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ABSTRACT 
 

 
SAMIRA KHANAM. Test uncertainty ratio (TUR) and test uncertainty. (Under the 
direction of DR. EDWARD MORSE) 

 
 

Measurement uncertainty is a natural parameter that can be used to characterize 

any measurement process. Continually increasing demands of higher and higher 

dimensional accuracy in manufactured components places similar demands on the field 

of dimensional measurement, as manufacturers strive for lower uncertainty associated 

with the results of measurement.  Complete elimination of uncertainty in manufacturing 

and measurement is not the intent of this research, as only the reduction of uncertainty is 

possible, and the reduction of uncertainty comes at a cost. Given that similar 

manufacturing and measurement equipment is available across industries, it is often the 

case that the better one can estimate these uncertainties, the greater the competitive 

advantage as money to reduce uncertainty – thereby improving quality – can be used in 

the most effective way.  The objective of this research is to analyze the impact of two 

different kinds of uncertainty – the "Test Uncertainty Ratio" and "Test Uncertainty" – for 

both manufacturers of measurement equipment and their customers. This impact 

influenced both by their understanding of what the uncertainty represents, as well as their 

ability to characterize this uncertainty.   

Measuring equipment often has a stated 'accuracy' within which it can be 

expected to perform.  However, some complex measurements performed with this 

equipment have additional uncertainty contributors, and the resulting measurement is less 

accurate (i.e. has a greater uncertainty) than the instrument's stated performance.  The 

Test Uncertainty Ratio (TUR) for a measuring process is one of a family of metrics that 
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relate the tolerance for a measurand to the uncertainty present in performing that 

measurement.  This ratio is used in industry to describe the measurement capability of a 

system or process, but often is not based on a realistic estimation of the uncertainty 

present.  This research clarifies the uncertainty contributors for the calculation of this 

metric, and experimentally validates different estimation techniques. It is common to 

perform a test of the instrument on an artifact with known dimensions, when buying and 

selling metrology tools. The errors obtained during this test are used to evaluate the 

instrument, but the errors will reflect not only instrument deficiencies, but also improper 

use of the instrument, and incomplete knowledge of the test artifact.  The contributors to 

the errors in this type of test that are not associated with the instrument itself have been 

lumped into a term called Test Uncertainty.  This is a new concept, and is receiving much 

attention in both the accreditation of metrology laboratories and in national and 

international standards writing bodies.  This research in the area of test uncertainty 

develops a consistent way of considering test uncertainty and its influence in the 

evaluation of measuring instruments. Experimental results support the method of 

decomposing uncertainty contributors into those that do and do not affect the test 

uncertainty. 
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CHAPTER 1: INTRODUCTION 
 
 

The history of measurement processes is comprised of scientific advancements. 

To improve the quality of the products, measurements have a significant role in many 

business sectors, especially in the manufacturing industries. In the evaluation process of 

manufactured products, measurement systems play a key role. The acceptability of the 

measurement systems depends on their ability to produce accurate measurement results. 

The measurement results need to verify that products meet the expected quality levels for 

both for the suppliers and the customers. Each measurement contains errors due to the 

limits of instruments and the people using them. Different methods have been developed 

to estimate the measurement errors that may occur. One of these methods is the use of 

measurement uncertainty. Measurement uncertainty is a description of the collection of 

all possible measurement errors [4].  A measurement result can only be complete when it 

is expressed with a statement of its uncertainty. The quality of a measurement result is 

reflected in its uncertainty with reference to its value and its traceability to the 

international systems units through various national and international standards [2].  

The uncertainty of measurement results is a key concern to both industries and 

their customers. Measurement results can be used in decision making when the data are 

analyzed with uncertainty. The uncertainty statement is important in manufacturing 

industries, as well as testing and calibration laboratories, not only for acceptability of part 
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and processes but also to reduce the cost.  The accuracy of measurements, characterized 

by uncertainty, affects all of us in trade.  

1.1 Measurement Uncertainty 

The measurement process is complicated by the presence of intrinsic variations 

which affect the measurement results. Consequently, measurement results will always 

contain errors.  This error is defined as the difference between the measurement result 

and the true value of the quantity being measured. In practice, no one can know the true 

value, so a test of a measuring system compares the measured value to a reference value. 

The reference value and its uncertainty are accepted as valid to evaluate a measuring 

system.  If calibrated at NIST (National Institute of Standards and Technology) or 

another recognized national metrology institute, the true value is accepted to be that 

reference value, within the stated uncertainty. Measurement Uncertainty is defined as 

“the parameter, associated with the result of a measurement that characterizes the 

dispersion of the values that could reasonably be attributed to the measurand” [3]. The 

term measurand is defined as the quantity subject to a measurement. One widely accepted 

method to calculate uncertainty is defined in “Guide to expression of Uncertainty in 

Measurement” [5], or GUM.  The first step is to identify the sources of errors (the 

contributors) of uncertainty. These contributors include the environment, the 

measurement equipment, the measuring procedure, measurement set-up, and even the 

metrologist performing the measurement. After finding all relevant sources of 

uncertainty, it is necessary to calculate a standard uncertainty for each individual source. 

There are two types of evaluation of standard uncertainty:  Type A – which is evaluated 

by statistical means and Type B – which is evaluated by methods other than statistics.  

http://www.nist.gov/�
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The next step is to work out combined uncertainty, which – for independent contributors 

– is the root sum square of individual uncertainty terms. Finally, the expanded 

uncertainty is calculated using an appropriate coverage factor. The expanded uncertainty 

can be thought of as a confidence interval within which the true is expected to lie. 

Estimating measurement uncertainty is explained in detail in chapter 2. This dissertation 

examines the application of measurement uncertainty in two different contexts: 

determining the suitability of a measuring process for a given task, and determining the 

quality of test method and test method for evaluating a measuring instrument. 

1.2 Test Uncertainty Ratio (TUR) 

Measurement equipment performs an essential task in the production process. 

Presently, the quality of the product is the main concern for manufacturing industries. 

The increase in the expectation of the quality of the products drives designers to utilize 

tighter tolerances, and as a result the products acceptance criteria become inflexible. 

Different powerful methods have been developed in the industry to verify the acceptance 

of the product such as Gage R&R and to find the measurement capability of the 

measurement equipment such as P/T. One such method analyzed in this research is the 

Test Uncertainty Ratio (TUR). It helps to verify that the acceptance of the manufactured 

product is reliable, and also to find the measurement capability of measurement 

equipment. In its most simple form, TUR is the ratio between the tolerance for a specific 

measurand and the uncertainty in determining the measured value for that measurand. 

This ratio has the specified tolerance in the numerator, and the uncertainty in the 

denominator. Currently, a ratio of 4:1 or even 3:1 is considered acceptable. The higher 

value of the ratio indicates the better the performance of the test. To calculate TUR one 
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needs to know tolerance and the uncertainty.  Tolerances appear in the manufacturer's 

product specification. The other term, uncertainty, is the main concern to calculate TUR. 

To provide a meaningful TUR, the uncertainty must be evaluated for each specific task in 

a specific measurement plan.  There is no single value that is appropriate for every 

measuring task performed by a given instrument. The TUR needs to be calculated for 

each task separately. This approach to the Test Uncertainty Ratio is explained in detail in 

chapter 5. 

1.3 Test Uncertainty 

 Test uncertainty is a new concept in the field of evaluating measurement 

processes. When one is testing a piece of equipment, the uncertainty during that test is 

known as test uncertainty. When calibrating instruments, some common sources of errors 

are the measurement equipment itself, the person who is doing the test (the tester), and 

the artifact from which the reference value is obtained. As the instrument is being 

calibrated, the error from the instrument itself is not included in test uncertainty. The test 

uncertainty captures the ability of the test to evaluate the instrument, so its value is 

smaller than the regular measurement uncertainty that occurs when the instrument is used 

to measure work pieces. When calibrating the instrument, the uncertainty due to the 

artifact and the tester are primary contributors to the test uncertainty. The research in this 

dissertation has revealed that the artifact uncertainty is usually does not influence the test 

uncertainty on a large scale. Influences that fall under the tester's responsibility, including 

the performance of the tester when doing the test, has great influence on the calibration 

results. So test uncertainty result varies with the performance of the human operator 

(tester). The effectiveness of the test can be increased by increasing the performance of 
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the tester; consequently test uncertainty value will be decreased. Test uncertainty does 

not indicate the instrument's performance; it is only the indication of the quality of the 

test. Test uncertainty explained in detail in chapter 6. 

1.4 Objective of this research 

 The lack of industrial knowledge and understanding concerning the use of 

measurement capability analysis for metrology tools, and also the need for guidance in 

classifying the different kinds of uncertainty present in the testing and calibration of 

instruments are the main motivation behind this project.  

The goals of this project are 

• To develop a guideline on how to use TUR in industry, both to find the 

measurement capability of measuring instruments and in the inspection of 

manufactured products. 

• To provide a useful uncertainty model that supports decision rules for instrument 

test criteria, facilitating the buying and selling of metrology equipment, and in 

equipment calibration. 

• To support B89 and ISO Standards activity, and the NCSLI dimensional 

committee. New efforts are underway in each group studying test uncertainty. 

This thesis develops a method for using TUR which will help industries to 

evaluate measurement equipments’ capability, to do comparisons of the capabilities 

between measurement equipment, and also to check the acceptability of the end products. 

Next, this thesis provides a model to explain test uncertainty in a way that is consistent 

with existing view of uncertainty. This work will assist different standard groups, and 

give a guideline to better understanding of using specifications in the buying and selling 
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of measurement equipment.  

It will provide a consistent vocabulary for terms and definitions related to uncertainty, as 

well as computer simulations and experimental measurements on actual measuring 

equipment and compare to these estimates to support the goal. It will also assist users of 

metrology equipment by giving a clear understanding of the relationship between 

precision, accuracy, repeatability, reproducibility and total variability in the 

measurements. It will also provide a platform to evaluate the task specific uncertainty not 

only for simple measurements, but also for the complex measurements performed using a 

coordinate measuring machine (CMM).  Different part positions, fitting algorithms, 

sampling strategy can be use to evaluate task specific uncertainty. Theoretical methods 

that are used include simulation software (PUNDIT, commercial software to evaluate 

uncertainty for CMMs) and MATLAB (Mathematics software) programs for this 

evaluation. Practical measurement experiments have been done using a CMM with PC-

DMIS software. 

 



 
 
 
 
 

CHAPTER 2: MEASUREMENT UNCERTAINTY 
 

   
Measurement is  the process or set of operations to assign the value of particular 

quantity. The assigned value is called the measurement result which describe the quantity 

which is measured. It is the charactaristics of an object like  the size, position, length. In 

the Measurement system analysis reference manual, a measurement system defined as 

“the collection of operations, procedures, gages, and other equipment, software and 

personnel used to assign a number to the characteristics being measured; the complete 

process used to obtain a measurement.” 

Measurand need to define first for the measurement process. A measurand is a 

specific quantity subject to measurement. To define the measurand one should consider 

the factors which influence the measurement process and expected accuracy of 

measurement result.Some examples: 

• The temperature is an important information in defining the measurand 

when the length of iron bar is measured in micron level accuracy.  The measurand 

in this case can be defined as the length of iron bar at 200 C.  

• The tension of the rope need to define when measurand is the length of a 

rope because it affects the measured length of the rope. 

•  For the calibration of dial gages and calipers if the measurand is the 

length of gage block used as a reference standard the temperature at which the 
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measurement is to be done is important information. The measurand in this case 

can be defined as the length of gage block 300 C and 50% relative himidity. [2] 

So the measurand is a attribute which need to define and it is important to mention the 

environmental condition under which measurement  proceeded.  

  Measurement result is the out put of the measurement process or can be define as 

numerical value of the measurand. The output result for an ideal and perfect measurement 

system can be define as true value of the measurand. In this case repeat observations will 

consistently give exactly same result, so there would be no error. But in reality this does 

not exist. So the measurement results are compared with reference value which can be  

known from measurement standard. This is not the exactly true value but close to true 

value. Many factors influence the result of the process like measurement equipment, 

environment, skill of the person who is doing the measurement etc.  These factors 

influence in the variations in the measurement  result and consequently measurement 

results always associated with error. Error is the difference between the true value and the 

measurment result. True value as mentioned can never be known. So it is a qualatative 

concept, can not be quantified . Repeat measurement is also important for the reliability 

of the measurement results. One can not make decision only depend on a single  

measurement result. So measurement results introduce uncertainty in the measurement 

process which can be quantified. The estimated interval, which quatifies the “ how good 

or how bad” part of the measurement result , is called measurement uncertainty[2].  It can 

be express as an interval between two values within minimum and maximum values. The 

true value is expected in this range. For example a measurement result is 20.00 with the 

uncertainty interval 19.90 to 20.20. The range of the interval is 0.20. It can be define as 
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20.00 ± 0.20. So measurement results can be characterized by measurement uncertainty. 

The uncertainty in measurements should be small enough that the measurements meet the 

specifications needs for which they are made[2]. 

FIGURE 1 is showing the difference between error and uncertainty. 

 

 

 

 

x  

x   

FIGURE 1: Graphical representation of error and uncertainty [2] 

 
It is essential to analyze the measurement steps to find the resons for variations in 

measurement results and taking actions accordingly to lessen the unceratinty value. 

Statistical analysis of the measurement results are used to evaluate uncertainty. 

2.1 Uncertainty Contributors 

Any component that affects the result of a measurement is considered as an 

uncertainty contributors. Some of the most common contributors are shown in FIGURE 2 

from ISO 14253-2. 

    µ 

Uncertainty 

 Error        
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FIGURE 2: Uncertainty Contributors in measurement 

From ISO-14253-2 the contributors are described below. 

1. Environment  for the measurement 

The measurement process is influenced by the environment conditions like 

temperature of the room, part, time variations in  measurement steps, humidity of the 

room. Temperature is the main contributor of the environment. It may influence both the 

measurement process and measurand. When measuring the length of a block the 

temperature variation may effect on the result of measurand.The environment is also 

influenced by the  vibration of the measurement tool or  object where it is placed, heat 

radiation, air flow, instrument thermal equivalent.  
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2. Reference element of measurement equipment 

The measurement process is influenced by the reference element of measuring 

equipment like stability, scale mark quality, temperature expansion coefficient, 

resolution of the main scale ( analogue or digital). When measuring the diameter of a 

cylinder because of the resolution or stablity of measuring equipment it may effect on 

the result of measurand. Some other factors like physical principle: line scale, optical 

digital scale, spindle, rack and pinoion, interferometer, CCD-techniques,uncertainty of 

the calibration, time since calibration may contributors of measurement uncertainty. 

3. Measuring Equipment 

 The measurement process is influenced by measuring equipment like 

magnification, electrical or mechanical, error wavelength, zero-point stability, force 

stability/ absolute force, probe system, geometrical imperfections, stiffness/rigidity, 

temperature stability/sensitivity, parallaxes, time since last calibration, digitization.  

4. Measurement Setup (excluding the placement and clamping of the workpiece) 

Measurement setup like cosine and sine errors, temperature sensetivity, 

stiffness/rigidity, Abbe principle, tip radius, form deviation of tip, interaction between 

workpiece and setup influence in the measurement procedure. 

5. Software and Calculations 

   Measurand and measurement process are influenced by rounding/quantification, 

algorithms,  implementation of algorithms, number of significant digits in the 

computation, sampling, filtering. 
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6. Metrologist  

The performane of the metrologist one of the important source of uncertainty. The 

quality of the metrologist like education, experience, training, physical 

disadvantage/ability, knowledge, honesty, dedication all may influence to measurement 

result. 

7. Measuring Object, workpiece or measuring instrument characteristic 

Charateristics of measuring object, workpiece, measuring instrument like surface 

roughness, form deviations, temperature expansion coefficient, conductivity, weight, size, 

shape, cleanliness, workpiece distrotion due to clamping, orientation may influence in the 

measurment procedure. When measuring diameter of a ball if the surface is rough it will 

effect on the result of the measurand. 

8. Definition of the GPS characteristic, workpiece or measuring instrument characteristics 

Datum, reference system, degrees of freedom, toleranced feature, distance, angle 

these characteristics are also contributors of uncertainty. 

9. Measuring Procedure 

Number of measurements, duration of measurements, alignment, choise of 

apparatus, choise of metrologist, number of operators, strategy, clamping, fixturing, 

numper of points, probing principle and strategy, alignment of probing system, drift 

check, reversal measirements, error seperation all the factors may contributor of 

uncertainty. For example if number of measurement is more the result may reflect more 

reliability. 
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Physical Constants and conversion factors, material properties of the workpiece, 

measuring instrument etc. also influence the measurement procedure.  

2.2 Definitions 

To Understand Measurement Uncertainty, it is necessary to understand some 

terms in details. These are explained from the International Vocabulary of Basic and 

General Terms in Metrology (VIM) and the Guide to Expression of Uncertainty in 

Measurement (GUM).   

Measurement 

Measurement is a process of experimentally obtaining one or more quantity    
values that can reasonably be attributed to a quantity.  
 
Measurement does not apply to nominal properties. It implies comparison of 

quantities and includes counting of entities. It presupposes a description of the quantity 

commensurate with the intended use of a measurement result, a measurement procedure, 

and a calibrated measuring system operating according to the specified measurement 

procedure, including the measurement conditions. 

Measurand 

Quantity intended to be measured.   

The specification of a measurand requires knowledge of the kind of quantity, 

description of the state of the phenomenon, body, or substance carrying the quantity, 

including any relevant component, and the chemical entities involved. 

Measurement method 

Measurement method describes generic description of a logical organization of   
operations used in a measurement.  
 

Measurement methods may be qualified in various ways such as: 
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   — Direct measurement method, and 

    — Indirect measurement method. 

Measurement procedure 

Detailed description of a measurement according to one or more measurement 
principles and to a given measurement method, based on a measurement model 
and including any calculation to obtain a measurement result.   
 
A measurement procedure is usually documented in sufficient detail to enable an 

operator to perform a measurement. 

Measurement result 

Result of measurement can be defined as a set of quantity values being attributed 
to a measurand together with any other available relevant information.  
 

  A measurement result generally contains “relevant information” about the set of 

quantity values, such that some may be more representative of the measurand than others. 

This may be expressed in the form of a probability density function (PDF). A 

measurement result is generally expressed as a single measured quantity value and a 

measurement uncertainty. If the measurement uncertainty is considered to be negligible 

for some purpose, the measurement result may be expressed as a single measured 

quantity value. In many fields, this is the common way of expressing a measurement 

result. 

True quantity value (True value) 

True value of a quantity is true value.  

It is consistent with the definition of a quantity. In the error approach to 

describing measurement, a true quantity value is considered unique and, in practice, 

unknowable. The uncertainty approach is to recognize that, owing to the inherently 

incomplete amount of detail in the definition of a quantity, there is not a single true 
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quantity value but rather a set of true quantity values consistent with the definition. 

However, this set of values is in principle and in practice, unknowable. Other approaches 

dispense altogether with the concept of true quantity value and rely on the concept of 

metrological compatibility of measurement results for assessing their validity. 

Measurement error (Error of measurement) 

Error is a measured quantity value minus a reference quantity value.   

The concept of ‘measurement error’ can be used both  when there is a single 

reference quantity value to refer to, which occurs if a calibration is made by means of a 

measurement standard with a measured quantity value having a negligible measurement 

uncertainty or if a conventional quantity value is given, in which case the measurement 

error is known, and  if a measurand is supposed to be represented by a unique true 

quantity value or a set of true quantity values of negligible range, in which case the 

measurement error is not known. 

Measurement uncertainty 

Uncertainty non-negative parameter characterizing the dispersion of the quantity 
values being attributed to a measurand, based on the information used.   
 
Measurement uncertainty includes components arising from systematic effects, 

such as components associated with corrections and the assigned quantity values of 

measurement standards, as well as the definitional uncertainty. Sometimes estimated 

systematic effects are not corrected for but, instead, associated measurement uncertainty 

components are incorporated.  The parameter may be, for example, a standard deviation 

called standard measurement uncertainty (or a specified multiple of it), or the half-width 

of an interval, having a stated coverage probability. In general, for a given set of 

information, it is understood that the measurement uncertainty is associated with a stated 
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quantity value attributed to the measurand. A modification of this value results in a 

modification of the associated uncertainty. 

Standard Uncertainty (ui) 

The representation of each component of uncertainty that contributes to the 
uncertainty of measurement, by an estimated standard deviation is termed as 
standard uncertainty. 
 

Combined Standard Uncertainty (uc)  

The combination of all the standard uncertainties, which represents the standard 
deviation of the result, is known as combined standard uncertainty.  
 
It is usually the square root of the sum of the squares of the individual standard 

uncertainties. 

Expanded Uncertainty (U) 

The combined standard uncertainty times the coverage factor gives the expanded 
uncertainty.  
 
The expanded uncertainty forms a boundary about the measurement result y 

within which the measurand Y is confidently believed to lie. 

 

 

 

Coverage factor (k) 

A number larger than one by which a combined standard measurement 
uncertainty is multiplied to obtain an expanded measurement uncertainty. 
 

Evaluation of measurement uncertainty 

 According to GUM the first step to evaluate measurement uncertainty is to find 

the sources of errors which are the part of the measurement results. They are shown in 
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FIGURE 3. 
 

 

 

 

 

 

 

 

FIGURE 3: Sources of errors [1] 

Random Errors 

       It arises from random flactuation in measurement which cannot be predicted. 

       It cannot be completely eliminated, but can be lessen  by doing the measurement 

many times. It may be espressed by the  standard deviation and the type of distribution.  

Systematic Errors 

It arises from recognizable effects, which are expected in the measurement system 
and can be corrected for in advance.  

 
It may be characterized by size and sign (+ or -). It can not be completely 

eleminated, but it can be analyzed by calibration. 

 Drift 

       It is often an effect of time and  wear .  

       It may be expressed by change per unit time or per amount of use. It can be 

reduced by knowing the influencing factors. 

    Systematic error 

True value 

Time 

*Outlier 

*Outlier 

Drift 

Measured value 
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Outliers 

These are caused by non-repeatable incidents in measurement system.  

  These are very difficult (almost impossible) to characterize in advance. Any non 

repeatable causes like electrical disturbaces, mechanical effects, noise  all of these can be 

the examples of outliers. 

Evaluation of standard uncertainty (u(xi)) 

 The measurand can be the result of a single measurement. So it can be measured 

directly or it can be determined from other quantities through a functional relationship. It 

most cases this relationship is used. 

 

Where X1, X2 are determined either by direct measurement or by evaluating certain 

functions. These quantities may be independent of each other or correlated. The f can be 

determined from prior knowledge about the nature of behavior of quantities involved, use 

of numerical evaluation and experiment [7]. 

Type A evaluation of measurement uncertainty 

Measurement uncertainty comprises, in general, many components. Some of these 

may be evaluated by Type A evaluation of measurement uncertainty from the statistical 

distribution of the quantity values from series of measurements and can be characterized 

by standard deviations.  

The estimation of uncertainty through type A can be done in any one of the following 

ways. 

• Estimating the standard deviation of the data set. 
• Adopting the method of least squares to fit a curve 

representing the data and deriving parameters from the fit. 

),......,,( 21 NXXXfY =
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• Using the analysis of variance (ANOVA) to estimate 
uncertainty.  

Type B evaluation of measurement uncertainty  

The other components, which may be evaluated by Type B evaluation of 

measurement uncertainty, can also be characterized by standard deviations, evaluated 

from probability density functions based on experience or other information, other than a 

Type A evaluation of measurement uncertainty. Type B can be determined by 

• Techniques other than statistics are used to evaluate 
standard uncertainty.  

• Usually evaluated by scientific judgment based on 
available information and previous knowledge of the 
measurand. 

The pool of information may include 

• previous measurement data; 
• experience with or general knowledge of the behavior and 

properties of relevant materials and instruments; 
• manufacturer’s specification; 
• data provided in calibration and other certificates; 
• Uncertainties assigned to reference data taken from 

handbooks. 
Uncertainty budget 

It is the components of the measurement uncertainty and of their calculation and 
combination.  
 
An uncertainty budget should include the measurement model, estimates, and 

measurement uncertainties associated with the quantities in the measurement model, co 

variances, type of applied probability density functions, degrees of freedom, type of 

evaluation of measurement uncertainty, and any coverage factor. 

2.3 Task Specific Uncertainty 

 Task specific uncertainty is the measurement uncertainty associated with the 

measurement of a specific feature using a specific measurement plan.  This is applicable 

to estimate task specific uncertainty for coordinate measuring systems [13].  A coordinate 
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measuring machine (CMM) is a device to measure parts of different sizes and shape. This 

machine is both versatile and economical. The task of estimating uncertainty for CMM 

measurements is a difficult job as various kind of errors like part errors, machine errors, 

and environmental factors to contribute errors, surface sampling strategy, fitting 

algorithm etc affecting measurement result. The evaluation of uncertainty for CMM 

measurements for specific task is different than the general uncertainty statement that can 

be applied to all similar measurement [15]. For a specific measurement of CMM a large 

number of sampling strategy, different location of the part with the working volume, 

probe style and also various fitting criteria can be applied.  Also  In CMM-based 

measurements, a task-specific uncertainty for each and every geometric dimensioning 

and tolerancing (GD&T) parameter is necessary [14].  

 



 
 
 
 
 

CHAPTER 3: TERMS AND DEFINITIONS 
 

Everyday a large number of measurements are made in different sectors of life in 

the world. Terms and definitions are used in the measurement process in a common 

language for all the users over the world to facilitate the achievement of the goal of 

measurement process. There are many reasons to have such terms and definitions: to 

empower users to understand the measurement system and to make improvement of the 

quality of product; to assist in the transaction with other companies for local and global, 

consequently it will effect on economy positively. The products need to be made with 

greater accuracy in order to achieve quality and exist in the market. It is important to 

verify the measurement results and consequently verify the performance of the measuring 

equipments. Proper understanding and using common definitions and terms will help to 

check the reliability of the products and the measuring equipment. These are also 

important to make decision both for the suppliers and customers. Otherwise it will be 

very difficult to communicate or do business between each other. This chapter discussed 

terms and definitions in details. The definitions and figures are taken from industry, VIM 

(International vocabulary of metrology — Basic and general concepts and associated 

terms) and Measurement Systems Analysis (Reference Manual). 
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3.1 Definition of terms 

Part  

  A part is an item that is subject to measurement. 

Gage  

A gage is any device that is used to obtain measurements. 

Rated operating condition (Specification) 

(From VIM) 
Operating condition is that which must be fulfilled during measurement in order 
that a measuring instrument or measuring system performs as designed. 

 
Rated operating conditions generally specify intervals of values for a quantity 

being measured and for any influence quantity. 

Maximum Permissible Error (MPE) 

(From VIM) 
 

Limit of error extreme value of measurement error, with respect to a known 
reference quantity value, permitted by specifications or regulations for a given 
measurement, measuring instrument, or measuring system. 

 
Usually, the term “maximum permissible errors” or “limits of error” is used 

where there are two extreme values.  The term “tolerance” should not be used to 

designate ‘maximum permissible error’. 

Gage can be referring as artifact or measuring instrument. Gage block usually use 

as artifact and CMM, Micrometer usually use as measuring instrument. For the 

calibration of CMM, micrometer always mentioned specification and MPE (Maximum 

Permissible Error) are mentioned in the manufactured specification or in the reference 

manual. The specification and the MPE should not contradict each other or on the other 

hand these conditions should go together. CMM’s specification and MPE are mentioned. 

CMM (Coordinate measuring machine) 
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Specification [General] 

Normal temperature- 200 

Temperature variation - ± 3

C 

0 

1. Test performed with Renishaw PH110M probe head, TP20 Probe and 20mm stylus 

C 

Maximum permissible error for size measurement MPE

Customer Specification 4.0+L/200 um 

E   

Maximum permissible probing error MPE

Customer Specification 6.2 um 

p  

2. Test performed with Tesastar probe and 20mm stylus 

Maximum permissible error for size measurement MPE

Customer Specification 6.0+L/200 um 

E  

Maximum permissible probing error MPE

Customer Specification 8.2 um 

p  

Accuracy  

(From VIM) 
Accuracy is the closeness of agreement between a measured quantity value and a 
true quantity value of a measurand.  

 
The measurand is a quantity intended to be measured. The concept ‘measurement 

accuracy’ is not quantitative and is not given a numerical quantity value. A measurement 

is said to be more accurate when it offers a smaller measurement error. 

Accuracy  

(From Industry) 
Accuracy is the extent to which the average of the measurements differs from the 
true value.   

 
It is the degree of closeness of a measured value to its actual (true) value. 
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FIGURE 4: Accuracy 

Bias 

(From industry) 
The bias, or offset, is how we quantify accuracy.  

 
Bias is the difference between the average value of all the measurements (μ) and 

the true value (μ0). Bias is a measure of the amount by which a tool is consistently off 

target from the true value. Bias can be positive or negative. 

           Bias = μ-μ0 

Because the exact true value is not possible to know, the 'best' estimate of the parameter 

being measured may be provided by the National Institute of Standards and Technology 

(NIST) or another national metrology institute (NMI). It can be used as a reference value, 

with a suitably low uncertainty. 

 

Master value 

Observed average 

Accuracy 
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FIGURE 5: Bias 

Precision  

(From Industry) 
Precision measures the natural variation of repeated measurements.  

 
It is the total variation in the measurement system as quantified by σms 

Precision  

(Standard 

deviation of the measurement distribution). The smaller the standard deviation the better 

is the precision. It is the degree of closeness of the measured value with respect to each 

other. 

(From VIM) 
Precision is the closeness of agreement between indications or measured quantity 
values obtained by replicate measurements on the same or similar objects under 
specified conditions.  

 
Measurement precision is usually expressed numerically by measures of 

imprecision, such as standard deviation, variance, or coefficient of variation under the 

Reference value 
Observed average 

Bias 
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specified conditions of measurement. The ‘specified conditions’ can be, for example, 

repeatability conditions of measurement. 

Repeatability 

(From Industry) 
  It is the variation in measured value taken by a single person or instrument in the  

same part used by several times and under the same conditions.  
 
The conditions are: 

• Same operator 

• Same set-up procedure 

• Same environmental conditions 

• During a very short period of time 

Dynamic vs. Static Repeatability 

Static repeatability 

Static repeatability is the measure of the “inherent” variability in the measurement 
tool itself. 

 
This is the variation from repeated measurements in which the part is not removed 

from the tool between measurements. 

Dynamic repeatability 

It is the measure of the “inherent” variability of the tool and measurement 
method. 

 
  It is the variation from repeated measurements in which the part is removed and 

re-fixture between measurements. 

Repeatability  

(VIM) 
Repeatability is condition of measurement that includes the same measurement 
procedure, same operators, same measuring system, same operating conditions 
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and same location, and replicate measurements on the same or similar objects 
over a short period of time.  

 
Repeatability 

(General) 
It is the variation in measured value taken by a single person or instrument in the 
same part used by several times and under the same conditions.  
 
It is also commonly known as equipment variation. 

 

 

FIGURE 6: Repeatability 

Reproducibility 

(From Industry) 
It is the variation in measured value taken by different persons with the same 
instrument in the same item used by several times and under the different 
conditions.  

 
 
 
 
 

     Repeatability 
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The conditions are: 
 
• Different operators 
• Different set-ups 
• Different positions 
• Different measurement media 
• Different environmental conditions 
• Over time 

Reproducibility  

(VIM) 
Reproducibility is condition of measurement that includes different locations, 
operators, measuring systems, and replicate measurements on the same or similar 
objects.   

 
The different measuring systems may use different measurement procedures. 

Reproducibility 

(General) 
It is the variation in measured value taken by different persons with the same 
instrument in the same item used by several times and under the different 
conditions. 
 
It is commonly known as appraiser variation.  

 

FIGURE 7: Reproducibility 

     Reproducibility 

     Operator A 

     Operator C 

     Operator B 
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Linearity 

(From Industry) 
Linearity is the consistency of the measurement system over a wide range of 
measurements. 

 
Linearity 

Linearity is the difference in the bias values through the expected operating range 
of the gage.  

 
Stability  

(From Industry) 
A stable measurement system is one where the distribution of measurement errors 
remains constant and predictable over time, with respect to: 
 

• Mean (Accuracy) 

• Standard Deviation (Precision). 
 
A stable measurement system has measurement error with: 

 
• No drifts 

• No sudden shifts 

• No outliers 

Stability is evaluated using a control chart -- a plot of the data in time sequence, with 

control limits. 

Stability  

(General) 
Stability is the total variation in the measurements obtained with a measurement 
system on the same master or parts when measuring a single characteristic over an 
extended time period.  
 
Stability is sometimes referred to as drift.  
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FIGURE 8: Stability 

Part Variation 

The Part Variation is a measure of the variation of the process.  

If a large number of parts made by a process are measured, 99% (5.15 s) of the 

parts would be within the variation limits. The Part Variation is always less than or equal 

to the total variation. In most industrial processes the part variation is large compared to 

the gage variation and so the assumption that the observed standard deviation is 

approximately equal to the total population standard deviation holds good. 

Capability  

(From Industry) 
The capability of a measurement system is the amount of the spec window that is 
lost to measurement error.  

 
The capability of a manufacturing process is its ability to meet its specifications. 

 

     Stability 

     Time1 

     Time 2 

  



31 
 

Metrology Tool Correlation and Matching  

(From Industry)  
 
Correlation 

If two measurement systems are correlated, there is a reliable way to associate the 
measurements from the two sites.  

 
Two systems can be correlated without being matched. 

Matching 

If two measurement systems are matched, their measurements are equivalent.  
 
Matched systems are also correlated. 

 
Task specific uncertainty 

This is the uncertainty explicitly for a specific task. Usually it refers the 
measurement with the coordinate measuring machine for a definite measurement 
plan.  

 
Sources of uncertainty for this are various as it has many different approaches of 

sampling strategy, fitting and evaluation algorithms, hardware etc. So the estimation of 

total uncertainty for a specific task with CMM is difficult. Some well known simulation 

methods to estimate uncertainty for a specific task is simulation by constrain (SBC), 

“Virtual CMM”. 

No Relationship 

If two measurement systems are not correlated and not matched, there is no 

reliable way to associate the measurements from the two measurement systems, so the 

metrology cannot be transferred. Corrective action for one or both of the measurement 

systems would be necessary to improve the equivalence of the two systems. 

From all the definitions which are discussed above for Test Uncertainty Ratio, 

understanding of task specific uncertainty is very important and for Test Uncertainty it is 
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important to know the specification and MPE for any instrument. If the instrument is 

specified in the temperature range 19 to 21 degrees, a temperature of 20.5 is not a part of 

test uncertainty. But a temperature of 21.5 degree means the temperature is no longer in 

specification. If it is considered that the temperature should be control by tester (Who is 

performing test) then the uncertainty due to this temperature should be part of test 

uncertainty. Manufacturing companies’ achievement and collapse depend on the 

production of high-quality products. Proper understanding and implementation of the 

definitions and terms is the core for companies’ success. 



 
 
 
 
 

CHAPTER 4: CURRENT US AND ISO STANDARDS 
 
 

The term “Standardization” can be defined as a method to support technical 

standards. A technical standard is usually a document that establishes consistent 

industrial methods or technological processes. The International Organization for 

Standardization is one of the primary organizations whose main activities are developing 

and maintaining standards for specifying the basic SI quantities such as length (the 

meter), time (the second), and mass (the kilogram). Standards also guide the evaluation of 

different measurement methods around the world. As it is important to maintain the 

interchangeability of components that are manufactured with different machines and 

inspected with different measurement processes, standards provide assurance of part 

quality through the calibration and traceability of measurement process. International 

standards play a crucially important role in all industries for rational production, 

international terminologies, safety and health protection, measurement, analysis, quality 

control and environmental protection [16].  

The VIM defines that there are different terms and definitions in a hierarchical 

system and these can be classified as primary, secondary etc. Calibration is one of the 

process by which national standards of measurement are disseminated to end users in 

trade, industry, and scientific laboratories [2] and traceability is the ability to verify the 

history, location, or application of an item by means of documented recorded 

identification [17]. The term traceability is also used to refer to an unbroken chain of 

http://en.wikipedia.org/wiki/Standard_(technical)�
http://en.wikipedia.org/wiki/Standard_(technical)�
http://en.wikipedia.org/wiki/Standard�
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comparisons relating an instrument's measurements to a known standard and calibration 

to a traceable standard can be used to determine an instrument's bias, precision, and 

accuracy [18]. This chapter explains current international (ISO) and national (ASME) 

standards that apply to the application of decision rules between customers and suppliers, 

the estimation of uncertainty for different measurement situations, and the calculation of 

test uncertainty for different CMM performance tests.  

4.1 ISO14253-1:1998(E) 

(Geometrical Product Specifications (GPS)—Inspection by measurement of work 
piece and measuring equipment) 
 

 One function of industrial measurement is to determine whether a particular part 

measurand (length, form, location, etc.) conforms to the specification given on the part 

drawing or model.  The difference between the specification zone and the conformance 

zone for a measurand is explained with the aid of FIGURE 9, taken from ISO 14253-

1:1998(E).   

 

FIGURE 9: Relationships between Specification Zone and Conformance Zone 

 

http://en.wikipedia.org/wiki/Measuring_instrument�
http://en.wikipedia.org/wiki/Measurement�
http://en.wikipedia.org/wiki/Standard�
http://en.wikipedia.org/wiki/Calibration�
http://en.wikipedia.org/wiki/Precision�
http://en.wikipedia.org/wiki/Accuracy�
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The upper horizontal line of the figure shows the specification zone, which is 

bounded by the lower specification limit (LSL) and the upper specification limit (USL).  

If the "true value" of the measurand is within the specification zone, then the 

specification is satisfied, otherwise the measurand is out of specification. However, we 

can never know the "true value" of the measurand. In order to state whether we believe 

that the measurand is in or out of specification, we have to acknowledge the existence of 

uncertainty in the measurement process.  This is shown in the lower horizontal line in 

FIGURE 9.  If the measurand is in conformance zone, we are suitably confident that the 

true value is in specification. Similarly, if the measurand is in the non-conformance zone, 

we are confident that the true value is out of specification. For the uncertainty region 

shown between conformance and non-conformance, we need to apply the "Decision 

rules."  A decision rule is a method – agreed on by two parties – to decide whether to 

accept or reject a part when the measurement value lies in this uncertainty region. 

Estimation of uncertainty is very vital because if the uncertainty is too low which implies 

the size of conformance zone will be larger so there is possibility to accept some parts 

which are out of specification. At the same time if the uncertainty is too large which 

implies the size of the conformance zone is smaller so there is a possibility to reject some 

parts which are in specification. The contributors of the uncertainty which are mentioned 

in ISO/TR 14253-2 should be considered carefully to estimate the uncertainty more 

accurately and consequently it will help to apply decision rule more precisely.  

4.2 ASME B89.7.3.1-2001 

(Guidelines for decision rules: Considering measurement uncertainty in 
determining conformance to specifications) 
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One common decision rule used in industry is "Simple Acceptance and Rejection 

Using an N: 1 Decision Rule" as defined in ASME B89.7.3.1-2001.  Using this decision 

rule, the measured value is compared directly to the specification zone (i.e. the 

conformance zone and the specification zone are identical).  This rule has the effect of 

dividing the risk for accepting bad parts and rejecting good parts between the supplier 

and customer.  In order to limit this risk, the requirement of N:1 is placed on the decision 

rule (N is often 4).  In FIGURE 10 below, taken from the B89.7.3.1 document, the 

acceptance and rejection zones are shown to be identical to the specification zones. 

 

FIGURE 10: Schematic view of Simple acceptance/rejection 

 

The measurement uncertainty interval is of width 2U, where U is expanded 

uncertainty, and the uncertainty interval is no larger than one-fourth the product’s 

specification zone for N = 4. [B 89.7.3.1-2001]  For the simple acceptance rule with a 4:1 

ratio means that the tolerance range is at least 4 times the uncertainty interval. The part 

will be accepted if the measurand lies in the specification zone as long as it accomplishes 

the uncertainty constraint.  Otherwise the part will be rejected. Another term maximum 

permissible error (MPE) is sometimes defined by the manufacturer for some instruments. 
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It is refer as ±MPE, so specification zone is twice the MPE value. In this case the 

decision rule is MPE is 4 time than the expanded uncertainty. If the measurand lies close 

the specification limits to avoid any part in out of specification an alternative decision 

rule based on “guard banding” is used. Guard band (defined in B 89.7.3.1-2001) is the 

magnitude of the offset from the specification limit to the acceptance or rejection zone. In 

this case new terms stringent acceptance zone and relaxed rejection zone are introduced 

which are shown in FIGURE 11 taken from this standard. 

 

FIGURE 11: Stringent acceptance and relaxed rejection 

For the special case when customer requested for stringent acceptance then the 

supplier go for this. In this case acceptance zone is reduced by the amount of guard band 

which is called stringent acceptance. On the other hand relaxed rejection zone reject the 

parts with the measurand lies in the specification zone by the amount of guard band.  
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4.3 B 89.7.4.1-2005 

(Measurement uncertainty and conformance testing: Risk analysis) 

 This standard is the combination of some statistical definitions. One of them is 

Measurement capability index, Cm which is the ratio between tolerance to uncertainty. 

For two-sided tolerance zone of width T, Cm=T/4um=T/2U where um is the standard 

uncertainty associated with the estimate of the characteristic. One sided tolerance zone of 

width T, Cm=T/2um = =T/2U. In the case of calibration or verification of a measuring 

instrument with specified, maximum permissible error ±MPE, Cm=T/2ue = 2MPE/2U= 

MPE/ U; [Here T= 2MPE] where ue is the standard uncertainty associated with the 

instrument error. One can know the quality of the measurement system from 

measurement capability index. It has some similarity with Test Uncertainty Ratio (TUR), 

Test accuracy ratio (TAR), gauge maker’s rule.  

4.4 ISO/TS 23165  

(Geometrical product specifications (GPS) -- Guidelines for the evaluation of 
coordinate measuring machine (CMM) test uncertainty)  

This standard describes the specific application of test uncertainty for coordinate 

measuring machine (CMM). This is the first standard for test uncertainty. Test 

Uncertainty is defined in this document as the expanded uncertainty U, associated solely 

with the testing instrument and its use in the test. This describes how to find the 

measurement quality of the test. Test uncertainty is the uncertainty for which the "tester" 

is responsible when evaluating an instrument.  Contributors to the test uncertainty may 

include the uncertainty of the reference artifact used by the tester and details of the 

tester's measurement procedure that result in errors and uncertainty. For example when 

CMM is calibrating by using an artifact, the error contribution from CMM should not be 
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included in test uncertainty budget. So the instrument error is not the part of test 

uncertainty. The error contribution from the artifact and the tester (who is doing the test) 

should be included in test uncertainty budget. So the uncertainty contributors of test 

uncertainty is small than the contributors of measurement uncertainty. So this standard 

modifies the conformance and non-conformance zones, according to the decision rule in 

ISO 14253-1.   

4.5 ASME B89.4.1 

(1997 Methods for performance evaluation of coordinate measuring machines) 

 To verify the CMM performance being accepted or re-verified when it is tested 

based on the ISO 14253-1 to prove conformance or non-conformance, ISO 10360-2 helps 

to take decision rule. It explains the performance of the CMM used for measuring size is 

verified if the error of indication of a CMM for size measurements, E, is not greater than 

the maximum permissible error of indication of a CMM for size measurements, MPEE, as 

specified by the manufacturer and taking into account the uncertainty of measurement 

according to ISO 14253-1. This standard also defines the measurement capability index 

Cm ≥ 4 which describes that expanded test uncertainty is not greater than one fourth of 

the maximum permissible error (MPE). In any case if Cm < 4, it should be declare in data 

sheet. To test the CMM by using the artifact in this case it must need to fulfill the 

requirement of Cm. CMM conformance test results are acceptable if they are inside the 

MPE value and also satisfies 4:1 rule.  

4.6 ISO/TS 15530-3 

(Geometrical product Specifications (GPS) - Coordinate measuring machines 
(CMM): Technique for determining the uncertainty of measurement - Part3: use of 
calibrated work pieces or standards)  
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This standard explains the experimental technique how to calculate the 

uncertainty for the measured feature by using CMM for different physical quantity like 

size, distance, position, form, location, datum, orientation. For each task one 

measurement plan is important – how one will handle the work piece and how many 

times need to do measurement and where to place the work piece. Any place within the 

range the work piece can be keep with good fixturing; at least 10 measurement cycles 

should be carried out.  The uncertainty contributors should be handling carefully like 

temperature, cleaning, fixturing, other environmental factors etc. CMM need to be 

calibrated first and then start measurement. From measurement data one need to find 

standard deviation. Another important part of the calculation is bias estimation. We know 

bias is the difference between the average of the measurement data and the reference 

value. The reference value should be close to true value which can be taken from NIST 

that will give more accurate result otherwise it needed to be taken in a very good 

environmental condition. The equation for uncertainty measurement is. 

U=|b|+ 2σ 

This equation is the combination of both the standard deviation of the 

measurement process and also the bias which is the difference between the average 

measurement value and reference value. So this expanded uncertainty result is very 

useful as it indicates both the standard deviation of repeat measurements and the accuracy 

of the measurement results. Precision and accuracy both are essential for the reliability of 

measurement results. The measurement results how precise and accurate both are 

checked by this equation as a result quality of the products are estimated properly. 



 
 
 
 
 

CHAPTER 5: TEST UNCERTAINTY RATIO (TUR) 
 
 

Manufacturing companies' success depends on the production of good quality 

products. Precise measurement systems are essential to verify the quality of the product. 

Every measurement process contains variations, just as each manufacturing process does. 

Manufacturing variations need to be checked by the measurement tools. Measurement 

tools need to be verified also to insure the best quality of the products. If the variations of 

the measurement system are high enough, it may affect the whole manufacturing 

company, as the cost of poor product quality affects the entire manufacturing enterprise. 

It is essential for a manufacturing company to have a powerful method to analyze 

measurement systems. One such measurement analysis tool is the Test Uncertainty Ratio 

(TUR). Other analysis tools which are currently used in industries are Precision over 

Tolerance (P/T) and Gage Repeatability and Reproducibility (gage R&R). 

5.1 Test Uncertainty Ratio (TUR) 

The Test Uncertainty Ratio (TUR) is a measure of the ability of a particular 

measurement instrument and/or process to evaluate conformance to specification. TUR is 

the ratio between the tolerance or specification and the uncertainty present in the test of 

this tolerance or specification. Historically, the rule of thumb for an appropriate ratio was 

that the TUR must be at least 10:1.The higher the ratio, the better the performance of the 

test.  In other words, the instrument can evaluate good vs. bad (conforming vs. non-

conforming) parts with a high degree of confidence. Currently, a ratio of 4:1 or even 3:1 
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is considered acceptable.  This is due mostly to the better performance of manufacturing 

equipment, and the tighter and tighter specifications on manufactured components.  In 

many cases, test equipment with an uncertainty small enough for a 10:1 TUR does not 

exist, or is prohibitively expensive for the application. 

There are two main applications of the TUR:  the first is in the measurement 

capability of measuring instruments, the second is in the inspection of manufactured 

components. Only one metrology tool is available for this experiment, so it was not 

possible to compare the measurement capability of metrology tools. One example is used 

to explain how to use TUR to find the measurement capability of different tools. The 

second application is the main focus – how do we determine the Test Uncertainty Ratio 

for a part that we need to measure using a particular gage?  The list below gives some of 

the important things to consider.  Each of these topics will be covered in more depth in 

this chapter. 

1. The uncertainty statement in the gage's product literature might not be the 

uncertainty needed to calculate TUR. 

2. The result of the gage's most recent calibration is almost certainly not the 

uncertainty needed to calculate TUR. 

3. The tolerance value on the part drawing is – if interpreted correctly – going to 

be needed to calculate TUR. 

4. There will be more than one TUR calculation for a part if there is more than one 

tolerance that must be inspected. 

 For TUR the task-specific measurement uncertainty must be estimated for the 

measurand in question for each tolerance.  This is the "1" value in the denominator.  The 
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range of allowable values for the measurand in question (this is usually the tolerance) 

must be known, and is the numerator of the ratio, which is compared to the "4" value.  To 

determine the TUR, the ratio shown below is evaluated. 

TUR  

As is easily inferred from the equation above, the TUR ratio compares the 

allowable variation for the measurand (the numerator) with the variability associated with 

finding the measurand (the denominator).Test Uncertainty Ratio (TUR) will provide the 

information about the accuracy and precision of the system, which include repeatability, 

reproducibility. One method of evaluating the expanded measurement uncertainty for a 

task is to combine the short-term variability of the system with a bias of the system, as 

shown below.  U= |bias| + 2σmeas 

The above equation for expanded uncertainty is taken from ISO 15530 which is 

described in Chapter 4. This equation is very useful for checking both the precision and 

accuracy at a time. 

 In calculating TUR, the tolerance is in the numerator, but the question is how to 

find the appropriate value for the denominator which may be task specific uncertainty, 

the maximum permissible error value of the CMM or the actual result of the CMM 

calibration. So, to apply  the 4:1 rule one could consider:  

 1)  The CMM specification vs. tolerance 

2)       The CMM calibration value vs. tolerance 

3)       The task specific uncertainty vs. tolerance  

Let’s take part tolerance 25μm. 

1) In the case of CMM specifications (the MPE value) which are mentioned, 
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usually in the manufacturer’s specification.  

Let’s consider   MPEE = 6μm.   In this case, TUR= 25μm / 6 μm ≈ 4:1 

2) In the case CMM calibration value, let’s consider the CMM was calibrated 

recently and the E value turned out to be 5μm.   

            In this case, TUR=25μm / 5 μm ≈ 5:1  

Both of these experiments were done with the artifact. Neither of these calculations takes 

into account the sampling strategy of the part like number of measurements, number of 

points, alignment, fixturing, clamping. From the above discussion, it is found that the 

TUR can be used to find the end product’s quality. To calculate TUR one should 

emphasize how the part is measured. We therefore recommend that the third method be 

used. 

            3)         The task specific uncertainty should be calculated for each tolerance, and 

this value used when calculating the TUR. 

Let’s consider when measuring a part, task specific uncertainty for the first 

measuring tool is 4 μm and for the second measuring tool is 5 μm. 

In the first case, TUR= 25μm / 4 μm ≈ 6:1 and in the second case, TUR= 25μm / 

5 μm ≈ 5:1 

The first measurement tool’s measurement capability is better than the second as 

the value of TUR in the first case is larger than in the second.  

One can easily estimate the measurement uncertainty for a simple measurement 

like the length of a block using instruments like the micrometer or slide caliper. In this 

case the results will give a direct reflection of the instrument error, so the measurement 

process for this is very simple. FIGURE 12 and FIGURE 13 show the measuring task and 
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the micrometer. But for more complicated measurements like the true position of a hole, 

shown in FIGURE 14, the results will not give a direct reflection of the instrument error. 

For these types of measurements, complex metrology systems such as Coordinate 

Measuring Machines (CMMs) (FIGURE 15) are required.   

 

FIGURE 12: Measuring a part 

 

 

FIGURE 13: Micrometer 

 

TSU Function Uncertainty (single point) 



46 

 

FIGURE 14: Measure the position of the hole 

 

 

FIGURE 15: CMM 

There are many simulation methods that help to estimate the task specific 

uncertainty in coordinate measurement. Various names are given to these simulation 

methods like Virtual CMM, Simulation by constraints, Monte Carlo simulation [13].  
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5.2 TUR Contributors 

It is important to know the contributors that affect the TUR, which will help to 

calculate TUR. FIGURE 16 shows the contributors to the task specific uncertainty, which 

is necessary to find the TUR. 

 

FIGURE 16: Contributors to TUR 

The different contributors to the TUR shown in FIGURE 16 are described below. 

Definition of task 

The task needs to be determined first. It may be size, true position, or any other 

characteristic of interest. For every task one needs to calculate TUR individually and 

tolerance needs to be determined separately. For example if one needs to calculate TUR 

for both size and true position, then the tolerance values for each should be known 

separately and used in the appropriate TUR calculation. 

Part Tolerance  

The tolerance for every task needs to known to calculate TUR. In the case where 

one is trying to determine the limiting tolerance value that can be inspected, this can be 

Definition of task  

Part 

 

Measurement 

 

Measurement 

 Measurement 

 

Software 

Reference for 
bias calculation  

Tester 

Environment 

TUR 
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obtained by using the lowest acceptable value of TUR and the task-specific uncertainty 

for that measurand. 

Reference value  

The reference value may be needed to calculate the bias for a particular 

measurement. The uncertainty of this value will be lowest if it is obtained from an NMI, 

but a reference value with a suitably low uncertainty from another reliable source is 

acceptable.  

Environment 

  Temperature, vibration, dust, etc may influence the value of Uncertainty. So these 

factors need to be taken into consideration when measuring the part. 

Measurement Tool 

  The ability of the measurement tool to measure the part accurately has the greatest 

influence on the value of TUR. The long term stability and short term stability of the 

measurement tool should be checked to track the performance of the measurement 

equipment. However, it is a mistake to think that this is the only source of uncertainty. 

Measurement set up 

  If the set up of both the part and the tool is not perfect, the measurement result can 

vary. The position of the part needs to be perfect and clean enough to get the expected 

result. Measurement set up should be checked properly so that everything stays stable 

when the measurement process continues. 

Measurement procedure 

  One needs to use the measurement procedure as defined for each measurement 

tool. If the measurement procedure like number of measurements, duration of 
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measurements, strategy, number of points, order of measurement are not followed 

properly the measurement result may not outcome as expected. 

Software 

The measurement results depend on the software which is used for acquiring 

measurements and analyzing measurement data. The quality of the analysis tools also 

plays an important role in getting expected results. Even for the same measuring 

instrument different analysis tools may give varying results.  

Tester 

Test results depend on how expert the tester is. Testers’ experience, education, 

training, knowledge, performance influences measurement results significantly.  

All the contributors described above except tolerance have influence on task 

specific uncertainty and consequently TUR. 

  “PUNDIT” is commercial software for CMMs that simulates task specific 

uncertainty. This software was used for this project to estimate task specific uncertainty 

by simulation. This allows data input like part tolerance, CMM specifications, 

environmental conditions, sampling strategy, manufacturing information that accordingly 

gives a very good reflection of actual experiment results. MATLAB program is also used 

in this project to estimate task specific uncertainty. MATLAB program is widely used 

both for academic purpose and in industry.  This method can use data files for the 

sampling strategy of the part but it did not include input for environmental conditions. As 

environment is a main contributor of uncertainty, these results could not be as close to the 

experimental results. PUNDIT and MATLAB were used to get theoretical results. PC-
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DMIS is a CMM software to estimate task specific uncertainty for the practical 

experiments.   

5. 3 Other Metrics 

5.3.1 P/T ((Precision-to- Tolerance) Ratio 

  P/T ratio and gage R &R are other metric used in the industries to find the 

measurement capability of the metrology tool. 

Below P/T and Gage R&R are described. 

The P/T Ratio  

(From Industry) 
The capability of the measurement system is quantified by computing the P/T 
(Precision-to- Tolerance) Ratio. 
 

For two-sided specs (both USL and LSL): 

P / T =  x100% 

For one-sided specs (either USL or LSL, or if no spec limits exist): 
 
P / T =  x 100% 

Where: TOL = (Process Mean or Target - LSL) for LSL only, 
          = (USL - Process Mean or Target)    for USL only, 
         = 3*(Expected spread in data, S process) if spec limits do not exist. 
 
Note: If a process mean can be estimated, then it is not recommended to define TOL as 

(Target - LSL) or (USL - Target) because using a Target value underestimates the true 

P/T ratio. 

• P/T expresses the percentage of the spec window that is lost to measurement 
error. 

• Small values of P/T are desirable. 
• P/T ≤ 30%: Measurement system capable. 
• P/T > 30%: Measurement system not capable (not precise enough). 
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5.3.2 Gage Repeatability and Reproducibility (Gage R & R) 

There are three basic and widely used methods for determining the Gage R&R. 

They are: 

•  Range method 

•  Average and Range method 

•  Analysis of Variance method (ANOVA) 

The Average and Range method is discussed in detail. 

 The Average and Range method is a statistical method that provides an estimate 

of the following components-Part Variation, Repeatability, Reproducibility, R&R, Total 

Variation. 

 This method computes the total measurement system variability, which can be 

separated into components like repeatability, reproducibility and part variation. This 

method involves multiple parts, appraisers and trials to quantify the total variations of 

the system. 

 Consider a measurement system which involves 10 parts, 3 operators and 3 trials.  

For each operator, it is necessary to compute the average of the part and trial readings.  

As an example consider, 
 

For operator A total average of the measurements is a 

For operator B total average of the measurements is b 

For operator C total average of the measurements is c 

The average range of the measurement made by operators A, B and C are a, b and    c 

The average of a, b   and c is . The average of a, b and    c  is  . 

With the above definitions, 
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Upper control limit (UCL) for range chart = D4 X  

Lower control limit (LCL) for range chart = D3 X  

Where D4 and D3 are control chart constants and can be obtained Appendix C in [1]. 

With the above data we can calculate following terms.  

Repeatability  

Repeatability is commonly referred to as Equipment Variation (EV) 

 

Where K1 is constant. 

K1 = 5.15/d2 where d2 depends on the number of trials (m) and the number of parts times 

the number of appraisers (g). The value of d2 is obtained from Appendix D. All 

calculations are based upon predicting 5.15s (99% area under the normal curve).  

Reproducibility  

 Reproducibility is commonly referred to as Appraiser Variation (AV) 

 

K2 = 5.15/d2 where d2 depends on the number of appraisers (m) and g is 1, since there is 

only   one range calculation. n = number of parts and r = number of Trials  

If a negative value is calculated under the square root sign, the value AV defaults to zero.   

Repeatability and Reproducibility (R&R) 

 The variation for repeatability and reproducibility is obtained by taking the root of 

the sum of the squares of the appraiser variation and equipment variation. 

  

 

1* KREV =

)/()*( 22
2 nrEVKXAV DIFF −=

22& AVEVRR +=
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Part Variation (PV) 

 The part variation is determined by multiplying the range of part averages by a 

constant. 

Here R p is the range of the part average  p. 

 K3 = 5.15/d2 where d2 is dependent on the number of parts and number of appraisers. 

Total Variation (TV) 

 The total variation is the square root of the sum of the squares of the variation for 

repeatability and reproducibility (R&R) and the part variation. 

 

Percent of Total Variation 

 The variability of each factor determined above can be compared with the Total 

Variation (TV). The percent of equipment variation of the total variation is computed as 

   %EV = 100(EV/TV) 

The percent of other factors can be calculated as follows. 

 %AV = 100(AV/TV) 

 %R&R = 100(R&R/TV) 

 %PV = 100(PV/TV) 

The sum of percentages of the each of the above factors will not equal 100%. The 

results could also be given as a percentage of the tolerance specification depending on 

the requirements. In that case, the total variation in the denominator is replaced by the 

tolerance specification. 

The metrics P/T and gage R&R both are reflecting how precise measurement 

results are.  These do not give any impression of accuracy of measurement results or how 

3* KRPV p=

22 )()&( PVRRTV +=
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close the measurement results to the reference value. Accuracy is also very important for 

part measurement. To get the best result, measurement results need to be both precise and 

accurate. For the metric P/T, in industry, accuracy is calculated separately. But for gage 

R&R it may give a wrong impression of the measurement result as accuracy is not 

checked. TUR is giving the reflection of both precision and accuracy. So this is a very 

power method comparing to other two methods. 

5.4 Calculation of TUR 

The block shown in FIGURE 17 is the model for simulation by the PUNDIT 

software, MATLAB, and practical experiment by using PC-DMIS software for CMM. 

The dimensions and tolerances for the part are shown in FIGURE 18. Task specific 

uncertainty was estimated by all these methods. They are described below accordingly. 

Two tolerances are evaluated: a size tolerance (the width of the block) and a position 

tolerance for the circular feature. In both cases the tolerance value on the drawing is 

0.025mm.  It will be shown that for the different features, and different measurement 

strategies, the TUR value will be different. 
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  FIGURE 17: Block (100mm x 100mmx 10mm) 

 

 

FIGURE 18: A simple part with size and position specifications 
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5.4.1 Simulation method (PUNDIT) 

 To evaluate this, several simulations have been done using the PUNDIT software.  

For this simulation the E-value of the CMM will be estimated at 6μm and the results of 

the simulation will be the task-specific uncertainty for each tolerance. 

For the size tolerance, different numbers of points were taken 4, 12 and 30 along 

the opposite ends of the block. In FIGURE 19-a, 12 points are shown along the one end 

of the block. Twelve points were also taken on the opposite plane. FIGURE 19-b shows 

the result (the task specific uncertainty) from the simulation. TABLE 1 summarizes the 

expanded uncertainty and TUR for different numbers of points used in the size 

measurement. 

  

FIGURE 19: Test part/Simulation result 

a) Test part with measurement points shown b) results of simulation for size tolerance 
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TABLE 1: TUR values for size tolerance by using PUNDIT simulation 

Block Length 

# points U (μm) TUR 

4 1.61 30:1 

12 1.46 35:1 

30 1.35 40:1 

 

The position tolerance will be discussed now.  Different numbers of points were 

taken on a circular feature (6, 16 and 30 points) and different numbers of points were 

taken also on each of the Datum features:  A, B, and C as shown in FIGURE 20 below.  

In each case 4 points were taken on Datum A (the top); either 2 or 4 points were taken on 

Datum B and C on the sides. "4, 2, 2" refers to 4 points on Datum A, and 2 each on 

Datum B and C.  "4, 4, 4" refers to 4 points on Datum A, and 4 each on Datum B and C. 

FIGURE 21 shows the simulation results for position tolerance from PUNDIT. TABLE 2 

summarizes the expanded uncertainty and TUR for different numbers of points used in 

the position measurement. 
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FIGURE 20: Datum A – 4 points, Datum, Datum C – 2 Points, 

 

 

FIGURE 21: PUNDIT results of simulation for the position tolerance for the hole 

 

 

 

Datum A 

Datum C 

Datum B 
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TABLE 2: TUR values for the Position Tolerance by using PUNDIT simulation 

Circle # of 
points 

Uncertainty and TUR with  
datum points 4, 2, 2 

Uncertainty and TUR with 
datum points 4, 4, 4 

 U (μm) TUR U(μm) TUR 

6 6.94 4:1 4.19 6:1 

16 6.61 4:1 4.01 6:1 

30 6.03 4:1 3.74 6:1 

 

Both TABLE 1 and TABLE 2 show that for the same tolerance the TUR values are 

different for size, position, and in some case also depending on the number of points 

measured. In both cases, by increasing the number of points, task specific uncertainty 

decreased. In the size case, by increasing the number of points, TUR value increases, 

which is expected.  In the position case, there is more dependence on the datum 

measurement than the circle sampling strategy. 

5.4.2 MATLAB Program 

 MATLAB programs were used to find task specific uncertainty and consequently 

the TUR. These programs used “Monte-Carlo” simulation of random errors. In the case 

of size, it was possible to generate lines, different numbers of points, and find the 

distance between two lines. For the case of position, it was possible to generate datums, 

datum points, circle points, and estimate true positions of the hole. The number of points 

in MATLAB was taken in one row, but in PUNDIT and practical experiment they were 

taken in two rows, however the number of points was the same. In the MATLAB 
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program uncertainty-contributors like temperature were not included so the task specific 

uncertainty results were very small in comparison to PUNDIT and the actual 

experiments. The MATLAB programs are in Appendix A. TABLE 3 and TABLE 4 

 summarized the expanded uncertainty and TUR for different numbers of points used in 

the size and position measurement. 

TABLE 3: TUR values for size tolerance by using MATLAB program 

Uncertainty and TUR 

# points U (m) TUR 

4 0.67 75:1 

12 0.41 121:1 

30 0.27 185:1 

 

TABLE 4: TUR values for position tolerance by using MATLAB program 

Circle # of 
points 

Uncertainty and TUR 
with  
datum points 4, 2, 2 

Uncertainty and TUR with 
datum points 4, 4, 4 

 U (μm) TUR U(μm) TUR 

6 0.71 35:1 0.70 34:1 

16 0.41 61:1 0.39 58:1 

30 0.33 75:1 0.31 69:1 
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In TABLE 2 and TABLE 3, it is shown, increasing the number of points both on 

the circle and on the datums uncertainty values decreased and consequently TUR values 

increased (Task specific uncertainty is in the denominator of the TUR equation). So the 

results are giving a good reflection of what was predicted. 

5.4.3 Experiment 

 Actual experiments were completed for the same block by using PC-DMIS 

software for the CMM. The numbers of points taken were the same in actual tests as for 

simulation, both for size and position. FIGURE 22 shows the CMM with the actual part. 

 TABLE 5 and TABLE 6 summarize the expanded uncertainty and TUR for different 

numbers of points used in the size and position measurement. 

 

        FIGURE 22: CMM with part 
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TABLE 5: Experimental results of size tolerance by using PC-DMIS software 

Uncertainty and TUR 

# of points 2σ (μm) U(μm) TUR 

4 0.97 16.45 4:1 

12 0.84 15.04 4:1 

30 0.63 14.38 4:1 

 

TABLE 6: Experimental results of position tolerance by using PC-DMIS software 

 

TABLE 5 and TABLE 6 show that by increasing the numbers of points, standard 

deviation and uncertainty values decreased as predicted. TUR value did not change since 

bias dominated the results. 

# of 
points 

Uncertainty and TUR with datum 
points 4,2,2 

Uncertainty and TUR with datum 
points 4,4,4 

 2σ (μm) U(μm) TUR 2σ (μm) U(μm) TUR 

6 1.29 10.29 2:1 1.78 9.57 3:1 

16 1.62 9.38 3:1 1.36 8.03 3:1 

30 1.56 9.01 3:1 1.21 7.98 4:1 
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5.5 Comparison results between PC-DMIS, PUNDIT and MATLAB 

 For TUR calculations, tolerance of the part and the task specific uncertainty are 

required. Tolerance of the part was the same for all cases; only the other contributor, task 

specific uncertainty influences the TUR value.  As task specific uncertainty is in the 

denominator the smaller the value of this the better the result of TUR. In TABLE 7and 

TABLE 8 task specific uncertainty were compared for these three methods both for size 

and position.  From these tables it is found that PC-DMIS results for task specific 

uncertainty are larger than the other two methods because in the practical experiment 

(using PC-DMIS software) all the contributors of uncertainty were present. Similarly, 

PUNDIT results are larger than MATLAB results because PUNDIT allows user to enter 

some uncertainty contributors. In the case of MATLAB only sampling strategy were 

changed, no uncertainty contributors were included. 

TABLE 7: Comparison of size between PC-DMIS, PUNDIT, and MATLAB 

Uncertainty 

# of points PC-DMIS 

U (μm) 

PUNDIT 

U(μm) 

MATLAB 

U(μm) 

4 16.45 1.61 0.67 

12 15.04 1.46 0.41 

30 14.38 1.35 0.27 
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TABLE 8: Comparison of position between PC-DMIS, PUNDIT, and MATLAB 

 

5.6 Experiments for Steel and Aluminum plates 

Experiments have been done to compare the TUR and P/T ratio for different 

measurement tasks. It is found P/T is the metric which is already being used in the 

industry. So TUR is compared with P/T though both are not the indication of the same 

parameters. P/T is only indicating precision, so bias is added separately in the tables to 

get an idea of the accuracy of the measurement results. It is expected that where P/T 

smaller the TUR value will be larger. This is reflected in some of the results but in some 

results it is not reflected properly as bias was dominating. As the task specific uncertainty 

for TUR was calculated by using the equation U= |bias| + 2σmeas, bias influenced the 

TUR values. 

# of 
points 

Uncertainty and TUR with datum 
points 4,2,2 

Uncertainty and TUR with datum 
points 4,4,4 

 PC-

DMIS 

U (μm) 

PUNDIT 

U(μm) 

MATLAB 

U(μm) 

PC-

DMIS 

U (μm) 

PUNDIT 

U(μm) 

MATLAB 

U(μm) 

6 10.29 6.94 0.71 9.57 4.19 0.70 

16 9.38 6.61 0.41 8.03 4.01 0.39 

30 9.01 6.03 0.33 7.98 3.74 0.31 
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Two blocks, one made of steel and the other of aluminum, were used for these 

calculations are shown in Figure 24 and FIGURE 24. In case of size, 4, 12, 30 number of 

points were taken from left to right to find the distance between the 2 sides. In the case of 

position, 6,16,30 points were taken on the circles and 4,2,2 and 4,4,4 points were taken 

on the datums as were taken for earlier experiments and simulations. 

 

FIGURE 23: Steel block on CMM 

 

FIGURE 24: Aluminum block on CMM 



66 

5.6.1 Size Tolerance results 

The experimental results for the size tolerance of steel block are shown in TABLE 

9 and TABLE 10  

TABLE 9: Size Tolerance of Steel Plate 

U, TUR, P/T, Bias for Steel plate by using PC-DMIS software 

#of 

points 

2σ (μm) U (μm) TUR P/T 

(%) 

Bias 

(μm) 

4 1.03 26.98 2:1 6.18 26.88 

12 1.03 7.05 7:1 6.18 6.02 

30 0.632 2.27 30:1 3.79 1.64 

 

TABLE 10: Size Tolerance of Aluminum Plate 

U, TUR, P/T, Bias for Aluminum plate by using PC-DMIS software 

#of 

points 

2σ (μm) U (μm) TUR P/T Bias 

4 0.843 41.80 1:1 5.05 41.37 

12 0.632 9.65 5:1 3.79 9.02 

30 0.500 9.44 5:1 3.0 8.94 
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In each case we can see that the bias introduced  by uncorrected thermal changes, 

and the errors introduced by the point placement in the 4 point case result in a bias that 

dominates the short term variability of the measurements. Of course, an uncorrected bias 

is not something that we would expect to happen in ordinary measurements. However, if 

we do not know the extent to which certain errors occur (thermal drift, loose fixturing, 

etc.), this uncorrected bias may be introduced. The message that is hidden in these data is 

that a procedure that does not capture the bias, but only quantifies the repeatability, is at 

risk of over-estimating the capability of the measurement system. One such method that 

does not capture bias in repeated measurements is a GR&R study. 

5.6.2 Position Tolerance Results 

The experimental results for the position tolerance of the steel block are shown in 

TABLE 11and for the aluminum block are shown in TABLE 12. 

TABLE 11: Position Tolerance of Steel Plate 

 

 
 

# of 
points 

Uncertainty and TUR with datum 
points 4,2,2 

Uncertainty and TUR with datum 
points 4,4,4 

 2σ (μm) U(μm) TUR 2σ (μm) U(μm) TUR 

6 2.74 27.94 1:1 1.49 26.63 1:1 

16 1.92 27.68 1:1 1.18 26.17 1:1 

30 1.56 27.77 1:1 1.09 25.90 1:1 
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TABLE 12: Position Tolerance of Aluminum Plate 

 

It is found in the tables above that the 2σ spread of data from multiple 

measurements is improved by taking more points on the datum features, but because the 

bias in the results is so large, by comparison, this improvement is not reflected in the 

TUR values. TABLE 13 shows the P/T ratio for these measurements for steel block and 

TABLE 14 for aluminum block along with the bias in both X and Y.  

TABLE 13: P/T and Bias of steel   plate 

 
 

# of 
points 

Uncertainty and TUR with datum 
points 4,2,2 

Uncertainty and TUR with datum 
points 4,4,4 

 2σ (μm) U(μm) TUR 2σ (μm) U(μm) TUR 

6 2.69 70.48 0.354:1 1.63 67.57 0.369:1 

16 1.24 68.48 0.365:1 1.25 66.72 0.374:1 

30 0.526 67.20 0.372:1 0.34 64.79 0.385:1 

# of 
points 

Uncertainty and TUR with datum 
points 4,2,2 

Uncertainty and TUR with datum 
points 4,4,4 

 P/T  
(%) 

Bias(X and Y) (μm) 2σ (μm) Bias(X and Y) (μm) 

6 10.93 20.9 8.2 5.96 21.6 9.6 

16 7.68 23.1 8.6 4.725 22.2 8.7 

30 6.24 23.2 8.1 4.36 22.0 8.0 
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TABLE 14: P/T and Bias of Aluminum block 

 

In the above tables an unexpected large value of bias is found. This results in the 

unacceptable values for TUR. Note that the P/T metric gives values that appear 

reasonable. 

5.6.3 Conclusions for Steel and Aluminum plates experiments 

The steel and aluminum plates were used to calculate TUR and P/T to show how 

different factors – such as part material – can influence the results. After analyzing the 

data it was found the steel plate has a higher TUR than the aluminum plate both for size 

and position. These two results are sensible, as the steel has a coefficient of thermal 

expansion (CTE) closer to the CMM scales. For different numbers of points, the TUR of 

position tolerance does not change because this measurement is dominated by the bias. 

We also show that the TUR utilizes both the bias and precision, while the P/T is only 

using precision. For this reason, we need to separately check the accuracy (bias) using a 

reference value. Because this experiment was done with only one metrology tool, we are 

comparing the capability of measuring different part materials for different measurands. 

# of 
points 

Uncertainty and TUR with datum 
points 4,2,2 

Uncertainty and TUR with datum 
points 4,4,4 

 P/T  
(%) 

Bias(X and Y) (μm) 2σ (μm) Bias(X and Y) (μm) 

6 8.07 65.1 0.5 4.89 64.3 0.9 

16 3.72 66.0 0.7 3.75 64.2 1.0 

30 1.05 67.1 0.1 1.02 64.1 1.4 
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The same type of measurement capability study could be used for the same part on 

different measurement tools.  

5.7 Measurement capability analysis 

TUR can be used for the inspection of the end products and the measurement 

capability of the metrology tools. It was discussed above how TUR can be used for end 

product’s inspection. An example is given comparing the measurement capability of 

metrology tools. 

 

FIGURE 25: Measurement capability of metrology tools comparison 

FIGURE 25 shows a graph where we can compare the measurement capability of 

four metrology tools. Tool C has the highest TUR value of 10. It means the measurement 

capability of this tool is better than the others. The measurement capabilities of other 

tools are ordered as follows Tool D, Tool B, and tool A. Comparing the P/T values for 

these tools reveals that Tool C will give smallest value, and then consequently Tool D, 

Tool B and tool A. 
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CHAPTER 6: TEST UNCERTAINTY  
 
 
 Measurements and measurement results have significant influence in many 

industrial sectors like trade, manufacturing companies, health services, safety, 

environmental protection, and others.  In commercial transactions, the uncertainty of 

measurement results is important to decisions made between suppliers and customers. 

The uncertainty contributors need to be considered carefully to obtain a good estimate of 

the product quality. One of the uncertainty contributors is the measurement equipment, 

which naturally plays a key role in the measurement process. The uncertainty of 

calibrating the measuring instrument can be described as "test uncertainty."  This 

uncertainty value is intended to capture “how well” the instrument errors are known, and 

thus the actual instrument errors are excluded. Contributors to the test uncertainty may 

include the uncertainty of the reference artifact used by the tester and details of the 

tester's measurement procedure that result in errors and uncertainty. It is often the case 

that the uncertainty from the artifact is small enough that it does not affect the test very 

much.  For test uncertainty the "tester" is responsible when evaluating an instrument.  

Tester performance has a great influence on the test uncertainty results. Better 

performance by the tester can result in a smaller test uncertainty.  

So the test uncertainty significantly depends on the influence of the human 

operator, test procedure (which should be well recognized) and reference artifact. When 

calculating the test uncertainty all these factors should be reasonably estimated to ensure 
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that the result does not give any wrong impression of uncertainty. Most notably absent 

from the test uncertainty is the repeatability and resolution of the instrument under test. 

Test uncertainty is only the indication of the quality of the test; it is not the machine 

performance. By defining the test, how well the test is performed, the influence of the 

operator, selection and placement of test instrument; test uncertainty can be decreased 

and consequently, precision and usefulness of the test can be increased. Measurement 

uncertainty is a familiar topic in industry and discussed in chapter 2. In this chapter test 

uncertainty is discussed in detail. 

6.1 Definitions 

 Some related terms of test uncertainty are defined from VIM. 

Calibration 

Set of operations that establish, under specified conditions, the relationship 
between values of quantities indicated by a measuring system, or values 
represented by a material measure or a reference material, and the corresponding 
values realized by standards.  

 
A calibration may be expressed by a statement, calibration function, calibration 

diagram, calibration curve, or calibration table. In some cases, it may consist of an 

additive or multiplicative correction of the indication with associated measurement 

uncertainty.  

It is necessary to verify the measuring instruments’ performance through the 

calibration process which is a reliable source both for the suppliers and the clients. Many 

disputes occurred due to the lack of proper understanding of the calibration process. 

Sometimes products are accepted by the supplier but rejected from the customers. So the 

problem is usually solved by a third party, calibration service. Artifacts and reference 
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standards can be considered as reliable reference values when certified by a calibration 

laboratory.  

For test uncertainty, measurement instruments need to be calibrated by using the 

reference artifact.  These calibrations can be done by the supplier, client, and calibration 

lab. Consequently, the different test uncertainty results can indicate comparisons between 

the testers’ performance and the artifacts quality. 

Calibration hierarchy  

It is the sequence of calibrations from a reference to the final measuring system, 
where the outcome of each calibration depends on the outcome of the previous 
calibration. 

 
  The elements of a calibration hierarchy are one or more measurement standards 

and measuring systems operated according to measurement procedures. For this 

definition, the ‘reference’ can be a definition of a measurement unit through its practical 

realization, or a measurement procedure, or a measurement standard.  A comparison 

between two measurement standards may be viewed as a calibration if the comparison is 

used to check and, if necessary, correct the quantity value and measurement uncertainty 

attributed to one of the measurement standards. 

All measuring instruments which are using in the different sectors of human life 

are connected with the national standard through a continuous chain of the calibration 

process. Calibration hierarchy is important for more reliability for the acceptance of a 

product.  

As test uncertainty is a new concept, it is essential for its reliability to fulfill the criteria of 

the unbroken chain of the calibration process. 
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Metrological traceability 

It is the property of a measurement result whereby the result can be related to a 
reference through a documented unbroken chain of calibrations, each contributing 
to the measurement uncertainty.  

 
  For this definition, a ‘reference’ can be a definition of a measurement unit through 

its practical realization, or a measurement procedure including the measurement unit for a 

non-ordinal quantity, or a measurement standard. Metrological traceability requires an 

established calibration hierarchy. Specification of the reference must include the time at 

which this reference was used in establishing the calibration hierarchy, along with any 

other relevant metrological information about the reference, such as when the first 

calibration in the calibration hierarchy was performed. For measurements with more than 

one input quantity in the measurement model, each of the input quantity values should 

itself be metrological traceable and the calibration hierarchy involved may form a 

branched structure or a network. The effort involved in establishing metrological 

traceability for each input quantity value should be commensurate with its relative 

contribution to the measurement result. Metrological traceability of a measurement 

result does not ensure that the measurement uncertainty is adequate for a given purpose 

or that there is an absence of mistakes.  A comparison between two measurement 

standards may be viewed as a calibration if the comparison is used to check and, if 

necessary, correct the quantity value and measurement uncertainty attributed to one of the 

measurement standards. The abbreviated term “traceability” is sometimes used to mean 

‘metrological traceability’ as well as other concepts, such as ‘sample traceability’ or 

‘document traceability’ or ‘instrument traceability’ or ‘material traceability’, where the 
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history (“trace”) of an item is meant. Therefore, the full term of “metrological 

traceability” is preferred if there is any risk of confusion.  

Each contributor of test uncertainty needs to fulfill the criteria of metrological 

traceability for acceptability. 

Metrological traceability chain 

Traceability chain is a sequence of measurement standards and calibrations that is 
used to relate a measurement result to a reference.  

 
  A metrological traceability chain is defined through a calibration hierarchy. A 

metrological traceability chain is used to establish metrological traceability of a 

measurement result.  A comparison between two measurement standards may be viewed 

as a calibration if the comparison is used to check and, if necessary, correct the quantity 

value and measurement uncertainty attributed to one of the measurement standards. 

Test uncertainty of any instrument needs to fulfill the criteria of the unbroken 

chain of metrological traceability. 

6.2 Contributors of test uncertainty  

 The contributors of test uncertainty are those which are associated when testing an 

instrument. Test uncertainty included the uncertainty contribution from both the person 

who is doing the test (the tester) and the reference artifact (test equipment) which the 

person is using to do the test. ISO/TS 23165 describes any error introduced by the 

instrument should not be included in test uncertainty, so the uncertainty from instrument 

is not included in test uncertainty. Two examples of estimating test uncertainty are 

explained; the calibration of a CMM and the calibration of a micrometer. 

6.2.1 Test uncertainty contributors for CMM 

 The CMM is calibrated by using a step gage. This is shown in FIGURE 26. 
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FIGURE 26: CMM calibration using a step gage 

When the CMM is calibrated by using a step gage the uncertainty sources are 

from the step gage (artifact), the CMM (Instrument), and the tester who is performing the 

test. The uncertainties are shown in FIGURE 27. 

      

                                            

 

    

 

 

 

 

 

FIGURE 27: Sources of U in the calibration of CMM by using step gauge 

It is important to find, from these sources what should be the components of test 

uncertainty. The uncertainty contributors from the instrument such as the repeatability of 

the CMM and the CTE of the CMM scales – should not be included in test uncertainty. 
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These are attributes of the instrument that is being tested, not the quality of the test. It is 

important to check the specification of the instrument in the case of uncertainty due to 

temperature. When temperature is maintained within the specification, it should not be 

included in test uncertainty. In the above example temperature was within the limit, the 

uncertainty due to the temperature of CMM and the step gage should not be included in 

test uncertainty. If temperature is not maintained within the specification uncertainty 

from temperature should be included in test uncertainty. Other sources of uncertainty 

from the step gage and tester like repeatability, fixturing, and cleaning which are the 

tester’s responsibilities should be included in test uncertainty.  The contributors of test 

uncertainty are shown in FIGURE 28. 

.  

 
 
 

 

 

 

 

  

 

FIGURE 28: Sources of test U.in the calibration of CMM by using step gauge 

Test uncertainty when calibrating the CMM by using step gage is shown in  

FIGURE 29. 
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FIGURE 29: Sources of test U in the calibration of CMM by using step gage 

The value of test uncertainty is smaller than the measurement uncertainty (some 

sources of uncertainty are not included in test uncertainty) and is not any fixed value. The 

performance of the tester during the test may be the main source of error and it may vary 

in different tests.  

6.2.2 Test uncertainty contributor for micrometer and gage block 

Test uncertainty is explained for calibrating a micrometer using the gage block 

and calibrating the gage block by using a micrometer. The same environmental condition 

was maintained and the same data will be analyzed both for the micrometer and gage 

block. The micrometer and gage blocks are shown in FIGURE 30 and FIGURE 31. 
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FIGURE 30: Micrometer 

 

FIGURE 31: Gage block 
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 When calibrating the micrometer by using the gage block, the uncertainty sources 

are the gage block (artifact), micrometer (Instrument), temperature (Environment), and 

tester. The uncertainty sources are shown in FIGURE 32. 

 

 

 

 

 

 

 

 

 

 

FIGURE 32: Sources of U in the calibration of micrometer by using gage block 

The task is to calibrate the micrometer by using the gage block; uncertainty from 

the micrometer should not be included in the test uncertainty budget as mentioned earlier 

from ISO/TS 23165. The gage block is used to calibrate the micrometer so the 

uncertainty due to gage block should be included in test uncertainty budget. Another 

important source is uncertainty due to the tester. In test uncertainty one should always 
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include this factor. For calibration of the micrometer the specification states that 

temperature should be maintained at 200C during calibration. It is the tester’s 

responsibility to maintain this temperature. As the temperature was not maintained at 

200C in this experiment, any error introduced from temperature should be included in test 

uncertainty budget. If it is mentioned in the specification, temperature during the 

experiment can be maintained in a specific range like 180C to 220C and it is maintained 

by the tester then it should not be included in test uncertainty budget. The sources of test 

uncertainty for calibration of micrometer by using gage blocks are shown in FIGURE 33.  

  

 

 

 

 

 

 

 

 

FIGURE 33: Sources of test U in the calibration micrometer by using gage block 

 The task is to calibrate the gage block by using a micrometer - uncertainty from 

the gage block (instrument) should not be included in the test uncertainty budget. The 
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micrometer is used to calibrate the gage block so the uncertainty due to micrometer 

should be included in the test uncertainty budget. The temperature was not maintained at 

200C during calibration so it should be included in test uncertainty budget here. The 

sources of test uncertainty when calibrating a gage block by using the micrometer are 

shown in FIGURE 34.  

 

 

 

  

 

 

 

 

 

FIGURE 34: Sources of test uncertainty when calibrating gage block 
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are different because the calibration type was different though it was for same 

experiment. 

TABLE 15: Uncertainty Budget 

Source 
Evaluation 
 type 

Distribution 
 type 

Standard 
 U (uin) 

Test Uof 
micrometer 
(uin) 

Test U of 
gage block 
(uin) 

Gage block B Rectangular 2.32 2.32   
Repeatability A Normal 0.29   0.29 
Scale error B Rectangular 1.16   1.16 
Zero point 
error B Rectangular 1.16   1.16 
Parallelism 
of  anvil B Rectangular 2.9   2.9 
Delta Temp B U-shape 4.08 4.08 4.08 
U due to 
CTE B U-shape 3.91 3.91 3.91 

    
Combined 
Uncertainty,Uc 6.96 6.10 5.92 

    
Expanded 
Uncertainty, 13.93 12.21 11.85 

 

6.3 Comparison between test U, calibration and task specific U 

To understand test uncertainty clearly, it is compared with the calibration and task 

specific uncertainty from two points of view. The first aspect is the measurand. It is 

known, there are different kinds of measurands for different kinds of measurement 

processes. Consequently the Uncertainty will be different also. A clear description of 

different kinds of Uncertainty associated with different kinds of measurands is explained 

in TABLE 16. Here one new term, calibration uncertainty, is introduced. It can be 

explained from S.D Phillips et al paper where it  states, “The relationship between the 

measured or indicated values and those of the reference values is a key issue with regards 

to calibration…all calibration must include the statement about the accuracy of the 
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instrument or artifact as required by traceability.” This can be interpreted to mean 

calibration uncertainty, in this discussion. Any calibration result showing the error or the 

deviation of the measurand with respect to the reference value and uncertainty associated 

with this error can be named as calibration uncertainty.  The second aspect of comparison 

is with respect to contributors of uncertainty which are shown in TABLE 17. 

TABLE 16: Measurand for different kinds of uncertainty  

Measurand / Quantity Activity Uncertainty Rule
s 

Some characteristic 
of the work piece 

Measuring a work piece to conform 
to specific value or tolerance 

Task specific 
Uncertainty TUR 

The length of the 
artifact 

Calibrating the material standard 
size. (diameter of a Sphere), length 
of a gage block etc. 

Calibration 
Uncertainty TUR 

The error of  the 
instrument (E-value) 

Calibrating an instrument Test 
Uncertainty Cm 

 

TABLE 17: Uncertainty contributors for different kinds of uncertainty 

Contributor 
Task Specific 
Uncertainty 

Calibration 
Uncertainty 

Test Uncertainty 

Environment 
1)Temperature 
 
 
 
 
2)Work Piece  
 

 
1) If instrument 
does not 
compensate with 
temperature it has 
effect on TSU 
 
2) The temperature 
difference between 
W/P and room 
temp. 

 
1) Measurement of 
instrument scale 
temperature-like 
temperature diff., 
average temp. 
2) The temperature 
difference between 
W/P and room 
temp. 

 
1) Any error 
introduced by the 
instrument is not 
the part of TU,  
2)  If artifact is 
compensate with 
temperature of  
instrument, then it 
is  part of  
instrument, not 
include in TU 

Reference 
element of 
measurement 
equipment 

Resolution of the 
main scale 
(analogue or digital) 

Scale error of the 
micrometer  

Does not apply  

( Part of the 
instrument) 



85 

TABLE 17 (continued) 

Measurement 
equipment 

Zero-point stability 
Parallaxes 

Zero point error, 
Parallelism of anvils 
 

Does not apply ( 
Part of the 
instrument) 
 

Measurement 
setup (Probe 
selection, tip size 
etc.) 
 

Form deviation of 
tip, 
offset, extension 

Usually optimized 
or specified 

Usually specified 
by std. 
Poor setup may 
influence TU. 
 

Software and 
calculations  

Rounding, 
SamplingAlgorithms, 
Quantification 

Well defined in the 
standard, may be 
eliminated 

Well defined in 
the standard, may 
be eliminated 

Metrologist Experience, training, 
knowledge  

Reproducibility Reproducibility 

Measurement 
object , work 
piece or 
measuring 
instrument 
characteristics 

Surface roughness, 
form deviation of the 
w/p 

Form error of gage 
block, 

uncertainty of the 
length of gage block 

Form error of 
artifact, 

uncertainty for 
the length of 
artifact 

Definition of the 
GPS 
Characteristic, 
w/p or measuring 
instrument 
characteristic 

Datum, reference 
system 

Datum, reference 
system 

Datum, 
Coordinate 
system 

Measuring 
procedure 

Alignment, 
Clamping fixturing, 
Number of 
measurement etc. 
example: Due to the 
measurement process 
of  w/p like 
repeatability 

 Physical and 
software alignment, 
Clamping fixturing, 
number of 
measurement etc. 
example: Due to the 
measurement 
process of  gauge 
block like 
repeatability 

Alignment, 
Clamping 
fixturing, number 
of measurement 
etc. example: 
Instrument 
repeatability error 
is not the part of 
TU, but the 
repeatability error 
for tester is the 
part of TU. 
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6.4 Comparison of CMM testing data 

Three different methods have been used to compare the results for CMM testing. These 

are  

1. Simulation using PUNDITTM  

2.   Actual testing to ISO 10360-2 

3.   Calculation using ISO TS 23165 

These experiments were done by the instruction of ISO10360-2. It is mentioned, in 

this standard for CMM testing, which is necessary to find the error of indication for size 

measurement (E- value).  This value should not exceed the maximum permissible error, 

MPEE, as stated by the manufacturer. FIGURE 35  and   FIGURE 36  are shown the 

experimental set up for this test. 

 

FIGURE 35: E-test [21] 
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FIGURE 36: E-test [10360-2] 

6.4.1 Simulation using PUNDIT  

To evaluate uncertainty of the CMM, different simulations have been done by 

using PUNDIT. It is useful because it gives an estimation of the uncertainty before the 

actual testing. The blocks (as defined in the ISO standard) were modeled in PUNDIT 

which is shown in FIGURE 37. 

 

FIGURE 37: Artifact with 5 test lengths (as used in ISO testing) 

There were two sampling methods used in the simulation which are shown in 

FIGURE 38  and FIGURE 39. Initially four numbers of points were taken on each side 
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shown in FIGURE 38 . In the second measurement plan one point was taken on each side 

in the middle of the plane shown in FIGURE 39. 

               

FIGURE 38: Initial measurement schemes 

 

 

FIGURE 39: Single point probing scheme 
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Test Length = 50mm 

4 points/end:  U = .00106mm            1 point/end:  U = .00228mm 
FIGURE 40: Simulation results (1) 

Test results for the top block with test length 50 mm are shown in FIGURE 40. It 

is found from the results that the uncertainty for 4 points is giving lower uncertainty than 

the 1 point case. Test results for the longest block with test length 550 mm are shown in 

FIGURE 41. It is found from the results that the uncertainty for the 4 point and the 1 

point data do not differ significantly. This may be due to the long length of the block. For 

the comparison with other methods the largest value of the uncertainty was taken from all 

of these results. 
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Test Length = 550mm 

4 points/end:  U = .00586mm     1 point/end:  U = .00563mm 
FIGURE 41: Simulation results (2) 

 Practical experiments have been done for CMM testing in 20 different positions to 

find the E-value, shown in FIGURE 42. Some experimental set ups are shown in  

FIGURE 43 and FIGURE 44 . The offset probe schematic and set up, mentioned in the 

standard for CMM testing are shown in FIGURE 45 and FIGURE 46. 
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FIGURE 42: different positions [B89.4.] 
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FIGURE 43: Y-linear 

 

 

 

FIGURE 44: Diagonal position 

 

 

 



93 

 

FIGURE 45: Schematic of offset length test 

 

FIGURE 46: Off set probe 
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6.4.2 Experiment results 

 Experiments were done two times. The experimental results are shown in 

FIGURE 47, FIGURE 48, FIGURE 49. Measurement round 1 is represented by the 

diamond shape and round 2 by the rectangle shape. The results for X-linear (measured 

parallel to X-axis) from FIGURE 47 are 0.00027 mm (round 1) and 0.00031 mm (round 

2), for diagonal (measured diagonally to the CMM axes) from FIGURE 48 FIGURE 48 

are 0.00165mm (round 1) and 0.0017 mm (round2), and for the offset probe test from 

FIGURE 49 is 0.0035mm (round 1 and round 2). The maximum error (E-value) from all 

of this is 0.0035 mm. 

 

 

 

 

 

 

 

 

FIGURE 47: Results: X-axis Linear 
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FIGURE 48: Results: Diagonal measurement 

 

 

 

 

 

 

FIGURE 49: Results:  Offset Probe Test 

6.4.3 Test Uncertainty Calculation from ISO/TS 23165 

The recommended equation for the standard uncertainty of the error is 

 U (E) =√ u2 (εcal) + u2 (εα) + u2 (εt) + u2 (εalign) + u2 (εfixt) 

εcal      Is the calibration of the material standard of size  
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εα      Is the error due to in the input value of the CTE  α of the material standard of size  

εt       Is the errors due to in the input value of the temperature of the material standard of 

size 

εalign  Is the errors due to misalignment of the material standard of size 

εfixt     Is errors due to fixturing the material standard of size 

Assuming some realistic values which are for all these parameters given in 

APPENDIX C and using in the above equation the value of uncertainty,  

U (E) =.000112mm.  

Results from three methods are shown in TABLE 18.     

TABLE 18: Uncertainty from three methods 

 

  

 

 

From the results, it is found that the uncertainty value when calculating by using 

the ISO/TS 23165 equation is smaller than the actual (ISO 10360-2) and the PUNDIT 

result. It is expected that the theoretical results should be smaller than the practical results 

because many uncertainty contributors are not present there. In actual testing, the 

environment was carefully maintained as specified by the manufacturer, but in the case of 

PUNDIT, some error may have been introduced which influenced the result. The test 

uncertainty value could not be found directly from these results. These results are the 

standard uncertainty which includes all the sources of uncertainty like tester, instrument, 

and artifact. 

Simulation using 
PUNDITTM 

Actual testing to ISO 
10360-2 

Calculation using 
ISO TS 23165 

.00563mm .0035mm .000539mm 
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6.5 Ball bar test 

 Two different methods have been used to find the volumetric performance of 

CMM.    

1. Actual testing to B89.4 

2.  Simulation using PUNDITTM 

3.   Calculation using ISO TS 23165 

6.5.1 Actual testing by following B89.4 

Actual tests have been done to find the volumetric performance of the CMM 

followed by standard B89.4. Four positions of experimental setups out of 20 total 

different positions (FIGURE 42) are shown in FIGURE 50.  
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FIGURE 50: Experimental set up 

Ball bar test results 

 The results of ball bar test are shown in FIGURE 51. The working tolerance is 13 

um. This result includes uncertainty from all sources (CMM, tester, ball bar, and 

environment) of this experiment. Here test uncertainty could not be found directly. 
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FIGURE 51: Ball bar test result 

Ball bar test by using PUNDIT software  

Simulations have been done by using the software PUNDIT to find the volumetric 

performance of the CMM. All of the inputs like environmental condition, CMM 

specification, ball bar’s specification, and other factors reflected the actual experiment. 

The ball bar model and four positions from the 20 different positions of the volumetric 

performance test are shown in FIGURE 52 and FIGURE 53. 
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FIGURE 53: Ball bar set up by PUNDIT 
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One simulation result is shown in FIGURE 54. The standard deviation and mean can be 

found from these results.  

 

FIGURE 54: Simulation result 

The maximum working tolerance was calculated using PUNDIT results in 

MATLAB. In MATLAB random numbers were added to the standard deviations found 

from PUNDIT. These data were added with the mean found from PUNDIT and the range 

was calculated. The result for the range was 7.856 were µm. Calculation using ISO TS 

23165 are discussed in APPENDIX C.    

TABLE 19: Comparison of ball bar test result from three methods 

   

 

 

 

Simulation 
using 
PUNDITTM 

Actual testing to B89.4 Calculation using 
ISO TS 23165 

7.856um 13um  0.202 um 
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The simulation result is giving a smaller value than the actual test as expected. In 

the simulation, the 20 positions of the ball bar were theoretically perfect, whereas in the 

actual test they were not. Practical experiment involves more uncertainty contributors 

than simulation. Consequently actual test results were larger than PUNDIT results. 

6.5.2 Ball bar test results with time 

 The ball bar test results are shown in FIGURE 55. The tester’s performance with 

respect to time is improved; consequently it influences the test result. So the test 

uncertainty result in every test may be changed depending on the tester’s capacity to 

perform the test. It is shown in FIGURE 56. 

 

FIGURE 55: Test results improving with time 
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FIGURE 56: Test uncertainty value decreasing with time 

6.5.3 Probe test 

 This test was done to find the probe error of the instrument. The probe is part of 

the CMM; any error from the probe indicates CMM error. FIGURE 57 and FIGURE 58 

show the experimental set up for this test. 

 

FIGURE 57: “P” Test 
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FIGURE 58: Experimental set up for probe test 
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FIGURE 59: Target contact points [ISO10360-5] 

The probe tests have been done for five different locations, shown in FIGURE 58.  

The probe test results for two different probes lengths, 20mm and 50 mm are shown in 

TABLE 20.  
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TABLE 20: Probe test results 

Location  Probe with 20mm. 
length (μm)  

Probe with 50mm. 
length (μm)  

1 3 5 

2 3 5 

3 3 5 

4 3 6 

5 4 6 

 

From the above results, it is found for the probe with 20mm length (which probe 

was using in this experiment) the maximum error value is 4 um. The probe is part of the 

CMM; error from the probe should not be included in the contributors of test uncertainty. 

The working tolerance from the ball bar test was 13 um, which includes the probe error 

of 4µm. From the above table it is found, that the probe error for the 50mm length probe 

is 6 µm. Result may vary using different probes. The probe test was done to give a 

demonstration of what error may be introduced from the instrument itself. 
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6.6 Conclusion 

  To calibrate measuring equipment like the CMM, certainly the tester's proficiency 

will have a large influence on the results. Different operators will yield different test 

results. If the tester is experienced or well trained, the test uncertainty result will be better 

(smaller) compared to that of an inexperienced tester. When doing experimental 

determination and verification, test uncertainty exist in the test, it is difficult to remove 

test uncertainty from the test.  



 
 
 
 
 

CHAPTER 7: CONCLUSIONS AND FUTURE WORK 
 
 
 This chapter reviews the objectives, summarizes the conclusions, and looks at 

extensions for future work. One of the goals of this project was to develop a guideline 

on how to use TUR in industry to find the measurement capability of measuring tools 

and end products. This work was supported by an opportunity to do internship at 

INTEL.  During this internship, one main task was to implement TUR and compare 

their own metrics to find the measurement capability of the measuring tools. These were 

first compared with the three reference tools: Wyko (Scanning White Light 

Interferometer, or SWLI), Zygo (SWLI) & Keyence (Confocal). For this comparisons 

was necessary to create a "pseudo-bump" standard, as no standards exist for that 

measurement. Second comparison was between the high volume measurement (HVM) 

tools Solvision (Moiré fringe projection), Nikon (Confocal), ICOS (Confocal) which are 

used for the measurement of the end products. It is found that both for the reference and 

HVM tools, TUR and INTEL metric gave the same results for the measurement 

capability of the metrology tools individually and also the capability between them. So 

TUR was successfully implemented to find the measurement capability of metrology 

tools. For TUR used in measuring end products different dimensions like length, true 

position of the hole, and diameter, could also be implemented as different experiments, 

simulations were done in this research by using different sampling and it could 

successfully find theses arrtibutes. So TUR is ready for use in the industry; they only 
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need the measurement tool and the software or expertise to find the task specific 

uncertainty. 

 Test uncertainty is a new concept in the field of dimensional measurement. It is 

helpful in understanding instrument test criteria, for determining the confidence in 

machine conformance in the buying and selling measurement equipment, and in the 

calibration of this equipment. This research developed concepts to explain how it is 

different than the other uncertainty, and how one can calculate it. For this purpose many 

experiments have been done with micrometer and CMM. These experimental results 

were used to clarify when one instrument is tested, which factors influence the results. 

The tester who is performing the test was shown to often have the greatest influence on 

the test, and next the artifact or equipment that is using for this testing. The 

specification is also very important for this testing. It should be testers’ responsibility to 

maintain the conditions of the test. The development of these concepts was found from 

this research. 

7.1 Future work 

 There are two additional subject areas open to further work, and hopefully there 

will be progress in these areas, with the help of the experts in the standards community. 

The first project is to find meaningful and consistent language to describe this quantity 

(referred to here as test uncertainty) and to standardize a consistent vocabulary relating 

to uncertainty in the instrument testing and calibration process. This is not an easy task, 

because a scan of literature in testing and metrology will reveal that all of the words 

related to testing, calibration, and uncertainty have been used more than once, and often 

in conflicting ways. The second area, to extend the current research is in overcoming 
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barriers to the experimental evaluation of test uncertainty. It initially seems that simply 

running some of the classic CMM acceptance tests (ball bar, step gage, etc.) would 

reveal different errors when measured at different times, perhaps by different operators. 

The problem with this method is that the actual CMM performance and repeatability is 

always folded into the result, which can easily mask the actual effects of test 

uncertainty. It may be that the best (or only) method to perform this analysis of test 

uncertainty is through software simulation, where one contributor at a time can be 

varied. 
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APPENDIX A: MATLAB CODE 
 
 
Size tolerance program code 
clc;  
clear all 
format long 
numloops=100;                             % number of loops 
numofpoints=30;                           % number of points on lines 
sigma=.001; 
[PTS1, PTS2]=generatept (numofpoints,sigma); %generate points on line 
 for i=1:numloops                         % for loop starts                               
[L1,P1]=generateline(PTS1,sigma);                   
PT1= projptline(L1,P1); 
[L2,P2]=generateline(PTS2,sigma); 
D1= ptlinedist(PT1,L2); 
d(i,1) = D1(:,1);  
 end  
std_dev_distance= [std(d(:,1))] 
 
% Function to generate Line 
function [PtsOnline,avgpt]=generateline(data1,sigma)                                           
 szdt1=length(data1); 
 data2 = data1+sigma*randn(szdt1,2);   % Generate line with random numbers 
 A=[ones(szdt1,1), data2(:,1)]; 
 ATA=A'*A;                                                    
 B=data2(:,2); 
 ATB=A'*B;                                                    
 line=(inv(ATA))*ATB;                  % Generate line 
 m1=length(data1);                                      
 avgpt=(sum(data2))/m1;                % Average point 
 PtsOnline=[line(2),-1,line(1)];       % generate point 
function [pts1,pts2]=generatept(numofpoints,sigma) 
length=100; 
intpt=10; 
for i=1:numofpoints 
    genpt(i,1)=intpt; 
    intpt=intpt+(length-20)/(numofpoints-1);       
end  
pts1=[genpt,zeros(30,1)]; 
pts2=[genpt]; 
pts2(:,2)=100; 
 
%  Function Projected Point 
function  projectedpt=projptline(L1,P1)                             
m1=L1(1); 
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a=m1; 
b=L1(2); 
c1=L1(3);  
 if (a==0)      
    c2=avgpt(1); 
    projpt=[c2;c1];  
 elseif (b==0) 
    c1=-c1/m1; 
    c2=avgpt(2); 
    projpt=[c1;c2]; 
 else 
    m2=-1/m1; 
    c2=-m2*P1(1)+P1(2); 
    M=[-m1,1;-m2,1]; 
    Intersecpt=[c1;c2]; 
    projpt=(inv(M))*(Intersecpt);          
 end 
 projectedpt=[projpt(1),projpt(2)];  
 
% Line to point distance 
function  distance=ptlinedist(PT1,L2)  
 a=L2(1); 
 b=L2(2); 
 c=L2(3); 
 x=PT1(1); 
 y=PT1(2); 
 q=sqrt((power(a,2))+(power(b,2))); 
 distance=(abs(a*x+b*y+c))/q; 
 
Position tolerance program 
clear all 
format long   
numloops=2; 
numofpoints=6; 
sigma=.001; 
ptsdatumA=[10,0;90,0]; 
ptsdatumB=[0,10;0,90]; 
for k=1:numloops                                              
[CM1]=Generate_datum(ptsdatumA,sigma); 
[CM2]=Generate_datum(ptsdatumB,sigma); 
[Er]=Deviationpoints(CM1,CM2); 
[XY]=Generate_circle_points(numofpoints,sigma); 
[RT]= Translaterotate(CM1,XY,Er); 
P1= circle_for_TUR(XY);   
p(k,1)=P1(:,1); 
end 
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std_dev_position=[std(p(:,1))] 
% Generate Datums 
function datum = Generate_datum(data1,sigma) 
 szdt1=length(data1); 
 data2 = data1+sigma*randn(szdt1,2); 
 A=[ones(szdt1,1), data2(:,1)];  
 ATA=A'*A;                                                    
 B=data2(:,2); 
 ATB=A'*B;                    
% Generate circle points  
function data2 = generate_circle_point(pnts,sigma) 
angle=0; 
for i=1:pnts 
    theta(i,1)=angle; 
    angle=angle+(360/pnts);    
end 
r=10;  
szpt=length(theta); 
Int_X=60+r*cosd(theta);                               
Int_Y=60+r*sind(theta);  
data1=[Int_X,Int_Y]; 
data2=data1+sigma*randn(szpt,2); 
 
% Deviation 
function deviation=Deviationpoints(CM1,CM2) 
  
c1=CM1(1);                                         % Intersection point of datumB 
m1=CM1(2);                                         %slope of datumB 
c2= CM2(1);                                        %inresection point  of datumC 
m2= CM2(2);                                        %slope of datumC 
E=[-m1,1;-m2,1];                                  %matrix with the slope 
F=[c1;c2];                                              %matrix with intersection points 
deviation=(inv(E))*(F);                          %find the X coordinate and Y coordinate of 
error                                  
%Translate rotate the datums 
function rot_trans=Translaterotate(CM1,XY,Er) 
m1=CM1(2); 
ang=atand(m1);                                                     %angle of datum B 
rot_theta=ang;                                                        %make it theta 
Position_Old=[XY(:,1),XY(:,2)];                         % make matrix with the old points 
error=Er';                                                                 %transpose the position oferror 
translation(:,1)=Position_Old(:,1)+error(:,1);          %making translation of x points 
translation(:,2)=Position_Old(:,2)+error(:,2);          %making translation of y points 
translation';                                                               %transpose of translation 
rotation=[cosd(rot_theta),sind(rot_theta); -sind(rot_theta) cosd(rot_theta)]; %Rotation 
matrix 
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rot_trans=[cosd(rot_theta),-sind(rot_theta);sind(rot_theta) cosd(rot_theta)]*translation'; 
 
 
% Generate Circle 
function  positiontol=circle_for_TUR(XY)                                    
 m=length(XY);                                      
avgpt=(sum(XY))/m;  
ptsX1=avgpt(:,1); 
ptsY1=avgpt(:,2); 
X1=XY(:,1); 
Y1=XY(:,2); 
flag1 =3;                                                   %to excute while loop 
 j=1;                                                          %to execute condition for the shift of the result 
  while  flag1>2 
     if(j~=1) 
         ptsX1=centerX1;                           %get the new value of pts of x coordinate 
         ptsY1=centerY1;                           %get the new value of pts of y coordinate 
      end       
      j=j+1;     
       for i=1:m 
          sfptsX1(i,1)=X1(i,1)-ptsX1;             %shift the points of x coordinate 
          sfptsY1(i,1)=Y1(i,1)-ptsY1;             %shift the points of y coordinate     
       end  
[theta1,r1]=cart2pol(sfptsX1,sfptsY1);            %change cartisian to polar 
 ct=cos(theta1);                                              %Column of cosine values     
 st=sin(theta1);                                           %column of sin values 
ATA1=[sum((ct).*(ct)) sum((st).*(ct)) sum(ct); 
     sum((st).*(ct)) sum((st).*(st)) sum(st); 
      sum(ct) sum(st) m];                                            %find the matrix A transpose A 
ATB1=[sum(r1.*(ct));sum(r1.*(st));sum(r1)];        %find the matrix A transpose B 
result1=(inv(ATA1))*ATB1;                                    % find the result 
X1not=result1(1,1);                                                  %x coordinate of the result 
Y1not=result1(2,1);                                                 %y coordinate of the result  
R1=result1(3,1);                                                     %radius of the result 
 
centerX1=X1not+ptsX1 ;                  
%shifting the x coordinate points of the center 
centerY1=Y1not+ptsY1;                                     %shifting the y coordinate points of the 
center  
  D1=2*R1; 
   
if (abs(centerX1-ptsX1))<1e-12&& (abs(centerY1-ptsY1))<1e-12    
   flag1=1;                                                                %condition to terminate the  end      
  end   
 
   positiontol=2*(sqrt((power((centerX1-60),2))+(power((centerY1-60),2)))); 



118 

APPENDIX B: UNCERTAINTY CALCULATION 
 
 
Methods of evaluating the sources of uncertainty 

The sources of uncertainty are evaluated through two methods: 

Type A - Those evaluated by statistical methods. 

Gage Repeatability & Reproducibility. 

Type B - those evaluated by other means:  

Manufactures specs, previous measurement data, general knowledge, calibration 

uncertainties, and “Engineering Judgments”. 

Type A: 

Repeatability 

Surface finish, form 

Operator skill 

Type B: 

Gage Block Uncertainty 

Scale error of the micrometer 

Zero point error of the micrometer 

Parallelism of micrometer anvils 

Delta temperature 

Temperature of CTE (coefficient of thermal expansion) 

Standard Uncertainty Distribution Type 

Normal Distribution 
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Rectangular Distribution 

 

 

 

 

     

 

.58
3

as a= =
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Sources Type of distribution 
Gage Block Uncertainty 

 
Square 

Repeatability 
 

Normal 

Scale error Square 
Zero point error Square 
Parallelism of 

micrometer anvils 
 

Square 
 

Delta temperature 
 

U-Shape 

Temperature of CTE U-shape 
 

Gage block uncertainty- 

 The gage block uncertainty was reported as 4 µin with a confidence level of 
95% [1]. 

  u1 = 4 µin x .58 = 2.32 µin 

Repeatability 

A repeatability reading was performed on the micrometers by performing 20 repeated 

measurements in a controlled environment against a gage block.  The resulting 

repeatability  

  u2 = .29 µin [from data] 

Scale error 

 Manufacturer’s specifications state the maximum allowable error is +/- 2 µin 

A square distribution is assumed where a = 2 µin 

 u3 = 2 µm x .58 = 1.16 µin 

 

Zero point error 

.71
2

as a= =
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 Assuming manufacturer’s specifications state the maximum allowable zero point 

error is +/- 2 µin. A square distribution is assumed where a = 2 µin 

u4 = 2 µin x .58 = 1.16 µin 

Parallelism of micrometer anvil 

 Manufacturer’s specifications state the maximum allowable parallelism error is   10µin 

 A square distribution of the influence of the parallelism error is assumed where a = 5 
µin 

u5 = 5 µin x .58 =2.9 µin 

Expansion due to temperature difference between gage block and micrometer 

       Δ L = ∝ x  Δ T  x L        

Assume, Δ T=0.5 oC, ∝=11.5ppm/ oC 

  Δ L=11.5ppm/ oC *0.5 oC*1in 

       = 5.75 µin 

u6 = 5.75 µin x .71 = 4.0825 µin 

Uncertainty due to CTE 

 Δ L = Δ ∝ x  Δ T  x L        

Assume, Δ ∝ =15%∝ 

          =15%*11.5ppm/ oC 

         =1.725 ppm/oC 

Troom=73.8 oF = 23.2 oC 

Δ L = 1.725 ppm/oC*(23.2-20) oC*1in 

                    = 5.52 µin 

              u7 = 5.52 µin x .71 = 3.91 µin 

Combined Uncertainty 

  uc=  √ u1
2+ u2

2 + u3
2  + u4

2  +……… 

  uc = 6.96 

 Standard Uncertainty, U=K uc 
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  Assume, coverage factor K=2, 

    U=2*6.96 

                            =13.93 
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APPENDIX C: TEST UNCERTAINTY CALCULATION 
 
 
Test Uncertainty Calculation from ISO/TS 23165 

The recommended equation for the standard uncertainty of the error is 

 U (E) =√ u2 (εcal) + u2 (εα) + u2 (εt) + u2 (εalign) + u2 (εfixt) 

Calculation for ISO 10360-2 

Assuming, 

 u (εcal) = 0.5 µm. 

u (εα) = 1ppm/oC x .1 oC x.3m = .03 µm 

u (εt)= .1 x (10-8) ppm/oC x1= .2 µm 

u (εalign)=0 

u (εfixt)=0 

U (E)= 0.539 µm 

Calculation for ISO 10360-2 

Assuming, 

 u (εcal) = 0µm. 

u (εα) = 1ppm/oC x .1 oC x.3m = .03 µm 

u (εt)= .1 x (10-8) ppm/oC x1= .2 µm 

u (εalign)=May present, here assuming 0. 

u (εfixt)=0 

U (E)= 0.202 µm 
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