
MODELING TRIGGER-ACTION IOT ATTACKS AND DEVISING REAL-TIME
PROBABILISTIC DEFENSE MECHANISMS

by

Md Morshed Alam

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Computing and Information Systems

Charlotte

2024

Approved by:

Dr. Weichao Wang

Dr. Mohamed Shehab

Dr. Jinpeng Wei

Dr. Yonghong Yan

ii

©2024
Md Morshed Alam

ALL RIGHTS RESERVED

iii

ABSTRACT

MD MORSHED ALAM. Modeling Trigger-Action IoT Attacks and Devising
Real-time Probabilistic Defense Mechanisms. (Under the direction of DR.

WEICHAO WANG)

Trigger-action Internet of Things (IoT) platforms allow users to leverage functional

dependencies between IoT event conditions and actions to set up trigger-action rules

in a rule engine, where event conditions act as triggers to the corresponding actions.

When these user-defined rules are executed, they create a chain of interactions. IoT

hubs utilize this chain to automate network tasks, invoke actions in various IoT

devices based on triggers, and communicate with users about the physical changes in

the network. However, adversaries exploit this chain to maliciously inject fake event

conditions in the network and perform remote injection attacks. The objective here is

to force the hubs to invoke invalid actions in target IoT devices violating rule integrity.

Security mechanisms in the existing literature attempt to address this vulnerability

either by deploying event verification systems to verify the physical occurrence of

IoT events or by enforcing security compliance mechanisms to prevent unsafe and

insecure event transactions in the network. Although these mechanisms are well suited

for offline protection, they can barely provide realtime defense against agile remote

injection attacks. Additionally, some of the mechanisms require modification of the

source code of IoT mobile apps, making the defense solutions platform dependent.

In this dissertation, we present three novel research works to address this gap.

First, we propose IoTMonitor, a Hidden Markov Model based security analysis sys-

tem that discovers optimal attack paths from a set of physical evidence generated due

to attack actions in the network. IoTMonitor learns attack behavior by continuously

observing physical changes caused by event occurrences and determines the most

likely IoT devices compromised by attackers. Second, we develop IoTWarden, a deep

reinforcement learning (deep RL) based defense system that profiles attack actions

iv

at runtime and takes necessary defense actions to obstruct the progression of ongoing

attacks. We implement an LSTM-based recurrent neural network (RNN) to infer at-

tack behavior at runtime and a Deep Q-Network (DQN) based function approximator

to obtain optimal defense policies. The objective here is to train a defense agent with

an optimal action policy so that the agent takes defense actions at runtime yielding

maximum security gain. Third, we develop IoTHaven, a realtime defense system to

mitigate remote injection attacks in partially observable IoT networks. In IoTHaven,

the defense agent takes optimal actions at runtime against ongoing remote injection

attacks under the uncertainty of actual network states maximizing the overall security

gain. We design the decision process of the defense agent as a Partially Observable

Markov Decision Process (POMDP). IoTHaven utilizes a Deep Recurrent Q-Network

(DRQN) based function approximator to obtain optimal defense policies.

v

DEDICATION

I dedicate this dissertation to my mother, Sabina Yasmin, my uncle, Kamrul Hassan

Khan, and my wife, Israt Jahan, for their continuous support, love, and sacrifice. I

am deeply grateful for their contributions to my life and academic career.

vi

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to my advisor, Dr. Weichao Wang, for his

unwavering guidance, motivation, and support during my doctoral journey. He con-

sistently encouraged and challenged me to improve as a researcher. His continued

mentorship and assistance have positively impacted my academic career. I am fortu-

nate to have such a talented, patient, and kind individual as my doctoral advisor.

I am deeply grateful to my dissertation committee members, Dr. Mohamed She-

hab, Dr. Jinpeng Wei, and Dr. Yonghong Yan, for their dedicated efforts in providing

valuable insights, suggestions, and feedback that have greatly enriched this disserta-

tion. I would also like to acknowledge Dr. Thomas Moyer for his contributions to

the initial stages of this dissertation.

I appreciate the love and support of my parents, family members, and friends,

who have always helped me navigate life’s challenges and experience significant and

positive personal growth.

This dissertation wouldn’t have been possible without the support of the UNC

Charlotte community. I am grateful to everyone at UNC Charlotte for their assistance

in completing this dissertation.

vii

TABLE OF CONTENTS

LIST OF TABLES xii

LIST OF FIGURES xiii

CHAPTER 1: Introduction 1

1.1. Motivation 1

1.2. Research Questions 3

1.3. Dissertation Map 5

CHAPTER 2: Background 6

2.1. Trigger-Action IoT Platform 6

2.2. Chain of Interactions 7

2.3. Challenges in Trigger-action IoT Platforms 10

2.3.1. Risky IoT App Interactions 10

2.3.2. Design Flaws in IoT Platform Permission System 11

2.3.3. Design Flaws in Protocols 11

2.4. Literature Review 12

2.4.1. Security Analysis of Trigger-action IoT Platforms 12

2.4.2. Security Policy Compliance and Rule Integrity Check 15

2.4.3. Event Verification and Anomaly Detection 16

CHAPTER 3: Modeling Trigger Action Based IoT Attacks 18

3.1. A Trigger-action Attack Scenario 18

3.2. Threat Model 20

3.3. Our Assumptions 20

viii

3.4. Probabilistic Model of a Trigger Action Based Attack 21

3.5. Solving the HMM Problem and Possible Research Directions 23

CHAPTER 4: Determining Optimal Attack Path and Identifying Crucial
Attack Nodes

24

4.1. Introduction 24

4.1.1. Research Motivation 24

4.1.2. Our Contributions 25

4.2. Problem Statement 26

4.3. The IoTMonitor System 27

4.3.1. IoTMonitor Architecture 27

4.3.1.1. State Machine Generator 27

4.3.1.2. Sequence Extractor 29

4.3.1.3. Crucial Node Detector 34

4.4. Evaluation and Results 35

4.4.1. Dataset Processing 36

4.4.2. Experiment Setting 36

4.4.3. Probability Estimation Time 37

4.4.4. Decoding Time 38

4.4.5. Computational Overhead 38

4.4.6. Accuracy Score 39

4.5. Conclusion 40

ix

CHAPTER 5: IoTWarden: A Deep Reinforcement Learning Based Real-
time Defense System to Mitigate Trigger-action IoT Attacks

42

5.1. Introduction 42

5.1.1. Research Motivation 42

5.1.2. Our Contributions 43

5.2. Problem Statement 44

5.3. Remote Injection Attack 44

5.3.1. Attack Definition 44

5.3.2. Attack Characterization 45

5.3.3. Attack Strategy 46

5.3.4. Threat Model 46

5.4. IotWarden Defense System 46

5.4.1. State Machine Generator 47

5.4.1.1. Reward Function 48

5.4.2. Policy Determiner 50

5.4.3. Policy Enforcer 52

5.5. Experiment and Simulation 53

5.5.1. Determining Optimal Attack Sequences 53

5.5.2. IoT Environment 53

5.5.3. Function Approximator 54

5.5.4. Deep Q-Network 55

5.6. Performance Evaluation 55

5.6.1. Optimal Attack Sequence 55

x

5.6.2. Rewards 57

5.6.3. Computation Overhead 58

5.6.4. Attack-Defense Dynamic 58

5.6.5. Impact of Injection Threshold 59

5.7. Conclusion 60

CHAPTER 6: IoTHaven: An Online Defense System to Mitigate Remote
Injection Attacks in Partially Observable Trigger-action IoT Plat-
forms

62

6.1. Introduction 62

6.1.1. Research Motivation 62

6.1.2. Our Contributions 62

6.2. Problem Statement 63

6.3. IoTHaven Defense System 63

6.3.1. System Design 65

6.3.2. System Architecture 65

6.3.2.1. System Environment 66

6.3.2.2. Defense Agent 66

6.4. Experiment and Simulation 71

6.4.1. Function Appproximator 71

6.4.2. Training DRQN 71

6.5. Performance Evaluation 72

6.5.1. Rewards 72

6.5.2. Time Overhead 73

xi

6.5.3. Attack-Defense Dynamic 74

6.6. Conclusion 75

CHAPTER 7: Future Works 77

7.1. Competitive Multi-agent Reinforcement Learning (MARL)
based Defense Solution

77

7.2. Offloading Defense Policy Determination in Cloud 78

7.3. Designing Online Defense Systems with User-configurable Over-
head

80

CHAPTER 8: Conclusion 82

REFERENCES 84

xii

LIST OF TABLES

TABLE 5.1: LSTM-based recurrent neural network settings 54

TABLE 5.2: Function approximator settings 54

TABLE 5.3: Hyperparameter settings for Deep Q-network 55

TABLE 6.1: Deep Recurrent Q-Network (DRQN) settings 72

TABLE 6.2: Hyperparameter settings used for training 72

xiii

LIST OF FIGURES

FIGURE 2.1: Architecture of a Trigger-action IoT Platform 7

FIGURE 4.1: IoTMonitor System 28

FIGURE 4.2: A Sample State Machine 28

FIGURE 4.3: a) Probability estimation time with respect to sliding win-
dow size and length of the event sequence; b) Decoding time with
respect to sliding window size and length of the event sequence

38

FIGURE 4.4: Number of iterations to estimate the converged transition
probabilities and emission probabilities with respect to the ratio be-
tween number of observation states and number of true states

39

FIGURE 4.5: Accuracy score vs Sliding window size vs Length of the
event sequence

40

FIGURE 5.1: IoTWarden System Architecture 47

FIGURE 5.2: Illustration of IoTWarden Policy Enforcement 52

FIGURE 5.3: Training and validation accuracy over epochs 56

FIGURE 5.4: Training and validation loss over epochs 56

FIGURE 5.5: Reward over episodes 57

FIGURE 5.6: Time overhead over episodes 58

FIGURE 5.7: Number of injection and block actions over episodes 59

FIGURE 5.8: Average episodic return over injection thresholds 60

FIGURE 6.1: IoTHaven System Architecture 64

FIGURE 6.2: Reward over episodes 73

FIGURE 6.3: Time overhead over episodes 75

FIGURE 6.4: Number of injection & block actions over episodes 76

CHAPTER 1: Introduction

In recent years, the deployment of Internet of Things (IoT) devices to facilitate

home and industry automation has become a popular phenomenon. We also see an

upward trend in the usage of IoT and smart devices in transportation, agriculture,

and healthcare sectors. It is projected that we will have at least 41.6 billion connected

IoT devices by 2025 [1]. The pervasiveness of IoT devices gives us the opportunity to

make our workspace and living space autonomous, adaptive, and efficient. To make

the automation easier, many IoT platforms now support the trigger-action capability.

IFTTT [2], SmartThings [3], Microsoft Power Automate [4], Apple Home App [5],

openHAB [6], Wink [7], and Zapier [8] are few such platforms.

1.1 Motivation

In trigger-action IoT platforms, IoT devices communicate with each other via IoT

hubs. The occurrence of events in one IoT device invokes action(s) in another IoT

device. Thus, event conditions and actions maintain functional dependencies, where

actions in IoT devices are triggered based on the occurrence of relevant event condi-

tions. Trigger-action IoT platforms allow users to set up trigger-action rules leveraging

these functional dependencies. At runtime, when these rules are executed with the

help of IoT hubs, we see a chain of interactions in the network representing a sequence

of event conditions and corresponding actions. IoT hubs use this chain to automate

network tasks and send notifications about the state of devices to users. However,

adversaries can exploit this chain of interactions to perform remote injection attacks

in the network and invoke safety-critical actions in target IoT devices [9] [10] [11]. For

instance, an adversary can inject a fake thermometer reading of 120°F into a smart

2

home network faking a fire hazard situation to force the smart lock to open the front

door in the absence of the homeowner violating rule integrity.

In the literature, we see two main types of security systems to address this vulnera-

bility: 1) security compliance enforcement systems, and 2) event verification systems.

The former type of systems [9] [12] [13] ensure that all event transactions in IoT

environments comply with the pre-defined security policies. They perform static anal-

ysis over the source code of IoT mobile apps to discover the underlying functional

dependencies between event conditions and actions. The objective of performing

static analysis is to identify hook points in the source code so that customized se-

curity codes can be instrumented. When these instrumented codes are executed at

runtime, the security system generates a dynamic state machine representing the

event transactions and verifies whether any event transaction violates the security

policies defined for the network. It is also possible to generate a provenance graph

to trace the flow of event transactions [14]. These systems are mainly designed to

enforce the security compliance of event transactions and block any event transaction

that doesn’t comply with the policies. However, since these security systems rely

on the static analysis of the IoT mobile apps to determine where to add customized

security codes, they are pretty platform-dependent.

The event verification systems [15] [16] [17] [18], on the other hand, act as anomaly

detection systems in IoT platforms. They utilize physical event fingerprints of IoT de-

vices to verify the occurrence of IoT events in the physical environment and determine

whether any existing event condition is maliciously injected into the network. They

use rule-based and/or ML-based anomaly detection approaches to decide whether an

existing event condition is anomalous [19]. To extract physical event fingerprints,

these systems deploy a set of verifying sensors in IoT environments to continuously

measure the physical channels of network devices and capture any noticeable physical

changes (e.g., light intensity) due to the occurrence or injection of event conditions

3

(e.g., light turned on) in the network. When the physical event fingerprint of an IoT

device is discovered, these systems harness that fingerprint to verify the corresponding

event conditions and effectively determine whether the IoT device shows any anoma-

lous behavior. These security systems work greatly as offline defense solutions against

remote injection attacks, however, they barely provide real-time security against agile

injection attacks with the capability of profiling defense actions and altering attack

strategy at runtime. Additionally, they need full observability over the network states

of the environment to function properly.

Based on the aforementioned discussions, it is evident that the existing literature

needs platform-independent real-time security solutions against agile remote injection

attacks. It also needs security solutions that can take effective defense actions at

runtime in partially observable IoT networks. Moreover, it lacks research work on the

utilization of statistical properties of IoT networks in detecting injection attacks and

the development of probabilistic defense mechanisms.

1.2 Research Questions

In this dissertation, we aim to address the research gap in the state-of-the-art and

solve the following three research questions:

• RQ1: How can we determine the optimal attack path from a stream of phys-

ical evidences emitted during a remote injection attack and identify the most

frequently compromised IoT devices?

• RQ2: How can we design a security system that discerns the optimal defense

policy for a fully observable IoT network to counter ongoing remote injection

attacks at runtime?

• RQ3: How can we discern the optimal defense policy for a partially observable

IoT network to counter ongoing remote injection attacks at runtime?

4

To solve RQ1, we propose IoTMonitor [11], a Hidden Markov Model (HMM) based

security analysis system that determines the optimal attack path consisting of a se-

quence of event conditions based on a set of physical evidences collected by sensors

during a remote injection attack. We use the Baum-Welch algorithm [20] to discover

probabilistic relations between event conditions and the set of physical evidences.

Later, we use the Viterbi algorithm [21] to discern the underlying optimal sequence

of event conditions. IoTMonitor also identifies the IoT devices attackers mostly try

to compromise to successfully implement remote injection attacks.

We solve RQ2 by developing a Deep Reinforcement Learning (DRL) based real-

time defense system namely IoTWarden [19]. It allows a defense agent to profile

attack actions based on their impacts on the IoT environment and takes defense

actions following an optimal defense policy. To infer attack behavior, IoTWarden

uses an LSTM-based [22] Recurrent Neural Network (RNN) and trains the RNN

using a sequence of attack conditions. Additionally, IoTWarden implements a Deep

Q-Network [23] to obtain optimal defense policy.

The final research work we cover in this dissertation is the design and implementa-

tion of IoTHaven [24], an online defense system to mitigate remote injection attacks

in partially observable IoT networks with the trigger-action capability. We propose

IoTHaven to solve RQ3. IoTHaven allows a defense agent to take optimal defense ac-

tions against an ongoing injection attack yielding maximum security gain. Hence, the

agent discerns an optimal defense policy by observing a stream of physical evidences

with the help of a Deep Recurrent Q-Network (DRQN) [25] function approximator.

Since IoTHaven takes optimal defense actions under the uncertainties of network

states, it can be deployed to secure heterogeneous and scalable trigger-action IoT

platforms.

5

1.3 Dissertation Map

The rest of the dissertation is divided into 7 chapters. In Chapter 2, we share back-

ground knowledge of trigger-action IoT platforms and discuss some notable related

works. In Chapter 3, we mathematically define the trigger-action based remote injec-

tion attack and provide a detailed threat model. We discuss IoTMonitor in Chapter 4

and explain how IoTMonitor extracts optimal attack paths from physical evidences.

We also share an algorithm that identifies the most frequently targeted IoT devices

in trigger-action IoT platforms. Later, we provide a detailed description of the IoT-

Warden defense system in Chapter 5 and the IoTHaven defense system in Chapter 6,

respectively. In Chapter 7, we discuss some potential research works, and finally, we

conclude the dissertation in Chapter 8.

CHAPTER 2: Background

In Chapter 1, we discuss how users create trigger-action rules to help automate net-

work tasks and how IoT hubs execute these rules at runtime based on the occurrence

of event conditions in the network. We also discuss how the generation of a chain of

interactions enables attackers to exploit functional dependencies to implement remote

injection attacks. In this chapter, we first provide an overview of a typical trigger-

action IoT platform. Then, we show how event conditions and actions create a chain

of interactions in a trigger-action platform. Later, we briefly discuss some challenges

existing in popular trigger-action platforms. Finally, we introduce some relevant re-

search works from the literature which attempt to address the vulnerability caused

by the existence of chain of interactions.

2.1 Trigger-Action IoT Platform

Figure 2.1 shows the architecture of a typical trigger-action IoT platform. As we

see in the figure, IoT devices are connected with a smart hub wirelessly, and the hub

collaboratively works with a cloud backend and a companion app. The companion app

(e.g., SmartThings mobile app [3]) is a single space to install SmartApps relevant to

IoT devices in the network, and users can manage, automate, and control network IoT

devices using these SmartApps. Whenever IoT devices communicate through the hub,

the hub works with a cloud backend, where device handlers are utilized as software

wrappers and API of the actual SmartApps. There is a permission system that can

manage and control permission for the SmartApps and determine how privilege the

SmartApps should be.

In a trigger-action platform, users install SmartApps based on the requirement

7

Figure 2.1: Architecture of a Trigger-action IoT Platform

of IoT devices and can manually set up the trigger-action rules. SmartApps then

use device handlers to execute those rules at runtime and impact the functionalities

of the network IoT devices. Since it is possible that a user buys IoT devices from

multiple vendors, the user may need to install SmartApps developed by a diverse

set of developers. Therefore, the companion app needs to support the installation of

different types of SmartApps, even though the heterogeneity in SmartApps may end

up creating some security vulnerabilities [26].

2.2 Chain of Interactions

In a trigger-action IoT platform, when the cyber state of an IoT device changes

due to the occurrence of an event, the device reports the event condition to the smart

hub to notify the new cyber state. Upon receiving the notification, the hub verifies

the physical state of the device and invoke corresponding actions in relevant devices

8

dictated by user-defined rules. As we discuss in Chapter 1, the execution of user-

defined rules creates a chain of interactions that enable the automation of network

tasks. To understand how a chain of interactions is generated, let’s consider the

following use case:

"Alice has a smart home with five IoT devices: smart lock (SLO), motion detector

(MD), smart light (SLI), smart coffee machine (COF), and smart window (SW). She

set the following rules in the rule engine:

• R1: When the motion detector senses motion, the smart light automatically

turns on.

• R2: If the smart lock attached to the front door is unlocked, the smart light

automatically turns on.

• R3: If the smart lock attached to the front door is unlocked and the motion

detector senses motion, the smart coffee machine starts grinding coffee.

• R4: When the motion detector senses motion near the window and the smart

light is turned on, the smart window automatically opens for ventilation.

• R5: When there is no motion detected by the motion detector for 5 minutes,

the smart light turns off to save energy.

• R6: If the smart light is turned off and there is no motion at the home, the

smart lock is automatically locked to secure the home from intruders.

Alice sets these six rules to automate tasks when she comes home from outside or

leaves home for work. The ultimate objective is to let the IoT devices interact with

each other and leverage the possible chain of interactions to perform automation."

In this use case, the execution of the rules creates a chain of interactions that

enables automation in Alice’s smart home. If we convert the rules using formal logic,

we find the following statements:

9

R1 :MDmotion_detected → SLIon

R2 : SLOunlocked → SLIon

R3 : SLOunlocked ∧MDmotion_detected → COFgrinding

R4 :MDmotion_detected_near_window ∧ SLIon → SWopen

R5 :MDno_motion_for_5_minutes → SLIoff

R6 : SLoff ∧MDno_motion → SLOlocked

When Alice comes home from outside and walks towards the window, the execution

of the following chain of interactions ensures that the smart light is automatically

turned on, the coffee machine is grinding coffee beans, and the window is open:

R2→ R1→ R3→ R4

But when Alice leaves home for work, the following chain of interactions ensures

that the smart home is secured and the energy used by the light is saved:

R5→ R6

From the aforementioned use case, we can clearly see that when the user of a

trigger-action IoT network carefully sets rules to represent trigger-action scenarios in

the network, the sequential execution of a set of rules creates a chain of interactions

that automates the network tasks and changes the status of IoT devices. Although

the examples we see in this use case provide very simple chains, the real-life im-

plementation of trigger-action capabilities in IoT networks may produce much more

complex chain of interactions where multiple rules may concurrently impact single

rule and vice versa.

10

2.3 Challenges in Trigger-action IoT Platforms

Trigger-action IoT platforms face challenges from multiple aspects, such as risky

inter-app interactions, design flaws in IoT platform permission systems, and design

flaws in protocols.

2.3.1 Risky IoT App Interactions

In trigger-action platforms, IoT apps interact with each other following user-defined

rules. Users try to set up rules harnessing functional dependencies of the devices. It is

possible that multiple user-defined rules are executed simultaneously letting the apps

interact with each other and change the participating devices’ status. This concurrent

execution of IoT rules sometimes creates conflicts in device operation [27]. In smart

home networks, a conflict can be defined as an unexpected situation where two or

more competing environmental changes are invoked concurrently [28]. For example,

when the temperature is beyond 100°F, a thermostat may ask a window to open,

but an AC unit may ask the same window to close at the same time. We can also

define conflict as an implicit interference between two rules trying to impact multiple

devices with contradictory impacts on the network [29]. Conflicts in user-defined rules

create inter-rule vulnerabilities [30], interference threats [31], and risky interaction

chains [32].

In [30], we see that inter-rule vulnerabilities may cause 1) condition bypassing that

allows security conditions to be bypassed by attackers to compromise the function-

ality of a target IoT device, 2) condition blocking that undesirably makes a trigger

condition unsatisfied to invoke a necessary action in an IoT device next in the chain

of interactions, and 3) action looping where trigger conditions can be manipulated

to invoke same actions iteratively. In [31], Cross-App Interference (CAI) attack is

explained. The primary vulnerability that makes CAI attacks possible comes from

the interference of a rule’s action towards the trigger conditions of another rule. Even

11

though IoT apps are given least privilege by the permission management system,

the execution of user-defined rules from different apps and the implicit rule chain

allow the adversaries to craft CAI attacks exploiting the dependency relations among

IoT apps. Since a smart home network may deploy multiple trigger-action platforms

together [33] [34], CAI attacks may also be performed in multi-platform multi-control-

channel smart home environments [35]. IoT app interactions may also create risky

interaction chains in the network [32], which can be exploited by attackers to violate

rule integrity and perform safety-critical attacks.

2.3.2 Design Flaws in IoT Platform Permission System

We discuss in Section 2.1 that the cloud backend of a standard IoT platform con-

tains a permission management system that manages and controls the SmartApps

and the privileges they achieve. Since the permissions SmartApps granted to access

sensitive resources of a network play a vital role in providing security of the network

devices [36], any permission model that considers a coarse-grained definition of per-

mission may undesirably end up giving overprivilege to SmartApps [37] [38] [39]. Jia

et al. [40] argue that SmartApps users should be given contexts while granting permis-

sions at runtime. They advocate for the fine-grained definition of permission so that

the overprivilege issue can be handled effectively and the contextual integrity [41]

of SmartApps can be maintained. If SmartApps are granted fine-grained context-

specific permissions, it becomes easier to design an efficient access control system to

manage the applications and their behavior [42]. It also becomes easier to extract

contextual information from application source codes and design effective security

policies to enforce at runtime [43] [9] [12] [44].

2.3.3 Design Flaws in Protocols

Zigbee [45] [46] and ZWave [47] are the two most popular communication pro-

tocols used in trigger-action platforms. MQTT [48], Matter [49], Thread [50], and

12

Bluetooth/BLE [51] are few other important communication protocols used in IoT

platforms. In [52], we see that attackers near to a smart home can easily exploit the

design flaws in ZWave protocol to perform attacks on an IoT network. We also see

similar vulnerabilities caused by the design flaws of Zigbee protocol [53]. Similar to

Mirai botnet attack [54], It is possible for malware to infect an IoT device first and

then exploit the weakness of communication protocols to quickly spread payloads

through the whole network enabling a possible DDoS attack [55] [56]. In [57], we

see how worms can leverage the Zigbee chain to rapidly infect a whole IoT network.

This type of vulnerability caused by the design flaws of IoT communication protocols

make the widespread deployment of IoT devices in smart environments, including

smart cities, quite challenging. The challenges trigger-action IoT platforms face due

to the design flaws of communication protocols are well studied in [58], [59], [60], [61].

2.4 Literature Review

In this section, we discuss the relevant research works from the literature based

on the following three criteria: 1) security analysis of trigger-action IoT platforms,

2) security policy compliance and rule integrity check, and 3) event verification and

anomaly detection.

2.4.1 Security Analysis of Trigger-action IoT Platforms

The early research works in the literature mostly deal with the analysis of security

vulnerabilities caused by benign or malicious execution of user-defined rules in trigger-

action IoT platforms. In the literature, we see different types of security analysis to

discover vulnerabilities caused by the execution of user-defined rules. Some focus on

the detection of rules that prevent the execution of other important rules, while some

focus on the rule conflicts or the presence of race conditions in user-defined rules. We

also see research pertaining to the discovery of unexpected rule chains in the network.

Celik et al. [62] present an automated safety and security analysis of Samsung

13

SmartThings [3], one of the most popular trigger-action IoT platforms. The objective

of the analysis is to determine how the execution of a user-defined rule unknowingly

prevents the execution of a much needed rule and ends up damaging the safety and

security of the user. For example, if there is a user-defined rule whose execution

turns off the main water supply valve in the case of a water leak, the fire sprinkler

may not be turned on later if there is a fire hazard situation. Authors proposed a

static-analysis based rule validation approach, namely Soteria, to detect such types

of rule prevention scenarios in trigger-action IoT platforms.

It is possible that an action in one particular device depends on the occurrence of

multiple triggers, possibly in multiple devices. Therefore, user-defined rules pertaining

to compound triggers also need to be investigated. In [63] and [30], authors attempt

to find rule prevention issues in compound triggers by performing static code analysis

over SmartApp source code. The objective is to extract triggers and corresponding

actions by tracking information flow and identifying function calls. We see similar

type of approach in [9], [12], and [13].

To detect rule conflicts and race conditions, researchers also adopt static analysis

based approach, but the key focus is to determine rules with opposite effects that

execute simultaneously in the same device. In [30], [31], and [64], authors perform

security analysis to detect conflict between any two user-defined rules executed in

a particular IoT device. To give an example of a possible rule conflict, consider the

following two rules: R1 : unlock the front door when the temperature is 105°F, and R2:

when it is 8:00 pm, lock the front door. Now, if the thermostat gives a reading of 110°F

at 8:30 pm, a rule conflict will emerge in the network. The aforementioned research

works attempt to discover these types of conflicts in the network. However, in smart

homes and other IoT networks with trigger-action capability, the interactions among

IoT devices often create a chain of interactions [37]. Therefore, the rules that create a

chain of interactions need to be checked for possible rule conflict or race condition. [65]

14

and [66] offer two security analysis approaches to detect such conflicts in rule chain. In

smart home network, sometimes the emergence of an unexpected chain of interactions

does not fully reflect the status change of the network devices [67] [29]. Under that

circumstance, the detection of conflict in rules is challenging. To detect such implicit

rule chain, researchers propose NLP-based contextual information analysis of the

trigger-action rules set by users [29]. It is also possible that any physical change in

IoT environment may cause an undesired chain of interactions [68]. In that case,

we have to consider environmental factors that may cause the unexpected chain of

interactions when we perform security analysis. In [69], authors propose IoTMon, a

security analysis tool to discover unexpected rule chains. They also discuss how the

risk levels of each chain can be evaluated automatically. A more detailed overview of

the relevant literature can be found in [70].

In the literature, we also see research works related to the security analysis of

trigger-action platforms where security vulnerabilities are caused by other factors

apart from the user defined rules. Fernandes et al. [37] perform a detailed security

analysis on smart home platforms and find out that SmartApps often enjoy over-

privilege. The privileges assigned to SmartApps are often coarse-grained, and it is

possible for a SmartApp to have authorization for the access of two different IoT

devices. In SmartThings platform, SmartApps are not allowed to directly access

the IoT devices. They have to access the devices through device handlers located

in the cloud backend. However, the coarse granularity of the capability assigned to

SmartApps still make the access to IoT devices insecure and unsafe. This vulnerability

can be addresses through the implementation of fine-grained privilege mechanism for

the SmartApps [14] [9]. Trigger-action IoT platforms may also cause data leakage

problems [71]. However, these security vulnerabilities are out of context for this

dissertation.

15

2.4.2 Security Policy Compliance and Rule Integrity Check

To determine whether rule executions or event transactions in trigger-action IoT

platforms comply with the defined security policy of the network and verify whether

the integrity of user-defined rules is violated, researchers mostly utilize static analysis

based approaches. In [62], authors adopted static analysis based model checking ap-

proach to detect undesired rule prevention or rule collision scenarios. The goal is to

create a state machine from a set of extracted events/actions and check whether any

state transition violates the defined security properties. Hence, security properties

contain event constraints and required past event occurrences. The events/actions

used to define states and transitions are usually extracted by performing static analy-

sis over the source code of the IoT mobile apps developed to control the functionalities

of IoT devices. We see similar approaches in IoTGuard [9] to detect unsafe and inse-

cure state transitions, but IoTGuard instruments customized codes into app source

code to generate a dynamic system model at runtime to perform model checking.

The instrumented codes are carefully placed in hook points and API calls which are

determined through the static analysis.

We also see model checking based rule integrity verification approaches in [30] [63]

[72]. In [30], authors utilize a rule parser to convert IFTTT rules into fine-grained

and pre-formatted rules which are further used to generate states in a state machine.

Using model checking, they later verify whether any state transition violates the

security properties. In [63], authors propose IoTCom that considers event conditions,

actions, and a Behavioral Rule Graph (BRG) to detect rule prevention/collision and

unexpected underlying rule chain using model checking. BRGs are created from

Inter-procedural Control Flow Graphs (ICFGs) which are generated from IFTTT

rules using a path-sensitive analysis method [73] at the first place. ICFGs usually

represent the logical control flow of the rules. In [72], authors use a similar approach

to IoTCom to generate a finite state machine (FSM) from ICFGs, but here the model

16

checking system also performs model slicing and state compression over the FSM.

Beyond model checking, we also see different types of approaches in the literature

to detect rule integrity violation or security policy compliance check. In [31], we see

a syntax-based conflict detection method for the SmartThings platfrom, while NLP-

based methods are used to detect rule collision [29] and unexpected rule chains [69] [74]

in trigger-action IoT platforms.

2.4.3 Event Verification and Anomaly Detection

Since actions in IoT devices are triggered by the event occurrences in the network,

event verification plays a vital role in designing an effective anomaly detection system

to determine the presence of any attack in the platform. The latest research works

related to the detection of remote injection attacks mostly focus on the event detection

with the help of an array of sensors.

In PEEVES [16] [75], physical event fingerprints are used to verify the occurrence

of IoT events. A set of deployed sensors continuously measure the physical channels

of the IoT devices, and whenever there is any change in the physical environment, the

relevant sensors capture the change as a physical evidence. To verify the occurrence of

any event, this type of physical evidence is used as the signature of the occurred event.

A trigger-action IoT network usually contains IoT devices with different modalities

and types. The event occurrence in those devices leaves unique identifying signatures

in the physical environment, and therefore, the physical event fingerprints captured

by sensors in PEEVES give an opportunity to design a rule-based or an ML-based

anomaly detection system.

In [17], authors propose HaWatcher, a semantics-aware anomaly detection system

that uses a Shadow Execution Engine to determine the benign behavior of the IoT

devices and detect anomaly in rules based on the semantics of IoT mobile app, device

type, configurations etc. HaWatcher discovers device relations and harnesses the

correlation extracted by an NLP model to detect and further resolve rule conflicts.

17

In [76], authors propose a context-aware security framework for smart home sys-

tems, namely Aegis. Aegis models the behavioral change in IoT devices and sensors

due to user activities and develops a context-aware model to determine whether IoT

devices or sensors are acting maliciously. Additionally, it uses contextual informa-

tion extracted from IoT mobile apps to understand the trigger-action scenario better.

Aegis utilizes Markov Chain based approaches to detect anomalous behavior in net-

work and inform users about the suspicion through alerts and notifications.

Since complex physical relations exist between IoT devices and sensors [77] [78] [32],

the literature needs anomaly detection systems that can perform event verification

considering the following requirements:

• An event occurrence is impacting multiple physical channels, and therefore,

multiple sensors capture physical evidences related to the single event occur-

rence.

• A sensor captures a set of physical evidences generated due to the occurrence

of multiple events.

In [15], authors propose an event verification system that considers the aforemen-

tioned requirements and extracts multiple fingerprints related to the occurrence of

one IoT event. The event verification system is designed to be robust against evasion

attacks where attackers may exploit the complex relations between devices and sen-

sors to evade anomaly detection procedure. The authors also propose two patching

mechanisms against the evasion attack: 1) event verification system sofware patching,

and 2) sensor location patching.

CHAPTER 3: Modeling Trigger Action Based IoT Attacks

In trigger-action IoT platforms, the execution of user-defined rules representing

functional dependencies between event conditions and actions create a chain of in-

teractions. Attackers inject fake event conditions to this chain to perform remote

injection attacks and activate invalid actions in target IoT devices. In this chapter,

we mathematically model the remote injection attack in trigger-action IoT platforms

and share some directions about the possible defense solutions. We also discuss a

threat model that illustrates attacker’s capabilities in implementing the attack. Let’s

start with a possible attack scenario.

3.1 A Trigger-action Attack Scenario

Assume that Alice has a number of trigger-action enabled IoT devices in her smart

home, including a smart lock, a motion detector, a smart light, an accelerometer, a

smart coffee machine, and a smart window. Alice controls the functionality of each

device through a mobile application from her cell phone. The devices are wirelessly

connected to a hub and communicate with each other through the hub.

Alice sets up the following trigger-action rules:

• R1: When the smart lock of the front door is unlocked and the motion detector

senses motion of walking, the smart light turns on.

• R2: If the smart light is turned on, the smart window opens and the smart

coffee machine starts grinding coffee beans.

• R3: When there is any change in vibration, the accelerometer located in her

bedroom measures the new vibration.

19

• R4: When the accelerometer measures any change in vibration in the home, it

asks the smart lock to lock the front door.

• R5: If the front door is closed and the smart lock is locked, the smart light

turns off and the smart window closes.

Alice sets up these rules to automate the following tasks:

• T1: When she comes home from outside, unlocks the front door, and walks

towards the living room, she wants the smart light turned on, the smart window

opened, and the smart coffee machine grinding coffee beans.

• T2: When the coffee is ready, she wants to take the coffee mug and enters into

her bedroom. When she is in her bedroom, she wants the front door closed and

locked.

• T3: When she leaves home for work, she wants the smart light turned off and

the smart window closed.

Since her IoT devices support trigger-action capabilities, the execution of R1 and

R2 automates T1, the execution of R3 and R4 automates T2, and the execution of

R5 automates T3.

Now, Bob, an attacker, wants to manipulate the behavior of the smart window.

He wants the smart window opened when Alice is not at home and the front door is

securely closed. To achieve his attack goal, he aims to inject fake event conditions

into the chain of interactions. As we see in R2, the window opening action is pre-

conditioned upon the turn on event in the smart light. We also see in R1 that the

turning on action in the smart light depends on the door unlock event in the smart

lock and the sense motion event in the motion detector. The goal of Bob is to inject

fake door unlock and sense motion event conditions into the chain of interactions so

20

that R1 and R2 can be maliciously executed and the smart window can be opened

invalidly.

3.2 Threat Model

We assume that the attacker injects fake event conditions into the hub and force

the hub to invoke actions in target IoT devices. The attacker impersonates valid

IoT devices using computer programs called ghost devices [9]. The ghost devices

impersonate IoT devices just by mimicking their characteristics and functionalities.

The attacker collects valid ID and credentials of IoT devices from manufacturer’s

websites or public repositories, including GitHub so that the ghost devices remain

unsuspicious to the network [79]. We also assume that the attacker is aware of the

network setting. He is capable of performing reconnaissance operations or filtering

network traffic using side channel attacks [18]. He is also capable of extracting real-

time event information from network traffic using different IoT network analysis tools

[80] [18]. He may be able to profile the defense actions and figure out the impact of

IoT event occurrences, but these capabilities depend on the strategy of the attacker.

The attacker always wants to evade detection by the defense solutions, and therefore,

we assume that the attacker aims to perform attack actions in a minimally invasive

way, i.e., the attacker doesn’t perform injection operation if it is not needed.

3.3 Our Assumptions

We consider our trigger-action IoT platform a Markovian system, where the ac-

tion invoked in an IoT device at a time instance only depends on the event condi-

tions occurred at the previous time instance and does not depend on all other past

event conditions that already influenced actions in other IoT devices. We assume

that a configured trigger-action sequence contains N distinguishable event condi-

tions: c1, c2, ..., cN . The attacker injects a single fake event condition ci or a set of

fake event conditions {ci}, 1 ≤ i ≤ N in the chain of interactions to compromise the

21

functionality of a device of interest. Note that the attacker is capable to manipulate

an existing chain and maliciously inject a fake event condition somewhere in the chain

to impact the future event occurrences and actions. So, it’s not mandatory for the

attacker to start the chain of interactions although the attacker may choose to do it

if his attack strategy instructs him to do that.

In trigger-action IoT networks, whenever an event occurs, it causes some physical

changes in the environment, which can be perceived as a set of corresponding observa-

tions {oi}, 1 ≤ i ≤ M . The observations are actually physical evidences emitted due

to the occurrence of IoT events in the network. From the defense point of view, an

array of sensors can be placed in the environment to capture these evidences so that

the actual event occurrences can be verified based on their impact on the physical en-

vironment. Note that some event occurrences may trigger non-observable evidences,

but others may trigger more than one evidence.

3.4 Probabilistic Model of a Trigger Action Based Attack

Since our ultimate objective is to provide a defense solution, we model the trigger-

action attack as a Hidden Markov Model (HMM) problem. Event conditions reported

to the hub remain unobservable to the analysis and defense agents. In Chapter 4, we

discuss how a security analysis agent discovers optimal attack paths just by observing

a sequence of physical evidences generated during a trigger-action IoT attack. In

Chapters 5 and 6, we show how a defense agent takes optimal actions based on the

observations emitted as physical evidences. Since event conditions reflect the status

changes of the IoT devices, it is reasonable to encode them into hidden states of an

HMM. A security analysis agent or a defense agent cannot observe these hidden states,

but they can try to infer the hidden states by continuously observing the stream of

physical evidences generated in the network.

We assume that when event conditions {ct} are reported to the hub at time t, an

agent only observes the corresponding physical evidences {ot} emitted in the network.

22

The tasks of the agents are to determine the probabilistic relationship between event

conditions and evidences, employ it to figure out the optimal attack paths, diagnose

the crucial nodes in those paths, and finally devise an appropriate defense mechanism

to thwart any future attacks.

We model a trigger action based attack as a 5-tuple HMM problem
〈
X, Y,Q,E, σ

〉
,

where there are N true states X = {x1, x2, ..., xN}, and M observation states Y =

{y1, y2, ..., yM}. We define each xi and yj as follows:

• true state, xi : state of responding to the occurrence of ci

• observation state, yj : a subset of the set of physical evidences {o1, o2, ..., oM},

which are emitted when the environment makes transition to a new state

Note: In Chapter 4, we discuss in detail how we generate state machines represent-

ing the dynamic of our IoT environment that consists of these true states {xi} ∈ X

and observation states {yj} ∈ Y .

The term Q = {qij} in our HMM definition is called the state transition probability

distribution which is defined as:

qij = Pr(Xt+1 = xj|Xt = xi), 1 ≤ i, j ≤ N (3.1)

Hence, qij is the probability of transitioning from the true state xi ∈ X at time t to

any xj ∈ X at time t+1. When the environment makes a transition to the true state

xj, the environment emits a new observation yk ∈ Y with an emission probability

µj(yk) ∈ E which can be defined as:

µj(yk) = Pr(Yt+1 = yk|Xt+1 = xj), 1 ≤ j ≤ N

1 ≤ k ≤M

(3.2)

The quantity E = {µj(yk)} in the equation (3.2) is termed as emission probabil-

ity distribution that represents the probabilistic relationship between evidences and

23

actual IoT events.

The final parameter of the definition of HMM, σ = {σi}, is termed as initial state

distribution which can be defined as:

σi = Pr(X1 = xi), 1 ≤ i ≤ N (3.3)

Hence, σi is the initial state distribution at time instance t = i. It should be noted

that the environment can be in any state at any time instance and therefore, we

always need to maintain this σi to represent the likelihood of the environment being

at a certain state xi,∀i ∈ [1, N] at a time instance t = i.

3.5 Solving the HMM Problem and Possible Research Directions

We can solve this HMM problem to address the following research questions:

• How can we discern an optimal attack path by just observing a stream of phys-

ical evidences in a trigger-action IoT environment?

• How can we identify the most vulnerable nodes in an optimal attack path?

• How can we design an efficient defense solution for a trigger-action IoT platform

where the defense agent only sees a set of physical evidences?

CHAPTER 4: Determining Optimal Attack Path and Identifying Crucial Attack

Nodes

4.1 Introduction

Based on our discussion in Chapter 1, it is pretty evident that trigger-action plat-

forms in IoT domain are vulnerable towards malicious event injection attacks. At-

tackers exploit chain of interactions to inject fake event conditions in the network and

invoke undesirable actions in target IoT devices. In this chapter, we discuss how se-

curity analysis can be performed in trigger-action platforms to obtain optimal attack

paths and which nodes in the optimal attack paths are frequently compromised by

attackers to perform remote injection attacks.

4.1.1 Research Motivation

Since IoT devices in trigger-action platforms create a chain of interactions main-

taining functional dependencies between event conditions and actions [9] [10], it is

possible for adversaries to remotely inject malicious events somewhere in the inter-

action chain using a ghost device and activate safety-critical actions through the

exploitation of autonomous trigger-action scenarios. For instance, in a smart home,

an adversary can inject a fake thermometer reading of 110°F into the chain to ma-

liciously simulate a fire hazard situation and trick the hub to ask the smart lock to

open the front door in the absence of the home owner.

The existing literature includes a number of research efforts that attempt to solve

such vulnerabilities caused by the trigger-actions in an IoT network. Most of them

focus on validating security properties by identifying the unsafe or insecure state tran-

sitions in the network [9] [12] [13] and proposing countermeasures to prevent those

25

unsafe and insecure transitions. There is another line of research attempts where

policy violations are addressed by checking sensitive user actions that may violate

security policies [13]. The literature also includes research attempts where physical

fingerprints of the IoT devices are extracted using machine learning techniques and

further utilized to verify whether or not a certain event actually occurs [16]. Unfor-

tunately, none of these efforts deal with the possible attack paths the attackers may

choose to perform trigger-action based attacks and propose defense mechanisms to

secure the most vulnerable nodes in those paths.

4.1.2 Our Contributions

We choose to propose IoTMonitor, a security system that adopts a Hidden Markov

Model (HMM) based approach to determine optimal attack paths an attacker may

follow to implement a trigger-action based attack, thus providing suggestions for

subsequent patching and security measures. We envision our system examining the

physical changes happening in an IoT environment due to the event occurrences,

discovering the probabilistic relationship between physical evidences and underlying

events using the Baum-Welch algorithm [20] [81], and discerning the optimal attack

paths using the Viterbi algorithm [21]. When an optimal attack path is determined,

we deploy IoTMonitor to identify the crucial nodes in the path that the attacker must

compromise to carry out the attack. Such information can be used for prioritizing

security measures for IoT platforms.

The contributions of this research work can be summarized as follows:

• We propose IoTMonitor, a Hidden Markov model based security system that

identifies optimal attack paths in a trigger-action IoT environment based on the

probabilistic relationship between actual IoT events and corresponding physical

evidences;

• We implement the Baum-Welch algorithm to estimate transition and emission

26

probabilities, and the Viterbi algorithm to discern optimal attack paths;

• We propose an algorithm to detect the crucial nodes in an extracted optimal

attack path, thus providing guidelines for subsequent security measures;

• We thoroughly evaluate the performance of IoTMonitor in detecting optimal

attack paths and achieve high accuracy scores.

4.2 Problem Statement

Formulating the trigger-action attack as an HMM problem
〈
X, Y,Q,E, σ

〉
, our

objective is to answer the following questions:

1. How to determine the optimal value of θ = (σ,Q,E) given a complete observa-

tion sequence Y = {Y1, Y2, ..., YT} using the following equation:

θ∗ = argmax
θ

Pr(Y1, Y2, ..., YT |θ) (4.1)

where, Yt ∈ {y1, y2, ..., yM}, and each yj represents a subset of the physical

evidence {o1, o2,, oM} captured by the deployed sensors in the environment?

2. How to determine the quantity ωt(i) given a particular observation sequence

⟨Y1, Y2, ..., Yt⟩ at time instance t and Yt = yk such that

ωt(i) = max
x1,...,xi−1

{
Pr(X1 = x1, ..., Xt = xi, Y1, ..., Yt = yk|θ)

}
,

2 ≤ t ≤ T, 1 ≤ i ≤ N

(4.2)

where, ωt(i) is the maximum probability of the occurrence of a particular state

sequence ⟨x1, x2, ..., xi⟩ at time instance t that corresponds to the aforemen-

tioned observation sequence ⟨Y1, Y2, ..., Yt⟩?

3. How to detect the most crucial nodes in the attack chain the attacker must

compromise to make an attack successful?

27

4.3 The IoTMonitor System

Since the attacker exploits trigger-action functionality of IoT network to manipulate

a chain of interactions by injecting fake events, we can thwart a trigger-action attack

effectively if we can identify the optimal attack path the attacker may follow and

perform security hardening on the crucial nodes in the attack path. In this research

work, we propose IoTMonitor, a security system that discerns the optimal attack

paths by analyzing physical evidences generated during the attack cycle, which are

probabilistically correlated to the actual underlying events. IoTMonitor formulates

the attack as a Hidden Markov Model (HMM) problem (discussed in detail in chapter

3) and solves it to determine the most likely sequence of events occured during an

attack cycle and further identifies the crucial nodes in that sequence. Hence, in this

chapter, a node represents an event occurring at a particular device.

4.3.1 IoTMonitor Architecture

The proposed IoTMonitor comprises three main components:

1. State machine generator

2. Sequence extractor

3. Crucial node detector

Fig 4.1 shows the architecture of IoTMonitor. We discuss the components below

in detail.

4.3.1.1 State Machine Generator

When events occur in the environment and the deployed sensors capture corre-

sponding evidences per event occurrence, this component will construct a state ma-

chine to represent how the envrionment state changes across a series of time instances

t = 1, 2, ..., T . Hence, states delineate useful information regarding the occurrence of

different event condition {ci} and corresponding evidences {oi}.

28

Figure 4.1: IoTMonitor System

Figure 4.2: A Sample State Machine

The state machine accommodates two types of states:

1. True states: states that correspond to the actual event occurrences in the

network, and

2. Observation states: states that represent physical evidences emitted due to

the occurrence of event conditions in the network.

Hence, the true states remain hidden, but the observation states are leveraged to

infer the hidden true state sequence. We formulate the HMM
〈
X, Y,Q,E, σ

〉
and

define the state space using the same configurations shared in chapter 3. Figure 4.2

shows a sample state machine where blue circles represent the true states and yellow

circles represent the observation states.

29

Hence, we assume that there are N true states X = {x1, x2, ..., xN}, and T obser-

vation states Y = {y1, y2, ..., yT} in the state machine, where Xt and Yt, respectively,

denote the true state and observation state at time t. Here, T ≤ M , and each yj

contains a subset of the physical evidences {o1, o2, ..., oM}, where the total number of

evidences is M . Note that each observation state Yt in our experiment is determined

with the help of a sliding window function, which is discussed in the later half of this

chapter.

Note: For the rest of the chapter, we call observation state as only observation and

use the terms true state and state interchangeably to mean the same thing. We also

interchangeably use the terms event condition and event to mean the same aspect.

4.3.1.2 Sequence Extractor

Once the trigger action sequence is modeled as an HMM problem, IoTMonitor

attempts to estimate the probability values and retrieves the optimal hidden state

sequence from the observations. First, it starts with estimating the converged state

distributions, transmission probabilities, and emission probabilities. Then, it seeks

to figure out the underlying state sequence that maximizes the probability of getting

a certain observation sequence. To accomplish both tasks, the sequence extractor

employs the following two subcomponents: a) probability estimator, and b) sequence

retriever. The details of both subcomponents are described below.

a) Probability Estimator: Given a complete observation sequence ⟨Y1, Y2, ..., YT ⟩,

the goal of this component is to determine the following:

θ∗ = argmax
θ

Pr(Y1, Y2, ..., YT |θ) (4.3)

We use the Baum-Welch algorithm [20] [81] to iteratively update the current model

θ and solve equation (4.3). It uses a forward-backward procedure to find the maximum

30

likelihood estimate of θ given a certain set of observations. We assume that each ob-

servation Yt is emitted by the environment at one discrete time instance t = 1, 2, ..., T .

Forward-backward Procedure: Let αt(i) and βt(i) be the probabilities of get-

ting the observation sequences ⟨Y1, Y2, ..., Yt⟩ and ⟨Yt+1, Yt+2, ..., YT ⟩, respectively,

while the system is being in the true state xi at time t. Note that the state xi is

not observable to the agent and therefore, it makes an inference over xi from the

given observation sequence. The probabilities can be formulated as:

αt(i) = Pr(Y1, Y2, ..., Yt, Xt = xi|θ)

βt(i) = Pr(Yt+1, Yt+2, ..., YT |Xt = xi, θ)

(4.4)

We can compute αt(i) and βt(i) by following the following steps:

1. Initialization:
α1(i) = σiµi(Y1), 1 ≤ i ≤ N

βT (i) = 1, 1 ≤ i ≤ N

(4.5)

2. Induction:

αt+1(j) = µj(Yt+1)
N∑
i=1

αt(i)qij, 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N

βt(i) =
N∑
j=1

qijµj(Yt+1)βt+1(j), t = T − 1, ..., 2, 1, 1 ≤ i ≤ N

(4.6)

These two steps combined is called the forward-backward procedure, and αt(i) and

βt(i) are termed as forward variable and backward variable, respectively.

Now, suppose δt(i) is the probability of the system being in the true state xi

at time instance t given the complete observation sequence ⟨Y1, Y2, ..., YT ⟩ and the

current model θ. We can define this probability in terms of the forward and backward

variables αt(i) and βt(i), i.e.,

31

δt(i) = Pr(Xt = xi|Y1, Y2, ..., YT , θ)

=
Pr(Xt = xi, Y1, Y2, ..., YT |θ)

Pr(Y1, Y2, ..., YT |θ)

=
αt(i)βt(i)∑N
j=1 αt(j)βt(j)

(4.7)

Again, given the complete observation sequence ⟨Y1, Y2, ..., YT ⟩ and the current

model θ, suppose, ξt(i, j) is the probability of the system being in the true states xi

and xj at time instances t and t+ 1, respectively. So,

ξt(i, j) = Pr(Xt = xi, Xt+1 = xj|Y1, Y2, ..., YT , θ)

=
Pr(Xt = xi, Xt+1 = xj, Y1, Y2, ..., YT |θ)

Pr(Y1, Y2, ..., YT |θ)

=
αt(i)qijβt+1(j)µj(Yt+1)∑N

i=1

∑N
j=1 αt(i)qijβt+1(j)µj(Yt+1)

(4.8)

Now, we can update the initial state distribution σ̄i, transition probability q̄ij, and

emission probability µ̄j(yk) for Yt+1 = yk using these two parameters δt(i) and ξt(i, j).

The state distribution can be updated as:

σ̄i = δ1(i) (4.9)

where, δ1(i) is the probability of the system being in the true state xi at time

instance t = 1.

To update the transition probabilities, we have to compute the ratio of the ex-

pected number of state transitions from xi to only xj (the numerator of the equation

(4.10)) and the expected number of transitions from xi to all other true states (the

denominator of the equation (4.10)).

32

q̄ij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 δt(i)

(4.10)

And to update the emission probabilities, we have to take the ratio of two other

quantities: the expected number of times being in state xj and observing the obser-

vation yk (the numerator of the equation (4.11)), and the expected number of times

being in state xj (the denominator of the equation (4.11)).

µ̄j(yk) =

∑T
t=1 1(Yt+1=yk)δt(j)∑T

t=1 δt(j)
(4.11)

where,

1(Yt+1=yk) =

1, if Yt+1 = yk

0, Otherwise
(4.12)

The updated parameters σ̄ = {σ̄i}, Q̄ = {q̄ij}, and Ē = {µ̄j(yk)} now constitute

the new model θ̄ = (σ̄, Q̄, Ē). We need to iterate the equations (4.9) (4.10), and (4.11)

until we find θ̄ ≈ θ. This convergence is guaranteed in [81] by Baum et al., where it

is ensured that either 1) the initial model θ defines a critical point in the likelihood

function where θ̄ = θ, or 2) θ̄ explains the observation sequence ⟨Y1, Y2, ..., YT ⟩ more

suitably than θ, i.e. Pr(Y1, Y2, ..., YT |θ̄) > Pr(Y1, Y2, ..., YT |θ) [82].

b) Sequence Retriever: Once the probability estimator determines the converged

HMM model θ∗, now, it is job for the Sequence Retriever to extract the optimal

sequence of hidden events using the sViterbi algorithm [21]. Given a particular ob-

servation sequence ⟨Y1, Y2, ..., Yt⟩ at time instance t and Yt = yk, the goal here is to

determine the following:

33

ωt(i) = max
x1,...,xi−1

{
Pr(X1 = x1, ..., Xt = xi, Y1, ..., Yt = yk|θ)

}
= max

x1,x2,...,xi−2

{
max
xi−1

{
ωt−1(i− 1)q(i−1)(i)

}
µt(yk)

}
,

2 ≤ t ≤ T, 1 ≤ i ≤ N

(4.13)

Hence, ωt(i) represents the maximum probability of the occurrence of a particular

state sequence ⟨x1, x2, ..., xi⟩ at time instance t that corresponds to the aforementioned

observation sequence ⟨Y1, Y2, ..., Yt⟩.

The equation (4.13) can be solved recursively to determine the highest probability

of the occurrence of a complete state sequence ⟨x1, x2, ..., xN⟩ for the time instance

2 ≤ t ≤ T given that ω1(i) = σiµi(Y1). The recursion stops after computing ωT (i)

such as:

ω∗
T = max

1≤i≤N
ωT (i) (4.14)

But to obtain the optimal hidden sequence, we must trace the arguments that

maximize the equation (4.13) during each recursion. To achieve that, we introduce a

variable χ to hold all the traces such as:

χt(i) = argmax
1≤i≤N

{
ωt−1(i− 1)q(i−1)(i)

}
, 2 ≤ t ≤ T, 1 ≤ i ≤ N (4.15)

Note that χ1(i) = 0 for t = 1 because we start tracing the states for the very first

time at time instance t = 2 once we have at least one previous state.

Once we have χT (i), all we need is backtracking through the traces to discern the

optimal hidden sequence such as:

ψ∗
t = χt+1(ψ

∗
t+1), t = T − 1,, 2, 1 (4.16)

34

Hence, ψ∗
T (i) = χT (i), and Υ = {ψ∗

1, ψ
∗
2, ..., ψ

∗
T} is the extracted optimal sequence.

Note that each ψ∗
t ∈ Υ represents a true state in X.

4.3.1.3 Crucial Node Detector

After the sequence retriever extracts the optimal sequence Υ = {ψ∗
1, ψ

∗
2, ..., ψ

∗
T}, the

component crucial node detector applies Algorithm 1 to detect the crucial events in

the attack chain the attacker must compromise to successfully implement the attack.

Hence, we term the most frequently triggered events as crucial events.

Algorithm 1 takes p different extracted sequences Υ1,Υ2, ...,Υp and the original

sequence X = {x1, x2, ..., xN} as inputs. The goal of the algorithm is to determine

a pair of states which represent the event occurrences most likely to be triggered

during a remote injection attack. Algorithm 1 first determines the longest common

subsequence Si between each Υi and X. Later, it computes the SCORE value for

each pair of states in the subsequence using the following formula:

SCORE
[
Si[j], Si[j + 1]

]
= number of times a pair{

Si[j], Si[j + 1]
}

is present in the subsequence
(4.17)

Finally, the algorithm updates the SCORE values based on the presence of pairs

in all subsequences and retrieves the pairs with the maximum SCORE value. It may

output a number of pairs of states, such as {xci , xcj}, where there is a crucial state

transition in the state machine from xci to xcj . Our goal is to identify the events (we

call them nodes) associated with transitions exploited by the attackers to compromise

the chain.

An Example

Suppose, there is a sequence of states (corresponding to some triggered events):

{door-opened, light-on, camera-on, fan-on, window-opened}. And after making three

35

Algorithm 1 Crucial node detection algorithm
Input: X,Υ1,Υ2,,Υp

Output: Pairs of true states responding to the most frequently triggered events
1: i← 1
2: while i ≤ p do
3: Si ← Longest Common Subsequence between X and Υi

4: for j ← 1 to (|Si| − 1) do
5: E[i, j]← {Si[j], Si[j + 1]}
6: if E[i, j] not in SCORE.Keys() then
7: SCORE[E[i, j]]← 1
8: else
9: SCORE[E[i, j]]← SCORE[E[i, j]] + 1

10: end if
11: end for
12: end while
13: return argmax

E[i,j]

(SCORE[E[i, j]])

separate attempts, the sequence retriever returns the following three sequences:

Sequence-1: {door-opened, light-on, light-on, camera-on, fan-on}

Sequence-2: {fan-on, light-on, camera-on, fan-on, window-opened}

Sequence-3: {door-opened, light-on, camera-on, window-opened, fan-on}

Now, if we apply Algorithm 1 on this scenario, we find that the pair {light-on,

camera-on} obtains the highest score. Consequently, we can conclude that the tran-

sition from the state light-on to camera-on is the most vital one in the state machine,

and the nodes associated with those states are the most crucial ones in the chain.

IoTMonitor identifies these crucial nodes so that we can perform security hardening

to minimize the attacker’s chance of compromising an IoT network.

4.4 Evaluation and Results

To evaluate the performance of IoTMonitor, we utilize the PEEVES dataset [16]

that records IoT event occurrences from 12 different IoT devices and sensor measure-

36

ments from 48 deployed sensors to verify those events. We use 24-hours data for our

experiment, and our experiment executes on a 16 GB RAM and 4 CPU core system.

4.4.1 Dataset Processing

Our experiment mainly deals with three types of data:

1. Event data (encoded as true states)

2. Sensor measurements (encoded as observations)

3. Timestamps

. We concentrate only on those event occurrences which can be verified by the sensor

measurements. Since sensor measurements here capture the physical changes that

have happened in the environment due to the event occurrences, they can be used

to crosscheck whether a certain event has occurred. We conceptualize the function

sliding window to determine whether an event is verifiable. The function sliding

window gives us a fixed time window (in milliseconds), wi, to check all physical

evidences collected by sensors to verify the actual occurrence of an IoT event. When

an event occurrence is recorded at time ti, the sliding window enables us to check

whether the physical evidences collected between ti − wi and ti + wi are enough to

verify the occurrence of that event. If the verification is not possible, we just discard

the event occurrence from the sequence. In our experiment, we consider 20 such

sliding windows with the window size between 105 milliseconds and 200 milliseconds

with an increase of 5 milliseconds.

4.4.2 Experiment Setting

At the beginning of our experiment, we choose Gaussian distribution [83] to ran-

domly assign the transition probabilities and initial state probabilities for each true

state. On the other hand, we use Dirichlet distribution [84] to assign the emission

37

probabilities. Since assigning emission probabilities to observation states is both cat-

egorical and multinomial distribution tasks, we choose to utilize Dirichlet distribution

to initially assign some probabilities against the observation states.

4.4.3 Probability Estimation Time

Probability estimation time represents the time required to estimate the converged

transition probability distribution Q and the emission probability distribution E.

Figure 4.3(a) presents the estimation time for four different sequences of events of

variable lengths (5, 10, 15, and 20) against a range of sliding windows. In the figure

we show the average estimation time after 10 executions.

As we can see from Figure 4.3(a), the longest estimation time is < 4 seconds for

the sequence length of 20, while in most cases, it is < 0.5 seconds. We iterate our

learning algorithm 1000 times and set the convergence threshold to 10−6. When we

see a change in probabilities ≤ 10−6, we assume that those probabilities are converged.

We can see that when the window size increases, the estimation time starts to decrease

and stabilize. There are a few exceptional cases where the estimation time increases

sharply for an increase in window size. For example, when the window size increases

from 105 to 110 for the sequence of length 20, we see a sudden spike. We examine

the source data and find that this spike is caused by the appearance of two new

events that were not present earlier. Since the number of unique events increases and

repetition of same events decreases in the sequence, the initial state distribution and

transition probabilities are needed to be adjusted which costs adversely to the total

estimation time. However, this type of exception is transient, and the graph stabilizes

eventually. We do not present the estimation time for the sequences of lengths > 20

in the Figure 4.3(a) since we observe very little change in pattern for those sequences.

38

Figure 4.3: a) Probability estimation time with respect to sliding window size and
length of the event sequence; b) Decoding time with respect to sliding window size
and length of the event sequence

4.4.4 Decoding Time

Decoding time represents the time required to extract the hidden sequence when

we have the converged θ∗. Similar to probability estimation time, we take average

decoding time after 10 executions. The Figure 4.3(b) presents the decoding time for

four different sequences of events with lengths 5, 10, 15, and 20 against a range of

sliding windows.

If we look at the graph at Figure 4.3(b), we see that the decoding time decreases

when the window size increases. The longest decoding time we get is < 2.5 millisec-

onds which is very fast for the retrieval of hidden event sequences. Although we see

few little temporary spikes for the length 15 after sliding window 150, we still achieve

< 2.0 milliseconds as the decoding time.

4.4.5 Computational Overhead

Since our experiment dedicates most of the computation time to estimate the prob-

abilities, we measure computational overhead as the total number of iterations of the

forward-backward procedure required to reach the convergence of transition probabil-

ities and emission probabilities. In Figure 4.4, we present the required total number

of iterations (in y-axis) with respect to the ratio between the total number of unique

39

observation states and the total number of unique true states (in x-axis). We can see

that, the computational overhead increases roughly linearly with the ratio.

Figure 4.4: Number of iterations to estimate the converged transition probabilities
and emission probabilities with respect to the ratio between number of observation
states and number of true states

4.4.6 Accuracy Score

To determine how accurately the extracted hidden sequence of events represent the

real events, we compute f-score for 29 different sequence of events starting with the

length 2 and ending at length 30. We do not consider the sequence with length 1

because it does not offer any uncertainty in terms of transition and emission proba-

bility. To calculate the accuracy, we compare the extracted sequence with an original

sequence and determine how similar they are in terms of nodes and functional de-

pendencies. We present a heatmap to visually show the correlation among accuracy

score, sliding window size and length of the event sequence. In Figure 4.5, the accu-

racy scores are presented as colors.

As we can see, when the length of event sequence is < 15, the increase in window

size after 160 assures a very high accuracy score. We even get the accuracy score of

1.0 in some occasions. There is only one exception for the sequence of length 5. We

see a decrease in accuracy score after the window size 105, and that’s because we see a

40

Figure 4.5: Accuracy score vs Sliding window size vs Length of the event sequence

completely new sequence for the window sizes 110 to 200. Similar pattern also arises,

although to a less extent, for the sequence of length 7. But it is quite evident that the

increase in window size for the smaller lengths ensures higher accuracy score (equals

or close to 1.0). When the length increases to a considerable extent, we start to see

the impact of sliding windows on the accuracy score diminishing slowly. Since our

system emphasizes on the functional dependencies (in terms of transition probability)

of the events to extract the hidden sequence, the longer the sequence becomes, the

looser are the dependencies.

4.5 Conclusion

In this research work, we propose IoTMonitor that focuses on the extraction of the

underlying event sequence using the HMM approach given a set of physical evidences

emitted during a trigger-action based attack in an IoT environment. We use the

Baum-Welch algorithm [20] to estimate transition and emission probabilities, and the

Viterbi algorithm [21] to extract the underlying event sequence. Our experiments

show that both probability estimation and sequence extraction operations converge

reasonably fast. In terms of accuracy score, IoTMonitor achieves 100% in multiple

cases and ≥ 90% in a number of cases. We draw a heatmap to visually show the

correlation among accuracy score, sliding windows, and length of the event sequences.

We also present an algorithm to identify the crucial events in the extracted sequence

41

which the attackers wish to compromise to implement a trigger-action attack.

CHAPTER 5: IoTWarden: A Deep Reinforcement Learning Based Real-time

Defense System to Mitigate Trigger-action IoT Attacks

5.1 Introduction

We discuss in Chapter 1 that trigger-action IoT platforms enable IoT hubs in-

structing IoT devices to perform predefined actions (e.g., turning on smart light)

based on specific event conditions reported by other IoT devices (e.g., the door is

unlocked) [15]. Hence, event conditions act as triggers, which activate corresponding

actions associated with user-defined rules that are set in a rule engine. These rules

represent functional dependencies between various IoT event conditions and actions.

In a smart home network, these functional dependencies create a chain of interactions

among IoT devices to automate network tasks. IoT devices report event conditions

to the hub and inform the cyber states of the devices. The hub then verifies those

devices’ physical states by leveraging physical evidences captured by deployed sensors

in the network. The trigger-action functionality also allows the hub to communicate

with users through important notifications and alerts about the physical developments

(e.g., when the fire alarm sounds) in a smart home environment [85].

5.1.1 Research Motivation

We see in Chapters 1 and 2 that the chain of interactions creates security vulner-

abilities in trigger-action enabled IoT environments [11]. Attackers can exploit this

chain to inject fake event conditions into the network, trigger sensitive actions in-

validly, and cause unsafe state transitions in the environment violating rule execution

integrity [86]. Attackers can also collect seamless sensitive user data without raising

suspicion to the defense system. By simulating the behavior of a valid IoT device,

43

an attacker can maliciously report a fake event condition to the smart hub to force

it to invoke undesired actions in target IoT devices. It is possible for the attacker

to perform this attack remotely using ghost devices. This attack is also called event

spoofing attack since attackers deceive the hub with malicious reporting of spoofed

event conditions [15]. By performing remote injection attack, it is possible for an at-

tacker to maliciously invoke safety-critical actions (e.g., opening the front door when

the owner of the smart home is outside) in target IoT devices in trigger-action IoT

platforms [10].

In the literature, researchers mostly tried to address this vulnerability either by

implementing offline IoT anomaly detection systems [16] [17] or developing static-

analysis based security compliance enforcement systems [13] [9]. The literature lacks

security solutions that can provide realtime defense against ongoing remote injection

attacks having agile attack strategies.

5.1.2 Our Contributions

In this chapter, we describe IoTWarden, a Deep Reinforcement Learning (Deep RL)

[23] based defense system that allows a defense agent to model attack behavior based

on the impact of attack actions in the IoT environment and obstruct the progression

of an ongoing attack in realtime.

We make the following contributions in this research work:

• We propose a Deep RL based real-time defense system, namely IoTWarden,

that allows defenders to take optimal defense actions at runtime against ongoing

trigger-action IoT attacks.

• We implement an LSTM-based [22] Recurrent Neural Network (RNN) to discern

optimal attack sequences to help IoTWarden infer attack behavior at runtime.

• We implement Deep Q-Network [23] to obtain optimal defense policy and train

the decision process of defenders.

44

• We conduct extensive experiments and simulation to evaluate the performance

of IoTWarden, showing that the adoption of optimal defense policy yields im-

proved security gain with very low computation overhead.

5.2 Problem Statement

Given that an attacker performs a remote injection attack in a trigger-action IoT

platform, we aim to answer the following research questions:

1. How to discover attack behavior by observing an attacker’s actions considering

that the attacker may change the adopted attack strategy based on the defense

actions taken in the network?

2. How to determine an optimal defense policy that instructs a defense agent to

take effective defense decisions against a remote injection attack at runtime?

3. How to train the decision process of a defense agent ensuring that the overall

security gain is maximized?

5.3 Remote Injection Attack

To perform a remote injection attack exploiting functional dependencies in a smart

home network, an attacker injects necessary amount of event conditions into the hub,

which act as triggers for the actions in other devices. We call the injection operations

exploits, which trick the hub to activate actions in target devices. Note that we

interchangeably use the terms event condition and event in this chapter because they

signify the same aspect in our attack scenario.

5.3.1 Attack Definition

We assume that there are N possible event conditions in the network C={ci}, 1≤

i≤N , and the attacker conducts an optimal sequence of M exploits ξ={ej}, 1≤j≤

M to report a subset of these conditions to the hub to perform a trigger-action attack.

45

We assume that the attacker performs an exploit et∈ξ at timestep t to maliciously

report an event condition ct∈C to the hub and expects the hub to invoke an event

condition ct′∈C at another device, which is a target of the attacker. Since complex

functional dependencies may exist in the chain of interactions, it is possible that the

attacker needs to perform a set of exploits {et}∈ξ at timestep t to report multiple

event conditions {ct}∈C to achieve the attack goal. The attacker considers an IoT

device compromised if the following definition 1 applies to it.

Definition 1 (IoT Device Compromise): An IoT device dg is said to be compromised

at timestep t if an event condition cg ∈C is triggered at the device dg due to the

malicious reporting of a set of event conditions {ct} ∈C to the IoT hub by an attacker

through a sequence of exploits {et}∈ ξ adopting a strategy z∈Z that dictates the

attack operations.

5.3.2 Attack Characterization

To model complex interactions of the attacker with the network and characterize

the attack progression over time, we assume that the defense agent embeds event con-

ditions and corresponding exploits to construct a directed acyclic attack dependency

graph G={C, ξ} [87]. Since attack dependency graph grows non-linearly across time

horizon with the increase of the number of nodes, the defense agent considers the

inclusion of monotonicity [88] property in attack behavior to prevent state explosion

problem [89] and keep the attack dependency graph reasonably small to perform secu-

rity analysis. This property enforces a constraint on the attack behavior by limiting

the influence of past exploits on the future ones. We assume that the defender con-

structs this graph using state-of-the-art vulnerability analysis tools, such as TVA tool

of [90].

46

5.3.3 Attack Strategy

Since exploits drive the remote injection attack, it is important for the attacker to

follow an effective attack strategy in choosing the optimal exploits. We assume that

the attacker crafts a set of attack strategies Z={zi}, 1≤ i≤κ, where κ is the total

number of possible strategies for the attacker. Hence, each z∈Z gives a unique set of

exploits to perform during the attack. The attacker changes the adopted attack strat-

egy once the defender blocks certain event conditions making some event reporting

untenable. We assume that the attacker precomputes optimal attack paths from each

IoT device to the ultimate target device using LSTM-based RNNs exploiting tempo-

ral dependencies available in the network. Based on these optimal attack paths, the

attacker crafts several exploit sequences, which act as attack strategy z∈Z.

5.3.4 Threat Model

To define attacker’s capabilities, we adopt the same threat model described in Sec-

tion 3.2. Besides, we assume that the attacker is intelligent enough to profile the

impact of IoT event occurrences over the physical environment and perform oppor-

tunistic attacks similar to the attacks explained in [16]. The attacker performs as few

exploits as possible so that no noticeable suspicion is raised to the defense system. We

assume that the attacker dynamically selects an attack strategy from a limited pool

of strategies by observing defender’s actions in real-time. The defense system uses

physical evidences about the network collected by sensors to verify event occurrences.

We assume that the attacker cannot compromise these sensors and is incapable of

compromising the hub through which all sorts of communication among IoT devices

occur.

5.4 IotWarden Defense System

We design IoTWarden as a real-time defense system that infers attack behavior by

monitoring the impact of attacker’s actions on the network and adopts an optimal

47

policy to select defense actions, maximizing the total security reward. IoTWarden

continuously assesses the security status of the smart home network and takes nec-

essary defense actions to make some exploits infeasible so that the attacker cannot

complete a trigger-action IoT attack. We assume that IoTWarden is hosted in the

hub, and it enables the hub to block the activation of actions in target IoT devices

when it identifies the event injection in the network.

IoTWarden consists of three main components:

• State machine generator

• Policy determiner

• Policy enforcer

Figure 5.1 presents the system architecture of IoTWarden.

Figure 5.1: IoTWarden System Architecture

5.4.1 State Machine Generator

Considering the IoT network as system environment, this component of IoTWarden

creates a finite state machine with N S unique system states, such as S = {si}, 1 ≤

i ≤ N S and NA unique actions, such as A = {ak}, 1 ≤ k ≤ NA. Hence, st ∈ S

represents the environment state inferred by the hub at timestep t due to the reporting

of {ct} ∈ C, and the action at ∈ A makes the environment transition into another

48

state st+1 at timestep t+1 with a probability T (st, at, st+1) = Pr(st+1|st, at) yielding

a security gain (reward) R(st, at, st+1) = {rt}. We assume that the action space A

contains the following four (M = 4) actions:

• a1: event injection

• a2: checking device accessibility

• a3: monitoring security status of the network

• a4: blocking triggers

Hence, a1 represents an event injection action taken by an attacker to maliciously

inject a fake event condition into the network, while a2 represents the attacker’s action

to check whether a particular IoT device is accessible. a3 represents the defense

agent’s action to monitor the security status of a network device, and a4 represents

the action the defense agent takes to block a certain trigger. Note that IoTWarden

chooses < a1, a2 > to mimic the behavior of the attacker during the training phase of

the system. On the other hand, the defense agent takes the actions < a3, a4 > during

both the training and the deployment phase.

5.4.1.1 Reward Function

We design the defense agent to be reactive against attack actions. If event injection

(a1) actions are taken aggressively, we want the defense agent to take blocking triggers

(a4) actions more frequently. We define a parameter attack proximity factor p to

indicate how close the attack is to the ultimate goal node. We compute p by taking

ratio between the number of events already compromised and the total events in the

attack chain. When p increases, we want the defense agent to take more blocking

triggers (a4) actions.

The ultimate objective here is to prevent the attacker from compromising the goal

node. Therefore, we design the reward function to help the defense agent decide

49

when to allow the attacker to perform injection operations and when to start blocking

triggers. The reward function is defined using the following equation (5.1):

R(.) =



na3ra3 −
pna1ra1
na1+na2

−Gr if na1p

na1+na2
< k

(na4ra4)(na3ra3)

na4+na3

−max
(
na2ra2 ,

pna1ra1
na1+na2

+Gr

)
otherwise

(5.1)

Hence, na1 , na2 , na3 , and na4 respectively represent the number of actions a1, a2, a3,

and a4 taken in the environment. On the contrary, ra1 , ra2 , ra3 , and ra4 respectively

represent the immediate reward given by the environment for taking the actions a1,

a2, a3, and a4. The injection threshold k is a user defined parameter here. The value

of k indicates the tolerance of the defense agent against the injection operations.

The parameter Gr represents the reward for the attacker to compromise the ultimate

goal node, and the defense agent always tries to make that impossible. Any node

compromised beyond goal node yields Gr = 0.

As we see in the equation (5.1), the reward function instructs the defense agent to

allow the attacker proceed with attack operations until k is reached, i.e., the attacker

is allowed to take actions a1 and a2. However, the attacker needs to consider that

na1 works as a multiplier for p even though the reward ra1 is fixed, i.e., k is quickly

reached if too much event injection (a1) actions are taken. The defense agent contin-

uously performs monitoring operations by taking action a3 and checking whether the

injection threshold k is met. Once k is met, the defense agent starts taking blocking

triggers (a4) actions aggressively and ensures that the overall reward is optimized

considering the negative reward for the attacker due to the actions a1 and a2. We

design the reward function in the equation (5.1) as a linear function because we want

the defense agent to slowly learn the dynamic between attack and defense actions.

50

5.4.2 Policy Determiner

IoTWarden adopts an optimal policy that dictates how the defense agent chooses

actions at runtime. To determine this policy, IoTWarden solves a Markov Decision

Process <S,A, T,R> and trains a policy that maximizes the future discounted re-

ward, Rt =
∑t=T

t=0 γ
trt at timestep t, where the simulation stops at t = T , and γ

(0 ≤ γ ≤ 1) is the discount factor. The discount factor γ tells the defense agent

how much future rewards should be prioritized compared to the immediate reward

received due to the just-taken action. If the value of γ is closer to 0, the immediate

reward is prioritized. However, if it is closer to 1, the defense agent will try to focus

more on the accumulated future rewards than the immediate reward given by the

environment.

Given a state s ∈ S, the objective here is to discern a policy π(s) that provides

optimal state-action value pairs <s, a> from a function Q∗(s, a) (called Q-function)

yielding the maximum security reward Rt, such as:

Qπ∗
(st, at) = max

π
E
[
Rt|st = s, at = a, π

]
(5.2)

The Q-function obeys the Bellman equation [91], and the equation (5.2) can be

rewritten as:

Qπ∗
(st, at) = E

[
rt + γ max

a′∈π(st)
Q∗(st+1, a

′|st, a)
]

(5.3)

The policy determiner constructs a Deep Q-Network (DQN) [23] to estimate the

Q-function and utilizes a neural network function approximator with weights θi at

the iteration i to compute the temporal difference error δ. As shown in equation

(5.5), it uses the Huber loss [92] function to minimize this error δ over a batch β of

transitions <st, at, st+1, rt> from a replay memory. These transitions represent the

defense agent’s history of interactions with the environment. The policy determiner

51

samples these transitions from the replay memory using an exploration-exploitation

trade-off approach similar to the ϵ-greedy approach discussed in [93]. The following

equation (5.4) presents the formula used to compute δ and equation (5.5) shows how

this quantity δ is minimized during the training period.

δ = E
[
rt + γ max

a′∈π(st)
Q(st+1, a

′; θi+1)−Q(st, a; θi)
]

(5.4)

L =
1

|β|
∑

(st,a,st+1,rt)∈β

L(δ) (5.5)

where,

L(δ) =


1
2
δ2 if |δ| ≤ 1

|δ| − 1
2

otherwise

Hence, L(δ) represents the Huber loss function [92], which is a hybrid loss function

that takes the advantageous characteristics of both Mean Squared Error (MSE) and

Mean Absolute Error (MAE) loss functions [94]. It is quadratic for small values of δ

and linear for large values of δ. It is less sensitive to outliers, and therefore, it reduces

outlier’s impact on the squared error loss.

When we train the DQN, we ensure that the following action selection method is

adopted to balance between exploration and exploitation.

• Exploration: an action a is randomly selected from A with the probability of ε,

• Exploitation: the optimal action at ∈ A is chosen as a greedy option with the

probability of 1− ε.

We formulate ε using the following equation (5.6):

ε = εend + (εstart − εend) e
−t

εdecay (5.6)

Hence, εstart and εend respectively denotes the maximum and minimum value of a

52

range in which the value of ε lies. The parameter ϵdecay denotes the decay factor that

gradually diminishes the value of ε, and t denotes the current timestep. As t increases,

the value of ε in the equation (5.6) decreases slowly. Based on the latest value of ε,

either the exploration or the exploitation action selection method is adopted. The

equation (5.6) is designed in such a way that when the defense agent just starts

interacting with the network environment, the agent prefers the exploration method

since initially, ε yields a value close to 1. But when the learning process is being

continued for some time, the value of ε starts decreasing towards 0. In that case,

the probability of selecting an action from the replay buffer adopting the exploitation

method becomes higher. So, the agent chooses an action that has already been taken

before so that the ultimate reward can be optimized.

5.4.3 Policy Enforcer

To counter a realtime attack, IoTWarden leverages the trained policy π∗ to choose

optimal defense actions. At timestep t, IoTWarden receives the state st from the

environment and utilizes the function approximator to choose the best defense action

at ∈ A that maximizes the ultimate reward. Once the policy enforcer takes the

chosen action, the environment returns a reward rt to the defense agent based on the

reward function given in equation (5.1). The complete policy enforcement process is

illustrated in Figure 5.2.

Figure 5.2: Illustration of IoTWarden Policy Enforcement

53

5.5 Experiment and Simulation

We implement IoTWarden using TensorFlow [95] and conduct experiments simu-

lating a trigger-action attack in a smart home network to evaluate the performance

of the system. We utilize the PEEVES [16] dataset to extract the state space needed

to be encoded in the simulating environment. This dataset contains event traces col-

lected from 12 different IoT devices and physical evidence measured by 48 different

sensors. We utilize 24-hours data in our experiment. We run the experiment on an

Apple M1 Pro machine with 16 GB RAM and 8-core GPU.

5.5.1 Determining Optimal Attack Sequences

We use a Hidden Markov Model based approach described in [11] to determine

IoT events likely to occur in a trigger-action attack. We call them crucial nodes.

Later, we implement an LSTM [22] based RNN to create optimal attack sequences

exploiting temporal dependencies among IoT events captured in the PEEVES [16]

dataset and considering each crucial node as the starting node of a possible attack

chain. The RNN architecture contains one embedding layer to convert input event

sequences into fixed-length vectors of size 128, two bidirectional LSTM layers with 64

and 32 units respectively, and one fully-connected output layer with 23 classes. Each

event sequence given as input to the embedding layer records 227 different event

occurrences. Table 5.1 lists the LSTM-based recurrent neural network settings we

used in the experiment.

5.5.2 IoT Environment

From the optimal attack sequences, we extract events based on origin, convert

them into states, and encode them into the system environment for simulation. We

encode 12 unique states and 4 actions in the environment using OpenAI Gym [96].

We also integrate the reward function in the environment so that the defense agent

is rewarded accordingly for the actions taken at runtime.

54

Table 5.1: LSTM-based recurrent neural network settings

Parameter Value/Quantity
Number of Bidirectional LSTM layers 2

1st LSTM layer size 64 units
2nd LSTM layer size 32 units
Embedding layer size 128 units

Maximum sequence length 227
Number of classes in output layer 23 classes

Activation function for output layer Softmax
Loss function Categorical cross-entropy

5.5.3 Function Approximator

Given a state in the environment, we use a neural network function approximator

to estimate reward for each available action and output the optimal action yielding

the highest reward. The neural network we use has 2 hidden layers with 64 and

32 neurons, while the input and output layers include 128 and 4 units, respectively.

We use the ReLU [97] activation function for the input and hidden layers. For the

output layer, we use the Linear activation function. We use Huber loss [92] as the loss

function in this neural network. The complete settings that we use for the function

approximator are listed in Table 5.2.

Table 5.2: Function approximator settings

Parameter Quantity
Number of Hidden layers 2

1st Hidden layer size 64 units
2nd Hidden layer size 32 units

Input Layer size 128 units
Output Layer size 4 units

Activation function for output layer Linear
Activation function input and hidden layers ReLu

Loss function Huber loss

55

5.5.4 Deep Q-Network

The DQN we use to estimate Q-function has the hyperparameter settings listed in

Table 5.3. We train the network for 250 episodes and use Adam [98] optimizer with

the learning rate, α=1e−4. During our training, we update a policy network at a

constant rate, τ = 20. To record the defense agent’s interaction with the environment,

we use a replay buffer of size 50, 000 and sample 16 interactions at a time when the

optimal action is chosen.

Table 5.3: Hyperparameter settings for Deep Q-network

Parameter Quantity
Total episodes 250

Number of epochs per episode 100
Optimizer Adam

Minibatch size, β 16
Discount factor, γ 0.95
Learning rate, α 1e−4

(ϵstart, ϵend, ϵdecay) (1.0, 0.1, 0.99999)
Target network update frequency, τ 20 episodes

Replay buffer size 50,000

5.6 Performance Evaluation

5.6.1 Optimal Attack Sequence

Before training the LSTM-based RNN to extract optimal attack sequences, we split

the PEEVES dataset into training and validation sets with 80-20 ratio. In Figure 5.3,

we see the training and validation accuracy of the model over 100 epochs, while the

training and validation loss are depicted in Figure 5.4. We see that both training

and validation accuracy becomes > 0.99 after epoch=9. Even though we see some

unexpected decline in several occasions, for example, at epoch=44, we still achieve

>0.90 accuracy all the time. On the other hand, both the training and validation

loss becomes ≈ 0.02 most of the time after epoch=15. Despite a few irregular loss at

epoch=23, 44, 69, we can conclude that after epoch=9, the training and validation

56

loss always stays <0.10, and they become very close to 0 a number of times.

0 20 40 60 80 100

Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
c
c
u
ra
c
y

Figure 5.3: Training and validation accuracy over epochs

0 20 40 60 80 100

Epoch

0.0

0.5

1.0

1.5

2.0

L
o
s
s

Figure 5.4: Training and validation loss over epochs

57

5.6.2 Rewards

In our simulation, the defense agent is trained for 250 episodes, interacting with the

environment for 100 epochs in each episode. Each interaction yields a discrete reward

for the defense agent, and the defense agent accumulates all the rewards received over

100 epochs together to compute the total reward it achieves in a single episode. Figure

5.5 shows the total reward earned in our simulation over the entire 250 episodes. We

see that the total reward the defense agent receives for the first few episodes doesn’t

follow a stable pattern, and that’s because instead of following a fixed optimal policy

from the start, it explores all possible scenarios to determine the optimal policy that

guarantees the maximization of the total reward at the end. Once the agent learns the

optimal policy, the total reward it receives over the episodes follows a pretty stable

pattern, as shown in Figure 5.5 after ≈ 70 episodes.

Figure 5.5: Reward over episodes

58

5.6.3 Computation Overhead

In our simulation, the defense agent dedicates most of its computation time to

determine optimal state-action value pairs, sample experiences from the replay buffer,

and train the policy network. Therefore, we compute the total time required in each

episode to perform all these tasks and call it time overhead. Figure 5.6 shows how

time overhead changes over the episodes. We can see that after 40 episodes, the

overhead reaches stability, close to 2.85 seconds.

Figure 5.6: Time overhead over episodes

5.6.4 Attack-Defense Dynamic

We design the defense agent to be reactive against the attack actions. If event

injection (a1) actions are taken aggressively, the defense agent chooses to take blocking

triggers (a4) actions more often. As we see in Figure 5.7, the defense agent initially

becomes very aggressive, but it quickly starts to learn the attack-defense dynamic.

Since blocking triggers (a4) action negatively impacts the availability of the network

59

devices, the defense agent avoids taking redundant blocking triggers (a4) actions.

Figure 5.7 shows that the number of blocking triggers (a4) actions taken by the defense

agent is always smaller than the number of event injection (a1) actions taken after a

certain number of episodes (≈ 30 episodes). It is possible that the attacker needs to

inject multiple fake events to compromise a certain device, especially if any trigger

operation to that particular device has been blocked earlier by the defense agent.

Therefore, the objective of a trained defense agent is to take less blocking triggers (a4)

actions compared to the event injection (a1) actions taken, which is clearly evident

from Figure 5.7.

Figure 5.7: Number of injection and block actions over episodes

5.6.5 Impact of Injection Threshold

As we see in equation (5.1), the injection threshold, parameterized as k, dictates the

selection of optimal defense actions. To show the impact of k on the reward function,

we compute the average episodic reward, R̄t =
∑N

t=1 Rt

N
, where N = 100 epochs, and

Rt represents the total reward achieved in a single epoch. In Figure 5.8, we show how

the injection threshold k ranging between [0, 1] impacts the average episodic reward

60

achieved by the defense agent. We see that after k = 0.25, the impact of injection

threshold on the reward function is quite constant, i.e., even though a greater k allows

an attacker to perform more event injection operations, the defense agent still achieves

a certain level of reward and effectively secure network nodes. In conclusion, once the

defense agent determines the optimal defense policy, the increased aggressiveness in

attack behavior barely changes the security status of the network.

0.0 0.2 0.4 0.6 0.8 1.0

Injection threshold

750

500

250

0

250

500

750

1000

A
v
e
ra

g
e
 e

p
is

o
d
ic

 r
e
w

a
rd

Figure 5.8: Average episodic return over injection thresholds

5.7 Conclusion

In this chapter, we propose a real-time defense system named IoTWarden that

infers attack behaviors upon an IoT network and counters a trigger-action attack by

following an optimal action policy. We implement a neural network function approx-

imator to select optimal action at each environment state by maximizing the security

gain and train the defense policy using a Deep Q-Network. We implement the sys-

tem using TensorFlow and conduct extensive simulation to evaluate the performance

of the system. The experiment results show that the defense agent is capable of

61

achieving stable security rewards with very low computation overhead by following

an optimal defense policy under different aggressiveness levels of the injection oper-

ations conducted by an attacker. As our approach focuses on real time detection, it

can work in parallel with the static analysis-based security measures.

CHAPTER 6: IoTHaven: An Online Defense System to Mitigate Remote Injection

Attacks in Partially Observable Trigger-action IoT Platforms

6.1 Introduction

As we discuss in Section 5.3, an attacker can inject event conditions into a trigger-

action IoT network through some exploits and implement a remote injection attack

leveraging functional dependencies between event conditions and actions. It is pos-

sible for the attacker to force the IoT hub to invoke invalid actions in target IoT

devices. IoTWarden, discussed in Section 5.4, provides real-time defense against such

remote injection attacks, but IoTWarden must have complete visibility over network

states to function properly. In this chapter, we discuss how online defense systems

can be developed to ensure that the defense agent takes effective defense decisions to

thwart attack progression without having full visibility over network states.

6.1.1 Research Motivation

As discussed earlier, the existing literature mostly offers static-analysis based secu-

rity policy compliance enforcement systems [9] [13] or offline IoT anomaly detection

systems [16] [17] to defend against remote injection attacks. We propose IoTWar-

den [19] as a real-time defense system against ongoing remote injection attacks, but

it is not designed for partially observable platforms. Therefore, the literature needs

online defense solutions that can function effectively with the partial view of the IoT

network states.

6.1.2 Our Contributions

In this research work, we present a real-time defense system, namely IoTHaven,

to counter remote injection attacks at runtime in partially observable IoT networks.

63

The main contributions of this chapter are listed below:

• We propose IoTHaven, which observes partial information about the network

states yet discerns an optimal defense policy to obstruct the progression of a

remote injection attack at runtime.

• We train an LSTM-based function approximator using Deep Reinforcement

Learning to determine the optimal defense action given an observation at each

timestep.

• We design a novel reward function for a defense agent that dictates the agent’s

decision process.

• We conduct extensive experiments to evaluate the performance of IoTHaven,

showing that the optimal defense policy discerned under uncertainties of the

network states yields improved security gain with a low computation overhead.

6.2 Problem Statement

Assuming that the defense agent only has partial visibility over network states, our

goal is to answer the following questions:

1. How to model the decision process of a defense agent based on a stream of

observations to take optimal defense decisions at runtime to counter ongoing

remote injection attacks?

2. How to discern an optimal defense policy and train the decision process of the

defense agent maximizing the overall security gain?

6.3 IoTHaven Defense System

We design IoTHaven as an online defense system that takes sensor data (we call

observations) emitted due to the occurrence of IoT events as input and outputs an

64

optimal sequence of defense actions without observing the actual event occurrences in

the network. At a certain timestep, it senses the latest observations and determines

the optimal action considering the history of observations and already taken defense

actions.

Figure 6.1: IoTHaven System Architecture

65

6.3.1 System Design

We consider the following assumptions during the system design:

• The attack starts from an arbitrary node in the chain of interactions, and

• Each block operation performed by the defense agent ends up blocking multiple

exploits,

• The defense agent cannot see the actual event conditions, rather relies on the

observations sensed from the environment.

We assume that the defense agent constructs a directed acyclic attack dependency

graph G = {C, ξ} to model the attacker’s interactions with the network and quantify

the attack progression over time. The defense agent enforces the monotonicity [88]

property in the attack behavior to avoid state explosion problem [89] and keep the

attack dependency graph reasonably small to perform security analysis using tools,

such as TVA [90].

It is possible for the attacker to perform reconnaissance operations in the network

and determine the most vulnerable nodes in the attack chain. The attacker can

preselect the devices to mimic and strategically select the exploits to perform in the

network. Since the event conditions are not fully visible to the defense agent, we

assume that the defense agent cannot see what exploits are performed to make state

transitions in the environment and what the true environment states are. Therefore,

we choose Partially Observable Markov Decision Process (POMDP) as a mechanism

to dictate the decision process of the defense agent.

6.3.2 System Architecture

Figure 6.1 presents the system architecture of IoTHaven. It contains two main

components:

1. A system environment, namely IoTEnvironment, and

66

2. A defense agent

We discuss each component and its further sub-components below.

6.3.2.1 System Environment

Similar to IoTWarden, IoTHaven considers the IoT network as the system envi-

ronment, where different environment states and attack/defense actions are encoded

into a state machine. The state machine includes N unique environment states, such

as S = {si}, 1 ≤ i ≤ N and M unique actions, such as A = {aj}, 1 ≤ j ≤M . Hence,

st ∈ S represents the security state the environment transitions into due to the re-

porting of the event condition ct ∈ C at timestep t. Given that an action at ∈ A

is taken at timestep t, the environment further transitions into the state st+1 ∈ S

with a transition probability T (st, at, st+1) = Pr(st+1|st, at). When the environment

is in the state st+1, we assume that the environment emits an observation ot+1 ∈ O

with an emission probability µ(st+1, at, ot+1) = Pr(ot+1|st+1, at), where the observa-

tion space is defined as O = {ok}, 1 ≤ k ≤ T , and T is the total number timesteps.

Since state transitions are conditioned to attack/defense actions, a reward function,

such as R(st, at, st+1) = {rt}, 1 ≤ t ≤ T , must be embedded into the state machine

to incentivize the agent’s actions.

6.3.2.2 Defense Agent

At a certain timestep t, the main task of the defense agent in IoTHaven is to sense

the current observation ot ∈ O emitted from the environment and take the defense

action at ∈ A following an optimal defense policy. Given the configuration of the

system environment, the agent tries to solve a POMDP < S,A,O, T, µ,R, γ > to

discern the optimal defense policy. Hence, γ ∈ [0, 1) is a discount factor that tells the

agent how much future rewards are prioritized compared to the immediate reward

given by the environment due to the just-taken action. If the value of γ is closer

to 1, the defense agent prioritizes future rewards more than the immediate possible

67

rewards.

The ultimate objective of the defense agent is to determine an optimal policy π∗

that generates a sequence of actions at ∈ A by maximizing the expected discounted

reward:

E
[T∑

t=0

γtrt

]
(6.1)

a) Reward Function: We assume that IoTHaven encodes the following equation

(6.2) as the reward function for the defense agent in the system environment:

rt = ωrrs(ot) + (1− ωr)
[ru(ut)
e−nb

]
− ρt (6.2)

Hence, rs represents the reward the agent receives for sensing the current observa-

tion ot, ru represents the reward for taking a block operation ut, and ρt represents the

cost the agent pays at timestep t. The quantity ωr ∈ [0, 1] is a user-defined weighting

term that allows the agent to specify which action between sense observations and

block triggers is preferred. When ωr = 1, the agent only considers the sensing action,

and when ωr = 0, the agent only considers the blocking action. The parameter nb in

equation (6.2) denotes the number of block actions taken so far by the defense agent.

The cost ρt in equation (6.2) is defined using the following equation (6.3):

ρt = ωρρs(st) + (1− ωρ)
[
λnbρu(ut)

]
+ ρG (6.3)

where, ρs represents the security cost for the environment being in the state st

inferred by the defense agent from the observation ot and ρu is the cost of taking the

block action ut. ρG is the cost the defense agent pays when the attacker is successful

in compromising the goal node. Similar to ωr, the quantity ωρ ∈ [0, 1] is a user-defined

weighting term for the agent to specify which cost is more preferred between ρs and

ρu.

68

We call the quantity λ ∈ (0, 1] in equation (6.3) the availability preference factor

that tells the defense agent the sensitivity of devices’ availability. A larger λ makes

block actions less attractive to the defense agent since a block action effectively makes

an IoT device unavailable. Similar to equation (6.2), the parameter nb in equation

(6.3) denotes the number of block actions taken so far. The increase in the value of

this parameter adversely impacts the defense agent’s reward since we assume that the

defense agent always tries to minimize the total cost.

b) State Translator : Since IoTHaven has partial visibility over environment states,

it requires a state translator to estimate the belief in the environment state st ∈ S

every time it senses an observation ot ∈ O. The belief is defined as the probability of

the environment being in a particular state. The state translator computes b(st) as

the belief in the environment state st using the following formula:

b(st) = Pr
(
st|ot, at−1, b(st−1)

)
=
µ(st, at−1, ot)

∑
st−1∈S

[
T (st−1, at−1, st)b(st−1)

]
η

(6.4)

Hence, η is a normalizing constant that can be defined as:

η = Pr
(
ot|b(st−1), at−1

)
=

∑
st∈S

[
µ(st, at−1, ot)

∑
st−1∈S

[
T (st−1, at−1, st)b(st−1)

]] (6.5)

IoTHaven leverages the belief point b(st)=bt to optimize a value function V π(.).

The value function is defined as a Bellman optimality equation [91], such as:

V π(bt) =

[
p(bt, at) + γ

∑
bt+1

[
τ(bt, at, bt+1)V

π(bt+1)

]]
(6.6)

69

where,

p(bt, at) =
∑
st∈S

btR(st, at, st+1) =
∑
st∈S

btrt (6.7)

and

τ
(
bt, at, bt+1

)
=

∑
ot+1∈O

Pr
(
ot+1|bt, a

)
=

∑
ot+1∈O

∑
st+1∈S

[
µ(st+1, at, ot+1)

∑
st∈S

bt ∗ T (st, at, st+1)

] (6.8)

To discern the optimal defense policy π∗, IoTHaven optimizes the value function

utilizing the following equation (6.9):

π∗ = argmaxat

[
V π∗

(bt)
]

(6.9)

c) Function Approximator : To determine optimal policy, IoTHaven optimizes

the value function described in equation (6.9) using a Deep Recurrent Q-Network

(DRQN) [25] function approximator. It utilizes deep reinforcement learning to train

the function approximator. At each timestep t, the function approximator computes

the temporal difference error ∆, as shown in equation (6.10).

∆ = E
[
p(bt, at) + γ max

at∈π(bt)
V π(bt+1; θt)− V π(bt; θt)

]
(6.10)

70

Hence, V π(.) is parameterized with the weights of the RNN used in the function

approximator, θt.

The goal here is to minimize the loss function defined in the equation (6.11) over

a batch β of transitions < st, at, st+1, rt > stored in a memory called replay buffer.

L =
1

|β|
∑

(st,at,st+1,rt)∈β

L(∆) (6.11)

where,

L(∆) =


1
2
∆2 if |∆| ≤ 1

|∆| − 1
2

otherwise

d) Experience Sampler : To stabilize the learning procedure, IoTHaven periodically

stores < st, at, st+1, rt > transitions in the replay buffer, which represent the agent’s

experiences with the environment. Later, following the exploration-exploitation trade-

off approach discussed in [19], the experience sampler samples a fixed amount of tran-

sitions from the replay buffer into minibatch β. Based on a probability σ, IoTHaven

either samples transitions to learn optimal action from experiences or utilizes the

function approximator to estimate the optimal action, yielding the maximum reward.

To decide how the action should be selected for a particular timestep t, IoTHaven

computes ϵ using the equation (6.12) and compares its value with σ.

ε = εend + (εstart − εend) e
−t

εdecay (6.12)

Hence, εstart and εend respectively denotes the maximum and minimum value of a

range in which the value of ε lies. The parameter εdecay denotes the decay factor that

gradually diminishes the value of ε. When t increases, the value of ε in the equation

(6.12) slowly starts decreasing.

71

6.4 Experiment and Simulation

We utilize TensorFlow [95] to implement IoTHaven and conduct experiments on

a simulated smart home environment. We extract state space from the PEEVES

[16] dataset that contains event traces collected from 12 distinct IoT devices and

sensor measurements captured by 48 sensors. Later, we encode the state space in the

simulating environment to create a state machine upon which all attack and defense

actions are performed. We utilize OpenAI Gym [96] to encode 12 unique states

and 4 actions in the environment. We consider a stream of sensor measurements as

observations that maps to system states with some probabilities. We assume that

each observation is emitted at each timestep due to the occurrence of an IoT event.

To incentivize the defense action, we also incorporate the reward function in the

environment. We run our experiments on an Apple M1 Pro machine with 16GB

RAM and 8-core GPU.

6.4.1 Function Appproximator

We utilize an LSTM-based Deep Recurrent Q-Network (DRQN) as the function

approximator to estimate action-specific rewards and devise the optimal defense pol-

icy, maximizing the security gain. At a given timestep, this function approximator

takes a system state inferred from the latest observations as the input and provides

the optimal defense action as the output. The settings we use to design this function

approximator is listed in Table 6.1.

6.4.2 Training DRQN

We train the DRQN for 500 episodes and use Adam [98] optimizer with the learning

rate, α = 1e−3. To ensure stability in the learning procedure, we periodically update

a policy network at a constant rate, τ = 20. We record the agent’s experience of

interacting with the environment in a replay buffer of size 60, 000 and sample 16

experiences at a time as a minibatch based on the exploration-exploitation constant

72

Table 6.1: Deep Recurrent Q-Network (DRQN) settings

Parameter Value/Quantity
Number of LSTM layers 2

1st LSTM layer size 48 units
2nd LSTM layer size 32 units

Number of nodes in input layer 12
Number of nodes in output layer 4

Activation function for input and LSTM layers Relu
Activation function for output layer Softmax

Optimizer Adam [98]
Loss function Huber loss [92]

ϵ. The complete hyperparameter settings we use for the training procedure are listed

in Table 6.2.

Table 6.2: Hyperparameter settings used for training

Parameter Quantity
Total episodes 500

Number of epochs per episode 50
Minibatch size, β 16
Discount factor, γ 0.95
Learning rate, α 1e−3

(εstart, εend, εdecay) (1.0, 0.1, 0.99999)
Target network update frequency, τ 20 episodes

Replay buffer size 60,000

6.5 Performance Evaluation

We run the simulation for 500 episodes with 50 epochs per episode and evaluate

the performance of IoTHaven in terms of the following three metrics: 1) total reward

over episodes, 2) time overhead over episodes, and 3) the number of injection & block

actions over episodes.

6.5.1 Rewards

In our simulation, every time the defense agent interacts with the environment

through an action, it receives a discrete reward from the environment. The defense

agent accumulates all the rewards received over 50 epochs to compute the total reward

73

received in a single episode. Figure 6.2 shows the defense agent’s total rewards over

all 500 episodes. We can see a stable increasing pattern in reward after ≈ 60 episodes.

Since the defense agent seeks to discern an optimal policy in the earlier episodes of the

simulation, the agent explores all possible action scenarios just to learn the optimal

policy and sometimes ends up making block operations aggressively that negatively

impact the reward function. However, once the optimal defense policy is learnt, such

as ≈ 60 episodes later in Figure 6.2, the agent takes actions at each timestep following

a fixed policy that maximizes the total reward received at each episode.

Figure 6.2: Reward over episodes

6.5.2 Time Overhead

In our simulation, the defense agent spends most of the computation time training

the LSTM-based DRQN function approximator to determine the optimal action at

74

each timestep that maximizes the ultimate reward. It also spends some computation

time storing interaction experiences in the replay buffer and sampling the stored

experiences to help determine an action that stabilizes the learning procedure. We

compute the time the agent takes (in seconds) to complete these tasks and call it time

overhead. Since LSTM nodes of the DRQN utilize cell states [99] to retain a history

of observations to a certain extent and leverage the past observations to accurately

estimate the defense actions at each timestep, the time overhead is an important

metric to consider to show the effectiveness of IoTHaven. The cell states in LSTM

architecture are mainly used to capture and store long-term functional dependencies in

sequential data. We see in Figure 6.3 that the maximum time required for IoTHaven

to defend against a dynamic injection attack adopting an optimal defense policy

is 12.41 seconds. This time overhead is greater than the time overhead we get in

IoTWarden because DRQN now retains and process a history of observations before

making a defense decision at each timestep. This overhead could be improved further

if the agent was trained in a cloud.

6.5.3 Attack-Defense Dynamic

To show the attack-defense dynamic, we consider the reactiveness of the defense

agent against the increased aggressiveness of the attacker. If the attacker aggressively

makes injection operations in the network, we want the defense agent to increase the

number of block operations decidedly. As we see in Figure 6.4, the defense agent

matches the aggressiveness of the attacker and increases or decreases the number

of block operations to take based on the aggressiveness of the attacker. The agent

doesn’t take unnecessary block operations since it negatively impacts the availability

of the network devices.

75

Figure 6.3: Time overhead over episodes

6.6 Conclusion

This chapter proposes IoTHaven, an online defense system to mitigate remote in-

jection attacks in partially observable trigger-action IoT platforms. It discerns an

optimal defense policy leveraging a sequence of observations representing physical

evidence captured by sensors and takes optimal action at each timestep, maximiz-

ing the total security gain. We integrated a novel reward function in the system

environment to dictate the decision process of the defense agent. IoTHaven obtains

the optimal defense policy by training an LSTM-based Deep Recurrent Q-Network

(DRQN) function approximator. We implemented IoTHaven using TensorFlow and

conducted extensive experiments on a simulated smart home environment to evalu-

ate the system’s performance. The experimental results show that the defense system

76

Figure 6.4: Number of injection & block actions over episodes

effectively takes optimal actions under the uncertainty of the actual system states,

yielding stable security rewards with low computation overhead. Since IoTHaven

doesn’t require full visibility over network states, it is well-suited for heterogeneous

and scalable trigger-action IoT platforms.

CHAPTER 7: Future Works

Since it is easier to automate and control network tasks, trigger-action IoT plat-

forms will continue to become more popular in the coming days. Remote injection

attacks or event spoofing attacks will also be more agile and complicated. The lit-

erature will require more research on the effective real-time defense solutions in the

future. In this chapter, we discuss a few potential research works that will advance

the state of the art approaches towards a more robust online defense system.

7.1 Competitive Multi-agent Reinforcement Learning (MARL) based Defense

Solution

In Competitive Multi-agent Reinforcement Learning (MARL), two or more agents

engage in a competitive game, where each agent tries to maximize its own reward while

considering the strategies and actions of other competing agents [100]. Each agent has

its own reward function that dictates how the agent should optimally choose actions

to maximize the overall gain. Each agent interacts with the environment by making

an assumption that the competing agents try their best to impact the environment in

their benefit. The agents can leverage the minimax-Q [101] [102] algorithm to infer

the strategies and actions adopted by the competing agents. Minimax-Q algorithm is

an opponent-independent Q-Learning [103] algorithm, and the agents use it when the

opponents’ strategies and actions cannot be optimally modeled. However, to better

understand how opponents act in the environment, the agents can always perform

opponent modeling and discover the opponents’ behavior [104]. However, since all

agents compete in the same environment in a competitive MARL scenario, the agents

should always adopt their policies considering the possible non-stationary behavior

78

of the environment.

We see in Chapter 5 and 6 that the defense agent in a trigger-action platform always

tries to infer the behavior of the attacker before taking an action at runtime. To

discern an effective real-time defense policy, the defense agent must pay attention to

the actions taken by the attacker and the consequences of the attacker’s actions in the

environment. In a trigger-action IoT platform, if there is an attacker who can perform

opportunistic attack [16] and change the attack strategies based on the defense agent’s

actions at runtime, it is imperative for the defense agent to continuously perform

behavioral analysis of the attacker before taking any defense action.

We think an effective online defense system for a trigger-action IoT platform can

be well-designed if the the dynamic between the defense agent and the attacker can

be modeled as a competitive MARL. Based on our previous discussion, both the de-

fense agent and the attacker need to maintain their own reward function and choose

appropriate learning algorithm to eventually yield optimal reward. The defense agent

can conduct opponent modeling to learn the behavior of the attacker so that the de-

fense actions produce maximum reward for the defense agent. We see in IoTWarden

and IoTHaven that the defense agent takes defense actions as a reaction of the at-

tacker’s actions. If the defense system solves a competitive MARL to determine the

attack-defense dynamic, the defense agent can effectively match the reactiveness of

the attacker without incurring too much computation overhead.

7.2 Offloading Defense Policy Determination in Cloud

As we see in Chapter 6, the online defense against progressing remote injection at-

tack demands defense actions to be taken under the uncertainty of the actual network

states. The defense agent must translate observations into effective defense actions

and collect optimized rewards for its actions. Since the optimal defense policy de-

termination problem incurs computation overhead in the defense system, offloading

the computation in cloud significantly reduces the computation overhead. As the

79

hub lacks computation power, hosting the defense agent in the hub and making ef-

fective defense actions at runtime negatively impact the overall performance of the

defense system. When the discovery of defense policies and the further determination

of defense actions are offloaded to the cloud, the hub can only be tasked to effec-

tively enforce defense actions discerned by the defense agent improving the overall

performance of the system.

To discern defense policies, the defense agent must maintain a function approx-

imator in the cloud to estimate action-specific rewards. Similar to IoTHaven, the

defense agent can use DRQN to obtain the optimal defense policy and adopt an

exploration-exploitation trade-off approach to decide whether the stored experiences

(i.e., transitions) should be prioritized over function approximator to get the current

optimal defense action.

If the defense agent is hosted in cloud, the hub must communicate with the defense

agent through a secure communication channel and vice versa. The agent should

offer a defense decision to the hub whenever a new observation is emitted in the IoT

environment. The hub should also be able to request for a defense action whenever

there is a configuration change (e.g., a new device is added/removed) in the network.

If there is a request from the hub, the defense agent should come up with an action

suggestion considering the new configuration. To help the defense agent determine

a defense action for the changed environment, the hub must send the configuration

change information to the agent using the secure communication channel. However,

since the hub is the ultimate entity to enforce the defense action suggested by the

agent, the hub should also be able to reject a suggestion if needed. Therefore, the

communication channel should also be used by the hub to send proper notification

about the status (e.g., enforced or rejected) of suggested actions to the defense agent.

As a defense action enforcer, the hub must maintain a security policy for the IoT

network. Whenever a new defense action is suggested to the hub, the hub first needs

80

to check whether the enforcement of that action complies with the defined security

policy of the network. If yes, the action is enforced, and the defense agent is notified

about the enforcement. However, if the suggested action doesn’t comply with the

security policy of the network, the hub must reject the action and send the rejection

notification to the defense agent. The defense agent can further utilize this rejection

information to refine the learning process and update the internal parameters of the

neural network function approximator.

The defense agent, however, needs to maintain a defense policy bank, where a

set of action sequences are stored as defense policies. Whenever the defense agent

determines a defense action, the action must reflect the sequential pattern of one of

these policies. If a defense action chosen by the agent is not enforced in the network,

the defense agent knows how to update the chosen policy once it receives the rejection

notification from the hub. It is imperative for the defense agent to update the chosen

policy in such a way that the defense actions determined in the future following the

updated policy are likely to be approved by the hub.

7.3 Designing Online Defense Systems with User-configurable Overhead

As we see in Chapters 5 and 6, the computation overhead of reinforcement learning

(RL) based defense systems mostly occurs from the training procedure of the defense

agent. In RL-based approaches, the agent chooses the optimal action at a certain

state by exploring multiple state trajectories and estimating optimal reward along

each trajectory. Since exploring state trajectories is a computation-heavy task, the

hyperparameters chosen for the training procedure play a vital role in determining

the computation overhead of the RL-based systems. If users can customize the hy-

perparameters considering the computation constraints of the network environment,

managing the computation overhead incurred in the training procedure becomes more

effortless. Users can also customize the function approximator settings based on the

learning requirements and objectives. In online defense systems, the defense agent

81

must be reactive against attack actions. If users can efficiently manage system over-

head by customizing hyperparameters and neural network settings, the defense agent

can be trained to effectively obstruct the progress of a remote injection attack at

runtime without sacrificing the overall performance of the system. We believe a

well-designed online defense system with user-configurable overhead is a significant

improvement to our system, particularly IoTHaven.

CHAPTER 8: Conclusion

Since the popularity of trigger-action IoT platforms is rising, the vulnerability

of IoT devices due to the interaction with each other is also becoming prevalent.

Adversaries exploit the chain of interactions among IoT devices to inject fake event

conditions in the network to invalidly invoke actions in the target IoT devices. To

perform a remote injection attack, an attacker performs reconnaissance over the IoT

network, selects a few IoT devices to mimic, sends fake event conditions to the smart

hub, and forces the hub to command actions in target IoT devices whose compromise

benefits the attacker to achieve the ultimate attack goal. The attacker may have the

capability to profile defense actions at runtime and change the attack strategy based

on the impact of defense actions in the environment.

In this dissertation, we attempt to analyze the remote injection attack and discover

attack behavior by observing the physical changes occur in the IoT environment due

to the attack actions taken in the network. We also present two defense solutions

to address the remote injection attack: one defense solution that works efficiently in

fully observable IoT networks and one defense solution to provide realtime security

in partially observable IoT networks. In this dissertation, we present 1) IoTMonitor

for attack analysis and behavior discovery tasks, 2) IoTWarden for real-time defense

in fully observable IoT networks, and 3) IoTHaven for online defense in partially

observable IoT networks.

In IoTMonitor, we probabilistically map IoT event conditions with the correspond-

ing physical evidence emitted during a remote injection attack using the Baum-Welch

algorithm [20] and extract the hidden optimal sequence of event conditions using the

Viterbi algorithm [21]. The optimal sequence of event conditions represent the opti-

83

mal attack path the attacker follows to successfully perform the injection attack. In

IoTMonitor, we also determine the IoT devices mostly targeted by the attacker.

In IoTWarden, we present a Deep Reinforcement Learning (DRL) based defense

approach that utilizes a neural network function approximator to select the optimal

defense action at runtime. The function approximator is particularly designed to ob-

tain the optimal defense policy given the actual states of the network. We also store

the interactions of the defense agent with the environment in a replay buffer so that

we can sometimes sample the optimal defense actions directly from the learned ex-

periences avoiding the overfitting of the function approximator. We speculate attack

strategies by training an LSTM-based RNN [22] with a number of attack sequences

and train the function approximator using a Deep Q-Network (DQN) [23] so that it

estimates the optimal state-action pairs maximizing the overall security gain.

In IoTHaven, we design and implement an online defense solution for partially ob-

servable IoT networks where the defense agent makes optimal defense actions under

the uncertainties of the network states. The defense agent only observes the physical

evidence generated in the IoT environment due to occurrence of events in different

IoT devices. Hence, the defense agent solves a Partially Observable Markov Decision

Process (POMDP) to discern the optimal defense policy that dictates how the defense

actions should be taken to optimize the security reward just by observing physical

changes in the network. We train a Deep Recurrent Q-Network (DRQN) [25] func-

tion approximator to help the defense agent choose the optimal state-action pairs at

runtime.

REFERENCES

[1] “Internet of things and data placement.” https://infohub.
delltechnologies.com/en-us/l/edge-to-core-and-the-
internet-of-things-2/internet-of-things-and-data-
placement/. Accessed: 2024-06-15.

[2] “Ifttt: Every thing works better together.” https://ifttt.com/. Accessed:
2024-06-15.

[3] “Samsung smartthings.” https://www.smartthings.com/. Accessed:
2024-06-15.

[4] “Microsoft flow.” https://powerautomate.microsoft.com/en-us/
blog/welcome-to-microsoft-flow/. Accessed: 2024-06-15.

[5] “Home app: The foundation for a smarter home.” https://www.apple.
com/home-app/. Accessed: 2024-06-15.

[6] “openhab: Empowering the smart home.” https://www.openhab.org/.
Accessed: 2024-06-15.

[7] “Wink: The smarter app for the smart home.” https://www.wink.com/.
Accessed: 2024-06-15.

[8] “Zapier: Automation that moves you forward.” https://zapier.com/. Ac-
cessed: 2024-06-15.

[9] Z. B. Celik, G. Tan, and P. Mcdaniel, “Iotguard: Dynamic enforcement of
security and safety policy in commodity iot,” Proceedings 2019 Network and
Distributed System Security Symposium, 2019.

[10] M. M. Alam and W. Wang, “A comprehensive survey on data provenance:
State-of-the-art approaches and their deployments for iot security enforcement,”
Journal of Computer Security, vol. 29, pp. 423–446, 06 2021.

[11] M. M. Alam, M. S. I. Sajid, W. Wang, and J. Wei, “Iotmonitor: A hidden
markov model-based security system to identify crucial attack nodes in trigger-
action iot platforms,” in 2022 IEEE Wireless Communications and Networking
Conference (WCNC), pp. 1695–1700, IEEE, 2022.

https://infohub.delltechnologies.com/en-us/l/edge-to-core-and-the-internet-of-things-2/internet-of-things-and-data-placement/
https://infohub.delltechnologies.com/en-us/l/edge-to-core-and-the-internet-of-things-2/internet-of-things-and-data-placement/
https://infohub.delltechnologies.com/en-us/l/edge-to-core-and-the-internet-of-things-2/internet-of-things-and-data-placement/
https://infohub.delltechnologies.com/en-us/l/edge-to-core-and-the-internet-of-things-2/internet-of-things-and-data-placement/
https://ifttt.com/
https://www.smartthings.com/
https://powerautomate.microsoft.com/en-us/blog/welcome-to-microsoft-flow/
https://powerautomate.microsoft.com/en-us/blog/welcome-to-microsoft-flow/
https://www.apple.com/home-app/
https://www.apple.com/home-app/
https://www.openhab.org/
https://www.wink.com/
https://zapier.com/

85

[12] D. T. Nguyen, C. Song, Z. Qian, and S. V. Krishnamurthy, “IotSan: Fortifying
the Safety of IoT Systems Dang,” Proceedings of the 14th International Con-
ference on emerging Networking EXperiments and Technologies, pp. 387–400,
2018.

[13] L. Babun, A. K. Sikder, A. Acar, and A. S. Uluagac, “Iotdots: A digital forensics
framework for smart environments,” CoRR, 2018.

[14] Q. Wang, W. Ul Hassan, A. Bates, and C. Gunter, “Fear and Logging in the
Internet of Things,” in Network and Distributed Systems Security Symposium,
2018.

[15] M. O. Ozmen, R. Song, H. Farrukh, and Z. B. Celik, “Evasion attacks and
defenses on smart home physical event verification,” in 30th Annual Network
and Distributed System Security Symposium, NDSS, Feb. 2023.

[16] S. Birnbach, S. Eberz, and I. Martinovic, “Peeves: Physical event verification in
smart homes,” in Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security, ACM, 2019.

[17] C. Fu, Q. Zeng, and X. Du, “HAWatcher: Semantics-Aware anomaly detection
for appified smart homes,” in 30th USENIX Security Symposium (USENIX
Security 21), pp. 4223–4240, Aug. 2021.

[18] W. Zhang, Y. Meng, Y. Liu, X. Zhang, Y. Zhang, and H. Zhu, “Homonit: Mon-
itoring smart home apps from encrypted traffic,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, CCS
’18, (New York, NY, USA), p. 1074–1088, Association for Computing Machin-
ery, 2018.

[19] M. M. Alam, I. Jahan, and W. Wang, “Iotwarden: A deep reinforcement learning
based real-time defense system to mitigate trigger-action iot attacks,” in 2024
IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6,
IEEE, 2024.

[20] L. B. Baum and J. A. Eagon, “An inequality with applications to statistical
estimation for probabilistic functions of markov processes and to a model for
ecology,” Bulletin of the American Mathematical Society, vol. 73, no. 3, pp. 360–
363, 1967.

[21] A. Viterbi, “Error bounds for convolutional codes and an asymptotically opti-
mum decoding algorithm,” IEEE Transactions on Information Theory, vol. 13,
no. 2, pp. 260–269, 1967.

[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput.,
vol. 9, p. 1735–1780, nov 1997.

86

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. A. Riedmiller, “Playing atari with deep reinforcement learning,” ArXiv,
vol. abs/1312.5602, 2013.

[24] M. M. Alam, A. B. M. M. Rahman, and W. Wang, “Iothaven: An online defense
system to mitigate remote injection attacks in trigger-action iot platforms,” in
2024 IEEE International Symposium on Local and Metropolitan Area Networks
(LANMAN), IEEE, 2024.

[25] M. J. Hausknecht and P. Stone, “Deep recurrent q-learning for partially observ-
able mdps,” ArXiv, vol. abs/1507.06527, 2015.

[26] S. Agarwal, P. Oser, and S. Lueders, “Detecting iot devices and how they put
large heterogeneous networks at security risk,” Sensors, vol. 19, no. 19, 2019.

[27] B. Huang, D. Chaki, A. Bouguettaya, and K.-Y. Lam, “A survey on conflict
detection in iot-based smart homes,” ACM Comput. Surv., vol. 56, nov 2023.

[28] D. Chaki, A. Bouguettaya, and S. Mistry, “A conflict detection framework for iot
services in multi-resident smart homes,” in 2020 IEEE International Conference
on Web Services (ICWS), pp. 224–231, 2020.

[29] D. Xiao, Q. Wang, M. Cai, Z. Zhu, and W. Zhao, “A3id: An automatic and
interpretable implicit interference detection method for smart home via knowl-
edge graph,” IEEE Internet of Things Journal, vol. 7, no. 3, pp. 2197–2211,
2020.

[30] Q. Wang, P. Datta, W. Yang, S. Liu, A. Bates, and C. A. Gunter, “Charting
the attack surface of trigger-action iot platforms,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, CCS
’19, (New York, NY, USA), p. 1439–1453, Association for Computing Machin-
ery, 2019.

[31] H. Chi, Q. Zeng, X. Du, and J. Yu, “Cross-app interference threats in smart
homes: Categorization, detection and handling,” in 2020 50th Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks (DSN),
pp. 411–423, 2020.

[32] W. Ding, H. Hu, and L. Cheng, “Iotsafe: Enforcing safety and security pol-
icy with real iot physical interaction discovery,” Proceedings 2021 Network and
Distributed System Security Symposium, 2021.

[33] H. Chi, C. Fu, Q. Zeng, and X. Du, “Delay wreaks havoc on your smart home:
Delay-based automation interference attacks,” in 2022 IEEE Symposium on
Security and Privacy (SP), pp. 285–302, 2022.

[34] “A comprehensive guide to smart home device compatibility.” https://www.
adt.com/resources/smart-home-device-compatibility. Ac-
cessed: 2024-07-18.

https://www.adt.com/resources/smart-home-device-compatibility
https://www.adt.com/resources/smart-home-device-compatibility

87

[35] H. Chi, Q. Zeng, and X. Du, “Detecting and handling IoT interaction threats
in Multi-Platform Multi-Control-Channel smart homes,” in 32nd USENIX Se-
curity Symposium (USENIX Security 23), (Anaheim, CA), pp. 1559–1576,
USENIX Association, Aug. 2023.

[36] Y. Acar, M. Backes, S. Bugiel, S. Fahl, P. McDaniel, and M. Smith, “Sok:
Lessons learned from android security research for appified software platforms,”
in 2016 IEEE Symposium on Security and Privacy (SP), pp. 433–451, 2016.

[37] E. Fernandes, J. Jung, and A. Prakash, “Security Analysis of Emerging Smart
Home Applications,” Proceedings - 2016 IEEE Symposium on Security and Pri-
vacy, SP 2016, pp. 636–654, 2016.

[38] R. Xu, H. Saïdi, and R. Anderson, “Aurasium: Practical policy enforcement for
android applications,” in 21st USENIX Security Symposium (USENIX Security
12), (Bellevue, WA), pp. 539–552, USENIX Association, Aug. 2012.

[39] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman, D. Wagner, and
K. Beznosov, “Android permissions remystified: A field study on contextual
integrity,” in 24th USENIX Security Symposium (USENIX Security 15), (Wash-
ington, D.C.), pp. 499–514, USENIX Association, Aug. 2015.

[40] “ContexIoT: Towards Providing Contextual Integrity to Appified IoT Plat-
forms,” Proceedings 2017 Network and Distributed System Security Symposium,
no. March, 2017.

[41] H. Nissenbaum, “Privacy as contextual integrity,” Wash. L. Rev., vol. 79, p. 119,
2004.

[42] S. Lee, J. Choi, J. Kim, B. Cho, S. Lee, H. Kim, and J. Kim, “Fact:
Functionality-centric access control system for iot programming frameworks,”
in Proceedings of the 22nd ACM on Symposium on Access Control Models and
Technologies, SACMAT ’17 Abstracts, (New York, NY, USA), p. 43–54, Asso-
ciation for Computing Machinery, 2017.

[43] Y. Tian, N. Zhang, Y.-H. Lin, X. Wang, B. Ur, X. Guo, and P. Tague,
“Smartauth: User-centered authorization for the internet of things,” in Proceed-
ings of the 26th USENIX Conference on Security Symposium, SEC’17, (USA),
p. 361–378, USENIX Association, 2017.

[44] T. Gu, Z. Fang, A. Abhishek, H. Fu, P. Hu, and P. Mohapatra, “Iotgaze: Iot
security enforcement via wireless context analysis,” in IEEE INFOCOM 2020 -
IEEE Conference on Computer Communications, pp. 884–893, 2020.

[45] Z. Alliance, “Zigbee specification faq.” https://web.archive.org/
web/20130627172453/http://www.zigbee.org/Specifications/
ZigBee/FAQ.aspx. Accessed: 2024-06-15.

https://web.archive.org/web/20130627172453/http://www.zigbee.org/Specifications/ZigBee/FAQ.aspx
https://web.archive.org/web/20130627172453/http://www.zigbee.org/Specifications/ZigBee/FAQ.aspx
https://web.archive.org/web/20130627172453/http://www.zigbee.org/Specifications/ZigBee/FAQ.aspx

88

[46] NXP, “Zigbee cluster library user guide.” https://www.nxp.com/docs/
en/user-guide/JN-UG-3077.pdf. Accessed: 2024-06-15.

[47] Z. Alliance, “How z-wave works.” https://z-wavealliance.org/
learn-about-z-wave/. Accessed: 2024-06-15.

[48] “Mqtt: The standard for iot messaging.” https://mqtt.org/. Accessed:
2024-06-15.

[49] “matter: The foundation for connected things.” https://csa-iot.org/
all-solutions/matter/. Accessed: 2024-06-15.

[50] T. Grouo, “What is thread?.” https://threadgroup.org/What-is-
Thread/Overview. Accessed: 2024-06-15.

[51] “Bluetooth technology overview.” https://www.bluetooth.com/learn-
about-bluetooth/tech-overview/. Accessed: 2024-06-15.

[52] B. Fouladi and S. Ghanoun, “Honey, i’m home!!, hacking zwave home automa-
tion systems,” Black Hat USA, 2013.

[53] N. Lomas, “Critical flaw ided in zigbee smart home devices.”
https://techcrunch.com/2015/08/07/critical-flaw-ided-in-zigbee-smart-home-
devices/, 2015. Accessed: 2024-06-15.

[54] “What is the mirai botnet?.” https://www.cloudflare.com/learning/
ddos/glossary/mirai-botnet/. Accessed: 2024-06-15.

[55] Y. Jia, F. Zhong, A. Alrawais, B. Gong, and X. Cheng, “Flowguard: An in-
telligent edge defense mechanism against iot ddos attacks,” IEEE Internet of
Things Journal, vol. 7, no. 10, pp. 9552–9562, 2020.

[56] P. Kumari and A. K. Jain, “A comprehensive study of ddos attacks over iot
network and their countermeasures,” Computers Security, vol. 127, p. 103096,
2023.

[57] E. Ronen, A. Shamir, A.-O. Weingarten, and C. O’Flynn, “Iot goes nuclear:
Creating a zigbee chain reaction,” in 2017 IEEE Symposium on Security and
Privacy (SP), pp. 195–212, 2017.

[58] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash, “Decentralized action
integrity for trigger-action iot platforms,” in Network and Distributed System
Security Symposium, NDSS, 01 2018.

[59] Y. Jia, L. Xing, Y. Mao, D. Zhao, X. Wang, S. Zhao, and Y. Zhang, “Burglars’
iot paradise: Understanding and mitigating security risks of general messaging
protocols on iot clouds,” in 2020 IEEE Symposium on Security and Privacy
(SP), pp. 465–481, 2020.

https://www.nxp.com/docs/en/user-guide/JN-UG-3077.pdf
https://www.nxp.com/docs/en/user-guide/JN-UG-3077.pdf
https://z-wavealliance.org/learn-about-z-wave/
https://z-wavealliance.org/learn-about-z-wave/
https://mqtt.org/
https://csa-iot.org/all-solutions/matter/
https://csa-iot.org/all-solutions/matter/
https://threadgroup.org/What-is-Thread/Overview
https://threadgroup.org/What-is-Thread/Overview
https://www.bluetooth.com/learn-about-bluetooth/tech-overview/
https://www.bluetooth.com/learn-about-bluetooth/tech-overview/
https://www.cloudflare.com/learning/ddos/glossary/mirai-botnet/
https://www.cloudflare.com/learning/ddos/glossary/mirai-botnet/

89

[60] Q. Wang, S. Ji, Y. Tian, X. Zhang, B. Zhao, Y. Kan, Z. Lin, C. Lin, S. Deng,
A. X. Liu, and R. A. Beyah, “Mpinspector: A systematic and automatic ap-
proach for evaluating the security of iot messaging protocols,” in USENIX Se-
curity Symposium, 2022.

[61] C. Fu, Q. Zeng, H. Chi, X. Du, and S. L. Valluru, “Iot phantom-delay at-
tacks: Demystifying and exploiting iot timeout behaviors,” in 2022 52nd An-
nual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), pp. 428–440, 2022.

[62] Z. B. Celik, P. Mcdaniel, and G. Tan, “Soteria: Automated iot safety and
security analysis,” in USENIX Annual Technical Conference, 2018.

[63] M. Alhanahnah, C. Stevens, and H. Bagheri, “Scalable analysis of interaction
threats in iot systems,” in Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2020, (New York, NY,
USA), p. 272–285, Association for Computing Machinery, 2020.

[64] M. Palekar, E. Fernandes, and F. Roesner, “Analysis of the susceptibility of
smart home programming interfaces to end user error,” in 2019 IEEE Security
and Privacy Workshops (SPW), pp. 138–143, 2019.

[65] F. Corno, L. De Russis, and A. Monge Roffarello, “Empowering end users in
debugging trigger-action rules,” in Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems, CHI ’19, (New York, NY, USA), p. 1–13,
Association for Computing Machinery, 2019.

[66] L. De Russis and A. Monge Roffarello, “A debugging approach for trigger-action
programming,” in Extended Abstracts of the 2018 CHI Conference on Human
Factors in Computing Systems, CHI EA ’18, (New York, NY, USA), p. 1–6,
Association for Computing Machinery, 2018.

[67] B. Huang, H. Dong, and A. Bouguettaya, “Conflict detection in iot-based smart
homes,” in 2021 IEEE International Conference on Web Services (ICWS),
pp. 303–313, 2021.

[68] M. Surbatovich, J. Aljuraidan, L. Bauer, A. Das, and L. Jia, “Some recipes
can do more than spoil your appetite: Analyzing the security and privacy risks
of ifttt recipes,” in Proceedings of the 26th International Conference on World
Wide Web, WWW ’17, (Republic and Canton of Geneva, CHE), p. 1501–1510,
International World Wide Web Conferences Steering Committee, 2017.

[69] W. Ding and H. Hu, “On the safety of IoT device physical interaction con-
trol,” Proceedings of the ACM Conference on Computer and Communications
Security, pp. 832–846, 2018.

[70] X. Chen, X. Zhang, M. Elliot, X. Wang, and F. Wang, “Fix the leaking tap: A
survey of trigger-action programming (tap) security issues, detection techniques
and solutions,” Computers Security, vol. 120, p. 102812, 2022.

90

[71] K. Yoshigoe, W. Dai, M. Abramson, and A. Jacobs, “Overcoming invasion of
privacy in smart home environment with synthetic packet injection,” in 2015
TRON Symposium (TRONSHOW), pp. 1–7, 2015.

[72] Y. Yu and J. Liu, “Tapinspector: Safety and liveness verification of concurrent
trigger-action iot systems,” IEEE Transactions on Information Forensics and
Security, vol. 17, p. 3773–3788, 2022.

[73] L. Li, T. F. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel, D. Octeau,
J. Klein, and Y. L. Traon, “Static analysis of android apps: A systematic liter-
ature review,” Inf. Softw. Technol., vol. 88, pp. 67–95, 2017.

[74] K. Jiang, H. Zhang, W. Zhang, L. Fang, C. Ge, Y. Yuan, and Z. Liu, “Tapchain:
A rule chain recognition model based on multiple features,” Security and Com-
munication Networks, vol. 2021, no. 1, 2021.

[75] S. Birnbach, S. Eberz, and I. Martinovic, “Haunted house: Physical smart home
event verification in the presence of compromised sensors,” ACM Trans. Internet
Things, vol. 3, apr 2022.

[76] A. K. Sikder, L. Babun, H. Aksu, and A. S. Uluagac, “Aegis: A context-aware
security framework for smart home systems,” in Proceedings of the 35th An-
nual Computer Security Applications Conference, ACSAC ’19, (New York, NY,
USA), p. 28–41, Association for Computing Machinery, 2019.

[77] Z. B. Celik, P. McDaniel, G. Tan, L. Babun, and A. S. Uluagac, “Verifying in-
ternet of things safety and security in physical spaces,” IEEE Security Privacy,
vol. 17, no. 5, pp. 30–37, 2019.

[78] M. O. Ozmen, X. Li, A. Chu, Z. B. Celik, B. Hoxha, and X. Zhang, “Discovering
iot physical channel vulnerabilities,” in Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’22, (New York,
NY, USA), p. 2415–2428, Association for Computing Machinery, 2022.

[79] B. Yuan, Y. Jia, L. Xing, D. Zhao, X. Wang, D. Zou, H. Jin, and Y. Zhang,
“Shattered chain of trust: Understanding security risks in cross-cloud iot ac-
cess delegation,” in Proceedings of the 29th USENIX Conference on Security
Symposium, SEC’20, (USA), USENIX Association, 2020.

[80] R. Trimananda, J. Varmarken, A. Markopoulou, and B. Demsky, “Packet-level
signatures for smart home devices,” in Network and Distributed System Security
Symposium, 2020.

[81] L. E. Baum and G. R. Sell, “Growth transformations for functions on mani-
folds,” Pacific Journal of Mathematics, vol. 27, no. 2, pp. 211–227, 1968.

[82] L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications
in Speech Recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286,
1989.

91

[83] A. Grami, The Gaussian Distribution, pp. 201–238. 2019.

[84] “Dirichlet distribution.” https://users.ics.aalto.fi/ahonkela/
dippa/node95.html. Accessed: 2024-07-18.

[85] Z. B. Celik, E. Fernandes, E. Pauley, G. Tan, and P. McDaniel, “Program
analysis of commodity iot applications for security and privacy: Challenges and
opportunities,” ACM Comput. Surv., vol. 52, Aug. 2019.

[86] J. Fan, Y. He, B. Tang, Q. Li, and R. Sandhu, “Ruledger: Ensuring execution
integrity in trigger-action iot platforms,” in IEEE INFOCOM 2021 - IEEE
Conference on Computer Communications, pp. 1–10, 2021.

[87] B. Schneier, “Attack trees,” Dr. Dobb’s Journal, vol. 24, p. 9, dec 1999.

[88] P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable, graph-based network
vulnerability analysis,” in Proceedings of the 9th ACM Conference on Computer
and Communications Security, CCS ’02, (New York, NY, USA), p. 217–224,
Association for Computing Machinery, 2002.

[89] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing, “Automated gener-
ation and analysis of attack graphs,” in Proceedings 2002 IEEE Symposium on
Security and Privacy, pp. 273–284, 2002.

[90] S. Jajodia, “Topological analysis of network attack vulnerability,” PST ’06, (New
York, NY, USA), Association for Computing Machinery, 2006.

[91] R. Bellman, “A markovian decision process,” Indiana Univ. Math. J., vol. 6,
pp. 679–684, 1957.

[92] P. J. Huber, “Robust Estimation of a Location Parameter,” The Annals of
Mathematical Statistics, vol. 35, no. 1, pp. 73 – 101, 1964.

[93] M. Wunder, M. Littman, and M. Babes-Vroman, “Classes of multiagent q-
learning dynamics with ϵ-greedy exploration,” in International Conference on
Machine Learning, pp. 1167–1174, 08 2010.

[94] R. Alake, “Loss functions in machine learning explained.” https://www.
datacamp.com/tutorial/loss-function-in-machine-learning.
Accessed: 2024-07-18.

[95] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Ten-
sorFlow: Large-scale machine learning on heterogeneous systems,” 2015. Soft-
ware available from tensorflow.org.

https://users.ics.aalto.fi/ahonkela/dippa/node95.html
https://users.ics.aalto.fi/ahonkela/dippa/node95.html
https://www.datacamp.com/tutorial/loss-function-in-machine-learning
https://www.datacamp.com/tutorial/loss-function-in-machine-learning

92

[96] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, “Openai gym,” CoRR, vol. abs/1606.01540, 2016.

[97] K. Fukushima, “Visual feature extraction by a multilayered network of analog
threshold elements,” IEEE Transactions on Systems Science and Cybernetics,
vol. 5, no. 4, pp. 322–333, 1969.

[98] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,
vol. abs/1412.6980, 2014.

[99] “What is the purpose of the cell state in lstm?.” https://eitca.
org/artificial-intelligence/eitc-ai-tff-tensorflow-
fundamentals/natural-language-processing-with-
tensorflow/long-short-term-memory-for-nlp/examination-
review-long-short-term-memory-for-nlp/what-is-the-
purpose-of-the-cell-state-in-lstm. Accessed: 2024-07-18.

[100] L. Buşoniu, R. Babuška, and B. De Schutter, Multi-agent Reinforcement Learn-
ing: An Overview, pp. 183–221. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010.

[101] M. L. Littman, “Markov games as a framework for multi-agent reinforcement
learning,” in Machine Learning Proceedings 1994 (W. W. Cohen and H. Hirsh,
eds.), pp. 157–163, San Francisco (CA): Morgan Kaufmann, 1994.

[102] M. L. Littman, “Value-function reinforcement learning in markov games,” Cog-
nitive Systems Research, vol. 2, no. 1, pp. 55–66, 2001.

[103] C. Watkins and P. Dayan, “Technical note: Q-learning,” Machine Learning,
vol. 8, pp. 279–292, 05 1992.

[104] D. Carmel and S. Markovitch, “Opponent modeling in multi-agent systems,” in
Adaption and Learning in Multi-Agent Systems, 1995.

https://eitca.org/artificial-intelligence/eitc-ai-tff-tensorflow-fundamentals/natural-language-processing-with-tensorflow/long-short-term-memory-for-nlp/examination-review-long-short-term-memory-for-nlp/what-is-the-purpose-of-the-cell-state-in-lstm
https://eitca.org/artificial-intelligence/eitc-ai-tff-tensorflow-fundamentals/natural-language-processing-with-tensorflow/long-short-term-memory-for-nlp/examination-review-long-short-term-memory-for-nlp/what-is-the-purpose-of-the-cell-state-in-lstm
https://eitca.org/artificial-intelligence/eitc-ai-tff-tensorflow-fundamentals/natural-language-processing-with-tensorflow/long-short-term-memory-for-nlp/examination-review-long-short-term-memory-for-nlp/what-is-the-purpose-of-the-cell-state-in-lstm
https://eitca.org/artificial-intelligence/eitc-ai-tff-tensorflow-fundamentals/natural-language-processing-with-tensorflow/long-short-term-memory-for-nlp/examination-review-long-short-term-memory-for-nlp/what-is-the-purpose-of-the-cell-state-in-lstm
https://eitca.org/artificial-intelligence/eitc-ai-tff-tensorflow-fundamentals/natural-language-processing-with-tensorflow/long-short-term-memory-for-nlp/examination-review-long-short-term-memory-for-nlp/what-is-the-purpose-of-the-cell-state-in-lstm
https://eitca.org/artificial-intelligence/eitc-ai-tff-tensorflow-fundamentals/natural-language-processing-with-tensorflow/long-short-term-memory-for-nlp/examination-review-long-short-term-memory-for-nlp/what-is-the-purpose-of-the-cell-state-in-lstm

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Motivation
	Research Questions
	Dissertation Map

	Background
	Trigger-Action IoT Platform
	Chain of Interactions
	Challenges in Trigger-action IoT Platforms
	Risky IoT App Interactions
	Design Flaws in IoT Platform Permission System
	Design Flaws in Protocols

	Literature Review
	Security Analysis of Trigger-action IoT Platforms
	Security Policy Compliance and Rule Integrity Check
	Event Verification and Anomaly Detection

	Modeling Trigger Action Based IoT Attacks
	A Trigger-action Attack Scenario
	Threat Model
	Our Assumptions
	Probabilistic Model of a Trigger Action Based Attack
	Solving the HMM Problem and Possible Research Directions

	Determining Optimal Attack Path and Identifying Crucial Attack Nodes
	Introduction
	Research Motivation
	Our Contributions

	Problem Statement
	The IoTMonitor System
	IoTMonitor Architecture
	State Machine Generator
	Sequence Extractor
	Crucial Node Detector

	Evaluation and Results
	Dataset Processing
	Experiment Setting
	Probability Estimation Time
	Decoding Time
	Computational Overhead
	Accuracy Score

	Conclusion

	IoTWarden: A Deep Reinforcement Learning Based Real-time Defense System to Mitigate Trigger-action IoT Attacks
	Introduction
	Research Motivation
	Our Contributions

	Problem Statement
	Remote Injection Attack
	Attack Definition
	Attack Characterization
	Attack Strategy
	Threat Model

	IotWarden Defense System
	State Machine Generator
	Reward Function

	Policy Determiner
	Policy Enforcer

	Experiment and Simulation
	Determining Optimal Attack Sequences
	IoT Environment
	Function Approximator
	Deep Q-Network

	Performance Evaluation
	Optimal Attack Sequence
	Rewards
	Computation Overhead
	Attack-Defense Dynamic
	Impact of Injection Threshold

	Conclusion

	IoTHaven: An Online Defense System to Mitigate Remote Injection Attacks in Partially Observable Trigger-action IoT Platforms
	Introduction
	Research Motivation
	Our Contributions

	Problem Statement
	IoTHaven Defense System
	System Design
	System Architecture
	System Environment
	Defense Agent

	Experiment and Simulation
	Function Appproximator
	Training DRQN

	Performance Evaluation
	Rewards
	Time Overhead
	Attack-Defense Dynamic

	Conclusion

	Future Works
	Competitive Multi-agent Reinforcement Learning (MARL) based Defense Solution
	Offloading Defense Policy Determination in Cloud
	Designing Online Defense Systems with User-configurable Overhead

	Conclusion
	REFERENCES

