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ABSTRACT

ALFRED HUBBARD. Genomic Epidemiology for Malaria: Novel application of geospatial
methods, new genomic markers, and population-level insights. (Under the direction of DR.

DANIEL JANIES)

Genomic epidemiology is the use of genetic data to characterize and explain disease occurrence

and transmission. Application of these methods to malaria has already yielded substantial benefits,

such as identification and surveillance of drug resistance genotypes. However, the potential for ge-

nomic epidemiology to accelerate progress towards malaria eradication is far from fully realized.

This dissertation demonstrates new applications of genomic information to questions that are im-

possible to address with conventional epidemiological data. First, the value of correlating genetic

and environmental distances to understand the drivers of Plasmodium falciparum transmission is

showcased with microsatellite data from 44 sites in Western Kenya. Second, the design and valida-

tion of a new panel of genetic markers, amplicons with multiple variant nucleotides on each short

read that yield microhaplotypes, is presented for P. vivax, enabling sensitive, scalable characteri-

zation of within-host diversity in multi-strain infections. Finally, a similar panel of amplicons for

P. falciparum is applied to samples from eight countries throughout Africa, yielding insights into

continent scale transmission dynamics. The analysis of environmental drivers revealed the Winam

Gulf of Lake Victoria as a barrier to malaria transmission, a conclusion that would be impossi-

ble to reach rigorously without this novel methodology. The new P. vivax panel yielded quality

sequences and detected expected patterns of genetic relatedness, indicating this tool is ready for

broad application. The P. falciparum microhaplotype analysis identified subtle patterns of genetic

relatedness and surprisingly little relationship between within-host diversity and incidence, high-

lighting the potential of this technique but also a need for future work on the interpretation of the

resulting data. This dissertation expands the scope of questions about malaria epidemiology that

can be answered with genomic data and argues that routine application of these methods could

accelerate progress towards malaria eradication.
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CHAPTER 1: Introduction

Malaria is a deadly mosquito-borne disease responsible for tremendous burden in tropical coun-

tries. In 2022, there were an estimated 249 million cases of malaria spread across 85 countries,

which led to 608,000 deaths (WHO, 2023). Local elimination of malaria has been achieved in

many places, and global eradication is considered both possible and the only sustainable option

to control the disease (Feachem et al., 2019). Substantial progress has been made towards the

goal of global eradication, but that progress has stalled (WHO, 2023). This stall in progress is

partially explained by the impact of the COVID-19 pandemic. However, the stall is also due to

both declining effectiveness of the preeminent interventions used to combat malaria (WHO, 2023)

and inadequate funding to deploy these measures (Feachem et al., 2019). Both of these challenges

can be addressed with research, by developing new drugs and vector control technologies and by

enhancing our understanding of malaria epidemiology to target limited control resources more

efficiently. This second objective is the subject of this dissertation.

1.1 Malaria biology

To understand malaria epidemiology, it is first necessary to understand malaria biology. Malaria

is caused by blood-borne parasites in the genus Plasmodium of the phylum Apicomplexa. There

are several species of this parasite, six of which are known to cause disease in humans: Plasmodium

falciparum, P. vivax, P. knowlesi, P. malariae, P. ovale curtisi, and P. ovale wallikeri (Ashley et al.,

2018). Of these, P. falciparum and P. vivax are by far the most important in terms of cases and

deaths, with P. falciparum causing the majority of both and P. vivax causing most of the remainder

(WHO, 2023).

The biology of these two species is similar in many aspects, but there is a critical difference in

their life cycles. In P. falciparum, when an infected mosquito feeds on a human, haploid sporo-
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zoites are transmitted to the bloodstream, where they invade and reproduce asexually in red blood

cells. A subset of the parasites in this erythrocytic stage ultimately become male and female

gametocytes. These gametocytes are transmitted back to the mosquito as part of a blood meal,

and undergo sexual reproduction in the gut of the mosquito. The resulting diploid parasites pass

through the gut wall and release haploid sporozoites, which travel to the mosquito salivary glands,

allowing the cycle to repeat. All of these steps also occur in P. vivax, with one important addition:

the sporozoites can also enter the human liver and remain dormant as hypnozoites. As explained

below, these dormant hypnozoites have substantial epidemiological implications. (Ashley et al.,

2018)

1.2 Malaria epidemiology: Concepts and importance

The primary goals of epidemiological surveillance for malaria are to measure the prevalence

(proportion of the population with malaria), incidence (probability of occurrence of malaria in

a population per unit time), and transmission (passage of the malaria parasite from one host to

another) in a given area, and to characterize the drivers of these metrics. Incidence and prevalence

can be calculated from clinical data relatively easily, but measuring transmission is considerably

more difficult. The gold standard of malaria transmission metrics is the entomological inoculation

rate (EIR), which is the number of infectious mosquito bites received by a person per unit time

(Bousema et al., 2012; Koepfli & Mueller, 2017). Unfortunately, this information is laborious to

obtain and cannot practically be gathered at scale (Bousema et al., 2012).

However, without an effective method to measure transmission, it is impossible to understand

whether different regions are connected or isolated in terms of the transport of parasites via human

and mosquito movement. This is important in low transmission settings, where reintroduction

of malaria from returning travelers can be an important component of transmission (Wesolowski

et al., 2018). Understanding transmission between locations also enables prediction of whether

epidemiologically-relevant parasite traits with a genetic basis, such as resistance to therapeutic

drugs or evasion of rapid diagnostic tests, are likely to spread (Dalmat et al., 2019).

In P. vivax, measuring transmission allows study of an additional phenomenon: relapse, caused
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by the dormant hypnozoites in the liver reactivating and entering the blood to cause disease (Ashley

et al., 2018). This relapse can occur months or even years later (Ashley et al., 2018). Such a relapse

does not constitute a transmission event and must be handled differently from a control perspective,

creating an additional challenge and motivation for measuring transmission accurately in vivax

malaria (Koepfli & Mueller, 2017).

The final reason measuring transmission matters is that it enables study of the drivers of trans-

mission, which must be understood and perhaps manipulated to achieve reductions in malaria cases

in a given area (Castro, 2017). As a vector-borne disease, there are numerous factors potentially

relevant to malaria epidemiology: factors related to mosquito behavior and survival, such as tem-

perature, humidity, availability of breeding habitat, and use of vector control measures; factors

related to human exposure to mosquitoes, such as mobility patterns, housing quality, and sleeping

under a bed net; and factors related to the likelihood that a human inoculated with malaria will

develop disease, such as acquired immunity and use of prophylactic drugs (Sadoine et al., 2018).

Of these groups, the first two are pertinent to transmission, and are discussed in greater detail in

Chapter 2.

1.3 Malaria epidemiology: Genomic approaches

1.3.1 Applications and metrics

The importance of understanding transmission and the difficulty of measuring it directly has

led to the application of a new sub-field of epidemiology to malaria: genomic epidemiology, or

the practice of using genetic characteristics of the disease-causing agent to measure and explain

prevalence, incidence, and transmission. Genetic relatedness between regions can be interpreted

as a proxy for transmission between regions, and genetic diversity or genetic relatedness within a

region can be interpreted as a proxy for transmission within a region (Wesolowski et al., 2018).

Supposed drivers of transmission can be correlated with these metrics to assess their importance

(see Chapter 2) and, in P. vivax, longitudinal genetic sampling can be used to distinguish relapse

from reinfection with a new strain (Auburn et al., 2021).

In addition, there are some epidemiological questions that cannot even be formulated except
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in terms of genetic characteristics. The most noteworthy example in malaria is identifying the

number and composition of genetically-distinct strains present within one host. This is a common

occurrence with both P. falciparum and P. vivax, and the number of strains present in an infection,

or the multiplicity of infection (MOI), is tied to the nature of the transmission environment (Lopez

& Koepfli, 2021). Whether caused by a single bite from a mosquito that itself carried multiple

strains (cotransmission) or by successive bites from different mosquitoes carrying different strains

of malaria (superinfection), polyclonal infections (i.e., infections where MOI > 1) are more likely

to occur in higher transmission environments (Lopez & Koepfli, 2021). For this reason, MOI and

other measures of within-host genetic diversity have been suggested as useful metrics of transmis-

sion (Camponovo et al., 2023).

However, the interpretation of these metrics is not always straightforward. In P. falciparum,

the theoretical expectation is that, as transmission increases, genetic diversity increases, MOI in-

creases, and genetic relatedness decreases (Koepfli & Mueller, 2017). In reality, the correlations

between these metrics and prevalence, while present, are weak (Lopez & Koepfli, 2021; Paschalidis

et al., 2023), leading to concerns over how well they represent transmission (due to the laborious

nature of such experiments, little data is available on the correlation between EIR-measured trans-

mission and genetic metrics). In P. vivax, the possibility of any given infection being caused by

relapse weakens the theoretical relationship between genetic metrics and transmission and, indeed,

correlations between MOI and prevalence have been found to be even weaker for vivax malaria

(Lopez & Koepfli, 2021). Therefore, further work is needed to clarify and validate the applicabil-

ity of genetic metrics to measuring transmission (Dalmat et al., 2019).

1.3.2 Models, markers, and laboratory protocols

Setting aside the questions of how to interpret these genetic metrics, there are also numerous

research questions around how these measures should, themselves, be measured. There are various

statistical approaches to measuring genetic differentiation, various types of genetic data that may be

used with these approaches, and various sample collection and preparation methods for obtaining

such genetic data.
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Regarding statistical measures, there has been a movement in recent years away from classic

measures of genetic distance, such as Wright’s FS T , towards measures of genetic relatedness based

on the concept of identity-by-descent (IBD; Thompson, 2013). If two alleles are the same in two in-

dividuals, they are identical-by-state. However, this could be due to chance. From an interpretation

standpoint, it is much more useful to know if the alleles are the same because they were the same

in the most recent common ancestor, in which case they are considered to be identical-by-descent

(also abbreviated as IBD). Several models for estimating IBD relatedness have been published,

which use population-level allele frequencies (Gerlovina et al., 2022) and, in some cases, hidden

Markov models (Henden et al., 2018; Schaffner et al., 2018) to estimate the probability that shared

genotypes are IBD.

Relatedness and other genetic measures have conventionally been estimated for malaria with

three types of genetic data: microsatellites, single nucleotide polymorphisms (SNPs), and whole

genome sequence (WGS). Microsatellite markers are segments of the genome where a short series

of nucleotides is repeated many times. They are non-coding DNA, which makes them attractive

for population genetics and genetic epidemiology because they are, in theory, selectively neutral, a

common assumption of population genetics models and statistics. As the name implies, SNPs are

single nucleotides that vary within a population. A single microsatellite or SNP genotype is not

very informative from a population genetics standpoint, but when panels of multiple loci (typically

10-20 microsatellites or 25-200 SNPs) are genotyped for a set of samples they may be sufficient

to identify differences in diversity and relatedness (Koepfli & Mueller, 2017). However, neither

performs well at characterizing the diversity within a host (Argyropoulos et al., 2023; Koepfli

& Mueller, 2017). WGS is exactly what it sounds like, and, while useful for identifying new

variants and validating other genotyping methods, the cost of data production and storage is not

scalable (Neafsey et al., 2021). The tradeoffs between these data types has led to recent interest in

a fourth approach: microhaplotype loci, which are segments of the genome where multiple SNPs

are close enough together that they can be genotyped on a single sequencing read. These markers

have a similar production cost to SNPs and yet have much more power for relationship inference



6

(Baetscher et al., 2018). They are discussed in greater detail in Chapters 3 and 4.

Finally, the quality of sequencing data obtained can be substantially affected by sample collec-

tion and preparation techniques. The most scalable and convenient method for obtaining malaria

samples is to collect small volumes of blood from finger or heel pricks and subsequently blot and

dry them on filter paper (Bereczky et al., 2005; Färnert et al., 1999). These dried blood spot (DBS)

samples do not require refrigeration in the short term and are easier to collect than the alterna-

tive: whole blood samples obtained from venous blood draws. However, host DNA is much more

abundant in both types of sample than parasite DNA, especially for low density infections, which

means some method for increasing the concentration of parasite DNA relative to host DNA is nec-

essary to obtain quality parasite DNA sequences (Neafsey et al., 2021). This is possible for whole

blood samples through leucocyte depletion with cellulose columns (Auburn et al., 2011), but until

recently no solution to this problem existed for DBS samples.

This changed with the adaptation of selective whole genome amplification (SWGA) protocols

to first P. falciparum (Oyola et al., 2016) and subsequently P. vivax (Cowell et al., 2017). These

methods use a special set of primers and a specific DNA polymerase to greatly amplify the concen-

tration of parasite DNA relative to host DNA. The primers in question are short mers designed to

target motifs that are much more common in the parasite genome than in the host genome (Cowell

et al., 2017; Oyola et al., 2016). The second ingredient is phi29 DNA polymerase, which tends

to displace double-stranded DNA and thus preferentially opens up more primer binding sites in

DNA template sequences that already have higher frequencies of primer binding (the parasite, in

this case, thanks to the primers described above; Cowell et al., 2017). SWGA allows a high yield

of parasite DNA to be obtained from DBS samples (Cowell et al., 2017; Oyola et al., 2016), en-

abling much more scalable application of WGS and other sequencing technologies where this is

important, such as amplicon deep sequencing of microhaplotypes (see chapters 3 and 4).

1.4 Outline of remaining chapters

In this dissertation, the current state of genomic epidemiology in malaria described above is ad-

vanced in three major ways. In Chapter 2, a new epidemiological application for genetic related-
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ness between geographic locations is demonstrated: using environmental data layers and resistance

surface modeling to gain insight into the drivers of malaria transmission. In Chapter 3, a panel of

microhaplotype loci is developed and validated for P. vivax, providing the foundation for subse-

quent genomic epidemiology studies that take advantage of the deep information on within-host

diversity furnished by this data type. Finally, in Chapter 4, an analogous panel of microhaplotype

loci for P. falciparum is applied at an unprecedented geographic scale to elucidate the epidemio-

logical utility of both this data type and the genetic metrics of transmission it supports. Chapter 5

summarizes the key outcomes of these three projects and the implications of those results for the

future of genomic epidemiology in malaria.



CHAPTER 2: Implementing landscape genetics in molecular epidemiology to determine drivers

of vector-borne disease: A malaria case study

Article Authors: Alfred Hubbard, Elizabeth Hemming-Schroeder, Maxwell Gesuge Machani,

Yaw Afrane, Guiyun Yan, Eugenia Lo, Daniel Janies

2.1 Background

Progress towards malaria elimination has stalled (WHO, 2023), in part because an inadequate

understanding of how the environment influences transmission has hampered epidemiological

modeling and targeting of control measures (Rabinovich et al., 2017). The Anopheles mosquitoes

that transmit malaria rely on favorable environmental conditions to feed and reproduce success-

fully, and human movement patterns that spread malaria are influenced by the available infrastruc-

ture. This means the environment plays a critical role in understanding and combating malaria

transmission (Castro, 2017).

Several prior studies have sought to explain the environmental drivers of malaria transmission

using methods such as geographically-weighted regression and Bayesian risk modeling (Canelas

et al., 2016). The former is logical for demographic or socioeconomic drivers that are tied to the

host, but it does not capture the full variability in environmental drivers. Malaria transmission

and gene flow can occur across a wide range of geographic scales, and thus models that include

the space between sample locations will yield greater insights. Risk maps inferred with Bayesian

methods or kriging can be compared to environmental data layers for a more spatially distributed

understanding of the drivers of transmission, but these methods typically do not incorporate varying

levels of connectivity and gene flow between different locations.

In previous studies, we have addressed these limitations using resistance surface models that

seek to explain genetic distances between populations in terms of environmental or resistance
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distances (Kepple et al., 2021; Lo, Hemming-Schroeder, et al., 2017; Lo, Lam, et al., 2017). These

distances represent the difficulty of traveling between two locations in a manner that considers both

geographic distance and the properties of the intervening landscape, allowing assessment of which

landscape properties obstruct or enable gene flow. Although parasites do not directly traverse

the landscape, the landscape indirectly influences parasite gene flow through the impact of the

environment on the movements of parasite hosts (i.e., mosquitoes and humans). Thus, resistance

surfaces are a promising tool for studying vector-borne disease (Hemming-Schroeder et al., 2018).

Our prior work has begun to build a better understanding of the spatial determinants of malaria

transmission, but small numbers of study sites have limited the scope of the conclusions.

In this study, we use resistance surface analysis to examine the drivers of malaria transmission

in Western Kenya, a malaria endemic area with moderate to high levels of transmission. This is

the first time these methods have been applied in malaria using more than 10 study sites. We

also perform conventional population genetics analyses, such as Bayesian- and ordination-based

clustering techniques, to contextualize our landscape genetics results and enable comparison with

the existing body of literature. We show novel patterns and drivers of genetic differentiation, and

thus, heterogeneity in transmission, and provide a rigorous demonstration of the utility of landscape

genetics in the study of vector-borne diseases.

2.2 Materials and Methods

2.2.1 Scientific and ethical statement

Scientific and ethical clearance for sample collection and preparation was given by the institu-

tional scientific and ethical review boards of the Kenya Medical Research Institute, Kenya and the

University of California, Irvine, USA. Written informed consent/assent for study participation was

obtained from all consenting heads of households, parents/guardians (for minors under age of 18),

and each individual who was willing to participate in the study.
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2.2.2 Study area

Malaria transmission in Western Kenya is moderate-to-high with contemporaneous prevalence

estimates ranging from 40-60% in the lowlands near Lake Victoria (Okoyo et al., 2015; Zhou et

al., 2016) to around 15% in the highlands (Zhou et al., 2016). There are pronounced gradients in

elevation, rainfall, and temperature in our study region (Figure 2.1). Temperature and moisture

are both crucial to mosquito survival and activity, and the reduced, seasonal malaria transmission

observed in the highlands of Kenya is explained by lower temperature, rainfall, and humidity

(Kenya NMCP et al., 2016).

2.2.3 Sample collection and genotyping

A total of 1,804 PCR-confirmed P. falciparum DNA samples collected in 2012 and 2013 across

44 sites in Western Kenya (Figure 2.2) were included. These samples were selected from 11,000

asymptomatic school children aged 3 to 12 years, as described in our earlier study (Lo et al., 2015).

Roughly 50 µl of blood collected by finger prick was blotted on Whatman 3MM filter paper, from

which P. falciparum DNA was extracted using the Saponin-Chelex method (Bereczky et al., 2005).

Eight single-copy microsatellite loci (Table 2.1) were genotyped for P. falciparum. Each PCR

involved 2 µl of genomic DNA in 2 mM MgCl2, 2 µM of each primer (forward primers were

labeled with fluorescent dyes; Applied Biosystems, Foster City, CA), and 10 µl of 2xDreamTaq

Green PCR Master Mix (Thermo Scientific, Waltham, MA). PCR cycling conditions were: 2 min,

94 ◦C; (30 sec, 94 ◦C; 40 sec, 58 ◦C; 50 sec, 72 ◦C) for 40 cycles; and 5 min, 72 ◦C. After am-

plification, the products were combined into three groups based on size and separated on an ABI

3730 sequencer. The allele sizes were recorded using two methods, depending on the sample:

manual visualization using Peak Scanner and automated extraction in the Thermo Scientific Cloud

Microsatellite Analysis Software. In both cases, a threshold of 300 relative fluorescent units was

used for peak detection to filter out background noise. For each microsatellite, the dominant al-

lele and any other alleles at least 33% of the dominant allele’s height were scored. 574 samples

were processed with both methods and 79% of the overlapping alleles were scored identically.
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Figure 2.1: Spatial covariates used in our study: elevation, from the NASADEM product (A);
land cover, from the MCD12Q1 product (B); land surface temperature (LST), from the MYD11A2
product (C); precipitation, from the CHIRPS dataset (D); and friction to human movement, mod-
eled by Weiss et al. (2020) under assumptions of both access to motorized ground transport (E)
and no access to such transport (F). Study site locations are shown for context. These rasters were
visualized with the landscapetools R package.
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Figure 2.2: Map with pie charts showing average admixture coefficients (i.e., proportion member-
ship in each cluster) for the samples from each study location, as estimated by rmaverick. The
scatterpie R package (Yu, 2021) was used to create the pie charts. Country boundaries are in-
cluded for context, obtained with the rnaturalearth R package (South, 2017). The background
is Esri’s World Shaded Relief layer (©2009 ESRI).
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Table 2.1: Microsatellite markers used in this study.

Marker Citation

TA1 (Anderson et al., 1999)
TAA87 (Anderson et al., 1999)
PfPK2 (Anderson et al., 1999)
TAA109 (Anderson et al., 1999)
TAA42 (Anderson et al., 1999)
TAA81 (Anderson et al., 1999)
poly2 (Su et al., 1999)
9735 (Su et al., 1999)

The automated method was considered more accurate and was used for alleles scored with both

methods.

Samples were filtered by both the number of successfully-scored loci per sample and the number

of samples per study site. Only samples with at least six successfully-scored loci were included in

further analyses. This ensured that every pair of samples would have at least four overlapping loci.

The P. falciparum samples were grouped into populations according to the clinic where they were

collected (i.e., the geographic location). Of these populations, only those with at least five samples

were used in further analyses. 81.3% of samples passed both filters. The study site locations are

provided in Appendix 2A.

2.2.4 Population structure

Linkage disequilibrium (LD) was estimated by computing the r̄d statistic, which approximates

the popular index of association but does not increase with the number of loci (Agapow & Burt,

2001). This was computed with the poppr R package (Kamvar et al., 2014), both with and without

clonal correction. Pairwise LD was also estimated for each unique pair of loci. Missing data values

were ignored for these computations.

Genetic clustering of samples was first assessed with principal component analysis (PCA), a

method which transforms the input matrix into a set of orthogonal components ranked in descend-

ing order of the variance they explain. Visualizing combinations of the highly-ranked components

allows one to identify the number of clusters present in the data. In this case, the microsatellite
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genotypes were converted into binary format, meaning one column per locus/allele combination,

one row per sample, and a value of 0 or 1 based on whether that allele was present. This format

was chosen because it allows flexible representation of samples with multiple clones. Missing data

values were replaced with the mean frequency of the allele in question, as this allows all samples to

be used in PCA without biasing the results. PCA was then performed on this binary matrix using

the R programming language (R Core Team, 2021) and visualized with the aid of the GGally R

package (Schloerke et al., 2021).

PCA shows the overall pattern of clustering in a genetic dataset, but PCA cannot be used to

estimate the degree of membership a given individual has in a given population. In addition,

genetic data will likely not conform to the linearity assumption of PCA. For this reason, PCA

was only used to identify the probable number of clusters present in the data. Another program,

rmaverick, was used to assign individuals to clusters and estimate admixture coefficients for each

individual (Verity, 2018). rmaverick is a Bayesian method that, similar to the popular program

STRUCTURE (Pritchard et al., 2000), seeks to find the population groups that are not in Hardy-

Weinberg or linkage equilibrium. The admixture coefficients for each individual represent the

proportion of membership that individual has in each cluster. Unlike alternatives like STRUCTURE,

rmaverick uses a Metropolis-coupled Markov chain Monte Carlo technique, in which parameter

values are simultaneously estimated in different "chains" and information is periodically passed

between chains (Verity & Nichols, 2016). This information passing improves mixing and can

make it more likely that the model will converge.

Based on evaluation of different parameter configurations, rmaverick was run with 10,000

burn-in iterations, 2,000 sampling iterations, 500 rungs, a GTI power of 3, and the admixture

model. The burn-in iterations are an initial period in which the model is run without saving results

to avoid bias from the initial conditions, whereas the sampling iterations are the portion of the

model run in which results are saved. The rungs are the number of Metropolis-coupled chains used

and the GTI power controls the distribution of these chains. Mono- and biclonal infections were

incorporated by running rmaverick with mixed ploidy and repeating the allele when only one
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was present for a given locus. Samples with more than two clones were discarded for this analysis.

The pophelper R package (Francis, 2016) was used to assist in visualization of results.

2.2.5 Spatial patterns of relatedness

Genetic relatedness between samples was estimated as the proportion of shared alleles, treating

each polyclonal infection as a single "subpopulation," given that no existing analytical method can

separate individual parasite haplotypes for infections that have multiple alleles at more than one

locus. Each infection was treated as a subpopulation when calculating genetic relatedness, similar

to the approach of Wesolowski et al. (2018). Thus, the value we obtained was the proportion

of shared alleles between samples or infections, but not necessarily between individual parasite

clones. The specific algorithm used to compute the proportion of shared alleles was that employed

in the R package PopGenReport (Adamack & Gruber, 2014), re-implemented to work with our

data. Missing reads were treated as the absence of any alleles for the locus in question and did not

affect the calculation.

This individual-based measure was then aggregated to the population level by taking the frac-

tion of individual relationships that passed a relatedness threshold of 0.15 and converted to genetic

distance by subtracting from 1. In other words, the relatedness for all of the pairs of individuals

corresponding to each pair of populations was compared to this threshold and the population-based

measure of relatedness was taken to be the fraction of individual pairs that exceed the threshold.

This fraction of "highly-related" individuals should be more sensitive to recent demographic events

than other metrics such as average relatedness (Taylor et al., 2017). After sensitivity testing us-

ing thresholds between 0.1 and 0.3, we selected a threshold of 0.15 because this did not lead to

saturation at either the lower or upper bounds (i.e., clumping of pairs near a genetic distance of 0

or 1; Figure 2.3). This threshold is considerably lower than that used by Taylor et al. (2017), but

they used SNPs, rather than microsatellite data. The relatedness expected by chance alone is much

higher in the former case. The distribution of the final relatedness values is shown in Figure 2.4.

To identify clustering of genetic information in geographic space, an ordination technique named

MEMGENEwas used (Galpern et al., 2014). MEMGENE extends PCA to isolate the spatial portion of the
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Figure 2.3: Scatterplots of geographic distance versus genetic distance, faceted by the threshold
used to define highly-related sample pairs. Points are translucent to aid interpretation. In order to
preserve the most information, it is desirable to avoid clustering at either the lower or upper limit
of genetic distance. The plot for 0.3 exhibits this type of pattern most clearly, but it is also present
in the plots for thresholds of 0.1 and 0.2. Therefore, 0.15 was selected as the best threshold. This
plot shows the version of the data corresponding to a minimum of 5 samples per study site, but the
version created with a minimum of 15 samples per study site shows a similar pattern.
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Figure 2.4: Histogram of the proportion of alleles shared between each pair of individuals.

variance in a matrix of genetic distances. MEMGENE does this by performing PCoA on the matrix of

geographic distances to find components that represent the geographic patterns among study sites,

regressing these components against the genetic distances, and then performing a second PCoA

on the regression predictions. The components of this second PCoA are the MEMGENE variables,

and each one can be thought of similarly to the components from standard PCA, except they only

represent the portion of genetic variance that can be explained by geographic patterns. Visualizing

these MEMGENE variables at each study location can show spatial clusters of related populations

and point to possible barriers to transmission. This analysis was performed with the matrix of

population-level genetic distances described above.

To evaluate the hypothesis of isolation-by-distance, the study site coordinates were reprojected

into planar space and geographic and genetic distances were compared using both a Mantel cor-

relogram and the test for congruence among distance matrices (CADM). Coordinate reprojec-

tion converts the elliptical coordinate space that describes the Earth’s curved surface into a two-

dimensional space that is amenable to analysis. The map projection selected for this study was
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the World Geodetic System 84-based coordinate system for UTM zone 36 N. Once reprojected,

Euclidean distance was calculated between all pairs of study sites. Mantel correlograms (Oden

& Sokal, 1986) were computed using the R package vegan (Oksanen et al., 2020) using these

Euclidean distances and the genetic distances described above. The R package ape (Paradis &

Schliep, 2019) was used to test for CADM.

2.2.6 Landscape genetics

Environmental variables that either have been previously associated with P. falciparum transmis-

sion or that influence host and/or vector movement were selected for inclusion in resistance surface

analysis (Table 2.2). To evaluate a potential barrier effect from Lake Victoria, a binary layer was

created that represented grid cells belonging to Lake Victoria with a 1 and other grid cells with a 0.

The rainfall and land surface temperature (LST) data, which are available at sub-annual frequency,

were aggregated for the entire year using a mean composite. Both 2012 and 2013 were used for

these aggregations, but collection of the LST data did not begin until 2012-01-25, so the first part

of January 2012 is not included. The land cover dataset was created at an annual time scale, and

the 2012 version was selected for this study. The DEM and friction to human movement datasets

are static, and therefore these considerations do not apply. All datasets were reprojected into the

World Geodetic System 84-based UTM 36 N coordinate system with 1 km spatial resolution.

Using these environmental datasets and the matrix of population-based genetic distance, resis-

tance surfaces were estimated to assess the degree to which each environmental variable explains

the observed patterns of genetic relatedness. Resistance surfaces are gridded spatial layers in which

the values of each cell represent the degree to which that space obstructs gene flow. By treating

gene flow as a proxy for transmission, the surface as a whole represents areas that are more or less

permissible to malaria transmission. We used the R package ResistanceGA (Peterman, 2018) to

optimize resistance surfaces. Briefly, this process involves 1) finding the least cost path between

every pair of locations through the current resistance surface; 2) fitting a mixed linear effects model

that explains genetic distance in terms of this resistance distance; and 3) applying a transforma-

tion to the resistance surface to improve the fit. This process is iterated many times. In the first
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Table 2.2: Spatial covariates included in resistance surface analysis.

Variable Dataset Resolution Citation

Rainfall CHIRPS 0.05 degree (Funk et al., 2015)
LST MYD11A2.061 1 km (Wan et al., 2021)
Elevation NASADEM 1 arc second (NASA JPL, 2020)
Land cover MCD12Q1 500 m (Friedl & Sulla-Menashe, 2019)
Lake Victoria binary Derived from

MCD12Q1
500 m NA

Human mobility Friction to human
movement (with
access to motorized
transport)

1 km (Weiss et al., 2020)

Human mobility Friction to human
movement (without
access to motorized
transport)

1 km (Weiss et al., 2020)

round, the resistance surfaces are simply the rescaled environmental inputs. The entire procedure is

performed in the framework of a genetic algorithm that tests a certain number of mutations (trans-

formations) per generation, chooses the most fit to carry to the next generation (based on the mixed

linear effects model), and repeats until the change in fitness does not meet a certain threshold.

For each run, ResistanceGAmerges the input layers into a single composite layer, which serves

to incorporate multiple inputs without creating multicollinearity issues. ResistanceGA accom-

plishes this compositing by summing the surfaces after transformations have been applied, which

ensures this operation is mathematically rational, even for categorical variables. All possible com-

binations of input layers, including each layer individually, were tested. Because multiple input

layers are transformed into one variable prior to fitting the regression models, the multicollinearity

issues in landscape genetics described by Prunier et al. (2015) are not a concern.

Each resistance surface was fit twice so that consistency between replicates could be assessed.

After fitting the resistance surfaces, bootstrapping was performed to determine how robust the fit

of each surface is to random subsets of the input samples.
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2.2.7 Software pipeline

Unless otherwise noted, all analyses were performed using custom code written in the R (R Core

Team, 2021) and Python (Python Software Foundation, 2022) programming languages. Through-

out, the adegenet R package (Jombart, 2008) was used for reformatting genetic data, the Geospa-

tial Data Abstraction Library (GDAL/OGR contributors, 2021) and the raster (Hijmans, 2022)

and sf (Pebesma, 2018) R packages were used for spatial data processing, and the R tidyverse

packages (Wickham et al., 2019) were used for general data manipulation and visualization. knitr

(Xie, 2014) and R Markdown (Xie et al., 2018; Xie et al., 2020) were used to organize and doc-

ument analyses. The entire workflow was automated with Snakemake (Mölder et al., 2021) and

is available on Bitbucket at https://bitbucket.org/a-hubbard/hubbardetal_landgen_drivers_malaria/.

This repository includes specifications of the exact versions of each package used.

2.3 Results

2.3.1 Population Structure

LD analysis shows weakly significant LD driven by a single loci pair (TA42 and 9735). This is

consistent with weak population structure in a high transmission environment.

The PCA results suggested that the potential number of distinct genetic clusters is between

three and six. The first four components of the PCA explain 5.9%, 3.8%, 3.6%, and 3.2% of the

overall variance, respectively. Visualization of these components show two to three distinct clusters

delineated by the first component and two weakly-separated clusters in the third component (Figure

2.5). The other components explained less than 3% of the overall variance, and thus were not

analyzed in detail.

Based on these PCA results, rmaverick was run for K values from one to six. The admixture

bar plots show considerable mixing overall but some structuring according to latitude (Figure 2.6a)

and elevation (Figure 2.6b). To visualize these geographic patterns in more detail, pie charts de-

picting mean population admixture coefficients were visualized at each study location for a K of

four (Figure 2.2). Although there is no "true" K, the model with four clusters was best supported
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Figure 2.5: This figure depicts the first four components identified with PCA of the allele frequen-
cies. The upper half of this grid contains simple scatter plots of the major components, while the
lower half contains contour plots of the same information. Note that the axes for each plot are a
unique combination of the two components in question, such that the scatter plot and contour plot
for a given component pair visualize the same data but at a 90◦ angle to one another. Density plots
of each component are along the diagonal. This figure was made with the help of the GGally R
package (Schloerke et al., 2021).
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by the posterior evidence (Figure 2.7) and so was a logical choice for further inspection. Inspection

of Figure 2.2 indicates some differentiation on the basis of geography and elevation. Samples with

substantial membership in cluster 1 primarily came from the western portion of the study region,

near the border with Uganda. Cluster 4 has some overlap with this area, but encompasses a wider

area covering all of the lowlands north of the Winam Gulf. Cluster 3 is primarily associated with

samples from higher elevation sites in the eastern portion of the study area. Cluster 2 does not

seem to be strongly tied to geographic factors.

2.3.2 Spatial Patterns of Relatedness

MEMGENE showed distinct spatial clusters north and south of Lake Victoria. This analysis re-

vealed that 8.3% of the overall variance in genetic distances can be explained by spatial patterns.

Of this fraction, the first component, or MEMGENE variable, explained 45.7% and showed a dis-

tinct spatial cluster of genetic similarity in the lowlands north of the Winam Gulf of Lake Victoria

(Figure 2.8). The areas south and east of the Winam Gulf comprise a second cluster. Samples

gathered near the Ugandan border, in the northwest of the study area, fall somewhere in between,

but bear more similarity to samples from the south and east. The other components explained a

considerably lower fraction of the spatial portion of the variance, and thus, a very low fraction of

the overall variance, and so were not visualized. After the regression step in MEMGENE (see Mate-

rials and Methods), a redundancy analysis is performed to identify components that significantly

improve fit. The results described above were found with a significance threshold of 0.05 in this

step. When this threshold was lowered to 0.01, no significant components were found, suggesting

the pattern described above is only weakly significant.

The Mantel correlogram clearly showed significant correlations between genetic and geographic

distance over short distances (less than 70 km; Figure 2.9a, Table 2.3). This pattern of isolation-

by-distance was corroborated by the test for CADM, which showed highly significant congruence

between genetic and geographic distance matrices (W = 0.642; p = 0.00045). However, the

correlogram shows this relationship disappears as geographic distance increases, until eventually

significant negative correlation was found at higher geographic distances. This surprising result can
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Figure 2.6: Bar plots showing the admixture coefficients estimated by rmaverick for each sample.
Bars are sorted according to cluster values and two different groupings: geographic portion of the
study area (A) and elevation (B). "North" and "South" regions were defined relative to the Winam
Gulf. "High" elevation was defined as greater than 1750 meters above sea level, whereas samples
from sites below this cutoff were labeled as "Low." The 1750 m threshold was selected based on
inspection of the distribution of elevations present in the data, with the intention of finding a natural
break point between high and low elevation sites. These plots were created with the pophelper R
package (Francis, 2016).
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Figure 2.7: Plot of log evidence of the model for each value of K, as estimated by rmaverick.
Intervals of 95% credibility are indicated by error bars for each K value.

be understood by studying the MEMGENEmap discussed above. While the majority of the sites in the

second cluster, corresponding to negative MEMGENE values, are south and east of the Winam Gulf,

several of the sites near the Ugandan border north of the Gulf also belong to this cluster (Figure

2.8). Many of these sites are between 90 and 130 km from the other locations belonging to this

cluster, south and east of the Gulf, which corresponds to the distances where negative correlations

are observed in the Mantel correlogram. This suggests that a process that is not well-represented

by geographic distance alone is driving genetic similarity between these two locations.

Table 2.3: Mantel correlations, significance values, and number of samples for each distance class
of the Mantel correlogram.

Distance Class (km) No. Samps. Mantel corr. p

17.2072 166 0.12135 0.009
38.2569 318 0.14397 0.002
59.3066 368 0.08503 0.018
80.3563 332 0.04333 0.133

101.4061 244 -0.11172 0.005
122.4558 182 -0.11709 0.012
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Figure 2.9: Mantel correlogram showing the correlation between genetic and geographic distance
(A). In this type of plot, the x-axis is a series of geographic distance classes and the y-axis is the
correlation between genetic and geographic distance in samples separated by this distance class.
Point shape indicates the significance level of each correlation. For reference, the distance-distance
plot of geographic versus genetic distance is also included (B). Note that only distance classes with
adequate numbers of samples for analysis were included in the Mantel correlogram, which is why
the x axes do not have the same extent.

2.3.3 Landscape Genetics

The resistance surfaces clearly show that Lake Victoria is acting as a barrier to gene flow, based

on both the ranking of best-fitting surfaces and high resistance values over Lake Victoria. To rank

the surfaces, the corrected Akaike information criterion (AICc) was used with all output surfaces

generated by both replicates. This is displayed for the 10 best fitting surfaces in Table 2.4, along

with the number of parameters and the conditional and marginal R2. Generally speaking, the two

replicates conducted for each set of inputs did not produce identical outputs. However, the differ-

ences in likelihood and AICc were always small (Appendix 2B), suggesting similar solutions and

goodness-of-fit had been obtained between replicates. For the sake of comparing variables, the

surface from the best-fitting replicate was selected for each set of inputs for display in Table 2.4

and visual inspection. Most of the best fitting surfaces contained the binary Lake Victoria layer.

LST and friction to human movement without access to motorized transport were also consistently
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Table 2.4: Fit statistics for top 10 best fitting resistance surfaces.

Surface K AICc R2
m R2

c

Lake Victoria and Land Surface Temperature 6 -1828.47 0.136461 0.495123
Lake Victoria 3 -1827.51 0.0674234 0.478118
Friction to Human Movement (w/o motorized) 4 -1826.23 0.0861454 0.48676
Elevation and Lake Victoria 6 -1823.91 0.130084 0.495179
Lake Victoria and Friction to Human Movement
(w/o motorized)

6 -1822.71 0.0901474 0.491937

Land Surface Temperature 4 -1821.96 0.163029 0.515629
Land Surface Temperature and Friction to Hu-
man Movement (w/o motorized)

7 -1821.3 0.165838 0.518301

Lake Victoria and Precipitation 6 -1821.29 0.0501707 0.489653
Elevation and Friction to Human Movement (w/o
motorized)

7 -1820.45 0.201408 0.53808

Lake Victoria and Friction to Human Movement
(w/ motorized)

6 -1819.93 0.0672178 0.478748

present in the top ranking surfaces. The distance-only and null models did not rank particularly

highly, indicating the best landscape resistance models explain patterns of gene flow that geo-

graphic distance alone cannot. All of these conclusions were corroborated by the bootstrapping

results (Appendix 2C).

In the resistance surfaces themselves (Figure 2.10), pixels associated with Lake Victoria were

assigned high resistance values in all of the best fitting surfaces, regardless of whether they included

the binary Lake Victoria layer. However, in the highest ranked layer, Lake Victoria and LST, LST

was weighted to contribute more to the final model (77%), indicating that variable explains a

substantial amount of variance that Lake Victoria alone cannot. Low land surface temperature was

associated with high resistance to gene flow, as was high friction to human movement without

access to motorized transport. Of the other environmental covariates, high resistance to gene flow

was associated with high elevation, high friction to human movement with access to motorized

transport, low precipitation, and water bodies in the land cover layer (results not shown).
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Figure 2.10: The three best-fitting resistance surfaces, ranked in order of fit: a composite surface of
LST and the Lake Victoria binary layer (A), a single surface modeled off the Lake Victoria binary
layer (B), and a single surface modeled off the friction to human movement dataset that does not
assume access to motorized transport (C). Resistance values are log10 transformed, and study site
locations are shown for context. The surfaces were visualized with the landscapetools (Sciaini
et al., 2018) and patchwork (Pedersen, 2020) R packages.
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2.4 Discussion and Conclusion

The results presented in this study support an isolation-by-barrier hypothesis, where Lake Vic-

toria acts as an obstacle to gene flow between the northern and southern parts of our study area.

The rmaverick analysis gave the first indication of this conclusion, in that samples collected from

north and south of the Winam Gulf of Lake Victoria tended to have membership in different genetic

clusters. The pattern of spatial clustering in the first MEMGENE variable showed the same result, with

one geographic cluster of genetic similarity in the lowlands north of Lake Victoria and the other

encompassing the areas east and south of the lake. Finally, the resistance surface analysis sug-

gested both that Lake Victoria was an important variable in dictating landscape resistance, as seen

through the ranking of best-fitting surfaces, and that the lake is associated with a high resistance to

gene flow, as evidenced by the surfaces themselves.

Other studies using data from a similar time period and region have by-and-large shown high

gene flow (Nderu et al., 2019) leading to little genetic differentiation among parasite populations

(Ingasia et al., 2016; Nderu et al., 2019; Nelson et al., 2019), although in one case this varied

somewhat based on the genetic distance measure used (Nelson et al., 2019). A study conducted

with more recent data (dating to 2018 and 2019) supported the same conclusion of little differen-

tiation between populations (Onyango et al., 2021). Our results are qualitatively consistent with

these findings, but cannot be compared quantitatively as these studies used different measures of

genetic distance.

Our results are also consistent with previous investigations into the clustering of genetic relat-

edness in this area. Ingasia et al. (2016) showed with PCA that samples from Kisii, located in the

highlands south of the Winam Gulf, clustered separately from samples collected from the lowlands

north of the Gulf (Kisumu and Kombewa) and the highlands east of the gulf (Kericho). Omedo,

Mogeni, Rockett, et al. (2017), using spatial scan statistics, identified a cluster of genetic similarity

in part of the area north of the Winam Gulf, near the border with Uganda. Our findings indicate a

distinct population north of the Winam Gulf, as well as some evidence of differentiation between

highlands and lowlands. However, we also found a handful of sites near the Ugandan border that
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did not cluster with the rest of the sites north of the Gulf, but were more similar to samples col-

lected south and east of Lake Victoria. These sites may correspond to the cluster found by Omedo,

Mogeni, Rockett, et al. (2017) and are separated from the rest of Kenya by the Nzoia River, pos-

sibly explaining why they are distinct from the remainder of the lowlands north of the Gulf. The

similarity with sites to the south and east of the Lake is less intuitive but may be explained by

patterns of long distance human movement, which Wesolowski et al. (2012) found to be common

in the Lake Victoria region. Another study in this area, Omedo, Mogeni, Bousema, et al. (2017),

did not find any clustering from PCA, but they were focused on a small subset of our study region

(Rachuonyo South).

Previous studies investigating isolation-by-distance in western Kenya have yielded inconsistent

results. Qualitative assessments of isolation-by-distance have found none (Ingasia et al., 2016;

Nelson et al., 2019), but more formal tests have shown some significant correlations between

genetic and geographic distance at or below distances of 20 km between sites (Omedo, Mogeni,

Bousema, et al., 2017; Omedo, Mogeni, Rockett, et al., 2017). This has some similarity to our

findings, in that we discovered weakly significant correlations between geographic and genetic

distance in distance classes at or below 60 km. Taken together, this suggests that some isolation-

by-distance has occurred in P. falciparum populations in this region, but it is only noticeable at

relatively short distances (0-60 km, depending on the study and methods) and between certain

locations.

In terms of isolation-by-barrier and isolation-by-resistance, few studies have been performed

on malaria, but those that do exist for our study region did not identify Lake Victoria as a barrier

to gene flow. Ingasia et al. (2016) informally described isolation between highland and lowland

populations, while Omedo, Mogeni, Rockett, et al. (2017) looked for a barrier more formally and

found nothing. The first result is not inconsistent with our own. Ingasia et al. (2016) had relatively

few study sites, with only one each north and south of the Winam Gulf. They may not have had

the spatial coverage to identify a barrier effect from Lake Victoria, and their finding of isolation

between highlands and lowlands is supported to some extent by our own clustering analyses. The
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contrasting conclusions on the presence of a barrier in our study and Omedo, Mogeni, Rockett,

et al. (2017) may also come down to methodological differences. That study used a regression

framework in which each 10x10 km pixel in the study region was treated as a separate variable

and barrier effects were assessed for pixels separating site pairs where the straight line connecting

the two sites passed through the pixel in question. In contrast, ResistanceGA fits values of high

or low resistance to environmental covariates in their entirety (Peterman, 2018), rather than fitting

different values in different parts of the study region. This makes our approach more suited to

assessing the effect of environmental features holistically, throughout the study region, whereas

the Omedo, Mogeni, Rockett, et al. (2017) method would be better suited to identifying barriers

associated with small, specific geographic features similar in size to the 10x10 km pixels used in

their model. In combination, then, these findings suggest that mixing is fairly homogeneous in the

land areas of this study region, but that Lake Victoria, when considered as a single unit, does act

as a barrier to gene flow between the northern and southern sides of the Winam Gulf.

Previous work on human movement in this area suggests relatively frequent travel within the

Lake Victoria region (Blanford et al., 2015; Wesolowski et al., 2012). These studies did not clearly

show Lake Victoria to be a barrier to movement, but they were intended for regional analyses and

lacked the resolution to address this question in detail. One study, based on mobile phone data, does

seem to indicate less connectivity with populations near the Ugandan border than in the rest of the

Lake Victoria region (Wesolowski et al., 2012). This is consistent with the results of our clustering

analyses and may explain the negative correlations revealed with the Mantel correlograms, but

again, the resolution of that human movement study was such that we cannot be certain of this

explanation.

In terms of vector populations, most research has considered Kenya as a whole and focused on

the differentiation between western and coastal Kenya (e.g., Ogola et al., 2019). Of the groups

that studied western Kenya in particular, the results have been inconsistent. In one case, significant

population structuring was found in Anopheles gambiae s. l. in the Lake Victoria region and, while

other landscape factors were found to be more important, a landscape genetics analysis did show
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Lake Victoria to be an area of relatively low gene flow (Hemming-Schroeder et al., 2020). On the

other hand, a more recent study done with the same species identified little genetic differentiation

in this region and no apparent barrier in Lake Victoria, although no formal landscape genetics

analysis was done (Onyango et al., 2022). However, only four study sites were used in this case,

only one of which was south of the Winam Gulf, so it is likely this work lacked the spatial coverage

to address these questions in detail. From this, we believe it likely that a large part of the barrier

effect we discovered from Lake Victoria in P. falciparum genetics can be explained by the difficulty

mosquitoes have traversing this large body of water.

Taken as a whole, these results indicate low overall genetic differentiation in the Lake Victoria

region, but with some separation of populations north and south of the lake that is explained by the

presence of the lake as a geographic barrier to gene flow. The resistance surface results suggest

that both host and vector factors are important determinants of transmission, as friction to human

movement and temperature, which will disproportionately affect mosquitoes, were both in the

highest ranking surfaces.

This work is the most spatially comprehensive landscape genetics study done in malaria to

date, and we have identified landscape impacts on gene flow, specifically a barrier effect from

Lake Victoria, that have not been documented previously. However, this study does have certain

limitations. First, while polygenomic microsatellites are relatively informative genetic markers,

our study only used eight. Subsequent studies conducted with more genomic depth would be

useful to confirm our findings. On a related subject, while our study has large sample sizes overall,

some of the study locations only have a handful of samples, in particular south and east of Lake

Victoria (Figure 2.8), which may bias our spatial analyses in those areas. In addition, the two

separate genotyping methods used in our dataset do represent a source of inconsistency. We have

characterized the level of agreement between the two methods, but we did not attempt to repeat

genotyping due to the age of the samples. Also, many of the environmental inputs used are proxies

for the true variable of interest (e.g., LST as a proxy for near-surface air temperature). The data

products selected are all well-correlated with those variables, but as more direct measures become
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available it will be important to repeat this and other landscape genetics analyses to confirm their

findings. On the subject of spatial covariates, no information on spatial coverage of malaria control

measures was included, despite the importance of these factors in driving population structure.

There is no quality data on sub-national spatial heterogeneity of coverage for most interventions,

and for the one exception, insecticide-treated nets, little spatial heterogeneity was observed in

our study area (Bertozzi-Villa et al., 2021). For this reason, these data were not included in our

analyses. Finally, our conclusions rest on the assumption that the environmental data we used

is reflective of the state of the landscape that is relevant to its impact on gene flow. In other

words, we have implicitly assumed that the environment in 2012 and 2013, contemporaneous with

sample collection, has the greatest impact on gene flow. In reality, the state of the environment

prior to sample collection likely has had some impact. The relationship between contemporaneous

and historical environmental variation and gene flow is a topic that deserves further research to

characterize the lag time corresponding to the strongest correlation.

The results of this study have implications in a few different areas. For the sake of planning

interventions, the populations around Lake Victoria are sufficiently connected that blanket control

measures remain appropriate. However, it is probable that if interventions further reduce transmis-

sion in this area, these populations will become more distinct and interventions conducted in one

area will have less impact on the other. In this situation, it would be recommended to consider

populations north and south of the Winam Gulf as separate entities when targeting interventions.

For the modeling community, our results indicate that geographic distance is a poor proxy for

transmission and that both vector and host factors can be important drivers of transmission at a

moderate spatial scale. The first is an important finding because geographic distance is frequently

used as a proxy for connectivity in models (Lee et al., 2021). More work is required to identify the

best alternatives, but measures that represent heterogeneous patterns of transmission are necessary.

In terms of the drivers of transmission, our study was performed at a reasonably coarse spatial

scale, making it a surprise that an environmental variable that primarily impacts vector activity,

LST, proved to be one of the most important explanatory variables. Further research is recom-
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mended to better understand how spatial scale impacts the drivers of transmission in vector-borne

diseases, especially with respect to which scales are primarily governed by vector or host factors.

Finally, and most broadly, this study has demonstrated that landscape genetics analysis of vector-

borne disease, when conducted with a large number of spatial locations, is capable of revealing

and explaining barriers to gene flow in fairly high transmission settings that lack strong popula-

tion structure. In future molecular epidemiology studies, we recommend that sensitive methods,

such as MEMGENE (Galpern et al., 2014), first be used to characterize spatial heterogeneity in ge-

netic variation. If significant variation is discovered, we recommend the use of landscape genetics

methods, in particular resistance surface analysis, to explain the drivers of this structure. Doing so

will extend and contextualize the results of traditional population genetics analyses, and thus yield

more insights into the spatial determinants of transmission.
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2.6 Appendices

2.6.1 Appendix 2A: Study site names, coordinates, and sample sizes

Site Name Site ID Long. Lat. No. Samples

Chulaimbo CH 34.6382 -0.0378 48

Yala YA 34.5371 0.0998 59

Simenya SI 34.3623 0.1539 39

Sega SE 34.2283 0.2496 65

Busia BU 34.1171 0.4463 40

lPali PA 34.5802 0.0497 32

Shitsitswi ST 34.505 0.2618 111

Kabula KA 34.5281 0.4886 72

Mayanja MY 34.5169 0.6502 52

Chwele CW 34.578 0.7362 62

Ng’iya (Ngia) NG 34.3727 0.0431 87

Boro BO 34.2392 0.086 74

Ruambwa RW 34.09 0.1293 38

Port Victoria (Bunyala) VI 33.9732 0.099 125

Sio Port SP 34.0217 0.2225 21

Kanyawegi KW 34.611 -0.1133 64

Akala AK 34.4216 -0.0592 107

Osieko OS 34.0155 -0.0282 34

Emutete EM 34.6457 0.0424 41

Iguhu IG 34.7467 0.1636 80

Malava MA 34.8542 0.4451 12

Webuye WE 34.7648 0.6093 7

Kamukuywa KM 34.7911 0.7798 16
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Site Name Site ID Long. Lat. No. Samples

Miwani MW 34.9764 -0.0586 34

Kaimosi KS 34.846 0.1272 15

Kapsabet KP 35.115 0.203 8

Eldoret EL 35.2664 0.5354 5

Soy SO 35.1441 0.6776 29

Kitale KT 35.0023 1.0191 11

Mwihila MH 34.6158 0.1773 28

Lugulu LU 34.3042 0.3931 58

Amukura AR 34.272 0.5746 51

Chemasiri CM 34.3936 0.7359 21

Sikubale SB 34.6845 0.4777 20

Sarora SR 34.9988 0.4649 10

Kericho KR 35.2818 -0.366 8

Kendu Bay KB 34.6501 -0.3712 22

Homa Bay HB 34.4593 -0.533 15

Luanda LD 34.2192 -0.8115 26

Paulo PL 34.6 -0.7667 8

Keroka KK 34.9489 -0.781 5

Migori MI 34.4667 -1.0667 28

Kilgoris KG 34.876 -1.0076 11

Mukhobola MU 34.0298 0.0787 105
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2.6.2 Appendix 2B: Resistance surface fitting results

Surface Avg. AICc Rep. Num.

Lake Victoria -1009.1 2

Friction to Human Movement (w/o motorized) -1007.02 2

Lake Victoria and Land Surface Temperature -1006.28 2

Lake Victoria -1005.41 1

Land Surface Temperature -1004.61 2

Elevation and Lake Victoria -1003.81 2

Friction to Human Movement (w/o motorized) -1003.7 1

Lake Victoria and Land Surface Temperature -1002.68 1

Lake Victoria and Friction to Human Movement (w/o motor-

ized)

-1002.25 2

Land Surface Temperature and Friction to Human Movement

(w/o motorized)

-1001.88 2

Distance -1001.48 2

Land Surface Temperature -1001.34 1

Elevation and Lake Victoria -1001.23 1

Lake Victoria and Precipitation -1000.97 2

Lake Victoria and Friction to Human Movement (w/ motorized) -1000.72 2

Elevation and Friction to Human Movement (w/o motorized) -1000.37 2

Lake Victoria and Friction to Human Movement (w/o motor-

ized)

-998.56 1

Elevation -998.484 2

Distance -998.442 1

Land Surface Temperature and Precipitation -998.277 2
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Surface Avg. AICc Rep. Num.

Friction to Human Movement (w/ motorized) and Friction to

Human Movement (w/o motorized)

-998.168 2

Friction to Human Movement (w/ motorized) -997.935 2

Precipitation and Friction to Human Movement (w/o motorized) -997.226 2

Lake Victoria and Friction to Human Movement (w/ motorized) -997.157 1

Lake Victoria and Precipitation -997.122 1

Precipitation -996.789 2

Land Surface Temperature and Friction to Human Movement

(w/o motorized)

-996.604 1

Elevation and Friction to Human Movement (w/o motorized) -996.285 1

Elevation and Land Surface Temperature -995.541 2

Friction to Human Movement (w/ motorized) -994.961 1

Land Surface Temperature and Precipitation -994.425 1

Land Surface Temperature and Friction to Human Movement

(w/ motorized)

-994.106 2

Precipitation and Friction to Human Movement (w/o motorized) -993.88 1

Elevation and Precipitation -993.707 2

Precipitation -993.547 1

Elevation and Friction to Human Movement (w/ motorized) -993.509 2

Friction to Human Movement (w/ motorized) and Friction to

Human Movement (w/o motorized)

-993.465 1

Elevation -993.413 1

Elevation and Land Surface Temperature -992.485 1

Land Surface Temperature and Friction to Human Movement

(w/ motorized)

-992.055 1
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Surface Avg. AICc Rep. Num.

Precipitation and Friction to Human Movement (w/ motorized) -991.209 2

Elevation and Precipitation -990.655 1

Elevation and Friction to Human Movement (w/ motorized) -990.126 1

Precipitation and Friction to Human Movement (w/ motorized) -987.679 1

Land Cover -985.917 2

Land Cover -980.849 1

Land Cover and Lake Victoria -975.82 2

Land Cover and Friction to Human Movement (w/o motorized) -972.567 2

Land Cover and Lake Victoria -971.934 1

Elevation and Land Cover -969.947 2

Land Cover and Precipitation -968.967 2

Land Cover and Friction to Human Movement (w/ motorized) -968.842 2

Land Cover and Friction to Human Movement (w/o motorized) -968.524 1

Land Cover and Land Surface Temperature -967.923 2

Elevation and Land Cover -966.131 1

Land Cover and Friction to Human Movement (w/ motorized) -966.102 1

Land Cover and Land Surface Temperature -964.706 1

Land Cover and Precipitation -964.568 1
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2.6.3 Appendix 2C: Resistance surface bootstrapping results

Surface Avg. AICc Rep. Num.

Lake Victoria and Land Surface Temperature -1828.48 1

Lake Victoria and Land Surface Temperature -1828.47 2

Lake Victoria -1827.51 1

Lake Victoria -1827.51 2

Friction to Human Movement (w/o motorized) -1826.92 1

Friction to Human Movement (w/o motorized) -1826.23 2

Elevation and Lake Victoria -1825.64 1

Land Surface Temperature and Friction to Human Movement

(w/o motorized)

-1823.91 2

Elevation and Lake Victoria -1823.91 2

Lake Victoria and Friction to Human Movement (w/o motor-

ized)

-1822.71 1

Lake Victoria and Friction to Human Movement (w/o motor-

ized)

-1822.71 2

Land Surface Temperature -1822.26 2

Land Surface Temperature -1821.96 1

Lake Victoria and Precipitation -1821.54 2

Elevation and Friction to Human Movement (w/o motorized) -1821.3 2

Land Surface Temperature and Friction to Human Movement

(w/o motorized)

-1821.3 1

Lake Victoria and Precipitation -1821.29 1

Elevation and Friction to Human Movement (w/o motorized) -1820.45 1

Lake Victoria and Friction to Human Movement (w/ motorized) -1820.32 1

Lake Victoria and Friction to Human Movement (w/ motorized) -1819.93 2
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Surface Avg. AICc Rep. Num.

Friction to Human Movement (w/ motorized) and Friction to

Human Movement (w/o motorized)

-1818.71 2

Precipitation and Friction to Human Movement (w/o motorized) -1818.4 1

Precipitation and Friction to Human Movement (w/o motorized) -1818.3 2

Land Surface Temperature and Precipitation -1817.73 2

Friction to Human Movement (w/ motorized) and Friction to

Human Movement (w/o motorized)

-1816.87 1

Land Surface Temperature and Precipitation -1816.7 1

Elevation and Land Surface Temperature -1814.15 2

Elevation and Land Surface Temperature -1814.14 1

Friction to Human Movement (w/ motorized) -1813.4 1

Friction to Human Movement (w/ motorized) -1813.27 2

Distance -1813.18 1

Distance -1813.18 2

Land Surface Temperature and Friction to Human Movement

(w/ motorized)

-1813.18 1

Land Surface Temperature and Friction to Human Movement

(w/ motorized)

-1811.76 2

Elevation -1811.28 2

Elevation and Friction to Human Movement (w/ motorized) -1810.88 2

Elevation and Friction to Human Movement (w/ motorized) -1810.54 1

Elevation and Precipitation -1809.53 1

Elevation and Precipitation -1809.49 2

Land Cover -1809.24 2

Precipitation -1808.71 2
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Surface Avg. AICc Rep. Num.

Precipitation -1808.52 1

Elevation -1808.45 1

Precipitation and Friction to Human Movement (w/ motorized) -1808.4 2

Precipitation and Friction to Human Movement (w/ motorized) -1807.83 1

Land Cover -1807.51 1

Land Cover and Friction to Human Movement (w/o motorized) -1803.18 2

Land Cover and Friction to Human Movement (w/o motorized) -1802.76 1

Land Cover and Lake Victoria -1802.19 1

Land Cover and Lake Victoria -1802.05 2

Land Cover and Friction to Human Movement (w/ motorized) -1799.06 1

Elevation and Land Cover -1798.35 2

Elevation and Land Cover -1798.24 1

Land Cover and Friction to Human Movement (w/ motorized) -1796.8 2

Land Cover and Precipitation -1796.79 1

Land Cover and Precipitation -1796.73 2

Land Cover and Land Surface Temperature -1796.36 1

Land Cover and Land Surface Temperature -1795.1 2

Null -1786.87 1

Null -1786.87 2
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3.1 Background

Plasmodium vivax is the most widely geographically distributed malaria parasite, and there is

increasing evidence that P. vivax is circulating in all regions of Africa (Twohig et al., 2019). In

addition to causing considerable morbidity, including anemia, malnutrition, and poor school per-

formance in early childhood, P. vivax can cause severe and life-threatening malaria (Anstey et

al., 2012). In part because P. vivax has historically been considered benign or non-fatal, P. vivax

malaria remains understudied in comparison to P. falciparum malaria. Improving our understand-

ing of P. vivax epidemiology is a key step to planning effective antimalarial interventions and

improving malaria control.

Population genomics is one powerful approach for gaining insights into malaria epidemiology

and informing control programs. Malaria genomic information can be used to target control re-

sources to areas of high transmission and evaluate the effectiveness of antimalarial interventions

with genetic indicators of transmission intensity (Neafsey et al., 2021). However, the capacity

of population genomics for investigating malaria epidemiology is limited by technical constraints

and costs. For example, classical biallelic SNP assays have low sensitivity to detect multiple par-

asite strains and parasite diversity within a host (Koepfli & Mueller, 2017). On the other hand,

whole genome sequencing (WGS) provides high resolution data, but the data is costly to produce

(Tessema et al., 2022) and store (Neafsey et al., 2021). One cost-effective method for obtaining

moderately high-resolution genomic data with high sensitivity to detecting within-host parasite di-
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versity is targeted deep sequencing of genetically diverse and informative amplicons (Koepfli &

Mueller, 2017; Tessema et al., 2022).

Furthermore, data generated from genotyping-by-sequencing can be used to assess multiallelic

microhaplotypes, genetic loci of less than 300 nucleotides, defined by two or more proximate

SNPs. The major advantage of this approach is that kinship analysis based on microhaplotype

markers has been shown to provide higher power for relationship inference than biallelic SNPs

(Baetscher et al., 2018), particularly in the case of infections that are polyclonal, meaning they

have multiple, genetically-distinct parasite strains (Tessema et al., 2022). For researchers that study

eukaryotic parasite epidemiology, highly-multiplexed amplicon sequencing panels of polymorphic

microhaplotype markers along with advances in analytical methods present a promising avenue to

accurately assessing Plasmodium genetic relatedness and transmission patterns (LaVerriere et al.,

2022; Tessema et al., 2022). Indeed, recent efforts have been made to develop such panels for the

more studied and deadly Plasmodium spp., P. falciparum (LaVerriere et al., 2022; Tessema et al.,

2022).

Unfortunately, no comparable panel with a large number of high-diversity microhaplotype loci,

suitable for population genetics, has been published for P. vivax. One panel that includes 11 mi-

crohaplotype markers has been released, but these are all for putative drug resistance genes (Kat-

tenberg et al., 2022). While genotyping such genes is also of great interest for malaria control

purposes, these genes may be under selection and thus are not suitable for population genetics

analyses that can reveal information about patterns of transmission. At least one other panel is also

under development (Siegel et al., 2023), but until it is published its utility for P. vivax genomic

epidemiology will remain unclear.

To support a full range of objectives in genomic epidemiology studies of P. vivax, a micro-

haplotype marker panel would ideally have the following capabilities: sensitively detect multiple

parasite strains in an infection; maintain quality coverage in low-parasitemia infections; generate

sequence data on specific genes or points of interest, such as candidate markers for drug resis-

tance; and enable effective relationship inference in areas with low or high population structuring.
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In this study, we design and implement a highly-multiplexed amplicon sequencing panel of P. vivax

microhaplotypes that satisfies these criteria.

3.2 Materials and Methods

3.2.1 Panel design

Whole genome sequence data for 198 P. vivax isolates from eight countries (Cambodia, the

China-Myanmar border region, Colombia, Ethiopia, Madagascar, Malaysia, Panama, and Peru)

were downloaded from NCBI. Sequences were aligned by bwa (Li & Durbin, 2009) in conjunction

with SAMtools (Danecek et al., 2021). Alignments were removed using BCFTools (Danecek et

al., 2021) if they showed multiple mappings, mappings across chromosomes, had mean coverage >

4x, or quality values < 20. SNPs and indels were called using GATK (Van der Auwera & O’Connor,

2020) in conjunction with Picard-tools (“Picard Toolkit”, 2019) and VCF-tools (Danecek et

al., 2011). Final SNPs and indels were called using the HaplotypeCaller and GenotypeGVCT

algorithms.

To identify candidate markers for our amplicon sequencing panels, we used a sliding window

method adapted from the approach used by Tessema et al. (2022) to design a microhaplotype panel

for P. falciparum. We divided the genome into 200bp sliding windows every 100bp, yielding a

total of 242,135 windows, using the sliding.window.transform function in the PopGenome R pack-

age (Pfeifer et al., 2014). This initial set of windows was then filtered based on presence of tandem

repeats, presence of indels, and genetic diversity. Tandem repeats in the genome were identified

using Tandem Repeats Finder (Benson, 1999). Windows were removed that contained tandem

repeats > 40 bp, dinucleotide repeats > 8 bp, homopolymer repeats > 8 bp, or trinucleotide re-

peats > 12 bp. Second, windows containing any insertion or deletion from variant calling were

removed. Third, within-country nucleotide diversity (π) was calculated for the remaining win-

dows in PopGenome, and windows that were monomorphic (π = 0) in isolates from > 25% of the

countries were excluded prior to further analysis, as these windows would not be informative for

fine-scale genomic analyses in certain study regions. This filtering process led to 2,498 candidate

windows remaining for potential inclusion in the panel.
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We proceeded to evaluate and compare candidate windows based on polymorphism and genetic

structuring. Specifically, we evaluated windows for mean within-country nucleotide diversity (π)

and averaged fixation index (FS T ) for each country against all other individuals. Both values

were calculated in PopGenome using the F_ST.stats function. Windows were then ranked by their

FS T and π values. To achieve a relatively even distribution of loci across the genome, for each

chromosome the 10 windows with the highest π values, the window with the highest mean FS T

value, and the window with the highest π that also was in the highest 8% of FS T values were

selected. After that, the remaining windows were ranked overall (i.e., all chromosomes pooled

together), and the 72 windows with the highest π value, the 28 windows with the highest FS T

value, and the 10 windows with the highest π that were also in the highest 8% of FS T values

were selected. At this point, windows were removed from consideration if there was insufficient

availability of conserved regions outside of the target window for primer design and replaced with

the window having the next highest value.

The final set of candidate windows which were selected for primer design consisted of 278

targets with the number of targets per chromosome ranging from 16 to 25. The minimum value for

targets selected for π was 0.0024 and for FS T was 0.50. These minimum values were among the

top 55% and 93% of values, respectively, of the original 2,498 candidate windows.

Our goal was to generate a panel with approximately 100 targets, but we selected an abundance

of potential targets expecting fall-out from primer incompatibilities during primer design and un-

even amplification and/or sequencing coverage during assay development. The 278 targets were

submitted to GTseek LLC for primer design with the goal of designing primers that generate min-

imal crosstalk during multiplexed PCR reactions. Primers were successfully designed for 179 of

the 278 targets. After small test sequencing runs, we further removed primers for targets that did

not amplify successfully, yielding a reduced set of 76 targets.

In addition to the targets selected for their π and/or FS T values, eight additional loci of interest

were added to the panel, bringing the final panel size to 84. The genes containing these addi-

tional loci are PVDBP, PVCRT, PVDHFR, PVDHPS (two loci), PVK12 (two loci), and PVMDR1.
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Primers for these targets were also designed by GTSeek LLC to minimize crosstalk among primers

during amplification.

3.2.2 Panel evaluation with field samples

3.2.2.1 Sample collection

To evaluate the panel in terms of sequencing yield and ability to obtain haplotypes, we used

six dried blood spot (DBS) samples previously collected as part of an ongoing Sub-Saharan Africa

International Center for Excellence for Malaria Research (ICEMR) project. Some of these samples

were obtained with passive case detection and some came from mass blood surveys. The samples

were collected from three ongoing field sites in the Oromo region of Southwest Ethiopia; the Arjo-

Didessa sugarcane farm, the Gambella region, and Jimma town.

In addition, four whole blood samples collected from Agaro Health Center, which is near Jimma,

Ethiopia, were used to evaluate panel performance with DNA extracts derived from whole blood.

3.2.2.2 Library preparation

For DBS samples, two different extraction methods were tested: the Qiagen QIAamp DNA

Investigator Kit (from now on referred to as the "kit") and the Saponin-Chelex method (Bereczky

et al., 2005). In addition, for all samples, three different enrichment strategies were tested: no

enrichment, a targeted nested PCR prior to the GT-Seq PCR (from here forward referred to as

targeted pre-amplification), and selective whole genome amplification (SWGA) prior to the first

PCR in the GT-Seq protocol.

When SWGA was used, we performed the reaction and bead cleanup according to the estab-

lished protocol (Cowell et al., 2017), prior to the GT-Seq PCR. When targeted pre-amplification

was performed, nested reaction mixtures and amplification were conducted following the same

conditions as PCR 1 of the GT-Seq protocol, prior to the GT-Seq PCR. Following enrichment, the

protocol consists of an initial PCR with primers for amplicon targets containing adapter sequences,

an enzymatic cleanup of PCR products, a second PCR for normalization and incorporation of dual

indexing tags (Nate’s plates), and bead size selection. Libraries were sequenced on an Illumina



56

Miseq with a 500 cycle kit in paired-end mode.

3.2.2.3 Sequence analysis

We used the SeekDeep pipeline (Hathaway et al., 2018) to demultiplex, filter reads, and estimate

haplotype frequencies. First, to join and extract reads by locus, we used the extractorPairedEnd

function with default filtering and quality parameters and additional primer specifications (mi-

nOverlap: 6, primercoverage: 0.7, primerWithinStart: 20). Next, the qluster function with default

parameters for Illumina data was used to create haplotypes with relative abundances. Final filtering

was done using the processsClusters function with parameters that allow for a few low-quality mis-

matches and no indels, recommended by the developer for Illumina data (parameters: strictErrors,

illumina, fracCutOff 0.02).

To evaluate the different laboratory protocols, the percentage of on-target reads was calculated

by dividing the total number of reads that were matched to panel loci by SeekDeep for each sample

by the total number of reads for that sample in the raw data.

3.2.3 Panel evaluation with MalariaGEN data

3.2.3.1 Data preparation

To assess the utility of the panel at the population level, whole genome sequences from the

MalariaGEN Pv4 project (MalariaGEN et al., 2022) for the years 2015 through 2016 were down-

loaded for comparison with our results. These are the two most recent years in the dataset that have

a large number of samples. Note that we intentionally chose to use a different set of sequences for

the evaluation of the panel than was used for panel design, to avoid biasing our results.

Variants and samples that failed the QC process of the MalariaGEN authors were removed.

Samples with an FWS below 0.95 were also removed, as these are considered to be polyclonal

(Auburn et al., 2012). Finally, samples from longitudinal studies and returning travelers were

removed. This yielded a final analysis set of 185 samples, from 10 different countries and 19

distinct sites.

The remaining variants were subset to the genomic regions represented in the panel using
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bcftools view (Danecek et al., 2021). Haplotype sequences were obtained for each sample

and locus using bcftools consensus (Danecek et al., 2021), using the PvP01 reference genome

(Auburn et al., 2016).

3.2.3.2 Population genetics

Haplotype sequences for each locus were aligned using the MUSCLE algorithm with the R

package msa (Bodenhofer et al., 2015), after which selection was assessed with Tajima’s D (Tajima,

1989), calculated with the R package pegas (Paradis, 2010). Selection was assessed separately

for each population in the dataset, using the population definitions provided by the MalariaGEN

authors. Pairwise linkage disequilibrium (LD) between all pairs of loci that share a chromosome

was estimated with the r̄d statistic (Agapow & Burt, 2001), calculated with the poppr R package

(Kamvar et al., 2014). The p-value thresholds for both the tests of selection and pairwise LD were

corrected for multiple testing using the Bonferroni method. Loci under significant selection or

in significant LD with other loci, at the 0.05 level, were filtered out before proceeding with the

analyses described below.

Nei’s expected heterozygosity (Nei, 1978) was estimated for each locus with more than one

allele using the poppr R package (Kamvar et al., 2014). This metric was computed separately

for each country and for each site in Cambodia and Vietnam, to facilitate comparison with the

relatedness analysis (see below). In each case, t-tests were performed between each pair of groups

to identify significant differences. The Bonferroni method was used to correct for multiple testing.

At the country level, countries with fewer than 15 samples were removed to avoid introducing bias

from low sample size.

Identity-by-descent (IBD) between samples was estimated using the R package Dcifer (Gerlov-

ina et al., 2022). This tool uses population-level allele frequencies for each individual to estimate

whether observed sharing of genotypes between sample pairs is because of sharing in the most

recent common ancestor (in which case they are said to be identical-by-descent) or due to chance

alone. Significance is assessed using a likelihood ratio approach.

Relatedness values estimated with Dcifer were analyzed in two ways: at the country level
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for the entire dataset, and at the site level for Cambodia and Vietnam. In both cases, the mean

relatedness of all constituent sample pairs was computed for each pair of countries or sites. In

addition, the fraction of highly-related pairs was computed for the site level comparison, using

a relatedness threshold of 0.25, as metrics based on the number of highly-related pairs are more

sensitive to recent gene flow (Taylor et al., 2017). As with the expected heterozygosity analysis,

countries with fewer than 15 samples were removed.

3.3 Results

3.3.1 Panel characteristics

As intended, the genome windows selected for inclusion in the final panel all have high nu-

cleotide diversity (Figure 3.1A) and/or high FS T (Figure 3.1B), making them informative for ge-

nomic epidemiology analyses.

3.3.2 Panel evaluation with field samples

Among the various DNA preservation, extraction, and enrichment methods tested, the results

point to two different strategies, depending on parasite density. From the DBS samples, SWGA

more consistently produced high percentages of on-target reads than the other enrichment methods

(Figure 3.2A), but targeted pre-amplification led to more consistent amplification of each marker

(Figure 3.4A; Figure 3.3). The Chelex- and kit-based extraction methods were relatively com-

parable in terms of on-target reads (Figure 3.2A) and marker amplification (Figure 3.4A). High

percentages of on-target reads were obtained from whole blood samples for both SWGA and tar-

geted pre-amplification (Figure 3.2B), but many loci did not amplify well from these samples,

regardless of enrichment method (Figure 3.4B). From these results, it can be concluded that with

this panel whole blood samples are not worth the additional effort and cost, and there is little differ-

ence in performance between Chelex-based and kit-based extraction. However, there are tradeoffs

between SWGA and targeted pre-amplification, and it is not apparent which is best.

The picture becomes more clear when the relationship with parasite density is considered (Fig-

ure 3.5). It would seem that the differences observed above between targeted pre-amplification and
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Figure 3.1: Mean nucleotide diversity (A) and mean FS T (B) for the genome windows selected for
inclusion in the final panel.
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Figure 3.2: Bar plots indicating the percentage of on-target reads for the DBS samples (A) and the
whole blood samples (B). There is one plot for each DNA enrichment method and, in the case of
the DBS samples, the extraction method that was tested.

SWGA are due at least in part to the effect of parasite density. Targeted pre-amplification performs

better in samples with a high parasite load, whereas the performance of SWGA is unaffected by

parasite density. These results indicate that different methods are preferable depending on par-

asite load. If parasitemia is high, using targeted pre-amplification will lead to more consistent

amplification across the loci in the panel. However, if parasitemia is low, SWGA is recommended

instead.

3.3.3 Panel evaluation with MalariaGEN data

In the analysis of Pv4 samples, no pairs of loci from the same chromosome were identified as

being in significant LD, after the significance threshold of 0.05 was Bonferroni-corrected. How-

ever, two loci had a negative Tajima’s D in one or more populations at the 0.05 significance level,

after Bonferroni correction. These loci, Pvcrt_o.10k.indel and PvP01_10_v1_1072001_1072200,

were removed from the dataset prior to genetic diversity and relatedness analysis.

In terms of genetic diversity, Colombia and Indonesia had a lower overall expected heterozygos-
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Figure 3.3: Mean read counts across all DBS samples for each locus, obtained with the kit DNA
extraction method and the SWGA (top) and targeted pre-amplification (bottom) DNA enrichment
methods. In both cases, the y-axis is log10 transformed.
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Figure 3.4: Box plots (with Tukey-style whiskers that extend to a maximum of 1.5 * IQR) showing
the mean read count across all samples for each locus, separated according to DNA enrichment
and extraction method. The DBS samples are shown in (A) and the whole blood samples in (B).
In both cases, the y-axis is log10 transformed.
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Figure 3.5: These scatterplots show the relationship between the percentage of on-target reads
and parasite density, for each combination of enrichment protocol (none, SWGA, and targeted
pre-amplification) and DNA preservation/extraction method (DBS+Chelex, DBS+Kit, and whole
blood). In each case, a linear regression between parasite density and the percentage of on-target
reads is displayed, with confidence intervals, to aid interpretation.
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Figure 3.6: Distribution of mean expected heterozygosities for each marker, separated by country
(A) and site (B). The whiskers are Tukey-style and extend to a maximum of 1.5 * IQR.

ity than the other countries (Figure 3.6A), and Ho Chi Min had the lowest expected heterozygosity

of any of the sites in Cambodia and Vietnam (Figure 3.6B). However, none of these differences

were significant after applying the Bonferroni correction for multiple testing.

Most sample pairs have a relatedness of zero (Figure 3.7A). Among the other pairs, there are

a few clonal samples (relatedness of one) and most of the rest have a relatedness below 0.25 (the

relatedness of half-siblings; Figure 3.7B). As expected, mean IBD-based relatedness tends to be

higher within countries than between countries (Figure 3.8). Also, relatedness between countries

clearly shows regional divisions, particularly with Southwest Asia/East Africa and Southeast Asia

(Figure 3.8). Gene flow appears to be particularly high between Cambodia and Vietnam, as the

relatedness between these two countries is comparable to the relatedness within those countries.

To demonstrate the panel’s ability to distinguish patterns of genetic connectivity within a region,

the results for Cambodia and Vietnam are examined in detail. At the site level, mean relatedness of



65

0

3000

6000

9000

0.00 0.25 0.50 0.75 1.00
Relatedness

N
o.

 o
f S

am
pl

e 
P

ai
rs

A

0

100

200

300

400

0.00 0.25 0.50 0.75 1.00
Relatedness

N
o.

 o
f S

am
pl

e 
P

ai
rs

B

Figure 3.7: Histograms displaying relatedness estimated by Dcifer for (A) all sample pairs and
(B) sample pairs with relatedness greater than zero.

constituent sample pairs provides some ability to distinguish gene flow between pairs of sites (Fig-

ure 3.9A), but the distinctions between sites become more clear when the fraction of highly-related

sample pairs is used instead (Figure 3.9B). This is consistent with the theoretical expectation that

metrics based on highly-related sample pairs will perform better as analysis moves from the global

to the local level, as these metrics are better equipped to capture recent gene flow (Taylor et al.,

2017). However, even when the fraction of highly-related sample pairs is considered, the patterns

of genetic relatedness in this region are complex. When visualized in geographic space, it becomes

apparent that a simple pattern of isolation-by-distance does not explain genetic relatedness of P.

vivax in this region (Figure 3.10). Instead, it can be seen that Ho Chi Min and Dak O have com-

paratively high relatedness to the other sites, implying that these locations may be hubs of malaria

transmission in the region.

3.4 Discussion and Conclusion

The microhaplotype marker panel designed and evaluated in this study shows substantial promise

for enhancing genomic epidemiology in P. vivax. After several filters, we obtained a final panel
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with 84 loci total, 76 of which are designed for population genetics and 8 of which are genes of

epidemiological interest (e.g., potential drug resistance markers). Our evaluation with field sam-

ples shows that the panel works well with DBS samples, and that the most consistent amplification

across loci is achieved when our targeted pre-amplification enrichment method is used. However,

SWGA may be advisable instead if parasitemia is low. We did not detect differences between

Chelex- and kit-based extraction, and so do not make a recommendation in this area. The popu-

lation genetics analysis with MalariaGEN data demonstrates that the panel not only distinguishes

between geographic regions, but also can identify substantial within-region variation in genetic

relatedness, as evidenced by the analysis of sites in Cambodia and Vietnam.

Currently, there is one other panel including microhaplotype loci for P. vivax that has been

published (Kattenberg et al., 2022), and at least one other under development (Siegel et al., 2023).

Most of the loci in the Kattenberg et al. (2022) panel are SNPs, with only a few amplicons with

multiple variants, all of which are putative drug resistance genes. The panel described in Siegel

et al. (2023) does have 100 microhaplotype loci selected for high diversity, but at the time of

writing only in silico panel design results have been published - the panel has not been applied

to actual field samples. Once this panel, and perhaps others, is published with accompanying

laboratory protocols, it will be possible to conduct a full comparison of panel performance for

different research questions and in different geographic settings.

This study has certain limitations. First, it would be helpful to perform an evaluation with

a second, larger set of field samples to provide a case study of the panel’s utility in genomic epi-

demiology with "real" microhaplotypes obtained with amplicon deep sequencing, rather than those

reconstructed from WGS data. This is particularly important as we were forced to filter all poly-

clonal samples out of the WGS dataset, due to the unreliability of phasing haplotypes from this

data format. It could also be useful to perform simulations to understand the panel’s effectiveness

in a broad range of transmission environments. Once more P. vivax microhaplotype marker panels

are published, it is advisable to perform these analyses for this and other available panels, as sug-

gested above. Finally, the relatedness patterns observed in the WGS-based microhaplotypes may
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be confounded by the fact that the data was aggregated from multiple contributing studies, each

with its own sample collection strategy. This could be particularly true in Southeast Asia, where

the Ho Chi Min and Oddar Meanchey samples came from one study (1128-PV-MULTI-GSK) and

Binh Phuoc, Dak O, and Krong Pa came from another (1157-PV-MULTI-PRICE; MalariaGEN

et al., 2022).

The panel described in this paper is the only one of its kind for P. vivax: a large panel of mi-

crohaplotype loci selected for high diversity, ideal for genomic epidemiology. As described in the

Background section, such a panel constitutes an important step forward. Microhaplotype panels

offer considerably more discriminatory power than SNP panels of the same size (Baetscher et al.,

2018), while costing substantially less than whole genome analyses (Tessema et al., 2022). In ad-

dition, they provide an enhanced ability to not only identify polyclonal infections but to accurately

estimate the actual MOI of a sample, which may be an important metric for understanding vivax

epidemiology in some regions. Given the growing need for cost-effective yet powerful tools to

measure the complexities of P. vivax malaria epidemiology, this panel has the potential to dramat-

ically enhance the surveillance of vivax malaria and thus accelerate progress towards elimination.
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CHAPTER 4: Plasmodium falciparum genomic epidemiology in Africa with microhaplotypes

Article Authors: Alfred Hubbard, Cheikh C. Dieng, Elizabeth Hemming-Schroeder, Daniel

Janies, Eugenia Lo

4.1 Background

Understanding patterns of transmission is critical to achieving timely malaria eradication. This

is true because financial and material resources must be deployed efficiently and because measur-

ing changes in transmission is essential to understanding whether the actions of national malaria

control programs are having the desired effect (Feachem et al., 2019). In Africa, where the primary

cause of malaria is Plasmodium falciparum, this is especially true, because most malaria programs

lack the funds to apply control measures everywhere they are needed.

It is becoming increasingly common to use genetic relatedness as a proxy for malaria trans-

mission. This approach is particularly valuable in vector-borne diseases, such as malaria, due to

the difficulty of measuring transmission directly (Neafsey et al., 2021). In low transmission envi-

ronments, high genetic relatedness may be used to infer infections that are close to each other in

the (unobserved) transmission chain, whereas in higher transmission environments overall genetic

diversity (both within and between hosts) can be a proxy for the level of transmission (Wesolowski

et al., 2018). At larger scales, relatedness can show the level of genetic connectivity, and therefore

transmission, between different geographies (e.g., Taylor et al., 2020).

Previous work has found a divide between P. falciparum populations in East and West Africa

(Amambua-Ngwa et al., 2019; Tonkin-Hill et al., 2021; Verity et al., 2020), with additional sub-

structuring within East African populations (Amambua-Ngwa et al., 2019). This is believed to

be the historical background established by ancient population movements (Amambua-Ngwa et

al., 2019). Selection for drug resistance and transmission reductions from measures deployed by
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control programs may now be altering this structure (Verity et al., 2020), and it is expected that

populations will become increasingly fragmented as control measures achieve their desired effect.

However, in high transmission environments, which includes many African countries, popula-

tion structure tends to be weak and genetic relatedness generally is quite low (Wesolowski et al.,

2018). In such conditions, achieving sufficient discriminatory power to identify patterns of relat-

edness, and therefore transmission, is challenging. SNP (single-nucleotide polymorphism) panels

have been shown to be ineffective in such environments (Argyropoulos et al., 2023), and so more

powerful alternatives are required. One option is whole genome sequence (WGS) data, which is

effective, but costly (Noviyanti et al., 2020). Also, it is limited in its ability to accurately estimate

the number of parasite strains present in a host (also known as multiplicity of infection, or MOI),

which can be a valuable measure of transmission in endemic contexts (Camponovo et al., 2023).

Recent advancements in sequencing technology have led to a new generation of microhaplotype

markers, genomic regions with multiple, linked SNPs that can be sequenced together in a single

amplicon. These panels of microhaplotype loci offer superior discriminatory power compared to

SNP panels of similar size (Baetscher et al., 2018), while costing considerably less than WGS.

Moreover, the amplicon deep sequencing techniques employed for genotyping these markers yield

sufficient read depth for accurate estimates of MOI (LaVerriere et al., 2022).

In this study, we successfully genotype 180 samples from eight countries in Africa using the

microhaplotype marker panel described in LaVerriere et al. (2022). We analyze the patterns of

genetic differentiation revealed by this data for insights into malaria transmission in the region,

drawing comparisons to previous studies performed with other genotyping methods. Finally, we

discuss the additional benefits of this genotyping technique over its predecessors.

4.2 Materials and Methods

4.2.1 Sample collection and molecular screening

Between 2016 and 2017, a cross-sectional study was conducted in hospitals and health facilities

across Nigeria, Sudan, Botswana, Ethiopia, Kenya, and Cameroon. Additionally, samples from

Senegal were collected in 2019. Locality names and coordinates are given in Table 4.1. The
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Table 4.1: Locality names and coordinates.

Locality Country Lat. Long.

Casamance Senegal 12.83 -15.81
Seikwa Ghana 7.723 -2.517
South Nigeria Nigeria 7.229 6.557
Dschang Cameroon 5.448 10.057
Gaborone Botswana -24.638 25.905
Khartoum Sudan 15.561 32.548
Homa Bay Kenya -0.531 34.459
Asosa Ethiopia 10.066 34.548

distribution of samples was as follows: 50 from Botswana, 34 from Nigeria, 50 from Senegal, 50

from Sudan, 29 from Cameroon, 99 from Ghana, 72 from Ethiopia, and 41 from Kenya. In total,

425 dried blood spots (DBS) were collected from suspected P. falciparum patients across these

locations, which vary substantially in transmission intensity (Figure 4.1).

Diagnosis of P. falciparum was conducted through microscopic examination of Giemsa-stained

thin and thick blood films and/or rapid diagnosis test (SD Bioline, Standard Diagnostics Inc., South

Korea). Demographic and clinical data, including age, gender, ethnicity, and medical history,

were recorded via questionnaire. Patients infected with other Plasmodium species (P. vivax, P.

malariae, P. ovale, and/or mixed infections) were excluded from the study. Parasite DNA was

extracted from dried blood spots by the Saponin-Chelex method. The final extracted volume was

200µl and parasite DNA amount was estimated using the SYBR Green qPCR detection method

with species-specific primers that targeted the 18S rRNA genes. Amplification was conducted in a

20µL reaction mixture containing 2µL of genomic DNA, 10µL 2xSYBR Green qPCR Master Mix

(Thermo Scientific, USA), and 0.5µM primer. Reaction was performed in CFX96 TouchTM Real-

Time PCR Detection System (Bio-Rad), with an initial denaturation at 95◦C for 3 min, followed

by 45 cycles at 94◦C for 30 sec, 55◦C for 30 sec, and 68◦C for 1 min with a final 95◦C for 10

sec. This was then followed by a melting curve step of temperature that ranged from 65◦C to 95◦C

with 0.5◦C increment to determine the melting temperature of each amplified product. Melting

curve analyses were performed for each amplified sample to confirm specific amplifications of
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the target sequence. A cut-off threshold of 0.02 fluorescence units that robustly represented the

threshold cycle at the log-linear phase of the amplification and above the background noise was set

to determine Ct value for each assay. Samples yielding Ct values higher than 40 (as indicated in

the negative controls) were considered negative for Plasmodium species.

Sequencing libraries were prepared for samples ascertained to be positive for P. falciparum, us-

ing the panel and protocol described in LaVerriere et al. (2022) with the addition of three primer

pairs corresponding to the second, third, and fourth domains of the kelch13 (K13) protein. Selec-

tive whole genome amplification (SWGA) was performed according to the protocol described in

Oyola et al. (2016). Libraries were sequenced on an Illumina MiSeq in paired-end mode.

4.2.2 Amplicon analysis

The de-multiplexed reads were processed with the amplicon pipeline published with LaVerriere

et al. (2022), which uses the Divisive Amplicon Denoising Algorithm (DADA2) software (Callahan

et al., 2016) to extract microhaplotypes. The same parameters and settings described by LaVerriere

et al. (2022) were used.

4.2.3 Population genetics

Genetic diversity was estimated for each locus with Nei’s expected heterozygosity (He), using

the poppr R package (Kamvar et al., 2014). MOI was estimated for each sample as the maximum

number of unique haplotypes found across all loci. Both metrics were calculated separately for

each country, and paired t-tests were performed between each pair of countries to identify signif-

icant differences. The Bonferroni correction for multiple hypothesis testing was applied to both

sets of tests.

Selection was assessed for each locus with Tajima’s D (Tajima, 1989), estimated with the pegas

R package (Paradis, 2010). Samples were divided into populations for this analysis (East Africa,

Southern Africa, and West Africa), and selection was tested separately in each population. Note

that Cameroon was grouped with West Africa, rather than treated as a separate, Central Africa

population, because A) this is consistent with the MalariaGEN population definitions (MalariaGEN



80

et al., 2023) and B) only 21 samples were successfully genotyped for Cameroon. The Bonferroni

correction for multiple hypothesis testing was applied to the p-values from the Tajima tests. Loci

under significant selection were removed prior to downstream population genetics analysis.

Linkage disequilibrium (LD) was estimated among all pairs of loci from the same chromosome

with r̄d (Agapow & Burt, 2001). This was accomplished with the poppr R package (Kamvar et al.,

2014). Once again, the Bonferroni correction for multiple hypothesis testing was used, and loci in

significant LD with other loci were removed.

A principle component analysis (PCA) was performed on a binary matrix of the genotype data,

where rows are samples and columns are haplotypes. PCA was performed with the R programming

language (R Core Team, 2021).

Finally, genetic relatedness was assessed using Dcifer, a tool that estimates relatedness be-

tween samples using allele frequencies and the concept of identity-by-descent (Gerlovina et al.,

2022). The population-level allele frequencies and estimated MOI for each individual are used to

estimate whether observed sharing of genotypes between sample pairs is because of sharing in the

most recent common ancestor (in which case they are said to be identical-by-descent) or due to

chance alone. MOI was calculated as described above.

The sample-level relatedness estimates from Dcifer were aggregated to the country-level by

computing the fraction of constituent pairs that are highly related. A relatedness threshold of 0.25

was used to define highly-related pairs, which corresponds to the half-sibling level of relatedness in

humans (the biological interpretation is less straightforward in malaria, as it undergoes both sexual

and asexual reproduction). The fraction of highly-related infections is expected to be a better

measure of recent transmission, as opposed to the historical background, than mean relatedness

(Taylor et al., 2017).

4.3 Results

4.3.1 Sequencing results

Inspection of the read counts obtained for each locus and sample revealed that some samples

and loci did not amplify well (Appendix 4A). In addition, P. falciparum DNA corresponding to
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five panel markers was found in the negative controls. These five loci were removed for subsequent

analyses, as were samples with fewer than 10 loci and loci with fewer than 20 samples. After these

filters were applied, there were 184 samples and 43 loci remaining. Each country still has at least

12 samples in this reduced dataset.

4.3.2 Population genetics

No pairs of loci were found to be in significant LD after Bonferroni correction of the p=0.05

significance threshold. However, after Bonferroni correction of the Tajima test results, two markers

were found to have negative values of Tajima’s D at the 0.05 significance level: PF11_0373, in

East Africa, and PF3D7_0401900, in all three populations. These loci were filtered out of the

dataset prior to performing downstream analyses.

Genetic diversity is moderately high in all countries (Figure 4.2), and none of the countries have

significantly different diversity after Bonferroni correction of the p=0.05 significance threshold.

MOI is also fairly high across the board (Figure 4.3). Strikingly, not a single monoclonal infection

was present in the dataset. Once again, none of the countries have significant differences in MOI

once the p=0.05 threshold was Bonferroni corrected.

The first component of the PCA suggests the presence of three distinct genetic clusters, but these

do not appear to have any correspondence with geography (Figure 4.4).

Relatedness between sample pairs was fairly low, with most pairs having a relatedness of zero

(Figure 4.5A), and most of the remainder with a relatedness below 0.25, the half-sibling level (Fig-

ure 4.5B). A few sample pairs appear to be clones, as evidenced by their relatedness of one (Figure

4.5B). At the country level, the fraction of highly-related sample pairs appears to be somewhat

elevated among Ghana, Nigeria, and Cameroon, relative to other country pairs, and Kenya and Su-

dan, relative to other country pairs. Senegal, Botswana, and Ethiopia appear to be comparatively

isolated from the other countries (Figures 4.6 and 4.7). Within-country relatedness did not sub-

stantially exceed between-country relatedness in most cases, indicating a high degree of mixing

and gene flow between countries.
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Figure 4.2: Box plots showing the mean expected heterozygosities across all samples for each
marker in the panel. Each box corresponds to the samples from one country.

4.4 Discussion and Conclusion

The results of this study point to two main conclusions. First, the observations of high diversity

and low relatedness across all countries indicate that P. falciparum populations in Africa are rela-

tively panmictic. There are some nuances to this general pattern, which are discussed more below,

but overall little population structure was found. Second, the lack of significant differences in both

genetic diversity and MOI between countries, despite notable differences in falciparum malaria in-

cidence, call into question the utility of these statistics as measures of malaria transmission. These

two conclusions suggest that additional work clarifying the added value of microhaplotype marker

panels in genomic epidemiology would be useful to control programs confronted with the decision

of whether to employ such panels in routine surveillance.

Previous population genetics studies of P. falciparum in Africa have detected modest genetic

differentiation between East, Central, and West Africa (Amambua-Ngwa et al., 2019; Tonkin-Hill

et al., 2021; Verity et al., 2020). Our relatedness results are largely consistent with this picture,

as we measured lower relatedness between populations from East and West Africa than within
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those regions. Also, Amambua-Ngwa et al. (2019) described Ethiopia as a distinct subpopulation,

relative even to other countries in East Africa. They attribute this separation to landscape and

vector factors, rather than differences in human populations and/or movements. This is once again

consistent with our relatedness results, as Ethiopia has a notably lower relatedness with Kenya than

Sudan has with Kenya.

However, the genetic differentiation identified in these studies was relatively small, especially

compared to the distinctions between populations of P. falciparum from different continents (Malar-

iaGEN et al., 2023). This may explain why our principal component analysis did not identify the

same east-west gradient of genetic differentiation. This, coupled with the fact that relatedness is

generally low and genetic diversity is generally high, indicates that despite some regional differ-

ences African populations of P. falciparum are relatively panmictic.

Our second main conclusion, that MOI and diversity are not highly-informative metrics of trans-

mission in Africa, is also supported by previous work. Koepfli and Mueller (2017) reviewed the

literature on malaria transmission metrics and concluded that while there is some relationship

between diversity and transmission, changes in diversity can be "minimal despite substantial dif-

ferences in transmission intensity." Similarly, prior investigations of the relationship between MOI

and prevalence have only found weak correlations (Lopez & Koepfli, 2021; Paschalidis et al.,

2023). However, there has yet to be equally rigorous work on the relationship between MOI and

transmission, as measured by the EIR. Also, it has been argued that the real value of MOI is that it

can detect changes in transmission intensity over short periods of time (Camponovo et al., 2023),

and this idea has been supported with simulation results (Watson et al., 2021). Longitudinal stud-

ies that assess the relationship between within-host diversity metrics, such as MOI, and malaria

transmission, rather than prevalence, would help clarify this claim. In the meantime, the evidence

presented here and elsewhere suggests that both genetic diversity and MOI have some relationship

to underlying malaria transmission dynamics, but the correlation may be low and the interpretation

of these metrics from a control perspective is therefore unclear.

These results have implications for future applications of microhaplotype panels, such as the one
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employed in this study. While these panels undeniably provide richer, more detailed information on

the minority clones present in an infection than other genotyping technologies, our results suggest

the utility of this information is situational. We did not identify patterns of genetic differentiation

that had not already been described with more conventional methods, and the MOI estimated from

our data does not have obvious bearing on the local transmission environment. However, this is the

first study applying such a panel at this scale. Additional investigation into the added value of this

genotyping technology in different transmission environments and for different research questions

will help clarify its utility.

This work has certain limitations. The most prominent of these is the negative impact that

adding K13 primers to the LaVerriere et al. (2022) panel had on our sequencing yield. Redoing se-

quencing without these primers might substantially improve yield and strengthen the power of our

analyses. Second, MOI is essentially within-host richness, and it may not be the most informative

or useful metric of within-host diversity relevant to microhaplotype data. An alternative that in-

corporates both the richness and the relatedness of the strains circulating within a host, eMOI, has

been proposed (Murphy & Greenhouse, 2023). Once published, applying this metric to microhap-

lotype data such as that presented in this study might yield more useful insights into transmission

dynamics. Also, the number of geographic locations included in this study is insufficient to per-

form a statistically rigorous evaluation of the relationship between diversity, relatedness, MOI,

and incidence. Finally, the geographic locations that were included were selected based on ex-

isting collaborations and the feasibility of collecting data, rather than a statistically-based sample

design. Follow-on studies with a larger number of geographic locations that were selected to be

statistically-representative of a wide variety of transmission environments could shed further light

on these questions.

We have performed the first application of the LaVerriere et al. (2022) amplicon panel at the

continental scale. While the results overall point to a panmictic population, IBD-based relatedness

analyses did permit us to identify more subtle geographic patterns that are consistent with previous

work. More surprisingly, our results do not support the idea that diversity and MOI are informative
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metrics of transmission. This result has major implications for the genomic epidemiology field, and

must be investigated in more detail before large investments are made in the surveillance of genetic

metrics of transmission intensity. Therefore, while this study shows that microhaplotype markers

are a promising tool for genomic epidemiology of P. falciparum, additional work is necessary to

characterize the specific situations and questions best suited to their application.
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4.6 Appendices

4.6.1 Appendix 4A: Read counts for each sample and locus

The heatmaps below show the read count obtained for each locus and sample, divided into

different plots according to library plate. The read counts were taken from the CIGAR sequence

table produced by ASV_to_CIGAR.py in the Broad Institute’s malaria amplicon pipeline.

Note that plate 2 had very low yield across the board and was not processed with the malaria

amplicon pipeline.
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CHAPTER 5: Conclusions

The key outcomes of this dissertation can be summarized as follows: 1) resistance surface mod-

eling is a promising way to investigate drivers of malaria transmission, and is recommended for

complex environments where barriers to transmission may not be obvious; 2) the malaria field

now has access to a panel of microhaplotype loci for Plasmodium vivax, which enables robust

characterization of within-host diversity at the scale necessary for routine surveillance; and 3) mi-

crohaplotype data for P. falciparum has been shown to perform well for genetic relatedness analysis

in Africa, but further work is needed to evaluate how the genetic metrics obtained from this and

other data relate to transmission.

In Chapter 2, resistance surface modeling and other landscape genetics methods were applied to

microsatellite data from 44 locations in Western Kenya. The results clearly identified the Winam

Gulf of Lake Victoria as a barrier to gene flow. While this conclusion might seem obvious after

glancing at a map of the study area, it is not apparent a priori that this factor would consistently

outrank other environmental factors that vary throughout the area, such as elevation. Resistance

surface analysis makes it possible to quantitatively compare and rank the impact of various pur-

ported drivers of transmission. Furthermore, it does so in a manner that explicitly incorporates the

state of these drivers between sample locations, which sets it apart from other methods, such as

geographically-weighted regression (GWR), that only consider the state of drivers in the immediate

vicinity of study sites. Indeed, it would have been impossible to arrive at the conclusion described

above with a method like GWR, because one obviously cannot obtain malaria samples from the

Gulf itself. This case study demonstrates that resistance surface modeling is a more rigorous and

informative approach to investigating the drivers of malaria transmission between locations than

any of the methods that are now commonly applied.

Chapters 3 and 4 advance the application of amplicon sequencing of microhaplotypes in malaria
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genomic epidemiology. Chapter 3 describes the design and validation of a first-of-its-kind mi-

crohaplotype panel for P. vivax, and Chapter 4 demonstrates and discusses the application of an

analogous panel for P. falciparum. This genotyping technology is a promising method to gather

data on within-host diversity and minority infections at a scale necessary for genomic surveillance,

and the work presented in Chapter 3 lays the groundwork for this activity to begin in P. vivax.

However, the results of Chapter 4 suggest that further theoretical and experimental work will be

necessary before the full potential of this technology may be realized. While the panel performed

capably in detecting (subtle) patterns of genetic relatedness in Africa, the results of this study also

highlighted the fact that the relationship between genetic metrics and transmission itself remains

poorly understood. This does not mean that these new genotyping techniques will not be useful.

On the contrary, microhaplotype loci and the more sensitive estimates of MOI they enable will

likely be necessary to perform the types of studies needed to disentangle the complex interactions

of genetic diversity, relatedness, and MOI with prevalence, incidence, and transmission. As these

interactions are clarified, the utility of genetic metrics as proxies for transmission will finally be

understood at the level of detail necessary for genomic epidemiology to become a reliable and

robust tool in the malaria surveillance toolkit.

Prior to the completion of this dissertation, resistance surface modeling and microhaplotype

panels were new and relatively untested technologies in the malaria field. They were considered

promising, but the feasibility of applying them at scale had not been evaluated. By doing just

that, this dissertation makes a major contribution to our understanding of when and whether these

methods can yield valuable information about malaria transmission. When quantitative comparison

of transmission drivers is valuable, resistance surface modeling can fill the gap in a spatially-

rigorous manner. When characterization of minor alleles and powerful relatedness inference are

needed at a scalable cost, amplicon sequencing of microhaplotypes can now satisfy these goals for

both P. falciparum and P. vivax. This dissertation raises at least as many questions as it answers,

particularly with respect to the interpretation of genetic metrics of transmission, but this is another

form of progress, as it helps focus future research on the important problems.
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Genomic epidemiology for malaria is coming of age. It has already been used extensively to

monitor the spread of drug resistance and other genetic traits of interest, as well as map the major

populations of malaria and understand their historic spread. This dissertation helps expand the

scope of the field to address additional important questions: what drives transmission between

locations, and how can within-host diversity be best measured and interpreted? Further work is

required in both areas, but the methods and tools presented in this set of studies have already shown

great promise. One can only hope they will become standard practice in malaria epidemiology and

thus accelerate progress towards global eradication of this deadly disease.
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