
EXPANDING HARDWARE ACCELERATOR SYSTEM DESIGN SPACE
EXPLORATION WITH GEM5-SALAMV2

by

Zephaniah Spencer

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in

Electrical Engineering

Charlotte

2024

Approved by:

Dr. Hamed Tabkhi

Dr. Ronald Sass

Dr. Ke Wang

ii

ABSTRACT

ZEPHANIAH SPENCER. Expanding Hardware Accelerator System Design Space
Exploration with gem5-SALAMv2. (Under the direction of DR. HAMED TABKHI)

With the prevalence of hardware accelerators as an integral part of the modern sys-

tems on chip (SoCs), the ability to model accelerators quickly and accurately within

the system in which it operates is critical. This paper presents gem5-SALAMv2 as a

novel system architecture for LLVM-based modeling and simulation of custom hard-

ware accelerators integrated into the gem5 framework. It overcomes the inherent

limitations of state-of-the-art trace-based pre-register-transfer level (RTL) simulators

by offering a truly “execute-in-execute” LLVM-based model, enabling scalable mod-

eling of dynamically interacting accelerators with full-system simulation support. To

create a sustainable expansion compatible with the gem5 framework, gem5-SALAM

offers a general-purpose and modular memory hierarchy integrated into the gem5

ecosystem, streamlining designing and modeling accelerators for new and emerging

applications. gem5-SALAMv2 expands the framework established in gem5-SALAMv1

with improved elaboration and simulation, system integration, and automation to

simplify rapid prototyping and design space exploration. Validation on the Mach-

Suite [1] benchmarks presents a timing estimation error of less than 1% against the

Vivado HLS tool. Results also show less than a 4% area and power estimation error

against Synopsys Design Compiler. System validation against implementations on

an Ultrascale+ ZCU102 shows an average end-to-end timing error of less than 2%.

Lastly, we demonstrate the upgraded capabilities of gem5-SALAMv2 by exploring ac-

celerator platforms for two deep neural networks, LeNet5 and MobileNetv2. In these

explorations, we demonstrate how gem5-SALAMv2 can simulate such systems and

guide architectural optimizations for these types of accelerator-rich architectures.

iii

DEDICATION

To my wife Amanda-Joi and son Finley, thank you for letting me be in a position to

do this and future work while bringing joy to my life.

iv

ACKNOWLEDGEMENTS

Thank you to my Advisor, Dr. Hamed Tabkhi, for supporting this project and me

throughout my academic career.

Thank you to my committee members, Dr. Ronald Sass and Dr. Ke Wang for

their advice and guidance to me throughout my studies.

Thank you to Samuel Rodgers and Joshua Slycord for their mentorship, guidance,

and friendship.

Thank you to my parents and siblings Michael, Andrea, Isaac, Della, Emma, and

Jordan for their continuing love and support.

v

TABLE OF CONTENTS

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF ABBREVIATIONS xi

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: RELATED WORK 4

2.1. Improvements over gem5-SALAMv1 6

CHAPTER 3: gem5-SALAMv2 10

3.1. System Setup and Initialization 10

3.1.1. SALAM Configurator 11

3.1.2. Hardware Model Configuration & Generation 13

3.2. LLVM IR Analysis & Elaboration 14

3.2.1. Static Elaboration 16

3.3. LLVM IR Parametrization 17

3.3.1. Power and Area Estimation 18

3.3.2. Performance and Occupancy Analysis 19

3.4. LLVM Runtime Engine 20

3.4.1. Event Scheduling and Dependency Tracking 20

3.4.2. Compute Events 21

3.4.3. Event Synchronization 21

3.4.4. Function Call Semantics and Advanced Scheduling 23

3.5. gem5 Integration and Scalable Full System Simulation 24

vi

CHAPTER 4: SIMULATOR VALIDATION & COMPARISON 29

4.1. Timing, Power, and Area Validation 29

4.2. FPGA System Validation 33

4.3. Simulation Timing Comparison 34

CHAPTER 5: DESIGN SPACE EXPLORATION 39

5.1. Case Study: LeNet-5 39

5.1.1. System Setup and Configuration 39

5.1.2. Application Metrics and Testing 40

5.1.3. Naive Design 41

5.1.4. Massively Parallel Design 42

5.1.5. Efficient Streaming Design 43

5.1.6. LeNet-5 Results and Analysis 44

5.2. MobileNetV2 Exploration 47

CHAPTER 6: CONCLUSION 54

REFERENCES 57

vii

LIST OF TABLES

TABLE 2.1: Shortcomings present gem5-SALAMv1 and Solu-
tions/Features Introduced by gem5-SALAMv2 to address these.

7

TABLE 4.1: gem5-SALAM & Vivado HLS performance, power, and area
data.

36

TABLE 4.2: gem5-SALAM & ground-truth FPGA timing data from the
five MachSuite benchmarks validated against.

37

TABLE 4.3: gem5-SALAM simulation timing values and comparison. 38

TABLE 5.1: MobileNetV2 96x96 Sim time and latency 52

TABLE 5.2: MobileNetV2 Network Complexity for a 96x96 Input and a
varying α at points .35, .75, and 1.0

53

TABLE 5.3: Runtime Comparison of MobileNetV2 on SALAMv1 and
SALAMv2 with an input resolution of 96x96 and α = 0.35

53

viii

LIST OF FIGURES

FIGURE 1.1: A generalized full-system architecture model used by gem5-
SALAMv2. Any arbitrary amount of clusters, accelerators, memory,
and hardware devices can be configured and connected as needed for
the design space exploration of an application.

3

FIGURE 2.1: Showcases the difference in design flows from SALAMv1
to SALAMv2. Here, we can see that a designer would be required to
implement their system’s "front-end" in gem5 by hand with the need
to update this front-end with each design iteration. In the SALAMv2
flow, this process is automated by the SALAM Configurator, removing
the need for manually created and updated gem5 configuration files
and design headers.

9

FIGURE 3.1: This figure provides a high-level overview of a gem5-
SALAMv2 device configuration for an FFT cluster. Devices are de-
scribed in the hierarchy that a user defines, with Clusters, Accelera-
tors, DMAs and Vars being abstractions for gem5-SALAM SimOb-
jects. In this case, the cluster contains a DMA and an FFT acceler-
ator with four private SPMs.

13

FIGURE 3.2: Describes a generic accelerator’s hardware configuration
within SALAMv2. This shows how one can define individual instruc-
tion parameters, functional unit parameters, and power models at an
accelerator granularity.

15

FIGURE 3.3: An Overview of the LLVM runtime model present in gem5-
SALAMv2. The automated configuration tools invoked during setup
provide the constructs needed for elaboration to generate the static
graph. This is then dynamically mapped to the allocated resources to
perform a cycle-accurate simulation of the application.

22

FIGURE 3.4: Provides an overview of the communications interface in
gem5-SALAMv2. This new unified interface handles all communica-
tions between gem5-SALAMv2 clusters, accelerators, memory objects,
and the gem5 ecosystem.

25

FIGURE 3.5: A shared accelerator resource scenario demonstrating gem5-
SALAMv2’s ability to have data-driven accelerators.

27

FIGURE 4.1: gem5-SALAM versus Vivado HLS power, area, and perfor-
mance error percentages.

31

ix

FIGURE 4.2: gem5-SALAM’s relative error when compared to ground-
truth FPGA timing

32

FIGURE 5.1: Naive Design - This "Naive" architecture has each accelera-
tor fully controlling its input and output SPMs, with all accelerators
connecting to a single DMA for inter-accelerator memory transfers.

42

FIGURE 5.2: Massively Parallel Architecture - With the increased com-
plexity of the Massively Parallel Design, we present an overview of
the devices that comprise the functional unit repeated throughout the
design. Notably, the functional unit is comprised of Convolution
(Conv), Pooling (Pool), and Data Sync (Sync) accelerators that are
directly connected to their relevant SPMs.

43

FIGURE 5.3: Efficient Streaming Functional Unit - With the integration
of data management into the convolution accelerator, there is now
only a Convolution and Pooling layer at a functional unit level. The
Convolution accelerator stores data from the input FIFO to the Line
Buffer SPM to be utilized for the operation; all accelerators are in-
terconnected with streaming FIFOs.

44

FIGURE 5.4: Total Data-Path Computational Energy Consumption Vs.
Runtime for LeNet-5 Configurations

45

FIGURE 5.5: LeNet-5 Power, Area, and Performance Values - These val-
ues were normalized by dividing all results by the max value obtained
in any of the three architectures for each category. This technique pre-
serves the ratio of the results between architectures on a scale from
0-to-1.

46

FIGURE 5.6: MobileNetV2 System Architecture - System architecture
details for the MobileNetV2 design. The Head, Body, and Tail clus-
ters are represented here and show how the design interfaces with the
gem5 system.

48

FIGURE 5.7: Provides an overview of the Depthwise (DW) functional unit
used in this MobileNetv2 architecture. Each accelerator performs a
discrete function, with memory types used being FIFO buffers or
SPMs. The two accelerators are image-to-column transformation
(Im2col) and the convolution window computation (Conv).

49

x

FIGURE 5.8: Describes the Pointwise (PW) functional unit used in the
Head, Body, and Tail clusters. We see a single accelerator respon-
sible for its data management and computation, enabled by gem5-
SALAMv2’s mechanism for the Conv accelerator to poll for the avail-
ability of data on the FIFO buffer.

50

xi

LIST OF ABBREVIATIONS

AI Artificial Intelligence

API Application Programming Interface

CNN Convolutional Neural Network

CPU Central Processing Unit

DDR Double Data Rate

DSE Design Space Exploration

FPGA Field Programmable Gate Array

FPS Frames Per Second

GPU Graphics Processing Unit

HLS High Level Synthesis

IR Intermediate Representation

LLVM Low Level Virtual Machine

MLIR Multi-Level Intermediate Representation

RTL Register-Transfer Level

SALAM System Architecture for LLVM-based Accelerator Modeling

SOTA State of The Art

CHAPTER 1: INTRODUCTION

RTL co-simulation, pre-RTL modeling, and prototyping provide a more cost-effective

alternative for system-level design space exploration of accelerator-rich heterogeneous

architectures. Leveraging full-system simulators like gem5 [2], these works can offload

tracking for most system overheads to a robust and well-supported open-source simu-

lator. The choice between RTL co-simulation models like [3, 4, 5, 6, 7, 8] and pre-RTL

models like [9, 10, 11] is essentially a trade-off between simulation fidelity and ease

of use. Pre-RTL simulators are generally easier to set up and modify for large-scale

design sweeps of both accelerator-level and system-level variables. They accomplish

this by abstracting the execution of accelerators with methods like data-flow mod-

eling [12], static timing analysis [11], or by trace-based simulation on instrumented

execution traces [9, 10].

These abstractions lead to a minimal loss in fidelity when an accelerator’s execution

is not dependent on input data, but can lead to significant errors in simulation fi-

delity when accelerators demonstrate input-driven behaviors [13]. RTL co-simulation

models resolve this by running full cycle-accurate RTL simulations on the data in-

put to the accelerator. This allows for modeling dynamic input-based execution at

the cost of both ease of use and simulation time. This is because RTL simulation

requires both an HDL design and verification tools for the design and manipulation

of accelerators. These models also require separate tuning and elaboration whenever

an interface is changed, in contrast to pre-RTL models, which can broadly explore

sweeps of accelerator design parameters from the same Python interface used by gem5

for its system design sweeps.

One exception to the general trends of pre-RTL simulation vs. RTL co-simulation

2

is gem5-SALAM [13], which leverages a unique dynamic graph execution engine based

on LLVM [14] for modeling hardware accelerators. This enabled SALAM to accurately

model the dynamic input-dependent characteristics of accelerators without HDL de-

sign and elaboration costs. While its core functionalities allowed for automation of

system-level and accelerator-level design sweeps, its somewhat obtuse interface and

reliance on LLVM 3.8 could lead to significant limitations in long-term development

and maintenance.

To address these concerns, this article presents gem5-SALAMv2. Fig.1.1 presents a

generalized full-system architecture model used by gem5-SALAMv2. gem5-SALAMv2

includes a completely redesigned elaboration and execution engine compatible with

the latest LLVM releases. This new engine enables new capabilities, including dy-

namic function inlining, custom and arbitrary precision data types, and significant

performance improvements for elaboration and event scheduling. Coupled with im-

provements to gem5-SALAM’s memory interface to gem5, we have enabled more

flexible system-level connectivity and the creation of hierarchical memory interfaces.

gem5-SALAMv2 also expands on the simplistic compute acceleration modeling of

gem5-SALAMv1 by enabling the creation of more complex custom hardware models.

This empowers users to integrate advanced memory interfaces and other hardware

models that traditionally required handcrafted simulation solutions into gem5’s full

system simulation through a simple LLVM interface. In addition to these improve-

ments, gem5-SALAMv2 includes new system-level design tools that simplify and auto-

mate the development effort required when integrating large numbers of accelerators

and supporting devices into a simulated system. In doing so, gem5-SALAMv2 re-

moves most of the burdens of integrating new hardware devices into a full system

simulation and replaces them with an intuitive and easily modified front-end user

interface.

In summary, the contributions that the gem5-SALAMv2 framework provides are:

3

• Accurate & performant pre-RTL modeling of algorithms at C/C++ level, rep-

resented in LLVM IR

• Integration into gem5 for system overhead modeling

• Modeling of common memories used in accelerator designs, from local scratch-

pad to shared memory

• Deeply configurable hardware profiles to provide ease of use and deep insight

on execution

Host Cluster

gem5 Memory Subsystem

Host
CPU

Host Caches

DRAM
System Peripherals (UART,

DMA, etc.)

Accelerated Task Cluster

AccAccAcc AccAccAcc AccAccAcc AccAccAcc

AccAccAcc AccAccAcc AccAccAcc AccAccAcc

SPMs and
Caches

DMAs

Accelerated Task Cluster

AccAccAcc AccAccAcc AccAccAcc AccAccAcc

AccAccAcc AccAccAcc AccAccAcc AccAccAcc

SPMs and
Caches

DMAs

Accelerated Task Cluster

AccAccAcc AccAccAcc AccAccAcc AccAccAcc

AccAccAcc AccAccAcc AccAccAcc AccAccAcc

SPMs and
Caches

DMAs

AccAcc

AccAcc

Acc

Acc

Acc

Acc

Figure 1.1: A generalized full-system architecture model used by gem5-SALAMv2.
Any arbitrary amount of clusters, accelerators, memory, and hardware devices can be
configured and connected as needed for the design space exploration of an application.

In Sec. 2, we review other related works and discuss some of the shortcomings and

challenges present in existing tools that we sought to address. Following that in Sec.

3, we describe the updated structure of gem5-SALAMv2, including under-the-hood

improvements and updates to the end-user experience. Sec. 4 details the validation

of the updated gem5-SALAMv2 accelerator models and provides examples of how

to leverage gem5-SALAMv2 for exploration of application-specific architectures for

convolutional neural networks such as LeNet-5 [15] and MobileNetV2 [16] discussed

in Sec. 5.

CHAPTER 2: RELATED WORK

Modern design flows have shifted from classical RTL design flows to more software

developer-friendly paradigms, moving away from pure HDL designs. The LLVM com-

piler and IR [14] have quickly become a staple of modern Synthesis and Design Space

Exploration (DSE) tools. Vivado and LegUp [17], both HLS tools, utilize modified

Clang toolchains to translate their C hardware descriptions into industry-standard

RTL targets such as Verilog, VHDL, and SystemC. Due to the explosion of interest

in deep learning (DL) applications, several projects have begun working on exploring

DL-specific accelerators, such as the LeFlow project [18]. LeFlow was designed to

integrate TensorFLow’s XLA compiler with LegUp to create an easier workflow for

implementing deep learning accelerators on FPGAs. In addition to synthesis tools,

LLVM has also been employed for pre-RTL DSE. Both the RIP framework [19] and

Needle [20], leverage LLVM for the identification and modeling of "hot" portions

of the Control and Dataflow Graph (CDFG) in a given application to generate ac-

celerators for DySER-styled [21] architectures. The Lumos+ [22] and LogCa [23]

tools employ analytical modeling on loosely coupled accelerators to estimate power,

performance and area requirements in highly heterogeneous accelerator-rich systems.

Another tool that leverages LLVM for parsing and instrumentation is the Mosaic-

Sim tool [12], which offers a lightweight simulation of heterogeneous systems com-

prised of CPUs and accelerators. MosaicSim roughly models hardware accelerators

as simple in-order or out-of-order compute cores, providing configuration options like

instruction issue width, re-order buffer size, and load-store queue (LSQ) size. Al-

though this can provide rough approximations for the computing performance of an

accelerated segment of an LLVM IR computing graph, it lacks many of the fine-

5

grained controls needed to model or profile an application-specific datapath. For

instance, users cannot model hardware constraints such as functional unit re-use or

even adjust the timing/power/energy costs of individual elements of the compute

datapath. The tool also supports integrating RTL models generated by HLS tools.

However, these RTL models are not integrated into the same tiled memory model of

the more abstract models. MosaicSim relies on pre-generated execution traces for the

modeling of accelerators. In MosaicSim, this includes both a trace of load/stores ops

and a control-flow trace to track the progression of basic blocks. Reliance on execu-

tion traces imposes several significant restrictions on modeling in MosaicSim. Trace

sizes, generation times, and read times introduce significant simulation overhead. For

extensive and long-running applications, traces may exceed several gigabytes. Ad-

ditionally, for applications where input data dictate the load/store and control flow

behaviors, users need to generate new traces for each new input data set.

As mentioned in Sec. 1, other existing pre-RTL solutions for exploring the system-

level integration of accelerators are gem5 [2] and its derivatives gem5-Aladdin [10]

and PARADE [11]. While gem5 offers a high degree of flexibility in system-level

design space exploration, it lacks any base models for integrating application-specific

hardware accelerators. gem5-Aladdin and PARADE heavily constrain the design

space to align with their particular simulation semantics to offer modeling capabilities

similar to gem5-SALAM. These same limitations are reflected in the accuracy of the

accelerator model generated, in which data availability, compute parallelism, and

timing are independent of the input data and system hierarchy.

In the case of gem5-Aladdin, the simulated accelerator datapath could change dra-

matically simply by changing the input data of some applications, even going so far as

introducing entirely new execution paths and functional units if some control paths

were entirely data dependent [13]. Changing the Aladdin model’s datapath paral-

lelism is possible by adjusting a system parameter like cache size [13]. Also, gem5

6

now supports directly integrating models in SystemC [3]. Although a more significant

design effort is required when using an RTL-based option, this also offers the most

opportunities for design space exploration and simulation.

In addition to the RTL and pre-RTL simulators previously discussed, there are also

domain-specific simulators such as STONNE [24], SCALE-Sim [25], and others [26, 27,

28, 29] that model specific datapaths or utilize analytical models improve simulation

time. gem5-SALAMv2 does not attempt to optimize its framework for a specific set

of algorithms and focuses on flexibility and scalability within the gem5 framework.

Additionally, gem5-SALAM is not built to simulate generalized datapaths like the

systolic array-based NVDLA, Coral Edge, etc. These are domain-specific platforms

that rely on domain-optimized programmable compute elements and gem5-SALAM

does not model data paths consisting of general ALUs. It instead models highly

customized and deeply pipelined application-specific data paths. gem5-SALAM is

unique because you can evaluate acceleration potential while accounting for system-

level overheads.

Not only can you sweep the parameters of an accelerator, you can also explore vari-

ous memory and other system-level integrations. These are important considerations

that can impact continued RTL development. Other simulators do not offer this, and

even RTL-based design flows can only really explore these kinds of design consider-

ations later in their development. As with most engineering questions, there will be

a trade-off between simulation time, ease of use, and fidelity across these simulators,

but we feel that gem5-SALAMv2 is able to find a meaningful balance between these.

2.1 Improvements over gem5-SALAMv1

The gem5-SALAM project was initially developed to address the shortcomings of

other pre-RTL simulators in modeling accelerators with run-time and input-dependent

behaviors. The datapath modeling scheme employed by gem5-SALAM was first pro-

posed in "Scalable LLVM-Based Accelerator Modeling in gem5" [30] and was used

7

Table 2.1: Shortcomings present gem5-SALAMv1 and Solutions/Features Introduced
by gem5-SALAMv2 to address these.

gem5-SALAMv1 gem5-SALAMv2

• Locked to LLVM 3.8

• Manual System Configuration

• Single Function Accelerators

• Fixed Memory Interfaces

• Single Integrated SPM

• Statically Defined Memory and
Hardware Units

• Simplified and Flattened IR
Structure

• Support For Standard Datatypes

• Supports LLVM 9 and newer IR

• Automated System Configura-
tion

• Enables Multi-Function Acceler-
ators

• Configurable Accelerator Mem-
ory Interfaces

• User-Defined Memory Hierar-
chies

• Dynamically Generated Hard-
ware and Memory Units

• LLVM IR Structure Preserved

• Support For Custom and Arbi-
trary Datatypes

to provide timing models of simple, single accelerator systems. gem5-SALAMv1 ex-

panded on this simple timing model by adding power estimation, area estimation,

and validation of complete system performance against FPGA implementations of

the same benchmarks [13]. While the initial gem5-SALAMv1 offered flexibility in

system design points, this came at the cost of overwhelming users with numerous

switches and configuration options as the complexity of a given system increased.

Working with SALAMv1 became a significant challenge due to the development cost

of maintaining memory mapping and gem5 configuration binds across dozens of de-

vices. In the case of the MobileNetv2 example described in Sec. 5, users would need

to map well over 150 different memory-mapped accelerators, memories, and DMA

devices by hand. Errors in that memory map would then propagate through more

8

than a dozen unique configuration files that must be debugged concurrently. This

significantly hindered the exploration of complex hardware architectures and greatly

influenced the design of SALAMv2.

In addition to configuration issues, gem5-SALAMv1 [13] was also limited in accel-

erator complexity scope by limitations shown in Table 2.1. To broaden the scope of

systems that could be modeled, we have performed an extensive upgrade on gem5-

SALAMv1 driven by three primary design goals.

1. Simplify the design of complex systems while expanding the number of configu-

ration controls and profiling options available to users.

2. Increase extensibility and scalability of SALAM’s LLVM runtime models through

a complete overhaul of the LLVM elaboration and simulation runtime.

3. Improve upon the flexibility of the system integration present in gem5-SALAMv1

by adding new interfaces and control/synchronization paradigms that were not

present in the previous version.

These improvements and additions allow for modeling far more complex systems, as

shown in Fig. 1.1. All features of gem5-SALAMv1 have been carried over to the new

iteration, and improvements have been made to every aspect of the original simulator.

This upgrade to the core framework has allowed our team to significantly expand

the system’s capabilities while increasing performance and decreasing the runtime

of large simulations. The most prominent upgrade from gem5-SALAMv1 is the full

integration of LLVM into our elaboration engine. By embedding LLVM internally,

we can now utilize the entire LLVM API inside SALAMv2. This allows us access to

all of the information in the IR and uses the LLVM framework for analyzing data

structures within the application to optimize scheduling and our CDFG generator,

while also no longer being bound to a specific version of LLVM.

9

Additionally, the internal use of the LLVM API has extended the scope of our

modeling capabilities. In gem5-SALAMv1, the simulation was limited to single ap-

plication in-lined accelerators, but in gem5-SALAMv2, we can now model multiple

applications and support internal function calls. To further provide support from

the LLVM API, we have decoupled the instructions and hardware components of the

simulator to maintain functionality with agnostic versions of LLVM and provide a

means to reconfigure and add new components without having to modify the code.

This functionality is supported by a greatly expanded Communications Interface

(CommInterface), which in

SALAMv1 was bound to a specific application and was an independent entity that

ran parallel to the simulation engine. In gem5-SALAMv2, we have fully integrated

the CommInterface into the gem5 ecosystem and expanded its functionality, as shown

in Fig. 3.4. gem5-SALAMv1 also relied on a single integrated scratchpad memory

(SPM) that had to be manually configured for each application. With the introduc-

tion of the CommInterface, gem5-SALAMv2 can have multiple memory types that

can have any arbitrary connectivity as desired by the user. For an example of this

interconnectivity, see Fig. 5.2.

gem5
SALAM
gem5

SALAM
gem5 Configgem5 Config

Device Design

Driver HeaderDriver Header

Device DriverDevice Driver

Device KernelDevice Kernel

Driver Header

Device Driver

Device Kernel

Device BinaryDevice Binary

IR FilesIR Files

Device Binary

IR Files

Device Design

Driver Header

Device Driver

Device Kernel

Device Binary

IR Files

GeneratedGenerated User Created User Created User RunUser RunGenerated User Created User Run

(a) SALAMv1 Design FLow

gem5 Configgem5 Config

gem5
SALAM
gem5

SALAM

Device Design

Device BinaryDevice Binary

IR FilesIR Files

Device Binary

IR Files

System Def (YAML)

Cluster ConfigCluster Config

DMA ConfigDMA Config

ACC ConfigACC Config

Cluster Config

DMA Config

ACC Config

System Def (YAML)

Cluster Config

DMA Config

ACC Config

GeneratedGenerated User Created User Created User RunUser RunGenerated User Created User Run

ConfiguratorConfigurator
Driver HeaderDriver Header

Device DriverDevice Driver

Device KernelDevice Kernel

Driver Header

Device Driver

Device Kernel

(b) SALAMv2 Design Flow

Figure 2.1: Showcases the difference in design flows from SALAMv1 to SALAMv2.
Here, we can see that a designer would be required to implement their system’s "front-
end" in gem5 by hand with the need to update this front-end with each design iteration.
In the SALAMv2 flow, this process is automated by the SALAM Configurator, remov-
ing the need for manually created and updated gem5 configuration files and design
headers.

CHAPTER 3: gem5-SALAMv2

gem5-SALAMv2 is a large collection of improvements, new features, and additional

tools added to gem5-SALAM. All of these combine to enable large-scale systems to

be explored while having a pragmatic approach to designing these systems. Our

description of these is broken out into the following sections:

• 3.1 - An overview of the tool-assisted system setup and initialization process

• 3.2 - A description of how SALAM analyses LLVM IR for simulation setup

• 3.3 - Covers how LLVM IR parameterization has been improved upon over v1

• 3.4 - Insights into the redesigned run-time engine, evaluation methodology, and

the benefits of our LLVM API integration

• 3.5 - An in-depth description of how these components have been integrated into

gem5

3.1 System Setup and Initialization

One of the most significant upgrades in gem5-SALAMv2 is the introduction of new

automation tools to build and explore accelerator-rich systems. We have provided

two sets of tools to aid in the design process. The SALAM Configurator (3.1.1)

is designed to automate much of the boilerplate required when writing a SALAM

benchmark in gem5. This generates the full system gem5 configuration script and a

C memory map that a user can include in their design. We have also built a set of HW

Tools (3.1.2) that provide front-ends for configuring elaborated functional units and

integrating power and area tracking into gem5-SALAM. This enables the automation

11

of generating new power profiles and configuring an accelerator’s functional unit and

instruction parameters through a defined interface.

3.1.1 SALAM Configurator

In gem5-SALAMv1, users followed the design flow illustrated in Fig. 2.1. This

design flow put the burden of creating gem5 system configurations and maintaining

memory map headers for their benchmarks manually. Consequently, the complexity

of implementing and exploring large-scale systems in gem5-SALAMv1 could quickly

become unmanageable from a development effort standpoint. This limitation in de-

sign came from v1’s development being solely focused on exploring how to model

multi-accelerator systems while still requiring development outside of SALAM to cre-

ate a functioning simulation. This resulted in an end-user being required to modify

their configuration files and design headers each time devices were added or sizing pa-

rameters changed. Although this worked fine for small single-function systems, such

as our validation benchmarks, a system at the scale explored in Sec. 5.2 contains

over 150 memory-mapped devices and was infeasible to design, develop, and debug

in gem5-SALAMv1. To make large-scale design space exploration possible for users,

system design tasks have been simplified, unified, and automated with the release of

gem5-SALAMv2 through the SALAM Configurator, as shown in Fig. 2.1.

The initial step in creating a new accelerator-rich system within SALAMv2 begins

with the development of a system structure description. This takes the form of a

YAML file, visualized in Fig. 3.1, in which the user declares the names and types of

devices they want to simulate in the SALAM framework, including clusters, acceler-

ators, and DMAs. Users can define four different types of devices in the YAML file:

Accelerator Clusters (acc_cluster), Accelerators (Accelerator), DMAs (DMA), and

Variables (Var). Each of these provide their own configuration interface, with the one

constant being "Name" for setting both the SimObject and memory map name of

the device.

12

The accelerator cluster is meant to be a localized collection of Accelerators, DMAs,

and vars that are defined within it. Accelerators define a CommInterface that is able

to be connected to any device within the cluster, including the local bus. DMAs allow

for the configuration of two DMA types, either NonCoherent or Streaming and provide

connectivity and buffer sizing parameters. A user can also assign memory devices

(vars) to an accelerator or accelerator cluster by declaring a variable under it and

providing its size and type. Supported memory types include multi-port scratchpads,

register banks, memory streams, and caches.

When the user finishes providing the structural outline of their accelerated system,

they can invoke the SALAM Configurator, shown to the left in Fig. 2.1. This tool will

automatically generate a valid gem5 system simulation configuration, a configuration

for SALAM-accelerated components, and a set of headers containing the memory map

of the developed system for use in creating accelerator IR and host-side drivers. From

here, users can update their accelerator code and drivers to use the automatically

generated memory devices and run a full-system simulation. This new automation

makes it possible to design and debug complex systems.

The most immediately tangible benefit is when a user wants to rapidly prototype

and explore different memory hierarchies for accelerators or groups of accelerators.

Mistakes in the memory mapping of devices and memory interfaces can introduce nu-

merous difficulties in diagnosing bugs propagating throughout a design. Depending

on how a user allocates their system’s memory map, fixing a slight misalignment or

improperly sized memory-mapped register could require the realignment of dozens

or hundreds of other memory-mapped addresses. Previously, this meant propagat-

ing changes across dozens of configuration files, accelerator descriptions, and driver

headers. In gem5-SALAMv2, this process is automated, requiring the user to change

only one value in a single file and saving significant development and debugging time.

Additionally, swapping a variable’s access between custom multi-ported scratchpads

13

and a multi-layer cache hierarchy is as simple as changing a few lines in the system

structure description as the configurator creates the new devices, connections, and

updated driver headers without any additional user input.

3.1.2 Hardware Model Configuration & Generation

Previously, the hardware resource model was a global entity statically compiled

as part of the gem5-SALAM binary. This meant that a designer was limited to one

technology node for an entire design, requiring modifications to the SALAM source

and rebuilding the binary to tweak or swap technology nodes. Now, the hardware re-

source model used in SALAMv2 is dynamically generated from YAML configuration

files that define a hardware profile, as shown in Fig. 3.2. Notably, the configured

hardware resource model defines how functional units and instructions are parame-

terized during a given simulation. These parameters include each resource’s power,

area, and performance characteristics. Furthermore, where we previously supported

a single hardware resource model, a designer can now create customized instructions

and define per-accelerator hardware profiles without recompiling or rebuilding the

system.

acc_cluster
Name: fft_clstr

DMA
Name: fft_dma
BufferSize: 128

Accelerator:
Name: fft

Var:
Name: REAL
Type: SPM

Var:
Name: IMG
Type: SPM

Var:
Name: REALTWID
Type: SPM

Var:
Name: IMGTWID
Type: SPM

Accelerator:
Name: fft

Var:
Name: REAL
Type: SPM

Var:
Name: IMG
Type: SPM

Var:
Name: REALTWID
Type: SPM

Var:
Name: IMGTWID
Type: SPM

Figure 3.1: This figure provides a high-level overview of a gem5-SALAMv2 device
configuration for an FFT cluster. Devices are described in the hierarchy that a user
defines, with Clusters, Accelerators, DMAs and Vars being abstractions for gem5-
SALAM SimObjects. In this case, the cluster contains a DMA and an FFT accelerator
with four private SPMs.

14

3.2 LLVM IR Analysis & Elaboration

In gem5-SALAMv1, the user had to first create functional models of the target

hardware accelerators as single inlined functions before using clang to generate the

LLVM IR, which was read by the simulator using traditional string parsing tech-

niques. The IR was then statically elaborated internally to generate the CDFG and

allocate the hardware resources needed to execute the application within the runtime

simulator. gem5-SALAMv1âs handling of LLVM IR was incredibly simplistic and had

no context of Value, Constant, Instruction, or any of the dozens of other hierarchical

structures that comprise LLVM IR. Instead, gem5-SALAMv1 simply parsed a text

file and stored a comparatively flat hierarchy of basic blocks and instructions that

were simply linked by the associations of strings. This led to numerous challenges

when scheduling large blocks of IR, where dependency look-up was based on searching

for specific string patterns. As a result, we needed to impose caps on the scheduling

window size internally. We could also not handle LLVM constructs such as llvm::func

op because LLVM IR’s naming convention for values is not unique across function

bounds (e.g., the value name %2 can represent multiple different values in multiple

different functions).

In gem5-SALAMv2, we preserve the IR structure as much as possible by leveraging

the LLVM APIs directly and recreating many of the core structures within the IR.

Previously, the parse was a single pass of the IR file with string parsing methods;

now, SALAMv2 has a 3-stage approach. The first stage leverages the LLVM libraries

to parse the text IR file into the llvm::Module data structure. We re-create the

llvm::Module because the IR’s top-level structure comprises llvm::Value elements that

holistically represent the datapath. The second stage of the gem5-SALAMv2 parse

iterates over the LLVM module and maps llvm::Value elements to SALAM::Value ele-

ments. The third stage then initializes all of the SALAM values with their correspond-

ing LLVM values. Structurally, SALAM values match their LLVM counterparts. A

15

Accelerator:

Instructions:

Add:
OpCode: add
FU: Int_Adder
Cycles: 1

Functional_Units:

Int_Adder:
Stages: 1
Data_Type: APInt
Limit: IR_Defined

Register:
Stages: 0
Data_Type: All
Limit: IR_Defined

Power Model:
Name: 40nm
Latency: 10ns

- switch_power: val
- internal_power: val
- dynamic_power: val
- leakage_power: val
- path_delay: val
- area: val

Functional_Units:

Int_Adder:
Stages: 1
Data_Type: APInt
Limit: IR_Defined

Register:
Stages: 0
Data_Type: All
Limit: IR_Defined

Power Model:
Name: 40nm
Latency: 10ns

- switch_power: val
- internal_power: val
- dynamic_power: val
- leakage_power: val
- path_delay: val
- area: val

Float_Mul:
OpCode: fmul
FU: Float_Mul
Cycles: 5

Figure 3.2: Describes a generic accelerator’s hardware configuration within
SALAMv2. This shows how one can define individual instruction parameters, func-
tional unit parameters, and power models at an accelerator granularity.

SALAM::AddInstruction has a similar structure to llvm::AddInstruction, with proper

connections to its corresponding basic block, parent function, and other instructions

and constants. This more hierarchical structure makes look-ups of dependencies much

quicker when adding new instructions to the scheduler. It also enables us to track

dependencies across function calls.

An additional scheduling benefit comes from the capacity to recognize constants

in the IR. Constants and function arguments (considered constants when a function

is launched) do not need to be looked up as dependencies. While a constant integer

like i32 1 may be simple to identify with a basic string parse, complex expressions

like double* inttoptr (i32 268566720 to double*) are less so.

Additionally, the previous pattern-based lookup of dependencies did not provide

a sufficient means of differentiating between instructions, constant expressions, and

constants during scheduling. This meant scheduling look-ups included searches for

constants that never appeared in the scheduler, leading to unnecessary searches over

potentially thousands of scheduling nodes. By mirroring LLVMâs IR structure, gem5-

SALAMv2 can better leverage IR-level insights and an understanding of the static

execution graph to enable a more robust scheduling algorithm that is ultimately faster.

16

Overall, the improved IR generation and parsing methodology in SALAMv2 elim-

inates SALAMv1’s limitation of only simulating a single in-lined function. This en-

hanced approach allows SALAMv2 to model each function as an independent acceler-

ator, allowing for fine-tuning applications with configurable resources at the function

level while providing the same power, area, and performance metrics as SALAMv1.

Furthermore, these improvements increase SALAM’s accuracy by providing evalua-

tion metrics at the granularity of individual functions while preserving the benefits

from Clang’s optimization passes, such as loop unrolling/vectorization and the re-

moval of internal memory allocation.

The key advantages of gem5-SALAMv2’s new elaboration approach versus gem5-

SALAMv1 can be summarized as:

1. Robust parse and elaboration that isn’t tied to a particular LLVM IR version.

2. Improved dependency tracking within the IR capable of crossing function bounds.

3. Expanded data typing support with support for custom data types.

4. Improved scheduling performance achieved by leveraging knowledge of the LLVM

IR structure.

3.2.1 Static Elaboration

The in-memory representation of the LLVM IR is leveraged for low-level optimiza-

tions and application analysis before it is mapped to the corresponding SALAMv2

static application graph. The corresponding SALAMv2 representation of the appli-

cation graph closely mirrors the structure of the LLVM IR; however, it is optimized

for memory footprint, augmented for dynamic dependency tracking, and is tied into

the SALAMv2 hardware profile.

It is worth noting that SALAMv2 allocates hardware within a datapath at the

granularity of individual instructions and registers. Whereas MosaicSim generalizes

17

the execution of the LLVM IR graph to a general-purpose execution unit, SALAMv2

will allocate a unique functional unit for each operation. A 16-bit add instruction

in the IR corresponds to a 16-bit adder, while a 32-bit multiplication corresponds

to a 32-bit multiplier. While SALAMv2 does need to infer some common structural

components like multiplexers or counters from the IR, it does not allocate more general

compute elements like ALUs.

The statically elaborated application graph generated by SALAMv2 provides a

structural framework for executing the accelerated application independent of run-

time characteristics. That framework is then leveraged to identify dependencies be-

tween functions and instructions at runtime to generate the dynamic application

graph executed by the runtime engine. This joint static-dynamic graph approach

enables the modeling of more complex hardware accelerators in which runtime con-

trol is governed by input data to the accelerator. Whereas trace-based simulators

like Aladdin [10] or MosaicSim [12] must generate multiple runtime traces to capture

input data-dependent execution behaviors, SALAMv2 generates its execution graph

at runtime based on the execution pattern governed by the input data. Further-

more, by leveraging the static application graph to construct the dynamic execution

graph, SALAMv2 can consistently model the same datapath as application inputs

change, enabling users to impose additional constraints on the simulated datapath.

In contrast, the Aladdin simulator dynamically alters its modeled datapath based on

input data as shown in the SALAMv1 work [13], while MosaicSim bypasses datapath

modeling entirely by treating accelerators like out-of-order CPU cores.

3.3 LLVM IR Parametrization

The changes to how IR is modeled inside of SALAM required changing the sim-

ulator’s IR parameterization for elaborated designs. Coupled with the new hard-

ware configuration system, this allows gem5-SALAMv2 to utilize parameters from

the hardware and device configuration files to model unique hardware elements for

18

each operation in the parsed LLVM IR. The power estimation model tracks static

and dynamic power for functional units and internal data-path logic while accounting

for leakage power, switching power, and internal power dissipation. This is further

described in Sec. 3.3.1. gem5-SALAMv2 also provides post-simulation performance

metrics, allowing users to define specific latencies and configure clock speeds within

the accelerator and to set the maximum quantity of each functional unit. This en-

ables fine-grained analysis of system occupancy levels, with data used to determine

leakage power, area, and average occupancy for each type of functional unit, allowing

for updates to the dynamic energy usage of the system.

3.3.1 Power and Area Estimation

Like in SALAMv1, the power estimation model in SALAMv2 is based on McPat’s

Cacti [31]. To enable a more flexible configuration of these parameters, SALAMv2

introduces a hardware profile and config shown in Fig. 3.2. The hardware profile con-

tains power and area profiles for fixed and floating-point hardware functional units

and variable-length registers. While the hardware config limits the number of hard-

ware functional units in the system. By default, SALAM will model unique hardware

elements for each operation from the parsed LLVM IR. To explore features such as

functional unit reuse, a user can further constrain the allocation of hardware elements

by modifying the device config.

When estimating the static power of a given accelerator, the static CDFG of the

elaborated datapath is used. This accounts for all functional units within the system,

simulation runtime, and hardware profile. These elements are all used to determine

the total leakage power lost in the system due to these elements. The dynamic power

used by the functional units is calculated for each cycle for each active functional unit

and is the combination of switching and internal power dissipation as defined in the

hardware profile.

Additionally, the new IR modeling capabilities introduced in gem5-SALAMv2 ex-

19

poses the internal registers and their bit size to the runtime engine. This allows for

tracking of read and write activities on each cycle and enables gem5-SALAMv2 to

model the runtime energy usage of internal data-path logic. This is accomplished

using the same method described for functional units, where static and dynamic

power and area are calculated based on the single-bit register results obtained for the

hardware profile.

3.3.2 Performance and Occupancy Analysis

SALAMv2 also provides a variety of performance metrics to the user post-simulation.

Within the device configuration, gem5-SALAM defines the cycle time each LLVM IR

instruction takes to execute in the compute queues, where the default values were

tuned and validated vs HLS performance below in Sec. 4. The user can define the

latency of hardware devices and the clock speed within the accelerator. These knobs

enable users to accurately model and explore their effects on accelerator models’ cycle

counts, runtime, and functional unit occupancy.

One knob available to the user is the ability to directly set the maximum quantity

of each functional unit or allow the simulation to determine the maximum potential

parallelism by dynamically activating portions of the datapath based on the user-

defined width of the runtime scheduler. In either case, during the dynamic runtime

simulation gem5-SALAM logs, instructions are scheduled or in flight for each cycle

while the functional unit controller tracks and stores scheduled functional units each

cycle during runtime. This information is passed to the power profiler to update the

system’s current dynamic energy usage.

These additional data points, combined with configurable hardware resources, allow

for a fine-grained analysis and exploration tool for exploring occupancy levels within

the system. During post-simulation, this data is used to determine the leakage power

and area and the average occupancy for each type of functional unit. The scheduled

amount is also available to the user as a printable result and can be used to view

20

the runtime scheduling activities of the datapath and functional units utilization

graphically. Some examples of the flexibility in design and the available analytics

from gem5-SALAMv2 are explored more in Sec. 4.

3.4 LLVM Runtime Engine

To capture the dynamic characteristics of the execution of an accelerator, gem5-

SALAMv2 dynamically assembles a runtime execution graph that leverages blocks

of the static CDFG and a series of queues that track the progress and flow of data

through that graph. Execution begins by loading the entry basic block of the top-level

function.

3.4.1 Event Scheduling and Dependency Tracking

SALAMv2 internally tracks the execution status of an accelerator pipeline through

a set of custom event queues that correspond to reservation events, active compute

events, and active read/write events. Event scheduling within the scope of a function

occurs at the basic block granularity. When scheduling begins or a branch is evaluated,

the next basic block of instructions is loaded from the static CDFG.

As instructions are added to the reservation queue, a query is performed to check

for any data dependencies that might already exist in the reservation, compute, or

memory queues. If a dependency is found, a connection is created between the run-

time instructions. The dependency is cleared once the instruction that creates the

dependency is committed. To optimize search times, only the last instance of a depen-

dency in the queues is tracked. Dependency tracking represents the most significant

overhead in SALAM’s simulation model, with the event queues sometimes tracking

dependencies across thousands of events.

Another design consideration during the creation of gem5-SALAMv2 was the re-

duction of scheduling and dependency tracking overheads. In gem5-SALAMv2, when

an instruction satisfies all its runtime dependencies, it will be executed on the next

21

available scheduling cycle. This scheduling paradigm enables us to represent a paral-

lelized pipeline in which independent instructions can run concurrently. Because of

this parallelism, a few synchronization mechanisms are introduced to the scheduler

and described in Sec. 3.4.3. When resource limits are imposed, an execution event

will only launch when the necessary hardware resource is available. This has led to a

performance gain of more than 2x on large applications.

3.4.2 Compute Events

When all dependencies, scheduling, and hardware limitations are cleared and ac-

counted for, a scheduled operation is removed from the reservation event queue and

added to its corresponding execution event queue. Control and data flow instructions

such as phi, select, and terminators are executed in place without adding any addi-

tional queues. For terminators like branches, execution means loading the next basic

block of instructions to the event scheduler and dependency tracker. Instructions

with a computational component, such as arithmetic or logical operators, are trans-

ferred to the computation event queue. Instructions with compute events are polled

for completion at the start of each accelerator clock cycle. Upon completion, they

signal all dependent instructions to clear the runtime dependency and are removed

from the compute queue.

Memory operations are sorted into appropriate read and write queues and passed

to the communications interface to access the gem5 memory system. These events

are committed as soon as the corresponding gem5 memory events are completed.

Like compute events, committing a memory event causes the instruction to signal its

dependents before it is removed from the memory queue.

3.4.3 Event Synchronization

With the parallelization of the instruction pipeline in SALAMv2, the scheduler

needs to prevent out-of-order execution and commits to an otherwise serialized IR.

22

Accelerator Generation Analysis/Mapping

Hardware
Profile

Accelerator
IR

Function Execution

HW Resource
Allocation

Compute Queue

Memory Queue

Hardware
Resources

Dynamic Graph
Generator

Operation-
Level

Dependency
Tracking

Function-
Level

Dependency
Tracking

Accelerator
Description

(C/C++)

CLANG

Static Graph

Setup Simulation

Figure 3.3: An Overview of the LLVM runtime model present in gem5-SALAMv2.
The automated configuration tools invoked during setup provide the constructs needed
for elaboration to generate the static graph. This is then dynamically mapped to the
allocated resources to perform a cycle-accurate simulation of the application.

To properly handle this hazard, SALAMv2 introduces a few synchronization mecha-

nisms. First, SALAMv2 automatically detects loop boundaries and imposes barriers

at the ends of loop execution. Second, SALAMv2’s scheduler provides tracking to

ensure the correct order of reads and writes to memory. Third, SALAMv2 pro-

vides an optional lock-step execution mode that prevents new execution events from

launching until all previous events have been completed, regardless of runtime depen-

dencies. From a configuration standpoint, users have multiple options for configuring

the LLVMInterface:

• Scheduler Threshold: A hard limit on the scheduling window size to prevent

scheduling window size from exploding during regions of high loop parallelism

• Lockstep Mode: Enables or disables stalling when any op stalls (enabled by

default)

23

• Clock Period: The desired clock speed for the datapath

In addition to these explicit configuration options through the gem5 build config, a

user can explore functional unit reuse through the hardware configuration by imposing

hardware resource limitations and restrictions.

3.4.4 Function Call Semantics and Advanced Scheduling

One of the most notable changes in SALAMv2’s scheduler updates revolves around

handling function calls. In general, function calls introduce complex challenges for

hardware modeling and simulation. For elaboration purposes, hardware design and

simulation tools must provide a policy for imposing hardware resource limitations

and tracking connections and dependencies across function bounds.

Other simulators bypass this issue entirely by either allocating resources based on a

pre-generated execution trace [9], modeling a general-purpose architecture with fixed

resources [12], or forcing users to manually inline functions [13]. To solve this issue in

gem5-SALAMv2, we introduce a model hierarchy within each hardware accelerator.

Function calls are handled like micro-pipelined functional units within the datapath

of the calling function, enabling interesting capabilities within gem5-SALAMv2.

First, this design enables users to define custom operations within the LLVMRun-

time without directly implementing handling for new IR instructions. These oper-

ations can be designed with fixed or variable timings based on the nature of data

access or computation within the function. This is particularly helpful when an op-

eration involving system-level overheads, such as memory access, cannot be statically

determined or modeled correctly by execution traces.

Second, SALAMv2’s function handling allows finer-grained control over datapath

structure and parallelism. gem5-SALAMv2 internally tries to find the highest degree

of spatial and temporal parallelism in the scope of a function with its out-of-order

execution and commit paradigm. By leveraging functions, users can fine-tune the

degrees of parallelism in the simulated datapaths to better represent the concurrency

24

of hardware models and implement more complex parallelism semantics like barri-

ers. This functionality does not currently exist outside of RTL simulation or other

handcrafted simulation models.

3.5 gem5 Integration and Scalable Full System Simulation

gem5-SALAMv2 expands on the system integration framework first presented in

gem5-SALAMv1. Like in v1, integrating the LLVM runtime engine into gem5 revolves

around the "Communications Interface" or CommInterface. The CommInterface is a

gem5 simulation construct that provides system timing and interfaces for configura-

tion, synchronization, and memory access. These include access to the system clock,

interrupt control lines, memory-mapped configuration registers, and memory request

ports. The basic integrations provided in gem5-SALAMv1 enabled explorations of

accelerator integrations ranging from discrete off-chip accelerators to co-processing

elements integrated directly into the datapaths of other devices. In gem5-SALAMv2,

we expanded on the functionality of the CommInterface to enable more complex ac-

celerator hierarchies. The first of these changes was the rework of the structure of

memory request ports. In gem5-SALAMv1, the CommInterface had two types of

access ports. These were specified as access ports for local accelerator resources and

global system resources. Additionally, the v1 CommInterfaces had an additional in-

ternal mechanism for accessing scratchpad memories that bypassed gem5’s standard

memory system to enable wider multi-port access. In gem5-SALAMv2, this has been

reworked to a more flexible interface, as shown in Fig. 3.4. In the updated model,

the CommInterface has a more flexible interface to memory that has been grouped

into four categories for convenience.

The stream port interface enables the connection of streaming devices with an

integrated handshake mechanism comparable to the AXI-stream specification. While

this feature was introduced towards the end of gem5-SALAMv1’s development, it

has been expanded and improved upon in v2. Whereas in v1 streaming access was

25

CommInterface
Interrupt
Controller

Config Registers Clock

LLVM Runtime Engine

Memory Controller

Stream
Ports

SPM Ports
Cluster
Ports

Coherence
Ports

RegBank
Ports

Stream
Ports

SPM Ports
Cluster
Ports

Coherence
Ports

RegBank
Ports

Memory Controller

Stream
Ports

SPM Ports
Cluster
Ports

Coherence
Ports

RegBank
Ports

Interrupt
Controller

Config Registers Clock

LLVM Runtime Engine

Memory Controller

Stream
Ports

SPM Ports
Cluster
Ports

Coherence
Ports

RegBank
Ports

Figure 3.4: Provides an overview of the communications interface in gem5-SALAMv2.
This new unified interface handles all communications between gem5-SALAMv2 clus-
ters, accelerators, memory objects, and the gem5 ecosystem.

implemented solely as a blocking access behavior, accelerators in v2 are now able to

query the availability of data in streams before initiating an access request. This

enables the modeling of devices in which runtime control can be altered based on

the availability of data, and enable implementation of access arbitration schemes on

shared resources.

The SPM port interface enables flexible connections of scratchpad memory devices

that include the data status functionality first described in gem5-SALAMv1. Ac-

celerators connected to scratchpad memories via these ports can poll the connected

scratchpads on the availability of data to access data elements as soon as they are

available. In gem5-SALAMv1 scratchpad memories were directly integrated into the

accelerator model, which imposed additional design challenges when constructing

shared scratchpad memories across accelerators. In gem5-SALAMv2 these integrated

scratchpads have been properly decoupled from the accelerator models, and the Com-

mInterface has been upgraded to support numerous connected scratchpad memories

while retaining the wide, multi-ported access present in v1.

The RegBank port interface of SALAMv2’s CommInterface enables a new type of

memory device in the form of a register bank. Register banks provide users with

the capacity to model data storage in registers that aren’t explicitly allocated by

26

SALAM’s LLVM parser (usually arrays). Register banks offer the same memory ac-

cess and delta timing characteristics as registers explicitly elaborated in the datapath

and are designed to be private to the accelerator they are connected to.

The cluster port and coherence port interfaces are designed to provide flexible in-

terconnects to other system resources. They are separated to provide priority access

to devices through the cluster ports interface with the coherence interface as a fall-

back. The most common usage of these interfaces is to separate accesses to shared

accelerator resources vs system-level resources that may require coherence with the

CPU and its caches. This separation is useful when looking to model a system that

separates accelerators into tiles with mesh connections between tiles. In this case,

the communications within the tile would pass through the cluster interface, while

communications across tiles pass through the coherence interface.

A more general description of these SALAM Modules, such as the CommInterface or

an SPM, is that they are a gem5 SimObject that utilizes the gem5 memory system and

does not implement the Ruby memory system. From a system simulation perspective,

the overheads for these SimObjects will be relatively low as they are just responsible

for memory transactions and are decoupled from the datapath simulation that the

LLVM Interface is responsible for. LLVM Interfaceâs modeling overheads will depend

highly on the application because we elaborate the datapath at runtime.

In addition to the interface updates on the CommInterface, we have also expanded

functionality in the control and operation of SALAM accelerator models. One of the

benefits of the dynamic execution of LLVM graphs employed by gem5-SALAM is that

we can model execution patterns that are dependent on the status and availability

of other devices in a system. Whereas in other simulators that rely on memory[12]

or execution traces[10], in which these events must somehow be baked into the trace,

gem5-SALAM can directly handle such variability in execution and control. Coupled

with the improved status tracking on SALAMv2’s stream modeling, users can design

27

Accelerator
B

Shared Acc

Arbitration
Check input
streams for

new tasks

Sorting
Sorts input

arrays

Launch
Sort

Unsorted Unsorted

Sorted

Accelerator
A

Array Size Array Size

Figure 3.5: A shared accelerator resource scenario demonstrating gem5-SALAMv2’s
ability to have data-driven accelerators.

accelerators that operate in a passive state until a change is observed in some other

device (such as another accelerator) or are provided with data on an input stream.

To demonstrate this we present the test case shown in Fig. 3.5

In the example shown in Fig. 3.5, we construct a system consisting of three ac-

celerators. Two of the accelerators represent an arbitrary workload that, in this

instance, produces unsorted arrays of arbitrary length. The third accelerator repre-

sents a shared resource that sorts the output of the other two accelerators and returns

the sorted arrays. The shared acceleration consists of two functions: Arbitration and

Sorting. The arbitration acc polls the status of input streams (shown in green) for

available data from the two input accelerators. When data is detected from one

of the input accelerators, the arbitration acc launches the sorting task to read the

appropriate unsorted data stream and respond with the sorted data.

In gem5-SALAMv1 and other existing simulators, this system would require the

implementation of a scheme by which the two data-producing accelerators could ne-

gotiate the usage of the shared resources similarly to what is used in shared memory

programming models. In gem5-SALAMv2, we can model a system in which data

producers can pass their outputs to the shared sorting accelerator via streams, allow-

28

ing the sorting accelerators to launch sorting tasks as data becomes available. This

enables the modeling of a system in which arbitration can be handled directly in the

hardware of a shared resource. While this functionality may appear trivial, the ca-

pacity for simulated accelerators to model runtime-dependent control behaviors based

on the availability of input data is not available in any other pre-RTL simulations,

gem5-SALAMv1 included.

These ideas can be further expanded upon to create other, more generalized hard-

ware devices. Through clever combinations of gem5-SALAMv2’s LLVM runtime,

new system resources, and gem5’s standard system resources, gem5-SALAMv2 offers

the opportunity to rapidly implement new hardware constructs without the hassle of

writing custom simulator models. In addition to the time savings vs. developing and

testing new hardware simulation models, gem5-SALAMv2 offers the direct integration

of power and area estimation with high degrees of user control and customization.

This allows users to explore the modeling of system-level hardware concepts without

many of the traditional development overheads imposed by the APIs of full system

simulators like gem5.

CHAPTER 4: SIMULATOR VALIDATION & COMPARISON

In the following sections, we present our results and analysis in detail to demon-

strate the benefits of gem5-SALAM. To show this, we validate our pre-RTL timing

model, performance, power, area, and system timing metrics and give results that

show the expanded capabilities of gem5-SALAMv2 in the domain of multiple accel-

erator design space exploration.

4.1 Timing, Power, and Area Validation

gem5-SALAMv1 was developed around the LLVM 3.8 compiler toolchain and a

simpler internal elaboration and scheduling system. Given gem5-SALAMv2’s sig-

nificant overhauls to elaboration and runtime scheduling, as well as the substantial

changes in LLVM IR generation and structure that have arisen between LLVM 3.8

and LLVM 9.x, we have re-validated on all of the Machsuite [1] benchmarks used in

gem5-SALAMv1.

For the timing model, we validate against all of the accurate MachSuite benchmarks

against RTL models generated by Vivado HLS. We choose MachSuite for validating

the timing model for two primary reasons: 1.) We want to compare datapath verifica-

tion against both SALAMv1 and, implicitly, gem5-aladdin. 2.) MachSuite provides us

with a robust set of benchmarks to validate different components of the IR modeling,

including compute, control, and dataflow aspects across these benchmarks.

The power and area models were validated against Synopsys Design Compiler elab-

orations, using an open-source 40nm standard cell library and the gate switching

activity produced by RTL simulation in Vivado. we have validated with the 40nm li-

brary for functional validation and for maintaining continuity of comparisons between

30

SALAMv1 and other simulation frameworks like gem5-aladdin.

We have only validated designs small enough that we would not expect device-

specific overheads for things like routing delays. Of course, we cannot estimate such

things because these estimates would require a gate-level understanding of these de-

signs vs. a particular target system and gem5-SALAMv2 is explicitly a pre-RTL

simulation. Additionally, gem5-SALAMv2’s modeling is more abstract than even

SystemC which is, at best, an estimate in terms of timing vs. a real board. For

a comparable set of IPs with comparable resources, you would expect comparable

timing results across boards.

This validated hardware profile is the default configuration in gem5-SALAMv2,

although the user can easily modify or extend this profile to explore custom hardware.

The minor differences in the results of the evaluation metrics are due to the changes

to LLVM’s IR from 3.8 to 9.x.

Table 4.1 provides absolute timing, power, and area validation metrics for all the

accurate and synthesizable benchmarks obtained from MachSuite. Using the last

version of gem5-SALAMv1, we found the relative error comparisons between the

previous iteration, SALAMv2, and HLS elaboration in Figure 4.2. For each test

case, we used the same clang optimizations for generating the LLVM IR to ensure

the same levels of Instruction Level Parallelism (ILP) as the datapaths generated by

HLS. From these results, we can demonstrate the same level of timing accuracy in

gem5-SALAMv2 as in gem5-SALAMv1 and HLS.

Figure 4.1 also shows the power area validation across the same set of benchmarks.

Stencil3D was excluded from this set due to Design Compiler running out of memory

during elaboration. The average error in power estimation is slightly lower than in

gem5-SALAMv1, at 2.45% vs 3.27%. Like in gem5-SALAMv1, power estimations

in gem5-SALAMv2 trend toward a slight overestimation due to the variability in the

power consumption of muxes and non-arithmetic operators. The MD-KNN bench-

31

Figure 4.1: gem5-SALAM versus Vivado HLS power, area, and performance error
percentages.

32

Figure 4.2: gem5-SALAM’s relative error when compared to ground-truth FPGA
timing

33

mark showcases this by having the highest power error due to heavier reliance on

these operators. For area validation, gem5-SALAMv2 can estimate chip area with an

error of 2.24% on average.

While error rates across timing, power, and area are comparable between gem5-

SALAMv1 and gem5-SALAMv2, some conflating factors result in discrepancies be-

tween their estimates. For one, LLVM IR generation has seen significant changes

in structure and optimization between version 3.8 and the LLVM 9.x build used for

validation. While both sets of validations employed O1 optimizations and targeted

unrolling during IR generation, the resulting IR used for elaboration and simulation

shows notable differences in code structure. This, coupled with SALAMv2’s more con-

servative scheduling to address memory errors in gem5-SALAMv1, results in slightly

higher timing estimates on average versus gem5-SALAMv1.

4.2 FPGA System Validation

For system validation, we synthesized five benchmarks and executed them on a

Xilinx Zynq UltraScale+ MPSoC ZCU102 evaluation board with an XCZU9EG SoC

chip, and the ARM processors clocked at 1.2GHz. We used Vivado HLS 2018.3 to

synthesize the benchmarks and Vivado SDSoC 2018.3 to cross-compile the host pro-

grams, which invoke the kernel synthesized by Vivado. The targeted benchmarks

are summarized in table 4.2. The reported bulk transfer time is the summation of

both read/write time from/to shared DDR memory. To match the configuration of

the FPGA programmable logic, an accelerator cluster was instantiated within gem5-

SALAM consisting of a DMA, an accelerator for the top-level function, and an accel-

erator for the benchmark kernel. The top accelerator was programmed by the host

CPU and used to schedule memory transfers and invoke the benchmark accelerator.

The burst width of the cluster DMA was tuned to match the burst width of the data

mover.

Figure 4.2 displays a similar trend to the RTL simulation results. Positive error

34

indicates when the simulation was faster, while negative error indicates faster FPGA

times. One notable difference in the timing between v1 and v2 is the increase in

transfer times due to gem5-SALAMv2 utilizing a top-level accelerator independent

from the application to control data movement. While this slightly increases transfer

time overhead, it provides far more flexibility in system design with a negligible effect

on total execution time.

The most significant discrepancies in computation error can be attributed to bench-

marks operating on double-precision floating-point, with the more accurate bench-

marks operating on integer types. By default, gem5-SALAMv2 approximates floating-

point operations using 3-stage FP adders and multipliers, which do not precisely

match the floating-point DSP IPs employed by SDSoC. Even so, the timing is close

enough to maintain a high degree of fidelity with the FPGA implementation, with

variances primarily due to a difference in cache invalidation times between the ZCU102

and the simulation.

4.3 Simulation Timing Comparison

SALAMv2’s runtime engine upgrade was designed to improve simulation perfor-

mance over SALAMv1. This upgrade required numerous modifications to SALAM’s

in-memory representation of CDFGs and the processes for tracking runtime dependen-

cies across multiple execution graphs and scheduling runtime events further described

in Sec. 3.4. Table 4.3 compares setup and simulation times for gem5-SALAMv1 and

gem5-SALAMv2 when run for 9 Machsuite benchmarks on a system with a Ryzen

3900x and 32GB of RAM.

To compare the two versions, we examined the timing performance of the datapath

parse/setup and simulation time for accelerators in SALAMv1 vs SALAMv2. In

gem5-SALAMv1, the datapath parse and setup were highly variable based on the

complexity of the IR (number of operations, the complexity of data types, etc.). This

could lead to an order of magnitude difference in parse times between applications like

35

GEMM, with its high degrees of unrolling, and a smaller benchmark like BFS. These

setup times are far more normalized by leveraging the LLVM libraries for IR parsing

in SALAMv2. However, the base cost of SALAMv2’s approach leads to slower parse

times in SALAMv2 for smaller applications. However, SALAMv2 is far more efficient

at parsing larger IR files that are larger and contain more complex data structures,

as shown with GEMM and Stencil3D in Table 4.3.

This means that SALAMv2 will run slower for very small accelerators. This is

most apparent in the SPMV application, which cannot be statically loop unrolled due

to runtime dependencies. The resulting static CDFG constrains runtime parallelism

and also constrains SALAM’s event scheduling windows. In contrast, the GEMM and

Stencil3D benchmarks contain large amounts of loop unrolling, meaning there are far

more dependencies to track simultaneously in SALAM’s event scheduling windows.

SPMV’s largest basic block for dependency tracking contains around 10 operations,

whereas GEMM and Stencil3D have blocks with more than 500 operations. Here, the

updates to gem5-SALAMv2 enable us to drastically reduce dependency lookup times

and compute event scheduling times. The result is that while gem5-SALAMv2 may

lose milliseconds in the execution of very small accelerators, it can improve simulation

times by significant factors in more complex designs.

In Sec. 5, we explore systems built around neural network architectures. In the case

of the MobileNetv2 design described in Sec. 5, gem5-SALAMv2 sees a more than 3x

speedup over gem5-SALAMv1, which reduces simulation times for full-network runs

by several hours.

36

Table 4.1: gem5-SALAM & Vivado HLS performance, power, and area data.

B
en

ch
P
er

fo
rm

an
ce

(c
yc

le
s)

P
ow

er
(µ

W
2)

A
re

a
(m

m
2
)

H
LS

v1
v2

H
LS

v1
v2

H
LS

v1
v2

B
F
S

15
83

4
15

58
7

15
60

0
1.

34
97

1.
34

96
1.

34
97

81
14

77
00

76
96

F
F
T

91
16

8
90

87
4

91
26

5
58

.0
83

6
57

.5
52

4
59

.3
51

3
39

18
5

39
17

9
39

22
8

G
E

M
M

13
10

98
13

15
24

13
19

00
64

.4
21

9
62

.7
21

3
65

.3
65

5
29

90
86

28
95

97
28

94
00

M
D

-K
N

N
31

79
69

32
80

50
32

80
25

15
.1

74
5

16
.3

43
1

15
.9

59
4

41
31

9
41

31
9

42
79

1
N

W
66

71
2

66
58

7
66

96
2

6.
10

93
6.

42
4

6.
19

75
12

19
5

12
04

2
12

15
2

St
en

ci
l2

D
10

93
58

10
95

00
10

95
63

41
.5

81
2

42
.9

13
7

43
.4

33
4

84
61

84
61

90
00

St
en

ci
l3

D
46

55
9

45
52

6
47

21
0

-
-

-
-

-
-

37

Table 4.2: gem5-SALAM & ground-truth FPGA timing data from the five MachSuite
benchmarks validated against.

B
en

ch
F
P

G
A

SA
LA

M
v1

SA
LA

M
v2

C
om

pu
te

X
fe

r
To

ta
l

C
om

pu
te

X
fe

r
To

ta
l

C
om

pu
te

X
fe

r
To

ta
l

F
F
T

87
9.

3
µ
s

93
.6

µ
s

97
2.

9
µ
s

86
7.

8
µ
s

95
.6

µ
s

96
3.

4
µ
s

86
0.

4
µ
s

97
.9

µ
s

95
8.

2
µ
s

G
E

M
M

13
43

.3
µ
s

17
9.

0
µ
s

15
22

.3
µ
s

13
15

.2
µ
s

18
2.

0
µ
s

14
97

.2
µ
s

13
14

.6
µ
s

18
7.

7
µ
s

15
02

.4
µ
s

M
D

-K
N

N
24

89
.6

µ
s

11
8.

7
µ
s

26
08

.4
µ
s

25
68

.5
µ
s

11
3.

0
µ
s

26
81

.4
µ
s

24
87

.2
µ
s

11
1.

1
µ
s

25
98

.4
µ
s

St
en

ci
l2

D
84

6.
4
µ
s

26
8.

5
µ
s

11
15

.0
µ
s

85
4.

1
µ
s

27
6.

0
µ
s

11
30

.1
µ
s

87
6.

6
µ
s

25
5.

9
µ
s

11
32

.5
µ
s

St
en

ci
l3

D
44

5.
2
µ
s

44
4.

5
µ
s

88
9.

8
µ
s

45
5.

2
µ
s

44
6.

0
µ
s

90
1.

3
µ
s

46
0.

2
µ
s

44
2.

3
µ
s

90
2.

5
µ
s

38

Table 4.3: gem5-SALAM simulation timing values and comparison.

B
en

ch
SA

LA
M

v1
SA

LA
M

v2
SA

LA
M

v2
Sp

ee
du

p
Se

tu
p

Si
m

.
To

ta
l

Se
tu

p
Si

m
.

To
ta

l
Se

tu
p

Si
m

.
To

ta
l

B
F
S

0.
23

9
m

s
0.

40
9

s
0.

40
9

s
0.

50
7

m
s

0.
32

7
s

0.
32

8
s

0.
47

1x
1.

24
9x

1.
24

8x
F
F
T

0.
26

1
m

s
1.

12
0

s
1.

12
0

s
0.

74
0

m
s

1.
88

7
s

1.
88

8
s

0.
35

3x
0.

59
4x

0.
59

4x
G

E
M

M
4.

76
m

s
21

.3
87

s
21

.3
91

s
0.

40
9

m
s

10
.0

28
s

10
.0

28
s

11
.6

46
x

2.
13

3x
2.

13
3x

M
D

-K
N

N
0.

26
4

m
s

5.
68

9
s

5.
68

9
s

0.
71

1
m

s
4.

46
7

s
4.

46
8

s
0.

37
2x

1.
27

4x
1.

27
4x

N
W

1.
53

m
s

1.
54

8
s

1.
55

0
s

0.
45

6
m

s
1.

60
6

s
1.

60
6

s
3.

36
4x

0.
96

4x
0.

96
5x

SP
M

V
0.

17
2

m
s

0.
15

2
s

0.
15

3
s

0.
48

1
m

s
0.

48
7

s
0.

48
7

s
0.

35
7x

0.
31

3x
0.

31
3x

St
en

ci
l2

D
0.

37
8

m
s

2.
06

6
s

2.
06

7
s

0.
39

7
m

s
2.

91
8

s
2.

91
8

s
0.

95
1x

0.
70

8x
0.

70
8x

St
en

ci
l3

D
5.

09
m

s
4.

05
0

s
4.

05
5

s
0.

42
6

m
s

2.
00

3
s

2.
00

3
s

11
.9

50
x

2.
02

2x
2.

02
4x

CHAPTER 5: DESIGN SPACE EXPLORATION

To demonstrate the increased flexibility added in gem5-SALAMv2 to design space

exploration, we explore different hardware architectures for two unique CNNs. We

first showcase the flexibility that one has to tweak design knobs by exploring three

different LeNet-5 architectures in Sec. 5.1. This shows how a designer could utilize the

improved design automation tools and simulation features within gem5-SALAMv2

to rapidly explore architectural changes. We then showcase the ability of gem5-

SALAMv2 to simulate and evaluate a large-scale design with a full implementation

of the MobileNetV2 CNN [16] in Sec. 5.2.

5.1 Case Study: LeNet-5

Because LeNet-5 is significantly smaller than modern CNNs, we use this example to

demonstrate how a design can be iterated on and improved inside of gem5-SALAMv2

in a way that was previously arduous in gem5-SALAMv1. We explore three hardware

designs: Naive, Massively Parallel, and Efficient Streaming. These are meant to show

how a designer can rapidly explore architectures in SALAMv2 and are not intended

to be presentations of novel architectures. In the following sections, we discuss some

of the significant benefits of using gem5-SALAMv2 over other simulators and present

and analyze each of the three designs.

5.1.1 System Setup and Configuration

We first start the development of our systems by defining constant system and

hardware configurations to be used for our design space exploration. All hardware

and power profiles used for testing were based on an open source 40nm standard

cell library with a 10ns device and system latency. We used the same functional

40

unit timings and configuration from our system validation in Sec. 4.2, with lockstep

execution and memory hazard prevention enabled.

Each cluster contains a standard top-level accelerator to control communication

between the gem5 system and the cluster accelerators. The memory storage tech-

niques used within the accelerator clusters are either scratchpad memories or stream

buffers. These are simulation objects within the gem5-SALAMv2 simulator that uti-

lize user-defined hardware profiles for parameterization and analysis. Additionally,

we used the bare-metal ARM implementation of gem5, with 4GB of 2400MHz DDR4

RAM and the standard DerivO3CPU CPU type included in gem5.

5.1.2 Application Metrics and Testing

For our design space exploration, we sought to profile how our designs would per-

form across varying spatial (loop unrolling/vectorization) and temporal (dynamic

execution) factors. For metrics, we observe the variations in power, area, and la-

tency that each design exhibits with varying configurations. We use three separate

configurations on our three separate topographies to showcase how one can use the

gem5-SALAMv2 toolchain to explore new architectural designs.

We identify six internal dimensions for exploration: output height/width, kernel

height/width, and input/output channel depth. The kernel and channel depth param-

eters define the internal loop structure, which can be unrolled to increase datapath

parallelism. This enables us to create three IR variants to benchmark on each archi-

tecture. The first variant does not contain any loop unrolling, the second includes

a fully unrolled kernel vector, and the third fully unrolls the kernel and the channel

vectors. We define these as "No Unroll," "Input Unroll," and "Output Unroll" to

showcase how one can vary this knob in a given design.

• No Unroll: Solely utilizes temporal compute parallelism within each acceler-

ator.

41

• Input Unroll: Fully unrolls the kernel height/width and input channel di-

mensions of each network layer. For example, Conv1 has a 5x5x6 convolution

window. We would fully unroll this input window to a factor of 150. We then

match the porting of the feature map and weight scratchpads to the unroll

factor.

• Output Unroll: Fully unrolls kernel height/width and input/output channel

dimensions. This means in Conv1 we unroll across a 16x5x5x6 set of loops for

a factor of 2400.

5.1.3 Naive Design

With these three configurations defined, we define our three system topologies. All

designs possess a top-level accelerator, which is further called "Top." The Top uti-

lizes varying levels of granularity in its control over DMA and synchronization events

between network layers. We first present the Naive Design, an implementation to

be used as a baseline against different architectural features. This system utilizes

direct DMA transfers between scratchpads and runs each layer sequentially, as shown

in Fig. 5.1. Our second configuration, named Massively Parallel, connects accel-

erators in a streaming-like fashion via scratchpad memories and a dedicated "Data

Sync" accelerator, as shown in Fig. 5.2. The final configuration, Efficient Stream-

ing, is comprised of functional units that contain convolution and pooling layers with

internally managed line buffers, as shown in Fig. 5.3.

The Naive implementation contains a very straightforward architecture for the

given CNN. At a high level, the design is disconnected accelerators with memory

accessed from a common DMA. An implicit Top controls all memory transfers to

and from these accelerators and maintains accelerator synchronization. Because of

how memory is managed, there is no overlap between accelerator execution, as each

successive accelerator depends on the entire output feature map of the previous layer.

42

Conv 1

In Fmap

Weights

Out Fmap

Conv 0

In Fmap

Weights

Out Fmap

Conv 2

In Fmap

Weights

Out Fmap

DMA

Classifier

In FmapIn Fmap

Weights

Out Fmap

Pool 0

In Fmap

Out Fmap

Pool 1

In Fmap

Out Fmap

Figure 5.1: Naive Design - This "Naive" architecture has each accelerator fully con-
trolling its input and output SPMs, with all accelerators connecting to a single DMA
for inter-accelerator memory transfers.

This allows for a straightforward synchronization method where the Top runs each

network layer successively and handles corresponding memory transfers.

5.1.4 Massively Parallel Design

One of the significant benefits of design space exploration in gem5-SALAM is the

ability to explore compute parallelism across multiple accelerators via communication

through the gem5 memory system. To take advantage of this in the Massively Par-

allel architecture, we connect accelerators in a streaming-like fashion via scratchpad

memories and a dedicated "Data Sync" accelerator, as shown in Fig. 5.2. This self-

synchronization significantly reduces the control overheads that the Top introduces

and allows for overlapping execution.

Streaming in CNNs is challenging due to significant data production and consump-

tion imbalances. Although the data may only be written once, it will be read many

times due to shifting convolutional windows. While the Naive design resolves this

by allocating separate input and output memories with a DMA to move the data, it

lacks an understanding of the data usage and availability in the network that could

43

be leveraged to improve runtime compute parallelism.

Accelerators Shared SPMs

Conv

Weights

Conv

Weights Sync In BIn B

Pool In AIn A

WinWin

OutOut

Figure 5.2: Massively Parallel Architecture - With the increased complexity of the
Massively Parallel Design, we present an overview of the devices that comprise the
functional unit repeated throughout the design. Notably, the functional unit is com-
prised of Convolution (Conv), Pooling (Pool), and Data Sync (Sync) accelerators that
are directly connected to their relevant SPMs.

Desiring a more efficient data management solution than possible with a traditional

DMA, we leveraged SALAMv2’s updated LLVM engine and system interfaces to

design a Data Sync accelerator. The data sync accelerator manages the movement of

data between the output of one layer and the input of the next in a similar fashion to a

DMA with some key differences. Each data sync accelerator is designed with the data

access patterns of the input and output layers in mind, allowing data to be transferred

between layers as soon as it is ready. This effectively turns the connected input and

output scratchpads into a massively parallel stream buffer with the capacity for a

single write with multiple reads. We synchronize data access by using the capacity of

SALAM accelerators to track the status of memory devices in the system, enabling

each accelerator to perform execution based on data availability without reliance on

the Top.

5.1.5 Efficient Streaming Design

Building on the features of gem5-SALAMv2, we introduce the Efficient Stream-

ing design depicted in Figure 5.3. This design demonstrates how gem5-SALAMv2’s

dynamic execution, based on data availability, enables designers to explore complex

architectures. In this design, we aim to address the inefficient reuse of allocated

44

Conv Layer
Out FIFO

Pool Layer

Weights

In FIFO Line Buffer
Line BufferLine Buffer

Figure 5.3: Efficient Streaming Functional Unit - With the integration of data man-
agement into the convolution accelerator, there is now only a Convolution and Pooling
layer at a functional unit level. The Convolution accelerator stores data from the in-
put FIFO to the Line Buffer SPM to be utilized for the operation; all accelerators are
interconnected with streaming FIFOs.

memory in the Massively Parallel design, while maintaining a higher occupancy level

than that of the Naive design. To this end, the Efficient Streaming design substan-

tially increases memory reuse by employing gem5-SALAMv2âs streaming line buffers

interconnected between convolution and pooling accelerators. This design further

streamlines the overall architecture by relocating data synchronization to the convo-

lution accelerator.

A notable limitation of this architecture is its inability to support unrolling on the

output channel due to the inclusion of the line buffer. However, the design exhibits

increased levels of memory reuse and diminished SPM sizes across all network layers,

resulting in significantly reduced area and energy usage while performing comparably

to the Massively Parallel architecture.

5.1.6 LeNet-5 Results and Analysis

With the increased granularity that gem5-SALAMv2 allows for hardware statistics,

we can generate Fig. 5.4 and Fig. 5.5. To create these figures, we ran our three

separate architectures across our three configurations. Fig. 5.4 confirms the expected

trends in computational performance from our design methodology.

For each architecture, implementations with no unrolling are the most energy-

efficient but are held back in performance due to the high overheads of sequential

execution. Unrolling the kernel input increases the performance and energy usage,

45

Figure 5.4: Total Data-Path Computational Energy Consumption Vs. Runtime for
LeNet-5 Configurations

with diminishing returns on performance and considerable increases in energy usage

when unrolling the output channel. While these are not novel insights, these explo-

rations demonstrate the capability of gem5-SALAMv2 to model expected behaviors

accurately.

Additionally, looking at Figure 5.4, we see that the internal streaming buffer used in

the Efficient Streaming design was the most energy-efficient design for computational

performance but performed similarly to both the Naive and Massively Parallel designs.

Broadening our scope to utilize metrics that gem5-SALAMv2 can now provide, we

consider the results shown in Figure 5.5. These normalized values show that the

Efficient Streaming architecture significantly improves energy and area metrics while

keeping runtime performance comparable to the previous designs.

Figure 5.5 shows some complex metrics available with gem5-SALAMv2. Our simu-

lations show normalized runtime, area, and static and dynamic energies for memories

and datapaths. The Naive design has significant runtime, area, and energy overheads

versus the Massively Parallel and Efficient Streaming architectures. This is mainly

because of the inefficient use of the local DMA and the lack of accelerator occupancy

due to accelerators running serialized. Looking at the Massively Parallel Design, we

see that it has significant runtime improvements to the Naive design but has high

area and energy requirements compared to the Efficient Streaming design. This is

46

0

0.25

0.5

0.75

1
Runtime

Datapath Static
Energy

Datapath
Dynamic
Energy

Datapath Area
Memory
Dynamic
Energy

Memory Static
Energy

Memory Area

No Unroll Output Unroll Input Unroll

(a) Naive

0

0.25

0.5

0.75

1
Runtime

Datapath Static
Energy

Datapath
Dynamic
Energy

Datapath Area
Memory
Dynamic
Energy

Memory Static
Energy

Memory Area

No Unroll Output Unroll Input Unroll

(b) Massively Parallel

0

0.25

0.5

0.75

1
Runtime

Datapath
Static Energy

Datapath
Dynamic
Energy

Datapath Area
Memory
Dynamic
Energy

Memory Static
Energy

Memory Area

Input Unroll No Unroll

(c) Efficient Streaming

Figure 5.5: LeNet-5 Power, Area, and Performance Values - These values were nor-
malized by dividing all results by the max value obtained in any of the three archi-
tectures for each category. This technique preserves the ratio of the results between
architectures on a scale from 0-to-1.

due to the design being able to execute all accelerators in parallel. However, because

of the large SPMs allocated, it has the most significant area and energy footprint

of all three configurations. We also see that the Efficient Streaming design is the

most efficient implementation while performing marginally slower than the Massively

Parallel design at both degrees of parallelism supported (no and input unroll). This

is because the Efficient Streaming design can execute in parallel but must update the

line buffer before each convolution window. This results in area and energy usage

requirements far lower than the other architectures.

The results of our design space exploration on LeNet-5 have provided insights

that can help guide future exploration for much larger architectures, and we have

applied these insights to aid in developing the full system configuration used for our

47

MobileNetV2 design space exploration in Sec. 5.2.

5.2 MobileNetV2 Exploration

With the new design automation features we have introduced in gem5-SALAMv2,

we have enabled the ability to explore significantly more complex architectures over

gem5-SALAMv1. While the LeNet-5 architectures showcase how a designer can eas-

ily tweak small architectural parameters, these are still toy examples that do not

convey the complexity and scale of systems that gem5-SALAMv2 supports. With

this in mind, we present a MobileNetV2 architecture that supports modern CNN fea-

tures such as residual connections and separable convolutions to showcase a complex

architecture implemented in gem5-SALAMv2.

With this increased complexity, it becomes unrealistic to fully map each network

layer to an individual accelerator, as in Sec 5.1. Because we can create isolated ac-

celerator clusters in gem5-SALAMv2, we break the MobileNetV2 architecture into

four core computation blocks by assigning each block to an individual cluster. These

compute clusters contain unique structures of the network, with the head, tail, and

classifier being single-use clusters. Because of the dynamic reconfigurability of accel-

erators in gem5-SALAMv2, we can create a single-body cluster that can be reused.

The system-wide architecture is shown in Figure 5.6, with the Depthwise (DW) and

Pointwise (PW) functional units shown in further detail in Figures 5.7 and 5.8. No-

tably, the Classification cluster is left out of Figure 5.6 due to the straightforward

nature of its design, but is present in the implementation of the network.

Figure 5.6 showcases the design of MobileNetV2 at a system level. We show this

to describe the system and demonstrate how the SALAM Configurator significantly

improves a designer’s interaction with gem5 at the system design level. In gem5-

SALAMv1, all memory connections between devices were manually defined within

the same cluster; however, these connections are now an automated feature of gem5-

SALAMv2 and require no manual configuration. This enables iterating on large-scale

48

Host Cluster

gem5 Memory Subsystem

Host
CPU

Host Caches

DRAM System Peripherals (UART, DMA, etc.)

Head Cluster

PWPWPW DWDWDWNormNormNorm

SPMs

Body Cluster

PWPWPW DWDWDW PWPWPW

SPMs

Tail Cluster

SPMs

PWPWPW ShapeShapeShape PoolPoolPoolPWPW ShapeShape PoolPool

Stream
DMA

DMA
Stream
DMA

DMA
Stream
DMA

DMA
Stream
DMA

DMA
Stream
DMA

DMA
Stream
DMA

DMA

Figure 5.6: MobileNetV2 System Architecture - System architecture details for the
MobileNetV2 design. The Head, Body, and Tail clusters are represented here and
show how the design interfaces with the gem5 system.

hardware for applications such as MobileNetV2 at a significantly faster pace, as one

no longer has to create and maintain the gem5 system configuration and memory

map. Another addition that helps with organization is the ability to easily partition

accelerators into isolated accelerator clusters, helping organize and maintain designs.

Because all clusters utilize Depthwise (DW), Pointwise (PW), or Normal convo-

lutions, we create functional units (FUs) for each of these essential operations. The

DW functional unit shown in Figure 5.7 is designed to resolve the producer-consumer

disparities in CNNs discussed in Sec. 5.1. In this FU we create an internal Im2col

accelerator for the DW convolution that processes data from an input FIFO stream

to prepare the convolution window for the main compute accelerator. The PW func-

tional unit has a different structure due to the access pattern of the PW operation

and is shown in Figure 5.8. Here we can see that the PW FU is a single accelera-

tor that is responsible for its own data management and computation. The Normal

convolution shown in 5.6 is simply the DW FU but processes 3-channel RGB image.

Each FU writes an output FIFO stream that feeds to the next FU in the chain. Be-

cause our point-wise accelerator does not need to reorder its input data, it manages

49

Im2col
Line BufferLine Buffer

Im2col
Line Buffer

Conv
Window

Conv
Window

Conv

WeightsWeightsWeights

QParamsQParamsQParams

Conv

WeightsWeights

QParamsQParams

Figure 5.7: Provides an overview of the Depthwise (DW) functional unit used in
this MobileNetv2 architecture. Each accelerator performs a discrete function, with
memory types used being FIFO buffers or SPMs. The two accelerators are image-to-
column transformation (Im2col) and the convolution window computation (Conv).

its convolution window and computation.

Using these functional units as the building blocks for our clusters, we create our

four separate clusters and interconnect the functional units with FIFO buffers. Each

cluster also contains DMAs for access to the main memory and a top-level acceler-

ator to control memory transfers and accelerator initialization. Network inputs and

outputs utilize FIFO buffers accessed by a Stream DMA that the Top configures.

Weights and quantization parameters are transferred to their respective SPMs before

accelerators begin computation.

The Head cluster is responsible for the first two layers of the network, a normal

convolution and a unique inverted residual block (IRB). We present the Body cluster

in Figure reffig:mobilenet-body, where most of the network’s computation occurs.

The Body contains an IRB and support for residual connections. As mentioned, we

utilize SALAMv2’s support for configurable accelerators to re-use the body cluster

sequentially to process each subsequent network layer. The Tail cluster of the network

embeds the features for the classifier and computes an average pool. Finally, the

classifier runs the final fully connected layer of the network.

gem5-SALAMv2’s increased design automation and configuration flexibility allow

us to rapidly explore how our architecture performs with varying network complex-

ities. Specifically, we vary one of MobileNetV2’s hyper-parameters, α, across three

different sizes: .35, .75, and 1. As shown in Table 5.2, there are significant changes

50

Out FIFO

Conv

In FIFO

Line BufferLine Buffer

WeightsWeights

QParamsQParams

Figure 5.8: Describes the Pointwise (PW) functional unit used in the Head, Body,
and Tail clusters. We see a single accelerator responsible for its data management
and computation, enabled by gem5-SALAMv2’s mechanism for the Conv accelerator
to poll for the availability of data on the FIFO buffer.

in how much computation and memory must be utilized to perform operations on

a given frame. Using gem5-SALAMv2’s metrics allows us to perform an in-depth

analysis of our proposed architecture.

Using these metrics, we run all three configurations and record the results in Table

5.1. We can see that our architecture performs as expected across all three complexi-

ties, but the system becomes significantly more constrained as computation complex-

ity increases. We see this with the least compute-intensive variant getting 14.08fps

and the most intensive variant getting 4.50fps.

With this data, we can analyze what is most constraining the execution of the

network. We see that our Body cluster takes up approximately 88% of the end-to-

end latency for an α of .75. Because this is the most complex portion of the network,

further improvements, such as implementing a form of tiling or increasing parallelism,

could be made to increase performance. Additional considerations, such as memory

overheads, can also be made. For example, in our Classifier cluster, the initial loading

of the network’s weights takes 94% of the execution of the cluster. Another solution

worth exploring in gem5-SALAMv2 would be to implement weight streaming in later

stages of the network by making small changes to the Body. This is because parameter

sizes in later layers become significantly larger than their respective feature maps.

Finally, we compare MobileNetV2 run-times in gem5-SALAMv1 and v2. To do

51

this, we back-ported the MobileNetV2 design and gem5-SALAMv2 Configurator into

gem5-SALAMv1, as this exploration is not possible without the new additions. As

expected, we see in Table 5.3 that there are significant performance benefits that

enable more rapid exploration of large-scale architectures. Notably, we see a trend

that confirms short-running segments of the network, such as the Tail, perform worse

at -.58x, but the largest segment of the network, the Body, receives the largest speedup

at 3.51x. As we scaled the network parameters up, the performance improvement on

individual segments also improved. However, gem5-SALAMv1 could not run the fully

scaled network (α = 1) end-to-end in a single run for a proper comparison.

52

Table 5.1: MobileNetV2 96x96 Sim time and latency

α
=

.3
5

α
=

.7
5

α
=

1
C

lu
st

er
Si

m
T

im
e

(m
)

La
te

nc
y

(u
s)

Si
m

T
im

e
(m

)
La

te
nc

y
(u

s)
Si

m
T

im
e

(m
)

La
te

nc
y

(u
s)

he
ad

1.
45

82
50

.5
5

2.
86

11
21

4.
57

3.
15

14
36

0.
49

bo
dy

24
.2

5
58

00
4.

01
30

1.
55

14
53

88
.4

6
44

8.
05

20
05

35
.1

5
ta

il
0.

04
11

19
.0

5
3.

65
35

29
.6

1
4.

32
38

26
.6

5
cl

as
si

fie
r

6.
41

36
05

.6
1

6.
98

36
06

.3
1

6.
48

36
06

.7
3

To
ta

l
32

.1
5

70
.9

8m
s

31
5.

03
16

3.
74

m
s

46
2.

00
22

2.
33

m
s

53

Table 5.2: MobileNetV2 Network Complexity for a 96x96 Input and a varying α at
points .35, .75, and 1.0

MobileNetV2 Complexity α = .35 α = .75 α = 1
Computation (MACs) 13705412 6.61x 8.85x

Model Size (KB) 203 2.82x 4.32x
Feature Map Traffic (KB) 30702 6.04x 8.05x

Table 5.3: Runtime Comparison of MobileNetV2 on SALAMv1 and SALAMv2 with
an input resolution of 96x96 and α = 0.35

Cluster V1 Time (m) V2 Time (m) Speedup
head 4.44 1.45 2.07x
Body 109.39 24.25 3.51x
Tail 0.02 0.04 -0.58x

Classifier 25.11 6.41 2.92x
Total 138.96 32.15 3.32x

CHAPTER 6: CONCLUSION

This paper presented gem5-SALAMv2 as a fully integrative LLVM-based simu-

lation platform for scalable simulation of accelerator-rich SoCs. gem5-SALAMv2

extended the work presented in "gem5-SALAM: A System Architecture for LLVM-

based Accelerator Modeling" from MICRO 2020 [13] by revamping the gem5-SALAM

internals to provide more robust and extensible simulations, as well as introducing

automation mechanisms for expanding and simplifying design space exploration. Im-

portantly, while gem5-SALAMv1 sought to primarily focus on supporting application-

specific compute simulators, gem5-SALAMv2 has expanded this scope to support

broader hardware simulations with its LLVM Interface.

This is accomplished through a ground-up redesign of the SALAM elaboration and

execution engine, improvements to the gem5 memory system integration, and expan-

sion of the SALAM toolchain with tools such as the SALAM Configurator. With

the introduction of these features, gem5-SALAMv2 offers unique hardware modeling

opportunities that are otherwise unavailable in hardware and system-level simulation

without extensive hand-crafted development. In addition to these modeling capabil-

ities, gem5-SALAMv2 also provides significant speedups in simulation development,

design iteration, and simulation times for large designs.

With these significant changes to SALAM and the generation and structure of

LLVM IR, we re-validated the SALAM framework on the Machsuite [1] benchmarks

that were also used as a baseline in gem5-SALAMv1. Doing so gave us the unique

opportunity to compare the validation and runtime differences between the two ver-

sions. We found that on average, gem5-SALAMv2 had an error of 4.06% for cycle

count, 2.45% for power, and 3.13% for area when compared to the Vivado HLS

55

implementation of MachSuite benchmarks. When comparing the execution time of

gem5-SALAMv1 and gem5-SALAMv2, we found that for very small simulations, the

utilization of the LLVM API introduced significant setup overheads (∼3x), while

larger simulations like Stencil3d and GEMM saw performance improvements of more

than 11x.

In addition to validating the MachSuite benchmarks in gem5-SALAMv2, we il-

lustrated the increased flexibility of our framework for design space exploration by

demonstrating several hardware architectures for the LeNet-5 and MobileNetV2 CNNs.

These designs were made possible by the SALAM Configurator, a tool that automates

gem5 system configuration files and memory maps for an end user. For LeNet, we pre-

sented three architectures with unique characteristics to demonstrate how a user can

rapidly iterate on a design in gem5-SALAMv2. For MobileNetV2, we implemented

one large architecture with more than 150 memory-mapped devices and changed the

hyperparameter α to inspect how the gem5-SALAMv2 framework would perform on a

large-scale design. We further compared runtime between SALAMv1 and SALAMv2

by backporting the MobileNetV2 design to SALAMv1 and found a performance im-

provement of 3.32x.

With the open-endedness of both gem5 and gem5-SALAM, there is significant lee-

way on topics that could be further researched. As we have demonstrated in Section

5, gem5-SALAMv2 provides a reasonable simulation framework for CNN-based ar-

chitectures. A natural next step would be simulating compute and memory-intensive

architectures such as LLM-like models, e.g. GPT4 and LLAMA2. Additionally, re-

search into how specific accelerators interact within a heterogeneous system could be

worthwhile, particularly with the addition of GPU support in gem5. Another aspect

that we have not explored is the impact that LLVM vectorization instructions would

have on simulation times with these applications. While technically possible with our

usage of the LLVM IR, this is not something we currently implement but would most

56

likely result in a significant speedup for these kinds of applications.

57

REFERENCES

[1] B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and D. Brooks, “MachSuite: Bench-
marks for accelerator design and customized architectures,” in Proceedings of the
IEEE International Symposium on Workload Characterization, (Raleigh, North
Carolina), October 2014.

[2] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hes-
tness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,
N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,” SIGARCH Com-
put. Archit. News, vol. 39, pp. 1–7, Aug. 2011.

[3] C. Menard, J. Castrillon, M. Jung, and N. Wehn, “System simulation with gem5
and systemc: The keystone for full interoperability,” in 2017 International Con-
ference on Embedded Computer Systems: Architectures, Modeling, and Simula-
tion (SAMOS), pp. 62–69, July 2017.

[4] T. Nikolaos, K. Georgopoulos, and Y. Papaefstathiou, “A novel way to efficiently
simulate complex full systems incorporating hardware accelerators,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2017, pp. 658–661,
March 2017.

[5] K. Iordanou, O. Palomar, J. Mawer, C. Gorgovan, A. Nisbet, and M. LujÃ¡n,
“Simacc: A configurable cycle-accurate simulator for customized accelerators on
cpu-fpgas socs,” in 2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pp. 163–171, April 2019.

[6] C. Pham-Quoc, I. Ashraf, Z. Al-Ars, and K. Bertels, “Heterogeneous hardware
accelerators with hybrid interconnect: An automated design approach,” in 2015
International Conference on Advanced Computing and Applications (ACOMP),
pp. 59–66, Nov 2015.

[7] T. Liang, L. Feng, S. Sinha, and W. Zhang, “Paas: A system level simulator for
heterogeneous computing architectures,” in 2017 27th International Conference
on Field Programmable Logic and Applications (FPL), pp. 1–8, Sep. 2017.

[8] K. Gent and M. S. Hsiao, “Functional test generation at the rtl using swarm
intelligence and bounded model checking,” in 2013 22nd Asian Test Symposium,
pp. 233–238, Nov 2013.

[9] Y. S. Shao, B. Reagan, G.-Y. Wei, and D. Brooks, “Aladdin: A pre-rtl, power-
performance accelerator simulator enabling large design space exploration of cus-
tomized architectures,” in ACM/IEEE 41st International Symposium on Com-
puter Architecture (ISCA), 2014.

[10] Y. S. Shao, S. Xi, V. Srinivasan, G.-Y. Wei, and D. Brooks, “Co-Designing
Accelerators and SoC Interfaces using gem5-Aladdin,” in The 49th IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2016.

58

[11] J. Cong, Z. Fang, M. Gill, and G. Reinman, “Parade: A cycle-accurate full-system
simulation platform for accelerator-rich architectural design and exploration,”
in 2015 IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), 2015.

[12] O. Matthews, A. Manocha, D. Giri, M. Orenes-Vera, E. Tureci, T. Sorensen,
T. J. Ham, J. L. Aragón, L. P. Carloni, and M. Martonosi, “The mosaicsim
simulator (full technical report),” CoRR, vol. abs/2004.07415, 2020.

[13] S. Rogers, J. Slycord, M. Baharani, and H. Tabkhi, “gem5-salam: A system archi-
tecture for llvm-based accelerator modeling,” in 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 471–482, 2020.

[14] C. Lattner and V. Adve, “Llvm: a compilation framework for lifelong program
analysis transformation,” in International Symposium on Code Generation and
Optimization, 2004. CGO 2004., pp. 75–86, 2004.

[15] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–
2324, 1998.

[16] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:
Inverted residuals and linear bottlenecks,” 2019.

[17] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski, S. D.
Brown, and J. H. Anderson, “Legup: An open-source high-level synthesis tool for
fpga-based processor/accelerator systems,” ACM Trans. Embed. Comput. Syst.,
vol. 13, pp. 24:1–24:27, Sept. 2013.

[18] D. H. Noronha, B. Salehpour, and S. J. E. Wilton, “Leflow: Enabling flex-
ible FPGA high-level synthesis of tensorflow deep neural networks,” CoRR,
vol. abs/1807.05317, 2018.

[19] W. Zuo, L. Pouchet, A. Ayupov, T. Kim, Chung-Wei Lin, S. Shi-
raishi, and D. Chen, “Accurate high-level modeling and automated hard-
ware/software co-design for effective soc design space exploration,” in 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6, June 2017.

[20] S. Kumar, N. Sumner, V. Srinivasan, S. Margerm, and A. Shriraman, “Needle:
Leveraging program analysis to analyze and extract accelerators from whole pro-
grams,” in 2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 565–576, Feb 2017.

[21] V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynamically Specialized
Datapaths for energy efficient computing,” in High Performance Computer Ar-
chitecture (HPCA), pp. 503–514, 2011.

59

[22] L. Wang and K. Skadron, “Lumos+: Rapid, pre-rtl design space exploration on
accelerator-rich heterogeneous architectures with reconfigurable logic,” in 2016
IEEE 34th International Conference on Computer Design (ICCD), pp. 328–335,
Oct 2016.

[23] M. S. B. Altaf and D. A. Wood, “Logca: A high-level performance model for
hardware accelerators,” in 2017 ACM/IEEE 44th Annual International Sympo-
sium on Computer Architecture (ISCA), pp. 375–388, June 2017.

[24] F. Munoz-MartÃnez, J. L. Abellan, M. E. Acacio, and T. Krishna, “Stonne: En-
abling cycle-level microarchitectural simulation for dnn inference accelerators,”
in 2021 IEEE International Symposium on Workload Characterization (IISWC),
pp. 201–213, 2021.

[25] A. Samajdar, Y. Zhu, P. N. Whatmough, M. Mattina, and T. Krishna, “Scale-
sim: Systolic CNN accelerator,” CoRR, vol. abs/1811.02883, 2018.

[26] L. Zhu, W. Fan, C. Dai, S. Zhou, Y. Xue, Z. Lu, L. Li, and Y. Fu, “A noc-based
spatial dnn inference accelerator with memory-friendly dataflow,” IEEE Design
Test, vol. 40, no. 6, pp. 39–50, 2023.

[27] Y. Zhao, C. Li, Y. Wang, P. Xu, Y. Zhang, and Y. Lin, “Dnn-chip predictor: An
analytical performance predictor for DNN accelerators with various dataflows
and hardware architectures,” CoRR, vol. abs/2002.11270, 2020.

[28] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop: A system-
atic approach to dnn accelerator evaluation,” in 2019 IEEE International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS), pp. 304–315,
2019.

[29] Y. Wu, P. Tsai, A. Parashar, V. Sze, and J. S. Emer, “Sparseloop: An analytical
approach to sparse tensor accelerator modeling,” in 2022 55th IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), (Los Alamitos, CA, USA),
pp. 1377–1395, IEEE Computer Society, oct 2022.

[30] S. Rogers, J. Slycord, R. Raheja, and H. Tabkhi, “Scalable llvm-based accelerator
modeling in gem5,” IEEE Computer Architecture Letters, pp. 18–21, jan 2019.

[31] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi,
“McPAT: An Integrated Power, Area, and Timing Modeling Framework for Mul-
ticore and Manycore Architectures,” in MICRO 42: Proceedings of the 42nd An-
nual IEEE/ACM International Symposium on Microarchitecture, pp. 469–480,
2009.

