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ABSTRACT

ARASH SHIRI. Orbital Angular Momentum of Partially Coherent Beams Through
Atmospheric Turbulence. (Under the direction of DR. GREG GBUR)

The orbital angular momentum of light is a promising candidate as an information

carrier in optical communication systems to enhance the capacity of data channels.

However, the effects of atmospheric turbulence significantly degrade the quality of

light beams, thereby imposing limitations on the range of reliable data transmis-

sion. To address this issue, researchers have been actively seeking methods to en-

hance the resilience of light against fluctuations of refractive index due to the atmo-

spheric turbulence. It has long been recognized that partially coherent beams exhibit

greater robustness in propagation through turbulence. Consequently, transitioning

from full coherence to partial coherence has been suggested as a solution. Conversely,

in OAM-based communications, reducing coherence results in broadening of the OAM

spectrum, thus increasing cross-talk between adjacent channels. Therefore, utilizing

partially coherent beams in free space communications entails both benefits and draw-

backs.

The main objective of this dissertation is to explore various classes of partially co-

herent beams through analytical approaches in order to identify a robust OAM spec-

trum in the presence of atmospheric turbulence. The results are presented in three

different articles. The first article introduces a simplified version of the extended

Huygens-Fresnel principle which is a widely used method of turbulence propagation.

The discoveries outlined in the first article substantially alleviate the mathematical

complexity associated with propagation in random media, thereby enabling analytical

exploration of the propagation of partially coherent beams in random media. The

second article presents an optimization criterion associated with a specific class of

partially coherent beams, substantially enhancing their resistance against turbulence.
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Finally, the third article thoroughly investigates the behavior of three categories of

partially coherent beams in interaction with atmosphere, providing a detailed compar-

ison of their respective resistance. The compilation of these three articles presents a

comprehensive study of the impact of atmospheric fluctuations on the orbital angular

momentum spectrum of partially coherent beams.
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CHAPTER 1: INTRODUCTION

Structured light refers to light fields characterized by nontrivial phase, polarization,

and coherence [1]. Recently, it has been demonstrated that structured light holds sig-

nificant potential for enhancing a variety of optical applications [2, 3]. Orbital angular

momentum (OAM) represents a distinct aspect associated with the phase pattern of

light, which can be understood as the twist of the helical phase front. In optical

communications, leveraging OAM can substantially increase data channel capacity

[4, 5]. Since the OAM modes existing in a light field establish orthogonal states,

each mode can function as a separate data channel. Thus, OAM can be regarded as

an additional degree of freedom, alongside other light properties such as wavelength,

polarization, and phase, capable of transmitting data within a single signal.

However, in free space propagation, the fluctuations in the refractive index of the

medium caused by atmospheric turbulence degrade the quality of optical beams. To

address this issue, researchers have dedicated significant effort to finding methods to

enhance the beam’s resilience against these detrimental turbulence effects. A demon-

strated result of these endeavors is that the beams with partial coherence exhibit

higher resistance than a fully coherent beam [6, 7, 8]. Hence, reducing the coherence

of light beams at their source can serve as a method to improve the reliability of data

transmission in free space. On the other hand, in OAM-based optical communica-

tions, reducing coherence leads to the redistribution of energy among OAM modes,

consequently increasing the likelihood of cross-talk between adjacent data channels,

as each channel corresponds to a distinct OAM mode. With that being said, transi-

tioning from perfect coherence to partial coherence can bring about both advantages

and disadvantages, signifying the importance of analytical details of optimization of
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the OAM spectrum of PCBs in interaction with random media. These optimization

attempts run into challenges due to the complicated nature of turbulence. Apply-

ing simulation approaches to study the PCBs in turbulence often requires employing

the multiple phase screen method, which can be time-consuming and challenging to

optimize since the underlying physics of the interaction remain hidden within the

simulations [9]. The conventional analytical method for describing wave propagation

through turbulence is the extended Huygens-Fresnel (eHF) principle [10]. In this ap-

proach, turbulence effects are incorporated as a complex phase that depends on the

correlation of beams at various points on the source and detector plane. However,

evaluating the integrals associated with the eHF principle is exceedingly complex,

and in nearly all cases, finding an analytic solution is not feasible.

Hence, the initial step in an analytical study of PCB propagation through turbulence

should be identifying a simplified approach. To achieve this, the first article of this

dissertation presents a modified version of the eHF method for wave propagation. In

this modification, the four-fold integral of the standard eHF principle is simplified to

a two-fold integral. This simplification allowed us to explore the behavior of different

classes of PCBs in random media and examine the impact of various parameters of

the source on the robustness of the corresponding OAM spectrum.

The preparation of a light beam with partial coherence entails randomizing a char-

acteristic parameter of the fully coherent beam at its source such as phase, beam

axis position, and radius of curvature. Various classes of PCBs are associated with

different methods of randomization applied to the coherent fields, resulting in differ-

ent distributions of OAM in the field cross section. In this study, the three different

classes that are investigated are: 1- Rankine model beam which is characterized by

probabilistically determining the position of the beam axis. Via randomizing the

beam axis position of a Gaussian vortex beam, the reduction in spatial coherence

appears as a Schell model term in the beam expression. 2- Twisted Gaussian-Schell
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model beam in which the spatial coherence is reduced by introducing a twist phase to

the Gaussian beam, in addition to decreasing the effective correlation width through

the Schell model structure. In this type of PCB, the OAM is induced by the twist

phase. 3- Circularly Coherent Beam (CCB) which is defined as a partially coher-

ent source composed of the superposition of a finite number of beams with various

radii of curvature. The resulting self-focusing beam will exhibit full coherence in the

azimuthal direction, while being partially coherent in the radial direction, which is

known as circular coherence.

The introduced modified eHF method is employed to investigate the behavior of PCBs

interacting with turbulence. Examining the free space propagation of the mentioned

three types of PCBs through turbulence and analyzing the behavior of their respec-

tive OAM spectrum under the influence of both atmospheric effects and coherence

reduction, it was observed that, in short propagation distances, the disadvantages

of reducing coherence of the source, such as the spreading of the OAM spectrum,

outweigh its benefits, namely enhancing the beam’s stability against refractive in-

dex fluctuations. However, by extending the propagation to longer distances, the

pre-randomized Rankine model and twisted Gaussian-Schell model beams exhibit

significantly higher stability compared to the coherent beam.

In the process of generating a partially coherent beam with circular coherence,

which is achieved by linearly combining Gaussian beams with various radii of cur-

vature, a specific optimization approach can be introduced. This approach entails

modulating the beam parameters at the source in such a manner that the robust-

ness of its OAM spectrum surpasses that of its fully coherent counterpart, only for

propagation up to a particular distance. In our calculations, a criterion is established

by introducing a parameter that allows us to estimate the selection of the range of

radii of curvature defining the superimposed beams. In other words, for a particular

propagation distance through turbulence, achieving resistance in the OAM spectrum
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is accomplished by selecting an appropriate focal distance associated with the com-

bination of several self-focusing beams.

In chapter 2 of this dissertation, the modified eHF method for turbulence propaga-

tion is presented in detail. In this article two criteria introduced to roughly estimate

the intensity and coherence resistance of PCBs through atmospheric turbulence.The

accuracy of these criteria is assessed by propagating a Gaussian-Schell model beam

through turbulence. The results demonstrate that the introduced parameters effec-

tively approximate the resistance distance for both the intensity and coherence of

light.

Chapter 3 outlines the concept of CCB, introduces the method of generating it

at the source, and discusses the optimization technique for propagating it through

turbulence with a stable OAM spectrum.

In chapter 4, the behavior of all three types of PCBs in propagation through at-

mospheric turbulence is analyzed and compared. The cross spectral density (CSD)

corresponding to each PCB is evaluated in propagation in free space and through

turbulence. The findings suggest that the optimal choice of beam type for efficient

data transmission in free space is contingent upon various factors, including beam size

at the source, propagation distance, and turbulence strength. Considering these in-

fluential factors, we can accordingly design a partially coherent source of OAM light,

which demonstrates greater reliability compared to a fully coherent source in optical

communications.



CHAPTER 2: MODIFIED HUYGENS-FRESNEL METHOD FOR

PROPAGATION OF PARTIALLY COHERENT BEAMS THROUGH

TURBULENCE

2.1 Abstract

Partially coherent beams (PCBs) have been extensively studied as a method to

mitigate the deleterious effects of atmospheric turbulence for applications such as

free space optical communication. However, it can be difficult to study and assess

the performance of PCBs in turbulence due to the complicated physics of the atmo-

sphere and the wide variety of partially coherent beams possible. Here, we introduce

a modified approach to study the propagation of second order field moments of PCBs

analytically in turbulence, reformulating the problem in terms of free-space propa-

gation of the beam. We illustrate the method by studying a Gaussian Schell-model

beam in turbulence.

2.2 Introduction

In recent years, there has been an explosion of interest in the use of structured light

– light possessing nontrivial phase, polarization and coherence properties – to improve

a variety of optical applications [1, 2]. In particular, there has been intense research

on the use of the orbital angular momentum (OAM) of light as the information carrier

in free space optical communications in order to increase the channel capacity [3, 4, 5].

However, atmospheric turbulence inevitably degrades the quality of all optical

beams, limiting the useful range of free space applications; this is even more of a

concern for OAM beams, as the OAM is carried in the phase structure of light. It has

long been known that partially coherent beams (PCBs) are more resistant to atmo-
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spheric turbulence [6, 7, 8], as they are in a sense “pre-randomized,” and researchers

have put much effort into understanding and optimizing the coherence properties of

light for various applications in random media [9, 10]. Such optimization efforts are

challenging, due to the complicated nature of turbulence. Simulations of PCBs in

turbulence can be done using a multiple phase screen method [11, 12], but such an

approach is time-consuming and difficult to optimize, because the physics of the inter-

action is hidden in the simulations. The traditional analytical method for studying

the effects of turbulence is the extended Huygens-Fresnel (eHF) method, in which

the field from the source plane is propagated to the detector plane in the form of

turbulence-perturbed spherical waves [13, 14]. This method requires the evaluation

of a four-fold integral, making it difficult to evaluate even when a simplified model

of turbulence is used. Furthermore, the complexity of the integral again makes it

difficult to determine how to optimize coherence for atmospheric work.

Because of these difficulties, several attempts have been made over the years to

approach the analytic propagation problem differently. In 2007, Gbur and Korotkova

[15] rederived the extended Huygens-Fresnel method using a plane wave basis instead

of a spherical wave basis, getting results that are mathematically very similar to

the original. In 2016, Wang and Korotkova introduced a convolution approach for

beam propagation in random media [16], finding the spectral density to be a double

convolution of three functions.

In this paper, we take a different approach for analyzing the analytic propagation of

a partially coherent field through atmospheric turbulence. Using Fresnel transforms,

the extended Huygens-Fresnel method is reformulated and the propagation is instead

represented as the perturbation of the PCB propagating through free space. When

a simplified model of turbulence is used, this new approach gives a clearer physical

picture of the effects of turbulence on the propagated field. We illustrate the use of

this method by applying it to the traditional class of Gaussian Schell-model beams
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propagating through the atmosphere.

We begin by reviewing the extended Huygens-Fresnel method, then introduce our

modification of it. We then look at how the method simplifies with approximate

models of turbulence, and then consider the example of Gaussian Schell-model beams.

We show that the modified Huygens-Fresnel method provides several length scales for

estimating the turbulence resistance of a partially coherent beam to second-order.

2.3 The Extended Huygens-Fresnel Method

The extended Huygens-Fresnel principle is built upon the traditional Huygens-

Fresnel principle and involves the integral [14],

U(r, z) = − ik

2πz
exp (ikz)

∫∫ ∞
−∞

d2ρU0(ρ, 0) exp

[
ik

2z
|r− ρ|2 + Ψ(r,ρ)

]
, (2.1)

where U0 is the field at the source, k = 2π/λ is the wave number and ρ and r are

position vectors in the source and output transverse planes, respectively. The quantity

Ψ(r,ρ) denotes the complex phase perturbation of the spherical wave originating at ρ

and measured at r due to refractive index fluctuations, as determined using the first

Rytov approximation. The properties of this phase perturbation will be discussed

momentarily.

The first-order moment of the field averages to zero, so we turn to the second-

order moment, or the cross-spectral density of the field. We begin by assuming a

coherent quasi-monochromatic source field and look at the average over an ensemble

of turbulence realizations. We define the output cross-spectral density as

W (r1, r2;ω) =
〈
U∗(r1, ω)U(r2, ω)

〉
T
, (2.2)

where 〈· · · 〉T represents the average over the turbulence ensemble, and ω represents
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the mean frequency. Substituting from Eq. (2.1) into Eq. (2.2), we have

W (r1, r2;ω) =

(
k

2πz

)2 ∫∫ ∞
−∞

d2ρ1

∫∫ ∞
−∞

d2ρ2 U
∗
0 (ρ1, ω)U0(ρ2, ω)

× exp

{
− ik

2z

[
|r1 − ρ1|2 − |r2 − ρ2|2

]}
×
〈
exp [Ψ∗(ρ1, r1) + Ψ(ρ2, r2)]

〉
T
.

(2.3)

If we consider a source that is already partially coherent, then it has its own

independent ensemble, and we may write

W0(ρ1,ρ2;ω) =
〈
U∗0 (ρ1, ω)U0(ρ2, ω)

〉
ω
, (2.4)

where 〈· · · 〉ω represents an average over an ensemble of monochromatic realizations

of the field, as first introduced by Wolf [17]. For a quasi-monochromatic field, the

cross-spectral density at frequency ω is a good approximation to the properties of the

field as a whole. It should be noted that the ensemble of the source is independent of

the ensemble of the turbulence; then the cross-spectral density of a partially coherent

field at the detector plane is given by

W (r1, r2;ω) =

(
k

2πz

)2 ∫∫ ∞
−∞

d2ρ1

∫∫ ∞
−∞

d2ρ2W0(r1, r2;ω)

× exp

{
− ik

2z

[
|r1 − ρ1|2 − |r2 − ρ2|2

]}
F (r1, r2;ρ1,ρ2),

(2.5)

where we have introduced the turbulence function

F (r1, r2;ρ1,ρ2) ≡
〈
exp {Ψ∗(ρ1, r1) + Ψ(ρ2, r2)}

〉
T

(2.6)

for brevity. Using the method of cumulants [18] limited to first and second orders,

the function F (r1, r2;ρ1,ρ2) may be determined for homogeneous and isotropic tur-
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bulence and is of the form [14],

〈
exp [Ψ(ρ1, r1) + Ψ∗(ρ2, r2)]

〉
= exp

{
−4π2k2z

∫ 1

0

dξ

∫ ∞
0

dκ κΦn(κ)
{

1− J0 [|(ξ − 1)ρ− ξr|κ]
}}

,
(2.7)

where r = r2−r1 and ρ = ρ2−ρ1 are the difference vectors at the detector and source

planes, respectively, ξ = z/L is a unitless integration parameter, J0 is the Bessel

function of zero order and Φn(κ) is the spatial power spectrum of the turbulence. It

is important to note that this function only depends on the difference vectors, and

may be written as

F (r1, r2;ρ1,ρ2) = F (r,ρ). (2.8)

From Eq. (2.5), we see that determining the cross-spectral density in the detector

plane involves a four-fold integral. These integrals are non-separable, due to the

correlations in the turbulence and the source cross-spectral density. With approxi-

mations for the turbulence function and certain classes of sources, it is possible to

evaluate this integral analytically; however, the results are complicated and generally

give little insight into why one PCB may work better than another. Due to the large

variety of structured PCBs possible – see, for example, Refs. [19] and [20] – such an

approach is not ideal. In the next section, we introduce our modified Huygens-Fresnel

method to improve upon these limitations.

2.4 The Modified Huygens-Fresnel Method

Returning to Eq. (2.5), we note that the free-space Huygens-Fresnel kernels, e.g.

exp[ik(r− ρ)2/2z], remain unaltered in the equation. This suggests that we attempt

to simplify the equation by writing the source cross-spectral density in terms of its
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inverse Fresnel transform, i.e.

W0(ρ1,ρ2) =

(
k

2πz

)2 ∫∫ ∞
−∞

d2r′1

∫∫ ∞
−∞

d2r′2 Ŵ (r′1, r
′
2)

× exp

{
ik

2z

[
|r′1 − ρ1|2 − |r′2 − ρ2|2

]}
.

(2.9)

Here, Ŵ (r′1, r
′
2), the inverse Fresnel transform of W0(ρ1,ρ2), represents the cross-

spectral density that would appear at the detector plane at distance z if it had

propagated through free space. The geometry of the system and the relevant variables

are illustrated in Fig. 2.1.

Figure 2.1: Propagation of beam from source (ρ1, ρ2) to detector (r1, r2) through
atmospheric turbulence. (r1

′, r2
′) are positions on detector plane receiving the light

propagated in free space in the absence of turbulence.

Substituting from Eq. (2.9) into Eq. (2.5) gives

W (r1, r2;ω) =

(
k

2πz

)4 ∫∫ ∞
−∞

d2ρ1

∫∫ ∞
−∞

d2ρ2

∫∫ ∞
−∞

d2r′1

∫∫ ∞
−∞

d2r′2 Ŵ (r′1, r
′
2)

× exp

[
ik

2z

(
|r′1 − ρ1|2 − |r′2 − ρ2|2 − |r1 − ρ1|2 + |r2 − ρ2|2

)]
F (r,ρ).

(2.10)

At first glance, it appears that we have made our calculation even more complicated,

as it is now an eight-fold integral. We may simplify it significantly, however, by
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converting to sum and difference variables, of the form

r =r2 − r1 , R =
r2 + r1

2
,

ρ =ρ2 − ρ1 , P =
ρ2 + ρ1

2
,

(2.11)

with analogous definitions for r′ and R′. Rewriting Eq. (2.10) in these new variables,

we have

W (r,R) =

(
k

2πz

)4 ∫∫ ∞
−∞

d2r′
∫∫ ∞
−∞

d2R′
∫∫ ∞
−∞

d2ρ

∫∫ ∞
−∞

d2P Ŵ (r′,R′)

× exp

{
ik

2z

[
2P · (r′ − r) + 2ρ · (R′ −R)

]}
× exp

[
ik

2z
(3R · r− 3R′ · r′)

]
F (r,ρ).

(2.12)

The turbulence function F (r,ρ) is independent of P due to the homogeneity of the

turbulence; this means that we may directly integrate out that variable, resulting in

a delta function,

∫∫
d2P exp

[
−ik
z
P · (r− r′)

]
= (2π)2δ2

[
k

z
(r− r′)

]
. (2.13)

We may then integrate over r′, leaving us with the reduced formula

W (r,R) =

(
k

2πz

)2 ∫∫ ∞
−∞

d2R′
∫∫ ∞
−∞

d2ρ Ŵ (r,R′)F (r,ρ)

× exp

{
ik

2z

[
−3(R′ −R) · r + 2(R′ −R) · ρ

]}
.

(2.14)

Now the only thing that depends on ρ is the turbulence function F (r,ρ). Defining

the Fourier transform of F with respect to ρ as F̃ (r,K), in the form,

F̃ (r,K) =

∫∫ ∞
−∞

d2ρF (r,ρ) exp (iK · ρ) , (2.15)
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we may reduce our expression for the cross-spectral density to the form,

W (r,R) =

(
k

2πz

)2 ∫∫ ∞
−∞

d2R′ Ŵ (r,R′)F̃

[
r,
k

z
(R′ −R)

]
exp

[
−3ik

2z
(R′ −R) · r

]
.

(2.16)

Finally, we introduce a new shifted variable R′′ = R′ −R. Our expression becomes

W (r,R) =

(
k

2πz

)2 ∫∫ ∞
−∞

d2R′′ Ŵ (r,R′′ + R)F̃

(
r,
k

z
R′′
)

exp

(
−3ik

2z
R′′ · r

)
.

(2.17)

Equation (2.17) is the main result of the paper. It demonstrates that the traditional

Huygens-Fresnel method can be reformulated in a way that allows the relevant inte-

grals to be evaluated independently. The free space propagation of the cross-spectral

density must be evaluated first; however, this is almost always done anyway to pro-

vide a comparison with the behavior of the field in turbulence. The Fourier transform

of the turbulence function can be evaluated for simple turbulence models, as we show

in the next section. By writing the final result in terms of the shifted variable R′′,

we can see that the effect of the turbulence on the beam is a form of convolution, in

which copies of the free space propagated field are shifted, distorted and overlapped.

Further insight into the effects of turbulence will be found in the next section.

2.5 The Quadratic Approximation For The Modified Huygens-Fresnel Method

The turbulence function, given by Eq. (2.7), is generally a function that cannot be

readily integrated in either the extended Huygens-Fresnel method or its modification.

Though the integrals can be done numerically, one way to simplify them is to use a

quadratic approximation for the turbulence function which is a reasonable approxi-

mation when the principal effect of turbulence is through tilts in the phase front of

the beam [21]; this can be done by approximating the zeroth order Bessel function in
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Eq. (2.7) by the first two terms in its Taylor series expansion

J0(x) ≈ 1− x2 + . . . , (2.18)

as done for example in Ref. [19]. On substituting that into Eq. (2.7), we have

F (r,ρ) = exp
[
−Q(z) (r2 + ρ2 + ρ · r)

]
, (2.19)

where Q(z) is a quantity that characterizes the correlation length of the turbulence,

given by

Q(z) ≡
(
π2k2z

3

)∫ ∞
0

dκ [κ3 Φn(κ) ] . (2.20)

and κ is the norm of the two-dimensional spatial frequency in the transverse plane. It

is to be noted that an alternative form of the quadratic approximation was introduced

by Leader for the weak turbulence case which gives slightly different results [22]; here

we restrict our attention to the Taylor series approximation.

To calculate Q(z) in Eq. (2.20) a conventional model for the spatial power spectrum

of refractive index fluctuations is used. Among a number of existing models, the Von-

Karman model is the one we use going forward, which includes the effects of the inner

scale l0 and outer scale L0 of turbulence [14],

Φn(κ) = 0.033C2
n

exp (−κ2/κ2m)

(κ2 + κ20)
11/6

, 0 ≤ κ <∞.

κm =
5.92

l0
, κ0 =

2π

L0

.

(2.21)

The parameter C2
n is a measure of turbulence strength and is in the range of

10−17m−2/3 to 10−13m−2/3 from the weaker to stronger strengths. We will consider in-

ner and outer scales l0 = 2mm and L0 = 25m, though in the quadratic approximation
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these quantities are essentially averaged out in Eq. (2.20).

With Eq. (2.20), we can now readily evaluate Eq. (2.15) for F̃ (r,K); the result is

of the form

F̃

(
r,
k

z
R′′
)

=
π

Q(z)
exp

[
−3Q(z)r2

4

]
exp

[
− k2

4Q(z)z2
R′′2
]
. (2.22)

This expression shows that, within the quadratic approximation, the effect of tur-

bulence on the free-space propagated field is two-fold. First, there is a general loss

of spatial coherence as the propagation distance increases, as characterized by the

Gaussian function in r. Second, there is an overall wander of the central axis of the

beam that depends on the strength of turbulence and the propagation distance; as

the beam propagates, the quantity Q(z) increases and so does the wander. Looking

back at Eq. (2.17), the complex phase term depending on R′′ · r is a propagation

phase associated with the wander.

This formula gives us a quantitative method of assessing the robustness of a par-

tially coherent beam in atmospheric turbulence, at least to second-order (i.e. to the

level of field-field correlations). A robust beam, by definition, will remain largely

unchanged by the turbulent atmosphere on propagation; in particular, its spatial

coherence will be relatively unperturbed and its intensity profile will be relatively

unperturbed. From Eq. (2.22), one expects that the coherence of the PCB will be

unperturbed provided its free space value at the detector plane is less than the char-

acteristic length l(z):

l(z) =

√
4

3Q(z)
. (2.23)

From the same equation, one expects that the intensity profile will be unperturbed

provided the beam width is significantly larger than the average wander radius, given

by:

w(z) =

√
4Q(z)z2

k2
. (2.24)
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This latter observation is in agreement with the early observation that much of the

robustness of PCBs in turbulence comes from their greater free-space diffraction [23].

It is to be noted that these two conditions are distinct, suggesting that it may be

possible to have a beam with distorted intensity but unperturbed spatial coherence,

and vice versa.

We may use these conditions to estimate the robustness of various PCBs in tur-

bulence. It is to be noted that the modified Huygens-Fresnel method can be used

both analytically and computationally to evaluate PCBs, as it reduces the four-fold

integral of the extended Huygens-Fresnel method to a number of simpler steps.

2.6 Propagation of Gaussian-Schell Model beam in atmospheric turbulence

To test our modified eHF model and the resulting predictions about the effects

of a turbulent media on the intensity and degree of coherence of beams, we use the

modified eHF model to study the propagation of a partially coherent Gaussian-Schell

model beam.

A Schell-model source is characterized by dependence of its coherence only on the

difference vector ρ1 − ρ2, and the cross-spectral density of a Gaussian Schell-model

source has the form [24]:

W0(ρ1,ρ2) = I0 exp

[
− 1

4σ2
s

(ρ21 + ρ22)

]
exp

[
− 1

2σ2
g

|ρ1 − ρ2|2
]
, (2.25)

where the quantities I0, σs and σg are the maximum intensity, the spot size the and

correlation width of the beam at the source, respectively.

The first step of applying the modified Huygens-Fresnel method is to find the prop-

agation of the cross-spectral density function in free space using Fresnel propagation.
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The result is of the form,

Ŵ (r′1, r
′
2) =

(
I0
T

)
exp

[
− 1

4σ′2s
(r′21 + r′22 )

]
exp

[
− 1

2σ′2g
|r′1 − r′2|2

]
× exp

[
− ik

2R′(z)
(r′21 − r′22 )

]
.

(2.26)

Here r′1,r′2 are position vectors on the detector plane and σ′s and σ′g are the spot

size and correlation width of beam at the detector plane in free space propagation

respectively,

σ′2s = Tσ2
s , σ′2g = Tσ2

g ,

T ≡ 1 +

(
z

kσs

)2(
1

4σ2
s

+
1

σ2
g

)
,

(2.27)

and R′(z) is the radius of curvature of the beam at the detector plane,

R′(z) = z

(
T

T − 1

)
. (2.28)

Substituting from these expressions into Eq. (2.17), and using Eq. (2.22) for the

turbulence function, the cross-spectral density on propagation through turbulence

can be obtained in terms of the position vectors r1,r2 in the detector plane,

W (r1, r2) =

(
I0

T + t

)
exp

[
− 1

4Σ2
s

(
r21 + r22

)]
exp

[
− 1

2Σ2
g

|r1 − r2|2
]

× exp

[
− ik

2R(z)
(r21 − r22)

]
,

(2.29)

where Σs and Σg are the spot size and coherence width of the beam at the output

plane after turbulence propagation,

Σ2
s = σ′2s +

1

2
w2(z), (2.30)
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1

2Σ2
g

=
1

2σ′2g
+

1

l2(z)
+

1

l′2(z)
. (2.31)

The quantities l(z) and w(z) are the characteristic length and average wander radius

introduced in previous section, Eqs. (2.23) and (2.24), respectively, and they both

depend on the turbulence strength and wavelength of the source. These expressions

confirm that, to a rough approximation, the turbulence resistance of the beam profile

depends on the relative sizes of σ′s and w(z), and that the turbulence resistance of

the spatial coherence depends on the relative sizes of σ′g and l(z).

A more refined analysis comes from investigating the parameter l′(z), which de-

pends in a non-trivial way upon the correlation width and spot size of the Gaussian

Schell- model beam,
1

l′2(z)
= Q(z)

[
( z
kσs

)2 + (1 + T )2

T (T + t)

]
(2.32)

where t is given by

t = 2Q(z)

(
z

kσs

)2

. (2.33)

The quantity R(z) in Eq. (2.29) is the average radius of curvature of the beam at

the detector plane after propagating in turbulence,

R(z) = z

[
2(T + t)

T + 3t− 2

]
. (2.34)

We now consider the turbulence resistance of Gaussian Schell-model beams and

whether the simple parameters given earlier are an accurate way of estimating tur-

bulence resistance in this case. According to Eq. (2.30) we can see that the effect of

turbulence on intensity is negligible if the ratio

α ≡ σ′s
w(z)

(2.35)

is significantly larger that 1, which is in agreement with the estimate of Eq. (2.24).
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Also from Eq. (2.31) coherence of the beam is apparently unperturbed provided

that the two ratios

β1 ≡
σ′g
l(z)

,

β2 ≡
σ′g
l′(z)

(2.36)

are significantly smaller that 1. The first of these conditions is analogous to Eq. (2.23),

while the second comes from the detailed analysis of a Gaussian Schell-model beam.

In Figure 2.2, the intensity profiles of a Gaussian Schell-model beam on propagation

in free space and turbulence are compared, with the source spot size σs = 0.5mm and

the source correlation width σg = 0.25mm; because σg < σs, the source is globally

partially coherent. We see that for large values of α, the turbulence effect is negligible

and free space and turbulence intensity profiles coincide. As α decreases to values less

than 2 over larger propagation distances, the intensity in turbulence begins to diverge

from the free space profile and a drop of the peak intensity is observed, which is in

agreement with our condition dictated by Eq. (2.24) for an unperturbed intensity.

Figure 2.3 shows similar intensity profiles for σs = 0.5mm and the source correlation

width σg = 1m; in this case the field is essentially fully coherent. It can be seen again

that the intensity profiles in free space and turbulence begin to diverge when α < 2;

by comparing the propagation distances in the two figures, we can see that the fully

coherent beam shows turbulence effects at significantly shorter distances than the

partially coherent beam.

Both figures 2.2 and 2.3 indicate that if the beam size in free space propagation is

significantly larger than the average wander parameter defined in Eq.(2.24), regardless

of coherence state of the beam, intensity shows higher resistance against atmospheric

turbulence.

Figure 2.4(a) shows the degree of coherence (DOC) at the source, in free space
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Figure 2.2: Intensity profile of propagation of partially coherent Gaussian-Schell
model beam in atmospheric turbulence. Red circles show the turbulence and solid
line is the free space intensity profiles. In (a),(b),(c) propagation is through moderate
strength turbulence C2

n = 10−15m−2/3 to distances 0.5km, 3km, 15km and (d),(e),(f)
show propagation through strong turbulence C2

n = 10−13m−2/3 to distances 10m, 50m,
150m respectively. Coherence width, spot size and wavelength of source are 0.25mm
, 0.5mm and 633nm respectively.
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Figure 2.3: Intensity profile of propagation of highly coherent Gaussian-Schell model
beam in atmospheric turbulence. Red circles show the turbulence and solid line is the
free space intensity profiles. In (a),(b),(c) propagation is through moderate strength
turbulence C2

n = 10−15m−2/3 to distances 50m, 250m, 1000m and (d),(e),(f) show
propagation through strong turbulence C2

n = 10−13m−2/3 to distances 2m, 5m, 15m
respectively. Coherence width, spot size and wavelength of source are 1m , 0.5mm
and 633nm respectively.
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Figure 2.4: DOC of Gaussian-Schell model beam for z = 10m(a) and z = 30m(b)
propagation distances. (a) shows the DOC at the source, detector plane in free
space propagation, detector plane through moderate turbulence C2

n = 10−15m−2/3

with (β1 ≈ 0.08, β2 ≈ 0.09), and through strong turbulence C2
n = 10−13m−2/3 with

(β1 ≈ 0.8 , β2 ≈ 1). In (b) for moderate strength turbulence (β1 ≈ 0.4 , β2 ≈ 0.5)
and for strong turbulence (β1 ≈ 4.3 , β2 ≈ 4.9). Coherence width, spot size and
wavelength of source are 0.1mm , 0.5mm and 633nm respectively.

at the detector, and through turbulence at the detector for two distinct turbulence

strengths. It can be seen that DOC is indistinguishable from the free space case in

moderate strength turbulence; this case satisfies β1, β2 << 1.

Figure 2.4(b) shows the same fields over a significantly further propagation distance,

and it can be seen that the conditions (2.36) have not been satisfied, and the DOC

is significantly lower in turbulence than in free space.

It is to be noted that the spatial coherence degrades over quite short propaga-

tion distances in turbulence, at least when compared to the distance over which the

intensity profiles show turbulence resistance.

Figure 5 illustrates how the correlation width of the beam evolves in turbulence for

various propagation parameters. Over short distances, the correlation width increases

on propagation, in accordance with the venerable van Cittert-Zernike theorem, which

indicates that spatial coherence generally increases on free-space propagation. At a
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critical distance, however, the random phase distortions of the turbulence accumulate

to the point that the spatial coherence begins to decrease; the range at which this

decay happens is dictated by the conditions of Eq. (2.36). It is of interest to note

that, for beams with the same correlation width, the degree of coherence is more

turbulence-resistant for larger source beam widths.

Figure 2.5: Coherence width on the detector plane as a function of propagation
distance z through moderate strength turbulence C2

n = 10−15m−2/3. (a),(b),(c) cor-
respond to sources with beam size 0.25mm, 0.5mm and 2mm respectively and the
coherence width of the sources is 0.25mm. The dashed line is the indicator of coher-
ence resistant distance with β1 ≈ 1.

These examples illustrate that the general conditions dictated by Eqs. (2.23) and

(2.24), and their values specific to Gaussian Schell-model beams given by Eqs. (2.35)

and (2.36), provide a reasonable estimate of the range of turbulence resistance. These

equations have to be solved for the critical z-distance in each case, and it is not imme-

diately obvious how the range of turbulence resistance relates to spatial coherence. In
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Figure 2.6, the range of turbulence resistance is plotted as a function of σ−2g ; it can be

seen that as spatial coherence decreases, the turbulence resistant distance increases.

It is also to be noted that the turbulence resistance increases as the beam width de-

creases. Smaller beam widths at the source translate into more rapid spreading of the

free-space beam on propagation, making them less susceptible to turbulence-induced

beam wander.

Figure 2.6: Unperturbed intensity propagation distance through strong turbulence
C2
n = 10−13m−2/3 as a function of coherence width of the beam for sources with

different beam size.

2.7 Conclusion

We have developed a modified analytic approach for the propagation of partially

coherent beams in atmospheric turbulence. In this method, the eHF principle is

reformulated so that the effect of turbulence is described as a distortion and wander

of the free-space propagated field at the detector. If the binomial approximation is

used to simplify the form of the turbulence phase function, the modified eHF principle

can be used to estimate the propagation distance over which the intensity profile and



24

DOC of the field are unaffected by turbulence. Gaussian Schell-model beams were

used as an example to test the accuracy of the turbulence resistance estimates, and

in this case they were shown to be accurate.

The modified eHF method breaks up the four-fold integral of the traditional eHF

method into several steps: the free-space propagation of the field and the wander

and distortion of the free-space propagated field at the detector. The free-space

propagation of the field is almost always calculated for comparison when studying

partially coherent beams in turbulence, so this step doesn’t add any significant burden

to the calculation. The final integral of the free-space field in turbulence is only two-

fold, making it easier to evaluate both analytically and computationally. The results

for the beam size of Gaussian Schell-model beams through turbulence is exactly in

agreement with Ref. [25] which has used the ordinary eHF principle for propagation.

It is hoped that this technique will make the analysis of various structured PCBs

easier to undertake and the results easier to understand. This method only considers

the behavior of the fields to second-order (field-field correlations). Considering fourth-

order (intensity-intensity) calculations are important in understanding properties like

the scintillation of the beams in turbulence and the bit-error rate of free-space optical

communication systems, future work will involve studying whether the modified eHF

method can be further extended to fourth order.
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CHAPTER 3: CIRCULARLY COHERENT VORTEX BEAMS OPTIMIZED FOR

PROPAGATION THROUGH TURBULENCE

3.1 Abstract

Self-focusing partially coherent beams with circular coherence have shown high

potential for robust propagation through atmospheric turbulence. In this paper, we

introduce a criteria to approximate the degrading effects of turbulence and we show

that how the coherence of the source can be optimized to generate a beam with the

highest stability in turbulence. To test our prediction, we analytically compare the

turbulence propagation of the OAM spectrum of circularly coherent Gaussian vortex

sources with three different coherence parameters. It is shown that by satisfying the

introduced optimizing conditions, we can minimize the adverse effects of turbulence

on the OAM spectrum.

3.2 Introduction

Beams carrying orbital angular momentum (OAM) have recently been the subject

of extensive research due to their potential benefits in a wide variety of applications,

including microscopy [1], spectroscopy [2] and optical communications [3, 4]. The

canonical example of OAM beams is the set of Laguerre-Gauss beams, which possess a

singularity of phase on their central axis and an integer helical phase twist – an optical

vortex – around that axis; these beams also possess an orbital angular momentum

proportional to the phase twist [5]. The Laguerre-Gauss beams can be multiplexed

and demultiplexed through a geometric mode sorter [6], potentially allowing for a

dramatic increase in amount of data transmitted along a single optical channel in

free-space optical communications.
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However, it has also been demonstrated that atmospheric turbulence will degrade

an OAM signal, causing a pure OAM state to split into a spectrum of modes and

resulting in crosstalk and degraded channel capacity in an OAM-based communica-

tions system [7, 8]. To circumvent this, beams with non-trivial phase, amplitude,

polarization, and coherence have been studied as alternatives, and the study of such

beams is now referred to as structured light [9].

One promising possibility of structured light is the use of beams with reduced spa-

tial coherence. It is known that partially coherent beams exhibit resistance to the

degrading effects of turbulence in many cases [10], and it is natural to ask if reducing

the spatial coherence of OAM beams can reduce the crosstalk they experience. How-

ever, there is a natural conflict between partial coherence and OAM: optical vortices

are coherent phase structures in a wavefield, and partial coherence involves the ran-

domization of the phase of a wavefield. There has been extensive research on partially

coherent vortex beams [11, 12], and it is widely recognized that the OAM spectrum of

a partially coherent vortex beam is, in general, broadened over many modes, because

the azimuthal phase of the beam is randomized.

One class of partially coherent beams that do not suffer from such limitations

are beams with so-called circular coherence, first introduced in 2017 [13]. In such

beams, the field is only partially coherent in the radial direction, but fully coherent

in the azimuthal direction. Such beams may be considered as an ensemble of beams

with random focal distances, which also indicates that these beams tend to have

self-focusing properties. Though the original paper on circular coherence considered

non-vortex beams, it can readily be shown that a circularly coherent beam with an

embedded vortex phase, and associated pure OAM state, will maintain that state

on propagation in free space [14]. Such beams, with a pure OAM state and partial

coherence along the radial direction, are potentially more resistant to the effects of

atmospheric turbulence and a possible means of improving channel robustness in
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free-space optical communications.

In this paper, we analytically model the propagation of circularly coherent vortex

beams in atmospheric turbulence under various conditions. We provide guidelines for

optimizing such beams for a given turbulence channel, and discuss the physics of the

results. We show how this type of beam can be produced in a simple way and how

we can modulate a beam at its source to increase the stability of its OAM spectrum

against turbulence fluctuations.

3.3 Vortex Beams With Circular Coherence

We begin by introducing the notation and theory related to the class of circularly

coherent vortex beams. Partially coherent beams in general can be characterized by

the cross-spectral density (CSD) function, which is defined as the correlation between

the fields at two different points ρ1 and ρ2 in the beam cross-section at frequency ω,

W (ρ1,ρ2, ω) =
〈
U∗(ρ1, ω)U(ρ2, ω)

〉
ω
, (3.1)

where 〈...〉ω represents the average over an ensemble of monochromatic realizations

of the fields [15] and the asterisk represents the complex conjugation. Here U(ρ, ω)

represents the field at vector position ρ in the transverse plane at frequency ω. We

note that the spatial coherence properties of a quasi-monochromatic field can be

well-characterized by the cross-spectral density at its center frequency ω; we suppress

explicit mention of frequency in the arguments of functions going forward for brevity.

In general, it is well-known that the cross-spectral density may always be repre-

sented in terms of its coherent field characteristics, characterized by τ(ρ), and its

spectral degree of coherence µ(ρ1,ρ2), in the form

W (ρ1,ρ2) = τ ∗(ρ1)τ(ρ2)µ(ρ1,ρ2), (3.2)
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where 0 ≤ |µ(ρ1,ρ2)| ≤ 1 for any pair of points.

Circular coherence represents the special case in which the spectral degree of co-

herence between the two points depends only on their radial separation distance in

the form |ρ21 − ρ22|. The CSD of this type of beam is written as

W (ρ1,ρ2) = τ ∗(ρ1)τ(ρ2)g
(
ρ21 − ρ22

)
, (3.3)

where the function g quantifies the coherence properties of the corresponding beam,

with g(0) = 1. We can define such a partially coherent source through the superpo-

sition integral [16]

W (ρ1,ρ2) =

∫ ∞
−∞

dν p(ν)H∗(ρ1, ν)H(ρ2, ν) , (3.4)

where p(ν) is a non-negative Fourier transformable weight function. By choosing the

kernel H(ρ, ν) as a coherent field with a finite radius of curvature [17]

H(ρ, ν) = τ(ρ)e−2πiνρ
2

, (3.5)

the resulting CSD can be interpreted as the incoherent superposition of coherent

beams with different radii of curvature; this curvature is defined as a function of the

distribution variable ν as

R0(ν) =
1

2λν
, (3.6)

where λ is the wavelength. The corresponding CSD can be expressed as

W (ρ1,ρ2) = τ ∗(ρ1)τ(ρ2)p̃(ρ21 − ρ22) , (3.7)

where we have used tilde to represent the Fourier transform.

Various distribution functions have Fourier transforms that meet the conditions
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of circular coherence, including Gaussian, Lorentzian, and rectangular distributions.

Selecting an appropriate distribution function provides a degree of freedom to opti-

mize the coherence state of the source, thereby improving its resilience to turbulence.

For our model, we have opted for the rectangular function as

p(ν) = Rect
(
ν − ν0

∆ν

)
, (3.8)

where Rect(ν) indicates the rectangular function with value 1 for |ν| ≤ 1/2 and zero

otherwise. Here ν0 and ∆ν are the center and width of the rectangular window,

respectively, which should be determined to minimize the turbulence effects. The

discussion regarding these parameters will be provided in Section 4.

By considering the function τ(ρ) as a 1st order Gaussian vortex beam,

τ(ρ) = ρeiφ exp

(
− ρ2

2σ2
s

)
, (3.9)

where φ and σs represent the azimuthal angle and beam size, respectively, the CSD of

the resulting OAM carrying vortex beam with circular coherence takes the following

form,

W0(ρ1,ρ2) = ρ1ρ2e
i(φ2−φ1) exp

[
− 1

2σ2
s

(ρ21 + ρ22)

]
×
∫ ∞
−∞

dν p(ν) exp
[
−2πiν(ρ22 − ρ21)

]
,

(3.10)

where it is to be noted that the azimuthal phase terms are separable, indicating full

coherence in the azimuthal direction.

3.4 Propagation Through Atmospheric Turbulence

We now turn to the propagation of circularly coherent beams through atmospheric

turbulence; the relevant notation is illustrated in Fig. 3.1. The propagation of the

CSD of a partially coherent beam from the points ρ1 and ρ2 in the source plane to
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the points r1 and r2 in the detector plane at distance z through turbulence can be

described by the extended Huygens-Fresnel principle [18],

Wturb(r1, r2; z) =

(
k

2πz

)2 ∫∫
d2ρ1

∫∫
d2ρ2 W0(ρ1,ρ2)

× exp

[
− ik

2z

(
|r1 − ρ1|2 − |r2 − ρ2|2

)]
×
〈

exp [Ψ∗(ρ1, r1) + Ψ(ρ2, r2)]
〉
,

(3.11)

where k = 2π/λ is the wave number and Ψ(ρ, r) represents the complex phase per-

turbation of the spherical wave originating at ρ and measured at r due to refractive

index fluctuations. The value of this complex phase can be determined up to second

order for homogeneous and isotropic turbulence by the method of cumulants [18]. To

make the integrals of Eq. (3.11) tractable, a quadratic approximation for the resulting

phase is used, which results in the expression [19]

〈
exp [Ψ∗(ρ1, r1) + Ψ(ρ2, r2)]

〉
= exp

[
−Q(z)(r2 + ρ2 + ρ · r)

]
, (3.12)

where r = r2 − r1 and ρ = ρ2 − ρ1 are the difference vectors at the detector and

source planes, respectively and Q(z) is determined by the state of turbulence,

Q(z) ≡ π2k2z

3

∫ ∞
0

dκ [κ3 Φn(κ) ] , (3.13)

where κ is the magnitude of the spatial frequency of the refractive index fluctuations

and Φn(κ) represents the spatial power spectrum of the turbulence. The four-fold

integral of Eq. (3.11) is generally difficult to evaluate. We have simplified the process

by using a modified version of the eHF principle [20], which determines the field in

the detector plane as a two-fold integral of the free-space propagated version of the
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Figure 3.1: (a): Propagation in free space , (b): propagation through turbulence

field. This integral has the form,

Wturb(R, r; z) = F (R, r; z)

∫∫
d2R′ W̃fs(R

′, r′ = r; z)

× exp

(
− 1

w2
R′2 +

2

w2
R′ ·R− 3ik

2z
R′ · r

)
,

(3.14)

with

F (R, r; z) =
1

πw2
exp

(
−3Q(z)

4
r2
)

exp

(
− 1

w2
R2

)
exp

(
3ik

2z
R · r

)
, (3.15)

w2 =
4z2Q(z)

k2
, (3.16)

where W̃fs represents the CSD of the beam at two points r′1 and r′2 in the detector

plane in free space propagation as a function of the following sum and difference

position vectors,

r =r2 − r1 , R =
r2 + r1

2
,

r′ =r′2 − r′1 , R′ =
r′2 + r′1

2
.

(3.17)

Figure 3.1 schematically illustrates the position vectors on the source and detector

planes for propagation both in free space and through turbulence.
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3.4.1 Free space

To evaluate Eq. (3.14), we first need to evaluate the propagation of the CSD func-

tion in free space by applying Fresnel propagation. In this paper the term “free space”

means “in the absence of turbulence effects.” The most elegant approach is simply

to evaluate the integrand of Eq. (3.10) while leaving the integral over ν to be done

numerically. In terms of position vectors r′1 and r′2, the CSD in the detector plane

becomes

W̃fs(r
′
1, r
′
2; z) =

∫ ∞
−∞

dν p′(ν) z′∗1 z
′
2 exp

[
− 1

2σ′2s (ν)

(
r′21 + r′22

)]
× exp

[
− ik

2R′z(ν)
(r′21 − r′22 )

]
,

(3.18)

where we have introduced z′i = x′i+ iy
′
i, with i = 1, 2. Similar to the expression for the

CSD in the source plane, the Eq. (3.18) represents the CSD function in the detector

plane as a superposition of beams with different sizes σ′s(ν) and radii of curvature

R′z(ν) in free space determined by the probability variable ν and with a new weight

function p′(ν); these equantities are given by

p′(ν) = t4(ν)p(ν), (3.19)

σ′2s (ν) = σ2
s

[
β2(ν) +

(
z

z0

)2
]
, (3.20)

1

R′z(ν)
=

1− t2(ν)β(ν)

z
, (3.21)

where z0 = kσ2
s is the Rayleigh range of a Gaussian beam and the parameters t(ν)

and β(ν) are defined as

β(ν) = 1− z

R0(ν)
, (3.22)

t(ν) =
σs

σ′s(ν)
. (3.23)
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3.4.2 Turbulence

Substituting from Eq. (3.18) into Eq. (3.14), the CSD in the detector plane after

propagation through turbulence can be obtained in terms of position vectors r1 and

r2 as

Wturb(r1, r2; z) =

∫ ∞
−∞

{
C0(ν) + C∗1(ν)z21 + C1(ν)z22 + C2(ν)z∗1z2 +

[
C2(ν)− 1

]
z1z
∗
2

}
× exp

[
− 1

2Σ2
s(ν)

(
r21 + r22

)]
exp

[
− 1

2Σ2
g(ν)
|r1 − r2|2

]
× exp

[
− ik

2Rz(ν)
(r21 − r22)

]
dν P(ν).

(3.24)

This equation shows that the resulting CSD function has the form of a superposition

of Schell-model partially coherent vortex beams of orders 0, −1, +1 with the weight

function P(ν) and different beam sizes Σs(ν), coherence widths Σg(ν) and radii of

curvature Rz(ν), defined as

P(ν) = T 4(ν)p′(ν), (3.25)

Σ2
s(ν) = σ′2s (ν) +Q(z)

(
4z2

k2

)
, (3.26)

1

2Σ2
g(ν)

=
1

4σ′2s (ν)
− 1

4Σ2
s(ν)

+Q(z)

[
z T (ν)

R̂z(ν)

]2
+

3

4
Q(z), (3.27)

1

Rz(ν)
=

3

2z
+
T 2(ν)

R̂z(ν)
, (3.28)

where the parameters T (ν) and R̂z(ν) are

1

R̂z(ν)
=

1

R′z(ν)
− 3

2z
, (3.29)

T (ν) =
σ′s(ν)

Σs(ν)
. (3.30)



36

The parameters Ci, with i = 0, 1, 2 may be interpreted as relative weights of the

different vortex terms of Eq. (3.24); these have the form

C0(ν) = Q(z)

(
4z2

k2

)
, (3.31)

C1(ν) =
1

4

[
T 2(ν)− 1

T 2(ν)

]
+Q2(z)

[(
2z2

k

)
T (ν)

R̂z(ν)

]2

+ iQ(z)

[(
2z2

k

)
T 2(ν)

R̂z(ν)

]
, (3.32)

C2(ν) =
1

4

[
T 2(ν) +

1

T 2(ν)

]
+Q2(z)

[(
2z2

k

)
T (ν)

R̂z(ν)

]2
+

1

2
. (3.33)

The expression for the CSD on propagation through turbulence given in Eq. (3.24)

recovers the free space result of Eq. (3.18) in the limit Q(z) → 0, which results in

T (ν) = 1.

3.5 OAM spectrum

With the results of the prevous sections, we can now turn to evaluating the effect

of atmospheric turbulence on the OAM spectrum of circularly coherent vortex beams.

The OAM spectrum is determined by finding the intensity associated with each az-

imuthal mode of the field. We may find this by first decomposing the CSD in terms

of its azimuthal modes,

Wm(r1, r2) =
1

(2π)2

∫ 2π

0

∫ 2π

0

dφ1dφ2W (r1, r2)e
im(φ1−φ2) , (3.34)

where r1, r2 and φ1, φ2 represent the radial and azimuthal coordinates, respectively,

corresponding to the position vectors r1 and r2. We substitute from Eq. (3.24) into

Eq. (3.34) to find this azimuthal modal distribution. We then find the total intensity

associated with each mode by setting r1 = r2 ≡ r and integrating over the radius of
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the detector aperture Rd; the intensity of the mth mode is given by the expression,

Im = 2π

∫ Rd

0

rdr

∫ ∞
−∞

dν P(ν) exp

[
−
(

1

Σ2
s

+
1

Σ2
g

)
r2
]

×

{[
C0(ν) + 2<{C1(ν)} r2

]
Im
(
r2

Σ2
g

)
+ C2(ν)r2Im−1

(
r2

Σ2
g

)

+
[
C2(ν)− 1

]
r2Im+1

(
r2

Σ2
g

)}
,

(3.35)

where Im is the modified Bessel function of order m. This result can be used to find

the OAM spectrum of both coherent and circularly coherence beams in turbulence

propagation, with the coherent case given by R0(ν) → ∞ , which is equivalent to

ν → 0 .

We must also integrate over the curvature variable ν, using the form of Eq. (3.8)

for p(ν). Our goal is to find the values of ν0 and ∆ν, the center and width of the

rectangular window, respectively, such that the effects of turbulence on the OAM

spectrum are minimized.

It is well-known that turbulence degrades the quality of the beam by increasing the

beam size and reducing its correlation length. Therefore, we may examine the ratio

of the correlation length over beam size as a measure of turbulence resistance, i.e.

Ω ≡ Σg

Σs

. (3.36)

By analyzing the profile of Ω for various values of ν, we have found that its maxi-

mum happens at ν = 3/4λz, which is equivalent to a radius of curvature of R0 = 2z/3,

and this is independent of the beam size at source, the strength of turbulence and

the propagation distance.

As an example, Fig. 3.2 shows the profile of Ω for a beam with σs = 3 cm in

z = 600 m propagation through moderate strength turbulence. As is evident, the

maximum of Ω happens at ν = 3/4λz. This suggests that we may create a beam with
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strong turbulence resistance by assigning a narrow rectangular window for p(ν) with

a width of ∆ν and the center ν0 = 3/4λz, as is shown by the red region in Fig. 3.2.

Considering the fact that ν = 0 corresponds to the coherent source of a vortex beam

with infinite radius of curvature, which has lower value of Ω in Fig. 3.2, we can expect

that a circularly coherent beam with the aforementioned parameters is more resistant

than its fully coherent counterpart.

Figure 3.2: Profile of Ω vs. 2λzν of a circularly coherent beam detected after z = 600
m propagation through turbulence with the strength C2

n = 10−14 m−2/3 . The beam
size at the source is σs = 3 cm.

We approximate the integral over ν in Eq. (3.35) by a discrete finite sum of ν values

in the vicinity of ν0; this is equivalent to superimposing a finite number of Gaussian

vortex beams with radii of curvature in the range of 2z
3
−∆R0 < R0 <

2z
3

+ ∆R0 with

∆R0 = ε

λ(ν20−ε2)
,

∫ ∞
−∞

dν p(ν)G(ν) =

∫ ν0+ε

ν0−ε
dν G(ν) ≈

N∑
j=1

G(νj) , (ν0 − ε < νj < ν0 + ε)

(3.37)

where ε = ∆ν/2 and G(ν) represents any arbitrary integrand.
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To test our prediction about the relationship between the parameter Ω and the

robustness of the featured circularly coherent beam, in Fig. 3.3, we have compared

the normalized OAM spectrum of several circularly coherent Gaussian 1st order vortex

beams with different values of ν0 in z = 500 m propagation through turbulence.

Figure 3.3: Probability distribution of OAM modes detected after z = 500 m prop-
agation through turbulence with C2

n = 2 × 10−15 m−2/3. The beam size at source is
σs = 2 cm with wavelength λ = 632 nm and infinite sized detector Rd →∞.

For the power spectrum of turbulence fluctuations we have used the Von-Karman

model [18] with the values of 2 mm and 25 m as inner and outer scales, respectively,

and a turbulence strength of C2
n = 2 × 10−15 m−2/3. The number of superimposed

beams at source is N = 6 and the width of the rectangular distribution is ∆ν =

0.001/λz m−2. The blue bars represent the OAM spectrum of a coherent source with

ν = 0 and the red bars correspond to a circularly coherent source with (a) : ν0 = 1/2λz

or R0 = z , (b) : ν0 = 3/4λz or R0 = 2z/3, and (c) : ν0 = 1/λz or R0 = z/2. Since at

the source we had a pure first order vortex beam, a higher concentration of intensity

in the first order OAM mode at the detector implies lower disturbance caused by

turbulence.

It is evident that the source composed of different beams with radii of curvature

close to R0 = 2z/3, or equivalently ν0 = 3/4λz, shows higher resistance than the

other cases, which supports our prediction of Eq. (3.36). Also, we should notice



40

that the circularly coherent beam with ν0 = 1/2λz in Fig. 3.3(a) is impacted by the

turbulence more than the coherent beam, which signifies the sensitivity of relationship

between the range of radii of curvature of beams at the source and the resistance of

the generated beam against turbulence.

Figure 3.4 shows the OAM spectrum for a finite sized detector with radius Rd = 5 cm

propagating from a source with the same parameters of Fig. 3.3 through turbulence.

A comparison of the two figures shows that the OAM spectrum gets broader when the

aperture is finite but still the case with maximum Ω at ν0 = 3/4λz has the highest

intensity in the mode of order 1, indicating the strongest turbulence resistance.

It should be noted that due to the self-focusing feature of circularly coherent beams,

according to the expressions of beam sizes in turbulence given in Eq. (3.20) and

Eq. (3.26), the minimum spot size on the detector will be achieved for sources with

ν0 = 1/2λz, which does not provide the most stable OAM spectrum.

Figure 3.4: Probability distribution of OAM modes detected after z = 500 m prop-
agation through turbulence. The beam size at source is σs = 2 cm with wavelength
λ = 632 nm. Radius of the detector is Rd = 5 cm.

We have yet to determine how the width ∆ν, which is inversely related to the

correlation length of the beam, affects the OAM spectrum. Here we must also consider

how the number of beams used in the discrete sum of Eq. (3.37) affects our results. In

Fig. 3.5, we have plotted the standard deviation of the OAM spectrum in turbulence
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for sources with different numbers of beams N and different ranges of ∆ν. The

standard deviation is considered as a rough measure of concentration of energy in the

central mode of the spectrum; this implies that a lower standard deviation corresponds

to a higher resistance in turbulence. In Fig. 3.5, The solid black dot at N = 1 shows

the standard deviation corresponding to the coherent source with a single beam with

the radius of curvature of R0 = 2/3z.

We may make two observations related to this figure. First, we can see that increas-

ing the range of ∆ν reduces the standard deviation of the OAM spectrum. Therefore,

the circularly coherent beams do in fact show some improved resistance to turbulence,

but it is a relatively small improvement compared to an optimally focused coherent

beam. For this class of beams, choosing the optimal focusing is more significant than

choosing the optimal coherence.

Second, we note that a relatively small number of beamlets are needed in order to

achieve the best turbulence resistance possible for any value of ∆ν, considering we

are using a finite sum to approximate a continuous integral over ν. This appears to

be an example of what has been referred to as “beamlet diversity,” first observed for

Bessel-correlated beams in turbulence [21]. This diversity can be explained as follows.

Our partially coherent beam has improved resistance to turbulence by sending mu-

tually incoherent beamlets with different ν parameters through the same realization

of turbulence. Each beamlet will propagate through the same turbulence realization

and produce a different interference pattern at the detector; if these patterns are very

different from each other, we expect that the effects of turbulence will be averaged

out. However, beamlets with nearly identical values of ν will produce nearly identi-

cal interference patterns and will produce a result no different from a fully coherent

beam. In order for beamlets to provide some mutual improvement, they must have

sufficiently diverse – very different – values of ν. For a fixed value of ∆ν, evidently

there is an optimum separation of beamlets in ν beyond which they become redundant
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and produce no positive effects.

Figure 3.5: Standard deviation of normalized OAM spectrum in turbulence Vs. num-
ber of superimposed beams at source (N) for different ranges of radii of curvature
around R0 = 2/3z or equivalently ν0 = 3/4λz. The beam size at the source is
σs = 2 cm and wavelength λ = 632 nm . The beam is propagated z = 1 km through
turbulence with the strength of C2

n = 2× 10−15 m−2/3 .

3.6 Conclusion

In this paper, we have studied the propagation characteristics of circularly coherent

vortex beams in atmospheric turbulence for a variety of spatial correlation parameters.

We have found that circularly coherent vortex beams, which possess a pure OAM state

at the source and on propagation through free space, can show improved resistance in

turbulence over their coherent counterparts. This resistance is characterized by the

standard deviation of the mode spectrum.

In our calculations, we have determined a parameter Ω that provides an excellent

estimate of the optimal choice of partially coherent beam for turbulence resistance.

For circularly coherent vortex beams, this parameter depends more on the average

wavefront curvature of the constituent beamlets and less on the actual spatial cor-
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relation of the beam. We have seen that wavefront curvature plays a greater role in

turbulence resistance for this beam class than spatial coherence.

The results highlight a turbulence propagation phenomenon we have referred to

as beamlet diversity, in which the constituent beamlets of a partially coherent beam

must be sufficiently different from each other in order to strengthen the beam resis-

tance. For circularly coherent vortex beams, relatively few beamlets can be used to

approximate a full integral over the beam curvature parameter ν. This is both an

advantage, in that it shows that circularly coherent vortex beams can be very easily

approximated by a finite set of incoherent beams, and a disadvantage, in that there

is evidently not enough beamlet diversity to allow for greater turbulence resistance.

There are, however, more classes of beams that possess a pure azimuthal phase

structure and may be considered “circularly coherent vortex beams,” including a

straightforward incoherent superposition of Laguerre-Gauss beams with the same

azimuthal order [22]. Our results provide insight and guidance in how further turbu-

lence resistance can be achieved for partially coherent vortex beams of more general

types.
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CHAPTER 4: ORBITAL ANGULAR MOMENTUM SPECTRUM OF MODEL

PARTIALLY COHERENT BEAMS IN TURBULENCE

ABSTRACT

ARASH SHIRI. Orbital Angular Momentum of Partially Coherent Beams Through
Atmospheric Turbulence. (Under the direction of DR. GREG GBUR)

The use of partial coherence has been extensively studied as a potential solution

to mitigate the destructive effects of atmospheric turbulence in optical applications

involving the free space propagation of light. However, in OAM-based optical systems,

reducing coherence leads to the broadening of the orbital angular momentum (OAM)

spectrum, consequently increasing the cross-talk between adjacent modes. In this

paper, we have investigated three fundamental classes of partially coherent OAM

beams under the influence of turbulence. The aim is to identify a distinct type of

partially coherent beam (PCB) in which the reduction in coherence results in higher

resistance of the OAM spectrum against atmospheric disturbances. It is demonstrated

that, for a specific propagation distance, we can prepare a PCB in which the benefits

of reducing coherence outweigh its drawbacks.
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4.1 Introduction

In the realm of optical communication, the quest for higher data transfer rates has

led researchers to explore innovative solutions beyond conventional techniques which

primarily rely on intensity, wavelength, and polarization modulation for data encoding

[1]. A promising solution involves utilizing the orbital angular momentum (OAM) of

light. OAM, arising from the helical phase front of the light beam, provides an extra

degree of freedom, in addition to the traditional schemes. This property enables the

encoding of multiple information channels onto a single beam of light via different

OAM values. As a result, OAM-based communication systems have the potential to

achieve unprecedented data rates, making them particularly useful for applications

requiring high capacity data channels [2].

However, over significant propagation distances in free space, atmospheric turbu-

lence induces fluctuations in the field, thereby degrading the quality of the optical

beams. Specifically, turbulence effects on OAM-carrying beams result in a broadening

of the OAM spectrum, consequently limiting the capacity of channels due to increased

cross-talk. Addressing this challenge necessitates a comprehensive fundamental study

of the effects of the fluctuations of refractive index on the light beam, particularly

its OAM spectrum. However, owing to the complex nature of turbulence, researchers

have encountered considerable difficulties in optimizing the interaction of light with

random media. To circumvent this challenge, structured light fields with non-trivial

phase, amplitude, polarization, and coherence have been investigated as a means to

improve propagation characteristics.

It has been demonstrated that partially coherent beams (PCBs) exhibit higher re-

sistance against turbulence fluctuations [3, 4, 5]. This suggests that we can mitigate

the degrading effects of turbulence on the OAM spectrum by reducing the spatial

coherence of beams. Transitioning from fully coherent to partially coherent can be

accomplished by randomizing a characteristic feature of the light field. However, this
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randomization typically also affects the phase of light, leading to the redistribution

of power in the OAM spectrum, which results in cross-talk between adjacent modes.

Therefore, reduction of coherence has advantages and disadvantages for the reliabil-

ity of data channels in propagation through turbulence. Detailed investigations are

required to determine if the advantages can be leveraged to overcome the disadvan-

tages.

Several years ago, Gbur noted that partially coherent OAM beams can be broken

into three fundamental classes [6] based on how the OAM is distributed within their

cross section. These classes are: (a) PCBs produced by randomizing the position of

the beam axis, resulting in a Rankine vortex [7, 8]; such beams are now known as

Rankine model beams [9]. (b) PCBs generated by introducing a twist phase into the

spatial coherence of the beam, known as twisted Gaussian-Schell model beams [10].

(c) PCBs generated with a separable vortex phase, making them fully coherent in

the azimuthal direction [11]. We consider a special class of such beams that are now

referred to as circularly coherent beams [12, 13]. A circularly coherent vortex beam

can be created via an ensemble of coherent vortex beams with varying focal distances,

resulting in a field that is partially coherent only in the radial direction.

In this paper, we conduct an analytic study of the turbulence propagation of OAM-

carrying beams within the aforementioned three classes of partially coherent vortex

beams. We analyze the behavior of the OAM spectrum under the influence of tur-

bulence, and consider the turbulence resistance of each class. The results provide

guidelines for selecting the appropriate type of PCB to enhance the reliability of data

transmission in optical communication systems, and indicate directions for future

research.

4.2 Partial Coherence and Orbital Angular Momentum

We begin by reviewing the relevant theory relating to partially coherent beams and

the corresponding OAM spectra of such beams.
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Early coherence theory focused on space-time correlation functions that character-

ized both the spatial and temporal coherence simultaneously. However, researchers

in recent years have focused more on the spatial coherence properties of light. In this

case, it is natural to use the cross-spectral density (CSD) function W (ρ1,ρ2, ω) that

characterizes the spatial correlation between two points at the frequency ω; it can be

written as an average over an ensemble of monochromatic fields [14],

W (ρ1,ρ2, ω) = 〈U∗(ρ1, ω)U(ρ2, ω)〉ω, (4.1)

where 〈· · · 〉ω represents the average over the monochromatic ensemble, U(ρ, ω) rep-

resents the field of a member of the ensemble, and the asterisk denotes complex

conjugation. Many optical fields used in applications may be considered quasi-

monochromatic, and the cross-spectral density at the central frequency ω then accu-

rately characterizes the overall field; going forward, we will suppress expression of ω

as an argument.

The cross-spectral density can be decomposed in a basis of azimuthal modes, often

called the spiral spectrum, of the form [15]

W (ρ1,ρ2) =
∑
l

∑
m

Wlm(ρ1, ρ2)e
−ilφ1eimφ2 , (4.2)

where the functions Wlm(ρ1, ρ2) can be derived according to the integral,

Wlm(ρ1, ρ2) =
1

(2π)2

∫ 2π

0

∫ 2π

0

W (ρ1,ρ2)e
ilφ1e−imφ2 dφ1dφ2. (4.3)

Here, ρ1, ρ2 are radial coordinates and φ1 and φ2 are azimuthal coordinates. The

quantityWlm(ρ1, ρ2) characterizes the spatial correlations between different azimuthal

modes of order l and m. Because a pure spiral mode of the form exp[ilφ] is also a

pure OAM state [16], we may also consider the spiral spectrum as a decomposition
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of the beam into different OAM modes.

If we consider just a single term of Eq. (4.2) with l = m and let ρ1 = ρ2 = ρ,

we get the transverse intensity of the OAM mode of order m, denoted by Im(ρ).

By integrating this quantity over the detector aperture, we can determine the total

measured intensity of the mth mode of orbital angular momentum,

Im =

∫ Rd

0

ρ dρ Im(ρ), (4.4)

where Rd is the radius of the detector. It is to be noted that there are now well-

established methods to experimentally sort and detect these OAM mode intensities;

see, for example, [17].

For more details about OAM spectra in partially coherent fields, see Korotkova and

Gbur [18]. In the next section, the extended Huygens-Fresnel principle is introduced

as our method of propagating the CSD function through turbulence. Following this,

we consider the three fundamental classes of partially coherent vortex beams and the

effect of atmospheric turbulence on their mode spectra.

4.3 Propagation Through Turbulence

The propagation of PCBs through atmospheric turbulence is often calculated using

the venerable extended Huygens-Fresnel principle (eHF) [19], which can be applied

to coherent or partially coherent fields. If we use ρ1 and ρ2 to label the positions at

the source and r1 and r2 to label the positions at a detector plane a distance L from

the source, the extended Huygens-Fresnel principle is of the form,

W (r1, r2;L) =

(
k

2πL

)2 ∫∫
d2ρ1

∫∫
d2ρ2 W0(ρ1,ρ2)

× exp

[
− ik

2L

(
|r1 − ρ1|2 − |r2 − ρ2|2

)]
× 〈 exp [Ψ∗(ρ1, r1) + Ψ(ρ2, r2)] 〉t,

(4.5)
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where k = 2π/λ is the free-space wavenumber, λ being the wavelength, W0(ρ1,ρ2) is

the cross-spectral density in the source plane, and Ψ(ρ1, r1) represents the complex

phase perturbation of the spherical wave originating at ρ1 and measured at r1 due

to the refractive index fluctuations of the atmosphere. The angle brackets 〈· · · 〉t

around the complex phase terms represent an ensemble average over the atmospheric

turbulence, and this average can be evaluated using the method of cumulants; see for

example, Gbur [20]. It should be noted that the ensemble average over the source

and over the turbulence are independent.

The general form of the resulting phase perturbation is quite complicated and typ-

ically can only be evaluated numerically; in order to make the calculations tractable,

a quadratic approximation is employed, leading to the expression [21]

〈 exp [Ψ∗(ρ1, r1) + Ψ(ρ2, r2)] 〉t = exp
[
−Q(L)(r2 + ρ2 + ρ · r)

]
, (4.6)

where r = r2 − r1 and ρ = ρ2 − ρ1 are the difference vectors at the detector and

source planes, respectively, and the quantity Q(L) is associated with the characteristic

features of turbulence and is defined as

Q(L) ≡ π2k2L

3

∫ ∞
0

[κ3 Φn(κ) ] dκ, (4.7)

where κ is the magnitude of the spatial frequency of the refractive index fluctuations

and Φn(κ) represents the spatial power spectrum of the turbulence. Throughout this

paper, the Von Karman model is used to specify the power spectrum of refractive

index fluctuations, given by [22]

Φn(κ) = 0.033C2
n

exp (−κ2/κ2m)

(κ2 + κ20)
11/6

, 0 ≤ κ <∞.

κm =
5.92

l0
, κ0 =

2π

L0

.

(4.8)
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The parameter C2
n is a measure of turbulence strength and is in the range of 10−17 m−2/3

to 10−13 m−2/3 from the weaker to stronger strengths. We will consider the inner scale

l0 as 2 mm and the outer scale L0 as 15 m throughout.

We now turn to the three fundamental classes of partially coherent vortex beams

described earlier to explore the effect of the atmosphere on the OAM spectrum of

each class. In this study, we restrict ourselves to beams with OAM equivalent to a

vortex of order 1. To simplify our calculations, we employed a modified version of the

extended Huygens-Fresnel principle that was recently introduced [23]; this version is

mathematically equivalent to the standard eHF, but can be evaluated with only two

integrations.

4.4 Rankine model vortex beams

One direct approach for generating partially coherent beams is to create an en-

semble of beams with one or more randomly varying parameters; this approach was

systematized by Gori and Santarsiero [24]. In constructing partially coherent vortex

beams, it is natural to look at ensembles for which every member is a deterministic

vortex beam with the same vortex order. The earliest example of such a beam [25]

uses the central position ρ0 of the beam as the random variable, with a probability

density P (ρ0); such beams were initially called “beam wander model” beams. The

CSD of such beams may be written in the form

W0(ρ1,ρ2) =

∫ ∞
−∞

U∗(ρ1 − ρ0)U(ρ2 − ρ0)P (ρ0)d
2ρ0, (4.9)

where U(ρ) represents a coherent vortex beam. Figure 1(a) illustrates the deviation

of the beam axis of a single ensemble member from the central axis by vector ρ0.

The beam wander beam, comprising a combination of many ensemble members with

varying axes, is depicted in Fig. 1(b).

These beams are now referred to as Rankine vortex beams, as it has been demon-
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strated that their normalized OAM flux density takes on the form of a Rankine vortex

[8].

4.4.1 Rankine vortex beams at source

Let us construct our Rankine vortex beam from an ensemble of 1st order vortex

Gaussian beams in the source plane of the form,

U(ρ) = ρeiφ exp

(
− ρ

2

w2
0

)
, (4.10)

where ρ and φ are the radial and azimuthal coordinates, respectively, and w0 is the

size of the initial coherent beam.

The probability density P (ρ0) of the beam axis position is taken to be a Gaussian

distribution,

P (ρ0) =
1

πδ2
exp

(
−ρ

2
0

δ2

)
. (4.11)

The parameter δ, representing the RMS width of the Gaussian distribution of beam

axis positions, may be understood as an inverse measure of spatial coherence. Specif-

ically, δ = 0 signifies a fully coherent case where the beam axis does not wander; with

an increase in δ, the coherence decreases. By substituting from Eqs. (4.10) and (4.11)

into Eq. (4.9) and evaluating the integral over ρ0, the CSD of the Rankine vortex

beam in the source plane may be written as

W0(ρ1,ρ2) =

(
β4
0

δ4

)[
δ2 + S1(ρ

2
1 + ρ22) + S2z

∗
1z2 + (S2 − 1) z1z

∗
2

]
× exp

(
−ρ

2
1 + ρ22
2σ2

s

)
exp

(
−|ρ1 − ρ2|2

2σ2
g

)
,

(4.12)

where we have defined z1 ≡ x1 + iy1, and similarly for z2. The quantities σs and σg

represent the beam size and coherence width, respectively, of the partially coherent
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Figure 4.1: The Rankine model source. (a) Deviation from the central axis denoted
by ρ0, (b) Combination of multiple beams with varying beam axes.

Rankine model beam, and have the forms

σ2
s =

1

2
w2

0 + δ2, (4.13)

1

2σ2
g

=
β2
0

w4
0

, (4.14)

where β0 and the weight factors S1, S2 are defined as

1

β2
0

≡ 2

w2
0

+
1

δ2
, (4.15)

S1 =δ2
(

1

2σ2
g

− 1

w2
0

)
(4.16)

S2 =
δ2

2σ2
g

+ 1. (4.17)

As a quadratic formula in terms of the variable ρ2, there will in general be two

vortex solutions for a fixed value of ρ1. This already suggests that the OAM spectrum

of such a partially coherent beam will be significantly distorted from the coherent case.
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4.4.2 Rankine vortex beams in free space

In this paper the term “free space” means “in the absence of turbulence effects.” The

propagation of the CSD function in free space may be derived from the traditional

Huygens-Fresnel diffraction formula,

WFS(r
′
1, r
′
2;L) =

(
k

2πL

)2 ∫∫
d2ρ1

∫∫
d2ρ2W0(ρ1,ρ2)

× exp

[
− ik

2L

(
|r′1 − ρ1|2 − |r′2 − ρ2|2

)]
,

(4.18)

where r′1 and r′2 are the position vectors on the detector plane located at distance z.

By substituting from Eq. (4.12) into Eq. (4.18), the integrals can be evaluated in the

form

WFS(r
′
1, r
′
2;L) =

(
β4
L

δ4

)(
w4

0

w4
L

)[
δ2 + F ∗1 r

′2
1 + F1r

′2
2 + F2z

′∗
1 z
′
2 + (F2 − 1) z′1z

′∗
2

]
× exp

(
−r
′2
1 + r′22
2σ′2s

)
exp

(
−|r

′
1 − r′2|2

2σ′2g

)
exp

[
− ik

2R′L
(r′21 − r′22 )

]
.

(4.19)

In the above expression, the quantities wL and σ′s refer to the beam sizes associated

with the initial coherent beam and the partially coherent Rankine model beam during

free space propagation to distance L, respectively. Additionally, σ′g and R′L represent

the coherence width and the average radius of curvature of the Rankine model beam,

respectively, after propagation to distance L in free space. These quantities are de-

rived as

w2
L = w2

0

(
1 +

L2

L2
0

)
, (4.20)

σ′2s =
1

2
w2
L + δ2, (4.21)

1

2σ′2g
=

β2
L

w2
0w

2
L

, (4.22)

R′L = L

[
1 +

L2
0

L2

(
δ2

β2
0

)]
. (4.23)
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In the above expressions, L0 = kw2
0/2 is the Rayleigh range of the coherent beam.

The parameter βL and the weight factors F1 and F2 are introduced as

1

β2
L

≡ 2

w2
L

+
1

δ2
, (4.24)

F1 =− δ2
(

1

2σ′2s
+

1

2σ′2g
− ik

2R′L

)
. (4.25)

F2 =
δ2

2σ′2g
+ 1. (4.26)

It is to be noted that the beam has retained its overall mathematical structure on

free-space propagation, as can be seen by comparing Eqs. (4.12) and (4.19).

4.4.3 Rankine vortex beams in turbulence

The propagation of the Rankine vortex beam in turbulence can be found by evalu-

ating Eq. (4.5) for the source given in Eq. (4.12); after some effort, the CSD function

through turbulence takes the form

WT(r1, r2;L) =

(
β4
L

δ4

)(
w4

0

w4
L

)
α4
[
T0 + T ∗1 r

2
1 + T1r

2
2 + T2z

∗
1z2 + (T2 − 1)z1z

∗
2

]
× exp

(
−r

2
1 + r22
2Σ2

s

)
exp

(
−|r1 − r2|2

2Σ2
g

)
exp

[
− ik

2RL

(r21 − r22)
]
,

(4.27)

where r1 and r2 are the position vectors on the detector plane. The parameters Σs,

Σg and Rz represent the beam size, coherence width and radius of curvature of the

beam propagated to the distance L through turbulence, respectively

Σ2
s =σ′2s +

(
4L2

k2

)
Q(L), (4.28)

1

2Σ2
g

=
1

2σ′2g
+

1

4σ′2s
− 1

4Σ2
s

+

(
3

4
+
α2L2

R̂2
L

)
Q(L), (4.29)

1

RL

=
3

2L
+
α2

R̂L

, (4.30)
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with α and R̂L defined as

α ≡ σ
′
s

Σs

, (4.31)

1

R̂L

≡ 1

R′L
− 3

2L
. (4.32)

The weight factors Ti with i = 0, 1, 2 are obtained as

T0 =
δ2

α2
+ h1δ

2

(
4L2

k2

)
Q(L), (4.33)

T1 =
h1α

2δ2

4

(
1− 16L4Q2(L)

R̂2
Lk

2

)
−

(
2δ2L2

R′LR̂L

)
Q(L)− h2

(
δ2

α2

)
+ i

(
kδ2

2

)[
1

R′L
+

(
h1α

2

R̂L

)(
4L2

k2

)
Q(L)

]
, (4.34)

T2 =
h1α

2δ2

4

(
1 +

16L4Q2(L)

R̂2
Lk

2

)
+

(
2δ2L2

R′LR̂L

)
Q(L) + h2

(
δ2

α2

)
+

1

2
, (4.35)

with

h1 ≡
1

δ2
− 1

σ′2s
, (4.36)

h2 ≡
1

4δ2
+

1

4σ′2s
+

1

2σ′2g
. (4.37)

The CSD in turbulence given in Eq. (4.27) recovers the CSD in free space expressed in

Eq. (4.19) in the limit of Q(L)→ 0, which results in α = 1. It is to be noted that the

cross-spectral density in turbulence again has a very similar form to the propagated

cross-spectral density in free space.

4.4.4 OAM spectrum of Rankine vortex beams

Having the cross-spectral density characterized in both free space and turbulence,

we can now calculate the OAM spectrum for each case and evaluate the turbulence

resistance.

Starting with the free space case, we substitute the CSD of Eq. (4.12) into the
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angular integrals of Eq. (4.3); the mode intensity Im(ρ) can be expressed in the form

Im(ρ) =

(
β4
0

δ4

)
exp

[
−
(

1

σ2
s

+
1

σ2
g

)
ρ2
]

×
{[
δ2 + 2<(S1)ρ

2
]
Im
(
ρ2

σ2
g

)
+ S2ρ

2Im−1
(
ρ2

σ2
g

)
(S2 − 1) ρ2Im+1

(
ρ2

σ2
g

)}
,

(4.38)

where Im is the modified Bessel function of order m and < represents the real part.

To determine the overall OAM spectrum in the beam, it is necessary to integrate

across the entire detector aperture, as in Eq. (4.4). In this manuscript, this radial

integral will be evaluated numerically.

Given that the propagation in free space does not alter the distribution of energy

among different OAM modes, we can affirm that the OAM spectrum of the source, as

derived from Eq. (4.38), can be treated as the OAM spectrum detected in free space

as well, provided we consider an infinite aperture, i.e. Rd →∞.

Following similar calculation steps, the OAM mode distribution at a radial distance

r on propagation through turbulence takes the form,

Im(r;L) =

(
β4
L

δ4

)(
w4

0

w4
L

)
α4 exp

[
−
(

1

Σ2
s

+
1

Σ2
g

)
r2
]

×
{[
T0 + 2<(T1)r

2
]
Im
(
r2

Σ2
g

)
+ T2r

2Im−1
(
r2

Σ2
g

)
+ (T2 − 1) r2Im+1

(
r2

Σ2
g

)}
.

(4.39)

We consider the case of an infinite aperture in Eq. (4.4), so that Rd →∞.

Figure (2) displays the resulting OAM spectrum in free space and turbulence for

illustrative coherence widths of the Rankine vortex source. The beam is propagated

1 km through a turbulent media with the strength C2
n = 10−14 m−2/3. It can be seen

that, as spatial coherence decreases, the two spectra become increasingly similar,

suggesting that the beam OAM spectrum is less affected by turbulence. However,

the mode spectrum for σg = 0.5 cm is overall much wider than the more coherent
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σg = 2 cm case, indicating that this resistance is a pyrrhic victory. This seemed

like the most likely outcome at the beginning of these studies, considering the mode

spectrum of a partially coherent Rankine vortex is much wider than that of a coherent

vortex. There is still the possibility that a Rankin vortex beam has its OAM spectrum

spread more slowly than a coherent beam, and we will see that this is the case in

Section 4.7.

Figure 4.2: OAM spectrum of Rankine vortex beam at the source and in L = 1000
m propagation through turbulence with the strength C2

n = 10−14 m−2/3 for various
coherence widths σg = 0.5, 1, 2 cm measured on an infinitely sized detector with
Rd →∞. The beam size at the source is σs = 1 cm with the wavelength λ = 632 nm.

4.5 Twisted Gaussian-Schell Model Beams

Twisted Gaussian-Schell model (tGSM) beams, first introduced by Simon and

Mukunda in 1993 [28], are modifications of the standard Gaussian-Schell model beams

in which a phase twist is introduced into the state of coherence. In this type of par-

tially coherent beam, the twist phase gives a handedness to the beam, which in turn

results in a non-zero OAM for the beam. A tGSM source is characterized by the

CSD,

W0(ρ1,ρ2) = exp

(
−ρ

2
1 + ρ22
2σ2

s

)
exp

(
−|ρ1 − ρ2|2

2σ2
g

)
exp [−iku(ρ1 × ρ2) · ẑ] , (4.40)

where σs and σg represent the beam size and coherence width at the source, respec-

tively, and u is the twist parameter, whose sign characterizes the handedness and

whose magnitude characterizes the strength of the twist, which is constrained to the
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values

|u| ≤ 1

kσ2
g

, (4.41)

and ẑ is the unit vector in the direction of propagation.

4.5.1 Twisted GSM beams in free space

Propagation of tGSM beams in free space is obtained by evaluating Eq. (4.18) when

the source is given by Eq. (4.40). The resulting CSD at the detector plane, located

at distance L, is determined as

WFS(r
′
1, r
′
2;L) = A exp

(
−r
′2
1 + r′22
2σ′2s

)
exp

(
−|r

′
1 − r′2|2

2σ′2g

)
× exp [−iku′L(r′1 × r′2) · ẑ] exp

[
− ik

2R′L
(r′21 − r′22 )

]
, (4.42)

where r′1 and r′2 are position vectors on the output plane. The parameters σ′s , σ′g ,

u′L and R′L are respectively the beam size, coherence width, twist parameter and the

average radius of curvature in free space propagation, given by

σ′2s =
σ2
s

A
, (4.43)

1

2σ′2g
=
A

2σ2
g

, (4.44)

u′L =Au, (4.45)

R′L =
L

1− A
. (4.46)

The parameter A is defined as

1

A
≡ 1 +

L2

k2

(
1

σ4
s

+
2

σ2
gσ

2
s

+ k2u2
)
. (4.47)

As in the Rankine vortex case, we note that the propagated CSD has the same

mathematical structure as the source CSD.
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4.5.2 Twisted GSM beams in turbulence

Substituting the correlation function of the tGSM source given by Eq. (4.40) into

the extended Huygens-Fresnel integral of Eq. (4.5) gives the CSD function of the

tGSM beam at the detector plane in the form

WT(r1, r2;L) = Aα2 exp

(
−r

2
1 + r22
2Σ2

s

)
exp

(
−|r1 − r2|2

2Σ2
g

)
× exp [−ikUL(r1 × r2) · ẑ] exp

[
− ik

2RL

(r21 − r22)
]
, (4.48)

where r1 and r2 are the position vectors in the detector plane. The spot size Σs

and radius of curvature RL parameters for the beam in turbulence are determined

using the expressions from Eq. (4.28) and Eq. (4.30). The quantities Σg and UL are

respectively the coherence width and twist parameters in turbulence, given by

1

2Σ2
g

=
1

2σ′2g
+

1

4σ′2s
− 1

4Σ2
s

+

(
3

4
+
α2L2

R̂2
L

+ α2L2u′2L

)
Q(L),

UL =α2u′L,

(4.49)

where the parameters α and R̂L are defined in Eqs. (4.31) and (4.32). As in the

Rankine model case, the CSD function of tGSM beams in turbulence, as given in

Eq. (4.48), converges to the free space result of Eq. (4.42) in the limit Q(L) → 0,

resulting in α = 1.

4.5.3 OAM spectrum of tGSM beam

To analytically evaluate the OAM spectrum of the tGSM beam, we represent the

twist phase term by a Bessel series representation (see [29], Sec.16.3),

exp [−iku(ρ1 × ρ2) · ẑ)] =
∞∑

n=−∞

Jn(kuρ1ρ2)e
in(φ1−φ2), (4.50)
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where again ρ and φ are the radial and azimuthal coordinates of position vector ρ,

respectively, and Jn represents the Bessel function of order n.

By applying the above relation in the expressions of tGSM beams at the source

and in turbulence, we can characterize the intensity of each OAM mode on concentric

circles in the beam cross-section through analytical calculations.

By substituting from Eq. (4.40) into Eq. (4.3) and evaluating the azimuthal inte-

grals, the intensity of the OAM mode of order m at the radial distance ρ from the

beam axis in the source plane is given as

Im(ρ) =
∞∑

n=−∞

exp

[
−
(

1

σ2
s

+
1

σ2
g

)
ρ2
]
Jn(kuρ2)In−m

(
ρ2

σ2
g

)
. (4.51)

Again, since the OAM spectrum is preserved in free space propagation, the above

result can be utilized to describe the OAM spectrum of the beam in free space prop-

agation as well.

The distribution of intensity among OAM modes due to propagation through tur-

bulence can be found by substituting from Eq. (4.48) into Eq. (4.3). The resulting

expression is of the form

Im(r;L) =
∞∑

n=−∞

exp

[
−
(

1

Σ2
s

+
1

Σ2
g

)
r2
]
Jn(kULr

2)In−m
(
r2

Σ2
g

)
, (4.52)

where r is the radial distance from the beam axis on the detector plane. The OAM

spectrum for free space and turbulence can then be found by numerically evaluating

the radial integral of Eq. (4.4).

Figure (3) illustrates the OAM spectrum on 1 km propagation through free space

and turbulence for selected values of source coherence width σg. The twist magnitude

was taken in each case to be the maximum allowed by Eq. (4.41), i.e. u = 1/kσ2
g . In

free space, we can see that the twist of the beam is represented by a mode spectrum

skewed towards the positive modes. Analogous to the Rankine vortex case, we can see
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that reducing the spatial coherence results in a greater resemblance between the free

space and the turbulence mode spectrum, suggesting that the mode spectrum in this

case is more resistant to turbulence. But as in the Rankine case, this comes at the

cost of a significantly broadened mode spectrum to begin with, which indicates that

tGSM beams will not necessarily alleviate cross-talk in OAM-based communications

systems.

It is to be noted, however, that tGSM beams with low coherence do maintain their

overall OAM spectra, as is evidenced by the skewness of the mode distribution being

maintained. If a method can be found to discriminate tGSM beams by their twist

parameter u, this twist parameter could potentially be a distinct method of encoding

information in OAM-based communications. Currently, however, we are not aware of

any method for doing such twist discrimination.

Figure 4.3: OAM spectrum of twisted Gaussian-Schell model beam with maximum
possible twist magnitude u = 1/kσ2

g at the source and in propagation through turbu-
lence (with the strength C2

n = 10−14 m−2/3) for various coherence widths σg = 0.5, 1, 2
cm. The beam size at source is σs = 1 cm, and the wavelength is λ = 632 nm. The
propagation distance is L = 1000 m to an infinitely sized detector with Rd →∞.

4.6 Partially Coherent Beams with Circular Coherence

Circular coherence, introduced in 2017, describes a category of partially coherent

sources that display perfect coherence along any ring concentric with the beam axis

within the beam cross-section [12]. There is partial coherence between any two points

on concentric rings with different radii, with coherence decreasing as the radial differ-

ence increases. The CSD function characterizing a circularly coherent beam (CCB)
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may be expressed as

W0(ρ1,ρ2) = U∗(ρ1)U(ρ2)g
(
ρ21 − ρ22

)
. (4.53)

Here, the average amplitude and phase is characterized by U(ρ), while the degree

of coherence is characterized by the function g, satisfying the condition g(0) = 1. A

general partially coherent source can be defined by the method of Gori and Santarsiero

[24],

W0(ρ1,ρ2) =

∫ ∞
−∞

H∗(ρ1, ν)H(ρ2, ν)P (ν)dν, (4.54)

where ν represents a beam parameter that varies in the statistical ensemble, possible

multivariate, and P (ν) must be a non-negative Fourier transformable weight function

so that the resulting CSD is physically realizable. It is to be noted that the beam

wander model is a special case of this form.

Let us take the kernel H(ρ, ν) to be a coherent field U(ρ) with a finite radius of

curvature [13],

H(ρ, ν) = U(ρ)e−2πiνρ
2

, (4.55)

which results in a ensemble of coherent beams that differ only in their curvature.

These radii of curvature are determined as a function of the distribution variable ν

as

R0(ν) =
1

2λν
, (4.56)

where λ is the wavelength. The resulting CSD can be expressed as

W0(ρ1,ρ2) = U∗(ρ1)U(ρ2)P̃ (ρ21 − ρ22), (4.57)

where we have used the tilde symbol to represent the Fourier transform. This expres-

sion can be seen to directly relate to Eq. (4.53) defining circular coherence.
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In this study, we have followed Santarsiero et al. [12] and taken the probability

density to be of the form

P (ν) = Π

(
ν − ν0

∆ν

)
, (4.58)

where Π(ν) indicates the rectangular function with value 1 for |ν| ≤ 1/2 and zero

otherwise; this means that ν0 and ∆ν are respectively the center and width of the

rectangular probability density.

In this case, if ν0 is positive, the members of the ensemble will typically be focused,

while negative ν0 means the members will typically be defocused.

4.6.1 Circularly coherent vortex beams at source

We may introduce a circularly coherent beam (CCB) carrying OAM simply by

choosing the coherent field U(ρ) to be a vortex beam; curiously, this possibility has

not yet been explored in detail [30]. Let us take the case of a first-order vortex,

U(ρ) = ρeiφ exp

(
− ρ2

2σ2
s

)
, (4.59)

where σs represents the beam size. Upon substitution into Eq. (4.54), the CSD

function takes the form,

W0(ρ1,ρ2) =

∫ ∞
−∞

ρ1ρ2e
i(φ2−φ1) exp

[
− 1

2σ2
s

(ρ21 + ρ22)

]
× exp

[
−2πiν(ρ22 − ρ21)

]
P (ν)dν.

(4.60)
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4.6.2 Circularly coherent vortex beams in free space

By inserting the CCB source into the Huygens-Fresnel integral given in Eq. (4.18),

the corresponding CSD function in free space is given as

WFS(r
′
1, r
′
2;L) =

∫ ∞
−∞

z′∗1 z
′
2 exp

[
− 1

2σ′2s (ν)

(
r′21 + r′22

)]
× exp

[
− ik

2R′L(ν)
(r′21 − r′22 )

]
P ′(ν)dν,

(4.61)

where z′1 and z′2 are the complex positions in the detector plane, located at distance

L. Similar to the CSD at source, the above expression represents the CSD function

at the detector plane by superimposing the coherent vortex beams with different sizes

σ′s(ν) and radii of curvature R′L(ν), measured after propagation in free space. These

parameters, dependent upon ν, are given by:

σ′2s (ν) = σ2
s

{[
1− L

R0(ν)

]2
+

(
L

L0

)2
}
, (4.62)

1

R′L(ν)
=

1

L

{
1−

[
σs

σ′s(ν)

]2 [
1− L

R0(ν)

]}
, (4.63)

where L0 = kσ2
s is again the Rayleigh range for each of the coherent beams. The

probability distribution function corresponding to the beam in free space undergoes

a redefinition as

P ′(ν) =

[
σs

σ′s(ν)

]4
P (ν). (4.64)

4.6.3 Circularly coherent vortex beams in turbulence

Using the extended Huygens-Fresnel principle, the correlation function of CCB

between the positions r1 and r2 at the detector plane after propagation through
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turbulence can be written as

W T(r1, r2;L) =

∫ ∞
−∞

{
C0(ν) + C∗1(ν)r21 + C1(ν)r22 + C2(ν)z∗1z2 + [C2(ν)− 1] z1z

∗
2

}
× exp

[
− 1

2Σ2
s(ν)

(
r21 + r22

)]
exp

[
− 1

2Σ2
g(ν)
|r1 − r2|2

]
× exp

[
− ik

2RL(ν)
(r21 − r22)

]
P(ν)dν.

(4.65)

As is evident, turbulence effects give rise to a CSD function characterized by the

superposition of Gaussian-Schell model vortex beams with different spot sizes Σs(ν),

coherence widths Σg(ν) and radii of curvature RL(ν), all defined as a function of

probability variable ν with the following expressions,

Σ2
s(ν) = σ′2s (ν) +Q(L)

(
4L2

k2

)
, (4.66)

1

2Σ2
g(ν)

=
1

4σ′2s (ν)
− 1

4Σ2
s(ν)

+Q(L)

[
3

4
+
L2 α2(ν)

R̂2
L(ν)

]
, (4.67)

1

RL(ν)
=

3

2L
+
α2(ν)

R̂L(ν)
, (4.68)

where the parameters α(ν) and R̂L(ν) were introduced in Eq. (4.31) and Eq. (4.32).

The probability distribution function corresponding to the beam in turbulence is

redefined as

P(ν) = α4(ν)P ′(ν). (4.69)
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The relative weight factors Ci with i = 0, 1, 2 are introduced as

C0(ν) = Q(L)

(
4L2

k2

)
, (4.70)

C1(ν) =
1

4

[
α2(ν)− 1

α2(ν)

]
+Q2(L)

[(
2L2

k

)
α(ν)

R̂L(ν)

]2
+ iQ(L)

[(
2L2

k

)
α2(ν)

R̂L(ν)

]
,

(4.71)

C2(ν) =
1

4

[
α2(ν) +

1

α2(ν)

]
+Q2(L)

[(
2L2

k

)
α(ν)

R̂L(ν)

]2
+

1

2
. (4.72)

The CSD function in turbulence, as expressed in Eq. (4.65), produces the free space

result, given in Eq. (4.61), in the limit Q(L)→ 0, which indicates α = 1.

4.6.4 OAM spectrum of circularly coherent vortex beam

From Eqs. (4.60) and (4.61), it is evident that the entire intensity of the circularly

coherent vortex beam is concentrated in the OAM mode of order 1 at the source

and in free space. The important question we will attempt to answer is whether a

circularly coherent vortex beam performs better in turbulence – maintains a narrower

mode spectrum – than a fully coherent vortex beam of the same order.

Due to the interaction with turbulent media, the power of the beam is distributed

among higher-order modes. By substituting from Eq. (4.65) into Eq. (4.3) and eval-

uating the angular integrals, we get

Im(r) =

∫ ∞
−∞

{[
C0(ν) + 2<{C1(ν)} r2

]
Im
(
r2

Σ2
g

)
+ C2(ν)r2Im−1

(
r2

Σ2
g

)

+ [C2(ν)− 1] r2Im+1

(
r2

Σ2
g

)}
exp

[
−
(

1

Σ2
s

+
1

Σ2
g

)
r2
]
P(ν) dν,

(4.73)

where m is the order of the associated OAM mode. Unlike the Rankine and twisted

cases, it is to be noted that it is not possible to get a closed form solution for Im(r) and
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the integrals must be done computationally. Because of the self-focusing properties

of the beams, they are not in general shape invariant on propagation, even in free

space.

To explore the impact of transitioning from perfect coherence to partially circular

coherence on resistance against turbulence effects, we compare the OAM spectrum of

a fully coherent vortex beam with a flat phase front to that of a circularly coherent

vortex beam; the results are in Fig. (4). The CCB is modeled by combining N = 5

beams with varying radii of curvature with values of ν equally spaced within the range

of (ν0 −∆ν/2, ν0 + ∆ν/2), with ∆ν = 0.001/λL. This combination is determined by

the probability distribution function given in Eq. (4.58). As is evident from Figs. 4(a)

and 4(c), the defocused beams with negative curvature display unfavorable effects,

with a broader spectrum compared to the coherent case. Conversely, in Figs. 4(b)

and 4(d), positive curvature provides advantages over the fully coherent beam.

Upon closer examination of Figs. 4(b) and 4(d), it is demonstrated that the radius

of curvature R0 = L, equivalent to ν0 = 1/2λL, results in a spectrum profile with

less spread and higher central peak, suggesting greater resistance against turbulence

compared to the beam with a curvature R0 = 2L, equivalent to ν0 = 1/4λL.

From the results of Fig. (4), it can be concluded that transitioning to partially

circular coherence does not always provide better resistance of the OAM spectrum

on propagation through turbulence. Selecting a judicious value for the radius of

curvature at the source is essential to optimize the generated beam for an effective

turbulence propagation. We have discussed the circular coherence case in more detail

in an upcoming publication [31].

In the upcoming section, we will compare the behavior of all three types of PCBs

in interaction with atmospheric turbulence. This comparison will be facilitated by

examining the standard deviation of their OAM spectrum profiles.
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Figure 4.4: OAM spectrum of fully coherent and circularly coherent vortex beams for
different central values of radius of curvature of the superimposed beams at source in
L = 1000 m propagation through turbulence (with the strength C2

n = 10−14 m−2/3).
The beam size at source is σs = 1 cm, and the wavelength is λ = 632 nm. The
number of superimposed beams at source is N = 5.
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4.7 Comparing the three PCB classes

After introducing the three classes of OAM-carrying partially coherent beams and

delving into the propagation of their cross spectral density function through turbu-

lence, as well as analyzing the behavior of their respective OAM spectra under tur-

bulence disturbances individually, we now compare the resilience of the three beam

types against the effects of turbulence.

We have noted that both the Rankine model beam and the CCB are produced

by manipulating the parameters of a fully coherent Gaussian vortex source. In the

Rankine model, the position of the coherent beam axis is randomized, whereas in the

CCB, coherent beams with various radii of curvature are superimposed. In a tGSM

beam, the initial source is a zero-order Gaussian beam without any OAM, and one

can show that the OAM is induced by using an ensemble of beams that are all tilted

to produce a net handedness [32].

In order to assess and compare the robustness of the OAM spectra for these beams,

we consider the standard deviation of the OAM spectrum associated with each beam

type; the standard deviation quantifies the dispersion of power among different OAM

modes. A lower standard deviation indicates a narrower OAM spectrum, suggesting

better mode purity in the face of turbulence and a beam that is more useful for

OAM-based communications.

In Figure (5), a comparison is presented of the standard deviations associated

with a fully coherent vortex beam, Rankine model vortex beam, twisted Gaussian-

Schell model beam and partially coherent vortex beam with circular coherence. As

is evident, for propagation distances less than about 250 m, the Rankine an tGSM

beams have broader OAM spectra compared to the fully coherent case. In contrast,

the CCB demonstrates a significantly narrower spectrum compared to a fully coherent

beam.

As the distance surpasses 700 m, both the coherent beam and CCB exhibit a
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notable rise in standard deviation. Meanwhile, the standard deviation profiles of

the Rankine and tGSM beams exhibit a gentle slope, indicating consistent stability

and greater resistance. Our initial hypothesis, mentioned at the end of Section 4.4,

was that randomized partially coherent vortex beams might have a slower spread of

their OAM spectra in turbulence, and this appears to be the case.

Figure 4.5: Standard deviations of the OAM spectra versus propagation distance
through turbulence (with the strength C2

n = 10−14 m−2/3) corresponding to a fully
coherent Gaussian vortex beam, Rankine model vortex beam, twisted Gaussian-Schell
model beam and circularly coherent beam. The beam size at source is σs = 1 cm, and
the wavelength is λ = 632 nm. Coherence width of the Rankine and tGSM model
beam is σg = 0.5 cm. The CCB is comprised of N = 5 Gaussian vortex beams with
various radii of curvature in the range (ν0 −∆ν/2, ν0 + ∆ν/2) with ∆ν = 0.001/λL
and ν0 = 3/4λL, equivalent to R0 = 2L/3. The radius of the detector is Rd = 1 m.

4.8 Conclusion

We have conducted an analytic investigation into how reducing the coherence of an

OAM-carrying beam affects its resistance to atmospheric turbulence. “Resistance,”

in this case, refers to how well the beam maintains its OAM purity on propaga-

tion through turbulence. We considered three physically distinct models of partially

coherent OAM beams: Rankine model, twisted Gaussian-Schell model and circu-

larly coherent beams. By examining an OAM beam corresponding to each class and

deriving its mode spectrum after propagation through turbulence, we analyzed the

advantages and disadvantages of coherence reduction associated with each class.
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We use the standard deviation of the OAM spectrum to quantify the purity of

the OAM state of the beam. The standard deviation is viewed as a basic metric for

assessing the reliability of data transmission using OAM modes. A larger standard

deviation suggests that data channels just be given wider OAM spacing in order to

avoid crosstalk, which reduces the number of channels available.

The comparison of the standard deviations of the three types of PCBs and the

coherent beam has indicated that for short propagation distances, the coherent beam

and an optimized CCB have better performance of the four. However, over longer

propagation distances, the OAM spectrum of coherent beam and CCB expand dra-

matically, leaving the Rankine and tGSM beams with narrower spectra. The advan-

tages offered by the Rankine and tGSM beams become increasingly prominent over

longer propagation distances; however, it should be noted that these beams have a

significant standard deviation to begin with that may limit their usefulness.

Our results provide guidelines for further investigations into the propagation of

partially coherent vortex beams in turbulence. It is possible to encode OAM in par-

tially coherent beams in more sophisticated ways beyond the classes considered here,

for instance by considering twisted vortex GSM beams [9] or beams with polarization

singularities encoded [34]; these will provide avenues for future study.
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CHAPTER 5: CONCLUSIONS

5.1 Summary

This dissertation investigated a potential method to improve the reliability of data

transmission channels in OAM-based free space optical communication systems. The

proposed method was grounded in the principle that reducing coherence results in

increased resistance of light beams to atmospheric turbulence influences. On the

other hand, decreasing coherence leads to an increase in cross-talk between adjacent

channel modes. The main objective was identifying a type of partially coherent beam

in which the advantages of coherence reduction outweigh its disadvantages.

Chapter 2 introduced a novel analytical approach for propagation of partially coher-

ent beams through turbulence by modifying the traditional extended Huygens-Fresnel

principle. As a result, the four-fold integral of the eHF principle was simplified to a

two-fold integral, which makes both the analytical and computational evaluation of

the cross spectral density function feasible. In this approach, the turbulence effects

were represented as a distortion of the beam detected at the detector after propaga-

tion through vacuum. In our model, the binomial approximation for the turbulence

complex phase was considered. Additionally, two criteria were introduced to estimate

the propagation distance over which the intensity and coherence of the light field

remain unchanged under the influence of turbulence. At the end, propagation of the

Gaussian-Schell model beam was evaluated as an example to validate the correct-

ness of the modified Huygens-Fresnel method and assess accuracy of the criteria for

turbulence resistance estimates.

In chapter 3, we analyzed the behavior of a class of separable phase PCB in inter-

action with atmospheric turbulence. This specific type of beam with pure OAM state
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at its source, known as circularly coherent vortex beam, can be generated through

linear combination of coherent beams with varying radii of curvature. The study re-

vealed that the circularly coherent vortex beams can be optimized to exhibit enhanced

resistance to turbulence compared to its coherent counterpart. In the optimization

process, we introduced a parameter, denoted as Ω, defined as the ratio of correlation

width to beam size of the detected field. This parameter can serve as an indicator for

determining the optimal choice of partially coherent beams for propagating through

turbulence. For the circularly coherent vortex beams, this parameter is predomi-

nantly determined by the average wavefront curvature of the constituent beams and

is minimally impacted by the spatial coherence of the generated field. The findings

underscore a phenomenon of turbulence propagation termed as "beamlet diversity",

wherein the individual beamlets comprising a partially coherent beam need to exhibit

significant dissimilarity from one another to enhance the beam’s resilience against tur-

bulence. For circularly coherent vortex beams, the radii of curvature of beamlets must

fall within a relatively narrow range, implying that only a few beamlets are needed

to satisfy the requirements for beam generation at its source. This condition lim-

its the variation of beamlets and, consequently, restricts the potential for enhancing

resistance

In Chapter 4, the turbulence propagation of three fundamental classes of partially

coherent beams has been evaluated analytically, and the behavior of their respec-

tive OAM spectra has been investigated in detail. The standard deviation of OAM

spectrum has been introduced as a measure of the robustness of an OAM-based data

transmission system, implying that beams with more stable OAM spectra exhibit

lower standard deviation when propagating through turbulence. It is demonstrated

that, in short propagation distances, improving the reliability of data transmission

through reducing coherence can be achieved only for the case of partially coherent

beams with circular coherence. For the other types of PCBs, the Rankine vortex and
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twisted Gaussian-Schell model beams, reducing coherence brings about higher cross-

talk between data channels. Conversely, along with the extension of propagation

to longer distances, OAM spectra of the pre-randomized Rankine model and tGSM

beams exhibit higher stability than the coherent beams and CCBs.

5.2 Future Works

The research done suggests several promising areas for future research including:

1. Investigating other types of OAM-carrying PCBs in search of more robust OAM

spectra in propagation through atmospheric turbulence.

2. By conducting calculations of the intensity correlations of PCBs, one can gain

insights into properties such as the scintillation of the beams in turbulence and the

bit-error rate of free-space optical communication systems [11].

3. Given the established resistance of circularly coherent beams against turbulence,

exploring other classes of PCBs with circular coherence may unveil even greater ad-

vantages compared to the beam types studied thus far [12].

4. Other characteristic features of light may show higher stability in propagation in

both free space and turbulence, such as topological structures. Exploring these prop-

erties as data carriers in optical communication systems has the potential to further

enhance data capacity while ensuring higher reliability [13].
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