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ABSTRACT 

 

 

The problem of reconstructing an image of the permittivity distribution inside a 

penetrable and strongly scattering object from a finite number of noisy scattered field 

measurements has always been very challenging because it is ill-posed in nature. 

Several techniques have been developed which are either computationally very 

expensive or typically require the object to be weakly scattering. I have developed here 

a non-linear signal processing method, which will recover images for both strong 

scatterers and weak scatterers.  This nonlinear or cepstral filtering method requires that 

the scattered field data is first preprocessed to generate a minimum phase function in the 

object domain. In 2-D or higher dimensional problems, I describe the conditions for 

minimum phase and demonstrate how an artificial reference wave can be numerically 

combined with measured complex scattering data in order to enforce this condition, by 

satisfying Rouche‘s theorem. In the cepstral domain one can filter the frequencies 

associated with an object from those of the scattered field. After filtering, the next step 

is to inverse Fourier transform these data and exponentiate to recover the image of the 

object under test. In addition I also investigate the scattered field sampling requirements 

for the inverse scattering problem. The proposed inversion technique is applied to the 

measured experimental data to recover both shape and relative permittivity of unknown 

objects. The obtained results confirm the effectiveness of this algorithm and show that 

one can identify optimal parameters for the reference wave and an optimal procedure 

that results in good reconstructions of a penetrable, strongly scattering permittivity 

distribution. 
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CHAPTER 1:  INTRODUCTION AND LITERATURE REVIEW  

 

 

1.1 THE INVERSE SCATTERING PROBLEM 

 

 The inverse scattering problem is the attempt to find the physical and 

optical properties of an unknown penetrable scattering object from a limited set of 

scattered field data, available only outside the scatterer.  For penetrable scattering 

objects in a homogeneous background, the solution to the inverse scattering problem 

requires knowledge of the total field within the scattering volume.  A successful 

solution should not only give us the shape of the scattering object but it should also 

provide  a meaningful quantitative description of the scattering object such as its spatial 

distribution of permittivity, conductivity or other internal constitutive parameters.  

The problem of reconstructing the object from measured scattered field data has 

many vital sensing and remote sensing applications e.g. target identification, biomedical 

imaging, remote sensing, geophysical imaging, structure synthesis and non-destructive 

testing. 

One limited formalism of the inverse scattering problem is diffraction 

tomography which attempts to solve the inverse scattering problem by employing weak 

scattering approximations. Diffraction tomography is a Fourier-inversion based imaging 

technique in which a weakly scattering object, represented by its complex permittivity, 

is illuminated with a known incident plane wave in many directions and the far-field (or 

near field) scattering data are measured, ideally,  all around the object. Using these 



 2 

measured far-field data and employing weak scattering approximations, diffraction 

tomography attempts to reconstruct the scattering object‘s permittivity profile. Based on 

diffraction tomography many algorithms have been developed but their usefulness is 

limited as they only work for weak scatterers whereas most of the objects encountered 

in real life are clearly strongly scattering. 

 

Figure.1.1. Typical experimental setup for diffraction tomography. Object is illuminated 

with monochromatic plane wave and the transmitted waves, after the interaction of the 

incident plane wave with the scattering object, are collected with receivers all around 

the object. 

 

Both electromagnetic and acoustic radiation have been used to image scattering objects 

using diffraction tomography. 

Imaging with x-ray wavelengths can be modeled using a geometrical optics or ray-

projection description since it normally involves structural details of the object to be 

much larger than the wavelength being used. X-ray tomography is based on the Fourier 
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slice theorem [1]. It utilizes the fact that x-rays travel in straight lines through the object 

and after interacting with the object, x-rays undergo an attenuation which can be 

represented mathematically by a line integral.  X-ray tomography has been in use for a 

long time but, in medical applications for example, it fails to distinguish between 

various types of soft tissues.  It therefore is mainly used in orthopedics and not for 

detecting small tumors.  Also x-rays are ionizing radiation and there is high energy 

associated with x-ray photons, which can lead to hazardous side effects such as 

increased cancer risk and chromosome breakage. 

Being inexpensive and clinically safe, ultrasonic imaging has gained a lot of 

attention over the years; it has been in use for medical imaging for over 50 years. 

Despite ultrasound having been in use by the medical community for a long time, these 

waves are longitudinal and/or shear waves which makes it quite difficult to retrieve a 

quantitative description of an object especially if that object is strongly scattering. For 

weak inhomogeneities, tomography with acoustic waves still yields reasonable results 

but as object inhomogeneities becomes stronger, the performance of ultrasonic 

diffraction tomography rapidly degrades. Also the fact that ultrasonic waves are not 

very penetrating for the application of medical imaging, there can be significant 

scattering by bones and different types of tissue which makes it very difficult to recover 

quantitative and qualitative description of object with acoustic waves. 

Microwaves are low energy transverse electromagnetic waves i.e. relatively safe 

electromagnetic waves compared to x-rays. With microwave imaging, the quantitative 

description of the object under test could be recovered in terms of refractive index or 

permittivity. The ability of microwaves to recover a quantitative description of an object 
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makes it very attractive in biomedical imaging of tissues, although the resolution might 

be less than hoped for.  

1.2 THEORETICAL CONCERNS 

The inverse scattering problem is well-understood in the one-dimensional 

regime. A detailed discussion on the subject can be found in [3] [4]. Typically the data 

to be inverted are taken as reflection and transmission coefficients and then 1-D 

inversion algorithms are applied to retrieve the 1-D object profile. 

The two dimensional inverse scattering problem has been under investigation for 

many years now [7]-[15]. Much work has been done to address this problem for the 

weak scattering case i.e. when multiple scattering effects are negligible. Most of these 

algorithms are based on linearizing the inverse scattering problem by using Born or 

Rytov approximations [1]; these will be discussed in detail in chapter 3. Although these 

algorithms are computationally very attractive, their applicability is limited in practice 

as most of the objects of practical interest are strong scatterers. Consider the 2-D 

scattering problem as a scalar wave problem initially.  I will also assume that, for some 

simulations, the objects under consideration are cylindrically symmetric with constant 

dielectric properties along a cylindrical axis. For the transverse magnetic (TM) case i.e. 

the electric field vector is parallel to the cylindrical axis, all the vectors will have the 

same direction and the problem is translated to a simple 2D scalar problem. This will 

also ensure that the scattering object has no depolarization effects.  

There are a lot of difficulties associated with solving the inverse scattering 

problem because it is ill-posed in nature. Problems are considered as ill-posed 
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(Hadamard 1923) if i) a solution does not exist, ii) solution is non-unique, or iii) the 

solution is unstable. 

For the inverse scattering problem it is possible that a solution may not exist for 

the given scattered field or even if it exists, it may not depend continuously on the 

scattered field data.  For the first condition I assume that the solution exists for the class 

of target objects under considerations.  The inverse scattering problem is essentially a 

non-unique problem in the sense that its solution has to be chosen from a space of 

possible solutions. It is possible for two different sources to produce the same 

propagating field outside a given scattering surface or two different objects may 

generate similar scattered fields at only a finite number of measurement locations, thus 

making the problem of inverse scattering non-unique. The field outside the localized 

scattering potential may not be sufficient to uniquely determine the field within the 

scattering volume.  

The scattering data produced as a result of an experiment involving a single 

scattering object using a unit amplitude incident plane wave is not adequate to uniquely 

specify the scatterer.  Even with the appropriate use of the Born approximation, it is 

impossible in principle to uniquely identify the scattering structure from measurements 

of the field external to the scattering volume in any finite number of scattering 

experiments using incident plane waves [4]. However if sampling points are chosen 

appropriately such that the scattering pattern is well-represented and we have some a 

priori knowledge about the object or class of objects, then a unique solution can be 

found  in the sense a global minimum can be found in some solution space, often 

shaped by available prior knowledge. 
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The stability of the inverse scattering problem depends upon the system response h, 

which maps input x to output y. 

                               

                             y = hx      (1.1) 

The inverse problem is stable if h
-1

 exists and is stable. If h is continuous and h
-1

 exists 

then h
-1

 is continuous [6]. Even if h
-1

 exists and is continuous, the noise in the 

measurement may lead to instabilities and discontinuities. For the inverse scattering 

problem, the operator h is an integral equation and Eq. 1.1 is a Fredholm integral 

equation of the first kind having a square integrable (Hilbert-Schmidt) kernel which in 

general form could be written as 

( ) ( )y t hx s                                      ( ) ( , ) ( )

b

a

y t u t s x s ds                               (1.2) 

For the inverse scattering problem y(t) is the system output, u(t,s) is the system response 

and x(s) is the object function or scatterer. A small error in the measured data may cause 

a large error in the reconstructed results. If a solution x is perturbed by  

( ) sin(2 ) 1,2,3...., constantx s cs where c  

Then the perturbation in the output y(t) is given by 

( ) ( , )sin(2 ) , 1,2,....

b

a

y t u t s cs ds c

 

Using the Riemann-Lebesgue lemma it follows that 

0y as c  
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/x y  can become very large by choosing integer c large enough, thus showing 

that Eq. 1.2 is ill-posed because it is discontinuous. The stability of the solution can be 

improved by reducing the measurement noise and carefully selecting sample points. The 

measurement locations should be chosen to include as much information about the 

scattering function as possible. Also the non-linear relationship between the scatterer 

and scattered field makes it very hard to find the closed form solution of the inverse 

scattering problem. There are approximations to linearize the problem but these 

approximations are only valid for a limited class of objects. 

In this dissertation I propose a nonlinear filtering technique based on 

homomorphic filtering which can address the strongly scattering case in a completely 

universal way.  This technique is straightforward to implement.  The proposed 

algorithm starts with the diffraction tomography formalism and then preprocesses the 

results of diffraction tomography before applying the nonlinear filtering algorithm to 

recover meaningful images of a strongly scattering target. The proposed method is 

computationally attractive as it requires only two fast Fourier transforms. The 

preprocessing step ensures that the data being filtered fulfills the so-called minimum 

phase condition. With minimum phase scattered field data, the nonlinear filtering 

operation can be executed in a reliable and stable fashion.  The proposed algorithm is 

applied to the real data provided by US Air Force Research Laboratory's (AFRL) [54]-

[57] and Institut Fresnel [58]. These objects fall under the category of strong scatterers 

and linearizing techniques do not provide satisfactory reconstructions. I will show the 

reconstructions of these targets both in terms of shape and permittivity.  The scattered 

field measurements provided by AFRL and Institut Fresnel are at a limited number of 
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data points.  I investigate the significance of this on the quality of the reconstructions 

obtained by the proposed method and others‘ methods.  

Since limited data are always an inevitable limitation of any experiment, I 

anticipated the need to also make use of spectral estimation techniques to assist with the 

reconstruction steps.  I demonstrate that by using spectral estimation techniques such as 

PDFT one can further enhance the quality of reconstruction.  I also compare the 

reconstructions using the proposed method with reconstructions achieved by using 

methods published by other authors.  I estimate the quality of reconstructions using the 

cepstral filtering method alongside the most commonly used alternative reconstruction 

methods in terms of shape recovery, permittivity recovery and computational power.   

One of the principal results of this research was to show that for optimum 

reconstruction of the image of the target, the scattered field sampling rate chosen is 

critical.  It has to be chosen based on the scattering strength of the object being imaged.  

I propose a need for a sampling theorem for inverse scattering problems which takes 

into account the strength of the scattering object and the wavelength of the incident 

wave. The results of numerical experiments show that there exists a linear relationship 

between the permittivity of object and data density.  

As a part of this research I have developed a graphical user interface (GUI), 

cepstral inversion tool, to implement the algorithm. This user-friendly tool loads 

scattered field data and in run time shows the reconstruction while we change 

parameters. 

1.3 OUTLINE OF DISSERTATION 
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The dissertation is organized as follows: Chapter 2 gives an overview on the 

problem description and mathematical background of the inverse scattering problem. 

Chapter 3 discusses the well-known methods for solving inverse scattering problems. 

Chapter 3 also includes a brief discussion on both linearizing techniques and iterative 

methods. Chapter 4 explains in detail the proposed method which is based on 

homomorphic filtering and minimum phase function.  It discusses how scattered field 

data can be preprocessed to enforce the minimum phase condition and apply filtering in 

the cepstral domain. In Chapter 5 the proposed algorithm is applied on real scattered 

data and the reconstructions for each object are shown. Comparisons of reconstructions 

between cepstral inversion method and reconstructions from other methods are also 

shown in this chapter. This chapter also discusses the sampling needs for the inverse 

scattering problem.  Finally, in the conclusions, the research is summarized and future 

prospects are discussed. 

 



 

 

 

 

CHAPTER 2:  MATHEMATICAL FORMULATION OF THE INVERSE 

SCATTERING PROBLEM  

 

2.1 CLASSIFICATION OF INVERSE SCATTERING PROBLEMS 

In a broad sense the inverse scattering problem is classified into two categories: 

a) weak scattering and b) strong scattering. Weak scatterers refer to the class of objects 

in which the ―wave‖ gets scattered only once. The effect of multiple scattering is 

negligible and the incident field undergoes an insignificant perturbation after interacting 

with the scatterer. Many successful algorithms are available to solve weak inverse 

scattering problems. These are based on the first Born or Rytov approximations [1][7]. 

These algorithms linearize the inverse scattering problem and establish a Fourier 

relationship between the measured scattered field data and the scattering function. Even 

though these algorithms are numerically attractive, they lack usefulness in practice since 

generally objects encountered in real life do not fall into the category of weak scatterers. 

Most real targets belong to the class of strong scatterers.  Effects of multiple scattering 

can no longer be ignored and the incident wave goes through considerable perturbations 

after interacting with the scattering function. Multiple scattering effects introduce a 

nonlinear relationship between the scattered field and the scatterer [2], thus making the 

inverse scattering problem very difficult to solve. Many methods have been proposed to 

solve the inverse problem for strong scatterers by making certain underlying 

assumptions about the scattering problem. I will discuss these methods in detail in 

chapter 3. 
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2.2 THEORETICAL BACKGROUND ON THE INVERSE SCATTERING 

PROBLEM 

 An inverse scattering experiment could be set up as shown in Fig.2.1. The 

transmitter and receiver can rotate about the center of 2-D scattering object. The 

incident plane wave illuminates the object at an angle 
inc

 with respect to x-axis and 

scattered field is detected at an angle 
s
in the far-field. 

 

Figure. 2.1. A typical 2D inverse scattering experimental setup. Transmitter Tx 

transmits incident monochromatic plane wave to the scattering object V(r). The 

receivers Rx are located all around the object which collect scattered field data after the 

interaction of incident wave with scattering object. 

 

Consider a penetrable scattering object, V(r) in a homogeneous background of 

permittivity
o
, where 

o
is free space permittivity. The object has permittivity of 

( )r and it is related to the object as  
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V( ) ( ) 1r r .     (2.1) 

V(r) represents permittivity fluctuations relative to free space and with the coordinate 

system shown in Fig.2.1 where r = (x,y). The scattering potential V(r) is zero at all 

points outside the object which has a compact support domain D i.e. V(r) is an entire 

function which is completely determined by its exact values inside the window but it 

could only be reconstructed outside of it by using analytic continuation. The incident 

plane wave i.e. plane wave measured in the absence of object, is governed by the scalar 

homogeneous Helmholtz equation [1]; 

2 2 ( ) 0inck r       (2.2) 

where k is the wave number and it is given as 2 /k . The solution of 
inc

could be 

written in terms of a plane wave 

( ) incik

inc e r r
r  .     (2.3) 

where incr is the unit vector that specifies incident field direction. The total field ( )r  

as a result of interaction of incident field ( )inc r with object V( )r satisfies the 

inhomogeneous Helmholtz equation [1] 

2 2 2( ) V( ) ( )k kr r r .     (2.4) 

The total field in Eq. 2.4 can be expressed as sum of incident field and scattered field 

( ) ( ) ( )inc sr r r        (2.5) 

where  

inc
: Incident field at position defined by r; 

s
: Scattered field at position defined by r; 



 13 

We can express the total field ( )r in terms of an inhomogeneous Fredholm integral 

equation of first kind [8] 

2( , ) ( ) V( ) ( , ) ( , )inc incinc o

D

k G dr r r r r r r r r                            (2.6) 

where ( , )oG r r is the Green‘s function which is the solution of scalar Helmholtz 

equation (Eq. 2.4) and it satisfies differential equation [8] 

2 2 ( , ) ( )ok G r r r r .     (2.7) 

Green‘s function ( , )oG r r is the field amplitude at r generated by given point source 

located at r . Since space is rotationally symmetrical and homogeneous, one can solve 

for ( , )oG r r  in spherical coordinates with origin at r ; 

2 2 ( ) ( ) ( ) ( ) ( )ok G x y zr r .                (2.8) 

For homogeneous, spherically symmetrical PDE the solution is 

( )
ikr ikr

o

Ce Ue
G

r r
r .                 (2.9) 

By radiation boundary condition i.e. sources can not be present at infinity, only 

outgoing wave solution exists and therefore U=0 

   ( )
ikr

o

Ce
G

r
r .                (2.10) 

Substituting ( )oG r from Eq. 2.10 into Eq. 2.8 and integrating over a small volume V  

about its origin 

2 2 ( ( ) ( ) ( ))
ikr

V V

Ce
dV k dV x y z

r
             (2.11) 
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2 2 1
ikr

V

Ce
dV k

r
 

2 2 1
ikr ikr

V V

Ce Ce
dV k dV

r r
.              (2.12) 

As V becomes smaller and smaller the second term in above integral vanishes due to r
2
 

in 2 sindV r drd d  therefore Eq. 2.12 becomes 

2 1
ikr

V

Ce
dV

r
. 

Rearranging the above equation such that  

2 ( ) 1
ikr ikr

V V

Ce Ce
dV dV

r r
. 

Applying the divergence theorem to above equation 

( ) 1
ikr ikr

V S

Ce Ce
dV d

r r
S  

2 sin 1
ikr

S

Ce
d r d d

r r
S  

4 1C    (as r approaches to 0) 

1

4
C .                    (2.13) 

Putting value of C from Eq. 2.13 into Eq. 2.10 

( )
4

ikr

o

e
G

r
r . 

Shifting source point back to r we find the Green‘s function  

 ( , )
4

ik

o

e
G

r r

r r
r r

.                              (2.14) 
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Eq. 2.14 is the Green‘s function for solving inhomogeneous Helmholtz equation. In 2-D 

problems Green‘s function can be expressed in terms of a zero order Hankel function of 

first kind [2][6]. 

                     (1)( , )
4

o

i
G H kr r r r               (2.15) 

Using asymptotic approximation i.e. as r the Hankel function is written as 

         
/ 4(1) 4 1

8

i kr ik

oH e e
i kr

r r .              (2.16) 

where ˆ
r

r
r

. Putting (1)

oH in Eq. 2.15 to find 2-D Green‘s function  

         
/41

( , )
8

i kr ikG e e k
kr

r r
r r r r  .             (2.17) 

from Eq. 2.5, Eq. 2.6 and Eq. 2.17 we can write scattered field as 

               
/4 21

( , ) V( ) ( , )
8

i kr ik
inc incs

D

e k e d
kr

r r
r r r r r r .            (2.21) 

where (cos ,sin )inc inc incr is the unit vector defining direction of incident plane wave 

and (cos ,sin )s sr is the unit vector defining direction of scattered. In order to solve 

for scattering object V(r) we need to know total field ( )r inside the object. The total 

field inside the object is unknown as V(r) is not known,  thus making it very difficult to 

solve the above integral equation which is also classified as Fredholm integral equation 

of first kind. 

 



 

 

 

 

CHAPTER 3: WELL-KNOWN METHODS FOR SOLVING INVERSE 

SCATTERING PROBLEMS 

 

 

3.1 OVERVIEW 

Based on the wavelength being employed in the scattering experiment we can 

classify the inverse scattering problem as: 

i. Object inhomogeneities are much larger than the incident wavelength 

i.e. parameter ka >> 1. 

ii. Object inhomogeneities are of the order of incident wavelength i.e. 

parameter ka ≈ 1. 

In the first scenario, which is the high frequency regime, one can adopt geometrical 

optics or ray optics models. Energy propagation is characterized by refraction and 

multipath effects. X-ray based imaging is one example in which measured data 

corresponds to a line integral; as X-rays suffer little from diffraction effects for objects 

which are non-crystalline. However when we try to use a straight ray assumption for 

acoustic waves or longer wavelength electromagnetic waves, then measured data are 

affected by diffraction and can no longer be represented by line integrals [1]. Algebraic 

reconstruction is the technique that has been proposed to address this problem [1]; an 

initial estimate of the refractive index is used to determine the ray path. This method 

works well for weak scattering targets as it eventually converges to the correct 

refractive index after few iterations. For the case when object inhomogeneities are of 
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the order of the wavelength being used, we need to know the field inside the object. By 

definition this is unknown therefore we need to make some assumptions about the 

nature of the field in order to solve the inverse scattering problem. Linearizing 

techniques have been frequently adopted to invert scattering data. The first Born and 

Rytov approximations are the most widely used techniques [1]. Using the Born (BA) or 

Rytov approximations (RA), the measured scattered field data in the far-field (or near 

field) may be related to the Fourier transform of object. Even though these linearizing 

approximations are simple and computationally very attractive, their usefulness is 

limited in practice. For objects with high permittivity values the effect of multiple 

scattering becomes more significant and BA and RA fail to give good reconstructions. 

Ramm proposed an exact inversion method [16] [17] [18]. It has not been proven that 

an exact inversion method, which is computationally very complex, works on real data 

or not. Iterative reconstruction algorithms have gained a lot of attention to solve the 

inverse scattering problem for strongly scattering objects. These iterative techniques try 

to minimize difference between measured data and simulated data using nonlinear 

optimization methods. The conjugate gradient method is an iterative technique based on 

an optimization procedure solving the direct scattering problem at each step of iteration 

[12] [13]. Wang and Chew proposed iterative algorithms based on the Born iterative 

methods (BIM) [14] and the distorted Born iterative method (DBIM) [15]. It has been 

shown [83] that the DBIM is equivalent to Newton-Kantorovich method [82]. The 

DBIM method converges faster as compared to BIM but BIM has more immunity to 

noise. They also proposed a recursive aggregate T-matrix algorithm (RATMA) [19] to 

enhance the speed of DBIM. These iterative algorithms typically require longer 
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computational times and it has not been proven that they can successfully estimate an 

image of a strong scattering object from limited and noisy data. 

In some of the more recent methods, Estatico and Pastorino used the second 

order Born approximation to develop an iterative method called the two step inexact 

Newton method [20]. In this approach they used the Gauss–Newton method (outer 

steps) for linearization and the truncated Landweber method (inner steps) for 

regularization. Berg et al. proposed contrast source inversion (CSI) algorithm based on 

the source-type integral equation which relates measured data to a source distribution in 

the scattering object [21]. In the CSI method, the contrast sources and the contrast itself 

are iteratively reconstructed by alternately updating the sources and the contrast. CSI is 

similar to the alternating direction implicit (ADI) method proposed by Kohn and 

McKenney [22] in which contrasts and sources are reconstructed iteratively by 

alternately updating the sources and the contrasts. CSI is similar to the modified 

gradient method in the sense that it does not require complete inversion of object 

equations.  However, it is faster than the modified gradient method and uses less 

memory [23]. Berg et al. also proposed an extension to the CSI method known as MR-

CSI [23] [24]. Song and Liu proposed DTA-CSI which is the combination of diagonal 

tensor approximation (DTA) and contrast source inversion (CSI) methods [25] [26] 

[27]. In this method DTA is used as an alternative to the Born approximation and 

reportedly it has shown better results than the Born approximation [27]. In DTA-CSI an 

initial estimate of the image is made using DTA and this estimate is then used in CSI as 

a starting point. Crocoo and Urso have proposed a theoretical model known as the 

Contrast Source Extended Born (CS-EB) [30] [31] method. It uses a contrast source as 
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the fundamental unknown in an integral equation and exploits the nature of the Green‘s 

function in a way to include the extended Born approximation. Recently Belkebir et al. 

proposed various iterative methods namely the modified
2
 gradient method (M

2
GM), the 

modified Born method (MBM), and the modified gradient method (MGM) [28] [29]. In 

the MGM the search direction is the conjugate gradient direction for the field, and the 

expansion coefficients for field and profile are determined simultaneously [29]. In 

MBM the field is considered as a fixed solution to the forward problem and the 

coefficients for field and profile are computed simultaneously [29]. In M
2
GM both field 

directions are used to determine all coefficients simultaneously [29].  

It is evident from the above citations that most of the recent work is based on 

iterative algorithms. Even though some of them have shown promising results, they are 

computationally very expensive and mostly fail to converge to a solution. In the next 

two sections I will be giving brief overview of the most popular linearizing and iterative 

techniques. 

3.2 LINEARIZING INVERSE SCATTERING PROBLEMS 

As discussed above, most of the linearizing algorithms are based on weak 

scattering approximations, BA and RA. These approximations give a Fourier 

relationship between the object function and measured scattered field data. 

3.2.1 FIRST BORN APPROXIMATION 

The first Born approximation serves as the basis for many weak scattering and 

iterative algorithms. It exploits the use of small dielectric perturbations. Recalling from 

chapter 2 that the total field is expressed as 
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( ) ( ) ( )inc sr r r .     (3.1) 

We could write it in terms of an inhomogeneous Fredholm integral equation of first 

kind [8] 

        
/4ˆ ˆ21

ˆ ˆ( , ) V( ) ( , )
8

inc i krik ik

inc inc

D

e e k e d
kr

r r r r
r r r r r r    (3.2) 

where the 2
nd

 term in above equation is the scattered field  

                  
/4 ˆ21

ˆ ˆ( , ) V( ) ( , )
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i kr ik

s inc inc

D

e k e d
kr

r r
r r r r r r                (3.3) 
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ˆ ˆ ˆ( , ) ( , )
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i kr

s inc ince f k k
kr
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where ˆ ˆ( , )incf k kr r is the scattering amplitude which is defined as 

ˆ2ˆ ˆ ˆ( , ) V( ) ( , )ik

inc inc

D

f k k k e dr r
r r r r r r .     (3.5) 

The total field for scattering objects V(r) whose relative dielectric constant is closer to 

unity may be approximated by the incident field in the above integral equation [32]: 

   ( , ) incik
inc e r r

r r .       (3.6) 

For the first Born approximation to be valid or an object to be classified as a weak 

scatterer, a necessary condition is that the product of object‘s permittivity, its 

characteristic dimension and wave number should be less than unity. Mathematically 

we can write it as  

kV(r)a <<1       (3.7) 

where k is the wave number, object and permittivity are related by V( ) ( ) 1r r  and 

‗a‘ specifies the physical size of the object. As the dimensions of the object increase or 

the magnitude of permittivity fluctuations increase, the first Born approximation 
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becomes increasingly poor. The first Born approximation can be improved by 

increasing the wavelength of the incident plane wave but this in turn reduces the 

resolution of the reconstructed image. Using the first Born approximation, one assumes 

that the total field ˆ( , )incr r in the integral can be replaced by the known incident field, 

which linearizes this inversion problem 

ˆ ˆ2ˆ ˆ( , ) V( ) incikBA

inc

D

f k k k e d
r r r

r r r r .     (3.8) 

and the scattered field within first Born approximation is written as 

ˆ ˆ/4 21
ˆ( , ) V( )

8

inciki krBA

s inc

D

e k e d
kr

r r r
r r r r .   (3.9) 

Eq. 3.6 gives the Fourier relation between scattering object V(r) and the scattering 

amplitude ˆ ˆ( , )BA

incf k kr r . Ramm [33] showed an inconsistency associated with the Born 

approximation. The object V(r) is real if and only if its Fourier transform ˆ ˆ( , )BA

incf k kr r is 

Hermitian i.e. ˆ ˆ( , )BA

incf k kr r is equal to the transpose of its complex conjugate.  The 

optical theorem suggests that [7] 

ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) * Im[ ( , )]
2

BA BA BA

inc inc inc

i
f k k f k k f k kr r r r r r              (3.10) 

2

2

ˆ ˆ( , ) 0
4

BA

inc
H

k
d f k kr r                  (3.11) 

where Ω is the solid angle which is integrated over the unit sphere H
2
 in the three 

dimensional space. Eq. 3.11 suggests that in order for the Born approximation to be 

valid, the only real scatterer that can exist should be zero everywhere i.e. it is not 

possible to find a real scattering object for which exact solutions for the scattered field 

satisfy the Born approximation. However for sufficiently small scattering objects with 
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negligible noise levels, one can get a consistent and stable estimate of V(r) by using a 

regularized inversion of Fourier data [7]. A simple and proven approach to do this is to 

modify the basis functions that represent V(r) from complex exponentials to weighted 

complex exponentials, such that the weights incorporate information about the object‘s 

shape or support. A closed form solution to the minimization of the squared error 

between the actual object and its estimate can be written and is known as PDFT [34]. I 

will be discussing the PDFT in later chapters. 

Eq. 3.8 shows that the inverse Fourier transform of the complex far-field 

scattering amplitude gives us the scattering object. Inversion of scattered field data can 

be accomplished through two algorithms, namely Fourier based interpolation and 

filtered back propagation [1]. I will give a brief introduction to these two algorithms in 

forthcoming sections. When the Born approximation is not valid i.e. the scattering 

object has strong permittivity fluctuations, the Fourier inversions results in recovering 

VBA(r) instead of V(r) 

ˆ( , )
ˆ( , ) V( )

ˆ( , )

inc
BA inc

inc inc

V
r r

r r r
r r

.              (3.12) 

The symbol ≈ indicates that the reconstruction is an approximation since the Fourier 

transformation can only be taken for 
încr = constant and limited data coverage will limit 

the accuracy. Also the symbol indicates an averaged dependence of the total field on 

the direction of incident plane wave. Given data from many illumination directions, a 

set of these Born reconstructed images can be generated, one for each illumination 

direction 
încr and in which V(r) is common to each one of them but total field is 

different. 
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3.2.2 RYTOV APPROXIMATION (RA) 

The Rytov approximation gives an alternative approach to linearizing the 

inverse scattering problem. The Rytov approximation represents the total field in terms 

of a complex phase [35] [1] 

          ˆ( , ) ( ) si

inc inc e
r

r r r .               (3.13) 

where Φ(r)= Φinc(r) + Φs(r) is the complex phase function and Φs(r) is the phase 

function of scattered field. Substituting the total field from Eq. 3.13 into the 

inhomogeneous Helmholtz equation Eq. 2.4 and using identity 

2 2 2( ) ( ) 2 ( ) ( )inc s inc s inc s s incr r r r r r r r  (3.14) 

the inhomogeneous Helmholtz equation becomes [7] 

22 2 2( ) ( ) ( )inc s s inck i k Vr r r r r .             (3.15) 

Using the free-space Green‘s function, the complex phase function can be written as  

2
2

V( ) ( ) ( , ) ( ) ( , )
( ) ( )

s inc o s inc o

inc incD D

ik i
G d G dr r r r r r r r r r r

r r
. (3.16) 

The second term in Eq. 3.16 can be ignored if the following inequality hold true [7] 

              
22 ( ) sk V r r                (3.17) 

2

( ) 1
2

s r
r                (3.18) 

The above inequality essentially requires that the incident wavelength be very small 

compared to the mean size of scattering inhomogeneities or the phase change induced 

by the scattering object per unit wavelength to be very small. The scattered field‘s 

phase, Φs(r), to a first approximation is linearly dependent on the permittivity of 
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scattering object. Eq. 3.18 is the local inequality which breaks down for V(r) = 0. A 

global condition for the Rytov approximation to be valid is written as 

22 V( ) ( ) ( , ) ( ) ( , )inc o s inc o

D D

k G d G dr r r r r r r r r r .            (3.19) 

When the RA is valid then the complex scattered phase is 

  
2

V( ) ( ) ( , )
( )

s inc o

inc D

ik
G dr r r r r r

r
.              (3.20) 

Substituting the value of scattered field‘s complex phase into Eq. 3.13 to compute total 

field 

2

V( ) ( ) ( , )
( )

ˆ( , ) ( )
inc o

inc D

ik
i G d

inc inc e
r r r r r

r

r r r .              (3.21) 

Dividing the total field by incident field and taking its logarithm 

    
ˆ2ˆ( , )

ˆ( , ) ln V( ) ( , )
ˆ( , )

incikinc
inc inc o

inc inc D

k e G d
r rr r

r r r r r r
r r

.            (3.22) 

The above equation is very similar to Eq. 3.9 in the sense that with simple Fourier-

inversion, we should be able to recover V(r).  However the presence of the natural 

logarithm, which is a multi-valued function, makes it very difficult to solve for V(r) 

unless the right hand side of Eq. 3.22 is a continuous function.  Ensuring this requires 

that the phase of the total field to be unwrapped prior to taking the logarithm. Phase 

unwrapping is very difficult in 2-D or higher dimensional problems because zeros in the 

field are associated with wave-front dislocations [53]. Phase unwrapping around these 

dislocations is not possible unless each dislocation is locally paired with one of opposite 

charge. Dislocations will permeate the function and these abrupt high spatial frequency 
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features will totally corrupt its Fourier transform. However, similar to the case of the 

first BA, when the RA is not valid, instead of recovering V(r) we recover VRA(r) where  

   
2

2

1
ˆ( , ) V( )RA inc sV

k
r r r r .              (3.23) 

3.2.3 DISCUSSION ON BA AND RA 

The BA and RA are applicable to a very small class of objects due to the fact 

that they either require object inhomogeneities to vary slowly on the scale of 

wavelength or the total phase shift introduced by the scatterer is less than 2π. In the case 

of the BA, both V(r) and VBA(r) have zeros at same locations therefore, in principle; we 

get good recovery of the boundaries of objects.  The same is not true for the RA 

therefore the RA does not recover voids and the shape of the object as accurately as BA. 

Slaney and Kak [1] [36] have shown that for small sized objects, the BA gives a better 

estimate of a scatterer as compared to the RA, as long as the phase shift induced in the 

incident field is less than π. For large objects with small permittivity fluctuations, the 

RA generates a more accurate estimate of scattering object. The RA is insensitive to the 

dimensions of the object. It has also been shown that for small objects and small 

permittivity variations, the BA and RA produce the same results [1] [36]. 

When using these two approximations, the distortion in the reconstruction for 

complicated objects can be significant due to some multiple scattering even for broadly 

weakly scattering objects.  Kaveh and Soumekh [37] made the direct comparison 

between distortion effects of RA and BA.  Sharp discontinuities in the object lead to 

large contributions from the second term in Eq. 3.16 and thus make the RA less valid. It 
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has been shown that the RA can be improved if scattering is largely in the forward 

direction [38]. 

3.3 INVERSION ALGORITHMS 

There are two commonly used algorithms for the Fourier inversion of scattered 

field data: a) Fourier based interpolation, b) Filtered back propagation. Detailed 

discussion on these two methods can be found in [1]. In Fourier based interpolation, the 

scattered field data are placed onto semicircular arcs in the Fourier domain. These arcs 

are loci of points on the so-called Ewald circle [32] which is tangent to the origin of k-

space and has radius of k. The scattered field transmission data lie on the part of arc 

tangent to the origin and reflection data lie farthest away from the origin Fig.3.1. 

 

Figure. 3.1. k-map showing that the forward transmission data lies close to the 

origin and back scattered data lies away from the origin. 

 

Scattered field data collected from one illumination angle 
încr maps entirely onto an 

Ewald circle in that direction only. Therefore, if an object is illuminated from many 
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different directions, in principle, the corresponding data fills up the entire k-space, from 

which the scattering object can be reconstructed by a simple inverse Fourier transform 

Fig.3.2.  

 

Figure. 3.2. Fourier space (k-space) of the object as a result of interaction of incident 

plane wave with scattering object. The direction of the incident field 
încr and the 

direction 
ŝctr of a particular plane wave component of the scattered field define a point at 

the Ewald circle. Changing incident field directions 
încr fills the interior of Ewald 

limiting circle. 
 

 

With careful selection of the illumination direction and wavelength, it is possible to 

estimate the Fourier transform of the object at any given frequency. Changing the 

wavelength of the incident plane wave changes the radius of Ewald circle as illustrated 

in Fig.3.3 

 



 28 

 
Figure. 3.3 Radius of Ewald circle increases by increasing the frequency of the 

incident plane wave. 

 

 

In the filtered backpropagation method, the scattered field data are propagated 

backwards into the object domain using an appropriate Green‘s function [2] [7]. 

3.4 ITERATIVE INVERSE SCATTERING METHODS 

Iterative techniques to solve the inverse scattering problem have gained 

tremendous attention in the past 20 years [12]-[15], [21], [27]-[31]. Several iterative 

methods have been proposed but only a few of them have achieved some level of 

success. I will briefly discuss the Born iterative method, distorted Born iterative 

method, and conjugate gradient method, which serve as the basis for many other 

iterative methods. 

3.4.1 BORN ITERATIVE METHOD (BIM) 

Wang and Chew proposed the Born iterative method [14]. The first Born 

approximation fails for strong scattering objects because of strong diffraction effects, 
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therefore the inherent nonlinearity of the integral equation (Eq. 3.2) has to be taken into 

account. The starting point of BIM is to first acquire an initial estimate, 1 ( )BAV r , of the 

object by using the first Born approximation.  The estimated 1 ( )BAV r is then used to 

compute the field inside the scattering volume and at the receiver points. The BIM uses 

a point matching method with the pulse basis function to solve the forward scattering 

problem [14]. The estimated field computed in the above step is substituted into Eq. 2.6  

         2( , ) ( ) V( ) ( , ) ( , )inc incinc o

D

k G dr r r r r r r r r .             (3.24) 

to calculate next order scattering function 2 ( )BAV r . The second order scattering object 

2 ( )BAV r is used to solve the scattering problem for the field inside the object and at the 

observation points. This simulated field ˆ( , )sim

s incr r is then compared with the measured 

scattered field data ˆ( , )measured

s incr r  

ˆ ˆ( , ) ( , )sim measured

s inc s incD r r r r . 

and if the difference between them is less than 5% then iteration can be terminated, 

otherwise one continues with the iterations. The BIM also uses a regularization method 

to address the non-uniqueness and instability of the inverse scattering problem. The 

regularization method imposes an additional constraint on the linear system and allows 

us to choose a solution from many available solutions. The Green‘s function remains 

unchanged during the entire iterative process. More details of the method can be found 

at [14]. 
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3.4.2 DISTORTED BORN ITERATIVE METHOD (DBIM) 

 The Distorted Born iterative method was proposed by Wang and Chew [15] as 

an improvement over BIM [14]. Similar to BIM it starts by solving for the first order 

scattering object 1 ( )BAV r by using the first Born approximation and the homogeneous 

Green‘s function with relative permittivity of unity is used.   The next step is to use this 

object function 1 ( )BAV r to solve the forward scattering problem using the method of 

moments [39] and to calculate the field inside the object and at the receiver points. 

Using 1 ( )BAV r , the point source response in the object for every observation point is 

computed. In BIM the Green‘s function was kept constant throughout the iterative 

process, whereas in DBIM the Green‘s function 1( , )oG r r  is calculated with the last 

reconstructed permittivity profile as the background permittivity. The estimated Green‘s 

function and field are substituted in the integral equation 

2( , ) V( ) ( , ) ( , )inc incs o

D

k G dr r r r r r r r .             (3.25) 

The calculated scattered field is then subtracted from the field at receivers and the 

inverse scattering problem is solved for the correction of last reconstructed profile. 

Feedback from the previous profile is used to generate a new profile.  The forward 

scattering problem is solved again using this new profile and the computed scattered 

field is compared with the measured scattered field. If the relative residual error (RRE) 

is less than the criterion defined then the process terminates; else it continues. Wang 

and Chew defined RRE as [14] 
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where j is the iteration cycle. The convergence rate of the distorted Born iterative 

method is faster than the Born iterative method. However the Born iterative method is 

more tolerant to noise than the distorted Born iterative method. Depending upon the 

nature of the problem we can either use BIM or DBIM. 

3.4.2 CONJUGATE GRADIENT METHOD (CGM) 

The conjugate gradient method [13] [41] is an iterative technique for solving the 

inverse scattering problem using an optimization procedure. In the conjugate gradient 

method a functional is defined as a norm of discrepancy between simulated scattered 

field amplitude and measured scattered field amplitude.  Harada et al. defined this 

functional as [13] 

    

2

est est

1 1

V ( ) (V ( ); ; ) ( ; )
M N

m n m n

inc s inc s

m n

X f fr r                (3.27) 

where f is the simulated scattered field amplitude which is calculated using an 

estimated object function estV r , f is the measured scattered field amplitude 

and VX r is the norm of difference between measured and simulated scattered field 

amplitude. The goal of the optimization method, which in this case is the conjugate 

gradient, is to find the ideal object function estV r which minimizes the 

functional VX r . The gradient direction of the functional is found by using the 
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Fréchet derivative [13] [41] [42]. Similar to the Born iterative method, the forward 

scattering problem is solved using moment methods [39] with pulse basis functions and 

point matching, which transforms integral equations into matrix equations. The 

conjugate gradient method shows good immunity to noise levels and its convergence 

rate can be increased by using a priori information about the outer boundary of the 

object. 

 



 

 

 

 

CHAPTER 4: SIGNAL PROCESSING BASED SOLUTION FOR INVERSE 

SCATTERING PROBLEMS 

 

 

I propose here a simple signal processing based technique to solve the inverse 

scattering problem for objects with strong permittivity profiles. The starting point of 

this method is diffraction tomography for which inversion techniques are formulated as 

straightforward Fourier inversion procedures [7]. Complex scattered field data are 

collected at a number of scattering angles in the far field for each angle of illumination 

as shown in Fig.1.1. The scattered field data under these conditions, based on the first-

order Born approximation are mapped onto the Ewald sphere in k-space [32] and with 

sufficient k-space coverage that can be inverse Fourier transformed to provide 

information about the scattering object, see Fig.3.2 and Fig.3.3.  Physically this requires 

that the scattering from the object is extremely weak in order for the total field, 

everywhere within the object, to be well approximated by the incident field. The 

backpropagated image from the single scattering experiment can also be expressed as a 

convolution of scattering volume and point spread function of the imaging system [43]  

1
ˆ ˆ( , ) V( ) ( , )view inc incV r r r r r     (4.1) 

where ** is the convolution in 2-D and ˆ( , )incr r is the point spread function which for 

complete scattering experiment is the Fourier transform of Ewald circle.  When the first 

Born approximation is not valid Eq. 4.1 becomes 

            
1

ˆ ˆ( , ) ( ) ( , )view inc BA incV Vr r r r r .               (4.2) 
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where ˆ( , )BA incV r r is the secondary source or contrast source function written as 

  
ˆ( , )

ˆ( , ) V( )
ˆ( , )

inc
BA inc

inc inc

V
r r

r r r
r r

.     (4.3) 

In Eq. 4.3, V and  are unknowns and 
inc

is the known quantity, which is the field in 

the absence of scattering object. The quality of the backpropagated image 

1
ˆ( , )view incV r r depends upon the uniformity of the field inside the scatterer V( )r . As the 

scattering strength increases and the object moves away from the first Born 

approximation, the multiple scattering components cause the field inside the object to 

become more complex and non-uniform. When the Born approximation is valid, 

then
ˆˆ( , ) incik

inc e
r r

r r and ( ) V( )BAV r r , at least within low-pass spatial filtering effects 

resulting from the available k-space coverage.  

The product in Eq. 4.3 is that of the total field, which obviously exhibits spatial 

fluctuations characteristic of the wavelengths being employed and the spatial 

distribution of the permittivity. For incremental wavelength changes, the field 

ˆ( , )incr r will change quite considerably but the permittivity need not in a low 

dispersion scattering distribution, V. In our approach we exploit the fact that the 

product, ˆV( ) ( , )incr r r , retrieved following backpropagation can be separated using 

cepstral or homomorphic filtering assuming that the effect of point spread function can 

be ignored. 
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4.1 HOMOMORPHIC FILTERING 

Changing the direction of illumination changes the secondary source function 

ˆ( , )BA incV r r , and a set of these single-view backpropagated reconstructions can be 

generated.  We restate Eq. 4.3 

ˆ( , )
ˆ( , ) V( )

ˆ( , )

inc
BA inc

inc inc

V
r r

r r r
r r

     (4.4) 

where ˆ ˆ( , ) / ( , )inc inc incr r r r is a complex and noise-like term with a characteristic 

range of spatial frequencies dominated by the bandwidth of the source. The problem is 

now reduced to a complex filtering problem in which we want to get rid of the 

unwanted multiplicative noise term ˆ ˆ( , ) / ( , )inc inc incr r r r . Homomorphic filtering 

converts a multiplicative modulation into additive one by taking the logarithm of the 

product. Taking the complex logarithm of Eq. 4.4 gives 

ˆ ˆlog V( ) ( , ) / ( , )inc inc incr r r r r  

ˆ ˆ ˆ ˆlog V( ) log ( , ) / ( , ) arg V( ) arg ( , ) / ( , )inc inc inc inc inc incir r r r r r r r r r .(4.5) 

The imaginary part of the logarithm represents the phase of the product which carries 

important information about the scattering object. Taking the Fourier transform of 

ˆ ˆlog V( ) ( , ) / ( , )inc inc incr r r r r gives the so-called ―complex cepstrum‖ of the 

function [44] [45]. The complex cepstrum retains the phase information of complex 

data, which is useful for the meaningful filtering operation. Cepstral processing reduces 

the problem of convolution of two signals in the time domain to addition in the cepstral 

domain. Spatial filtering in the cepstral domain can separate information about V(r) 

from the product V and is known as homomorphic filtering. In the 2-D frequency 
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domain we can write the object and field as 1 2,V  and 1 2,Ψ . The complex 

cepstrum can be written as 

          1 2 1 2 1 2
ˆ , log , ,g x x ifft V Ψ      (4.6) 

                      1 1 2 22

1 2 1 2 1 2

1
log , ,

2

i x x
e d dV Ψ .   (4.7) 

Where ifft is the inverse fast Fourier transform. The complex cepstrum 1 2
ˆ ,g x x can be 

filtered to remove the unwanted noise term provided the field and object occupy distinct 

spatial frequencies in the cepstral domain. There are numerous numerical problems 

associated with performing log(V ) and taking its Fourier transform. Aliasing of the 

cepstrum is a problem because of unwanted harmonics introduced by the complex 

logarithm in the cepstral domain [44]. The zero-padding of the input data sequence 

certainly helps in reducing the effect of aliasing; it also increases the sampling rate of 

the discrete Fourier transform. Care should be taken to ensure that the magnitude of 

V  does not go to zero else its logarithm becomes singular. Another problem in 

computing a complex cepstrum is due to the fact that the complex logarithm is multi-

valued because of the uncertainty of 2π in its imaginary part. When the phase of V has 

a range that exceeds 2π, the resulting wrapped phase introduces spurious spatial 

frequencies in the cepstrum. Phase unwrapping is exceedingly difficult, especially in 

two- and higher dimensional problems because of the zeros of a field leading to wave- 

front dislocations [48]. Modifications to homomorphic filtering, such as differential 

cepstral filtering have been developed [45], but here its effectiveness is shown when the 

data being processed satisfies the minimum phase condition. 
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4.2 MINIMUM PHASE BASED CEPSTRAL FILTERING  

The concept of minimum phase is well understood in one-dimensional problems 

[47]. A one-dimensional signal f (x) is minimum phase if and only if its Fourier 

transform, F(z) has zero-free upper half plane, i.e. it has no zeros for v > 0 where z = u 

+ iv. 

2( ) ( ) i uxF u f x e dx       (4.8) 

Some useful properties of minimum phase functions are [47] 

i. f (x) is causal. 

ii. The phase of F(u) lies between –π and +π; i.e. their phase is always unwrapped 

(non-discontinuous). 

iii. Most of the energy in f(x) lies close to origin. 

iv. F(u) is absolutely summable. 

The minimum phase function has a ―minimum energy delay‖ property. As a result a 

minimum phase function possesses the highest partial energy among all the functions 

that have the same Fourier magnitude [52]. The function f(x) is minimum phase if its 

Fourier transform, F(u) is analytic and has a zero free half plane.  

At this point it is important to discuss the concept of complex cepstrum. The 

complex cepstrum for a function f is calculated by finding the complex natural 

logarithm of the Fourier transform F of f, then the inverse Fourier transform (IFT) of the 

resulting function is 

ˆ log ( )g ifft F where F fft f  

or we can also write it as 
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ˆ( ) log ( )

2

i uxg x F u e du      (4.9) 

where ĝ is the cepstrum of the input signal f.   In a one dimensional problem, the 

minimum phase condition is associated with the need to ensure that the Fourier 

transform of a causal function has a zero free upper half plane. This permits Cauchy‘s 

integral formula to be written to relate the Fourier magnitude and phase on the real u-

axis, so-called logarithmic Hilbert transform pairs. 

The meaning of a zero-free half plane in two dimensions is problematic since 

functions are typically ‗irreducible‘ or non-factorizable i.e. their zeros are in the form of 

a single analytic curve. Creating a minimum phase function therefore requires 

preprocessing to remove all zeros from the upper half plane. Even for separable 

functions, where F(u1,u2)=G(u1)H(u2), a zero-free upper-half plane in G(z1) 

automatically leads to F(z1, z2) having zeros in the upper-half plane of z2. For function 

f(x) of compact support, F(u) is a bandlimited function or equivalently, an entire 

function of exponential type and such functions having only real zeros. Functions 

having a zero-free half plane are rare in practice and few general conditions seem to be 

known for which these characteristics can be imposed. 

Any Fourier-based theory of scattering or imaging involves fields that are 

analytic functions because scatterers or objects are of finite spatial extent.  More 

precisely these fields are entire functions of exponential type [49] i.e. they satisfy 

Cauchy-Riemann equations for all finite z 

Re ImF F

x y
                (4.10) 
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Re ImF F

y x
.               (4.11) 

This leads to strong constraints on how their amplitude grows and fluctuates and how 

their zero crossings are distributed.  The properties of analytic functions of one complex 

variable are well known as compared to two or more variables.  In 1-D, a bandlimited 

function behaves much like a polynomial and it can be represented by the location of its 

roots or zeros. For weak scattering objects each zero encodes a harmonic with phase 

and amplitude independent of the location of other zeros. The Hadamard product 

represents the function in terms of the locations of its zeros which are isolated points. 

Asymptotically, these zeros must be distributed uniformly, in a manner determined by 

the behavior of the function‘s Fourier transform near the edges of its support. Since the 

Fourier transform of a function of compact support is analytic or more precisely an 

entire function of exponential type, there are rigid constraints on how the real and 

imaginary parts and hence the magnitude and phase of such functions can behave. 

4.3 GENERATING THE MINIMUM PHASE FUNCTION  

Dudgeon and Mersereau [47] state that a two-dimensional minimum phase 

function is one that is absolutely summable and one whose inverse and complex 

cepstrum are absolutely summable and have the same region of support. This region of 

support also has to be a convex region of some kind. It has not been possible to find 

general properties for classes of functions for which these conditions can be satisfied 

and this condition appears to be sufficient but not necessary. Some specific examples 

exist of well-conditioned cepstra, as a result of the incorporation of a background or 

reference wave on the function whose logarithm is to be Fourier transformed. Taking 
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the logarithm of a bandlimited function produces a bandlimited function and hence a 

cepstrum of finite support only for minimum phase functions. 

At this point, a brief digression on dispersion relations may be helpful. It is well 

known that the real and imaginary parts of the Fourier transform of a causal function 

f(x) are related to each other by a Hilbert transform. This follows directly from 

Titchmarsh's theorem [51] and is a consequence of the finite support or causal nature of 

the Fourier transform. The Hilbert transform, HT, is an integral transform that is a 

principal value integral which is implicitly solved as a contour integral. The contour is 

the real axis and a semicircle in either the upper or lower half of the complex plane 

which, if Jordan's lemma is satisfied, can be ignored. The HT relationship then takes the 

form 

Re1
Im

F u
F u P du

u u
              (4.10) 

Im1
Re

f u
F u P du

u u
              (4.11) 

where P is the Cauchy principal value. Closure of the contour without contributions to 

the value of the integral from residues is necessary and so the real and imaginary parts 

of log[F(u)] can be similarly related, provided F has no zeros within the contour of 

integration. This statement also defines the minimum phase condition. Function F can 

be written in terms of magnitude and phase as 

iF F e                (4.12) 

Taking the complex logarithm of Eq. 4.12 yields 

log logF F i                (4.13) 
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where log|F| is the real part and is the imaginary part. One can compute the phase of F 

Re log1
Im log

F u
F u P du

u u
.              (4.14) 

The above integral only works if F has no zeros in the upper half plane. If F is 

not a minimum phase function, then the result of the above integral will be to produce a 

phase which, when applied to |F| generates a minimum phase function. An important 

feature of a minimum phase function is that the phase is a continuous function bounded 

between −π and π and ‗minimum‘ in this sense can be interpreted to mean that the phase 

is already unwrapped. Using this property of minimum phase functions we can execute 

the step defined in Eq. 4.5 in a satisfactory fashion. 

In the one dimensional problem, it is possible to enforce the minimum phase 

condition on a function by applying Rouche‘s theorem [49]. A 2-D version of Rouche‘s 

theorem has been validated in [46]. Suppose h =F(z) is analytic in a domain D where           

F =(F1, F2, . . . , FN) and the boundary of D is smooth and contains no zeros of F, then 

if for each point z on the boundary, there is at least one index j (j = 1, 2, . . . , N) such 

that | Fj(z)| > |Gj(z)| then G(z) + F(z) have the same number of zeros in D as the 

number of zeros in F(z) (it actually suffices that Re{ Gj (z)} < Re{ Fj(z)}). In other 

words; if a function 

A has N number of zeros 

B has M number of zeros 

and 

|A| > |B| on same contour 

then 



 42 

A + B will have N number of zeros in that contour contrary for |A| < |B| , A+B will have 

M number of zeros. See Fig. 4.1. The sum of the two functions will have the number of 

zeros equal to the number of zeros of the larger magnitude function. Consequently, 

adding a sufficiently large background or reference wave to a bandlimited function, A, 

where we assume |A|<<1, allows us to write G = 1 + A ~ exp(A) thereby satisfying this 

minimum phase condition. 

 

Figure. 4.1. Shows the pictorial description of Rouche‘s theorem. 

Therefore, if, to our bandlimited function F(z), we add another function G(z) which we 

refer to as a reference function and G(z) has no zeros in upper half plane, then the 

function F(z)+G(z) will have no zeros in upper half plane, thus satisfying Rouche‘s 

theorem and the minimum phase condition. The addition of a reference function to an 

analytic function only moves the zeros from upper half plane to lower half plane 

without destroying them [49]. If a reference function is chosen as a constant then we 

can always find a contour in the upper half plane along which the magnitude of the 

added function is greater than the magnitude of F(z). Increasing the constant moves the 

contour across the real axis and thus pushing zeros to the lower half plane [49]. It 

therefore follows that one can preprocess  by adding a finite constant or reference point 

to make it minimum phase before taking its logarithm. 
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4.4 PREPROCESSING DATA  

The preprocessing step requires the data available in k-space to be made 

causal,
c

V . This can be done by moving available scattered field data into one 

quadrant of k-space i.e. data is nonzero only in one quadrant as shown in Fig. 4.2. 

 

                    (a) 

 

             (b) 
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              (c) 

Figure. 4.2 Scattering cylinder – k-space data: (a) Cylinder with 2λ diameter, (b) 

unprocessed ˆV( ) ( , )incr r r in k-space, (c) Data is made causal by moving it into one 

quadrant. 

 

The next step is to add a reference point at the origin of the causal data
c

V in 

k-space. This corresponds to adding a linear phase factor to VΨ in the object domain. In 

order to satisfy the minimum phase condition the reference point R does not need to 

have an arbitrarily large amplitude (a sufficient condition), but simply be just large 

enough to ensure that phase of VΨ is continuous and lies within the bounds of −π and 

+π. A very large reference point with amplitude R such that V / 1R  leads to the 

Fourier transform of log( V ) log(1 V / )R R  being approximately equal 

to V / R indicating that we have satisfied the minimum phase condition but we have 
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not provided a function of V that will result in successful filtering in the cepstral 

domain. In this case, the cepstrum of V contains the same information that we 

originally had in k-space. This corresponds to R = 0 and the unwanted harmonics in the 

cepstrum makes filtering impossible. The optimal choice of R is an amplitude which is 

just large enough to ensure that the phase of V is unwrapped and lies between −π 

and +π. It has been shown [48] [53] that in order to enforce a minimum phase condition 

the reference should satisfy  

max
VR                (4.15) 

i.e. the reference point needs to be larger than the maximum value of the scattered field 

amplitude to satisfy Rouche‘s theorem. I found the inequality given in Eq. 4.15 to be a 

sufficient condition to enforce minimum phase condition. In the forward scattering 

problem, this is intuitively satisfying since it is equivalent to requiring that the 

scattering is relatively weak compared to a larger amplitude background or incident 

plane wave, as demanded by the first Born approximation. The analogy with 

holography is also immediate since interference with a reference wave, especially when 

off-axis with respect to the scattered field, ensures the phase of the scattered field is 

encoded in the magnitude via a logarithmic Hilbert transform. An important point 

however is that if one can compute a good estimate for V from measured data, then 

one could numerically add in this reference wave prior to homomorphic filtering. It 

becomes a post-data processing step and not an experimental requirement. 

In order to choose an appropriate reference point the starting point is to make the 

amplitude of the reference point the same as the maximum amplitude of V and then 
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systematically increase its amplitude until the phase of Born reconstructed V lies 

between −π and +π. Fig4.3 shows the result of this procedure applied to a cylinder of 

radius 1λ.  

 

              (a) 

    

                             (b)                                                                    (c) 

 

Figure 4.3 Scattering cylinder: (a) Cylinder with 2λ diameter and relative permittivity of 

2.3, (b) Born reconstruction, (c) Minimum phase after adding a suitable reference point 

 

This value for R permits us to write 

2

V V V1
log( V ) log(1 ) ...

2
R

R R R
            (4.16) 

or one could also write 

V V V
log(1 ) log log log

V V

R R

R R R
           (4.17) 
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V

log log R
R

 

           
V

log
R R

               (4.18) 

The second term in Eq. 4.18 contains spatial frequencies which are similar to the spatial 

frequencies of field. One can vary the frequency of the incident plane wave to 

determine the spatial frequency characteristics of the second term in Eq. 4.18 whereas 

log (V/R) should stay the same. The implementation of the cepstral filtering requires 

that a low pass filter be applied until the wavelike structure associated with is 

removed. The success of the filtering operation depends upon how distinct the spatial 

frequencies of / R are from spatial frequencies of log V/R . A linear combination 

of estimates for V acquired in this way will further improve the signal to noise ratio 

(SNR) of the reconstructed V while suppressing any residual components from the 

Fourier transform in each of these images. 

4.5 TWO DIMENSIONAL FILTERING 

The choice of filter depends upon the spatial frequency characteristics of 

log(V/R) and / R . A simple low pass filter, Fig. 4.4, should work for a large class 

of objects as / R , which is influenced by the frequency of illumination wave, 

possess high spatial frequencies and simple scattering objects, V, usually occupy low 

the frequency regime. 
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            (a)                                                   (b)                                                 (c) 

 

Figure. 4.4 Low pass filter (a) ideal hard-cut low pass filter 2D view, (b) low pass filter 

displayed in 3D, (c) cross section of ideal low pass filter 

 

 

I have found that a Gaussian cepstral filter, Fig.4.5, being apodized, is preferable to a 

circular or square hard-cut filter. 

 

             (a)                                             (b)                                                 (c) 

 

Figure. 4.5 Gaussian low pass filter (a) Gaussian low pass filter 2D view, (b) Gaussian 

low pass filter displayed in 3D, (c) Cross section of Gaussian low pass filter 

 

 

Using an ideal hard-cut filter can result in unwanted ringing in the reconstruction. 

Smoothing the filter also helps in improving SNR by cutting off the high frequency 

gently. Fig.4.6 shows the effect of a hard-cut filter versus a smoothed filter like 

Gaussian. 
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(a) (b) 

Figure. 4.6 Hard-cut filter vs. smoothed filter – effect of ringing (a) Ideal 2D circular 

hard-cut filter and its frequency spectrum, (b) 2D Gaussian low pass filter and its 

frequency spectrum 
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CHAPTER 5: EXPERIMENTAL RESULTS AND DISCUSSION 

 

 

In this section the proposed method is applied to real data provided by various 

groups. The US Air Force Research Laboratory's (AFRL) initiated the idea that it would 

be healthy for the inverse scattering community to test their algorithms on measured 

data from unknown targets.  They conducted a number of scattering experiments and 

provided scattered field data, known as Ipswich data, in the mid-1990s [54]-[57] and 

which has still kept the community busy since then. More recent data sets have been the 

focus of special issues of journals such as Inverse Problems using data provide by the 

Institut Fresnel [58]. Also I have applied the proposed method on analytic data to study 

the effect of sampling on the inverse scattering problem. 

5.1 IPSWICH DATA 

The AFRL collected Ipswich data in an anechoic chamber, using the swept-

bistatic system described in [59]. Fig.5.1 (taken from [54]) shows the layout of the 

measurement system, and defines the angles used to describe the data. 

5.1.1 IPS008 

I performed the minimum phase procedure on Ipswich data sets IPS008 and 

IPS0010, the strong scatterers. The IPS008 consisted of two cylinders, the outer 

cylinder is filled with sand and the inner cylinder is filled with salt. The cylinder was 
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placed far enough from the source to ensure that the illuminating wave was well 

approximated by a plane wave. 

 

Figure. 5.1. Ipswich scattering experiment where α is angle of incidence, sis 

scattering angle and i gives illuminating direction. 

 

 

The measured and limited data consisted of 36 illumination directions, at equal angular 

separations of 10 degrees and 180 complex scattered field measurements for each view 

angle using a frequency of 10GHz. These data were located on arcs in k-space and 

moved into one quadrant to impose causality. The IPS008 object represents a strongly 

scattering penetrable object and has proved the most difficult to recover from its 

scattered field data [54]. The geometry of IPS008 is shown in Fig. 5.2 and alongside it, 

the best image one could expect from the available scattered field measurements, 

assuming only an inverse Fourier transform is necessary over the loci of data circles in 

k-space. 
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            (a) 

 

      
(b)    (c) 

 

 

 
                                                                 (d) 

Figure. 5.2. IPS008 target configuration: (a) Target object IPS008 geometry, (b) Born 

reconstruction, (c) Cepstral reconstruction, (d) Geometrical comparison between 

reconstructed object and original object. 
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Fig.5.2 shows a reconstruction from the nonlinear filtering method. The reference point, 

R, introduced at the origin in k-space was increased until the phase of ˆV( ) ( , )r r r lies 

between ± π. A Gaussian low pass filter was then applied until all wave-like features 

had been eliminated from the resulting reconstruction of the object, V. The Ipswich008 

target is a strong scattering object as k|V|a ≈ 87 where k, wave number, is calculated as 

k=2π/λ = 2π/0.03 = 209.5, V is the scattering strength or average permittivity and ‗a‘ is 

the dimension of the largest feature of object.  IPS008 has proved to be a challenging 

object to image for all of the inverse scattering community as most of the algorithms 

applied were based on the first Born approximation and clearly the image obtained 

using the Born approximation shows poor reconstruction, Fig.5.2(b). When an incident 

plane wave impinges on IPS008 it gets diffracted at the boundary of the larger cylinder. 

As a result the wave which is incident on the smaller cylinder can be interpreted as a 

convergent wavefront. This constitutes a serious violation of the first order Born 

approximation, which assumes the incident field to pass the target essentially 

unperturbed, as a result of which we see artifacts in the reconstruction as shown in 

Fig.5.2(b). Fig.5.2(c) shows the reconstruction obtained using the proposed method. 

The image of Fig.5.2(c) looks much better as compared with an estimate using the Born 

approximation. The step by step process of recovering a scattering object using cepstral 

filtering method is shown in Fig.5.3. It not only gives an improved estimate of the shape 

of object but also provides a good approximation of the permittivity distribution. The 

cepstral filtering method did a good job in recovering the dimensions of cylinders 

however the recovered inner cylinder is not tangent to the external one, as it should be.  
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Figure. 5.3. Cepstral inversion steps: (a) Born reconstruction, (b) k-space data, (c) 

Causal k-space data with reference added at origin, (d) Minimum phase V<Ψ>, (e) 

Gaussian filter, (f) Cepstral reconstruction, (g) zoomed k-space data 

 

I believe that this difference in position of inner cylinder is due to the limited data 

coverage and later I will show that the spectral estimation technique, PDFT, helps in 

resolving this position offset. 

Fig.5.4 shows the comparison of reconstructed IPS008 object from various 

inverse scattering groups published in IEEE Antennas and Propagation Magazine [60] 

[68]- [69] and a minimum phase based reconstruction. 

Zoomed k-space 

(a) (b) (c) 

(d) (e) 

(g) 

(f) 
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Figure. 5.4. IPS008 reconstructions: (a) Reconstruction taken from reference [60], (b) 

Reconstruction taken from reference [68], (c) Reconstruction taken from reference [69], 

(d) Cepstral reconstruction 

5.1.2 IPS010 

The IPS010 is a dielectric wedge made of Plexiglass with relative permittivity 

εr≈ 2.25. The IPS010 proved to be a very challenging object for participating groups 

due to its high permittivity and sharp shape features. Fig.5.5 shows the Born 

reconstruction and cepstral reconstruction. 
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Figure. 5.5. IPS010 target configuration: (a) Target object IPS010 geometry, (b) Born 

reconstruction, (c) Minimum phase, (d) cepstral reconstruction 

 

Combination of the wedge shape and high permittivity has made this object very 

difficult to image. The cepstral method did a reasonable job in recovering the 

quantitative description of IPS010, however shape estimation is still poor both in the 

Born and cepstral methods. One reason for this poor shape could be the insufficient 

sampling rate.  The same number of illumination angles which are used to reconstruct 

simple cylindrical objects may not be sufficient to reconstruct a wedge shaped object 

with sharp features, as I will discuss later. 
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5.2 THE PRIOR DISCRETE FOURIER TRANSFORM (PDFT) 

In practice, the analyticity of the estimate for V  is assured because of the fact 

that the data available are always limited in k-space. However, processing this assumes 

a good estimate of the separable function V  since it is necessary to separate V from 

.   Since V is assumed to be of finite extent, then V  should also be of compact 

support and hence the data in k-space should be analytic.  In principle, one may use 

analytical continuation of the scattered field data in k-space to obtain a better estimate 

of V as a product rather than a low pass filtered and hence bandlimited function. 

However it has been observed by several authors [79]-[81] that analytic continuation is 

not practical because of its instability and sensitivity to noise. The inverse scattering 

algorithms are Fourier based in nature and improvement in the image quality of the 

recovered object can be accomplished by interpolating and extrapolating the Fourier 

data lying on semi circular arcs in k-space. 

I have adopted a very stable (regularizable) spectral estimation method known 

as the PDFT [34] [61] - [64], which gives a minimum norm solution of the estimate for 

V using properly designed Hilbert spaces. The success of the PDFT algorithm relies 

on its flexibility and effective encoding of prior knowledge about the object. The PDFT 

is a Fourier based estimator so it is easy to incorporate it in our signal processing 

method. The details of the PDFT algorithm can be found in [61]-[64] but in summary 

the PDFT assumes that Fourier information about the product of V is available, which 

is precisely our measured data in k-space. Let  

( ) V( ) ( )f r r r       (5.1) 

then the Fourier transform of f(r) is written as 
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n 2

n( ) ( ) i

nF F f e dk r
k r r      (5.2) 

for n=1,2,3…N. The PDFT estimator is given by 

       
1

( ) m

M
i

PDFT m

m

f p a e
k r

r       (5.3) 

where p(r) is the non-negative prior weighting function which contains information 

about the object. The advantage of the PDFT algorithm is that the data need not to be 

uniformly sampled which is why this approach can be used to interpolate and 

extrapolate both nonuniformly sampled and an incomplete data set. The term PDFT 

comes from the fact that it‘s the product of a prior p(r) and the discrete Fourier 

transform. The coefficients am for m = 1, 2, 3,…, M are determined by solving a system 

of linear equations, 

 
n

1

( )
M

n m m

m

F a P k k .     (5.4) 

In matrix notation we can write above equation as 

                  f = Pa        (5.5) 

where 

                                                 1 2[ ( ), ( ),..., ( )]T

MF F Ff k k k     (5.6) 

    1 2, ,...,
T

Ma a aa       (5.7) 

 

and where T denotes the transpose of matrix and P is the MxM square matrix and it is 

the Fourier transform of prior p(r). Thus using the coefficients calculated by solving the 

above set of equations the PDFT provides a data consistent image estimate by 

minimizing the weighted error 
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( ) ( ) min

( )
PDFTf f d

p
r r r

r
.    (5.8) 

The above integral is taken over the support of the prior function p(r) which contains 

the information about the true or estimated support of the object. The computation of P 

can be made even if the prior is not available in closed form but is estimated as a 

surrounding shape since matrix elements can be readily computed.  There are also 

challenges associated with Fourier data being noisy and a method of regularization 

needs to be employed. If the prior is chosen such that the object energy lies outside the 

prior support, then without any method of regularization this will lead to spurious 

oscillations in the estimate of the object function because the PDFT is data consistent 

and requires a lot of energy in the extrapolated spectral values to accommodate an 

underestimated support. To address this problem the Miller-Tikhonov regularization is 

used, which helps in removing the ill-conditioning of the P-matrix by adding a small 

number to the diagonal elements of the P-matrix [66]. This is equivalent to adding a 

small constant amplitude outside the prior support. The regularization step essentially 

reduces the energy in the estimate arising from the unstable eigenvalues by adding a 

small value into the prior function (i.e. not allowing it to be zero outside of the support) 

to slightly increase all eigenvalues without altering the eigenvectors.  

If no prior knowledge is available then p(r) would be a constant and the 

estimator reduces to the DFT of the available Fourier data. Also when the regularization 

constant  is very large such that 

1  

the estimator essentially looks like the DFT. The PDFT estimator is both data consistent 

and continuous and works in any number of spatial dimensions version [67]. The result 
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is shown in Fig.5.6 for the case when the PDFT is used instead of the DFT to 

reconstruct IPS008.  

 
 

Figure. 5.6. IPS008 cepstral reconstruction using PDFT 

 

I also applied the PDFT algorithm to IPS010 to improve reconstruction quality. 

It is important to know the location of the object in order to distinguish between target 

and artifacts. I can get rid of unwanted signal components by carefully choosing a prior 

to encompass V as tightly as one can reasonably estimate without cutting in to the 

actual dimensions  of  V.  Actually, if one did, the energy of the PDFT estimate would 

become very large and one can use this as a means to ―shape‖ or determine the 

perimeter of an unknown V.  For IPS010 I investigated various prior functions. I found 

that the best reconstruction was obtained when a rectangular prior was chosen centered 

on the center of wedge. Fig.5.7 shows the prior and resulting PDFT estimate of ISP010. 
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Figure. 5.7. IPS010 object: (a) Born reconstruction, (b) Cepstral with DFT 

reconstruction, (c) IPS010 with prior, (d) Cepstral with PDFT reconstruction 

 

5.2 INSTITUT FRESNEL DATA 

The Institute Fresnel data come from a series of laboratory-controlled 

experiments performed at the Institut Fresnel (Marseille, France), with the same idea of 

providing a means to help groups evaluate and improve their inverse scattering 

algorithms. The experimental setup consists of a fixed transmitting antenna and a 

moving receiving antenna which can move on a circular rail around the object 

corresponding to the Cartesian coordinate system as shown in Fig.5.8. The transmitting 
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antenna illuminates the objects from various locations equidistant around the object. 

The antennas are located at a distance of 1.67m from the center of experimental setup. 

More details about these experimental data can be found at [70]. 

 
Figure. 5.8. Experimental setup from Institut Fresnel 

Fig.5.8 shows the schematics of the cross sections of the actual object location with 

respect to the source and receiver. The scattered field was provided for a range of 

illumination frequencies and angles. For FoamDielInt and FoamDielExt (their notation 

for data sets) the emitting antenna was placed at 8 different locations which were 45˚ 

apart whereas for FoamTwinDiel and FoamMetExt, which are more complicated 

objects, the emitting antenna was positioned at 18 locations with 20˚ angular intervals. 

The receiving antenna collected complex data at 1˚ intervals. The scattering experiment 

was conducted using 9 operating frequencies which range from 2 GHz to 10 GHz. I first 

normalize the data and then compute the scattered field by subtracting the complex 

incident field from the complex total field. The inverse Fourier transform of the 

scattered field data gives a first Born reconstruction. 
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Figure. 5.9. Shape and relative permittivity of Institut Fresnel targets: (a) FoamDielInt, 

(b) FoamDielExt, (c) FoamTwinDiel, (d) FoamMetExt 

5.3.1 FOAMDIELINT 

The FoamDielInt consists of two cylinders: a ―foam‖ of relative permittivity εr ≈ 

1.45 and inside the ―foam‖ there is another circular dielectric of relative permittivity εr 

≈ 3.0. Fig.5.10 shows the reconstruction from the inverse Fourier transform of scattered 

field data i.e. first Born reconstruction of FoamDielInt. The Born reconstruction is 

computed at 6 GHz operating frequency for which the scattering strength of the object 

is |kVa|≈ 22. The object represents a fairly strong scatterer, |kVa|>>1, as a result of 

which we see that the first Born reconstruction is not all that good, Fig.5.10.  
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Figure. 5.10. FoamDielInt: (a) Actual object, (b) Born reconstruction 

 

Fig.5.10(b) shows image of FoamDielInt using the Born reconstruction. The 

reconstruction shows several artifacts and it also fails to give any meaningful (i.e. 

quantitative) numbers for relative permittivity. I applied the homomorphic filtering 

method to FoamDielInt at 6Ghz. Fig.5.11 shows the implementation of the method to 

estimate the FoamDielInt object. I made the available data causal by moving it into one 

quadrant and added a reference point such that the phase of VΨ lies between . 

A Gaussian filter is then applied to the cepstral domain and it is reduced in 

diameter until no discernable wavelike features associated with Ψ remain in the final 

image, which is obtained as a further inverse Fourier transform of the filtered cepstrum 

and exponentiation. Fig.5.11(e) shows the reconstruction obtained by applying cepstral 

filtering. The ratio of the contrast of the reconstructed cylinders matches the ratio of the 

permittivities in the original object. Fig.5.11(c) shows a log-plot of the cepstrum of VΨ 

after the reference point has been added. The log-plot is used to view the low energy 

features in the cepstral domain. 
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Figure. 5.11. Homomorphic filtering applied to FoamDielInt at 6 GHz: (a) Causal k-

space data with reference point, (b) minimum phase VΨ, (c) log plot of cepstral domain, 

(d) Gaussian filter, (e) Cepstral reconstruction 

 

The success of cepstral filtering relies on VΨ being minimum phase which is dependent 

upon the amplitude and location of the ―artificial‖ reference point. Fig.5.12 shows how 

the quality of reconstruction varies as we change the reference point amplitude. 

Fig.5.12(c) shows that the quality of reconstruction improves as we get closer to 

satisfying the minimum phase condition. I also computed FoamDielInt for various other 

frequencies; the results are shown in Fig.5.13. 

One of several factors that will affect the quality of the reconstruction (quite 

apart from the need to invert multiply scattered data) is the point spread function. 

Reference point 
Causal VΨ 

 

(a) (b) 

(c) (d) 

(e) 
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Figure. 5.12. Reference strength and cepstral reconstruction – left side image is the 

phase of VΨ and right side image is the cepstral reconstruction: (a) No reference added, 

(b) A small reference added, (c) Reference amplitude is strong enough such that phase < 

2π.  

 

Fig.5.14 shows the point spread function for different frequencies determined as the 

inverse Fourier transformation of the set of delta functions which mark the locations of 

the measured (i.e. Fresnel Institut provided) sampling points in k-space. These indicate 

the extent of features that one can hope to resolve in the final reconstructions of the 

scattering object V(r) from the measured scattered data in an ideal situation. 
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Figure. 5.13. Cepstral reconstruction of FoamDielInt at various frequencies: (a) 3 GHz, 

(b) 7 GHz, (c) 9 GHz, (d) 10 GHz 

 

At lower frequencies, e.g. 3 GHz, the locus of data in k-space is over a much smaller 

radius Ewald circle than for the 10 GHz case. As a consequence, the main lobe of the 

point spread function is much larger at lower frequencies of illumination, and therefore, 

one can expect to see a lower resolution reconstruction. However, low frequency 

illumination also implies a better image estimate of V(r) based on the conditions for the 

validity of the first Born approximation, since a condition for the Born approximation to 

be valid is that |kVa|<< 1. In addition, Fig.5.14(b) illustrates that for high frequencies 

the k-space coverage available from the measured data is insufficient to avoid strong 

side lobes, which can appear as replicas of the central lobe.  
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Figure. 5.14. Point spread functions corresponding to the locus of k-space scattered 

field coverage for the frequencies of (a) 3 GHz, (b) 10 GHz 

 

This means, for a reconstruction based on the Born approximation one would expect an 

optimum performance at some lower frequencies but perhaps including more measured 

data at a larger number of incident and scattering angles. For data collected at 6 GHz, a 

good trade-off between high resolution and minimum artifacts can be observed. 

It is important to note the poor reconstruction and an apparent contrast reversal 

at 9GHz and 10 GHz; see Fig.5.13(c) and Fig.5.12 (d). It is observed that the contrast of 

the recovered permittivity of the inner and outer cylinder is reversed i.e. the recovered 

permittivity of the inner cylinder should be around 3 but it is around 1.7 whereas the 

outer cylinder should have a permittivity of 1.45 but we recover it around 3. There are 

two possible explanations for this. The first is that inversion at lower frequencies meets 

conditions that increasingly favor the validity of the first Born approximation (i.e. 

|kVa|<< 1) and for this scatterer at relatively lower frequencies, the sampling rate of the 

scattered field is adequate.  One might also speculate that at higher frequencies, as the 

effective wavelength is reduced, there may be relatively more scattering from the 

boundary and less penetration of the field into the target, and so, less scattering from the 

higher permittivity internal features. Another important factor is that the angular 
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sampling of the scattered field and the number of incident field directions are identical 

for all frequencies employed. One can view this as an effective sampling of k-space that 

results in increasingly spread out high spatial frequency data locations as k increases, as 

indicated in Fig.5.15 below and one might justifiably expect that an increased sampling 

rate would be necessary in order to capture this information. 

 
Figure. 5.15. k-space coverage for cylinder of radius 2λ (a) Target cylinder, (b) k-space 

coverage for weak scattering cylinder, (c) k-space coverage for strong scattering 

cylinder 

 

Note that for the same geometrical sized cylindrical object in the images above, the k-

space coverage varies dramatically as a function of the permittivity of the cylinder. For 

this reason, small radius Ewald circles will cover mostly low spatial frequencies while 

large radius Ewald circles will capture information about both low and many high 

spatial frequencies. The radius of the Ewald sphere in k-space changes with varying 

incident frequencies. Hence, the mapping between the scattered field data on these 

circles and the k-space representation of the two different VΨ shown here, results in 
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different regions of k-space being sampled. Small incident k values only map on to 

lower spatial frequencies. Each estimate obtained from a given incident frequency, can 

add information about different spatial frequencies and in principle should help in 

improving reconstruction quality.  

I also observed the wrong background permittivity in Fig.5.11 (e). I postulated 

that the contrast reversal and incorrect surrounding permittivity level could be caused 

by the limited sampling of the scattered field for these objects, increasingly limited as k 

increases for a given source-receiver set of locations. The problem of limited data and 

undersampling is addressed by using the PDFT algorithm. Fig.5.16 shows the 

comparison of DFT and different prior functions incorporated into the PDFT 

reconstructions. It is evident from Fig.5.16 (b) that the contrast of the reconstruction is 

incorrect when using cepstral filtering with the DFT, since the background permittivity 

level has to be the lowest level for this object. Fig.5.16 (d) and Fig.5.16 (f) show that 

the PDFT has corrected this problem of an incorrect background permittivity. The effect 

of two different prior functions used with the PDFT are also shown, one a square and 

one a circle. The improvement using these is significant and the choice of prior is not 

that critical, as expected when it is large compared with V. Considering the fact that 

FoamDielInt is a strong scattering object, even first Born reconstructions have shown 

some improvement with the use of PDFT, as evident from Fig.5.16 (a) and Fig.5.16 (c). 
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Figure. 5.16. FoamDielInt at 6 GHz (a) Born reconstruction with DFT, (b) Cepstral 

reconstruction using DFT, (c) Born reconstruction using PDFT–square prior, (d) 

Cepstral reconstruction using PDFT–square prior, (e) Born reconstruction using PDFT–

circular prior, (f) Cepstral reconstruction using PDFT–square prior 

 

Since each illumination frequency generates a different V( )r  with V being the 

same and  different for each wavelength, it follows that each illumination 

frequency provides us with different information and helpful redundancy. In other 

words changing the frequency of the incident field will provide an additional 

mechanism for extracting spatial frequencies of V alone from the cepstrum. A linear 
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combination of estimates for V acquired in this way, will further improve the SNR of 

the estimate for V while suppressing any residual components from the FT in each of 

these images. An example is shown below in Fig.5.17. I found, also as expected, that a 

Gaussian cepstral filter, being apodized, is preferable to a circular or square hard-cut 

filter. 

       
        (a)                  (b) 

 

Figure. 5.17. FoamDielInt at 6 GHz (a) Summation of cepstral reconstruction of 4Ghz, 

5Ghz and 6Ghz with PDFT, (b) Summation of cepstral reconstruction of 4Ghz, 5Ghz 

and 6Ghz with DFT 

 

The summation of cepstral reconstructions for different frequencies when used with the 

PDFT has shown significant improvement over the summation of cepstral 

reconstructions with DFT. To compare Fig.5.17 (a) and Fig.5.16 (f) one sees that the 

summation of cepstral reconstructions for different frequencies has shown improvement 

in shape estimation over a single frequency cepstral reconstruction using the PDFT, 

however summed up cepstral reconstructions still need improvement to recover the 

permittivity distribution of the object, V.  One can employ a two step process in which 

one can use summation for shape retrieval and single frequency reconstruction for 

quantitative recovery. 
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5.3.2 FOAMDIELEXT 

The FoamDielExt consists of a cylinder with of relative permittivity εr ≈ 1.45 

and an external cylinder with relative permittivity εr ≈ 3.0. The Born reconstruction and 

cepstral reconstruction at illumination frequency of 6 GHz are shown in Fig.5.18. 

 
Figure. 5.18. FoamDielExt at 6GHz (a) Target,  (b) Cepstral reconstruction with DFT, 

(b) Born reconstruction with DFT 

 

Again I observed the background permittivity level being inconsistent from the actual 

object‘s background. The PDFT implementation of FoamDielExt with rectangular prior 

is shown in Fig.5.19 
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Figure. 5.19. FoamDielExt at 6 GHz (a) Born PDFT reconstruction with rectangular 

prior, (b) Cepstral PDFT reconstruction with rectangular prior 

 

In Fig.5.19 (b) the background permittivity from PDFT estimate is improved 

significantly as compared to the DFT in Fig.5.18 (b) by use of a rectangular prior 

function. The extrapolated values contribute to the improvement of the resolution of the 

object estimate. If I chose to include more prior information in PDFT such as object 

feature information or relative permittivity differences, then I would see further 

improvement in the reconstruction. 

5.3.3 FOAMTWINEXT 

FoamTwinExt is one of the most complex objects made available by Institut 

Fresnel. It is the combination of FoamDielInt and FoamDielExt objects i.e. it contains a 

large cylinder with relative permittivity of εr ≈ 1.45, a smaller inner cylinder with 

relative permittivity of εr ≈ 3.0 and an outer small cylinder with relative permittivity of 

εr ≈ 3.0. The Born reconstruction and cepstral reconstruction for FoamTwinExt are 

shown in Fig.5.20 
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Figure. 5.20. FoamTwinExt at 6 GHz (a) Target, (b) Born  reconstruction, (c) 

Cepstral reconstruction 

 

The FoamTwinExt is a complex strong scatterer and a Born reconstruction is not able to 

retrieve either correct dimensions or the permittivity distribution of object, see Fig.5.20 

(b). Considering the complexity of the object, the cepstral reconstruction has made a 

reasonable attempt in identifying all three cylinders or permittivity contrast levels as 

evident in Fig.5.20(c). I believe that the degradation in image quality is due to the lack 

of measured data, given the extent of multiple scattering that results from the high 

scattering strength of the original object. The amount of data provided for 

FoamTwinExt is not sufficient to recover a good image estimate. The scattering data for 

FoamDielInt, which has a simple circular geometry, was collected using 8 incident 
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illuminations, whereas the FoamTwinExt, which has a complex geometry, was 

collected using only 18 incident illuminations. This is strong evidence to suggest that as 

the geometrical and optical complexity of the scattering object increase one needs 

higher sampling density of the scattered field to obtain a meaningful reconstruction of 

the object. In section 5.4 I will discuss how scattered field data sampling requirements 

change with scattering strength. 

5.3.4 FOAMMETEXT 

FoamMetExt is a hybrid target which contains a large dielectric cylinder with 

relative permittivity of εr ≈ 1.45 and an external metal cylinder. For metal objects the 

incident scattered field is scattered at the surface and then reflects back without entering 

into the object itself. However due to the scattered field components which cross a 

metal-dielectric interface, the multiple scattering effects become significant. Fig.5.21 

shows the reconstruction of the hybrid object. It is evident from the figure that the shape 

of metal objects can be recovered with good quality even using linear approximations. 

The Born reconstruction has retrieved shapes for both the outer metal cylinder and the 

inner dielectric cylinder. Fig.5.21 (c) shows that the cepstral reconstruction has further 

cleaned the artifacts from the Born reconstruction. 

5.3.5 COMPARISON OF RECONSTRUCTIONS 

In this section I will show the comparison of reconstructions from various other 

methods, published in the journal Inverse Problems vol.21, issue 6, 2005 with our 

cepstral reconstructions. 
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Figure. 5.21. FoamMetExt at 6 GHz (a) Target, (b) Born  reconstruction, (c) Cepstral 

reconstruction 

 

Fig.5.22 shows reconstruction attempts of FoamDielInt using various methods. Fig.5.22 

(a) shows the reconstructed image of object using a two step inexact-Newton method 

[71] where Fig.5.22 (a) is reconstructed at 2 GHz and Fig.5.22 (b) is reconstructed at 5 

GHz. Both the reconstructions show artifacts and the quality of reconstruction is poor. 

The recovered permittivity values are far off from the actual values. Fig.5.22(c) shows 

reconstruction from an iterative regularized contrast source inversion (CSI) method 

[24]. The reconstruction quality is average and it fails to give a good quantitative 

estimate of relative permittivity.  
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Figure. 5.22. Comparison of reconstruction algorithms on FoamDielInt (a) Figure taken 

from [71], (b) Figure taken from [71], (c) Figure taken from [24], (d) Figure taken from 

[72], (e) Figure taken from [72], (f) Figure taken from [27], (g) Figure taken from [27], 

(h) Figure taken from [73], (i) Figure taken from [74], (j) Figure taken from [74], (k) 

Figure taken from [75], (l) Cepstral reconstruction [46] 

 

Fig.5.22 (d) and (e) show the reconstructions obtained using a modified gradient 

method (MGM) for the inversion of the scattered field data in conjunction with an 

adaptive multiscale approach based on spline pyramids to improve image quality [72]. 
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Fig.5.22 (d) shows the reconstruction using MGM by itself. Again the quality of image 

reconstruction is poor as the boundaries of inner and outer cylinders are not 

distinguishable. Fig 5.22(e) shows reconstruction using MGM with an adaptive 

multiscale approach [72]. This method has done a decent job in recovering 

permittivities of cylinders. The reported permittivities for the outer cylinder and the 

inner cylinder are εr ≈ 2.5 and εr ≈ 1.68 respectively. The reconstruction obtained with 

this approach has shown good results but at the cost of 15% more computation time as 

compared to MGM. Fig.5.22 (f) and Fig.5.22 (g) show the reconstruction of 

FoamDielInt by a technique which combined diagonal tensor approximation (DTA) and 

CSI [27]. The reconstructions from this method are by far the best but again it uses an 

iterative approach which is computationally expensive and there is no guarantee of the 

convergence of the algorithm to a solution, right or wrong. Fig.5.22 (h) shows 

reconstruction from another iterative method based on a Bayesian inversion method.  

The quality of the reconstruction is poor in a sense that it not only fails to retrieve the 

correct dimensions of the cylinders but also gives a poor estimate of relative 

permittivity. The reconstructions shown in Fig.5.22 (i) and Fig.5.22 (j) are obtained by 

using an iterative multi-scaling approach (IMSA) which exploits the scattered field data 

through a multi-step reconstruction procedure [74]. Fig.5.22 (i) shows the 

reconstruction when the incident wave is modeled as a plane wave and Fig.5.22 (j) 

shows the reconstruction when the incident wave is modeled as a line source. Fig.5.22 

(k) shows an image estimate using another iterative approach [75]. This approach has 

done a good job in recovering the shape of the object but it fails to recover any 
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quantitative information about the object. Fig.5.22 (l) shows a reconstruction from my 

proposed method, cepstral filtering. 

 
 

Figure. 5.23. Comparison of reconstruction algorithms on FoamDielExt (a) Figure taken 

from [71], (b) Figure taken from [71], (c) Figure taken from [24], (d) Figure taken from 

[72], (e) Figure taken from [72], (f) Figure taken from [27], (g) Figure taken from [27], 

(h) Figure taken from [73], (i) Figure taken from [74], (j) Figure taken from [74], (k) 

Figure taken from [75], (l) Cepstral reconstruction [46] 

 

Considering the fact that it is a non-iterative low computational cost algorithm, the 

reconstruction not only gives a good estimate of the object‘s geometry but also gives a 
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meaningful recovery of relative permittivities. The reconstruction comparison for 

FoamDielExt, FoamTwinDiel and FoamMetExt are shown in Fig.5.23, Fig.5.24 and 

Fig.5.25 respectively.  

Fig.5.23 shows the reconstructions of FoamDielExt from various methods. 

Again most of the methods fail to do a reasonable job in reconstructing FoamDielExt 

except reconstructions shown in Fig.5.23(f) and Fig.5.23(g), which is done using a 

combination of DTI and CSI [27]. Fig.5.23 (h) which is reconstructed using a Bayesian 

inversion method [73], gives a good estimate of shape but it lacks quantitative accuracy. 

Fig.5.23 (i) and Fig.5.23 (j), which are based on IMSA [74], both show artifacts in 

reconstruction. The reconstruction shown in Fig.5.23 (e) is based on MGM along with a 

multi-scale approach [72]. The quality of reconstruction is good in a sense that it has not 

only recovered shape but also relative permittivity. The only downside is that it is an 

iterative process and it takes 15% more iterations as compared to MGM. The 

reconstruction from the cepstral method, Fig.5.23 (l), has done a reasonable job in 

recovering permittivity and shape of object but we still see image artifacts associated 

with limited data availability.  

Fig.5.24 shows the comparison of the reconstructions between various published 

methods for FoamTwinDiel. Because of its complex geometrical configuration this 

object is one of the most challenging objects provided by Institut Fresnel. Other than 

[27], most of the reconstructions have shown a low quality estimate of the object. Being 

non-iterative in nature, the cepstral method depends on data coverage. For this multi-

layered object, in order to get a meaningful reconstruction from cepstral method I will 
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argue here that more data is needed. Even with less data the cepstral method is still able 

to isolate contrast difference between all three cylinders. 

 
Figure. 5.24. Comparison of reconstruction algorithms on FoamTwinDiel (a) Figure 

taken from [71], (b) Figure taken from [71], (c) Figure taken from [24], (d) Figure taken 

from [72], (e) Figure taken from [72], (f) Figure taken from [27], (g) Figure taken from 

[27], (h) Real and imaginary parts, Figure taken from [73], (i) Figure taken from [74], 

(j) Figure taken from [74], (k) Figure taken from [75], (l) Cepstral reconstruction [46] 

 

Fig.5.25 shows the comparison of different reconstruction methods on FoamMetExt. 

The two step Newton method [71], which attempted to reconstruct the first three 

objects, was not able to show any reconstruction for the metal object. Also the iterative 
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method proposed in [75] did not present any reconstruction for the metal object. 

Fig.5.25 (a) based on CSI [24] shows good reconstruction of the shape but does not 

provide any quantitative description. Fig.5.25 (d) shows both shape and a quantitative 

image. Fig.5.25 (e) and Fig.5.25 (f) show the real and imaginary part of the 

reconstructions using the Bayesian inversion method [73]. Fig.5.25 (g) and Fig.5.25 (h) 

show real and imaginary part of metal object using IMSA [74]. Both the reconstructions 

from [73] and [74] lack quantitative recovery. Also they fail to recover all object 

features in a single image.  

 
Figure. 5.25. Comparison of reconstruction algorithms on FoamMetExt (a) Figure taken 

from [24], (b) Figure taken from [72], (c) Figure taken from [72], (d) Figure taken from 

[27], (e) Figure taken from [73], (f) Figure taken from [73], (g) Figure taken from [74], 

(h) Figure taken from [74], (i) Cepstral reconstruction [46] 
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The image from the cepstral method shows good shape and permittivity estimation. It 

still suffers from wrong background permittivity, which is due to limited data 

availability. 

5.4 SAMPLING NEEDS FOR INVERSE SCATTERING PROBLEM 

In this section I will discuss the impact of sampling on the quality of the 

reconstruction also as a function of scattering ―strength‖, i.e. extent of multiple 

scattering. As the complexity and average permittivity of the scattering object increases, 

the effects of limited data (i.e. number of incident angles used and number of scattered 

field measurements as a function of scattering angle) become more significant.  With 

only a finite number of measurements available, even noise-free data are insufficient to 

provide a unique solution.  In the presence of noise, ill-conditioning becomes a serious 

issue, as described earlier when introducing the PDFT. The quality of the reconstruction 

is obviously strongly dependent on how a scattered field is sampled.  In 1-D (and also 

of course in higher dimensions) one tends to rely on Shannon‘s sampling theorem. Let 

f(t) represent the object with finite support and its Fourier transform is given by 
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In two or higher dimensions, it is well known that for any given object support, 

there could be many sampling grids available and one typically adopts an optimum 

sampling grid in order to achieve the best reconstruction from a minimum density of 

samples; of course in principle, Shannon demands an infinite number of samples with 

the specified bandwidth dependent sampling density, or denser. 

The sampling needs for the inverse scattering problem depend upon the 

geometrical complexity and scattering strength of the object. With a high permittivity, 

the effective wavelength inside the scattering medium is smaller and so smaller features 

will more likely contribute to propagating waves as compared to evanescent waves 

within the scattering volume. Recognition of this effective increase in the inherent 

bandwidth within the scattering volume needs to be accounted for in the sampling 

strategy outside the scattering volume.  An analysis to this effect was developed by 

Miller [84] recently.  He analyzed propagation and scattering from a very fundamental 

modal perspective as radiation transferred from a ―source‖ volume to a ―receiver‖ 

volume.  His intent was to try to put fundamental limits on various optical systems such 

as a slow light system or optical information channel.  His conclusion was that the total 

number of degrees of freedom, N, of a scattering system, based on a model, would be 

proportional to the total experimental volume, Bv and the maximum refractive index ( = 

square root of permittivity in our case), specifically N = (Bv)(nmax) / 
3
. Clearly as the 

maximum permittivity and extent of multiple scattering increases, the number of 

degrees of freedom pertinent to the system also increases and so, additional sampling 

points to properly represent the fields in this experimental volume will be needed.  
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This is consistent with observations made by others. The strong scatterers have 

significant contributions from multiple scattering components in far-field as compared 

to weak scatterers. It has been shown by Chen and Chew [77] that by considering 

multiple scattering in the reconstruction algorithm super resolution is possible. The 

evanescent waves, generated within an inhomogeneous medium, contain subwavelength 

information about the object. The multiple scattering converts these evanescent waves 

into the propagating waves as a result of linear interaction between evanescent waves 

and the scatterer [77]. Therefore these strong multiple scattering components carry 

additional information about the structure of the scatterer in the far field [76]-[78]. An 

object with higher permittivity will have more information encoded in the far field 

pattern of the scattered wave than the same object with lower permittivity. In order to 

benefit from this additional information it is important to ensure an adequate sampling 

rate i.e. a lower scattering strength object will have different sampling requirements 

than a higher scattering strength object.  

To investigate the impact of scattering strength on reconstruction quality, 

consider two cylinders with the same geometry but different relative permittivities as 

shown Fig.5.26. The wavelength employed in the experiment is 1mm and the diameter 

of both cylinders is 2mm. The scattered field data in the far field is generated using an 

analytical solution for homogeneous cylinders. 

 
Figure. 5.26. Target description (a) Weak scatterer (b) Strong scatterer 
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Fig.5.27 shows the Born reconstructions for the target cylinders. Fig.5.27 (a) is 

the reconstruction for weak cylinder with relative permittivity of εr=1.03 and scattering 

strength k|V|a ≈ 0.2. Fig.5.27 (b) is the reconstruction for strong cylinder with relative 

permittivity of εr =4.3 and scattering strength of k|V|a ≈ 21. The object in each case is 

illuminated with incident plane wave ranging from 0º to 315º and it is sampled at 

increments of 45º i.e. total number of samples are 8. The simulated scattered field data 

are mapped onto an Ewald sphere in k-space and then inverse Fourier transformed to 

compute Born images. The Born estimate for the weak scatterer has a cleaner 

reconstruction as compared to the Born reconstruction for the strong scatterer as evident 

from Fig.5.27.  

 
 

Figure. 5.27. Born reconstruction for target cylinders (a) Reconstruction for weak 

scatterer (b) Reconstruction for strong scatterer 

 

The scattered field for strong scatterers encodes more information about the scattering 

object and in order to utilize this extra information we need a higher sampling rate than 

the weak scatterer. In order to investigate further, the object is illuminated with an 

incident plane wave sampled at 1º increments i.e. the total number of samples are 360. 
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Figure. 5.28. Born reconstructions for strongly scattering cylinder (a) 8 illumination 

angles (b) 360 illumination angles 

 

Fig.5.28 shows side by side images of the Born reconstructions from the strong 

scattering object with Fig.5.28 (a) showing reconstruction using 8 illumination angles 

and Fig.5.28 (b) showing image estimate using 360 illumination angles.  

 

 
Figure. 5.29. Cepstral reconstruction for target cylinders (a) Reconstruction for weak 

scatterer (b) Reconstruction for strong scatterer 

 

Increasing the sampling rate has significantly improved the quality of reconstruction for 

the strong scatterer. Clearly with more views one is able to extract additional 

information encoded in multiple scattering components of far field data. The cepstral 
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inversion method was also applied to recover a weak scatterer and a strong scatterer for 

8 illumination angles and 360 illumination angles. Fig.5.29 shows the reconstructions 

for the strong cylinder and the weak cylinder using the cepstral inversion method. The 

scattering experiment was conducted using 8 illumination angles with 45º increments. 

Fig.5.29 (a) shows the reconstruction for the weak scattering target and Fig.5.29 (b) 

shows the reconstruction for the strong scatterer. Comparing both images closely it is 

again evident that for the given illumination angles, the reconstruction quality of the 

weak cylinder is better than the reconstruction quality of the strong cylinder. For a weak 

scattering object, dimensions are closer to the actual target and the background is 

smoother, whereas for a strong scatterer I see multiple scattering artifacts in the 

background along with incorrect dimensions. It is important to note that the cepstral 

method has still done a remarkable job in reconstructing the strong scatterer. The 

comparison between Born reconstruction and cepstral reconstruction for strong 

scattering targets with 8 illumination angles is shown in Fig.5.30. Despite higher 

permittivity the cepstral reconstruction is still cleaner because it takes into account 

multiple scattering components. I also investigated cepstral inversion for 360 

illumination angles with 1º increments. The results are shown in Fig.5.31. Increasing 

the number of incident illumination angles from 8 to 360 has less impact on the 

reconstruction of the weak cylinder as compared to the reconstruction of the strong 

cylinder. 
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Figure. 5.30. Reconstruction for strong cylinder with 8 illuminations (a) Born 

reconstruction (b) Cepstral reconstruction 

 

 

 
Figure. 5.31. Cepstral reconstruction with 360 illuminations (a) Weak cylinder (b) 

Strong cylinder 

This is in accordance with my earlier discussion that the scattered field for weak 

scattering objects has less contribution from multiple scattering components and hence 

can perform reasonably well with a lower sampling rate as opposed to strong scatterers 

whose field is dominated by strong contributions from multiple scattering components. 

In order to study the relationship between the quality of reconstruction and scattering 

strength I performed a series of experiments on simulated data. I considered three 

cylinders with the same dimensions but different permittivities. I then systematically 



 91 

increased the number of illumination angles and studied their effects on the quality of 

reconstruction for all three objects. Simulations suggest that there exists a linear 

relationship between sample points and refractive index as shown in Fig.5.32. 

 

Figure. 5.32. Refractive index vs. No of views 

 

These results and the paper by Miller [84] provide a criterion for a new sampling 

theorem for the inverse scattering problem which properly takes into account scattering 

strength, structural details of the object and illumination wavelength. In Miller's paper, 

he explores so-called fundamental limits to optical systems by considering the number 

of degrees of freedom an arbitrary system can possess.  His approach is completely 

general and counts the number of modes that can exist in a volume connecting a source 
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domain to a receiver domain through an arbitrary "transport" or multiply scattering 

domain.  An upper bound on the number of degrees of freedom turn out to be 

proportional to the volume of the system divided by the cube of the wavelength 

multiplied by a measure of the maximum refractive index in the system.  As we have 

seen in simulations, when the permittivity of a target increases, there is obviously 

increased multiple scattering.  To get a reconstruction of the same quality that one 

might find acceptable for a truly weak object (i.e. first Born scatterer) from a specific 

number of data points, then one needs to increase the amount of data collected in 

proportion to the increased index of the stronger scattering target. 

  



 

 

 

 

CHAPTER 6: CONCLUSIONS 

 

In this dissertation I proposed a nonlinear signal processing based method to 

solve the inverse scattering problem for strongly scattering targets. In other words, I 

developed a method to determine a quantitative image of the permittivity distribution 

inside a penetrable scattering object.  Limited noisy data render this inverse problem 

highly ill-posed and the need to compute an estimate for the secondary source or 

contrast source, prior to applying the (nonlinear) homomorphic filter, was explained.  

The PDFT algorithm was introduced for this purpose. 

Current methods to solve inverse scattering problems are either iterative in 

nature or they use linearization techniques. The iterative methods are computationally 

very expensive and their convergence is not always guaranteed. The linearization 

techniques use first Born or Rytov approximations which are applicable to only a very 

restricted class of scatterers, usually requiring that the strength of the scattering 

distribution be weak or slowly varying in the scale of incident wavelength.  If  the 

characteristic size of scattering inhomogeneities is vanishingly small then a single 

scattering (i.e. first Born approximation) is appropriate, and thus, making the inverse 

step a relatively straightforward Fourier-based algorithm. 

The approach described here was based on homomorphic filtering to recover the 

unknown object, V(r) from a limited set of scattered field data, .   From this, one can 

obtain an estimate of V by mapping the scattered field data onto Ewald surfaces in 

k-space and inverse Fourier transforming. Fourier inversion of the far field scattered 
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data is assumed but near field data can also be used.  If < > were similar in nature to 

the incident field, which is the case when the first Born approximation is valid, then it 

would not corrupt the resulting image of V.  This is the standard approach in 

conventional diffraction tomography. The homomorphic filtering step linearizes the 

product of V by taking its natural logarithm and Fourier transforming into the so-

called cepstral domain. A filter was applied in the cepstral domain to remove the 

cepstral frequencies associated with the unwanted ―noise-like‖ term . Successful 

filtering requires some preprocessing of the estimate of V  in order to ensure that its 

logarithm was well behaved and amenable to spatial filtering in the associated Fourier, 

i.e. cepstral domain. Only the logarithm of a minimum phase function is well-defined. 

The preprocessing step ensured that the data being filtered fulfills this minimum phase 

condition. With processed minimum phase V< > data, the nonlinear filtering operation 

can be executed in a reliable and stable fashion. The minimum phase condition was 

enforced by adding an appropriate reference wave, R, to V  or a delta function in the 

k-space domain thereby satisfying Rouche‘s theorem. Satisfying the theorem, requires 

that the k-space data be moved into one quadrant to make it causal and the reference 

point, R was located at the origin of causal k-space data.  Its amplitude was 

systematically increased until the minimum phase condition was met. The ideal value 

for R occurred when the phase of the modified V was continuous and unwrapped 

with values lying strictly within the range of −π and +π. The homomorphic filtering step 

was achieved by multiplying the cepstrum with a filter whose width was systematically 

reduced until the wavelike structures associated with were eliminated. 
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I applied this method to real laboratory-controlled experimental data collected at 

the Air Force Research Laboratory's (AFRL) Ipswich Facility in MA [54]-[57] and the 

Institut Fresnel (Marseille, France) [70]. The data consisted of real and imaginary parts 

of scattered field measurements from a number of inhomogeneous strong scattering 

targets with different geometries. I was able to estimate not only the shape of objects 

but also their relative permittivity. Since cepstral filtering will inevitably remove some 

frequencies associated with the target function, V, I also showed how combining 

estimates for V obtained using different frequencies, improved the SNR and overall 

quantitative accuracy of the resulting estimate for V, while further suppressing any 

residual features arising from the averaged internal total field distributions. 

For various scattering objects I also compared the reconstructions using the 

proposed method and the reconstructions from various other methods and found that my 

proposed method showed better results in terms of qualitative and quantitative 

reconstruction of objects as compared to other methods. However I observed some 

inconsistencies in the reconstructions as a function of frequency and investigated the 

consequences of having undersampled data in a nonlinear algorithm. A contrast reversal 

and an erroneous background level in the reconstructions prompted this study. Since 

only a limited number of incident view angles were provided and scattered field data for 

each of these were only measured at discrete angles, the k-space coverage is necessarily 

sparse. To address this problem I employed a linear spectral estimation method known 

as the PDFT which provides a solution that is both data consistent and of minimum 

weighted norm through the use of a suitably designed Hilbert space. The PDFT, by 

incorporating prior information, helped improve the initial estimate of V< > prior to 
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homomorphic processing.  It reduced the background permittivity problem and 

enhanced image quality. For each target the optimal prior was found by monitoring the 

energy of the PDFT estimate as the prior function was modified. The prior function can 

be as simple as an estimate of the support of the target, or it can contain information 

about the target itself that lies within its boundaries. 

The artifacts were still observed in the reconstructions of some objects which 

were geometrically more complex and with a larger range of permittivities. This led me 

to revisit the impact of the number of data points available for the inverse algorithm, 

since it is recognized that sampling theorems are written for linear problems based on 

bandwidth.  A numerical experiment was conducted to study the impact of scattering 

strength (i.e. increasing values of V) on the quality of the reconstruction but as a 

function of the number of scattered field data available to process. The scattered field 

data was numerically generated for two similarly sized objects but with different 

scattering strengths. I showed that the object with higher permittivity requires a higher 

density of scattered field data than the object with lower permittivity in order to give the 

same quality of reconstruction. In other words, the results demonstrated that for strongly 

scattering objects, in order to extract additional information encoded in multiple 

scattering components, one needs a higher sampling rate. An intuitive and important 

point that supports this is that the effective wavelength inside the object for a strong 

scatterer is smaller than the effective wavelength inside the object for a weak scatterer.  

Effective wavelength will be roughly proportional to free space wavelength divided by 

n where n is the refractive index or the square root of the permittivity. Some prior 

knowledge about the range of V is very important when planning data collection for an 
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inverse scattering problem; i.e. the permittivity should be taken into account for 

choosing k-space coverage. From this, I discussed the formulation of a new sampling 

theorem for inverse scattering problems which considers scattering strength, shape of 

the object and wavelength used in the experiment, to dictate sampling rate. 

In addition, as part of this research, I developed an interactive graphical user 

interface (GUI) known as the ―cepstral inversion tool‖ which implements the cepstral 

inversion algorithm. This tool provides a user-friendly interface to load k-space 

scattered field data and implement causality, minimum phase condition and 

homomorphic filtering to reconstruct an object under test. It is the first tool of its kind 

for this problem domain that visually demonstrates the quality of reconstruction as you 

vary parameters. The software can be used as a modeling tool to further investigate 

different invariants of the inverse scattering problem. 

In summary one of the main contributions of this research was to develop a new 

and robust inverse scattering algorithm.  The significance of this method is that it is 

non-iterative, it retrieves both quantitative and qualitative descriptions of objects and it 

is applicable to objects for which the Born or Rytov approximation fails. The second 

contribution was to demonstrate that the method could be successfully applied to real 

scattered field data. The third and most significant contribution of this research was to 

investigate sampling needs for inverse scattering problems in general.  The final 

contribution was to develop user-friendly software to reconstruct an unknown object 

using the cepstral inversion method. 

To take this research forward, a next step is to further investigate the 

relationship between scattering strength, object geometry and reconstruction quality. 



 98 

From this we would expect to formalize a completely new sampling theorem for inverse 

scattering problems, as an alternative to the Shannon sampling theorem. The new 

theorem should be able to suggest the k-space data density based on the scatterer‘s 

geometry, permittivity properties, and the wavelength employed. The opportunity also 

exists to refine the filtering step with more sophisticated and automated filters, say an 

annular bandpass filter.  Future work is needed to adapt this algorithm for 3-D objects 

and to demonstrate its applicability to 3-D strong scatterers in the full electromagnetic 

(i.e. vector) case. More work can be done to make the cepstral inversion software more 

robust and the next generation of software can include different reconstruction 

algorithms so that users can switch from one algorithm to another algorithm and do a 

comparative study, although it is expected that the cepstral method will always be 

superior in speed and superior to other methods for a large classes of targets. 
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APPENDIX A: CEPSTRAL INVERSION TOOL 

 

 

I have developed user-friendly software which implements the cepstral inversion 

method. It loads the calculated quantity V< > from measurements or simulations, pre- 

or post-PDFT and executes the cepstral method, allowing a choice of parameters for the 

reference wave and the cepstral filter itself.   In this way, one can see the sensitivity of 

the inversion (or not) to these parameters and evaluate the quality of the reconstruction. 

 

 
 

Figure. 6.1. Cepstral Inversion Tool 
 

 

As a starting step of our algorithm the software enforces causality by moving the 

k-space data into one quadrant of k-space.  It is noteworthy that with measured data one 

could start directly in this domain rather than form an image of V< > first.  The 

software then interactively allows users to modify the amplitude and location of the 

reference wave to ensure that the minimum phase condition is met . It can be very 

useful to study the relationship between minimum phase fluctuations and the quality of 
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reconstructions. Once the minimum phase condition is met, which can be verified by 

visual inspection of the phase of V<Ψ> or by looking at the minimum and maximum 

value of V<Ψ> displayed in GUI, the next step is to apply filtering in the cepstral 

domain. Currently this tool offers Gaussian, circular and rectangular filters. We can 

change the width and location of filter in the cepstral domain to remove unwanted 

spatial frequencies associated with the field <Ψ>. While we modify the filter we can, in 

real time, observe its effect on the quality of reconstruction. This tool provides an easy 

interface to optimize the reference wave and filter to achieve the best quality 

reconstruction as well as facilitating a helpful intuitive understanding of how the 

method works. The software also allows users to save and load simulations, which is 

very handy for keeping track of experiments. In summary this software is a modeling 

tool to study the inverse scattering problem. In a very short time it can provide an 

estimate of the shape and permittivity of an object.  

 


