

OVERLAP PACKING OPTIMIZATION FOR SPACECRAFT LAYOUT DESIGN

by

Richard Arthur Alaimo

A thesis submitted to the faculty of

The University of North Carolina at Charlotte

in partial fulfillment of the requirements

for the degree of Master of Science in

Engineering Management

Charlotte

2018

 Approved by:

Dr. Churlzu Lim

Dr. Simon Hsiang

Dr. Tiantian Nie

ii

©2018

Richard Arthur Alaimo

ALL RIGHTS RESERVED

iii

ABSTRACT

RICHARD ARTHUR ALAIMO. Overlap Packing Optimization for Spacecraft Layout

Design. (Under the direction of DR. CHURLZU LIM)

 Packing optimization is a common problem that is encountered on a day-to-day

basis and has led to an extensive study over the years. One variant of the packing

problem that is beginning to emerge is the overlap cuboid packing problem (OCPP),

which allows for items that need to be packed to share space in order to further minimize

the dimensions of the container. The objective of this study is to investigate a

mathematical model, specifically a mixed-integer linear program (MILP), that can

effectively provide an overlap packing solution in the context of designing the layout for

a spacecraft module. For this particular layout design problem, the items that need to be

packed are represented as task volumes, known as gradient cuboids, where astronauts

perform various tasks and the container is the spacecraft module. A bi-objective function

was proposed to allow the dimensions of the module to be minimized, as well as

enforcing specific adjacency requirements that might exist between gradient cuboids.

Following the formulation of the model, the efficacy of the model is evaluated on

test problems that consist of 20 randomly generated small-scale instances with seven

cuboids and one full-scale instance with 24 cuboids. In this numerical study, each of the

test instances were solved under 10 different design scenarios, which varied depending

on the enforced vertical overlap and restrictions on the dimensions of the container. To

obtain solutions of the MILPs, a commercial solver, Gurobi, was called from Matlab. The

visualization of results demonstrates how the proposed model effectively generates layout

iv

designs. We also observed how the proposed model can accommodate prioritization

between two criteria: size of the container and enforcement of adjacency requirements.

Noting that OCPP is a generalization of the NP-hard packing problem, it is

unlikely to efficiently find an optimal solution as the problem size increases. It consumed

81.02 seconds on average to solve small-scale instances. However, the solution of the

full-scale problem had to be terminated after a 4-hour run, when the optimality gap was

62.53% on average for 10 layout designs. Observing the large optimality gap, we turned

our attention to further enhance the model to help reduce the computational burden when

finding a solution. As a result, seven additional sets of constraints were proposed.

An additional numerical study was performed where each constraint was added to

the base model individually using the test problem in order to determine which

constraints provide the most benefit to solving the model across a set of scenarios.

Following this, combinations of constraints were created for different layout designs on

the randomly generated problems to determine if further improvement was possible. It

was observed that there was an average improvement of 65.12% in solution time when

applied to small-scale instances. These combinations were applied to the full-scale

problem, where it was observed that there was an average improvement of 14.92% in

optimality gap after 4-hours.

v

DEDICATION

I dedicate this to the entire Alaimo family, for all past, current, and future

generations.

vi

ACKNOWLEDGEMENTS

 I would like to thank the Department of Systems Engineering and Engineering

Management at the University of North Carolina at Charlotte for providing me with

financial support as well as the opportunity to perform research for a complex

engineering problem.

I would especially like to thank Dr. Churlzu Lim, my advisor and chairman of my

committee. He has had great confidence in my ability to perform research alongside him

ever since undergraduate studies and has provided much needed support for succeeding

in graduate school. He has also provided invaluable advice on how to succeed in my

professional career, as well as in life. I would also like to thank Dr. Simon Hsiang,

Professor and Department Chair of the Department of Systems Engineering and

Engineering Management, for also having confidence in my ability to perform research

and providing support wherever it was needed. I would also like to thank Dr. Tiantian

Nie, Assistant Professor, for agreeing to serve as a committee member.

I would like to thank fellow students and collaborators who I have had the

opportunity to work with for this research, as well as for other related projects. These

experiences have assisted in enhancing my collaboration skills and will be useful for

future endeavors.

Finally, I would like to thank my family, most importantly my parents, who have

been supportive of my decision making academically and professionally to help prepare

for however the future may unfold.

This research was supported by the National Aeronautics and Space

Administration (NNX14AT57A).

vii

TABLE OF CONTENTS

LIST OF TABLES viii

LIST OF FIGURES x

LIST OF ABBREVIATIONS xi

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: LITERATURE REVIEW 4

CHAPTER 3: PROBLEM DESCRIPTION 14

CHAPTER 4: COMPUTATIONAL STUDY 25

4.1. Small-Scale Computational Study 25

4.2. Large-Scale Computational Study 33

CHAPTER 5: MODEL ENHANCEMENTS 49

CHAPTER 6: ENHANCED MODEL COMPUTATIONAL STUDY 58

6.1. Small-Scale Computational Study 58

6.1.1. Unbounded Layout Design 62

6.1.2. Horizontal Layout Design 64

6.1.3. Vertical Layout Design 67

6.2. Large-Scale Computational Study 71

CHAPTER 7: CONCLUSION 73

REFERENCES 75

APPENDIX: SUPPLEMENTARY MATERIALS 79

viii

LIST OF TABLES

Table 1: Dimension of gradient cuboids – Five task volumes 26

Table 2: Maximum pairwise overlap percentage (%) 26

Table 3: Adjacency requirement categories 26

Table 4: Adjacency requirements 27

Table 5: Layout design configurations 28

Table 6: Average solution time for scenarios 31

Table 7: Dimension of gradient cuboids – Twenty-four

task volumes 34

Table 8: Optimality gap for large-scale problems 37

Table 9: Comparison of problem sizes of small- and large-scale

problems 48

Table 10: Average solution times for individual enhancements (sec) 59

Table 11: Percentage difference for 10 layout designs and

individual enhancement constraints 59

Table 12: Percentage difference with model enhancements 60

Table 13: Comparison between original model and enhanced

model for unbounded layout design 63

Table 14: Comparison between original model and enhanced

model for horizontal layout design where 𝛿 is equal to 4 64

Table 15: Comparison between original model and enhanced

model for horizontal layout design where 𝛿 is equal to 5 66

ix

Table 16: Comparison between original model and enhanced

model for vertical layout design where 𝛿 is equal to 4 67

Table 17: Comparison between original model and enhanced

model for vertical layout design where 𝛿 is equal to 5 68

Table 18: Percentage difference without and with enhancements

for small-scale problem 70

Table 19: Comparison between individual EC and combination of ECs 71

Table 20: Optimality gap without and with enhancements for large-scale

problem 72

x

LIST OF FIGURES

Figure 1: Example of gradient cuboid 14

Figure 2: Binary variables representing orientaion of cuboids i and j

with respect to the x-axis 18

Figure 3: 10 layout designs for small-scale problem 28

Figure 4: 10 layout designs for varying levels of α 32

Figure 5: Pareto frontier 33

Figure 6: 10 layout designs for 14 task volumes 35

Figure 7: Lower and upper bounds on the optimal objective values for

10 layout designs 38

Figure 8: Lower and upper bounds on the optimal objective values for

small-scale problems 43

xi

LIST OF ABBREVIATIONS

EC Enhancement constraint

LP Linear programming

MILP Mixed-integer linear program

OCPP Overlap cuboid packing problem

SOLV Spacecraft optimization layout and volume

1

CHAPTER 1: INTRODUCTION

Consider the problem of packing a set of items into a container, where items are

cuboids with various sizes. The primary objective of this problem is to minimize the total

volume of the container once all items have been packed. However, it is possible for this

problem to be multi-objective by considering other criteria such as desired adjacency

between items and packing costs. This problem is known as the packing problem [5].

 The packing problem considered in this research stems from the effort to generate

spacecraft interior layout designs. The container in this context will be referred to as the

spacecraft module and the items to be packed will be referred to as gradient cuboids. A

gradient cuboid represents a task volume where astronauts perform a task assigned to the

volume. It is possible that there are multiple occurrences of the same gradient cuboid,

e.g., multiple ‘sleep’ task volumes, to accommodate multiple astronauts. It is also

important to astronauts that certain task volumes are placed next to one another for

efficiency ,(i.e., kitchen and eating area), as well as certain task volumes being as far

apart from each other (i.e., sleeping quarters and bathroom). In order to incorporate two

performance criteria, the total volume of the module and adjacency preferences between

task volumes, this study will propose a mathematical optimization model, called a mixed-

integer linear program (MILP), where these two criteria are embodied in the objective

function.

There are three layout design configurations that are considered for this study.

The first case is where the dimensions of the module are unbounded in three-dimensions

(which implies that no restriction on the size of the module is necessary). The second

case is where the height and width dimensions of the module are limited (so-called

2

horizontal layout design configuration). The final case is where the floor dimensions of

the module are limited (so-called vertical layout design configuration). These layout

designs depend on the design requirements that set are set forth prior to executing the

optimization.

Unlike conventional packing problems, a distinctive feature of the considered

problem is to allow cuboids to overlap to a certain extent. This is because of the fact that

it is not necessary to occupy the entire task volume exclusively when performing some

tasks. Besides, some tasks can be performed at exclusively different times. In an initial

base scenario, it is assumed that only side-to-side overlap between cuboids is allowed,

while vertical overlap is prohibited. Overlap percentages between all pairs of cuboids are

required before the optimization can be executed and are computed based on the

probabilistic usage of the volume for a task [1]. Allowing overlap also presents the

opportunity to further minimize the volume of the module since the gradient cuboids are

allowed to share space. This problem variant can be identified as the overlap cuboid

packing problem (OCPP).

 It should be noted that the conventional cuboid packing problem is NP-hard.

Adding overlap will create extra complexity. Therefore, one big issue with finding an

optimal solution to this problem is the computational effort that is required to find an

optimal solution. Although the problem of interest may not sound difficult for only a few

items, (in which many feasible solutions still exist), it can become much more

complicated very quickly as the number of items to pack grows. There are numerous

heuristic methods that can provide solutions in a reasonable amount of time. However,

heuristic methods fail to guarantee an optimal solution, but are preferred by many

3

decision makers due to their computational efficiency. Nonetheless it is desired to find an

optimal solution via exact methods and this research aims at not only proposing exact

formulations for the overlap packing problem but also alleviating computational burden

to help improve the convergence rate of the solution method. This thesis is organized as

follows.

In Chapter 2, an overview of existing literature within the problem domain of

packing optimization will be discussed. In Chapter 3, the MILP will be formulated in the

base case where the dimensions of the module are unbounded. Also, additional

constraints will be introduced that allow for the other layout designs mentioned earlier to

be constructed. In Chapter 4, a computational study will be presented, including analysis

on the base model efficiency for small-scale and large-scale problems by using randomly

generated cuboids, as well as comparing various layout design alternatives based on the

weighted preference between adjacency and volume. In Chapter 5, model enhancements

and reformulations to the base model will be introduced that are intended to reduce the

computational efforts. In Chapter 6, an additional computational study will be presented,

including a comparison between the MILP without the time-saving constraints and the

MILP with the time-saving constraints. In Chapter 7, a conclusion to this research will be

presented, as well as to discuss further extensions to this research.

4

CHAPTER 2: LITERATURE REVIEW

Extensive research has been performed in the field of packing problems with the

primary objective of minimizing the volume of a container that holds a set of items.

Cuboid packing problems can be applied to various industries due to their broad

applicability, primarily in manufacturing and distribution, to assist in minimizing

logistics costs [2]. While packing cuboids in a minimally sized container is the goal of

packing problems there can be additional requirements depending on the application of

the problem. Examples of such requirements include ensuring vertical stability such that

items are placed on the base of the container or above other items, arranging items such

that edges of each item are parallel or perpendicular to the container, and enabling

rotation, which is dependent on the type of objects that are packed. Various problems

may require additional or fewer constraints depending on its context. Efforts have been

made to categorize such various types of packing problems to assist in determining which

problem type is most applicable for a certain situation. As a result of these efforts, a

typology was developed by a group of researchers.

According to [5], packing problems can be modeled under two distinct

frameworks both with unique objectives. The first framework is known as output

maximization, which follows the concept of maximizing the assignment of a set of items

to a large container of limited size (i.e., pack as many items into a container as possible).

The second framework is known as input minimization, which follows the concept of

assigning a set of items while minimizing the dimensions of the large container (i.e., pack

all items of interest into a container such that the size of the container is minimized).

5

Although both frameworks are slightly different from one another the underlying concept

is similar which is packing a set of items into a container.

In general, there are three cases to describe the relationship between items that are

to be packed. First, all items are identically sized to one another so that they possess the

same dimensions (identical items). Second, items can be categorized such that items

having same dimensions are grouped together in the same category while items from

different categories have different sizes (weakly heterogenous assortment). Third, items

are all treated as individual from one another even if there exist a small number of items

that are identical to one another (strongly heterogenous assortment). For the third case, it

makes sense to treat all items as unique from another since it may not be worth the effort

to categorize the items if only a few of them are identical to one another. To expand upon

the nature of items to be packed there is no restriction as to what the shape of the items

can be. In the two-dimensional case, items can be rectangular, circular, etc. and in the

three-dimensional case items can be rectangular prisms, spherical, etc. It is also possible

for items to have irregular shapes [5].

Within the problem domain of packing optimization, there exist several problem

types that can be applied depending on the context of a given problem. According to [5],

these problem types include the identical item packing problem, placement problem,

knapsack problem, open dimension problem, cutting stock problem, and the bin packing

problem (where the first three problem types are classified as output maximization

problems, and the rest are classified as input minimization problems). The identical item

packing problem involves packing a set of identical items into a container. The placement

problem involves packing a set of items belonging to multiple categories, where

6

categories are formed such that identical items are in the same category, into a container.

The knapsack problem involves packing a set of items into a container with a fixed size.

Assuming that all items cannot be packed into the container only a subset can be placed

into the container such that the total value of packed items is maximized. The open

dimension problem involves packing a set of items into a container that can have a

variable size in one or more dimensions. In this type of problem, it is desired to fit all

items into the container while changing one or more dimensions of the container such

that its total volume is minimized. In the context of the packing problem, the cutting

stock problem can be interpreted as packing multiples of assorted items into a set of

containers with minimally wasted space. The bin packing problem is a special case of the

cutting stock where assorted items are packed in a way that the total number of

identically-sized containers is minimized.

In complexity theory, there are two distinct classes that are used to classify

problems, P and NP [31]. Members of class P can be solved in polynomial time, whereas

it has not been determined whether members of class NP are solvable in polynomial time

of the problem size [31]. There are certain problems belonging to NP that by default

require all similar problems to belong to the same class. Problems that have this

characteristic are known as NP-complete [31]. If it can be proven that a problem

belonging to NP requires exponential time to solve, an NP-complete problem will require

it as well [31]. Similarly, the complexity of algorithms can be classified by their solution

times and/or storage requirements. Exponential time algorithms consume exponential

time of the problem size and require for a large solution space of exponential size if

searched exhaustively, which is referred to as a brute-force search [31]. Polynomial time

7

algorithms are more useful due to their efficiency, whereas exponential time algorithms

are rarely useful due to how computationally demanding they are [31]. When proving that

an algorithm belongs to class P, it is necessary to provide its performance in the worst-

case on a specific input length, and then analyze each step in the algorithm in order to

verify that it can be implemented in polynomial time on a deterministic model [31].

Packing problems in the two-dimensional case have been deemed to be NP-complete [3],

as well as in the three-dimensional case where the height of the container is unbounded

[4]. As a result, heuristic methods are more predominant for the packing problem in order

to quickly find a solution.

For many packing optimization problems, various algorithms and heuristic

methods are used to assist in finding a good solution in a reasonable amount of time. In

[11], the largest area first-fit algorithm was formulated in which a set of rectangular

prisms are packed into a container where its height is unbounded. The item with the

highest surface is placed first so the width and length dimensions of the container can be

determined, and then the remaining items are placed accordingly so the height of the

container is minimized. In [12], a tree-search algorithm was formulated which allows for

a set of rectangular prisms to be packed. Computational complexity is reduced using this

algorithm by decomposing the problem into a set of lower dimensional problems, when

appropriate, until a good solution is found. In [13], a simulated annealing algorithm was

formulated that allows for a solution to be found after a finite number of iterations have

been performed, or if an acceptable wasted space threshold is satisfied for a set of

objects. However, by the nature of heuristics, these methods fail to guarantee that an

optimal solution to the problem can be found. Within these algorithms, various solution

8

strategies have been studied including, but not limited to, layering, cutting and residual

space strategies.

The layering strategy requires the container to be separated into a set of layers and

in order to progress to a new layer existing layers must be packed to the maximum

capacity. This allows for items to be placed along the base of the container first, and then

other items are placed above [6]. In [7], a layering strategy was utilized in solving a one-

dimensional packing problem where the width and length of the container are fixed and is

composed of two-dimensional packing problems where items are packed such that the

usage of the surface area for a layer is best utilized. The layering strategy is also known

as a block-building strategy, where the width of the container is filled to maximum

capacity first, then its length and finally its height [19]. In [22], an algorithm was

formulated that packs a set of items, called blocks, inside of a container during each

iteration using a best-fit heuristic while ensuring that a reference length threshold is

satisfied. The reference length is measured for each iteration, like the layering strategy,

until all items are packed into the container.

The cutting strategy requires the container to be cut into horizontal and vertical

strips. Once these strips are made, items are packed into them with the final

representation of the container being classified as a pattern [18]. In [21], a single

dimension open dimension problem was considered where the container is cut into

horizontal and vertical strips. Items are placed within these generated strips until a

solution is found.

 The residual space strategy allows for the generation of small-sized containers to

be generated inside of the large container each time an additional item is packed.

9

Typically when using this strategy, it is required for additional items to be packed along

one of the corner points for each residual space in hopes of minimizing the number of

residual spaces that are created [16]. The residual space strategy is also known as the

bottom-left with fill approach, where it is desired to place the first item at the bottom-left

hand corner of the container and place additional items beside one another until the

container is packed [20].

It is possible for an algorithm to utilize several solution strategies throughout its

entire procedure and are typically known as hybrid algorithms. Hybrid algorithms consist

of multiple stages that need to be solved before a solution can be given and use multiple

analytical tools. A majority of algorithms that are implemented for solving packing

problems are hybrid since further improvement in computational efficiency is common.

In [18], a hybrid heuristic for the two-dimensional bin packing problem was formulated

where the first-stage consists of cutting slips from the container that items can be packed

in, thus creating a pattern, using a linear programming model, and the second-stage

requires an integer program to be solved for minimizing the number of patterns, or bins,

that are used. In [23], the block-building strategy was used for the single container

loading problem. Initially, the empty container is the only space that is available for items

to be packed in. After the first item is packed, new residual spaces are created until no

remaining residual spaces exist.

Many researchers have also utilized genetic algorithms for solving the packing

problem. Genetic algorithms require a particular problem to be solved multiple times in

order to find the best possible solution within a population of solutions [25]. They

typically start with a randomly generated set of chromosomes that represent solutions and

10

focus on the ones that are more likely to reproduce better solutions [25]. Once this

population of chromosomes evolve via genetic operations many solutions can exist and

are compared with one another in selecting the best solution [25]. In [6], a hybrid genetic

algorithm was formulated such that a set of rectangular items need to be packaged in a

large container where its space is used most optimally using a layering strategy. For the

case where one item is above another there must be no lateral overhang meaning that

there should be no empty space surrounding these two items. This helps in using space

most efficiently since it would be computationally difficult to pack another item in a

small empty space. In [19], a genetic algorithm was applied along with bottom-left with

fill and block-building strategies, as well as a greedy heuristic algorithm. The greedy

heuristic allows for the spare space in the container to be minimized and for the weight to

be distributed such that the container remains balanced.

It is also possible to formulate packing optimization models into a constrained

mathematical program such that an optimal solution to the problem is guaranteed. In [8],

an integer program was formulated for the strip packing problem in two dimensions. In

[15], a mathematical linear model was formulated which allows for various constraints to

be considered including container weight limit, load stability, weight distribution and the

fragility of items, while minimizing the unused volume of the container. Depending on

the formulation of the model it is possible for the container to be rectangular or a

truncated parallelepiped. In [2], a highly non-linear and non-convex mixed-integer

program was formulated where the objective function is to minimize the volume of an

unbounded container. Since this problem is non-linear it is difficult to find an optimal

solution to the problem even when existing numerical approximation techniques and

11

algorithms are used. As a result, a reformulated objective function was suggested that

reduces it to only a single variable, resulting in a quadratic objective function [2]. The

packing of circular and spherical items is also a popular research area. In literature, the

container can be considered in two- and three-dimensions, where the container can have a

square, rectangular, or circular region [26]. A nonlinear programming model was

formulated to solve this problem in two-dimensions using an energy function, such that it

is minimized subject to items being packed inside of the square without overlap [27]. In

[28, 29], researchers were able to formulate non-linear programming models in three-

dimensions where the container has an unbounded height and can take the shape of a

parallelepiped and a right circular cylinder where identical spheres are packed. In [30], a

similar model was proposed for non-identical spheres being packed into a parallelepiped.

Similar to packing rectangular shaped items, heuristic algorithms are more predominant

as a solution tool for solving this problem variant.

There exist algorithms and mathematical models that can assist in finding a

solution to items of irregular shape, where it is not possible to classify them with any

known geometrical shape. Irregular shapes can be represented as convex or non-convex

polygons, with the latter situation making the problem more difficult. Within [17], two

mixed-integer linear programming models were formulated that provide a solution to the

strip packing problem where items of irregular shape can be considered. For each

irregularly shaped item they can be broken up into a set of convex polygons. In [24],

irregular shaped items can be packed by bounding them in an arbitrary cuboid such that

the entire item is placed inside and the dimensions of the cuboid are minimized.

Orientation of the items are considered as a result and are loaded into the container using

12

bottom-left with fill and find-face algorithms. In [20], a hybrid algorithm is presented that

is composed of two methods. The first method uses the bottom-left with fill strategy and

uses simple geometric tools to speed up the computational result. The second method

consists of a genetic algorithm where the best solution can be found as its population

expands

Due to the computational complexity of packing problems it is desired to reduce

the computational burden that is experienced when solving the problem. Noting that

packing problems are typically formulated as MILPs, one mathematical modeling

technique of interest is to add valid inequalities in order to tighten the linear

programming (LP) relaxation of the MILP. In general, an inequality is said to be valid if

it is satisfied by all other possible solutions that belong to the feasible region [9]. The

benefit of implementing valid inequalities into a mathematical model allows for the

feasible region to shrink in size, or tighten, while ensuring that the original problems

constraints are still enforced. Tightening the feasible region may lead to reduced

computational times. It is possible to formulate valid inequalities by understanding the

problem of interest and the structure of the model. However, there exists more

mathematically rigorous techniques for generating constraints of this type. In [10], a

general procedure is proposed for generating valid inequalities for various integer

programs.

As a result of reviewing relevant literature, it was noticed that there is a common

objective of minimizing container volume, which is similar to maximizing the utilization

of the container. The minimization of container volume can be accomplished by fixing

two-dimensions of the container and minimizing the free dimension, or by solving a

13

highly non-convex problem that requires heavy computational effort. Furthermore, none

of the reviewed packing literature considers overlapping between items to be packed.

Also, adjacency requirements for items do not seem to be prevalent in literature which

results in packing layouts where things appear to be randomly placed. In this research,

however, it is desired to allow overlap between gradient cuboids in order to further

minimize the dimensions of the spacecraft by allowing certain task volumes to share

space. It is also desired to enforce adjacency requirements between task volumes based

on the decision makers’ preference, which will ultimately result in packing (i.e., layout

designs) that are more efficient in volume utilization and are astronaut friendly.

14

CHAPTER 3: PROBLEM DESCRIPTION

In this chapter, an MILP is proposed in order to generate an arrangement of

gradient cuboids that are to be packed inside of the module. To formulate this problem

under the general setting, consider N gradient cuboids that need to be packed in the

module. The shape of the gradient cuboids and the module are rectangular where each

cuboid 𝑖 = 1,… ,𝑁 is characterized by its length (𝑙𝑖), width (𝑤𝑖), and height (ℎ𝑖), with

designated orientation as illustrated in Figure 1.

Figure 1: Example of gradient cuboid

Recall that gradient cuboids correspond to the various types of tasks. Hence, the

size of a cuboid depends on the volume required to perform the task. Certain types of

tasks can be performed simultaneously and multiple identically-size cuboids are needed

for such tasks.

The performance criteria for the OCPP are the total volume of the container and

the extent of adjacency between gradient cuboids. It is obvious that the volume of the

module is the product of the total distance along the 𝑥-, 𝑦-, and 𝑧-axis. As mentioned

(𝑥𝑖, 𝑦𝑖, 𝑧𝑖
𝑙𝑖

𝑤𝑖

ℎ𝑖

15

earlier when referencing [2], including the actual volume of the module results in a

highly non-linear model that is hard to solve. In order to overcome this issue, it is

proposed to include the estimated volume of the module in the objective function. The

estimated volume can be formally stated as the sum of all distances across the 𝑥-, 𝑦-, and

𝑧-axis. Including this sum in the objective function will result in the MILP to attempt to

minimize each dimension of the module, which is similar to minimizing its volume. The

total distance between cuboid i and cuboid j is measured as the Manhattan distance, or the

𝑙1 norm between their respective center points. In order to enforce that the total distance

between cuboid i and cuboid j is minimized, penalties will be assigned to the decision

variables in the objective function that are associated with all pairs where index i is less

than j. However, it is not necessary for every pair of gradient cuboids to be adjacent to

one another. A higher penalty indicates that it is more important for cuboid i and cuboid j

to be adjacent, and a lower penalty indicates that it is less important.

Note that having two objectives results in a bi-objective optimization model. A

widely practiced approach for a bi-objective optimization model is scalarization. In this

study, a weight factor, 𝛼 ∈ (0,1 , is applied to the adjacency measure, where a higher

weight implies that a relatively higher priority is given to minimizing the adjacency

measure.

Several assumptions will now be stated that influence the structure of the MILP.

Within this model, it is possible for gradient cuboids to be rotated 90 degrees along the 𝑥-

 𝑦 plane (Assumption 1). Only rotation along the 𝑥-𝑦 plane is permitted in order to

guarantee that the gradient cuboid is always standing upright. This assumption addresses

possible gravity that is generated within the module. Even without gravity, having a fixed

16

vertical orientation may help astronauts navigate as they are used to it on Earth. Also, it is

only possible for overlap between gradient cuboids to occur along the 𝑥- and 𝑦-axis

(Assumption 2). Some gradient cuboids may require various types of equipment to be

placed along its base, so it is necessary to guarantee that the base of the gradient cuboid

will not share space with any other gradient cuboids. Next, there is a special type of

gradient cuboid that corresponds to the ingress/egress task, and hence, must be connected

to the wall of the module (Assumption 3). This assumption is intuitive since the only way

for astronauts to enter/exit the module is through one of its walls.

 The general base model will be first formulated where the dimensions of the

module are unbounded. Toward the end of the chapter, additional constraints will be

introduced to the base model so that additional layout design alternatives can be

constructed. Before the general model can be introduced, it is necessary to formally state

the notation that will be used for various parameters and decision variables that are

included in the MILP. The following notations will be used to denote problem parameters

and variables:

(𝑤𝑖, 𝑙𝑖, ℎ𝑖 : parameters representing the width, length, and height of cuboid i.

𝑀 ≫ 1: parameter representing a large constant.

𝑜𝑖𝑗: parameter representing allowed overlap percentage between cuboid 𝑖 and cuboid

𝑗. This parameter is not orientation specific, meaning that overlap between cuboids 𝑖 and

𝑗 is applied in any direction.

 𝛼 ∈ (0, 1 : parameter representing the weighting factor for the adjacency

measurements. Accordingly, (1 − 𝛼 represents the weighting factor for the size of the

container.

17

𝐴𝑖𝑗: parameter representing penalty proportional to the distance between cuboids i

and j. This parameter will address adjacency requirements between cuboids 𝑖 and 𝑗,

where a larger value of 𝐴𝑖𝑗 implies a proximity between cuboids 𝑖 and 𝑗 is desired.

(𝑋, 𝑌, 𝑍 : continuous variables representing the dimensions of the cuboid container.

(xi, yi, zi): continuous variables representing the coordinates of the reference point of

cuboid 𝑖 in three-dimensional Cartesian coordinate system (𝑥, 𝑦, 𝑧) (see Figure 1 for the

reference point of an example cuboid).

The following binary variables represent relative location of cuboid i with respect to

cuboid j, while not infringing overlap allowance:

𝑝𝑖𝑗 = 1 if cuboid 𝑖 is to the left of 𝑗; otherwise 𝑝𝑖𝑗 = 0.

𝑞𝑖𝑗 = 1 if cuboid 𝑖 is in front of 𝑗; otherwise 𝑞𝑖𝑗 = 0.

𝑟𝑖𝑗 = 1 if cuboid 𝑖 is above 𝑗; otherwise 𝑟𝑖𝑗 = 0.

The following binary variables represent the orientation of cuboid i with respect to

the 𝑥-axis:

𝐼𝑖
𝑤 = 1 if cuboid 𝑖’s width is parallel to 𝑥-axis; otherwise 𝐼𝑖

𝑤 = 0.

The following binary variables represent the relative orientation of cuboid i and

cuboid j with respect to the 𝑥-axis:

𝐼𝑖𝑗
𝑓𝑔

= 1 if cuboid 𝑖’s width or length, i.e., (𝑓 ∈ {𝑤, 𝑙}), is parallel to the 𝑥-

axis and cuboid 𝑗’s width or length, i.e., 𝑔 ∈ {𝑤, 𝑙}, is parallel to the 𝑥-axis, otherwise

𝐼𝑖𝑗
𝑓𝑔

= 0. The interpretation of these variables is demonstrated in Figure 2.

18

Figure 2: Binary variables representing orientaion of cuboids i and j with respect to the 𝑥-

axis. 1) When the binary variable, 𝐼𝑖𝑗
𝑤𝑤, is equal to 1, the widths of both cuboids 𝑖 and 𝑗

are parallel to the 𝑥-axis. 2) When the binary variable, 𝐼𝑖𝑗
𝑤𝑙, is equal to 1, the width of

cuboid i and the length of cuboid j are parallel to the 𝑥-axis. 3) When the binary

variable, 𝐼𝑖𝑗
𝑙𝑤, is equal to 1, the length of cuboid i and the width of cuboid j are parallel to

the 𝑥-axis. 4) When the binary variable, 𝐼𝑖𝑗
𝑙𝑙, is equal to 1, the lengths of cuboids i and j

are parallel to the 𝑥-axis.

The following binary variables determine the wall of the container to which the

hatch cuboid is attached:

𝐼𝐻
𝑥 = 1 if the hatch cuboid is attached to the 𝑦-𝑧 plane; otherwise 𝐼𝐻

𝑥 = 0.

𝐼𝐻
𝑦

 = 1 if the hatch cuboid is attached to the 𝑥-𝑧 plane; otherwise 𝐼𝐻
𝑦

 = 0.

𝐼𝐻
𝑧 = 1 if the hatch cuboid is attached to the 𝑥-𝑦 plane; otherwise 𝐼𝐻

𝑧 = 0.

(𝑐𝑖
𝑥, 𝑐𝑖

𝑦
, 𝑐𝑖

𝑧): continuous variables representing the coordinates of the center point

of cuboid 𝑖.

𝑑𝑖𝑗: continuous variables indicating the distance between cuboids i and j

measured as ‖(𝑐𝑖
𝑥, 𝑐𝑖

𝑦
, 𝑐𝑖

𝑧) − (𝑐𝑗
𝑥, 𝑐𝑗

𝑦
, 𝑐𝑗

𝑧)‖
1
.

Using the notation defined above, the proposed mixed-integer program (MILP) of

the base model of the OCPP can be presented as follows:

19

Minimize 𝛼 ∑ ∑ 𝐴𝑖𝑗𝑑𝑖𝑗
𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1 + (1 − 𝛼 (𝑋 + 𝑌 + 𝑍 (1)

subject to

𝑥𝑗 ≥ 𝑥𝑖 − 𝑀(1 − 𝑝𝑖𝑗 + (𝑤𝑖 − min{. 01𝑜𝑖𝑗𝑤𝑖 , .01 𝑜𝑗𝑖𝑤𝑗})𝐼𝑖𝑗
𝑤𝑤

+ (𝑤𝑖 − min{. 01𝑜𝑖𝑗𝑤𝑖, .01𝑜𝑗𝑖𝑙𝑗})𝐼𝑖𝑗
𝑤𝑙 + (𝑙𝑖 − min{. 01𝑜𝑖𝑗𝑙𝑖, .01𝑜𝑗𝑖𝑤𝑗})𝐼𝑖𝑗

𝑙𝑤

+ (𝑙𝑖 − min{.01𝑜𝑖𝑗𝑙𝑖, .01𝑜𝑗𝑖𝑙𝑗})𝐼𝑖𝑗
𝑙𝑙 ∀ 𝑖, 𝑗 𝑖 ≠ 𝑗 (2)

𝑦𝑗 ≥ 𝑦𝑖 − 𝑀(1 − 𝑞𝑖𝑗) + (𝑙𝑖 − min{. 01𝑜𝑖𝑗𝑙𝑖, .01𝑜𝑗𝑖𝑙𝑗})𝐼𝑖𝑗
𝑤𝑤

 + (𝑙𝑖 − min{. 01𝑜𝑖𝑗𝑙𝑖, .01𝑜𝑗𝑖𝑤𝑗})𝐼𝑖𝑗
𝑤𝑙 + (𝑤𝑖 − min{. 01𝑜𝑖𝑗𝑤𝑖, .01 𝑜𝑗𝑖𝑙𝑗})𝐼𝑖𝑗

𝑙𝑤

 + (𝑤𝑖 − min({.01𝑜𝑖𝑗𝑤𝑖, .01 𝑜𝑗𝑖𝑤𝑗}))𝐼𝑖𝑗
𝑙𝑙 ∀ 𝑖, 𝑗 𝑖 ≠ 𝑗 (3)

𝑧𝑗 ≥ 𝑧𝑖 + ℎ𝑖 − 𝑀(1 − 𝑟𝑖𝑗 ∀ 𝑖, 𝑗 𝑖 ≠ 𝑗 (4)

𝑝𝑖𝑗 + 𝑝𝑗𝑖 + 𝑞𝑖𝑗 + 𝑞𝑗𝑖 + 𝑟𝑖𝑗 + 𝑟𝑗𝑖 ≥ 1 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (5)

𝐼𝑖𝑗
𝑤𝑤 ≤ 𝐼𝑖

𝑤 ∀ 𝑖, 𝑗 𝑖 ≠ 𝑗 (6)

𝐼𝑖𝑗
𝑤𝑤 ≤ 𝐼𝑗

𝑤 ∀ 𝑖, 𝑗 𝑖 ≠ 𝑗 (7)

𝐼𝑖𝑗
𝑤𝑤 ≥ 𝐼𝑖

𝑤 + 𝐼𝑗
𝑤 − 1 ∀ 𝑖, 𝑗 𝑖 ≠ 𝑗 (8)

𝐼𝑖𝑗
𝑤𝑙 ≤ 𝐼𝑖

𝑤 ∀ 𝑖, 𝑗 𝑖 ≠ 𝑗 (9)

𝐼𝑖𝑗
𝑤𝑙 ≤ 1 − 𝐼𝑗

𝑤 ∀ 𝑖, 𝑗 𝑖 ≠ 𝑗 (10)

𝐼𝑖𝑗
𝑤𝑙 ≥ 𝐼𝑖

𝑤 + (1 − 𝐼𝑗
𝑤) − 1 ∀ 𝑖, 𝑗 𝑖 ≠ 𝑗 (11)

𝐼𝑖𝑗
𝑙𝑤 ≤ 1 − 𝐼𝑖

𝑤 ∀ 𝑖, 𝑗 𝑖 ≠ 𝑗 (12)

𝐼𝑖𝑗
𝑙𝑤 ≤ 𝐼𝑗

𝑤 ∀ 𝑖, 𝑗 𝑖 ≠ 𝑗 (13)

 𝐼𝑖𝑗
𝑙𝑤 ≥ (1 − 𝐼𝑖

𝑤 + 𝐼𝑗
𝑤 − 1 ∀ 𝑖, 𝑗 𝑖 ≠ 𝑗 (14)

𝐼𝑖𝑗
𝑙𝑙 ≤ 1 − 𝐼𝑖

𝑤 ∀ 𝑖, 𝑗 𝑖 ≠ 𝑗 (15)

𝐼𝑖𝑗
𝑙𝑙 ≤ 1 − 𝐼𝑗

𝑤 ∀ 𝑖, 𝑗 𝑖 ≠ 𝑗 (16)

20

𝐼𝑖𝑗
𝑙𝑙 ≥ (1 − 𝐼𝑖

𝑤 + (1 − 𝐼𝑗
𝑤 + 1 ∀ 𝑖, 𝑗 𝑖 ≠ 𝑗 (17)

𝑋 ≥ 𝑥𝑖 + 𝑙𝑖 + (𝑤𝑖 − 𝑙𝑖 𝐼𝑖
𝑤 ∀ 𝑖 (18)

𝑌 ≥ 𝑦𝑖 + 𝑤𝑖 + (𝑙𝑖 − 𝑤𝑖 𝐼𝑖
𝑤 ∀ 𝑖 (19)

𝑍 ≥ 𝑧𝑖 + ℎ𝑖 ∀ 𝑖 (20)

𝑥𝑖 ≤ 𝑀(1 − 𝐼𝐻
𝑥 where 𝑖 represents the index of the hatch cuboid (21)

𝑦𝑖 ≤ 𝑀(1 − 𝐼𝐻
𝑦
 where 𝑖 represents the index of the hatch cuboid (22)

𝑧𝑖 ≤ 𝑀(1 − 𝐼𝐻
𝑧 where 𝑖 represents the index of the hatch cuboid (23)

𝐼𝐻
𝑥 + 𝐼𝐻

𝑦
+ 𝐼𝐻

𝑧 = 1 (24)

𝑐𝑖
𝑥 = 𝑥𝑖 +

𝑤𝑖

2
∗ 𝐼𝑖

𝑤 +
𝑙𝑖

2
∗ (1 − 𝐼𝑖

𝑤 ∀ 𝑖 (25)

𝑐𝑖
𝑦
= 𝑦𝑖 +

𝑙𝑖

2
∗ 𝐼𝑖

𝑤 +
𝑤𝑖

2
∗ (1 − 𝐼𝑖

𝑤 ∀ 𝑖 (26)

𝑐𝑖
𝑧 = 𝑧𝑖 +

ℎ𝑖

2
 ∀ 𝑖 (27)

𝑑𝑖𝑗 ≥ 𝑐𝑖
𝑥 − 𝑐𝑗

𝑥 + 𝑐𝑖
𝑦
− 𝑐𝑗

𝑦
+ 𝑐𝑖

𝑧 − 𝑐𝑗
𝑧 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (28)

𝑑𝑖𝑗 ≥ −(𝑐𝑖
𝑥 − 𝑐𝑗

𝑥 + 𝑐𝑖
𝑦
− 𝑐𝑗

𝑦
+ 𝑐𝑖

𝑧 − 𝑐𝑗
𝑧 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (29)

𝑑𝑖𝑗 ≥ 𝑐𝑖
𝑥 − 𝑐𝑗

𝑥 − (𝑐𝑖
𝑦
− 𝑐𝑗

𝑦
 + 𝑐𝑖

𝑧 − 𝑐𝑗
𝑧 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (30)

𝑑𝑖𝑗 ≥ 𝑐𝑖
𝑥 − 𝑐𝑗

𝑥 + 𝑐𝑖
𝑦
− 𝑐𝑗

𝑦
− (𝑐𝑖

𝑧 − 𝑐𝑗
𝑧 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (31)

𝑑𝑖𝑗 ≥ −(𝑐𝑖
𝑥 − 𝑐𝑗

𝑥) − (𝑐𝑖
𝑦
− 𝑐𝑗

𝑦
 + 𝑐𝑖

𝑧 − 𝑐𝑗
𝑧 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (32)

𝑑𝑖𝑗 ≥ −(𝑐𝑖
𝑥 − 𝑐𝑗

𝑥 + 𝑐𝑖
𝑦
− 𝑐𝑗

𝑦
− (𝑐𝑖

𝑧 − 𝑐𝑗
𝑧 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (33)

𝑑𝑖𝑗 ≥ 𝑐𝑖
𝑥 − 𝑐𝑗

𝑥 − (𝑐𝑖
𝑦
− 𝑐𝑗

𝑦
 − (𝑐𝑖

𝑧 − 𝑐𝑗
𝑧 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (34)

𝑑𝑖𝑗 ≥ −(𝑐𝑖
𝑥 − 𝑐𝑗

𝑥) − (𝑐𝑖
𝑦
− 𝑐𝑗

𝑦
 − (𝑐𝑖

𝑧 − 𝑐𝑗
𝑧 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (35)

21

𝑥𝑖 , 𝑦𝑖, 𝑧𝑖 ≥ 0 ∀ 𝑖. (36)

As mentioned earlier, the objective function of the MILP consists of two performance

measures: the size of the container and the adjacency requirements. The 𝑙1 norm of (x, y,

z) is used to measure the size of the container, while the weighted sum of distances

between each pair of cuboids is used to measure the adjacency requirements. The latter is

designed to penalize the objective function for having large distances between cuboids

that are required to have proximity. As mentioned earlier, the penalty 𝐴𝑖𝑗 can be

prescribed based on the proximity requirements.

Constraints (2) and (3) allow the cuboids to overlap each other up to the allowable

overlap percentage between cuboid i and j on the 𝑥- and 𝑦-axis. These conditions indicate

that if cuboid 𝑗 is to the right of, behind of, or above cuboid 𝑖, then the reference point of

cuboid 𝑗 must be greater than or equal to the reference point of cuboid 𝑖 plus the width,

length, or height of cuboid 𝑗, respectively. These constraints also ensure that the

orientation of two cuboids are correctly reflected on the 𝑥-𝑦 plane. Constraint (4) ensures

no cuboids overlap vertically. Constraint (5) ensures that cuboid 𝑖 must be placed to the

left of, to the right of, in front of, behind, below, or above cuboid 𝑗 to guarantee that these

two cuboids are not overlaid more than allowed percentages.

Constraints (6) – (17) represent the relationship between 𝐼𝑖𝑗
𝑓𝑔

 and 𝐼𝑖
𝑤 for 𝑓, 𝑔 ∈

{𝑤, 𝑙}. They can be interpreted as linearization constraints for the following nonlinear

relationship:

𝐼𝑖𝑗
𝑤𝑤 = 𝐼𝑖

𝑤𝐼𝑗
𝑤

𝐼𝑖𝑗
𝑤𝑙 = 𝐼𝑖

𝑤(1 − 𝐼𝑗
𝑤)

22

𝐼𝑖𝑗
𝑙𝑤 = (1 − 𝐼𝑖

𝑤 𝐼𝑗
𝑤

𝐼𝑖𝑗
𝑙𝑙 = (1 − 𝐼𝑖

𝑤 (1 − 𝐼𝑗
𝑤

Constraints (18) – (20) ensure that all cuboids are packed inside the container by making

the width, length, and height of the container larger than or equal to the reference point of

each cuboid plus its width, length, and height, respectively. Constraints (21) – (24)

guarantee that the hatch cuboid must be attached to a wall within the container.

The center points for all cuboids are computed and used to measure the distance

between cuboids i and j. Constraints (28) – (35) enforce lower bounds on the distance

between cuboid 𝑖 and cuboid 𝑗. Together with minimizing the objective function, 𝑑𝑖𝑗

results in the 𝑙1-distance between center points of two cuboids. Constraint (36) implies

that the coordinates of the cuboids are non-negative. In case that overlap amongst cuboids

along the 𝑧-axis is allowed, constraint (4) can replaced with (37).

𝑧𝑗 ≥ 𝑧𝑖 + ℎ𝑖 − 𝑀(1 − 𝑟𝑖𝑗 − min(. 01𝑜𝑖𝑗ℎ𝑖 , .01𝑜𝑗𝑖ℎ𝑗) ∀ 𝑖, 𝑗 𝑖 ≠ 𝑗 (37)

If it is desired to further limit any dimension of the container due to design

requirements, additional constraints can be added. In particular, we consider two types of

design requirements, horizontal and vertical. Horizontal layout design requires that the

width and height of the container are limited by a prescribed value 𝛿. On the other hand,

in the vertical design, the width and the length of the container are limited by a threshold

value 𝛿. For the horizontal layout design case, constraints (38) and (40) are necessary.

For the vertical layout design case, constraint (38) and (39) are necessary.

23

𝑋 ≤ 𝛿 (38)

𝑌 ≤ 𝛿 (39)

𝑍 ≤ 𝛿 (40)

 The size of the proposed MILP model can be specified by the number of binary

and continuous variables as well as the number of constraints. First, the number of

inequality constraints is given by

𝑓𝑖𝑛𝑒𝑞(𝑁 = 3 + 3 + 3𝑁 + 3𝑁 + 12𝑁(𝑁 − 1 + 4𝑁(𝑁 − 1 + 3𝑁(𝑁 − 1 +
𝑁(𝑁 − 1

2

which is equivalent to:

𝑓𝑖𝑛𝑒𝑞(𝑁 =
39𝑁2 − 27𝑁 + 12

2
.

From (24) – (27), the number of equality constraints included in the base model is

𝑓𝑒𝑞(𝑁 = 3𝑁 + 1. The number of binary variables included in the base model can be

calculated by

𝑓𝑏𝑖𝑛𝑎𝑟𝑦(𝑁 = 3 + 𝑁 + 4𝑁(𝑁 − 1 + 3𝑁(𝑁 − 1

which is equivalent to:

𝑓𝑏𝑖𝑛𝑎𝑟𝑦(𝑁 = 7𝑁2 − 6𝑁 + 3.

The number of continuous variables included in the base model is measured by

𝑓𝑐𝑜𝑛𝑡(𝑁 = 3 + 3𝑁 + 3𝑁 +
𝑁(𝑁 − 1

2

which is equivalent to:

𝑓𝑐𝑜𝑛𝑡(𝑁 =
𝑁2 + 11𝑁 + 6

2
.

24

Taking the sum of 𝑓𝑖𝑛𝑒𝑞 and 𝑓𝑒𝑞 will yield the total number of constraints and

taking the sum of 𝑓𝑏𝑖𝑛𝑎𝑟𝑦 and 𝑓𝑐𝑜𝑛𝑡 will yield the total number of variables in the base

model. Now that the formulation to the MILP has been presented, Chapter 4 will consist

of a numerical study that was performed in order to demonstrate the model’s ability to

produce layout designs based on various design requirements.

25

CHAPTER 4: COMPUTATIONAL STUDY

 In this chapter, a computational study will be presented where the computational

efficacy of the proposed model was analyzed on a set of test problems consisting of

small- and large-scale problems. The small-scale problems were used to demonstrate how

the MILP model effectively generates layout designs under different design assumptions,

including different values of the weighting factor, 𝛼. On the other hand, the large-scale

problem considers a realistic scenario where all necessary gradient cuboids are included.

The small-scale problem will be presented first and then the large-scale problem will

follow afterwards.

4.1 Small-Scale Computational Study

In order to demonstrate how the MILP model generates a layout design, the

proposed design model was implemented on a test problem that consists of seven

gradient cuboids including one exercise, one hygiene, one waste collection and

management, three sleep, and one hatch cuboids. The dimensions of these five types of

task volumes were provided by the gradient cuboid algorithm of SOLV [1] and are

displayed in Table 1. Maximum pairwise overlap percentages between task volumes are

presented in Table 2. In order to incorporate adjacency requirements for the MILP,

several categories were used to describe the severity of adjacency between a pair of

gradient cuboids. The categories for adjacency requirements and their respective penalty

values used in the numerical example are displayed in Table 3. The assignment of

adjacency requirements for each pair of task volumes is displayed in Table 4.

26

Table 1: Dimension of gradient cuboids – Five task volumes

Task Volume Width Length Height

Exercise 2.92 1.43 2.60

Hygiene 1.42 1.99 2.46

Waste Collection

and Management
3.37 1.35 2.49

Sleep 1.16 1.23 2.70

Hatch 2.69 1.54 1.95

Table 2: Maximum pairwise overlap percentage (%)

Exercise Hygiene

Waste

Collection and

Management

Sleep Hatch

Exercise - 6.37 6.37 6.37 6.37

Hygiene 6.37 - 11.78 11.78 11.78

Waste

Collection and

Management

6.37 11.78 - 13.01 13.01

Slee 6.37 11.78 13.01 - 6.6

Hatch 6.37 11.78 13.01 6.6 -

Table 3: Adjacency requirement categories

Category

Index Description

Penalty

Value

(𝐴𝑖𝑗

3 Proximity Desired 50

2 Some Proximity Desired 10

1 Neutral 1

0 Separation Desired 0

27

Table 4: Adjacency requirements

Exercise Hygiene

Waste

Collection and

Management

Sleep Hatch

Exercise 1 10 1 0 1

Hygiene 10 1 50 10 1

Waste

Collection and

Management

1 50 1 1 1

Sleep 0 10 1 1 1

Hatch 1 1 1 1 1

To demonstrate how different design variations produce different layouts, this

study ran the base design model, as well as both design variations of the single-

dimensional packing problem (horizontal and vertical layout designs) with and without

vertical overlap. For the single-dimensional packing optimization, the value of 𝛿 was

selected as 4 and 5, resulting in two layouts for both layout designs. Weighting factor 𝛼

in the objective function was set to 0.5 to obtain solutions from the models to be

evaluated. In total, 10 layout designs were considered, as displayed in Table 5. The MILP

models were created using Matlab [32] and solved by calling a commercial MILP solver,

Gurobi Optimizer 7.5 [33]. The resulting 10 layouts are visually displayed in Figure 3.

28

Table 5: Layout design configurations

Design Name
Vertical

overlap

Horizontal

layout

Vertical

layout
δ

overz_cuboid x

overz_horizontal_4 x x 4

overz_horizontal_5 x x 5

overz_vertical_4 x x 4

overz_vertical_5 x x 5

solidz_cuboid

solidz_horizontal_4 x 4

solidz_horizontal_5 x 5

solidz_vertical_4 x 4

solidz_vertical_5 x 5

(a) overz_cuboid and solidz_cuboid

(𝑋, 𝑌, 𝑍): (4.2424, 5.3556, 2.7)

Container volume: 61.3456

(b) overz_horizontal_4 and

solidz_horizontal_4

(𝑋, 𝑌, 𝑍): (3.7634, 6.4886, 2.7)

Container volume: 65.9318

Figure 3: 10 layout designs for small-scale problem

29

(c) overz_horizontal_5 and

solidz_horizontal_5

(𝑋, 𝑌, 𝑍): (4.2424, 5.3556, 2.7)

Container volume: 61.3456

(d) overz_vertical_4

(𝑋, 𝑌, 𝑍): (3.7634, 3.6862, 5.1345)

Container volume: 71.2291

(e) overz_vertical_5

(𝑋, 𝑌, 𝑍): (3.6862, 3.7634, 5.1345)

Container volume: 71.2291

(f) solidz_vertical_4

(𝑋, 𝑌, 𝑍): (3.7634, 3.6862, 5.3)

Container volume: 73.5250

Figure 3, continued

30

(g) solidz_vertical_5

(𝑋, 𝑌, 𝑍): (3.7634, 3.6862, 5.3)

Container volume: 73.5250

Figure 3, continued

To check computational times consumed to generate layout designs, a set of 19

scenarios were additionally created in which the dimensions of the gradient cuboids are

randomly generated except for the hatch gradient cuboid. To be more specific, the

dimensions of each cuboid were generated using uniform random variables, allowing

20% of variation from the original dimensions from Table 1. For example, a gradient

cuboid representing ‘Exercise’ has the width of 2.92. In a new scenario, the width of the

exercise task volume is generated from [2.92 − 0.2(2.92 , 2.92 + 0.2(2.92]. In total,

20 scenarios (one original and 19 randomly generated) were tested for each layout design.

After all scenarios for a layout design variant are completed, solver times from each

scenario were measured and averages of 20 scenarios are displayed in Table 6. Overall,

the MILP was able to generate a layout design for seven cuboids within 5.01 to 1,055.76

seconds.

31

Table 6: Average solution time for scenarios

Layout Design

Average

Solution

Time

(seconds)

Standard

Deviation
Max. Min.

overz_cuboid 245.25 225.71 791.64 52.84

overz_horizontal_4 16.27 12.07 56.26 5.30

overz_horizontal_5 98.59 103.59 405.38 13.25

overz_vertical_4 33.64 20.61 91.68 12.94

overz_vertical_5 74.10 81.20 315.99 25.39

solidz_cuboid 304.74 282.40 1055.76 45.72

solidz_horizontal_4 14.80 7.23 39.21 5.01

solidz_horizontal_5 76.35 98.86 431.28 9.24

solidz_vertical_4 41.78 76.97 365.81 11.53

solidz_vertical_5 68.94 61.83 265.21 23.11

Recall that 𝛼 was 0.5 for the small-scale problem that was presented earlier this

chapter. To ascertain the effect of different values of 𝛼, the base design was tested with

𝛼 ∈ [.01, .99] in increments of .01. For each value of 𝛼, two performance measures in the

objective function are plotted to display 𝛼 using a Pareto Frontier. The generated layouts

with three values of 𝛼, 0.01, 0.05, 0.99, are displayed in Figure 4, and the Pareto Frontier

is displayed in Figure 5. Observe that the cuboids are more densely packed in (a) of

Figure 4, compared to the layout in (c) of Figure 4, because the size of the container is

given a relatively higher priority in minimization.

32

(a) solidz_cuboid; 𝛼 = 0.01

(b) solidz_cuboid; 𝛼 = 0.5

(c) solidz_cuboid; 𝛼 = 0.99

Figure 4: 10 layout designs for varying levels of 𝛼

33

Figure 5: Pareto frontier

4.2 Large-Scale Computational Study

The large-scale problem consists of twenty-four gradients cuboids including one

exercise, one hygiene, one waste collection and management, four sleep, one crew health

and medical, four private personal activity, one food preparation, one group meet and eat,

one recreation, one suit stowage and maintenance, four radiation shelter, one D&C

console, two onboard research, and one hatch cuboids, which are associated with fourteen

task volumes. The dimensions of these fourteen types of task volumes were provided by

the gradient cuboid algorithm of SOLV [1] and are displayed in Table 7. Adjacency

requirement categories in Table 3 were considered for the large-scale problem as well.

34

Table 7: Dimension of gradient cuboids – Twenty-four task volumes

Task Volume Width Length Height

Exercise 2.92 1.43 2.60

Hygiene 1.42 1.99 2.46

Waste Collection

and Management
3.37 1.35 2.49

Sleep 1.16 1.23 2.70

Crew Health and

Medical
3.21 2.03 2.17

Private Personal

Activity
1.06 1.23 2.43

Food Preparation 2.07 1.95 2.56

Group Meet and Eat 2.52 2.52 2.52

Recreation 2.70 2.13 2.16

Suit Stowage and

Maintenance
2.37 3.11 4

Radiation Shelter 1.07 1.23 2.04

D&C Console 1.87 1.92 2.03

Onboard Research 2.43 1.77 2.43

Hatch 2.69 1.54 1.95

As done for the small-scale problem, we ran the base design model, as well as

both design variations of the single-dimensional packing problem (horizontal and vertical

layout designs) with and without vertical overlap. For the single-dimensional packing

optimization, the value of 𝛿 was selected as 4 and 5, resulting in two layouts for both

layout designs. Weighting factor 𝛼 in the objective function was set to 0.5 to obtain

solutions from the models to be evaluated. In total, 10 layout designs were considered, as

displayed in Table 5. The MILP models were created using Matlab [32] and solved by

Gurobi Optimizer 7.5 [33]. Considering the complexity of the problem that resulted in

more than 1,000 seconds of solution time in a certain small-scale problem, the solution

time limit was set to 4-hours. Solutions of all 10 problems were terminated by this 4-hour

time limit and the optimality gaps were recorded. The resulting 10 layouts are visually

displayed in Figure 6. The optimality gaps are displayed in Table 8.

35

(a) overz_cuboid

(𝑋, 𝑌, 𝑍): (5.4923, 4.8665, 8.3149)

Container volume: 222.243

(b) overz_horizontal_4

(𝑋, 𝑌, 𝑍): (3.666, 17.5517, 4)

Container volume: 257.378

(c) overz_horizontal_5

(𝑋, 𝑌, 𝑍): (4.8706, 8.7526, 4.7906)

Container volume: 204.225

(d) overz_vertical_4

(𝑋, 𝑌, 𝑍): (3.7988, 3.915, 15.3708)

Container volume: 228.599

Figure 6: 10 layout designs for 14 task volumes

36

(e) overz_vertical_5

(𝑋, 𝑌, 𝑍): (5, 4.9682, 8.9569)

Container volume: 222.498

(f) solidz_cuboid

(𝑋, 𝑌, 𝑍): (7.8043, 5.5016, 5.1881)

Container volume: 222.757

(g) solidz_horizontal_4

(𝑋, 𝑌, 𝑍): (3.9452, 15.1367, 4)

Container volume: 238.870

(h) solidz_horizontal_5

(𝑋, 𝑌, 𝑍): (4.9028, 9.909, 5)

Container volume: 242.909

Figure 6, continued

37

(i) solidz_vertical_4

(𝑋, 𝑌, 𝑍): (3.666, 3.9878, 14.2134)

Container volume: 207.790

(j) solidz_vertical_5

(𝑋, 𝑌, 𝑍): (4.8013, 4.4457, 10.2164)

Container volume: 218.070

Figure 6, continued

Table 8: Optimality gap for large-scale problems

Layout Design

Optimality

Gap

overz_cuboid 65.0%

overz_horizontal_4 61.5%

overz_horizontal_5 67.0%

overz_vertical_4 61.2%

overz_vertical_5 61.2%

solidz_cuboid 62.6%

solidz_horizontal_4 60.5%

solidz_horizontal_5 66.0%

solidz_vertical_4 59.4%

solidz_vertical_5 63.4%

Looking at Table 8, it can be noticed that the optimality gaps are rather high after

4 hours for all layout designs. To observe the rate at which the optimality gap decreased

38

throughout the 4-hour time period for each layout design, lower and upper bounds on the

optimal objective values are plotted in Figure 7.

(a) overz_cuboid

(b) overz_horizontal_4

Figure 7: Lower and upper bounds on the optimal objective values for 10 layout designs

39

(c) overz_horizontal_5

(d) overz_vertical_4

Figure 7, continued

40

(e) overz_vertical_5

(f) solidz_cuboid

Figure 7, continued

41

(g) solidz_horizontal_4

(h) solidz_horizontal_5

Figure 7, continued

42

(i) solidz_vertical_4

(j) solidz_vertical_5

Figure 7, continued

 Observing that optimality gaps for large-scale problems remain sizeable, we also

plotted the optimality gaps for small-scale problems to see the pattern of lower and upper

43

bounds on the optimal objective values. Although there is no theoretical basis, the

patterns of optimality gaps for small-scale test problems may help us conjecture how the

optimality gaps of large-scale problems will behave in sustained runs.

(a) overz_cuboid: small-scale

(b) overz_horizontal_4: small-scale

Figure 8: Lower and upper bounds on the optimal objective values for small-scale

problems

44

(c) overz_horizontal_5: small-scale

(d) overz_vertical_4: small-scale

Figure 8, continued

45

(e) overz_vertical_5: small-scale

(f) solidz_cuboid: small-scale

Figure 8, continued

46

(g) solidz_horizontal_4: small-scale

(h) solidz_horizontal_5: small-scale

Figure 8, continued

47

(h) solidz_vertical_4: small-scale

(i) solidz_vertical_5: small-scale

Figure 8, continued

 From the plots, we can observe that the upper bound would remain relatively the

same throughout the optimization once it is stabilized while the lower bound gets closer

to the upper bound. Before closing the chapter, problem sizes between small- and large-

scale problems for the base model are compared in Table 9.

48

Table 9: Comparison of problem sizes of small- and large-scale problems

Small-

Scale

Large-

Scale

of cuboids 7 24

of inequality constraints 867 10914

of equality constraints 22 73

of constraints 889 10987

of binary variables 304 3891

of continuous variables 66 423

of variables 370 4314

Resulting long computation times for solving OCPP motivates us to further

investigate potential model enhancements and reformulations to the MILP in order to

reduce the required computational effort. In the next chapter, additional constraints to the

base model will be introduced in an effort to improve model efficiency. Accordingly, in

Chapter 6, an additional comparative computational study will be presented for the same

small- and large-scale problems defined in this chapter in order to demonstrate the

effectiveness of the enhancement effort.

49

CHAPTER 5: MODEL ENHANCEMENTS

As mentioned earlier, the two-dimensional packing problem is NP-complete.

Noting that OCPP is a generalization of the three-dimensional packing problem, it is

unlikely to find an optimal solution even for a moderately-sized problem. In this chapter,

it is intended to improve the computational effort of the original model by introducing

additional constraints, including equality and valid inequality constraints, as well as by

reformulating certain constraints in the original model. Once these constraints are

formally stated in this chapter, their computational performance will be presented in the

next chapter. In specific, seven types of additional constraints are introduced. Six of these

constraints can be applied to all layout designs, while the remaining constraint is only

applicable for unbounded and vertical layout designs. A discussion as to why this is the

case will be presented once this constraint is introduced.

The first constraint that will be considered is associated with the relative

orientation between a pair of cuboids. As mentioned before, a cuboid can either have its

width face or length face parallel to the 𝑥-axis. Recall that binary variables 𝐼𝑖𝑗
𝑓𝑔

 for f, g ∈

{𝑤, 𝑙} represent the relative orientation between cuboids i and j. Since only one of four

possible relative orientations is to choose, the following constraint can be added for each

pair of i and j:

𝐼𝑖𝑗
𝑤𝑤 + 𝐼𝑖𝑗

𝑤𝑙 + 𝐼𝑖𝑗
𝑙𝑤 + 𝐼𝑖𝑗

𝑙𝑙 = 1 ∀ 𝑖, 𝑗 (41)

This constraint is intended to restrict the solution space, hoping that it reduces the

computational time by tightening the LP relaxation of the problem. This constraint is

implied to hold true in the original model due to (6) – (17), but is not explicitly stated.

Without this explicit constraint enforced, it is possible that unnecessary calculations can

50

be performed to implicitly enforce one of these orientation variables to be equal to 1.

Once the binary orientation variable to be equal to 1 is determined in a branch of the

solution process, it is no longer necessary for any other orientation variables to be

considered in further calculations. A similar case exists for linearization constraints.

The second type of constraints that are introduced are associated with the overlay

between a pair of cuboids. This set of valid inequality constraints are shown below:

𝑝𝑖𝑗 + 𝑝𝑗𝑖 ≤ 1 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (42)

𝑞𝑖𝑗 + 𝑞𝑗𝑖 ≤ 1 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (43)

𝑟𝑖𝑗 + 𝑟𝑗𝑖 ≤ 1 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (44)

Enforcing the first constraint in this set limits one cuboid to be to the left of another

cuboid for any given pair. Recall that 𝑝𝑖𝑗 is equal to 1 if cuboid i is to the left of cuboid j.

If 𝑝𝑖𝑗 is equal to 1, then this implies that cuboid j cannot be to the left of cuboid i, forcing

𝑝𝑗𝑖 to equal 0. Enforcing the second constraint limits one cuboid to be in front of another

cuboid for any given pair. Recall that 𝑞𝑖𝑗 is equal to 1 if cuboid i is in front of cuboid j. If

𝑞𝑖𝑗 is equal to 1, then this implies that cuboid j cannot be in front of cuboid i, forcing 𝑞𝑗𝑖

to equal 0. Enforcing the third constraint limits one cuboid to be above another cuboid for

any given pair. Recall that 𝑟𝑖𝑗 is equal to 1 if cuboid i is above cuboid j. If 𝑟𝑖𝑗 is equal to

1, then this implies that cuboid j cannot be above cuboid i, forcing 𝑟𝑗𝑖 to equal 0.

Intuitively, it makes sense to enforce these constraints since it is not possible for both

indicator variables included in each constraint to be equal to 1. Similar to the previous

constraint type, this set of constraints are implied to hold true in the original model since

these constraints influence the calculation of reference points but were not formally

stated.

51

The third constraint type is associated with orientation variables for a single

cuboid. These constraints will be enforced to influence the orientation of cuboids that are

identical to each other. The third type of constraint is shown below:

𝐼𝑖
𝑤 ≤ 𝐼𝑖+1

𝑤 ≤ ⋯ ≤ 𝐼𝑖+𝑘−1
𝑤 , (45)

where k is the number of cuboids for a task with multiple cuboids. This constraint is only

applicable for the case where a task volume has multiple cuboids. If the indicator variable

for cuboid i is equal to 1 and it belongs to a task volume where there are multiple

cuboids, then this constraint will force the proceeding cuboids after index i included in

this set of cuboids to equal 1 as well. For example, suppose there is a task volume with 3

cuboids (𝑖 ∈ {1,2,3}). If 𝐼1
𝑤 is equal to 1, then both 𝐼2

𝑤 and 𝐼3
𝑤 are equal to 1.

Alternatively, if 𝐼1
𝑤 is equal to 0, then both 𝐼2

𝑤 and 𝐼3
𝑤 don’t necessarily have to equal 1.

Without this constraint in place, it is possible for many combinations of orientation

variables to be activated for a particular task volume. Enforcing this constraint helps

reduce this number of combinations.

Alternative constraints to some of the original constraints will now be introduced.

The first set of constraints are an alternative formulation in representing the distance

between a pair of cuboids and are shown below:

𝑐𝑖
𝑥 − 𝑐𝑗

𝑥 = 𝑑𝑖𝑗
𝑥+

− 𝑑𝑖𝑗
𝑥−

 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (46)

𝑐𝑖
𝑦
− 𝑐𝑗

𝑦
= 𝑑𝑖𝑗

𝑦+

− 𝑑𝑖𝑗
𝑦−

 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (47)

𝑐𝑖
𝑧 − 𝑐𝑗

𝑧 = 𝑑𝑖𝑗
𝑧+

− 𝑑𝑖𝑗
𝑧−

 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (48)

𝑑𝑖𝑗
𝑥+

≥ 0 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (49)

𝑑𝑖𝑗
𝑥−

≥ 0 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (50)

52

𝑑𝑖𝑗
𝑦+

≥ 0 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (51)

𝑑𝑖𝑗
𝑦−

≥ 0 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (52)

𝑑𝑖𝑗
𝑧+

≥ 0 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (53)

𝑑𝑖𝑗
𝑧−

≥ 0 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (54)

Accordingly, 𝑑𝑖𝑗 in the objective function is replaced by 𝑑𝑖𝑗
𝑥+

+ 𝑑𝑖𝑗
𝑥−

+ 𝑑𝑖𝑗
𝑦+

+ 𝑑𝑖𝑗
𝑦−

+

𝑑𝑖𝑗
𝑧+

+ 𝑑𝑖𝑗
𝑧−

. Originally, pairwise distance measurements required 4𝑁(𝑁 − 1 constraints

to be included into the original model. With this alternative approach, 3𝑁(𝑁 − 1

inequality and 3𝑁(𝑁 − 1 /2 equality constraints are necessary. In the alternative

formulation, it can be observed that additional pairwise distance decision variables are

necessary for these constraints to be valid. In particular, 3𝑁(𝑁 − 1 decision variables

are required in this alternative reformulation, while 𝑁(𝑁 − 1 /2 decision variables are

required in the original formulation. These constraints will calculate the 𝑙1 norm distance

between respective center points of cuboids i and j. The purpose of including positive and

negative distance variables is to represent the magnitude of the difference of center points

in each dimension. In conjunction with the revised objective function, one of these two

variables will be forced to be zero. For example, suppose that 𝑐𝑖
𝑥 = 1 and 𝑐𝑗

𝑥 = 5. The

difference between these points in the 𝑥-dimension is -4 = (𝑐𝑖
𝑥 − 𝑐𝑗

𝑥). Since the

nonnegative variables representing the magnitudes in the positive and negative sides,

respectively, are included in the objective function, minimization will force one of them

to be zero. As a result, 𝑑𝑖𝑗
𝑥+

= 0 and 𝑑𝑖𝑗
𝑥−

= 4.

The second set of constraints is another alternative formulation for measuring

distances between a pair of cuboids and is presented below:

53

𝑑𝑖𝑗
𝑥 ≥ 𝑐𝑖

𝑥 − 𝑐𝑗
𝑥 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (55)

𝑑𝑖𝑗
𝑥 ≥ 𝑐𝑗

𝑥 − 𝑐𝑖
𝑥 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (56)

𝑑𝑖𝑗
𝑦

≥ 𝑐𝑖
𝑦
 − 𝑐𝑗

𝑦
 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (57)

𝑑𝑖𝑗
𝑦

≥ 𝑐𝑗
𝑦
 − 𝑐𝑖

𝑦
 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (58)

𝑑𝑖𝑗
𝑧 ≥ 𝑐𝑖

𝑧 − 𝑐𝑗
𝑧 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (59)

𝑑𝑖𝑗
𝑧 ≥ 𝑐𝑗

𝑧 − 𝑐𝑖
𝑧 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (60)

𝑑𝑖𝑗
𝑥 ≥ 0 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (61)

𝑑𝑖𝑗
𝑦

≥ 0 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (62)

𝑑𝑖𝑗
𝑧 ≥ 0 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (63)

Accordingly, 𝑑𝑖𝑗 in the objective function is replaced by 𝑑𝑖𝑗
𝑥 + 𝑑𝑖𝑗

𝑦
+ 𝑑𝑖𝑗

𝑧 . As mentioned

before, the original model required 4𝑁(𝑁 − 1 inequality constraints and 𝑁(𝑁 − 1 /2

decision variables for measuring pairwise distances between cuboids, while this

alternative representation requires 3𝑁(𝑁 − 1 inequality constraints and 3𝑁(𝑁 − 1 /2

decision variables. For all cuboid pairs, it is guaranteed that one of the differences

between the center points for a pair of cuboids is non-negative. It is also possible for the

difference between the same pair of cuboids to be negative. However, since non-

negativity constraints are enforced for the distance decision variables, the positive

difference will only be considered in any solution. Since the problem of interest is a

minimization problem, the minimum distance that is calculated between a pair of cuboids

for any dimension will become the value of the distance decision variable, respective to

each dimension, while enforcing that this distance must be non-negative.

54

The third set of constraints are an alternative formulation to linearization

constraints that are necessary for the non-linear relationship between orientation

variables. In the original model, linearization constraints were included for all pairs of

cuboids with no predicate, which results in redundant constraints to be expressed (i.e.,

any given pair of cuboids will be considered twice). These constraints allow for the

linearization constraints to only be considered when index i is less than j, and then

introducing additional equality constraints to ensure that all indicator variables are

considered in the linearization technique. This set of constraints are shown below:

𝐼𝑖𝑗
𝑤𝑤 ≤ 𝐼𝑖

𝑤 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (64)

𝐼𝑖𝑗
𝑤𝑤 ≤ 𝐼𝑗

𝑤 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (65)

𝐼𝑖𝑗
𝑤𝑤 ≥ 𝐼𝑖

𝑤 + 𝐼𝑗
𝑤 − 1 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (66)

𝐼𝑖𝑗
𝑤𝑙 ≤ 𝐼𝑖

𝑤 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (67)

𝐼𝑖𝑗
𝑤𝑙 ≤ 1 − 𝐼𝑗

𝑤 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (68)

𝐼𝑖𝑗
𝑤𝑙 ≥ 𝐼𝑖

𝑤 + (1 − 𝐼𝑗
𝑤) − 1 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (69)

𝐼𝑖𝑗
𝑙𝑤 ≤ 1 − 𝐼𝑖

𝑤 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (70)

𝐼𝑖𝑗
𝑙𝑤 ≤ 𝐼𝑗

𝑤 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (71)

 𝐼𝑖𝑗
𝑙𝑤 ≥ (1 − 𝐼𝑖

𝑤 + 𝐼𝑗
𝑤 − 1 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (72)

𝐼𝑖𝑗
𝑙𝑙 ≤ 1 − 𝐼𝑖

𝑤 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (73)

𝐼𝑖𝑗
𝑙𝑙 ≤ 1 − 𝐼𝑗

𝑤 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (74)

𝐼𝑖𝑗
𝑙𝑙 ≥ (1 − 𝐼𝑖

𝑤 + (1 − 𝐼𝑗
𝑤 + 1 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (75)

𝐼𝑖𝑗
𝑤𝑤 − 𝐼𝑗𝑖

𝑤𝑤 = 0 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (76)

𝐼𝑖𝑗
𝑤𝑙 − 𝐼𝑗𝑖

𝑙𝑤 = 0 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (77)

55

𝐼𝑖𝑗
𝑙𝑤 − 𝐼𝑗𝑖

𝑤𝑙 = 0 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (78)

𝐼𝑖𝑗
𝑙𝑙 − 𝐼𝑗𝑖

𝑙𝑙 = 0 ∀ 𝑖, 𝑗 𝑖 < 𝑗 (79)

In the original model, 12𝑁(𝑁 − 1 inequality constraints are required for linearization of

the orientation variables while this alternative formulation requires 6𝑁(𝑁 − 1 inequality

and 2𝑁(𝑁 − 1 equality constraints.

As mentioned at the beginning of the chapter, we will introduce an additional type

of constraints that are only applicable to unbounded and vertical layout designs. Within

[14], it is possible to force certain cuboids to have a certain orientation before the

problem is solved based on design requirements, and then one can attempt to find an

optimal solution to the problem. For this problem, it is possible to force a certain cuboid

to have its width face along one of the sides of the container, for example, the plane

defined by y = 0. This set of equality constraints is shown below:

𝐼𝑖
𝑤 = 1 (80)

𝐼𝑖𝑗
𝑙𝑤 = 0 ∀ 𝑗 𝑖 ≠ 𝑗 (81)

𝐼𝑖𝑗
𝑙𝑙 = 0 ∀ 𝑗 𝑖 ≠ 𝑗 (82)

𝐼𝑖𝑗
𝑤𝑤 + 𝐼𝑖𝑗

𝑤𝑙 = 1 ∀ 𝑗 𝑖 ≠ 𝑗 (83)

Providing information about the orientation of a certain cuboid before the problem is

solved reduces the solution space. Enforcing the first constraint in this set will restrict

cuboid i to have its width face parallel to the 𝑥-axis. As a result of the first constraint

being enforced, it is impossible for any relative orientation variable associated with

cuboid i’s length being parallel to the 𝑥-axis to be activated for any pair of cuboids and is

enforced in the second and third constraints. Since only information about cuboid i is

provided before the problem is solved, cuboid j is still permitted to have its width or

56

length parallel to the 𝑥-axis, However, only one of these instances are possible for cuboid

j and is enforced in the fourth constraint. Forcing this restriction on orientation variables

is intended to reduce computational time, however it is stated in [14] that it is not

guaranteed that computational time will be reduced by enforcing certain orientations to

exist.

 This constraint is not applicable for horizontal layout designs because fixing the

orientation of a cuboid can result in a non-optimal solution to the original problem. For

example, suppose cuboid i’s width is longer than its length. If it is desired to place cuboid

i’s width parallel to the 𝑥-axis, then this could force the 𝑦-axis of the module to be

extended in order to pack cuboid i. On the other hand, if cuboid i’s length were to be

placed parallel to the 𝑥-axis, then it is likely that the 𝑦-axis of the module wouldn’t have

to be extended to the same degree as the previous situation, which results in a different

layout solution. This constraint doesn’t have the same type of restriction for unbounded

and vertical layout designs. For the unbounded layout design, all dimensions of the

module are variable and for the vertical layout design, the 𝑥- and 𝑦-axis of the module are

fixed. Suppose that an optimal solution to the original problem has cuboid i’s width

parallel to the 𝑦-axis. Then, one can simply have the same solution by rotating the entire

layout by 90 degrees, which results in cuboid i’s width parallel to the 𝑥-axis while the

rest of the cuboids are kept in the same relative locations.

For the sake of simplicity, (41) will be referred to as enhancement constraint (EC)

1, (42) – (44) will be considered as EC2, (45) will be considered as EC3, (46) – (54) will

be considered as EC4, (55) – (63) will be considered as EC5, (64) – (79) will be

considered as EC6, and (80) – (83) will be considered as EC7. In the next chapter, these

57

constraints will be tested to determine if they reduce the computational time to solve the

MILP in reference to the computational study that was performed in Chapter 4.

58

CHAPTER 6: ENHANCED MODEL COMPUTATIONAL STUDY

In this chapter, a computational study is presented for the additional constraints

that are proposed in Chapter 5 to investigate the effectiveness of those constraints in

reducing computational efforts. Initially, in this computational study, each type of

constraint is tested individually in the original model to determine the impact of the

constraint on the overall computational experience using the same set of scenarios that

were used for the computational study in Chapter 4. Based on the computational

performance of the individual constraint type, we also investigate interactions between

different types of those constraints. Accordingly, several combinations of different types

are tested.

As in Chapter 4, 10 layout designs were considered in this comparative study.

These layout designs consist of unbounded layout design, horizontal layout design with 𝛿

equal to 4 and 5, and vertical layout design with 𝛿 equal to 4 and 5, each of which either

allows overlap along the 𝑧- axis or not.

6.1 Small-Scale Computational Study

In order to examine the efficacy of each additional constraint, EC1 – EC7 were

individually tested for solving the 20 small-scale problems that were solved by the

original formulation in Chapter 4. The MILP models were created using Matlab [32] and

solved by calling a commercial MILP solver, Gurobi Optimizer 7.5 [33].

As described in Chapter 5, EC7 was tested only for unbounded and vertical layout

designs while all other constraints were tested for each layout design. Since these

constraints do no cut off the optimal solution, the optimal layouts remain the same as

those produced by the original problem in Chapter 4. After finding optimal solutions to

59

all 20 scenarios for each layout design variant, time averages of 20 solution times are

reported in Table 10.

Table 10: Average solution times for individual enhancements (sec)

Layout Design
EC

1 2 3 4 5 6 7

overz_cuboid 137.95 251.04 373.50 161.38 184.80 196.88 98.46

overz_horizontal_4 19.44 23.95 22.97 14.83 6.48 15.18 -

overz_horizontal_5 69.52 87.89 80.51 57.90 46.57 86.58 -

overz_vertical_4 34.65 41.47 35.65 29.75 23.80 37.81 21.97

overz_vertical_5 59.30 68.24 115.69 63.71 91.65 102.92 40.44

solidz_cuboid 127.69 270.93 304.86 148.77 167.98 112.13 91.60

solidz_horizontal_4 16.58 18.87 16.36 8.54 6.96 14.80 -

solidz_horizontal_5 46.34 68.83 66.40 45.34 36.93 76.79 -

solidz_vertical_4 34.81 34.25 35.58 29.65 25.45 36.84 17.98

solidz_vertical_5 64.28 91.41 85.99 64.86 61.96 81.40 36.25

 To compare with solution times of the original formulation, percentage

differences were computed and are displayed in Table 11. For EC7, the exercise gradient

cuboid was selected to have its width parallel to the 𝑥-axis.

Table 11: Percentage difference for 10 layout designs and individual enhancement

constraints

 EC

 1 2 3 4 5 6 7

overz_cuboid 43.75 -2.36 -52.29 34.20 24.65 19.72 59.85

overz_horizontal_4 -19.51 -47.22 -41.17 8.84 60.15 6.67 -

overz_horizontal_5 29.49 10.86 18.34 41.27 52.77 12.18 -

overz_vertical_4 -3.00 -23.28 -5.97 11.56 29.24 -12.41 34.70

overz_vertical_5 19.97 7.91 -56.13 14.02 -23.69 -38.89 45.42

solidz_cuboid 58.10 11.09 -0.04 51.18 44.88 63.20 69.94

solidz_horizontal_4 -12.00 -27.48 -10.53 42.33 52.94 0.00 -

solidz_horizontal_5 39.31 9.86 13.03 40.62 51.62 -0.58 -

solidz_vertical_4 16.67 18.02 14.84 29.03 39.08 11.83 56.96

solidz_vertical_5 6.76 -32.60 -24.73 5.91 10.12 -18.08 47.42

60

In Table 11, green cells with positive values indicate better performances

compared to that of the original formulation, while red cells with negative values

represent worse performances. Observe that EC4 consistently outperformed the original

formulation. Furthermore, EC7 uniformly displays significant improvement for

applicable layout designs. EC5 also displays better performances than the original

formulation except for vertical layout design with 𝛿 = 5 when overlap along the 𝑧-axis is

allowed. Observing that layout designs with and without overlap along the 𝑧-axis tend to

have similar tendency in performance, results were aggregated with respect to overlap

along the 𝑧-axis. Aggregated percentage improvements are displayed in Table 12.

Table 12: Percentage difference with model enhancements

Aggregated

Layout Design

EC

1 2 3 4 5 6 7

Unbounded

Layout Design
51.70 5.09 -23.34 43.61 35.86 43.81 65.44

Horizontal

Layout Design

(δ = 4)

-15.93 -37.82 -26.57 24.79 56.72 3.49 -

Horizontal

Layout Design

(δ = 5)

33.77 10.42 16.02 40.99 52.27 6.61 -

Vertical

Layout Design

 (δ = 4)

7.90 -0.40 5.56 21.23 34.69 1.02 47.03

Vertical

Layout Design

(δ = 5)

13.60 -11.61 -40.99 10.11 -7.39 -28.86 46.38

 For the unbounded layout design, which is an aggregation of overz_cuboid and

solidz_cuboid, it was noticed that EC1, 4, 5 and 7 individually reduced the computational

effort by at least 35.86%. Although EC2 did offer some improvement, it was not

61

convincing enough to pursue further testing. For this layout design category, the

following combinations are considered for testing interactions:

• EC1, 4, 6, 7 (Combination 1)

• EC1, 5, 6, 7 (Combination 2)

Since EC4 and EC5 are alternative constraints to represent distance between cuboids,

they were not considered together.

 For the horizontal layout design, it was noticed that there were distinct differences

in 𝛿 = 4 and 𝛿 = 5. EC1, 2, and 3 perform much better on average for the horizontal

layout design with 𝛿 equal to 5. EC1 provided an average improvement of 8.92% for both

horizontal layout cases, whereas EC2 and EC3 display worse performances. EC4 and

EC5 individually reduced the computational effort by at least 24.79% in both cases. EC6

did not provide significant improvement for either case. For this layout design category,

the following combinations are selected to be further investigated:

• EC1, 4 (Combination 3)

• EC1, 5 (Combination 4)

• EC1, 4, 6 (Combination 5)

• EC1, 5, 6 (Combination 6)

Even though EC6 did not provide an impressive improvement, it was included to check

interaction effects.

 For the vertical layout design, it was noticed that EC1 offered an improvement of

at least 7.9% for both cases with 𝛿 = 4 and 5. EC2 and EC3 seemed to have worsened the

solution time compared to the original result for vertical layout designs. EC4 and EC5

both reduced the computational time by at least 13.65%. EC7 decreased the

62

computational time by at least 46.38%. For this layout design category, the following

combinations of constraints were considered:

• EC1, 4, 7 (Combination 7)

• EC1, 5, 7 (Combination 8)

For each layout design category, a hypothesis test was performed for the two

combinations that display the smallest average solution times. This was performed in

order to determine if there is any statistically significant difference in solution times for a

pair of combinations. The output of these tests may provide evidence as to which

combination is better. Within this analysis, the average solution time and standard

deviations for the model with and without model enhancements, as well as maximum and

minimum solution times, will be presented. For each combination that includes EC7, the

exercise gradient cuboid was selected to have its width parallel to the 𝑥-axis.

6.1.1 Unbounded Layout Design

 For the unbounded layout design, combinations 1 and 2 were considered. These

combinations were tested for both cases of the unbounded layout design, where overlap is

allowed and overlap is not allowed along the 𝑧-axis. The average solution times were

compared to the result that was generated in Chapter 4 to find how much of an

improvement there is in computational effort. The output data for combination 1 and

combination 2 is displayed below, as well as the output from the model without these

additional constraints:

63

Table 13: Comparison between original model and enhanced model for unbounded layout

design

Average

Solution

Time

Standard

Deviation
Max Min

Original

Model
275.00 254.12 1055.76 45.72

Combination

1
53.58 29.72 170.99 27.46

Combination

2
54.21 22.93 127.97 9.88

Combinations 1 and 2 provide a similar result such that their average solution times are

almost the same and their standard deviations are slightly different. In order to determine

if these two combinations provide the same result on average, a hypothesis test was

performed. Let 𝜇1 denote the population mean of solution times for combination 1 and let

𝜇2 denote the population mean of solution times for combination 2. The hypothesis test

that was performed is displayed below:

𝐻0: 𝜇1 = 𝜇2

𝐻𝑎: 𝜇1 ≠ 𝜇2

Before testing these hypotheses, an F-test was first performed in order to determine if the

population standard deviations for both combinations can be assumed equal or not. Let 𝜎1

denote the population standard deviation of solution times for combination 1 and let 𝜎2

denote the population standard deviation of solution times for combination 2. The

hypothesis test that was performed is displayed below:

𝐻0: 𝜎1 = 𝜎2

𝐻𝑎: 𝜎1 ≠ 𝜎2

64

With a p-value of 0.479 using Bonett’s test and 0.551 using Levene’s test for the F-test, it

was assumed that the population standard deviations for both combinations are equal to

one another. After performing the t-test using this assumption, a p-value of 0.916 was

obtained which implies that there is no statistically significant difference between 𝜇1 and

𝜇2 and fail to reject the null hypothesis. Since there appears to be no difference

statistically between combinations 1 and 2 solution times, combination 2 was selected to

be tested for solving the large-scale problem in order to measure the change in optimality

gap for the unbounded layout design since it had a lower sample standard deviation.

6.1.2 Horizontal Layout Design

 For the horizontal layout design, combinations 3 - 6 were considered. These

combinations were tested for both cases of the horizontal layout design where 𝛿 is equal

to 4 and 5. The output data for combination 3, combination 4, combination 5, and

combination 6 is displayed below, as well as the output from the model without these

additional constraints where 𝛿 is equal to 4:

Table 14: Comparison between original model and enhanced model for horizontal layout

design where 𝛿 is equal to 4

Average

Solution

Time

Standard

Deviation
Max Min

Original

Model
15.54 9.85 56.26 5.01

Combination

3
13.44 14.81 63.82 4.93

Combination

4
8.95 4.53 34.62 4.66

Combination

5
5.32 4.34 25.36 3.13

Combination

6
7.17 3.42 23.63 4.18

65

Combinations 5 and 6 have the least average solution time in this set of combinations. Let

𝜇5
4 denote the population mean of solution times for combination 5 and let 𝜇6

4 denote the

population mean of solution times for combination 6 where 𝛿 is equal to 4. The

hypothesis test that was performed is displayed below:

𝐻0: 𝜇5
4 = 𝜇6

4

𝐻𝑎: 𝜇5
4 ≠ 𝜇6

4

Let 𝜎5
4 denote the population standard deviation of solution times for combination 5 and

let 𝜎6
4 denote the population standard deviation of solution times for combination 6 where

𝛿 is equal to 4. The hypothesis test that was performed is displayed below:

𝐻0: 𝜎5
4 = 𝜎6

4

𝐻𝑎: 𝜎5
4 ≠ 𝜎6

4

With a p-value of 0.640 using Bonett’s test and 0.896 using Levene’s test for the F-test, it

was assumed that the population standard deviations for both combinations are equal to

one another. After performing the t-test using this assumption, a p-value of 0.038 was

obtained which implies that there is a statistically significant difference between 𝜎5
4 and

𝜎6
4, and the null hypothesis is not accepted if 𝛼 = 0.05. Since there appears to be a

statistical difference between combinations 5 and 6 where 𝛿 is equal to 4, combination 5

was selected to be tested for solving for the large-scale problem for the horizontal layout

design where 𝛿 is equal to 4.

The output data for combination 3, combination 4, combination 5, and

combination 6 is displayed below, as well as the output from the model without these

additional constraints where 𝛿 is equal to 5:

66

Table 15: Comparison between original model and enhanced model for horizontal layout

design where 𝛿 is equal to 5

Average

Solution

Time

Standard

Deviation
Max Min

Original

Model
87.47 100.58 431.28 9.24

Combination

3
52.85 40.01 184.94 7.29

Combination

4
42.44 31.45 118.53 9.61

Combination

5
44.91 32.68 127.95 3.85

Combination

6
46.87 52.08 238.85 5.54

Combinations 4 and 5 have the least average solution times in this set of combinations.

Let 𝜇4
5 denote the population mean of solution times for combination 4 and let 𝜇5

5 denote

the population mean of solution times for combination 5 where 𝛿 is equal to 5. The

hypothesis test that was performed is displayed below:

𝐻0: 𝜇4
5 = 𝜇5

5

𝐻𝑎: 𝜇4
5 ≠ 𝜇5

5

Let 𝜎4
5 denote the population standard deviation of solution times for combination 4 and

let 𝜎5
5 denote the population standard deviation of solution times for combination 5 where

𝛿 is equal to 5. The hypothesis test that was performed is displayed below:

𝐻0: 𝜎4
5 = 𝜎5

5

𝐻𝑎: 𝜎4
5 ≠ 𝜎5

5

With a p-value of 0.846 using Bonett’s test and 0.768 using Levene’s test for the F-test, it

was assumed that the population standard deviations for both combinations are equal to

each other. After performing the t-test using this assumption, a p-value of 0.732 was

67

obtained which implies that there is no significant difference between 𝜎4
5 and 𝜎5

5, and fail

to reject the null hypothesis. Since there appears to be no difference statistically between

combinations 4 and 5 where 𝛿 is equal to 5, combination 4 was selected to be tested for

solving the large-scale problem for the horizontal layout design where 𝛿 is equal to 5.

6.1.3 Vertical Layout Design

For the vertical layout design, combinations 7 and 8 were considered. These

combinations were tested for both cases with respective values of 𝛿 equal to 4 and 5. The

output data for combination 7 where EC1, 4 and 7 are included and combination 8 where

EC1, 5 and 7 are included is displayed below, as well as the output from the model

without these additional constraints where 𝛿 is equal to 4:

Table 16: Comparison between original model and enhanced model for vertical layout

design where 𝛿 is equal to 4

Average

Solution

Time

Standard

Deviation
Max Min

Original

Model
37.71 55.77 365.81 11.53

Combination

7
13.93 9.95 50.03 3.84

Combination

8
10.45 4.61 33.97 5.47

Let 𝜇7
4 denote the population mean of solution times for combination 7 and let 𝜇8

4 denote

the population mean of solution times for combination 8 where 𝛿 is equal to 4. The

hypothesis test that was performed is displayed below:

𝐻0: 𝜇7
4 = 𝜇8

4

𝐻𝑎: 𝜇7
4 ≠ 𝜇8

4

68

Let 𝜎7
4 denote the population standard deviation of solution times for combination 7 and

let 𝜎8
4 denote the population standard deviation of solution times for combination 8 where

𝛿 is equal to 4. The hypothesis test that was performed is displayed below:

𝐻0: 𝜎7
4 = 𝜎8

4

𝐻𝑎: 𝜎7
4 ≠ 𝜎8

4

Observing a small p-value of 0.026 using Bonett’s test and 0.000 using Levene’s test for

the F-test, it was assumed that the population standard deviations for both combinations

are not equal to one another. After performing the t-test using this assumption, a p-value

of 0.048 was obtained which implies that there is a statistically significant difference

between 𝜎7
4 and 𝜎8

4 where 𝛼 = 0.05. As a result, combination 8 was selected to be tested

for solving the large-scale problem for the vertical layout design where 𝛿 is equal to 4.

The output data for combination 7 and combination 8 is displayed below, as well

as the output from the model without these additional constraints 𝛿 is equal to 5:

Table 17: Comparison between original model and enhanced model for vertical layout

design where 𝛿 is equal to 5

Average

Solution

Time

Standard

Deviation
Max Min

Original

Model
71.52 71.28 315.99 23.11

Combination

7
31.64 17.50 92.86 5.36

Combination

8
29.95 23.54 99.37 7.34

Let 𝜇7
5 denote the population mean of solution times for combination 7 and let 𝜇8

5 denote

the population mean of solution times for combination 8 where 𝛿 is equal to 5. The

hypothesis test that was performed is displayed below:

69

𝐻0: 𝜇7
5 = 𝜇8

5

𝐻𝑎: 𝜇7
5 ≠ 𝜇8

5

Let 𝜎7
5 denote the population standard deviation of solution times for combination 7 and

let 𝜎8
5 denote the population standard deviation of solution times for combination 8 where

𝛿 is equal to 5. The hypothesis test that was performed is displayed below:

𝐻0: 𝜎7
5 = 𝜎8

5

𝐻𝑎: 𝜎7
5 ≠ 𝜎8

5

With a p-value of 0.259 using Bonett’s test and 0.018 using Levene’s test for the F-test, it

was difficult to determine which assumption to follow. Instead, two t-tests were

performed where both assumptions were considered to see if different conclusions were

drawn. After performing the t-test where equal population standard deviations are

assumed, a p-value of 0.717 was obtained which implies that there is no statistically

significant difference between 𝜎7
5 and 𝜎8

5 and fail to reject the null hypothesis. After

performing the t-test where equal population standard deviations are not assumed, a p-

value of 0.717 was obtained which implies that there is no statistically significant

difference between 𝜎7
5 and 𝜎8

5 and fail to reject the null hypothesis. Comparing the

outcomes from both of these tests, it was concluded that there was no statistically

significant difference between 𝜇7
5 and 𝜇8

5. As a result, combination 7 was selected to be

tested for solving the large-scale problem for the vertical layout design where 𝛿 is equal

to 5 since it had a lower sample standard deviation.

 In Table 18, the solution times of selected combinations are compared with those

of models without incorporating the above enhancements.

70

Table 18: Percentage difference without and with enhancements for small-scale problem

Aggregated

Layout Design

Average

Solution Time

without

Enhancements

Average

Solution Time

with

Enhancements

Percentage

Difference

Unbounded

Layout Design
275.00 54.21 80.29%

Horizontal

Layout Design

(δ = 4)

15.54 5.32 65.77%

Horizontal

Layout Design

(δ = 5)

87.47 42.44 51.48%

Vertical

Layout Design

 (δ = 4)

37.71 10.45 72.29%

Vertical

Layout Design

(δ = 5)

71.52 31.64 55.76%

Average 97.45 28.81 65.12%

On average, solution time is improved by 65.12% for all combinations that are included

in each aggregated layout design.

 Although combinations of constraints can be created to reduce computational

effort, it is possible that a single EC could outperform the selected combination of ECs.

In order to verify whether this is the case or not, the EC that provided the maximum

improvement is compared to the combination that was selected for an aggregated layout

design. The hypotheses tested are displayed below:

𝐻0: 𝜇𝑐𝑜𝑚𝑏𝑜 = 𝜇𝐸𝐶

𝐻𝑎: 𝜇𝑐𝑜𝑚𝑏𝑜 < 𝜇𝐸𝐶

The table below displays the result of the hypothesis test for each aggregated layout

design.

71

Table 19: Comparison between individual EC and combination of ECs

Unbounded

Layout

Design

Horizontal

Layout Design

(δ = 4)

Horizontal

Layout Design

(δ = 5)

Vertical

Layout Design

(δ = 4)

Vertical

Layout Design

(δ = 5)

EC 7 5 5 7 7

Combo 2 5 4 8 7

Test

Result

Reject Reject Fail to reject Reject Reject

(p = 0.000) (p = 0.032) (p = 0.468) (p = 0.000) (p = 0.034)

 Looking at the result in Table 19, it can be concluded that EC5 (standard

deviation = 42.97) provides the same computational benefit, with regards to solution

time, as combination 4 (standard deviation = 31.45) for the aggregated horizontal layout

design with δ = 5, on average. Other layout design cases display that the combination

outperformed the implementation of a single EC. Although the horizonal layout design

with δ = 5 is inconclusive, we still recommend applying combination 4 for the sake of

consistency.

6.2 Large-Scale Computational Study

 As a result of comparing various combinations of constraints in the small-scale

computational study, it was then possible to use a selection of these combinations in

order to measure by how much the optimality gap is reduced for a larger sized problem.

The large-scale problem consists of twenty-four gradients cuboids, which is associated

with fourteen task volumes. For the single-dimensional packing optimization, the value

of 𝛿 was selected as 4 and 5, resulting in two layouts for both layout designs. Weighting

factor 𝛼 in the objective function was set to 0.5 to obtain solutions from the models to be

evaluated. In total, 10 layout designs were considered, as displayed in Table 5. The MILP

models were created using Matlab [32] and solved by Gurobi Optimizer 7.5 [33]. For

72

testing purposes, the solver time was set to 4 hours. For each combination that includes

EC7, the exercise gradient cuboid was selected to have its width face parallel to the 𝑥-

axis. The following combinations were tested for all layout design categories as a result

of the small-scale study:

• Unbounded Layout Designs: Combination 1

• Horizontal Layout Designs (𝛿 equal to 4): Combination 5

• Horizontal Layout Designs (𝛿 equal to 5): Combination 4

• Vertical Layout Designs (𝛿 equal to 4): Combination 8

• Vertical Layout Designs (𝛿 equal to 5): Combination 7

Table 20: Optimality gap without and with enhancements for large-scale problem

Layout Design

Optimality

Gap without

Enhancements

Optimality

Gap with

Enhancements

Difference

overz_cuboid 65.0% 52.1% 12.9%

overz_horizontal_4 61.5% 53.5% 8.0%

overz_horizontal_5 67.0% 59.8% 7.2%

overz_vertical_4 61.2% 51.0% 10.2%

overz_vertical_5 61.2% 51.0% 10.2%

solidz_cuboid 62.6% 51.9% 10.7%

solidz_horizontal_4 60.5% 55.4% 5.1%

solidz_horizontal_5 66.0% 62.7% 3.3%

solidz_vertical_4 59.4% 49.3% 10.1%

solidz_vertical_5 63.4% 47.7% 15.7%

 As displayed in Table 20, combinations uniformly improved the optimality gaps

across 10-large scale problems. On average, the optimality gap after a 4-hour run was

improved by 14.92%, where maximum improvement is observed for solidz_vertical_5 by

15.7% and minimum improvement is observed for solidz_horizontal_5 by 3.3%.

73

CHAPTER 7: CONCLUSION

In this thesis research, the overlap cuboid packing problem (OCPP) was

considered. This variant of the packing problem is unique in the sense that items are

allowed to overlap to a certain extent. This provides the advantage to further minimize

the volume of the container since items are allowed to share space. For this research, the

OCPP was formulated using a mixed-integer linear program (MILP) to find an

arrangement of gradient cuboids that represent volumes of tasks that are performed by

astronauts inside of a spacecraft module. A bi-objective function was proposed to

accommodate for two performance criteria, which include adjacency requirements

between gradient cuboids and the size of the module.

After the MILP was formulated, a numerical study was executed to demonstrate

the model’s ability to produce different layout results corresponding to certain design

requirements and priorities on randomly generated test problems as well as a full-scale

problem. Noting that OCPP is NP-hard, the computational requirements in solving the

problem can be formidable as evidenced by the numerical results for the full-scale

problem. To alleviate such computational burden, it was of interest to further investigate

model enhancements and reformulations in order to reduce the amount of computational

effort. This endeavor resulted in seven sets of constraints.

 An additional numerical study was performed where the additional constraints

were initially tested individually using the small-scale problem. This was performed in

order to determine which constraints, when included individually, are most beneficial to

the solution of the MILP. Following this, various combinations of promising constraints

were constructed for unbounded, horizontal, and vertical layout designs and tested on the

74

randomly generated problems to determine if further improvement could be achieved. As

a result, it was observed that different combinations customized for each layout design

provide improvement in computational efficiency. These combinations were applied to

the full-scale problem, where it was observed that the MILP with those combinations

produced smaller optimality gaps after a 4-hour run than optimality gaps produced

without them for all layout designs

OCPP is applicable to a wide range of applications, especially in habitat-related

architectural design such as interior of a home with a small volume, jail cells, and

quarters of a submarine. There are some avenues where future studies can be conducted.

The model can accommodate additional constraints such as structural integrity (e.g.,

impact), weight balancing, and utility layout (i.e., water supply, food storage, waste, etc.).

Besides these problem-specific constraints, additional valid inequalities can be

incorporated in an effort to further improve the computational efficiency. Also, future

research includes creating a “feedback loop” between the physical and psycho-physical

properties of the OCPP for astronauts. Creating a link between these two properties helps

accommodate the physical needs of astronauts, as well as their mental needs.

Incorporating this into the optimization allows for changes that are made to either

property to be accounted for in the other where these changes are driven by the

astronaut’s preference.

75

REFERENCES

[1] S. S. Thaxton, M. Chen, S. Hsiang, C. Lim, J. Meyers, and S. Wald, “Spacecraft

optimization layout and volume (SOLV): Development of a model to assess habitable

volume,” Proceedings of IEEE Aerospace Conference, Big Sky, MT, Mar. 2017.

[2] N. Z. Hu, H. L. Li, and J. F. Tsai, "Solving packing problems by a distributed global

optimization algorithm," Mathematical Problems in Engineering, vol. 2012, pp. 1024 –

1036, May 2012.

[3] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, "VLSI module placement

based on rectangle-packing by the sequence-pair," IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 15, no. 12, pp. 1518 – 1524, Dec.

1996.

 [4] J. A. Bennell and J. F. Oliveria, “The geometry of nesting problems: A tutorial,”

European Journal of Operational Research, vol. 184, no. 2, pp. 397 – 415, Jan. 2008.

[5] G. Wäscher, H. Haußner, and H. Schumann, "An improved typology of cutting and

packing problems," European Journal of Operational Research, vol. 183, no. 3, pp. 1109

– 1130, Dec. 2007.

 [6] A. Bortfeldt and H. Gehring, “A hybrid genetic algorithm for the container loading

problem,” European Journal of Operational Research, vol. 131, no. 1, pp. 143 – 161,

May 2001.

[7] G. Scheithauer, “A three-dimensional bin-packing algorithm,” Journal of Information

Processing and Cybernetics, vol. 27, no. 5 – 6, pp. 263 – 271, 1991.

76

[8] A. Lodi, S. Martello, and D. Vigo, "Models and bounds for two-dimensional level

packing problems," Journal of Combinatorial Optimization, vol. 8, no. 3, pp. 363 – 379,

Sept. 2004.

 [9] G. Cornu´ejols, “Valid inequalities for mixed integer programs.” Mathematical

Programming, vol. 112, no. 1, pp. 3 – 44, Mar. 2008.

[10] L. A. Wolsey, “Technical note – facets and strong valid inequalities for integer

programs.” Operations Research, vol. 24, no. 2, pp. 367 – 372, Apr. 1976.

[11] M. Z. Gürbü, S. Akyokuş, İ. Emiroğlu, and A. Güran, “An efficient algorithm for 3D

rectangular box packing,” Proceedings of Selected AAS 2009 Papers, Skopje, Macedonia,

Sept. 2009.

[12] L. Brunetta and P. Grégoire, “A general purpose algorithm for three-dimensional

packing,” INFORMS Journal on Computing, vol. 17, no. 3, pp. 328 – 338, Aug. 2005.

[13] K. K. Lai and J. W. M. Chan, “Developing a simulated annealing algorithm for the

cutting stock problem,” Computers and Industrial Engineering, vol. 32, no. 1, pp. 115 –

127, Jan. 1997.

[14] Y. G. Stoyan, “Mathematical methods for geometric design,” Advances in

CAD/CAM: Proceedings of PROLAMAT82, Leningrad, USSR, May 1982.

[15] C. Paquay, M. Schyns, and S. Limbourg, “A mixed integer programming

formulation for the three‐dimensional bin packing problem deriving from an air cargo

application,” International Transactions in Operational Research, vol. 23, no. 1 – 2, pp.

187 – 213, Jan. – Mar. 2016.

[16] K. Shiangjen, J. Chaijaruwanich, W. Srisujjalertwaja, P. Unachak, and S. Somhom,

“An iterative bidirectional heuristic placement algorithm for solving the two-dimensional

77

knapsack packing problem,” Engineering Optimization, vol. 50, no. 2, pp. 347 – 365,

Mar. 2017.

[17] L. H. Cherri, L. R. Mundim, M. Andretta, F. Toledo, J.F. Oliveira, and M. A.

Carravilla, “Robust mixed-integer linear programming models for the irregular strip

packing problem,” European Journal of Operational Research, vol. 253, no. 3, pp. 570 –

583, Sept. 2016.

[18] Y. Cui, Y. Yao, and Y. P. Cui, “Hybrid approach for the two‐dimensional bin

packing problem with two‐staged patterns,” International Transactions in Operational

Research, vol. 23, no. 3, pp. 539 – 549, May 2016.

[19] I. Moon and T. V. L. Nguyen, “Container packing problem with balance

constraints,” OR Spectrum, vol. 36, no. 4, pp. 837 – 878, Oct. 2014.

[20] M. Hifi and R. M’Hallah, “A hybrid algorithm for the two‐dimensional layout

problem: the cases of regular and irregular shapes,” International Transactions in

Operational Research, vol. 10, no. 3, pp. 195 – 216, June 2003.

[21] A. Bortfeldt and D. Mack, “A heuristic for the three-dimensional strip packing

problem,” European Journal of Operational Research, vol. 183, no. 3, pp. 1267 – 1279,

Dec. 2007.

[22] L. Wei, W. Oon, W. Zhu, and A. Lim, “A reference length approach for the 3D strip

packing problem,” European Journal of Operational Research, vol. 220, no. 1, pp. 37 –

47, July 2012.

[23] W. Zhu and A. Lim, “A new iterative-doubling Greedy–Lookahead algorithm for the

single container loading problem,” European Journal of Operational Research, vol. 222,

no. 3, pp. 408 – 417, Nov. 2012.

78

[24] Y. Juoung and S. D. Noh, “Intelligent 3D packing using a grouping algorithm for

automotive container engineering,” Journal of Computational Design and Engineering,

vol. 1, no. 2, pp. 140 – 151, April 2014.

[25] D. Whitley, “A genetic algorithm tutorial,” Statistics and Computing, vol. 4, no. 2,

pp. 65 – 85, June 1994.

[26] M. Hifi and R. M’Hallah, “A literature review on circle and sphere packing

problems: Models and methodologies,” Advances in Operations Research, vol. 2009,

April 2009.

[27] K. J. Nurmela and P. R. J. Östergård, “Packing up to 50 equal circles in a square,”

Discrete & Computational Geometry, vol. 18, no. 1, pp. 111–120, July 1997.

[28] Y. G. Stoyan and G. Yaskov, “Packing identical spheres into a rectangular

parallelepiped,” Intelligent Decision Support, pp. 47–67.

[29] Y. G. Stoyan and G. N. Yaskov, “Packing identical spheres into a right circular

cylinder,” Proceedings of the 5th ESICUP Meeting, L’Aquila, Italy, April 2008

[30] Y. G. Stoyan, G. N. Yaskov, and G. Scheithauer, “Packing of various radii solid

spheres into a paralleliped,” Central European Journal of Operational Research, vol. 11,

no. 4, pp. 389–407, Dec. 2003.

[31] M. Sipser, Introduction to the Theory of Computation, Second Edition, Thomson

Course Technology, Boston, Massachusetts, 2006.

[32] MathWorks, Matlab Primer (r2016b), Retrieved August 15th, 2017 from

https://www.mathworks.com/help/releases/R2016b/pdf_doc/matlab/, 2016.

[33] Gurobi Optimization, Inc, Gurobi Optimizer Quick Start Guide (7.5), Retrieved

August 15th, 2017 from http://www.gurobi.com/documentation/7.5/, 2017.

79

APPENDIX: SUPPLEMENTARY MATERIALS

(a) overz_cuboid

(𝑋, 𝑌, 𝑍): (5.302, 6.437, 7.402)

Container volume: 252.623

(b) overz_horizontal_4

(𝑋, 𝑌, 𝑍): (3.958, 15.551, 4)

Container volume: 246.203

(c) overz_horizontal_5

(𝑋, 𝑌, 𝑍): (4.980, 10.72, 4.602)

Container volume: 245.680

(d) overz_vertical_4

(𝑋, 𝑌, 𝑍): (3.751, 3.863, 15.234)

Container volume: 220.742

Figure A1: 10 layout designs for 14 task volumes using enhancements

80

(e) overz_vertical_5

(𝑋, 𝑌, 𝑍): (4.763, 4.645, 8.800)

Container volume: 194.692

(f) solidz_cuboid

(𝑋, 𝑌, 𝑍): (6.964, 6.505, 5.301)

Container volume: 240.140

(g) solidz_horizontal_4

(𝑋, 𝑌, 𝑍): (3.9878, 16.6552, 4)

Container volume: 265.670

(h) solidz_horizontal_5

(𝑋, 𝑌, 𝑍): (4.807, 9.802, 4.9298)

Container volume: 232.283

Figure A1, continued

81

(i) solidz_vertical_4

(𝑋, 𝑌, 𝑍): (3.851, 3.863, 14.250)

Container volume: 211.989

(j) solidz_vertical_5

(𝑋, 𝑌, 𝑍): (4.752, 4.763, 10.118)

Container volume: 229.009

Figure A1, continued

Table A2: Randomly generated cuboid dimensions for each scenario

Scenario Width Length Height Width Length Height Width Length Height Width Length Height Width Length Height

1 2.92 1.43 2.60 1.42 1.99 2.46 3.37 1.35 2.49 1.16 1.23 2.70 2.69 1.54 1.95

2 2.93 1.56 2.40 1.46 1.65 2.80 3.00 1.45 2.77 0.99 1.45 2.41 2.69 1.54 1.95

3 3.36 1.26 2.69 1.16 1.69 2.57 3.25 1.38 2.53 1.06 1.43 2.86 2.69 1.54 1.95

4 2.89 1.24 2.72 1.66 2.27 2.21 3.03 1.13 2.83 1.00 1.11 3.06 2.69 1.54 1.95

5 2.34 1.43 2.50 1.28 1.71 2.44 3.41 1.33 2.44 1.03 1.17 2.52 2.69 1.54 1.95

6 2.38 1.23 2.41 1.16 1.63 2.33 3.03 1.22 2.19 1.02 1.07 2.79 2.69 1.54 1.95

7 2.93 1.20 3.00 1.34 1.75 2.69 3.78 1.46 2.47 1.39 1.32 2.97 2.69 1.54 1.95

8 3.28 1.19 2.11 1.27 2.37 2.07 2.72 1.23 2.39 1.08 1.43 2.19 2.69 1.54 1.95

9 3.36 1.35 2.64 1.15 2.00 2.63 3.68 1.48 2.96 1.31 1.30 2.22 2.69 1.54 1.95

10 2.55 1.22 2.93 1.48 1.63 2.41 3.24 1.60 2.68 1.16 1.09 3.23 2.69 1.54 1.95

11 3.13 1.47 2.63 1.54 2.18 2.06 3.52 1.27 2.75 1.33 1.30 3.13 2.69 1.54 1.95

12 2.72 1.56 2.17 1.50 2.21 2.72 3.55 1.24 2.71 1.03 1.30 2.22 2.69 1.54 1.95

13 3.33 1.21 2.40 1.52 1.84 2.65 3.16 1.09 2.90 1.35 1.06 2.37 2.69 1.54 1.95

14 2.69 1.69 2.25 1.40 2.33 2.54 2.89 1.22 2.92 1.08 1.09 2.48 2.69 1.54 1.95

15 2.67 1.18 3.04 1.70 2.09 2.66 3.49 1.32 2.67 1.14 1.47 2.67 2.69 1.54 1.95

16 3.14 1.55 2.81 1.21 1.88 2.19 3.57 1.36 2.13 1.35 1.28 2.33 2.69 1.54 1.95

17 3.30 1.69 2.84 1.69 2.36 2.19 2.91 1.25 2.11 1.18 1.13 3.18 2.69 1.54 1.95

18 2.98 1.54 3.09 1.63 2.31 2.71 4.02 1.37 2.53 1.15 1.33 2.95 2.69 1.54 1.95

19 2.43 1.45 2.99 1.25 2.22 2.04 2.72 1.15 2.37 1.24 1.01 3.00 2.69 1.54 1.95

20 3.16 1.27 2.13 1.63 1.74 2.03 3.37 1.53 2.60 1.36 1.14 2.74 2.69 1.54 1.95

Exercise Hygiene

Waste Collection &

Management Sleep Hatch

