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ABSTRACT 

YANGQI SU. Understanding Transcriptional Responses to Environmental and 
Developmental Cues in Model Organisms Using Full-Length Single Cell RNA-Seq 

(Under the direction of DR. ZHENGCHANG SU) 
 

Recent advancements in single-cell RNA sequencing have revolutionized our 

understanding of gene expression regulation under various biological contexts, providing 

higher resolution and system-level insights compared to traditional bulk RNA sequencing 

methods. In this dissertation, we utilize single cell RNA-seq (scRNA-seq) along with 

various statistical tools to unveil the transcriptomic landscape of four model organisms 

during development and under different stress conditions. First, we sequenced yeast cells 

under three stress treatments (hypotonic condition, glucose starvation and amino acid 

starvation) using a full-length single-cell RNA-Seq method. We found that although single 

cells from the same treatment showed varying degrees of uniformity, technical noise and 

batch effects can confound results significantly. However, upon careful selection of 

samples to reduce technical artifacts and account for batch-effects, we were able to capture 

distinct transcriptomic signatures for different stress conditions as well as identify putative 

regulatory relationships between transcription factors and target genes. Our results show 

that a full-length single-cell based transcriptomic analysis provide a clearer picture of yeast 

stress response over bulk cell population-based transcriptomic methods.  

Second, we present a transcriptomic level analysis of oogenesis in C. elegans 

hermaphrodites. We dissected a hermaphrodite gonad into seven sections corresponding to 

the mitotic distal region, the pachytene, the diplotene, the early diakinesis region and the 3 

most proximal oocytes, and deeply sequenced the transcriptome of each of them along with 
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that of the fertilized egg using a single-cell RNA-seq protocol. We identified specific gene 

expression events as well as gene splicing events in finer detail along the oocyte germline 

and provided novel insights into underlying mechanisms of oogenesis. Through careful 

review of relevant research literature coupled with patterns observed in our analysis, we 

attempt to delineate transcripts that may serve functions in the interaction between the 

germline and cells of the somatic gonad. These results expand our knowledge of the 

transcriptomic space of the C. elegans germline and lay a foundation on which future 

studies of the germline can be based upon. Lastly, we profiled mature oocytes and 1-cell 

zygotes of mice and rats to uncover elusive transcriptomic dynamics in the maternal to 

zygote transition. We confirm the existence of early gene expression in the mouse zygotic 

while revealing a similar chain of events occurring in the rat zygote. We observe an 

increase in nascent transcription in both species. Moreover, we find subtle but pervasive 

signals of differential splicing of genes related to key early zygotic activities occurring in 

both species. Meanwhile, we find distinct profiles of alternative polyadenylation between 

zygotes and oocytes in both species, specifically in genes related to major processes within 

the zygote. Finally, although a more dynamic transcriptomic landscape exists in the mice 

zygote, the rat zygote also displays similar transcriptomic features, suggesting that minor 

zygotic activation in rat occurs earlier than originally thought. 
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CHAPTER 1 INTRODUCTION 

 The various characteristics of single cells have been studied extensively through a 

combination of cell isolation, high throughput multiplexing, amplification, and next 

generation sequencing, leading to an explosion of techniques to quantify the heterogeneous 

gene expression, genomic alterations, epigenomic modifications, and proteomic 

fluctuations of single cells (Buenrostro et al., 2015; Kolodziejczyk, Kim, Svensson, 

Marioni, & Teichmann, 2015; Shalek et al., 2013). In the forefront of these advancements 

is single cell RNA sequencing (scRNA-seq). The rapid development of high throughput 

RNA-seq technology has provided a better platform than microarray to study the 

transcriptomic profiles of cells, providing researchers the opportunity to quantify gene 

expression genome-wide in a single assay with higher resolution, better dynamic range, 

and lower technical variation. However, bulk RNA-seq, which pools together hundreds of 

thousands of or more cells, masks the hidden variations and intricacies that occur at the 

single cell level. scRNA-seq overcome these limitations, thereby revealing transcriptional 

mechanisms of cell differentiation, fate plasticity, and disease (Haque, Engel, Teichmann, 

& Lonnberg, 2017).  

Various scRNA-seq protocols have been developed in the past decade, each with 

its strength and weaknesses. Roughly, the methodologies can be divided based on 

sequencing the full length or just the 3’-end of the transcripts (Lieberman et al., 2021). 

Earlier methods such as SMART-seq and SMART-seq2 utilizes the full transcript and 

focuses on detecting as many transcripts as possible (Picelli, Bjorklund, et al., 2013; Picelli 

et al., 2014). However, these protocols rely on relative measurements that might affect the 
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accuracy and precision of downstream analysis. Furthermore, the manual preparation of 

samples is limited for scalability and often introduces significant technical variation. Later 

methods such as Drop-seq and Chromium 10x only sequence the 3’-ends of transcripts and 

incorporate UMIs to reduce amplification bias and improve cell capture efficiency using 

microfluidics methods (Hashimshony, Wagner, Sher, & Yanai, 2012; Macosko et al., 2015; 

Zheng et al., 2017). These newer methods can capture tens to hundreds of thousands of 

cells at once with low technical variation, providing an opportunity to characterize all the 

cells of an organism. On the other hand, they suffer from lowered gene detection rates as 

well as the inability to identify alternative splicing and novel isoforms.  

Although there is a prevalence of high sample/cell throughput sequencing in recent 

single cell studies, full-length based sequencing enables capturing of many more aspects 

of the transcriptome than 3’end methodologies. In addition to higher reads per sample/cell, 

which translates to more genes detected per sample/cell, full-length methods allow for the 

quantification of allelic specific expression, alternative splicing, poly-adenylation, etc. The 

high degree of read coverage in full-length scRNA-seq data have been shown to resemble 

bulk RNA-seq data (X. Wang, He, Zhang, Ren, & Zhang, 2021).  

In chapter 1 of this dissertation, we used full-length scRNA-seq techniques to better 

understand transcriptional responses to environmental cues in yeast cells and to 

developmental cues in C. elegans germline as well as during the formation of zygotes of C. 

elegans, mice and rats. We show that analysis methodologies developed for bulk RNA-seq 

data perform well for scRNA-seq data. The high depths of sequencing in most of our 
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samples along with the usage of full-length protocols allow us to have a detailed and 

meaningful look into various biological mechanisms.  

In chapter 2, we utilize scRNA-seq to study the stress response of yeast. The yeast 

stress response has been a topic of study in the past, and while there have been a plethora 

of microarray and proteomics-based research in this area, scRNA-seq provides us with a 

new way to obtain possible novel insights. Specifically, scRNA-seq has allowed us to shed 

new light on how yeast responds to glucose starvation, amino acid starvation and hypo-

osmotic shock with scRNA-seq. 

In chapter 3, we attempt to delineate the mechanism of oogenesis and fertilization 

in C. elegans using scRNA-seq. By dissecting the gonads of adult C. elegans 

hermaphrodites in to predefined sections, we collect and sequence cells along each section 

of the gonad, allowing us to take a close examination of oocyte maturation until zygote 

formation. Here, we used scRNA-seq to find new markers and novel transcriptional 

regulatory mechanisms underlying oogenesis and oocyte to zygote transition in C. elegans 

In chapter 4, we collect and perform scRNA-seq in mature oocytes and zygotes 

from mice and rats to determine what transcriptome changes occur during oocyte 

fertilization. Through differential expression analysis we characterize relevant 

transcriptional markers of maternal to zygote transition (MZT). Furthermore, we find 

splicing and polyadenylation changes that may contribute to the transition process. 

Finally, we identify orthologous genes between rats and mice to find common and 

different mechanisms that underly MZT. 
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CHAPTER 2 TRANSCRIPTOMIC CHANGES IN SINGLE YEAST CELLS UNDER 

VARIOUS STRESS 

2.1 Background 

The ability to adapt to a changing environment is crucial to survival of individual 

cells, and this is even more evident for single celled organisms  (Causton et al., 2001; Gasch 

et al., 2000; Price et al., 2001). A rapid change in a cell’s surrounding induces stress, which 

requires the cell to activate complex mechanisms of sensing and signal transduction to 

adapt (Bahn et al., 2007; Rodriguez, Snoek, De Bono, & Kammenga, 2013; Zaman, 

Lippman, Zhao, & Broach, 2008). Such mechanisms eventually lead to the expression of 

genes and proteins, which can often be specific to the type of stress encountered. At the 

same time, organisms also develop general responses regardless of the type of stress 

encountered to better deal with a constantly changing environment (Gasch & Werner-

Washburne, 2002). The study of stress response in various organisms has led to a better 

understanding of some of the fundamental aspects of cellular biology (Gasch et al., 2000; 

Girardot, Monnier, & Tricoire, 2004; Price et al., 2001; Rodriguez et al., 2013). 

One such model organism that has been studied extensively is the budding yeast 

Saccharomyces cerevisiae. The budding yeast is a single-cell organism that faces a 

constantly changing environment when living freely in nature, often having to deal with 

multiple types of stress at the same time. For many decades, the responses of budding yeast 

to different environmental perturbations have been studied systematically on different 

levels, leading to the discovery and understanding of many pathways of the 

organism(Causton et al., 2001; Gasch et al., 2000; Stefan Hohmann & Mager, 2007; 
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Morano, Grant, & Moye-Rowley, 2012). However, while yeast may be the most well-

studied eukaryotic organism, we are still far from being able to completely model this 

organism’s response to stress. The advent of microarray technology meant simultaneous 

profiling of thousands of genes of yeast was possible (Lashkari et al., 1997). These 

developments led to the early analysis of the transcriptomic responses of yeast to different 

environmental changes, resulting in the discovery of a set of roughly 900 genes, termed the 

yeast environmental stress response (ESR) genes, which were activated as a general 

response to multiple types of stress (Gasch et al., 2000). Up-regulated ESR genes were 

found to be regulated by transcription factors (TFs) Msn2p and Msn4p and related directly 

to mitigation of stress, while down-regulated ESR genes were found to be involved in 

ribosomal biogenesis and protein synthesis (Causton et al., 2001; Martinez-Pastor et al., 

1996; Schmitt & McEntee, 1996). This general response was thought to be crucial for the 

survival of yeast cells in preparation for changes in the environment (Gasch et al., 2000).  

The yeast response to amino-acid starvation has been shown to be mediated through 

the general amino acid control (GAAC) pathway (Natarajan et al., 2001), and more 

specifically through the TF Gcn4p and protein kinase Gcn2p. Gcn2p phosphorylates 

translation initiation factor Eif2p, thus inhibiting overall translation rates (Dever et al., 

1992). Though the abundance of Gcn4p is controlled at the translational level, 

phosphorylation of Eif2p increases the level of Gcn4p via a mechanism involving delayed 

ribosomal re-initiation and inhibitory upstream ORFs in the 5’ region of the GCN4 gene 

(Hinnebusch, 1997), thereby Gcn4p activates the promoters of genes that harbor a GCN 

response element (Arndt & Fink, 1986). Early transcriptomic studies showed that amino-
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acid starvation down-regulated genes related to growth and ribosome biogenesis, while 

upregulating genes involved in amino-acid biosynthesis, cellular redox reaction, 

carbohydrate metabolism, cell wall modification, protein folding and degradation, DNA 

damage repair, fatty acid metabolism, metabolite transport, and autophagy(M. H. Jia et al., 

2000). 

The yeast has also been studied extensively for responses to changes in carbon 

sources (16-19). Though yeast prefers glucose as a carbon source during fermentative 

growth, it also can utilize other carbon sources as alternatives (Rolland, Winderickx, & 

Thevelein, 2002). During growth in glucose-rich cultures, genes in pathways for utilizing 

alternative carbon sources, such as galactose, maltose and sucrose, are repressed through a 

glucose sensitive repressor Mig1p(Klein, Olsson, & Nielsen, 1998). It was found that 

glucose starvation upregulated genes were involved in oxidative phosphorylation and the 

TCA cycle, and some of them encode high-affinity glucose transporters (J. Wu, Zhang, 

Hayes, Panoutsopoulou, & Oliver, 2004). At the same time, glucose starvation results in a 

drastic reduction in transcription rates and degradation of mRNA as well as almost 

complete inhibition of translational machinery (Ashe, De Long, & Sachs, 2000; Jona, 

Choder, & Gileadi, 2000). Another study profiling ribosome of yeast under glucose 

starvation noted that while overall protein synthesis was reduced, transcription of many 

stress-response and glucose-repressed genes was increased (Jona et al., 2000; Klein et al., 

1998). 

As a single-celled organism, yeast in nature may constantly experience sudden 

changes in surrounding osmolarity. The adaptation of yeast to hyperosmotic stress has been 



 

 

7 

studied  extensively, whereby a sudden increase in osmolarity will cause the yeast cell to 

shrink and the high osmolarity glycerol response pathway is activated (S. Hohmann, 2009). 

Less is known about an osmolarity downshift, when there is a rapid influx of water, leading 

to increase of cell size and turgor pressure, during which the cell wall plays a vital role in 

preventing the cell from bursting (Smits, Kapteyn, van den Ende, & Klis, 1999). This 

process initiates the cell integrity pathway (CWI). Glycerol export is mediated via the 

Fps1p transporter. An influx of calcium ions also occurs (Batiza, Schulz, & Masson, 1996), 

which results in the activation of the TF Crz1p. The osmolarity sensor Sln1p, the 

phosphotransferase Ypd1p, and the TF Skn7p form a phosphor-relay system that activates 

Skn7p by phosphorylation upon cell swelling (S. Li et al., 2002; Tao, Deschenes, & Fassler, 

1999). Upon activation, Skn7p activates the transcription of genes related to cell wall 

biogenesis (S. Li et al., 2002; Tao et al., 1999). Micro-array transcriptomic analysis 

revealed a reversal of the gene expression response during hyper-osmolarity stress but 

failed to find a distinct pattern of gene expression during hypotonic stress (Gasch et al., 

2000). 

In the past decade, the rapid development of high throughput RNA-seq technology 

has provided a better platform than microarray to study the transcriptomic profiles of 

organisms, providing the ability to quantify gene expression genome-wide in a single assay 

with higher resolution, larger dynamic ranges and lower technical variation(Z. Wang, 

Gerstein, & Snyder, 2009; W. Zhang et al., 2015; Zhao, Fung-Leung, Bittner, Ngo, & Liu, 

2014). Moreover, the advent of single-cell RNA-seq (scRNA-seq) methods has provided 

an unprecedented opportunity to study the response of individual cells of an 
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organism(Shalek et al., 2014). This is even more evident in the case for the budding yeast, 

which is itself a single celled organism. Utilizing scRNA-seq, it may now be possible to 

delve deeper into the intricacies of an individual yeast cell’s response to different stress. 

However, studies applying single-cell transcriptomic studies in micro-organisms such as 

the budding yeast have been limited in comparison to studies of larger mammalian cells. 

Recent microfluidics-based methods have allowed high throughput scRNA-seq studies to 

be possible(Zheng et al., 2017). Most notably, methods such as those developed by 10x 

Genomics have allowed the simultaneous sequencing of hundreds of thousands of cells 

("Genomics X. 1.3 million brain cells from E18 mice," 2017). Though these methods are 

well optimized for mammalian cells, they are not easily applicable to yeast cells, due to the 

complexity introduced in sample preparation by having to lyse individual microbial cell 

walls, as well as the relatively low amounts of mRNA in small microbial cells compared 

to mammalian cells. Consequently, though studies of yeast stress responses have been 

extensively carried out throughout the past decade using a variety of techniques, scRNA-

seq based studies have been relatively few. 

To fill this gap, we adapted a full-length scRNA-seq method to profile 

transcriptomes of single yeast cells under hypotonic osmolarity, glucose starvation or 

amino acid starvation. Although our sample size is not on the scale of droplet-based 

scRNA-seq methods that only sequence the 3’-end of mRNA molecules and are more prone 

to drop-out effects due to shallow sequencing depths, we sequenced each single-cell 

transcriptome in full-length to a sufficient depth and are thus less prone to drop-out effects. 

Furthermore, a single-cell approach allows for more biological repeats than a bulk-based 
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procedure. Using these data, we not only confirmed many earlier findings based on bulk 

cell data, but also reveal novel aspects of stress responses in yeast at single-cell level.  

 

2.2 Methods 

2.2.1 Cell culture and spheroplasts preparation  

A monoclone of the yeast strain S288C (ATCC) was selected using a YPD based 

agar (10% yeast extract, 20% peptone, 2% glucose and 20% agar) petri plate and stocked 

at -80 °C until use. To wake up cells, 30 µl thawed yeast stock inoculated in 3 ml YPD 

medium (1% yeast extract, 2% peptone and 2% glucose) was incubated overnight at 30 °C 

and 250 rpm. Cells were then expanded at 30 °C and 250 rpm after a 1:50 dilution in the 

YPD medium until mid-logarithmic phase (OD600	between	0.5 and 0.8). Five OD unit 

(ODU) cells were collected by centrifugation (500 g, 5 min) at room temperature. The cells 

were resuspended in autoclaved water and collected by centrifugation (500 g, 5 min) at 

room temperature.  The cells were then resuspended in the softening medium (100 mM 

Hepes-KOH, pH 9.4, 10 mM Dithiothreitol) and incubated in room temperature for 15 min. 

The cells collected by centrifugation (500 g, 5 min) at room temperature were then 

resuspended in the Spheroplasts (S) medium (1× YNB, 2% glucose, 1x amino acids, 50 

mM Hepes-KOH, pH 7.2, and 1 M sorbitol) (Dunn & Wobbe, 2001) to a concentration of 

5 ODU/ml. Zymolyase 100T was added to the spheroplasts suspension to a final 

concentration of 2 μl/ODU, followed by 60 min incubation at 30°C to remove the cell wall 

and equilibrate cells to an isotonic, nutrient-rich condition. After two washes in the S 

medium by centrifugation (500 g, 5 min) at room temperature, spheroplasts were re-
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suspended to 5 ODU/ml in the desired treatment solution: amino acids starvation (AAS): 

S medium (with 1.0 M Sorbitol) without amino acid; glucose starvation (GS): S medium 

(with 1.0 M Sorbitol) without glucose; hypotonic: S medium without sorbitol; isotonic 

condition: S medium with 1M sorbitol. Cells were exposed to the treatment for 0.5~2.0 

hours before manual harvest. 

2.2.2 Single cell harvest  

0.5 mL of the spheroplasts were placed on a poly-lysine coated circular cover slip 

(2 mm diameter) in a petri dish for 5 min at room temperature (23 °C). The cover slip was 

broken in the center with forceps, and a small piece of cover slip was transferred to a 30 µl 

perfusion chamber, which was constantly perfused by a desired solution by gravity feeding. 

The solution change time in the chamber was about 20 sec. Single cells were harvested 

using a path clamp electrode pipette using a micromanipulator (ROE-200, Sutter) under an 

inverted microscope (Olympus 1X71) placed on a vibration isolation table (TMC). A cell 

was harvested in less than 10 nl perfusion solution.  

 2.2.3 Single cell RNA-seq library preparation  

Our method is based on (Tang, Barbacioru, Bao, et al., 2010; Tang, Barbacioru, 

Nordman, et al., 2010) with modifications to prepare multiplex sequencing libraries using 

Illumina Nextera XT Kit. Briefly, a harvested cell was quickly transferred using a home-

made microinjection system to a 200 µl Eppendorf tube containing 4 µl cell lysis buffer 

(0.9× PCR Buffer II, 3 mM MgCl2, 0.45% NP40, 4.5 mM DTT, 0.18 U/μl SUPERase-In, 

0.36 U/μl RNase Inhibitor, 12.5 nM AUP1 primer, 2 mM dNTP). In most single-cell 

samples, 0.1 μl (1:2.5x104 dilution) ERCC spike-in mRNA (Thermo Fisher) was added. 
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The cell was lysed at 70 °C for 90 sec, then placed on ice and stored at -80 °C until use. A 

cell lysate was thawed on ice, and 1 μl reverse transcription mix was added (13.2 U/ μl 

SuperScript III Reverse transcriptase, 0.4 U/μl Rnase Inhibitor, and 0.07 μg/μl T4 gene 32 

protein). The first strand cDNA was synthesized by incubating the tube at 50 °C for 30 

min, followed by inactivation of the reverse transcriptase at 70 °C for 10 min, and then the 

tube was cooled on ice. Free AUP1 primers were removed by adding 1 µl ExoSAP 

(Affymetrix) to the tube and incubating at 37 °C for 15 min, followed by inactivation of 

the ExoSAP at 80 °C for 15 min. This step would leave the AUP1 sequences at the 5’-end 

cDNA intact.  A polyA tail was then added to the 3’-end of the first strand cDNA by adding 

6 µl TdT mixture (1× PCR Buffer II, 1.5 mM MgCl2, 3 mM dATP, 0.75 U/μl Terminal 

Transferase and 0.1 U/μl RNase H) and incubating at 37 °C for 15 min, followed by 

inactivation of the enzyme at 70 °C for 10 min. The resulting products (12 μl) were then 

divided into two equal portions (each 6 μl), and each was mixed with 19 μl second strand 

buffer (1× High Fidelity PCR Buffer, 2 mM MgSO4, 0.2 mM each dNTP, 0.3 μM AUP2 

primer, and 0.1 U/μl high fidelity Platinum Taq DNA polymerase). The two tubes were 

subject to one PCR cycle (30 sec at 95 °C, 2 min at 50 °C and 6 min at 72 °C) to synthesize 

the second-strand cDNA in the form of 5’-AUP2-T24-cDNA-A24-AUP1-3’. Nineteen μl 

PCR mixture (1× High Fidelity PCR Buffer, 2 mM MgSO4, 0.25 mM each dNTP, 2 μM 

AUP1 Primer, 2 μM AUP2 Primer, 0.1 U/μl Platium Taq DNA Polymerase High Fidelity) 

was added to each tube, which brings the volume of each reaction to 44 μl, and cDNA was 

amplified by 18 PCR cycles (98 °C for 5 sec, 67 °C for 1 min and 72 °C for 6 min). The 

resulting cDNA from two reactions were combined (total 88 μl) and were further subject 
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to 12 cycles of PCR with two duplicates, each with 2.4 μl sample and 87.6 μl PCR mixture 

(1× High Fidelity PCR Buffer, 2 mM MgSO4, 0.375 mM each dNTP, 1 μM AUP1 Primer, 

1 μM AUP2 Primer, 0.1 U/μl Platium Taq DNA Polymerase High Fidelity). The products 

were then combined, and cDNA was revolved on a 1% ager gel (25 μl sample per lane). 

The band between 300 bases to the loading well was cut and cDNA was purified using a 

QIA quick gel purification Kit, followed by magnetic beads (GE Health) purification (10:7 

sample to beads ratio). After quantification using a Bioanalyzer (Agilent High Sensitivity 

DNA Kit), the libraries were then prepared using an Illumina Nextera XT or TruSeq DNA 

Sample Preparation Kit according to the vendor’s guide. The libraries were sequenced on 

an Illumina HiSeq2000 or HiSeq2500 machine (100 base-paired reads). Bulk mRNA was 

also extracted from population spheroplasts under AAS using a yeast RiboPureTM RNA 

Purification Kit (Ambion). Different amount of purified bulk mRNA (5pg, 10pg, 20pg, 

1,00pg, 1000pg and 10,000pg) were used to construct sequencing libraries in the same way 

as for single-cell libraries, with the exception that 0.1μl ERCC spike-in mRNA (Thermo 

Fisher) was added to the lysis buffer, with a concentration of 1:5x105, 1:2.5x105, 

1:1.25x105, 1:2.5x104, 1:2.5x103 1:2.5x102  for the 5pg, 10pg, 20pg, 100pg 1,000pg and 

10,000pg input RNA, respectively. 

2.2.4 Characterization of single-cell transcriptomes 

The raw reads from FASTQ files of different lanes were first combined based on 

sample ID before being mapped to the S. cerevisiae reference genome (SGD R64-2-1) 

using STAR (version 2.5.2) (Dobin et al., 2013). STAR alignments provided soft clipping 

of possible adapter sequences at the ends of reads; thus, no prior trimming of reads was 
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performed. Gene transcription levels were quantified using uniquely mapped reads in TPM 

(transcript per million mapped reads) by RSEM(v1.2.31) (B. Li & Dewey, 2011) and in 

raw counts by QoRTs (Hartley & Mullikin, 2015) (default parameters, using the formatted 

for DESeq2 count files). Principal components analysis (PCA) and uniform manifold 

approximation and projection (UMAP) of the cells/samples were performed on the 

log2(TPM+1) values. 

2.2.5 Library Quality Assessment 

We adopted the following metrics to quantify the quality of the scRNA-seq libraries 

from each cell/sample. 1) The library complexity is defined as the number of distinct 

(unique) read’s start positions mapped to the genome (Levin et al., 2010). To directly 

compare the library complexity of different libraries, we randomly sampled the same 

number of reads (one million) from each library. 2) The evenness is defined as the averaged 

coefficient of variation (CV) of the read coverage along each base-pair of the gene body 

(Levin et al., 2010). Since transcripts of a low copy number are subject to uneven 

coverages, only the top 50% highly expressed genes are used in the calculation of this 

measure. 3) Continuity of coverage measures the number of gaps along the exons of a gene, 

where a gap is defined as a consecutive length of ≥5 bases without any reads mapped. The 

final gap measure is a weighted average of gaps in all the genes according to each gene’s 

expression in TPM values.  4) Sensitivity, which measures the number of genes detected 

with at least 5 reads in each sample. And 5) Bio-reads ratio, which measures the proportion 

of reads uniquely mapped to the organism genome. Sample quality control and filtering 

were performed slightly differently on the two batches of our libraries due to their different 
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sequencing depth and quality: samples from batch 1 were retained if the following 

thresholds were met: detection rate > 500, complexity > 0.1, gap < 0.5, evenness < 1.5; 

while samples from batch 2 were retained if the following thresholds were met: num 

uniquely mapped reads > 10000. All quality metrics apart from Sensitivity were calculated 

for spike-in reads for each sample independently as well. Metrics such as rRNA expression 

% and Mitochondrial gene expression % were calculated using TPM values, genes used in 

these calculations are included in Supplementary Table 2-1, Supplementary File 1. An 

additional metric was calculated for spike-in reads based on the detection-limit procedure 

described in (Svensson et al., 2017) using TPM expression of cells that had > 2% spike-in 

rate and at least 8 different spike-ins with non-zero expression. Pearson correlation was 

calculated between all samples that passed filtering and samples of previous studies(Gasch 

et al., 2017; Nadal-Ribelles et al., 2019; J. Wang et al., 2022). Normalized expression data 

was obtained from GEO according to the authors, specifically, (44) and (45) was 

normalized with the median normalization used in DESeq2(Michael I Love, Huber, & 

Anders, 2014), and data from (Gasch et al., 2017) was normalized with the SCnorm method 

(Bacher et al., 2017). In order to select samples similar to the isotonic conditions used in 

our study, yeast cells aged 2-h were selected from the study of (J. Wang et al., 2022), 

samples labeled ‘Unstressed’ were selected from (Gasch et al., 2017) and only samples of 

the BY4741 strain were selected from (44). For each study, we normalized our data 

according to the specified normalization method and used gene features shared between 

our data and the selected dataset in the calculation of Pearson correlation. 
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 2.2.6 Differential Expression Analysis and GO/Pathway Enrichment 

Analysis of differentially expressed genes was performed using MAST (Finak et 

al., 2015). For each comparison, only genes expressed in at least 20 percent of samples 

were used for subsequent analysis. Counts per million (CPM) expression values (calculated 

with raw counts) were used as the input and all other parameters were left at default. 

Differential expression results were controlled for gene detection rate. Genes that met the 

criteria: FDR < 0.05 and absolute fold-change > 1.2 were labeled as differentially 

expressed. Enrichment analyses for Gene Ontology biological processes(Ashburner et al., 

2000; Gene Ontology, 2021), KEGG Pathways(Kanehisa, 2019; Kanehisa, Furumichi, 

Sato, Kawashima, & Ishiguro-Watanabe, 2022; Kanehisa & Goto, 2000) and Wiki-

pathways(Martens et al., 2021) were carried out using clusterProfiler (Yu, Wang, Han, & 

He, 2012) based on the identified differentially expressed genes. 

2.2.7 Promoter and Transcription Factor Binding Sites Analyses 

Upstream sequences (maximum length of either 1,000bp or the entire upstream 

intergenic sequences) of differentially expressed genes (DEGs) were extracted from the S. 

cerevisiae reference genome (SGD R64-2-1). Motifs in the sequences were identified using 

ProSampler (Y. Li, Ni, Zhang, Li, & Su, 2019), which were then compared with known 

motifs in the Yeastract database (Monteiro et al., 2020) using TomTom (Gupta, 

Stamatoyannopoulos, Bailey, & Noble, 2007). This analysis was performed separately for 

upregulated genes and downregulated genes of each stress condition. TF-gene interactions 

from Yeastract were extracted for all genes filtering for interactions that were either 

documented or had gene expression evidence. When comparing our putative TF-gene 
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relationships with TF-gene relationships from Yeastract, we omitted relationships 

involving Spt15p and Nhp6ap from our analysis as these TFs are known to bind TATA 

boxes and are also absent from TF-gene relationships from Yeastract.  

 

Empirical correlation analysis between TF and predicted target DEGs was performed as 

follows:  

Given a table of TF-gene interactions, for each TF: 

Step 1: calculate the mean correlation C between TF and its interacting genes. 

Step 2: let N be the number of predicted DEGs interacting with the TF, sample N 

genes from all genes and calculate mean of absolute correlations between the TF 

and N sampled genes. 

Step 3: repeat step M (M >= 10000) times to generate empirical distribution of 

mean of absolute correlations. 

Step 4: p-value = (Number of sampled mean of correlation values > S)/M 

 

2.2.8 Gene Clustering and TF Enrichment 

For samples of the same condition and batch, absolute Pearson correlation distance 

(1-| Pearson correlation|) was calculated between gene TPM expression levels and used for 

hierarchical clustering using the hclust method in R with method set to ‘ward.D2’. Number 

of clusters was determined with R package NbClust (min.cluster = 2, max.cluster = 

200)(Charrad, Ghazzali, Boiteau, & Niknafs, 2014). Each resulting cluster was then 

enriched for TFs using known Yeastract TF-Gene interactions using a hypergeometric test 
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from R package clusterProfiler(Yu et al., 2012). Each cluster was then assigned with the 

most significant TF only if its Benjamini-Hochberg adjusted p-value < 0.05.  

2.3. Results 

2.3.1 Transcriptomes of single yeast cells are sufficiently sequenced  

 Using the scRNA-seq protocol, we sequenced the full-length transcriptomes of 117 

yeast cells from four treatments in two sequencing batches: amino acids starvation (AAS) 

(n=20 in batch 1), isotonic (n=19 in batch 1; n=19 in batch 2), glucose starvation (GS) (n 

= 47 in batch 2) and hypotonic conditions (n=12 in batch 1). As summarized in 

Supplementary Table 2-1, an average of 9.5 million reads were generated in each cell, and 

an average of 36% and 11% of them were uniquely mapped to the genome and ERCC 

spike-in RNA sequences, respectively. Moreover, we sequenced a total of 59 RNA-seq 

libraries prepared using varying amounts (5pg, 10pg, 20pg, 100pg, 1,000pg and 10,000pg) 

of bulk RNA from yeast cells under AAS using the same protocol. As summarized in 

Supplementary Table 2-2, an average of 6.7 million reads were generated in bulk samples, 

and an average of 34% and 24% of them were uniquely mapped the genome and ERCC 

spike-in RNA sequences, respectively.   

To see whether the sequencing depth was sufficient to cover all the captured 

mRNAs in a cell, we randomly sampled different numbers of mapped reads from the 

scRNA-seq libraries and computed the total number of genes to which reads were mapped. 

As shown in Figure 2-1A~E, the number of genes detected approached saturation when 

around 1 million reads were sampled for each cell, suggesting that for most of our scRNA-

seq libraries, the sequencing depth should be more than sufficient to detect most transcribed 
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mRNAs. However, there is considerable variation in the number of genes detected between 

cells under the same treatment (Figure 2-1A~E). Comparing the two different batches of 

isotonic treatment (Figure 2-1A, E) reveals that batch effect contributes significantly to the 

difference in the number of genes detected, a well-known phenomenon for scRNA-seq 

libraries (Brennecke et al., 2013; Buttner, Miao, Wolf, Teichmann, & Theis, 2019; 

Haghverdi, Lun, Morgan, & Marioni, 2018; C. Jia et al., 2017). On the other hand, the more 

input bulk mRNA amount, the more genes detected in the bulk mRNA samples (Figure 

2-1F). Therefore, the varying numbers of genes detected in single cells are most likely 

caused by varying amounts of mRNA that each cell expressed or released during lysis, 

which is characteristic of scRNA-seq libraries (G. Chen, Ning, & Shi, 2019), thus partially 

explaining the variation in detection rates of genes. Bootstrapping single cells by 

computationally pooling raw reads from a set of single cells under the same treatment 

shows, except for GS, the detection rate already reaches saturation when reads from as few 

as five cells were combined (Figure 2-1G), indicating that aggregating over the single cells 

can provide a comparable sample to that of bulk analysis.  
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Figure 2-1 Saturation of detected genes in the libraries. A. Number of genes detected 
in each cell   under isotonic condition from batch 1 as a function of number of mapped 
reads randomly sampled from the cell. B. Number of genes detected in each cell under 
hypotonic stress samples from batch 1 as a function of number of mapped reads randomly 
sampled from the cell. C. Number of genes detected in each cell under AAS from batch 1 
as a function of number of mapped reads randomly sampled from the cell. D. Number of 
genes detected in each cell under GS from batch 2 as a function of number of mapped reads 
randomly sampled from the cell. E. Number of genes detected in each cell under isotonic 
condition from batch 2 as a function of number of mapped reads randomly sampled from 
the cell. F. Number of genes detected in each bulk sample as a function of number of 
mapped reads randomly sampled from the sample. The bulk libraries were prepared using 
different amount (5pg, 10pg, 20pg, 1,00pg, 1000pg and 10,000pg) of input mRNA 
extracted from a population of cells under AAS. G. Number of genes detected as a function 
of number of single cells randomly selected from those under the same conditions. Bold 
colored lines represent average detections. 
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An evaluation of the possible bias of read coverage along a gene body for all 

libraries show that the read coverage declines toward the 5’-end for all libraries (Figure 

2-2). This result is consistent with the earlier findings that single-cell RNA-Seq data tend 

to be biased toward the 3’ end, because of the oligo (DT) primers used in the first-strand 

cDNA synthesis(Tang, Barbacioru, Bao, et al., 2010; Tang, Barbacioru, Nordman, et al., 

2010). We also noted that there is pronounced difference in biases between the two batches 

of isotonic samples (Figure 2-2A). 

 

Figure 2-2 Reads coverage along the 5’-end to the 3’-end of the coding regions of genes. 
For each library, the averaged relative coverage is shown at each relative position along 
the length of coding regions of genes from the 5’-end to the 3’-end. A. Isotonic condition, 
batch 2 samples are colored orange here to distinguish from batch 1 samples (colored 
green). B. AAS. C. GS. D. Hypotonic stress. 
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2.3.2 Library quality control reduces technical artifacts  

 Since scRNA-Seq results are sensitive to multiple factors during library preparation, 

we evaluated each library for its quality by several assessment criteria: complexity, 

evenness of coverage, continuity of coverage, sensitivity, and bio-reads ratio (see Methods). 

The complexity of the libraries ranges from 0 to 0.80 with an average of 0.30 (Figure 2-3A). 

There is significant difference between the complexity of the two batches, with samples of 

batch 2 showing lower complexity, indicating the presence of a strong bias in fragment 

amplification and insufficient sampling of mRNA molecules in the individual cells (Figure 

2-3A).  This result is consistent with the considerably lower gene detection rate for batch 

2 isotonic cells than for isotonic cells in batch 1 (Figure 2-1A, E). Most libraries have less 

than one gap on average, though a few exhibits high number of gaps.  In general, these 

measurements of library quality from different aspects are highly correlated (Figure 2-3A). 

We filtered out low quality cells using a procedure as detailed in the Methods section. As 

shown in Figure 3B, 84 of the 117 libraries passed the filters set by the five metrics. Clearly, 

after filtering, the distributions of the metrics are more uniform, most notably in the case 

of the GS treatment. Thus, our subsequent analyses were based on these 84 cells. 

Furthermore, we included ERCC spike-in in most of our samples as a quality control for 

assessing the accuracy of our gene expression quantification. The assessment of 

quantification quality was carried out using all bulk/single cells samples with spike-in rate 

of > 2%. It can be seen in  

Figure 2-4A that the expression levels (TPM) of spike-ins added in single-cell samples 

correlate well with the concentrations of the spike-ins (PPC = 0.842), indicating that our 
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expression quantifications are reliable. Furthermore, we show that ERCC spike-in in bulk 

RNA-seq samples all show similar levels of correlation with known concentrations despite 

the different concentrations of spike-in added ( 

Figure 2-4B-G). However, it is worth noting that as the concentration of added spike-ins 

increase, the quantified expressions show lower variance between samples as expected. We 

also applied the detection limit metric described in (Svensson et al., 2017) to our spike-in 

data, using samples with at least 2% spike-in rate and having at least 8 different spike-in 

with non-zero expressions for this calculation. For these samples, the detection limits found 

were similar to the levels described in (Svensson et al., 2017) for the SmartSeq2 protocol 

( 

Figure 2-4H), indicating our procedures are reliable in terms of the ability to detect RNA 

molecules. All quality metrics for biological reads and spike-ins as well as additional 

quality metrics such as Mitochondrial gene % and Ribosomal RNA % are also included in 

Supplementary Table 2-1, Supplementary Table 2-2. Pearson correlations were also 

calculated between our samples post filtering and those of previous studies described in 

the Methods section ( 

Figure 2-4I) (Gasch et al., 2017; Nadal-Ribelles et al., 2019; J. Wang et al., 2022). 

Although these studies performed single cell RNA-seq on a slightly different cell line 

(BY4741) and used different protocols in their sample preparation, our batch 1 isotonic 

cells were able to achieve a mean Pearson correlation of 0.59 (max: 0.91, min:0.26) across 

all cells under a similar unstressed condition, indicating that the transcriptomic profiles of 
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our batch 1 isotonic yeast cells are similar to unstressed yeast cells from these previous 

studies. Moreover, the study of (J. Wang et al., 2022) utilized a slightly modified Smartseq-

2 protocol, and thus our batch 1 isotonic cells correlate very well with their 2-hour cells 

(Pearson correlation max: 0.91, min:0.45, mean: 0.70). Differences in the degree of 

correlation is likely due to differences in sample preparation protocol, yeast strains used 

(S288C vs BY4741), and slight variations in the condition of the cells. On the other hand, 

our AAS and hypotonic cells had much lower correlations. Isotonic samples from Batch 2 

correlated poorly to all the studies due to strong batch effects and technical artifacts in these 

samples, (Pearson correlation max: 0.45, min:0.04, mean: 0.23). It is worth noting that 

despite the poor correlation of Isotonic Batch 2 samples with unstressed cells from previous 

datasets, the degree of correlation was still consistently higher than the correlation between 

GS samples (also from Batch 2, Pearson correlation max: 0.33, min:0.006, mean: 0.12) and 

the unstressed cells from previous datasets ( 

Figure 2-4I), again indicating that poor correlation likely originates from batch effects and 

that inherent biological differences caused by stress are still preserved in the transcriptomic 

profile within the same batch. Due to the presence of these strong batch effects, the 

technical differences between the two batches are too significant for aggregated analysis, 

thus subsequent analyses were performed in a batch-specific manner: isotonic vs AAS and 

isotonic vs hypotonic comparisons were conducted with cells from batch 1, while isotonic 

vs GS comparison was performed with cells from batch 2. 
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Figure 2-3 Quality control of scRNA-seq libraries using complexity, evenness, gap, 
sensitivity, and bio-reads ratio. In both panel A and B, cells pre-filtering are shown on 
the left panel, and the cells post-filtering are shown on the right panel. A. Batch 1 samples 
(51 samples pre-filter / 46 samples post-filter). B. Batch 2 samples (66 samples pre-filter / 
38 samples post-filter).  
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Figure 2-4 ERCC Spike-in Expression (TPM) vs Known Concentration in samples 
with at spike-in rate > 2%. A-F: 5pg, 10pg, 20pg, 100pg, 1ng, 10ng bulk-RNAseq sample 
ERCC expression vs known concentration(molecule/μl). G: single cell RNAseq ERCC 
expression vs known concentration (molecule/μl).  H: Detection limit metric described in 
(Svensson et al., 2017). I: Pearson correlation with previous datasets(Gasch et al., 2017; 
Nadal-Ribelles et al., 2019; J. Wang et al., 2022) colored by condition and batch, black 
bars in box plot represent mean Pearson correlation. 

2.3.3 AAS and GS treatments induce distinct transcriptomes while hypotonic stress 

does not  

To characterize the transcriptome features of the cells under different treatments, 

we compared the transcription levels of the 5,419 genes (Supplementary Table 2-3) that 
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were expressed in at least 20% of the cells using principal component analysis (PCA) 

(Figure 2-5A-C), uniform manifold approximation and projection (UMAP) (Figures 

4D~4F) and hierarchical clustering (Figure 2-5G~I). Clearly, cells under either AAS 

(Figure 2-5A, D, G) or GS (Figure 2-5B, E, H) treatments display distinct transcriptomes 

from cells under the isotonic condition, suggesting that both AAS and GS triggered 

relevant gene regulatory pathways in the cells. However, cells under hypotonic stress did 

not separate well from isotonic cells in PCA (Figure 2-5C), UMAP (Figure 2-5F) and 

Hierarchical Clustering (Figure 2-5I), suggesting that the hypotonic stress did not 

significantly alter gene transcription in the cells. 
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Figure 2-5 Comparison of transcriptomes of the cells under different stress conditions 
with those of cells under the isotonic condition. A, B, C. Visualization of the cells under 
AAS (A), GS (B) and hypotonic stresses (C) in comparison with cells under the isotonic 
condition using the first and second PCA components of their transcriptomes. D, E, F. 
Visualization of the cells under AAS (D), GS (E) and hypotonic (F) stresses in comparison 
with cells under the isotonic condition using the first and second UMAP components of 
their transcriptomes. G, H, I. Heatmaps of hierarchical clustering of the cells based on the 
Pearson correlation coefficients (PCC) of their transcriptomes using complete linkage. 
Color code shown in (B) applies to all the figures. 
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 We next identified differentially expressed genes (DEGs) between cells under AAS, 

GS and hypotonic stresses to those under isotonic treatment using MAST (Finak et al., 

2015) (FDR<5%, absolute (Log2(fold-change (FC))> 0.5). We identify 409 genes that were 

significantly differentially expressed under AAS relative to the isotonic condition 

(Supplementary Table 2-4), of which 137 were down regulated while 272 were up 

regulated (Figure 2-6A, C). Under GS, 80 genes were significantly differentially expressed 

relative to the isotonic condition (Supplementary Table 2-5), of which, 27 and 53 were 

significantly upregulated and down regulated, respectively (Figure 2-6B, D). Contrastingly, 

no genes were found to be significantly differentially expressed in hypotonic condition 

relative to the isotonic condition. This is consistent with the results from the above PCA 

(Figure 2-5C), UMAP (Figure 2-5F) and clustering (Figure 2-5I) analyses, where cells 

under isotonic and hypertonic conditions are indistinguishable. In our experiments, cells 

under all treatments (AS, GS, hypotonic and isotonic) were exposed to 1 M sorbitol 

solution for about one hour after being harvested from the log-phase growth in YPD in a 

procedure to remove the cell wall. Subsequently, to induce hypotonic shock, isotonic cells 

were exposed to a sorbitol lacking solution for at least half hour before being collected, at 

which point the cells had adapted to the hypotonic environment according to the earlier 

study (Gasch et al., 2000). 
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Figure 2-6 AAS and GS induce distinct gene expression patterns. A. Log2FC vs -Log10 
(adjusted p-values) volcano plots of DEGs under AAS. B. Log2FC vs -Log10 (adjusted p-
values) volcano plots of DEGs under GS. C. Heatmap of the expression levels of DEGs 
under AAS. D. Heatmap of the expression levels of DEGs under GS. Bars on the top of 
heatmaps indicate the treatments of cells according to the colors shown in the legend. The 
intensity of the heatmaps is colored according to Log2(TPM+1) values. E. Venn diagram 
of AAS upregulated (­), AAS downregulated (¯), GS upregulated (­) and GS 
downregulated (¯) genes.  
  

The 272 upregulated genes under AAS are enriched for Sulfur metabolism and 

Sulfur amino-acid pathways, such as MET1/3/5/8/10/17/22 as well as for the general 
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response GRE1 (Figure 2-6A). The 137 down-regulated genes are enriched for ribosomal 

and translation functions, 77 of which encode components of a ribosomal subunit. 

Moreover, we found that genes involved in lysine (LYS12/21/20), threonine (THR1, 

HOM2), arginine (ARG1), asparagine (ASN2) and aromatic amino acids (ARO4) 

biosynthesis are significantly downregulated (Figure 2-6A). These results indicate that 

there may be a preferential synthesis of Sulfur amino acids when the cell was limited for 

all amino acids. A more recent study has found that methionine functions as an anabolic 

signal to induce global gene expression changes when in excess and that the presence of 

methionine can trigger the synthesis of other amino acids under AAS to sustain anabolism 

(Walvekar, Srinivasan, Gupta, & Laxman, 2018). Furthermore, genes involved in the 

biosynthesis of glycine and serine (SHM2, SER33) were also found to be significantly 

upregulated. In this regard, glycine and serine have been known to be crucial one-carbon 

donor molecules in yeast and contribute to the synthesis of methionine (Piper, Hong, Ball, 

& Dawes, 2000).  

 Of the 53 downregulated genes under GS stress, 29 were also downregulated under 

AAS stress (Figure 2-6E). Specifically, 16 of the 53 downregulated genes encoded 

ribosomal subunits (Figure 2-6B).  There is also a down-regulation of several amino acid 

biosynthesis genes such as LYS20/21, ARO8, BAT1, HOM2 and ARG1 (Figure 2-6B), 

possibly by Snf1p mediated repression of GCN4 translation (Shirra et al., 2008). The other 

down-regulated genes are mainly involved in carbohydrate metabolism. For example, 

hexokinase isoenzyme 2 (Hxk2p) encoding gene HXK2 showed decreased expression 

(Figure 2-6B). Previous studies have shown that under GS, activation of Snf1p prevents 
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the interaction between Mig1p and Hxk2p, leading to de-repression of carbon-source 

responsive element (CSRE) containing genes involved in the use of alternate carbon 

sources(Conrad et al., 2014). The reduction in HXK2 transcription might be a possible 

alternate mechanism to derepress CSRE containing genes. Our results also show decreased 

expression of ENO2 and CDC19 (Figure 2-6B). Eno2p and Cdc19p catalyze the last two 

steps in glycolysis, respectively,  where 2-phosphoglycerate is converted by Eno2p to 

phosphoenolpyruvate, which is then converted to pyruvate by Cdc19p (Stryer, 1988). It 

has been found that under GS, the activity of Cdc19p is quickly inactivated(Y. F. Xu et al., 

2012). Furthermore, mRNA levels of CDC19 and ENO2 are also reduced through 

phosphorylated eIF4G regulation of the degradation (Y. Chang & Huh, 2018).  

The 27 upregulated genes under GS are glucose-repressed or involved in the use of 

alternate carbon resources (Figure 2-6B). For instance, the expression of HXT5, STL1 and 

JEN1 (Figure 2-6B) were significantly increased (Supplementary Table 2-5), whereas 

HXT5 encodes a hexose transporter that has affinity for glucose only under GS (Buziol et 

al., 2002);  Stl1, a high affinity glycerol importer (Ferreira et al., 2005) and JEN1, a high 

affinity symporter for alternate carbon sources such as lactose, pyruvate, and acetate (Casal, 

Paiva, Andrade, Gancedo, & Leao, 1999; Chambers, Issaka, & Palecek, 2004). Moreover, 

the expression of FOX2 (Figure 2-6B), which encodes a multifunctional enzyme in the 

peroxisomal fatty acid beta-oxidation pathway was significantly upregulated (Figure 2-6B). 

It has been shown that FOX2 also is activated in autophagy (Hiltunen et al., 1992). These 

results are consistent with the earlier notion that under GS when the extra-cellular 

environment provides no other carbon resource, in order to survive the cells might need to 
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recycle cytoplasmic components (bulk autophagy) and utilize an alternative source of 

energy (most likely metabolism of lipids) from within the cell (Seo et al., 2017).  

Interestingly, we only found two genes ALD4 and GRE1 to be upregulated under 

both GS and AAS stresses (Figure 2-6A, B, E). Previous studies have shown that the 

expression of GRE1 is controlled through the HOG pathway and its transcripts accumulate 

under osmotic, ionic, heavy metal, heat shock and oxidative stress (Garay-Arroyo & 

Covarrubias, 1999; J. Wu et al., 2004). Our finding that GRE1 was induced significantly 

under both AAS and GS conditions suggests that it may play a role in nutrient-limiting 

stress responses as well. ALD4 encodes mitochondrial acetaldehyde dehydrogenase, which 

is necessary for the growth of yeast on ethanol (Aranda & del Olmo Ml, 2003). Although 

it is known that ALD4 is glucose repressed, our finding that it was also significantly 

upregulated under AAS stress suggests that ALD4 might play a role in general stress 

response.  

The DEGs are also significantly enriched for relevant Wiki-pathways, Gene 

Ontology (GO) biological processes and KEGG pathways. Specifically, down-regulated 

genes under both AAS and GS stresses, are enriched for translation-related Wiki-pathways 

(Figure 2-7A, B), GO terms (Figure 2-7E, F) and KEGG pathways (Figure 2-7C, D). Up-

regulated genes under AAS stress were enriched significantly for Sulfur metabolism 

(Figure 2-7C) and alpha-amino acid biosynthesis (Figure 2-7E). Both up- and down-

regulated genes under GS were enriched for Wiki- (Figure 2-7B) and KEGG (Figure 2-7D) 

pathways and GO terms biological processes (Figure 2-7F) related to carbon metabolism, 

pyruvate metabolism, gluconeogenesis, and tricarboxylic acids cycle. Notably, under GS, 
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DEGs were enriched for GO terms related to biosynthesis of lysine, arginine, cysteine, and 

methionine (Figure 2-7F), and most of these genes showed decreased expression, 

indicating that glucose limitation shut down the synthesis of these amino acids. 

 

Figure 2-7 Enrichment of up- and down-regulated genes for known functional 
modules under AAS and GS. A, B. Wiki-Pathways enrichment under AAS (A) and GS 
(D). C, D. KEGG pathways enrichment under AAS (C) and GS (D). E, F. GO term 
biological process (BP) enrichment under AAS (E) and GS (F). Each square represents an 
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enriched functional module. Color of a circle reflects the adjusted p-value while size of the 
square reflects the number of genes in the enriched functional module. Each circle 
represents a gene that is connected by an edge to its belonging functional module. Genes 
are colored by their Log2FC under the AAS or GS relative to the isotonic condition.  False 
discovery rate (FDR<5%) was controlled using the Benjamini-Hochberg procedure.  
2.3.4 Motifs found in the upstream regions of the DEGs reveal possible gene 

regulatory networks 

To reveal possible gene regulatory networks responsible for the distinct expression 

patterns of gene induced under AAS and GS stresses, we identified possible TF binding 

sites (TFBSs) in the upstream regions of the DEGs under AAS and GS. We found six and 

eight motifs in the upstream regions of downregulated and upregulated genes under AAS, 

respectively. TomTom (Gupta et al., 2007) matched these six and eight motifs to known 

motifs of 14 and 23 TFs, respectively, in the Yeastract database (Supplementary Table 2-

10). Such multiple hits are understandable, since it is well-known that TFs of the same 

protein family recognize highly similar motifs (Gordan et al., 2011; Inukai, Kock, & Bulyk, 

2017). These TFs include amino acid starvation response TFs Gcn4p and methionine 

biosynthesis regulators such as Met4p, Met31p and Met32p. The details of the identified 

motifs in the upstream regions of the DEGs under AAS are shown in Supplementary Table 

2-6. Moreover, we identified 12 motifs for 23 TFs and 10 motifs for 27 TFs in the upstream 

regions of down- and upregulated genes under GS, respectively. These TFs are involved in 

alternative carbon source utilization, such as Pdr3p, Ert1p, Sip4p and Aaca1p. The details 

of the identified motifs in the upstream regions of the DEGs under AAS are shown in 

Supplementary Table 2-7. 

Based on the identified TFBSs and putative cognate TFs, we constructed gene 

regulatory networks for the DEGs under AAS consisting of 594 putative regulatory 
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relationships between 26 TFs and 218 genes (Figure 2-8A, for the details see 

Supplementary Table 2-8) and for DEGs under GS consisting of 114 putative regulatory 

relationship between 31 TFs and 55 genes (Figure 2-8B, for the details see Supplementary 

Table 2-9). Most of these inferred regulatory relationships are supported by existing data, 

while others might be novel findings. More specifically, 266 and 52 of our predicted TF-

gene relationships under AAS and GS, respectively, are documented in the Yeastract 

database, while 235 and 47 of our predicted TF-gene relationships under AAS and GS, 

respectively, might be novel regulatory relationships (Figure 2-8C).  For examples, we 

confirm multiple ribosomal protein genes such as RPL16B/13B/18B, EPS0B/1B/18A etc. 

(for the complete list, see Supplementary Table 2-8) that are regulated by TF Rap1p under 

both AAS and GS(Figure 2-8A, B), which has been shown to control the expression of 

ribosomal genes (Morse, 2000). We identified Spt15p binding sites in the upstream regions 

of multiple upregulated genes such as HAP1, CDC55, HFD1, etc. and downregulated genes 

such as LYS20, LYS21, ACS2 etc. (Supplementary Table 2-6) under AAS (Figure 2-8A), 

and Spt15p is known for binding the TATA box in the promoters of many of these genes 

(Cormack & Struhl, 1992). We found binding sites of TF Sfp1p in upstream regions of 

upregulated genes (JLP1, SUL1, etc.) under AAS (Figure 2-8A). Interestingly, two of the 

inferred target genes of Sfp1p, SUL1 and JLP1 (Figure 2-8A), both are involved in the 

uptake of Sulfur, have not been documented in previous research, thus, might be novel 

findings. Interestingly, while we inferred that Sfp1p mainly upregulated genes under AAS 

(Figure 2-8A), it mainly down-regulate genes under GS (Figure 2-8B). We show that JEN1 

might be a target gene of Gat4p under GS, although it has been reported that JEN1 was 
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indirectly regulated by Gat4p (Chua et al., 2006). We also found that GRX3, coding a 

glutathione-dependent oxidoreductase that protects the cell from oxidative damage (Pujol-

Carrion, Belli, Herrero, Nogues, & de la Torre-Ruiz, 2006), and ATG42 (YBR139W), 

coding a vacuolar serine-type carboxypeptidase involved in the proteolytic processing and 

final steps of autophagy in yeast(Parzych, Ariosa, Mari, & Klionsky, 2018), might be novel 

target genes of GAT4. While we were able to confirm that Pdr1p and Pdr3p were regulators 

of FOX2 under GS (Figure 2-8B) (Salin et al., 2008), we also inferred that Ert1p might be 

a novel regulator of FOX2, sharing a similar binding site as Pdr3p (Supplementary Table 

2-7).  

Interestingly, some TFs are predicted to upregulate some genes and downregulate 

some other genes under the same condition. We thus examined whether the motifs found 

in upregulated genes and downregulated genes differed for such TFs. As shown in 

Supplementary Table 2-10, most such TFs bind similar binding sites of the same motif in 

the upstream regions of both upregulated genes and downregulated genes.  The different 

regulatory effects might have resulted from different locations of the binding sites and/or 

with different cooperative TFs (Latchman, 2001; Scully et al., 2000).  However, Gcn4p 

recognizes quite distinct two motifs in the upstream regions of upregulated genes (Figure 

2-8) and downregulated genes (Figure 2-8E) under AAS, suggesting different regulatory 

machineries of Gcn4p for upregulated genes than for down-regulated genes involved in 

amino-acid synthesis, a phenomenon that has been previously reported (Badis et al., 2009; 

Scully et al., 2000).  

Furthermore, we attempted to corroborate the putative regulatory relationships 
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through a correlation analysis between the TFs and predicted target DEGs. In brief, the 

mean correlation between a TF and its predicted targets is tested for significance through 

a permutation test, see Methods section. The results showed that the expression of some 

TFs did not significantly correlate with its targets, indicating post-transcriptional regulation 

mechanisms of these TFs under stress, while some exhibit significant correlation, 

indicating regulation of those TFs at a transcriptional level. Notably, 

Met31p/Met32p/Cbf1p are known to be regulators for over 4,000 genes in Yeastract, 

however a permutation test finds all the three TFs significantly correlated with predicted 

targets under AAS (Figure 2-9A). Correlation between Met4p and its targets was also 

found to be significantly correlated with its DEG targets. These results seem to indicate 

that the response to AAS induces a transcriptional change in TFs that govern methionine 

biosynthetic genes. Gcn4p on the other hand was not shown to be significantly correlated 

with its predicted target DEGs, this reaffirms earlier studies showing Gcn4p to be 

controlled in a translational manner (16). Interestingly, Gcn4p is shown to be significantly 

correlated with its target TFs under GS. GS is also known to induce Gcn4p activation via 

a translational mechanism through Gcn2p, however specifics of the process differ from 

that under AAS (Yang, Wek, & Wek, 2000). Our results indicate that Gcn4p may also be 

transcriptionally regulated in response to GS (Figure 2-9B). 
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Figure 2-8 Inferred gene regulatory networks for stress-induced transcriptional 
changes. A. Putative gene regulatory networks for the DEGs under AAS. B. Putative gene 
regulatory networks for the DEGs under GS. TF genes are shown as green rectangles and 
non-TF genes as ovals. A TF and its inferred target gene are connected by an edge. 
Upregulated genes are colored red and downregulated genes blue. C. Venn diagram of 
predicted TF-gene relationships and known relationships on the Yeastract Database. D, E. 
Different motif usages of Gcn4p in AAS for upregulated genes (D) and for downregulated 
genes (E). 
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Figure 2-9 Spearman correlation significance test between predicted target DEGs and TFs. 
A. AAS TF mean spearman correlation with predicted target DEGs vs random gene sets of 
the same size. B. GS TF mean spearman correlation with predicted target DEGs vs random 
gene sets of the same size. Each ridge-plot shows the distribution of the mean spearman 
correlation between each TF and randomly sampled gene sets. The vertical bar is the mean 
spearman correlation between each TF and its predicted DEG targets. The distribution and 
vertical bars are colored red if the mean spearman correlation between the TF and predicted 
DEG targets is significantly (alpha = 0.05) greater than expected. 

 

2.3.5 TFs contribute to cellular variability in a post-transcriptional manner 

We also seek to elucidate whether the variability observed between single-cell 

transcriptomes of the same condition can be attributed to variation of transcriptional 
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regulatory machineries such as variation of TF expression levels. Our single cell study 

naturally provides such an advantage over the conventional population-based study, in 

which minute differences in transcriptional regulation are obfuscated by the pooling of 

thousands of cells. Using cells under the same conditions (AAS, Hypotonic and Isotonic 

Batch 1 for their better quality), we performed hierarchical clustering (see Methods.) of 

genes that are expressed in at least 10% of all cells.  Though not all clusters showed 

significant enrichment for regulating TFs, many clusters were able to enrich for TFs, 

indicating genes associated with the same TFs exhibit similar patterns of variation under 

the same conditions, suggesting biological variability between cells under the same 

conditions is due to the transient differences in TF activation states, and such variabilities 

can possibly be utilized to discover regulatory relationships. (Figure A-1, Figure A-2, 

Figure A-3). Interestingly, the enriched regulating TFs are rarely present in their respective 

clusters, likely due to delayed effects of TF induced activity and target genes expression 

change, and post-transcriptional activation of TFs.  

 

2.4. Discussion 

 Recently, scRNA-seq has become a powerful tool to address important biological 

problems including cell type identification, understanding mechanisms of gene 

transcriptional regulation and characterization of functionally related genes at the single 

cell level. Despite many applications of scRNA-seq to the most well-studied eukaryotic 

organism, scRNA-seq applied to the budding yeast are rare, likely due to the more technical 

demands associated with a tough cell wall and very low mRNA contents when preparing 
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scRNA-seq libraries for a yeast cell. In this study we overcame the technical obstacles by 

adapting an earlier full-length scRNA-seq method (Tang, Barbacioru, Bao, et al., 2010; 

Tang, Barbacioru, Nordman, et al., 2010), and profiled the transcriptomes of single yeast 

cells in isotonic, nutrients-rich medium and under three stress treatments hypotonic, AAS 

and GS. However, to remove the cell walls, we inevitably exert stresses to the cells by 

exposing them to water and softening medium to facilitate subsequent enzymatic cell wall 

digestion. To minimize the impacts on the cells, we equilibrated the cells in the isotonic, 

nutrients-rich spheroplast medium at 30°C for 60 min when digesting the cell with 

Zymolyase 100T, followed by 2X 5-min washes of the cells in the spheroplast medium. 

The transcriptional responses of the cells under subsequent stress treatments are like those 

seen in previous studies, indicating that our cell wall removal procedure had little effects 

on the cells.  

 Though scRNA-seq improves upon previous transcriptomics quantification 

methods, cell-to-cell variation may be confounded by factors such as cell size, state and 

technical factors that arise during sample preparation. The scRNA-seq libraries in this 

study exhibited varying degrees of technical variation and batch effects. Specifically, there 

exists significant technical differences and batch effects between our batch 2 and batch 1 

samples, as shown in both QC metrics and correlation with previous studies. The lower 

quality of samples in batch 2 could be attributed to various technical factors. Therefore, a 

careful quality control is critical before any formal analysis to minimize the effects of 

technical variability. To this end, we filtered out low quality libraries using a stringent QC 

procedure based on five metrics, and only performed comparisons between transcriptome 
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collected from the same batch.  We show that this QC procedure was able to not only 

enhance the reliability of our analysis but also yield more biologically meaningful results.  

Another critical aspect of inference from scRNA-seq data is the depth of read 

coverage, which has an effect on the number of genes that can be detected as has been 

noted in cell population based libraries as well (Tarazona, Garcia-Alcalde, Dopazo, Ferrer, 

& Conesa, 2011). To evaluate the effect of read depth, we prepared a series of diluted bulk 

RNA libraries, starting from 5 pg which is near the lower bound of mRNA levels in small 

single cells. From the saturation analysis using the varying number of reads randomly 

sampled from the 5 pg bulk library (Figure 4-1), we deduced that a minimal sequencing 

depth of 4×106 reads is required to detect almost all genes that can be quantitatively 

characterized at this input quantity of mRNA. Cells under a certain treatment exhibited 

higher correlation of transcription levels, while different treatments led to distinct 

transcription of relevant genes in response to the treatments. This indicates that 

transcriptome analysis at the single-cell level is biologically meaningful regarding stress 

conditions.  

Our observation that the isotonic and hypotonic cells cannot be clearly 

differentiated using their transcriptomes is consistent with a previous study using 

microarray to characterize gene expression on diverse environmental transitions, which 

found that when cells were transferred from standard isotonic to hypotonic solution, the 

change in the expression of the genes involved in environmental stress response is only 

transient (Gasch et al., 2000). Consequently, our DEG analysis was not able to find 

significantly differentially regulated genes, suggesting that gene expression levels were 
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indeed back to isotonic conditions. 

As expected, individual cells under the same treatment show varying levels of 

variation due to intrinsic biological noise and unavoidable technical noise (Brennecke et 

al., 2013), though the latter has been largely reduced by our QC procedure. However, both 

PCA/UMAP and DEG analyses revealed larger variability among single cells under AAS 

vs isotonic and GS vs isotonic treatments. Under AAS stress, we observed significant 

down-regulation of translation related genes such as those encoding ribosomal proteins, 

consistent with the earlier findings (Gasch et al., 2000), where ribosomal genes were found 

to be repressed during general stress response. More genes were found to be upregulated, 

particularly, those involved in the methionine and cysteine biosynthetic pathways. Previous 

studies have shown that the AAS-induced response in yeast cell could be activated under 

the depletion of even a single type of amino acid(Hinnebusch, 1986, 1997). In this study, 

the yeast cells were transferred to a YPD medium without any type of amino acids. Our 

results show that when depleted of all amino-acids, there was a very strong transcriptional 

response of genes responsible for the synthesis of Sulfur-containing amino acids. In this 

regard, methionine, one of the two amino acids containing Sulfur, has been found to be an 

integral part of signaling pathways involved in the inhibition of autophagy, the regulation 

of tRNA thiolation that controls overall metabolic state, and cell proliferation (Sutter, Wu, 

Laxman, & Tu, 2013; Walvekar et al., 2018). Beyond its role as the initiation amino acid, 

methionine is also involved in increasing translation capacity through controlling upstream 

regulators in the TORC pathway (Sutter et al., 2013). Our finding that the DEGs under 

AAS stress are significantly enriched for pathways involved in Sulfur metabolism and 
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Sulfur-containing amino acid biosynthesis, provides a different perspective to the earlier 

results. It seems that under the limitation of all amino acids, apart from a drastic reduction 

in ribosomal and translation activity, the yeast cells preferentially synthesize methionine 

first as a mechanism to induce the synthesis of other amino acids and prepare for the restart 

of anabolism once conditions are viable again.  

Under the GS stress, there is also a significant down-regulation of translation and 

ribosomal encoding genes, consistent with early findings (Causton et al., 2001). Reduced 

expression was also found in genes involved in the repression of other genes in the presence 

of glucose. Genes involved in biosynthesis of multiple amino acids were also found to be 

downregulated. The upregulated genes are mostly involved in the general stress response 

and processes related to the utilization of alternate carbon resources such as 

gluconeogenesis, hexose transporters and energy metabolism (Gasch et al., 2017; Nadal-

Ribelles et al., 2019; Piper et al., 2000; Walvekar et al., 2018; J. Wang et al., 2022). 

By identifying putative TFBSs in the upstream regions of the DEGs under AAS 

and GS, we were able to confirm known TF-target gene relationships as well as potential 

novel ones. Modes of regulation also seems to be different for shared TFs between different 

stresses, such as the case for Sfp1p, which is mainly associated with upregulated genes 

under AAS and downregulated genes under GS.  

Enrichment of TFs in clusters of expressed genes was able to provide an 

explanation for the observed cellular variability between cells of the same condition. We 

showed that, with samples of decent quality, it is possible to identify gene modules 

regulated by the same TF using only intrinsic biological variability without the introduction 
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of perturbation. This is likely a result of stochastic variation in TF activation differences 

between cells of the same condition and the propagation of such variation or noise in gene 

regulatory networks (Pedraza & van Oudenaarden, 2005). This finding provides further 

credence(Pedraza & van Oudenaarden, 2005; Stewart-Ornstein, Weissman, & El-Samad, 

2012), supporting the idea of using cellular variability/noise to study regulatory 

mechanisms.  
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CHAPTER 3 TRANSCRIPTOMIC ANALYSIS OF THE SPATIOTEMPORAL AXIS 
OF OOGENESIS AND FERTILIZATION IN C. ELEGANS 

3.1 Introduction 

With a transparent body of less than 1,000 somatic cells, a fully sequenced genome 

harboring 19,985 protein-coding genes (WS291 annotation), and about 14 hours of 

embryogenesis time and two weeks of life span, the C. elegans hermaphrodite  provides an 

extraordinary model to understand various types of cell differentiation and organogenesis 

(Chu & Shakes, 2013; Consortium, 1998; Hillier et al., 2005; S. Kim, Spike, & Greenstein, 

2013; Labouesse & Mango, 1999; Marcello, Singaravelu, & Singson, 2013; Robertson & 

Lin, 2013; Rose & Kemphues, 1998; Sulston & Horvitz, 1977; Sulston, Schierenberg, 

White, & Thomson, 1983; Wood & Edgar, 1994). Particularly, C. elegans gonad provides 

an excellent model to understand meiosis (Pazdernik & Schedl, 2013), gamete formation 

(Chu & Shakes, 2013; S. Kim et al., 2013) and fertilization (Marcello et al., 2013). 

 In the C. elegans hermaphrodite germline, oogenesis occurs independently in two 

sets of U-shaped gonads connected to a single shared uterus (Pazdernik & Schedl, 2013). 

Oocyte formation begins at the distal end of each gonad with mitotically proliferating 

germline stem cells near the single somatic distal tip cell (DTC). Proliferating germ cells 

away from the DTC begin to enter meiosis prophase I through a transition zone, after which 

germ cells move along the gonad while going through the pachytene, diplotene and 

diakinesis stages ending in the most proximal (-1) oocytes that awaits fertilization in the 

spermathecae for progression into metaphase I and the subsequent formation of the zygote. 

Apart from the proximal oocytes in diakinesis, most of the germline nuclei do not have 

fully enclosed membranes and form a syncytium, sharing a nucleus free cytoplasmic region 



 

 

47 

called the rachis, which facilitates the transport of RNAs and proteins to growing oocytes. 

Throughout this process, the germline also is enveloped by five pairs of gonadal sheath 

cells (Sh1-Sh5 from distal to proximal), each pair serving distinct functions through 

communication with the germline and promoting the oogenesis program (Pazdernik & 

Schedl, 2013).  

 However, for a long time this system is limited by its miniscule size, preventing a 

detailed dissection of the biochemistry in each part of the oocyte assembly line using 

techniques such as transcriptome profiling using microarray (Baugh, Hill, Slonim, Brown, 

& Hunter, 2003; Reinke, 2002; Walhout et al., 2002) or bulk-RNA sequencing (RNA-

seq)(Gerstein et al., 2010; J. J. Li, Huang, Bickel, & Brenner, 2014; Spencer et al., 2011), 

and proteome profiling using mass spectrometry (Yuet et al., 2015), as all of these 

techniques require a descent quantity of RNA/protein from at least hundreds of thousand 

cells.  

Recent studies have performed micro-dissections of the C. elegans gonad and 

profiled transcriptomes of the gonad segments using single-cell RNA-seq (scRNA-seq) 

techniques (Diag, Schilling, Klironomos, Ayoub, & Rajewsky, 2018). However, these 

analyses mainly focused on the post-transcriptional/translational regulation of germline 

transcripts via binding of 3’UTRs to RNA binding proteins and miRNAs. Although these 

studies provided expression estimates for genes from each segment as well, they did not 

focus on other aspects of transcriptomic changes between the segments that might also 

account for the progress of oogenesis. Consequently, we still lack a good understanding of 
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the machinery of the assembly line, such as key regulators and gene expression patterns 

along the temporal and spatial axis of the gonad. 

To fill these gaps, we combined microdissection with scRNA-seq technique (Picelli, 

Bjorklund, et al., 2013; Ramskold et al., 2012; Tang, Barbacioru, Bao, et al., 2010; Tang, 

Barbacioru, Nordman, et al., 2010), and profiled the transcriptomes in the proliferative 

zone, pachytene zone, diplotene zone, early diakinesis zone (before -3 oocyte stage), later 

diakinesis zone (-3, -2, -1 oocytes), and the zygote. Our results revealed a highly dynamic 

picture of gene transcriptional regulation at each transitional time point throughout the 

oocyte assembly line. These results should provide a foundation to further understanding 

the molecular mechanisms of the oogenesis and fertilization processes.  

 
3.2 Materials and Methods 

3.2.1 Experimental Model 

The AZ212 C. elegans strain was obtained from the C. elegans Genetics Center 

(University of Minnesota), and was maintained in E. coli OP50 lawn on an agar plate 

according to the standard protocol (Stiernagle, 2006).  

3.2.2 Dissection of the gonad and harvest of samples  

After a well-fed gravid hermaphrodite was immobilized in the egg salt solution 

(ESS) with 10% tetramisole (Sigma, St. Louis), a cut was made across the vulva using a 

26G subcutaneous needle controlled by a micromanipulator (ROE-200, Sutter) under an 

inverted microscope (Olympus 1X71). This would release fertilized eggs and early-stage 

embryos from the uterus as well as sperms and at least portions of the two sides of the 

gonad. Each end of the gonad wrapped around by five pairs of sheath cells was completely 
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isolated by pushing its distal end as shown in Figure 3-1A. The distal proliferative zone 

(S1) was cut off around the transition zone (Figure 3-1A) and harvested in about 10 nl ESS 

by suction using a patch clamp pipette under controlled of another micromanipulator 

(ROE-200, Sutter). The pachytene zone (S2), the loop corresponding to the diplotene zone 

(S3) and diakinesis zone (S4) were sequentially cut off at the positions as shown in Figure 

3-1A and similarly harvested. The -3 (F3), -2 (F2), and -1 (F1) oocytes were also isolated 

by cutting through their boundaries and similarly harvested (Figure 3-1A). The zygote 

(fertilized oocyte) also known as P0 was similarly harvested when the two pronuclei were 

fused at its center (Figure 3-1A). Unavoidably, sheath cells wrapped around the gonad 

segments and oocytes as well as released sperms could be harvested in the samples.   

3.2.3 Preparation of RNA-seq libraries  

We prepare a RNA-seq library for each harvested sample for Illumina platforms 

using a modified scRNA-seq method based on Tang et al as previously described (Su, Xu, 

Shea, Destephanis, & Su, 2023; Tang, Barbacioru, Bao, et al., 2010; Tang, Barbacioru, 

Nordman, et al., 2010) at the earlier stage of the project and using the Smart-seq2 protocol 

(Picelli, Bjorklund, et al., 2013) later on. The libraries were sequenced by 100 bp paired 

end reads on an Illumina HiSeq2000 or HiSeq2500 machine.  

3.2.4 Transcriptome Mapping and Quantification  

The C. elegans genome assembly (GCA_000002985.3) was obtained from NCBI 

Refseq, while the annotations were based on Wormbase version: WS291. Prior to mapping, 

raw reads were trimmed with Trim Galore(Krueger, 2015), with parameters (quality >= 10, 

length > 35bp).  We quantified the expression levels of genes in two ways for different 
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subsequent analysis. For differential gene expression analysis, trimmed reads were mapped 

to the genome using HISAT2(D. Kim, Paggi, Park, Bennett, & Salzberg, 2019) with default 

settings, read counts were obtained by using HTSeq (S. Anders, Pyl, & Huber, 2015) with 

default settings based on the mapping results. The trimmed reads were also mapped to the 

genome using Salmon (Patro, Duggal, Love, Irizarry, & Kingsford, 2017) with default 

settings to obtain transcript per million (TPM) estimates for both genes and transcripts. 

3.2.5 Quality Control  

Sequenced libraries were then assessed for quality with custom scripts and quality 

metrics evaluated via the QoRTs package(Hartley & Mullikin, 2015). First, Salmon 

quantified TPM values for mitochondrial genes, spike-ins and sperm specific genes (See 

also, Figure B-1, Supplementary Table 3-1) were obtained. A sample was filtered out if it 

met any of the following criteria: i) over 5% reads (in terms of TPM) were from the 

mitochondrial genome; ii) over 5% reads (in terms of TPM)  were from rRNA genes; iii) 

over 5% reads (in terms of TPM)  were from sperm specific genes); iv) over 5% reads (in 

terms of TPM)  were from intestine specific genes; v) HISAT unique reads mapping rate 

< 70%; vi) less than 50% of HISAT uniquely mapped reads were mapped to coding DNA 

sequences (detailed procedure and genes that were removed and used for filtering are 

shown in Figure B-1 and Supplementary Table 3-1). These criteria were set to remove 

samples that were of poor libraries quality or were heavily contaminated by sperm, 

intestinal tissue and/or exhibited reduced quality during sample collection. To further 

increase the robustness of subsequent analysis, samples were visualized using Uniform 

Manifold Approximation and Projection (UMAP), and those that largely deviated from 
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clustered groups of the same sample type were removed. In addition, we included the P0 

(1-cell) samples of Tintori, et al (Tintori, Osborne Nishimura, Golden, Lieb, & Goldstein, 

2016) in our analysis, and the samples were processed through the same pipeline as our 

own samples.  

3.2.6 Comparison with Previous Datasets 

Gene expression data from six previous studies were collected from the following 

sources and compared with our data. For all comparisons, we used filtered samples with 

all genes (genes were not filtered). Details of the datasets and comparisons are as follows:  

1) Reinke et al. 2004 (Reinke et al., 2004) provided the first microarray-based list of 

oogenic genes. The list was retrieved from via their supplementary material.  

2) Ortiz et al. 2014 (Ortiz et al., 2014) performed RNA-seq analysis on the gonad to 

distill a list of genes termed oogenic. These genes were acquired via their 

supplementary data, and genes marked oogenic were used for our subsequent 

comparisons.  

3) Stoeckius et al. 2014 (Stoeckius et al., 2014) performed RNA-seq on proximal 

oocytes and 1 cell zygotes. Expression profiles were acquired via the instructions 

in their paper and genes with expression > 0.5 RPKM were deemed expressed. 

4) West et al, 2018 (West et al., 2018) dissected the gonad into mitotic and meiotic 

sections, and oocytes. RNA-seq data of each sample was acquired via the 

supplementary material of the paper, and genes with a reads count > 0 were deemed 

expressed. 

5) Tzur et al. 2018 (Tzur et al., 2018) utilized the Cel-seq protocol to sequence 10 
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segments of the C. elegans gonad, with 2 replicates per segment. Alignment of 

these 10 segments to our segments was based on diagrams presented in their study 

and rough estimates of where their dissection occurred. The exact alignments 

between their segments and ours are given in Table 3-1. Count matrices were 

acquired per the authors’ instructions. Pearson correlation was performed with log 

transformed count values using all shared genes. 

6) Diag et al, 2018 (Diag et al., 2018) performed cryo-dissection of the 3 posterior and 

3 anterior gonads into 13-15 segments per gonad. This resulted in 85 slices 

sequenced via Cel-seq. Expression profiles for these samples were retrieved from 

GEO with accession number GSE115884. Samples with < 104 reads were discarded 

from correlation analysis with our samples. The authors (Diag et al., 2018) provided 

approximate slice label, slice size as well estimates size of each gonad region. Thus, 

we were able to derive a coarse conversion from their slices to our segments, as 

shown in Table 3-1. Pearson correlation was performed with log transformed count 

values using all shared genes. 

3.2.7 Differential Gene Expression Analysis  

We performed differential gene expression analysis between each two dissected 

neighboring stages along the developmental axis of the gonads as above-described and 

zygotes using Monocle2 (Qiu et al., 2017). Experimental batch and gene detection rate in 

each sample were included as covariates along with segment/cell-type to model normalized 

gene expression using the negbinomial.size model of Monocle2. Because Monocle2 does 

not produce Log2FoldChange values, we applied Bayesian shrinkage of gene model 
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coefficients using the apeglm (Zhu, Ibrahim, & Love, 2019) package to account for large 

fold-change values of genes with low expression and obtain shrunken Log2FC values for 

each gene. A model of gene expression as a function of segment/cell-type was also fit to 

assess genes that were differentially expressed across all stages prior to fertilization 

(excluding P0). Genes with an FDR < 0.05 and a fold change increase/decrease of 1.5 were 

considered differentially expressed. ClusterProfiler(Yu et al., 2012) was used to perform 

Gene Set Enrichment Analysis (GSEA) with pre-ranked shrunken Log2FC values and gene 

sets from KEGG (Kanehisa et al., 2022), GO(Gene Ontology, 2021) Biological Pathways, 

Reactome (Milacic et al., 2024) and Wikipathways(Martens et al., 2021). Enrichment of 

each type of gene sets was performed separately, and the results were aggregated. Only 

gene sets containing more than 10 and less than 250 genes were considered, and those with 

an FDR < 0.05 were considered significantly enriched. 

3.2.8 Clustering co-expressed genes  

The union of DEGs identified in all pairwise comparisons were used for gene co-

expression analysis. After the read count values of genes were variance stabilizing 

transformed using the vstExprs function of Monocle2 package, Pearson correlation 

coefficient between expression levels of the genes in the samples were calculated, and 

genes were hierarchically clustered using the ‘ward.D2’ method of the hclust function in 

R. Upon visual inspection of the resulting clustering heatmaps, the clusters were set at a 

hierarchical level. Each cluster was then subject to enrichment analysis for GO biological 

process (BP) terms using ClusterProfiler (Yu et al., 2012) to identify significantly enriched 

terms for the cluster. Gene expression as well as the respective clusters were visualized 
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with the ComplexHeatmap package(Gu, 2022), and the top three most significantly (fdr < 

0.05 or p-value < 0.001) enriched GO terms were shown alongside the heatmap.  

3.2.9 Differential Alternative Polyadenylation Analysis 

3’UTR regions were extracted from the WS291 annotation via custom scripts to 

only include 3’UTR regions that did not overlap coding exons and other UTR regions. The 

samtools (H. Li et al., 2009) depth function was used to obtain pair-read aware coverage 

of the genome for each samples with HISAT2(D. Kim et al., 2019) aligned bam files. 

Coverage for each sample was normalized with DESeq2(Michael I Love et al., 2014) size 

factors before estimation of polyadenylation site and long/short 3’UTR coverage, and 

Percentage of Distal polyA site Usage Index (PDUI) was computed performed using  

DaPars2(Feng, Li, Wagner, & Li, 2018; L. Li et al., 2021). Modification to the DaPars2 

program was made to begin polyadenylation site search starting from 25bp downstream of 

3’UTR’s 5’ end. For each neighboring stages comparison, only 3’UTRs that belonged to a 

gene with a mean count > 10 across all compared samples and had PDUI values in at least 

3 samples in both stages were tested for differential alternative polyadenylation. Fisher’s 

exact test was performed with the average long/short 3’UTR coverage in compared stages, 

and the resulting p-values were corrected for false discovery rate (FDR) via the Benjamini 

Hochberg method. Genes that had FDR < 0.05 and |PDUI difference| > 0.05 were called 

for significantly differential alternative polyadenylation. ClusterProfiler(Yu et al., 2012) 

was used to perform GO BP (Ashburner et al., 2000) term enrichment analysis, and 

significant terms with FDR < 0.05 were called significantly enriched. Visualization was 

made with the trackViewer(Ou & Zhu, 2019) R package.  
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3.2.10 Differential Splicing Analysis 

Differential splicing analysis was performed using rMATS (S. Shen et al., 2014) 

that calculated splicing Psi values and evaluated their statistical significance. rMATS 

classifies splicing events into five categories: alternative 3’ splice site (A3SS), alternative 

5’ splice site (A5SS), intron retention (IR), mixed exon usage (MXE), skipped exon usage 

(SE). A splicing event with a Psi value change > 0.1 and an adjusted p-value < 0.05 was 

considered significant. 

 
 
3.3 Results 

3.3.1 Expression levels of detected genes correlate well with those from previous 

studies 

We cut each isolated gonad into seven segments roughly corresponding to the 

stages of oocyte development (Figure 3-1A) (Materials and Methods), and the number of 

samples collected for each segment, oocyte and the zygote are shown in Figure 3-1B. To 

assess the quality of our RNA-seq libraries, we evaluated the similarity between the 

detected genes and their expression values and those from six previous studies (Diag et al., 

2018; Ortiz et al., 2014; Reinke et al., 2004; Stoeckius et al., 2014; Tzur et al., 2018; West 

et al., 2018) (Materials and Methods). Four (Ortiz et al., 2014; Reinke et al., 2004; 

Stoeckius et al., 2014; West et al., 2018) of these studies largely quantified expression 

levels in entire gonads or large sections of the gonad, thus we aggregated gene expression 

in corresponding samples to allow reasonable comparisons. Our aggregated expression 

profiles recall over 90% of expressed genes in all the four datasets (Reinke et al., 99%; 
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Ortiz et al., 97%; West et al., 93% mitotic, 95% meiotic and 96% proximal oocyte; 

Stoeckius et al., 96% oocyte and 94% zygote) (Figure 3-1C). 

 Two of these studies (Diag et al., 2018; Tzur et al., 2018) dissected the C. elegans 

gonad into multiple segments and profiled the transcriptome of each segments using a 

variety of techniques including RNA-seq. As both studies cut the gonad in more segments 

than we did, we  aggregated data from the segments of (Tzur et al., 2018) and (Diag et al., 

2018) according to the alignments of the segments (Materials and Methods, Table 3-1), so 

that data from largely the same segments as ours were compared. Our detected genes in 

each segments and oocytes recall most of detected genes in the corresponding aggregated 

segments by (Tzur et al., 2018) and (Diag et al., 2018) (Figure 3-1C). Moreover, the 

expression levels of genes in our segments are largely correlated with those in the 

corresponding aggregated segments in the two prior studies (Figure 3-1D, E). These results 

suggest that we have largely correctly align the segments in both studies to ours. However, 

notably, our detected genes have higher recall rates for (Figure 3-1C) and higher correlation 

coefficients with (Figure 3-1D, E) those of (Tzur et al., 2018) than for and with  those of 

(Diag et al., 2018). This might be due to the more similarity between our segments and 

those of (Tzur et al., 2018) than between our segments and those of (Diag et al., 2018). 

Taken together, these results suggest that our detected genes are largely consistent with 

those detected by previous studies.    
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Table 3-1 Correspondence between or gonad stages and that of (Diag 
et al., 2018) and (Tzur et al., 2018). 

Our segments Tzur et al, 2018(Tzur 

et al., 2018) 

Diag et al, 2018(Diag 

et al., 2018) 

S1 Segments 1,2 Segments 1,2 

S2 Segments 3,4,5 Segments 4, 5, 6, 7 

S3 Segments 6,7 Segment 8 

S4 Segment 8 Segments 10,11 

F3 Segment 9 Segment 12 

F2 Segment 9 Segment 13 

F1 Segment 10 Segments 14, 15 

P0 NA NA 
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Figure 3-1 Comparison of our datasets with existing ones. A. A diagram of an isolated 
one side gonad together with a cartoon of one side gonad showing the dissection 
positions for the segments along the one side gonad. B. Number of samples from each 
stage of segments, oocytes and zygotes. C. Percentage of genes found expressed in each 
stage in previous studies that we found expressed in our study. D, E. Heatmap of Pearson 
correlation coefficient of our detected expressed genes in the segments with those of 
(Tzur et al., 2018) (D) and of (Diag et al., 2018) (E).  
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3.3.2 Differential gene expression occurs in early stages of oogenesis and mostly in 

proximal oocytes. 

Dissection of the C. elegans hermaphrodite gonad is a delicate procedure that is 

prone to contamination from neighboring tissues due to the miniscule size of the gonad and 

proximity of neighboring cells such as sheath cells, intestine cell and released sperms. To 

mitigate the effects of such contaminations, we filtered sperm-, intestine- and stress-related 

genes as well as heavily contaminated samples (Materials and Methods, Figure B-1, 

Supplementary Table 3-1). Mover, the hermaphrodite gonad itself also contains somatic 

cells, most notably the five pairs of gonadal sheath cells that tightly enclose the germline. 

The sheath cells mainly function to provide germline maturation signals, move germ cells 

along the rachis and push proximal oocytes into the spermathecae. Due to the tight 

interactions between the sheath cells and the germline, complete removal of these cells was 

very difficult, especially for earlier stages (S1-S4). Thus, some differential gene expression 

results for these early stages are inevitably due to differences between gonadal sheath cells, 

albeit they seem to negligibly affect our results for these stages of comparison as described 

below.  

We inspected the relationships among our samples via UMAP visualizations. As 

shown in (Figure 3-2A), the samples form into two distinct clusters, indicating strong batch 

effects in our datasets possibly due to the two different scRNA-seq library preparation 

protocols used at different stages of the project (Materials and Methods). Nonetheless, a 

trajectory from S1 samples to F1 and zygote samples is formed in both batches, which is 

in line with the developmental path of the germline. Thus, we account for batch effects in 
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subsequent analysis when possible. Inspection of the number of genes expressed in each 

segment/cell type shows a clear pattern, i.e., the number of expressed genes increased from 

S1 to S3, before dropping slightly in S4 and exhibiting only minor changes before another 

increase in the -1 oocyte (F1) and finally a large decrease in the fertilized oocyte (Figure 

3-2B). Therefore, it appears that gene transcriptional regulation mostly occurs in early 

stages of oogenesis, particularly between the S2 (pachytene) and S3 (diplotene) transition 

and becomes progressively quieter as the oocyte goes through the S4, F3 and the F2 stages 

(Figure 3-2B). Gene transcriptions are reactivated in the F1 oocytes, probably preparing 

for fertilization (Figure 3-2B). To further reveal gene expression transitions alone the 

developmental axis of the gonad, we analyzed DEGs between each pair of neighboring 

stages with the earlier stage as the baseline reference in each comparison (Figure 3-2C).  

Transition from S2 to S3 invokes the largest number of up-regulated DEGs, and transition 

from F3 to F2 has the smallest number of DEGs, while fertilization triggers the largest 

number of downregulated DEGs in the zygotes (Figure 3-2C).  



 

 

61 

 

Figure 3-2 UMAP display of samples and differential expression analysis of genes 
between neighboring stages. A. Both batches of samples are clustered according to their 
positions along the gonad developmental axis by UMAP based on their measured 
transcriptomes. B. Boxplot of numbers of genes detected in the samples in each 
developmental stage of the gonad and zygotes. C. Number of upregulated and 
downregulated genes detected between each pair of neighboring stages, see Supplementary 
Table 3-2 for details. 

 

3.3.3 DEGs form distinct clusters that are significantly enriched for various 

functions related to oogenesis. 

To reveal functional modules underlying the maturation process and fertilization of                                                                                                            

oocytes, we clustered the union of DEGs identified in all neighboring stages comparisons, 
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based on their expression levels in all analyzed samples. As shown in Figure 3-3, the DEGs 

form distinct clusters that are significantly enriched for various functional modules. For 

instance, clusters 2, 4 and 6 are significantly enriched for ribosomal and translation related 

processes. All these three clusters of genes exhibited a downregulating trend of expression, 

albeit with their largest decrease at different stages. Cluster 14 and 15 are enriched for 

genes involved in programmed cell death, with expression levels elevated in in the S3 stage 

corresponding to the diplotene loop. However, genes in cluster 14 were quickly 

downregulated after the S4 stage, while genes in cluster 15 retained similar transcription 

levels through the subsequent stages. Cluster 18 -20 are all enriched for processes related 

to oogenesis, e.g., eggshell formation and female gamete generation. Genes in these three 

clusters exhibited increasing trends of expression from S1 to -1 Proximal oocyte (F1), with 

the largest increases happening in the early stages (S1-S3). However, genes in cluster 18 

experienced reduced expression after fertilization in the zygotes (P0 cells), while genes in 

cluster 19 and 20 remained similar expression levels. Furthermore, genes in cluster 18 are 

enriched for eggshell formation, suggesting that transcripts-related to eggshell formation 

begin degradation post-fertilization after their protein products are no longer needed. Most 

DEGs belonging to the larger clusters 16 and 17 exhibited similar increases in expression 

from S2 to S3 and maintained steady levels of expression throughout the later stages even 

post fertilization. These genes are involved in phosphorylation, synaptic transmission and 

signaling, positive regulation of transcription, neuronal differentiation, cell fate 

specification and cell migration. Gene involved in cell migration might be responsible for 

the mobility of oocytes along the rachis. Interestingly, cluster 17 is strongly enriched for 
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genes involved in neuronal development, suggesting common functional modules might 

be used in the differentiation processes of both neurons and oocytes.  Cluster 9 is enriched 

for genes involved in muscle structures and myofibril assembly. As mentioned above, 

proximal gonadal sheath cells serve the role of pushing oocytes into the spermathecae and 

require many components like those of muscle cells. Thus, it is highly likely that genes of 

this cluster originate from contamination of proximal sheath cells wrapped around the 

proximal oocytes. It is also worth noting that gene expression pattern of cluster 9 differ 

from those of clusters 16 and 17 in that expression of genes in cluster 9 almost completely 

disappears in fertilized zygotes, likely due to the absence of sheath cells surrounding the 

isolated zygotes. Cluster 1 exhibits no obvious pattern of change in expression and the 

expression levels are generally low. These genes are enriched for defense response related 

processes and might be required at low levels along the gonad temporospatial axis. Both 

clusters 5 and 11 are enriched for extracellular matrix organization. It has been shown that 

many genes (mig-6, mig-39, lag-2, let-2, epi-1, etc.) in the two clusters (Supplementary 

Table 3-3) were preferentially expressed in the distal mitotic regions of the gonad and 

played roles in extracellular matrix organization and distal tip cell migration (Henderson, 

Gao, Lambie, & Kimble, 1994; C.-C. Huang et al., 2003; Kawano et al., 2009; Kikuchi et 

al., 2015). Consistently, expression levels of these genes were elevated in S1.  

We also performed GSEA using shrunken Log2FC values of all genes evaluated 

between each pair of neighboring stages and the results are summarized in Supplementary 

Table 3-4. Although most of the GSEA results are in accordance with those observed in 

the gene clustering enrichments (Figure 3-3), surprisingly, GSEA finds upregulated genes 
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enriched for cell cycle activity, mitosis, transcription, mRNA splicing, mitochondrial 

translation, and ATP production in the F1 vs P0 comparison (Supplementary Table 3-4). 

This suggests that transcriptional activation of cell division and energy production is 

present in the zygote.   

Figure 3-3 Heatmap of hierarchical clustering of DEGs using their transcription levels 
across the seven stages of oogenesis and zygotes. Enriched GO biological processes in 
some clusters are shown. See Supplementary Table 3-3 for details. 
 



 

 

65 

3.3.4 Possible contaminations of sheath cells in proximal oocytes samples 

As mentioned above, there are possible contaminations in the proximal oocytes 

(F1~F3) samples from surrounding somatic cells. This presents a challenge in deciphering 

whether expression changes originate from the germline or from the surrounding somatic 

tissues. As zygotes were often released in the medium once a cut was made across the 

vulva, and were always collected without obvious objects wrapped around, thus the zygote 

sample were unlikely contaminated by surrounding somatic cells. Therefore, we postulate 

that genes that are detected in proximal oocytes (F1~F3) samples but absent in zygote 

samples (such as those found in clusters 7-9 in Figure 3-3) are likely from contaminating 

tissues, and find many gene meet this criterion. Most notably, expression of let-23 and itr-

1 were relatively stable between F2 and F1 prior to dropping significantly in the zygotes, 

while expression of lin-3 remained high and relatively unchanged between proximal 

oocytes and zygotes (Figure 3-4A). The contractile activity of sheath cells begins with 

major sperm protein signals to the proximal oocytes, which in turn produces and releases 

LIN-3 ligands that are received by the LET-23 receptor on proximal sheath cells (Miller et 

al., 2001). The LET-23 receptor then triggers signaling inside the sheath cells through PLC-

3, which phosphorolyzes IP3 that binds to ITR-1 receptors on the ER, causing the release 

of calcium(Yin, Gower, Baylis, & Strange, 2004). In addition, sheath cell specific innexin 

channel encoding genes inx-8 and inx-9 (Starich, Hall, & Greenstein, 2014) maintained 

intermediate expression levels in S1~S4 stages, and were highly upregulated in proximal 

oocytes, but had negligible expression levels in the zygotes (Figure 3-4B). Furthermore, 

expression levels of sheath cell contractile activity related genes were also progressively 
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increased along the gonadal development axis, but almost vanished in zygote samples, such 

as genes pat-10, mup-2, tni-1 and unc-27 coding for the troponin complex (Obinata, Ono, 

& Ono, 2010; K. Ono & Ono, 2004)(Figure B-2A),  and genes unc-54 and myo-3 coding 

for the myosin heavy chain (K. Ono & Ono, 2016; Shelton, Carter, Ellis, & Bowerman, 

1999) (Figure B-2B).   

Similar reasoning can be made with other genes that have previous evidence of 

somatic or germline origins. Searching the CenGEN database(Hammarlund, Hobert, Miller, 

& Sestan, 2018) revealed that genes perm-2/4 encoding components of the 

eggshell(Gonzalez et al., 2018) had the highest expression levels in sheath cells. Expression 

of perm-2/4 is absent in P0 but high in F1 (Figure B-2C), while other known components 

of eggshell that are produced in the germline such as egg-1/2 do not exhibit such significant 

decreased expression in P0 (Kadandale et al., 2005).  The expression of myosin light chains 

genes mlc-1/2/3 involved muscle activity (Moerman, Fire, & Riddle, 1997; Rushforth, 

White, & Anderson, 1998) are all high in F1 but absent in P0, while the expression of the 

non-muscle myosin light chain gene mlc-4 required for cytokinesis in zygotes, is present 

in P0 (Figure B-2D) (K. Ono & Ono, 2016; Shelton et al., 1999). Analysis of actin genes 

act-1/2/3/4 (S. Ono, 2014; S. Ono & Pruyne, 2012) may even suggest that the expression 

of act-4 is not required in zygotes, as it is the only actin gene with negligible expression in 

P0 (Figure B-2E), an observation also supported by previous findings that act-1/2/3 were 

expressed in both muscle and non-muscle cells, while act-4 was expressed predominantly 

in body wall muscle(Stone & Shaw, 1993; Willis, Munro, Lyczak, & Bowerman, 2006).  
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3.3.5 Proximal oocyte expression profiles reveal interactions between the germline 

and the somatic gonad  

We compared the distributions of Log2FC values for all the comparisons of the 

DEGs that exhibit significantly lower expression levels in P0 samples in the F1 vs P0 

comparison. As shown in Figure 3-4C, a considerable number of the genes show a 

significant increase in expression between the F2 vs F1 comparison, as indicated by an 

additional small peak with higher Log2FC values in the distribution compared to other 

comparisons. These genes might account for those in clusters 7 and 8 (Figure 3-3).  This is 

interesting, as early studies indicate transcriptional inactivity or an overall presence of 

transcriptional silence as oocytes move to the proximal end (Starck, 1977; Walker, Boag, 

& Blackwell, 2007). Though this was the case for the F3 to F2 transition, however, clearly 

not for the F2 to F1 transition (Figure 3-2C). Two Uterine Lumen-Expressed (ule) genes 

ule-3 and ule-5 (Figure 3-5D) exhibited sudden increases in transcription from 10-fold to 

100-fold between the F2 and F1 transition. This is different from expression patterns of 

genes of gonadal sheath origin that we described earlier, where the expression levels stay 

relatively stable in the proximal oocytes. It has been reported that ule-3/5 might play a role 

in driving the ageing of the reproductive system, though the origin of their expression is 

not clearly discernable (Zimmerman, Hinkson, Elias, & Kim, 2015). A more recent study 

utilizing fluorescent in situ hybridization (FISH) to track the origins of these transcripts 

suggests a mechanism by which the transcripts are produced in spermathecae and carried 

over into the proximal oocytes(Trimmer et al., 2023). Using the expression of ule-3/5 as a 

reference, we discerned a set of 25 genes displaying the similar expression pattern (Table 
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3-2) by by the criteria: Log2FC < -7 in the F1 vs P0 comparison; and Log2FC > 4 in the F2 

vs F1 comparison; and average Median Normalized Expression in F1 > 1000). From the 

NEXTDB database (Kohara, 2001),  we were able to obtain in situ hybridization imaging 

for the products of 17 of these genes, of which 13 genes exhibited clear localization of 

corresponding transcripts in the spermathecae region (Figure 3-4E, Figure B-3). These 

results suggest possible interactions between transcriptionally silent oocytes and its 

somatic neighbors, where the transcriptional events happen in the surrounding 

spermathecae, and the proximal oocytes take up the transcripts and produce protein 

products.   

 

 

Table 3-2 25 Putative Genes from Spermathecae 
clec-222, D1054.10, ule-3, D1086.6, F53H4.2, F54F7.3, F55B11.2, F55B11.3, F57C2.4, 
K07A1.6, Y37D8A.19, Y57G11B.5, Y62H9A.3, Y62H9A.4, Y62H9A.5, ule-5, ZC373.2, 
E02H9.7, F17E9.4, ZK813.1, ZK813.3, D1086.11, H29C22.1, ZK813.7, F38A5.22 
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Figure 3-4 Examples of transcriptional dynamics of possible sheath cell genes along 
the gonad developmental axis. A. Genes coding for hemichannels (inx-8 and inx-9) of 
the somatic gonad. B. Genes coding for components signaling pathways between 
proximal sheath cells and oocytes. C. Distribution of Log2FC values between neighboring 
stages of the DEGs that are significantly downregulated in the F1 vs P0 comparison. A 
small portion of these DEGs is significantly upregulated in the F2 vs F1 comparison as 
indicated by the right peak of the distribution compared to other comparisons, see Table 
3-2 for details. D. Genes coding for ULE-3/5. E. NEXTDB in situ imaging of ule-3 
expression in spermathecae. In each gonad diagram, the average expression levels of the 
genes in each segment or the zygote are shown. 

 
3.3.6 DEGs mark transcriptional timing of the key events of oogenesis and 

fertilization 

One of the early key events in the oogenesis process is the control of mitosis and 

meiosis. Thus, it is interesting to look into the transcription patterns of mitosis promoting 
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regulators FBF-1/2 (Crittenden et al., 2002) and meiosis promoting regulators GLD-1/2/3 

(Eckmann, Crittenden, Suh, & Kimble, 2004). We found fbf-1/2 showed high expression 

in the S1 stage, but lower expression in the S2 and S3 stages and beyond (Figure 3-5A), 

while gld-2/3 exhibited increased expression only between S1 and S2, and then along with 

gld-1 maintained high expression in the later stages (Figure 3-5A). In addition, we observed 

transcriptional regulation of key factors involved in the maintenance of germ cells in 

meiotic prophase I such as OMA-1/2 and LIN-41(Tsukamoto et al., 2017). Specifically, 

the expression of oma-1/2 and lin-41 gradually increased throughout the early stages (S1 

and S2) of oogenesis followed by high elevations in the S3 stage, which were maintained 

even after fertilization, apart from lin-41, whose expression dropped after fertilization 

(Figure 3-5A). It has been suggested that LIN-41 could prolong prophase I and inhibit 

meiotic maturation after fertilization by a translational level regulatory mechanism(Spike 

et al., 2014; Tsukamoto et al., 2017), thus diminishment of the lin-41 transcription in 

zygotes suggests that transcriptional degradation might also play a role in the exit of the 

oocyte from metaphase I upon fertilization.   

We also found that many genes coding for eggshell components were upregulated 

in distal segments of the gonad, far before the complete formation of the eggshell that 

happened around the early-stage embryo (Stein, 2018). Genes coding for components of 

the vitelline layer (cbd-1)(Gonzalez et al., 2018), the chitin layer (chs-1, gna-2, egg-1/2/3) 

(Wendy L. Johnston & Dennis, 2012; Wendy L Johnston, Krizus, & Dennis, 2006; 

Kadandale et al., 2005; Maruyama et al., 2007; Y. Zhang, Foster, Nelson, Ma, & Carlow, 

2005) and the proteoglycan layer (cpg-1/2) (Olson, Bishop, Yates, Oegema, & Esko, 2006) 
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all exhibit increased expression in early stages of the germline until after fertilization 

(Figure 3-5B). These results suggest that transcription of these eggshell genes occur mostly 

during the mitosis to meiosis transition and the pachytene, while translation and 

degradation of these transcripts might occur as a response to fertilization signaling.  

Moving along the germline, another key event of oogenesis happens in the 

diplotene loop (S3) where germ cells undergo apoptosis. Here we find that genes regulating 

apoptosis form three distinct patterns of expression. The expression of genes encoding core 

apoptosis machinery such as apoptosis initiators CED-4/3(W. Huang et al., 2013) and 

apoptosis inhibitor CED-9 (Hengartner, Ellis, & Horvitz, 1992) were initially low in the 

S1 stage but elevated to steady states in the S2 (pachytene) stage (Figure 3-5C). The high 

expression levels of both ced-3 and ced-9 were largely maintained thereafter until after 

fertilization, while that of ced-4 was maintained thereafter until the F2 stage and then 

gradually decreased in F1 and zygotes (Figure 3-5C).   

Expression of ced-8, which encodes a substrate of the CED-3 Caspase and is likely 

involved in regulating the timing of apoptosis (Y.-Z. Chen, Mapes, Lee, Robert Skeen-

Gaar, & Xue, 2013), follows a different pattern, with significant upregulation in the S3 

stage, and maintaining high expression until fertilization (Figure 3-5D). The sudden 

increase in ced-8 transcription in the S3 stage suggest that CED-8 might play an important 

role in initiating apoptosis in the germline. Other genes such as skr-7, eor-2 and dre-1 

showed expression patterns like that of ced-8, with elevated expression starting from the 

pachytene (S3) loop onwards through fertilization (Figure 3-5D). SKR-7 has been 

implicated in inducing apoptosis(Gao et al., 2008), and DRE-1 has been found to interact 
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directly with CED-9 in regulating apoptosis (Chiorazzi et al., 2013). Early studies have 

found EOR-2, along with EOR-1 to induce apoptosis in neuronal cells (Hoeppner et al., 

2004). However, we only observed upregulation of eor-2 (Figure 3-5D) but not of eor-1 in 

the germline, suggesting a different mechanism of EOR-2 induced apoptosis in the 

germline than in neuronal cells.  

The third group of apoptosis related genes follow a different expression pattern that 

can be characterized by the expression profile of egl-1, which encodes a direct downstream 

target of CED-4 and inhibitor of CED-9, playing a critical role in DNA damage induced 

germline apoptosis (W. Huang et al., 2013). Egl-1 exhibited a transient increase in 

transcription in the pachytene loop (S3) that did not go beyond the S4 stage (Figure 3-5E). 

Other apoptosis related genes such as csp-1 and ces-2 displayed expression patterns like 

that of egl-1 (Figure 3-5E). An earlier study has found that csp-1 was expressed in late 

stage pachytene of the germline using FISH imaging (Denning, Hatch, & Horvitz, 2013). 

Ces-2 has been implicated in the apoptosis of neuronal cells in C. elegans, though a 

previous study suggested that ces-2 was not essential for germline apoptosis (Metzstein, 

Hengartner, Tsung, Ellis, & Horvitz, 1996). However, the sudden upregulation of ces-2 

transcription in S3 strongly suggests a role of ces-2 in apoptosis of the germline. 

Furthermore, since all 3 genes belong to cluster 14 (Figure 3-3), it is likely cluster 14 

contains other genes that are related to apoptosis as well.  

 

As shown in Figure 3-5F, genes encoding ribosome subunits and other translation-

related proteins generally exhibited downtrends in transcription as oocytes matured and 
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prepared for fertilization, consistent with a previous observation (Diag et al., 2018). 

Interestingly, genes downregulated between S1 and S2 are mainly involved in ribosomal 

precursor production, such as eif-6, rpoa-1/2, fib-1, nucl-1, etc. (Supplementary Table 3-2) 

(Miluzio, Beugnet, Volta, & Biffo, 2009; D. Xu et al., 2023), while those downregulated 

between S4 and F3 mainly encode ribosomal protein subunits, such as rla-0/1, rpl-

1/2/3/4/5/7/9/10/13/14/15/16/17 and rps-0/1/2/3/4/5/7/8/9/10/11/12/13/14/15 

(Supplementary Table 3-2) (Nakao, 2004). This suggests that the preparation of ribosomal 

assembly machinery for oogenesis mainly occurs in the distal mitotic regions prior to 

entering pachytene (S2), but ribosomal proteins continue to be produced until diakinesis 

(S4).  Moreover, the reduced levels of expression from the S4 stage and beyond indicating 

that all the transcription of translational machinery required for oocyte maturation are 

formed before the diakinesis stage.   
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Figure 3-5 Examples of transcription of DEGs that are involved in key events of 
oogenesis and fertilization. A. Genes encoding different elements of the eggshell. B. 
Genes involved in mitosis- meiosis transition and meiotic maturation. C. Genes involved 
in apoptosis with expression throughout the gonad.  D. Genes involved in apoptosis with 
elevated expression starting from the S3 stage. E. Genes involved in apoptosis showing 
transient expression in the S3 stage.  F. Boxplot of transcription levels of genes coding for 
ribosomal subunit across each stage of gonad development and in zygotes. 
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3.3.7 Differential Alternative Polyadenylation activity resumes post-fertilization. 

Though a great deal of literature has focused on regulation of translation through 

the 3’UTRs of transcripts by ribosomal binding proteins (RBPs), few have elucidated 

changes of the 3’UTRs themselves (Diag et al., 2018; M. Mangone et al., 2010; Merritt, 

Rasoloson, Ko, & Seydoux, 2008; Steber, Gallante, O'Brien, Chiu, & Mangone, 2019). 

Thus, we analyzed differential alternative polyadenylation (DAP) usage through the 

DaPars2 software (Feng et al., 2018; L. Li et al., 2021), which estimates changes in 

proportion of distal (lengthened 3’UTR) and proximal (shortened 3’UTR) polyadenylation 

sites used in two conditions. We found very few significant changes in distal versus 

proximal sites usage between neighboring stages, apart from the S4 vs F3, F3 vs F2 and F1 

vs P0 comparisons (Figure 3-6A). GO term enrichment analysis found that only the F1 vs 

P0 comparison resulted in significant enrichment of genes with ADP for mitotic cell cycle 

related processes, with mostly shortened 3’UTRs (Figure 3-6B). For instance, we find that 

cyb-1/2.2 exhibit shortened 3’UTRs while cdk-1 exhibited lengthened 3’UTR (Figure 

3-6C). CYB-1/2.2 along with CDK-1 regulate M phase entry of cell cycle in C. elegans 

(Rabilotta, Desrosiers, & Labbé, 2015). Though most DAP genes between F1 and P0 

exhibit shortened 3’UTR (Figure 3-6B), it is not straightforward how usage of distal vs 

proximal sites functions in the regulation of the final expression of protein products. 

Furthermore, despite very few significant DAP genes in the early stages of oogenesis, we 

found par-5 gene to exhibit DAP in both the S1 vs S2 and F2 vs F1 comparisons (Figure 

3-6C). In fact, 3’UTR length of the par-5 transcript gradually decreased until F3 stages 



 

 

76 

before increasing again (Figure 3-6C). It has been reported that PAR-5 regulates 

asymmetric cell division and  alternative 3’UTR isoforms of par-5 confers different levels 

of PAR-5 protein abundance (Mikl & Cowan, 2014). Interestingly, most significant DAP 

genes between S4 and F3 exhibited an increase in 3’UTR length, while most DAP genes 

between F3 and F2 exhibit decreased in 3’UTR length (Figure 3-6A). However, it is 

unclear whether this is because F3 oocytes are fully cellularized and maintain a stable 

transcriptome or other factors.  

 

 Figure 3-6 Differential alternative polyadenylation (DAP) analysis of genes between 
neighboring stages. A. Number of DAP genes between each neighboring stage, colors 
indicate lengthening (purple) or shortening (yellow) of 3’UTR lengths. B. GO term 
enrichment of significant DAP gene between F1 and P0 (left panel), and bar plot of 
percentage of significantly lengthened or shortened genes in each enriched gene set, 
GeneRatio is the proportion of differentially polyadenylated genes that belong to a known 
gene set. C. Coverage by RNA-seq reads of 3’UTRs of genes cyb-1/2.2, cdk-1 and par-5, 
red lines mark the estimated proximal polyadenylation site.  
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3.3.8 Differential Splicing play roles in germline development  

We further performed differential splicing analysis using rMATs (S. Shen et al., 

2014) to look for differential transcription of alternatively spliced isoforms of genes 

between neighboring stages along the oocyte developmental axis. Since rMATs could not 

account for batch effects, we performed the analysis with samples from Batch A (Figure 

3-2A). We identified varying numbers of genes exhibiting significant splicing signals 

defined by rMATs, i.e. alternative 3’ splice site (A3SS), alternative 5’ splice site (A5SS), 

intron retention (IR), mixed exon usage (MXE), skipped exon usage (SE), between 

neighboring stages. Most notably, the S1 vs S2 and the S4 vs F3 comparisons yielded the 

most differential splicing usage with 58 genes and 54 genes exhibiting differential splicing, 

respectively (Figure 3-7A). Genes with differential splicing usages between the S1 vs S2 

comparison are enriched for GO terms related to mitosis (Figure 3-7B), which is expected, 

given the fact that S1 contains the TZ regions (Figure 3-1C). However, other neighboring 

stages comparisons yielded no significantly enriched GO Biological Process terms. A few 

interesting examples are detailed as follows. 

Gene inx-14 was differentially spliced during the S1 to S2 transition (Figure 3-7C). 

Specifically, inx-14 was preferentially utilized for its longer 6th exon in the S2 stage 

compared to the S1 stage, resulting in increased proportions of its F07A5.1b isoform 

(Figure 3-7C). It has been documented that INX-14, along with INX-21/22 and INX-8/9 

forms hemichannels that facilitate the communication between the somatic gonad and the 

germline and plays a role in meiosis to mitosis transitions by negatively regulating meiotic 



 

 

78 

maturation and promoting germline proliferation (Starich et al., 2014). UniProt designates 

the F07A5.1b isoform as the canonical isoform, differing from the alternative F07A5.1a 

isoform by 2 amino acids in the 406-407 positions. Our results present a possible 

mechanism by which INX-14 changes its association with either INX-21 or INX-22 

(Starich et al., 2014). 

Another notable event was a gradual increase in preference of zen-4 skipping its 8th 

exon in the S1 to S3 transition (Figure 3-7D). Specifically, the most abundant zen-4 

isoforms were M03D4.1a.1, M03D4.1c.1, M03D4.1d.1 and M03D4.1f.1 (Figure 3-7D). 

This is due to the lack of read coverage for the regions that are spanned by the other 

isoforms (Figure 3-7D). The exon skipping event is indicative of decreased preference for 

the M03D4.1d.1 and M03D4.1f.1 isoforms, which contain the skipped exon in the other 

isoforms (Figure 3-7D). ZEN-4 along with CYK-4 forms the centralspindlin complex, a 

conserved component of intercellular bridges that functions in the cellularization of cells 

during cytokinesis(K.-Y. Lee et al., 2018; White & Glotzer, 2012; K. Zhou, Rolls, & 

Hanna-Rose, 2013). Though a recent study suggested that ZEN-4 was not essential in the 

germline for the closure of the intercellular bridge(K.-Y. Lee et al., 2018), our results 

suggest that as the oocyte moves along the rachis into late pachytene stage, alternative 

isoforms of zen-4 may still play a role in the cellularization of maturing oocytes.  

In addition, we found that ife-3 switched isoforms during the S1 to S2 transition 

(Figure 3-7E). The ife-3 gene encodes one of the C. elegans homologs for human 

translation initiation factors (eIFs) that plays critical role in regulating mRNA content 

along with microRNA and RNA binding proteins(Huggins et al., 2020). More specifically, 
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ife-3 functions as a repressor of fem-3 expression to promote production of oocytes in the 

germline(Huggins et al., 2020; Mangio, Votra, & Pruyne, 2015).  Here, we showed a switch 

in ife-3 splicing preference for the B0348.6b and B0348.6c isoforms over the shorter 

B0348.6a isoform (Figure 3-7E). Along with a slight increase in ife-3 expression, these 

results hint at a possible mechanism of ife-3 regulation in the pachytene stage of oogenesis. 

Interestingly, ife-3 expression reduced significantly in proximal oocytes, where 

transcription became increasingly silent, thus obviating the need for mRNA regulation 

(Figure 3-7E).  

Other genes worth pointing out include tos-1 coding for a reporter of differential 

splicing (L. Ma, Tan, Teng, Hoersch, & Horvitz, 2011), and lev-11 coding for tropomyosin 

(Watabe, Ono, & Kuroyanagi, 2018). Tos-1 experiences loss of preference for the usage of 

its 3rd exon from F1 to zygote (Figure B-4A), which is further corroborated by the 

decreased coverage of its longer isoform in S4 (Figure B-4A). However, the differential 

splicing of lev-11 transcripts (Figure B-4B) might occur in sheath cells wrapped around 

the oocytes as we argued earlier. It has been shown that different isoforms of lev-11 exhibit 

different characteristics in terms of muscle assembly and function (Watabe et al., 2018). 

Since F2 oocytes are roughly covered by Sh4 and F1 oocytes by Sh5, it is likely that an 

alternative isoform switch of lev-11 contributes to the different functions of these two 

sheath cell types. 
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Figure 3-7 Examples of differential splicing usage of genes during germline 
development. A. Box plot of numbers of five splicing types (A3SS, A5SS, MXE, Se and 
RI, see main text for definitions) detected between each pair of neighboring stages of 
germline development. B. Enriched GO terms of genes with differential splicing events 
between the S1 and S2 stages, GeneRatio is the proportion of differentially spliced genes 
that belong to a known gene set. C. Differential splicing events of gene inx-14 between the 
S1 and S2 stages. D. Differential splicing events of gene zen-4 between the S1 and S2 as 
well as S2 and S3 stages. E. Differential splicing event of gene ife-3 between the S1 and 
S2 stages. Exact positions of splicing events are shown in the red box. 
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3.4 Discussion 

With a spatial layout of cells that simultaneously mirrors the timeline of oogenesis, 

the C. elegans gonad can serve as a powerful model for uncovering mechanisms of 

oogenesis. However, the tiny size of the gonad also presents challenges for in-depth studies 

of the intricacies of this process. With the recent development of single cell methods, we 

utilize scRNA-seq techniques to decipher the transcriptomic landscape of different stages 

of oocyte formation as well as fertilization. Our transcriptomic dataset of the C. elegans 

gonad presents a good platform for research into the transcriptional landscape of oogenesis 

of animals. Our results not only are able to recall most of the oogenic genes designated by 

earlier research that utilized micro-arrays and bulk-RNAseq (Ortiz et al., 2014; Reinke et 

al., 2004), but also are highly correlated, through careful alignment of samples, with 

expression profiles of the different stages of the germline found by more recent studies that 

relied on single cell based techniques (Diag et al., 2018; Tzur et al., 2018). 

Our expression profiles show a distinct pattern in the UMAP display, which is 

consistent with the developmental axis of the gonad, indicative of our successful capture 

of the transcriptomes underlying the oogenesis program. Though our dataset presents 

discernable batch effects, we either incorporated them into our analysis models or forfeited 

the smaller batch of samples when necessary. The number of biological repeats for each 

stage as well as the sequencing depth for each sample means the results are robust to the 

discarding of few samples.  

Despite meticulous filtering of possible contamination of somatic tissues, the 

dissection of the tiny gonad presents a delicate problem, and it is difficult to fully avoid 
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contamination by surrounding tissues. In this study, we note that distal stages (S1-S3) 

inevitably contain transcripts originating from Sh1 and Sh2 sheath cells, due to the 

unenclosed and miniscule nature of the germline along the rachis. Thus, we focus on 

elucidating the transcriptomic changes of known germline associated genes to minimize 

false positive findings. Despite separating proximal stage oocytes as best as possible from 

shattered somatic tissue, e.g., sheath cells. complete removal of somatic components 

remained an elusive task. This prompted us to investigate patterns of expression that may 

arise from known somatic specific genes and take care in interpreting the results. We find 

that a great portion of genes that are drastically downregulated in zygotes relative to the F1 

oocyte are of somatic origin, including many known markers of muscle cells and sheath 

cells. This allowed us to mark a large portion of genes as somatic in nature, especially in 

the proximal gonad samples. However, we argue that the expression profiles of these genes 

depleted in zygotes are not without merit. From their expression patterns throughout the 

gonad, these genes can be divided into roughly two groups. The first consisting of genes 

that have relatively stable transcription in the proximal oocytes before complete 

disappearance in zygotes, and a second group consisting of genes that are drastically 

upregulated in only the F1 oocyte. This second group of genes includes those whose 

transcripts have recently been found to be produced in the spermathecae but transported 

into F1 oocytes (Trimmer et al., 2023). We thus provide a list of genes that might undergo 

this process. Though the exact function and underlying mechanisms for this phenomenon 

remain to be elucidated, a few genes exhibiting this pattern have been shown to affect the 

ageing of C. elegans (Zimmerman et al., 2015). 
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We confirm previous findings (L.-W. Lee, Lee, Huang, & Lo, 2012) at the 

transcriptomic level that the growth of oocytes presents as a process in which ribosomal 

biogenesis and cellular activity gradually decreases. Moreover, we observed at the 

transcriptional level known dynamics of core regulators of the mitosis to meiosis switch 

and meiosis maturation. In addition, we find that many genes involved in the eggshell 

formation initiate transcription as early as in the S1 stage, and their transcripts are 

accumulated until post fertilization. The C. elegans germline also presents a remarkable 

model for studying germ cell apoptosis (Gumienny, Lambie, Hartwieg, Horvitz, & 

Hengartner, 1999). Our results not only capture distinct upregulation of apoptosis related 

genes in the pachytene loop (S2 stage), but also discover novel candidate genes for future 

studies of germ line apoptosis. Furthermore, our gene clustering and DEG results also 

reveal three distinct sets of apoptotic related genes, characterized by the expression pattern 

of ced-3/4/9 (Figure 3-5C), ced-8 (Figure 3-5D) and egl-1(Figure 3-5E), respectively. 

These different modes of transcription suggest that cross-talks occur between different 

genes at the transcriptional and post-transcriptional levels to induce apoptosis.  

The previous report that RBP and the 3’UTRs are key players in a complex 

regulatory mechanism (Diag et al., 2018; Marco Mangone et al., 2010; Merritt et al., 2008) 

in the C. elegans germline prompted us to investigate whether significant changes in 

polyadenylation site usage occurred during oogenesis and fertilization. Though we were 

not able to find significantly enriched pathways regulated via changes in polyadenylation 

during oogenesis, we did find enrichment for cell cycle processes due to changes in 

polyadenylation site usage during fertilization. Our results suggest that polyadenylation 
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sites of transcripts remain relatively stable during oogenesis, and active regulation of 

alternative polyadenylation likely resumes in the zygote.   

Finally, we find that alternative splicing events are present throughout the gonadal 

segments. We reveal significant changes in the usage of isoforms of hemi-channel gene 

inx-14. It is highly likely that products of different isoforms of inx-14 associate with 

germline hemichannels INX-21/22 or somatic hemichannels INX-8/9 to facilitate 

communication between the somatic gonad and germline. We also find differential splicing 

usage of genes in the germline. For instance, we observe differential splicing of zen-4 

throughout the pachytene region. Though previous studies preclude the involvement of 

ZEN-4 in oocyte cellularization in the germline syncytium (K.-Y. Lee et al., 2018), ZEN-

4 isoforms may still serve functions in oocyte growth in late pachytene. Future studies are 

needed to elucidate the roles of isoform usages in C. elegans oogenesis and the underlying 

mechanisms. 

Taken together, our results paint a complex transcriptional landscape of the 

germline development, oogenesis and fertilization processes in C. elegans in finer detail 

than previous studies. Though contamination of somatic tissue presented challenges, we 

were able to discern putative somatic elements. We not only confirm previous findings, but 

also present many novel discoveries of transcriptional events along the temporospatial axis 

of the C. elegans germline and the zygote. Though much work remains to be done, 

particularly, with better dissection techniques to remove somatic contaminations, our study 

still presents a wealth of resources and gene candidates for future experimental 

investigation to reveal the underlying mechanisms of the oogenesis program. 
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CHAPTER 4 SINGLE-CELL RNA-SEQ ANALYSES OF OOCYTES AND ZYGOTES 
REVEAL EARLIER MATERNAL TO ZYGOTE TRANSITION IN MICE AND RATS 
4.1. Introduction 

Fusion of the oocyte and sperm forming the zygote marks the inception of all 

mammalian embryogenesis, during which the male and female genome come together to 

jumpstart the developmental process(McGrath & Solter, 1984). Despite providing half the 

DNA and being crucial for oocyte activation, the sperm brings few components in the 

zygote, and thus provides smaller sources in the early stages of embryogenesis than the 

oocyte. It is therefore mainly the contents of the maternal gamete that set up the suitable 

environment for successful polyspermy prevention and zygote genome activation (ZGA). 

During ZGA the control of cellular processes is gradually let go mainly from the products 

of the maternal genome and transferred to products of the zygote genome(Saunders et al., 

2002; Sutovsky & Schatten, 2000). This process, also known as maternal to zygote 

transition (MZT) (Tadros & Lipshitz, 2009), has long been the subject of interest for 

researchers. Most foremost, the oocyte is a highly differentiated cell that quickly acquires 

pluripotency after fertilization. Though much research has been conducted in this area, it 

is still an elusive topic, and many intricacies remain to be uncovered.  

 An aspect that has been observed in MZT of all mammals has been the silence of 

the transcriptome in mature oocytes prior to fertilization up until ZGA after fertilization, 

which initiates the events of embryogenesis(M. T. Lee, Bonneau, & Giraldez, 2014). The 

length of this period of transcriptional silence varies in different species. This quiescent 

period that is conserved among species has not been fully understood, particularly, the 

mechanisms underlying ZGA may be different for each species(Schulz & Harrison, 2019). 
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Nonetheless, in all the mammalian species the machineries that carry on the progression of 

meiosis and remodel the genome depend solely on the maternal mRNAs accumulated 

during oocyte development(M. T. Lee et al., 2014; Schulz & Harrison, 2019). Thus prior 

to ZGA, there is also translation and degradation of many maternal mRNAs(J. Ma, Flemr, 

Strnad, Svoboda, & Schultz, 2013; Q. Q. Sha et al., 2020). 

 The mouse (Mus musculus) and rat (Rattus norvegicus) are two of the most used 

model mammals in biomedical research. Many aspects of the two organisms are very 

similar, such as genome size and number of protein-coding genes. It is estimated that at 

least 90% of genes in the mouse genome have at least a homolog in the rat genome, and 

vice versa (Srivastava et al., 2020). However, there remain considerable differences in the 

biology of the two organisms including reproduction(Mullins & Mullins, 2004). For 

instance, it is known that ZGA occurs in 2 waves in mice with a ‘minor ZGA’ in the late 

1-cell stage and a ‘major ZGA’ in 2-cell stage. In contrast, it was reported that the onset of 

embryonic transcription activity in rats occur in late 2-cell stage(K. I. Abe et al., 2018; 

Zernicka-Goetz, 1994). However, even though major ZGA is known to occur at the 8-cell 

stage in human embryos, recent research has suggested that minor ZGAs occur in 1-cell 

human zygotes as well, though to a lesser degree than that of mice(Xue et al., 2013). Thus, 

it is possible that similar transcriptional events might also occur in 1-cell rat zygote. 

 Research into transcriptional events occurring during minor ZGA in mice has 

revealed insightful results. Early studies in mice using brUTP incorporation found that 

transcription occurred in the S stage of 1-cell zygote (Aoki, Worrad, & Schultz, 1997), and 

transcription of MuERVL (murine endogenous retrovirus-L) genes was verified via RT-



 

 

88 

PCR studies (Kigami, Minami, Takayama, & Imai, 2003). Another study found that 

transcription was promiscuous across open chromatin regions of the mouse zygote genome, 

with many transcripts containing intronic and intergenic regions, indicating limited 3’end 

processing and splicing mechanisms involved, possibly to protect the zygote from 

precocious gene expression(K. I. Abe et al., 2018).  

 Although the understanding of transcriptional events in the zygote is still 

inconclusive in many species, post-transcriptional regulation of transcripts appears to be 

ubiquitous. A pivotal aspect of post-transcriptional modification is cleavage and 

polyadenylation of maternal mRNAs. The choice of polyadenylation cleavage sites in 3’ 

untranslated regions (3’ UTRs) is thought to influence various UTR binding components 

that in turn regulate the stability, translation, and degradation of transcripts. Post-

transcriptional regulation via alternative poly-A cleavage sites as well as the length of poly-

A tail plays vital roles in MZT in many organisms. For example, poly-A tail lengthening 

promotes global translation in Drosophila zygotes (Eichhorn et al., 2016). Removal of de-

adenylation components in mouse oocytes leads to developmental arrest in pre-

implantation embryos (Liu et al.; Pasternak, Pfender, Santhanam, & Schuh; Qian‐Qian Sha 

et al.). A recent study has also found extensive remodeling of maternal mRNAs in human 

embryos via poly-A tail modifications such as changes in poly-A tails and 3’UTR lengths, 

which are essential for MZT in humans (Liu et al., 2023).  

Furthermore, despite the plethora of studies into the embryonic development of 

mice, little is known about the maternal vs zygote transcriptomic landscape in rats, and 

how the shared and differing characteristics with mice contribute to early stages of their 
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respective pre-implantation embryos. The rise in application of single-cell transcriptomic 

studies has opened a front into studying the intricacies of developmental dynamics at the 

single-cell level. However, many such transcriptomic studies overlook alternative insights 

that can be made apart from gene expression. In this study, we present orthogonal forms of 

comparative analysis on the transcriptomic landscape of the early MZT by applying a full-

length single-cell RNA sequencing (scRNA-seq) protocol (Picelli, Björklund Å, et al., 

2013) to oocytes and zygotes in mice and rats. We identify RNA transcripts that are 

produced, modified, or degraded in the zygotes. We also reveal mechanisms that are unique 

and conserved in the two species.  

 

4.2. Materials and Methods 

4.2.1 Sample preparation 

Harvest and preparation of oocytes and zygotes: Mouse and rat oocytes and zygotes 

were isolated at Horizon Discovery, St. Louis site, operated under approved animal 

protocols overseen by Horizon Discovery's Institutional Animal Care and Use Committee 

(IACUC). C57BL/6N mice and Sprague Dawley rats purchased from Taconic Farms were 

housed in standard cages and maintained on a 12-h light/dark cycle with ad libitum access 

to food and water. Three- to four-week-old female mice were injected with PMS (5 

IU/mouse) 48 hr before hCG (5 IU/mouse) injection, followed by with or without mating 

to stud males. Fertilized eggs and oocytes were harvested 1 d later, respectively. Four- to 

five-week-old female rats were injected with 20 units of PMS, which was followed by an 



 

 

90 

injection of 50 units of hCG 48 h later, followed by with or without mating to stud males. 

Fertilized eggs and oocytes of both species were harvested 1 d later. 

4.2.2 Construction of scRNA-seq libraries  

Full-length double-strand cDNA for each oocyte or zygote was prepared using an 

sc-RNA-seq libraries SMART-Seq v4 Ultra Low Input RNA Kit (Clontech, Mountain 

View, CA) following the vendor’s instruction, which was based on the Smartseq2 protocol 

(Picelli, Björklund Å, et al., 2013). cDNA-seq libraries were constructed using a Nextera® 

XT DNA Library Preparation Kit (Illumina, Sandiago, CA, Cat. Nos. FC-131-1024, FC-

131-1096) following the vendor’s instruction. The libraries were quantified using an 

Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara) and sequenced on an 

Illumina 2500 machine with 150 bp paired end reads. 

4.2.3 Transcriptome mapping and quantification  

The mouse genome assembly (GCF_000001635.27) with annotation version 

GRCm39 and the rat genome assembly (GCF_015227675.2) with annotation version 

mRatBN7.2 were obtained from NCBI Genbank. Raw sequences were trimmed using 

Trim_galore (Krueger, 2015), with parameters length > 35 and q > 10, and subsequently 

mapped to the respective reference genome using HISAT2(D. Kim et al., 2019) with 

default settings. The resulting mappings were quantified using HTSeq (S. Anders et al., 

2015) with default settings to obtain read counts. Trimmed reads were also mapped to the 

respective reference genome using Salmon(Patro et al., 2017) with default settings to 

obtain expression levels in per million (TPM) for both genes and transcripts. Quantification 

of read coverage of nascent transcripts was performed using kallisto(Bray, Pimentel, 
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Melsted, & Pachter, 2015)/bustools (Melsted, Ntranos, & Pachter, 2019) in the kb_python 

package (v0.28.0) (Melsted, Booeshaghi, et al., 2019; Sullivan et al., 2023). More 

specifically, trimmed reads were aligned to the reference genome with kb_python under 

the ‘nac’ workflow with default settings.  

4.2.4 Quality control and exploratory analysis  

Samples with more than 5% reads mapped to rRNA genes or 25% reads mapped to 

the mitochondrial genome were removed from further analysis. Furthermore, only genes 

whose biotypes belong to protein-coding, lncRNA and transcribed pseudogenes were kept 

for further analysis. Samples were visualized using Uniform Manifold Approximation and 

Projection (UMAP) based on log transformed DESeq(Michael I Love et al., 2014) median 

normalized counts, outliers were filtered out for further analysis .  

4.2.5 Differentially expressed gene (DEG) analysis 

Due to the inherent high variability intrinsic to single cell transcriptomic data, to 

ensure genes had sufficient coverage and replicates for DEG analysis, we only considered 

genes that were expressed in at least 6 samples. DEG analysis of both mouse and rat 

samples were carried out with count values from HISAT2(D. Kim et al., 2019)/(S. Anders 

et al., 2015). The raw counts were normalized to Counts per Million (CPM) and log 

transformed prior to analysis with MAST (Finak et al., 2015). In fitting the data to the 

MAST model, we enabled the useContinuousBayes=TRUE option to estimate 

log2(foldchange) values for genes that had no expression in oocytes or zygotes. For each 

species, genes with an FDR < 0.05 and a foldchange greater than 2 or less than 0.5 were 

considered differentially expressed.  
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4.2.6 Estimation of pre-mature mRNA transcripts 

Estimation of nascent mRNA transcripts was carried out through kallisto/bustools 

(Melsted, Ntranos, et al., 2019; Sullivan et al., 2023) using the kb_python (version = 0.28) 

wrapper, with method set to ‘nac’. The method is based on the idea that the number of 

nascent mRNAs for each gene inside the cell reflects a snapshot in the cell’s transcription 

dynamics, and thus by inferring nascent and mature mRNA levels for many cells, it is 

possible to delineate developmental trajectories by modeling the RNA production using 

differential equations. From henceforth, we shall use the terms un-spliced reads, nascent 

reads and intronic reads interchangeably to describe the reads that cover intronic portions 

of genes. A gene was considered to have pre-mature mRNA expression if it met the 

following criteria:  

• mean read coverage of spliced transcripts across zygote OR oocyte samples > 5. 

• spliced transcripts were expressed in 10% of zygote OR oocyte samples. 

• mean read coverage of un-spliced transcripts across zygote OR oocyte samples > 0. 

• un-spliced transcripts expressed in 10% of zygote OR oocyte samples. 

• R2 of linear model fit between spliced and un-spliced reads of all samples > 0.1. 

• Kendall correlation between spliced and un-spliced reads of all samples > 0.1. 

• Ratio of standard deviation of spliced reads over standard deviation of un-spliced 

reads was between 0.005 and 5. 

This filtering criteria was set to ensure that estimation of nascent read coverage truly 

came from un-spliced intronic portions of transcripts. DEG analysis of un-spliced genes 

was performed with MAST, with un-spliced reads normalized by sample-wise CPM 
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normalization factors used in the DEG analysis. We define the nascent proportion of a 

gene as the ratio of the mean spliced read coverage over the mean un-spliced read 

coverage in a cell.  To test differences in nascent proportions (DNP) of a gene between 

zygotes and oocytes, we applied a Fisher’s exact test. 

4.2.7 Differential transcript usage (DTU) analysis 

DTU analyses were performed under the guidelines given by (Michael I. Love, 

Soneson, & Patro, 2018). Specifically, transcript abundances (TPM values) estimated by 

Salmon(Patro et al., 2017) were first filtered using Drimseq(Nowicka & Robinson, 2016) 

with default parameters. The filtered data was then analyzed using DEXseq(Simon Anders, 

Reyes, & Huber, 2012) with default settings. Instead of exons in the original applications 

(Simon Anders et al., 2012), each transcript of a gene was regarded as an exon in our case. 

The DEXseq results for each gene were aggregated and further analyzed  using stageR(Van 

Den Berge, Soneson, Robinson, & Clement, 2017) to determine if it exhibited DTU while 

overall false discovery rate was controlled on the gene level. 

4.2.8 Alternative polyadenylation analysis 

HISAT2 aligned BAM files were first filtered using Samtools (H. Li et al., 2009) 

to only include concordantly and uniquely mapped reads. The resulting filtered bam files 

were then transformed into BEDGRAPH format using bedtools(Quinlan & Hall, 2010). 

Custom scripts were used to account for the pair-end and spliced natures of the read 

mappings. Primary lists of mouse and rat 3’UTRs were obtained by extracting 3’UTRs 

from the NCBI annotation files and only unique 3’UTRs were kept. A secondary list of 

3’UTRs in each species was obtained using DaPars2 (Feng et al., 2018; W. Wang, Wei, & 



 

 

94 

Li, 2014) following the authors’ instructions. The 3’UTRs in the secondary list may include 

coding sequences in the last exon.  Thus, if the 3’UTRs in the primary and secondary lists 

of a species were from the same isoform, only the one in the primary list was kept. Though 

most UTRs were composed of a single continuous segment, there was still a significant 

portion of UTRs that contained introns. In these cases, we discarded all segments with 

length < 150 bp and treated the remaining ones as individual 3’UTRs. We identified genes 

with differential alternative polyadenylation (DAP) in each species using DaPars2 (Feng 

et al., 2018; W. Wang et al., 2014), which computed a Percentage of Distal poly-A 

site Usage Index (PDUI) by de novo estimating putative polyadenylation breakpoints via 

read coverage change on the lists of 3’UTRs. To ensure more accurate DAP analysis, we 

modified DaPars2 as follows: 

1. Searching for breakpoints 25 bp instead of the default 150 bp downstream of 

the 3’UTR start point and only analyzed 3’UTRs > 150 bp.  

2. Furthermore, instead of using read depth of each sample for normalization, we 

used DESeq2-estimated size factor of each sample’s read counts as 

normalization factor.  

3. Allowing DaPars2 to produce distal and proximal polyadenylation site 

coverages in addition to PDUI units for each UTR. 

Moreover, the threshold for coverage was set to 0, thus, any read coverage was 

counted in the estimation of alternative polyadenylation. Prior to testing, we filtered out 

genes with less than 10 reads detected in any of the samples, as well as genes with no 

coverage in both distal and proximal 3’UTRs (PDUI == ‘NA’) in more than 5 samples. We 
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then performed Fisher’s exact test to evaluate the differences in distal vs proximal 

polyadenylation preference between oocytes and zygotes using mean distal/proximal 

coverage in oocyte and zygote samples. Differences in mean PDUI between oocytes and 

zygotes were also calculated. To aggregate the results to gene level (many genes have 

multiple 3’UTRs), for each gene, we selected the UTR with the lowest p-value. If multiple 

different UTRs of a gene had a tied p-value, the one with the largest absolute difference in 

PDUI was chosen. The resulting p-values were then controlled for false discovery rate with 

the qvalue package in R. Finally, genes with UTRs that had an absolute mean expression 

difference > 0.2 and a false discovery rate < 0.05 were considered to have differential 

alternative polyadenylation. Gene-body coverage in each sample was normalized by the 

BEDGRAPH coverage as aforementioned, and the average was taken over the oocyte or 

zygote samples.  The normalized BEDGRAPH coverage was processed and visualized 

using custom scripts and the trackViewer R package(Ou & Zhu, 2019).  

4.2.9 Pathway and GO term enrichment analysis 

The ClusterProfiler(Yu et al., 2012) R package was used to perform both gene set 

enrichment analysis and over-representation analysis with gene sets from KEGG (Kanehisa 

et al., 2022; Kanehisa & Goto, 2000), Gene Ontology Biological Processes (GO BP)(Gene 

Ontology, 2021), Reactome (Milacic et al., 2024) and Wikipathways(Martens et al., 2021).  

4.2.10 Analysis of orthologs between mouse and rat  

Orthologs between mice and rats were obtained from the MGI database(Blake et 

al., 2021). Specifically, rat and mouse genes belonging to the same homology class were 

considered as orthologs. Over-representation analysis was performed on orthologous genes 
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that had an absolute foldchange > 1.25 at an FDR < 0.05 in both species with all 

orthologous genes that were tested for differential expression in both species as the 

background set. The analysis was based on mouse gene annotations in the GO BP, KEGG, 

Reactome and Wikipathways databases. Visualization of gene networks was generated 

using clusterProfiler(Yu et al., 2012). All intersections of genes with DNP, DTU and DAP 

were performed with the respective results obtained in the prior analysis. All gene coverage 

plots were generated via the trackViewer(Ou & Zhu, 2019) package.  

4.3 Results 

4.3.1 Oocytes and zygotes of both mice and rats display distinct transcriptomic 

patterns 

We sequenced the transcriptomes of a total of 17 mouse oocytes, 17 mouse zygotes, 

15 rat oocytes, and 16 rat zygotes, with an average of 10,018,474 pairs of reads/cell 

(Supplementary Table 4-1). The vast majority (>90%) of the reads could be mapped to the 

respective genomes for most (53/81.52) samples (Supplementary Table 4-1). However, 6 

mouse oocytes, 1 rat oocyte and 5 rat zygotes exhibited high levels of reads mapping to 

mitochondrial or ribosomal genes, we thus excluded them from further analyses 

(Supplementary Table 4-1) (Materials and Methods). This left us with 28 mouse samples 

(11 oocytes / 17 zygotes) and 25 rat samples (14 oocytes and 11 zygotes). Interestingly, 

the reads from mouse samples, particularly, from mouse oocytes, were strongly biased to 

the 3’ ends of CDSs of genes, while the bias was not seen in both rat oocytes and zygotes 

(Figure C-1A). We detected transcripts for an average of 14,514 and 15,934 annotated 

genes in mouse oocytes and zygotes, respectively, and for an average of 12,826 and 13,535 



 

 

97 

annotated genes in rat oocytes and zygotes, respectively (Figure C-1B). Thus, there were 

more genes expressed in zygotes than in oocytes of both species. Furthermore, oocytes and 

zygotes of both species are clearly separated by estimated gene expression levels in UMAP 

displays (Figure 4-1A, 1B), indicating that oocytes and zygotes of both mice and rats 

contain distinct sets of gene transcripts.  

4.3.2 ZGA in rats may begin earlier than previously believed 

We first compared expression levels of genes in zygotes relative to those in oocytes 

of each species. We found 4,603 DEGs in mice, but only 842 DEGs in rat (Figure 4-1C). 

Of the mouse DEGs, a smaller portion (1,368 or 29.7%) were upregulated while the 

remaining larger portion (3,235 or 70.3%) were downregulated (Figure 4-1C). In contrast, 

of the rat DEGs, a larger portion (627 or 74.5%) were upregulated while the remaining 

smaller portion (215 or 25.5%) were downregulated (Figure 4-1C). Since the zygotes of 

both species were analyzed prior to the first cell division, the elevated transcriptional 

activities of the 1,368 upregulated DEGs in mice might reflect the previously reported 

initial transcriptional events in the mid-1cell stage zygote (K. I. Abe et al., 2018; Schultz, 

1993) . Interestingly, even though at a smaller scale, the elevated transcriptional activities 

of the 627 upregulated DEGs in rats might unveil an early wave of transcriptional 

activation in rat zygotes, which was previously believed to not occur until later stage of 

embryogenesis (Zernicka-Goetz, 1994). 

4.3.3 Distinct pathways are up- or down-regulated in both mouse and rat zygotes 

Downregulated genes in mouse zygotes were significantly enriched for GO BP or 

pathways including cytoplasmic translation, rRNA processing, nonsense-mediated decay, 
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TCA cycle, energy production and chromatin modifying enzymes, etc. (Figure 4-1D, 

Figure 4-2A). For example, ribosomal protein subunits encoding genes such as 

Rpl3/9/12/18/19/26 (Nakao, 2004) were downregulated in mouse zygotes (Figure 4-1D), a 

result that is in excellent agreement with the earlier findings (Schultz, Letourneau, & 

Wassarman, 1979). Genes that function in the TCA cycle such as 

Ndufa2/Nudfb7/Ndufa8/Ndufc1 (Vinothkumar, Zhu, & Hirst, 2014) and genes involved in 

energy production such as Atpa1a/Atp5h (Song et al., 2018) showed decreased transcript 

levels (Figure 4-1D). On the other hand, upregulated genes in mouse zygotes were 

significantly enriched for biological processes or pathways including mRNA transport, cell 

cycle, transcription, DNA replication, energy production, etc. (Figure 4-1D, Figure 4-2A). 

For instance, genes Pdhb, Pdp1, Pdhx and Dlat were upregulated, which encode 

components of the pyruvate dehydrogenase complex responsible for  acetyl-CoA 

biosynthesis from pyruvate (Z. H. Zhou, Mccarthy, O'Connor, Reed, & Stoops, 

2001)( Figure 4-1D). Interestingly, the role of the TCA cycle in ZGA was previously 

studied in early mouse embryos, and it was found that despite low metabolic requirements 

in early embryo, pyruvate was responsible for the nuclear localization of several TCA 

enzymes that might contribute to epigenetic regulations that were essential for major ZGA 

activation in the 2-cell stage(Nagaraj et al., 2017). RNA polymerase II subunit genes Taf6/9 

(Cler, Papai, Schultz, & Davidson, 2009; Juven-Gershon, Hsu, Theisen, & Kadonaga, 

2008), cell cycle genes Cdc20, Mastl, Mad2l1and Ube2e1(C. Guo et al., 2020; Rogers et 

al., 2018; Wheaton et al., 2017; Q. Wu et al., 2017), and general transcription factor II 

genes Gtf2a2/2b(Roeder, 1996) also exhibited upregulation in mouse zygotes (Figure 
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4-1D). Genes Nup35/37/54 encoding nucleoporin (Nup), and gene Nxt1 encoding the 

nuclear transport factor 2-like export factor (Xie & Ren, 2019) were upregulated, 

suggesting increased transport of mRNA and proteins between the nucleus and cytoplasm 

in mouse zygotes, in line with recent findings that knockdown of the nucleoporin gene 

Nup37 led to reduced blastocyte formation rates (Q. Guo et al., 2022) and that massive 

remodeling of the nuclear envelope occurred during minor zygotic activation in bovine pre-

implantation embryos (Popken et al., 2015). Moreover, we found genes encoding essential 

ZGA transcription factors Obox1/2/5/7 were all upregulated in mouse zygotes (Figure 

4-1D), suggesting that the elevation of transcription levels of these genes during minor 

ZGA may also be at least partially transcriptional and not solely of maternal origin as 

reported by a recent study (Ji et al., 2023).  

Downregulated genes in rat zygotes were enriched for biological processes or 

pathways including non-sense mediated decay, RNA polymerase 1 promotor opening, 

structural constituent of chromatin, etc. (Figure 4-1E, Figure 4-2B). For instance, as in the 

case of mouse zygotes, genes encoding ribosomal proteins also were downregulated in rat 

zygotes (Figure 4-1E, Figure 4-2B). Moreover, Genes NuRD and CHD involved in 

chromatin remodeling were downregulated (Figure 4-1E). Upregulated genes in rat zygotes 

were enriched for four biological processes or pathways including carbon metabolism and 

the TCA cycle, etc.  For instance, transcription of the following genes involved in the TCA 

cycle  were all upregulated in rat zygotes: Aco2 (aconitase 2) (Ciccarone, Vegliante, Di 

Leo, & Ciriolo, 2017), Pdha1(pyruvate dehydrogenase component) (Z. H. Zhou et al., 

2001), Idh1 (pyruvate dehydrogenase) (Ni et al., 2022), Sdhc/d (succinate dehydrogenase 
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subunits) (Rutter, Winge, & Schiffman, 2010), and Dlst (dihydrolipoamide S-

succinyltransferase) (Berg, Tymoczko, & Stryer, 2002)( Figure 4-1E). This result contrasts 

with that seen in mouse zygotes where some TCA cycle genes were downregulated while 

some others were upregulated (Figure 4-1D, Figure 4-2A). Coupled with the 

aforementioned studies showing that several TCA cycle enzymes were transiently 

localized in the nucleus of mammalian embryos and essential for major ZGA (Kafkia et al., 

2022; Nagaraj et al., 2017), the shared increased expression of the said enzymes in both 

species suggests that these enzymes may be regulated at the transcriptional level during 

minor ZGA. Taken together, these results once more suggest that ZGA in the rat might 

begin earlier than previously believed.  
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Figure 4-1 Oocytes and zygotes of both species contains distinct sets of transcripts. A, 
B UMAP visualization of single mouse (A) and rat (B) oocytes and zygotes based on 
expression levels of genes. C. Number of up- or down-regulated DEGs in mouse and rat 
zygotes relative to respective oocytes. D, E. Volcano plots of –Log10Pvalues vs Log2FC of 
mouse (D) and rat (E) genes. Genes marked red were significantly upregulated (Log2FC > 
1 and FDR < 0.05), while those marked blue were significantly downregulated (Log2FC < 
-1 and FDR < 0.05) in zygotes relative to oocytes.   

 

 
Figure 4-2 A, B. Enriched GO BP terms, Wikipathways, KEGG Pathways and Reactome 
at FDR < 0.05 in mouse (A) and rat (B). Significant pathways and gene sets are clustered 
into similar groups based on Jaccard’s similarity for ease of viewing, density plots for each 
gene set/pathway show distribution of the log2FC of the genes in the indicated GO BP or 
pathways.  
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4.3.4 pre-mature mRNA transcription is elevated in zygotes of both species 

It has been reported that early transcriptional events in the zygote produced pre-

mature (nascent) RNAs that originated from intronic as well as intergenic regions(Ken‐

Ichiro Abe et al., 2015). We thus estimated nascent (un-spliced) and mature (spliced) 

transcripts in the samples of both species (Materials and Methods). We detected a total of 

26,514 and 21,009 genes with read coverage in the mouse and rat oocytes and zygotes, of 

which 3,639 (13.8%) and 2903 (13.7%) had nascent reads, respectively (Figure C-2A). In 

both species, zygotes contained higher proportions of nascent reads than oocytes (Figure 

4-3B). We also quantified reads mapped to 1 kb binned intergenic regions as has been done 

previously(Ken‐Ichiro Abe et al., 2015).  Zygotes in both species had significantly larger 

numbers of bins with >1 read coverage than oocytes (Figure 4-3C). These results confirm 

the previous findings of increased expression of nascent transcripts in 1-cell mouse zygotes, 

while also suggesting that a similar phenomenon of transcription occurs in the 1-cell rat 

zygotes. We then performed a DGE analysis of genes with nascent transcripts in oocytes 

and zygotes (Materials and Methods). As shown in Figure 4-3C, Log2FC values of nascent 

transcripts and Log2FC values of spliced transcripts are strongly correlation, indicating that 

nascent transcripts mostly change in the same ways as their spliced counterparts.  

To identify genes that exhibited significant changes in the proportion of nascent 

transcripts, we performed a DNP analysis between oocytes and zygotes in both species 

(Materials and Methods). We found that mouse had more genes with decreased nascent 

proportions than with increased nascent proportions (113 vs 86), while rat had more genes 

with increased nascent proportions than with decreased nascent proportions (50 vs 35) 
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(Figure 4-3D). Comparisons of DEGs and DNP genes in both species found only small 

overlaps between DEGs and DNPs (Figure 4-3E, 3F). However, in both species, the largest 

overlap was between upregulated DEGs and genes with decreased nascent proportions 

(Figure 4-3E, 3F). Although this was expected in rats due to a greater number of 

upregulated DEGs than downregulated DEGs (Figure 4-1C), it was surprising in mice, 

since mouse had many more down-regulated DEGs than upregulated DEGs (Figure 4-3E). 

This result suggests that some of upregulated DEGs in mice could be due in part to more 

mature transcripts in the zygote cytoplasm that could have been stored as unprocessed 

transcripts in the oocyte nucleus. Over-representation analysis of these DNP genes in both 

species yielded no significant pathways or GO BP terms when accounting for false 

discovery rate. However, we found changes in genes that played important roles in either 

oocytes or zygotes. For instance, the nascent proportion of the Oog1/2 genes increased in 

mouse zygotes (Figure 4-3G), which is known to be required for oocyte development 

(Minami et al., 2003; Monti & Redi, 2009). The nascent proportion of the Obox genes 

increased in mouse zygotes (Figure 4-3G), consistent with our earlier observation that the 

Obox genes were upregulated in the zygotes as a part of the minor ZGA process, albeit in 

unprocessed transcript form. The Nlrp4b/g genes also exhibited decreased nascent 

proportions in mouse zygotes (Figure 4-3G), in agreement with the previous reports that 

the Nlrp transcripts were maternally derived and played essential roles in zygotic genome 

(B.-H. Chang et al., 2013; W. Li, Lin, Peng, & Zhang, 2015). Although DNP genes in rats 

were less evident, we found the Zar1 gene to exhibit decreased nascent transcript 
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proportion (Figure 4-3G), consistent with the previous report that Zar1 played essential 

roles in zygotic genome activation by regulating maternal derived RNAs (X. Wu et al.).  

 

Figure 4-3 Expression of pre-mature mRNA transcripts in oocytes and zygotes of both 
species. A. Average percentage of total un-spliced reads out of all reads (spliced and un-
spliced) in oocytes and zygotes of mice and rats. B. Number of all and far 1kb intergenic 
regions with reads in oocytes and zygotes of the two species. Far regions are >10kb 
downstream or upstream of any gene. C. Scatter plots of MAST estimated Log2FC values 
of un-spliced reads and Log2FC of spliced reads for all genes that have un-spliced reads in 
each species. Pearson’s correlation coefficient (PPC) between the values is shown for each 
species.  D. Number of genes with differential nascent proportion (DNP) for each species, 
which are up- or down-regulated in zygotes. E, F. Upset plots of increased/decreased DNP 
genes and upregulated/downregulated DEGs in mice (E) and rats (F). G. Average intronic 
coverage for Oog2, Obox2, Obox7, Nlrp4g and Zar1 that were called DNP, in oocytes and 
zygotes, red boxes highlight regions with intronic coverage. * p < 0.05, ** p<0.01 and *** 
p<0.001, Student’s t-test.  
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4.3.5 Differential splicing might play a role in MZT in both mice and rats 

To uncover genes with splicing changes and isoform switches during MZT, we 

performed DTU analysis (Materials and Methods) on genes between oocytes and zygotes 

of both species. We found that 2,601 genes exhibited DTU between mouse oocytes and 

zygotes, while only 609 genes showed DTU between rat oocytes and zygotes (Figure 4-4A), 

once more suggests a much more dynamic transcriptional landscape in the mouse zygotes 

than in rat zygotes. In both species, differential transcript usage can be attributed to the 

differential expression of no more than two isoforms. (Figure C-2B). Only small portions 

of DEGs overlapped genes with DTUs and vice versa in both species (Figure 4-4B). 

Interestingly, the number (308) of DTU genes in mice that also are upregulated DEGs is 

close to the number (324) of DTU genes that also are downregulated DEGs, despite many 

more downregulated DEGs in this species (Figure 4-4B). This might suggest that some of 

the upregulated DEGs might be, at the very least, newly modified transcripts that preside 

in the cytoplasm of zygotes. DTU genes in mice significantly enriched for GO BP terms 

such as mitotic cell cycle and protein ubiquitination (Figure 4-4C), while DTU genes in 

rats did not significantly enrich for any GO BP terms (FDR < 0.05) (Figure 4-4D). Albeit 

top ranked GO BP terms by p-values (without multiple hypotheses test correction) for both 

mice and rats are related to cell cycle. DTU genes in both species also are involved in 

histone modification, chromatin organization, protein ubiquitination and modification 

(Figures 4C, 4D), suggesting a role of alternative splicing in ZGA associated chromatin 

remodeling. For instance, we found Bap and Usp3 exhibiting DTU in mice (Figure 4-5A, 

B), and Usp16 and Rnf2 showing DTU in rats (Figure 4-5C, D). These results are consistent 
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with previous findings that Usp3 and Bap1 deubiquitinate H2AK119ub1 (Sharma et al., 

2014; Thomas et al., 2023), Usp16 is the dominant deubiquitinase of H2AK119ub1 in 

oocytes(Rong et al.), while Rnf2 monoubiquitinates H2A histone (H. Wang et al.). 

Chromatin undergoes drastic changes during MZT including redistribution of histone H2A 

among other epigenetic makers, and thus, the control of H2A is vital to ensure proper 

embryonic development (B. J. Wu et al.). Previous studies have shown that both 

accumulation and absence of H2A may result in embryonic arrest(Z. Chen, Djekidel, & 

Zhang, 2021; Rong et al., 2022). Furthermore, we found that some genes with DTU (such 

as Usp16) did not exhibit overall expression level changes in both mice and rats. Thus, the 

switches in isoform usage may originate from both newly transcribed and degraded 

transcripts and may play roles in MZT in both mice and rats.   
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Figure 4-4 Differential splicing of transcripts between oocytes and zygotes of mice and 
rats. A. Number of transcribed genes with and without DTU (FDR < 0.05) in each species. 
C. Venn diagram of DTU genes and upregulated or downregulated DEGs in each species. 
D. GO BP term enrichment for mouse genes with DTU (top 10 terms are shown, names 
marked in red are significant (FDR < 0.05). E. Go BP term enrichment for rat genes with 
DTU (top 10 terms are shown). Gene ratio is the ratio of genes in a GO BP term that were 
called DTU over all genes in that term.  
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Figure 4-5 A-D Comparison of proportions of isoforms of Bap1(A), Usp3 (B), Usp16 
(C) and Rnf2 (D) between oocytes and zygotes of mice and rats.  

 

4.3.6 Genes transcripts in oocytes and zygotes undergo distinct 3’UTR 

polyadenylations in both mice and rats 

Post-transcriptional modifications to mRNA molecules such as alternative use of 

polyadenylation sites in 3’UTRs, play a critical role in the regulation of mRNA stability 

and translation (Mayya & Duchaine, 2019; Mignone, Gissi, Liuni, & Pesole, 2002). Thus, 

we analyzed differences in 3’UTR usage of transcribed genes between oocytes and zygotes 

in both species by calculating a PDUI (Percentage of Distal poly-A site Usage Index) value 

(Feng et al., 2018; Xia et al., 2014) for each expressed gene (Materials and Methods). 
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Oocytes and zygotes in each species could be clearly differentiated based on their PDUI 

values in UMAP displays (Figure 4-6A, B), indicating that genes expressed in oocytes and 

zygotes underwent distinct 3’UTR polyadenylations. We then sought to uncover 

significant differences in 3’UTR usage between oocytes and zygotes (Materials and 

Methods). In mice, we found that 1020 genes exhibited significantly differential alternative 

polyadenylation (DAP) between oocytes and zygotes; of which, 785 (76.9%) showed 

increases in proximal adenylation site usage (preference for shorter 3’UTRs), while the 

remaining 186 (23.0%) showed preference for distal polyadenylation (preference for longer 

3’UTRs) (Figure 4-6C). In rats, we found that 154 genes showed significant DAP between 

oocytes and zygotes; of which, 106 (55.2%) had increased preference for distal adenylation 

sites, while the remaining 86 (44.8%) showed increased preference for proximal sites 

(Figure 4-6C). Thus, the much greater proportion of genes with shortened 3’UTRs in 

mouse zygotes than in rat zygotes suggests that mouse zygotes undergo much more 

extensive de-polyadenylation modifications than rat zygotes.  

We then investigated the relationships between DEGs and DAP genes. In mice, a 

considerable number of DAP genes were also DEGs. Specifically, of the mouse DAP genes 

with shortened 3’UTRs, 288 were upregulated DEGs, but only 35 were downregulated 

DEG, even though there were fewer upregulated DEGs than downregulated DEGs (Figure 

4-1C). Of the mouse DAP genes with lengthened 3’UTRs, 14 were upregulated DEGs, and 

37 was downregulated DEGs (Figure 4-6D). These results indicate that DAP genes in mice 

with shortened 3’UTRs tend to be upregulated DEGs (Figure 4-6D). In addition, we 

analyzed the Log2FC changes of all genes analyzed for DAP (Figure 4-6E) and found that 



 

 

110 

though genes with shortened 3’UTRs tended to be upregulated (skewed towards Log2FC > 

0), there was no correlation between the magnitude of expression change and change of 

3’UTR usage (PDUI difference). We also add that significant DAP genes with lengthened 

3’UTRs showed no apparent association with upregulation/downregulation, and that 

downregulated genes also did not show apparent association with lengthened/shortened 

3’UTRs. In rats, only a few DAP genes were also DEGs, with no association between the 

numbers of DEGs and DAPs (Figure C-3A), thus no confident conclusion could be drawn. 

DAP genes with shortened 3’UTRs in mice are enriched for mitotic cell cycle transition as 

well as meiotic division (Figure 4-6F). Although no GO terms are significantly enriched 

for the DAP genes after false discovery rate correction (FDR < 0.05), top ranked (by p-

value) GO terms enriched by significant DAP genes in rats include protein ubiquitination, 

positive regulation of miRNA mediated gene silencing and positive regulation of G2/M 

transition of mitotic cell (Figure C-3B).  

Many of DAP genes in mice or rats have been known to play various roles in the 

MZT. We describe two sets of such genes below. The first set are involved in deadenylation 

and readenylation of mRNAs. We found that Btg4 and Cnot7 had DAP with shortened 

3’UTRs in mice (Figure 4-6G). It has been shown that CNOT7 along with CNOT6/6l/8 

form the CCR4-NOT complex that controls deadenylation of mRNAs (Aslam, Mittal, 

Koch, Andrau, & Winkler, 2009; Horvat et al., 2018; Jun Ma, Fukuda, & Schultz, 2015; 

Qian‐Qian Sha et al., 2018). It is recently reported that BTG4 functions as a mediator of 

deadenylation, playing a critical role in the production of substrates for maternal RNA re-

adenylation during MZT in humans(Liu et al., 2016; Pasternak et al., 2016; Q. Q. Sha et 
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al., 2020). It is likely that these deadenylation related genes switch their transcription 

modes in zygotes to produce transcripts with shorter 3’UTRs via deadenylation followed 

by re-adenylation, thereby conferring higher translational efficiency of the genes.  

The second set of genes are implicated in the regulation of mitotic progression and 

cell cycle.  We found that Nek7 had DAP with shortened 3’UTR in mouse zygotes (Figure 

4-6G). An early study has shown that reduction in Nek7 activity can cause cells to arrest in 

metaphase of mitosis (Salem et al., 2010). It is likely that Nek7 serves a similar function in 

meiosis through an inhibitory mechanism due to a longer 3’UTR in MII oocytes. 

Interestingly, unlike the case in mice, several mitosis related DAP genes in rats exhibited 

lengthened 3’UTR usage. The Mastl gene, which encodes an essential regulator of cell 

cycle control (Rogers et al., 2018), exhibited increased usage of longer 3’UTR transcripts 

in rat zygotes (Figure 4-6H). Similarly, Cdc25a encoding a protein phosphatase that 

functions as a critical cell cycle regulator (T. Shen & Huang, 2012), exhibited increased 

usage of longer 3’UTRs (Figure 4-6H). These results suggest different regulatory 

mechanisms of mRNA stability and protein translation in rat and mouse zygotes during the 

first mitotic progression. 

 



 

 

112 

Figure 4-6 Differential alternative polyadenylation of transcripts between oocytes and 
zygotes of mice and rats. A, B UMAP display of mouse (A) and rat (B) oocytes and zygotes 
based on PDUI values of genes. C. Number of genes with lengthened and shortened UTRs 
in zygotes relative to in oocytes of mice and rats. D. Upset plot of DAP genes and DEGs 
in mice. E. Log2FC expression vs PDUI difference for all genes that were analyzed for 
DAP; low transparency points are genes not significant for DAP, red/blue genes are 
significantly up/down regulated respectively; pink and green density plots show Log2FC 
distribution for significant DAP genes with lengthened and shortened UTRs; red and blue 
density plots show PDUI changes for significantly up/down regulated DEGs. F. 
Significantly enriched GO BP terms for DAP genes in mice (FDR < 0.05). G. Reads 
coverage on the 3’UTRs of mouse genes Cnot7, Btg4 and Nek7. H. Read coverage on the 
3’UTRs of rat genes Cnot6l, Mastl and Cdc25a. In both H) and I), red lines mark the 
predicted proximal polyadenylation sites. 
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4.3.7 Most of orthologous genes in mice and rats have similar while a small portion 

have opposite transcriptional patterns.   

We sought to investigate to what extent DEG, DNP, DTU and DAP genes in mice 

and rats are conserved based on their orthologous relations. Surprisingly, even though the 

two species share many orthologous genes (21,824 genes), of which only about 4% (889) 

were found to be significantly differentially expressed (FDR < 0.05, | log2FC | > log21.25) 

in zygotes relative to in oocytes in both species. However, most (627, or 70.5%) of the 

orthologous DEGs showed similar tendency of change (257 upregulated and 370 

downregulated) (Figure 4-7A), while the rest small portion (262 or 29.5%) exhibited 

opposite changes, i.e., 74 upregulated DEGs in mice were downregulated DEGs in rats, 

and 188 downregulated DEGs in mice were upregulated DEGs in rats (Figure 4-7A). These 

results suggest that most of the orthologous genes that exhibit changes in both species 

behave similarly in terms of transcriptional change. These orthologous DEGs are enriched 

for multiple GO BPs that might be crucial to MZT in the two species (Figure 4-7B, C). 

Orthologous DEGs that were generally upregulated in both species were enriched for 

transport of transcripts and the cell cycle, while DEGs that were downregulated in both 

species were enriched for cytoplasmic translation and Nonsense-mediated decay. 

Orthologous DEGs that were upregulated in rats but downregulated in mice were enriched 

for the TCA cycle, RNA splicing and rRNA processing (Figure 4-7B, C).  

There are only seven orthologous genes with DNPs in both mice and rats (Figure 

C-4A). Nonetheless, some may play essential roles in MZT. For instance, the Oog1 gene 
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encoding oogenesin exhibited increased nascent proportions in both mouse and rat zygotes 

(Figure 4-7D). It has been shown that oogenesin plays critical roles in zygotic transcription 

(Minami et al., 2003). Moreover, Nlrp4b showed decreased nascent proportion in both 

mouse and rat zygotes (Figure 4-7D). Studies have shown that Nlrp4a-g may play 

important roles in early pre-implantation embryos, with high expression of NLRP4G and 

NLRP4E in both oocytes and zygotes (B.-H. Chang et al., 2013; W. Li et al., 2015).  

There were 210 orthologous genes with DTU in both mice and rats (Figure C-4B), 

they were enriched for positive regulation of transcription elongation by RNA polymerase 

II (FDR < 0.05). Finally, a total of 53 orthologous genes had DAP in both species, with 

either lengthened or shortened 3’UTR in both species mostly aligned (Figure 4-7E).  Close 

inspection finds many interesting orthologous DAP genes. For instance, Eif4e (Figure 4-7F) 

encoding a rate-limiting regulator of translation of (Duncan, Milburn, & Hershey, 1987; 

Hiremath, Webb, & Rhoads, 1985), exhibited preference for shortened 3’UTR in both rat 

and mouse zygotes (Figure 4-7F), implying higher translational efficiency of the transcripts 

to prepare the zygotes for higher levels of protein production in the later stages. It has also 

been shown that Eif4e interacts with CNOT7 via BTG4, thereby expediting maternal 

mRNA degradation during MZT (Liu et al., 2016; Pasternak et al., 2016). Moreover, both 

Usp28 and Bmi1 exhibited shortened 3’UTRs in both mouse and rat zygotes (Figure 4-7F). 

Though the products of both genes participate in the regulation of histone H2A, it has been 

shown that Usp28 is a deubiquitinase of H2A(F. Li et al., 2019), while Bmi1 forms the 

core protein of the Polycomb Repressive Complex 1 (PRC1), which mono-ubiquitinates 

H2A histones (Abdouh, Hanna, El Hajjar, Flamier, & Bernier, 2016). This result, along 
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with the DTU changes mentioned prior, suggests a role of post-transcriptional splicing and 

polyadenylation regulating chromatin states for ZGA in both species. In addition, both 

Anapc1 and Arid1a exhibited lengthened 3’UTRs in both mouse and rat zygotes (Figure 

4-7F). Anapc1 encodes a subunit of the Anaphase Promoting Complex/Cyclosome 

(APC/C), a key ubiquitin-ligase in mitosis. It has recently been shown that delay in the 

APC/C activation extends mitosis in mouse embryos (Ajeawung et al., 2019). Thus,  our 

results may provide a putative regulatory mechanism of Anapc1 via 3’UTR extension, 

which may in turn limit translational efficiency and cause delays in subsequent mitosis 

(Ajduk, Strauss, Pines, & Zernicka-Goetz, 2017). Arid1a encodes a subunit of chromatin 

remodeling complexes, and its expression in mouse embryos has been found to accumulate 

during G0 phase and vanish by mitosis (Flores-Alcantar, Gonzalez-Sandoval, Escalante-

Alcalde, & Lomelí, 2011). The lengthened 3’UTR of Arid1a transcripts in both mouse and 

rat zygotes may represent a snapshot in the first cell cycle of the embryo, implying a post-

transcriptional regulating mechanism through extension of 3’UTR tails (Flores-Alcantar et 

al., 2011).  
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Figure 4-7 Orthologous genes in mice and rats may have similar or opposite 
transcriptional patterns. A. Upset plot of upregulated and downregulated orthologous 
DEGs in zygotes relative to oocytes of mice and rats. B, C. Enriched GO BP terms for 
orthologous DEGs in mice (B) and rats (C). D. Read coverages of orthologous DNP genes 
Oog1 and Nlrp4b in oocytes and zygotes of mice and rats. E. Upset plot of orthologous 
DAP genes in mice and rats. F. 3’UTR expression of orthologous DAP genes Eif4e, Usp28, 
Bmi1, Arid1a, and Anapc1 in mice and rats.  

 
  

A E 

B 

D 

F 
Mouse 

Rat C 



 

 

117 

4.4 Discussion 

Our analysis of DEGs between oocytes and zygotes of mice and rats revealed new different 

facets of the underlying workings of their early MZT. Most prominently, we found 

decreases in ribosomal protein and nonsense-mediated mRNA decay related transcripts in 

zygotes of both species, though to a lesser degree in rats. We also found significant 

increases in transcripts of genes related to the cell cycle, mRNA transport and transcription 

initiation in mouse zygotes. Although most transcripts in mouse zygotes undergo 

degradation upon fertilization, there are clearly newly produced transcripts. Moreover, the 

increased transcripts of nucleoporin genes in mouse zygotes suggest increased transport of 

transcripts into the cytoplasm from the nucleus, which could also explain observed 

upregulation of many genes even in the absence of true transcription. On the other hand, 

upregulated genes in rat zygotes are enriched for the TCA cycle, hinting at a requirement 

for more energy production after fertilization. Conversely, the TCA cycle genes involved 

in energy production were downregulated in mice, while the genes involved in acetyl-CoA 

synthesis from pyruvate were upregulated. These results could be due to differences in the 

timing of events, whereby the mouse zygote prepares its first mitosis earlier and in a more 

active manner, while the rat zygote has still yet begun degradation of maternal transcripts. 

However, our detection of numerous upregulated genes in zygotes relative to oocytes in 

rats, suggesting that MZT might occur in rat zygotes, though at a smaller scale than in 

mouse zygotes.  

Our analysis on intronic transcripts of genes found overall increases in the 

proportion of intronic reads and number of genes with intronic transcripts in both species 
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after fertilization, indicating an increase of nascent transcription in zygotes. This was 

particularly true in mice, despite the majority of DEGs found to be downregulated. 

Previous studies have suggested that the increases in nascent transcription in the zygote is 

in part due to promiscuous transcription of genes and inefficient splicing during minor 

zygotic activation in mice(Ken‐Ichiro Abe et al., 2015), and our results suggest that a 

similar process might occur in the rat zygotes as well. In addition, coupled with the 

increased expression activity related to RNA transport, particularly in mice, these changes 

in nascent and mature transcript proportions may also at least partially result from increased 

RNA transport from the nucleus to the cytosol. 

The observed changes in isoform usage between oocytes and zygotes of both 

species indicate post-transcriptional regulation of genes in zygotes. Interestingly, cell cycle 

was a top enriched process for genes with differential transcript usage in both mice and 

rats. It is worth noting that several genes that regulate histone H2A show strong differential 

isoform usage and differential poly-adenylation in both mice and rats. These results 

advocate for similar epigenetic regulations of chromatins in both species by differential 

isoform usage. Though more details remain to be revealed, our results suggest similar post-

transcriptional events in zygotes of mice and rats. 

Our analysis of differential polyadenylation reveals that transcripts undergo distinct 

3’UTR polyadenylations in oocytes and zygotes of both species. We would be remiss to 

not touch on the issue of differences in gene-body read distribution between oocytes and 

zygotes and the subsequent impact on alternative polyadenylation analysis. The stronger 

3’-end bias of reads in mouse oocytes than in mouse zygotes is unlikely due to technical 
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factors but rather biological differences between mouse oocytes and zygotes, which is not 

the case in rat oocytes and rat zygotes. Such bias in mouse samples should be negligible 

on our DAP analysis, since similar 3’UTR preference of the same gene would result in 

similar bias observed in read coverage (exhibiting similar peaks in the 3’UTR region), 

while only differences in 3’UTR length preference (caused by differential poly-A cleavage 

sites) would result in peaks appearing in one group and not in the other. Another issue that 

has been brought up in previous studies regarding transcriptomic profiles of 1-cell stage 

zygotes obtained via poly-A enrichment techniques is inflation of expression values due to 

inherent biases towards longer Poly-A tails in poly-A capture RNA-seq methodologies 

(Viscardi & Arribere). Previous studies have also held conflicting views towards the length 

of poly-A tails in zygotic transcripts. For example, one study (K. Lee, Cho, Morey, & 

Cook-Andersen, 2024) reported extensive shortening of poly-A tails in the zygote, while 

another (Liu et al., 2021) suggested a shift towards longer poly-A tail lengths from MII 

oocytes to zygotes. Though we were not able to quantify for poly-A tail length in our study, 

we found an overwhelmingly larger overlap between shortened 3’UTRs and upregulated 

genes in mouse zygotes, compared to other overlaps between DAP and DEG genes. Yet, 

we note that there is no correlation between the changes in expression levels and the 

changes in 3’UTR preference measured by PDUI. Taken together, it is unclear whether the 

observed upregulation is indirectly caused by changes in poly-adenylation, and it appears 

that many other genes do not experience significant changes in polyadenylation but are 

upregulated regardless in mouse zygotes. The case in rats is even more prominent, with 

most upregulated genes experiencing no significant change in 3’UTR preference.  
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Although most orthologous genes in mice and rats had similar differential 

transcriptional patterns in term of DGEs, DNT, DTU and DAP during MZT, others showed 

different patterns. In summary, these orthogonal analyses on the transcriptomic changes 

during the oocyte to zygote transition in mice and rats strongly suggest minor zygotic 

activation is a vibrant process in both species, albeit a delayed and weaker process in rats. 

Much of the observed results also confirm significant post-transcriptional regulation, most 

notably in the form of alternative polyadenylation, in both species.  

Future studies should involve a multi-omics approach for both species, with strong 

emphasis on post-transcriptional modifications such as poly-adenylation and epigenetic 

regulations of expression. Furthermore, the lack of transcript degradation in rat zygotes 

may imply that timing of rat zygotes and mouse zygotes differ in the progression of MZT. 

However, there was a much greater number of upregulated DEGs observed in the rat, 

perhaps owing to transient expressions of the maternal genome upon fertilization. Thus, a 

more comprehensive analysis could focus on finer-grained snapshots of the zygote in both 

mice and rats to capture transient expressions of genes, as well as timing of minor zygotic 

activation. 
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CHAPTER 5 CONCLUSIONS AND FUTURE DIRECTIONS 

Gene expression regulation plays a crucial role in processes ranging from stress 

responses to development. In this dissertation, using full-length scRNA-seq methods, we 

investigated the dynamic nature of gene expression and RNA processing in four model 

organisms: Saccharomyces cerevisiae (yeast), Caenorhabditis elegans (C. elegans), Mus 

musculus (mouse) and Rattus Norvegicus (rat). Through comprehensive studies on the 

transcriptomic landscape of these organisms, we elucidate the intricate regulatory 

mechanisms that govern cellular responses to environmental cues and developmental 

signals. These studies emphasize the dynamic nature of gene expression regulation through 

transcriptional, post-transcriptional, and alternative polyadenylation (APA) mechanisms.  

In chapter two, we demonstrate the possibility of sequencing single-cell full-length 

mRNA transcriptomes in small S. cerevisiae cells, generated a scRNA-seq data set in the 

organism under isotonic, hypotonic, AAS and GS conditions. Our analysis of these data 

provided insights into genes that are differentially expressed in S. cerevisiae under the 

stressors. Our results align closely with early studies into the stress response of S. 

cerevisiae, while also providing unique findings. We highlight the preferential increase in 

the expression of genes for the biosynthesis of methionine over other amino acids when all 

amino acids are absent. In addition, gene regulatory networks underlying the transcriptional 

responses are highlighted through the analysis of TFBSs for each of the DEGs. The DEGs 

and gene regulatory networks uncovered in this study provide a single cell based 

transcriptomic view for future studies of stress-induced responses in this model organism. 

Moreover, we show that biological variability between cells under the same conditions due 
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to stochastic events can be utilized to discover regulatory relationships. 

In chapter three, we present a scRNA-seq dataset of the C. elegans oocyte oogenesis 

and fertilization via micro-dissection and full-length sequencing. Our analysis of these data 

show accordance with earlier studies while also revealing deeper insights into the complex 

transcriptional landscape of germline development, oogenesis, and fertilization in C. 

elegans.  We take note of the intricacies of dissection and complexity of somatic 

contamination and take delicate steps into removing unwanted factors. Our results 

highlight distinct transcriptomic signals of oogenesis, such as different patterns of 

expression of apoptotic genes. In addition, we find significant changes to poly-adenylation 

sites involved in the transcripts encoding mitotic factors upon oocyte fertilization. 

Furthermore, we uncover significant changes in the usage of isoforms of hemichannels 

genes associated with germline and somatic communication. 

In chapter four, we focus on the transcriptional dynamics in oocytes and zygotes of 

mice and rats. Via different aspects of the transcriptome, we find signals of transcription 

in the zygotes of rats, as well as provided a more detailed look into the MZT of both 

organisms. Upon further inspection of 3’UTR coverage of transcripts, we highlight a 

considerable overlap between genes showing shortened 3’UTRs and those that showed 

increased expression in mice, with a significant portion of these genes involved in mitosis 

related processes. Moreover, we perform comparative analysis of orthologous genes 

between the two species and find similar tendencies in differentially expressed genes, as 

well as some strikingly similar patterns of 3’UTR changes in genes involved in early stages 

of zygotic development. 
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Overall, whether it's stress response in yeast, germline development in C. elegans, 

or early embryogenesis in mice and rats, these processes are tightly regulated by complex 

transcriptional and post-transcriptional mechanisms. Single cell approaches and detailed 

analyses of various aspects of the transcriptome reveal how these regulatory layers 

contribute to cellular adaptation, differentiation, and development. 

Future directions along this line of work can help further illuminate the finer details 

of these processes. Specifically, further refinement of single-cell RNA sequencing 

methods, especially for organisms with challenging cell structures like yeast, can provide 

even deeper insights into cellular heterogeneity and stress responses. Additionally, 

expanding studies of DAP/DEG/DTU and other regulatory mechanisms across different 

developmental stages will shed light on how these different aspects of the transcriptome 

contributes to critical windows of regulatory shifts, while performing these studies in more 

species will help elucidate evolutionary conservation and divergence in gene regulation 

and uncover fundamental principles applicable across taxa. Furthermore, application of 

multi-omics-based approaches these studies can provide a much more comprehensive 

understanding of the molecular underpinnings of development and stress responses. 

Undoubtedly, experimental validation of key regulatory genes and pathways identified in 

these studies will be crucial and applying traditional methods such as RT-PCR can help 

validate expression changes of candidate genes while techniques like CRISPR/Cas9-

mediated gene editing and RNA interference can be employed to dissect the functional 

roles of candidate genes in vivo. 

By pursuing these future directions, we can build on the foundational insights 
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provided by these studies, advancing our understanding of gene regulation in diverse 

biological contexts. 
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APPENDIX A: SUPPLEMENTAL FIGURES FOR CHAPTER 2 

Figure A-1 Hierarchical clustering of genes under AAS condition and enrichment of 
transcription factors for each cluster. Name of the most enriched TF is shown next to cluster 
if its p.adjust < 0.05. Next to the TF name, the following is shown: (#Genes targets of TF 
found in cluster)/(#Genes in Yeastract Database found in cluster) | BH adjusted p-value. 

  

PCC Distance 
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Figure A-2 Hierarchical clustering of genes under hypotonic condition and enrichment of 
transcription factors for each cluster. Name of the most enriched TF is shown next to cluster 
if its p.adjust < 0.05. Next to the TF name, the following is shown: (#Genes targets of TF 
found in cluster)/(#Genes in Yeastract Database found in cluster) | BH adjusted p-value. 

  

PCC Distance 
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Figure A-3 Hierarchical clustering of genes under isotonic (Batch 1) condition and 
enrichment of transcription factors for each cluster. Name of the most enriched TF is shown 
next to cluster if its p.adjust < 0.05. Next to the TF name, the following is shown: (#Genes 
targets of TF found in cluster)/(#Genes in Yeastract Database found in cluster) | BH 
adjusted p-value.  

PCC Distance 
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APPENDIX B: SUPPLEMENTAL FIGURES FOR CHAPTER 3 

 

Figure B-1 Gene filtering pipeline for mitochondrial, rRNA, intestine, sperm and stress 
associated genes, related to Methods and Materials. WS291 gene annotations are obtained 
via the Wormbase SimpleMine tool(Davis et al., 2022; Harris et al., 2019).  

Salmon estimated TPM 

Genes analyzed: Mean 
expression across all 
samples > 0.5 OR 
expression > 0.1 in > 2 and 
< 50 samples. 

Genes analyzed: Mean 
expression across all 
samples > 0.5 OR 
expression > 0.1 in > 2 
samples. 

Genes analyzed: Mean 
expression across all 
samples > 0.5 OR 
expression > 0.1 in > 30 
samples. 

Pearson Correlation with 
Curated Stress 
Genes(Brunquell, Morris, 
Lu, Cheng, & Westerheide, 
2016) in (Supplementary 
Table 3-1)  

Pearson Correlation with 
Intestine Specific Genes  
(Supplementary Table 3-1)  

Pearson Correlation with 
Sperm Specific Genes 
(Supplementary Table 3-1)  

A gene is INTESTINE 
ASSOCIATED if satisfies one 
of the following: 
• Genes with max 

correlation > 0.7 OR max 
correlation > 0.5 and the 
Expr_pattern.tissue of  
WS291 gene annotation is 
intestine. 

• Curated Intestine 
Genes(Mcghee, 2007) 
(Supplementary Table 3-
1)  

A gene is SPERM 
ASSOCIATED if satisfies one 
of the following: 
• Genes with max 

correlation > 0.99. 
• Genes with max 

correlation > 0.9 AND 
belongs to Curated 
Sperm Genes(Ortiz, 
Noble, Sorokin, & 
Kimble, 2014; Reinke, 
Gil, Ward, & Kazmer, 
2004) (Supplementary 
Table 3-1) 

A gene is STRESS 
ASSOCIATED if satisfies 
one of the following: 
• Genes with max 

correlation > 0.99. 

Filtered Genes = SPERM ASSOCIATED genes 
+ INTESTINE ASSOCIATED genes + STRESS 
ASSOCIATED genes + rRNA genes + 
mitochondrial Genes (Supplementary Table 3-
1) 
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Figure B-2 A. genes encoding for components of the troponin complex. B. Genes coding 
for myosin heavy chain proteins (unc-54 and myo-3). C. Genes coding eggshell 
components perm-2/4. D. Genes coding for four myosin light chains encoding genes. E. 
Genes coding for four actin encoding genes. 
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Figure B-3 NEXTDB(Kohara, 2001) in situ imaging of 13 of the 25 putative genes that 
originate from the spermathecae.  
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Figure B-4 A. Differential splicing events of tos-1 between S2 and S3 as well as S3 and 
S4 stages. B. Differential splicing event of lev-11 between F2 and F1 oocytes. Exact 
positions of splicing events are shown in the red box, long isoform of tos-1 is shown in 
green box. 
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APPENDIX C: SUPPLEMENTAL FIGURES FOR CHAPTER 4 

 

Figure C-1 A. Gene body coverage plots of mouse zygotes and oocytes B. Average 
number of genes expressed in oocytes and zygotes of each species.  

 

 

 

Figure C-2 A. Number of genes with and without un-spliced read coverage in oocytes and 
zygotes of mice and rats. B. Number of differentially expressed transcripts associated with 
DTU genes in each species.  
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Figure C-3A. Upset plot of rat DEGs and DAP genes. B. GO BP enrichment of rat DAP 
genes.  

 

 

 

 

 

 

 

Figure C-4 A. Upset plot of orthologous genes with DNP in mice and rats. B. Ven 
diagram of orthologous DTU genes in mice and rats.  
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APPENDIX D: LINK TO SUPPLEMENTARY MATERIALS 

Supplementary Tables and Materials can be found at: https://github.com/bio-info-

guy/Dissertation/ 


