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ABSTRACT 

 

NENAD VRUCINIC. Reexamination of gain theory for photoconductive devices.  

(Under the direction of DR. YONG ZHANG) 

 

 

Photoconductive detectors are semiconductor optoelectronic devices that absorb 

optical energy and convert it to electrical signal. However, photoconductive gain or 

quantum efficiency (𝑄𝐸) theory of photodetector exhibits considerable controversy in 

optoelectronics literature. Gain is generally defined as the ratio of the number of 

photogenerated charge carriers collected by the electrodes and the number of photons 

absorbed in the semiconducting photoconductor. This gain is often expressed as the ratio 

of the carrier’s lifetime over the carrier’s transit time, where the lifetime is the average time 

before an electron recombines with a hole, and the transit time is the time needed for 

photogenerated carriers to travel from one electrode to another under an applied voltage. 

This simple theory implies that it is possible to obtain high gain by reducing the transit 

time.   

In this dissertation, the gain theory of photoconductive detector with an intrinsic 

(undoped) semiconductor is reexamined by assuming primary photoconductivity. In 

contrast to the widely adopted gain formula as a ratio of the carrier lifetime to transit time, 

allowing for a value much greater than unity, it is shown that this ratio can only be used as 

𝑄𝐸 under the low-drift limit, but has been inappropriately generalized in the literature. The 

analytic results for photocarrier density, photocurrent, and 𝑄𝐸 in terms of normalized drift 

and diffusion lengths are obtained, which indicates that 𝑄𝐸 is limited to unity for arbitrary 

drift and diffusion parameters. A distinction between the two 𝑄𝐸 definitions used in the 

literature, but not explicitly distinguished, is discussed. The accumulative quantum 
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efficiency (𝑄𝐸𝑎𝑐𝑐) includes the contributions of the flow of all photocarriers, regardless of 

whether they reach the electrodes, whilst the apparent quantum efficiency (𝑄𝐸𝑎𝑝𝑝) is based 

on the photocurrent at the electrodes. In general, 𝑄𝐸𝑎𝑐𝑐 > 𝑄𝐸𝑎𝑝𝑝; however, they approach 

the same unity limit for the strong drift. Furthermore, it is shown that the photocurrent in 

the photoconductive channel is in general spatially nonuniform and that the presence of 

diffusion tends to reduce the photocurrent. As one form of secondary photoconductivity, it 

is confirmed that doping in a photoconductive device can yield a gain, limited by the ratio 

of the mobilities of majority and minority carriers. Based on the simulation results, new 

analytic results that show good agreement with simulated results are proposed. 

This work lays the ground for understanding mechanisms of experimentally 

observed, above-unity photoconductivity gains. Moreover, these findings should offer new 

insights into photoconductivity and semiconductor device physics and may potentially lead 

to novel applications. 

  



v 

 

DEDICATION 
 

 

 I dedicate this dissertation to father Nikola, mother Gordana, sister Dragana, 

grandfather Sava, late grandmothers Savka and Leposava, uncles Dragan and Aleksandar, 

aunts Ana and Slavica and their families.  

  



vi 
 

ACKNOWLEDGEMENTS 

 

 

 I would like to express sincere gratitude to my advisor, Dr. Yong Zhang, for his 

guidance and incredible patience during my work on this dissertation. Finishing this 

dissertation would certainly not be possible without his support and help. I want to thank 

my committee member, Dr. Glenn Boreman, for his understanding and great support during 

this journey, as well as to other committee members, Dr. Abasifreke Ebong and Dr. Yasin 

Raja. Administrative help from Mrs. Renee Johnson and retired Mr. Mark Clayton is 

appreciated.   

I would also like to express my gratitude to people from Rochester Institute of 

Technology for their help while I was student there: Dr. Drew Maywar and Dr. Nenad 

Nenadic, as well as to people from Center for Imaging Science: Dr. John Kerekes, Dr. 

Charles Bachmann, Dr. David Messinger, Dr. Zoran Ninkov, and Mrs. Elizabeth 

Lockwood. Additionally, I want to thank people from my previous schools for their impact 

on my education: Dr. Goran Poparic and late Dr. Ivan Anicin from Faculty of Physics at 

University of Belgrade, Dr. Zeljen Trpovski and Dr. Vladimir Vujicic from Faculty of 

Technical Sciences at University of Novi Sad, as well as to my high school physics teacher 

Mr. Vladimir Kovac. I want to extend my thanks to friends from the Optical Science and 

Engineering program at UNC Charlotte: Dr. Arash Shiri, Dr. Ana Hiza Ramirez-Andrade, 

Dr. Rui Qi and Trailokya, as well as to Dr. Zhang’s group members: Dr. Antardipan Pal, 

Wanseok, Austin, Hasan, Javad and Ismatul. Last, but not least, I want to thank my family 

for their endless support during the work on this dissertation.  

This work was supported by UNC Charlotte’s Graduate School and GASP, 

teaching assistantships and tuition funding provided by Department of Physics and Optical 



vii 
 

Science, research assistantships and Bissell Distinguished Professor Tuition Award 

provided by Dr. Zhang and U.S. Department of Defense (DOD) grant W911NF‐23-1‐0215.  

 

 

  



viii 
 

TABLE OF CONTENTS 

 

 

LIST OF FIGURES         ix 

 

LIST OF ABBREVIATIONS        xiii 

 

CHAPTER 1: INTRODUCTION       1 

     

1.1. Types of electrical contacts      1 

1.2. Photoconductivity of insulating crystals     9 

CHAPTER 2: REVIEW OF THE EXISTING PHOTOCONDUCTIVE  

GAIN THEORY         13  

2.1. Derivation of photoconductive gain formula    13 

2.2. Quantum efficiency of drifting charge carriers–analytic results  17 

CHAPTER 3: A NEW PHOTOCONDUCTIVE GAIN THEORY   27  

3.1. Assumptions and key findings      27 

3.2. Quantum efficiency of drift-diffusion charge carriers–analytic results 29 

CHAPTER 4: QUANTUM EFFICIENCY OF DRIFT-DIFFUSION CHARGE 

CARRIERS – NUMERICAL RESULTS      45 

CHAPTER 5: QUANTUM EFFICIENCY OF DRIFT-DIFFUSION CHARGE 

CARRIERS – SIMULATION RESULTS      54 

CHAPTER 6: QUANTUM EFFICIENCY OF DOPED PHOTOCONDUCTIVE 

DEVICE – SIMULATION RESULTS      62 

CHAPTER 7: CONCLUSIONS       69 

7.1. Summary          69 

7.2. Further work        71 

REFERENCES         74 



ix 

 

LIST OF FIGURES 
 

 

Figure 1: Energy level diagrams for neutral contact between metal  

electrode and semiconductor in MSM system: (a) 𝑞𝜙𝑚1 = 𝑞𝜙𝑚2 = 𝑞𝜙;  

(b) 𝑞𝜙𝑚1 < 𝑞𝜙 < 𝑞𝜙𝑚2         3 

Figure 2: An intrinsic blocking MS system before contact (left) and  

after contact (right): (a) an electron blocking contact; (b) a hole blocking contact 5 

Figure 3: An intrinsic Ohmic MS system: (a) before contact; (b) after contact;  

and (c) after contact with bias        5  

Figure 4: A doped MS system, without and with a bias: (a) n-type injecting  

Ohmic or p-type blocking contact; (b) n-type blocking or p-type injecting  

Ohmic contact          7 

Figure 5: An experimental setup for the measurement of the primary photocurrent 9 

Figure 6: Schematic representation of charge carriers for a primary photocurrent:  

(a) at low electric field (left); (b) at high electric field (right)   12 

Figure 7: Spatial distribution of photogenerated electrons (dashed lines) and  

holes (solid lines) for 𝑉 = 0.1 𝑉, 0.5 𝑉, 1.0 𝑉, 2.0 𝑉: (a) 𝜇 = 10 𝑐𝑚2𝑉−1𝑠−1;  

(b) 𝜇 = 100 𝑐𝑚2𝑉−1𝑠−1        23 

Figure 8: 𝑄𝐸𝑎𝑐𝑐  (solid lines) and 𝑄𝐸𝑎𝑝𝑝  (dashed lines) vs. applied voltage  

on logarithmic scale for: (a) different mobilities; (b) different lifetimes; and  

(c) different channel lengths. The green lines represent the maximum quantum   

efficiency 𝑄𝐸𝑚𝑎𝑥 = 1 .        26  

Figure 9: Normalized spatial distributions of photogenerated holes  

for different combinations of diffusion and drift parameters,  

𝑙𝑑𝑖 = (0, 0.1, 0.2, 0.4, 0.6): (a) 𝑙𝑑𝑟 = 0.1; (b) 𝑙𝑑𝑟 = 0.5; (c) 𝑙𝑑𝑟 = 1.0; and  

(d) 𝑙𝑑𝑟 = 5.0          34 

Figure 10: Normalized spatial dependencies of hole photocurrent densities  

for different combinations of diffusion and drift parameters, 

𝑙𝑑𝑖 = (0, 0.1, 0.2, 0.4, 0.6): (a) 𝑙𝑑𝑟 = 0.1; (b) 𝑙𝑑𝑟 = 0.5; (c) 𝑙𝑑𝑟 = 1.0; and  

(d) 𝑙𝑑𝑟 = 5.0          37 

Figure 11: (a) Quantum efficiencies 𝑄𝐸𝑎𝑐𝑐  (solid lines) and 𝑄𝐸𝑎𝑝𝑝  (dashed lines)  



x 

 

vs. normalized drift length 𝑙𝑑𝑟 for 𝑙𝑑𝑖 = (0, 0.2, 0.4, 0.6); (b) 𝑄𝐸𝑎𝑐𝑐  (solid lines)  

with low 𝑙𝑑𝑟 approximation (dashed lines); and (c) 𝑄𝐸𝑎𝑝𝑝  (solid lines)  

with low 𝑙𝑑𝑟 approximation (dashed lines). The green line represents the  

maximum quantum efficiency 𝑄𝐸𝑚𝑎𝑥 = 1.      39 

Figure 12: The total normalized photocurrent density 𝑗(𝜉), electron component  

𝑗𝑛(𝜉) and hole component 𝑗𝑝(𝜉) vs. normalized distance , compared to the  

average photocurrent density 𝑗𝑎𝑣𝑔 for three different (𝑙𝑑𝑟 , 𝑙𝑑𝑖) combinations:  

(a) low field: (𝑙𝑑𝑟 , 𝑙𝑑𝑖) = (0.2, 0.2); (b) medium field: (𝑙𝑑𝑟 , 𝑙𝑑𝑖) = (1.0, 0.2);  

and (c) high field: (𝑙𝑑𝑟 , 𝑙𝑑𝑖) = (5.0, 0.2)      41 

Figure 13: (a) Normalized electron concentration 𝛿𝑛() vs. normalized distance   

for different (𝑙𝑑𝑟 , 𝑙𝑑𝑖) combinations; (b) Normalized hole concentration 𝛿𝑝()  

vs. normalized distance  for different (𝑙𝑑𝑟 , 𝑙𝑑𝑖) combinations; and  

(c) Normalized photocurrent density 𝑗() vs. normalized distance  for different  

(𝑙𝑑𝑟 , 𝑙𝑑𝑖) combinations         49 

Figure 14: (a) Normalized photocurrent density 𝑗(𝜉) vs. normalized distance 𝜉  

for different normalized Debye lengths 𝑙𝐷 = (0.1, 0.2, 0.3, 0.4) and for  

(𝑙𝑑𝑟 , 𝑙𝑑𝑖) = (0.2, 0.1); (b) 𝑄𝐸𝑎𝑐𝑐 vs. normalized Debye length 𝑙𝐷  

for (𝑙𝑑𝑟 , 𝑙𝑑𝑖) = (0.2, 0.1); and (c) 𝑄𝐸𝑎𝑝𝑝  vs. normalized Debye length 𝑙𝐷  

for (𝑙𝑑𝑟 , 𝑙𝑑𝑖) = (0.2, 0.1)        51 

Figure 15: The total normalized photocurrent density 𝑗(), electron component  

𝑗𝑛() and hole component 𝑗𝑝() vs. normalized distance , compared to  

the average photocurrent density 𝑗𝑎𝑣𝑔 for two different (𝑙𝑑𝑟 , 𝑙𝑑𝑖) combinations:  

(a) low field (0.2, 0.2); and (b) medium field (1.0, 0.2). Dashed lines represent  

𝑗() for 𝑘 = 0, whilst the solid lines represent 𝑗() for 𝑘 = 1 after 10 iterations. 52 

Figure 16: Comparison of spatial distributions of photogenerated carriers 𝛥𝑛(𝑥)  

and 𝛥𝑝(𝑥), respectively, for two applied voltages, 0.1 V and 1.0 V:  

(a) and (b) for (𝜇𝑛 , 𝜇𝑝) = (1, 1) 𝑐𝑚2𝑉−1𝑠−1;  

(c) and (d) for (𝜇𝑛 , 𝜇𝑝) = (10, 10) 𝑐𝑚2𝑉−1𝑠−1     55 

Figure 17: Photocurrent density 𝐽 vs. applied voltage 𝑉 for comparison of the  

simulated results 𝐽𝑠𝑖𝑚 (black curves) and analytic results: 𝐽𝑎𝑐𝑐 (red curves)  



xi 
 

and 𝐽𝑎𝑝𝑝 (blue curves), for different combinations of mobility parameters  

(𝜇𝑛 , 𝜇𝑝): (a) (1, 1) 𝑐𝑚2𝑉−1𝑠−1; (b) (10, 10) 𝑐𝑚2𝑉−1𝑠−1; and  

(c) 𝐽𝑠𝑖𝑚 for (1, 1) 𝑐𝑚2𝑉−1𝑠−1, (10, 1) 𝑐𝑚2𝑉−1𝑠−1, and (10, 10) 𝑐𝑚2𝑉−1𝑠−1,  

respectively. The green lines represent the maximum photocurrent density 

𝐽𝑚𝑎𝑥 = 𝑞𝑔𝐿 = 4.8 𝑚𝐴𝑐𝑚−2.        56 

Figure 18: Spatial variations of the photocurrent density 𝐽(𝑥) for mobility  

parameters (𝜇𝑛 , 𝜇𝑝) = (10, 10) 𝑐𝑚2𝑉−1𝑠−1 and different voltages: (a) 0.1 V;  

(b) 1.0 V and 2.0 V. Spatial variations of the photocurrent densities  

𝐽(𝑥) (blue curves), 𝐽𝑑𝑟(𝑥) (black curves), 𝐽𝑑𝑖 (𝑥) (red curves),  

for mobility parameters (𝜇𝑛 , 𝜇𝑝) = (10, 10) 𝑐𝑚2𝑉−1𝑠−1 and  

for different voltages: (c) 0.1 V; (d) 1.0 V. Solid lines represent simulated results,  

dashed lines represent analytic results, whilst the green lines represent  

the maximum photocurrent density 𝐽𝑚𝑎𝑥 = 𝑞𝑔𝐿 = 4.8 𝑚𝐴𝑐𝑚−2.   59 

Figure 19: Spatial distributions of photogenerated minority (electron) carrier  

concentrations 𝛥𝑛(𝑥) under p-type doping concentration of 1017𝑐𝑚−3,  

for different levels of applied voltages 0.1 𝑉, 0.5 𝑉, 1.0 𝑉, 2.0 𝑉 and for different 

combinations of mobility parameters: (a) (𝜇𝑛 , 𝜇𝑝) = (337, 875) 𝑐𝑚2𝑉−1𝑠−1;  

(b) (𝜇𝑛 , 𝜇𝑝) = (875, 875) 𝑐𝑚2𝑉−1𝑠−1; (c) (𝜇𝑛 , 𝜇𝑝) = (1700, 875) 𝑐𝑚2𝑉−1𝑠−1;  

and (d) (𝜇𝑛 , 𝜇𝑝) = (2700, 875) 𝑐𝑚2𝑉−1𝑠−1. Simulated results of  

minority carriers (electrons) are represented by solid lines, simulated results of  

majority carriers (holes) are represented by yellow dashed lines, whilst  

analytic results are represented by dash-dotted lines.     63 

Figure 20: Photocurrent density 𝐽𝑝ℎ  vs. applied voltage 𝑉  

for 𝜇𝑛 > 𝜇𝑝  (black curve), 𝜇𝑛 = 𝜇𝑝 (red curve), and 𝜇𝑛 < 𝜇𝑝  

(blue and magenta curves) for p-type doping concentration of 1017𝑐𝑚−3.  

The green line represents the maximum photocurrent density  

𝐽𝑚𝑎𝑥 = 𝑞𝑔𝐿 = 8 𝐴𝑐𝑚−2 for 𝜇𝑛 = 𝜇𝑝.      65 

Figure 21: Photocurrent density 𝐽𝑎𝑐𝑐   vs. applied voltage 𝑉 curves under p-type  

doping concentration of 1017𝑐𝑚−3 for comparison of the simulated results  

𝐽𝑠𝑖𝑚 (black curves) and analytic results: 𝐽𝑎𝑐𝑐 (red curves) and  



xii 
 

𝐽𝑎𝑝𝑝 (blue curves), for different combinations of mobility parameters (𝜇𝑛 , 𝜇𝑝):  

(a) 𝜇𝑛 > 𝜇𝑝; (b) 𝜇𝑛 = 𝜇𝑝; (c) and (d) 𝜇𝑛 < 𝜇𝑝 . The green lines represent the  

maximum photocurrent densities 𝐽𝑚𝑎𝑥 = 𝑞𝑔𝐿 for different combinations  

of mobility parameters (𝜇𝑛 , 𝜇𝑝).       67 

Figure 22: Analytic photocurrent densities 𝐽𝑎𝑐𝑐 and  𝐽𝑎𝑝𝑝, and three simulated  

photocurrent densities 𝐽𝑠𝑖𝑚  under n-type of doping for different levels  

of n-type doping concentrations 1015𝑐𝑚−3 (red curves),  

1016𝑐𝑚−3 (magenta curves), and 1017𝑐𝑚−3 (cyan curves) vs. applied voltage 𝑉:  

(a) 𝜇𝑛 < 𝜇𝑝; (b) 𝜇𝑛 = 𝜇𝑝; (c) and (d) 𝜇𝑛 > 𝜇𝑝 . The green lines represent the  

maximum photocurrent densities 𝐽𝑚𝑎𝑥 = 𝑞𝑔𝐿 for different combinations of  

mobility parameters (𝜇𝑛 , 𝜇𝑝).        68 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 



xiii 
 

 

LIST OF ABBREVIATIONS 

 

 

 

BC    boundary condition 

G   gain  

MS   metal-semiconductor 

MSM   metal-semiconductor-metal 

QE    quantum efficiency 

QEacc   accumulative quantum efficiency 

QEapp   apparent quantum efficiency 

SCLC    space-charge-limited current 

SRH    Shockley-Read-Hall 

 

 

  



1 
 

CHAPTER 1: INTRODUCTION 

1.1. Types of electrical contacts 

A photoconductive device is a special type of photodetector that consists of a metal-

semiconductor-metal (MSM) structure [1-5]. To make measurements of the electrical conductivity 

or the photoconductivity in a semiconductor or an insulator, it is necessary to make electrical 

contact to the material, which is usually done with metallic contacts. Here, two identical metallic 

electrodes at MSM systems are assumed for the metallic contact. The most common types of 

contacts between the metal and semiconductor are blocking (rectifying or Schottky) contacts, 

neutral or flat-band contacts, and injecting Ohmic contacts [1, 6-9]. One of the properties of Ohmic 

contacts is the ability to replenish carriers to maintain charge neutrality in the material, if carriers 

are drawn out of the opposite contact by an electric field [7]. The blocking contacts are non-

injecting and thus, they are unable to replenish carriers created by photoexcitation when they are 

drawn out of the material by an applied electric field. A neutral contact is defined as one in which 

the carrier concentration at the contact is equal to that in the bulk of the semiconductor and they 

can replenish carriers created by photoexcitation when they are drawn out of the material by an 

applied electric field. Electrical neutrality condition further implies that there is no space charge 

and no band bending within the semiconductor. In this case the conduction and the valence band 

edges will be flat right up to the interface and thus, this type of contact is sometimes referred to as 

the flat band. Therefore, regions adjacent to the contact on both sides are electrically neutral. There 

are three possibilities in forming neutral contacts [7, 8]. In the first case, the metal and the 

semiconductor are brought together into contact as shown in Fig. 1(a), where the work function of 

metal 𝑞𝜙𝑚  and the work function of semiconductor 𝑞𝜙𝑠  are the same, i.e., 𝑞𝜙𝑚1 = 𝑞𝜙𝑚2 =

𝑞𝜙𝑚𝑠 , and q  is unit charge of electrons. The work function of metal is defined as the energy 
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difference between the vacuum energy level 𝐸𝑣𝑎𝑐  and Fermi energy level 𝐸𝐹  in the material, i.e. 

𝑞𝜙𝑚 = 𝐸𝑣𝑎𝑐 − 𝐸𝐹 , whilst the work function of semiconductor is defined by 𝑞𝜙𝑠 = 𝜒 +

(𝐸𝐶 − 𝐸𝐹), where 𝐸𝐶  denotes conduction band energy level and 𝜒 represents the electron affinity 

of semiconductor defined as the energy required for an electron to be removed from the bottom 

edge of the conduction band at the surface to a point in the vacuum just outside the material. The 

probability that the electrons will flow from the metal to the semiconductor is equal to the 

probability that the electrons will flow in the reverse direction. Therefore, there is no net flow, and 

no space charge formed near the interface. Apparently, after the contacts have been made, the 

differences between metal work functions and electron affinity will be equal, i.e., 𝑞𝜙𝑏1 = 𝑞𝜙𝑏2, 

whilst 𝑞𝜙𝑏1 = 𝑞𝜙𝑚1 − 𝜒  and 𝑞𝜙𝑏2 = 𝑞𝜙𝑚2 − 𝜒 . In another case, the contact can be neutral 

because the trapped space charge is too small to cause significant band bending [10]. The condition 

which needs to be fulfilled is 𝑞𝜙𝑚 ≠ 𝑞𝜙𝑠 (𝑞𝜙𝑚 > 𝑞𝜙𝑠 or 𝑞𝜙𝑚 < 𝑞𝜙𝑠), at low temperatures or 

with an electron trapping level at a distance sufficiently above 𝐸𝐹  (or the hole trapping level below 

𝐸𝐹) [8]. The case when the work functions of electrode 1, electrode 2, and the semiconductor are 

related as 𝑞𝜙𝑚1 < 𝑞𝜙𝑠 < 𝑞𝜙𝑚2  is shown in Fig. 1(b), where the potential difference (contact 

potential) across the semiconductor is given as 𝑉12 = 𝑞(𝜙𝑚2 − 𝑞𝜙1) and represents the difference 

in the work functions of the two materials when they are brought into the intimate contact. After 

the contacts have been made, differences between metal work functions and electron affinity are 

not equal, i.e., 𝑞𝜙𝑏1 < 𝑞𝜙𝑏2, since 𝑞𝜙𝑚1 < 𝑞𝜙𝑚2. 
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(a) 

 

(b) 

Figure 1: Energy level diagrams for neutral contact between metal electrode and semiconductor in 

MSM system: (a) 𝑞𝜙𝑚1 = 𝑞𝜙𝑚2 = 𝑞𝜙; (b) 𝑞𝜙𝑚1 < 𝑞𝜙 < 𝑞𝜙𝑚2 [8] 

 

Semiconductors can be distinguished as intrinsic (undoped) vs. extrinsic (doped), where 

extrinsic semiconductors are doped by impurity atoms, for the purpose of modulating their 

electrical or optical properties. There are two types of doped semiconductors: n-type, where 

electrons are majority carriers, and p-type, where holes are majority carriers [2, 7, 8]. In the case 

of an n-type semiconductor, material is doped with atoms that can donate electrons, which 

increases its conductivity. Conversely, in the case of a p-type semiconductor, material is doped 

with atoms that can accept electrons, but which increases conductivity as well. In the case of doped 
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materials, the carrier concentrations obey the relationship 𝑛𝑝 = 𝑛𝑖
2, where 𝑛𝑖 is the intrinsic carrier 

concentration, and 𝑛 and 𝑝 are electron and hole carrier concentrations, respectively, whilst in case 

of intrinsic materials 𝑛 = 𝑝 = 𝑛𝑖. 

 In the case of rectifying contacts, electrons can flow from the semiconductor to the metal 

under forward bias. However, the electrons available over the Schottky barrier can limit the flow 

of electrons from the metal under reverse bias. Fig. 2 shows energy level diagrams before and after 

contact, for an electron and hole blocking contact respectively, in a metal-semiconductor (MS) 

system. For an intrinsic MS, the condition for an electron blocking contact is 𝑞𝜙𝑚 > 𝑞𝜙𝑠 , as 

shown in Fig. 2(a). Conversely, the condition for a hole blocking contact, seen by electrons from 

semiconductor side or by holes from metal side, is 𝑞𝜙𝑠 > 𝑞𝜙𝑚 , as shown in Fig. 2(b). When 

carriers created by photoexcitation are drawn out of the material by an applied electric field, a 

blocking contact is unable to replenish carriers. In this case the photocurrent varies linearly with 

an applied electric field and become saturated at high electric fields. This type of photocurrent, 

called the primary photocurrent, was found in early experiments [7, 11-15]. When the 

photoconductor is illuminated, one absorbed photon can create at most one electron-hole pair and 

thus, the maximum gain is limited to unity in the context of primary photocurrent [1, 2, 14]. On 

the other hand, Ohmic contacts promote linear, Ohmic photocurrent at low voltages through the 

device [6, 16-18]. Furthermore, with Ohmic contacts at the electrodes, the space-charge can be 

injected and volume-distributed or spatially localized near the potential minimum at the contact 

[6]. This is the reason why Ohmic contacts are also called injecting contacts. Similarly, Figs. 3(a)-

(c) shows the energy level diagrams for an Ohmic contact between metal and intrinsic 

semiconductor. 
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(a) 

     

(b) 

Figure 2: An intrinsic blocking MS system before contact (left) and after contact (right): (a) an 

electron blocking contact; (b) a hole blocking contact [8] 

 

      (a)                                                 (b)                                                     (c) 

Figure 3: An intrinsic Ohmic MS system: (a) before contact; (b) after contact; and (c) after contact 

with bias [8] 
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A distinction between blocking contact and injecting Ohmic contact can be made under 

condition that effects of surface states are neglected and based on the relative magnitude of the 

metal work function 𝑞𝜙𝑚 and the semiconductor work functions 𝑞𝜙𝑠 . In Fig. 4(a) on the left, it is 

shown the n-type of an Ohmic injecting contact (or p-type blocking contact) without an applied 

electric field. On the right side of the same figure, it is shown the n-type of an Ohmic injecting 

contact (or p-type blocking contact) with an applied electric field, where 𝑞𝜙𝑑, which represents a 

diffusion potential, is the difference between 𝑞𝜙𝑠  and 𝑞𝜙𝑚, i.e., 𝑞𝜙𝑑 = 𝑞𝜙𝑠 − 𝑞𝜙𝑚 and 𝑞𝜙𝑚 <

𝑞𝜙𝑠 . Here, in the downward-bending region, there is a reservoir of free electrons available for 

injection into the bulk of the insulator at the contact. If an applied electric field is high enough, 

this reservoir can deliver an excess electron current, known as space-charge-limited current 

(SCLC), into the conduction band. Furthermore, there is a potential minimum or energy maximum 

in the insulator under an applied voltage and near the contact interface, shown as position 𝑃. 

Therefore, if carriers created by photoexcitation are drawn out of the material by an electric field, 

an Ohmic injecting contacts have ability to replenish carriers to maintain charge neutrality in the 

material. In this case the contacts contribute negligible electrical resistance, and the photocurrent 

flow is controlled by the resistance of the bulk semiconductor. 

A typical blocking contact to an n-type semiconductor (or p-type injecting Ohmic contact) 

without an applied electric field is shown in Fig. 4(b) on the left, and with an applied electric field 

in figure on the right, where 𝑞𝜙𝑑 = 𝑞𝜙𝑚 − 𝑞𝜙𝑠 and 𝑞𝜙𝑚 > 𝑞𝜙𝑠. While moving from the metal 

to the semiconductor, the electron faces barrier height 𝑉𝑏 , which is larger than 𝑞𝜙𝑑 by the amount 

𝐸𝐶 − 𝐸𝐹 , i.e., 𝑉𝑏 = 𝑞𝜙𝑑 + (𝐸𝐶 − 𝐸𝐹), and can be also written by using an electron affinity 𝜒 as 

𝑉𝑏 = 𝑞𝜙𝑚 − 𝜒.  
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(a) 

          

(b) 

Figure 4: A doped MS system, without and with a bias: (a) n-type injecting Ohmic or p-type 

blocking contact; (b) n-type blocking or p-type injecting Ohmic contact [7, 8] 

 

If the semiconductor is n-type injecting Ohmic contact, as shown in Fig. 4(a), then electrons are 

transferred from the semiconductor to the metal upon contact and 𝑉𝑏 = 𝜒 − 𝑞𝜙𝑚 , which leaves a 

depletion layer in the semiconductor. The condition for blocking contact, seen by holes from the 

metal side or by electrons from the opposite side is 𝑞𝜙𝑚 < 𝑞𝜙𝑠, for a metal p-type semiconductor 
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junction. Thus, this kind of contact blocks the hole emission from the metal. On the other hand, 

the n-type of an Ohmic injecting contact will be formed if electrons transferred from the metal to 

the semiconductor upon contact produce an accumulation layer in the semiconductor, i.e., 𝑞𝜙𝑚 <

𝑞𝜙𝑠 . For the p-type of an Ohmic injection contact, the relationship is reversed, i.e., 𝑞𝜙𝑚 > 𝑞𝜙𝑠. 

Under photoexcitation of the semiconductor, the injecting Ohmic contact may be converted 

into a neutral contact or even a blocking contact. Likewise, the neutral contact may be converted 

into a blocking contact. If an electric field 𝐸 is applied between two electrodes, the first electrode 

(cathode) can supply a maximum electron density 𝑛0 through a thermionic emission process to 

maintain the current flow in the insulator. The current density 𝐽 recorded at the second electrode 

(anode) is then given by 𝐽 = 𝑞𝑛0𝜇𝐸, which is well-known Ohm’s law, and it depends linearly on 

electric field 𝐸, where 𝑞 is the unit charge and 𝜇 carrier mobility. The contact can be considered 

as an Ohmic if the next three conditions are met: 1) for a given applied voltage 𝑉, the electric field 

𝐸 is constant throughout the insulator, i.e., there is no band bending; 2) the current density 𝐽 should 

be small enough to avoid the change of mobility 𝜇 with an electric field 𝐸 through the effect of 

Joule heating, so the electron mobility 𝜇 is independent of electric field 𝐸; and 3) the current 

density drawn through the insulator is less than the saturated thermionic emission current density 

from the cathode. The current density 𝐽 is proportional to the electric field 𝐸, until it becomes equal 

to the saturated thermionic emission current density. With the further increasing of an electric 

field, the thermionic emission current density is no longer capable of replacing the electrons drawn 

out at the anode. Under such conditions, the contact ceases to be an Ohmic and tends to become a 

blocking, whilst the conduction becomes electrode limited. In the case of an Ohmic injecting 

contacts and at low applied electric field, the photocurrent varies linearly with the field, whereas 

under high applied electric field, the charge carriers injected from a contact produce a net space 
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charge in the solid. This net space charge produces the secondary photocurrent, earlier introduced 

as SCLC, which has nonlinear variation with the applied field [1, 2, 6-8, 16-19]. Therefore, a 

distinction between blocking and neutral contacts vs. injecting Ohmic contacts regarding the type 

of the produced photocurrent and regarding the photoconductive gain is very important. With 

blocking or neutral contacts, provided there is no impact ionization, the maximum 

photoconductive gain is limited to unity since there is no replenishment of carriers at the electrodes. 

However, with the injecting Ohmic contacts between metal and semiconductor (insulator), there 

is possibility of the carrier replenishment at the electrodes, which allows for high photoconductive 

gain due to the electrically injected carriers from contacts. 

1.2. Photoconductivity of insulating crystals 

                                        

Figure 5: An experimental setup for the measurement of the primary photocurrent in the insulating 

crystals 

 

The photoconductivity of insulating crystals is well-described in classical textbooks [1, 2]. 

Here, it is assumed that the insulating crystal is mounted between two electrodes (cathode and 

anode) and illuminated in a small slice or throughout its volume, as shown in Fig. 5, where 𝑅𝐿 is 

load resistance required to convert the photocurrent 𝐼𝐿 into an output voltage under bias voltage 

𝑉0, 𝐸 is the applied electric field, 𝑑 is the thickness, and 𝐿 is distance between electrodes. When 

an insulating crystal is placed between metal electrodes, there is no current flow in dark because 
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the conduction levels are empty. Also, electrons in the cathode do not have sufficient energy to 

pass into the conduction band of the insulator. However, if an insulating crystal or its part is 

illuminated with the light of suitable wavelength, electrons are raised to the conduction band and 

can move toward the anode. At the same time, the holes may be mobile and drawn towards the 

cathode. The motion of photogenerated electrons and holes constitutes the primary photoelectric 

current, which is a direct photoelectric current. When the primary photocurrent is flowing, 

electrons are not able to enter the crystal from the cathode, unless they can neutralize holes drawn 

by the electric field. In early work, Gudden and Pohl studied photoconductivity processes and the 

nature of the charge carriers in crystals [11-13]. Also, they examined how photoconductivity 

depended on the applied electric field, the light intensity and wavelength, and time. They specified 

four characteristics of the primary photocurrent: (1) the photocurrent 𝐼𝑝ℎ is described as  

𝐼𝑝ℎ = 𝐼 − 𝐼𝑑𝑎𝑟𝑘 =
𝐹𝑞(𝑋++𝑋−)

𝐿
,         (1) 

where 𝐼 is the total current, 𝐼𝑑𝑎𝑟𝑘  is dark current of thermally generated carriers, 𝐹 is the rate at 

which free carriers (electrons and holes) are being generated by light, 𝑋+ is the distance in the 

direction of the electric field traveled by the freed positive carrier before it is trapped, 𝑋− is the 

distance in the direction opposite to the electric field traveled by the freed negative carrier before 

it is trapped, and 𝐿 is the distance between electrodes with which the electric field is applied; (2) 

the photocurrent is proportional to the light intensity; (3) the photocurrent is proportional to the 

applied electric field at the small electric field values and saturates with increasing the applied 

electric field to high values; and (4) the rise of the photocurrent at the beginning of excitation and 

the decay of the photocurrent when the excitation is removed is both essentially instantaneous. The 

behavior of the primary photocurrents was found in different kinds of materials, such as mercuric 

sulfide, zinc sulfide, diamond, and to a lesser extent in antimony sulfide, sulfur, and red selenium. 
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In the investigated materials, it has been found that the primary photocurrent could be separated 

into two portions: (1) a normal photocurrent produced under illumination due to the motion of the 

charge carriers under the applied electric field; and (2) the photocurrent in the reverse direction 

produced under illumination when the external electric field is removed, and the crystal is 

electrically short-circuited. The ratio of the number of charges passing between electrodes to the 

number of absorbed photons for a given time interval is called the quantum efficiency (𝑄𝐸) or the 

gain (𝐺). Eq. (1) shows that the number of electronic charges passing between the electrodes for 

each photon absorbed is at most unity, since the maximum value of 𝑋+ + 𝑋−  is equal to the 

distance between electrodes 𝐿. If either the positive or the negative carrier freed by light is trapped 

and immobilized in the crystal before it reaches the electrode, the gain could be even less than 

unity. At a low applied electric field both carriers have been trapped in real crystals before they 

have reached electrodes. The traveling distance of carriers before being trapped is increased 

linearly with an applied electric field. Therefore, the photocurrent is proportional to the electric 

field at low electric fields, as shown in Fig. 6(a), and the photoconductive gain has been much less 

than unity. When the electric field is increased, more mobile carriers arrive at the electrode before 

being trapped and the photocurrent starts to saturate with the applied field. When the electric field 

is high enough to draw both carriers out of the crystal before they have been trapped, the 

photocurrent saturates at the constant value, as shown in Fig. 6(b), and the photoconductive gain 

approaches to unity, which is the maximum value. It should be noted that the present discussion is 

applicable when the contacts on electrodes are blocking. It means that holes or electrons cannot be 

injected from electrodes to maintain charge neutrality within the crystal, thus, the holes cannot 

enter the crystal from the positive electrode when the holes excited by light pass out into the 

negative electrode, and the electrons cannot enter the crystal from the negative electrode when the 
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electrons excited by light have passed out into the positive electrode. On the other hand, if the 

contacts between metal and insulator or semiconductor are injecting (Ohmic), an injection of 

carriers from the electrodes is possible and the gains much greater than unity may be obtained. 

Since at low applied electric fields excited carriers could be possibly trapped by crystal 

imperfections before they reach the electrodes, and if the saturation of the photocurrent with an 

applied electric field occurs at lower field, then the crystal could be considered as “more perfect”. 

    
 

Figure 6: Schematic representation of charge carriers for a primary photocurrent: (a) low electric 

field (left); (b) high electric field (right) [2] 
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CHAPTER 2: REVIEW OF THE EXISTING PHOTOCONDUCTIVE GAIN THEORY 

2.1. Derivation of photoconductive gain formula 

The photoconductive gain of a photodetector based on a semiconductor has been observed 

for over 150 years in a wide variety of materials [2, 20-24]. However, the photoconductive gain 

theory still exhibits considerable controversy and ambiguity in the literature. The gain 𝐺  is 

commonly expressed as the ratio of the carrier recombination lifetime 𝜏𝑐 to the carrier transit time 

𝜏𝑡 over the conductive channel [2, 21-28] 

𝐺 =
𝜏𝑐

𝜏𝑡
.                         (2) 

This simplistic equation implies that 𝐺  can be obtained by increasing 𝜏𝑐  and/or decreasing 𝜏𝑡 . 

Since its initial appearance [25], Eq. (2) has been widely used to explain the observed gains: due 

to a long recombination lifetime [22, 26, 27], a short transit time by having a high carrier mobility 

[26] or by increasing applied voltage [29], or by shortening channel length of the device [21, 22, 

26, 29]. Additionally, carrier trapping within the photoconductive channel (e.g., on the surface), 

thought to increase 𝜏𝑐, is often used as the mechanism for the high gain [22]. According to the 

existing photoconductive gain theory [23, 24, 26, 27], the photogenerated carriers may circulate 

multiple times throughout the circuit before they recombine, and based on this, they can generate 

a larger photocurrent and consequently photoconductive gain. This theory is also known as 

“recycling gain mechanism”, since it only leads to increased number of the collected carriers, while 

the concentration of the excess carriers does not increase [5]. The problem with the existing theory 

is that it assumes spatially uniform distribution of photogenerated carriers and their independence 

on the electric field [2, 7]. 

To find an expression for a traditional definition of the photoconductive gain of the 

photoconductor 𝐺 given by Eq. (2), it is necessary to start from a definition of QE, which is the 
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ratio of the number of photogenerated charge carriers collected by the electrodes 𝑁𝑐  and the 

number of photons absorbed in the semiconducting photoconductor 𝑁𝑝ℎ [22] 

𝐺 =
𝑁𝑐

𝑁𝑝ℎ
.           (3) 

In general, when the carrier diffusion is neglected, the total current density 𝐽 is determined only by 

its drift component and can be expressed as 

𝐽 = 𝑞𝐸(𝜇𝑛𝑛 + 𝜇𝑝𝑝)          (4) 

where 𝜇𝑛 and 𝜇𝑝 are mobilities of electrons and holes, whilst 𝑛 and 𝑝 are the total electron and 

hole concentrations, respectively. When the photoconductor is uniformly illuminated, the total 

electron and hole concentrations can be written as 𝑛 = 𝑛0 + ∆𝑛 and 𝑝 = 𝑝0 + ∆𝑝, where 𝑛0 and 

𝑝0 are concentrations of the thermally generated electron and hole concentrations, whilst ∆𝑛 and 

∆𝑝  are the photogenerated electron and hole concentrations, respectively. If optical carrier 

concentrations due to illumination of the photoconductor are much larger than the thermally 

generated carrier concentrations, i.e., ∆𝑛 ≫ 𝑛0  and ∆𝑝 ≫ 𝑝0 , it is justified to neglect a dark 

background carrier concentrations and currents at room temperature, which is typically a usual 

assumption in literature [2, 7, 30]. The photocurrent density, 𝐽𝑝ℎ can be written as 

𝐽𝑝ℎ =
𝐼𝑝ℎ

𝐴
= 𝐽 − 𝐽𝑑𝑎𝑟𝑘 = 𝑞𝐸(𝜇𝑛∆𝑛 + 𝜇𝑝∆𝑝),       (5) 

where 𝐴 is the cross-sectional area of the photoconductive device, and 𝐽𝑑𝑎𝑟𝑘 = 𝑞𝐸(𝜇𝑛𝑛0 + 𝜇𝑝𝑝0) 

is the dark current density. In general, the photogenerated concentrations of electrons and holes 

are considered to be given by ∆𝑛 = 𝑔𝜏𝑛  and ∆𝑝 = 𝑔𝜏𝑝 , where 𝜏𝑛  and 𝜏𝑝  are recombination 

lifetime of electrons and holes, respectively, and 𝑔 is the generation rate of electron-hole pairs or 

the number of absorbed photons per unit volume per second [2, 7]. This is valid under the 

assumption of the small photocurrent which does not affect the carrier lifetime. The maximum 
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photocurrent density is defined as 𝐽𝑚𝑎𝑥 = 𝑞𝑔𝐿, and, thus, gain can be also written as ratio of 𝐽𝑝ℎ 

and 𝐽𝑚𝑎𝑥 

𝐺 =
𝐽𝑝ℎ  

𝐽𝑚𝑎𝑥
=

𝑞𝐸(𝜇𝑛∆𝑛+𝜇𝑝∆𝑝)

𝑞𝑔𝐿
=

𝐸(𝜇𝑛𝜏𝑛+𝜇𝑝𝜏𝑝)

𝐿
=

𝑉(𝜇𝑛𝜏𝑛+𝜇𝑝𝜏𝑝)

𝐿2
,     (6) 

where 𝑉 = 𝐸𝐿  is the applied voltage. The transit times of electrons and holes can be further 

expressed as 𝜏𝑡,𝑛 = 𝐿
2𝜇𝑛

−1𝑉−1 and 𝜏𝑡,𝑝 = 𝐿
2𝜇𝑝

−1𝑉−1, respectively, and by substituting them into 

Eq. (6), the total photoconductive gain can be expressed as  

𝐺 =
𝜏𝑛
𝜏𝑡,𝑛

+
𝜏𝑝
𝜏𝑡,𝑝

.            (7)         

Eq. (7) considers both types of carriers and is generally adopted as a definition of photoconductive 

gain in the literature [2, 26, 27].  

However, this formula is obtained under two problematic assumptions: (1) all carriers, no 

matter where they are generated (i.e., at any location relative to the electrodes), contribute equally 

to the photocurrent; (2) the carrier distribution under an applied voltage remains uniform as in the 

zero-bias, when the detector is uniformly illuminated. The first assumption would be valid if the 

current of one carrier type alone could close the circuit without loss (e.g., electrons exiting the 

anode could all return to the conduction band through the cathode). However, this assumption is 

inconsistent with the primary photoconductivity, where in a steady state an electron and a hole are 

needed together to close the circuit, which implicitly assumes that a conduction band electron 

exiting from the anode can only return to the photoconductor through the cathode to the valence 

band, i.e., no carrier recycling within the same band. In this case, since electrons generated at a 

distance away from the collection electrode (i.e., anode) will decay in number while drifting 

toward the electrode, those generated at different distances from the electrode will contribute 

differently to the photocurrent. Specifically, for the carriers that either can or cannot reach the 

electrode, their contributions to the photocurrent are given by the ratio of their travel lengths 
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toward the collecting electrode to the channel length of the device [1, 14, 31]. The second 

assumption is invalid when more realistic boundary conditions (BCs), such as a vanishing BC, are 

applied to the semiconductor-metal contacts or electrodes in solving the drift-diffusion equation. 

For instance, the vanishing BCs correspond to the Ohmic injecting contacts of n-type or p-type 

doped semiconductors [3, 5, 32], as given in Fig. 4 and described in Ch. 1.1. 

There were a lot of attempts to explain the photoconductive gain theory in the literature, as 

well as to offer analytic solutions for the high photoconductive gain. The various interpretations 

have been adopted [5, 22, 33-37], however, they often fall back to the general consideration of Eq. 

(2), by seeking to prolong the carrier lifetime 𝜏𝑐 . For instance, Dan et al. [5] modeled 

photoconductive high photoconductive gain as the ratio of majority photogenerated carriers (holes) 

and minority photogenerated carriers (electrons), where electrons are localized by trapping effect 

of defects, surface states, and surface depletion region. Soci et al. [22] pointed out that the 

extremely high photoconductive gain is attributed to the presence of oxygen-related hole-trap 

states at the NW surface, which prevents charge-carrier recombination and prolongs the 

photocarrier lifetime. Matsuo et al. [33] proposed a model which includes spatial separation of 

photogenerated electron-hole pairs and their recombination at the surface. Papaionau [34] 

concluded that photoconductive gain depends on the photocarrier injection mechanisms from the 

surface and the substrate. Zardas et al. [35] claimed that the minority carrier lifetime is longer 

because of the separation of electron-hole pairs by the depletion region near the semiconductor 

surfaces. Konstantanos et al. [36] simply replaced the short minority carrier lifetime with the long 

trap lifetime to explain the phenomena. Grunwald and Schreck [37] derived analytical solutions 

for the gain as a function of impurity concentration, crystal thickness, and excitation density. 

 



17 
 

2.2. Quantum efficiency of drifting charge carriers–analytic results 

In the literature, two subtly different 𝑄𝐸 definitions are used, but without being explicitly 

distinguished. One definition, here referred to as an accumulative quantum efficiency (𝑄𝐸𝑎𝑐𝑐), 

assumes uniform absorption of light across the photoconductive device and includes all 

photocurrents that ever flow in the device, regardless of whether they reach the electrodes, as used 

in some literature [1, 3, 14, 31, 38, 39]. The other definition, here referred to as an apparent 

quantum efficiency (𝑄𝐸𝑎𝑝𝑝), corresponds to all the light being absorbed at the anode or cathode 

and evaluates the photocurrent collected at the anode or cathode. The latter is perhaps the one 

typically or often implicitly adopted in literature [5, 14, 15, 39]. However, these two definitions 

are not equivalent in general, which has not been recognized in literature, at least not explicitly. 

The necessity to distinguish them lies in that when the photogenerated carrier density distributions 

are nonuniform, the total photocurrent in the photoconductive channel, equal to the sum of the 

electron and hole currents, can be nonuniform as well. The spatial nonuniformity of photocurrent 

contradicts with the common wisdom that the current should be constant throughout a circuit. 

Another form of 𝑄𝐸, different than from Eq. (2) and based on accumulated charges that 

have ever travelled in the channel, including those that do not actually reach the electrode, can be 

found in [1, 14, 39]. Hecht [14] found that when a slice of the crystal is illuminated, as shown in 

Fig. 5, electrons released by a flash of the light were drawn by an applied electric field from the 

cathode into an unilluminated portion. One might expect that irrespective of the voltage all 

electrons would eventually reach the anode, as if they were in a vacuum tube. However, 

photocurrents did not behave in this way in any type of crystal, because of inevitable inter-band 

recombination. At low applied electric fields, the photocurrent was not independent on the voltage, 

instead, it was always roughly proportional to it. In every case, after drifting a certain distance, the 
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photogenerated electrons could get stuck in the crystal. Two types of electrons were considered 

under a weak electric field applied to the crystal. The first type of electrons was trapped at points 

lying towards the cathode from the point where they were released due to the diffusion, whilst the 

second type of electrons were trapped at points lying towards the anode from the point where they 

were released due to the drift and diffusion. An effect observed on the galvanometer has shown 

that in any field the number of the latter was greater than the number of the former. A deflection 

of the galvanometer has had the same value as it would have if all the photoelectrons would drift 

down the field a certain small drifting distance 𝐿𝑑𝑟,𝑛, called “Schubweg”, or mean travel range of 

the photoelectrons in this field [1, 14, 15, 39]. If electrons released by the light traveled a certain 

distance before being trapped or before they reached the anode, the first thing which should have 

been considered is the charge that has passed through the circuit as illustrated in Fig. 5. If an 

electron traveled only a distance 𝑥 , the charge measured by the electrometer or by the 

galvanometer was given as 𝑄 = 𝑞𝑥𝐿−1. Clearly, the total measured charge would have been equal 

to the elementary electronic charge for an electron travelled right across the crystal. It was 

supposed that the crystal was illuminated in a section at a distance 𝑥0 from the anode as shown in 

Fig. 5. For a weak electric fields, the mean distance 𝑥 travelled by the electron was equal to 𝐿𝑑𝑟,𝑛, 

and the measured photocurrent was proportional to the electric field 𝐸 . However, when 𝐿𝑑𝑟,𝑛 

became comparable with the distance 𝑥0, it was expected that the measured photocurrent would 

show a saturation value. The maximum charge obtained during a given illumination by increasing 

the applied field indefinitely was given as 𝑄𝑚𝑎𝑥 = 𝑛𝑞𝑥0𝐿
−1, where 𝑛 is the number of the released 

electrons. If the crystal was illuminated uniformly between the two electrodes, then the maximum 

obtained charge was given as 𝑄𝑚𝑎𝑥 = 𝑛𝑞/2. If electrons and positive holes have moved freely, 

then in either case the maximum obtained charge was doubled, i.e., 𝑄𝑚𝑎𝑥 = 𝑛𝑞 . To find a 
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theoretical expression for the mean drifting range 𝐿𝑑𝑟,𝑛, it was assumed that an electron remains 

in the free state for a time 𝜏 before it has been captured, where 𝜏 was independent on the electric 

field 𝐸 [1, 14]. Then, the range 𝐿𝑑𝑟,𝑛 was given as 𝐿𝑑𝑟,𝑛 = 𝐸𝜇𝑛𝜏𝑛, where 𝜇𝑛 is the mobility or 

drift velocity in unit field of an electron in the free state in the crystal, and 𝜏𝑛 is a lifetime of an 

electron. Apparently, the mean drifting range of electron 𝐿𝑑𝑟,𝑛 was proportional to the applied 

electric field 𝐸. If an electron was in the free state, it was assumed that the probability per time 𝑑𝑡 

that it was captured was equal to 𝑑𝑡/𝜏. If 𝑛0 electrons were freed at a given instant of time, after 

a time 𝑡  a number of electrons equal to 𝑛 = 𝑛0𝑒𝑥𝑝(−𝑡/𝜏)  has remained. As earlier, it was 

assumed that 𝑛0 electrons have been released at a distance 𝑥0 from the anode. There were 𝑛 =

𝑛0𝑒𝑥𝑝(−𝑥/𝐿𝑑𝑟,𝑛) electrons left after travelling a distance 𝑥 in the direction of the electric field. 

The number which has ended their path in the range 𝑑𝑥  was equal to – (𝑑𝑛/𝑑𝑥)𝑑𝑥 =

(𝑛0/𝐿𝑑𝑟,𝑛)𝑒𝑥𝑝(−𝑥/𝐿𝑑𝑟,𝑛)𝑑𝑥. The total distance drifted by particles was made up of two terms: a 

distance drifted by particles which did not reach the anode, and a distance drifted by particles 

which reached the anode. A distance drifted by particles which did not reach the anode was 

∫ 𝑥(𝑑𝑛/𝑑𝑥)𝑑𝑥
𝑥0

0
= (𝑛0/𝐿𝑑𝑟,𝑛)∫ 𝑥

𝑥0

0
𝑒𝑥𝑝(−𝑥/𝐿𝑑𝑟,𝑛)𝑑𝑥 , which was further reduced to 

𝑛0{𝐿𝑑𝑟,𝑛[1 − 𝑒𝑥𝑝(−𝑥0/𝐿𝑑𝑟,𝑛)] − 𝑥0𝑒𝑥𝑝(−𝑥0/𝐿𝑑𝑟,𝑛)}.  The distance drifted by 𝑛0𝑒𝑥𝑝(−𝑥0/

𝐿𝑑𝑟,𝑛) particles which reached the anode was equal to 𝑛0𝑥0𝑒𝑥𝑝(−𝑥0/𝐿𝑑𝑟,𝑛). By summing up 

these two terms and diving it by 𝑛0, the mean distance drifted by an electron was expressed as 

�̅� = 𝐿𝑑𝑟,𝑛[1 − 𝑒𝑥𝑝(−𝑥0/𝐿𝑑𝑟,𝑛)]. For the whole channel length of the crystal 𝐿, the collection 

efficiency of electrons 𝑄𝐸𝑎𝑐𝑐,𝑛, determined as the ratio of the released charge 𝑛0𝑞 and the charge 

passing through the galvanometer (𝑞𝑛0�̅�)/𝐿, was written as 𝑄𝐸𝑎𝑐𝑐,𝑛 = (𝐿𝑑𝑟,𝑛/𝐿)[1 − 𝑒𝑥𝑝(−𝑥0/

𝐿𝑑𝑟,𝑛)]. The average collection efficiency of electrons for the uniformly illuminated crystal 𝜂𝑛̅̅ ̅ was 
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obtained by averaging over all 𝑥0 from 0 to 𝐿. Similarly, the equivalent expression can be found 

for holes. In that case, the mean drifting range 𝐿𝑑𝑟,𝑝 could be expressed as 𝐿𝑑𝑟,𝑝 = 𝐸𝜇𝑝𝜏𝑝, where 

𝜇𝑝 is the mobility of holes in the free state in the crystal and 𝜏𝑝 is the lifetime of holes. Thus, it 

can be written 

𝑄𝐸𝑎𝑐𝑐,𝑛 =
𝐿𝑑𝑟,𝑛

𝐿
{1 −

𝐿𝑑𝑟,𝑛

𝐿
[1 − exp (−

𝐿

𝐿𝑑𝑟,𝑛
)]},      (8a) 

𝑄𝐸𝑎𝑐𝑐,𝑝 =
𝐿𝑑𝑟,𝑝

𝐿
{1 −

𝐿𝑑𝑟,𝑝

𝐿
[1 − exp (−

𝐿

𝐿𝑑𝑟,𝑝
)]}.      (8b) 

Therefore, the total average quantum collection efficiency of drifting particles can be written as a 

sum of the average collection efficiency of both type of carriers  

𝑄𝐸𝑎𝑐𝑐 =
𝐿𝑑𝑟,𝑛

𝐿
{1 −

𝐿𝑑𝑟,𝑛

𝐿
[1 − exp (−

𝐿

𝐿𝑑𝑟,𝑛
)]} +

𝐿𝑑𝑟,𝑝

𝐿
{1 −

𝐿𝑑𝑟,𝑝

𝐿
[1 − exp (−

𝐿

𝐿𝑑𝑟,𝑝
)]}. (8c) 

Only in the limiting case of 𝐿𝑑𝑟,𝑛 ≪ 𝐿, one finds 𝑄𝐸𝑎𝑐𝑐,𝑛 ≈ 𝐿𝑑𝑟,𝑛/𝐿 = 𝜏𝑐/𝜏𝑡. On the other hand, 

when 𝐿𝑑𝑟,𝑛 ≫ 𝐿, one has 𝑄𝐸𝑎𝑐𝑐,𝑛 → ½. Therefore, if only the primary conductivity is considered, 

Eq. (2) is an inappropriately generalized low conductivity limit result of Eq. (8a) and the total 

𝑄𝐸𝑎𝑐𝑐  is limited to unity. If both types of carriers have the same mobility and lifetime, or a 

mobility-lifetime product, they contribute equally to the total 𝑄𝐸𝑎𝑐𝑐. This result is appropriate for 

the primary photoconductivity, defined as that induced by the photogenerated carriers within the 

photodetector, without the participation of either externally injected or internally preexisted 

carriers and without the recycling effect [1, 2, 11-14]. In early literature, blocking electrodes were 

used to suppress recycling and disallow replenishment of carriers on electrodes [11-15]. To 

achieve the same effect and improve performance in modern day optoelectronic devices (e.g., 

photodetectors, solar cells, and light-emitting devices), an additional layer is typically inserted 

between the electrode and active layer to block selectively either the electron or the hole current 

in one electrode [40-42]. 
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To find an expression for the nonuniform photogenerated concentration of carriers, it is 

necessary to solve the continuity equation for electrons and holes. By neglecting diffusion, one 

can express the continuity equations and the photocurrent density equations for electrons and 

holes, respectively, as 

𝜕(∆𝑛(𝑥))

𝜕𝑡
= 𝑔 −

∆𝑛(𝑥)

𝜏𝑛
+

1

𝑞

𝜕𝐽𝑛(𝑥)

𝜕𝑥
= 0,        (9a) 

𝜕(∆𝑝(𝑥))

𝜕𝑡
= 𝑔 −

∆𝑝(𝑥)

𝜏𝑝
−

1

𝑞

𝜕𝐽𝑝(𝑥)

𝜕𝑥
= 0,        (9b) 

where 𝐽𝑛(𝑥) = 𝐽𝑑𝑟,𝑛(𝑥) = 𝑞𝐸𝜇𝑛∆𝑛(𝑥) and 𝐽𝑝(𝑥) = 𝐽𝑑𝑟,𝑝(𝑥) = 𝑞𝐸𝜇𝑝∆𝑝(𝑥) are the photocurrent 

densities of electrons and holes, respectively. Under the steady state, and by neglecting the effect 

of diffusion, the continuity equations for electrons and holes can be further written respectively as 

𝑔𝜏𝑛 − 𝛥𝑛(𝑥) + 𝐿𝑑𝑟,𝑛
∂(𝛥𝑛(𝑥))

∂𝑥
+ 𝜇𝑛𝜏𝑛𝛥𝑛(𝑥)

∂𝐸(𝑥)

∂𝑥
= 0,     (10a) 

𝑔𝜏𝑝 − 𝛥𝑝(𝑥) − 𝐿𝑑𝑟,𝑝
∂(𝛥𝑝(𝑥))

∂𝑥
− 𝜇𝑝𝜏𝑝𝛥𝑝(𝑥)

∂𝐸(𝑥)

∂𝑥
= 0.     (10b) 

 

Due to the absence of space-charge effects, the electric field is considered constant, which 

eliminates the ∂𝐸(𝑥)/ ∂𝑥 term in Eqs. (10). Furthermore, under an assumption that 𝛥𝑛(𝑥) and 

𝛥𝑝(𝑥) have spatially uniform distributions, i.e., ∂(𝛥𝑛(𝑥))/ ∂𝑥 = 0  and ∂(𝛥𝑝(𝑥))/ ∂𝑥 = 0, these 

concentrations could be determined solely by 𝛥𝑛(𝑥) = 𝑔𝜏𝑛 and 𝛥𝑝(𝑥) = 𝑔𝜏𝑝, which incorrectly 

leads to “recycling gain mechanism” [5].  

Depending on the assumption of the nature of the MS contacts, different BCs have been 

used in literature. For instance, when diffusion is neglected, and by assuming a blocking contact 

for the hole current at the anode, BC given as 𝛥𝑝(𝑥 = 0) = 0 is used to ensure that the hole current 

is zero at the anode, i.e., 𝐽𝑝(𝑥 = 0) = 0 [15]. Similarly, for electrons at the cathode, one has 

𝛥𝑛(𝑥 = 𝐿) = 0 and 𝐽𝑛(𝑥 = 𝐿) = 0. In this case, even under uniform illumination, the continuity 

condition for the photocurrent yields a nonuniform carrier distribution.  
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Despite Eqs. (10) can be solved independently when E/x = 0, it should be noted that if 

the mobility-lifetime products of electrons and holes are different, i.e., 𝜇𝑛𝜏𝑛 ≠ 𝜇𝑝𝜏𝑝 , 

photocurrents at the anode (mostly the electron current) and the cathode (mostly the hole current) 

will be different, which would disrupt the basic requirement of the current continuity in the external 

circuit. Moreover, solutions for the carrier densities would not satisfy the overall charge neutrality 

within the photoconductive channel. Since the focus is to determine the limiting value of the gain, 

another assumption of equal mobility-lifetime product of electrons and holes, i.e., 𝜇𝑛𝜏𝑛 = 𝜇𝑝𝜏𝑝 is 

adopted. Although the mobility-lifetime product is different in the most materials, 𝜇𝑛𝜏𝑛 = 𝜇𝑝𝜏𝑝 is 

not an unphysical assumption. Additionally, when E/x = 0 and the vanishing BCs are used, it 

is the only case that can have meaningful analytic solutions for both electrons and holes. 

Furthermore, since 𝜇𝑛𝜏𝑛 ≠ 𝜇𝑝𝜏𝑝  tends to reduce the gain through the polarization effect, this 

additional constrain does not affect the conclusion regarding the maximum gain value.  

The solutions of Eq. (10), for an excess concentration of electrons and holes respectively, 

could be written as 

𝛥𝑛(𝑥) = 𝑔𝜏𝑛 [1 − 𝑒𝑥𝑝 (−
𝐿−𝑥

𝐿𝑑𝑟,𝑛
)],         (11a) 

𝛥𝑝(𝑥) = 𝑔𝜏𝑝 [1 − 𝑒𝑥𝑝 (−
𝑥

𝐿𝑑𝑟,𝑝
)].         (11b) 

The plots of spatial distributions of photogenerated carrier concentrations 𝛥𝑐(𝑥) are shown in Fig. 

7 for four different applied voltages 𝑉 =  0.1 𝑉, 0.5 𝑉, 1.0 𝑉, 2.0 𝑉  and two different 

mobilities 𝜇 = 10 𝑐𝑚2𝑉−1𝑠−1, 100 𝑐𝑚2𝑉−1𝑠−1. Carrier distributions given by Eqs. (11) can be 

further used to calculate the photocurrent by averaging (integrating) the carrier density over the 

channel length [15] 

𝐽𝑎𝑐𝑐,𝑛 =
𝑞𝐸𝜇𝑛

𝐿
∫ ∆𝑛(𝑥)𝑑𝑥 =
𝐿

0
𝑞𝑔𝐿𝑑𝑟,𝑛 {1 −

𝐿𝑑𝑟,𝑛

𝐿
[1 − 𝑒𝑥𝑝 (−

𝐿

𝐿𝑑𝑟,𝑛
)]},   (12a) 
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𝐽𝑎𝑐𝑐,𝑝 =
𝑞𝐸𝜇𝑝

𝐿
∫ ∆𝑝(𝑥)𝑑𝑥 =
𝐿

0
𝑞𝑔𝐿𝑑𝑟,𝑝 {1 −

𝐿𝑑𝑟,𝑝

𝐿
[1 − 𝑒𝑥𝑝 (−

𝐿

𝐿𝑑𝑟,𝑝
)]},   (12b) 

whilst the total drift photocurrent can be expressed as sum of both, electron and holes photocurrents 

𝐽𝑎𝑐𝑐 = 𝑞𝑔 {𝐿𝑑𝑟,𝑛 {1 −
𝐿𝑑𝑟,𝑛

𝐿
[1 − 𝑒𝑥𝑝 (−

𝐿

𝐿𝑑𝑟,𝑛
)]} + 𝐿𝑑𝑟,𝑝 {1 −

𝐿𝑑𝑟,𝑝

𝐿
[1 − 𝑒𝑥𝑝 (−

𝐿

𝐿𝑑𝑟,𝑝
)]}}.  (12c) 

 

             

 

Figure 7: Spatial distribution of photogenerated electrons (dashed lines) and holes (solid lines) for 

𝑉 = (0.1 𝑉, 0.5 𝑉, 1.0 𝑉, 2.0 𝑉): (a) 𝜇 = 10 𝑐𝑚2𝑉−1𝑠−1; (b) 𝜇 = 100 𝑐𝑚2𝑉−1𝑠−1 

 

Thus, it can be concluded that photodetector has two operation regimes: a linear regime of “Ohmic 

photocurrent density” at low electric fields and the saturation regime, where the photocurrent 

density approaches to its maximum value at high electric fields [31]. Based on this, the 

photoconductive gain could be obtained by dividing Eq. (12c) by the maximum photocurrent 

density 𝐽𝑚𝑎𝑥 = 𝑞𝑔𝐿  and the obtained expression is the same as is 𝑄𝐸𝑎𝑐𝑐  given by Eq. (8c). 

Therefore, it is shown that results found in [1, 14] and [15] are equivalent. This is an important 

conclusion since by using the same approach, a new analytic expression for photoconductive gain 

can be derived when the effect of diffusion is considered.  
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The 𝑄𝐸𝑎𝑐𝑐  given by Eq. (8c) includes all photocurrents that ever flow in the device, 

regardless of whether they reach the electrodes. However, some of these carriers recombine before 

reaching the electrode, thus, not contributing to the photocurrent flowing through the external 

circuit. One might wonder how 𝑄𝐸𝑎𝑐𝑐 differs from another one 𝑄𝐸, which uses the current at the 

electrodes. Another definition, referred to as 𝑄𝐸𝑎𝑝𝑝 , evaluates the photocurrent collected at the 

electrode and is perhaps the one typically or often implicitly adopted in literature [5, 14, 15, 39]. 

However, it can be shown that 𝑄𝐸𝑎𝑐𝑐  and 𝑄𝐸𝑎𝑝𝑝  are not equivalent in general. Thus, in the 

literature, two subtly different 𝑄𝐸  definitions have been used, but without being explicitly 

distinguished. Evidently, by evaluating the drift current at 𝑥 = 0 for electrons or at 𝑥 = 𝐿 for 

holes, Eqs. (11) lead to 𝑄𝐸𝑎𝑝𝑝  at electrodes, given by [15, 39] 

𝑄𝐸𝑎𝑝𝑝,𝑛 =
𝐿𝑑𝑟,𝑛

𝐿
[1 − 𝑒𝑥𝑝 (−

𝐿

𝐿𝑑𝑟,𝑛
)],                                                                     (13a) 

𝑄𝐸𝑎𝑝𝑝,𝑝 =
𝐿𝑑𝑟,𝑝

𝐿
[1 − 𝑒𝑥𝑝 (−

𝐿

𝐿𝑑𝑟,𝑝
)].                                                                                      (13b) 

It should be noted that 𝑄𝐸𝑎𝑝𝑝 = 𝑄𝐸𝑎𝑝𝑝,𝑛  given by Eq. (13a) is solely due to contribution of 

electrons at 𝑥 = 0, whilst the contribution of holes is equal to 0. On the other hand, from Eq. (13b), 

𝑄𝐸𝑎𝑝𝑝 = 𝑄𝐸𝑎𝑝𝑝,𝑝 at 𝑥 = 𝐿 , whilst the contribution of electrons is equal to 0. This preserves 

equality of currents at both ends of the device under assumption 𝜇𝑛𝜏𝑛 = 𝜇𝑝𝜏𝑝.  

In Fig. 8(a)-(c), it is shown on the logarithmic scale how a drift-only 𝑄𝐸𝑎𝑐𝑐 and 𝑄𝐸𝑎𝑝𝑝  

change with an applied voltage for different carrier lifetimes, carrier mobilities and channel lengths 

of photoconductor. It can be shown that at low electric fields, the ratio of 𝑄𝐸𝑎𝑐𝑐, given by Eq. (8c) 

and 𝑄𝐸𝑎𝑝𝑝 , given by Eq. (13a) or Eq. (13b) is exactly 2. Thus, it can be concluded that both, 𝑄𝐸𝑎𝑐𝑐 

and 𝑄𝐸𝑎𝑝𝑝 , have two limiting cases: 1) at low electric fields, 𝑄𝐸 depends linearly on the applied 

electric field, whereas 𝑄𝐸𝑎𝑐𝑐 = 𝐿𝑑𝑟,𝑛/𝐿 + 𝐿𝑑𝑟,𝑝/𝐿 , whilst 𝑄𝐸𝑎𝑝𝑝 = 𝑄𝐸𝑎𝑝𝑝,𝑛(𝑥 = 0) =
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𝑄𝐸𝑎𝑝𝑝,𝑝(𝑥 = 𝐿)  and 𝑄𝐸𝑎𝑐𝑐/𝑄𝐸𝑎𝑝𝑝 ≈ 2/1 , and 2) at high electric fields, when the traveled 

distance is much longer than the channel length of photoconductor and in both cases, the maximum 

gain is limited to unity, i.e., 𝑄𝐸𝑎𝑐𝑐 → 1 and 𝑄𝐸𝑎𝑝𝑝 → 1. However, it is important to point out here 

that this difference between 𝑄𝐸𝑎𝑐𝑐 and 𝑄𝐸𝑎𝑝𝑝  arises because constant carrier lifetimes are used, 

as it is the case in most literature [1-5, 7, 14, 15, 22-29, 31, 33-37, 39]. If, for instance, 𝜏𝑛(𝑥) and 

𝜏𝑝(𝑥) are used instead of 𝜏𝑛  and 𝜏𝑝 , it would be expected that the 𝑄𝐸 evaluated on electrodes 

𝑄𝐸𝑎𝑝𝑝  is equal to the 𝑄𝐸𝑎𝑐𝑐, obtained by averaging all carriers across the channel length 𝐿, i.e., 

𝑄𝐸𝑎𝑝𝑝 = 𝑄𝐸𝑎𝑐𝑐. 

Nevertheless, increasing the carrier lifetime, the carrier mobility, or shortening the channel 

length means that photoconductor can only saturate faster, which makes it “more perfect”, 

however, in all cases 𝑄𝐸 approaches to the maximum, unity value. Therefore, when only drift of 

carriers is considered, under assumption of primary photoconductivity, an intrinsic photoconductor 

does not have 𝑄𝐸  larger than unity, independently of size of any of its parameter: the carrier 

mobility, the carrier lifetime, or the channel length of the device. 
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Figure 8: 𝑄𝐸𝑎𝑐𝑐  (solid lines) and 𝑄𝐸𝑎𝑝𝑝  (dashed lines) vs. applied voltage on logarithmic scale for: 

(a) different mobilities; (b) different lifetimes; and (c) different channel lengths. The green lines 

represent the maximum quantum efficiency 𝑄𝐸𝑚𝑎𝑥 = 1. 
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CHAPTER 3: A NEW PHOTOCONDUCTIVE GAIN THEORY  

3.1. Assumptions and key findings 

Many real-world photodetectors are p-n junction devices which use a vertical structure with 

planar contacts at the top and bottom, where the carriers are generated very close to the top contact. 

A p-n photodetector is known to not have a gain [3, 25]. However, most MSM type 

photoconductive devices often adopt a lateral structure, where the device is uniformly illuminated 

from the side, as those in the early literatures [1, 11-15, 31], as well as in many recent publications 

using nanowire type structures [22, 32, 43]. Thus, here is considered an undoped, lateral 

photoconductive device illuminated uniformly from the side. 

Within the framework of the primary photoconductivity, the photoconductive gain theory 

for a MSM structure with an intrinsic (undoped) semiconductor is reexamined in this work, with 

the goal of laying the ground for understanding the mechanism(s) of the photoconductive gain. In 

this photoconductive theory, by applying a few physically sound applications, analytic solutions 

for the photocarriers and photocurrent can be obtained for arbitrary conditions of drift and 

diffusion. By assuming primary photoconductivity, it is shown that the gain formula given by Eq. 

(2) is only valid in the low-drift limit. Nevertheless, this seemingly oversimplified case reveals a 

few previously not well recognized aspects of photoconductivity. 

The key assumptions related to the analytic model adopted here, as well as commonly 

adopted in the literature, are: (1) thermally generated carriers are negligible compared to 

photogenerated carriers and only photogenerated carriers within the photoconductive medium 

contribute to the photocurrent [1, 5, 14, 15, 39]; (2) the carrier velocity is proportional to the 

applied electric field [15]; (3) the carrier lifetime may include carrier trapping mechanisms, but 

the trapped carriers (e.g., by defect states) do not contribute to the photoconductivity; (4) there is 
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no surface recombination loss either at the MS contacts or the semiconductor surface [1, 5, 14, 

39];  (5) E/x = 0 or polarization effect is negligible, since this is the only case where the 

continuity equations for drift-only and drift-drift diffusion currents can be solved analytically [1, 

3, 5, 14, 15, 32, 39]; (6) constant mobilities and carrier lifetimes are assumed [1-5, 7, 14, 15, 22-

29, 31, 33-37, 39]; and (7) assumption of equal mobility-lifetime product of electrons and holes is 

adopted in analytic model, since nonequal product would violate charge neutrality, and currents at 

the anode and cathode would be different, which is physically impossible.  

Finally, the specific key findings and conclusions of this dissertation include: (1) By 

assuming negligible polarization effect, the general analytic results including drift and diffusion, 

for the electron and hole distributions and photocurrents, as well as 𝑄𝐸𝑎𝑐𝑐 and 𝑄𝐸𝑎𝑝𝑝 , are obtained 

in terms of normalized drift and diffusion lengths. Furthermore, it is shown that when diffusion is 

neglected, they recover the analytic results given in the literature for different limiting cases; (2) 

It is shown that by including both drift and diffusion, the intrinsic photoconductive gain, defined 

by either 𝑄𝐸𝑎𝑐𝑐 or 𝑄𝐸𝑎𝑝𝑝 , is always limited to unity, whilst in general 𝑄𝐸𝑎𝑐𝑐 > 𝑄𝐸𝑎𝑝𝑝; (3) The 

commonly adopted definition of photoconductive gain as the ratio of carrier lifetime to transit time 

given by Eq. (2), which allows a value much greater than unity, is only applicable in the low drift 

length region or low 𝑄𝐸  limit, but has been inappropriately generalized in the literature; (4) 

Numerical simulations for an intrinsic device are performed to confirm that the presence of the 

polarization effect does not change the qualitative conclusions; (5) Analytical and numerical 

results show good agreement and confirm experimentally obtained gains limited to unity within 

the framework of primary photoconductivity, as found in the numerous literature [1, 2, 11-14, 44-

46]; (6) Even though the individual photocarrier densities (i.e., electrons and holes) are expected 

to be nonuniform when the vanishing BCs are applied [3, 5, 15], the total photocurrent is often 
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implicitly assumed and sometimes explicitly stated to be uniform [3]. However, it is found that the 

photocurrent across the photoconductive channel is in general nonuniform, which is consequence 

of using constant 𝜏 ; (7) It is pointed out that within the framework of the intrinsic primary 

photoconductivity, carrier trapping does not lead to gain; (8) By performing numerical simulations, 

it is found that a modest gain is achievable if a doped semiconductor is used, as found in [5]. 

However, based on these results, new analytic solutions are proposed. 

3.2. Quantum efficiency of drift-diffusion charge carriers–analytic results 

Two basic transport mechanisms in a semiconducting or insulating crystals are drift, which 

is the movement of carriers due to an applied electric field, and diffusion, which is the process 

where carriers flow from a region of high concentration toward a region of low concentration due 

to the presence of a density gradients. In Ch. 2.2., where only drift of carriers was considered, it 

was shown that both, 𝑄𝐸𝑎𝑐𝑐  and 𝑄𝐸𝑎𝑝𝑝 , approaches unity even for increased carrier lifetime, 

carrier mobility or shortened channel length. The carrier diffusion is often omitted in the 

photoconductivity theory [1, 2, 14, 15, 21, 25-27, 31, 39, 47]. In a few cases, carrier diffusion is 

considered, for instance, in the low drift region [3, 38] and for the general conditions of drift and 

diffusion [3, 5, 32]. To examine potential impact on photocurrents, in this chapter a diffusion effect 

is included in analysis.  

In steady state, for uniform generation, the electron and hole carrier densities, 𝛥𝑛(𝑥) and 

𝛥𝑝(𝑥), respectively, can be obtained by solving drift-diffusion equations for electrons and holes 

[26, 27], and the corresponding photocurrent densities, 𝐽𝑛(𝑥) and 𝐽𝑝(𝑥)  can be respectively 

calculated as below 

𝐽𝑛(𝑥) = 𝐽𝑑𝑟,𝑛(𝑥) + 𝐽𝑑𝑖,𝑛(𝑥) = 𝑞𝜇𝑛𝐸(𝑥)𝛥𝑛(𝑥) + 𝑞𝐷𝑛
∂(𝛥𝑛(𝑥))

∂𝑥
,     (14a)  

𝐽𝑝(𝑥) = 𝐽𝑑𝑟,𝑝(𝑥) + 𝐽𝑑𝑖,𝑝(𝑥) = 𝑞𝜇𝑝𝐸(𝑥)𝛥𝑝(𝑥) − 𝑞𝐷𝑝
∂(𝛥𝑝(𝑥))

∂𝑥
,      (14b) 
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where 𝐷𝑛 = (𝑘𝑇𝜇𝑛)/𝑞  and 𝐷𝑝 = (𝑘𝑇𝜇𝑝)/𝑞  are diffusion coefficients of electrons and holes, 

respectively, 𝑘 the Boltzmann’s constant, and 𝑇 the temperature. Furthermore, the drift-diffusion 

equations, as well as a Poisson’s equation that describes the photocarrier induced change in the 

internal electric field, can be respectively written as 

𝐿𝑑𝑖,𝑛
2 ∂2(𝛥𝑛(𝑥))

∂x2
+ 𝐿𝑑𝑟,𝑛

∂(𝛥𝑛(𝑥))

∂𝑥
+ 𝜇𝑛𝜏𝑛𝛥𝑛(𝑥)

∂𝐸

∂𝑥
− 𝛥𝑛(𝑥) + 𝑔𝜏𝑛 = 0,    (15a)  

𝐿𝑑𝑖,𝑝
2 ∂2(𝛥𝑝(𝑥))

∂x2
− 𝐿𝑑𝑟,𝑝

∂(𝛥𝑝(𝑥))

∂𝑥
− 𝜇𝑝𝜏𝑝𝛥𝑝(𝑥)

∂𝐸

∂𝑥
− 𝛥𝑝(𝑥) + 𝑔𝜏𝑝 = 0,                           (15b) 

∂𝐸

∂𝑥
=

q[𝛥𝑝(𝑥)−𝛥𝑛(𝑥)]

0
,                                                                                                                  (15c) 

where 𝐿𝑑𝑟,𝑛 = 𝐸𝜇𝑛𝜏𝑛  and 𝐿𝑑𝑟,𝑝 = 𝐸𝜇𝑝𝜏𝑝  are the drift lengths, 𝐿𝑑𝑖,𝑛 = √𝐷𝑛𝜏𝑛  and 𝐿𝑑𝑖,𝑝 =

√𝐷𝑝𝜏𝑝 the diffusion lengths,  is the relative dielectric constant of the semiconductor, and 0 is 

the permittivity of the vacuum. In the standard forms of drift-diffusion equations, Eqs. (14) or (15), 

independent carrier lifetime 𝜏𝑛  and 𝜏𝑝  are used to describe the recombination of electrons and 

holes, respectively [26, 27]. A more thorough treatment should consider a kinetic model, such as 

the Shockley-Read-Hall (SRH) model, where the two processes are connected, as done in some 

literatures [26, 48-50]. Similarly to drift-only case, even if Eqs. (15) can be solved independently 

when E/x = 0, it should be noted that if the mobility-lifetime products of electrons and holes 

are different, i.e., 𝜇𝑛𝜏𝑛 ≠ 𝜇𝑝𝜏𝑝, photocurrents at the anode (mostly the electron current) and the 

cathode (mostly the hole current) will be different, which would disrupt the basic requirement of 

the current continuity in the external circuit. Furthermore, this would lead to violating the charge 

neutrality law for carrier distributions. Thus, the assumption of equal mobility-lifetime product of 

electrons and holes, i.e., 𝜇𝑛𝜏𝑛 = 𝜇𝑝𝜏𝑝 is adopted again.  

Qualitatively, the diffusion effect, which results in bidirectional motion of the carriers, 

tends to reduce the photocurrent, in contrast to the drift-only case where the carrier motion is 
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unidirectional under the applied field. The E/x term  𝛥𝑝(𝑥) − 𝛥𝑛(𝑥) in the drift-diffusion 

equation describes a charge polarization effect associated with the relative displacement of the 

electron and hole distributions induced by the external bias. This effect resembles the ultrafast 

screening of an applied bias resulting from the space-charge field set up by the separating carriers 

in a GaAs THz device [51]. As earlier, assumption E/x  0 is adopted, which means that the 

external field being much stronger than this perturbation. Under these approximations, Eqs. (15) 

can be solved analytically and independently. It can be seen from Eq. 15(c) that the impact of the 

E/x term is inversely scaled by the square of a normalized Debye length 𝑙𝐷 = 𝐿𝐷/𝐿, where 

𝐿𝐷 = √
0𝑘𝑇

q2𝑔𝜏
 is Debye length and 𝜏 = √𝜏𝑛𝜏𝑝. Therefore, for a small 𝑔𝜏 value or a large 𝑙𝐷, the 

polarization effect is negligible. 

Solving the drift-diffusion equation typically requires two BCs. Typically, the minority 

carrier densities at the electrodes are assumed to be equal to the thermal equilibrium value [3] or 

simply zero [5]. In the recent work including diffusion [5], BCs of 𝛥𝑛(𝑥 = 0) = 𝛥𝑛(𝑥 = 𝐿) = 0 

for a p-type semiconductor are used for Ohmic contacts by arguing that no excess of electrons is 

generated in the metal and that the carrier density should be continuous from the metal to 

semiconductor. Here, it is assumed the perfect carrier extraction at the electrodes, i.e., all carriers 

that can reach the electrodes will flow through the external circuit, which is consistent with the 

consideration that leads to Eq. (8a) [1, 14, 31]. The carrier extraction by the electrode can be treated 

as equivalent to the surface recombination of the MS interface at the electrode, with standard BCs 

for electrons and holes [7], respectively, 

𝐷𝑛
𝑑(𝛥𝑛(𝑥=0))

𝑑𝑥
=  𝑠𝛥𝑛(𝑥 = 0),         (16a) 

−𝐷𝑛
𝑑(𝛥𝑛(𝑥=𝐿))

𝑑𝑥
=  𝑠𝛥𝑛(𝑥 = 𝐿),        (16b) 



32 
 

where 𝑠 is the electrode extraction velocity (resembling the surface recombination velocity), 

taking the limit of 𝑠 →  for perfect extraction. These BCs are appropriate for a Schottky junction, 

with the metal work function 𝑞𝜙 significantly larger than the semiconductor electron affinity , 

i.e., 𝑞𝜙 −  ≫ 𝑘𝑇, where the electrons encounter a “cliff” at the contacts [1]. Because the gradient 

is expected to be finite at the boundary, 𝑠 →  implies that the carrier density goes to zero at the 

boundary. Thus, the solution will be the same as simply applying the vanishing BCs [5]. Again, 

the drift-diffusion equations can be solved analytically by assuming E/x = 0 [3, 5, 32]. By 

applying following BCs: 𝛥𝑛(𝑥 = 0) = 𝛥𝑛(𝑥 = 𝐿) = 0  and 𝛥𝑝(𝑥 = 0) = 𝛥𝑝(𝑥 = 𝐿) = 0 , the 

photogenerated concentration of electrons and holes can be respectively expressed as 

𝛥𝑛(𝑥) = 𝑔𝜏𝑛[1 − 𝑐1 𝑒𝑥𝑝((𝑥 − 𝐿)𝜆1) − 𝑐2 𝑒𝑥𝑝((𝑥 − 𝐿)𝜆2)],     (17a) 

𝛥𝑝(𝑥) = 𝑔𝜏𝑛[1 − 𝑐1 𝑒𝑥𝑝(−𝑥𝜆1) − 𝑐2 𝑒𝑥𝑝(−𝑥𝜆2)],      (17b) 

where 𝑐1 =
𝑒𝑥𝑝(−𝐿𝜆2)−1

𝑒𝑥𝑝(−𝐿𝜆2)−𝑒𝑥𝑝(−𝐿𝜆1)
> 0 , 𝑐2 =

1−𝑒𝑥𝑝(−𝐿𝜆1)

𝑒𝑥𝑝(−𝐿𝜆2)−𝑒𝑥𝑝(−𝐿𝜆1)
> 0  and 𝜆1,2 =

−𝐿𝑑𝑟,𝑝±√𝐿𝑑𝑟,𝑝
2 +4𝐿𝑑𝑖,𝑝

2

2𝐿𝑑𝑖,𝑝
2  

[5, 32]. By combining and solving Eq. (16a) and Eq. (17a), it can be shown after lengthy 

calculations that solution which includes surface recombination velocity is given for electrons as  

𝛥𝑛(𝑥, 𝑠) = 𝑔𝜏𝑛 {1 −
𝑠𝑐1

𝑠−𝐷𝑛𝜆1
𝑒𝑥𝑝[(𝑥 − 𝐿)𝜆1] −

𝑠𝑐2

𝑠−𝐷𝑛𝜆2
𝑒𝑥𝑝[(𝑥 − 𝐿)𝜆2]}.   (18a) 

At 𝑥 = 0 and 𝑥 = 𝐿, it follows 

𝛥𝑛(𝑥 = 0, 𝑠) = 𝑔𝜏𝑛 [1 −
𝑠𝑐1 𝑒𝑥𝑝(−𝐿𝜆1)

𝑠−𝐷𝑛𝜆1
−

𝑠𝑐2 𝑒𝑥𝑝(−𝐿𝜆2)

𝑠−𝐷𝑛𝜆2
],     (18b) 

𝛥𝑛(𝑥 = 𝐿, 𝑠) = 𝑔𝜏𝑛 [1 −
𝑠𝑐1

𝑠−𝐷𝑛𝜆1
−

𝑠𝑐2

𝑠−𝐷𝑛𝜆2
].       (18c) 

Thus, carrier distributions also depend on surface recombination velocity. For instance, by 

neglecting surface recombination velocity, i.e., 𝑠 = 0, the solution of Eq. (18a) would simply be 

spatially uniform and independent of an electric field, i.e., 𝛥𝑛 = 𝑔𝜏𝑛. However, it was earlier 
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shown that this is not the case under an applied electric field. On the other hand, if Ohmic contacts 

are ideal, the surface recombination velocity would approach to the infinity, i.e., 𝑠 → ∞, since the 

metal is equivalent to a very strong surface recombination [9]. In that case, lim
𝑠→∞

𝛥𝑛(𝑥, 𝑠) of Eq. 

(18a) reduces to Eq. (17a). In another case, when diffusion was considered [3], assuming Ohmic 

contacts for both electrodes, with the anode at 𝑥 = 0 and cathode at 𝑥 = 𝐿, a nonuniform carrier 

distribution for holes at zero field was found as 

𝛥𝑝(𝑥) = 𝑔𝜏𝑝 [1 −
cosh(

2𝑥−1

2𝐿𝑑𝑖,𝑝
)

cosh(
𝐿

2𝐿𝑑𝑖,𝑝
) 

].                                                                                         (19) 

This solution is then used to calculate the photocurrent and gain by using the averaged carrier 

density over the channel length; however, not directly, but instead by introducing an effective 

carrier lifetime 𝑒𝑓𝑓  such that 𝛥𝑝𝑎𝑣𝑔 = 𝑔𝑒𝑓𝑓 .  

Fig. 9 plots the normalized carrier density 𝛿𝑝(𝜉) = 𝛥𝑝(𝜉)/𝑔𝜏, where 𝛥𝑝(𝜉) is determined 

by Eq. 17(b), for the following combinations of (𝑙𝑑𝑟; 𝑙𝑑𝑖): (𝑙𝑑𝑟 = 0.1, 0.5, 1.0, 5.0; 𝑙𝑑𝑖 =

0, 0.2, 0.4, 0.6). Note that normalized carrier distributions only depend on two parameters: 

normalized drift length 𝑙𝑑𝑟 = 𝐿𝑑𝑟/𝐿 and normalized diffusion length 𝑙𝑑𝑖 = 𝐿𝑑𝑖/𝐿, when expressed 

in normalized coordinate 𝜉 = 𝑥/𝐿. Generally, 𝛥𝑝(𝜉) is highly nonuniform and asymmetric in the 

photoconductive channel and it is more symmetric as diffusion becomes more dominant. 

Evidently, only in the low drift and weak diffusion cases, 𝛿𝑝 → 1 (i.e., 𝛥𝑝 → 𝑔𝜏) on the cathode 

side (e.g., 𝑙𝑑𝑟 = 0.1 and 𝑙𝑑𝑖 = 0.1  in Fig. 9(a)), which is in stark contrast to the common 

assumption of 𝛥𝑝 = 𝑔𝜏 throughout the channel for arbitrary (𝑙𝑑𝑟, 𝑙𝑑𝑖). As 𝑙𝑑𝑖 → 0, Eqs. (17) → 

Eqs. (11) in [𝜉𝐿, 𝐿). 
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Figure 9: Normalized spatial distributions of photogenerated holes for different combinations of 

diffusion and drift parameters, 𝑙𝑑𝑖 = (0, 0.1, 0.2, 0.4, 0.6): (a) 𝑙𝑑𝑟 = 0.1; (b) 𝑙𝑑𝑟 = 0.5; (c) 𝑙𝑑𝑟 =

1.0; and (d) 𝑙𝑑𝑟 = 5.0 

 

To find an accumulated drift-diffusion photocurrent density, it is necessary to find an 

average concentration of excess electrons and holes, as was the case with the drift-only 

photocurrent density. The average drift components of photocurrent density include the 

contribution of diffusion through 𝜆 parameters and can be expressed as  

𝐽𝑑𝑟,𝑛 =
𝑞𝐸𝜇𝑛

𝐿
∫ ∆𝑛(𝑥)𝑑𝑥
𝐿

0
= 𝑞𝑔𝐿𝑑𝑟,𝑛 {1 −

1

𝐿
[
1

𝜆1
−

1

𝜆2
]
[1−𝑒𝑥𝑝(−𝐿𝜆1)][1−𝑒𝑥𝑝(−𝐿𝜆2)]

𝑒𝑥𝑝(−𝐿𝜆2)−𝑒𝑥𝑝(−𝐿𝜆1)
},   (20a) 
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𝐽𝑑𝑟,𝑝 =
𝑞𝐸𝜇𝑝

𝐿
∫ ∆𝑝(𝑥)𝑑𝑥
𝐿

0
= 𝑞𝑔𝐿𝑑𝑟,𝑝 {1 −

1

𝐿
[
1

𝜆3
−

1

𝜆4
]
[1−𝑒𝑥𝑝(−𝐿𝜆3)][1−𝑒𝑥𝑝(−𝐿𝜆4)]

𝑒𝑥𝑝(−𝐿𝜆4)−𝑒𝑥𝑝(−𝐿𝜆3)
}.  (20b) 

On the other hand, the average diffusion photocurrent densities of electrons and holes are 

calculated as 𝐽𝑑𝑖,𝑛 = ∫
∂(𝛥𝑛(𝑥))

∂𝑥

𝐿

0
𝑑𝑥 = 0  and 𝐽𝑑𝑖,𝑝 = ∫

∂(𝛥𝑝(𝑥))

∂𝑥

𝐿

0
𝑑𝑥 = 0 . Therefore, the average 

diffusion photocurrent density is equal to zero; however, diffusion still contributes to the total 

photocurrent density through 𝜆 parameters, which can be written as a sum of Eqs. (20) 

𝐽𝑎𝑐𝑐 = 𝑞𝑔

{
 

 𝐿𝑑𝑟,𝑛 {1 −
1

𝐿
[
1

𝜆1
−

1

𝜆2
]
[1−𝑒𝑥𝑝(−𝐿𝜆1)][1−𝑒𝑥𝑝(−𝐿𝜆2)]

𝑒𝑥𝑝(−𝐿𝜆2)−𝑒𝑥𝑝(−𝐿𝜆1)
}

+

𝐿𝑑𝑟,𝑝 {1 −
1

𝐿
[
1

𝜆3
−

1

𝜆4
]
[1−𝑒𝑥𝑝(−𝐿𝜆3)][1−𝑒𝑥𝑝(−𝐿𝜆4)]

𝑒𝑥𝑝(−𝐿𝜆4)−𝑒𝑥𝑝(−𝐿𝜆3)
}}
 

 
.    (20c) 

Similarly, the average photoconductive gain due to a drift-diffusion photocurrent density can be 

expressed as the ratio of eq. (20c) and the maximum photocurrent density 𝐽𝑚𝑎𝑥 = 𝑞𝑔𝐿 

𝑄𝐸𝑎𝑐𝑐 =

{
 

 𝑙𝑑𝑟,𝑛 {1 −
1

𝐿
[
1

𝜆1
−

1

𝜆2
]
[1−𝑒𝑥𝑝(−𝐿𝜆1)][1−𝑒𝑥𝑝(−𝐿𝜆2)]

𝑒𝑥𝑝(−𝐿𝜆2)−𝑒𝑥𝑝(−𝐿𝜆1)
}

+

𝑙𝑑𝑟,𝑝 {1 −
1

𝐿
[
1

𝜆3
−

1

𝜆4
]
[1−𝑒𝑥𝑝(−𝐿𝜆3)][1−𝑒𝑥𝑝(−𝐿𝜆4)]

𝑒𝑥𝑝(−𝐿𝜆4)−𝑒𝑥𝑝(−𝐿𝜆3)
}}
 

 
     (21) 

Another way to derive the equivalent expression is to normalize the photocurrent density 

of the holes to the maximum current 𝐽𝑚𝑎𝑥 = 𝑞𝑔𝐿, by using Eq. (14b) and Eq. (17b) in normalized 

coordinate 𝜉, which can be written as 

𝑗𝑝(𝜉) = 𝑗𝑑𝑟,𝑝(𝜉) + 𝑗𝑑𝑖,𝑝(𝜉),                (22a) 

where the first term is the drift current with diffusion, whilst the second term is the diffusion current 

with drift, respectively 

𝑗𝑑𝑟,𝑝(𝜉) = 𝑙𝑑𝑟[1 − 𝑐1 𝑒𝑥𝑝(−𝜉𝐿𝜆1) − 𝑐2 𝑒𝑥𝑝(−𝜉𝐿𝜆2)],      (22b) 

𝑗𝑑𝑖,𝑝(𝜉) = 𝑙𝑑𝑖
2 [−𝑐1𝐿 𝜆1𝑒𝑥𝑝(−𝜉𝐿𝜆1) − 𝑐2 𝐿𝜆2𝑒𝑥𝑝(−𝜉𝐿𝜆2)].      (22c) 

Note that the spatial average of the diffusion term in Eq. (22a) is identically zero for any 𝑙𝑑𝑟,𝑝  and 

𝑙𝑑𝑖,𝑝. As 𝑙𝑑𝑖 → 0, it recovers the drift-only result in [𝑥, 𝐿) [15]. Fig. 10 plots 𝑗𝑝(𝜉) using the same 
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parameters (without 𝑙𝑑𝑖 = 0.1) as in Fig. 9. With diffusion considered, the photocurrent is in 

opposite directions or signs toward the two electrodes, indicating loss in photocurrent due to the 

bidirectional nature of the carrier diffusion, but the diffusion effect is being suppressed with 

increasing drift length 𝑙𝑑𝑟: for a fixed 𝑙𝑑𝑖, 𝑗𝑝(𝜉) increases with increasing 𝑙𝑑𝑟 from Fig. 10(a) to 

Fig. 10(d). Again, the electron photocurrent density 𝑗𝑛(𝜉) can be obtained by substituting 𝜉 with 

𝐿(1 − 𝜉) in Eq. (22a). Both, 𝑗𝑝(𝜉) and 𝑗𝑛(𝜉), are in general highly nonuniform. For small 𝑙𝑑𝑟 and 

large 𝑙𝑑𝑖  (e.g., 𝑙𝑑𝑟 = 0.1  and 𝑙𝑑𝑖 = 0.6  in Fig. 10(a)), 𝑗𝑝(𝑥) is close to be antisymmetric with 

respect to the center, thus, the average photocurrent is expected to be small (exactly zero for 𝑙𝑑𝑟 =

0), as expected for the diffusion dominated case. In contrast, for large 𝑙𝑑𝑟  and small 𝑙𝑑𝑖   (e.g., 

𝑙𝑑𝑟 = 5.0 and 𝑙𝑑𝑖 = 0.2 in Fig. 10(d)), 𝑗𝑝(𝜉) is positive in almost the whole channel, and the 

average approaches ½, as expected for the drift-only case.  

Adopting the same 𝑄𝐸 definition as in [1, 3, 14, 15, 31, 39] and by calculating the spatially 

averaged photocurrent density with diffusion included, the 𝑄𝐸𝑎𝑐𝑐  for holes can be obtained as 

𝑄𝐸𝑎𝑐𝑐,𝑝 = 𝑙𝑑𝑟{1 − 𝑙𝑑𝑟𝛼[coth(𝛼𝛽) − 𝑐𝑠𝑐ℎ(𝛼𝛽)cosh(𝛽)]},      (23) 

where 𝛼 = √1 + 4
𝑙𝑑𝑖
2

𝑙𝑑𝑟
2   and 𝛽 =

𝑙𝑑𝑟

2𝑙𝑑𝑖
2 . Note that the spatial average of the diffusion term in Eq. (22a) 

is identically zero for any 𝑙𝑑𝑟  and 𝑙𝑑𝑖 . The total 𝑄𝐸𝑎𝑐𝑐  is given by 𝑄𝐸𝑎𝑐𝑐 = 𝑄𝐸𝑎𝑐𝑐,𝑛 + 𝑄𝐸𝑎𝑐𝑐,𝑝 , 

with a unity limit. Fig. 11(a) plots 𝑄𝐸𝑎𝑐𝑐 vs. 𝑙𝑑𝑟 for 𝑙𝑑𝑖 = 0, 0.2, 0.4, and 0.6. For 𝑙𝑑𝑖 ≪ 𝑙𝑑𝑟 , when 

𝑙𝑑𝑟 ≪ 1, 𝑄𝐸𝑎𝑐𝑐,𝑝 ≈ 𝑙𝑑𝑟 ≈ 𝜏𝑐/𝜏𝑡, the same as Eq. (2); when 𝑙𝑑𝑟  ~ 1, 𝑄𝐸𝑎𝑐𝑐,𝑝 becomes Eq. (8b); 

and when 𝑙𝑑𝑟 ≫ 1, 𝑄𝐸𝑎𝑐𝑐,𝑝 → ½. When 𝑙𝑑𝑟 ≪ 1, 𝑄𝐸𝑎𝑐𝑐,𝑝  can be expanded to the first order in 𝑙𝑑𝑟, 

yielding 

𝑄𝐸𝑎𝑐𝑐,𝑝 ≈ 𝑙𝑑𝑟 [1 − 2𝑙𝑑𝑖 𝑡𝑎𝑛ℎ (
1

2𝑙𝑑𝑖
)].         (24) 
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This result is consistent with that of [3], where the zero-field carrier density distribution is used 

for the calculation. When 𝑙𝑑𝑖 → 0 and 𝑙𝑑𝑟 ≪ 1, 𝑄𝐸𝑎𝑐𝑐 ≈ 2𝑙𝑑𝑟 . It should be noted that the gain 

calculated by using Eq. (19) is equivalent to 𝑄𝐸𝑎𝑐𝑐.  

 

               

 

              

   

Figure 10: Normalized spatial dependencies of hole photocurrent densities for different 

combinations of diffusion and drift parameters, 𝑙𝑑𝑖 = (0, 0.1, 0.2, 0.4, 0.6) : (a) 𝑙𝑑𝑟 = 0.1 ; (b) 

𝑙𝑑𝑟 = 0.5; (c) 𝑙𝑑𝑟 = 1.0; and (d) 𝑙𝑑𝑟 = 5.0 
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Similarly, as with 𝑄𝐸𝑎𝑐𝑐, it is possible to find 𝑄𝐸𝑎𝑝𝑝  with diffusion included. The total 

normalized photocurrent density, can be calculated as 

𝑗(𝜉) = 𝐽(𝜉)/(𝑞𝑔𝐿) = 𝑗𝑛(𝜉) + 𝑗𝑝(𝜉) = 𝑗𝑑𝑟(𝜉) + 𝑗𝑑𝑖(𝜉),      (25a) 

with the drift term and diffusion terms, respectively  

𝑗𝑑𝑟(𝜉) = 2𝑙𝑑𝑟 {1 − 𝑐1 𝑒𝑥𝑝 (−
𝐿𝜆1

2
) 𝑐𝑜𝑠ℎ [𝐿𝜆1 (𝜉−

1

2
)] − 𝑐2 𝑒𝑥𝑝 (−

𝐿𝜆2

2
) 𝑐𝑜𝑠ℎ [𝐿𝜆2 (𝜉 −

1

2
)]},  (25b) 

𝑗𝑑𝑖(𝜉) = 2𝑙𝑑𝑖
2 𝐿 {−𝑐1𝜆1 𝑒𝑥𝑝 (−

𝐿𝜆1

2
) 𝑐𝑜𝑠ℎ [𝐿𝜆1 (𝜉 −

1

2
)] − 𝑐2 𝜆2𝑒𝑥𝑝 (−

𝐿𝜆2

2
) 𝑐𝑜𝑠ℎ [𝐿𝜆2 (𝜉 −

1

2
)]}.  (25c)  

The photocurrent density at the collecting electrodes, 𝑗(𝜉 = 0) or 𝑗(𝜉 = 1), respectively, at the 

anode or cathode, represents the actual photocurrent that goes through the external circuit and can 

be directly measured. A short-circuit condition is implicitly assumed in the calculation, thus, 

𝑗(𝜉 = 0) = 𝑗(𝜉 = 1)  is expected, as implied by Eq. (25a). Therefore, 𝑄𝐸𝑎𝑝𝑝 = 𝑗(𝜉 = 0) =

𝑗(𝜉 = 1) can be calculated as  

𝑄𝐸𝑎𝑝𝑝 = 𝑙𝑑𝑖
2 𝐿 {

𝜆1[1+𝑒𝑥𝑝(−𝐿𝜆1)][1−𝑒𝑥𝑝(−𝐿𝜆2)]−𝜆2[1−𝑒𝑥𝑝(−𝐿𝜆1)][1+𝑒𝑥𝑝(−𝐿𝜆2)]

𝑒𝑥𝑝(−𝐿𝜆2)−𝑒𝑥𝑝(−𝐿𝜆1)
},     (26a) 

which can be further simplified as 

𝑄𝐸𝑎𝑝𝑝 = 𝑙𝑑𝑟[1 − 𝛼𝑐𝑠𝑐ℎ(𝛼𝛽)𝑠𝑖𝑛ℎ(𝛽)].        (26b) 

Note that Eq. (25a) yields 𝑗𝑑𝑟(𝜉 = 0) = 𝑗𝑑𝑟(𝜉 = 1) = 0  and, thus, 𝑄𝐸𝑎𝑝𝑝 = 𝑗𝑑𝑖(𝜉 = 0) =

𝑗𝑑𝑖(𝜉 = 1) . When 𝑙𝑑𝑖 → 0 , 𝑄𝐸𝑎𝑝𝑝  approaches Eqs. (8a) and (8b), because 𝑗𝑎𝑝𝑝,𝑝(𝜉 = 0) =

𝑗𝑎𝑝𝑝,𝑛(𝜉 = 1) = 0. When 𝑙𝑑𝑟 ≪ 1, 𝑄𝐸𝑎𝑝𝑝  can be expanded to the first order in 𝑙𝑑𝑟 as 

𝑄𝐸𝑎𝑝𝑝 ≈ 𝑙𝑑𝑟 [1 −
1

𝑙𝑑𝑖
𝑐𝑠𝑐ℎ (

1

𝑙𝑑𝑖
)].                     (27) 
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Figure 11: (a) Quantum efficiencies 𝑄𝐸𝑎𝑐𝑐  (solid lines) and 𝑄𝐸𝑎𝑝𝑝  (dashed lines) vs. normalized 

drift length 𝑙𝑑𝑟  for 𝑙𝑑𝑖 = (0, 0.2, 0.4, 0.6) ; (b) 𝑄𝐸𝑎𝑐𝑐  (solid lines) with low 𝑙𝑑𝑟  approximation 

(dashed lines); and (c) 𝑄𝐸𝑎𝑝𝑝  (solid lines) with low 𝑙𝑑𝑟 approximation (dashed lines). The green 

line represents the maximum quantum efficiency 𝑄𝐸𝑚𝑎𝑥 = 1. 

 

When 𝑙𝑑𝑖 → 0 and 𝑙𝑑𝑟 ≪ 1, 𝑄𝐸𝑎𝑝𝑝 ≈ 𝑙𝑑𝑟 , which is a factor of 2 smaller than 𝑄𝐸𝑎𝑐𝑐 in the same 

limit. Fig. 11(a) also plots 𝑄𝐸𝑎𝑝𝑝  vs. 𝑙𝑑𝑟  for 𝑙𝑑𝑖 = 0, 0.2, 0.4 , and 0.6 , to compare with the 

corresponding 𝑄𝐸𝑎𝑐𝑐 curves, showing 𝑄𝐸𝑎𝑐𝑐 > 𝑄𝐸𝑎𝑝𝑝 in general. Note that Eq. (26b) gives the 
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total 𝑄𝐸𝑎𝑝𝑝 , including the contributions either of electrons or holes on the opposite electrodes. For 

comparison, Figs. 11(b) and 11(c) plot 𝑄𝐸𝑎𝑐𝑐 and 𝑄𝐸𝑎𝑝𝑝 , respectively, vs. 𝑙𝑑𝑟 in logarithmic scale, 

for 𝑙𝑑𝑖 = 0, 0.2, 0.4, and 0.6, including the results of the low 𝑙𝑑𝑟 limit, i.e., Eq. (24) and Eq. (27), 

respectively.  

𝑄𝐸𝑎𝑝𝑝  given by Eq. (26), reflecting the total current at 𝜉 = 0 or 𝜉 = 1, is essentially the 

same as the minority-carrier photocurrent, for instance, 𝐽𝑛 for a p-type semiconductor [5], where 

𝐽𝑛 seems to be evaluated from 𝐽𝑛 = 𝐽𝑛(𝑥 = 0) + 𝐽𝑛(𝑥 = 𝐿) from the solution of Eq. (15a). The 

reason that 𝐽𝑛 of doped device is in agreement with total current for an intrinsic device 𝐽(𝑥) =

𝐽𝑛(𝑥) + 𝐽𝑝(𝑥) at 𝑥 = 0 or 𝑥 = 𝐿 is because here it is considered an intrinsic semiconductor device 

with 𝜇𝑛𝜏𝑛 = 𝜇𝑝𝜏𝑝 , where 𝐽𝑝(𝑥 = 0) = 𝐽𝑛(𝑥 = 𝐿) and 𝐽𝑛(𝑥 = 0) = 𝐽𝑝(𝑥 = 𝐿). Thus, it can be 

written 𝐽(𝑥 = 0) = 𝐽𝑛(𝑥 = 0) + 𝐽𝑝(𝑥 = 0) = 𝐽𝑛(𝑥 = 0) + 𝐽𝑛(𝑥 = 𝐿)  or similarly 𝐽(𝑥 = 𝐿) =

𝐽𝑛(𝑥 = 𝐿) + 𝐽𝑝(𝑥 = 𝐿) = 𝐽𝑝(𝑥 = 0) + 𝐽𝑝(𝑥 = 𝐿) . However, it should be noted that it is not 

possible to solve the drift-diffusion equations for a p-type semiconductor for electrons and holes 

independently while ensuring 𝐽(𝑥 = 0) = 𝐽(𝑥 = 𝐿).  

Similarly, as in Ch. 2.2, when drift-only cases have been discussed, it should be pointed 

out that the difference between 𝑄𝐸𝑎𝑐𝑐 and 𝑄𝐸𝑎𝑝𝑝  appears due to the assumption (6) using constant 

carrier lifetime 𝜏, instead of spatially dependent 𝜏(𝜉). 

Furthermore, Figs. 12 compare 𝑗𝑛(𝜉), 𝑗𝑝(𝜉), and 𝑗(𝜉) = 𝑗𝑛(𝜉) + 𝑗𝑝(𝜉) with the spatially 

averaged value 𝑗𝑎𝑣𝑔 for three representative (𝑙𝑑𝑟 , 𝑙𝑑𝑖) combinations: low field (0.2, 0.2), medium 

field (1.0, 0.2), and high field (5.0, 0.2), respectively, and illustrate how each type of carrier 

contributes to the total drift-diffusion photocurrent at different field strengths measured by 𝑙𝑑𝑟. 

When diffusion is significant, as in Fig. 12(a), 𝑗𝑛(𝜉)  and 𝑗𝑝(𝜉) tend to have opposite signs and 

partially cancel each other at the electrodes, yielding a smaller net photocurrent. However, when 
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drift is dominant, as in Fig. 12(c), one of 𝑗𝑛(𝜉) and 𝑗𝑝(𝜉) diminishes at the respective electrode, 

yielding a larger net photocurrent, approaching 𝑗𝑎𝑣𝑔 or 𝑄𝐸𝑎𝑐𝑐.  

 

                 

 

 

Figure 12: The total normalized photocurrent density 𝑗(𝜉), electron component 𝑗𝑛(𝜉) and hole 

component 𝑗𝑝(𝜉) vs. normalized distance , compared to the average photocurrent density 𝑗𝑎𝑣𝑔 for 

three different (𝑙𝑑𝑟 , 𝑙𝑑𝑖 ) combinations: (a) low field: (𝑙𝑑𝑟 , 𝑙𝑑𝑖) = (0.2, 0.2); (b) medium field: 

(𝑙𝑑𝑟 , 𝑙𝑑𝑖) = (1.0, 0.2); and (c) high field: (𝑙𝑑𝑟 , 𝑙𝑑𝑖) = (5.0, 0.2) 
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Physically, the cancellation of the 𝑗𝑛(𝜉 = 0) and 𝑗𝑝(𝜉 = 0) can be understood as that some 

electrons reaching the anode, instead of flowing through the external circuit, may go back to the 

valence band directly, which is equivalent to saying that some holes diffuse out from the anode. 

In the case with diminished diffusion, 𝛿𝑝 → 0  and, thus, no empty state is available for the 

electrons to take. Thus, the whole electron current will flow through the external circuit and be the 

total current at the anode.  Importantly, under the assumption of constant 𝜏, the total photocurrent 

𝑗(𝜉) is typically nonuniform, which is more prominent in the case of low field as in Fig. 12(a). 

However, as the applied field increases, as shown in Figs. 12(b) and 12(c), it follows 𝑗(𝜉) → 𝑗𝑎𝑣𝑔 

since in this case the effect of recombination starts to diminish. This spatial nonuniformity of the 

current might sound inconsistent with the conventional wisdom that the current should be constant 

throughout the circuit under continuous and uniform illumination. In fact, not the entire amount of 

the electron or hole photocurrents can flow to the respective electrodes due to the interplay of 

generation, drift, and diffusion. Furthermore, the constant current within the photoconductive 

channel is not necessary to satisfy the current continuity in the external circuit, so long as the 

currents at the anode and cathode are equal, i.e., 𝑗(𝜉 = 0) = 𝑗(𝜉 = 1). Mathematically, the current 

nonuniformity is due to the nonuniform distributions of the carrier densities, where the electrons 

are skewed to the anode and holes to the cathode, and the current at the anode is dominated by that 

of the electrons, whereas at the cathode by the holes, as well as due to using constant 𝜏 instead of 

𝜏(𝜉) . Under that assumption and from Eq. (14) and Eq. (15), it follows that 𝑑𝐽(𝜉)/𝑑𝜉 =

(𝑞/𝜏)[𝛥𝑛(𝜉) − 𝛥𝑝(𝜉)] ≠ 0 under an applied bias. However, in the steady state, as in the earlier 

mentioned SRH model, it is expected to be 𝛥𝑛(𝜉)/𝜏𝑛(𝜉) − 𝛥𝑝(𝜉)/𝜏𝑝(𝜉) = 0. Otherwise, carriers 

would accumulate in the trap states until the balance is reached. Thus, a more general model should 
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be developed to treat this issue. Since 𝜇𝑛𝜏𝑛 = 𝜇𝑝𝜏𝑝, the total current maximizes at the center, as 

described by the analytic result below 

𝑗(𝜉 = 1/2) = 𝑙𝑑𝑟 [2 − 𝛼 𝑐𝑠𝑐ℎ (
𝛼𝛽

2
) 𝑠𝑖𝑛ℎ (

𝛽

2
) − 𝑐𝑜𝑠ℎ (

𝛽

2
) 𝑠𝑒𝑐ℎ (

𝛼𝛽

2
)].    (28) 

In general, 𝑗(𝜉 = 1/2) > 𝑗(𝜉 = 0) , whilst the small 𝑙𝑑𝑟  and 𝑙𝑑𝑖  values favor a large ratio of 

𝑗(𝜉 = 1/2)/𝑗(𝜉 = 0), with a limit of 2. Despite in general 𝑄𝐸𝑎𝑐𝑐 > 𝑄𝐸𝑎𝑝𝑝 , they approach the 

same limit of 1 as 𝑙𝑑𝑟 ≫ 1, which is true even as 𝑙𝑑𝑖 → 0, as shown in Fig. 11(a). In the limit of 

𝑙𝑑𝑖 → 0  and 𝑙𝑑𝑟 ≪ 1 , 𝑄𝐸𝑎𝑐𝑐 → 2𝑙𝑑𝑟 , whereas 𝑄𝐸𝑎𝑝𝑝 → 𝑙𝑑𝑟 . Here, a factor of 2 difference is 

because of 𝑗𝑝(𝜉 = 1) → 𝑙𝑑𝑟 , but 𝑗𝑛(𝜉 = 1) → 0, whereas both 𝑗𝑛(𝜉) and 𝑗𝑝(𝜉) are averaged to 

𝑙𝑑𝑟 . On the other hand, in the limit of 𝑙𝑑𝑟 ≫ 1 , 𝑗𝑝(𝜉 = 1) → 1  and 𝑗𝑛(𝜉 = 1) → 0 , whilst 

𝑗𝑛(𝜉 = 0) → 1 and 𝑗𝑝(𝜉 = 0) → 0, which contradicts the commonly accepted model, in which 

both the electron and hole photocurrents contribute equally at each electrode. The situation is like 

the short circuit current calculation in a solar cell, where only one type of carrier is considered, 

even though a uniform carrier distribution is assumed [52].  

Apparently, as in the case of the drift-only photocurrent density, the drift-diffusion 

photocurrent density also has two limiting cases: 1) in low-drift limit, i.e., 𝑙𝑑𝑟 ≪ 1, the average 

drift photocurrent density depends linearly on the applied electric field (“Ohmic photocurrent 

density”) and the maximum 𝐺 or 𝑄𝐸 is less than unity; and 2) in high-drift limit, i.e., 𝑙𝑑𝑟 ≫ 1, the 

average drift photocurrent density saturates to its maximum value, and, thus, 𝐺 or 𝑄𝐸 is limited to 

unity. As 𝑙𝑑𝑖 → 0, 𝑄𝐸𝑎𝑐𝑐 and 𝑄𝐸𝑎𝑝𝑝  given by Eq. (23) and Eq. (26b), respectively reduce to Eq. 

(8b) and Eq. (13b), which confirms correctness of results when diffusion is included in analysis.  

It is interesting to compare how including or excluding diffusion effect can affect analytic 

results for 𝑄𝐸. For very short channel lengths, when diffusion length is comparable to the channel 

length, i.e., 𝑙𝑑𝑖  ~ 1 or is much longer than the channel length, i.e., 𝑙𝑑𝑖 ≫ 1, the difference between 
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drift-only photocurrent density vs. drift-diffusion photocurrent density in the low drift region, i.e., 

𝑙𝑑𝑟 ≪ 1 can be easily few orders of magnitude. The difference becomes more noticeable when 𝜏 

or 𝜇 is being increased, and particularly when 𝐿 is decreased. For instance, by using following 

parameters: 𝜏 = 100 𝑛𝑠, 𝜇 = 500 𝑐𝑚2𝑉−1𝑠−1, 𝐿 = 5 𝜇𝑚, 𝑔 = 1022𝑐𝑚−3𝑠−1 , and 𝑇 = 300 𝐾, 

the diffusion length can be calculated as 𝐿𝑑𝑖 = 11.374 𝜇𝑚 or 𝑙𝑑𝑖 = 2.275. In this case, a drift-

only photocurrent density given by Eq. (12c) is about 60 times larger than a drift-diffusion 

photocurrent density given by Eq. (20c) when 𝑙𝑑𝑟 ≪ 1, although 𝑙𝑑𝑖  ~ 1. With further reduction 

of the size of the photoconductive device, and, thus, with increased 𝑙𝑑𝑖, that difference would be 

even more prominent. Therefore, if 𝑙𝑑𝑖  ~ 1 or if 𝑙𝑑𝑖 ≫ 1, then it is of great importance to include 

the effect of a diffusion into analysis for an accurate determination of 𝑄𝐸 when 𝑙𝑑𝑟 ≪ 1. On the 

other hand, neglecting diffusion photocurrent densities is justified if the channel length of device 

is much longer than the diffusion length, i.e., 𝑙𝑑𝑖 ≪ 1. 

Clearly, if only the primary photoconductivity and intrinsic devices are considered, the 

photodetector cannot have 𝐺  or 𝑄𝐸  above unity, independently of the values of the device 

parameters even when diffusion is included in analysis. Moreover, it was shown that the presence 

of diffusion effect tends to reduce 𝑄𝐸, more significantly for small 𝑙𝑑𝑟. It should be noted that the 

experimentally observed gains greater than unity are not disputed in this work, however, the widely 

accepted gain mechanism given by Eq. (2), appears to be a consequence of an inappropriately 

generalized low-field-limit result of Eq. (26), at least in the case of an intrinsic photoconductive 

device. Finally, even though some secondary photoconductivity effects could lead to 𝑄𝐸 greater 

than unity, it is not mathematically feasible to have the gain expressed universally as in Eq. (2). 
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CHAPTER 4:  QUANTUM EFFICIENCY OF DRIFT-DIFFUSION CHARGE CARRIERS – 

NUMERICAL RESULTS 

In the previous chapters it was shown that 𝑄𝐸 of an intrinsic photoconductive device is 

limited to unity within the primary photoconductivity. Furthermore, to assure equality of 

photocurrent on both ends of the photoconductive device in an analytic approach, it was necessary 

to assume equal mobilities of electrons and holes, i.e., 𝜇𝑛 = 𝜇𝑝. Since this is a very special case 

and, typically, for the most materials 𝜇𝑛 > 𝜇𝑝 , it is necessary to extend the analytic theory 

assuming nonequal mobilities, i.e. 𝜇𝑛 ≠ 𝜇𝑝 . However, for simplicity, the assumption of equal 

carrier lifetime for electrons and holes, i.e., 𝜏𝑛 = 𝜏𝑝, is still adopted. In this case, BCs used in an 

analytic approach, assuming 𝜇𝑛𝜏𝑛 = 𝜇𝑝𝜏𝑝 , given by 𝛥𝑛(𝜉 = 0) = 𝛥𝑛(𝜉 = 1) = 0 and 𝛥𝑝(𝜉 =

0) = 𝛥𝑝(𝜉 = 1) = 0  would lead to breakdown of the charge neutrality and consequently 

𝑗(𝜉 = 0) ≠ 𝑗(𝜉 = 1), which is not physically meaningful. Thus, for the 𝜇𝑛 > 𝜇𝑝 , the finite, non-

zero BCs for electron concentrations need to be introduced, i.e., 𝛥𝑛(𝜉 = 0) ≠ 0 and 𝛥𝑛(𝜉 = 1) ≠

0, which do not necessarily need to be same, whilst those for hole concentrations can be kept as 

zeros, i.e., 𝛥𝑝(𝜉 = 0) = 𝛥𝑝(𝜉 = 1) = 0.  

The problem can be now solved analytically and two parameters can be determined from 

the two conditions: (1) charge neutrality, i.e., equality of the total electrons and holes 

concentrations, 𝛥𝑛𝑡𝑜𝑡 = 𝛥𝑝𝑡𝑜𝑡 , which is equivalent to the ∆𝑛̅̅̅̅ = ∫ ∆𝑛(𝜉)𝑑𝜉 =
1

0
∆𝑝̅̅̅̅ ∫ ∆𝑝(𝜉)𝑑𝜉

1

0
; 

and (2) equality of currents at the cathode and anode, i.e., 𝑗(𝜉 = 0) = 𝑗(𝜉 = 1). The condition 

∆𝑛̅̅̅̅ = ∆𝑝̅̅̅̅  implies 𝑄𝐸𝑎𝑐𝑐,𝑛 = 𝑄𝐸𝑎𝑐𝑐,𝑝. Additionally, both conditions can be satisfied even if only 

one of BCs for electron concentrations is non-zero, for instance, 𝛥𝑛(𝜉 = 0) ≠ 0. It can be shown 

that these two conditions are equivalent. To show this equivalency, normalized Eqs. (17) should 

be integrated and equalized to set for charge neutrality condition. Further, normalized 
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concentration from Eq. (17a) should be set as 𝛥𝑛(𝜉 = 0) ≠ 0 and 𝛥𝑛(𝜉 = 1) = 0. To satisfy the 

second condition, the normalized Eqs. (14) should be equalized. After setting up these conditions 

and lengthy algebraic calculations, it can be shown that the condition of 𝑗(𝜉 = 0) = 𝑗(𝜉 = 1) is 

indeed equivalent to the condition ∆𝑛̅̅̅̅ = ∆𝑝̅̅̅̅ . 

To obtain the analytic solutions of drift-diffusion equations, another major approximation 

adopted in Ch. 3 was E/x = 0. Here, the effect of the inhomogeneity of the electric field caused 

by the relative displacement of the electron and hole distributions, i.e., 𝛥𝑛(𝑥) − 𝛥𝑝(𝑥) ≠ 0 is 

examined, whilst a polarization effect is induced by the applied field 𝐸0 = 𝑉/𝐿. If the total field 

is written as 𝐸(𝑥) = 𝐸0 + 𝛿𝐸(𝑥), the change in the 𝐸 field 𝛿𝐸(𝑥) can be expressed in terms of a 

potential 𝜙(𝑥)  through 𝛿𝐸(𝑥) = −𝑑𝜙(𝑥) 𝑑𝑥⁄ .  By using following BCs: 𝛥𝑛(𝜉 = 0) ≠ 0 , 

𝛥𝑛(𝜉 = 1) = 0 , 𝛥𝑝(𝜉 = 0) = 0 , 𝛥𝑝(𝜉 = 1) = 0 , 𝜙(𝜉 = 0) = 0 , and 𝜙(𝜉 = 1) = 0 , the 

following system of three equations can be solved 

∂2(𝛥𝑛(𝜉))

∂ξ2
+

𝑙𝑑𝑟,𝑛,0

𝑙𝑑𝑖,𝑛
2

∂(𝛥𝑛(𝜉))

∂𝜉
− 𝑘 (

∂(𝛥𝑛(𝜉))

∂𝜉

∂𝜙(𝜉)

∂𝜉
+ 𝛥𝑛(𝜉)

∂2𝜙(𝜉)

∂ξ2
) −

𝛥𝑛(𝜉)

𝑙𝑑𝑖,𝑛
2 +

1

𝑙𝑑𝑖,𝑛
2 = 0,   (29a) 

∂2(𝛥𝑝(𝜉))

∂ξ2
−

𝑙𝑑𝑟,𝑝,0

𝑙𝑑𝑖,𝑝
2

∂(𝛥𝑝(𝜉))

∂𝜉
+ 𝑘 (

∂(𝛥𝑝(𝜉))

∂𝜉

∂𝜙(𝜉)

∂𝜉
+ 𝛥𝑝(𝜉)

∂2𝜙(𝜉)

∂ξ2
) −

𝛥𝑝(𝜉)

𝑙𝑑𝑖,𝑝
2 +

1

𝑙𝑑𝑖,𝑝
2 = 0,   (29b) 

∂2(𝜙(𝜉))

∂ξ2
− 

(𝛥𝑛(𝜉)−𝛥𝑝(𝜉))

𝑙𝐷
2 = 0,          (29c) 

where 𝑙𝑑𝑟,𝑛,0  and 𝑙𝑑𝑟,𝑝,0  are, respectively, the drift lengths determined solely by the externally 

applied field, whilst 𝑘 = 0 or 𝑘 = 1 respectively indicates negligence or inclusion the polarization 

term E/𝜉. Evidently, the polarization effect is sensitive to the Debye length 𝑙𝐷 and diminishes 

when 𝑙𝐷  is very large. Solving coupled nonlinear equations for arbitrary 𝑙𝐷  is generally 

challenging. Here, the goal is to understand the potential impact of this effect by assuming a 

relatively large 𝑙𝐷 or small 𝑔𝜏 value. The following system of equations can be solved by using an 

iterative approach for 𝑘 = 1 or E/𝜉 ≠ 0 
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∂2(𝛥𝑛𝑖(𝜉))

∂ξ2
+

𝑙𝑑𝑟,𝑛

𝑙𝑑𝑖,𝑛
2

∂(𝛥𝑛𝑖(𝜉))

∂𝜉
− 𝑘 (

∂(𝛥𝑛𝑖(𝜉))

∂𝜉

∂𝜙𝑠(𝜉)𝑖−1

∂𝜉
+ 𝛥𝑛𝑖(𝜉)

∂2𝜙𝑠(𝜉)𝑖−1

∂ξ2
) −

𝛥𝑛𝑖(𝜉)

𝑙𝑑𝑖,𝑛
2 +

1

𝑙𝑑𝑖,𝑛
2 = 0,  (30a) 

∂2(𝛥𝑝𝑖(𝜉))

∂ξ2
−

𝑙𝑑𝑟,𝑝

𝑙𝑑𝑖,𝑝
2

∂(𝛥𝑝𝑖(𝜉))

∂𝜉
+ 𝑘 (

∂(𝛥𝑝𝑖(𝜉))

∂𝜉

∂𝜙𝑠(𝜉)𝑖−1

∂𝜉
+ 𝛥𝑝𝑖(𝜉)

∂2𝜙𝑠(𝜉)𝑖−1

∂ξ2
) −

𝛥𝑝𝑖(𝜉)

𝑙𝑑𝑖,𝑝
2 +

1

𝑙𝑑𝑖,𝑝
2 = 0,  (30b) 

∂2(𝜙𝑠,𝑖(𝜉))

∂ξ2
− 

(𝛥𝑛𝑖−1(𝜉)−𝛥𝑝𝑖−1(𝜉))

𝑙𝐷
2 = 0,         (30c) 

where 𝑖 represents the order of iterations. Thus, this system of equations is only possible to be 

solved numerically and iteratively, i.e., first using the zero-order carrier concentrations 𝛥𝑛0(𝜉) 

and 𝛥𝑝0(𝜉) to solve for the potential 𝜙0(𝜉), then, using 𝜙0(𝜉) to solve for 𝛥𝑛1(𝜉) and 𝛥𝑝1(𝜉), 

and repeating process until they converge. For the case of 𝜇𝑛 = 𝜇𝑝  and 𝜏𝑛 = 𝜏𝑝 , the charge 

neutrality condition ∆𝑛̅̅̅̅ = ∆𝑝̅̅̅̅  is satisfied automatically when the polarization effect is considered. 

However, for the case of 𝜇𝑛 ≠ 𝜇𝑝, 𝛥𝑛(𝜉 = 0) needs to be adjusted in each iteration to maintain 

the charge neutrality ∆𝑛̅̅̅̅ = ∆𝑝̅̅̅̅ . Thus, firstly, by assuming 𝑘 = 0, 𝛥𝑛0(𝜉) and 𝛥𝑝0(𝜉) are obtained 

with 𝛥𝑛(𝜉 = 0) that satisfies 𝛥𝑛0̅̅ ̅̅ ̅ = 𝛥𝑝0̅̅ ̅̅ ̅. Then, by using the 𝛥𝑛(𝜉) and 𝛥𝑝(𝜉) it is possible to 

solve for the potential 𝜙0(𝜉); then solve for 𝛥𝑛1(𝜉) and 𝛥𝑝1(𝜉) by using the potential 𝜙0(𝜉), but 

this yields 𝛥𝑛1̅̅ ̅̅ ̅ ≠ 𝛥𝑝1̅̅ ̅̅ ̅. However, 𝛥𝑛(𝜉 = 0) can be adjusted such that a new 𝛥𝑛(𝜉 = 0) is found 

to achieve 𝛥𝑛1̅̅ ̅̅ ̅ = 𝛥𝑝1̅̅ ̅̅ ̅. This can be done by solving the equation with a few 𝛥𝑛(𝜉 = 0) values, 

then perform linear interpolation to find the desirable 𝛥𝑛(𝜉 = 0)  value. The process can be 

repeated iteratively to reach the expected accuracy. By using this approach, Figs. 13(a) and 13(b) 

plot normalized electron and hole distributions 𝛿𝑛(𝜉) and 𝛿𝑝(𝜉), respectively, vs. normalized 

distance 𝜉 , for different (𝑙𝑑𝑟 , 𝑙𝑑𝑖) combinations. In Fig. 13(a), black and red curves represent 

solution for 𝑘 = 0 and 𝑘 = 1 after 10 iterations, respectively, for (𝑙𝑑𝑟,𝑛 , 𝑙𝑑𝑖,𝑛) = (0.40,0.20) and 

(𝑙𝑑𝑟,𝑝 , 𝑙𝑑𝑖,𝑝) = (0.10, 0.10). The corresponding non-zero BCs at 𝛥𝑛(𝜉 = 0) for black and red 

curves are 3.2774 and 3.1361, respectively. After increasing mobilities of electrons and holes both 
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by 10 times, (𝑙𝑑𝑟 , 𝑙𝑑𝑖)  combinations become (𝑙𝑑𝑟,𝑛 , 𝑙𝑑𝑖,𝑛) = (4.00, 0.63)  and (𝑙𝑑𝑟,𝑝, 𝑙𝑑𝑖,𝑝) =

(1.00, 0.32). The corresponding non-zero BCs at 𝛥𝑛(𝜉 = 0) are now 2.0385 and 1.9926, for 𝑘 =

0 and 𝑘 = 1 after 10 iterations, for blue and magenta curves, respectively. It should be noted that 

after normalization, the concentration of electrons can be above unity value, as shown in Fig. 13(a). 

However, as expected, the maximum concentration of holes does not cross unity value, as shown 

in Fig. 13(b), since 𝛥𝑝(𝜉 = 0) = 𝛥𝑝(𝜉 = 1) = 0 . In all cases, 𝑙𝐷 = 0.3  is used, which 

corresponds to, for instance, 𝑔 = 1022𝑐𝑚−3𝑠−1 , 𝜏 = 2.067 𝑛𝑠 , 𝐿 = 3 𝜇𝑚 , 𝑇 = 300 𝐾  for Si 

(𝜀 = 11.7).  

To find currents 𝑗(𝜉) for 𝑘 = 0, the following system of equations, given below, needs to 

be solved 

 𝑗𝑛(𝜉) = 𝑙𝑑𝑟,𝑛,0𝛥𝑛0(𝜉) + 𝑙𝑑𝑖,𝑛
2 ∂(𝛥𝑛(𝜉))

∂𝜉
,        (31a) 

𝑗𝑝(𝜉) = 𝑙𝑑𝑟,𝑝,0𝛥𝑝0(𝜉) + 𝑙𝑑𝑖,𝑝
2 ∂(𝛥𝑝(𝜉))

∂𝜉
,         (31b) 

𝑗(𝜉) = 𝑗𝑛(𝜉) + 𝑗𝑝(𝜉),           (31c) 

whilst the similar set of equations given below should be solved for 𝑘 = 1  to calculate the 

corresponding current after 𝑖 number of iterations 

𝑗𝑛,𝑖(𝜉) = 𝑙𝑑𝑟,𝑛,0 (1 −
𝑙𝑑𝑖,𝑛
2

𝑙𝑑𝑟,𝑛,0
𝜙𝑖−1(𝜉))𝛥𝑛𝑖(𝜉) + 𝑙𝑑𝑖,𝑛

2 ∂(𝛥𝑛𝑖(𝜉))

∂𝜉
,     (32a) 

𝑗𝑝,𝑖(𝜉) = 𝑙𝑑𝑟,𝑝,0 (1 −
𝑙𝑑𝑖,𝑝
2

𝑙𝑑𝑟,𝑝,0
𝜙𝑖−1(𝜉))𝛥𝑝𝑖(𝜉) + 𝑙𝑑𝑖,𝑝

2 ∂(𝛥𝑝𝑖(𝜉))

∂𝜉
,     (32b) 

𝑗𝑖(𝜉) = 𝑗𝑛,𝑖(𝜉) + 𝑗𝑝,𝑖(𝜉).          (32c) 
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Figure 13: (a) Normalized electron concentration 𝛿𝑛() vs. normalized distance  for different 

(𝑙𝑑𝑟 , 𝑙𝑑𝑖 ) combinations; (b) Normalized hole concentration 𝛿𝑝() vs. normalized distance  for 

different (𝑙𝑑𝑟 , 𝑙𝑑𝑖 ) combinations; and (c) Normalized photocurrent density 𝑗() vs. normalized 

distance  for different (𝑙𝑑𝑟 , 𝑙𝑑𝑖) combinations 

 

Fig. 13(c) plots normalized photocurrent density 𝑗(𝜉)  vs. normalized distance 𝜉 , for 

previous parameters. As expected, 𝑗(𝜉 = 0) = 𝑗(𝜉 = 1), with values of 0.0785, 0.0902, 0.5205, 

and 0.5274, for black, red, blue, and magenta curves, respectively. When 𝜇𝑛 = 𝜇𝑝, the total current 

is symmetrical and maximizes at the center, as shown in Figs. 12. However, when 𝜇𝑛 ≠ 𝜇𝑝, the 
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current distribution becomes asymmetric with respect to the center and tilts up on the side closer 

to the electrode at which the current is dominated by the larger-mobility species (e.g., when 𝜇𝑛 >

𝜇𝑝, the anode side raises relatively to the cathode side). 

Another goal of this work is to study the polarization effect in more detail. Since a larger 

Debye length 𝑙𝐷  implies smaller polarization effect, a reasonably large 𝑙𝐷  should be set, for 

instance greater than 0.1, for which the iterative approach for currents could work. Here, it is 

possible to solve problem iteratively by assuming E/𝜉 ≠ 0, as long as 𝑙𝐷 is not too small, e.g., 

𝑙𝐷 > 0.1, but also not too large to avoid E/𝜉 = 0 and, thus, negligible polarization term. For 

𝑘 = 0, E/𝜉 = 0 results are as those in analytical model. However, to solve for 𝛥𝑛(𝜉) and 𝛥𝑝(𝜉) 

numerically, 𝑘 = 1 includes the polarization term E/𝜉. It is interesting to find a normalized 

photocurrent density 𝑗(𝜉) by changing 𝑙𝐷, at fixed (𝑙𝑑𝑟 , 𝑙𝑑𝑖).  

Fig. 14(a) shows normalized 𝑗(𝜉)  vs. normalized 𝜉  at (𝑙𝑑𝑟,𝑛 , 𝑙𝑑𝑖,𝑛) = (𝑙𝑑𝑟,𝑝, 𝑙𝑑𝑖,𝑝) =

(0.2, 0.1)  for 𝑙𝐷 = 0.1, 0.2, 0.3 and 0.4. Reducing 𝑙𝐷  or increasing carrier generation rate 𝑔 

reduces 𝑄𝐸𝑎𝑐𝑐 , calculated as the average of all currents across the normalized distance 𝜉  at 

particular 𝑙𝐷, as shown in Fig. 14(b). However, reducing 𝑙𝐷 has an opposite effect on 𝑄𝐸𝑎𝑝𝑝 , i.e., 

it increases with reduction of 𝑙𝐷, which can be seen from Fig. 14(a) at 𝜉 = 0 or 𝜉 = 1 or from Fig. 

14(c).  
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Figure 14: (a) Normalized photocurrent density 𝑗(𝜉)  vs. normalized distance 𝜉  for different 

normalized Debye lengths 𝑙𝐷 = (0.1, 0.2, 0.3, 0.4) and for (𝑙𝑑𝑟 , 𝑙𝑑𝑖) = (0.2, 0.1); (b) 𝑄𝐸𝑎𝑐𝑐  vs. 

normalized Debye length 𝑙𝐷  for (𝑙𝑑𝑟 , 𝑙𝑑𝑖) = (0.2, 0.1) ; and (c) 𝑄𝐸𝑎𝑝𝑝  vs. normalized Debye 

length 𝑙𝐷 for (𝑙𝑑𝑟 , 𝑙𝑑𝑖) = (0.2, 0.1) 

 

It should be noted that for 𝜇𝑛 ≠ 𝜇𝑝, ratio of current at 𝜉 = 1/2 and current at one or at 

another end of device, i.e., 𝑗(𝜉 = 0) or 𝑗(𝜉 = 1), is much larger than that in the case of 𝜇𝑛 = 𝜇𝑝. 

This effect can be explained by the enhanced modulation, which can be understood as result of 

interplay of the drift and polarization terms. The drift effect tends to drag the electrons and holes, 
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respectively, to the opposite electrodes, whereas the polarization term makes them attract each 

other. Therefore, the net effect is to make both types of carriers stay closer to the center compared 

to the case without the polarization term. The effect is more significant for the weak field, like the 

effect of diffusion. Although the polarization effect and diffusion have the similar effects on the 

carrier distributions, their impacts to the 𝑄𝐸𝑠 are different: the former affects mostly the internal 

distribution within the channel, whereas the latter directly affects the current flow to the electrodes. 

 

              

        

Figure 15: The total normalized photocurrent density 𝑗(), electron component 𝑗𝑛() and hole 

component 𝑗𝑝() vs. normalized distance , compared to the average photocurrent density 𝑗𝑎𝑣𝑔 for 

two different (𝑙𝑑𝑟 , 𝑙𝑑𝑖 ) combinations: (a) low field (0.2, 0.2); and (b) medium field (1.0, 0.2). 

Dashed lines represent 𝑗() for 𝑘 = 0, whilst the solid lines represent 𝑗() for 𝑘 = 1 after 10 

iterations. 

 

After introducing possibility of solving problems with the polarization term E/𝜉, it is 

important to compare spatially nonuniform currents without the polarization term E/𝜉 included 

or 𝑘 = 0 and with the polarization term E/𝜉  included or 𝑘 = 1 and 𝑛 = 10. The results are 
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shown in Figs. 15, for two different (𝑙𝑑𝑟 , 𝑙𝑑𝑖) combinations. It should be noted from the same 

figure that with increasing normalized drift length 𝑙𝑑𝑟, the current with the polarization term E/𝜉 

approaches the one without the polarization term E/𝜉 . Thus, it is important to include 

polarization term E/𝜉 at low 𝑙𝑑𝑟 to get more accurate value of spatial photocurrent density. 
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CHAPTER 5:  QUANTUM EFFICIENCY OF DRIFT-DIFFUSION CHARGE CARRIERS – 

SIMULATION RESULTS 

In this chapter, numerical simulations by using the Drift-Diffusion Lab simulation tool 

from NanoHub [53] are performed, to examine the polarization effects and how 𝜇𝑛 ≠ 𝜇𝑝 may 

affect the analytic results. Firstly, by assuming 𝜇𝑛 = 𝜇𝑝  and 𝜏𝑛 = 𝜏𝑝 , it is examined how the 

polarization effect might affect the carrier distributions. Germanium (Ge) is selected as the active 

material with following parameters:  = 1 𝑐𝑚2𝑉−1𝑠−1 and  = 10 𝑐𝑚2𝑉−1𝑠−1, 𝜏 = 10 𝑛𝑠, 𝐿 =

3 𝜇𝑚, 𝑔 = 1020𝑐𝑚−3𝑠−1,  𝑇 = 300 𝐾, and 𝑠 = 1020𝑐𝑚𝑠−1, which is the largest possible value 

allowed. Although in the simulator 𝑠 is meant to be the surface recombination velocity, we take it 

as the carrier extraction velocity that is assumed to be infinite in the analytic model. Figs. 16(a)-

(d) plot 𝛥𝑛(𝑥)  and 𝛥𝑝(𝑥)  with (𝜇𝑛 , 𝜇𝑝) = (1, 1) 𝑐𝑚2𝑉−1𝑠−1  and (𝜇𝑛 , 𝜇𝑝) =

(10,10) 𝑐𝑚2𝑉−1𝑠−1, respectively. The simulation results (solid curves) are compared to those 

obtained from the analytic model (dashed curves). As shown in the Figs. 16, for a small applied 

voltage (e.g., 0.1 V), the impact of E/x is relatively large, but the effect diminishes for larger 

applied voltages (e.g., > 1.0 V). From the analytic model, one can find that under a large bias, the 

carrier density is inversely proportional to the carrier mobility. 
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Figure 16: Comparison of spatial distributions of photogenerated carriers 𝛥𝑛(𝑥)  and 𝛥𝑝(𝑥) , 

respectively, for two applied voltages, 0.1 V and 1.0 V: (a) and (b) for (𝜇𝑛 , 𝜇𝑝) =

(1, 1) 𝑐𝑚2𝑉−1𝑠−1; (c) and (d) for (𝜇𝑛 , 𝜇𝑝) = (10,10) 𝑐𝑚2𝑉−1𝑠−1 
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Figure 17: Photocurrent density 𝐽 vs. applied voltage 𝑉 for comparison of the simulated results 

𝐽𝑠𝑖𝑚 (black curves) and analytic results: 𝐽𝑎𝑐𝑐  (red curves) and 𝐽𝑎𝑝𝑝 (blue curves), for different 

combinations of mobility parameters (𝜇𝑛 , 𝜇𝑝): (a) (1, 1) 𝑐𝑚2𝑉−1𝑠−1; (b) (10, 10) 𝑐𝑚2𝑉−1𝑠−1; 

and (c) 𝐽𝑠𝑖𝑚 for (1, 1) 𝑐𝑚2𝑉−1𝑠−1, (10,1) 𝑐𝑚2𝑉−1𝑠−1, and (10, 10) 𝑐𝑚2𝑉−1𝑠−1, respectively. 

The green lines represent the maximum photocurrent density 𝐽𝑚𝑎𝑥 = 𝑞𝑔𝐿 = 4.8 𝑚𝐴𝑐𝑚−2. 

 

Secondly, the polarization effect on the J-V characteristic is examined. For the same 

parameters, Figs. 17(a)-(b) plot the J-V curves of the simulated results 𝐽𝑠𝑖𝑚  (black curves), 
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comparing with the analytic results: 𝐽𝑎𝑐𝑐 (red curves), where the average currents correspond to 

𝑄𝐸𝑎𝑐𝑐 and 𝐽𝑎𝑝𝑝 (blue curves), and where 𝐽(𝑥 = 0) or 𝐽(𝑥 = 𝐿) correspond to 𝑄𝐸𝑎𝑝𝑝 . In all cases, 

it is found 𝐽𝑠𝑖𝑚 > 𝐽𝑎𝑐𝑐 > 𝐽𝑎𝑝𝑝 , but they all approach the unity limit when 𝑙𝑑𝑟 is large. Furthermore, 

as mobilities increases from (1, 1) 𝑐𝑚2𝑉−1𝑠−1 to (10, 10) 𝑐𝑚2𝑉−1𝑠−1, as shown in Fig. 17(a) and 

(b), respectively, device enters into the saturation faster, but also 𝐽𝑎𝑝𝑝 → 𝐽𝑎𝑐𝑐 → 𝐽𝑠𝑖𝑚 in low-drift 

limit, which indicates that analytic model is more accurate for larger (𝑙𝑑𝑟, 𝑙𝑑𝑖) combinations.  

Overall, the numerical simulations which include the polarization term do not result in 

qualitative differences from the analytic model, but do exhibit significant quantitative differences, 

particularly for the cases of small 𝑙𝑑𝑟  values, for instance, in Fig. 16 when 𝑙𝑑𝑟 ≪ 1. Fig. 17(c) 

indicates that if 𝜇𝑛 ≠ 𝜇𝑝, the photocurrent is smaller than that with the equal mobility values of 

the larger one. Therefore, even without making the 𝑑𝐸/𝑑𝑥 = 0 approximation, the 𝜇𝑛 = 𝜇𝑝 case 

still offers higher 𝑄𝐸 than 𝜇𝑛 ≠ 𝜇𝑝 case, yet obeying the unity limit. 

Thirdly, the impact of the polarization effect on the spatial variation of the photocurrent is 

examined. By using the simulated carrier densities in Fig. 16, the spatial variation of the 

photocurrents is calculated by using Eqs. (14), in which the electric field 𝐸(𝑥) is obtained by 

integrating Eq. (15c), while keeping the same voltage difference between the electrode as the 

applied voltage. The results are shown in Fig. 18 (solid curves), in comparison with the results of 

the analytic model (dashed curves). Out of 150 data points, the last two data points closest to the 

respective electrode are found unreliable due to the singularity in taking derivative using the 

numerical data, and, thus, they have been omitted in the plots. However, the extrapolated values 

to the electrodes are close to the direct current outputs of the simulations. Thus, the current values 

from the J-V curves in Fig. 17 are used for the end points at 𝑥 = 0 and 𝑥 = 𝐿. Clearly, the total 

current remains nonuniform, with a maximum at the center, with comparable modulation 
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amplitudes compared to the analytic results, as shown in Figs. 18(a)-(b). As expected, as the 

applied voltage increases from 0.1 V to 2.0 V, currents tend to be more uniform, and differences 

in magnitude between analytic and simulated curves become smaller. For instance, from the 

analytic model, the ratios between the maximum and minimum point are found to be 1.611, 1.205, 

and 1.108, compared to 1.382, 1.099, and 1.050 from the simulations, for 0.1 V, 1.0 V, and 2.0 V, 

respectively. As predicted by the analytic model, from Eq. (26b) and Eq. (28), the modulation 

amplitude reduces with increasing 𝑙𝑑𝑟: from 0.111, 1.111, to 2.222, for 0.1 V, 1.0 V, and 2.0 V, 

with a constant, relatively small 𝑙𝑑𝑖 = 0.17. Besides the systematically larger 𝐽𝑠𝑖𝑚(𝑥) compared 

to that of the analytic model 𝐽𝑎𝑝𝑝(𝑥), the simulated results show upward bending near the end 

points. Due to the bending, the difference between 𝑄𝐸𝑎𝑐𝑐  and 𝑄𝐸𝑎𝑝𝑝  is reduced compared to the 

analytic model: for 0.1 V, 𝑄𝐸𝑎𝑐𝑐 = 0.227 and 𝑄𝐸𝑎𝑝𝑝 = 0.226; for 1.0 V, 𝑄𝐸𝑎𝑐𝑐 = 0.820 and 

𝑄𝐸𝑎𝑝𝑝 =  0.818 , and for 2.0 V, 𝑄𝐸𝑎𝑐𝑐 = 0.908  and 𝑄𝐸𝑎𝑝𝑝 =  0.904 . Nonuniform spatial 

variations of the drift and diffusion components of photocurrent density are also shown in Figs. 

18(c)-(d) for 𝐽(𝑥)  (blue curves), 𝐽𝑑𝑟(𝑥)  (black curves), and 𝐽𝑑𝑖(𝑥)  (red curves) for mobility 

parameters (𝜇𝑛 , 𝜇𝑝) = (10,10)  𝑐𝑚2𝑉−1𝑠−1  and different voltages and 0.1 V and 1.0 V, 

respectively. It should be noted that 𝐽𝑑𝑟(𝑥) = 0 at both ends of device, i.e., at 𝑥 = 0 and 𝑥 = 𝐿 

whilst 𝐽𝑑𝑖(𝑥) reaches its maximum, and thus 𝐽(𝑥) = 𝐽𝑑𝑖(𝑥). On the other hand, 𝐽𝑑𝑟(𝑥) reaches its 

maximum at 𝑥 = 𝐿/2, whilst 𝐽𝑑𝑖(𝑥) reaches its minimum. Nonuniformity of photocurrent is a 

consequence of using a simplified analytic model and is contrast to the continuous currents 

throughout the circuit. For instance, in p-i-n solar cell structures, it is pointed out that near the 

interfaces, an increase of the drift current is balanced by an increase of the diffusion current, and 

thus, the total current is found to be spatially uniform [54].  
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Figure 18: Spatial variations of the photocurrent density 𝐽(𝑥) for mobility parameters (𝜇𝑛 , 𝜇𝑝) =

(10, 10) 𝑐𝑚2𝑉−1𝑠−1 and different voltages: (a) 0.1 V; (b) 1.0 V and 2.0 V. Spatial variations of 

the photocurrent densities 𝐽(𝑥) (blue curves), 𝐽𝑑𝑟(𝑥) (black curves), 𝐽𝑑𝑖(𝑥) (red curves), for 

mobility parameters (𝜇𝑛 , 𝜇𝑝) = (10,10) 𝑐𝑚2𝑉−1𝑠−1 and for different voltages: (c) 0.1 V; (d) 1.0 

V. Solid lines represent simulated results, dashed lines represent analytic results, whilst the green 

lines represent the maximum photocurrent density 𝐽𝑚𝑎𝑥 = 𝑞𝑔𝐿 = 4.8 𝑚𝐴𝑐𝑚
−2. 

 

It should be noted that the differences between analytic and simulation results are not 

simply due to whether the polarization term is included. The simulator considers other effects, 

such as the carrier density and field dependence of the mobility, however, it also uses the simplified 
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assumption of constant carrier lifetime, which as pointed out earlier should be spatially dependent. 

Therefore, even using same constant mobilities and lifetimes for the electrons and holes, the 

relationship 𝛥𝑛(x) = 𝛥𝑝(𝐿 − 𝑥), predicted by the analytic model, is often found invalid for the 

simulated results. Concerted efforts have been made for identifications of parameters which ensure 

that the charge neutrality condition in the photoconductive channel is nearly satisfied. 

Furthermore, the use of a constant carrier lifetime as an approximation implies that the carrier 

density of the trap states is much smaller than that of the free carriers [55]. A more comprehensive 

model should be developed in the future to explicitly treat the occupation level of the trap states 

[54, 55]. Additionally, parameters are selected to weaken the polarization effect. For cases 

considered in Fig. 18, 𝑙𝐷 = 1.604, thus, the polarization effect is expected to be relatively small. 

Carrier trapping is often cited as the reason for increasing the carrier lifetime, and thus, 

greater-than-unity gain [22]. Typically, the trapping of carriers by defect centers, through which 

they return to the ground states, shortens 𝜏𝑐 and has a detrimental effect on 𝑄𝐸 [43]. Here, it is 

pointed out that even in the case that the trapped carriers do not deplete from the trapped states, 

thus, can be released back to the free states with a time delay, only transient gain could potentially 

be achieved if the trapping time is shorter than the reemission time. However, under continuous 

illumination, the trapping rate and reemission rate eventually reach a balance [55], thus, no gain 

should be expected. This case is not too much different from a high-quality, indirect bandgap 

material that has a long 𝜏𝑐, but if it is intrinsic, no gain should be expected in the framework of the 

primary photoconductivity. In fact, although non-recombination traps could increase 𝜏𝑐 , they 

might also increase 𝜏𝑡, thus, such traps do not necessarily lead to gain, even by using Eq. (2) [25]. 

However, for a doped structure, photogenerated carriers might alter the carrier distribution of the 

dopants, which may result in the change of the depletion region and yield above unity gain [3, 5, 
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56]. Therefore, to explain the experimentally observed 𝑄𝐸𝑠 above unity, it is necessary to consider 

the possible secondary photoconductivity mechanisms.  
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CHAPTER 6: QUANTUM EFFICIENCY OF DOPED PHOTOCONDUCTIVE DEVICE – 

SIMULATION RESULTS 

Often, photoconductive devices involve doped semiconductors [3, 5], where work based 

on numerical simulations concluded that a doped photoconductive device can only have a modest 

gain, limited by the ratio of mobilities of majority to minority carriers, i.e., 𝜇𝑚𝑎𝑗 𝜇𝑚𝑖𝑛⁄ . Again, by 

using the Drift-Diffusion Lab simulation tool from NanoHub [53], carrier distributions of minority 

(electron) carrier concentrations under p-type doping for Si based semiconductor slab are shown 

in Figs. 19. Here, four different levels of applied voltages V = 0.1, 0.5, 1.0, 2.0 𝑉 are used, with a 

doping level equal to 1017𝑐𝑚−3, as well as following parameters: 𝜏 = 200 𝑛𝑠, 𝐿 = 50 𝜇𝑚, 𝑔 =

1022𝑐𝑚−3𝑠−1 , 𝑠 = 1020𝑐𝑚𝑠−1 , 𝑇 = 300 𝐾 , and 𝜇𝑛 = 875 𝑐𝑚
2𝑉−1𝑠−1 , for four different 

mobility values of holes: 𝜇𝑝 = (337, 875, 1700, 2700) 𝑐𝑚2𝑉−1𝑠−1. It should be noted that the 

carrier distributions of the majority carrier concentrations (holes) are the same and follow 

distributions of minority carrier concentrations (electrons), i.e., 𝛥𝑛(𝑥) = 𝛥𝑝(𝑥). The results show 

that there is a better agreement between analytic and simulation results for a larger ratio of majority 

to minority carrier concentrations. 
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Figure 19: Spatial distributions of photogenerated minority (electron) carrier concentrations 𝛥𝑛(𝑥) 

under p-type doping concentration of 1017𝑐𝑚−3 , for different levels of applied voltages 

0.1 𝑉, 0.5 𝑉, 1.0 𝑉, 2.0 𝑉 and for different combinations of mobility parameters: (a) (𝜇𝑛 , 𝜇𝑝) =

(337,875) 𝑐𝑚2𝑉−1𝑠−1 ; (b) (𝜇𝑛 , 𝜇𝑝) = (875,875) 𝑐𝑚
2𝑉−1𝑠−1 ; (c) (𝜇𝑛 , 𝜇𝑝) =

(1700, 875) 𝑐𝑚2𝑉−1𝑠−1 ; and (d) (𝜇𝑛 , 𝜇𝑝) = (2700,875) 𝑐𝑚
2𝑉−1𝑠−1 . Simulated results of 

minority carriers (electrons) are represented by solid lines, simulated results of majority carriers 

(holes) are represented by yellow dashed lines, whilst analytic results are represented by dash-

dotted lines. 
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When doping is used, it is indeed possible to achieve small gains [3, 5], limited by the ratio 

of majority to minority carrier mobilities, as shown by magenta and blue J-V curves in Fig 20. 

Furthermore, if mobilities are the same for the minority and majority carriers, the maximum gain 

is limited to unity even with doping, as shown by the red curve in Fig. 20. Finally, if the mobility 

of majority carriers is smaller than the mobility of minority carriers, the photocurrent saturates 

below the maximum value and the gain is smaller than unity, as shown by the black curve in Fig. 

20. The upper limit of the gain with doping is suggested to be given by [3] 

𝐺𝑚𝑎𝑥,𝑝 =
1

2
(1 +

𝜇𝑝 

𝜇𝑛
),           (33a) 

and 

𝐺𝑚𝑎𝑥,𝑛 =
1

2
(1 +

𝜇𝑛 

𝜇𝑝
),           (33b) 

for p-type and n-type doping, respectively. 

Since the upper limit of gain under high electric field is given in [3], it would be interesting 

to find if it is possible to obtain the analytic solution for gain over the whole drift region, as well 

as in the low drift region. In case of 𝐽𝑎𝑐𝑐, by using Eq. (20a), it is possible to introduce effective 

carrier lifetime of minority carrier concentrations, for instance electrons in case of p-type of 

doping, as given below 

𝜏𝑛,𝑒𝑓𝑓 = 𝜏𝑛 {1 −
1

𝐿
[
1

𝜆1
−

1

𝜆2
]
[1−𝑒𝑥𝑝(−𝐿𝜆1)][1−𝑒𝑥𝑝(−𝐿𝜆2)]

𝑒𝑥𝑝(−𝐿𝜆2)−𝑒𝑥𝑝(−𝐿𝜆1)
}.      (34) 

From Eq. (34), it can be noted that the effective carrier lifetime of minority carriers is not constant. 

It considers not only minority carrier lifetime, but also device length 𝐿, as well as 𝜆1 and 𝜆2, which 

further depend on drift and diffusion lengths, 𝐿𝑑𝑟,𝑛 and 𝐿𝑑𝑖,𝑛, respectively.  
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Figure 20: Photocurrent density 𝐽𝑝ℎ  vs. applied voltage 𝑉 for 𝜇𝑛 > 𝜇𝑝  (black curve), 𝜇𝑛 = 𝜇𝑝 (red 

curve), and 𝜇𝑛 < 𝜇𝑝 (blue and magenta curves) for p-type doping concentration of 1017𝑐𝑚−3. The 

green line represents the maximum photocurrent density 𝐽𝑚𝑎𝑥 = 𝑞𝑔𝐿 = 8 𝐴𝑐𝑚−2 for 𝜇𝑛 = 𝜇𝑝. 

 

By keeping in mind that effective lifetime of both type of carriers are same and that they 

differ only in their mobilities, the total current of doped device can be written as sum of majority 

and minority carrier concentrations, given as 

𝐽𝑎𝑐𝑐 = 𝐽𝑎𝑐𝑐,𝑛 + 𝐽𝑎𝑐𝑐,𝑝 = 𝑞𝑔𝐸𝜏𝑛,𝑒𝑓𝑓(𝜇𝑛 + 𝜇𝑝) = 𝑞𝑔𝐸𝜇𝑛𝜏𝑛,𝑒𝑓𝑓 (1 +
𝜇𝑝

𝜇𝑛
),    (35) 

which is the same result as if the analytic result of 𝐽𝑎𝑐𝑐,𝑛 would be multiplied by (1 +
𝜇𝑝 

𝜇𝑛
). By 

dividing 𝐽𝑎𝑐𝑐 given by Eq. (35) with 𝐽𝑚𝑎𝑥 = 𝑞𝑔𝐿, the total 𝑄𝐸𝑎𝑐𝑐 can be expressed as [5] 

𝑄𝐸𝑎𝑐𝑐 =
𝐸𝜏𝑛,𝑒𝑓𝑓𝜇𝑛

𝐿
(1 +

𝜇𝑝

𝜇𝑛
) = 𝑙𝑑𝑟,𝑛 (1 +

𝜇𝑝

𝜇𝑛
) =

𝜏𝑛,𝑒𝑓𝑓

𝜏𝑡,𝑛
(1 +

𝜇𝑝

𝜇𝑛
).     (36) 

Similarly, multiplying 𝑄𝐸𝑎𝑝𝑝  given by Eq. (26b), by Eq. (33a) yields the analytic result given 

below as 

𝑄𝐸𝑎𝑝𝑝 =
1

2
(1 +

𝜇𝑝

𝜇𝑛
) 𝑙𝑑𝑟,𝑛[1 − 𝛼𝑐𝑠𝑐ℎ(𝛼𝛽)𝑠𝑖𝑛ℎ(𝛽)].       (37) 
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If n-type doping is the concern, then doped results for 𝐽𝑎𝑐𝑐 and 𝐽𝑎𝑝𝑝 can be found by multiplying 

analytic results of 𝐽𝑎𝑐𝑐  and 𝐽𝑎𝑝𝑝 respectively by 2𝐺𝑚𝑎𝑥,𝑛 and 𝐺𝑚𝑎𝑥,𝑛 given by Eq. (33b). In the low 

drift region, i.e., 𝑙𝑑𝑟,𝑛 ≪ ½, the respective 𝑄𝐸𝑎𝑐𝑐 and 𝑄𝐸𝑎𝑝𝑝  for p-type doped devices are given 

as below 

𝑄𝐸𝑎𝑐𝑐 ≈ (1 +
𝜇𝑝

𝜇𝑛
) 𝑙𝑑𝑟,𝑛 [1 − 2𝑙𝑑𝑖,𝑛 𝑡𝑎𝑛ℎ (

1

2𝑙𝑑𝑖,𝑛
)],       (38) 

𝑄𝐸𝑎𝑝𝑝 ≈
1

2
(1 +

𝜇𝑝

𝜇𝑛
) 𝑙𝑑𝑟,𝑛 [1 −

1

𝑙𝑑𝑖,𝑛
𝑐𝑠𝑐ℎ (

1

𝑙𝑑𝑖,𝑛
)].       (39) 

Thus, by using the analytic results of 𝐽𝑎𝑐𝑐 and 𝐽𝑎𝑝𝑝 it is possible to determine analytic solutions for 

doped curves, which closely follow simulated results. Figs. 21 plot the photocurrent density 𝐽𝑝ℎ 

vs. applied voltage 𝑉 for p-type doping concentration of 1017𝑐𝑚−3, to compare simulated and 

analytic results for different combinations of mobility parameters (𝜇𝑛 , 𝜇𝑝). It can be noted that 

there is an excellent agreement between analytic and simulation results. It should be also pointed 

out that the different doping concentrations produce the different J-V characteristics. For instance, 

Figs. 22 plot the analytic photocurrent densities 𝐽𝑎𝑐𝑐  and  𝐽𝑎𝑝𝑝 , as well as three simulated 

photocurrent densities 𝐽𝑠𝑖𝑚  under n-type doping concentrations 1015𝑐𝑚−3 , 1016𝑐𝑚−3  and 

1017𝑐𝑚−3 for different combinations of mobility parameters (𝜇𝑛 , 𝜇𝑝) and three cases: 𝜇𝑛 < 𝜇𝑝 , 

𝜇𝑛 = 𝜇𝑝 and 𝜇𝑛 > 𝜇𝑝 . However, obtained results still give a decent agreement between analytic 

and simulated results. 
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Figure 21: Photocurrent density 𝐽𝑎𝑐𝑐   vs. applied voltage 𝑉 curves under p-type doping 

concentration of 1017𝑐𝑚−3  for comparison of the simulated results 𝐽𝑠𝑖𝑚 (black curves) and 

analytic results: 𝐽𝑎𝑐𝑐 (red curves) and 𝐽𝑎𝑝𝑝 (blue curves), for different combinations of mobility 

parameters (𝜇𝑛 , 𝜇𝑝): (a) 𝜇𝑛 > 𝜇𝑝; (b) 𝜇𝑛 = 𝜇𝑝; (c) and (d) 𝜇𝑛 < 𝜇𝑝 . The green lines represent the 

maximum photocurrent densities 𝐽𝑚𝑎𝑥 = 𝑞𝑔𝐿 for different combinations of mobility parameters 

(𝜇𝑛 , 𝜇𝑝). 
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Figure 22: Analytic photocurrent densities 𝐽𝑎𝑐𝑐  and  𝐽𝑎𝑝𝑝 , and three simulated photocurrent 

densities 𝐽𝑠𝑖𝑚  under n-type of doping for different levels of n-type doping concentrations 

1015𝑐𝑚−3  (red curves), 1016𝑐𝑚−3  (magenta curves), and 1017𝑐𝑚−3 (cyan curves) vs. applied 

voltage 𝑉: (a) 𝜇𝑛 < 𝜇𝑝; (b) 𝜇𝑛 = 𝜇𝑝; (c) and (d) 𝜇𝑛 > 𝜇𝑝 . The green lines represent the maximum 

photocurrent densities 𝐽𝑚𝑎𝑥 = 𝑞𝑔𝐿 for different combinations of mobility parameters (𝜇𝑛 , 𝜇𝑝). 
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CHAPTER 7: CONCLUSIONS 

7.1. Summary  

This work reexamines the photoconductive gain theory of intrinsic (undoped) 

semiconductor devices, when primary photoconductivity is considered. Under numerous 

assumptions, the drift-diffusion equations for the photocurrent density and gain are solved 

analytically and two non-equivalent quantum efficiencies 𝑄𝐸𝑠: accumulative quantum efficiency 

(𝑄𝐸𝑎𝑐𝑐) vs. apparent quantum efficiency (𝑄𝐸𝑎𝑝𝑝) are obtained, as well as their approximations in 

the low-drift limit. The underlying physics of both 𝑄𝐸𝑠 is discussed, and it was pointed out that 

these two non-equivalent 𝑄𝐸𝑠 , used in literature but not explicitly distinguished, should be 

equivalent if spatially dependent carrier lifetimes are used instead of constant carrier lifetimes. 

These results, while capable of recovering the drift-only results in the early literature, lead to the 

conclusion that the photoconductive gain or 𝑄𝐸 is limited to unity for arbitrary strength of drift 

and diffusion. Furthermore, it is concluded that in general, the presence of diffusion tends to reduce 

the photocurrent. Additionally, it is found that in the absence of diffusion, the ratio of 𝑄𝐸𝑎𝑐𝑐  and 

𝑄𝐸𝑎𝑝𝑝  in the low drift limit is 2:1, but they approach the same unity limit under the strong drift. 

Moreover, it is shown that the commonly adopted definition of photoconductive gain, as the ratio 

of the lifetime 𝜏𝑐 to the transit time 𝜏𝑡, is only applicable in the low-drift limit, when diffusion is 

neglected. 

By performing numerical simulations in Drift-Diffusion Lab it is concluded that the 

presence or absence of polarization term does not lead to the qualitative changes of the above 

findings. Furthermore, numerical simulations have revealed that in general 𝑄𝐸𝑎𝑝𝑝 < 𝑄𝐸𝑎𝑐𝑐 <

𝑄𝐸𝑠𝑖𝑚 . However, it is shown that in the low-drift limit 𝑄𝐸𝑎𝑝𝑝 → 𝑄𝐸𝑎𝑐𝑐 → 𝑄𝐸𝑠𝑖𝑚  for large values 

of mobilities and lifetimes, which leads to fast saturation of photoconductive devices. On the other 



70 
 

hand, in high-drift limit 𝑄𝐸𝑎𝑝𝑝 → 𝑄𝐸𝑎𝑐𝑐 → 𝑄𝐸𝑠𝑖𝑚 → 1. Thus, it is confirmed analytically and by 

simulations that the existing “recycling gain mechanism theory” cannot explain above unity 

photoconductive gains, at least not in the case of intrinsic photoconductive devices, when only the 

primary photocurrents considered. 

Furthermore, it is examined to what degree the spatial nonuniformity of the photocurrent 

can vary with the material and device parameters. Under numerous assumptions typically used in 

literature, it is found that the total photocurrent in the photoconductive channel is spatially 

nonuniform, which is in stark contrast with results in literature where the photoconductive current 

is considered as uniform. However, it is pointed out that nonuniformity of the photocurrent is 

consequence of using constant carrier lifetimes instead of spatially dependent carrier lifetimes. 

Additionally, since most photoconductive devices have different mobility-lifetime products for 

electrons and holes, the new set of boundary conditions (BCs) is suggested for solving drift-

diffusion equations, which can be solved only numerically when polarization term is included in 

analysis. It is further pointed out that within the framework of the primary conductivity, the carrier 

trapping does not lead to gain. In fact, assuming no loss, the carrier trapping effect only prolongs 

the carrier lifetime, just like in a high-quality indirect bandgap material, however, it does not result 

in a gain. By performing numerical simulations using Drift-Diffusion Lab, n-type and p-type doped 

photoconductors are examined. As one form of secondary photoconductivity, it is confirmed that 

the photoconductive gain can be above unity, but the gain is limited by the ratio of mobilities of 

majority and minority carriers, as earlier reported in the literature. Based on simulated results, 

analytic solutions for doped photoconductive devices are suggested.  

This work should lay the ground for understanding the mechanisms of experimentally 

observed, above-unity photoconductivity gains. Moreover, these findings should offer new 
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insights into photoconductivity and semiconductor device physics and may potentially lead to 

novel applications. 

7.2. Further work 

Since an intrinsic photoconductor under the assumption of primary photoconductivity is 

not itself enough to produce photoconductive gain larger than unity, the natural question would be 

from where the gain larger than unity comes. There are various possible secondary 

photoconductive effects that can affect the 𝑄𝐸 and even lead to gain, such as carrier injection from 

electrodes, caused either by thermal injection (i.e., SCLC) [1] or by light induced changes in the 

MS interface [57], carrier recycling or replenishing [1, 4, 15, 27, 47], and other mechanisms [43, 

58]. In fact, doping in the photoconductive channel bears some similarity with the SCLC effect, 

except that the charges that induce the dark current are from the internal dopants for the former 

and injected from the electrode for the latter. In both cases, the presence of the pre-existing charges 

may alter the distributions of the photogenerated carriers, thus, the quantum yield. For instance, 

since the light induced change in the channel conductivity, more carriers could be injected into the 

semiconductor from the electrodes, enhancing the photocurrent. Therefore, the assumption that 

only the photogenerated carriers contribute to the photocurrent should be reexamined. 

As pointed out in the introductory part, there were many attempts toward explanation of 

high photoconductive gain. However, all these explanations omit the effect of SCLC. Furthermore, 

if SCLC, as one form of secondary photoconductivity is not considered, it is likely not possible to 

properly explain experimentally obtained photoconductive gains significantly above unity, 

because high voltages will inevitably build up space-charge. Mott and Gurney [1] introduced the 

SCLC model to describe the conductivity of a trap-free insulating semiconductor with free carriers 

injected from the electrode. Over time this theory has been further developed and besides trap-free 
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devices, it also describes insulators and semiconductors with traps [2, 6-9, 16-18, 25, 30, 59-69]. 

Therefore, to find the upper limit of photoconductive gain it is necessary to use the concept of 

SCLC and carrier localization, as pointed out in numerous textbooks [1, 2, 6-8, 19, 30, 70] and 

papers [16-18, 25, 60, 68]. 

Hilsch and Pohl were the first that made a distinction between the primary and the 

secondary photocurrent [1, 2, 31, 47, 71]. They considered the primary photocurrent as the direct 

result of the absorption of energy, whereas the secondary photocurrent is considered as the result 

of the passage of the primary current. The reason for the appearance of the secondary photocurrent 

in some crystals is that the continuous passage of the primary current can break down the resistance 

of the crystal, thus, electrons can enter the crystal from the cathode and pass through it, as it is 

often the case with the semiconductor photoconductive devices. Besides the primary 

photocurrents, they found many photoconductive effects of comparatively mysterious origin 

which they attributed to the secondary photocurrents. Until recently, the secondary photocurrents 

were generally considered as an undesirable superposition on the primary photocurrents, and 

therefore, received a little recognition as being important in the understanding of the 

photoconductivity. Hilsch and Pohl further argued that as a straightforward electronic process and 

under conditions where electrons could enter the crystal from the cathode to replenish those 

leaving the crystal at the anode, one absorbed photon could produce more than one charge-carrying 

electron, and thus, 𝑄𝐸  can be much larger than unity. This contradicts with the primary 

photoconductivity, where one absorbed photon could produce at most one electron-hole pair, 

which limits 𝑄𝐸 to unity. However, over the many decades thereafter, more attention has been 

paid to the question of the nature of secondary photocurrents. It is found that the secondary 

photocurrents are more prominent at high applied electric fields. In addition, it is also found that 
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their behavior violates all the criteria previously set forth for the primary photocurrent. The main 

characteristics of the secondary photocurrents are: 1) a nonlinear variation of photocurrent with 

the light intensity; 2) a dependence of spectral response curve on voltage; and 3) a slow response 

in rise or decay of the photocurrent with the change in the illumination. Secondary 

photoconductivity involves replenishment of carriers from electrodes and the imposed condition 

for observing secondary photoconduction is at least one injecting Ohmic contact at the electrode. 

By using approach based on accumulated photocurrent 𝐽𝑎𝑐𝑐, but without considering a diffusion 

effect, Hilsch, Pohl and Stockmann [31, 47, 71-73] experimentally measured and found analytic 

expression for 𝑄𝐸 > 1, based on the ratio of electronic (secondary) and ionic (primary) currents. 

Stockmann [74] confirmed these experimental observations for conventional semiconductor 

materials such as Ge and CdS. Thus, after reexamination of primary photoconductive gain theory 

for intrinsic devices with unity limit gain, the next step is exploring the secondary 

photoconductivity and SCLC in more detail to explain experimentally obtained photoconductive 

gains significantly larger than unity. 
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