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ABSTRACT  

PAULINE WANJIKU KARANJA. Impact of Material Deterioration on Tornadic Vulnerability 

in Built Infrastructure. (Under the direction of DR. STEPHANIE PILKINGTON)  

Tornadoes are among the most destructive natural disasters, posing significant risks to 

communities and infrastructure, underlining the need for robust methodologies to assess building 

vulnerability and enhance structural resilience. This research addresses the gap in current tornado 

vulnerability studies by investigating the impact of material deterioration on building fragility, 

focusing on commercial and government buildings at the end of their useful life. The 

overarching goal is to comprehensively quantify the effects of material deterioration on tornado 

vulnerability, including its implications for EF-scale ranking and associated wind-speed 

thresholds for Damage Indicators (DIs) and Degree of Damage (DOD) classifications. As a 

secondary goal, the research seeks to understand the critical components prioritized during 

condition assessments to facilitate comparisons with National Weather Service (NWS) post-

event storm surveys. 

The research employs a multifaceted methodology to achieve its objectives. Firstly, a 

Qualtrics survey of architects, engineers, facility managers, construction managers, and building 

owners reveals critical components prioritized during facility condition assessments of 

commercial and government buildings, facilitating comparisons with post-event storm surveys. 

The analysis shows that while built environment professionals often focus on operational and 

maintenance concerns, NWS post-event storm surveys prioritize structural integrity and safety. 

This misalignment underscores the importance of harmonizing pre- and post-event storm 

surveys.  
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Secondly, predictive models are developed to forecast deterioration trends for various 

building components, such as roofs, walls, doors, and windows. These models provide valuable 

insights into the dynamics of material degradation over time, leading to the analysis of 

deterioration rates under different maintenance scenarios, ranging from poor to excellent 

practices. Focusing on deterioration rates for poorly maintained buildings at the end of their 

useful life and using probabilistic modeling approaches, the research develops time-dependent 

deterioration fragility curves to quantify the changing vulnerability of materials used in 

commercial and government buildings over time.  

The results reveal decreased wind speed thresholds for EF-scale ranking, indicating 

notable changes in tornado-induced damage potential due to material deterioration. These 

findings highlight the importance of considering time-dependent deterioration fragilities in 

tornado vulnerability assessments and the observed leftward shifts in fragility curves.  

Additionally, changes in EF-scale ranking and DOD wind speed thresholds underscore 

the probable inadequacy of existing evaluation protocols that do not account for material 

deterioration. Post-event storm surveys may now consider the impact of aging and degradation 

on building resilience to assess structural integrity and accurately prioritize repair and 

reconstruction efforts. 

This research enhances resilience and promotes sustainable development in tornado-prone 

regions by illuminating the dynamic nature of tornado vulnerability. 
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CHAPTER 1: INTRODUCTION 

1.1 Problem Statement 

Tornadoes are among the most devastating natural disasters in the United States and other 

countries, especially for smaller communities. Tornado risk reduction has not benefited from 

research as much as risk reduction for earthquakes, hurricanes, or flood hazards, even though 

more than 1,200 tornadoes are reported each year in the U.S. (NOAA, 2019), and tornadoes have 

produced the highest annualized fatalities for decades (NIST, 2014). Most tornado research in 

the structural engineering discipline has been on post-tornado field investigations.  

The Enhanced Fujita Scale is used to assign a tornado a rating based on estimated wind 

speeds and related damage. When surveyed, tornado-related damage is compared to a list of 

Damage Indicators (DIs) and Degrees of Damage (DODs) for various building types, which help 

estimate the range of wind speeds the tornado likely produced. From the survey, a rating between 

EF0 and EF5 is assigned. When assigning wind damage ratings, a visual assessment of the 

damaged building is conducted by evaluating the state and condition of the main wind force-

resisting systems (MWFRS) and components & cladding (C&C) (Attary et al., 2018). The state 

these damaged buildings are in can depend on the hazard's strength, building materials, 

construction quality, and potential state of deterioration based on continuous maintenance.  

Continuous maintenance implies that the facility has not run down or deteriorated over 

time. However, buildings deteriorate for various reasons, including age, overloading, and lack of 

preventative maintenance and planning, more so when they are left unoccupied when they reach 

the end of their useful life. Facility condition assessments (FCASs) are used to measure this 

deterioration to collect data to determine the requirement and timing of preventative or remedial 
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action to assess and maintain a level of service (Aktan et al., 1997; Mayo & Karanja, 2018). 

Deteriorating buildings are likely to be more vulnerable to extreme wind hazards compared to 

pristine buildings.  

Vulnerability is a fundamental component of risk, and understanding it is essential for 

determining the reliability of infrastructure assets and systems and mitigating risk. Vulnerability 

analysis of buildings exposed to natural hazards has become a significant area of research due to 

infrastructure's critical role in society. This topic has also been the subject of significant 

advances from new data and insights (Argyroudis et al., 2019). Previous studies of post-event 

storm surveys have documented common failure modes of residential and commercial buildings 

using fragility curves. Tornado fragility curves, defined as conditional probability curves that 

give the likelihood of damage for a given windspeed, have been found to be a valuable tool for 

assessing potential damages to structures. They are also an essential component of tornadic wind 

risk assessment procedures.  

Methods of modeling failure of structural components using fragilities have been widely 

employed for tornadic vulnerability assessment for non-deteriorating structures (e.g., Unanwa et 

al., 2000; Rosowsky et al., 2002; Ellingwood et al., 2004; Hwang et al., 2007; Koliou et al., 

2014; Amini et al., 2014; Masoomi et al., 2016; Koliou et al., 2017; Masoomi et al., 2018b; 

Memari et al., 2018), while traditionally ignoring the impact of deterioration that affect 

buildings. Further research is required to evaluate the effect of deterioration on material response 

and fragility. This research discussed herein aims to address this need.  
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1.2 Objectives and Scope of Research 

This research aims to provide a greater understanding of the impact of deterioration on 

the structural vulnerability of building materials, which may have been neglected in the 

literature. The primary objective is to develop efficient time-evolving fragility functions for 

poorly maintained buildings and assess how this may affect its tornado ranking with respect to 

DOD definitions. The creation of these fragility focuses on the materials used in building 

components; in this case, roofs, walls, windows, doors, and those used for roof-to-wall 

connections; to statistically compute the tornadic wind vulnerability of deteriorated buildings' 

materials along their service lives, more so at the end of their useful lives. These fragility 

functions are used to create time-dependent fragility curves, which are then compared to those 

for materials in pristine or non-deteriorated, well-maintained buildings.  

This research is motivated by the need to address the following pivotal questions: 

1. During facility condition assessments (FCAs), are building managers prioritizing the 

same components as NWS evaluators conducting post-event storm surveys?  

2. Does deterioration have an effect on the tornadic wind-loading response of building 

materials? How significant are the shifts in material tornadic fragilities of deteriorating 

buildings when compared to non-deteriorating (pristine) buildings?  

3. Would a structure’s age and material deterioration ultimately impact how tornadoes are 

ranked on the EF scale?   

The tasks designed to answer the research questions are as follows:  

1. Conducting a comprehensive literature review. 
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2. Surveying professionals involved in building decommissioning who are aware of 

standard FCA procedures for FCAs. 

3. Comparing the focus of facility managers' FCAs with NWS’ post-event storm surveys to 

address the alignment between pre- and post-tornado facility/building 

assessments/surveys, shedding light on potential discrepancies.  

4. Researching and characterizing the rates of material deterioration in poorly maintained 

and averagely maintained buildings, impacting the structural performance of critical 

components. 

5. Developing capacity models for structural resistance based on material deterioration 

rates.  

6. Creating fragility models for deteriorated building materials and conducting a 

comparative analysis with pristine building material behavior. 

7. Developing time-dependent fragility curves at the building material level to quantify the 

detrimental effects of deterioration on the tornadic fragilities of those materials. 

8. Assessing how the effects of deterioration impact the Enhanced Fujita Scale. 

9. Evaluating the impact of deterioration on degrees of damage (DODs) for commercial 

buildings, specifically small professional buildings, strip malls, large shopping malls, and 

large industrial retail buildings. 

The focus of this research is to address these questions using probabilistic methods. This 

research holds significant importance as it not only bridges critical gaps in current literature by 

exploring the relationship between building material deterioration and tornado fragility but also 

offers practical insights that can directly impact real-world scenarios. By advancing 

methodologies in tornado modeling failure of structural components using fragilities, this 
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research contributes to academic conversations. The research has the potential to inform 

procedures in classifying tornadic events and enhance the overall understanding of structural 

tornado vulnerabilities, ultimately striving toward a safer and more prepared society in tornado-

prone regions. The findings of this research challenge current wind speed bounds relating to 

DODs, providing an opportunity to consider both structural integrity and how a building is used 

and maintained when examining the effects of wind on buildings. 

1.3 Dissertation Outline 

Time-dependent tornadic fragility functions with specific consideration to the 

deterioration of building materials are investigated in this dissertation. The full probabilistic 

analysis evaluating materials' time-dependent tornadic fragility curves, given uncertainty in 

building, wind speed, and deterioration parameters, reveals a notable increase in the individual 

materials' vulnerability over time due to deterioration. This dissertation is arranged into five 

chapters with the following content:   

Chapter 1 presents a brief introduction to the problem being assessed, tornadic fragility 

functions, with consideration of the effects of deterioration, and describes the objectives of this 

dissertation. 

Chapter 2 provides a comprehensive background to contextualize the subsequent discussions on 

tornado modeling failure of structural components using fragilities. It presents an overview of 

existing literature on tornado modeling failure of structural components using fragilities of 

buildings while highlighting methodologies and existing deficiencies that will be addressed in 

this research. The chapter critically examines the limitations identified in current studies, paving 

the way for a focused exploration of these gaps and challenges in the following chapters. Chapter 
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2 also gives an overview of deterioration, discusses deterioration prediction modeling, and 

introduces deterioration rating methodologies. 

Chapter 3 presents the research methodology used in the research. The research questions and 

the methods utilized to address the questions are detailed in this chapter. It encompasses a 

conceptual framework for research integrating insights from the literature review, evaluates 

current methodologies, and conducts a gap analysis to identify research needs. The chapter also 

presents the methodology for deterioration prediction and outcomes for building components 

using the Markov chain and presents deterioration rates for the individual materials within these 

components. Deterioration of materials is unavoidable since they are exposed to the impact of 

natural environmental factors on a continuous basis.  

Chapter 4 presents the results and discussion of the research. It includes a detailed fragility 

functions model for building materials' time-dependent tornado fragility curves. Fragility curves 

for pristine and deteriorated materials are presented, and comparisons are made.   

Finally, Chapter 5 gives the overall conclusions, research implications, and future research 

opportunities.   

The following section summarizes past research on tornado fragility while highlighting the 

existing deficiencies, which will be extensively addressed in this research.  
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2 CHAPTER 2: BACKGROUND 

2.1 Introduction to Extreme Weather and Tornadoes 

Before considering the body of literature on tornadic wind damage and fragilities, it is 

essential to understand extreme weather and how extreme wind events form. Extreme weather 

encompasses thunderstorms with damaging winds, tornadoes, large hail, flooding, and flash 

flooding. The American Meteorological Society (AMS) defines extreme weather as any weather 

phenomenon relating to extreme thunderstorms (AMS, 2013). Extreme thunderstorms can be 

categorized and evaluated as "approaching severe," "severe," and "significantly severe." 

"Approaching severe" is defined as hail less than half an inch in diameter or winds between 50 

and 58 mph. Such storms will usually warrant a Significant Weather Alert. "Severe" is defined as 

hail 1 to 2 inches in diameter, winds between 58 and 75 mph, or an EF1 tornado. In contrast, 

"significantly severe" is defined as hail 2 inches in diameter or larger, winds 75 mph or more, or 

a tornado EF2 or stronger (NWS, 2014). Severe weather generally requires atmospheric 

moisture, a mechanism to lift air and condense moisture, and instability. An added ingredient 

necessary for the formation of rotating thunderstorms is wind shear, which aids in displacing 

updraft from downdraft, thus tilting the storm. It also allows the updraft to prolong itself, makes 

the development of a mesocyclone possible, and allows rotating air to merge into the updraft, 

thus tornadogenesis (Houser et al., 2015).  

The most destructive tornadoes occur from supercells, rotating thunderstorms with a 

well-defined radar circulation called a mesocyclone; however, not all tornadoes result from 

supercells. According to the National Severe Storms Laboratory (NSSL), close to 20% of all 

tornadoes are associated with lines of strong thunderstorms called "quasi-linear convective 
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systems" (QLCS). QLCSs include squall lines (a linearly oriented zone of convection, i.e., 

thunderstorms) common across the United States east of the Rockies (NOAA NSSL, 2017), bow 

echoes, an arched/bowed outline of thunderstorms, sometimes embedded within a squall line. 

Bow echoes are usually associated with straight-line wind damage at the surface. In fact, bow-

echo-induced winds or downbursts account for most structural damage resulting from 

convective, non-tornadic winds (Houser et al., 2015). Brief tornadoes can also occur in squall 

lines, especially with bow echoes, but are weaker and short-lived on average than those 

associated with supercell thunderstorms. 

The occurrence rate of tornadoes is higher in the United States than in any other country. 

More than 1200 tornadoes touch down annually in the United States (NOAA, 2019), 

approximately four times the amount reported in Europe (Houser and Bluestein, 2015). Tornado 

reports have become more frequent in recent years due partly to the invention of Doppler radar 

and the increased population. Heavy damage and loss of life have been observed in previous 

tornado outbreaks in heavily populated areas. Although the number of injuries and fatalities 

caused by tornadoes has decreased in the last few decades, mainly due to improvements in 

warning technologies (Standohar-Alfano et al., 2017), the cost of damage, repair, and 

reconstruction has considerably increased (Amini and van de Lindt, 2014).  

According to Boruff et al. (2003), many states throughout the United States, especially 

those east of the Rocky Mountains, are susceptible to tornadoes (Figure 2.1). Still, the probability 

of a tornado striking any particular community in any given year is relatively low. In the past, 

this low probability of occurrence of tornadoes has prevented accounting for these events in 

modern building codes, but this has changed over the last years due to deadly and damaging 
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tornadoes in recent years. For example, Tuscaloosa, Alabama (2011), Joplin, Missouri (2011), 

and Moore, Oklahoma (2013). Following the catastrophic tornadoes in Moore, Oklahoma (i.e., 

an EF5 tornado in 1999, an EF4 tornado in 2003, and an EF5 tornado in 2013), building code 

was revised so that residential buildings in their community could withstand EF2 tornadic winds 

(i.e.,135 mph) (Masoomi et al., 2018a). EF2 intensity for the design process was considered 

because more than 97% of recorded tornadoes are historically rated EF2 or lower (FEMA, 2011). 

Moreover, even in higher-intensity tornadoes, most affected areas are associated with EF2 level 

intensity or less (Standohar-Alfano and Van de Lindt, 2014).  

 

Figure 2.1: Tornado-prone region (Adapted from ASCE 7, 2022) 

Following the 2011 Joplin tornado disaster, the deadliest and costliest tornado in the U.S. 

since 1950, tornado load provisions have been added to ASCE 7 (ASCE, 2022). With the 

publication of ASCE 7-22 (ASCE 2022), According to the FEMA/NIST guide (2023), “tornado 

load requirements are now considered a minimum design load in conventional building design 
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when buildings are in tornado-prone areas. The ASCE 7 load requirements will be included in 

the 2024 International Building Code (IBC), the 2024 National Fire Protection Association 

(NFPA), the 50000 Building Construction and Safety Code, and the 2023 Florida Building Code. 

The adoption of the ASCE 7 tornado load provisions by the State of Florida is an example of 

local authorities having jurisdiction incorporating the most current design guidance prior to their 

inclusion in the model building codes”.    

2.2 National Weather Service Post-event Storm Surveys of Extreme Wind Events and the 

Enhanced Fujita Scale 

Because of the locational variability and the small coverage area, recording wind speed 

inside tornadoes is not considered feasible (Wurman et al., 2010). Hence, the intensity of a 

tornado in terms of wind speed is estimated indirectly by using damage to buildings, structures, 

and trees. The intensity and severity of extreme wind events are typically determined post-event 

through damage surveys conducted by the National Weather Service (NWS) and result in an 

estimated wind speed and Enhanced Fujita (EF) ranking for tornadic events through a visual 

evaluation of the degree of damage to structures and/or trees. To determine the strength of a 

tornado after an extreme wind event occurs, the NWS evaluators survey the damage to estimate 

the tornado's wind speed. The survey team's task is to gather data to recreate a tornado's 

lifecycle, including where it struck, when and where it initially touched down and lifted (path 

length), width, and magnitude. The investigative teams are sometimes tasked with determining 

whether damage may have been caused by straight-line winds or tornadoes and assessing the 

magnitude of straight-line winds and tornadoes.  
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The Enhanced Fujita Scale became operational on February 1, 2007, and based on 

estimated wind speeds and related damage, it is used to assign a tornado a rating. When 

conducting surveys, damage caused by tornadoes is assessed against a set of Damage Indicators 

(DIs) and Degrees of Damage (DOD), aiding in the estimation of the probable wind speeds 

generated by the tornado. This information is then used to assign a rating ranging from EF0 to 

EF5. The windspeeds related to the EF scale are estimated wind speeds from damage; they are 

not measured. Continued research is needed to validate the wind speed values associated with 

each DI and DOD (Wurman et al., 2013; Wurman et al., 2010; Wurman et al., 2007; Haan et al., 

2010; Prevatt et al., 2011; NOAA, 2017). If there is no DI path of a tornado, it is not possible to 

estimate the maximum speed of the tornado at that location. Direct measurements using probes 

placed in the path of tornadoes and/or remote sensing using Doppler radar technology can 

provide definitive wind speed values. With this thought in mind, the upper boundary for the wind 

speed range for EF5 is not specified. Table 2.1 below highlights different EF classifications and 

their 3-second wind gusts.  

Table 2.1: Enhanced Fujita Scale for rating tornado magnitude (Adapted from Texas Tech 

University, 2006). 

Category 3 – Second Gust (mph) 

EF0 65 - 85 

EF1 86 - 110 

EF2 111 - 135 

EF3 136 - 165 

EF4 166 - 200 

The National Weather Service (NWS) is the sole federal entity tasked with issuing 

official EF scale classifications. The goal is to determine the EF scale category by assessing the 

maximum wind speed recorded within the area of damage. Skilled personnel will select the 
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relevant damage indicator (DI) from a list of over 28 indicators utilized in the rating process 

(Table 2.2).  

Table 2.2: NWS damage indicators (highlighted indicators represent commercial structures). 

(Adapted from Texas Tech University 2006). 

NUMBER DAMAGE INDICATOR ABBREVIATION 

1 Small barns, farm outbuildings SBO 

2 One- or two-family residences FR12 

3 Single-wide mobile home (MHSW) MHSW 

4 Double-wide mobile home MHDW 

5 Apt, condo, townhouse (3 stories or less) ACT 

6 Motel M 

7 Masonry apt. or motel MAM 

8 Small retail bldg. (fast food) SRB 

9 Small professional (doctor's office, branch bank) SPB 

10 Strip mall SM 

11 Large shopping mall LSM 

12 Large, isolated ("big box") retail bldg. LIRB 

13 Automobile showroom ASR 

14 Automotive service building ASB 

15 School - 1-story elementary (interior or exterior halls) ES 

16 School - jr. or sr. high school JHSH 

17 Low-rise (1-4 story) bldg. LRB 

18 Mid-rise (5-20 story) bldg. MRB 

19 High-rise (over 20 stories) HRB 

20 Institutional bldg. (hospital, govt., or university) IB 

21 Metal building system MBS 

22 Service station canopy SSC 

23 Warehouse (tilt-up walls or heavy timber) WHB 

24 Transmission line tower TLT 

25 Free-standing tower FST 

26 Free-standing pole (light, flag, luminary) FSP 

27 Tree - hardwood TH 

28 Tree - softwood TS 

*Shaded DIs represent commercial buildings 

The description or construction of a building ought to match with the DI under review, 

and identified damage should correspond with the degrees of damage (DODs) linked to the 

chosen DI. The NWS surveyors will evaluate and assess within the confines of the specified 

upper and lower wind speed limits, along with the anticipated or expected value for the specific 

http://www.spc.noaa.gov/efscale/1.html
http://www.spc.noaa.gov/efscale/2.html
http://www.spc.noaa.gov/efscale/3.html
http://www.spc.noaa.gov/efscale/4.html
http://www.spc.noaa.gov/efscale/5.html
http://www.spc.noaa.gov/efscale/6.html
http://www.spc.noaa.gov/efscale/7.html
http://www.spc.noaa.gov/efscale/8.html
http://www.spc.noaa.gov/efscale/9.html
http://www.spc.noaa.gov/efscale/10.html
http://www.spc.noaa.gov/efscale/11.html
http://www.spc.noaa.gov/efscale/12.html
http://www.spc.noaa.gov/efscale/13.html
http://www.spc.noaa.gov/efscale/14.html
http://www.spc.noaa.gov/efscale/15.html
http://www.spc.noaa.gov/efscale/16.html
http://www.spc.noaa.gov/efscale/17.html
http://www.spc.noaa.gov/efscale/18.html
http://www.spc.noaa.gov/efscale/19.html
http://www.spc.noaa.gov/efscale/20.html
http://www.spc.noaa.gov/efscale/21.html
http://www.spc.noaa.gov/efscale/22.html
http://www.spc.noaa.gov/efscale/23.html
http://www.spc.noaa.gov/efscale/24.html
http://www.spc.noaa.gov/efscale/25.html
http://www.spc.noaa.gov/efscale/26.html
http://www.spc.noaa.gov/efscale/27.html
http://www.spc.noaa.gov/efscale/28.html
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DOD. This process is repeated for multiple structures and trees before arriving at a definite EF 

rating. Table 2.3 shows the DODs and wind bounds for Strip Malls.  

Table 2.3: Strip Mall Degree of Damage and Wind Bounds  

(Adapted from: Texas Tech University 2006). 

DOD* Damage description EXPECTED LOWER 
BOUND 

UPPER 
BOUND 

1 Threshold of visible damage 65 51 80 

2 
Uplift of roof covering at eaves and 
roof corners 

 
80 

 
66 

 
100 

3 Broken windows or glass doors 88 72 105 

4 Uplift of the roof decking  101 84 122 

5 Collapsed façade or parapet walls 103 185 125 

6 
Covered walkways uplifted or 
collapsed 103 86 125 

7 Uplift or collapse of entire roof 
structure 122 103 143 

8 Collapse of exterior walls; closely 
spaced interior walls remain standing 140 117 165 

9 
Complete destruction of all or a large 
section of building 

 
171 

 
147 

 
198 

The DODs for a particular DI range from damage initiation (lower bound) to total 

destruction (upper bound) of the building or structure. Each DI has several DODs [6 – 10, 

according to Mehta, 2013], and there are more than 200 levels of damage (DODs), which 

describe damage in the range between commencement of damage and total destruction. The 

DODs are in sequence, so each subsequent one has a higher expected wind speed than the 

previous one (Table 2.3).  

The strategy of DIs consists of an expected, upper, and lower bound wind speed. The 

wind speed range includes both the upper and lower bounds, which accommodate circumstances 

that influence the actual wind speed's effect on a given DOD within normal conditions. This 

approach, therefore, assumes that there is no apparent discontinuity in the load path, construction 

quality is traditional, appropriate building materials are utilized, compliance with local building 
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codes is maintained, and maintenance is uninterrupted (Masoomi et al. 2018a). Traditional 

construction quality means construction procedures are considered appropriate in most similar 

DIs in an area. Proper building materials fit their specific use and the area's environment. 

Regular maintenance implies that the facility has not run down or deteriorated over time (Amini 

and van de Lindt, 2014).  

Each damage indicator depicts the typical construction for that category indicator. For 

example, typical construction for one- or two-family residences may include tile, asphalt 

shingles, metal roofing, or slate. They may have brick veneer, wood panels, stucco, vinyl, metal 

siding, and an attached single-car garage (Texas Tech, 2006). Once the structure has been 

assigned a damage indicator, the team will thoroughly analyze the building structure and 

construction. The survey team will allocate a degree of damage to the structure or tree in 

question.  

While Damage Indicators (DIs) and Degrees of Damage (DOD) provide valuable insights 

into the assessment of tornado-related damage, it is essential to look into the details of damage 

characterization and limit States. Damage States and limit states are often utilized to summarize 

the structural response under extreme wind loading conditions. 

2.3 Damage Characterization and Limit States  

In the context of tornado vulnerability assessments, Damage States (DS) serve as critical 

benchmarks for evaluating the extent of structural damage incurred by buildings during tornado 

events. These Damage States are integral components of widely used frameworks such as Hazus-

MH and FEMA guidelines. Hazus-MH categorizes Damage States into Slight, Moderate, 

Extensive, and Complete, providing a standardized methodology for quantifying the severity of 
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tornado-induced damage. Building damage states are given as a probability of the wind load 

exceeding the resistant capacity of a structure's MWFRS and C&C (walls, connections, roofing, 

and so on). Similarly, FEMA employs a classification system encompassing categories such as 

Destroyed, Major, Minor, Affected, and, for those buildings that cannot be reached for 

assessment, Inaccessible (FEMA, 2011), offering a comprehensive spectrum of damage severity 

levels (Table 2.4).  

Table 2.4: FEMA Damage States (Adapted from FEMA, 2010) 

  Damage description 

Destroyed 1 Complete failure of two or more major structural components, e.g., collapse of basement 
walls, foundation, load-bearing walls, or roof 

2 Only foundation remains 

3 A residence that is in imminent threat of collapse because of disaster-related damage or 
confirmed imminent danger – e.g., impending landslides, mudslides, or sinkholes 

Major   

 1 Failure or partial failure to structural elements of the roof to include rafters, ceiling joists, 
ridge boards, etc. 

 2 Failure or partial failure to structural elements of the walls to include framing, sheathing, etc. 

 3 Failure or partial failure to foundation to include crumbling, bulging, collapsing, of more than 
six inches 

 4 Residences with a water line 18 inches above the floor in an essential living space, a water 
line above the electrical outlets, or a water line on the first floor when basement is completely 
full 

Minor   

 1 Nonstructural damage to roof components over essential living space to include large areas of 
shingles, e.g., roof covering, fascia boards, soffit, flashing, and skylight 

 3 Non-structural damage to the interior wall components to include drywall, insulation; exterior 
components to include house wrap, missing doors, broken window framings; or substantial 
loss of exterior covering, such as missing siding, vinyl, stucco, etc. 

 4 Multiple small vertical cracks in the foundation 

 5 Damage to chimney to include, tilting, fallen, cracks, or separated from the residence 

 6 Damage to or submersion of mechanical components, e.g., furnace, boiler, water heater, 
HVAC, electrical panel, pressure tanks or well pressure switch, etc. 

 7 Water line less than 18 inches in an essential living space 

  Damage or disaster related contamination to a private well or septic system 

Affected   

 1 Partial missing shingles or siding (non-continuous/sporadic), home kept roof structure intact. 

 2 Cosmetic damage, such as paint discoloration or loose siding 

 3 Broken screens 

 4 Gutter damage and debris 

 5 Damage to an attached structure such as a porch, carport, garage, or outbuilding not for 
commercial use 

 6 Damage to landscaping, retaining walls, or downed trees that do not affect access to the 
residence or has not collapse into residence 

 7 Any water line in the crawl space or basement when essential living space or mechanical 
components are not damaged or submerged 

These Damage States enable consistent and objective assessment of structural integrity 

and facilitate efficient allocation of resources for post-disaster response and recovery efforts. 
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Understanding the implications of different Damage States is paramount for developing effective 

mitigation strategies and enhancing community resilience in tornado-prone regions. For example, 

in their study, Memari et al. (2018) used four damage states, Slight, Moderate, Extensive, and 

Complete, to assess the building's performance relative to tornado loading. These damage states 

explained the performance of physical damage sustained by the building envelope, roof structure, 

and exterior walls.  

A significant number of studies have been conducted over the last several decades, 

mainly focusing on evaluating and understanding the damage to infrastructure due to tornado 

loads (Haan et al., 2010; Prevatt et al., 2012). Beyond the familiar classifications of the EF 

scale's Degrees of Damage (DODs) and DIs for buildings, the StEER Damage rating in Table 2.5 

provides a comprehensive overview of wind damage ratings. Aligning with the Hazus-MH 

(FEMA 2010) nomenclature, four distinct damage states (DS) – Minor, Moderate, Severe, and 

Destroyed – ensure consistency. Referencing Table 2.5, if any shaded damage indicators in a 

given row manifest, the corresponding building or structure is categorized into the associated 

damage state. For example, a building earns the designation of damage state 4 (Destroyed) only 

when it experiences roof structural failure or load-bearing wall failure. In damage state 4, the 

first three damage indicators will also typically occur, likely leading to DS4.  
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Table 2.5: Wind damage rating criteria for components. Quantitative guidelines for assigning 

overall wind damage rating. (Adapted from VAST Handbook: DE/QC, 2019)  

 

Having established a comprehensive understanding of extreme weather, tornado 

formation, and the impact of tornadoes, this dissertation focuses on the existing body of 

knowledge surrounding the assessment of building tornado fragility. The subsequent section 

reviews pertinent literature, exploring the methodologies, findings, and gaps in our current 

understanding of how structures respond to tornadoes.  

2.4 Review of the Current State of Building Tornado Modeling Failure of Structural 

Components Using Fragilities 

The fragility curve development methodology, expressed mathematically, defines 

fragility as the conditional probability that a specific random variable related to the response or 

performance of a structure or structural component will surpass a predefined capacity under 
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given conditions, typically represented by various loads such as extreme wind events. Within this 

framework, tornadic fragility quantifies the likelihood that a building or its component will 

exceed a specific limit state under the influence of extreme wind events. The chosen limit states 

align with the building's operational or functional aspects and are synonymous with building 

resistive capacity (Amini et al., 2014). 

Previous studies of post-event storm surveys have documented common failure modes of 

residential and commercial buildings. Common observations include substandard brick veneer 

attachments (LaFave et al., 2016), poor roof performance associated with loss of roof sheathing, 

and failure of the roof-to-wall connection due to uplift, which in some cases results in multiple 

wall collapses (Gardner et al., 2000; Marshall, 2002; Pan et al., 2002; Jordan, 2007; Peng, 

Rouche and Prevatt, 2013), and load path deficiencies (Prevatt et al., 2011; van de Lindt et al., 

2012). Numerical studies have modeled tornado damage fragility functions for buildings (Amini 

and van de Lindt, 2014) and have begun incorporating tornado fragility functions into regional 

simulations for risk assessments (Masoomi et al., 2018b; Memari et al., 2018).   

Tornado fragility curves, defined as conditional probability curves that give the 

likelihood of damage given a wind speed (Memari et al., 2018; Masoomi and van de Lindt, 2016; 

Koliou et al., 2017; Masoomi et al., 2018b; Attary et al., 2017), have been found to be valuable 

tools for modeling potential damages to structures. Fragility curves are the relationship between 

the probability of a failure and an intensity measure of a hazard. In tornadic fragility functions, 

the primary failure mode is generally defined as excessive stress or displacement greater than 

given thresholds resulting from extreme wind-induced loadings (Koliou et al., 2017). The 

intensity measure of loading is selected as the peak wind loading, and the failure probabilities are 
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described as dependent variables of the intensity measure on the fragility curve (Lee J et al., 

2016).  

Fragility curves of buildings using probabilistic techniques help quantify potential 

damage to structural components or the entire building system during tornadoes. The integration 

of these fragility models into tornadic risk assessments provides an opportunity to screen 

buildings susceptible to tornadic wind loading to project anticipated damage and tornadic wind 

loading losses or support post-event inspection. Ultimately, fragility curves enable us to evaluate 

the resilience of buildings and communities to tornado events and develop targeted strategies to 

enhance preparedness and reduce vulnerability. Fragility curves relating the probability of failure 

to the intensity of some hazards are reliable for the failure assessment of structural systems 

(Shafieezadeh et al., 2014; Padgett and DesRoches, 2009; Shafieezadeh et al., 2011). For 

example, Li and Elingwood (2009) and Ham et al. (2009) generated fragility relationships for 

residential home components and industrial buildings, respectively, by using reliability analysis 

with respect to wind speeds. Reliability analysis involves quantifying the likelihood that a 

structure or its components will exceed a certain threshold of response (e.g., damage or failure) 

when subjected to different levels of loading. This analysis typically incorporates factors such as 

material properties, geometric configurations, environmental conditions, and uncertainties 

associated with input parameters.  

Fragility curves require reliability analysis to calculate the probability of an event in 

which a structure undergoes a certain level of damage. Lombardo et al. (2023) developed an 

approach using tornadic fragility curves to quantify the likelihood and magnitude of 

misclassifying tornado characteristics (e.g., peak wind speed, damage length, and width) using 
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damage to residential structures in typical rural configurations. This study found that, from an 

intensity perspective, EF4 tornadoes are most likely to be correctly identified through damage, 

with EF4 ratings being favored for strong to violent tornadoes. However, accurately estimating 

the intensity of violent tornadoes based solely on residential damage proves challenging, 

suggesting limitations in identifying "true" EF5 tornadoes from residential damage alone.  

An example is given by Lee, Ham, and Kim (2013) for investigating a structure based on 

roof covering, roof structure, and exterior windows. In determining the response of building 

components to extreme wind loadings, the variability of many factors leads to a great deal of 

uncertainty. The turbulent nature of wind loadings on different topographic terrains produces 

fluctuating aerodynamic forces on the various parts of a building. Aside from this, the building 

components' resistance varies due to their innate material properties and construction. To account 

for these, fragility curves are used to quantify the probability of a particular damage state that a 

structure will experience as a function of demand, given a set of parameters, such as roof 

covering type and condition, roof structure design and integrity, exterior windows' properties and 

quality, topographic terrain features influencing wind flow patterns, aerodynamic forces acting 

on different parts of the building, material properties of building components, construction 

quality, and standards. 

Studies have developed fragility functions for some building archetypes in a community 

to perform damage and resilience modeling at a community level. The study by Memari et al. 

(2018) develops tornado fragility functions for several building types, creating 19 building 

archetypes. Other authors (Amini and van Lindt, 2014; Standohar-Alfani and van de Lindt, 2016) 

form a reasonably comprehensive portfolio, termed a minimal building portfolio (MBP) tornado 
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building fragilities for community-level spatial damage analyses. These fragilities are used to 

assign damage states to different types of buildings using Monte Carlo Simulations (MCS). 

The estimation of loss due to wind hazard has been previously well outlined through the 

Federal Emergency Management Agency's (FEMA) HAZUS. It has been established based on a 

building's damage state. As mentioned in the previous section, building damage states are given 

as a probability of the wind load exceeding the resistant capacity of a structure's MWFRS and 

C&C (walls, connections, roofing, and so on). Such fragilities have been developed previously 

on an individual building basis (Unanwa et al., 2000; Rosowsky et al., 2002; Rosowski et al., 

2004; Ellingwood et al., 2004; Hwang et al., 2004; Koliou et al., 2014; Amini et al., 2014; 

Masoomi et al., 2016; Koliou et al., 2017; Masoomi et al., 2018a; 2018b; Gill et al., 2021. Refan 

et al., 2020). van de Lindt and Dao (2012) point out that "more than 80% of the total building 

stock in the United States and more than 90% of the residential buildings in North America are 

wood-frame construction, a type of construction that is quite vulnerable to wind damage". As a 

result, Masoomi et al. (2018b) investigated performance enhancement strategies for wood-frame 

residential buildings. They explored blends of roof coverings, roof sheathing nailing patterns, 

and roof-to-wall connections. They further considered a total of nine construction product 

combinations and later looked into the damage fragilities of five wood-frame building archetypes 

for the “four damage states defined based on the performance of the building envelope, including 

roof coverings, doors and windows, roof sheathing, and roof-to-wall connections." 

The methodology to develop tornado fragility of components, as developed by Memari et 

al. (2018), is shown in the flowchart below: 
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Figure 2.2: Flowchart showing methodology to develop tornado fragility of components. 

(Adapted from Mehmari et al. 2018) 

Figure 2.3 below shows an example of a set of fragility curves. The vertical axis 

represents the probability that the wind load on the structure will meet or exceed a certain limit 

state, while the horizontal axis in fragility curves generally varies within different predefined 

conditions, such as the intensity of the 3-sec gust wind speed. 
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Figure 2.3: Example of fragility curves for doors and windows. (Adapted from Memari et 

al. 2018) 

2.5 Limitation of Current Approaches 

While current approaches in utilizing fragilities concentrate on evaluating the 

vulnerability of buildings in their pristine state, a notable gap exists in addressing the impact of 

deterioration and maintenance deficiencies on structural performance. These approaches 

traditionally overlook the potential effects of deterioration and maintenance deficiencies on a 

building's structural performance. Current practices involve wind damage ratings determined 

through visual assessments of the main wind force-resisting systems (MWFRS) and components 

& cladding (C&C) of damaged buildings. The condition of these structures is contingent upon 

factors such as hazard strength, building materials, construction quality, and the potential state of 

deterioration, which is closely linked to ongoing maintenance efforts. Continuous maintenance, 

which ensures the longevity and resilience of a facility (Lacasse, 2020), is pivotal in mitigating 

deterioration caused by various factors such as age, overcapacity, and lack of planning or 
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preventative maintenance. This is particularly significant when buildings are left unoccupied 

after reaching the end of their useful life. 

Current literature on the use of fragility functions for modeling the probability of failure 

from extreme winds lacks consideration of the effects of aging, which is in contrast to the 

thorough exploration of seismic fragility in bridge studies, where Choe et al. (2008, 2009) have 

probed the impact of deterioration on the capacity and fragility of typical single-bent bridges in 

California. Choe et al.'s work highlights the necessity of capturing the effects of deterioration on 

seismic fragility, leading to the development of time-dependent fragility curves that incorporate 

uncertainties in bridge component capacity models. Building upon this foundation, subsequent 

researchers, such as Ghosh and Padgett (2010, 2012), Simon et al. (2010), and Alipour et al. 

(2010), have explored the broader understanding of the effect of aging on system response and 

fragility. Their studies consider the vulnerability of multiple components and incorporate 

simultaneous aging, thereby constructing time-dependent fragility curves with a specific 

emphasis on corrosion-induced deterioration. Recognizing the inevitability of material and 

structural deterioration, extending this line of inquiry to extreme wind event fragility studies for 

buildings is imperative, bridging the current research gap and enhancing the comprehensiveness 

of modeling failure of structural components using fragilities. 

Building upon the foundation laid by seismic fragility studies, particularly the work of 

Ghosh and Padgett (2012), there is an opportunity to adapt and extend these methodologies to 

address the deterioration effects in extreme wind event fragility studies for buildings. 

Recognizing the inevitability of material and construction practices' deterioration, extending this 

line of inquiry to extreme wind event fragility studies is imperative. Doing so would enhance the 
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comprehensiveness of modeling the failure of structural components using fragilities, thereby 

contributing to developing more resilient structures in the face of extreme wind events. 

2.6 Deterioration  

Deterioration plays an essential role in influencing the vulnerability of buildings during 

extreme wind events. For example, previous studies by Auld et al. (2010) identify that the quality 

of construction, maintenance of building stock, and state of deterioration also strongly influence 

their damage potential and extent of claims following extreme wind events. Studies done by 

Swiss Reinsurance (1997) and Munich Reinsurance (2005) state that lower-quality construction 

and poor maintenance or premature deterioration over time can rapidly worsen the marginal 

damages for each threshold of wind or other climate parameters, leading to higher loss and, 

therefore, claims following an extreme wind event.  

This section explores the various dimensions of deterioration, ranging from the lifespan 

of building materials to predictive models and methodologies. To provide a comprehensive 

understanding, the research examines the concept of service life and its connection to building 

materials, followed by insights into the process of facility condition assessments (FCA) and the 

challenges posed as buildings approach the end of their useful life. This section also considers 

the process of modeling deterioration using Markovian models to predict deterioration, providing 

a statistical foundation for understanding the dynamic changes in building conditions. Finally, 

this section explores deterioration degrees and rates, highlighting their impact on structural 

response under dynamic loading.  

Deterioration, in terms of facilities management, means a loss of the estimated value of 

real estate resulting from its technical (physical), functional (utility), and environmental 
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deterioration. Aging, design flaws, assembly defects, material structural changes over time, 

damage from external factors, and inadequate service/maintenance contribute to deterioration 

(Uzarski, 2008). Elements exhibit varying lifecycles, deteriorating unevenly, and therefore have 

disparate service lives (Dziadosz & Meszek, 2015).  

2.6.1 Service Life of Materials 

The service life of building materials can be defined as the period after installation during 

which the essential properties meet or exceed minimum acceptable values (Dziadosz & Meszek 

2015, 2018). This time-based parameter serves as a critical benchmark for evaluating the 

longevity and durability of building elements. Each material or component in a building system 

has an expected service life; for instance, structural members are expected to perform their 

intended functions for at least the lifetime of a building, while materials such as roofing 

membranes usually have shorter service lives and require periodic repair or replacement during 

the lifetime of the building (Schoen, 2010). These distinctions are crucial in understanding how 

each material contributes to a structure's overall performance and functionality. 

Collecting data on the service life of building materials involves a combination of 

experiential knowledge and systematic testing methodologies (Masters & Brandt, 1999). These 

approaches aim to provide insights into the expected performance and longevity of materials 

within the built environment. Experience-based data on service life are derived from the 

historical performance of materials in real-world conditions. Building professionals, researchers, 

and facility managers contribute to this wealth of knowledge by observing the behavior of 

materials over time (Konior, 2021). By documenting the lifespan of various components and 

structures, valuable information is gathered on the durability and reliability of different materials. 
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On the other hand, systematic testing serves as a scientific approach to assessing the 

service life of building materials. Laboratory exposure, field exposure, and assessments of in-

service performance are common methods employed. These tests simulate environmental 

conditions, stressors, and usage patterns to evaluate how materials respond and degrade over 

time (Dziadosz & Meszek, 2015). The data from such controlled experiments contribute to a 

more comprehensive understanding of material performance.  

Schoen (2010), through a peer-reviewed preventative maintenance guidebook, created a 

list of systems, materials, and their average useful life in years. The caveat in his study was that 

many factors can affect the average useful life, and like any average, individual systems and 

components will have lifetimes far from average. Lifetimes can often be extended significantly 

through robust maintenance programs that go beyond the norm, and many facilities currently 

have functioning equipment older than the lifetimes listed in the study. Climatic conditions and 

challenging environments introduce additional complexities to predicting service life. Wet 

locations, saltwater proximity, or heavy industrial activity exposure can accelerate deterioration. 

These external factors interact with material properties, influencing the rate of deterioration and 

the overall longevity of building components. 

2.6.2 Facility Condition Rating  

As building assets deteriorate, it is important for commercial and government building 

owners and facility managers to maintain them systematically, ensuring their optimal 

performance throughout their operational lifespan. Typically, building owners conduct annual 

Facility Condition Assessments (FCAs) to monitor their assets. These inspections typically 

involve visually inspecting each component within a building and assigning a condition rating on 
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a scale of one to five, with one indicating optimal condition and five requiring immediate 

attention (Lewis and Payant, 2000). The primary purpose is to monitor the condition and 

performance of these assets over time. FCAs are essential aspects of proactive facility 

management, providing a valuable understanding of the current state of building functionality 

and guiding decision-making for maintenance strategies. The methodology of FCAs involves a 

comprehensive inspection of each item within a building. Trained professionals, often facility 

managers or inspectors, visually assess various components and systems. The assessment 

considers factors such as structural integrity, functionality (how well facilities are performing for 

their assigned use), and environmental conditions (Mayo and Karanja, 2018). The goal is to 

create a holistic understanding of the building's condition by assigning a condition rating.  

The condition ratings, as depicted in Table 2.6, serve as crucial tools for owners and 

facility managers, offering insights into the current performance of their assets and guiding 

maintenance scheduling with a focus on addressing deteriorated elements (IPWEA, 2009).  

Table 2.6: Condition States following FCA 

Condition 

State 
Component 

Condition 
Condition Description 

1 Very good The element is as new   
2 Good The element is sound; minor damage and minor 

maintenance required  
3 Moderate Moderate damage; moderate maintenance required  

4 Poor Major damage; major maintenance required  
5 Very poor Very poor. Serious damage; element should be 

replaced  

By categorizing elements into different condition states, FCAs facilitate prioritization. 

Elements high in poorer condition (higher condition states) are flagged for immediate attention 
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and major maintenance, guiding owners in allocating resources where they are most needed. 

Examples of these elements are shown in Table 2.7. 

Table 2.7: Example of Building Systems and their Elements: Uniformat II Format 

ID Components Sub-Components 

A. Substructure Foundation: Walls, columns, pilings 

  Basement: Materials, insulation, slab, floor underpinnings 

B.  Shell Superstructure / structural frame: columns, pillars, walls 

  Roof: Roof surface, gutters, eaves, skylights, chimney 

surrounds 

  Exterior: Windows, doors, and wall finishes (paint and 

masonry) 

  Shell appurtenances: Balconies, fire escapes, gutters, 

downspouts 

C.  Interiors Partitions: walls, interior doors, fittings such as signage 

Stairs: Interior stairs and landings 

Finishes: Materials used on walls, floors, and ceilings 

D.  Conveyance Lifts: any other such fixed apparatuses for the movement of 

goods or people 

E. Plumbing Fixtures, Water distribution, Sanitary waste, Rain water 

drainage 

F. HVAC (heating, 

ventilation, and air 

conditioning) 

Energy supply 

  Heat generation and distribution systems 

  Cooling generation and distribution systems 

  Testing, balancing, controls, and instrumentation 

  Chimneys and vents 

G. Fire Protection Sprinklers, Standpipes, Hydrants, Hydrants, and other fire 

protection specialties 

H.  Electrical Electrical service & distribution 

  Lighting & branch wiring (interior and exterior) 

  Communications & security 

  Other electrical system-related pieces, such as lightning 

protection, generators, and emergency lighting 
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Condition ratings help owners understand which components are functioning optimally 

(lower condition states) and which may require attention, repair, or replacement. FCAs provide a 

basis for creating maintenance schedules. The frequency and intensity of maintenance activities 

can be tailored based on the condition ratings (Uzarski, 2008). Regular maintenance for elements 

in good condition can prevent deterioration, while more intensive efforts may be directed toward 

elements in poorer condition.  

As buildings approach the end of their useful life, several challenges emerge in the area 

of continuous maintenance (Bailey & Galecka, 2008). The meticulous care and maintenance 

practices observed throughout their operational lifespan may encounter hurdles or diminish, 

introducing complexities that impact the continued functionality and safety of the building. 

According to Laraia (2018), at the end of the service phase of a facility, there is a relatively high 

number of facilities left in a semi-abandoned state for many years. Structural deterioration can 

occur when a building is neglected or left for a prolonged period without proper maintenance, 

making it vulnerable to damage during an extreme hazard event. The strength of the components 

of any structural system, in general, is a time-dependent property that may decrease resistance 

along the structure's service life. Structural components may be weakened, making the building 

more susceptible to damage.  

In the context of tornado modeling failure of structural components using fragilities, the 

challenges associated with the maintenance of a building approaching the end of its useful life 

are critical. The state of deterioration can significantly influence the structural response to wind 

loading during a tornado event, necessitating accurate modeling for finite element analysis. As 

buildings age and maintenance declines, safety risks may increase. Deterioration of critical 



31 
   
 

structural elements can compromise the safety of occupants and surrounding areas. The safety 

implications are particularly relevant in extreme events like tornadoes, where the structural 

integrity of a building is crucial. Neglected maintenance may contribute to higher levels of 

damage, posing risks to both property and lives (Auld, 2010). Deterioration may affect the 

structure's response under dynamic loading, such as wind loading. This research emphasizes 

deterioration consideration.  

Addressing maintenance challenges as buildings approach the end of their useful life is 

vital for ensuring the continued functionality, safety, and resilience of structures. This becomes 

especially significant when modeling the failure of structural components using fragilities for 

extreme events, where accurately representing the building's condition is essential for predicting 

its response to dynamic forces such as tornadoes. 

2.6.3 Deterioration Modeling  

Modeling deterioration can be used to alter fragility functions, and its significance lies in 

capturing the dynamic interplay between structural integrity, material properties, and the aging 

process. As buildings deteriorate over time, their response to external forces, such as those 

generated by tornadoes, undergoes changes that significantly influence the fragility of the 

structure. This section explores the reasoning behind the importance of modeling deterioration 

when determining fragility functions that may change over time. 

Tornado fragility curves depict the probability of structural damage or failure at varying 

intensity levels of tornadoes. The accuracy of these curves depends on how well the model 

captures the effects of deterioration on building vulnerability. Robust deterioration models may 

contribute to the derivation of accurate tornado fragility curves by allowing for the assessment of 
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how different levels of deterioration influence the likelihood and severity of damage under 

tornado conditions.  

2.6.4 Markovian Models 

Deterioration prediction is a significant stage in the whole life cycle of building 

management (Kleiner and Rajani, 2001). Deterioration prediction focuses on individual elements 

of the building and/or the building as a whole infrastructure system based on the condition data 

from the condition rating. Probabilistic models “predict the condition as the probability of 

occurrence of a range of possible outcomes" (Ortiz-Garcia et al., 2006). Statistical models have 

been used in engineering studies (Henley and H., 1992; Kuzin and Adams, 2005), and statistical 

or probabilistic modeling, such as Markov chain, ordinal regression, and linear discriminant 

analysis, is based on statistical theory for modeling phenomena with random noise in 

components.  

Markovian models are the most studied stochastic techniques that have been used 

considerably in modeling the deterioration of infrastructure (Jiang et al., 1988; Butt et al., 1987). 

In their study, Jiang et al. (1988) mention the Markov decision process, which defines states of 

assets and statistically attains the probabilities of the assets' condition transitioning from one 

state to another during an inspection period. The methodology for deterioration prediction is 

summarized in Figure 2.4 below.   
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2.4: Deterioration Prediction  

2.6.4.1 Markov Chain 

Markovian models, particularly Markov chains, excel in capturing these probabilistic 

transitions between condition states. They provide a statistical framework for predicting the 

likelihood of moving from one state to another. Building assets are subject to changing 

conditions due to factors such as aging, environmental exposure, and usage. Markovian models 

quantify the probabilities of transitions between condition states, offering a predictive tool to 

anticipate how the building's health may evolve. By customizing transition probabilities based on 

observed data and asset-specific features, Markovian models provide a more accurate 

representation of how individual building elements or systems will likely degrade (Morcous 

2002).  

"A Markov chain has a stationary stochastic matrix which, once applied to an initial 

probability distribution, results in the next step's probability distribution” (Mohseni et al. 2012). 

A Markov chain is a sequence of events where the probabilities of the future only depend on the 

present. It is stochastic as the predictions are probabilistic and uncertain in nature. Markov chain 
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is more appropriate for developing and verifying a deterioration prediction model where 

continuous inspection data sets are unavailable. Also, the assumption of unit change of facility 

condition is unsuitable for building condition data because the deterioration of building 

components might undergo a multistate transition (i.e., jumping from condition three to 

condition six within a one-time step). Hence, the Markov chain is selected to derive the 

deterioration prediction model, as shown in Figure 2.5. Markov chain has been used for the 

analysis of different infrastructure such as stormwater pipes (Micevski et al., 2002; Tran, 2007), 

bridges (Madanat and Wan Ibrahim, 1995), and sewers (Baik et al., 2006). These statistical 

models simulate the randomness and uncertainty of the element's deterioration process using one 

or more variables. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Example of a Markov chain deterioration model - Transition relations 

Markovian models offer a powerful and versatile framework for predicting building asset 

deterioration. Their significance lies in their ability to systematically represent condition states, 

model probabilistic transitions, and adapt to variable time intervals. Applied to building assets, 
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these models enhance the accuracy of deterioration predictions, supporting informed decision-

making for maintenance, risk mitigation, and the overall management of structural health over 

time. While Markovian models provide valuable insights into the probabilistic deterioration of 

individual building elements, this study’s exploration extends beyond theoretical frameworks. 

Transitioning from the complex analysis of element-level deterioration, the following section 

looks at the broader perspective of material degradation, examining the tangible impact of 

deterioration rates or degrees on the overall structural response, particularly in the context of 

tornadic modeling failure of structural components using fragilities. 

2.6.5 Deterioration Rates 

Deterioration rates in engineering structures and infrastructure are best captured by a 

physics-based failure model. The connection between deterioration rates and the impact on 

structural response during dynamic loading, such as wind loading, is pivotal for understanding 

how the gradual loss of building integrity influences its behavior under external forces. The time-

dependent nature of deterioration implies that a building's response to dynamic loading, such as 

wind, can be influenced by the evolving condition of its components. Pandey et al. (2007) 

recommend modeling deterioration as a time-dependent stochastic process, wherein coefficients 

(e.g., rate of deterioration per unit time) are treated as random quantities. 

Various methods exist to assess deterioration, with some defining building deterioration 

based on the overall wear of specific construction elements, while others evaluate the 

deterioration of individual building elements and materials. Konarsewska & Konarsewska (2006) 

state that the visual method is one such approach. However, an alternative and more dynamic 

method is the time flow methodology, requiring knowledge of usage duration and the envisioned 
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building lifespan. Determining the rate of deterioration or degree of deterioration involves 

understanding the service life durability of a building and its materials (Dziadosz & Meszek 

2015), which the research discusses at length in section 2.6.1. Building facilities comprise 

numerous elements with varying degrees of technical deterioration influenced by diverse factors 

and their interactions. Predicting durability and service life proves challenging, and common 

methods yield estimated values with varying accuracy and labor requirements. Konior (2021) 

contends that time methodologies are prevalent, assuming that technical deterioration increases 

over time, contingent on maintenance accuracy and materials used in the building facility. 

In both literature and practice, different formulae, such as Ross, Eytelwein, Unger, and 

Romstorfen, are employed to measure technical deterioration encompassing time methodologies 

and functional deterioration (Konior, 2021; Dziadosz & Meszek 2015, 2018). This division into 

different care levels regarding a building has historical roots dating back to the early 20th 

century in Poland. The formulae provided in Table 2.8 below characterize the degrees of 

technical wear in a building, reflecting different levels of care. 

Table 2.8: formulae to determine deterioration  (Adapted from Konior et al., 2018) 

Formula to determine deterioration 

Traditional (Poor Maintenance of building) 

 

 

Unger (Average Maintenance) 

 

 

Romstorfen (Satisfactory Maintenance) 

 

 

Eytelwein (Excellent Maintenance) 

 

 

𝑍 =  
𝑡

𝑇
 

𝑍 =  
𝑡. (𝑡 + 𝑇)

2𝑇2
 

𝑍 =  
𝑡. (2𝑡 + 𝑇)

3𝑇2
 

𝑍 =  
𝑡2

𝑇2
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Where: 

Z = Deterioration rate or degree 

t = Current stage of service life (years) 

T = Service life (years) 

An explanation of how these formulae are utilized is as follows: 

Linear Formula of Proportionality: 

When little care is given to the maintenance of the building, the linear proportionality formula is 

employed. This formula relates the deterioration rate (Z) to the current stage of service life (t) 

and the overall service life (T). 

Ross and Unger (Average Maintenance) 

When average care is taken with regard to the maintenance of the building, the Ross and Unger 

formula is used. This means that current and major repairs are done on time.  

Romstorfen Formula (Satisfactory Maintenance): 

Above-average care in maintenance leads to the application of the Romstorfen formula. This 

formula provides a more optimistic assessment of the deterioration rate under satisfactory 

maintenance conditions. 

Ross and Eytelwein Formula (Excellent Maintenance): 

Extreme maintenance care triggers the use of the Ross and Eytelwein formula. This formula 

reflects a scenario where the building receives meticulous care, resulting in slower deterioration 

rates. 
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These formulae can indirectly contribute to understanding structural response during 

dynamic loading. By quantifying the rate of technical deterioration, they offer insights into the 

potential vulnerabilities of building materials. The results from these formulae can guide 

decisions on maintenance, repair, or replacement of components that may influence the structural 

response to dynamic loading events like wind. The choice of the formula depends on the 

perceived level of maintenance care, and the outcomes directly impact the expected deterioration 

rates. Buildings with higher deterioration rates may exhibit different responses to dynamic 

loading, emphasizing the importance of accurate deterioration modeling for reliable structural 

assessments. 

Deterioration in engineering structures involves gradually losing estimated real estate 

value due to physical, functional, and environmental factors. Elements experience wear and tear 

influenced by age, design flaws, assembly defects, material property deficiencies, and varying 

components' service life. Facility Condition Assessments monitor deterioration, and if robust 

maintenance practices follow this, it can extend the building's lifespan. Deterioration prediction, 

a crucial stage in whole-life building management, utilizes probabilistic models like Markov 

chains and ordinal regression, accounting for randomness and uncertainty. Assessing 

deterioration degree/rates involves modeling it as a time-dependent stochastic process, 

considering various methods, and emphasizing the impact of maintenance accuracy and 

materials. Formulae like Ross, Eytelwein, Unger, and Romstorfen measure technical 

deterioration. The historical division into different care levels underscores the importance of 

proactive maintenance in building management. 

 



39 
   
 

3.1. Summary  

The insights gained from this chapter provide the necessary groundwork for the 

subsequent development of tornadic modeling failure of structural components using fragilities 

methodologies. Accurate prediction of deterioration and proactive maintenance strategies are 

integral to enhancing the resilience of buildings. The research discussed herein aims to bridge 

gaps considering the deterioration effect by exploring the relationship between building material 

deterioration and tornado fragility, offering a more comprehensive approach to building fragility 

under extreme wind events. The methodologies developed will advance tornadic modeling 

failure of structural components using fragility practices and contribute to broader discussions on 

resilient infrastructure in the face of natural hazards. 
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3 CHAPTER 3: RESEARCH METHODOLOGY 

This chapter provides an overview of the research methodology employed, elucidating 

the research questions and strategies utilized to investigate them. In the following sections, the 

research details the methodologies employed to address the research objectives, emphasizing the 

systematic approach taken to ensure the reliability and applicability of its findings. 

To recap, the research questions developed for the research are as follows: 

1. During facility condition assessments (FCAs), are facility managers prioritizing the same 

components as those conducting post-evet storm surveys?  

2. Does deterioration have an effect on the tornadic wind-loading response of building 

materials? How significant are the shifts in material tornadic fragilities of deteriorating 

buildings when compared to non-deteriorating (pristine) buildings?  

3. Would a structure’s age and material deterioration ultimately impact how tornadoes are 

ranked on the EF-scale? 

3.1 Facility Condition Assessments 

3.1.1 Introduction 

As mentioned in the literature review section, the estimation of loss due to wind hazards 

has been previously well outlined through the Federal Emergency Management Agency's 

(FEMA) HAZUS-MH and has been established based on a building's damage state. Building 

damage states explain the performance of physical damage sustained by the building envelope, 

roof structure, and exterior walls and are given as a probability of the wind load exceeding the 

resistant capacity of a structure's MWFRS and C&C (walls, connections, roofing, door, and so 

on).  
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In the context of increasing environmental hazards and aging infrastructure, FCAs are 

particularly significant in evaluating building vulnerabilities. They provide a proactive approach 

to assess the resilience of buildings to various stressors, including natural disasters, extreme 

weather events, and the gradual effects of time and wear. By identifying vulnerabilities and 

potential points of failure, FCAs empower stakeholders to implement preventive measures and 

enhance the overall resilience of buildings against external threats. It is, therefore, essential to 

compare the focus of facility managers' FCAs with NWS post-event storm surveys to address the 

alignment between pre- and post-tornado surveys, shedding light on potential discrepancies. 

An FCA is defined by Rugless (1993) as “a process of systematically evaluating an 

organization’s capital assets to project repair, renewal, or replacement needs that will preserve 

their ability to support the mission or activities they are assigned to serve.” The FCA holds 

paramount significance within the asset management process, serving as the cornerstone for 

other functions, such as decisions regarding repair or replacement. In the context of condition 

assessment, it is imperative to decompose a building into its principal components hierarchically. 

This hierarchical breakdown aims to classify and group these components into distinct 

categories. For instance, a building can be segmented into various disciplines or systems (such as 

structural, electrical, mechanical, building façade, etc.), which can then be further subdivided 

into more detailed component levels (e.g., interior doors/exterior doors, ceilings, windows, etc.). 

Adopting a standardized and consistent format for defining a building hierarchy can facilitate 

data sharing within an organization's Facility Management department. Elhakeem's study (2005) 

amalgamated the advantages of existing hierarchies. It proposed a five-level building hierarchy 

(system, subsystem, component, type/element, and instance) aligned with the Organizational 

Breakdown Structure (OBS) of educational institutions (e.g., school boards). The primary 
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advantages of this proposed hierarchy include streamlining the process of revising assessed 

components, assessing each facility's performance in maintaining its components in a safe and 

satisfactory condition and enabling the organization to allocate funds effectively. Various 

endeavors have been made to establish a hierarchy of building components, which have been 

discussed within building information modeling and in proprietary initiatives by government 

agencies to develop asset management systems. 

This consistency in data organization facilitates data sharing within a Facility 

Management (FM) department, ensuring the assessment process's accuracy and reliability. This 

structured approach to building hierarchy is the foundation for collecting and cleaning data 

pertinent to our research question: ‘During FCAs, are facility managers prioritizing the same 

components as NWS during post-event storm surveys?’ Understanding and aligning the priorities 

of facility managers with those of NWS post-event storm surveys are crucial for ensuring the 

effective allocation of resources, timely repairs, and, ultimately, the structural integrity and 

safety of buildings in the face of extreme weather events. To address Research Question 1, data 

on current FCAs, specifically those related to decommissioned buildings, must be collected, as 

these are the most vulnerable to unmitigated deterioration. 

3.1.2 Data collection and cleaning 

Data for FCAs is obtained from a wider survey conducted in 2022 regarding 

decommissioning practices in commercial buildings. The survey encompasses a diverse range of 

building owners, facility managers, and stakeholders involved in designing, managing, and 

maintaining commercial properties. The research discusses a survey whose data are collected 

through a Qualtrics platform survey targeting professionals within the built environment, 
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including architects, engineers, building owners, facility managers, project managers, and 

construction managers. These participants are selected from the American Institute of Architects 

(AIA) and International Facilities Management Association (IFMA) databases due to both 

organizations' international reach. The respondents are subsequently divided into three 

professional groups:  

• Group I - architects;  

• Group II - facility managers and building owners; and  

• Group III - construction managers, project managers, and engineers. 

The survey grouping of respondents is based on their functional roles and responsibilities 

within the building lifecycle to ensure targeted analysis of relevant perspectives. Architects 

(Group I) are categorized together due to their shared involvement in the design and planning 

phases of construction projects, while facility managers and building owners (Group II) are 

grouped based on their mutual focus on building operations, maintenance, and asset 

management. Construction managers, project managers, and engineers (Group III) are clustered 

together owing to their collective roles in overseeing construction activities and providing 

technical expertise. 

Data cleaning, quality management, and statistical analysis are carried out using the IBM 

Statistical Package for Social Sciences (SPSS version 27.0) software tool. This involves 

checking for potential data errors, such as formatting errors, duplication, and missing data where 

participants failed to respond. Survey responses that contain missing data are marked, and 

respondents are contacted via email. Respondents who did not reply with the information 

necessary to fill in this data are excluded from the subsequent analysis.  
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3.1.3 Questionnaire 

The survey instrument is designed to gather comprehensive information on the condition 

of building components, maintenance priorities, and decision-making processes related to 

decommissioning. Key areas of focus include: 

1) planning for decommissioning;       

2) condition assessments;      

3) guidelines; and  

4) general information.  

In the interest of evaluating discrepancies between damage surveys and FCAs, the 

discussion herein focuses on the second key area: condition assessments. By investigating the 

relationships between professionals’ roles and condition assessments, this research aims to 

compare the focus of facility managers' FCAs with NWS post-event storm surveys to address the 

alignment between pre- and post-tornado assessments, shedding light on potential discrepancies. 

Table 3.1 shows the questions under the section “condition Assessments.” 

Table 3.1: Research Variables under the Condition Assessment Section of the Research 

Section Variables 

Condition Assessments ✓ Frequency of condition assessments on 

unoccupied commercial buildings. 

✓ Asset prioritization for condition 

assessments on unoccupied commercial 

buildings. 

✓ Additional assets that should be included in 

condition assessments of unoccupied 

commercial buildings. 

The condition assessment questions concern specific building assets as garnered from the 

American Society for Testing and Materials (ASTM’s) UNIFORMAT II (Charette & Marshall, 
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1999) and MasterFormat (CSI, 2020; Waugaman et al., 2022), the standards for organizing 

specifications for most commercial building design and construction projects in North America. 

Particular reference is given to UNIFORMAT II's Chart 4.5 (Charette & Marshall, 1999), where 

the relationship between UNIFORMAT and MasterFormat is described. Data collection is based 

on a taxonomy of building assembly systems in UNIFORMAT II for Building Elements. 

Classifications of these building assembly systems provide a commonly used outline for data 

collection and permit comparison between institutions, including Level 1 - Major Group 

Element, Level 2 - Group Elements, and Level 3 - Individual Elements.  

3.1.4 Comparative Analysis 

The data and results from the 2022 survey are analyzed to compare the building 

components that are the focus of facility managers during FCAs with that of NWS during post-

event storm surveys, as shown in Table 3.2, as listed in Jain et al. (2020).  

Table 3.2: Critical building components during NWS post-event storm survey (Adapted from 

Jain et al. 2020) 

No.  Building Component 

1 Roof Structure 

2 Roof Covering 

3 External Walls 

4 Windows 

5 Doors 

6 Wall Cover (Cladding and Siding) 

7 Roof-to-wall Connections 

8 Roof and Wall Sheathing 

This comparative analysis aims to assess the alignment between pre- and post-tornado 

assessments and identify any discrepancies or areas for improvement in vulnerability 

assessments. The collected survey data are subjected to both quantitative and qualitative analysis 

to derive meaningful insights and conclusions. Quantitative analysis uses statistical methods to 



46 
   
 

summarize and interpret numerical survey responses, such as frequency distributions, descriptive 

statistics, and inferential analyses. 

Qualitative analysis, on the other hand, focuses on interpreting open-ended survey 

responses to identify recurring themes, patterns, and trends. Textual data are coded and 

categorized to facilitate systematic analysis and interpretation, allowing for qualitative insights 

and participant feedback extraction. 

     Within the scope of this research, descriptive analyses are used to determine the 

overall percentages of the responses relative to each variable. This is accomplished by using 

cross-tabulation, which involves grouping each of the variables shown in Table 3.1, tabulating 

these, and examining the relationship in tabulated data to show any potential association between 

these variables and the respondents’ role in the industry. 

Inferential statistics are also explored using the Chi-Square Test for Independence to 

examine the relationship between the respondents’ current role in the industry and the categorical 

variables listed under the sections planning, condition assessments, and procedures & guidelines. 

The Chi-Square Test for Independence test determines relevant associations between the 

variables and whether these associations are statistically significant. The null hypothesis (H0) 

assumes that the variables related to condition assessments are independent of the professionals’ 

role in the industry. The alternative hypothesis (Ha) assumes a significant association between 

the variables. The significance level (alpha) is set at 0.05 (5%) in the research. A Chi-Square 

Test for Independence is conducted for each variable shown in Table 3.1 against the single 

variable of “current role in the industry.” The formula for Chi-Square is as follows: 
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                                                            𝑥𝑑𝑓
2 = ∑

(𝑂𝑖−𝐸𝑖)2

𝐸𝑖
                                (Eq 3.1) 

Where: 

df = degrees of freedom = (r – 1)(c – 1), where r is the number of rows, c is the number of 

columns,  O is the observed cell frequencies, and E is the expected cell frequencies. 

Cramer’s V tests are also conducted to identify the strength of these associations between the 

variables in Table 3.1 under the condition assessment section and the industry's current role. The 

formula for Cramer's V is: 

                                                          𝑉 = √
𝑥2

(𝑁)mi n(𝑟−1,𝑐−1)
                                (Eq 3.2)  

Where x² is the chi-square statistic for the cross-tabulation, N represents sample size, and min (r 

– 1, c – 1) indicates the number of rows or the number of columns in the contingency table, 

whichever is smaller.  

According to Cohen (1988), a V between 0.1 and 0.3 indicates a weak association, a V 

between 0.4 and 0.5 points at a medium association, and a V greater than 0.5 indicates a strong 

association. To regulate for multiple comparisons and to lower the risk of Type I errors1, the 

alpha significance level is adjusted using the Bonferroni correction post-hoc procedure to 

0.05/[(number of tests conducted)].  

Some of the survey questions are single-answer selections. However, the survey also 

includes questions with multiple responses (select all that apply). In analyzing these types of 

questions, cross-tabulation allows us to investigate each of the responses separately. Recoding 

 
1 Rejecting the null hypothesis when it is actually true. 
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the response data to read zero (0) = no and one (1) = yes results in only responses coded as one 

(1) to be counted as an affirmative response. Therefore, the analysis provides the percentage of 

participants who answer with an affirmative response within each answer based on "select all 

that apply," giving a richer source of data to understand the respondents' answers better. All 

personal identifiers are removed in the analysis to safeguard the participants' privacy and 

anonymity.  

3.1.5 Integration with Post-Tornado Surveys 

The findings from the comparative analysis are integrated with post-event storm surveys 

conducted by the NWS to evaluate the effectiveness of FCAs in identifying vulnerable building 

components and informing resilience strategies. This analysis aims to determine if the building 

components being evaluated in FCAs align with those noted within damage surveys. By 

leveraging insights from both pre- and post-event storm surveys, this research seeks to enhance 

the understanding of building vulnerabilities and strengthen risk management practices in the 

face of extreme weather events. 

3.2 Deterioration Prediction and Deterioration Rates 

3.2.1 Introduction 

In order to establish an effective strategic asset management plan that facilitates proactive 

maintenance and rehabilitation strategies, it is imperative to employ a reliable method for 

predicting the condition states of assets. Predicting deterioration allows asset owners to 

accurately forecast costs based on condition data gathered during inspections, ensuring 

predictability regarding the future condition of assets and the necessary intervention criteria and 

timing aligned with service level expectations. As discussed in Chapter 2 (Literature Review), 
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traditional deterministic approaches to deterioration prediction may not adequately capture the 

stochastic nature of degradation, especially when dealing with numerous buildings, elements, 

and factors influencing degradation trends. Deterioration prediction stands at the forefront of 

proactive building management and maintenance, offering valuable insights into built 

infrastructure's long-term performance and resilience. This section provides the methods used for 

deterioration prediction within this research. Deterioration prediction refers to the process of 

forecasting the degradation and aging of building materials and components over time. 

In an era characterized by aging infrastructure, climate change, and evolving 

environmental stressors, and how that affects a building’s ability to withstand extreme loading 

conditions, deterioration prediction plays a critical role in enhancing building resilience and 

sustainability. By understanding how materials degrade under different conditions and stressors 

and how that affects a building’s ability to withstand extreme loading conditions, stakeholders 

can implement targeted interventions to prolong the lifespan of buildings, optimize resource 

allocation, and further promote the safety and well-being of inhabitants. 

3.2.2 Deterioration Prediction Model 

As described in the literature review section, this research adopts the stochastic approach 

of the Markov Chain process, utilizing discrete data sets to depict the degradation patterns of 

components in commercial and government buildings. Morcous et al. (2002) note that the 

Markov chain theory remains a widely employed method in numerous statistical models. The 

International Infrastructure Management Manual (IIMM, 2006) states that organizations need 

asset data that will indicate those assets are reaching the end of their useful life and will require 

further attention in the immediate future. It also suggests that assets are interconnected, thereby 
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affecting their aging process. In pursuing a comprehensive understanding of deterioration within 

building materials, this research leverages valuable insights obtained from a prior investigation.  

Modeling the deterioration process involves probabilistic factors arising from the 

uncertainty of environmental influences on assets over their lifespan and the variability among 

individual assets. Therefore, simulating and forecasting this process within the context of 

stochastic models is preferable. However, validating and identifying parameters of a stochastic 

model rely on the accessibility and structure of data, whether from controlled experiments or 

field assessments (Zhang and Augenbroe, 2005). Madanat and Ibrahim (1995) state that 

“Markovian transition probabilities have been used extensively in the field of infrastructure 

management to provide forecasts of facility conditions.” This section provides a comprehensive 

explanation of this research's methodology employed in utilizing the Markov Chain Model, 

including the state transition process, model assumptions, and parameter estimation techniques. 

3.2.3 Data Collection 

The data utilized in predicting deterioration patterns is sourced from Hessam Mohseni’s 

(2017) research on the Markov process for deterioration modeling and asset management of 

buildings, a seminal work that documents the degradation of building components over time. The 

data utilized in this research stems from Mohseni’s (2017) rigorous research that employs the 

Markov Process to predict the deterioration of key building elements, including roofs, walls, 

windows, doors, services, and the entire superstructure. The research tracks the condition of 

buildings over a specified period and creates an abundant dataset.  

While the data from Hessam Mohseni’s (2017) research provides a robust foundation for 

our predictive models, it is essential to acknowledge its strengths and limitations. The extensive 
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duration of the original study and the comprehensive nature of data collection contribute to the 

reliability of the deterioration patterns observed. However, it does not recognize potential 

constraints, such as the environment, and assumes that asset conditions stay the same or worsen 

(never better). Additionally, Mohseni’s (2017) research considers an assumption or notion that 

the forthcoming condition of a facility is solely reliant on its present state and disregards its 

historical condition, which is regarded as unrealistic.  

Building upon the insights gathered from the previous study, this research utilizes the 

discrete-time Markov Chain to extrapolate and refine deterioration predictions within the context 

of roofs, walls, doors, windows, wall cladding, and wall-to-roof connections. Integrating the data 

from Mohseni’s (2017) study with the current research’s methodologies allows us to draw upon 

established patterns with methods used to enrich our understanding of material responses over 

time. The research aims to enhance the precision and applicability of deterioration predictions, 

contributing to a complex understanding of material responses to environmental stressors.  

3.2.4 Markov Process Application 

At the core of the Markov Chain Model are state transitions, wherein the condition of a 

building component evolves over discrete time intervals based on probabilistic state changes. 

The model defines a finite set of condition states, each representing a distinct level of 

deterioration or degradation. Through the state transition process, the model captures the 

probability of transitioning between different condition states over successive periods, reflecting 

material degradation's dynamic nature. 

The development of the Markov Chain Model entails several key assumptions that 

underpin its applicability and validity. These assumptions include: 
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• Stationarity: The probability of transitioning between condition-states remains 

constant over time.  

• Markov Property: The future state of the building component depends solely on 

its current condition and is independent of previous states.  

• Homogeneity: Transition probabilities are consistent across all building 

components and are unaffected by external factors or interventions. 

By adhering to these assumptions, the Markov Chain Model provides a simplified yet effective 

framework for characterizing the deterioration process and projecting future condition states with 

a certain degree of reliability. 

In deterioration modeling, the characteristics of a model undergo random fluctuations 

over time. A Markov chain is a probabilistic model featuring a finite state, depicting a specific 

stochastic process that progresses through discrete time points according to fixed probabilities 

(Sharabah et al., 2006). It employs a stationary stochastic matrix and utilizes an initial 

probability distribution matrix to define the deterioration process. The Markov matrix employed 

in this research is “right stochastic,” with vectors in a row summing up to 1, reflecting its 

stochastic nature as it evolves probabilistically and uncertainly over time. The probability of one 

random variable in a Markov process depends solely on the preceding variable in the sequence. 

Consequently, future states are contingent solely on the present state, independent of any 

preceding state in a Markov chain. Each Markov chain comprises an initial distribution matrix 

derived from inspected condition data and a transition matrix containing finite sets of states 

represented in rows and columns S (1,2,3...n ) alongside probabilities Pij for transitioning from 

state i to state j within a single time interval. This research uses a discrete-time Markov chain, 
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assuming discrete input data, including discrete time intervals and states (conditions). An 

example of such a matrix is shown below:   

𝑃𝑞 𝐶1 𝐶2

𝐶1 0.4 0.3
𝐶2 0 0.3

 

The characteristics of the Markov model utilized in the research are outlined below:  

• A stationary (time-homogeneous) Markov chain has been employed based on the data 

accessibility within the research;  

P(Xn+1 = a | Xn = b) = P(Xn = a | Xn-1 = b) 

• A transition matrix that is right stochastic, depicted as an upper triangular matrix or a 

right triangular matrix, illustrating the deterioration trend;  

• An irreversible Markov Chain is adopted to reflect the inherent deterioration 

characteristics and to distinguish the maintenance from degradation process;  

P(Xn+1 = a | Xn = b) ≠ P(Xn = a | Xn-1 = b) 

The transition matrices have the absorbing condition state denoted as 5, characterized as the most 

severe state.  

P55 = 1 

P5j = 0 for j = 1,2,3&4 

In other words: 

((Xn = i) → Si as n → ∞ 
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The first step in using Markov Chain modeling involves assessing the condition of 

building elements (Sharabah et al., 2007). A standard rating scale is used, with 1 indicating the 

best condition and 5 indicating the worst, as illustrated in  Table 3.3. 

Table 3.3: Condition Rating Scale 

Condition 

State 
Component Condition Condition Description 

1 Very good The element is as new   

2 Good The element is sound; minor damage and 

minor maintenance required  

3 Moderate Moderate damage; moderate maintenance 

required  

4 Poor Major damage; major maintenance 

required  

5 Very poor Very poor. Serious damage; element 

should be replaced  

Although the deterioration process occurs continuously, for the sake of simplicity, these 

processes are represented over discrete time steps. The current condition inspection for buildings 

in Mohseni’s (2017) research was conducted using a discrete data collection method. Hence, in 

the current research, a discrete-time Markov chain is considered a model for predicting the life 

cycle of building elements. 

3.2.4.1 Discrete-Time Markov Chain 

According to Sharabah et al. (2006), a discrete-time Markov Chain is a stochastic process 

with a finite number of states where random variables are observed at specific time intervals. 

When an element is in state “i,” there exists a fixed probability, Pij, of transitioning into state j 

after the next time step. Pij is commonly referred to as the “transition probability.” The matrix P, 

whose ijth entry is Pij, is known as the transition matrix. This matrix encompasses a finite set of 
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states represented by S (1,2,3….n ) along with the probability Pij of transitioning from state i to 

state j in one-time step t. In a Markov Chain, the transition probabilities Pij must satisfy the 

following two conditions:  

Pij  ≥  0,  

∑ 𝑝𝑖𝑗𝑗  ≤ 1 

This implies that if a component is in state i, it is denoted as Pii probability that the component 

will remain in state i and a probability of (1- Pii ) probability that it will transition to the 

subsequent state j.  

Current state at time t is i: Xt = i  

Subsequent state at time t + 1 is: 

j: Xt+1 = j  

The conditional probability statement of Markovian property:  

Pr{Xt+1 = j | X0 = k0, X1 = k1,…,Xt = i} = Pr{Xt+1 = j | Xt = i}  

Discrete-time means t ∈ T = {0, 1, 2, . . . } 

Figure 2.5 in Chapter 2 displays a typical transition matrix using a condition rating 

system scale of 5 states, while Figure 3.1 below outlines the probability transition relationships 

depicted in the Markov transition matrix presented in Figure 2.5. The depiction of the probability 

of an element occupying a particular state at a specific time point can be illustrated using a series 

of curves, as will be shown in the subsequent chapter, Chapter 4. 
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Figure 3.1: Transition Matrix 

       The Chapman-Kolmogorov theorem, relying on joint probability theory for its 

demonstration, describes the behavior of a Markov chain progressing over time. It is used to 

compute the probabilities of future states in a Markov chain, given the transition probabilities 

between states at each time step. It is a powerful tool for analyzing Markov chains' long-term 

behavior and properties, such as steady-state distributions and expected time to reach certain 

states. Employing a bivariate discrete distribution, as evident in the available data on building 

conditions, the Chapman-Kolmogorov equation implies the following for the transition matrix at 

the nth-step transition matrix.  

                                                             P(n) = P(n)                                                                                (Eq 3.3a) 

This results from:  

                                                 𝑷𝑖𝑗
(𝑎+𝑏)

=  ∑ 𝑷𝑖𝑚
(𝑎)

𝑷𝑚𝑗
(𝑏)

𝑚∈𝑆                                        (Eq 3.3b) 

                                                𝑷𝑖𝑗
(𝑛)

=  ∑ 𝑷𝑖𝑘
(𝑚)

𝑷𝑘𝑗
(𝑛−𝑚)

𝑚∈𝑆                                       (Eq 3.3c) 

This equation essentially says that to transition from state i to state j in n steps, one can 

consider all possible intermediate states k and compute the probability of transitioning from i to k 
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in m steps and then from k to j in n−m steps. In practical terms, the Chapman-Kolmogorov 

theorem is used to compute the probabilities of future states in a Markov chain, given the 

transition probabilities between states at each time step. It is a powerful tool for analyzing 

Markov chains' long-term behavior and properties, such as steady-state distributions and 

expected time to reach certain states (Sharabah et al., 2006). 

For a Markov chain with a state space of S, formally, the Chapman-Kolmogorov theorem 

states that for a finite-state Markov chain with transition probabilities Pij(n), where i and j are 

states in the Markov chain, the n-step transition probability can be computed as the sum of all 

intermediate states m.  

Sharabah (2007) introduced an initial distribution ‘v,’ which is represented as a single-

row matrix indicating the number of elements in each state. Following a single time step, the 

updated distribution is derived in a Markov chain by multiplying the initial distribution v by the 

transition matrix P.  

The distribution after one step is expressed as vP. Subsequently, the distribution after 

another step, obtained by further multiplication by P, is calculated as (vP)P = vP2. 

Hence, the distribution after two steps is denoted as = vP2  

Similarly, the distribution after n steps can be obtained by vPn, where Pn represents the n-

step transition matrix. This implies that the ijth entry in Pn signifies the probability of the system 

transitioning from state i to state j in n steps.  

In certain industries, the transient probabilities of the Markov chain for deterioration 

prediction are adjusted using expert judgments. When there is insufficient data for calibration, 
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engineering judgment in defining Markov matrices serves as the best estimate for forecasting the 

future condition of an element. However, in scenarios where sets of inspection data are available, 

the calibration process involves determining the elements of the transition matrices through data 

sets and mathematical methods. In the research project conducted by Mohseni (2017), which 

involves six county councils as project partners, data collected by the councils were utilized to 

identify the elements of the transition matrices. Additionally, a regression-based optimization 

method is applied to the same data in this research project to calibrate the Markovian transition 

matrices. Since Mohseni’s (2017) research project data had six county councils, the data 

collected by the councils is used to identify the transition matrices’ elements. This research 

project utilizes a regression-based optimization method on the same data to calibrate the 

Markovian transition matrices. 

3.2.4.2 Model Calibration Process  

This research uses a regression-based optimization method on the same data to calibrate 

the Markovian transition matrices. As outlined in Chapter 2, Madanat et al. (1995) describe the 

regression-based optimization technique as employing a nonlinear optimization function. This 

function aims to minimize the total sum of absolute differences between the regression curve, 

which accurately fits the condition data, and the conditions projected by the Markov chain model 

adopted. The formulation of the objective function and constraints for this optimization problem 

is articulated as follows (Madanat et al., 1995):  

Minimize   

∑|𝑌𝑛(𝑡) − 𝐸(𝑡𝑛 , 𝑃)|

𝑁

𝑛=1

 



59 
   
 

If     0 ≤ Pij ≤ 1         for i,j =1,2,….,k  

                                                                ∑ 𝑷𝑖𝑗  =  1𝑘
𝑖 = 1                                                 (Eq 3.4) 

where  

‘N’ is the total number of facilities;  

‘Yn (t)’ is the expected condition of the structure ‘n’ at age ‘t’ using the regression model;  

‘P’ is the transition probability matrix;  

‘Pij ‘ is the probability of transition from state ‘i’ to state ‘j’;  

‘E (tn, P)’ is the expected condition of facility ‘n’ at age ‘t’  

This is using the transition probability matrix ‘P’;  

‘k’ is the maximum value for the condition rating.  

3.2.4.3 Model Validation & Performance Evaluation of the Calibrated Model  

Validation or evaluation of the performance of the deterioration models adjusted in this 

research concerns the alignment between the projected values and the actual observations. The 

projected values are obtained from the adjusted transition matrices using the Markov chain 

process. At the same time, the actual observations are independent values employed to examine 

disparities in the Markov model's predictions compared to an exact, known dataset. 

As discussed earlier in this chapter, Mohseni’s (2017) research used data retrieved between 

2007, 2009, and 2011 inspections. These datasets are used to calibrate the Markovian deterioration 

models within this research. The datasets employed to derive the deterioration transition matrices, 

known as the training datasets, should not be utilized to calibrate (or train) the model in order to 
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assess it effectively. According to Tran (2007), a test dataset (observed data) is necessary for this 

purpose. There are two prevalent approaches to calibrate and validate models while ensuring the 

separation of training and testing datasets. One method involves randomly dividing the dataset into 

the calibration (training) and testing datasets. Alternatively, another approach, which may lead to 

a more realistic validation process, entails using an additional independent dataset. This research 

employs a 2018 inspection data set as the observed (or test) data set to validate the method.  

3.2.4.3.1 Pearson’s Chi-Squared Goodness-of-Fit test  

According to Montgomery et al. (2004), two possible hypotheses are possible when testing 

for goodness-of-fit. The first type occurs when the population or probability distribution is 

understood, and the hypothesis concerns the parameters of that distribution. The second type of 

hypothesis, which is commonly encountered, arises when the underlying distribution of the 

population is unclear, and the aim is to assess whether a specific distribution is adequate as a 

population model. In this scenario, the probability distribution of building component conditions 

is unknown, and notably, the observed sample used to test the hypothesis may conform to an 

unknown probability distribution. To evaluate this latter hypothesis, Pearson’s chi-squared test is 

utilized to validate the transition matrices developed for predicting building deterioration. 

As the number of elements inspected in each building age group is inconsistent in the test 

inspection dataset, the number of elements inspected is adjusted to represent the proportion of 

elements in each condition. In other words, the distribution in each year group is considered for 

the validation process. The same data preparation process is conducted to eliminate outlier data 

from the test data set.  
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Pearson’s chi-squared test evaluates the adequacy of a model to align with a set of observed 

data. This assessment, known as a goodness-of-fit test, is predicated on the null hypothesis that the 

observed frequency matches the predicted frequency (Micevski et al., 2002). Typically, this test 

requires a confidence level ranging from 90% to 95% for hypothesis acceptance (Montgomery et 

al. 2004). The chi-square distribution is utilized to determine whether a given dataset conforms to 

a specified theoretical probability model (Dowdy et al., 2011). Moeller (2012) advocates 

employing the chi-squared goodness-of-fit test in models where the failure distribution comprises 

a single parameter.   

Montgomery et al. (2004) explain that the procedure necessitates a random sample of a 

certain sample from a population whose probability distribution is unknown. These observations 

are organized into a histogram with bins (Montgomery et al., 2004). The chi-square goodness-of-

fit test procedure can be expressed as follows (Dowdy et al., 2011): 

H0: Sample from distribution A 

Ha: Sample not from distribution A 

Significance level: 𝛼 

Test Statistics: 

                                                           𝑋2 =  ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖

𝑘
𝑖 = 1                                                 (Eq). 3.5 

Where; 

Oi = Observed number of outcomes in category Ai (from the test data set 2011) 

Ei = Expected number of outcomes 
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Wi – nP(Ai) [from the Markov chain probabilities, calibrated from the training data set 2007 and 

2009 (expected]. 

                                                      𝑛 =  ∑ 𝑂𝑖
𝑘
𝑖 = 1                                                              (Eq). 3.6 

Region of rejection: 

𝑋2 ≥ 𝑋𝛼,𝑣
2  

𝑣 =  𝑘 −  1 –  𝑟                                                                                                                (Eq). 3.7 

Where 

v is the degrees of freedom, 

k is the number of categories or groups being compared, 

r is the number of estimated parameters in distribution ‘A’ estimated from the sample. 

(r equals zero in this case) 

The critical values depending on ν and α are given in Figure 3.2. 
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Figure 3.2: Critical values of Chi-Square distribution for v degrees (NIST 2012) 

3.3 Summary  

This section examines the methodology for predicting the deterioration patterns of key 

building components, including roofing, walls, windows, and doors, under various maintenance 

scenarios. The following section quantifies deterioration rates for the materials comprising these 

components. By analyzing deterioration rates, this research aims to develop comprehensive 

fragility curves that capture the vulnerability of building materials to tornado events. This 
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transition allows this research to aid in bridging the gap between theoretical predictions and 

practical considerations. By comparing these trends to real-world data and stakeholder priorities, 

we can enhance our understanding of building vulnerabilities and inform targeted mitigation 

strategies to bolster resilience against extreme weather events. 

3.4 Deterioration Rates 

3.4.1 Introduction 

This research now explores the methodology for determining deterioration rates. This 

step delves deeper into the quantitative assessment of material degradation over time, laying the 

groundwork for developing robust fragility curves.  

To model the time-dependent deterioration rates for poorly, averagely, satisfactorily, and 

excellently maintained buildings, the research utilizes a methodology based on the concept of 

building materials' service life and degradation processes. The deterioration rates are determined 

using established formulae derived from the literature and adapted to suit the specific 

maintenance conditions of the materials under study. Although time-dependent deterioration 

rates for all condition states are modeled, it is essential to note that this research focuses on 

buildings that are at the end of their useful lives and are, therefore, poorly maintained. This also 

allows for further discussion regarding the importance of standardizing the decommissioning of 

buildings.  

3.4.2 Materials Selection for Commercial and Government Buildings 

The selection of building materials and components plays a crucial role in developing 

fragility curves since different materials have different strengths and resistive capacities. This 

section provides an overview of the materials selected for inclusion in fragility curves for this 
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research, highlighting their properties, vulnerabilities, and implications for structural resilience 

and risk assessment. 

The materials included in fragility curves represent various building components 

commonly found in commercial and government structures. These may include: 

• Roofing materials: Asphalt shingles, clay tiles, metal roofing 

• Structural elements: Wood frame, reinforced concrete, steel frame 

• Exterior cladding: Brick, stone, stucco, aluminum siding 

• Doors and windows: Wood, steel, aluminum, fiberglass 

The selection of building materials plays a pivotal role in determining commercial and 

government buildings' performance, durability, and resilience. This section provides an overview 

of the materials selected for key building components, highlighting their suitability, advantages, 

and considerations within the context of building management and resilience. 

Roofing Materials: 

Asphalt and clay tiles are commonly used for roofing in commercial and government 

buildings due to their durability, weather resistance, and aesthetic appeal. Asphalt shingles offer 

cost-effectiveness and ease of installation, making them a popular choice for a wide range of 

building types. Clay tiles provide superior thermal insulation, longevity, and architectural charm, 

particularly suitable for buildings with historical or aesthetic considerations (Barbhuiya & Das, 

2023; Zhang& Braun, 2023) 
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Structural Wall Materials: 

Wood frames and concrete masonry units (CMUs) are prevalent choices for structural 

walls in commercial and government buildings, each offering unique advantages and 

considerations. Wood frame construction provides flexibility, affordability, and energy 

efficiency, making it suitable for various building applications. CMUs provide durability, fire 

resistance, and sound insulation properties, making them ideal for high-traffic areas or buildings 

requiring enhanced structural integrity (Mattinzioli & Jiménez del Barco, 2022; Zhang & Braun, 

2023). 

Exterior Siding Materials: 

Brick-facing and aluminum siding are commonly used for exterior cladding in 

commercial and government buildings, providing protection against the elements and enhancing 

the building's aesthetic appeal. Brick-facing offers durability, weather resistance, and timeless 

aesthetics, suitable for facilities seeking a traditional or historic appearance. Aluminum siding 

provides lightweight, low-maintenance, and customizable options, allowing for modern design, 

flexibility, and sustainability (Mattinzioli & Jiménez del Barco, 2022; Zhang & Braun, 2023). 

Doors and Window Materials: 

Wood is often selected for doors in commercial and government buildings due to its 

natural beauty, versatility, and insulation properties. Metal casement windows and steel doors 

offer durability, security, and energy efficiency, providing ample natural light and ventilation 

while enhancing the building's aesthetics and functionality (Mattinzioli & Jiménez del Barco, 

2022). 



67 
   
 

3.4.3 Data Collection 

Service life data for various building materials, components, and fasteners are obtained 

from reputable sources, including the preventative maintenance guidebook by Schoen (2010) and 

data provided by the Building Owners and Managers Association. This data includes information 

on the average useful life of materials used in constructing and manufacturing roofs, walls, 

doors, windows, 16d toenails, and H2.5 hurricane clips. 

A building component model is defined to determine the necessary major repairs and 

component replacements in a building and to justify the timing of that work to optimize the 

savings per repair dollar invested. This model is constructed by creating an inventory of 

components that comprise the building as influenced by the building component model. The 

inventory of building components categorizes the facility into primary building systems, 

subsequently delineating the individual components constituting those systems. This 

classification is based on the ASTM Uniformat II hierarchy (ASTM E 1557-02). Each 

component within the building model is equipped with designated characteristics determined by 

its material, type, age, and position. For instance, a window (component) could be constructed 

from metal, vinyl, or wood. These various material types exhibit diverse reactions to 

environmental factors over time, possess distinct anticipated service lifespans, and necessitate 

varied maintenance actions at different stages of their lifecycle. Consequently, the building 

component and its corresponding attribute data serve as the fundamental unit for building 

lifecycle asset management and condition monitoring. Table 3.4 shows a subset of the building 

components.  
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Table 3.4: Building Component Inventory 

System Component Material Service Life 

(yr.) 

Structural Walls Wood Frame 100 

Structural Walls Concrete 100 

Structural Rood Cover Clay tiles/Metal 75 

Roofing Roof Cover Asphalt 50 

Exterior  Walls Concrete Block 50 

Exterior Walls Aluminium Siding 50 

Exterior Walls Brick Facing 100 

Exterior Doors Wood 40 

Exterior Windows and Glazed Walls Metal Casement 40 

Hurricane straps and clips (shown in Figure 3.3) exhibit remarkable longevity, often 

enduring for the entire lifespan of a building due to their construction from steel. Steel's inherent 

durability and reasonable corrosion resistance due to anti-corrosion coating render hurricane 

straps and clips ideal for regions susceptible to high winds and frequent storms. These structural 

elements significantly bolster a building's structural resilience by withstanding winds and seismic 

forces, thereby becoming indispensable requirements in areas prone to hurricanes, extreme 

storms, and earthquakes. In contrast, toenails, consisting of diagonal nails driven through the side 

of the roof truss into the top of the wall plate, are common in older homes but offer 

comparatively limited wind resistance for the roof. 

 

Figure 3.3: Hurricane clips 
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It is essential to define what we mean by service life. The Home Quality Mark one, 

Technical Manual SD239, England, Scotland & Wales, published in 2018, defines “service life” 

as: “The period after installation during which a building, or its part, meets or exceeds the 

performance requirements" (BRE, 2018)  

3.4.4 Formulation of Deterioration Models 

Four deterioration models are developed using the acquired service lives to represent 

different maintenance conditions, ranging from poor to excellent maintenance practices. The 

formulas used to calculate deterioration rates are as follows: 

Table 3.5: Deterioration  Models 

Formula to determine deterioration  

Traditional (poor maintenance of building) 

 

 

Unger (average maintenance) 

 

 

Romstrofen (satisfactory maintenance) 

 

 

Eytelwein (excellent maintenance) 

 

 

Where: 

Z = Deterioration rate or degree 

t = Current stage of service life (years) 

T = Service life (years) 

𝑍 =  
𝑡

𝑇
 

𝑍 =  
𝑡. (𝑡 + 𝑇)

2𝑇2
 

𝑍 =  
𝑡. (2𝑡 + 𝑇)

3𝑇2
 

𝑍 =  
𝑡2

𝑇2
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While the models are developed to represent a range of maintenance conditions, this 

research focuses on commercial and government buildings that have reached the end of their 

service life and may have been left unattended for a long time. Therefore, the deterioration rates 

corresponding to poorly maintained facilities are selected for further analysis and integration into 

the fragility function framework. The model formulation is based on the concept that the degree 

of deterioration in a building component is proportional to the ratio of its current stage of service 

life to its total service life. As the building component ages and approaches the end of its service 

life, the deterioration rate increases, reflecting the cumulative effects of environmental factors, 

wear and tear, and maintenance neglect. Interpretation of the model equation suggests that the 

deterioration rate Z is directly influenced by the ratio of t to T, with higher values indicating a 

more advanced stage of deterioration relative to the total service life of the building component. 

The research uses the average maintenance model, which utilizes a quadratic equation to 

estimate the rate of deterioration over time, with the rate increasing as the material approaches 

the end of its service life, to validate the results of the poor maintenance model.   

The selected deterioration rates are incorporated into the modeling failure of structural 

components using fragilities models to quantify the vulnerability of building components under 

tornado loading conditions. By considering the effects of material degradation over time, the 

determined fragility functions provide insights into the structural resilience of abandoned 

commercial buildings. It informs risk management strategies for mitigating the impacts of 

extreme weather events. 

The methodology for modeling deterioration rates is based on several key assumptions: 
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1. The model assumes a linear relationship between the current stage of service life and the 

degree of deterioration, with deterioration occurring constantly over time. 

2. The model assumes uniform deterioration across the building component, neglecting 

variations in deterioration rates due to localized factors or environmental conditions. 

3. The model focuses solely on the underlying deterioration of poorly maintained buildings, 

neglecting the potential effects of maintenance interventions or repairs on the rate of 

deterioration. 

It is, therefore, for this reason that validation using deterioration rates for buildings with 

average maintenance is incorporated into the analysis.  

3.5 Summary 

This section outlines the methodology for quantifying deterioration rates of building 

materials, a critical step in developing robust time-dependent fragility curves. Leveraging a 

simple linear model, Z = t/T, the research systematically examines the factors influencing 

material degradation over time. This approach encompassed thorough materials selection and 

comprehensive data collection to ensure the accuracy and reliability of the deterioration models.  

3.6 Building Materials Fragilities 

3.6.1 Introduction 

The strength of buildings or any structural system's components is generally a time-

dependent property that may decrease resistance along the structure’s, components, and 

materials’ service life. Fragility parameters are required at different times throughout the service 

life to assess and forecast the susceptibility of deteriorating buildings consistently. Tractable 

functions for time-dependent fragility models provide an efficient way to achieve this by 
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adopting curve-fitting methods regarding parameters as a variable of time. For example, 

Shafieezadeh et al. (2014), in introducing seismic fragilities, illustrate the effect of corrosion in 

bridges at five different points in time; the median Peak Ground Acceleration (PGA) and 

dispersion of the lognormal fragility curves for each damage state are assessed for a case study 

bridge at a total of 10 different temporal designations along its service life. Analytical functions 

are evaluated to represent the change in median and dispersion values in time due to corrosion. 

Such time-dependent models have a notable advantage in that they allow for the estimation of 

fragility parameters at any given point for the bridge and corrosion parameters without the 

necessity of conducting full fragility analyses each time. 

In other words, instead of repeatedly performing comprehensive analyses to determine 

the fragility parameters of the bridge and corrosion over time, time-dependent models provide a 

mechanism to predict these parameters at any specific time. This capability streamlines the 

process and saves computational resources, as researchers can input the relevant data into the 

time-dependent model to obtain the desired fragility parameters without requiring extensive 

reanalysis. 

To provide a mechanism to generalize results, 1-story commercial buildings are used as 

baseline structures. This research looks into time-dependent fragility curves of materials used in 

the construction of roofs, walls, windows, wall cladding, doors, steel roof joists, and roof-to-wall 

connections at a total of 5 different points in time along the materials’ service life. These 

materials are asphalt shingles, clay tiles, steel roof joists, concrete blocks, metal casement 

windows (excluding glass), timber windows, steel doors, aluminum doors, steel in 16d toenails, 

one H2.5 clip, and two H2.5 clips. Each of these materials offers a unique structural resistance. 
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Analytical functions are evaluated to depict alterations in median and dispersion values of their 

resistive capacity over time as a result of deterioration.  

Masoomi and Van de Lindt (2016) outlined a possible topology of community 

components in their study for non-deteriorating (pristine) buildings. The dependencies among 

components and the component properties required for subsequent damage simulations under a 

specified hazard assigned to each component in their model. A subsequent analysis, using the 

calculated fragility functions, examined the performance of community components under 

simulated tornado conditions. A set of tornado fragility curves corresponding to four prescribed 

damage states was developed: damage states 1, 2, 3, and 4. For roof covering, fragility curves are 

developed for three limit states. Memari et al. (2018) highlighted that damage to roof covering 

does not affect Damage State 4 because it is assumed that more than 50% of the roof covering 

would fail under the force of tornadic wind loads capable of inflicting this degree of damage, as 

highlighted in Table 3.6.  

Table 3.6: Damage states for commercial building Memari et al. (2018) 

DS Roof covering Window/door Exterior wall Garage door Roof 

Structure 

1 >2% and ≤15%a 1 or 2a >2% and ≤25%a No No 

2 >15% and ≤50%a >1 or 2 

and ≤25%a 

>25% and ≤50%a Yesa No 

3 >50%a >25%a >50% and ≤75%a Typically Yesa No 

4 Typically >50%a Typically >25%a >75%a Typically Yesa Yesa 
      

aDamage states are defined according to the occurrence of any damage indicators in a given row. 

3.6.2 Tornado fragility curves methodology and intensity measures 

In the perspective of performance-based engineering, a probabilistic analysis of structural 

components and systems subjected to hazard – e.g., tornado or hurricane – provides a means by 
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which uncertainty in performance and reliability of structures can be evaluated. In order to 

conduct such an analysis, a set of limit states that denote a specified level of performance for the 

structural components and systems must be identified. For tornadic modeling failure of structural 

components using fragilities, the limit state function, g(X), for a component is written as: 

                                         𝑔(𝑋) = 𝑅 − (𝑊 − 𝐷)                  (Eq 3.8) 

where X = vector of uncertain variables that explain the limit state condition; W = tornado-

induced wind load; R  = resistance of structural components; and D = resistive dead load. 

Therefore, a component failure can be defined as g(X) < 0.  

To create tornado fragility curves, the probability of exceeding a specified limit state for a given 

intensity measure (IM) of the hazard can be calculated as follows: 

                                   𝐹𝑟(𝑥) = 𝑃[𝑔(𝑋) < 0)|𝐼𝑀 = 𝑥]    (Eq 3.9 ) 

Fragility curves are a common element in natural hazard damage modeling. These 

functions account for uncertainties in load calculation and resistance estimation. Various limit 

states are considered for different building components to develop fragility curves, each 

contributing to the formation of a damage state (DS) for the building. At the component level, a 

fragility curve is defined as the conditional probability of surpassing a limit state (LS) based on a 

specific demand parameter under a given hazard intensity. Mathematically, this can be expressed 

as follows (Ellingwood et al., 2004): 

𝐹𝑟(𝑉)  =  𝑃[𝐿𝑆 ≥ 𝑙𝑠𝑖 | 𝑋 =  𝑥 
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For ease of use and typically achieving a strong statistical fit, a fragility curve can be 

represented by fitting a cumulative distribution function (CDF) of the lognormal distribution. 

The fragility curves are developed utilizing Monte Carlo Simulation as follows:  

                                           𝐹𝑟(𝑉) = 𝛷[  
ln(𝑥)− 𝜆𝑅

𝜉𝑅
]                                             (Eq. 3.10) 

where x = given intensity measure defined as 3-s gust wind speed (m/s or mph) for tornado 

fragility function;  

Φ [*] = standard normal cumulative distribution function;  

λR = logarithmic median of capacity; and  

ξR = logarithmic standard deviation of capacity. 

Fragility curves for pristine buildings are plotted using Eq. (3.10), where the horizontal 

axis shows the intensity measure and the vertical one shows the conditional probability.  

As mentioned earlier, the research performed herein borrows heavily from a study by 

(Ghosh and Padgett, 2017) on time-dependent seismic fragilities. Subsequently, based on work 

by the authors, time-dependent material level fragilities for this research are analyzed as follows:  

                   (Eq. 3.11) 

where,  

𝜆𝑚(𝑡) and 𝜉𝑚(𝑡) are the time-dependent median and dispersion parameters of the lognormal 

distribution representing the fragility 𝑃𝑓, 𝑚(𝑡) of the mth material.  

𝐹𝑟, 𝑚(𝑡) = 𝛷[  
ln(𝑥) − 𝑙𝑛 [𝜆𝑚(𝑡)]

𝜉𝑚(𝑡)
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The research generates a set of N = 1,000 random resistances and wind loads (demand) 

for the materials of components that contribute to lateral and uplift resistance of the building 

under tornado-induced pressure, MWFRS, and C&C components. The research begins by 

selecting the material under examination, which defines the limit state function. Next, both 

demand and capacity are estimated. Here, 'n' represents the different wind speeds associated with 

the demand, while 'm' denotes the number of Monte Carlo simulations conducted.  

Subsequently, a size n × m matrix is created to represent demand and capacity. The 

demand is determined by converting 143 different wind speeds (from 57 mph to 200 mph) from 

the EF-scale into pressures (loads), which are then used to calculate the demand placed on the 

selected materials. Meanwhile, resistive capacity is determined by considering the materials' 

dead load and uplift resistive capacity. The MCS considers 1000 trials to generate the n × m 

matrix, where 'n' is equal to 1000 and 'm' is equal to 143. This matrix serves to calculate the 

capacity of the materials. 

The limit state function is then evaluated using Eq (3-1). The demand comprises wind 

pressure and forces acting as uplift forces on the MWFRS and C&C (Yang et al., 2013), which 

may occur in multiple directions. Random variables, such as dead load and uplift capacity, are 

defined based on probability distributions and assigned to each trial (i.e., 1000 random variables 

per trial). Once the random variables are generated, they are incorporated into the limit state 

equation alongside the wind pressures used for these models. This procedure is repeated for the 

duration of MCS, and a probability paper plot is applied to the fragility parameters (i.e., ζ and λ 

values). The residual R2 is also calculated to examine how many data points surround the line of 

best fit, accounting for the accuracy of the data to validate the fragility parameters. 
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                                              ln(𝑥𝑖) = 𝜉𝑆𝑖 +  𝜆                                                           (Eq. 3.12) 

where; 

𝝃 represents the slope and 

λ represents the intercept 

High R2 values indicate that the lognormal distribution best fits the MCS. Thus, the presented 

fragility models can be described using a lognormal distribution with ζ and λ.  

The fragility curves developed using this model are for materials in pristine buildings and 

are the first step in creating fragility curves. In the second stage of the process, this research 

incorporates time-dependent deterioration rates for 0 – 50 years of age in 10-year intervals to 

structural resistive capacity parameters and then recreates the fragility curves. The format of 

time-dependent functions presented herein emulates those that Ghosh and Padgett (2010) 

presented. This approach offers an efficient method to capture the effect of aging and 

deterioration on bridge systems and is transferable to buildings and other structures. 

The procedure for creating each fragility curve using Monte Carlo simulation (MCS) in 

this research is presented in flow chart form in Figure 3.5 below:  
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Figure 3.4: Flowchart for Developing Time-dependent Fragility Curves 

*It is acknowledged that loads may differ from one side of the building at a point in time for 

larger buildings. However, the spatial effect across the building is neglected since the peak load 

from a 3-sec gust wind speed, i.e., a static analysis, is used.  

3.6.2.1 Tornado Load Characterization 

The methodology (Masoomi and van de Lindt 2016) adopted in this research to model 

tornado-induced wind loading is built on the ASCE 7 (2010, 2016) building code and the more 

current ASCE 7-22 (2022) methodology for both straight-line and tornado wind loading 

conditions. The use of tornado-specific wind loads, which are characteristically different from 

straight-line winds, is introduced into the ASCE 7 code as of 2022. This method adjusts the 

aerodynamic pressure coefficients by incorporating a tornado pressure adjustment factor. This 
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factor accommodates the atmospheric pressure deficit resulting from the vortex structure of the 

tornado, albeit without directly modeling the pressure deficit. Considering that the maximum 

wind speed can occur in any direction during a tornado and may result in the maximum pressure 

coefficient on buildings (Prevatt et al., 2013; FEMA, 2015), a conservative directional factor 

equal to 1.0 is selected. Although the ground surface roughness and the fetch length of the 

surrounding terrain may affect the tornado-induced loads (Sabareesh et al., 2013; Liu and 

Ishihara, 2016), Exposure C of the exposure categories in ASCE 7 (ASCE 2022) is considered in 

all analyses of this research, which is defined as “open terrain with scattered obstructions having 

heights generally less than 30 feet”.     

Velocity pressure at height z, qz, for straight-line wind is calculated as follows:  

𝑞𝑧 = 0.613𝐾𝑧𝐾𝑧𝑡𝐾𝑑𝑉2(𝑁/𝑚2) 𝑓𝑜𝑟 𝑉 𝑖𝑛 𝑚𝑝ℎ                                                      (Eq. 3.13a) 

𝑞𝑧 = 0.00256𝐾𝑧𝐾𝑧𝑡𝐾𝑑𝑉2(𝑙𝑏/𝑓𝑡2) 𝑓𝑜𝑟 𝑉 𝑖𝑛 𝑚𝑝ℎ                                                  (Eq. 3.13b) 

where Kz = velocity pressure exposure coefficient; Kzt = topographic factor; Kd = wind 

directionality factor; and V = 3-sec gust wind speed. The velocity pressure at mean roof height h, 

qz, is also calculated by Eq. (7). The wind pressure for the main wind force resisting system 

(MWFRS) is then determined using 

𝑝 = 𝑞𝐺𝐶𝑝 − 𝑞𝑖(𝐺𝐶𝑝𝑖)                                                                                            (Eq. 3.14 ) 

where q and qi = velocity pressure calculated at height z or h; G = gust effect factor, Cp = 

external pressure coefficient; and GCpi = internal pressure coefficient. The wind pressure for 

components and claddings (C&C) is calculated as follows:  

𝑝 =  𝑞𝑧[𝐺𝐶𝑝  −  (𝐺𝐶𝑝𝑖)]                                                                                        (Eq. 3.15) 
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where all variables are as defined previously.  

This research implements the approach consistent with Memari et al. (2018) and Gill et 

al. (2021) to determine the tornado-induced pressure. The research then uses coefficients defined 

by ASCE/SEI 7-22 for tornado external pressure adjustment coefficients of 1.8 – 3.2 and 1.4 – 

2.4. For internal pressure, adjustments for MWFRS and C&C are considered zero (i.e., no 

adjustment is needed). In this case, the tornado internal pressure adjustment for MWFRS is 

recommended as 1.0, whereas it is zero for C&C.  

The tornado-induced pressure is then calculated as follows: 

𝑝 =  𝑞𝑧[𝑇𝑒(𝐺𝐶𝑝)  − 𝑇𝑖(𝐺𝐶𝑝𝑖)]                                                                      (Eq. 3.16) 

Table 3.6 summarizes both Te and Ti coefficients for MWFRS and C&C according to this 

approach. Tables 3.7 and 3.8 summarize statistics for wind pressure parameters per Eq. (3.16). 

The GCp coefficient for roof covering varies depending on the roof angle and varies across 

different buildings. A normal distribution is applied to all variables. 

Table 3.7: Tornado Pressure Adjustments (Adapted from ASCE 7-22, 2022) 
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Table 3.8: Wind Load Statistics (Adapted from ASCE 7-22, 2022) 

 

3.6.2.2 Resistance Characterization 

Resistance data for all materials are gathered from currently available experimental 

results in the literature pertaining to wind loading. Table 3.9 shows all resistance data collected 

for components and materials contributing to the performance of buildings subjected to tornado 

hazards pertinent to this research.  
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Table 3.9: Component and Materials Structural Resistance Data 

Component 
Mean 

(kPa) 
Mean 

(kN) 
Coefficient of 

variance 
Associated 

buildings 

Reference 

Asphalt shingles 0.10 

 

0.10 Residential Unnikrishnan and Barbato 

(2016) 

Clay tiles dead load 0.96 

 

0.10 Residential Unnikrishnan and Barbato 
(2016) 

Roof panel dead load 0.17 
 

0.10 Residential 
 

Concrete block, side 
 

19.00 0.20 Applicable for: 
fire station, strip 

mall 

 

Concrete block, gable 
 

8.50 0.20 Applicable for: 
fire station, strip 

mall 

 

Bolted (steel joist to 

steel connection) 

 
          

2,180  

0.20 Light industrial Average from Swanson and 

Leon (2000) (coefficient of 
variance assumed) 

Anchors (steel joist to 

masonry wall) 

 
112 0.25 Heavy industrial, 

shopping center 
Average from Cook and 
Klinger (1992) (coefficient 

of variance assumed) 

Metal deck clips 0.094 

 

0.40 Fire station, light 
industrial, heavy 

industrial, 
shopping center, 

strip malls 

Farquhar et al. (2005) 

Roof-to-wall 

connection - two 16d 

toe nails 

 

1.83 

0.16 Residential van de Lindt et al. (2013) 

Roof-to-wall 

connection dead load  

0.717 

 

0.10 Residential Ellingwood et al. (2004) 

Roof-to-wall 

connection - two H2.5 

clips 

 

11.68 

0.12 Residential Reed et al. (1997) 

Roof-to-wall 

connection - One H2.5 

clip 

 

5.84 

0.12 Residential Reed et al. (1997) 

Steel roof joists 2.40 
 

0.01 Light industrial 
(~16K2 steel joist) 

 

 
8.40 

 
0.05 Heavy industrial, 

shopping center 
(~26K5 steel joist) 

 

Walls 
    

 

Brick (solid MC) 501 
 

0.31 Fire station Kim and Bennet (2002) 

Masonry (solid PCL)                           
1,564  

 
0.30 Office strip malls, 

office 

 

Aluminum siding   0.91 0.38 Light industrial  Calculated average of all 

results for flat sheathing 
(Jacob 1952) 

     

 

Note: MC = masonry cement; PCL = Portland cement/lime. 
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3.6.2.3 Building Damage States 

Four damage states (DS), namely light, moderate, extensive, and complete, are defined 

for each archetype building. Table 3.10 depicts the physical description of each damage state. 

These damage states describe the performance of physical damage sustained by the building 

envelope, roof structure, and exterior walls.  

Table 3.10: Quantitative guidelines for assigning overall wind damage rating. Source: VAST 

Handbook: DE/QC - US Windstorm Building Resilience through Reconnaissance 

DS 

identifier 

DS Description Physical damage description LS description 

1 Slight structural 

damage 

Moderate roof cover loss that can be 

covered with a tarp to prevent additional 

water from entering the building. 

Roof or wall cover 

failure: >2 and ≤15%; 

door failure: 1; roof deck 

or wall substrate failure: 

none; roof joist or wall 

substrate failure: none: 

wall failure: none. 

2 Moderate 

structural 

damage 

Major roof cover damage with a 

maximum of two roof deck and one door 

failure. 

Roof cover failure: ≥15% 

and <50%; window or 

door failure: >1 and ≤ the 

larger of 3 and 20%; roof 
deck or wall substrate 

failure: 1 to 3 panels; roof 

joist failure: none: wall 

failure: none. 

3 Extensive 
structural 

damage 

Not able to be occupied, but repairable. 
Major loss of roof deck panels or joists 

as well more than one door broken door.  
Roof cover failure is certain and does 

not contribute in DS 3. 

Roof cover failure: <50%; 
window or door failure: > 

the larger of 3 and 20% 

and ≤ 50%; roof deck or 

wall substrate failure: > 3 

and ≤ 25%; roof joist 

failure: ≤15 %: wall 

failure: none. 

4 Complete 

structural 

damage 

Not able to be occupied and not 

repairable. Extensive 

roof system failure and some tilt-up wall 

failure. Roof 

cover and door failures are certain and 

do not contribute 

in DS 4. 

Roof cover failure: <50%; 

window or door failure: > 

50%; roof deck or wall 

substrate failure: >; roof 

joist failure: >15 %: wall 

failure: Yes. 
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If any damage state descriptions in a given row of Table 3.10 occur, the building or 

structure is considered to be in that damage state. For example, for a building to be deemed to 

have sustained Damage State 4 (Destroyed), the building must have sustained either roof 

structural or load-bearing wall failure. It's important to note that in damage state 4, the first three 

damage indicators usually manifest, indicating that damage state 4 is solely contingent upon roof 

cover failure and load-bearing wall failure.   

Notably, fragility curves incorporating deterioration rates are subject to assumptions and 

uncertainties related to material properties, degradation mechanisms, and hazard interactions, 

which may influence model predictions and decision-making processes. 

3.6.2.4 Probability of Exceedance – Average Percent Change 

The research utilizes the concept of "average percent change" in the probability of 

exceedance to assess the relative shift in vulnerability between pristine (non-deteriorated) and 

deteriorated building materials. This metric serves as a vital indicator of how a building 

material’s vulnerability is affected by varying maintenance levels.  

The average percent change represents the relative difference in the probability of 

exceedance between two conditions. Specifically, it quantifies the magnitude of change in 

vulnerability or risk when transitioning from pristine maintenance conditions to poor 

maintenance conditions. The percent change in probability of exceedance would be calculated as 

follows: 

Average % change =  
Probability of Exceedance (deteriorated) −  Probability of Exceedance (pristine)

Average Probability of Exceedance (pristine)
 x 100 
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A positive percent change indicates an increase in vulnerability for deteriorated building 

materials compared to pristine building materials. Conversely, a negative percent change would 

indicate a decrease in vulnerability for deteriorated building materials, suggesting that the 

building materials exhibit greater resilience despite deterioration. Understanding the percent 

change in probability of exceedance is crucial for assessing the impact of deterioration on 

building vulnerability. Understanding the percent change in probability of exceedance is vital for 

assessing the impact of maintenance practices on building vulnerability.  

3.7 Summary 

In summary, data for FCAs is obtained from a broader survey conducted in 2022 

regarding decommissioning practices in commercial buildings. The survey instrument is 

designed to gather comprehensive information on the condition of building components, 

maintenance priorities, and decision-making processes related to decommissioning. Comparative 

analysis assesses the alignment between pre- and post-event storm surveys, utilizing results from 

the 2022 survey and NWS post-event storm survey guidance.  

From here, time-dependent deterioration rates are determined for poorly maintained 

buildings using established formulas derived from the literature, which are utilized to create 

fragility functions. Service life data for building materials and components are obtained from 

reputable sources, including the preventative maintenance guidebook by Schoen (2010) and data 

provided by the Building Owners and Managers Association. Four deterioration models are 

developed to represent different maintenance conditions, ranging from poor to excellent 

maintenance practices. Deterioration rates corresponding to poorly maintained buildings of 
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particular interest are selected for further analysis and integration into the modeling failure of 

structural components using a fragilities framework.  

The selected deterioration rates are then incorporated into the fragility function models to 

quantify the vulnerability of building components under tornado loading conditions. Fragility 

curves are developed to quantify the probability of structural failure under tornado loading for 

pristine buildings and incorporate deterioration rates for various building materials. The 

comparative analysis assesses shifts in material tornadic fragilities between deteriorating and 

non-deteriorating (pristine) buildings (Research Question 2). Since NWS provides guidance on 

degrees of damage for building components for field survey teams, post-event, the fragility 

curves developed herein may highlight how building (facility) condition contributes to the 

ultimate determination of a tornado’s EF ranking (Research Question 3).  
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4 CHAPTER 4: RESULTS AND DISCUSSION 

This chapter presents the results of this research into the impact of material deterioration 

on building fragilities under tornadic events and discusses how these results may influence (1) 

FCAs, and (2) the determination of a tornado’s EF ranking. This research addresses the research 

questions by comprehensively analyzing facility condition assessments (FCAs), deterioration 

prediction models, deterioration rates, and building fragilities. This research begins by examining 

the alignment between the priorities identified during FCAs conducted by facility managers and 

the post-event storm surveys. The predicted deterioration patterns of building components are 

addressed, followed by the development of deterioration rates for various construction materials. 

These findings set the stage for evaluating time-dependent fragility curves, comparing pristine 

and deteriorated building conditions, and discussing how building usage may ultimately impact 

EF ranking of a tornadic event. 

4.1 Facility Condition Assessment 

This section discusses results regarding the priorities identified during FCAs and their 

alignment with post-event storm surveys. The methodology involves surveying built 

environment professionals to gain insights into the components prioritized during FCAs. 

Through analysis of survey responses, the research sought to answer Research Question 

1: "During facility condition assessments (FCAs), are building managers prioritizing the same 

components as those conducting post-event storm surveys?" These findings show that while 

FCAs and post-event storm surveys equally value roofs and windows, there is a discrepancy 

regarding the importance of walls and doors. The following sections present and discuss the 

results that lead to this conclusion. 
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4.1.1 Respondents and Characteristics 

A total of 881 respondents completed the questionnaire, with 720 respondents meeting 

the required criteria of currently working with commercial and government buildings for this 

research. The respondents represent 48 U.S. states, the District of Columbia, and Puerto Rico (n 

= 438, 85%), four Canadian provinces (N = 13, 3%), and 33 other countries (N = 26, 3%). These 

survey demographics are shown in Figure 4.1. Of note, 205 respondents did not indicate the 

country they worked in, but those respondents still completed the survey. Survey participants are 

members of IFMA and AIA with positions in facility management, architecture, engineering, 

construction management, or project management. 

 

Figure 4.1: Distribution of Responses 

The questionnaire is geared towards professionals who work with commercial (n = 503, 

70%), government (n = 191, 27%), and private (non-residential) facilities (n = 26, 3%), resulting 

in 720 usable responses (n = 720) those mentioned above. The data are grouped to ensure they 

are not skewed towards one profession, as demonstrated in Figure 4.2. Group I consists of 

architects, Group II consists of facility managers and building owners, and Group III consists of 

construction managers, project managers, engineers, and others. These groupings are constructed 

such that the professions may have similar roles within the project lifecycle. For example, 
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facility managers and owners are more likely to deal with operations and maintenance than other 

professions. Of the respondents, 51% list their current role as architects, 29% identify as facility 

managers or building owners, and 20% identify as working as engineers, construction managers, 

or project managers. Results from respondents who declined to state their current role are 

eliminated from the analysis. 

 

Figure 4.2: Characteristics of Respondents 

Assets that should be considered for facility condition assessments when vacating a building. 

In requesting that participants indicate which assets should be considered when vacating 

a building, respondents are able to select more than one asset. Shared responses across all groups 

are sprinklers and fire alarms, HVAC systems, roofing, and electrical systems. Respondents from 

Group II (facility managers and building owners) and Group III (construction managers, project 

managers, and engineers) also select security and access control systems as assets they deem 

essential to consider when vacating a facility (Table 4.1). These responses are compared to 

critical components highlighted in Jain et al. (2020) in no particular order. 
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Table 4.1: Assets for Which Condition Assessments     Table 4.2: Building Components    

Should be Carried Out When Vacating a Building         During Post-storm Surveys  

 

Table 4.3: Assets for Which Condition Assessments Should be Carried Out When Vacating a 

Building – United States Respondents Only 

 

4.1.2 Inferential Statistics Summary 

The results of the inferential statistics are summarized in Table 4.3. The calculated Chi-

Square Test for Independence statistics results are 58.4 with 26 degrees of freedom. The p-value 

is less than 0.001, with the Cramer’s V value, which measures the strength of association 

between the variables, at 0.25. Upon applying a Bonferroni correction and considering the 

Cramer’s V results, this research reveals significant associations between the respondents’ 

current role in the industry and the research variables shown in Table 4.3. These comprehensive 
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findings emphasize the interrelationships by industry that influence practices in commercial 

building decommissioning, as evidenced by the descriptive analysis. 

Table 4.4: Association Between Respondent’s Current Role and Research Variables and Their 

Strength 

 Parameter Valid 

cases 

Degrees 

of 

freedoma 

Chi-

square 

statisticb 

p- 

value 

Cramer's 

Vc 

Effect size 

Condition 

Assessme

nts 

Frequency 

of condition 

assessments  

507 21 21.561 0.043 0.146 Moderate 

association 

Assets 530 26 58.363 <0.001 0.250 High 

association 

 a, b, c Defined previously in the methodology chapter 

4.1.3 Discussion regarding Research Question 1 

The research's results indicate that roofing, sprinklers & fire alarm systems are critical 

assets to assess before vacating a building, coupled with windows, HVAC systems, HVAC 

refrigerant gases, and electrical systems, as shown in Table 4.1 for respondents globally and 

Table 4.3 for respondents in the United States only. Interestingly, the respondents from all 

professional disciplines did not rate walls and doors globally and nationally in the United States. 

When carrying out post-storm surveys, NWS evaluators concentrate on roofing, walls, windows, 

doors, and roof-to-wall connections, as shown in Table 4.2. 

The apparent discrepancy in asset prioritization between facility managers during FCAs 

and NWS evaluators during post-storm damage surveys may raise concerns about the alignment 

between the two factions. While facility managers prioritize roofing, fire protection systems, 

windows, and certain mechanical and electrical components, NWS evaluators conducting post-

event storm surveys focus on a broader range of structural elements, including walls, doors, and 

roof-to-wall connections. Despite these differences, several aspects contribute to the alignment 
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between the priorities of facility managers and NWS evaluators. First, facility managers, the 

wider built environment professionals, and NWS evaluators performing post-event storm surveys 

recognize the importance of critical building components such as roofs while carrying out FCAs 

or mitigating tornado-related damage. While their priorities may differ slightly, there is a 

common albeit inadvertent understanding of the key assets vulnerable to tornadic events, such as 

roofing systems and windows.  

Secondly, looking at their complementary perspectives, facility managers and NWS 

evaluators carrying out post-event storm surveys bring different expertise and perspectives to the 

assessment process. While facility managers may prioritize assets based on operational 

considerations, occupant safety, regulatory compliance, and day-to-day functionality, NWS 

evaluators may prioritize components based on structural integrity, building codes, and risk 

analysis. While there is an overlap between these areas, such as occupant safety inherently 

encompassing structural integrity, each group may prioritize these aspects differently based on 

their specific roles and expertise. By integrating these complementary perspectives, stakeholders 

can develop comprehensive vulnerability mitigation strategies that address both operational and 

structural concerns.  

Thirdly, effective collaboration across disciplines is essential for bridging the gap 

between asset prioritization during FCAs and asset vulnerability under extreme loading 

conditions. By fostering communication and coordination between disciplines, stakeholders can 

ensure that critical vulnerabilities are identified, assessed, and addressed in a timely manner. 

Collaborative efforts can also facilitate the implementation of proactive measures and targeted 

mitigation strategies to enhance building resilience against tornadoes. 
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The discrepancy in asset prioritization highlights opportunities for continuous 

improvement in assessment practices and communication channels between facility managers 

and NWS post-event storm evaluators. By soliciting feedback, sharing best practices, and 

aligning assessment methodologies, stakeholders can enhance the effectiveness of FCAs and 

post-event storm surveys, ultimately improving overall building resilience and tornado 

vulnerability mitigation efforts. 

In summary, while there may be differences in asset prioritization between facility 

managers and NWS post-event storm surveyors during FCAs and post-event storm surveys, there 

is underlying alignment in their recognition of critical building components and shared 

commitment to enhancing building resilience against tornadic events. Effective collaboration, 

complementary perspectives, and a commitment to continuous improvement are key factors that 

contribute to bridging the gap and ensuring alignment between the two factions. 

4.2 Building Material Deterioration Impacts to Fragility Curves 

4.2.1 Deterioration Prediction Results  

The deterioration of roofs, walls, doors, and windows is determined in 5-year intervals 

following the methods shown in section 3.2. Figures 4.3-4.6 depict the projected conditions of 

the four components. As mentioned earlier, while the absence of condition five data hinders full 

convergence to condition state 5, comparing the projected condition graphs validates the 

expected deterioration trend for building components. As evidenced in Figures 4.3 – 4.6, walls 

and roofs tend to deteriorate more rapidly than windows and doors. 

In condition state 2 (as defined in figure 4.3), a notable spike is observed in all 

components at the 10-15-year mark, diminishing after 35 years. Windows exhibit the fastest 
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deterioration in this condition state with a probability of 0.45, followed by walls at 0.23, roofs at 

0.15, and doors at 0.1. In condition state 3, a similar spike is observed at 15-35 years, with walls 

deteriorating fastest (probability of 0.6), followed by roofs at 0.5, doors at 0.55, and windows at 

0.5. In condition state 4, a spike is observed much later in the service life of all components, at 

40 years, with walls deteriorating fastest (probability of 0.65), followed by roofs at 0.6, doors at 

0.55, and windows with a probability of 0.5. The probability of deterioration for all components 

continues in an upward trajectory to the end of service life. 

 

Figure 4.3: Condition State 2 Deterioration Trends for all Components 
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Figure 4.4: Condition State 3 Deterioration Trends for all Components 

  

Figure 4.5: Condition State 4 Deterioration Trends for all Components 
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Figure 4.6: Condition State 5 Deterioration Trends for all Components 

4.2.1.1 Model Calibration Process  

As mentioned previously in Chapter 3, Madanat et al. (1995) explain the regression-based 

optimization method as a process that uses a non-linear optimization function to minimize the sum 

of absolute variances between the regression curve that best fits the condition data and the 

conditions predicted using the implemented Markov chain model. This regression curve is 

illustrated in Figure 4.7, while the transition matrices and transient probabilities are described in 

Appendix A. Optimization process samples and the optimization summary of services components 

are given in Appendix A. An explanation of the validation process for the calibrated transition 

matrices is provided in the following section. 
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Figure 4.7: Exponential Regression Line Yn 

4.2.1.2 Validation & Evaluating Performance of the Calibrated Model  

The validation or assessment of the performance of the deterioration models calibrated in 

this research concerns the consistency between predicted and observed values. Predicted values 

are derived from calibrated transition matrices using the Markov chain process, while observed 

values are independent data points used to examine differences in the predictions of the Markov 

model against real data. 

As previously discussed in this chapter, the 2007 and 2009 inspection datasets are utilized 

to calibrate the Markovian deterioration models. These datasets, utilized to derive the 137 

deterioration transition matrices, are referred to as the training datasets. To test the model 

effectively, the test dataset (observed data) should not be involved in calibrating or training the 

model (Tran, 2007). Two common methods for calibrating and validating models while 

maintaining separate training and testing datasets are employed. One method involves randomly 

dividing the dataset into the calibration (training) dataset and the testing dataset. Alternatively, 

another approach, potentially resulting in a more realistic validation process, entails using an 
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additional independent dataset. This research uses a 2011 inspection dataset as the observed (or 

test) dataset to validate the methodology. 

The chi-square statistics (X2), as calculated and contrasted with the chi-square critical 

value for a significance level of 0.05 and 2 degrees of freedom, shows that the Markov chain 

results as having been accepted by the chi-square hypothesis by having an acceptable chi-square 

value of 5.6 against the critical value of 5.99, confidence interval 95%. The critical values 

depending on ν and α are given in Figure 4.8. 

 

Figure 4.8: Critical values of Chi-Square distribution for v degrees  

(NIST/SEMATECH, 2012) 

4.2.2 Resulting Deterioration Rates 

The deterioration prediction leads to the analysis of the time-based deterioration rates for 

the components' materials. The deterioration rates are presented for each building material, 

highlighting any trends or patterns observed across different materials and environmental 

conditions. 

The time-dependent analysis of deterioration rates reveals distinct time-based trends in 

material degradation over the service life of commercial and government buildings. For instance, 

roofing materials, asphalt shingles, and metal casement windows exhibit rapid deterioration, as 

shown in Table 4.4. Conversely, clay tiles, steel roof joists, poured concrete and timber walls, 



99 
   
 

mahogany and steel doors, hurricane clips, and 16d toenails show a more consistent deterioration 

rate across the lifespan, indicating stable material performance over extended periods.  

Table 4.5: Individual Deterioration Rates of Materials 

Building Component Time (years) 

Deterioration 

Rate 

Roofs   
Asphalt Shingles 0 0 

 10 0.2 

 20 0.4 

 30 0.6 

 40 0.8 

 50 1.00 

Clay, Metal, Slate, and Steel Roof 
Joists   

 0 0 

 10 0.13 

 20 0.27 

 30 0.4 

 40 0.53 

 50 0.67 

Walls   
CMU, Poured Concrete, and Timber 

Frames 0 0 

 10 0.13 

 20 0.25 

 30 0.38 

 40 0.5 

 50 0.63 

Windows   
Metal Casement 0 0 

 10 0.1 

 20 0.2 

Metal Casement and Timber 30 0.3 

 40 0.4 

 50 0.5 

Doors   
Mahogany, Fiberglass, Steel (Fire 

Rated) 0 0 

 10 0.17 

 20 0.33 

 30 0.5 

 40 0.67 

 50 0.83 
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Table 4.6: Individual Deterioration Rates of Materials (cont.). 

 

Building Component Time (years) 

Deterioration 

Rate 

Siding   
Aluminium and Brick Veneer 0 0 

 10 0.2 

 20 0.4 

 30 0.6 

 40 0.8 

 50 0.9 

Connections   
16d toenails and H2.5 clips - Steel 0 0 

 10 0.1 

 20 0.2 

 30 0.3 

 40 0.4 

 50 0.5 

These sequential trends in deterioration rates underscore the importance of considering 

time-dependent factors in modeling failure of structural components using fragilities. 

Incorporating time-dependent deterioration rates into the fragility curve allows for a more 

accurate analysis of structural vulnerabilities over time. By capturing the time-based evolution of 

material degradation, the fragility curve can provide insights into the long-term resilience of 

commercial and government buildings under tornado events. Proactive maintenance strategies 

can be informed by time-based trends in deterioration rates, enabling building owners and 

managers to address vulnerabilities and mitigate the risk of structural failure over the lifespan of 

the building.  

Time-based trends in deterioration rates provide valuable insights into how building 

components degrade and deteriorate over time. By understanding these trends, building owners 

and facility managers can implement proactive maintenance strategies to address vulnerabilities 

and mitigate the risk of structural failure through: 
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1. Early Detection of Deterioration: Monitoring deterioration rates allows building owners 

and facility managers to detect signs of degradation early on. By identifying areas where 

deterioration occurs more rapidly, they can prioritize maintenance efforts and address 

issues before they escalate into larger problems. 

2. Optimized Maintenance Scheduling: Armed with data on deterioration rates, owners 

and managers can develop optimized maintenance schedules. Instead of relying on 

reactive maintenance practices, they can schedule inspections and repairs at intervals that 

align with each component's expected deterioration rate. 

3. Cost-effective Repairs: Proactive maintenance based on deterioration trends can be more 

cost-effective in the long run compared to reactive repairs. By addressing issues early, 

before they lead to extensive damage, owners can avoid costly repairs and potential 

downtime associated with structural failures. 

4. Extended Lifespan of Building Components: Implementing proactive maintenance 

strategies informed by deterioration rates can help extend the lifespan of building 

components. By promptly addressing deterioration, owners and facility managers can 

prevent premature failure and ensure that building systems remain functional and reliable 

for extended periods. 

5. Enhanced Safety and Resilience: Regular maintenance based on deterioration trends 

helps ensure the safety and resilience of the building. By proactively addressing 

vulnerabilities, owners and managers can minimize the risk of structural failure during 

extreme events such as storms, earthquakes, or high winds, thereby protecting occupants 

and minimizing property damage. 
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Overall, time-based trends in deterioration rates serve as a valuable tool for building 

owners and facility managers to effectively manage the maintenance and upkeep of their 

facilities, ultimately leading to improved safety, resilience, and cost-effectiveness over the 

building's lifespan. 

4.2.3 Time-dependent Materials Fragilities 

The findings on deterioration rates provide time-based patterns of material degradation, 

laying the groundwork for assessing the impact of deterioration on building material fragility 

under tornado events. In this section, the research presents and analyzes the comparison of 

pristine (non-deteriorated) and deteriorated fragility curves for various building materials under 

tornado events. The objective is to assess the impact of deterioration on material vulnerability, 

focusing on shifts in the probability of exceedance, EF scale, and Degree of Damage 3-sec wind 

gust thresholds.  

Fragility curves are developed using a lognormal distribution to achieve this objective, 

incorporating deterioration effects based on the established deterioration rates. This methodology 

enables the examination of differences in material vulnerability between pristine and deteriorated 

states, shedding light on the dynamic nature of material degradation under tornado conditions. 

Furthermore, the analysis explores the effects of deterioration on material fragility under 

different EF scale wind gust scenarios, providing insights into how shifts in wind speed 

thresholds may impact building resilience. Additionally, the research explores variations in 

Degrees of Damage to understand the implications of building material fragilities on damage 

state classification.  
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The research places significant emphasis on the role of poor maintenance in exacerbating 

structural vulnerability to tornado events based on the aforementioned study on 

decommissioning practices of commercial buildings carried out in 2022. In the study, poor 

maintenance, characterized by neglect, deferred repairs, and abandonment, emerged as a critical 

factor influencing the degradation of building materials and overall structural integrity. 

Deterioration rates corresponding to averagely maintained facilities are selected for further 

analysis and integration into the fragility function framework to validate the results. 

This analysis aims to provide insights into the dynamics of material vulnerability under 

tornado events to answer Research Question 2: "Does deterioration have an effect on the tornadic 

wind-loading response of building materials? How significant are the shifts in material tornadic 

fragilities of deteriorating buildings when compared to non-deteriorating (pristine) buildings?”  

4.2.4 Fragility Curves 

The methodology for developing fragilities for the materials used in roof coverings, steel 

roof joists, walls, doors, windows, 16d toenails, and H2.5 clips is explained in the previous 

chapter. As discussed previously, the fragility of a structural system can be modeled using; 

𝐹𝑟(𝑥) = 𝛷 [
𝑙𝑛(𝑥) − 𝜆𝑅

𝜉𝑅

] 

where x = specified intensity measure defined as 3-sec gust wind speed (m/s or mph) for tornado 

fragility function; 𝛷[∗] = standard normal cumulative distribution function; 𝜆𝑅 = logarithmic 

median of capacity; and 𝜉𝑅  = logarithmic standard deviation of capacity. This procedure is 

employed to fit the results of the fragility curves for both pristine (non-deteriorating buildings) 

and deteriorating buildings at intervals of 0, 10, 20, 30, 40, and 50 years.  
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A probability paper plot is applied to the fragility parameters (i.e., ζ and λ values). The 

residual R2 is also calculated to examine how many data points surround the line of best fit, 

accounting for the accuracy of the data to validate the fragility parameters. For this research, the 

R2 value is 0.967, shown in Figure 4.9, which is a high R2 value. High R2 values indicate that the 

lognormal distribution best fits the MCS. Thus, the presented fragility models can be described 

using a lognormal distribution with ζ and λ.  

 

 

 

Figure 4.9: Best Fit Model for Monte Carlo Simulation 

Figure 4.10 shows examples of the best fit for fragilities obtained for asphalt shingles at 

the 10, 30, and 50-year intervals of the material's service life.  
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This section evaluates the impact of deterioration on the response of building components 

by developing time-evolving building fragility curves for building materials used in roofs, walls, 

doors, windows, and wall-to-roof connections. Such time-dependent fragility curves quantify the 

impact of deterioration on building material vulnerability to tornadic wind damage along the 

service life of the building. The analysis focuses on fragility curves obtained for materials such 

as asphalt shingles, clay tiles, timber and metal casement windows, mahogany and steel doors, 

aluminum siding, steel roof joists, 16d toe-nails, and one or two H2.5 steel clips. These findings 

are validated through a comparative analysis with materials sourced from buildings with average 

maintenance. This comparison provided valuable insights into the differential vulnerability 

profiles of buildings based on maintenance practices.  

Figures 4.11 – 4.16 illustrate a leftward shift in fragility curves for deteriorated materials 

compared to pristine ones. These figures showcase fragility curves for asphalt shingles, walls, 

and two H2.5 hurricane clips at different time intervals into their service life, highlighting the 

increasing vulnerability of deteriorated materials over time. These figures include the wind speed 

thresholds for each EF-Scale ranking, with the transition point between rankings called out. The 

overlay shows an increased probability of failure for asphalt shingles, walls, and H2.5 clips at the 

wind speed.  
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Figure 4.11: Fragilities for asphalt shingles at a 30-year time interval – Poor Maintenance 

 

 

Figure 4.12: Fragilities for asphalt shingles at a 30-year time interval – Average Maintenance 
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Figure 4.13: Fragilities for walls at a 40-year time interval – Poor Maintenance 

 

Figure 4.14: Fragilities for walls at a 40-year time interval – Average Maintenance 



109 
   
 

 

 

Figure 4.15: Fragilities for two H2.5 clips at a 30-year time interval – Poor Maintenance 

 

Figure 4.16: Fragilities for two H2.5 clips at a 30-year time interval – Average Maintenance 
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By quantifying the leftward shift in wind speed thresholds, the research observes an 

average percentage decrease of 4% in wind speed thresholds across all EF scale categories for 

asphalt shingles, walls, and H2.5 clips compared to pristine counterparts across all time intervals, 

for poorly maintained materials. The comparison with fragilities for materials in buildings that 

receive average maintenance reveals a similar leftward shift, resulting in an average decrease of 

3% in wind speed thresholds across all EF scale categories for asphalt shingles, walls, and H2.5 

clips in materials with average maintenance.    

These findings shed light on the dynamic relationship between material deterioration and 

tornado vulnerability, particularly concerning the leftward shift in wind speed thresholds 

observed across the various building materials and time intervals. The observed decrease in wind 

speed requirements for damage initiation highlights the increased susceptibility of structures to 

wind-induced damage as materials degrade over time. While a 4% decrease (for poorly 

maintained building materials) on average in wind speed thresholds may seem modest, its 

cumulative effect over time can significantly compromise the structural integrity of buildings, 

leading to heightened risks of damage and failure, which is discussed further in the next section. 

4.3 EF Scale Analysis  

The previous analysis for all materials revealed a consistent leftward shift in fragility 

curves for deteriorated building materials compared to those of pristine buildings across all 

designated time intervals (10, 20, 30, 40, and 50 years) for each damage state (DS1, DS2, DS3, 

and DS4). This shift indicates that material deterioration leads to increased vulnerability to 

tornadic wind-loading events at lower wind speeds, resulting in a notable decrease in wind speed 

thresholds for damage initiation. In response to Research Question 3, “Would a structure’s age 
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and material deterioration ultimately impact how tornadoes are ranked on the EF-scale?”, as 

would be expected, the observed trend suggests that deteriorated materials are more susceptible 

to wind-induced damage at lower wind speeds than their pristine counterparts, regardless of the 

initial condition. Despite the relatively modest decrease in wind speed thresholds, Figure 4.14 

illustrates the potential impact of such deterioration on asphalt shingles, highlighting the 

heightened risk of material deterioration. 

 

 

 

 

 

Figure 4.17: Leftward shift of EF scale wind speed thresholds for asphalt shingles 

EF 0 EF 1 EF 2 EF 3 EF 4 

Decrease in EF Scale Upper and Lower Bound wind speeds  
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Table 4.5 provides the original lower and upper bound thresholds, per NWS, and assigns 

them as affiliated with assumed pristine conditions. The results from the fragility curves for 

deteriorated material are then used to define new lower and upper bounds within the EF-Scale.   

Table 4.7: Upper and Lower Bound wind speed thresholds for pristine (non-deteriorated) and 

deteriorated asphalt shingles 

EF 

Scale 

Lower 

Bound 

(mph) 

Pristine 

Lower Bound 

(mph) 

Deteriorated 

Upper 

Bound 

(mph) 

Pristine 

Upper Bound 

(mph) 

Deteriorated  

EF 0 65 58 85 76 

EF 1 86 77 110 99 

EF 2 111 100 135 121 

EF 3 136 125 165 148 

EF 4 166 149 200 180 

 

EF0 – The lower bound threshold wind speed for the deteriorated asphalt of 58 mph surpasses  

EF0’s Lower Bound threshold for pristine asphalt shingles, which is 65 mph.  

EF 1 – The lower bound threshold wind speed for asphalt shingles of 77 mph overlaps with 

EF0’s threshold for pristine asphalt shingles between 65 and 85 mph.    

EF 2 – The lower bound threshold wind speed for asphalt shingles of 100 mph overlaps with 

EF1’s threshold for pristine asphalt shingles between 86 and 110 mph. 

EF 3 –    The lower bound threshold wind speed of 125 mph overlaps with EF2’s threshold for 

pristine asphalt shingles between 111 and 135 mph. 

EF 4 – The lower bound threshold wind speed for deteriorated asphalt shingles of 136 mph 

overlaps with EF3’s threshold between 166 and 200 mph. 
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Tables 4.7 – 4.9 provide the mean probability of exceedance for each EF scale category, 

further supporting the observed increase in the likelihood of damage occurrence for deteriorated 

materials. Statistical analyses, including paired t-tests and analysis of variance (ANOVA), 

highlight the significance of these shifts, with p-values < 0.05 indicating a statistically significant 

difference in the probability of exceedance between pristine and deteriorated materials. For 

statistically significant results (p < 0.05) and as an example, the research observes an average 

percentage increase in the probability of exceedance of 23%, 24%, and 34% across all EF scale 

categories for deteriorated asphalt shingles, walls, and single H2.5 hurricane clips respectively. 

All results for all materials are available in Appendix D. 
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As discussed previously, this research places significant emphasis on the role of poor 

maintenance in exacerbating structural vulnerability to tornado events. Poor maintenance, 

characterized by neglect, deferred repairs, and abandonment, emerged as a critical factor 

influencing the degradation of building materials and overall structural resilience. This focus is 

informed by insights gained from the 2022 survey on decommissioning.  

These findings underscore the detrimental impact of poor maintenance on material 

degradation and structural integrity. Neglected buildings exhibited a probable accelerated 

deterioration of roofing materials, walls, doors, windows, and structural connections, leading to 

decreased wind resistance and heightened vulnerability to tornado-induced damage. Building 

materials in deteriorated buildings exhibited higher probabilities of exceeding damage thresholds 

across all EF scale categories, indicating a greater susceptibility to tornado-induced damage.  

These findings emphasize the importance of considering material deterioration in 

assessing building vulnerability to tornadic wind events. While the above results are provided in 

terms of Damage States, the determination of EF-Scale is based on the Degree of Damage 

(DOD) as defined by NWS Damage Indicators (Texas Tech, 2006). The EF-Scale encompasses a 

diverse range of Damage Indicators, including damage to small retail buildings (SRB), small 

professional buildings (SPB), strip malls (SM), large shopping malls (LSM), and large isolated 

retail buildings (LIRB), each category characterized by multiple DODs. This is in keeping with 

the research’s focus on commercial and government buildings.  

The leftward shift in fragility curves signifies a quantifiable decrease in wind speed 

thresholds required to initiate damage across all DOD categories for deteriorated materials 

compared to pristine counterparts. This reduction in wind speed thresholds highlights the 
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heightened risk posed by material deterioration and underscores the increased susceptibility of 

buildings to wind-induced damage over time.      

For instance, Figures 4.15 – 4.18 show the effect of the leftward shift in deterioration 

curves for roof covering and walls, for example, to small retail buildings and large isolated 

buildings for damage states 1, 2, 3, and 4 at different time intervals into their service life, 

highlighting the increasing vulnerability of deteriorated materials over time. The DODs, used to 

identify the wind speed, are also shown to indicate how this leftward shift may cause a change in 

EF ranking. 

 

Figure 4.18: Fragilities for Asphalt Shingles with DOD 4 bounds for a Small Retail Building 
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Figure 4.19: Fragilities for Walls with DOD 7 wind speed bounds for a Small Retail Building  

 

Figure 4.20: Fragilities for Asphalt Shingles with DOD 2 and 3 wind speed bounds for a Large 

Isolated Retail Building  
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Figure 4.21: Fragilities for Walls with DOD 6 wind speed bounds for a Large Isolated Retail 

Building 

Table 4.9 shows the results of quantifying the shift in wind speed thresholds, and the 

research observes an average percentage decrease of 3% – 7% across DOD categories for roofs 

and walls in small retail buildings (DOD 4 and DOD 7, respectively) and large isolated retail 

buildings (DOD 2, DOD 3 and DOD 6 respectively). The table also compares Upper- and 

Lower-bound wind speed thresholds for materials in pristine (non-deteriorated) and deteriorated 

small retail buildings (SRB) and large isolated retail buildings (LIRB) due to this decrease in 

percentage.  
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Despite the relatively modest decrease in wind speed thresholds, Figure 4.19 shows the 

potential impact of this reduction on the susceptibility of roofs to wind-induced damage in Large 

Isolated Retail Buildings at different time intervals, DOD 3, highlighting the leftward shift in 

wind speed and therefore the heightened risk posed by material deterioration.  

At year 10’s Lower Bound threshold, the wind speed for deteriorated roof covering of 86 

mph surpasses the Lower Bound threshold for pristine roof covering between 87 and 83 mph. 

This trend continues with the  Lower Bound threshold at year 20 decreasing to 86 mph, 85 mph 

at year 30, 76 mph at year 40, and 68 mph at year 50. 
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Figure 4.22: Leftward shift of DOD threshold wind speeds for roof covering to a Large Isolated 

Retail Building at 0-50-year intervals. Year 0 and year 50 thresholds are boxed. 

4.3.1 Discussion on EF Scale Analysis  

This research investigates building materials' time-dependent deterioration fragility 

curves, focusing on shifts in wind speed thresholds and changes in mean probability across EF 

Scale and Degree of Damage (DOD) analyses. Findings reveal significant leftward shifts in the 

fragility curves for various building materials, which would result in shifts in wind speed 

thresholds relative to the EF Scale. These findings indicate a decrease in wind speed 

Decrease in DOD Upper Bound and lower Bound 

wind speeds  

50-year interval - Deteriorated 0-year interval - Pristine 



124 
   
 

requirements for damage initiation in deteriorated materials compared to pristine counterparts, 

which is the assumption for the damage indicators for the EF-Scale. Additionally, observations 

highlight an average change in mean probability of exceedance across some of the analyzed 

scenarios, with statistically significant findings (p < 0.05) reinforcing the robustness of the 

results. The average increase in mean probability indicates a heightened likelihood of 

experiencing damage across different damage states, reflecting the progressive deterioration of 

building materials over time. This trend is more pronounced in cases where p-values are less than 

0.05, signifying statistically significant changes that cannot be attributed to random variation 

alone. In the research, we utilize the concept of "average percent change" in the probability of 

exceedance to assess the relative shift in vulnerability between pristine (non-deteriorated) 

building materials and deteriorated building materials, as highlighted in Chapter 4, the 

methodology section. This metric serves as a vital indicator of how building resilience is affected 

by varying maintenance levels.  

The leftward shift in fragility curves for deteriorated materials suggests reevaluating the 

EF scale ranking and DOD thresholds to account for the increased susceptibility of deteriorated 

materials to wind-induced damage. The decrease in wind speed thresholds required to initiate 

damage in deteriorated materials may lead to reassessing the EF scale categorization, potentially 

resulting in a higher EF scale ranking for tornado events. Previous damage surveys that followed 

the DOD guidance result in EF rankings based on an assumed pristine building condition prior to 

the tornado event. For example, a wind speed threshold previously associated with EF2 damage 

in pristine materials may now correspond to EF3 damage in deteriorated materials, reflecting the 

heightened vulnerability of the built environment to tornadic wind loading. 
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Deteriorated materials are more prone to damage at lower wind speeds, necessitating 

adjustments to the existing DOD thresholds to accurately reflect the extent of damage incurred 

by deteriorated buildings. This may entail revising DOD classifications or introducing new 

criteria to account for the differential vulnerability of deteriorated materials. 

The variability in the magnitude of leftward shifts across different time intervals 

highlights the complex nature of material deterioration processes. While shorter time intervals 

may exhibit relatively minor shifts, the cumulative effects of environmental exposure and aging 

mechanisms become more pronounced over longer durations. Understanding the underlying 

drivers of this variability is crucial for developing proactive strategies to mitigate the impacts of 

material degradation on structural resilience. Further understanding of these drivers may 

ultimately highlight the need for structural integrity research, evaluation, and/or modeling to 

consider not only the physical aspects of a constructed building but also how that building is 

utilized and/or maintained over time.  

4.4 Summary 

Routine FCAs evaluate building components, which include roofing, HVAC systems, 

sprinklers, and fire alarms, electrical system, security and access control, drains, waste & vents,  

windows, HVAC refrigerant gases, lead and asbestos assessment, doors, walls, and conveyor 

systems within a building, which is found to overlap, in part, with surveys of a damaged facility 

post- extreme event. Often, storm surveys look at roof structure, roof covering, external walls, 

windows, doors, wall cover (cladding and siding), roof-to-wall connections, and roof & wall 

sheathing to determine an EF ranking for a tornadic event. If a tornado-damaged building was a 

decommissioned building and, therefore, no longer being maintained (poor maintenance), the 
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wind speed required to reach certain damage states may be significantly lower (depending on the 

age). When conducting a storm survey, damage indicators may have degrees of damage 

discussing the upper and lower wind bounds that cause between >2% (DS1) up to >50% (DS4) 

loss of roof covering, loss of 1 door or window (DS1) up to loss of >25% (DS4) of windows and 

doors, loss of >2% (DS1) and up to >75% (DS4) of exterior walls, and no loss (DS1) up to 

complete loss (DS4) of a roof structure.  

With consideration of the results of this research, those upper and lower bounds, which 

help define the experienced wind speed and, therefore, the resulting EF ranking (as necessary), 

may be altered significantly based on the building maintenance practices. If storm surveys 

involve an evaluation of, for example, walls, but FCAs have that as a low priority, then there is a 

discrepancy in how buildings are being assessed pre- and post-extreme events. This potential 

mismatch will then transfer into the subsequent wind speed designations and EF rankings (for 

tornado events) from NWS post-event storm surveys. The analysis reveals a consistent leftward 

shift in fragility curves for deteriorated materials compared to pristine counterparts, indicating 

decreased wind speed thresholds for damage initiation. This shift underscores the increased 

vulnerability of structures to wind-induced failure due to material aging and degradation. 

Furthermore, quantifying the percentage shift in wind speed thresholds highlights the magnitude 

of this vulnerability, with deteriorated materials exhibiting significant reductions in wind speed 

thresholds across different EF scales and Degree of Damage categories. 

Tornadoes, though prevalent in the United States, also occur in other countries around the 

globe. Adaptation of fragility analysis methodologies is necessary to suit local contexts, 

including adjusting input parameters like wind speeds and building characteristics. Despite 
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regional differences, universal fragility analysis principles can guide curve development, 

allowing for effective assessment of building vulnerability to tornadoes. Local factors are crucial 

for applying this methodology across diverse geographical contexts. 

4.5 Assumptions and Limitations 

Notably, fragility curves incorporating deterioration rates are subject to assumptions and 

uncertainties related to material properties, degradation mechanisms, and hazard interactions, 

which may influence model predictions and decision-making processes. This section 

discusses the assumptions and limitations of the research. 

1. The analytical models in this study are built on assumptions about building material 

behavior and deterioration progression. These include a linear relationship between 

service life, deterioration rate, and uniform deterioration across components. While these 

assumptions are supported by literature and empirical evidence, they introduce 

uncertainties and limit generalizability. Validation using data from buildings with 

average maintenance is conducted to assess these assumptions' impact and quantify 

associated uncertainties. Linear models assume constant rates of change, but real-world 

phenomena may exhibit nonlinear interactions or threshold effects, oversimplifying linear 

models.  

2. The research operates under the assumption of homogeneity, suggesting uniformity or 

consistency in building materials or environmental conditions within the study sample. 

However, it's essential to acknowledge that variations or heterogeneity may exist across 

different buildings or regions, potentially influencing the study findings. 
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3. The results of this study may be sensitive to variations in input parameters, such as 

material properties, environmental conditions, socio-economic conditions, and 

maintenance practices. For instance, differences in material properties between buildings, 

variations in local environmental conditions, disparities in socio-economic status, and 

diverse maintenance practices across regions or building types could introduce significant 

variability in the outcomes. Therefore, while this study provides valuable insights, it's 

essential to recognize that the findings may be influenced by the context and conditions 

under which the analysis was conducted.  

4. While the research utilizes statistically significant findings to analyze the probability of 

exceedance, it acknowledges the existence of null results. Although this acknowledgment 

is important to prevent potential distortions in the body of evidence, which could lead to 

overestimating the effect sizes or generalizability, the study focuses on utilizing reliable 

data. This decision aims to enhance the robustness of the research findings. 

Based on the limitations and assumptions identified in this study, several opportunities for 

future research are identified, including refining analytical models, expanding the scope of 

analysis, and addressing data quality issues. Future research may include conducting similar 

studies in diverse settings to enhance the findings' generalizability and validate the analytical 

models' robustness. 
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5 CHAPTER 5: KEY FINDINGS, CONTRIBUTIONS, AND FUTURE RESEARCH 

RECOMMENDATIONS 

Tornadoes are among the most devastating natural disasters, especially for smaller 

communities. Despite the widespread use of fragility curve methods, the impact of material 

deterioration on tornado vulnerability has been largely overlooked. Through a comprehensive 

examination of the impact of material deterioration on tornado fragility, the research aims to fill 

this critical gap by investigating the impact of material deterioration on tornado fragility, 

focusing on commercial and government buildings at the end of their useful life. The objective is 

to quantify the impact of individual building material deterioration on the EF-scale tornado 

ranking and wind speed values associated with each DI and DOD. Additionally, the research 

aims to identify whether building or facility managers prioritize the same components as NWS 

officials during post-event storm surveys.  

5.1 Key Findings 

Facility Condition Assessments (FCAs): Through survey analysis, the research 

uncovers differences between the priorities of facility managers during FCAs and NWS during 

post-event storm surveys. While facility managers often focus on operational and maintenance 

concerns, NWS post-event storm surveys prioritize structural integrity and safety. Though there 

is an overlap between these areas, such as occupant safety inherently encompassing structural 

integrity, each group may prioritize these aspects differently based on their specific roles and 

expertise. This misalignment underscores the importance of harmonizing pre- and post-event 

storm surveys to ensure comprehensive risk mitigation strategies. The research reveals that 

roofing, sprinklers & fire alarm systems are prioritized assets during FCAs, with windows, 
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HVAC systems, HVAC refrigerant gases, and electrical systems also receiving significant 

attention. However, there is a notable misalignment between the components that facility 

managers and NWS post-event storm surveys prioritize, such as walls and doors, which are a 

focus during post-event storm surveys, highlighting potential gaps in risk perception and 

mitigation strategies. While there may be differences in asset prioritization, there is underlying 

alignment in their recognition of critical building components and shared commitment to 

enhancing building resilience against tornadic events. Effective collaboration, complementary 

perspectives, and a commitment to continuous improvement are key factors that contribute to 

bridging the gap and ensuring alignment between the two factions. 

Building Material Deterioration Impacts to Fragility Curves: Using a Markov chain 

modeling approach, the research predicts time-based deterioration trends for various building 

components, including roofs, walls, doors, and windows. The models reveal distinct degradation 

patterns over time, with some walls and roofs exhibiting accelerated deterioration under certain 

conditions, while doors project a lower overall deterioration probability in condition states 2, 3, 

and 4. These insights provide valuable guidance for proactive maintenance strategies and asset 

management practices. Additionally, deterioration rate models for different maintenance 

scenarios, ranging from poor to excellent maintenance practices, are developed. Analysis of 

deterioration rates for various building materials reveals significant variability in degradation 

patterns, with implications for the development of fragility curves.  

The findings following the development of fragility curves shed light on the dynamic 

relationship between material deterioration and tornado vulnerability, particularly concerning the 

leftward shift in wind speed thresholds observed across the various building materials and time 
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intervals, bringing attention to an observed decrease in wind speed thresholds. The observed 

decrease in wind speed requirements for damage initiation highlights the increased susceptibility 

of structures to wind-induced damage as materials degrade over time. While a 4% decrease on 

average in wind speed thresholds may seem modest, its cumulative effect over time can 

significantly compromise the structural integrity of buildings, leading to heightened risks of 

damage and failure. By quantifying the impact of deterioration on building components over 

time, the research highlights the importance of accurately incorporating time-dependent 

fragilities into vulnerability studies to assess tornado risk. 

Fragility Functions and EF Scale Analysis: Through a comparative analysis of pristine 

and deteriorated fragility curves, the research reveals consistent leftward shifts in fragility curves 

for deteriorated materials compared to pristine counterparts across designated time intervals, 

indicative of a progressive increase in vulnerability over time. These shifts underscore the impact 

of material deterioration, leading to decreased wind speed thresholds for damage initiation and a 

significant increase in the likelihood of damage occurrence. Quantifying and mapping the 

percentage shifts in wind speed thresholds highlight the magnitude of this vulnerability, with 

deteriorated materials exhibiting reductions in wind speed thresholds across different EF scales 

and Degree of Damage categories. For example, the wind speed threshold previously associated 

with EF2 damage in pristine materials may now correspond to EF3 damage. The research found 

that deterioration-induced changes in material properties may directly influence material 

fragility, with deteriorated materials exhibiting heightened susceptibility to wind-induced 

damage, with implications for damage rating, EF scale ranking, disaster preparedness, and 

mitigation efforts.  
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5.2 Contributions    

The findings of this research carry significant implications for theory, practice, and 

policy-making in the field of building resilience: 

1. This research facilitates more targeted risk assessment and mitigation strategies by 

identifying the key components prioritized during Facility Condition Assessments 

(FCAs) and post-event storm surveys. The research underscores the importance of 

interdisciplinary collaboration between facility managers, meteorologists, 

policymakers, and researchers in post-event storm survey efforts. By integrating 

expertise from various domains, stakeholders can develop holistic strategies to 

enhance building resilience and mitigate the impacts of tornado events on 

communities. Facility managers can use this information to prioritize maintenance 

and repair efforts. Additionally, while building deterioration may not be explicitly 

mentioned in insurance policies, it can influence the assessment of claims following 

tornadic events. Insurers consider various factors, including pre-existing conditions, 

maintenance practices, and policyholder obligations, when evaluating claims and 

determining coverage. This research highlights the importance of property owners 

maintaining their buildings adequately and promptly addressing any signs of 

deterioration to avoid potential issues with insurance claims 

2. This research highlights the dynamic nature of material vulnerability to tornado 

events over time due to deterioration. By quantifying the shifts in EF ranking and 

DODs associated with material degradation, the research provides valuable insights 

into the evolving risk profiles of buildings and structures. The observed leftward 
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shifts in fragility curves and changes in EF ranking and DOD wind speed thresholds 

underscore the inadequacy of existing evaluation protocols that do not account for 

material deterioration. Post-event storm surveys may now consider the impact of 

aging and degradation on building resilience to assess structural integrity and 

accurately prioritize repair and reconstruction efforts.  

3. Storm survey crews may be encouraged to prioritize assessments in newer 

construction neighborhoods, defined as those constructed within the past 10 -15 

years, where feasible.  “Newer” in the context of this research may be defined as 10-

15 years where the findings exhibit a significant leftward shift in the fragility curves.  

4. In addition to assessing immediate storm damage, future engineering reconnaissance 

efforts may consider incorporating evaluations for signs of material deterioration. By 

systematically benchmarking the condition of building materials during post-event 

surveys, valuable data can be collected to track degradation trajectories. This 

proactive approach to monitoring material conditions enhances our understanding of 

structural vulnerability and provides essential data for validating fragility models. 

5. The development of time-dependent deterioration models and fragility curves 

emphasizes the importance of proactive maintenance and repair interventions to 

address material aging and degradation. By quantifying the impact of deterioration on 

building vulnerability, the research highlights the need for regular inspections and 

timely repairs to maintain structural integrity over time. 

6. The result of this research may lead to educating the public about the potential risks 

associated with building deterioration during tornado events, which can empower 
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individuals to make informed decisions about their safety. While taking shelter 

remains paramount for personal safety during tornado events, understanding the 

relationship between building deterioration and structural vulnerability can enhance 

overall emergency preparedness and response efforts. 

7. This research provides decision-makers with empirical evidence on the shifting wind 

speed thresholds and changes in material vulnerability over time. This information 

can inform policy decisions related to building codes, zoning regulations, and disaster 

preparedness planning, enabling more informed decision-making processes 

prioritizing public safety and resilience. 

5.3 Future Research Recommendations 

This research has advanced the understanding of tornado fragility and building resilience 

through a multifaceted analysis of material deterioration effects. The findings have laid the 

groundwork for informed decision-making, disaster preparedness, and risk mitigation strategies 

by revealing the interconnectedness between maintenance practices, material properties, and 

structural vulnerability. By integrating considerations of material deterioration into maintenance 

practices and resilience planning, practitioners and policymakers can enhance the resilience of 

built environments and minimize the potential impacts of extreme weather events.  

Building on the findings, several avenues for future research merit exploration: 

1. Conducting longitudinal studies to monitor material deterioration and building resilience 

over extended periods can provide deeper insights into time-based trends and dynamics. 

By tracking degradation patterns and assessing the effectiveness of maintenance 

interventions, researchers can refine existing models and develop more accurate building 
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performance predictions. Conducting comprehensive field studies can validate 

vulnerability models and evaluate the real-world performance of deteriorated building 

components under tornado conditions. 

2. Exploring advanced modeling techniques like machine learning algorithms or agent-

based modeling may enhance deterioration models' predictive power and scalability. 

Researchers can capture complex interactions between material properties, environmental 

factors, and maintenance practices by leveraging big data analytics and computational 

tools.  

3. With more consistent data, other methods of deterioration prediction (such as the gamma 

process) and modeling of deterioration rates can be examined. These may capture the 

complex dynamics of tornado-induced damage and deterioration processes.  

4. Future research may use real-world or experimental data to validate and verify the 

accuracy of the time-dependent deterioration fragility models for buildings to reduce 

uncertainties associated with probabilistic modeling.  

5. Future research could focus on refining the time-dependent fragility model to account for 

additional factors influencing building vulnerability, such as structural design, 

construction materials, and environmental conditions. By incorporating these variables 

into vulnerability assessments, researchers can improve the accuracy and reliability of 

risk predictions and inform more effective disaster mitigation strategies. 

6. Future research could investigate the combined effects of multiple insults, such as wind, 

floods, temperature variations, and other environmental factors, on the deterioration of 

built infrastructure. There is an opportunity to develop and validate fragility models that 
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account for the interactions between different hazards and their synergistic effects on 

structural vulnerability to tornadoes. Research efforts may focus on gathering 

comprehensive data on each hazard's frequency, intensity, duration, and spatial and 

temporal interactions. Advanced data analytics techniques can then be applied to analyze 

the combined impact of multiple insults on deterioration rates and structural fragilities.  

7. While this research focuses on the fragility of individual building components’ materials, 

the implications extend far beyond isolated material performance. Future studies may 

explore integrating time-dependent material-level fragility data with structural analysis 

tools to predict whole-building performance under tornado loading conditions. By 

extrapolating the findings to the holistic evaluation of entire buildings, researchers can 

envisage a comprehensive approach to tornado vulnerability evaluation.  

8. Future research could integrate identified socioeconomic factors and community 

resilience measures into time-dependent deterioration tornado fragilities at the building or 

community level to develop all-inclusive risk management approaches. Integrating 

socioeconomic factors (e.g., housing tenure, income levels, etc.)  and community 

resilience measures (e.g., infrastructure resilience, economic diversification, etc.) into 

time-dependent deterioration tornado fragilities can develop more comprehensive risk 

management strategies that address the multifaceted challenges of tornado hazards. This 

could be through the use of vulnerability indices (e.g., Social Vulnerability Index (SoVI), 

Community Resilience Index (CRI), etc.), which may help quantify the overall 

vulnerability of buildings or communities to tornado events by considering various 

socioeconomic, demographic, and environmental factors. This may allow researchers to 
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assess how variations in socioeconomic factors and community resilience affect the 

vulnerability of buildings to tornado events over time. By considering these factors, the 

fragility models can provide more comprehensive risk assessments that account for both 

structural vulnerabilities and societal vulnerabilities.  
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7 APPENDICES 

7.1 APPENDIX A: DETERIORATION PREDICTION – TRANSITION MATRICES 

AND PROBABILITIES 

Table 7.1: Transition matrices for doors, windows, and walls 

 

Table 7.2: Condition State 1 Matric and Deterioration Trends for all Components 
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Table 7.3: Condition State 2 Matric and Deterioration Trends for all Components 

 

Table 7.4: Condition State 3 Matric and Deterioration Trends for all Components 
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Table 7.5: Condition State 4 Matric and Deterioration Trends for all Components 

 

Table 7.6: Condition State 5 Matric and Deterioration Trends for all Components 

 



152 
   
 

Table 7.7: Expected  Deterioration Matrix and Trends for all Components 

 

 

DETERIORATION PREDICTION – CHI-SQUARE TEST 

Superstructure Observed Test Data 

Table 7.8: Observed Deterioration Data 

Age/Condition 2 3 4 5 6 7 8 Total 

10 3 6 2 1 1 0 0 13 

15 1 2 9 1 1 0 0 14 

20 0 1 8 3 0 0 0 12 

25 0 2 8 3 0 0 0 13 

30 1 3 7 2 2 0 0 15 

35 0 2 5 4 1 0 0 12 

40 0 0 4 6 3 2 0 15 

45 0 2 3 5 1 0 0 11 

50 0 1 4 6 1 0 0 12 

55 0 1 3 3 5 2 0 14 

60 0 0 2 0 7 4 0 13 

65 0 1 5 5 1 0 0 12 

85 0 0 4 5 3 1 1 14 

Total 5 21 64 44 26 9 1 170 

Average Sample Size 
      

13 
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Superstructure no. of deteriorated elements vs. Age 

Table 7.9: Expected Deterioration Data 

Age/Condition 1 2 3 4 5 

Average  13 0 0 0 0 

10 10 1 2 0 0 

15 7 2 3 1 0 

20 5 2 4 2 1 

25 4 2 4 2 1 

30 3 1 5 3 1 

35 2 1 5 4 2 

40 2 1 4 5 2 

45 2 1 4 5 2 

50 1 0 4 6 2 

55 1 0 3 6 3 

60 1 0 3 7 3 

65 0 0 2 8 3 

85 0 0 2 8 4 

Total 38 11 45 57 24 

 

Table 7.10: Chi-Square Test Results 

Attribute  

  

 

  

 

Regression 5.6 5.99 

 

 

 

 

 

 

 

 

 

 

𝒙𝟐 = ∑(𝑶𝒊 − 𝑬𝒊)
𝟐/𝑬𝒊 

𝒌

𝟏=𝟏

 𝒙𝟎.𝟎𝟓,𝟐
𝟐  
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7.2 APPENDIX B: DETERIORATION RATES 

Table 7.11: All Deterioration Rates across all Maintenance Conditions 

Year 
Poor  

Maintenance 

Average 

Maintenance 

Satisfactory 

Maintenance 

Excellent 

Maintenance 

Roofing - Metal, Clay, and Slate    
0 0.00 0.00 0.00 0.00 

10 0.13 0.08 0.06 0.02 

20 0.27 0.17 0.14 0.07 

30 0.40 0.28 0.24 0.16 

40 0.53 0.41 0.37 0.28 

50 0.67 0.56 0.52 0.44 

60 0.80 0.72 0.69 0.64 

70 0.93 0.90 0.89 0.87 

     

Roofing - Asphalt, BUR    

0 0.00 0.00 0.00 0.00 

10 0.50 0.38 0.33 0.25 

20 1.00 1.00 1.00 1.00 
     

Walls - Poured Concrete Systems, Timber Frames   
0 0.00 0.00 0.00 0.00 

10 0.13 0.07 0.05 0.02 

20 0.25 0.16 0.13 0.06 

30 0.38 0.26 0.22 0.14 

40 0.50 0.38 0.33 0.25 

50 0.63 0.51 0.47 0.39 

60 0.75 0.66 0.63 0.56 

70 0.88 0.82 0.80 0.77 

80 1.00 1.00 1.00 1.00 

Walls - Structural Insulated Panels   
0 0.00 0.00 0.00 0.00 

10 0.13 0.08 0.06 0.02 

20 0.27 0.17 0.14 0.07 

30 0.40 0.28 0.24 0.16 

40 0.53 0.41 0.37 0.28 

50 0.67 0.56 0.52 0.44 

60 0.80 0.72 0.69 0.64 

70 0.93 0.90 0.89 0.87 

     
Siding - Brick, Engineered Wood, Fiber Cement, Manufactured Stone, Vinyl 

0 0.00 0.00 0.00 0.00 

10 0.10 0.06 0.04 0.01 

20 0.20 0.12 0.09 0.04 

30 0.30 0.20 0.16 0.09 
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Year 
Poor  

Maintenance 

Average 

Maintenance 

Satisfactory 

Maintenance 

Excellent 

Maintenance 

Siding - Brick, Engineered Wood, Fiber Cement, Manufactured Stone, Vinyl 

40 0.40 0.28 0.24 0.16 

50 0.50 0.38 0.33 0.25 

60 0.60 0.48 0.44 0.36 

70 0.70 0.60 0.56 0.49 

80 0.80 0.72 0.69 0.64 

90 0.90 0.86 0.84 0.81 

100 1.00 1.00 1.00 1.00 

     
Siding - Stucco, Metal Curtain Waling, Glass Curtain Walling  

0 0.00 0.00 0.00 0.00 

10 0.20 0.12 0.09 0.04 

20 0.40 0.28 0.24 0.16 

30 0.60 0.48 0.44 0.36 

40 0.80 0.72 0.69 0.64 

Doors - Glass Personnel, Cedar    

0 0.00 0.00 0.00 0.00 

10 0.25 0.16 0.13 0.06 

20 0.50 0.38 0.33 0.25 

30 0.75 0.66 0.63 0.56 

40 1.00 1.00 1.00 1.00 

     

Doors - Fiberglass, Steel (Fire Rated)   

0 0.00 0.00 0.00 0.00 

10 0.10 0.06 0.04 0.01 

20 0.20 0.12 0.09 0.04 

30 0.30 0.20 0.16 0.09 

40 0.40 0.28 0.24 0.16 

50 0.50 0.38 0.33 0.25 

60 0.60 0.48 0.44 0.36 

70 0.70 0.60 0.56 0.49 

80 0.80 0.72 0.69 0.64 

90 0.90 0.86 0.84 0.81 

     

Doors - Pine and Vinyl    

0 0.00 0.00 0.00 0.00 

10 0.50 0.38 0.33 0.25 

20 1.00 1.00 1.00 1.00 
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Year 
Poor  

Maintenance 

Average 

Maintenance 

Satisfactory 

Maintenance 

Excellent 

Maintenance 

Doors - Mahogany    

0 0.00 0.00 0.00 0.00 

10 0.17 0.10 0.07 0.03 

20 0.33 0.22 0.19 0.11 

30 0.50 0.38 0.33 0.25 

40 0.67 0.56 0.52 0.44 

50 0.83 0.76 0.74 0.69 

60 1.00 1.00 1.00 1.00 

     

Windows - Window Glazing    

0 0.00 0.00 0.00 0.00 

10 1.00 1.00 1.00 1.00 

     

0 0.00 0.00 0.00 0.00 

10 0.50 0.38 0.33 0.25 

20 1.00 1.00 1.00 1.00 

     

Windows - Wood    

0 0.00 0.00 0.00 0.00 

10 0.33 0.22 0.19 0.11 

20 0.67 0.56 0.52 0.44 

30 1.00 1.00 1.00 1.00 
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7.3 APPENDIX C: TIME-DEPENDENT FRAGILITY CURVES – PRISTINE VS 

DETERIORATING BUILDINGS 

Time-dependent Fragility Curves  - Asphalt Shingles 

 

Figure 7.1: Lognormal best-fitted asphalt shingles fragilities at 0 and 10-year intervals 

 

Figure 7.2: Lognormal best-fitted asphalt shingles fragilities at 20 and 30-year intervals 
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Figure 7.3: Lognormal best-fitted asphalt shingles fragilities at 40 and 50-year intervals 

Time-dependent Modeling failure of structural components using fragilities - Clay Tiles 

 

Figure 7.4: Lognormal best-fitted clay tile fragilities at 0 and 10-year intervals 

 

Figure 7.5: Lognormal best-fitted clay tiles fragilities at 20 and 30-year intervals 



159 
   
 

 

Figure 7.6: Lognormal best-fitted clay tiles fragilities at 40 and 50-year intervals 

Time-dependent Modeling failure of structural components using fragilities – Walls 

 

Figure 7.7: Lognormal best-fitted wall fragilities at 0 and 10-year intervals 

 

Figure 7.8: Lognormal best-fitted wall fragilities at 20 and 30-year intervals 
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Figure 7.9: Lognormal best-fitted wall fragilities at 40 and 50-year intervals 

Time-dependent Modeling failure of structural components using fragilities – Doors 

 

Figure 7.10: Lognormal best-fitted door fragilities at 0 and 10-year intervals 

 

Figure 7.11: Lognormal best-fitted door fragilities at 20 and 30-year intervals 
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Figure 7.12: Lognormal best-fitted door fragilities at 40 and 50-year intervals 

Time-dependent Modeling failure of structural components using fragilities – Windows 

 

Figure 7.13: Lognormal best-fitted window fragilities at 0 and 10-year intervals 

 

Figure 7.14: Lognormal best-fitted window fragilities at 20 and 30-year intervals 
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Figure 7.15: Lognormal best-fitted window fragilities at 40 and 50-year intervals 

Time-dependent Modeling failure of structural components using fragilities - Aluminum Siding 

 

Figure 7.16: Lognormal best-fitted aluminum siding fragilities at 0 and 10-year intervals 

 

Figure 7.17: Lognormal best-fitted aluminum siding fragilities at 20 and 30-year intervals 
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Figure 7.18: Lognormal best-fitted aluminum siding fragilities at 40 and 50-year intervals 

Time-dependent Modeling failure of structural components using fragilities - Steel Roof Joists 

 

Figure 7.19: Lognormal best-fitted steel roof joists fragilities at 0 and 10-year intervals 

 

Figure 7.20: Lognormal best-fitted steel roof joists fragilities at 20 and 30-year intervals 



164 
   
 

 

Figure 7.21: Lognormal best-fitted steel roof joists at 40 and 50-year intervals 

Time-dependent Modeling failure of structural components using fragilities - Two 16d Toenails 

 

Figure 7.22: Lognormal best-fitted two 16d toenail fragilities at 0 and 10-year intervals 

 

Figure 7.23: Lognormal best-fitted two 16d toenail fragilities at 20 and 30-year intervals 
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Figure 7.24: Lognormal best-fitted two 16d toenail fragilities at 40 and 50-year intervals 

Time-dependent Modeling failure of structural components using fragilities - One H2.5 Clip 

 

Figure 7.25: Lognormal best-fitted one H2.5 clip fragilities at 0 and 10-year intervals 

 

Figure 7.26: Lognormal best-fitted one H2.5 clip fragilities at 20 and 30-year intervals 
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Figure 7.27: Lognormal best-fitted one H2.5 clip fragilities at 40 and 50-year intervals 

Time-dependent Modeling failure of structural components using fragilities - Two H2.5 Clip 

 

Figure 7.28: Lognormal best-fitted two H2.5 clip fragilities at 0 and 10-year intervals 

 

Figure 7.29: Lognormal best-fitted two H2.5 clip fragilities at 20 and 30-year intervals 
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Figure 7.30: Lognormal best-fitted two H2.5 clip fragilities at 40 and 50-year intervals 
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7.4 APPENDIX D: TIME-DEPENDENT FRAGILITY CURVES – PRISTINE VS 

DETERIORATING BUILDINGS  EF SCALE 

Time-dependent Modeling failure of structural components using fragilities – Asphalt Shingles – 

EF Scale 

 
Figure 7.31: Time-dependent asphalt shingles fragilities with EF-Scale overlay at 0 and 10-year interval 

 

Figure 7.32: Time-dependent asphalt shingles fragilities with EF-Scale overlay at 20 and 30-year intervals 
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Figure 7.33: Time-dependent asphalt shingles fragilities with EF-Scale overlay at 40 and 50-year intervals 

Time-dependent Modeling failure of structural components using fragilities - Clay Tiles – EF Scale 

 
Figure 7.34: Time-dependent clay tile fragilities with EF-Scale overlay at 00 and 10-year intervals 

 
Figure 7.35: Time-dependent clay tile fragilities with EF-Scale overlay at 20 and 30-year intervals 
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Figure 7.36: Time-dependent clay tile fragilities with EF-Scale overlay at 40 and 50-year intervals 

Time-dependent Modeling failure of structural components using fragilities – Walls – EF Scale 

 
Figure 7.37: Time-dependent wall fragilities with EF-Scale overlay at 0 and 10-year intervals 
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Figure 7.38: Time-dependent wall fragilities with EF-Scale overlay at 40 and 50-year intervals 

 
Figure 7.39: Time-dependent wall fragilities with EF-Scale overlay at 40 and 50-year intervals 

Time-dependent Modeling failure of structural components using fragilities – Doors – EF Scale 

 
Figure 7.40: Time-dependent door fragilities with EF-Scale overlay at 0 and 10-year intervals 
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Figure 7.41: Time-dependent door fragilities with EF-Scale overlay at 20 and 30-year intervals 

 
Figure 7.42: Time-dependent asphalt door with EF-Scale overlay at 40 and 50-year intervals 

Time-dependent Modeling failure of structural components using fragilities – Windows – EF Scale 

 
Figure 7.43: Time-dependent windows fragilities with EF-Scale overlay at 0 and 10-year intervals 
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Figure 7.44: Time-dependent windows fragilities with EF-Scale overlay at 20 and 30-year intervals 

 
Figure 7.45: Time-dependent windows fragilities with EF-Scale overlay at 40 and 50-year intervals 

Time-dependent Modeling failure of structural components using fragilities - Aluminum Siding – EF 

Scale 

 
Figure 7.46: Time-dependent aluminum siding fragilities with EF-Scale overlay at 0 and 10-year intervals 
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Figure 7.47: Time-dependent aluminum siding fragilities with EF-Scale overlay at 10 and 20-year 

intervals 

 
Figure 7.48: Time-dependent aluminum siding fragilities with EF-Scale overlay at 40 and 50-year 

intervals 
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Time-dependent Modeling failure of structural components using fragilities - Steel Roof Joists – EF 

Scale 

 
Figure 7.49: Time-dependent steel roof joists fragilities with EF-Scale overlay at 0 and 10-year intervals 

 
Figure 7.50: Time-dependent steel roof joists fragilities with EF-Scale overlay at 20 and 30-year intervals 

 
Figure 7.51: Time-dependent steel roof joists fragilities with EF-Scale overlay at 40 and 50-year intervals 
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Time-dependent Modeling failure of structural components using fragilities - 16d Toe Nails – EF 

Scale 

 
Figure 7.52: Time-dependent 16d toenail fragilities with EF-Scale overlay at 0 and 10-year intervals 

 
Figure 7.53: Time-dependent 16d toenail fragilities with EF-Scale overlay at 20 and 30-year intervals 

 
Figure 7.54: Time-dependent 16d toenail fragilities with EF-Scale overlay at 40 and 50-year intervals 
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Time-dependent Modeling failure of structural components using fragilities - One H2.5 Clip – EF 

Scale 

 
Figure 7.55: Time-dependent one H2.5 clip fragilities with EF-Scale overlay at 0 and 10-year intervals 

 
Figure 7.56: Time-dependent one H2.5 clip fragilities with EF-Scale overlay at 20 and 30-year intervals 

 
Figure 7.57: Time-dependent one H2.5 clip fragilities with EF-Scale overlay at 40 and 50-year intervals 
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Time-dependent Modeling failure of structural components using fragilities - Two H2.5 Clips – EF 

Scale 

 
Figure 7.58: Time-dependent two H2.5 clip fragilities with EF-Scale overlay at 0 and 10-year 

intervals 

 
Figure 7.59: Time-dependent two H2.5 clip fragilities with EF-Scale overlay at 20 and 30-year 

intervals 
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Figure 7.60: Time-dependent two H2.5 clip fragilities with EF-Scale overlay at 40 and 50-year 

intervals 

 

 

 

 

 

 

    


