its 

entire procedure and are typically known as hybrid algorithms. Hybrid algorithms consist 

of multiple stages that need to be solved before a solution can be given and use multiple 

analytical tools. A majority of algorithms that are implemented for solving packing 

problems are hybrid since further improvement in computational efficiency is common. 

In [18], a hybrid heuristic for the two-dimensional bin packing problem was formulated 

where the first-stage consists of cutting slips from the container that items can be packed 

in, thus creating a pattern, using a linear programming model, and the second-stage 

requires an integer program to be solved for minimizing the number of patterns, or bins, 

that are used. In [23], the block-building strategy was used for the single container 

loading problem. Initially, the empty container is the only space that is available for items 

to be packed in. After the first item is packed, new residual spaces are created until no 

remaining residual spaces exist. 

Many researchers have also utilized genetic algorithms for solving the packing 

problem. Genetic algorithms require a particular problem to be solved multiple times in 

order to find the best possible solution within a population of solutions [25]. They 

typically start with a randomly generated set of chromosomes that represent solutions and 
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focus on the ones that are more likely to reproduce better solutions [25]. Once this 

population of chromosomes evolve via genetic operations many solutions can exist and 

are compared with one another in selecting the best solution [25]. In [6], a hybrid genetic 

algorithm was formulated such that a set of rectangular items need to be packaged in a 

large container where its space is used most optimally using a layering strategy. For the 

case where one item is above another there must be no lateral overhang meaning that 

there should be no empty space surrounding these two items. This helps in using space 

most efficiently since it would be computationally difficult to pack another item in a 

small empty space. In [19], a genetic algorithm was applied along with bottom-left with 

fill and block-building strategies, as well as a greedy heuristic algorithm. The greedy 

heuristic allows for the spare space in the container to be minimized and for the weight to 

be distributed such that the container remains balanced. 

It is also possible to formulate packing optimization models into a constrained 

mathematical program such that an optimal solution to the problem is guaranteed. In [8], 

an integer program was formulated for the strip packing problem in two dimensions. In 

[15], a mathematical linear model was formulated which allows for various constraints to 

be considered including container weight limit, load stability, weight distribution and the 

fragility of items, while minimizing the unused volume of the container. Depending on 

the formulation of the model it is possible for the container to be rectangular or a 

truncated parallelepiped. In [2], a highly non-linear and non-convex mixed-integer 

program was formulated where the objective function is to minimize the volume of an 

unbounded container. Since this problem is non-linear it is difficult to find an optimal 

solution to the problem even when existing numerical approximation techniques and 
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algorithms are used. As a result, a reformulated objective function was suggested that 

reduces it to only a single variable, resulting in a quadratic objective function [2]. The 

packing of circular and spherical items is also a popular research area. In literature, the 

container can be considered in two- and three-dimensions, where the container can have a 

square, rectangular, or circular region [26]. A nonlinear programming model was 

formulated to solve this problem in two-dimensions using an energy function, such that it 

is minimized subject to items being packed inside of the square without overlap [27]. In 

[28, 29], researchers were able to formulate non-linear programming models in three-

dimensions where the container has an unbounded height and can take the shape of a 

parallelepiped and a right circular cylinder where identical spheres are packed. In [30], a 

similar model was proposed for non-identical spheres being packed into a parallelepiped. 

Similar to packing rectangular shaped items, heuristic algorithms are more predominant 

as a solution tool for solving this problem variant. 

There exist algorithms and mathematical models that can assist in finding a 

solution to items of irregular shape, where it is not possible to classify them with any 

known geometrical shape. Irregular shapes can be represented as convex or non-convex 

polygons, with the latter situation making the problem more difficult. Within [17], two 

mixed-integer linear programming models were formulated that provide a solution to the 

strip packing problem where items of irregular shape can be considered. For each 

irregularly shaped item they can be broken up into a set of convex polygons. In [24], 

irregular shaped items can be packed by bounding them in an arbitrary cuboid such that 

the entire item is placed inside and the dimensions of the cuboid are minimized. 

Orientation of the items are considered as a result and are loaded into the container using 
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bottom-left with fill and find-face algorithms. In [20], a hybrid algorithm is presented that 

is composed of two methods. The first method uses the bottom-left with fill strategy and 

uses simple geometric tools to speed up the computational result. The second method 

consists of a genetic algorithm where the best solution can be found as its population 

expands 

Due to the computational complexity of packing problems it is desired to reduce 

the computational burden that is experienced when solving the problem. Noting that 

packing problems are typically formulated as MILPs, one mathematical modeling 

technique of interest is to add valid inequalities in order to tighten the linear 

programming (LP) relaxation of the MILP. In general, an inequality is said to be valid if 

it is satisfied by all other possible solutions that belong to the feasible region [9]. The 

benefit of implementing valid inequalities into a mathematical model allows for the 

feasible region to shrink in size, or tighten, while ensuring that the original problems 

constraints are still enforced. Tightening the feasible region may lead to reduced 

computational times. It is possible to formulate valid inequalities by understanding the 

problem of interest and the structure of the model. However, there exists more 

mathematically rigorous techniques for generating constraints of this type. In [10], a 

general procedure is proposed for generating valid inequalities for various integer 

programs. 

As a result of reviewing relevant literature, it was noticed that there is a common 

objective of minimizing container volume, which is similar to maximizing the utilization 

of the container. The minimization of container volume can be accomplished by fixing 

two-dimensions of the container and minimizing the free dimension, or by solving a 
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highly non-convex problem that requires heavy computational effort. Furthermore, none 

of the reviewed packing literature considers overlapping between items to be packed. 

Also, adjacency requirements for items do not seem to be prevalent in literature which 

results in packing layouts where things appear to be randomly placed. In this research, 

however, it is desired to allow overlap between gradient cuboids in order to further 

minimize the dimensions of the spacecraft by allowing certain task volumes to share 

space. It is also desired to enforce adjacency requirements between task volumes based 

on the decision makers’ preference, which will ultimately result in packing (i.e., layout 

designs) that are more efficient in volume utilization and are astronaut friendly.  
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CHAPTER 3: PROBLEM DESCRIPTION 

 

 

In this chapter, an MILP is proposed in order to generate an arrangement of 

gradient cuboids that are to be packed inside of the module. To formulate this problem 

under the general setting, consider N gradient cuboids that need to be packed in the 

module. The shape of the gradient cuboids and the module are rectangular where each 

cuboid 𝑖 = 1,… ,𝑁 is characterized by its length (𝑙𝑖), width (𝑤𝑖), and height (ℎ𝑖), with 

designated orientation as illustrated in Figure 1. 

 
 

Figure 1: Example of gradient cuboid 

Recall that gradient cuboids correspond to the various types of tasks. Hence, the 

size of a cuboid depends on the volume required to perform the task. Certain types of 

tasks can be performed simultaneously and multiple identically-size cuboids are needed 

for such tasks.  

The performance criteria for the OCPP are the total volume of the container and 

the extent of adjacency between gradient cuboids. It is obvious that the volume of the 

module is the product of the total distance along the 𝑥-, 𝑦-, and 𝑧-axis. As mentioned 

(𝑥𝑖, 𝑦𝑖, 𝑧𝑖 
𝑙𝑖

𝑤𝑖

ℎ𝑖
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earlier when referencing [2], including the actual volume of the module results in a 

highly non-linear model that is hard to solve. In order to overcome this issue, it is 

proposed to include the estimated volume of the module in the objective function. The 

estimated volume can be formally stated as the sum of all distances across the 𝑥-, 𝑦-, and 

𝑧-axis. Including this sum in the objective function will result in the MILP to attempt to 

minimize each dimension of the module, which is similar to minimizing its volume. The 

total distance between cuboid i and cuboid j is measured as the Manhattan distance, or the 

𝑙1 norm between their respective center points. In order to enforce that the total distance 

between cuboid i and cuboid j is minimized, penalties will be assigned to the decision 

variables in the objective function that are associated with all pairs where index i is less 

than j. However, it is not necessary for every pair of gradient cuboids to be adjacent to 

one another. A higher penalty indicates that it is more important for cuboid i and cuboid j 

to be adjacent, and a lower penalty indicates that it is less important. 

Note that having two objectives results in a bi-objective optimization model. A 

widely practiced approach for a bi-objective optimization model is scalarization. In this 

study, a weight factor, 𝛼 ∈ (0,1 , is applied to the adjacency measure, where a higher 

weight implies that a relatively higher priority is given to minimizing the adjacency 

measure. 

Several assumptions will now be stated that influence the structure of the MILP. 

Within this model, it is possible for gradient cuboids to be rotated 90 degrees along the 𝑥-

 𝑦 plane (Assumption 1). Only rotation along the 𝑥-𝑦 plane is permitted in order to 

guarantee that the gradient cuboid is always standing upright. This assumption addresses 

possible gravity that is generated within the module. Even without gravity, having a fixed 
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vertical orientation may help astronauts navigate as they are used to it on Earth. Also, it is 

only possible for overlap between gradient cuboids to occur along the 𝑥- and 𝑦-axis 

(Assumption 2). Some gradient cuboids may require various types of equipment to be 

placed along its base, so it is necessary to guarantee that the base of the gradient cuboid 

will not share space with any other gradient cuboids. Next, there is a special type of 

gradient cuboid that corresponds to the ingress/egress task, and hence, must be connected 

to the wall of the module (Assumption 3). This assumption is intuitive since the only way 

for astronauts to enter/exit the module is through one of its walls. 

 The general base model will be first formulated where the dimensions of the 

module are unbounded. Toward the end of the chapter, additional constraints will be 

introduced to the base model so that additional layout design alternatives can be 

constructed. Before the general model can be introduced, it is necessary to formally state 

the notation that will be used for various parameters and decision variables that are 

included in the MILP. The following notations will be used to denote problem parameters 

and variables: 

(𝑤𝑖, 𝑙𝑖, ℎ𝑖 : parameters representing the width, length, and height of cuboid i. 

𝑀 ≫ 1: parameter representing a large constant. 

𝑜𝑖𝑗: parameter representing allowed overlap percentage between cuboid 𝑖 and cuboid 

𝑗. This parameter is not orientation specific, meaning that overlap between cuboids 𝑖 and 

𝑗 is applied in any direction. 

      𝛼 ∈ (0, 1 : parameter representing the weighting factor for the adjacency 

measurements. Accordingly, (1 − 𝛼  represents the weighting factor for the size of the 

container. 
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𝐴𝑖𝑗: parameter representing penalty proportional to the distance between cuboids i 

and j. This parameter will address adjacency requirements between cuboids 𝑖 and 𝑗, 

where a larger value of 𝐴𝑖𝑗 implies a proximity between cuboids 𝑖 and 𝑗 is desired. 

(𝑋, 𝑌, 𝑍 : continuous variables representing the dimensions of the cuboid container. 

(xi, yi, zi): continuous variables representing the coordinates of the reference point of 

cuboid 𝑖 in three-dimensional Cartesian coordinate system (𝑥, 𝑦, 𝑧) (see Figure 1 for the 

reference point of an example cuboid).   

The following binary variables represent relative location of cuboid i with respect to 

cuboid j, while not infringing overlap allowance: 

𝑝𝑖𝑗 = 1  if cuboid 𝑖 is to the left of 𝑗; otherwise 𝑝𝑖𝑗 = 0. 

𝑞𝑖𝑗 = 1  if cuboid 𝑖 is in front of 𝑗; otherwise 𝑞𝑖𝑗 = 0. 

𝑟𝑖𝑗 = 1  if cuboid 𝑖 is above 𝑗; otherwise 𝑟𝑖𝑗 = 0. 

The following binary variables represent the orientation of cuboid i with respect to 

the 𝑥-axis: 

𝐼𝑖
𝑤 = 1   if cuboid 𝑖’s width is parallel to 𝑥-axis; otherwise 𝐼𝑖

𝑤 = 0. 

The following binary variables represent the relative orientation of cuboid i and 

cuboid j with respect to the 𝑥-axis: 

𝐼𝑖𝑗
𝑓𝑔

= 1   if cuboid 𝑖’s width or length, i.e., (𝑓 ∈ {𝑤, 𝑙}), is parallel to the 𝑥-

axis and cuboid 𝑗’s width or length, i.e., 𝑔 ∈ {𝑤, 𝑙}, is parallel to the 𝑥-axis, otherwise 

𝐼𝑖𝑗
𝑓𝑔

= 0. The interpretation of these variables is demonstrated in Figure 2. 
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Figure 2: Binary variables representing orientaion of cuboids i and j with respect to the 𝑥-

axis. 1) When the binary variable, 𝐼𝑖𝑗
𝑤𝑤, is equal to 1, the widths of both cuboids 𝑖 and 𝑗 

are parallel to the 𝑥-axis. 2) When the binary variable, 𝐼𝑖𝑗
𝑤𝑙, is equal to 1, the width of 

cuboid i and the length of cuboid j are parallel to the 𝑥-axis. 3) When the binary 

variable, 𝐼𝑖𝑗
𝑙𝑤, is equal to 1, the length of cuboid i and the width of cuboid j are parallel to 

the 𝑥-axis. 4) When the binary variable, 𝐼𝑖𝑗
𝑙𝑙, is equal to 1, the lengths of cuboids i and j 

are parallel to the 𝑥-axis. 

The following binary variables determine the wall of the container to which the 

hatch cuboid is attached: 

𝐼𝐻
𝑥 = 1  if the hatch cuboid is attached to the 𝑦-𝑧 plane; otherwise 𝐼𝐻

𝑥 = 0. 

𝐼𝐻
𝑦

 = 1  if the hatch cuboid is attached to the 𝑥-𝑧 plane; otherwise 𝐼𝐻
𝑦

 = 0. 

𝐼𝐻
𝑧  = 1  if the hatch cuboid is attached to the 𝑥-𝑦 plane; otherwise 𝐼𝐻

𝑧  = 0. 

(𝑐𝑖
𝑥, 𝑐𝑖

𝑦
, 𝑐𝑖

𝑧): continuous variables representing the coordinates of the center point 

of cuboid 𝑖.  

𝑑𝑖𝑗: continuous variables indicating the distance between cuboids i and j 

measured as ‖(𝑐𝑖
𝑥, 𝑐𝑖

𝑦
, 𝑐𝑖

𝑧) − (𝑐𝑗
𝑥, 𝑐𝑗

𝑦
, 𝑐𝑗

𝑧)‖
1
. 

Using the notation defined above, the proposed mixed-integer program (MILP) of 

the base model of the OCPP can be presented as follows:  
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Minimize     𝛼 ∑ ∑ 𝐴𝑖𝑗𝑑𝑖𝑗
𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1 + (1 − 𝛼 (𝑋 +  𝑌 + 𝑍            (1) 

subject to 

𝑥𝑗  ≥  𝑥𝑖 − 𝑀(1 − 𝑝𝑖𝑗 + (𝑤𝑖 − min{. 01𝑜𝑖𝑗𝑤𝑖 , .01 𝑜𝑗𝑖𝑤𝑗})𝐼𝑖𝑗
𝑤𝑤  

+ (𝑤𝑖 − min{. 01𝑜𝑖𝑗𝑤𝑖, .01𝑜𝑗𝑖𝑙𝑗})𝐼𝑖𝑗
𝑤𝑙 +  (𝑙𝑖 − min{. 01𝑜𝑖𝑗𝑙𝑖, .01𝑜𝑗𝑖𝑤𝑗})𝐼𝑖𝑗

𝑙𝑤 

+ (𝑙𝑖 − min{.01𝑜𝑖𝑗𝑙𝑖, .01𝑜𝑗𝑖𝑙𝑗})𝐼𝑖𝑗
𝑙𝑙                                   ∀ 𝑖, 𝑗       𝑖 ≠ 𝑗         (2) 

𝑦𝑗  ≥  𝑦𝑖 − 𝑀(1 − 𝑞𝑖𝑗) + (𝑙𝑖 − min{. 01𝑜𝑖𝑗𝑙𝑖, .01𝑜𝑗𝑖𝑙𝑗})𝐼𝑖𝑗
𝑤𝑤  

 + (𝑙𝑖 − min{. 01𝑜𝑖𝑗𝑙𝑖, .01𝑜𝑗𝑖𝑤𝑗})𝐼𝑖𝑗
𝑤𝑙 +  (𝑤𝑖 − min{. 01𝑜𝑖𝑗𝑤𝑖, .01 𝑜𝑗𝑖𝑙𝑗})𝐼𝑖𝑗

𝑙𝑤 

 + (𝑤𝑖 − min({.01𝑜𝑖𝑗𝑤𝑖, .01 𝑜𝑗𝑖𝑤𝑗}))𝐼𝑖𝑗
𝑙𝑙                        ∀ 𝑖, 𝑗       𝑖 ≠ 𝑗          (3) 

𝑧𝑗  ≥  𝑧𝑖 + ℎ𝑖 − 𝑀(1 − 𝑟𝑖𝑗                                               ∀ 𝑖, 𝑗       𝑖 ≠ 𝑗          (4) 

𝑝𝑖𝑗 + 𝑝𝑗𝑖 + 𝑞𝑖𝑗 + 𝑞𝑗𝑖 + 𝑟𝑖𝑗 + 𝑟𝑗𝑖  ≥ 1                         ∀ 𝑖, 𝑗       𝑖 < 𝑗          (5) 

𝐼𝑖𝑗
𝑤𝑤 ≤ 𝐼𝑖

𝑤                                                                              ∀ 𝑖, 𝑗       𝑖 ≠ 𝑗          (6) 

𝐼𝑖𝑗
𝑤𝑤 ≤ 𝐼𝑗

𝑤                                                                              ∀ 𝑖, 𝑗       𝑖 ≠ 𝑗          (7) 

𝐼𝑖𝑗
𝑤𝑤 ≥ 𝐼𝑖

𝑤 + 𝐼𝑗
𝑤 − 1                                                          ∀ 𝑖, 𝑗       𝑖 ≠ 𝑗 (8) 

𝐼𝑖𝑗
𝑤𝑙 ≤ 𝐼𝑖

𝑤                                                                              ∀ 𝑖, 𝑗       𝑖 ≠ 𝑗          (9) 

𝐼𝑖𝑗
𝑤𝑙 ≤  1 − 𝐼𝑗

𝑤                                                                     ∀ 𝑖, 𝑗       𝑖 ≠ 𝑗        (10) 

𝐼𝑖𝑗
𝑤𝑙 ≥ 𝐼𝑖

𝑤 + (1 − 𝐼𝑗
𝑤) − 1                                                ∀ 𝑖, 𝑗       𝑖 ≠ 𝑗        (11) 

𝐼𝑖𝑗
𝑙𝑤 ≤  1 −  𝐼𝑖

𝑤                                                                     ∀ 𝑖, 𝑗       𝑖 ≠ 𝑗        (12) 

𝐼𝑖𝑗
𝑙𝑤 ≤ 𝐼𝑗

𝑤                                                                               ∀ 𝑖, 𝑗       𝑖 ≠ 𝑗        (13) 

 𝐼𝑖𝑗
𝑙𝑤 ≥ (1 − 𝐼𝑖

𝑤 + 𝐼𝑗
𝑤 − 1                                                ∀ 𝑖, 𝑗       𝑖 ≠ 𝑗         (14) 

𝐼𝑖𝑗
𝑙𝑙 ≤ 1 − 𝐼𝑖

𝑤                                                                        ∀ 𝑖, 𝑗       𝑖 ≠ 𝑗         (15) 

𝐼𝑖𝑗
𝑙𝑙 ≤  1 − 𝐼𝑗

𝑤                                                                       ∀ 𝑖, 𝑗       𝑖 ≠ 𝑗         (16) 
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𝐼𝑖𝑗
𝑙𝑙 ≥ (1 − 𝐼𝑖

𝑤 + (1 − 𝐼𝑗
𝑤 + 1                                        ∀ 𝑖, 𝑗       𝑖 ≠ 𝑗        (17) 

𝑋 ≥ 𝑥𝑖 + 𝑙𝑖 + (𝑤𝑖 − 𝑙𝑖  𝐼𝑖
𝑤                                            ∀ 𝑖               (18) 

𝑌 ≥ 𝑦𝑖 + 𝑤𝑖 + (𝑙𝑖 − 𝑤𝑖  𝐼𝑖
𝑤                                          ∀ 𝑖               (19) 

𝑍 ≥ 𝑧𝑖 + ℎ𝑖                                                                          ∀ 𝑖               (20) 

𝑥𝑖 ≤ 𝑀(1 − 𝐼𝐻
𝑥            where 𝑖 represents the index of the hatch cuboid             (21) 

𝑦𝑖 ≤ 𝑀(1 − 𝐼𝐻
𝑦
            where 𝑖 represents the index of the hatch cuboid            (22) 

𝑧𝑖 ≤ 𝑀(1 − 𝐼𝐻
𝑧            where 𝑖 represents the index of the hatch cuboid             (23) 

𝐼𝐻
𝑥 + 𝐼𝐻

𝑦
+ 𝐼𝐻

𝑧 = 1              (24) 

𝑐𝑖
𝑥 = 𝑥𝑖 + 

𝑤𝑖

2
∗ 𝐼𝑖

𝑤 + 
𝑙𝑖

2
∗ (1 − 𝐼𝑖

𝑤                                  ∀ 𝑖         (25) 

𝑐𝑖
𝑦
= 𝑦𝑖 + 

𝑙𝑖

2
∗ 𝐼𝑖

𝑤 + 
𝑤𝑖

2
∗ (1 − 𝐼𝑖

𝑤                                 ∀ 𝑖         (26) 

𝑐𝑖
𝑧 = 𝑧𝑖 + 

ℎ𝑖

2
                                                                       ∀ 𝑖         (27) 

𝑑𝑖𝑗 ≥ 𝑐𝑖
𝑥 − 𝑐𝑗

𝑥 + 𝑐𝑖
𝑦
− 𝑐𝑗

𝑦
+ 𝑐𝑖

𝑧 − 𝑐𝑗
𝑧                       ∀ 𝑖, 𝑗       𝑖 < 𝑗        (28) 

𝑑𝑖𝑗 ≥ −(𝑐𝑖
𝑥 − 𝑐𝑗

𝑥 + 𝑐𝑖
𝑦
− 𝑐𝑗

𝑦
+ 𝑐𝑖

𝑧 − 𝑐𝑗
𝑧                ∀ 𝑖, 𝑗       𝑖 < 𝑗        (29) 

𝑑𝑖𝑗 ≥ 𝑐𝑖
𝑥 − 𝑐𝑗

𝑥 − (𝑐𝑖
𝑦
− 𝑐𝑗

𝑦
 + 𝑐𝑖

𝑧 − 𝑐𝑗
𝑧                    ∀ 𝑖, 𝑗       𝑖 < 𝑗        (30) 

𝑑𝑖𝑗 ≥ 𝑐𝑖
𝑥 − 𝑐𝑗

𝑥 + 𝑐𝑖
𝑦
− 𝑐𝑗

𝑦
− (𝑐𝑖

𝑧 − 𝑐𝑗
𝑧                     ∀ 𝑖, 𝑗       𝑖 < 𝑗        (31) 

𝑑𝑖𝑗 ≥ −(𝑐𝑖
𝑥 − 𝑐𝑗

𝑥) − (𝑐𝑖
𝑦
− 𝑐𝑗

𝑦
 + 𝑐𝑖

𝑧 − 𝑐𝑗
𝑧             ∀ 𝑖, 𝑗       𝑖 < 𝑗        (32) 

𝑑𝑖𝑗 ≥ −(𝑐𝑖
𝑥 − 𝑐𝑗

𝑥 + 𝑐𝑖
𝑦
− 𝑐𝑗

𝑦
− (𝑐𝑖

𝑧 − 𝑐𝑗
𝑧               ∀ 𝑖, 𝑗       𝑖 < 𝑗        (33) 

𝑑𝑖𝑗 ≥ 𝑐𝑖
𝑥 − 𝑐𝑗

𝑥 − (𝑐𝑖
𝑦
− 𝑐𝑗

𝑦
 − (𝑐𝑖

𝑧 − 𝑐𝑗
𝑧                  ∀ 𝑖, 𝑗       𝑖 < 𝑗        (34) 

𝑑𝑖𝑗 ≥ −(𝑐𝑖
𝑥 − 𝑐𝑗

𝑥) − (𝑐𝑖
𝑦
− 𝑐𝑗

𝑦
 − (𝑐𝑖

𝑧 − 𝑐𝑗
𝑧           ∀ 𝑖, 𝑗       𝑖 < 𝑗        (35) 
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𝑥𝑖 , 𝑦𝑖, 𝑧𝑖 ≥ 0                                                                            ∀ 𝑖.         (36) 

As mentioned earlier, the objective function of the MILP consists of two performance 

measures: the size of the container and the adjacency requirements. The 𝑙1 norm of (x, y, 

z) is used to measure the size of the container, while the weighted sum of distances 

between each pair of cuboids is used to measure the adjacency requirements. The latter is 

designed to penalize the objective function for having large distances between cuboids 

that are required to have proximity. As mentioned earlier, the penalty 𝐴𝑖𝑗 can be 

prescribed based on the proximity requirements. 

Constraints (2) and (3) allow the cuboids to overlap each other up to the allowable 

overlap percentage between cuboid i and j on the 𝑥- and 𝑦-axis. These conditions indicate 

that if cuboid 𝑗 is to the right of, behind of, or above cuboid 𝑖, then the reference point of 

cuboid 𝑗 must be greater than or equal to the reference point of cuboid 𝑖 plus the width, 

length, or height of cuboid 𝑗, respectively. These constraints also ensure that the 

orientation of two cuboids are correctly reflected on the 𝑥-𝑦 plane. Constraint (4) ensures 

no cuboids overlap vertically. Constraint (5) ensures that cuboid 𝑖 must be placed to the 

left of, to the right of, in front of, behind, below, or above cuboid 𝑗 to guarantee that these 

two cuboids are not overlaid more than allowed percentages. 

Constraints (6) – (17) represent the relationship between 𝐼𝑖𝑗
𝑓𝑔

 and 𝐼𝑖
𝑤 for 𝑓, 𝑔 ∈

{𝑤, 𝑙}. They can be interpreted as linearization constraints for the following nonlinear 

relationship: 

𝐼𝑖𝑗
𝑤𝑤 = 𝐼𝑖

𝑤𝐼𝑗
𝑤 

𝐼𝑖𝑗
𝑤𝑙 = 𝐼𝑖

𝑤(1 − 𝐼𝑗
𝑤) 
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𝐼𝑖𝑗
𝑙𝑤 = (1 − 𝐼𝑖

𝑤 𝐼𝑗
𝑤 

𝐼𝑖𝑗
𝑙𝑙 = (1 − 𝐼𝑖

𝑤 (1 − 𝐼𝑗
𝑤   

Constraints (18) – (20) ensure that all cuboids are packed inside the container by making 

the width, length, and height of the container larger than or equal to the reference point of 

each cuboid plus its width, length, and height, respectively. Constraints (21) – (24) 

guarantee that the hatch cuboid must be attached to a wall within the container. 

The center points for all cuboids are computed and used to measure the distance 

between cuboids i and j. Constraints (28) – (35) enforce lower bounds on the distance 

between cuboid 𝑖 and cuboid 𝑗. Together with minimizing the objective function, 𝑑𝑖𝑗 

results in the 𝑙1-distance between center points of two cuboids. Constraint (36) implies 

that the coordinates of the cuboids are non-negative. In case that overlap amongst cuboids 

along the 𝑧-axis is allowed, constraint (4) can replaced with (37). 

𝑧𝑗  ≥  𝑧𝑖 + ℎ𝑖 − 𝑀(1 − 𝑟𝑖𝑗 − min(. 01𝑜𝑖𝑗ℎ𝑖 , .01𝑜𝑗𝑖ℎ𝑗)    ∀ 𝑖, 𝑗       𝑖 ≠ 𝑗       (37) 

If it is desired to further limit any dimension of the container due to design 

requirements, additional constraints can be added. In particular, we consider two types of 

design requirements, horizontal and vertical. Horizontal layout design requires that the 

width and height of the container are limited by a prescribed value 𝛿. On the other hand, 

in the vertical design, the width and the length of the container are limited by a threshold 

value 𝛿. For the horizontal layout design case, constraints (38) and (40) are necessary. 

For the vertical layout design case, constraint (38) and (39) are necessary. 
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𝑋 ≤ 𝛿                     (38) 

𝑌 ≤ 𝛿                 (39) 

𝑍 ≤ 𝛿                 (40) 

 The size of the proposed MILP model can be specified by the number of binary 

and continuous variables as well as the number of constraints. First, the number of 

inequality constraints is given by 

𝑓𝑖𝑛𝑒𝑞(𝑁 = 3 + 3 + 3𝑁 +  3𝑁 + 12𝑁(𝑁 − 1 + 4𝑁(𝑁 − 1 + 3𝑁(𝑁 − 1 +
𝑁(𝑁 − 1 

2
 

which is equivalent to: 

𝑓𝑖𝑛𝑒𝑞(𝑁 =
39𝑁2 − 27𝑁 + 12

2
. 

From (24) – (27), the number of equality constraints included in the base model is 

𝑓𝑒𝑞(𝑁 = 3𝑁 + 1. The number of binary variables included in the base model can be 

calculated by 

𝑓𝑏𝑖𝑛𝑎𝑟𝑦(𝑁 = 3 + 𝑁 + 4𝑁(𝑁 − 1 + 3𝑁(𝑁 − 1  

which is equivalent to: 

𝑓𝑏𝑖𝑛𝑎𝑟𝑦(𝑁 = 7𝑁2 − 6𝑁 + 3. 

The number of continuous variables included in the base model is measured by 

𝑓𝑐𝑜𝑛𝑡(𝑁 = 3 + 3𝑁 + 3𝑁 +
𝑁(𝑁 − 1 

2
 

which is equivalent to: 

𝑓𝑐𝑜𝑛𝑡(𝑁 =
𝑁2 + 11𝑁 + 6

2
. 
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Taking the sum of 𝑓𝑖𝑛𝑒𝑞 and 𝑓𝑒𝑞 will yield the total number of constraints and 

taking the sum of 𝑓𝑏𝑖𝑛𝑎𝑟𝑦 and 𝑓𝑐𝑜𝑛𝑡 will yield the total number of variables in the base 

model. Now that the formulation to the MILP has been presented, Chapter 4 will consist 

of a numerical study that was performed in order to demonstrate the model’s ability to 

produce layout designs based on various design requirements. 
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CHAPTER 4: COMPUTATIONAL STUDY 

 

 

 In this chapter, a computational study will be presented where the computational 

efficacy of the proposed model was analyzed on a set of test problems consisting of 

small- and large-scale problems. The small-scale problems were used to demonstrate how 

the MILP model effectively generates layout designs under different design assumptions, 

including different values of the weighting factor, 𝛼. On the other hand, the large-scale 

problem considers a realistic scenario where all necessary gradient cuboids are included. 

The small-scale problem will be presented first and then the large-scale problem will 

follow afterwards. 

4.1 Small-Scale Computational Study 

In order to demonstrate how the MILP model generates a layout design, the 

proposed design model was implemented on a test problem that consists of seven 

gradient cuboids including one exercise, one hygiene, one waste collection and 

management, three sleep, and one hatch cuboids. The dimensions of these five types of 

task volumes were provided by the gradient cuboid algorithm of SOLV [1] and are 

displayed in Table 1. Maximum pairwise overlap percentages between task volumes are 

presented in Table 2. In order to incorporate adjacency requirements for the MILP, 

several categories were used to describe the severity of adjacency between a pair of 

gradient cuboids. The categories for adjacency requirements and their respective penalty 

values used in the numerical example are displayed in Table 3. The assignment of 

adjacency requirements for each pair of task volumes is displayed in Table 4. 
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Table 1: Dimension of gradient cuboids – Five task volumes 

Task Volume Width Length Height 

Exercise 2.92 1.43 2.60 

Hygiene 1.42 1.99 2.46 

Waste Collection 

and Management 
3.37 1.35 2.49 

Sleep 1.16 1.23 2.70 

Hatch 2.69 1.54 1.95 

 

Table 2: Maximum pairwise overlap percentage (%) 

 

Exercise Hygiene 

Waste 

Collection and 

Management 

Sleep Hatch 

Exercise - 6.37 6.37 6.37 6.37 

Hygiene 6.37 - 11.78 11.78 11.78 

Waste 

Collection and 

Management 

6.37 11.78 - 13.01 13.01 

Slee 6.37 11.78 13.01 - 6.6 

Hatch 6.37 11.78 13.01 6.6 - 

 

Table 3: Adjacency requirement categories 

Category 

Index Description 

Penalty 

Value 

(𝐴𝑖𝑗  

3 Proximity Desired 50 

2 Some Proximity Desired 10 

1 Neutral  1 

0 Separation Desired 0 
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Table 4: Adjacency requirements  

 

Exercise Hygiene 

Waste 

Collection and 

Management 

Sleep Hatch 

Exercise 1 10 1 0 1 

Hygiene 10 1 50 10 1 

Waste 

Collection and 

Management 

1 50 1 1 1 

Sleep 0 10 1 1 1 

Hatch 1 1 1 1 1 

 

To demonstrate how different design variations produce different layouts, this 

study ran the base design model, as well as both design variations of the single-

dimensional packing problem (horizontal and vertical layout designs) with and without 

vertical overlap. For the single-dimensional packing optimization, the value of 𝛿 was 

selected as 4 and 5, resulting in two layouts for both layout designs. Weighting factor 𝛼 

in the objective function was set to 0.5 to obtain solutions from the models to be 

evaluated. In total, 10 layout designs were considered, as displayed in Table 5. The MILP 

models were created using Matlab [32] and solved by calling a commercial MILP solver, 

Gurobi Optimizer 7.5 [33]. The resulting 10 layouts are visually displayed in Figure 3. 
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Table 5: Layout design configurations 

Design Name 
Vertical 

overlap 

Horizontal 

layout 

Vertical 

layout 
δ  

overz_cuboid x       

overz_horizontal_4 x x   4 

overz_horizontal_5 x x   5 

overz_vertical_4 x   x 4 

overz_vertical_5 x   x 5 

solidz_cuboid         

solidz_horizontal_4   x   4 

solidz_horizontal_5   x   5 

solidz_vertical_4     x 4 

solidz_vertical_5     x 5 

 

 

(a) overz_cuboid and solidz_cuboid 

(𝑋, 𝑌, 𝑍): (4.2424, 5.3556, 2.7) 

Container volume: 61.3456 

 

(b) overz_horizontal_4 and 

solidz_horizontal_4 

(𝑋, 𝑌, 𝑍): (3.7634, 6.4886, 2.7) 

Container volume: 65.9318 

 

Figure 3: 10 layout designs for small-scale problem 
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(c) overz_horizontal_5 and 

solidz_horizontal_5 

(𝑋, 𝑌, 𝑍): (4.2424, 5.3556, 2.7) 

Container volume: 61.3456 

 

(d) overz_vertical_4 

(𝑋, 𝑌, 𝑍): (3.7634, 3.6862, 5.1345) 

Container volume: 71.2291 

 

(e) overz_vertical_5 

(𝑋, 𝑌, 𝑍): (3.6862, 3.7634, 5.1345) 

Container volume: 71.2291 

 

(f) solidz_vertical_4 

(𝑋, 𝑌, 𝑍): (3.7634, 3.6862, 5.3) 

Container volume: 73.5250 

 

Figure 3, continued 
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(g) solidz_vertical_5 

(𝑋, 𝑌, 𝑍): (3.7634, 3.6862, 5.3) 

Container volume: 73.5250 

 

Figure 3, continued 

 

To check computational times consumed to generate layout designs, a set of 19 

scenarios were additionally created in which the dimensions of the gradient cuboids are 

randomly generated except for the hatch gradient cuboid. To be more specific, the 

dimensions of each cuboid were generated using uniform random variables, allowing 

20% of variation from the original dimensions from Table 1. For example, a gradient 

cuboid representing ‘Exercise’ has the width of 2.92. In a new scenario, the width of the 

exercise task volume is generated from [2.92 −  0.2(2.92 , 2.92 + 0.2(2.92 ]. In total, 

20 scenarios (one original and 19 randomly generated) were tested for each layout design. 

After all scenarios for a layout design variant are completed, solver times from each 

scenario were measured and averages of 20 scenarios are displayed in Table 6. Overall, 

the MILP was able to generate a layout design for seven cuboids within 5.01 to 1,055.76 

seconds. 
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Table 6: Average solution time for scenarios 

Layout Design 

Average 

Solution 

Time 

(seconds) 

Standard 

Deviation 
Max. Min. 

overz_cuboid 245.25 225.71 791.64 52.84 

overz_horizontal_4 16.27 12.07 56.26 5.30 

overz_horizontal_5 98.59 103.59 405.38 13.25 

overz_vertical_4 33.64 20.61 91.68 12.94 

overz_vertical_5 74.10 81.20 315.99 25.39 

solidz_cuboid 304.74 282.40 1055.76 45.72 

solidz_horizontal_4 14.80 7.23 39.21 5.01 

solidz_horizontal_5 76.35 98.86 431.28 9.24 

solidz_vertical_4 41.78 76.97 365.81 11.53 

solidz_vertical_5 68.94 61.83 265.21 23.11 

 

Recall that 𝛼 was 0.5 for the small-scale problem that was presented earlier this 

chapter. To ascertain the effect of different values of 𝛼, the base design was tested with 

𝛼 ∈ [.01, .99] in increments of .01. For each value of 𝛼, two performance measures in the 

objective function are plotted to display 𝛼 using a Pareto Frontier. The generated layouts 

with three values of 𝛼, 0.01, 0.05, 0.99, are displayed in Figure 4, and the Pareto Frontier 

is displayed in Figure 5. Observe that the cuboids are more densely packed in (a) of 

Figure 4, compared to the layout in (c) of Figure 4, because the size of the container is 

given a relatively higher priority in minimization. 
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(a) solidz_cuboid; 𝛼 = 0.01 

 
(b) solidz_cuboid; 𝛼 = 0.5 

 
(c) solidz_cuboid; 𝛼 = 0.99 

 

Figure 4: 10 layout designs for varying levels of 𝛼 



 

33 

 

 

Figure 5: Pareto frontier 

 

4.2 Large-Scale Computational Study 

The large-scale problem consists of twenty-four gradients cuboids including one 

exercise, one hygiene, one waste collection and management, four sleep, one crew health 

and medical, four private personal activity, one food preparation, one group meet and eat, 

one recreation, one suit stowage and maintenance, four radiation shelter, one D&C 

console, two onboard research, and one hatch cuboids, which are associated with fourteen 

task volumes. The dimensions of these fourteen types of task volumes were provided by 

the gradient cuboid algorithm of SOLV [1] and are displayed in Table 7. Adjacency 

requirement categories in Table 3 were considered for the large-scale problem as well. 
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Table 7: Dimension of gradient cuboids – Twenty-four task volumes 

Task Volume Width Length Height 

Exercise 2.92 1.43 2.60 

Hygiene 1.42 1.99 2.46 

Waste Collection 

and Management 
3.37 1.35 2.49 

Sleep 1.16 1.23 2.70 

Crew Health and 

Medical 
3.21 2.03 2.17 

Private Personal 

Activity 
1.06 1.23 2.43 

Food Preparation 2.07 1.95 2.56 

Group Meet and Eat 2.52 2.52 2.52 

Recreation 2.70 2.13 2.16 

Suit Stowage and 

Maintenance 
2.37 3.11 4 

Radiation Shelter 1.07 1.23 2.04 

D&C Console 1.87 1.92 2.03 

Onboard Research 2.43 1.77 2.43 

Hatch 2.69 1.54 1.95 

 

As done for the small-scale problem, we ran the base design model, as well as 

both design variations of the single-dimensional packing problem (horizontal and vertical 

layout designs) with and without vertical overlap. For the single-dimensional packing 

optimization, the value of 𝛿 was selected as 4 and 5, resulting in two layouts for both 

layout designs. Weighting factor 𝛼 in the objective function was set to 0.5 to obtain 

solutions from the models to be evaluated. In total, 10 layout designs were considered, as 

displayed in Table 5. The MILP models were created using Matlab [32] and solved by 

Gurobi Optimizer 7.5 [33]. Considering the complexity of the problem that resulted in 

more than 1,000 seconds of solution time in a certain small-scale problem, the solution 

time limit was set to 4-hours. Solutions of all 10 problems were terminated by this 4-hour 

time limit and the optimality gaps were recorded. The resulting 10 layouts are visually 

displayed in Figure 6. The optimality gaps are displayed in Table 8. 
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(a) overz_cuboid 

(𝑋, 𝑌, 𝑍): (5.4923, 4.8665, 8.3149) 

Container volume: 222.243 

 

(b) overz_horizontal_4 

(𝑋, 𝑌, 𝑍): (3.666, 17.5517, 4) 

Container volume: 257.378 

 

(c) overz_horizontal_5 

(𝑋, 𝑌, 𝑍): (4.8706, 8.7526, 4.7906) 

Container volume: 204.225 

 

(d) overz_vertical_4 

(𝑋, 𝑌, 𝑍): (3.7988, 3.915, 15.3708) 

Container volume: 228.599 

 

Figure 6: 10 layout designs for 14 task volumes 
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(e) overz_vertical_5 

(𝑋, 𝑌, 𝑍): (5, 4.9682, 8.9569) 

Container volume: 222.498 

 

(f) solidz_cuboid 

(𝑋, 𝑌, 𝑍): (7.8043, 5.5016, 5.1881) 

Container volume: 222.757 

 

(g) solidz_horizontal_4 

(𝑋, 𝑌, 𝑍): (3.9452, 15.1367, 4) 

Container volume: 238.870 

 

(h) solidz_horizontal_5 

(𝑋, 𝑌, 𝑍): (4.9028, 9.909, 5) 

Container volume: 242.909 

 

Figure 6, continued 



 

37 

 

 

(i) solidz_vertical_4 

(𝑋, 𝑌, 𝑍): (3.666, 3.9878, 14.2134) 

Container volume: 207.790 

 

(j) solidz_vertical_5 

(𝑋, 𝑌, 𝑍): (4.8013, 4.4457, 10.2164) 

Container volume: 218.070 

 

Figure 6, continued 

 

Table 8: Optimality gap for large-scale problems 

Layout Design 

Optimality 

Gap 

overz_cuboid 65.0% 

overz_horizontal_4 61.5% 

overz_horizontal_5 67.0% 

overz_vertical_4 61.2% 

overz_vertical_5 61.2% 

solidz_cuboid 62.6% 

solidz_horizontal_4 60.5% 

solidz_horizontal_5 66.0% 

solidz_vertical_4 59.4% 

solidz_vertical_5 63.4% 

  

Looking at Table 8, it can be noticed that the optimality gaps are rather high after 

4 hours for all layout designs. To observe the rate at which the optimality gap decreased 
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throughout the 4-hour time period for each layout design, lower and upper bounds on the 

optimal objective values are plotted in Figure 7. 

 

(a) overz_cuboid 

 

(b) overz_horizontal_4 

 

Figure 7: Lower and upper bounds on the optimal objective values for 10 layout designs 
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(c) overz_horizontal_5 

 

(d) overz_vertical_4 

 
 

Figure 7, continued 
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(e) overz_vertical_5 

 

(f) solidz_cuboid 

 
 

Figure 7, continued 
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(g) solidz_horizontal_4 

 

(h) solidz_horizontal_5 

 
 

Figure 7, continued 
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(i) solidz_vertical_4 

 

(j) solidz_vertical_5 

 
 

Figure 7, continued 

 

 Observing that optimality gaps for large-scale problems remain sizeable, we also 

plotted the optimality gaps for small-scale problems to see the pattern of lower and upper 
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bounds on the optimal objective values. Although there is no theoretical basis, the 

patterns of optimality gaps for small-scale test problems may help us conjecture how the 

optimality gaps of large-scale problems will behave in sustained runs. 

 

(a) overz_cuboid: small-scale 

 

(b) overz_horizontal_4: small-scale 

 
 

Figure 8: Lower and upper bounds on the optimal objective values for small-scale 

problems 
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(c) overz_horizontal_5: small-scale 

 

(d) overz_vertical_4: small-scale 

 
 

Figure 8, continued 
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(e) overz_vertical_5: small-scale 

 

(f) solidz_cuboid: small-scale 

 
 

Figure 8, continued 
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(g) solidz_horizontal_4: small-scale 

 

(h) solidz_horizontal_5: small-scale 

 
 

Figure 8, continued 
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(h) solidz_vertical_4: small-scale 

 

(i) solidz_vertical_5: small-scale 

 
 

Figure 8, continued 

 

 From the plots, we can observe that the upper bound would remain relatively the 

same throughout the optimization once it is stabilized while the lower bound gets closer 

to the upper bound. Before closing the chapter, problem sizes between small- and large-

scale problems for the base model are compared in Table 9. 
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Table 9: Comparison of problem sizes of small- and large-scale problems 

 

Small-

Scale 

Large-

Scale 

# of cuboids 7 24 

# of inequality constraints 867 10914 

# of equality constraints 22 73 

# of constraints 889 10987 

# of binary variables 304 3891 

# of continuous variables 66 423 

# of variables 370 4314 

 

Resulting long computation times for solving OCPP motivates us to further 

investigate potential model enhancements and reformulations to the MILP in order to 

reduce the required computational effort. In the next chapter, additional constraints to the 

base model will be introduced in an effort to improve model efficiency. Accordingly, in 

Chapter 6, an additional comparative computational study will be presented for the same 

small- and large-scale problems defined in this chapter in order to demonstrate the 

effectiveness of the enhancement effort. 
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CHAPTER 5: MODEL ENHANCEMENTS 

 

 

As mentioned earlier, the two-dimensional packing problem is NP-complete. 

Noting that OCPP is a generalization of the three-dimensional packing problem, it is 

unlikely to find an optimal solution even for a moderately-sized problem. In this chapter, 

it is intended to improve the computational effort of the original model by introducing 

additional constraints, including equality and valid inequality constraints, as well as by 

reformulating certain constraints in the original model. Once these constraints are 

formally stated in this chapter, their computational performance will be presented in the 

next chapter. In specific, seven types of additional constraints are introduced. Six of these 

constraints can be applied to all layout designs, while the remaining constraint is only 

applicable for unbounded and vertical layout designs. A discussion as to why this is the 

case will be presented once this constraint is introduced. 

The first constraint that will be considered is associated with the relative 

orientation between a pair of cuboids. As mentioned before, a cuboid can either have its 

width face or length face parallel to the 𝑥-axis. Recall that binary variables 𝐼𝑖𝑗
𝑓𝑔

 for f, g ∈ 

{𝑤, 𝑙} represent the relative orientation between cuboids i and j. Since only one of four 

possible relative orientations is to choose, the following constraint can be added for each 

pair of i and j: 

𝐼𝑖𝑗
𝑤𝑤 + 𝐼𝑖𝑗

𝑤𝑙 + 𝐼𝑖𝑗
𝑙𝑤 + 𝐼𝑖𝑗

𝑙𝑙 = 1                                   ∀ 𝑖, 𝑗          (41) 

This constraint is intended to restrict the solution space, hoping that it reduces the 

computational time by tightening the LP relaxation of the problem. This constraint is 

implied to hold true in the original model due to (6) – (17), but is not explicitly stated. 

Without this explicit constraint enforced, it is possible that unnecessary calculations can 
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be performed to implicitly enforce one of these orientation variables to be equal to 1. 

Once the binary orientation variable to be equal to 1 is determined in a branch of the 

solution process, it is no longer necessary for any other orientation variables to be 

considered in further calculations. A similar case exists for linearization constraints.  

The second type of constraints that are introduced are associated with the overlay 

between a pair of cuboids. This set of valid inequality constraints are shown below: 

𝑝𝑖𝑗 + 𝑝𝑗𝑖 ≤ 1                                  ∀ 𝑖, 𝑗        𝑖 < 𝑗          (42) 

𝑞𝑖𝑗 + 𝑞𝑗𝑖 ≤ 1                                  ∀ 𝑖, 𝑗        𝑖 < 𝑗          (43) 

𝑟𝑖𝑗 + 𝑟𝑗𝑖 ≤ 1                                    ∀ 𝑖, 𝑗        𝑖 < 𝑗          (44) 

Enforcing the first constraint in this set limits one cuboid to be to the left of another 

cuboid for any given pair. Recall that 𝑝𝑖𝑗 is equal to 1 if cuboid i is to the left of cuboid j. 

If 𝑝𝑖𝑗 is equal to 1, then this implies that cuboid j cannot be to the left of cuboid i, forcing  

𝑝𝑗𝑖 to equal 0. Enforcing the second constraint limits one cuboid to be in front of another 

cuboid for any given pair.  Recall that 𝑞𝑖𝑗 is equal to 1 if cuboid i is in front of cuboid j. If 

𝑞𝑖𝑗 is equal to 1, then this implies that cuboid j cannot be in front of cuboid i, forcing  𝑞𝑗𝑖 

to equal 0. Enforcing the third constraint limits one cuboid to be above another cuboid for 

any given pair. Recall that 𝑟𝑖𝑗 is equal to 1 if cuboid i is above cuboid j. If 𝑟𝑖𝑗 is equal to 

1, then this implies that cuboid j cannot be above cuboid i, forcing  𝑟𝑗𝑖 to equal 0. 

Intuitively, it makes sense to enforce these constraints since it is not possible for both 

indicator variables included in each constraint to be equal to 1. Similar to the previous 

constraint type, this set of constraints are implied to hold true in the original model since 

these constraints influence the calculation of reference points but were not formally 

stated. 
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The third constraint type is associated with orientation variables for a single 

cuboid. These constraints will be enforced to influence the orientation of cuboids that are 

identical to each other. The third type of constraint is shown below: 

𝐼𝑖
𝑤 ≤ 𝐼𝑖+1

𝑤 ≤ ⋯ ≤ 𝐼𝑖+𝑘−1
𝑤 ,              (45) 

where k is the number of cuboids for a task with multiple cuboids. This constraint is only 

applicable for the case where a task volume has multiple cuboids. If the indicator variable 

for cuboid i is equal to 1 and it belongs to a task volume where there are multiple 

cuboids, then this constraint will force the proceeding cuboids after index i included in 

this set of cuboids to equal 1 as well. For example, suppose there is a task volume with 3 

cuboids (𝑖 ∈ {1,2,3}). If 𝐼1
𝑤 is equal to 1, then both 𝐼2

𝑤 and 𝐼3
𝑤 are equal to 1. 

Alternatively, if 𝐼1
𝑤 is equal to 0, then both 𝐼2

𝑤 and 𝐼3
𝑤 don’t necessarily have to equal 1. 

Without this constraint in place, it is possible for many combinations of orientation 

variables to be activated for a particular task volume. Enforcing this constraint helps 

reduce this number of combinations. 

Alternative constraints to some of the original constraints will now be introduced. 

The first set of constraints are an alternative formulation in representing the distance 

between a pair of cuboids and are shown below: 

𝑐𝑖
𝑥 − 𝑐𝑗

𝑥 = 𝑑𝑖𝑗
𝑥+

− 𝑑𝑖𝑗
𝑥−

                                ∀ 𝑖, 𝑗    𝑖 < 𝑗         (46) 

𝑐𝑖
𝑦
− 𝑐𝑗

𝑦
= 𝑑𝑖𝑗

𝑦+

− 𝑑𝑖𝑗
𝑦−

                               ∀ 𝑖, 𝑗    𝑖 < 𝑗          (47) 

𝑐𝑖
𝑧 − 𝑐𝑗

𝑧 = 𝑑𝑖𝑗
𝑧+

− 𝑑𝑖𝑗
𝑧−

                                ∀ 𝑖, 𝑗    𝑖 < 𝑗          (48) 

𝑑𝑖𝑗
𝑥+

≥ 0                                ∀ 𝑖, 𝑗    𝑖 < 𝑗           (49) 

𝑑𝑖𝑗
𝑥−

≥ 0                                ∀ 𝑖, 𝑗    𝑖 < 𝑗           (50) 
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𝑑𝑖𝑗
𝑦+

≥ 0                                ∀ 𝑖, 𝑗    𝑖 < 𝑗           (51) 

𝑑𝑖𝑗
𝑦−

≥ 0                                ∀ 𝑖, 𝑗    𝑖 < 𝑗           (52) 

𝑑𝑖𝑗
𝑧+

≥ 0                                ∀ 𝑖, 𝑗    𝑖 < 𝑗           (53) 

𝑑𝑖𝑗
𝑧−

≥ 0                                ∀ 𝑖, 𝑗    𝑖 < 𝑗           (54) 

Accordingly, 𝑑𝑖𝑗 in the objective function is replaced by 𝑑𝑖𝑗
𝑥+

+ 𝑑𝑖𝑗
𝑥−

+ 𝑑𝑖𝑗
𝑦+

+ 𝑑𝑖𝑗
𝑦−

+

𝑑𝑖𝑗
𝑧+

+ 𝑑𝑖𝑗
𝑧−

. Originally, pairwise distance measurements required 4𝑁(𝑁 − 1  constraints 

to be included into the original model. With this alternative approach, 3𝑁(𝑁 − 1  

inequality and 3𝑁(𝑁 − 1 /2 equality constraints are necessary. In the alternative 

formulation, it can be observed that additional pairwise distance decision variables are 

necessary for these constraints to be valid. In particular, 3𝑁(𝑁 − 1  decision variables 

are required in this alternative reformulation, while 𝑁(𝑁 − 1 /2 decision variables are 

required in the original formulation. These constraints will calculate the 𝑙1 norm distance 

between respective center points of cuboids i and j. The purpose of including positive and 

negative distance variables is to represent the magnitude of the difference of center points 

in each dimension. In conjunction with the revised objective function, one of these two 

variables will be forced to be zero. For example, suppose that 𝑐𝑖
𝑥 = 1 and 𝑐𝑗

𝑥 = 5. The 

difference between these points in the 𝑥-dimension is -4 = (𝑐𝑖
𝑥 − 𝑐𝑗

𝑥). Since the 

nonnegative variables representing the magnitudes in the positive and negative sides, 

respectively, are included in the objective function, minimization will force one of them 

to be zero. As a result, 𝑑𝑖𝑗
𝑥+

= 0 and 𝑑𝑖𝑗
𝑥−

= 4.  

The second set of constraints is another alternative formulation for measuring 

distances between a pair of cuboids and is presented below: 
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𝑑𝑖𝑗
𝑥 ≥ 𝑐𝑖

𝑥  − 𝑐𝑗
𝑥                                ∀ 𝑖, 𝑗    𝑖 < 𝑗           (55) 

𝑑𝑖𝑗
𝑥 ≥ 𝑐𝑗

𝑥  − 𝑐𝑖
𝑥                                ∀ 𝑖, 𝑗    𝑖 < 𝑗           (56) 

𝑑𝑖𝑗
𝑦

≥ 𝑐𝑖
𝑦
 − 𝑐𝑗

𝑦
                                ∀ 𝑖, 𝑗    𝑖 < 𝑗           (57) 

𝑑𝑖𝑗
𝑦

≥ 𝑐𝑗
𝑦
 − 𝑐𝑖

𝑦
                                ∀ 𝑖, 𝑗    𝑖 < 𝑗           (58) 

𝑑𝑖𝑗
𝑧 ≥ 𝑐𝑖

𝑧  − 𝑐𝑗
𝑧                                ∀ 𝑖, 𝑗    𝑖 < 𝑗           (59) 

𝑑𝑖𝑗
𝑧 ≥ 𝑐𝑗

𝑧  − 𝑐𝑖
𝑧                                ∀ 𝑖, 𝑗    𝑖 < 𝑗           (60) 

𝑑𝑖𝑗
𝑥 ≥ 0                                ∀ 𝑖, 𝑗    𝑖 < 𝑗            (61) 

𝑑𝑖𝑗
𝑦

≥ 0                                ∀ 𝑖, 𝑗    𝑖 < 𝑗            (62) 

𝑑𝑖𝑗
𝑧 ≥ 0                                ∀ 𝑖, 𝑗    𝑖 < 𝑗            (63) 

Accordingly, 𝑑𝑖𝑗 in the objective function is replaced by 𝑑𝑖𝑗
𝑥 + 𝑑𝑖𝑗

𝑦
+ 𝑑𝑖𝑗

𝑧 . As mentioned 

before, the original model required 4𝑁(𝑁 − 1  inequality constraints and 𝑁(𝑁 − 1 /2  

decision variables for measuring pairwise distances between cuboids, while this 

alternative representation requires 3𝑁(𝑁 − 1  inequality constraints and 3𝑁(𝑁 − 1 /2 

decision variables. For all cuboid pairs, it is guaranteed that one of the differences 

between the center points for a pair of cuboids is non-negative. It is also possible for the 

difference between the same pair of cuboids to be negative. However, since non-

negativity constraints are enforced for the distance decision variables, the positive 

difference will only be considered in any solution. Since the problem of interest is a 

minimization problem, the minimum distance that is calculated between a pair of cuboids 

for any dimension will become the value of the distance decision variable, respective to 

each dimension, while enforcing that this distance must be non-negative. 
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The third set of constraints are an alternative formulation to linearization 

constraints that are necessary for the non-linear relationship between orientation 

variables. In the original model, linearization constraints were included for all pairs of 

cuboids with no predicate, which results in redundant constraints to be expressed (i.e., 

any given pair of cuboids will be considered twice). These constraints allow for the 

linearization constraints to only be considered when index i is less than j, and then 

introducing additional equality constraints to ensure that all indicator variables are 

considered in the linearization technique. This set of constraints are shown below: 

𝐼𝑖𝑗
𝑤𝑤 ≤ 𝐼𝑖

𝑤                                                                              ∀ 𝑖, 𝑗       𝑖 < 𝑗        (64) 

𝐼𝑖𝑗
𝑤𝑤 ≤ 𝐼𝑗

𝑤                                                                              ∀ 𝑖, 𝑗       𝑖 < 𝑗        (65) 

𝐼𝑖𝑗
𝑤𝑤 ≥ 𝐼𝑖

𝑤 + 𝐼𝑗
𝑤 − 1                                                           ∀ 𝑖, 𝑗       𝑖 < 𝑗  (66) 

𝐼𝑖𝑗
𝑤𝑙 ≤ 𝐼𝑖

𝑤                                                                                ∀ 𝑖, 𝑗       𝑖 < 𝑗       (67) 

𝐼𝑖𝑗
𝑤𝑙 ≤  1 − 𝐼𝑗

𝑤                                                                       ∀ 𝑖, 𝑗       𝑖 < 𝑗       (68) 

𝐼𝑖𝑗
𝑤𝑙 ≥ 𝐼𝑖

𝑤 + (1 − 𝐼𝑗
𝑤) − 1                                                ∀ 𝑖, 𝑗        𝑖 < 𝑗        (69) 

𝐼𝑖𝑗
𝑙𝑤 ≤  1 −  𝐼𝑖

𝑤                                                                     ∀ 𝑖, 𝑗       𝑖 < 𝑗        (70)  

𝐼𝑖𝑗
𝑙𝑤 ≤ 𝐼𝑗

𝑤                                                                               ∀ 𝑖, 𝑗       𝑖 < 𝑗        (71) 

 𝐼𝑖𝑗
𝑙𝑤 ≥ (1 − 𝐼𝑖

𝑤 + 𝐼𝑗
𝑤 − 1                                                ∀ 𝑖, 𝑗       𝑖 < 𝑗         (72) 

𝐼𝑖𝑗
𝑙𝑙 ≤ 1 − 𝐼𝑖

𝑤                                                                        ∀ 𝑖, 𝑗       𝑖 < 𝑗         (73) 

𝐼𝑖𝑗
𝑙𝑙 ≤  1 − 𝐼𝑗

𝑤                                                                       ∀ 𝑖, 𝑗       𝑖 < 𝑗         (74) 

𝐼𝑖𝑗
𝑙𝑙 ≥ (1 − 𝐼𝑖

𝑤 + (1 − 𝐼𝑗
𝑤 + 1                                        ∀ 𝑖, 𝑗       𝑖 < 𝑗        (75) 

𝐼𝑖𝑗
𝑤𝑤 − 𝐼𝑗𝑖

𝑤𝑤 = 0                                                         ∀ 𝑖, 𝑗       𝑖 < 𝑗         (76) 

𝐼𝑖𝑗
𝑤𝑙 − 𝐼𝑗𝑖

𝑙𝑤 = 0                                                            ∀ 𝑖, 𝑗       𝑖 < 𝑗         (77)  
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𝐼𝑖𝑗
𝑙𝑤 − 𝐼𝑗𝑖

𝑤𝑙 = 0                                                            ∀ 𝑖, 𝑗       𝑖 < 𝑗         (78)  

𝐼𝑖𝑗
𝑙𝑙 − 𝐼𝑗𝑖

𝑙𝑙 = 0                                                               ∀ 𝑖, 𝑗       𝑖 < 𝑗         (79) 

In the original model, 12𝑁(𝑁 − 1  inequality constraints are required for linearization of 

the orientation variables while this alternative formulation requires 6𝑁(𝑁 − 1  inequality 

and 2𝑁(𝑁 − 1  equality constraints. 

As mentioned at the beginning of the chapter, we will introduce an additional type 

of constraints that are only applicable to unbounded and vertical layout designs. Within 

[14], it is possible to force certain cuboids to have a certain orientation before the 

problem is solved based on design requirements, and then one can attempt to find an 

optimal solution to the problem. For this problem, it is possible to force a certain cuboid 

to have its width face along one of the sides of the container, for example, the plane 

defined by y = 0. This set of equality constraints is shown below: 

𝐼𝑖
𝑤 = 1                (80) 

𝐼𝑖𝑗
𝑙𝑤 = 0                                ∀ 𝑗    𝑖 ≠ 𝑗             (81) 

𝐼𝑖𝑗
𝑙𝑙 = 0                                 ∀ 𝑗    𝑖 ≠ 𝑗             (82) 

𝐼𝑖𝑗
𝑤𝑤 + 𝐼𝑖𝑗

𝑤𝑙 = 1                   ∀ 𝑗    𝑖 ≠ 𝑗            (83) 

Providing information about the orientation of a certain cuboid before the problem is 

solved reduces the solution space. Enforcing the first constraint in this set will restrict 

cuboid i to have its width face parallel to the 𝑥-axis. As a result of the first constraint 

being enforced, it is impossible for any relative orientation variable associated with 

cuboid i’s length being parallel to the 𝑥-axis to be activated for any pair of cuboids and is 

enforced in the second and third constraints. Since only information about cuboid i is 

provided before the problem is solved, cuboid j is still permitted to have its width or 
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length parallel to the 𝑥-axis, However, only one of these instances are possible for cuboid 

j and is enforced in the fourth constraint. Forcing this restriction on orientation variables 

is intended to reduce computational time, however it is stated in [14] that it is not 

guaranteed that computational time will be reduced by enforcing certain orientations to 

exist.  

 This constraint is not applicable for horizontal layout designs because fixing the 

orientation of a cuboid can result in a non-optimal solution to the original problem. For 

example, suppose cuboid i’s width is longer than its length. If it is desired to place cuboid 

i’s width parallel to the 𝑥-axis, then this could force the 𝑦-axis of the module to be 

extended in order to pack cuboid i. On the other hand, if cuboid i’s length were to be 

placed parallel to the 𝑥-axis, then it is likely that the 𝑦-axis of the module wouldn’t have 

to be extended to the same degree as the previous situation, which results in a different 

layout solution. This constraint doesn’t have the same type of restriction for unbounded 

and vertical layout designs. For the unbounded layout design, all dimensions of the 

module are variable and for the vertical layout design, the 𝑥- and 𝑦-axis of the module are 

fixed. Suppose that an optimal solution to the original problem has cuboid i’s width 

parallel to the 𝑦-axis. Then, one can simply have the same solution by rotating the entire 

layout by 90 degrees, which results in cuboid i’s width parallel to the 𝑥-axis while the 

rest of the cuboids are kept in the same relative locations. 

For the sake of simplicity, (41) will be referred to as enhancement constraint (EC) 

1, (42) – (44) will be considered as EC2, (45) will be considered as EC3, (46) – (54) will 

be considered as EC4, (55) – (63) will be considered as EC5, (64) – (79) will be 

considered as EC6, and (80) – (83) will be considered as EC7. In the next chapter, these 
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constraints will be tested to determine if they reduce the computational time to solve the 

MILP in reference to the computational study that was performed in Chapter 4. 
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CHAPTER 6: ENHANCED MODEL COMPUTATIONAL STUDY 

 

 

In this chapter, a computational study is presented for the additional constraints 

that are proposed in Chapter 5 to investigate the effectiveness of those constraints in 

reducing computational efforts. Initially, in this computational study, each type of 

constraint is tested individually in the original model to determine the impact of the 

constraint on the overall computational experience using the same set of scenarios that 

were used for the computational study in Chapter 4. Based on the computational 

performance of the individual constraint type, we also investigate interactions between 

different types of those constraints. Accordingly, several combinations of different types 

are tested. 

As in Chapter 4, 10 layout designs were considered in this comparative study. 

These layout designs consist of unbounded layout design, horizontal layout design with 𝛿 

equal to 4 and 5, and vertical layout design with 𝛿 equal to 4 and 5, each of which either 

allows overlap along the 𝑧- axis or not.  

6.1 Small-Scale Computational Study 

In order to examine the efficacy of each additional constraint, EC1 – EC7 were 

individually tested for solving the 20 small-scale problems that were solved by the 

original formulation in Chapter 4. The MILP models were created using Matlab [32] and 

solved by calling a commercial MILP solver, Gurobi Optimizer 7.5 [33]. 

As described in Chapter 5, EC7 was tested only for unbounded and vertical layout 

designs while all other constraints were tested for each layout design. Since these 

constraints do no cut off the optimal solution, the optimal layouts remain the same as 

those produced by the original problem in Chapter 4. After finding optimal solutions to 
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all 20 scenarios for each layout design variant, time averages of 20 solution times are 

reported in Table 10. 

Table 10: Average solution times for individual enhancements (sec) 

Layout Design 
EC 

1 2 3 4 5 6 7 

overz_cuboid 137.95 251.04 373.50 161.38 184.80 196.88 98.46 

overz_horizontal_4 19.44 23.95 22.97 14.83 6.48 15.18 - 

overz_horizontal_5 69.52 87.89 80.51 57.90 46.57 86.58 - 

overz_vertical_4 34.65 41.47 35.65 29.75 23.80 37.81 21.97 

overz_vertical_5 59.30 68.24 115.69 63.71 91.65 102.92 40.44 

solidz_cuboid 127.69 270.93 304.86 148.77 167.98 112.13 91.60 

solidz_horizontal_4 16.58 18.87 16.36 8.54 6.96 14.80 - 

solidz_horizontal_5 46.34 68.83 66.40 45.34 36.93 76.79 - 

solidz_vertical_4 34.81 34.25 35.58 29.65 25.45 36.84 17.98 

solidz_vertical_5 64.28 91.41 85.99 64.86 61.96 81.40 36.25 

 

 To compare with solution times of the original formulation, percentage 

differences were computed and are displayed in Table 11. For EC7, the exercise gradient 

cuboid was selected to have its width parallel to the 𝑥-axis. 

Table 11: Percentage difference for 10 layout designs and individual enhancement 

constraints 

 EC 

 1 2 3 4 5 6 7 

overz_cuboid 43.75 -2.36 -52.29 34.20 24.65 19.72 59.85 

overz_horizontal_4 -19.51 -47.22 -41.17 8.84 60.15 6.67 - 

overz_horizontal_5 29.49 10.86 18.34 41.27 52.77 12.18 - 

overz_vertical_4 -3.00 -23.28 -5.97 11.56 29.24 -12.41 34.70 

overz_vertical_5 19.97 7.91 -56.13 14.02 -23.69 -38.89 45.42 

solidz_cuboid 58.10 11.09 -0.04 51.18 44.88 63.20 69.94 

solidz_horizontal_4 -12.00 -27.48 -10.53 42.33 52.94 0.00 - 

solidz_horizontal_5 39.31 9.86 13.03 40.62 51.62 -0.58 - 

solidz_vertical_4 16.67 18.02 14.84 29.03 39.08 11.83 56.96 

solidz_vertical_5 6.76 -32.60 -24.73 5.91 10.12 -18.08 47.42 
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In Table 11, green cells with positive values indicate better performances 

compared to that of the original formulation, while red cells with negative values 

represent worse performances. Observe that EC4 consistently outperformed the original 

formulation. Furthermore, EC7 uniformly displays significant improvement for 

applicable layout designs. EC5 also displays better performances than the original 

formulation except for vertical layout design with 𝛿 = 5 when overlap along the 𝑧-axis is 

allowed. Observing that layout designs with and without overlap along the 𝑧-axis tend to 

have similar tendency in performance, results were aggregated with respect to overlap 

along the 𝑧-axis. Aggregated percentage improvements are displayed in Table 12.  

Table 12: Percentage difference with model enhancements 

Aggregated 

Layout Design 

EC 

1 2 3 4 5 6 7 

Unbounded 

Layout Design 
51.70 5.09 -23.34 43.61 35.86 43.81 65.44 

Horizontal 

Layout Design 

(δ = 4) 

-15.93 -37.82 -26.57 24.79 56.72 3.49 - 

Horizontal 

Layout Design  

(δ = 5) 

33.77 10.42 16.02 40.99 52.27 6.61 - 

Vertical  

Layout Design 

 (δ = 4) 

7.90 -0.40 5.56 21.23 34.69 1.02 47.03 

Vertical  

Layout Design  

(δ = 5) 

13.60 -11.61 -40.99 10.11 -7.39 -28.86 46.38 

 

 For the unbounded layout design, which is an aggregation of overz_cuboid and 

solidz_cuboid, it was noticed that EC1, 4, 5 and 7 individually reduced the computational 

effort by at least 35.86%. Although EC2 did offer some improvement, it was not 
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convincing enough to pursue further testing. For this layout design category, the 

following combinations are considered for testing interactions: 

• EC1, 4, 6, 7 (Combination 1) 

• EC1, 5, 6, 7 (Combination 2) 

Since EC4 and EC5 are alternative constraints to represent distance between cuboids, 

they were not considered together.  

 For the horizontal layout design, it was noticed that there were distinct differences 

in 𝛿 = 4 and 𝛿 = 5. EC1, 2, and 3 perform much better on average for the horizontal 

layout design with 𝛿 equal to 5. EC1 provided an average improvement of 8.92% for both 

horizontal layout cases, whereas EC2 and EC3 display worse performances. EC4 and 

EC5 individually reduced the computational effort by at least 24.79% in both cases. EC6 

did not provide significant improvement for either case. For this layout design category, 

the following combinations are selected to be further investigated: 

• EC1, 4 (Combination 3) 

• EC1, 5 (Combination 4) 

• EC1, 4, 6 (Combination 5) 

• EC1, 5, 6 (Combination 6) 

Even though EC6 did not provide an impressive improvement, it was included to check 

interaction effects. 

 For the vertical layout design, it was noticed that EC1 offered an improvement of 

at least 7.9% for both cases with 𝛿 = 4 and 5. EC2 and EC3 seemed to have worsened the 

solution time compared to the original result for vertical layout designs. EC4 and EC5 

both reduced the computational time by at least 13.65%. EC7 decreased the 
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computational time by at least 46.38%. For this layout design category, the following 

combinations of constraints were considered: 

• EC1, 4, 7 (Combination 7) 

• EC1, 5, 7 (Combination 8) 

For each layout design category, a hypothesis test was performed for the two 

combinations that display the smallest average solution times. This was performed in 

order to determine if there is any statistically significant difference in solution times for a 

pair of combinations. The output of these tests may provide evidence as to which 

combination is better. Within this analysis, the average solution time and standard 

deviations for the model with and without model enhancements, as well as maximum and 

minimum solution times, will be presented. For each combination that includes EC7, the 

exercise gradient cuboid was selected to have its width parallel to the 𝑥-axis. 

6.1.1 Unbounded Layout Design 

 For the unbounded layout design, combinations 1 and 2 were considered. These 

combinations were tested for both cases of the unbounded layout design, where overlap is 

allowed and overlap is not allowed along the 𝑧-axis. The average solution times were 

compared to the result that was generated in Chapter 4 to find how much of an 

improvement there is in computational effort. The output data for combination 1 and 

combination 2 is displayed below, as well as the output from the model without these 

additional constraints: 
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Table 13: Comparison between original model and enhanced model for unbounded layout 

design 

 

Average 

Solution 

Time 

Standard 

Deviation 
Max Min 

Original 

Model 
275.00 254.12 1055.76 45.72 

Combination 

1 
53.58 29.72 170.99 27.46 

Combination 

2 
54.21 22.93 127.97 9.88 

 

Combinations 1 and 2 provide a similar result such that their average solution times are 

almost the same and their standard deviations are slightly different. In order to determine 

if these two combinations provide the same result on average, a hypothesis test was 

performed. Let 𝜇1 denote the population mean of solution times for combination 1 and let 

𝜇2 denote the population mean of solution times for combination 2. The hypothesis test 

that was performed is displayed below: 

𝐻0: 𝜇1 = 𝜇2 

𝐻𝑎: 𝜇1 ≠ 𝜇2 

Before testing these hypotheses, an F-test was first performed in order to determine if the 

population standard deviations for both combinations can be assumed equal or not. Let 𝜎1 

denote the population standard deviation of solution times for combination 1 and let 𝜎2 

denote the population standard deviation of solution times for combination 2. The 

hypothesis test that was performed is displayed below: 

𝐻0: 𝜎1 = 𝜎2 

𝐻𝑎: 𝜎1 ≠ 𝜎2 
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With a p-value of 0.479 using Bonett’s test and 0.551 using Levene’s test for the F-test, it 

was assumed that the population standard deviations for both combinations are equal to 

one another. After performing the t-test using this assumption, a p-value of 0.916 was 

obtained which implies that there is no statistically significant difference between 𝜇1 and 

𝜇2 and fail to reject the null hypothesis. Since there appears to be no difference 

statistically between combinations 1 and 2 solution times, combination 2 was selected to 

be tested for solving the large-scale problem in order to measure the change in optimality 

gap for the unbounded layout design since it had a lower sample standard deviation. 

6.1.2 Horizontal Layout Design 

 For the horizontal layout design, combinations 3 - 6 were considered. These 

combinations were tested for both cases of the horizontal layout design where 𝛿 is equal 

to 4 and 5. The output data for combination 3, combination 4, combination 5, and 

combination 6 is displayed below, as well as the output from the model without these 

additional constraints where 𝛿 is equal to 4: 

Table 14: Comparison between original model and enhanced model for horizontal layout 

design where 𝛿 is equal to 4 

 

Average 

Solution 

Time 

Standard 

Deviation 
Max Min 

Original 

Model 
15.54 9.85 56.26 5.01 

Combination 

3 
13.44 14.81 63.82 4.93 

Combination 

4 
8.95 4.53 34.62 4.66 

Combination 

5 
5.32 4.34 25.36 3.13 

Combination 

6 
7.17 3.42 23.63 4.18 
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Combinations 5 and 6 have the least average solution time in this set of combinations. Let 

𝜇5
4 denote the population mean of solution times for combination 5 and let 𝜇6

4 denote the 

population mean of solution times for combination 6 where 𝛿 is equal to 4. The 

hypothesis test that was performed is displayed below: 

𝐻0: 𝜇5
4 = 𝜇6

4 

𝐻𝑎: 𝜇5
4 ≠ 𝜇6

4 

Let 𝜎5
4 denote the population standard deviation of solution times for combination 5 and 

let 𝜎6
4 denote the population standard deviation of solution times for combination 6 where 

𝛿 is equal to 4. The hypothesis test that was performed is displayed below: 

𝐻0: 𝜎5
4 = 𝜎6

4 

𝐻𝑎: 𝜎5
4 ≠ 𝜎6

4 

With a p-value of 0.640 using Bonett’s test and 0.896 using Levene’s test for the F-test, it 

was assumed that the population standard deviations for both combinations are equal to 

one another. After performing the t-test using this assumption, a p-value of 0.038 was 

obtained which implies that there is a statistically significant difference between 𝜎5
4 and 

𝜎6
4, and the null hypothesis is not accepted if 𝛼 = 0.05. Since there appears to be a 

statistical difference between combinations 5 and 6 where 𝛿 is equal to 4, combination 5 

was selected to be tested for solving for the large-scale problem for the horizontal layout 

design where 𝛿 is equal to 4. 

The output data for combination 3, combination 4, combination 5, and 

combination 6 is displayed below, as well as the output from the model without these 

additional constraints where 𝛿 is equal to 5: 
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Table 15: Comparison between original model and enhanced model for horizontal layout 

design where 𝛿 is equal to 5 

 

Average 

Solution 

Time 

Standard 

Deviation 
Max Min 

Original 

Model 
87.47 100.58 431.28 9.24 

Combination 

3 
52.85 40.01 184.94 7.29 

Combination 

4 
42.44 31.45 118.53 9.61 

Combination 

5 
44.91 32.68 127.95 3.85 

Combination 

6 
46.87 52.08 238.85 5.54 

 

Combinations 4 and 5 have the least average solution times in this set of combinations. 

Let 𝜇4
5 denote the population mean of solution times for combination 4 and let 𝜇5

5 denote 

the population mean of solution times for combination 5 where 𝛿 is equal to 5. The 

hypothesis test that was performed is displayed below: 

𝐻0: 𝜇4
5 = 𝜇5

5 

𝐻𝑎: 𝜇4
5 ≠ 𝜇5

5 

Let 𝜎4
5 denote the population standard deviation of solution times for combination 4 and 

let 𝜎5
5 denote the population standard deviation of solution times for combination 5 where 

𝛿 is equal to 5. The hypothesis test that was performed is displayed below: 

𝐻0: 𝜎4
5 = 𝜎5

5 

𝐻𝑎: 𝜎4
5 ≠ 𝜎5

5 

With a p-value of 0.846 using Bonett’s test and 0.768 using Levene’s test for the F-test, it 

was assumed that the population standard deviations for both combinations are equal to 

each other. After performing the t-test using this assumption, a p-value of 0.732 was 
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obtained which implies that there is no significant difference between 𝜎4
5 and 𝜎5

5, and fail 

to reject the null hypothesis. Since there appears to be no difference statistically between 

combinations 4 and 5 where 𝛿 is equal to 5, combination 4 was selected to be tested for 

solving the large-scale problem for the horizontal layout design where 𝛿 is equal to 5. 

6.1.3 Vertical Layout Design 

For the vertical layout design, combinations 7 and 8 were considered. These 

combinations were tested for both cases with respective values of 𝛿 equal to 4 and 5. The 

output data for combination 7 where EC1, 4 and 7 are included and combination 8 where 

EC1, 5 and 7 are included is displayed below, as well as the output from the model 

without these additional constraints where 𝛿 is equal to 4: 

Table 16: Comparison between original model and enhanced model for vertical layout 

design where 𝛿 is equal to 4 

 

Average 

Solution 

Time 

Standard 

Deviation 
Max Min 

Original 

Model 
37.71 55.77 365.81 11.53 

Combination 

7 
13.93 9.95 50.03 3.84 

Combination 

8 
10.45 4.61 33.97 5.47 

 

Let 𝜇7
4 denote the population mean of solution times for combination 7 and let 𝜇8

4 denote 

the population mean of solution times for combination 8 where 𝛿 is equal to 4. The 

hypothesis test that was performed is displayed below: 

𝐻0: 𝜇7
4 = 𝜇8

4 

𝐻𝑎: 𝜇7
4 ≠ 𝜇8

4 
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Let 𝜎7
4 denote the population standard deviation of solution times for combination 7 and 

let 𝜎8
4 denote the population standard deviation of solution times for combination 8 where 

𝛿 is equal to 4. The hypothesis test that was performed is displayed below: 

𝐻0: 𝜎7
4 = 𝜎8

4 

𝐻𝑎: 𝜎7
4 ≠ 𝜎8

4 

Observing a small p-value of 0.026 using Bonett’s test and 0.000 using Levene’s test for 

the F-test, it was assumed that the population standard deviations for both combinations 

are not equal to one another. After performing the t-test using this assumption, a p-value 

of 0.048 was obtained which implies that there is a statistically significant difference 

between 𝜎7
4 and 𝜎8

4 where 𝛼 = 0.05. As a result, combination 8 was selected to be tested 

for solving the large-scale problem for the vertical layout design where 𝛿 is equal to 4. 

The output data for combination 7 and combination 8 is displayed below, as well 

as the output from the model without these additional constraints 𝛿 is equal to 5: 

Table 17: Comparison between original model and enhanced model for vertical layout 

design where 𝛿 is equal to 5 

 

Average 

Solution 

Time 

Standard 

Deviation 
Max Min 

Original 

Model 
71.52 71.28 315.99 23.11 

Combination 

7 
31.64 17.50 92.86 5.36 

Combination 

8 
29.95 23.54 99.37 7.34 

 

Let 𝜇7
5 denote the population mean of solution times for combination 7 and let 𝜇8

5 denote 

the population mean of solution times for combination 8 where 𝛿 is equal to 5. The 

hypothesis test that was performed is displayed below: 
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𝐻0: 𝜇7
5 = 𝜇8

5 

𝐻𝑎: 𝜇7
5 ≠ 𝜇8

5 

Let 𝜎7
5 denote the population standard deviation of solution times for combination 7 and 

let 𝜎8
5 denote the population standard deviation of solution times for combination 8 where 

𝛿 is equal to 5. The hypothesis test that was performed is displayed below: 

𝐻0: 𝜎7
5 = 𝜎8

5 

𝐻𝑎: 𝜎7
5 ≠ 𝜎8

5 

With a p-value of 0.259 using Bonett’s test and 0.018 using Levene’s test for the F-test, it 

was difficult to determine which assumption to follow. Instead, two t-tests were 

performed where both assumptions were considered to see if different conclusions were 

drawn. After performing the t-test where equal population standard deviations are 

assumed, a p-value of 0.717 was obtained which implies that there is no statistically 

significant difference between 𝜎7
5 and 𝜎8

5 and fail to reject the null hypothesis. After 

performing the t-test where equal population standard deviations are not assumed, a p-

value of 0.717 was obtained which implies that there is no statistically significant 

difference between 𝜎7
5 and 𝜎8

5 and fail to reject the null hypothesis. Comparing the 

outcomes from both of these tests, it was concluded that there was no statistically 

significant difference between 𝜇7
5 and 𝜇8

5. As a result, combination 7 was selected to be 

tested for solving the large-scale problem for the vertical layout design where 𝛿 is equal 

to 5 since it had a lower sample standard deviation. 

 In Table 18, the solution times of selected combinations are compared with those 

of models without incorporating the above enhancements. 
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Table 18: Percentage difference without and with enhancements for small-scale problem 

Aggregated 

Layout Design 

Average 

Solution Time 

without 

Enhancements 

Average 

Solution Time 

with 

Enhancements 

Percentage 

Difference 

Unbounded 

Layout Design 
275.00 54.21 80.29% 

Horizontal 

Layout Design 

(δ = 4) 

15.54 5.32 65.77% 

Horizontal 

Layout Design  

(δ = 5) 

87.47 42.44 51.48% 

Vertical  

Layout Design 

 (δ = 4) 

37.71 10.45 72.29% 

Vertical  

Layout Design  

(δ = 5) 

71.52 31.64 55.76% 

Average 97.45 28.81 65.12% 

 

On average, solution time is improved by 65.12% for all combinations that are included 

in each aggregated layout design. 

 Although combinations of constraints can be created to reduce computational 

effort, it is possible that a single EC could outperform the selected combination of ECs. 

In order to verify whether this is the case or not, the EC that provided the maximum 

improvement is compared to the combination that was selected for an aggregated layout 

design. The hypotheses tested are displayed below: 

𝐻0: 𝜇𝑐𝑜𝑚𝑏𝑜 = 𝜇𝐸𝐶 

𝐻𝑎: 𝜇𝑐𝑜𝑚𝑏𝑜 < 𝜇𝐸𝐶 

The table below displays the result of the hypothesis test for each aggregated layout 

design.  
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Table 19: Comparison between individual EC and combination of ECs 

 

Unbounded 

Layout 

Design 

Horizontal 

Layout Design 

(δ = 4) 

Horizontal 

Layout Design 

(δ = 5) 

Vertical 

Layout Design 

(δ = 4) 

Vertical 

Layout Design 

(δ = 5) 

EC 7 5 5 7 7 

Combo 2 5 4 8 7 

Test 

Result 

Reject Reject Fail to reject Reject Reject 

(p = 0.000) (p = 0.032) (p = 0.468) (p = 0.000) (p = 0.034) 

 

 Looking at the result in Table 19, it can be concluded that EC5 (standard 

deviation = 42.97) provides the same computational benefit, with regards to solution 

time, as combination 4 (standard deviation = 31.45) for the aggregated horizontal layout 

design with δ = 5, on average. Other layout design cases display that the combination 

outperformed the implementation of a single EC. Although the horizonal layout design 

with δ = 5 is inconclusive, we still recommend applying combination 4 for the sake of 

consistency. 

6.2 Large-Scale Computational Study 

 As a result of comparing various combinations of constraints in the small-scale 

computational study, it was then possible to use a selection of these combinations in 

order to measure by how much the optimality gap is reduced for a larger sized problem. 

The large-scale problem consists of twenty-four gradients cuboids, which is associated 

with fourteen task volumes. For the single-dimensional packing optimization, the value 

of 𝛿 was selected as 4 and 5, resulting in two layouts for both layout designs. Weighting 

factor 𝛼 in the objective function was set to 0.5 to obtain solutions from the models to be 

evaluated. In total, 10 layout designs were considered, as displayed in Table 5. The MILP 

models were created using Matlab [32] and solved by Gurobi Optimizer 7.5 [33]. For 
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testing purposes, the solver time was set to 4 hours. For each combination that includes 

EC7, the exercise gradient cuboid was selected to have its width face parallel to the 𝑥-

axis. The following combinations were tested for all layout design categories as a result 

of the small-scale study: 

• Unbounded Layout Designs: Combination 1 

• Horizontal Layout Designs (𝛿 equal to 4): Combination 5 

• Horizontal Layout Designs (𝛿 equal to 5): Combination 4 

• Vertical Layout Designs (𝛿 equal to 4): Combination 8 

• Vertical Layout Designs (𝛿 equal to 5): Combination 7 

Table 20: Optimality gap without and with enhancements for large-scale problem 

Layout Design 

Optimality 

Gap without 

Enhancements 

Optimality 

Gap with 

Enhancements 

Difference 

overz_cuboid 65.0% 52.1% 12.9% 

overz_horizontal_4 61.5% 53.5% 8.0% 

overz_horizontal_5 67.0% 59.8% 7.2% 

overz_vertical_4 61.2% 51.0% 10.2% 

overz_vertical_5 61.2% 51.0% 10.2% 

solidz_cuboid 62.6% 51.9% 10.7% 

solidz_horizontal_4 60.5% 55.4% 5.1% 

solidz_horizontal_5 66.0% 62.7% 3.3% 

solidz_vertical_4 59.4% 49.3% 10.1% 

solidz_vertical_5 63.4% 47.7% 15.7% 

 

 As displayed in Table 20, combinations uniformly improved the optimality gaps 

across 10-large scale problems. On average, the optimality gap after a 4-hour run was 

improved by 14.92%, where maximum improvement is observed for solidz_vertical_5 by 

15.7% and minimum improvement is observed for solidz_horizontal_5 by 3.3%. 
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CHAPTER 7: CONCLUSION 

 

 

In this thesis research, the overlap cuboid packing problem (OCPP) was 

considered. This variant of the packing problem is unique in the sense that items are 

allowed to overlap to a certain extent. This provides the advantage to further minimize 

the volume of the container since items are allowed to share space. For this research, the 

OCPP was formulated using a mixed-integer linear program (MILP) to find an 

arrangement of gradient cuboids that represent volumes of tasks that are performed by 

astronauts inside of a spacecraft module. A bi-objective function was proposed to 

accommodate for two performance criteria, which include adjacency requirements 

between gradient cuboids and the size of the module. 

After the MILP was formulated, a numerical study was executed to demonstrate 

the model’s ability to produce different layout results corresponding to certain design 

requirements and priorities on randomly generated test problems as well as a full-scale 

problem. Noting that OCPP is NP-hard, the computational requirements in solving the 

problem can be formidable as evidenced by the numerical results for the full-scale 

problem. To alleviate such computational burden, it was of interest to further investigate 

model enhancements and reformulations in order to reduce the amount of computational 

effort. This endeavor resulted in seven sets of constraints. 

 An additional numerical study was performed where the additional constraints 

were initially tested individually using the small-scale problem. This was performed in 

order to determine which constraints, when included individually, are most beneficial to 

the solution of the MILP. Following this, various combinations of promising constraints 

were constructed for unbounded, horizontal, and vertical layout designs and tested on the 
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randomly generated problems to determine if further improvement could be achieved. As 

a result, it was observed that different combinations customized for each layout design 

provide improvement in computational efficiency. These combinations were applied to 

the full-scale problem, where it was observed that the MILP with those combinations 

produced smaller optimality gaps after a 4-hour run than optimality gaps produced 

without them for all layout designs 

OCPP is applicable to a wide range of applications, especially in habitat-related 

architectural design such as interior of a home with a small volume, jail cells, and 

quarters of a submarine. There are some avenues where future studies can be conducted. 

The model can accommodate additional constraints such as structural integrity (e.g., 

impact), weight balancing, and utility layout (i.e., water supply, food storage, waste, etc.). 

Besides these problem-specific constraints, additional valid inequalities can be 

incorporated in an effort to further improve the computational efficiency. Also, future 

research includes creating a “feedback loop” between the physical and psycho-physical 

properties of the OCPP for astronauts. Creating a link between these two properties helps 

accommodate the physical needs of astronauts, as well as their mental needs. 

Incorporating this into the optimization allows for changes that are made to either 

property to be accounted for in the other where these changes are driven by the 

astronaut’s preference. 
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APPENDIX: SUPPLEMENTARY MATERIALS 

 

 

(a) overz_cuboid 

(𝑋, 𝑌, 𝑍): (5.302, 6.437, 7.402) 

Container volume: 252.623 

 

(b) overz_horizontal_4 

(𝑋, 𝑌, 𝑍): (3.958, 15.551, 4) 

Container volume: 246.203 

 

(c) overz_horizontal_5 

(𝑋, 𝑌, 𝑍): (4.980, 10.72, 4.602) 

Container volume: 245.680 

 

(d) overz_vertical_4 

(𝑋, 𝑌, 𝑍): (3.751, 3.863, 15.234) 

Container volume: 220.742 

 

Figure A1: 10 layout designs for 14 task volumes using enhancements 
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(e) overz_vertical_5 

(𝑋, 𝑌, 𝑍): (4.763, 4.645, 8.800) 

Container volume: 194.692 

 

(f) solidz_cuboid 

(𝑋, 𝑌, 𝑍): (6.964, 6.505, 5.301) 

Container volume: 240.140 

 

(g) solidz_horizontal_4 

(𝑋, 𝑌, 𝑍): (3.9878, 16.6552, 4) 

Container volume: 265.670 

 

(h) solidz_horizontal_5 

(𝑋, 𝑌, 𝑍): (4.807, 9.802, 4.9298) 

Container volume: 232.283 

 

Figure A1, continued 
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(i) solidz_vertical_4 

(𝑋, 𝑌, 𝑍): (3.851, 3.863, 14.250) 

Container volume: 211.989 

 

(j) solidz_vertical_5 

(𝑋, 𝑌, 𝑍): (4.752, 4.763, 10.118) 

Container volume: 229.009 

 

Figure A1, continued 

 

Table A2: Randomly generated cuboid dimensions for each scenario 

 

Scenario Width Length Height Width Length Height Width Length Height Width Length Height Width Length Height

1 2.92 1.43 2.60 1.42 1.99 2.46 3.37 1.35 2.49 1.16 1.23 2.70 2.69 1.54 1.95

2 2.93 1.56 2.40 1.46 1.65 2.80 3.00 1.45 2.77 0.99 1.45 2.41 2.69 1.54 1.95

3 3.36 1.26 2.69 1.16 1.69 2.57 3.25 1.38 2.53 1.06 1.43 2.86 2.69 1.54 1.95

4 2.89 1.24 2.72 1.66 2.27 2.21 3.03 1.13 2.83 1.00 1.11 3.06 2.69 1.54 1.95

5 2.34 1.43 2.50 1.28 1.71 2.44 3.41 1.33 2.44 1.03 1.17 2.52 2.69 1.54 1.95

6 2.38 1.23 2.41 1.16 1.63 2.33 3.03 1.22 2.19 1.02 1.07 2.79 2.69 1.54 1.95

7 2.93 1.20 3.00 1.34 1.75 2.69 3.78 1.46 2.47 1.39 1.32 2.97 2.69 1.54 1.95

8 3.28 1.19 2.11 1.27 2.37 2.07 2.72 1.23 2.39 1.08 1.43 2.19 2.69 1.54 1.95

9 3.36 1.35 2.64 1.15 2.00 2.63 3.68 1.48 2.96 1.31 1.30 2.22 2.69 1.54 1.95

10 2.55 1.22 2.93 1.48 1.63 2.41 3.24 1.60 2.68 1.16 1.09 3.23 2.69 1.54 1.95

11 3.13 1.47 2.63 1.54 2.18 2.06 3.52 1.27 2.75 1.33 1.30 3.13 2.69 1.54 1.95

12 2.72 1.56 2.17 1.50 2.21 2.72 3.55 1.24 2.71 1.03 1.30 2.22 2.69 1.54 1.95

13 3.33 1.21 2.40 1.52 1.84 2.65 3.16 1.09 2.90 1.35 1.06 2.37 2.69 1.54 1.95

14 2.69 1.69 2.25 1.40 2.33 2.54 2.89 1.22 2.92 1.08 1.09 2.48 2.69 1.54 1.95

15 2.67 1.18 3.04 1.70 2.09 2.66 3.49 1.32 2.67 1.14 1.47 2.67 2.69 1.54 1.95

16 3.14 1.55 2.81 1.21 1.88 2.19 3.57 1.36 2.13 1.35 1.28 2.33 2.69 1.54 1.95

17 3.30 1.69 2.84 1.69 2.36 2.19 2.91 1.25 2.11 1.18 1.13 3.18 2.69 1.54 1.95

18 2.98 1.54 3.09 1.63 2.31 2.71 4.02 1.37 2.53 1.15 1.33 2.95 2.69 1.54 1.95

19 2.43 1.45 2.99 1.25 2.22 2.04 2.72 1.15 2.37 1.24 1.01 3.00 2.69 1.54 1.95

20 3.16 1.27 2.13 1.63 1.74 2.03 3.37 1.53 2.60 1.36 1.14 2.74 2.69 1.54 1.95
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