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ABSTRACT

AMANDA GUTE. Discrete maximum principle preserving scheme for 1-D nonlocal to local
diffusion problem: development, analysis, and simulation. (Under the direction of DR.

RONALD E. SMELSER)

Diffusion is a scientific phenomena that can be modeled by partial differential equations. In

this dissertation we first explore the development of equations for local, nonlocal, and quasi-

nonlocal diffusion. Methods of finding solutions will be discussed as well as the properties of

each diffusion model type. These properties include satisfying the maximum principle and

demonstrating the well-posedness of each model which is through the solutions existence,

uniqueness, and stability.

Also in a recent paper [15], a quasi-nonlocal coupling method was introduced to seam-

lessly bridge a nonlocal diffusion model with the classical local diffusion counterpart in a

one-dimensional space. The proposed coupling framework removes interfacial inconsistency,

preserves the balance of fluxes, and satisfies the maximum principle of the diffusion problem.

However, the numerical scheme proposed in that paper does not maintain all of these prop-

erties on a discrete level. We resolve this issue by proposing a new finite difference scheme

that ensures the balance of fluxes and the discrete maximum principle. We rigorously prove

these results and provide the stability and convergence analyses accordingly. In addition, we

provide the Courant-Friedrichs-Lewy (CFL) condition for the new scheme and test a series

of benchmark examples which confirm the theoretical findings.
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CHAPTER 1: INTRODUCTION

Diffusion may not be a novel concept, but it underpins many research fields that analyze

the movement of various mediums using fundamental mathematical processes. The primary

forms of diffusion are local and nonlocal diffusion. Local diffusion is widely studied and

has diverse applications. It relies on cohesive materials, allowing for uninterrupted com-

munication between points, which facilitates quick and straightforward numerical solutions.

Research on local diffusion spans a range of areas, including geology, energy, neuroscience,

cancer studies, and the movement of people and ideas [34] [48] [10] [7].

Nonlocal diffusion is a more recent model that addresses how something spreads in scenarios

where the space is not cohesive. It accounts for disconnections in ideas, material flaws, or

other singularities. While nonlocal diffusion can be used interchangeably with local diffusion,

it typically requires more time for numerical solutions. Nevertheless, its ability to minimize

imperfections keeps it in demand. Research employing nonlocal diffusion can be found in

fields such as geology, imaging, machine learning, and mechanics, among others [8] [22] [38]

[6] [13] [41]. Given the time constraints associated with numerically solving nonlocal models,

there is a growing need to couple nonlocal and local models, a concept that will be explored

in greater detail throughout this dissertation.

We will start by examining the continuous model of local diffusion and its beneficial prop-

erties. Next, we will provide a review of the continuous model for nonlocal diffusion. After

outlining these two models, we will discuss the necessity of a coupling operator to connect

nonlocal and local diffusion models. This will include the development of a specific coupling

operator, which will then be discretized for use in numerical approximation experiments and

analysis.



Next, we will introduce a finite difference numerical discretization scheme that closely aligns

with a previously developed approach but incorporates an essential property of the discretized

maximum principle. This addition ensures guaranteed convergence of the approximate so-

lution provided by this new finite difference scheme for the given quasi-nonlocal coupling

operator. After presenting the finite difference scheme, the sections focus on proving its

consistency, stability, and convergence. In the subsequent section, we will briefly analyze

the Courant-Friedrichs-Lewy (CFL) condition and provide benchmark examples to further

validate our results. We will conclude with a comparison of the approximation results from

the previous scheme and the new scheme.

The final chapter begins by deriving the numerical local to nonlocal operator from the

continuous local to nonlocal operator of the diffusion problem under Dirichlet boundary

conditions. We then develop the coefficient matrix for the numerical operator, addressing

Dirichlet, Neumann, and Robin boundary conditions. Following this, we provide benchmark

examples to evaluate the performance of the developed numerical local to nonlocal diffusion

operator under Neumann and Robin boundary conditions. Finally, we compare the results

of the numerical local to nonlocal finite difference scheme across all three types of boundary

conditions.

1.1 Local Diffusion

Diffusion is a widely studied topic that has generated significant insights and research across

various fields. Essentially, diffusion refers to the process of spreading out, and it encompasses

important concepts in several seemingly unrelated areas. Examples of diffusion include the

movement of atoms, particles, people, animals, ideas, and prices, all of which are extensively

explored in disciplines such as physics, chemistry, biology, sociology, economics, and finance.

Diffusion is a phenomenon where the rate of diffusion is proportional to the negative gradient

of concentration. This implies that particles move from regions of higher concentration to

regions of lower concentration, heat transfers from hotter to cooler areas, or people migrate
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from more populated to less populated regions, ultimately leading to a uniform distribution

of the diffusing substance (see an illustration in Figure 1.1). Mathematically, this behavior

can be described using parabolic equations derived from Fick’s second law.

Figure 1.1: Diffusion flow of particles from higher concentration to lower concentration.

Proposition 1 (Fick’s Second Law, [2]). Fick’s second law is a partial differential equation

defined as

ut(x, t) = Duxx(x, t), (1.1)

where u is concentration, and D is the diffusion coefficient. The solution u(x, t) that satisfies

this partial differential equation predicts how diffusion causes the concentration to change with

respect to space and time.

A physical interpretation of Fick’s second law is that uxx represents the difference between the

average value of the function in the vicinity of a point and its value at that specific point. For

instance, if u(x, t) represents the concentration, then uxx describes how the average density

in the surrounding region differs from the density at that point.

We recall the well-posedness of the local diffusion model when the initial and boundary

conditions are specified.
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Theorem 1 (The existence, uniqueness, and stability, see [36]). Let f be a function in

L∞(0, L), and let g and h be functions in L∞(0, T ). Then, the following problem:



ut(x, t) = Duxx(x, t) (x, t) ∈ R

u(x, 0) = f(x) x ∈ (0, L)

u(0, t) = h(t) t ∈ (0, T )

u(L, t) = g(t) t ∈ (0, T )

(1.2)

has a unique solution. Moreover, if f1, f2 ∈ L2(0, L) and g1, g2, h1, h2 ∈ L2(0, T ), and let u1

and u2 be the solutions to (1.2) corresponding to the initial data f1, f2 and boundary data

g1, g2 and h1, h2, respectively, then

‖u1 − u2‖L∞(R) ≤ max
{
‖f1 − f2‖L∞(0,L), ‖g1 − g2‖L∞(0, T ), ‖h1 − h2‖L∞(0, T )

}
.

Figure 1.2: Domain body of the diffusion problem.

We will now recall a well-known property of the general solution to the diffusion problem,

referred to as the Maximum Principle Property. In this scenario, the function u represents

the temperature distribution over the interval [0, L], with time t ranging within [0, T ]. Let

R = [0, L] × [0, T ] (see Figure 1.2). Physically, as the temperature diffuses over time, the

maximum temperature within R will occur either at the initial time or at the endpoints 0 and
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L. No new extreme values will arise within the interior (0, L) as time progresses. In Figure

1.3, the locations where u attains its maximum values are marked in red. The Maximum

Principle is stated below. Its proof can be found in many textbooks of PDEs, for e.g., [36].

Theorem 2 (Maximum Principle for the Local Diffusion Equation, see [36]). If u(x, t)

satisfies the diffusion equation (1.1) in R then the maximum value of u(x, t) over R is either

initially, or on the boundaries.

Figure 1.3: The maximum of the solution is initially, or on the boundaries.

In this dissertation, we develop a numerical scheme based on finite difference methods to

compute solutions for a "combined" local and nonlocal diffusion model. Existing finite

difference schemes for this problem, [15], may not satisfy the Maximum Principle, whereas

our approach does, which is the primary reason for revisiting the Maximum Principle here.

As previously mentioned, our study involves a nonlocal model. For completeness, we will

review the relevant nonlocal equations and some of their properties in the following section.

1.2 Nonlocal Diffusion

The following discussions draw upon references such as [3], [26], [1], [39], [44], [9], [18], [42],

[40], [17], and [13].

The nonlocal diffusion problem largely originates from the nonlocal continuum theory known

as peridynamics, which addresses the formulation of governing equations that can be applied

at discontinuities. Unlike traditional local partial differential equations, which rely on spatial
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derivatives that become undefined at discontinuities, nonlocal models replace these deriva-

tives with integral expressions that remain well-defined. This approach enables nonlocal

models to accurately handle singularities and discontinuities by using integral operators,

which provide a framework to account for these irregularities in a structured manner, allow-

ing for them to be bypassed or treated through a vanishing property.

The vanishing property arises from the inclusion of a kernel function in the nonlocal model,

which is defined based on a chosen horizon, denoted as δ. The horizon represents the effective

range over which nonlocal interactions occur. As δ → 0, the nonlocal model converges to

the local model. The radius of the horizon is determined by the values that establish the

null space within the domain, allowing the solutions to be averaged over this region. Within

the specified ball, the solutions effectively vanish at singularities, facilitating the treatment

of discontinuities in the model.

Nonlocal diffusion can be interpreted as the evolution of a Gaussian distribution, where

the solution changes over time by increasing at points where the mean value is higher than

the current value, and decreasing when the mean value is lower [39]. A commonly used

formulation for modeling nonlocal diffusion is given by

ut(x, t) =

∫
R
J(x− y)

(
u(y, t)− u(x, t)

)
dy,

where J : R→ R is a nonnegative, smooth function that satisfies
∫
R J = 1 [3].

In contrast to the basic local diffusion model, which requires only the value of u at point

x for evaluating uxx, the nonlocal model requires the values of u at other points y 6= x to

compute the behavior at x. This dependency on values across a broader range enables the

nonlocal approach to capture more complex interactions and account for discontinuities.
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Consider the nonlocal Dirichlet boundary value problem defined as



ut(x, t) =

∫
R

J(x− y)(u(y, t)− u(x, t))dy

u(x, 0) = u0(x)

u(0, t) = u(L, t) = 0

where x ∈ Ω = [0, L], and t > 0. Then the solution is the function

u(x, t) = u0(x) +

∫ t

0

∫
R
J(x− y)(u(y, s)− u(x, s))dyds (1.3)

where u ∈ C([0,∞);L1(R)).

When studying the nonlocal diffusion problem, it is essential to ensure that a solution exists,

is unique, and remains stable over time, as these properties are crucial for both the theoretical

understanding and practical applications of the model.

The existence of a solution guarantees that the mathematical model accurately describes a

real-world process. For the nonlocal diffusion equation, this means that the integral equation

governing the diffusion process has at least one function that satisfies the equation under

the given initial and boundary conditions. Proving the existence of a solution typically

involves demonstrating that the integral operator in the nonlocal equation, such as ut(x, t) =∫
R
J(x− y)(u(y, t)− u(x, t))dy, can map an initial state to a well-defined solution function.

This is often achieved using mathematical techniques like fixed-point theorems or energy

estimates.

Uniqueness of the solution ensures that the nonlocal diffusion problem has only one solution

that satisfies the given initial and boundary conditions. Without uniqueness, the model

would be ambiguous, leading to multiple interpretations of the physical phenomenon being

studied. To prove uniqueness, it is typically shown that if two different solutions exist, then
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the difference between them must be zero for all points in space and time. This is often

accomplished using properties of the integral operator and the smoothness of the kernel

function J , which helps control the behavior of the solutions.

Stability of the solution refers to its sensitivity to small changes in the initial or boundary

conditions. A stable solution will exhibit only small variations in response to such perturba-

tions, ensuring that the model’s predictions are robust and reliable. Stability is particularly

important when performing numerical simulations, where small errors can arise from dis-

cretization or rounding. If the solution is stable, these errors will not grow uncontrollably

over time. To establish stability, it is common to examine the norm of the difference be-

tween two solutions with slightly different initial conditions and show that this norm does

not significantly increase as time progresses.

These properties-existence, uniqueness, and stability are important because they ensure

that the nonlocal diffusion model behaves predictably and can be used to describe complex

physical systems reliably. Existence guarantees that a solution can be found, uniqueness

ensures that the solution is meaningful and interpretable, and stability provides confidence in

the model’s robustness to small changes. Together, these qualities make the nonlocal diffusion

model a valuable tool for modeling materials with micro-cracks, anomalous diffusion, and

other processes involving long-range interactions.

Theorem 3 (Uniqueness and Existence, see [3]). The solution for the nonlocal diffusion

Dirichlet boundary value problem is given by

u(x, t) = u0(x) +

∫ t

0

∫
R
J(x− y)(u(y, s)− u(x, s))dyds (1.4)

where u0(x) represents the initial condition, and J(x−y) is a nonlocal interaction kernel. The

problem asserts that this solution exists and is unique for any initial condition u0(x) ∈ L1(Ω),

where L1(Ω) denotes the space of integrable functions over the domain Ω.

8



Theorem 4 (Stability, see [3]). The solution u(x, t) to the nonlocal homogeneous Dirichlet

boundary value problem is stable for the initial condition u0 ∈ L2(Ω).

Throughout the remainder of this dissertation, the nonlocal boundary value problem will

be formulated using the nonlocal operator to account for nonlocal effects, thereby capturing

interactions that extend beyond the immediate spatial location. This approach allows us to

model phenomena where the behavior at a given point depends not only on local conditions

but also on the influence of surrounding regions, which is critical in describing processes

such as anomalous diffusion, long-range interactions in materials, or systems with memory

effects. The use of the nonlocal operator provides a more general framework than classical

differential operators, enabling a more comprehensive analysis of such complex systems.


ut(x, t) = Lu(x, t)

u(x, 0) = f(x)

u(0, t) = u(L, t) = 0

This version smoothly introduces the nonlocal diffusion operator, setting up a transition to

its formal definition used in this research.

Definition 1 (Nonlocal Diffusion Operator, see [23]).

Lu(x, t) =

∫ δ

−δ
γ(s)(u(x+ s, t)− u(x, t))ds. (1.5)

In the following section, we will discuss the coupling of nonlocal and local diffusion, exploring

how these two mechanisms can be combined to model systems that exhibit both short-range

and long-range interactions.

1.3 Coupling Nonlocal and Local Diffusion

Nonlocal modeling can be applied to solve even classical local diffusion problems, though it

is computationally expensive. In many cases, singularities and discontinuities in the solution

9



can be isolated, allowing for a more efficient computational strategy. Specifically, the domain

can be partitioned so that nonlocal models are used only in regions where they are essential,

while local partial differential equations (PDEs) are applied in the rest of the domain. This

hybrid approach, combining local and nonlocal models, has emerged as a promising solution

to the high computational cost associated with using purely nonlocal models. Additionally,

it helps address the complexities that arise from nonlocal boundary conditions, which can

be difficult to manage in purely nonlocal frameworks.

By blending local and nonlocal methods, it is possible to maintain the accuracy and physical

relevance of nonlocal models where needed, while leveraging the simplicity and computational

efficiency of local PDEs in regions where nonlocal effects are negligible. This method not

only reduces the overall computational load but also helps resolve boundary issues more

effectively.

The discussion in this chapter draws from a variety of foundational texts that cover both the

theory and practical implementation of local-to-nonlocal models, including works such as [29],

[18], [23], [12], [28], [30], [31], and [15]. These texts provide a comprehensive understanding

of the challenges and advancements in nonlocal modeling and its integration with local

methods.

There are several categories of approaches to coupling local and nonlocal diffusion models,

including generalized domain decomposition, atomistic-to-continuum coupling, energy-based

methods, and force-based methods. The research presented in this dissertation focuses on

the atomistic-to-continuum methodology, which is particularly well-suited for modeling sys-

tems that require a seamless transition between microscopic (atomistic) and macroscopic

(continuum) behaviors.

In atomistic-to-continuum coupling, the local and nonlocal diffusion models are linked through

a transition region where the two domains do not overlap. This approach allows for a smooth

transition between the local and nonlocal regions, maintaining the integrity of the solution
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across the boundary between the two domains. This is typically achieved by enforcing con-

servation laws, such as the conservation of energy, to ensure that the total energy of the

system is preserved across both the local and nonlocal regions.

By using this coupling methodology, it becomes possible to capture the fine-scale behavior

of materials in regions where nonlocal effects are significant, while using the more compu-

tationally efficient local models where nonlocal interactions are less important. This hybrid

method addresses the challenges of computational cost and complexity that arise when us-

ing purely nonlocal models, providing a balanced and efficient solution for many physical

problems.

The atomistic-to-continuum approach has proven effective in various applications, including

materials science and mechanics, where the detailed atomistic behavior in localized regions

influences the overall macroscopic behavior of the system.

Figure 1.4 illustrates the decomposition of the domain into distinct regions: nonlocal, tran-

sitional, local, and boundary, respectively. The overall domain is defined as Ω = [−1− δ, 1],

with the subdomains described as follows:

• The computational nonlocal boundary layer Ωδ = [−1− δ,−1]

• The nonlocal region is ΩNL = (−1, 0),

• The transitional region is ΩT = [0, δ),

• The local region is ΩL = [δ, 1)

• The boundary region is ΩB = {−1} ∪ {1}.

The entire domain is the union of these regions, expressed as Ω = ΩNL ∪ ΩT ∪ ΩL ∪ ΩB. Ω

represents the domain of the continuous model, but as seen in Figure 1.4 , there’s an addi-

tional region outside this domain, Ωδ that must be accounted for to initialize the numerical

model. This introduces a nonlocal boundary condition in the numerical approach. However,
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as delta approaches 0, this nonlocal numerical boundary condition converges to the standard

boundary condition of the continuous model. This ensures that, in the limit, the numerical

solution matches the behavior of the continuous model at the boundary.

Figure 1.4: Partitioning and boundary layer for a one dimensional domain.

Here, δ, referred to as the horizon, plays a critical role in controlling the extent of nonlocal

interactions. It is scaled to determine the effective interaction range that is required to

capture the essential features of the solution, such as singularities and discontinuities, within

the nonlocal region. The transitional region ΩT serves as a smooth interface where the

nonlocal and local models connect, ensuring that the solution transitions seamlessly between

the different regions without overlap.

Next we will discuss the kernel function used to couple the nonlocal and local diffusion

models. The choice of kernel is critical, as it governs the interaction strength between points

within the nonlocal region and influences the smoothness and accuracy of the transition

between the nonlocal and local domains. By carefully selecting and analyzing the kernel,

we can ensure that the coupling effectively captures the essential features of both diffusion

processes while maintaining stability and consistency across the entire domain.

Definition 2 (Nonlocal diffusion kernel, see [15]). The nonlocal diffusion kernel γδ(x) is

defined as


γδ(|x|) = 1

δ3γ

(
|x|
δ

)
, γ is nonnegative and nonincreasing on (0, 1),

with supp(γ) ⊂ [0, 1] and
∫
R
|x|2γ(|x|)dx = 1.
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To effectively couple nonlocal and local diffusion, we must examine the energy equations

for both models and formulate a combined energy framework. This involves integrating

the energy contributions from the nonlocal and local regions, ensuring the total energy

is conserved across the transition between the two. A key element in this process is the

introduction of a weight function, which must possess specific characteristics to balance the

contributions from both the nonlocal and local regions. The weight function will dictate the

influence of each model in the transitional region, allowing for a smooth blending of the two

diffusion processes while preserving the physical properties of the system.

Corollary 1 (See, [15]). Given the definition of the weight function as

ωδ(x, t) =

∫ 1

0

dt

∫
|s|<x

t

|s|2γ(|s|)ds (1.6)

then it is equal to

ωδ(x, t) = 2

∫ x

0

s2γδ(|s|)ds+ 2x

∫ ∞
x

sγδ(|s|)ds, (1.7)

and its derivative is

ω′δ(x, t) = 2

∫ ∞
x

sγδ(s)ds. (1.8)

Proof. By definition the weight function is

ωδ(x, t) =

∫ 1

0

dt

∫
|s|<x

t

|s|2γ(|s|)ds. (1.9)

By symmetry of the absolute value

∫ 1

0

dt

∫
|s|<x

t

|s|2γ(|s|)ds = 2

∫ 1

0

dt

∫ x
t

0

s2γδ(|s|)ds. (1.10)

13



Then with careful restructuring, we find

2

∫ 1

0

dt

∫ x
t

0

s2γδ(|s|)ds = 2

∫ x

0

s2γδ(|s|)
∫ 1

0

dtds+ 2

∫ ∞
x

s2γδ(|s|)
∫ x

s

0

dtds

= 2

∫ x

0

s2γδ(|s|)ds+ 2x

∫ ∞
x

sγδ(|s|)ds. (1.11)

Therefore,

ωδ(x, t) = 2

∫ x

0

s2γδ(|s|)ds+ 2x

∫ ∞
x

sγδ(|s|)ds. (1.12)

It is obvious from here that the derivative with respect to x of this definition of the weight

function is

ω′δ(x, t) = 2

∫ ∞
x

sγδ(|s|)ds. (1.13)

We have a weight function that plays a crucial role in coupling the nonlocal and local

diffusion models. This weight function is designed to take the value of 0 in the nonlocal

region, where only the nonlocal diffusion model is active, and 1 in the local region, where the

local diffusion model fully governs the behavior. In the transitional region, the value of the

weight function is calculated based on the arrangement of the kernels, allowing for a smooth

transition between the nonlocal and local models.

Definition 3 (Local, Nonlocal, and Quasi-nonlocal Energies, see [15]).

One-dimensional Local Energy

EL(x, t) =
1

2

∫
ΩL

ωδ(x, t)|u′(x, t)|2dx, (1.14)
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such that weight function

ωδ(x, t) =

∫ 1

0

dt

∫
|s|<x

t

|s|2γ(|s|)ds. (1.15)

One-dimensional Nonlocal Energy

ENL(x, t) =
1

2

∫
ΩNL

∫
ΩNL

γδ(y − x)(u(y, t)− u(x, t))2dxdy (1.16)

where γδ(y − x) is a symmetric kernel, and the relationship between y and x is called a

bond(or the "bond" y − x).

One-dimensional Quasi-nonlocal Energy

EQNL(x, t) =
1

2

∫∫
x≤0∪y≤0

γδ(|y − x|)(u(y, t)− u(x, t))2dydx+
1

2

∫
x<0

|u′(x, t)|2ωδ(x, t)dx (1.17)

where the weight function is given by

ωδ(x) =

∫ 1

0

dt

∫
|s|<x

t

|s|2γ(|s|)ds, (1.18)

and the kernel γδ(x) is defined as


γδ(|x|) = 1

δ3γ

(
|x|
δ

)
, γ is nonnegative and nonincreasing on (0, 1),

with supp(γ) ⊂ [0, 1] and
∫
R
|x|2γ(|x|)dx = 1.

The energy space of the quasi-nonlocal coupling operator, as well as the connection between

local and nonlocal energies, is derived by taking the first variation of the quasi-nonlocal

energy functional. This first variation provides the necessary condition for minimizing the

total energy, and its computation leads to the creation of an operator that governs the
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system. Specifically, the variation of the energy defines an operator that is used to identify

the unique curve of shortest length connecting two points in the energy space. This curve

represents the optimal transition between nonlocal and local behaviors, ensuring smoothness

and energy consistency across the coupled system. By minimizing the energy, the quasi-

nonlocal operator achieves a balance between the influences of the local and nonlocal diffusion

models, effectively linking the two in a unified framework.

The variation of the combined local and nonlocal energies leads to the formulation of an op-

erator that models the interaction and combination of nonlocal and local diffusion processes.

This operator is referred to as the quasi-nonlocal operator. The quasi-nonlocal operator is

defined as follows:

Definition 4 (Quasi-nonlocal operator, see [15]).

Lqnlu(x) =



2
∫
y∈R

γδ(|y − x|)(u(y, t)− u(x, t))dy, if x < 0

2
∫
y<0

γδ(|y − x|)
(
u(y, t)− u(x, t)

)
dy + (ωδ(x, t)u

′(x, t))′, if x ∈ [0, δ)

uxx(x, t), if x ≥ δ.

By taking the first variation of the total energy, which includes contributions from both the

nonlocal and local regions, we derive a unified operator that governs the diffusion behavior

across the entire domain, seamlessly bridging the local and nonlocal regimes.

Theorem 5. The quasi-nonlocal operator is the first variation of the total quasi-nonlocal

energy for any test function v ∈ C∞(Ω) [15].

Lqnl(u) = lim
ε→0

EQNL(u+ εv)− EQNL(u)

ε
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Proof.

Lqnl(u) = lim
ε→0

EQNL(u+ εv)− EQNL(u)

ε

=
1

2
lim
ε→0

∫∫
γδ(|y − x|)(u(y, t) + εv(y, t)− u(x, t)− εv(x, t))2dydx+

∫
ωδ(x, t)|u′(x, t) + εv′(x, t)|2dx

ε

− 1

2
lim
ε→0

∫∫
γδ(|y − x|)(u(y, t)− u(x, t))dydx+

∫
ωδ(x, t)|u′(x, t)|2dx

ε

=

∫∫
γδ(|y − x|)

(
u(x, t)v(x, t)− u(x, t)v(y, t)− u(y, t)v(x, t) + u(y, t)v(y, t)

)
dydx

+ ωδ(x, t)u
′(x, t)v(x, t)

∣∣∣∣1
0

−
∫

(ωδ(x, t)u
′(x, t))′v(x, t)dx

=

∫∫
γδ(|y − x|)

(
2u(x, t)v(x, t)− 2u(y, t)v(x, t)

)
dydx−

∫
(ωδ(x, t)u

′(x, t))′v(x, t)dx

=− 2

∫∫
x≤0∪y≤0

γδ(|y − x|)
(
u(y, t)− u(x, t)

)
v(x, t)dydx−

∫
x>0

(ωδ(x, t)u
′(x, t))′v(x, t)dx (1.19)

with assistance from symmetry, boundary conditions, definition of the weight function, and

integration by parts. We can similarly define the operator for the nonlocal and local regions

by taking the first variation of their energies. The results are the following

Lqnl(u) = lim
ε→0

ENL(u+ εv)− ENL(u)

ε

= −2

∫
y∈R

γδ(|y − x|)(u(y, t)− u(x, t))v(x, t)dy, (1.20)

and

Lqnl(u) = lim
ε→0

EL(u+ εv)− EL(u)

ε

= −(ωδ(x, t)u
′(x, t))′v(x, t) = −u′′(x, t)v(x, t). (1.21)

From here, the coupling operator is pieced together to describe the complete operator. These

sections also must be adjusted so they reflect that in the diffusion process force is negative

to the first variation of total energy. It can be concluded that the quasi-nonlocal coupling

operator by regions are
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• Nonlocal Region: x < 0

Lqnlu(x, t) = 2

∫
y∈R

γδ(|y − x|)(u(y, t)− u(x, t))dy. (1.22)

• Transitional Region: 0 ≤ x < δ

Lqnlu(x, t) = 2

∫
y<0

γδ(|y − x|)
(
u(y, t)− u(x, t)

)
dy + (ωδ(x)u′(x, t))′. (1.23)

• Local Region: x ≥ δ

Lqnlu(x, t) = uxx(x, t). (1.24)

Grouped together as a piecewise function the quasi-nonlocal coupling operator

Lqnlu(x) =



2
∫
y∈R

γδ(|y − x|)(u(y, t)− u(x, t))dy, if x < 0

2
∫
y<0

γδ(|y − x|)
(
u(y, t)− u(x, t)

)
dy + (ωδ(x, t)u

′(x, t))′, if x ∈ [0, δ)

uxx(x, t), if x ∈ [δ, 1).

In Chapter 2, we develop a finite difference scheme specifically designed for the quasi-nonlocal

coupling model. This numerical approach enables the accurate and efficient simulation of

systems that involve both nonlocal and local diffusion processes. By discretizing the quasi-

nonlocal operator using a finite difference method, we can approximate the behavior of the

system across the entire domain, including the transitional region between the local and

nonlocal areas. The finite difference scheme is carefully constructed to ensure stability,

consistency, and convergence, making it a robust tool for solving complex coupled diffusion

18



problems. This method allows for the practical implementation of the quasi-nonlocal model

in computational simulations, providing a foundation for the analysis presented in subsequent

chapter.
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CHAPTER 2: FINITE DIFFERENCE SCHEME FOR QNL COUPLING

See this chapter in [23].

For the last decade, nonlocal integro-differential type models have been employed to describe

physical systems. This is due to their natural ability to model physical phenomena at small

scales and their reduced regularity requirements which lead to greater flexibility [4, 20, 5,

42, 11, 13, 14, 16, 17, 19, 21, 24, 25, 27, 32, 33, 37, 43]. These nonlocal models are defined

through a length scale parameter δ, the horizon, which measures the extent of nonlocal

interaction. An important feature of nonlocal models is that they restore the corresponding

classical partial differential equation models as the horizon δ → 0 [13, 14].

Nonlocal models that are compatible with the local partial differential equations are often

very computationally expensive and require additional attention to the boundary treatments

since a layer of volumetric boundary conditions is needed within the physical system. Mean-

while, nonlocal models need less regularity requirements which helps the descriptions near

defects and singularities. Consequently, tremendous efforts have been devoted to combining

nonlocal and local methods to keep accuracy around the irregularity while retaining efficiency

away from the singularity.(See the review paper [12] for the state-of-art.)

In [15], a quasi-nonlocal (QNL) coupling method was proposed to combine the nonlocal and

local diffusion operators in a seamless way using the variational approach. The coupled op-

erator is proved to preserve many mathematical and physical properties on the continuous

level, including the symmetry of operator, the balance of linear momentum, and the maxi-

mum principle. However, it is not clear how to retain these desired properties with proper

numerical discretization. We will now propose a new finite difference method which inherits

all properties from the continuous case.



We recall that the linear local diffusion model in one-dimensional space can be written as

ut(x, t) = uxx(x, t) + f(x, t). (2.1)

The corresponding counterpart in the nonlocal setting is the linear nonlocal diffusion model

which reads

ut(x, t) =

∫ δ

−δ
γδ(s)

(
u(x+ s, t)− u(x, t)

)
ds, (2.2)

where γδ(s) denotes the isotropic nonlocal diffusion kernel satisfying the following assumption

with γδ(·) being a rescaled kernel,


γδ(|s|) =

1

δ3
γ

(
|s|
δ

)
, γ is nonnegative and nonincreasing on (0,1),

with supp(γ) ⊂ [0, 1] and
∫ δ

−δ
|s|2γ(|s|)ds = 2 .

(2.3)

We will display more details about the coupling and numerical schemes in the following

sections.

More precisely, we will organize the process as follows. In the first section we recall the

energy-based quasi-nonlocal coupling from [15] to build the coupling operator Lqnlδ bridging

the nonlocal and local diffusion problems and introduce space-time discretizations as well as

the new finite difference method (FDM). In the next section, we estimate the consistency

errors of the proposed scheme using Taylor expansions. The third section’s focus is on

proving the discrete maximum principle and hence, the stability of proposed scheme. In the

next section, we combine the consistency and stability results to conclude the convergence

estimates. Then we mathematically study the Courant-Friedrichs-Lewy (CFL) condition for

the space-time discretization. In the final two sections, we test several benchmark examples

to confirm our theoretical findings, and concluding results.
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2.1 Discretized Quasi-Nonlocal Coupling

Now, we consider the domain to be Ωδ = [−1− δ, 1], with the coupling interface of nonlocal

and local models at x∗ = 0; (−1, 0) denotes the nonlocal region with nonlocal boundary

layer at [−1 − δ,−1], transitonal region [0, δ), and [δ, 1) denotes the local region with local

boundary point at {1}, as illustrated in Figure 2.1.

Figure 2.1: Partitioning and boundary layer for a discretized one dimensional domain.

In [15], the quasi-nonlocal operator Lqnlδ u(x, t) is introduced to smoothly bridge the local

and nonlocal regions over the transitional region [0, δ]. The corresponding coupled diffusion

problem is proved to be a well-posed initial value problem and is given by


ut(x, t) = Lqnlδ u(x, t) + f(x, t), for T > t > 0 and x ∈ (−1, 1),

u(x, 0) = u0(x), for x ∈ (−1, 1),

u(x, t) = 0, for x = −1, or x = 1.

(2.4)

Lqnlδ employed in equation (2.4) is the quasi-nonlocal coupling operator which describes the

diffusion within the nonlocal, transitional, and local regions, respectively. The expression of
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Lqnlδ is given below

Lqnlδ u(x, t) =



∫ δ

−δ

(
u(x+ s, t)− u(x, t)

)
γδ(s)ds, if x ∈ (−1, 0),

∫ δ

x

γδ(s)

(
u(x− s, t)− u(x, t)

)
ds+

(∫ δ

x

sγδ(s)ds

)
ux(x, t)

+

(∫ x

0

s2γδ(s) + x

∫ δ

x

sγδ(s)ds

)
uxx(x), if x ∈ [0, δ),

uxx(x, t), if x ∈ [δ, 1).

(2.5)

Next, we discuss the numerical settings for the spatial and temporal discretization. We use

uni to denote the numerical approximation of the exact solution u(xi, t
n) with spatial and

temporal step sizes being with ∆x := 1
N

and ∆t := T
NT

, respectively. Hence, the spatial

grid is xi and temporal grid is tn = n∆t. For simplicity, we drop x and t but only use i

and n accordingly. The relation between ∆x and ∆t will be determined later by the CFL

condition. Meanwhile, we assume that the horizon δ is a multiple of ∆x with δ = r∆x and

r ∈ N.

Recall that the entire computational domain is Ωδ := [−1 − δ, 1], so the interior domain

is Ω = (−1, 1) with interface at x∗ = 0; the volumetric boundary layer for the nonlocal

region is Ωn = [−1− δ,−1]; and the local boundary point is Ωc = {1}. Next we denote the

set of spatial grids by I and I = IΩ ∪ IΩn ∪ IΩc , where IΩ = {1, 2, ..., 2N − 1} denotes the

interior grids, IΩn = {−(r − 1), ..., 0} denotes the nonlocal volumetric boundary grids, and

IΩc = {2N} denotes the local boundary point.

Following the scope of asymptotically compatible schemes [45, 46], we define the spatial

discretization of the quasi-nonlocal coupling operator Lqnlδ,∆x as follows.
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Definition 5. Discretized Quasi-nonlocal Coupling Operator

Lqnlδ,∆xu
n
i =



r∑
j=1

uni+j − 2uni + uni−j
(j∆x)2

∫ j∆x

(j−1)∆x

s2γδ(s)ds, if xi < 0,

r∑
j=

xi
∆x

+1

uni+j−1 − 2uni + uni−j+1

2(j − 1)∆x

∫ j∆x

(j−1)∆x

sγδ(s)ds

−
r∑

j=
xi
∆x

+1

uni+j−1 − uni−j+1

2(j − 1)∆x

∫ j∆x

(j−1)∆x

sγδ(s)ds

+

(∫ δ

xi

sγδ(s)ds

)
uni+1 − uni

∆x

+

(∫ xi

0

s2γδ(s)ds+ xi

∫ δ

xi

sγδ(s)ds

)
uni+1 − 2uni + uni−1

(∆x)2
, if xi ∈ [0, δ),

uni+1 − 2uni + uni−1

(∆x)2
, if xi ∈ [δ, 1).

(2.6)

For the temporal discretization, we employ the simplest explicit Euler scheme due to the

limitation of first order accuracy in the spatial discrezation, which will be proved later. Hence

the full finite difference method discretization of (2.4) is

un+1
i − uni

∆t
= Lqnlδ,∆xu

n
i + fni , i ∈ IΩ, (2.7)

where fni = f(xi, t
n).

Figure 2.2 displays a sampling set of spatial stencils using N = 5 on domain [−1− δ, 1]. The

step size is ∆x = 1
5
and the horizon δ = r∆x with r = 3.
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Figure 2.2: Example finite difference stencil with ∆x = 1
5
, horizon δ = r∆x, and r = 3.

Remark 1. In [15], the time-integral is still approximated by the explicit Euler method, and

the L̃qnlδ,∆x is approximated by the following finite difference scheme given the interface at

x∗ = 0:

L̃qnlδ,∆xu
n
i ≈



2
r∑
j=1

uni+j − 2uni + uni−j
(j∆x)2

∫ j∆x

(j−1)∆x

s2γδ(s)ds, if xi < 0.

r∑
j=

xi
∆x

uni+j − 2uni + uni−j
(j∆x)2

∫ j∆x

(j−1)∆x

s2γδ(s)ds

−
r∑

j=
xi
∆x

uni+j − uni−j
j∆x

∫ j∆x

(j−1)∆x

sγδ(s)ds

+2

(∫ δ

xi

sγδ(s)ds

)
uni+1 − uni

∆x

+

(
2

∫ xi

0

s2γδ(s)ds+ 2xi

∫ δ

xi

sγδ(s)ds

)
uni+1 − 2uni + uni−1

(∆x)2
, if xi ∈ [0, δ),

uni+1 − 2uni + uni−1

(∆x)2
, if xi ∈ [δ, 1).

(2.8)

Comparing (2.6) with (2.8), we notice that the difference is replacing j in the original scheme

by (j − 1) in the new scheme. This is the main difference in the approximation that allows

the equation (2.6) to satisfy the discrete maximum principle whereas equation (2.8) does not.

We will rigorously prove this in Section 2.3.
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Remark 2. For numerical schemes that preserve the maximum principles in high dimen-

sional space there are other types of coupling methods developed for two-dimensional prob-

lems. [47, 50] These coupling schemes are based on a domain-decomposition methods via

Neumann or Robin type boundary conditions, and are rigorously proved to keep the maxi-

mum principles.

Regarding the conservation of flux, notice that the operator Lqnlδ,∆x of new scheme (2.6) is sym-

metric, hence, it possesses this property. In general, one has to keep interaction symmetries

across the transitional region of the coupling region. However, the nonlocal neighborhood,

Bδ(x), becomes a disk (in two dimensions) or a ball (in three dimensions), making the in-

tersections with the interface more complex. As a result, it is not easy to preserve the flux

in higher dimensions.

2.2 Consistency of the Discretized Quasi-Nonlocal Operator

In this section, we estimate the consistency error of the scheme (2.7) with Lqnlδ,∆x defined in

(2.6).

Theorem 6. Let the horizon δ = r∆x with r ∈ N being fixed, and suppose u(x, t) is the

strong solution to (2.4), and uni is the discrete solution to the scheme (2.7) with i ∈ IΩ

and tn = n∆t. Also assume that the exact solution u is sufficiently smooth, specifically

u(x, t) ∈ C4([−1−δ, 1]×[0, T ]). Suppose at any given time level tn = n∆t we have u(xi, t
n) =

uni , for all i ∈ IΩ = {1, . . . , 2N − 1}, then for the next time level n+ 1 the consistency error

of the scheme satisfies

|un+1
i − u(xi, t

n+1)| ≤ Cδ∆t ((∆x) + (∆t)) , for all i = 1, . . . , 2N − 1, (2.9)

where Cδ is a constant independent of ∆x and ∆t.

Proof. We evolve u(xi, t
n) and uni by one time step ∆t according to three differential regions.

Local: If xi > δ or simply i ∈ {N + r + 1, ..., 2N − 1}, then the continuous and discrete
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equations follow the expressions in the local region. So at (xi, t
n), we have the continuous

equation:

ut(xi, t
n) = uxx(xi, t

n) + f(xi, t
n), (2.10)

and the discrete equation:

un+1
i − uni

∆t
=
uni+1 − 2uni + uni−1

(∆x)2
+ fni (2.11)

with fni = f(xi, t
n).

Notice from the consistency assumption that uni = u(xi, t
n), so we can rewrite the discrete

equation as

un+1
i − u(xi, t

n)

∆t
=
u(xi+1, t

n)− 2u(xi, t
n) + u(xi−1, t

n)

(∆x)2
+ f(xi, t

n). (2.12)

We apply the Taylor expansion at the spatial grid (xi) up to the fourth-order derivative and

obtain an estimate of un+1
i , which is

un+1
i =u(xi, t

n) + ∆t

(
u(xi+1, t

n)− 2u(xi, t
n) + u(xi−1, t

n)

(∆x)2
+ f(xi, t

n)

)
=u(xi, t

n) + ∆t

(
(∆x)2uxx(xi, t

n) +O(∆x4)

(∆x)2
+ f(xi, t

n)

)
=u(xi, t

n) + ∆t

(
uxx(xi, t

n) + f(xi, t
n)

)
+O

(
∆t(∆x)2

)
. (2.13)

Now, let us estimate the continuous solution u(xi, t
n+1). This time, we apply the Taylor

expansion at the time grid (tn) and get

u(xi, t
n+1) =u(xi, t

n) + ∆tut(xi, t
n) +O(∆t2)

=u(xi, t
n) + ∆t

[(
uxx(xi, t

n) + f(xi, t
n)
)]

+O(∆t2), (2.14)

where we substitute ut(xi, tn) by the continuous equation on the local region.
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By subtracting (2.13) from (2.14) we obtain

un+1
i − u(xi, t

n+1) = O
(
∆t(∆x)2

)
+O

(
(∆t)2

)
. (2.15)

Nonlocal: Next we consider the fully nonlocal region where xi ≤ 0 or simply i ∈ {1, . . . , N}.

We first have the continuous equation:

ut(xi, t
n) =

∫ δ

−δ
γδ(s)

(
u(xi + s, tn)− u(xi, t

n)

)
ds+ f(xi, t

n)

=

∫ 0

−δ
γδ(s)

(
u(xi + s, tn)− u(xi, t

n)

)
ds

+

∫ δ

0

γδ(s)

(
u(xi + s, tn)− u(xi, t

n)

)
ds+ f(xi, t

n)

=

∫ δ

0

γδ(−s)
(
u(xi − s, tn)− u(xi, t

n)

)
ds

+

∫ δ

0

γδ(s)

(
u(xi + s, tn)− u(xi, t

n)

)
ds+ f(xi, t

n). (2.16)

Because of the isotropic property of the nonlocal kernel γδ(s) summarized in (2.3), we have

ut(xi, t
n) =

∫ δ

0

γδ(s)

(
u(xi + s, tn)− 2u(xi, t

n) + u(xi − s, tn)

)
ds+ f(xi, t

n). (2.17)

Clearly, we can divide the integral into the sum of subintegrals on the union of subintervals,

so we have,

ut(xi, t
n) =

r∑
j=1

∫ j∆x

(j−1)∆x

γδ(s)

(
u(xi + s, tn)− 2u(xi, t

n) + u(xi − s, tn)

)
ds+ f(xi, t

n).

(2.18)

Meanwhile, we have the discrete equation to advance uni to un+1
i :

un+1
i − uni

∆t
=

r∑
j=1

uni+j − 2uni + uni−j
(j∆x)2

∫ j∆x

(j−1)∆x

s2γδ(s)ds+ fni . (2.19)

28



This gives,

un+1
i = uni + ∆t

( r∑
j=1

uni+j − 2uni + uni−j
(j∆x)2

∫ j∆x

(j−1)∆x

s2γδ(s)ds+ fni

)
. (2.20)

Now we want to estimate the continuous solution u(xi, t
n+1). We know that

u(xi, t
n+1) = u(xi, t

n) + ∆tut(xi, t
n) +O(∆t2). (2.21)

Hence, inserting the continuous description of the nonlocal diffusion, (2.18), we obtain

u(xi,t
n+1) = u(xi, t

n) + ∆tut(xi, t
n) +O(∆t2)

=u(xi, t
n) + ∆t

[ r∑
j=1

∫ j∆x

(j−1)∆x

γδ(s)s
2

(
u(xi + s, tn)− 2u(xi, t

n) + u(xi − s, tn)

s2

)
ds

+ f(xi, t
n)

]
+O(∆t2) (2.22)

for each integral term from [(j − 1)∆x, j∆x] within the summation. We then focus on the

fractional term and apply a Taylor expansion to u(xi + s, tn) and u(xi− s, tn) for s at (j∆x)

up to a fourth-order derivative. This gives an estimate of

u(xi,t
n+1) = u(xi, t

n)

+ ∆t

[
r∑
j=1

∫ j∆x

(j−1)∆x

γδ(s)s
2 1

(j∆x)2

((
u(xi+j, t

n)− 2u(xi, t
n) + u(xi−j, t

n)
)

+O(s4)

)
ds

+ f(xi, t
n)

]
+O(∆t2)

=uni + ∆t

[
r∑
j=1

∫ j∆x

(j−1)∆x

γδ(s)s
2 1

(j∆x)2

((
uni+j − 2uni + uni−j

))
ds+O(∆x2)

+ f(xi, t
n)

]
+O(∆t2). (2.23)
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Then by subtracting (2.20) from (2.23), we can get

un+1
i − u(xi, t

n+1) = O(∆t) ·O(∆x)2 +O(∆t2). (2.24)

Transitional: Finally we consider when xi ∈ (0, δ] or equivalently i ∈ {N + 1, . . . , N + r},

and again we will look at the continuous equation for the time derivative ut(xi, tn) first.

ut(xi, t
n) =

[ ∫ δ

xi

γδ(s)

(
u(xi − s, tn)− u(xi, t

n)

)
ds+

(∫ δ

xi

sγδ(s)ds

)
ux(xi, t

n)

+

(∫ xi

0

s2γδ(s)ds+ xi

∫ δ

xi

sγδ(s)ds

)
uxx(xi, t

n)

]
+ f(xi, t

n), (2.25)

and splitting symmetrically the first integral gives

ut(xi, t
n) =

∫ δ

xi

γδ(s)

2

(
u(xi − s, tn)− 2u(xi, t

n) + u(xi + s, tn)

)
ds

+

∫ δ

xi

γδ(s)

2

(
u(xi − s, tn)− u(xi + s, tn)

)
ds+

(∫ δ

xi

sγδ(s)ds

)
ux(xi, t

n)

+

(∫ xi

0

s2γδ(s)ds+ xi

∫ δ

xi

sγδ(s)ds

)
uxx(xi, t

n) + f(xi, t
n), (2.26)

and dividing these two integrals into the sum of subintegrals on the union of subintervals,

and modifying each integrand in the scope of the asymptotically compatible scheme [46], we

find

ut(xi,t
n) =

r∑
j=

xi
∆x

+1

∫ j∆x

(j−1)∆x

γδ(s)s

2

(
u(xi − s, tn)− 2u(xi, t

n) + u(xi + s, tn)

s

)
ds

+
r∑

j=
xi
∆x

+1

∫ j∆x

(j−1)∆x

γδ(s)s

2

(
u(xi − s, tn)− u(xi + s, tn)

s

)
ds+

(∫ δ

xi

sγδ(s)ds

)
ux(xi, t

n)

+

(∫ xi

0

s2γδ(s)ds+ xi

∫ δ

xi

sγδ(s)ds

)
uxx(xi, t

n) + f(xi, t
n). (2.27)
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Now working with the discrete equation for un+1
i

un+1
i − uni

∆t
=

r∑
j=

xi
∆x

+1

uni+j−1 − 2uni + uni−j+1

2(j − 1)∆x

∫ j∆x

(j−1)∆x

sγδ(s)ds

−
r∑

j=
xi
∆x

+1

uni+j−1 − uni−j+1

2(j − 1)∆x

∫ j∆x

(j−1)∆x

sγδ(s)ds+

(∫ δ

xi

sγδ(s)ds

)
uni+1 − uni

∆x

+

(∫ xi

0

s2γδ(s)ds+ xi

∫ δ

xi

sγδ(s)ds

)
uni+1 − 2uni + uni−1

(∆x)2
+ fni . (2.28)

This gives,

un+1
i = uni + ∆t

[ r∑
j=

xi
∆x

+1

uni+j−1 − 2uni + uni−j+1

2(j − 1)∆x

∫ j∆x

(j−1)∆x

sγδ(s)ds

−
r∑

j=
xi
∆x

+1

uni+j−1 − uni−j+1

2(j − 1)∆x

∫ j∆x

(j−1)∆x

sγδ(s)ds+

(∫ δ

xi

sγδ(s)ds

)
uni+1 − uni

∆x

+

(∫ xi

0

s2γδ(s)ds+ xi

∫ δ

xi

sγδ(s)ds

)
uni+1 − 2uni + uni−1

(∆x)2
+ fni

]
. (2.29)

Again we want to estimate difference between u(xi, t
n+1) and un+1

i .

For each integral term [(j − 1)∆x, j∆x] within the summation of (2.27), we then use a

Taylor expansion for u(xi + s, tn) and u(xi− s, tn) for s at (j− 1)∆x, which is similar to the

processing we did for the nonlocal region.
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u(xi, t
n+1) = u(xi, t

n)

+ ∆t

[
r∑

j=
xi
∆x

+1

∫ j∆x

(j−1)∆x

γδ(s)s

2(j − 1)∆x

(
u(xi+j−1, t

n)− 2u(xi, t
n) + u(xi−j+1, t

n) +O(s2)

)
ds

+
r∑

j=
xi
∆x

+1

∫ j∆x

(j−1)∆x

γδ(s)s

2(j − 1)∆x

(
u(xi+j−1, t

n)− u(xi−j+1, t
n) +O(s)

)
ds

+

(∫ δ

xi

sγδ(s)ds

)(
u(xi+1, t

n)− (xi, t
n)

∆x
+O(∆x)

)

+

(∫ xi

0

s2γδ(s)ds+ xi

∫ δ

xi

sγδ(s)ds

)(
u(xi+1, t

n)− 2(xi, t
n) +( xi−1, t

n)

∆x2
+O(∆x2)

)
+ f(xi, t

n)

]
+O(∆t2). (2.30)

By subtracting (2.29) from (2.30) we have

un+1
i − u(xi, t

n+1) = O(∆t)O(∆x) +O(∆t2). (2.31)

Therefore, ‖u(xi, t
n+1)−un+1

i ‖L∞ = O(∆t)O(∆x)+O(∆t2) with the highest restrictions from

the transitional region. Since the order of accuracy is greater than zero, the finite difference

scheme is consistent.

2.3 Stability of the Discretized Quasi-nonlocal Operator

Global stability of the scheme is attained by the discrete maximum principle. To prove

the discrete maximum principle for the quasi-nonlocal coupling equation with an underlying

finite difference discretization the spatial operator (−Lqnlδ,∆x) must be positive-definite, and

the time discretization, that is a single explicit Euler integrator, must be a convex scheme.

Recall the domain Ω = [−1, 1] with interface at x∗ = 0. The volumetric boundary layer for

the nonlocal region is Ωn = (−1 − δ,−1], and the local boundary point is Ωc = {1}. The

corresponding sets of spatial grids are IΩ = {1, 2, ..., 2N − 1} for Ω, IΩn = {−(r − 1), ..., 0}
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for Ωn, and IΩc = {2N} for Ωc. Let I = IΩ ∪ IΩn ∪ IΩc denote the union of total stencils

within the entire domain (Interior and Boundary), and IB = IΩn ∪ IΩc denote the stencils

within the boundary regions Ωn ∪ Ωc (Boundary).

Next we will prove the positive-definiteness of (−Lqnlδ,∆x) in Theorem 7, which is the discrete

maximum principle for the static case; and then extend the result to the dynamic case in

Theorem 8 where the time derivative is involved.

Theorem 7. Discrete Maximum Principle for the Static Case The discrete operator

Lqnlδ,∆x satisfies the maximum principle. For u(xi) ∈ `1(I) with
(
− Lqnlδ,∆x

)
(u(xj)) ≤ 0 and

j ∈ IΩ, and for any i ∈ I = IΩ ∪ IB, we have

max
i∈I

u(xi) ≤ max
i∈IB

u(xi). (2.32)

Furthermore, equality holds, and u(xi) is a constant function on stencils I.

Proof. Suppose the discrete function u achieves its strictly maximum values at an interior

grid j∗ ∈ IΩ.

Case I Nonlocal: Consider j∗ ∈ {1, 2, ..., N}. Then since u(xj∗) is a strict maximum

Lqnlδ,∆xuh(xj∗) =
r∑

k=1

u(xj∗+k)− 2u(xj∗) + u(xj∗−k)

(k∆x)2

∫ k∆x

(k−1)∆x

s2γδ(s)ds < 0 (2.33)

which contradicts −Lqnlδ,∆xu(x∗j) ≤ 0 unless u is constant.

Case II Transitional: Consider j∗ ∈ {N + 1, N + 2, ..., N + r}. We observe that

∫ k∆x

(k−1)∆x

s2γδ(s)ds > (k − 1)∆x

∫ k∆x

(k−1)∆x

sγδ(s)ds. (2.34)
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Using u(xj∗)

Lqnlδ,∆xuh(xj∗) =
r∑

k=
xj∗
∆x

+1

u(xj∗+k−1)− 2u(xj∗) + u(xj∗−k+1)

2(k − 1)2(∆x)2

∫ k∆x

(k−1)∆x

s2γδ(s)ds

−
r∑

k=
xj∗
∆x

+1

u(xj∗+k−1)− u(xj∗−k+1)

2(k − 1)∆x

∫ k∆x

(k−1)∆x

sγδ(s)ds

+

(∫ δ

xj∗

sγδ(s)ds

)
u(xj∗+1)− u(xj∗)

∆x

+

(∫ x∗j

0

s2γδ(s)ds+ xj∗

∫ δ

xj∗

sγδ(s)ds

)
u(xj∗+1)− 2u(xj∗) + u(xj∗−1)

(∆x)2
. (2.35)

Also since u(xj∗) is a strict maximum we know

u(xj∗+k−1)− 2u(xj∗) + u(xj∗−k+1)

2(k − 1)2(∆x)2
< 0, (2.36)

and combined with (2.34), this gives

Lqnlδ,∆xu(xj∗) ≤
r∑

k=
xj∗
∆x

+1

u(xj∗+k−1)− 2u(xj∗) + u(xj∗−k+1)

2(k − 1)2(∆x)2
· (k − 1)∆x

∫ k∆x

(k−1)∆x

sγδ(s)ds

−
r∑

k=
xj∗
∆x

+1

u(xj∗+k−1)− u(xj∗−k+1)

2(k − 1)∆x

∫ k∆x

(k−1)∆x

sγδ(s)ds

+

(∫ δ

xj∗

sγδ(s)ds

)
u(xj∗+1)− u(xj∗)

∆x

+

(∫ x∗j

0

s2γδ(s)ds+ xj∗

∫ δ

xj∗

sγδ(s)ds

)
u(xj∗+1)− 2u(xj∗) + u(xj∗−1)

(∆x)2
. (2.37)
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Simplifying we conclude

Lqnlδ,∆xuh(xj∗) ≤
r∑

k=
xj∗
∆x

+1

−2u(xj∗) + 2u(xj∗−k+1)

2(k − 1)∆x

∫ k∆x

(k−1)∆x

sγδ(s)ds

+

(∫ δ

xj∗

sγδ(s)ds

)
u(xj∗+1)− u(xj∗)

∆x

+

(∫ x∗j

0

s2γδ(s)ds+ xj∗

∫ δ

xj∗

sγδ(s)ds

)
u(xj∗+1)− 2u(xj∗) + u(xj∗−1)

(∆x)2
< 0.

(2.38)

which contradicts −Lqnlδ,∆xu(xj) ≤ 0.

Case III Local: Consider j∗ ∈ {N + r + 1, ..., 2N − 1}. Then since u(xj∗) is a strict

maximum

Lqnlδ,∆xu(xj∗) =
u(xj∗+1)− 2u(xj∗) + u(xj∗−1)

(∆x)2
< 0 (2.39)

which contradicts −Lqnlδ,∆xu(xj) ≤ 0.

Next, we will consider the time-dependent case.

Theorem 8. Discrete Maximum Principle for the dynamic case Suppose for i ∈ I =

IΩ ∪ IB and n = 0, 1, ..., NT − 1 with T = NT · ∆t that {uni } solves the following discrete

quasi-nonlocal diffusion equation.



un+1
i −uni

∆t
= Lqnlδ,∆xu

n
i + fni , for i ∈ IΩ, and NT > n ≥ 0,

u0
i = g0

i , for i ∈ I (Initial Condition),

uni = qni , for i ∈ IB, n ≥ 0 (Boundary Condition),

(2.40)

then uni satisfies the discrete maximum principle

uni ≤ max{g0
i |i∈I , qni |i∈IB ,n≥0} (2.41)
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given that fni ≤ 0 for all i ∈ IΩ, all n ≥ 0, and ∆t
∆x2 ≤ 1

4
.

Proof. We denote M = max{g0
i |i∈I , qni |i∈IB ,n≥0}. Clearly, at n = 0 we have u0

i ≤M for all

i ∈ I = IΩ ∪ IB. We assume that this holds for n = m with 0 ≤ m ≤ NT − 2. Now we would

like to advance it to the next time level n = m+ 1.

Case I Nonlocal: Consider i ∈ {1, 2, ..., N} which is the nonlocal region. Then

um+1
i = umi + ∆t

(
Lqnlδ,∆xu

m
i + fmi

)
≤ umi + ∆tLqnlδ,∆xu

m
i

=

(
1− 2∆t

∆x2

r∑
k=1

1

k2

∫ k∆x

(k−1)∆x

s2γδ(s)ds

)
umi +

∆t

∆x2

r∑
k=1

umi+k + umi−k
k2

∫ k∆x

(k−1)∆x

s2γδ(s)ds.

Notice that

r∑
k=1

1

k2

∫ k∆x

(k−1)∆x

s2γδ(s)ds ≤
r∑

k=1

∫ k∆x

(k−1)∆x

s2γδ(s)ds =

∫ δ

0

s2γδ(s)ds = 1 (2.42)

and
∆t

∆x2
≤ 1

4
, so (

1− 2∆t

∆x2

r∑
k=1

1

k2

∫ k∆x

(k−1)∆x

s2γδ(s)ds

)
≥ 0. (2.43)

Hence,

um+1
i ≤

(
1− 2∆t

∆x2

r∑
k=1

1

k2

∫ k∆x

(k−1)∆x

s2γδ(s)ds

)
umi +

∆t

∆x2

r∑
k=1

umi+k + umi−k
k2

∫ k∆x

(k−1)∆x

s2γδ(s)ds

≤
(

1− 2∆t

∆x2

r∑
k=1

1

k2

∫ k∆x

(k−1)∆x

s2γδ(s)ds

)
M +

∆t

∆x2

r∑
k=1

M +M

k2

∫ k∆x

(k−1)∆x

s2γδ(s)ds

= M. (2.44)

Case II Transitional: Consider i ∈ {N + 1, ..., N + r} which is the transitional region.
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Then

um+1
i ≤ umi + ∆tLqnlδ,∆xu

m
i

= umi + ∆t

[
r∑

k=
xi
∆x

+1

umi+k−1 − 2umi + umi−k+1

2(k − 1)2∆x2

∫ k∆x

(k−1)∆x

s2γδ(s)ds

−
r∑

k=
xi
∆x

+1

umi+k−1 − umi−k+1

2(k − 1)∆x

∫ k∆x

(k−1)∆x

sγδ(s)ds+

(∫ δ

xi

sγδ(s)ds

)
umi+1 − umi

∆x

+

(∫ xi

0

s2γδ(s)ds+ xi

∫ δ

xi

sγδ(s)ds

)
umi+1 − 2umi + umi−1

∆x2

]

= A · umi +
r∑

k=
xi
∆x

+1

(
Bk · umi+k−1 + Ck · umi−k+1 +D · umi+1 + E · umi−1

)
(2.45)

where those notations are defined as

A = 1 +
∆t

∆x2

( r∑
k=

xi
∆x

+1

−1

(k − 1)2

∫ k∆x

(k−1)∆x

s2γδ(s)ds

)
+

∆t

∆x

(
−
∫ δ

xi

sγδ(s)ds

)

− 2∆t

∆x2

(∫ xi

0

s2γδ(s)ds+ xi

∫ δ

xi

sγδ(s)ds

)
,

Bk =
∆t

2∆x2(k − 1)2

∫ k∆x

(k−1)∆x

s2γδ(s)ds−
∆t

2∆x(k − 1)

∫ k∆x

(k−1)∆x

sγδ(s)ds,

Ck =
∆t

2∆x2(k − 1)2

∫ k∆x

(k−1)∆x

s2γδ(s)ds+
∆t

2∆x(k − 1)

∫ k∆x

(k−1)∆x

sγδ(s)ds,

D =
∆t

∆x

∫ δ

xi

sγδ(s)ds+
∆t

∆x2

(∫ xi

0

s2γδ(s)ds+ xi

∫ δ

xi

sγδ(s)ds

)
, and

E =
∆t

∆x2

(∫ xi

0

s2γδ(s)ds+ xi

∫ δ

xi

sγδ(s)ds

)
. (2.46)

Clearly, A+
r∑

k=
xi
∆x

+1

(Bk + Ck) +D + E = 1, and Bk, Ck, D,E ≥ 0 when ∆x is sufficiently

small and because − ∆t
2∆x(k−1)

∫ k∆x

(k−1)∆x
sγδ(s)ds > − ∆t

2(∆x)2(k−1)2

∫ k∆x

(k−1)∆x
s2γδ(s)ds.
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Now we want to prove that A ≥ 0. It is equivalent to prove

1− A =
∆t

∆x2

[
r∑

k=
xi
∆x

+1

1

(k − 1)2

∫ k∆x

(k−1)∆x

s2γδ(s)ds+ 2

(∫ xi

0

s2γδ(s)ds+ xi

∫ δ

xi

sγδ(s)ds

)

+ ∆x

∫ δ

xi

sγδ(s)ds

]
≤ 1. (2.47)

Notice that

1− A =
∆t

∆x2

[
r∑

k=
xi
∆x

+1

(
1

(k − 1)2

∫ k∆x

(k−1)∆x

s2γδ(s)ds+ 2xi

∫ k∆x

(k−1)∆x

(
1

s

)
s2γδ(s)ds

+ ∆x

∫ k∆x

(k−1)∆x

(
1

s

)
s2γδ(s)ds

)
+ 2

∫ xi

0

s2γδ(s)ds

]

≤ ∆t

∆x2

[
r∑

k=
xi
∆x

+1

(
1

(k − 1)2

∫ k∆x

(k−1)∆x

s2γδ(s)ds+
2xi

(k − 1)∆x

∫ k∆x

(k−1)∆x

s2γδ(s)ds

+
∆x

(k − 1)∆x

∫ k∆x

(k−1)∆x

s2γδ(s)ds

)
+ 2

∫ xi

0

s2γδ(s)ds

]

≤ ∆t

∆x2

[
r∑

k=
xi
∆x

+1

4

∫ k∆x

(k−1)∆x

s2γδ(s)ds+ 4

∫ xi

0

s2γδ(s)ds

]

= 4
∆t

∆x2

[
r∑

k=
xi
∆x

+1

∫ k∆x

(k−1)∆x

s2γδ(s)ds+

∫ xi

0

s2γδ(s)ds

]
=

4∆t

∆x2

∫ δ

0

s2γδ(s)ds

= 4
∆t

∆x2
≤ 1.

Since ∆t
∆x2 ≤ 1

4
, so 1− A ≤ 1. Therefore,

A ≥ 0 for Bk ≥
∆t

2∆x2(k − 1)2

∫ k∆x

(k−1)∆x

s2γδ(s)ds−
∆t

2∆x2(k − 1)2

∫ k∆x

(k−1)∆x

s2γδ(s)ds = 0.

Summarizing the coefficients of equation (2.45) gives

• A,Bk, Ck, D,E ≥ 0

• A+
r∑

k=
xi
∆x

+1

(Bk + Ck) +D + E = 1.
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Hence um+1
i ≤

(
A+

r∑
k=

xi
∆x

+1

(Bk + Ck) +D + E

)
M = M.

Case III Local: Consider i ∈ {N + r + 1, ..., 2N − 1} which is the local region. Then

um+1
i = umi +

∆t

∆x2

(
umi+1 − 2umi + umi−1

)
+ ∆tfmi ≤

(
1− 2∆t

∆x2

)
umi +

∆t

∆x2

(
umi+1 + umi−1

)

with ∆t
∆x2 ≤ 1

4
which gives all positive coefficients, so um+1

i ≤M .

Combining case I, II, III we can conclude that given umi ≤M for all i ∈ IΩ, and ∆t
∆x2 ≤ 1

4
we

have um+1
i ≤M for all i ∈ IΩ. According to induction, the theorem is proved.

Corollary 2. Suppose for i ∈ I = IΩ ∪ IB, n = 0, 1, ..., NT − 1, and T = NT ·∆t that {uni }

solves the following discrete QNL diffusion equation (2.40) then we have the following upper

bound for uni given that ∆t
∆x2 ≤ 1

4
,

uni ≤ T · ||f ||`∞(I) +max{||g0
i ||`∞(I), ||qni ||`∞(IB)}. (2.48)

Proof. We introduce a comparison function

wni = uni + (T − n ·∆t)||f ||`∞(I) ≥ uni (2.49)

for i ∈ I, and n ≥ 0. Then we have

wn+1
i − wni

∆t
=
un+1
i − uni

∆t
− ||f ||`∞(I) = Lqnlδ,∆xu

n
i +

(
fni − ||f ||`∞(I)

)

where
(
fni − ||f ||`∞(I)

)
≤ 0. Therefore by Theorem 8, wni satisfies the discrete maximum

principle wni ≤ max{w0
i |i∈I , wni |i∈IB} for all i ∈ IΩ and n ≥ 0, given that ∆t

∆x2 ≤ 1
4
.
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Notice that

w0
i = u0

i + T · ||f ||`∞(I) ≤ max{||g0
i ||`∞(I), ||qni ||`∞(IB)}+ T · ||f ||`∞(I) (2.50)

and also that

wni |i∈IB = uni |i∈IB +

(
T−n·∆t

)
||f ||`∞(I) ≤ max{||g0

i ||`∞(I), ||qni ||`∞(IB)}+T ·||f ||`∞(I). (2.51)

combined with the fact that uni |i∈I ≤ wni |i∈I proves the corollary.

Remark 3. Although in the proof of the stability analysis, we require that ∆t
∆x2 ≤ 1

4
to proceed

with the analysis; meanwhile, we notice in the simulation that with ∆t
∆x2 close to 1

2
, we still

have stable numerical results.

2.4 Convergence of Discretized Quasi-nonlocal Operator

In this section, we prove the convergence results of the proposed FDM scheme.

Theorem 9. Global error estimate of the discrete solution Suppose u(x, t) is the

strong solution to (2.4) and uni is the discrete solution to the scheme (2.7) with i ∈ I, n =

0, 1, ..., NT − 1, and NT∆t = T , respectively. Then we have

|u(xi, t
n)− uni | ≤ T · Cδ(∆x+ ∆t) (2.52)

given that ∆t
∆x2 ≤ 1

4
.

Proof. We define eni = u(xi, t
n) − uni , i = 1, 2, ..., 2N − 1, n = 0, 1, ..., NT to be the error

between the exact and discrete solutions. Then from the consistency analysis, and since

fni = f(xi, t
n), we have that
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

en+1
i −eni

∆t
− Lqnlδ,∆xe

n
i = εc,i, for i ∈ IΩ, and n ≥ 0

e0
i = 0, i ∈ I (Initial Error)

eni = 0, i ∈ IB (Boundary Error)

(2.53)

where |εc,i| < Cδ(∆x + ∆t) according to the consistency analysis. Hence we consider the

following auxiliary function

wni = eni − (n∆t) · Cδ(∆x+ ∆t). (2.54)

Observe that

wn+1
i − wni

∆t
− Lqnlδ,∆xw

n
i

=
[en+1
i − Cδ(∆x+ ∆t)((n+ 1)∆t)]− [eni − Cδ(∆x+ ∆t)(n∆t)]

∆t
− Lqnlδ,∆xe

n
i

=
en+1
i − eni

∆t
− Cδ(∆x+ ∆t)− Lqnlδ,∆xe

n
i

= εc,i − Cδ(∆x+ ∆t) ≤ 0. (2.55)

Then wni satisfies



wn+1
i −wn

i

∆t
− Lqnlδ,∆xw

n
i ≤ 0, i ∈ IΩ,

w0
i = 0, i ∈ I, (Initial),

wni = −(n∆t) · Cδ(∆x+ ∆t), i ∈ IB (Boundary),

(2.56)

because of the the discrete maximum principle proved in Theorem 8, so

wni ≤ max{w0
i |i ∈ I, wni |i∈IB} = 0, ∀i ∈ IΩ. (2.57)

Therefore, eni ≤ (n∆t) · Cδ(∆x+ ∆t). Similarly when wni = eni + (n∆t) · Cδ(∆x+ ∆t)
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we have eni ≥ −(n∆t) · Cδ(∆x+ ∆t). Hence, |eni | ≤ (n∆t) · Cδ(∆x + ∆t) which gives

|u(xi, t
n)− uni | ≤ T · Cδ(∆x+ ∆t).

2.5 Study of the Courant-Friedricks-Lewy (CFL) Condiditon

In this section, we study the CFL condition of the new finite difference scheme by employing

the Von Neumann stability analysis. We denote ∆t
∆x

by λ1 and ∆t
(∆x)2 by λ2 and insert uni =

(g(θ))n e
√
−1θxi into the scheme (2.6) where θ is a given wave number. We have the following

three cases:

• Case I Nonlocal: for xi ≤ 0, the growth factor is

g(θ) = 1 + λ2

r∑
j=1

2
(

cos(θj∆x)− 1
)

j2

∫ j∆x

(j−1)∆x

s2γδ(s)ds. (2.58)

• Case II Transitional: for 0 < xi ≤ δ, the growth factor is

g(θ) =1 + λ1

r∑
j=

xi
∆x

+1

(
cos(θ(j − 1)∆x)− 1

)
(j − 1)

∫ j∆x

(j−1)∆x

sγδ(s)ds

− λ1

r∑
j=

xi
∆x

+1

√
−1 sin(θ(j − 1)∆x)

(j − 1)

∫ j∆x

(j−1)∆x

sγδ(s)ds

+ λ1

(∫ δ

xi

sγδ(s)ds

)(
cos(θ∆x) +

√
−1 sin(θ∆x)− 1

)
+ λ2

(∫ xi

0

s2γδ(s)ds+ xi

∫ δ

xi

sγδ(s)ds

)(
2 cos(θ∆x)− 2

)
.

(2.59)

• Case III Local: for xi > δ, the growth factor is

g(θ) = 1 + λ2

(
2 cos(θ∆x)− 2

)
. (2.60)

Proof. Performing the Von Nuemman analysis for stability we substitute uni = (g(θ))n e
√
−1θxi
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Case I:
un+1
i − uni

∆t
=

r∑
j=1

uni+j − 2uni + uni−j
(j∆x)2

∫ j∆x

(j−1)∆x

s2γδ(s)ds (2.61)

Substituting uni = (g(θ))n e
√
−1θxi gives

g(θ)ne
√
−1θxi(g(θ)− 1) = λ2

r∑
j=1

g(θ)ne
√
−1θxi

(
e
√
−1θ∆x − 2 + e−

√
−1θ∆x

)
j2

∫ j∆x

(j−1)∆x

s2γδ(s)ds.

(2.62)

Therefore, we can conclude the growth factor for the nonlocal region is

g(θ) = 1 + λ2

r∑
j=1

(
2
(

cos(θj∆x)− 1
)

j2

∫ j∆x

(j−1)∆x

s2γδ(s)ds. (2.63)

Case II:

un+1
i − uni

∆t
=

r∑
j=

xi
∆x

+1

uni+j−1 − 2uni + uni−j+1

2(j − 1)∆x

∫ j∆x

(j−1)∆x

sγδ(s)ds

−
r∑

j=
xi
∆x

+1

uni+j−1 − uni−j+1

2(j − 1)∆x

∫ j∆x

(j−1)∆x

sγδ(s)ds

+

(∫ δ

xi

sγδ(s)ds

)
uni+1 − uni

∆x

+

(∫ xi

0

s2γδ(s)ds+ xi

∫ δ

xi

sγδ(s)ds

)
uni+1 − 2uni + ui−1

(∆x)2
. (2.64)
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Similarly to the nonlocal region substituting uni = (g(θ))n e
√
−1θxi gives

g(θ)ne
√
−1θxi(g(θ)− 1) =

λ1

r∑
j=

xi
∆x

+1

1

2(j − 1)

(
g(θ)ne

√
−1θxi

(
e
√
−1θ(j−1)∆x − 2 + e−

√
−1θ(j−1)∆x

))∫ j∆x

(j−1)∆x

sγδ(s)ds

− λ1

r∑
j=

xi
∆x

+1

1

2(j − 1)

(
g(θ)ne

√
−1θxi

(
e
√
−1θ(j−1)∆x − e−

√
−1θ(j−1)∆x

))∫ j∆x

(j−1)∆x

sγδ(s)ds

+ λ1

(∫ δ

xi

sγδ(s)ds

)(
g(θ)ne

√
−1θxi

(
e
√
−1k∆x − 1

))
+ λ2

(∫ xi

0

s2γδ(s)ds+ xi

∫ δ

xi

sγδ(s)ds

)(
g(θ)ne

√
−1θxi

(
e
√
−1θ∆x − 2 + e−

√
−1θ∆x

))
.

(2.65)

Therefore, we can conclude the growth factor for the transitional region is

g(θ) =1 + λ1

r∑
j=

xi
∆x

+1

(
cos(θ(j − 1)∆x)− 1

)
(j − 1)

∫ j∆x

(j−1)∆x

sγδ(s)ds

− λ1

r∑
j=

xi
∆x

+1

√
−1 sin(θ(j − 1)∆x)

(j − 1)

∫ j∆x

(j−1)∆x

sγδ(s)ds

+ λ1

(∫ δ

xi

sγδ(s)ds

)(
cos(θ∆x) +

√
−1 sin(k∆x)− 1

)
+ λ2

(∫ xi

0

s2γδ(s)ds+ xi

∫ δ

xi

sγδ(s)ds

)(
2 cos(θ∆x)− 2

)
. (2.66)

Case III:
un+1
i − uni

∆t
=
uni+1 − 2uni + uni−1

(∆x)2
(2.67)

Finally, substituting uni = (g(θ))n e
√
−1θxi gives

g(θ)ne
√
−1θxi(g(θ)− 1) = λ2

(
g(θ)ne

√
−1θxi

(
e
√
−1θ∆x − 2 + e−

√
−1k∆x

))
. (2.68)
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Therefore, we can conclude the growth factor for the local region is

g(θ) = 1 + λ2

(
2 cos(θ∆x)− 2

)
. (2.69)

Clearly, we have λ2 = ∆xλ1, so once we get the CFL constraint on λ1, the CFL condition

for λ2 will be satisfied when ∆x is sufficiently small. Because it is very difficult to analyt-

ically find this upper bound we implement the growth factor g(θ) numerically to identify

restrictions on λ1 and λ2 to ensure |g(θ)| ≤ 1.
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Figure 2.3: Maximum Growth Rate of (2.58), (2.59), (2.60) for the new finite difference
method versus that of (2.8) for the original finite difference method.

For linear local diffusion models with explicit Euler integration and the middle-point finite-

difference discretization, the CFL is restricted by CFL = ∆t
∆x2 ≤ 0.5. This provides the largest

step size in time to reduce computational cost while preserves stability. By numerically

analyzing the growth factor in Figure 2.3, we found that the nonlocal and local regions

match the typical restrictions for stability, but the transitional region is slightly less than

0.5. This factor needs to be considered for stability restrictions to the CFL on the whole

coupling system. On the other hand, compared with the original FDM scheme proposed in

[15], the new FDM discretization can afford a larger CFL condition, which suggests that the

new scheme is more stable.
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2.6 Numerical Examples

In this section, we test several numerical examples to confirm the stability and convergence

results. We fix the nonlocal diffusion kernel to be a constant kernel

γδ(s) =
3

δ3
χ[−δ, δ](s).

1. For the first example, we consider the asymptotic compatibility (AC) of the discretized

operator Lqnlδ,∆x to the local diffusion problem as the horizon δ and spatial discretization

∆x go to zero at the same time.

We consider the external force f as

f(x, t) = 30x4e−t + e−t(x6 − 1) + 2. (2.70)

Then, the exact solution to the local diffusion u`t = u`xx+f with u`(−1, t) = u`(1, t) = 0

and u`(x, 0) = (1− x2)− (x6 − 1) is

u`(x, t) = (1− x2)− e−t(x6 − 1). (2.71)

To test the AC convergence, we fix δ = r∆x with r = 3 and set the CFL to be

CFL = 0.45, that is ∆t = 0.2∆x2, and the termination time is chosen to be T = 1.

First order convergence with respect to ∆x is observed. The convergence order and

L∞Ω×[0,T ] differences between u`(x, t) and discrete solution of uqnlδ,∆x are listed in Table

2.1. Also the visual comparison of the two solutions at t = 0 and t = T are displayed

in Figure 2.4 with good agreement.
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Table 2.1: L∞Ω×[0,T ] differences between the local continuous solution u` and discrete solution
uqnlδ,∆x. We fix δ = 3∆x, and the kernel is γδ(s) = 3

δ3χ[−δ,δ](s). The termination time T = 1
and ∆t = 0.2∆x2.

∆x ||u`(xi, tn)− uqnlδ,∆x(xi, t
n)||L∞

Ω×[0,T ]
Order

1
50

0.1422 −
1

100
7.168e−2 0.988

1
200

3.614e−2 0.988

1
400

1.820e−2 0.990

1
800

9.151e−3 0.992

1
1600

4.594e−3 0.994
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Figure 2.4: Plots of solutions to the approximate and actual solutions. The kernel function
was chosen as γδ(s) = 3

δ3χ[−δ,δ](s). The coupling inference is at x∗ = 0, and the mesh size is
∆x = 1

400
with a horizon as δ = 3

400
, the temporal step size is ∆t = 0.45∆x2.

2. In the following example, we compare the original scheme L̃qnlδ (2.8) proposed in [15] with the

new proposed scheme Lqnlδ,∆x in (2.6).

We are going to compare the AC convergence between (2.6) and (2.8). The exact local
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continuous solution is chosen to be

u`(x, t) = e−t(1− x)2(1 + x)2x2 (2.72)

and the corresponding external force is

f(x, t) =u`t − u`xx

=− e−t
(
(x− x3)2 + (2− 24x2 + 30x4)

)
.

(2.73)

Again the kernel used is γδ(s) = 3
δ3 with δ = 3∆x. We denote the solution obtained by Lqnlδ,∆x

by uqnlδ,∆x and the solution obtained by L̃qnlδ,∆x by ũqnlδ,∆x.

First order AC convergence with respect to ∆x are observed in Table 2.2 for both schemes

(2.6) and (2.8), respectively. The approximation using scheme (2.6) at larger step size has a

second order convergence rate, and at smaller step size tends to be of first order.

Table 2.2: L∞Ω×[0,T ] differences between the local continuous solution u` and two discrete
solutions uqnlδ,∆x, ũ

qnl
δ,∆x using the FDM schemes (2.6) and (2.8), respectively. We fix δ = 3∆x,

and the kernel is γδ(s) = 3
δ3 . The termination time is T = 1 and ∆t = 0.2∆x2.

∆x ||u`(xi, tn)− ũqnlδ,∆x(xi, t
n)||L∞ Order ||u`(xi, tn)− uqnlδ,∆x(xi, t

n)||L∞ Order

1
50

9.255e−3 − 7.200e−3 −
1

100
4.692e−3 0.980 1.698e−3 2.08

1
200

2.356e−3 0.994 4.121e−4 1.09

1
400

1.179e−3 0.998 1.931e−4 1.09

1
800

5.900e−4 0.999 9.628e−5 1.00

1
1600

2.951e−4 1.00 4.806e−5 1.00

Next, we compare the three solutions obtained from the new scheme (1), the exact local

continuous solution (2), and the original scheme (3) in Figure 2.5. Notice that the exact local

continuous solution u`(x, t) should remain non negative throughout the entire computational

domain Ω×[0, T ], however, both uqnlδ,∆x and ũ
qnl
δ,∆x become slightly negative around the interface
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x∗ = 0. This does not contradict the discrete maximum principle of Lqnlδ,∆x as the external force

f(x, t) defined in (2.73) does not retain negativity on [−1, 1] as required in the assumption of

Theorem 8.
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Figure 2.5: Numerical comparison between the new scheme (2.6) and original scheme (2.8)
used to approximate (2.72) with external force given by (2.73). The spatial step size is
∆x = 1

200
and ∆t=0.25∆x2.

2.7 New Finite Difference Scheme Conclusion

We propose a new scheme to discretize the quasi-nonlocal (QNL) coupling operator intro-

duced in [15] for the nonlocal-to-local diffusion problem. This new finite difference approx-

imation preserves the properties of continuous equation on a discrete level. Consistency,

stability, the maximum principle and the global convergence analysis of the scheme are

proved rigorously. We analytically find the CFL conditions through the Von Neumann sta-

bility analysis and numerically calculate the CFL values for a given spatial discretization.

The numerical calculations of the CFL provide an additional alert around the interface when

considering the temporal step size for an explicit time integrator. The CFL restrictions on

the transitional region were discovered to be slightly less than 1
2
with the explicit Euler

method employed in a diffusion problem. Multiple numerical examples are then provided

and summarized to verify the theoretical findings. A comparison with the original scheme

used in [15] is also provided which confirmed the improvements of the new scheme. See this

chapter in [23].
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CHAPTER 3: DEVELOPMENT OF THE COEFFICIENT MATRIX, AND MORE

NUMERICAL EXAMPLES

In this chapter, we develop the coefficient matrices necessary for the finite difference scheme

that couples nonlocal and local diffusion. Additionally, we investigate the effects of applying

different boundary conditions, specifically Neumann and Robin boundary conditions, on the

approximate solutions produced by the nonlocal to local finite difference scheme outlined

in this dissertation. These boundary conditions play a crucial role in shaping the behavior

of the solution near the boundaries of the domain, and their impact on the accuracy and

stability of the numerical results will be explored.

To provide context, refer the diffusion equation, which serves as the foundational model for

this investigation:

ut(x, t) = uxx(x, t) + f(x, t) (3.1)

where, u(x, t) represents the temperature distribution over time and space. In addition,

recall the diffusion equation with nonlocal to local coupling operator and Dirichlet boundary

conditions


ut(x, t) = Lqnlu(x, t) + f(x, t) x ∈ [−1, 1]

u(x, 0) = u0(x) x ∈ (−1, 1)

u(x, t) = 0 x ∈ {−1} ∪ {1}

(3.2)

In the development of the coefficient matrix for the quasi-nonlocal coupling scheme, it is

also useful to revisit the formulation of the 1-dimensional quasi-nonlocal energy. The quasi-

nonlocal energy plays a key role in governing the behavior of the system and is integral to



constructing the finite difference scheme, as it provides a foundation for deriving the operator

and ensuring consistency in the coupling between the local and nonlocal regions.

EQNL(u) =
1

2

∫∫
x≤∪y≤0

γδ(|y − x|)(u(y, t)− u(x, t))2dydx+
1

2

∫
x<0

|u′(x, t)|2ωδ(x, t)dx (3.3)

with the weight function definition and characteristics

ωδ(x, t) =

1∫
0

dt

∫
|s|<x

t

|s|2γ(|s|)ds (3.4)

ωδ(x, t) = 2

x∫
0

s2γδ(|s|)ds+ 2x

∞∫
x

sγδ(|s|)ds (3.5)

ω′δ(x, t) = 2

∞∫
x

sγδ(s)ds, (3.6)

and the kernel is defined as


γδ(|s|) =

1

δ3
γ

(
|s|
δ

)
, γ is nonnegative and nonincreasing on (0,1),

with supp(γ) ⊂ [0, 1] and
∫ δ

−δ
|s|2γ(|s|)ds = 2 .

(3.7)

Finally, refer to the continuous nonlocal to local operator, which plays a fundamental role
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in the coupling of local and nonlocal diffusion models.

Lqnlu(x, t) =



2
∫
y∈R

γδ(|y − x|)(u(y, t)− u(x, t))dy, if x < 0

2
∫
y<0

γδ(|y − x|)
(
u(y, t)− u(x, t)

)
dy + (ωδ(x, t)u

′(x, t))′, if x ∈ [0, δ)

u′′(x, t), if x ≥ δ.

In the next section, we will derive the numerical operator from the continuous nonlocal to

local operator, and subsequently develop the corresponding coefficient matrix for Dirichlet

boundary conditions. This process will enable us to discretize the problem effectively, ensur-

ing that the finite difference scheme accurately captures the behavior of the system under

the specified boundary conditions.

52



3.1 Numerical Constants

In this section, we focus on the derivation of the numerical operator from the continuous

operator and the subsequent development of the coefficient matrix for Dirichlet boundary

conditions. This process begins by discretizing the continuous local-to-nonlocal operator us-

ing an appropriate finite difference scheme, transforming the continuous differential operator

into its numerical counterpart. The next step involves constructing the coefficient matrix

that corresponds to the discretized system under Dirichlet boundary conditions, ensuring

that the boundary values are properly incorporated into the scheme. This matrix formula-

tion is crucial for solving the system efficiently while maintaining accuracy and stability in

the transition between local and nonlocal diffusion.

Theorem 10. The following continuous operators Lqnlδ u(x, t) can be approximated by nu-

merical operators Lqnlδ,∆xu
n
i

Nonlocal Domain

Lqnlδ u(x, t) =

δ∫
−δ

(
u(x+ s, t)− u(x, t)

)
γδ(s)ds ≈

Lqnlδ,∆xu
n
i =

r∑
j=1

γ∆x(j3 − (j − 1)3)

3j2
uni+j −

2γ∆x(j3 − (j − 1)3)

3j2
uni +

γ∆x(j3 − (j − 1)3)

3j2
uni−j

(3.8)
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Transitional Domain

Lqnlδ u(x, t) =

∫ δ

x

γδ(s)

(
u(x− s, t)− u(x, t)

)
ds+

(∫ δ

x

sγδ(s)ds

)
ux(x, t)

+

(∫ x

0

s2γδ(s) + x

∫ δ

x

sγδ(s)ds

)
uxx(x) ≈

Lqnlδ,∆xu
n
i =

r∑
j=

xi
∆x

+1

(uni+j−1 − 2uni + uni−j+1)

(
γ∆x(j2 − (j − 1)2)

4(j − 1)

)

−
r∑

j=
xi
∆x

+1

(uni+j−1 − uni−j+1)

(
γ∆x(j2 − (j − 1)2)

4(j − 1)

)

+

(
γ(δ2 − x2

i )

2∆x

)
(uni+1 − uni )

+

((
γxi

3

3∆x2

)
+ xi

(
γ(δ2 − x2

i )

2∆x2

))
(uni+1 − 2uni + uni−1) (3.9)

Local Domain (Second order central difference)

Lqnlδ u(x, t) = uxx(x, t) =
u(xi+1, t

n)− 2u(xi, t
n) + u(xi−1, t

n)

∆x2
≈

Lqnlδ,∆xu
n
i =

1

∆x2
uni−1 −

2

∆x2
uni +

1

∆x2
uni+1 (3.10)

Proof. Nonlocal Domain: Symmetry of u(x, t) gives the following rearrangement of the

continuous operator

Lqnlδ u(x, t) =

δ∫
−δ

(
u(x+ s, t)− u(x, t)

)
γδ(s)ds

= 2

δ∫
0

γδ(s)

(
u(x+ s, t)− u(x, t)

)
ds

=

δ∫
0

γδ(s)

(
2u(x+ s, t)− 2u(x, t)

)
ds

=

δ∫
0

γδ(s)

(
u(x+ s, t)− 2u(x, t) + u(x− s, t)

)
ds (3.11)
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Next we discretize the continuous model such that

Lqnlδ u(x, t) ≈
r∑
j=1

j∆x∫
(j−1)∆x

s2γδ(s)

(
u(x+ s, t)− 2u(x, t) + u(x− s, t)

s2

)
ds

=
r∑
j=1

u(xi+j , t
n)− 2u(xi, t

n) + u(xi−j , t
n)

(j∆x)2

j∆x∫
(j−1)∆x

s2γδ(s)ds

=
r∑
j=1

uni+j − 2uni + uni−j
(j∆x)2

(
1

3
s3γ|j∆x(j−1)∆x

)

=
r∑
j=1

uni+j − 2uni + uni−j
(j∆x)2

(
1

3
∆x3γ

(
j3 − (j − 1)3

))

=

r∑
j=1

γ∆x(j3 − (j − 1)3)

3j2
uni+j −

2γ∆x(j3 − (j − 1)3)

3j2
uni +

γ∆x(j3 − (j − 1)3)

3j2
uni−j

= Lqnlδ,∆xu
n
i (3.12)

Transitional Domain:

Lqnlδ u(x, t) =

∫ δ

x

γδ(s)

(
u(x− s, t)− u(x, t)

)
ds+

(∫ δ

x

sγδ(s)ds

)
ux(x, t)

+

(∫ x

0

s2γδ(s) + x

∫ δ

x

sγδ(s)ds

)
uxx(x)

=
r∑

j=
xi
∆x

+1

uni+j−1 − 2uni + uni−j+1

2(j − 1)∆x

∫ j∆x

(j−1)∆x

sγδ(s)ds

−
r∑

j=
xi
∆x

+1

uni+j−1 − uni−j+1

2(j − 1)∆x

∫ jh

(j−1)∆x

sγδ(s)ds

+

(∫ δ

xi

sγδ(s)ds

)
uni+1 − uni

∆x

+

(∫ xi

0

s2γδ(s)ds+ xi

∫ δ

xi

sγδ(s)ds

)
uni+1 − 2uni + uni−1

(∆x)2
. (3.13)
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Then the discretized continuous operator can be written as

Lqnlδ u(x, t) ≈
r∑

j=
xi
∆x

+1

uni+j−1 − 2uni + uni−j+1

2(j − 1)∆x

(
s2γ

2

∣∣∣∣j∆x
(j−1)∆x

)

−
r∑

j=
xi
∆x

+1

uni+j−1 − uni−j+1

2(j − 1)∆x

(
s2γ

2

∣∣∣∣j∆x
(j−1)∆x

)

+

(
s2γ

2

∣∣∣∣δ
xi

)
uni+1 − uni

∆x

+

((
s3γ

3

∣∣∣∣xi
0

)
+ xi

(
s2γ

2

∣∣∣∣δ
xi

))
uni+1 − 2uni + uni−1

(∆x)2

=
r∑

j=
xi
∆x

+1

(uni+j−1 − 2uni + uni−j+1)

(
γ∆x(j2 − (j − 1)2)

4(j − 1)

)

−
r∑

j=
xi
∆x

+1

(uni+j−1 − uni−j+1)

(
γ∆x(j2 − (j − 1)2)

4(j − 1)

)

+

(
γ(δ2 − x2

i )

2∆x

)
(uni+1 − uni )

+

((
γxi

3

3∆x2

)
+ xi

(
γ(δ2 − x2

i )

2∆x2

))
(uni+1 − 2uni + uni−1)

= Lqnlδ,∆xu
n
i (3.14)

Note: In all analyses, the radius r = 3 is used consistently. As a result, there are always

exactly three nodes within the transition region, regardless of the size of the domain or the

step size used in the finite difference scheme. This fixed radius ensures a uniform treatment

of the transition region between the local and nonlocal models, simplifying the analysis while

maintaining consistency across different configurations.
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Local Domain: By second order central finite difference

Lqnlδ u(x, t) = uxx(x, t) =
u(xi+1, t

n)− 2u(xi, t
n) + u(xi−1, t

n)

∆x2
≈

=
1

∆x2
uni−1 −

2

∆x2
uni +

1

∆x2
uni+1

= Lqnlδ,∆xu
n
i (3.15)

We establish that r = 3, which defines the number of nodes in the transition region. From

this, we derive that δ = r∆x = 3∆x, where ∆x is the spatial step size. The parameter γ,

which is related to the interaction strength in the nonlocal model, is given by:

γ =
3

δ3
=

3

r3∆x3
.

Next, we define the nonlocal region constant by

LNLu(x, t) =
r∑
j=1

γ∆x(j3 − (j − 1)3)

3j2
uni+j −

2γ∆x(j3 − (j − 1)3)

3j2
uni +

γ∆x(j3 − (j − 1)3)

3j2
uni−j

=
r∑
j=1

(
3j2 + 3j + 1

r3∆x2j2

)
uni+j +

(
−2(3j2 + 3j + 1)

r3∆x2j2

)
uni +

(
3j2 + 3j + 1

r3∆x2j2

)
uni−j .

(3.16)
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Then we define the transitional region constants by

LTu(x, t) =
r∑

j=
xi
∆x

+1

(uni+j−1 − 2uni + uni−j+1)

(
γ∆x(j2 − (j − 1)2)

4(j − 1)

)

−
r∑

j=
xi
∆x

+1

(uni+j−1 − uni−j+1)

(
γ∆x(j2 − (j − 1)2)

4(j − 1)

)

+

(
γ(δ2 − x2

i )

2∆x

)
(uni+1 − uni )

+

((
γxi

3

3∆x2

)
+ xi

(
γ(δ2 − x2

i )

2∆x2

))
(uni+1 − 2uni + uni−1)

=
r∑

j=
xi
∆x

+1

(uni+j−1 − 2uni + uni−j+1)

(
3(2j − 1)

4r3∆x2(j − 1)

)
Nonlocal Gradient Constant

−
r∑

j=
xi
∆x

+1

(uni+j−1 − uni−j+1)

(
3(2j − 1)

4r3∆x2(j − 1)

)
Nonlocal Gradient Constant

+

(
3

2δ∆x

(
1−

(
xi
δ

)2))
(uni+1 − uni ) Local Gradient Constant

+

(
− 1

2

(
xi
δ

)3

+
3

2

(
xi
δ

))
(uni+1 − 2uni + uni−1) Local Diffusion Constant. (3.17)

Finally, we define the local region constant by

LL =
1

∆x2
uni−1 −

2

∆x2
uni +

1

∆x2
uni+1. (3.18)

The spatial index N determines the step size, with ∆x = 1
N
. This step size governs the

discretization of the domain, which consists of a total of 2N + r nodes, distributed across

the different sections of the domain.

Thus, for a domain (−1 − δ, 1], or any domain using this partitioning scheme, the node

distribution ensures proper handling of both local and nonlocal regions, with the transition

region providing a smooth connection between them. The total number of nodes reflects

the combination of these sections, providing a structured framework for the finite difference

scheme used in the analysis.
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This represents the general structure of the coefficient matrix for the previous numerical

examples under Dirichlet boundary conditions. The matrix incorporates the nonlocal, tran-

sitional, and local diffusion constants while accounting for the boundary conditions, where

u(x, t) = 0 on the boundary. As a result, the boundary nodes are either adjusted, leading to

a reduced matrix that governs the internal nodes within the domain.

In previous works such as [35] and [49], studies examined non-Dirichlet boundary conditions.

To gain a broader understanding of how the non local to local finite difference scheme applies

to diffusion problems, we extended our analysis to include non-Dirichlet boundary conditions

as well. The next two sections address the development of the coefficient matrix for the local

to nonlocal diffusion finite difference scheme under Neumann and Robin boundary conditions.

Referring back to Theorem 5, the continuous local to nonlocal operator was derived using

energy variation. This continuous operator was then transformed into the numerical operator

used throughout this study. When Neumann or Robin boundary conditions are applied

instead of Dirichlet conditions, we find that Neumann and Robin boundary conditions alter

the operator. These modifications will be explored further, detailing their impact on the

construction of the coefficient matrix and the behavior of the numerical solution.

3.2 Neumann Boundary Conditions Numerical Example

In this section, we will examine the Neumann boundary condition problem for the nonlocal

to local coupling model. This analysis will focus on how the Neumann boundary conditions

impact the transition between local and nonlocal diffusion within the finite difference scheme,

and the structure of the coefficient matrix.

Using the same definitions and conditions described in the previous section, we proceed with
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the Neumann boundary condition problem


ut(x, t) = Lqnlu(x, t) + f(x, t) x ∈ [−1, 1]

u(x, 0) = u0(x) x ∈ (−1, 1)

ux(x, t) = 0 x ∈ {−1} ∪ {1}.

The Neumann boundary conditions and definition of ux(x, t) give

ux(−1− 3∆x, t) = ux(−1− 2∆x, t) = ux(−1−∆x, t) = ux(−1, t) = ux(1, t) = 0 (3.19)

which have nodal placement at

ux(x1, t) = ux(x2, t) = ux(x3, t) = ux(x4, t) = ux(x2N+r+1, t) = 0, (3.20)

and

ux(x, t) =
u(x+ ∆x, t)− u(x, t)

∆x
. (3.21)

Then

ux(x1, t) =
u(x2, t)− u(x1, t)

∆x
= 0 (3.22)

which gives

−u1 + u2 = 0. (3.23)

Similarly,

− u2 + u3 = 0

− u3 + u4 = 0

− u4 + u5 = 0

− u2N+r + u2N+r−1 = 0. (3.24)

60



Neumann Boundary Condition Problem Numerical Example:

Let N = 800.

Exact Solution: u(x, t) = (1− x2)2e−t

Force Function: ut = uxx + f , so f(x, t) = −(1− x2)2e−t − 4e−t(3x2 − 1)
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Figure 3.1: Numerical comparison between approximate and actual solution with Neumann
Boundary Conditions

Convergence with respect to ∆x is not observed. The convergence order and L∞Ω×[0,T ] differ-

ences between u`(x, t) and discrete solution of uqnlδ,∆x are listed in Table 3.1. Also the visual

comparison of the two solutions at t = 0 and t = T are displayed in Figure 3.1 with good

agreement.
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Table 3.1: L∞Ω×[0,T ] differences between the local continuous solution u` and discrete solution
uqnlδ,∆x. We fix δ = 3∆x, and the kernel is γδ(s) = 3

δ3χ[−δ,δ](s). The termination time T = 1
and ∆t = 0.2∆x2.

∆x ||u`(xi, tn)− uqnlδ,∆x(xi, t
n)||L∞

Ω×[0,T ]
Order

1
50

0.04346549603691 −
1

100
0.030145239020954 0.527940440511889

1
200

0.027006661648969 0.158614852261122

1
400

0.026252371349129 0.040867570465478

1
800

0.026073054548579 0.009888136300599

1
1600

0.026032317322593 0.002255867438372

3.3 Robin Boundary Conditions Numerical Example

In this section, we repeat the process from the previous section, applying the same con-

straints, but now focusing on the nonlocal to local coupling with Robin boundary conditions.

This analysis will explore how Robin boundary conditions, which combine both the func-

tion’s value and its derivative at the boundary, affect the coefficient matrix and numerical

solution.

Now we consider the Robin boundary value problem


ut(x, t) = Lqnlu(x, t) + f(x, t) x ∈ [−1, 1]

u(x, 0) = u0(x) x ∈ (−1, 1)

ux(x, t)− u(x, t) = 0 x ∈ {−1} ∪ {1}.

This time, the Robin boundary conditions and definition of ux(x, t) give

ux(x1, t)− u(x1, t) = 0 (3.25)
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which implies

u(x2, t)− u(x1, t)

∆x
− u(x1, t) = 0, or (−1−∆x)u1 + u2 = 0. (3.26)

Similarly,

(−1−∆x)u2 + u3 = 0

(−1−∆x)u3 + u4 = 0

(−1−∆x)u4 + u5 = 0

(−1−∆x)u2N+r + u2N+r−1 = 0. (3.27)

Robin Boundary Condition Problem Numerical Example:

Let N = 800.

Exact Solution: u(x, t) = (1− x2)2e−t

Force Function: ut = uxx + f , so f(x, t) = −(1− x2)2e−t − 4e−t(3x2 − 1)
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Figure 3.2: Numerical comparison between approximate and actual solution with Robin
Boundary Conditions

Convergence with respect to ∆x is not observed. The convergence order and L∞Ω×[0,T ] differ-

ences between u`(x, t) and discrete solution of uqnlδ,∆x are listed in Table 3.2. Also the visual
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comparison of the two solutions at t = 0 and t = T are displayed in Figure 3.2 with good

agreement.

Table 3.2: L∞Ω×[0,T ] differences between the local continuous solution u` and discrete solution
uqnlδ,∆x. We fix δ = 3∆x, and the kernel is γδ(s) = 3

δ3χ[−δ,δ](s). The termination time T = 1
and ∆t = 0.2∆x2.

∆x ||u`(xi, tn)− uqnlδ,∆x(xi, t
n)||L∞

Ω×[0,T ]
Order

1
50

0.122199153334667 −
1

100
0.125828421422572 −0.042223537562521

1
200

0.124434138360483 0.016075485469575

1
400

0.122940268407174 0.017424801546374

1
800

0.121998183762725 0.011097869972930

1
1600

0.121478882814311 0.006154124078986

3.4 Boundary Conditions Conclusion

The results from the numerical examples using Dirichlet, Neumann, and Robin boundary

conditions provide a clear comparison. The most accurate results are achieved with models

that implement Dirichlet boundary conditions. In contrast, applying the LNL finite differ-

ence scheme with either Neumann or Robin boundary conditions does not yield approxima-

tions with strong convergence. The results for the Robin boundary condition example were

particularly weaker compared to those with Neumann boundary conditions.

Nuemann and Robin boundary conditions alter the continuous operator derived from energy

variation. This suggests potential for future work, where modifications to the continuous

model could account for these type of solutions, leading to more accurate approximations

under Nuemann and Robin boundary conditions. Despite these challenges, we still applied

the finite difference scheme to approximate solutions with Robin boundary conditions to

compare the outcomes across the different boundary types

64



REFERENCES

[1] Burak Aksoylu and Michael L. Parks. Variational theory and domain decomposition for
nonlocal problems. Applied Mathematics and Computation, 217(14):6498–6515, 2011.

[2] Vesa Vuorinen Sergiy V. Divinski Aloke Paul, Tomi Laurila. Thermodynamics, Diffusion
and the Kirkendall Effect in Solids. Springer, 2023.

[3] Fuensanta Andreu-Vaillo, Jose M. Mazon, Julio D. Rossi, and J.Julian Toledo-Melero.
Nonlocal diffusion problems. Mathematical surveys and monographs ; v. 165. American
Mathematical Society, Providence, R.I, 2010.

[4] P. Bates and A. Chmaj. An integrodifferential model for phase transitions: Stationary
solutions in higher space dimensions. Journal of Statistical Physics, 95:1119–1139, 1999.

[5] F. Bobaru and M. Duangpanya. The peridynamic formulation for transient heat con-
duction. International Journal of Heat and Mass Transfer, 53:4047–4059, 2010.

[6] Floran Bobaru and Monchai Duangpanya. The peridynamic formulation for transient
heat conduction. International Journal of Heat and Mass Transfer, 53(19):4047–4059,
2010.

[7] Allert Bruckmaier F, Neuling R, Littin N, Amrein P, and Briegel K S. Imaging local
diffusion in microstructures using nv-based pulsed field gradient nmr. In Cambridge:
Cambridge Open Engage, volume preprint, 2023.

[8] A. Buades, B. Coll, and J. M. Morel. Image denoising methods. a new nonlocal principle.
SIAM Review, 52(1):113–147, 2010.

[9] Claudia Bucur and Enrico Valdinoci. Nonlocal diffusion and applications. Springer,
2016.

[10] Ceren Budak, Divyakant Agrawal, and Amr El Abbadi. Diffusion of information in
social networks: Is it all local? In 2012 IEEE 12th International Conference on Data
Mining, pages 121–130, 2012.

[11] Emmanuel Chasseigne, Manuela Chaves, and Julio D. Rossi. Asymptotic behavior for
nonlocal diffusion equations. Journal de Mathematiques Pures et Appliquees, 86:271–
291, 2006.

[12] Marta D’Elia, Xingjie Li, Pablo Seleson, Xiaochuan Tian, and Yue Yu. A review of
local-to-nonlocal coupling methods in nonlocal diffusion and nonlocal mechanics. To
appear on Journal of Peridynamics and Nonlocal Modeling, 2020.



[13] Qiang Du, Max Gunzburger, R Lehoucq, and Kun Zhou. Analysis and approximation of
nonlocal diffusion problems with volume constraints. SIAM Review, 56:676–696, 2012.

[14] Qiang Du, Max Gunzburger, R Lehoucq, and Kun Zhou. A nonlocal vector calculus,
nonlocal volume-constrained problems, and nonlocal balance laws. Mathematical Models
and Methods in Applied Sciences, 23:493–540, 2013.

[15] Qiang Du, Xingjie Helen Li, Jianfeng Lu, and Xiaochuan Tian. A quasinonlocal coupling
method for nonlocal and local diffusion models. SIAM Journal on Numerical Analysis,
56:1386–1404, 2018.

[16] Qiang Du and Robert Lipton. Peridynamics, fracture, and nonlocal continuum models.
SIAM News, 47(3), 2014.

[17] Qiang Du and Kun Zhou. Mathematical analysis for the peridynamic nonlocal contin-
uum theory. Mathematical Modelling and Numerical Analysis, 45:217–234, 2010.

[18] Marta DâElia, Qiang Du, Christian Glusa, Max Gunzburger, Xiaochuan Tian, and Zhi
Zhou. Numerical methods for nonlocal and fractional models. Acta Numerica, 29:1–124,
2020.

[19] M. Elices, G. V. Guinea, J. GÃ3mez, andJ. P lanas. Thecohesivezonemodel :
advantages, limitationsandchallenges. EngineeringFractureMechanics, 69 : 137 −
−163, 2002.

[20] Paul Fife. Some nonclassical trends in parabolic and parabolic-like evolutions. In Trends
in Nonlinear Analysis, pages 153–191. Springer, 2003.

[21] Walter Gerstle, Nicolas Sau, and Stewart Silling. Peridynamic modeling of plain and
reinforced concrete structures. 18th International Conference on Structural Mechanics
in Reactor Technology (SMiRT 18), 2005.

[22] Guy Gilboa and Stanley Osher. Nonlocal operators with applications to image process-
ing. Multiscale Modeling and Simulation, 7(3):1005–1028, 2009.

[23] Amanda Gute and Xingjie Li. Maximum principle preserving finite difference scheme
for 1-d nonlocal-to-local diffusion problems. Results in Applied Mathematics, 12, 2021.

[24] Y. D. Ha and F. Bobaru. Studies of dynamic crack propagation and crack branching
with peridynamics. International Journal of Fracture, 162:229–244, 2010.

[25] Y. D. Ha and F. Bobaru. Characteristics of dynamic brittle fracture captured with
peridynamics. Engineering Fracture Mechanics, 78:1156–1168, 2011.

[26] Siavash Jafarzadeh and Adam Larios. Efficient solutions for nonlocal diffusion problems
boundary-adapted spectral methods. Journal of Peridynamics and Nonlocal Modeling,
2:85–110, 2020.

[27] Dennis Kriventsov. Regularity for a local-nonlocal transmission problem. Archive for
Rational Mechanics and Analysis, 217, 04 2014.

66



[28] Xingjie Helen Li and Jianfeng Lu. Quasinonlocal coupling of nonlocal diffusions. SIAM,
2016. arXiv preprint arXiv:1607.03940.

[29] Xingjie Helen Li and Jianfeng Lu. Quasi-nonlocal coupling of nonlocal diffusions. SIAM
Journal on Numerical Analysis, 55(5):2394–2415, 2017.

[30] Xingjie Helen Li and Jianfeng Lu. Quasinonlocal coupling of nonlocal diffusions. SIAM,
55, 2017.

[31] Xingjie Helen Li and Mitchell Luskin. A generalized quasinonlocal atomistic-to-
continuum coupling method with finite-range interaction. IMA Journal of Numerical
Analysis, 32:373–393, 2011.

[32] R. Lipton. Dynamic brittle fracture as a small horizon limit of peridynamics. Journal
of Elasticity, 117:21–50, 2014.

[33] R. Lipton. Cohesive dynamics and brittle fracture. Journal of Elasticity, 124:143–191,
2016.

[34] Q. Ma, W. Li, J. Bortnik, R. M. Thorne, X. Chu, L. G. Ozeke, G. D. Reeves, C. A.
Kletzing, W. S. Kurth, G. B. Hospodarsky, M. J. Engebretson, H. E. Spence, D. N.
Baker, J. B. Blake, J. F. Fennell, and S. G. Claudepierre. Quantitative evaluation of
radial diffusion and local acceleration processes during gem challenge events. Journal
of Geophysical Research: Space Physics, 123(3):1938–1952, 2018.

[35] Eduard Marusic-Paloka and Igor Pazanin. The robin boundary condition for modeling
heat transfer. Proceedings of the Royal Society A, 480, 2024.

[36] R. Kent Nagle and Edward B. Saff. Fundamentals of Differential Equations. Benjamin
Cummings Publishing Company, Inc., second edition, 1989.

[37] M. L. Parks, Richard B. Lehoucq, Steven J. Plimpton, and Stewart Silling. Implement-
ing peridynamics within a molecular dynamics code. Computer Physics Communica-
tions, 179:777–783, 2008.

[38] Lorenzo Rosasco, Mikhail Belkin, and Ernesto De Vito. On learning with integral
operators. Journal of Machine Learning Research, 11(30):905–934, 2010.

[39] Julio Rossi. Nonlocal diffusion equations with integrable kernels. Notices of the Amer-
ican Mathematical Society, September 2020.

[40] H. L. Royden. Real analysis [by] H. L. Royden. Macmillan, New York, 2d ed. edition,
1968.

[41] S.A. Silling and R.B.Lehoucq. Peridynamic theory of solid mechanics. ScienceDirect,
44:73–168, 2010.

[42] Stewart Silling. Reformulation of elasticity theory for discontinuities and long-range
forces. Journal of the Mechanics and Physics of Solids, 48:175–209, 2000.

67



[43] Stewart Silling and R. B. Lehoucq. Peridynamic theory of solid mechanics. Advances
in Applied Mechanics, 44:73–168, 2010.

[44] Michael J. Steele. Stochastic calculus and financial applications. Springer, 2010.

[45] Xiaochuan Tian and Qiang Du. Analysis and comparison of different approximations
to nonlocal diffusion and linear peridynamic equations. SIAM Journal on Numerical
Analysis, 51:3458–3482, 2013.

[46] Xiaochuan Tian and Qiang Du. Asymptotically compatible schemes and applications
to robust discretization of nonlocal models. SIAM Journal on Numerical Analysis,
52:1641–1665, 2014.

[47] N. Trask, H. You, Y. Yu, and M. L. Parks. An asymptotically compatible meshfree
quadrature rule for nonlocal problems with applications to peridynamics. Computer
Methods in Applied Mechanics and Engineering, 343:151–165, 2019.

[48] Jan TÃžnnesen, Sabina HrabÄtovÃ¡, and Federico N. Soria. Local diffusion in the
extracellular space of the brain. Neurobiology of Disease, 177:105981, 2023.

[49] M. Vynnycky. An asymptotic model for the formation and evolution of air gaps in
vertical continuous casting. Proceedings of the Royal Society A, 465, 2009.

[50] H. You, Y. Yu, and D. Kamensky. An asymptotically compatible formulation for local-
to-nonlocal coupling problems without overlapping regions. Computer Methods in Ap-
plied Mechanics and Engineering, 366, 2020.

68


