
A NATURAL LANGUAGE INTERFACE FOR MODELING IN RHINO 3D
USING LARGE LANGUAGE MODELS

by

Sharaa Norouzi Talkhounche

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in

Architecture and
Master of Science in Information Technology

Charlotte

2024

Approved by:

Jefferson Ellinger

Dr. Razvan Bunescu

Rachel Dickey

ii

©2024
Sharaa Norouzi Talkhounche
ALL RIGHTS RESERVED

iii

ABSTRACT

SHARAA NOROUZI TALKHOUNCHE. A Natural Language Interface for
Modeling in Rhino 3D Using Large Language Models. (Under the direction of

JEFFERSON ELLINGER)

In an increasingly interconnected world, effective communication with digital design

software is paramount. This thesis addresses the challenge of enabling engineers, de-

signers, and creators to communicate with Rhino 3D software through an interactive,

user-friendly natural language interface.

Many users, including new students and experienced individuals unfamiliar with

Rhino, often struggle with using the correct instructions to fully utilize the software’s

capabilities. This challenge impedes them from leveraging the software’s full potential.

To address this issue, this thesis presents an integrated system that combines Large

Language Models (LLMs) with the Rhino API, facilitating intuitive communication

with the software.

The objectives of this thesis included developing this integrated system to make

Rhino accessible to users with limited prior knowledge and empowering experienced

users to explore advanced capabilities. The methodology employed large language

models such as GPT-4, coupled with the Rhino API, and focused on prompt engineer-

ing techniques to effectively instruct and interact with LLMs. This process involved

crafting precise and context-aware prompts, breaking down tasks into step-by-step

instructions, and iteratively refining prompts through interactive dialogues.

The findings of this research highlight the feasibility of the proposed interface in

enhancing user interaction with digital design software, promoting accessibility and

facilitating a better learning environment in the field of modeling and design. While

the system has shown promise in bridging the gap between natural language and

complex software commands, it primarily serves as a proof of concept at this stage.

In conclusion, this thesis establishes the foundational work for future enhancements

iv

and applications, indicating potential paths for transforming human-computer inter-

action in parametric design. The focus remains on proving the concept and assessing

feasibility, with subsequent research needed to realize its full transformative potential.

v

DEDICATION

To my family, whose boundless love and unwavering support have been my guiding

star. You believed in me, and for that, I am forever grateful.

And to the courageous girls across the globe, especially those from my homeland,

Iran. Your strength and resilience inspire us all.

vi

ACKNOWLEDGEMENTS

I am deeply grateful to my advisor, Jefferson Ellinger, for his invaluable guidance and

support throughout my research and the completion of my degree. His commitment to

fostering my interests and encouraging my unique approach to learning has profoundly

shaped my educational experience. I also wish to thank my committee members, Dr.

Razvan Bunescu and Rachel Dickey, for their insightful feedback and encouragement,

which have greatly enriched my work.

Furthermore, I acknowledge the financial support from a GASP Award provided by

the School of Architecture, which was essential for the completion of this program.

vii

TABLE OF CONTENTS

LIST OF TABLES ix

LIST OF FIGURES x

CHAPTER 1: INTRODUCTION 1

1.1. Background 1

1.1.1. Rhino 3D 1

1.1.2. Large Language Models (LLMs) 1

1.2. Literature Review 3

CHAPTER 2: METHODOLOGY 6

2.1. Overview 6

2.2. System Architecture 7

2.2.1. RhinoCommon Framework Integration 7

2.2.2. Python Script and OpenAI API Interaction 7

2.3. Generative Script Using Large Langugae Models 8

2.3.1. Prompt Engineering 8

2.4. LangChain Framework 13

2.4.1. Retrieval Augmented Generation 13

2.4.2. Indexing 14

2.4.3. Retrieval and Generation Chain 14

2.5. Environment Setup 17

2.5.1. Visual Studio and RhinoCommon Framework 17

2.5.2. Anaconda and Python Environment 17

viii

2.5.3. Integration of Components 18

2.5.4. Tooling and Configuration 18

CHAPTER 3: EVALUATION AND RESULTS 19

3.1. Test Cases 19

3.2. Performance Metrics 21

3.3. Case Studies 24

3.3.1. Case Study 1: Basic Geometry Creation 24

3.3.2. Case Study 2 24

3.3.3. Case Study 3 25

CHAPTER 4: DISCUSSIONS AND FUTURE WORK 28

4.1. Challenges 28

4.2. Future Work 29

CHAPTER 5: CONCLUSIONS 30

REFERENCES 31

APPENDIX A: PROMPTS 33

APPENDIX B: SOURCE CODE 38

APPENDIX C: TEST CASES 46

APPENDIX D: GITHUB 49

ix

LIST OF TABLES

TABLE 3.1: Rating Criterea 20

TABLE 3.2: Performance Metrics 22

TABLE 3.3: Case Study 1 24

TABLE 3.4: Case Study 2 24

TABLE 3.5: Case Study 3 25

TABLE C.1: Development Test Cases 46

TABLE C.2: Evaluation Test Cases 48

x

LIST OF FIGURES

FIGURE 1.1: Rhino 3D Interface 2

FIGURE 2.1: Architecture 7

FIGURE 2.2: Simple Chain 10

FIGURE 2.3: Retrieval Chain 14

FIGURE 3.1: Mean and Standard Deviation 22

FIGURE 3.2: Average Ratings by Category and Model 22

FIGURE 3.3: Count Distribution by Category 23

xi

LIST OF ABBREVIATIONS

CAD An acronym for Computer Aided Design.

CLI An acronym for Command Line Interface.

GPT An acronym for Generative Pre-trained Transformer.

LLM An acronym for Large Language Models.

CHAPTER 1: INTRODUCTION

1.1 Background

1.1.1 Rhino 3D

Rhino 3D is a powerful software application used primarily for parametric modeling,

computer-aided design (CAD), and 3D graphics. Developed by Robert McNeel &

Associates, Rhino 3D is highly regarded in various industries, including architecture,

engineering, product design, and more [1].

One of the notable features of Rhino 3D is its application programming interface

(API). The Rhino API allows developers and users to extend the software’s func-

tionality by creating custom scripts, plugins, and applications. This API opens up a

world of possibilities for automating tasks, creating parametric models, and integrat-

ing Rhino 3D with other software tools [2].

The Rhino command line is another crucial aspect of the software. It provides a

text-based interface that allows users to interact with Rhino by entering commands

and parameters. While experienced users often find the command line efficient for

executing precise actions, newcomers and those with limited technical knowledge may

struggle with mastering the specific commands required for various tasks [3].

1.1.2 Large Language Models (LLMs)

Large Language Models (LLMs) represent a transformative leap in Natural Lan-

guage Processing (NLP). These models, characterized by their vast parameter counts,

have redefined NLP capabilities. The advent of the Transformer architecture, intro-

duced in "Attention is All You Need" by Vaswani et al. (2017), played a pivotal role

in their evolution. LLMs are trained on extensive textual data, enabling them to

2

Figure 1.1: Rhino 3D Interface

understand context, semantics, and linguistic nuances. This understanding extends

their utility across a spectrum of language tasks, from translation to text generation.

Notable examples include BERT, as described in "BERT: Pre-training of Deep Bidi-

rectional Transformers for Language Understanding" by Devlin et al. (2018), and

GPT-3 (Brown et al., 2020), which demonstrated human-level proficiency in various

language tasks. The history of LLMs is marked by their ever-increasing scale and

performance, underlining their significance in reshaping NLP and advancing AI.

1.1.2.1 GPT-3

GPT-3, short for "Generative Pre-trained Transformer 3," is a cutting-edge lan-

guage model developed by OpenAI. It’s designed to understand and generate human-

like text, making it seem almost like it’s written by a person. GPT-3 is known for its

incredible versatility, with the ability to perform various language tasks, from answer-

ing questions to creating content. Its large scale, with 175 billion parameters, gives it

3

an edge in processing and generating text that’s impressively coherent and context-

aware. GPT-3 has found applications in chatbots, virtual assistants, and content

generation, making it a significant advancement in the world of artificial intelligence

and natural language processing. [4]

1.1.2.2 GPT-4

Building upon the success of its predecessor, GPT-3, GPT-4 is the next stride in

the evolution of AI language models by OpenAI. This advanced multimodal model

seamlessly handles both text and images, producing outputs that rival human-level

performance. Notably, GPT-4 excels in various professional and academic bench-

marks, including a simulated bar exam where it ranks among the top 10

GPT-4, like its siblings, relies on the Transformer architecture and is primarily

trained to predict the next token in a text. This foundational understanding of

language and context enables it to generate coherent and context-aware responses.

An important aspect of the GPT-4 project is the development of infrastructure

and optimization methods that maintain predictability across a wide range of scales.

This predictability allows OpenAI to extend the model’s capabilities even to models

trained with significantly fewer computational resources. GPT-4, like its predecessors,

continues to contribute to the advancement of AI and NLP, showcasing the ongoing

progress in this field. [4]

1.2 Literature Review

The integration of natural language processing (NLP) with the generation of code

represents a compelling research route, serving as a pipeline between the expressive-

ness of human language and the precision of machine code [5]. Research in this field

has unveiled the capacity of extensive codebases to support the automation of code

generation and its interpretation via machine learning [6]. The role of semantic pars-

ing is pivotal, demonstrating the feasibility of extracting structured queries from con-

4

versational language while underscoring the need for semantic precision [7]. Advances

in the field have brought to light methods that derive executable programs from verbal

descriptions, highlighting the production of code that is both semantically nuanced

and context-sensitive [8]. The advent of syntactic neural models tailored for generat-

ing code has significantly contributed to this area, integrating syntactic constraints to

improve the generated code’s accuracy [5]. Furthermore, efforts to transform natural

language inquiries into structured database queries have proven the practicality of

NLP in translating informal dialogue into formal language constructs [9]. This body

of research collectively illustrates the transformative capability of NLP, facilitating

an intuitive and streamlined approach to converting linguistic inputs from humans

into formalized code and language structures.

Generative AI is significantly altering the landscape of design software, introducing

a new era where algorithmic processes augment human creativity and efficiency. In

architectural design, parametric modeling has become a foundation, emphasizing its

potential to automate and optimize design processes [10]. Similarly, in the domain of

product development, the integration of performance-driven generative design tools

has been shown to revolutionize product conception, enabling the creation of more

complex, functional, and comperhensive solutions [11]. The concept of computational

creativity extends the generative design discourse, proposing frameworks where AI

systems exhibit autonomous creative behaviors, thus fostering innovative solutions

that go beyond traditional design constraints [12].

The integration of generative AI and Large Language Models (LLMs) in educa-

tional platforms facilitates innovative approaches to learning new tools and enhanc-

ing user interfaces.. Meanwhile, LLMs, exemplified by OpenAI’s GPT models, have

revolutionized the way interactive learning systems respond to user queries, providing

instant, context-sensitive support that can mimic one-on-one tutoring sessions [13].

These advancements not only make learning more interactive and personalized but

5

also significantly enhance the efficacy of digital educational tools.

CHAPTER 2: METHODOLOGY

2.1 Overview

The application serves as a bridge between Rhino 3D’s command-line interface and

the user’s intentions, facilitating a more intuitive interaction within the 3D design

environment. Its main functionality lies in its ability to translate natural language

instructions into Rhino 3D’s command-line scripts. This process leverages the capa-

bilities of GPT API to interpret the user’s natural language input, convert it into

a formal command script, and execute the resulting actions within Rhino 3D. The

integration of RhinoCommon API plays a critical role here, enabling the application

to interact directly with Rhino 3D and enhance user experience by leveraging digital

potential.

The practicality of this application is evident through its integration of advanced

language processing techniques and the established Rhino3D software framework.

The application streamlines command-line operations by converting natural language

instructions into Rhino3D’s formal command language. This process leverages the

significant advancements in Large Language Models (LLMs), crucial for interpreting

nuanced human language, and RhinoCommon API, a cornerstone in the Rhino3D

community for developing plug-ins and interfaces that enhance functionality and user

interaction. This approach not only improves user accessibility and efficiency but

also broadens the potential for digital design, making sophisticated 3D modeling

tasks more accessible and enhancing usability across various levels of expertise.

7

Figure 2.1: Architecture

2.2 System Architecture

The application’s architecture is divided into two primary components: the RhinoCom-

mon framework integration and a Python script interfacing with the OpenAI API.

Here’s how each part functions within the system:

2.2.1 RhinoCommon Framework Integration

The application utilizes the RhinoCommon framework, employing C and .NET

to interact with Rhino 3D software. At its core, it will override the RunCommand

method, which asks for user instructions and then validates it. Then, it will set up the

anaconda environment with the proper packages and installed resources. This setup

initiates the main process by using natural language instructions from the user. These

instructions are then passed as inputs to a Python script tasked with communicating

with the OpenAI API. The standard output from this process will be read and used

by RunScript method in order to trigger the Rhino 3D visual output.

2.2.2 Python Script and OpenAI API Interaction

The Python component employs the LangChain framework to orchestrate a se-

quence of operations that transform user input into a structured prompt. This trans-

formation integrates the user’s natural language instructions with a template prompt,

8

optimizing the query for the GPT API.

2.3 Generative Script Using Large Langugae Models

Prompt engineering is a critical component in the interface between natural lan-

guage processing models and application-specific commands, particularly when inte-

grating AI capabilities like those provided by OpenAI’s GPT models into user-focused

software tools. Effective prompt engineering involves crafting inputs that leverage the

model’s pre-trained knowledge to produce outputs that are both accurate and rele-

vant to the task at hand[14]. This process is particularly important in applications

like 3D modeling software like our case, where commands must not only be syntacti-

cally correct but also contextually appropriate to execute the desired actions within

the software environment. Recent studies highlight the importance of fine-tuning the

interaction between large language models and end-user applications, emphasizing

that even subtle variations in prompt structure can significantly impact the quality

of the output[13].

2.3.1 Prompt Engineering

The initial phase involves an in-depth exploration of prompt variations to ensure

the optimal way the model translates user instructions. Domain-specific examples

from Rhino are used to fine-tune the translation of user intention to commands. [15]

A prompt is combined of different parts helping the model properly understand the

request or instructions of the user and helps it to generate the scripts while having

unambiguous instructions , Figure 2.2. Prompt Template: The template should mimic

the structure of commands expected by the target application (e.g., Rhino 3D). This

includes specifying the command syntax and sequence in which parameters should be

presented. For example, a template for creating a sphere might structurally require

’_Sphere’ followed by specifications for location and radius.

To aid the AI in understanding the context of the request, templates should include

9

placeholders for necessary contextual information that the user might provide. This

could be details about the environment, previous actions, or specific requirements

of the task. Including examples within the template can significantly improve the

model’s understanding of the desired output format. This is particularly beneficial

in few-shot learning scenarios where the model uses the examples to better grasp the

task requirements.

2.3.1.1 Chain of Thoughts

This technique involves encouraging the models to generate a sequence of interme-

diate reasoning steps, which significantly enhances their capability to tackle intricate

reasoning challenges. The approach is relatively straightforward: by providing a few

examples of chain of thought reasoning as exemplars during the prompting process,

LLMs are able to mimic this structured thought process.

Template: The prompt template is crafted to guide the AI in a stepwise manner,

ensuring that all necessary components of a command are correctly formulated:

1. Instruction Analysis: The model first breaks down the user’s instruction to

understand the required actions.

2. Command Identification: It then identifies the RhinoScript command(s) that

correspond to the desired action.

3. Parameter Assignment: Parameters are extracted from the user’s instruction,

ensuring they match the requirements of the RhinoScript commands.

4. Parameter Validation: The template checks that the parameters are in the

correct order and correctly formatted for each command.

5. Command Generation: Commands are generated for each step of the instruc-

tion, inserting default values for any parameters not specified by the user.

10

Figure 2.2: Simple Chain

6. JSON Structuring: The final output is structured in a JSON format, with an

optional description field for any additional notes about the commands.

Model: It specifically refers to the API used to interact with pre-trained language

models like GPT-3 or GPT-4. This API serves as the interface through which the

system sends natural language queries and receives generated text.

Output Parser: Language models typically generate text outputs, but in many

applications, a more structured form of information is necessary. Output parsers are

designed to convert these text outputs into structured formats, enhancing the util-

ity of language model responses. Essential to output parsers are two main methods:

"Get format instructions," which provides a string of instructions on how the output

should be formatted, and "Parse," which converts a text response from a language

model into a structured format. Additionally, there is an optional method, "Parse

with prompt," which also takes in the original prompt used to generate the response.

This method allows the parser to use the context from the prompt to potentially

retry or correct the output, providing a mechanism to refine parsing accuracy and

relevance[16].

1 "You are an expert Rhino 3D designer who can work with Rhino 3D api ,

the user will give you instructions about an action in rhino and

11

you should give a command of ’RhinoScript ’ for running in

RhinoCommon framework ’RunScript ’ method , put the command in a

json. Take these steps to make sure you generate the proper

script:

2 1. Find the steps needed for the instruction to be executed.

3 2. Find the proper command for each step

4 3. Find the proper measurements based on the users instruction and

assign it to the parameters.

5 4. Make sure you are using the correct parameters and correct order

of parameters for each command.

6 5. Generate the command for each step and fill in the unknown values

for parameters with default values.

7 6. structure the commands in a json format.

8 7. If you have any notes or description about the commands , put it

in the ’description ’ note in the JSON object.

9 "Examples ": [

10 {{" user_instruction ": "please create a sphere",

11 "output ": {{" RhinoScript ": ["_-Sphere 0,0,0 1"]}}"

12 }},

13 {{" user_instruction ": "Create an ellipse with a major axis of 15

units and a minor axis of 10 units.",

14 "output ": {{" RhinoScript ": ["_-Ellipse 0,0,0 0,15,0 10 ,0 ,0"]}}

15 }}

16 {{" user_instruction ": "Lock all objects on the ’Furniture ’ layer

.",,

17 "output ": {{" RhinoScript ": ["_-Layer _Lock \" Furniture \"

_Enter]}}

18 }}

19]

20 This is user ’s request: << {user_instruction} >>

21

22 ouptut format(JSON):

23 {{ "RhinoScript ": ["_-Sphere 0,0,0 1"],

12

24 "description ": "It is sphere centering at point 0,0,0 with radius

of 1 unit. The steps needed are 1. Using the Cone command , 2.

Choosing the center point , 3. Entering the radius. The command

used is Sphere and the parameters are the center point and the

radius like _-Sphere center radius"

25 }}

26 }

In this project, few shot learning has been used to show case an example of the

desires structure needed by the source code of rhino plug-in in order to be able to

use it as an script. Another important factor is to help the model understand the

beginning and the end of the user instruction and distinguish it properly from the

static part of the prompt. Finally, for tuning the generated results, sometime it is

needed to have more examples, specifically to help the model with accuracy of the

scripts. In this case, the first few iterations of the generated scripts were unreadable

by the Rhino 3D software, because of the inaccuracy in parameters order for most of

the commands in Rhino 3D CLI. This happens because the LLM models are usually

trained on internet corpus but there is not enough resources for CLI commands in

written format.

2.3.1.2 Few Shot Learning

Few-shot learning explores the capability of language models, particularly GPT, to

learn from a minimal number of examples, typically fewer than ten. This approach is

part of broader efforts to enhance the flexibility and adaptability of machine learning

models without the need for extensive training data. Few-shot learning leverages

the extensive pre-training of models like GPT on diverse data, allowing them to

apply accumulated knowledge to new tasks with only a few illustrative examples. In

practice, this means that GPT can perform tasks like translation, question answering,

and even specific professional tasks such as medical diagnosis, by seeing just a few

examples of the task at hand. This method significantly reduces the time and data

13

requirements typically associated with training models for specialized tasks, marking

a significant advancement in the efficiency and practicality of deploying AI in various

applications[13].

The use of few-shot learning within this framework is critical, as it tends to yield

more accurate and contextually relevant responses compared to zero-shot learning.

Few-shot learning is a technique in prompt engineering helping the LLM models to

understand the request through examples to enhance the performance and accuracy.

Also, when having a structured output, few-shot learning can help to generate the

proper structure that can further be parsed into the desired components by the ap-

plication. The number and variety of these shots play an important role for a more

generalized output. It is important that these shots be variant enough to help the

model understand different combinations of instructions but also proper to prevent

any over-fitting. However, it’s noted that the LLM model can still produce hallu-

cinations, generating commands that are not applicable or contain errors, such as

non-existent methods or incorrect parameters in the Rhino environment.

Using OpenAI’s API, the GPT-4 model was queried with natural language prompts

from users. These prompts were then transformed into structured RhinoCommon API

commands. These commands are the same commands the user employ while using

the Rhino 3D software command line. For example, for drawing a line, a user can

either apply the command using the visual interface or the command line interface

with the following command. _Line 0,0,0 1,1,1

2.4 LangChain Framework

2.4.1 Retrieval Augmented Generation

Retrieval Augmented Generation is a technique used mainly to help LLM with sup-

plementary data. LLMs can be powerful tools for reasoning, however their knowledge

is limited to the data provided through their training, therefore, they can be outdated

or in some cases, they do not have access to private data. This technique helps the

14

Figure 2.3: Retrieval Chain

model to access the appropriate pieces of information through the prompt to enhance

the reasoning. Figure 2.3

2.4.2 Indexing

Indexing is usually an offline process in which the desired data will be processed

and stored through a pipeline[16]. In this project, BeautifulSoup package is used for

scraping RhinoCommon documentation webpages in a recursive function. These web-

pages later were loaded, splitted and finally vectorized using an OpenAI Embedding

and stored in a ChromaDB database [17].

2.4.3 Retrieval and Generation Chain

By using the user input and proper embeddings, the relevant splits of the doc-

ument will be retrieved from the vectorstore and used for result generation by the

LLMs[16]. This step accesses the ChromaDB vectorsotre structured repository of

command-specific documentation, detailed steps, and parameter data. By fetching

this information, the system contextualizes the user’s natural language instructions.

The retrieved data is then integrated with the user’s instructions to generate a com-

prehensive prompt. This augmented prompt is fed into the model to generate the

desired command. This integration of command-specific information enriches the

model’s understanding, enabling it to produce better results and reducing the likeli-

hood of generating irrelevant or incorrect commands, commonly referred to as ’hal-

lucinations.’ This method not only enhances accuracy but also leverages the model’s

capabilities to interpret and respond to complex design requirements effectively.

15

In this project, embeddings are utilized to facilitate the retrieval of documents that

are most relevant to the outputs generated by the initial context question. The context

question specifically asks for the optimal Rhino 3D commands and associated shapes,

based on user instructions. The responses from this query are then used to search

through a vectorstore a collection of document embeddings that represent a variety of

potential data sources, such as HTML documents. These embeddings effectively map

textual content to a high-dimensional space, where semantic similarities translate to

spatial proximity. By querying this space with the embeddings of the AI-generated

answers, the system can efficiently retrieve documents that are contextually related to

the desired commands and shapes. These documents serve as a contextual backdrop,

providing the AI with additional relevant information that enhances its ability to

generate accurate and applicable Rhino 3D commands.

1 db = Chroma(

2 persist_directory=source_dir + "/chroma",

3 embedding_function=OpenAIEmbeddings(model="text -embedding -ada

-002"))

The main block orchestrates the flow of processing user instructions using an AI

model. It includes setting up AI models and chains for document retrieval and ques-

tion answering.

1 if __name__ == ’__main__ ’:

2 user_instruction = sys.argv [1]

3 model = ChatOpenAI(temperature =0.0, model="gpt -4")

The temperature parameter in an AI model’s configuration controls the random-

ness of the output. A lower temperature results in more deterministic and predictable

outputs, whereas a higher temperature allows for greater variability and creativity in

the responses. For this project, the temperature is set to 0.0 in the model config-

uration to ensure that the outputs are as deterministic as possible. This setting is

particularly important in the context of generating commands, where robustness and

16

specificity are crucial. A deterministic approach ensures that the model’s responses

are consistent and reliably aligned with the structured data retrieved from the docu-

ment embeddings. This reliability is vital for maintaining the integrity of the design

process and ensuring that the commands generated by the AI are directly executable

within the Rhino 3D environment without additional modifications or clarifications.

1 response_schemas = [

2 ResponseSchema(name="RhinoScript",

3 description="The runnable script for Rhino 3D CLI"),

4

5 ResponseSchema(name="description",

6 description="Description of the script and parameters")]

7 output_parser =

8 StructuredOutputParser.from_response_schemas(response_schemas)

The script configures output parsers and response schemas to organize the AI’s

responses into structured formats, which is essential for accurately extracting the

RhinoScript necessary for the RhinoCommon plugin. Large Language Models like

GPT typically generate human-like text, which may not be immediately interpretable

by computers. Although the output format is predetermined in the prompt template,

responses - especially in GPT-4 - might still include extra explanations. Utilizing

an output parser ensures that the outputs are properly structured, enabling efficient

script extraction for further use.

1 context_prompt = PromptTemplate(

2 template=command_question_template , ...)

3 retriever = db.as_retriever(search_kwargs ={’k’: 1})

4 context_chain = context_prompt | model | StrOutputParser ()

5

6 docs = {

7 "context": RunnableLambda(lambda x: retriever.

17

get_relevant_documents(x))

8 }

9 inputs = {** user_input , **docs}

10 retrieval_chain =

11 context_chain | inputs | command_prompt | model | output_parser

12 result = retrieval_chain_.invoke ({’input’: user_instruction })

2.5 Environment Setup

The development environment for the application is structured to support the seam-

less integration of .NET C and Python components, facilitating the interaction be-

tween the Rhino 3D software and OpenAIś API. Here is how the environment is set

up and the tools involved:

2.5.1 Visual Studio and RhinoCommon Framework

The application’s Rhino 3D-related component is developed using the RhinoCom-

mon framework within the Visual Studio IDE. Visual Studio provides a robust envi-

ronment for .NET C development, offering comprehensive support for RhinoCommon

SDK, which is crucial for creating and debugging the plugin for Rhino 3D. This setup

allows for the development of script-running commands and the integration of user

interfaces to capture natural language instructions.

2.5.2 Anaconda and Python Environment

For the Python component, the Anaconda distribution is utilized to manage the

Python environment. Anaconda simplifies the process of setting up and managing

various Python versions and libraries, making it an ideal choice for configuring the

environment required for OpenAI API interaction. Within this environment, the

LangChain library and framework are installed to facilitate the construction of struc-

tured prompts and handle the communication with the OpenAI API.

18

2.5.3 Integration of Components

The integration between the C# and Python components is crucial for the applica-

tion’s functionality. The C# code within the RhinoCommon framework triggers the

Python script, which in turn processes the user’s natural language input, interacts

with the OpenAI API, and returns the command script to be executed in Rhino 3D.

2.5.4 Tooling and Configuration

• Visual Studio: Used for C development and RhinoCommon plugin integration.

• Anaconda: Manages the Python environment, ensuring that the necessary ver-

sions and libraries, including LangChain, are correctly configured for optimal

interaction with the OpenAI API.

CHAPTER 3: EVALUATION AND RESULTS

This chapter outlines the evaluation and results of the application designed to con-

vert natural language instructions into Rhino 3D commands using LLMs. The focus

of the evaluation is on the application’s effectiveness in accurately interpreting user

inputs and generating corresponding Rhino 3D scripts. The testing was conducted

through a series of test cases covering basic geometry creation, object editing, view

adjustments, and annotations, reflecting the application’s scope. These cases helped

assess both the functionality and the quality of the AI-generated outputs. This sec-

tion details the testing approach, the execution of the test cases, the analysis of the

results, and the implications for further development.

3.1 Test Cases

A comprehensive set of test cases was developed to cover key functionalities of

Rhino 3D, including basic geometry creation, object editing, view and display settings,

and annotations. These cases were specifically designed to assess both the technical

execution and the interpretative accuracy of the application.

Qualitative rating assessments are a crucial tool in research to evaluate complex

phenomena that are not easily quantifiable. Qualitative ratings allow to assess di-

mensions of a subject that are subjective and nuanced, often based on criteria that

do not lend themselves to straightforward numeric scoring. This method involves de-

veloping a set of criteria that reflect the key aspects of the phenomenon being studied

and then assigning ratings based on the judgment of experienced evaluators. The

qualitative ratings can provide a deeper insight into the effectiveness, usability, and

overall impact of an intervention or system, offering a richer and more holistic view

20

Table 3.1: Rating Criterea

Rating 1 Correct Command Choice
Rating 2 Accuracy of Parameters
Rating 3 Parameter Order
Rating 4 Execution Success
Rating 5 Overall Effectiveness

than quantitative metrics alone[18].

This rating system, ranging from 1 to 5, critically evaluates several key aspects of

each generated script. Each generated script performance is rated during the testing

phase based on the following rating system.

1. Rating 1: The script fails to recognize the proper command.

2. Rating 2: The script recognizes the proper command for the instruction but

not the proper parameters.

3. Rating 3: The generated script is using the proper command and parameters

but in an incorrect order or format and execution fails.

4. Rating 4: The script is largely effective with correct commands and parameters,

though minor improvements are possible.

5. Rating 5: The script perfectly executes the intended command with optimal

parameters and excellent adherence to user instructions, fully satisfying the

design requirement.

In the testing framework, two distinct types of test cases were employed: devel-

opment test cases and evaluation test cases. Development test cases were a smaller,

focused set of scenarios used primarily during the initial phases of the application’s

creation. These cases, numbering 11 , Table C.1, were instrumental in fine-tuning the

application’s functionality, specifically in optimizing the prompt engineering process

to enhance the AI’s ability to interpret and execute natural language instructions

21

accurately. They served as a foundational tool for iterative refinement, allowing for

adjustments in the application’s design and its interaction with the GPT API based

on observed performance and output quality. Evaluation test cases, on the other hand,

were used to assess the application performance across a wider spectrum of Rhino 3D

functionalities. These test cases, numbering 48, Table C.2, were designed to cover a

variety of user instructions, testing the application ability to handle different com-

mands and its accuracy in translating them into Rhino 3D actions. Through these

evaluation test cases, the effectiveness and adaptability were examined, offering in-

sights into its practical application and highlighting areas for potential improvement.

The testing process was iterative, allowing for the refinement of both the application

and the testing suite. Initial rounds of testing informed prompt adjustments and

application enhancements to improve performance and accuracy.

Where possible, automation was employed to streamline the testing process, espe-

cially for straightforward or repetitive test cases. Manual oversight remained crucial,

however, to interpret results, especially in cases involving a more complex or subjec-

tive assessments of output quality.

3.2 Performance Metrics

For each model iteration, the average execution rating is calculated along with the

standard deviation to provide insight into the variability of the model’s performance.

These statistics help identify how consistently each model performs across different

test scenarios.

Mean Scores: The average execution rating for each model across all test cases,

providing a snapshot of overall performance.

Standard Deviation: Measures the amount of variation or dispersion from the

average, offering insights into the consistency of each model’s performance.

In the evaluation data, GPT-4 without contextual enhancements demonstrated a

higher incidence of failures, notably generating incorrect commands or parameters

22

Table 3.2: Performance Metrics

gpt-3.5-turbo gpt-4 RAG gpt-4
Rating 0 8 10 4
Rating 1 2 6 6
Rating 2 7 5 4
Rating 3 9 8 5
Rating 4 1 2 4
Rating 5 21 17 25

Mean 3.167 2.770 3.541
Standard Deviation 1.905 1.991 1.801

Figure 3.1: Mean and Standard Deviation

Figure 3.2: Average Ratings by Category and Model

23

Figure 3.3: Count Distribution by Category

that do not exist within the Rhino 3D command set. This is by an increased num-

ber of cases rated as "0," indicating significant errors in output. The data suggests

that by incorporating contextual enhancements into GPT-4, there was a noticeable

performance improvement. The addition of context helped reduce the occurrences of

hallucinated commands and parameters, aligning the model’s outputs more closely

with the actual functionalities of Rhino 3D. This improvement is reflected in the

reduced number of failure cases and an overall higher average rating for the model

with contextual data, indicating a clear benefit from integrating specific, relevant

information into the model’s processing framework. This suggests that the model’s

understanding and accuracy are enhanced by context, which helps it generate more

reliable and appropriate commands for Rhino 3D. It is also possible to identify which

categories experience more frequent failures. Notably, the LayerAndAnnotation in-

structions show a lower average rating, largely due to the dependency of annotation

24

Table 3.3: Case Study 1

GPT-3.5 Turbo GPT-4 RAG GPT-4
_-Line 2,3,0 5,8,0 _-Line 2,3,0 5,8,0 _-Line 2,3,0 5,8,0

Table 3.4: Case Study 2

GPT-3.5 Turbo GPT-4 RAG GPT-4
_-TextObject Midpoint _Pause _Enter _-SelLine _Enter _-SelLine _Enter

commands on measurement commands, which will be explored further.

3.3 Case Studies

3.3.1 Case Study 1: Basic Geometry Creation

Test Scenario: "Draw a straight line from point A to point B." , Table 3.3

Instructions Used: "Draw a straight line from (2,3,0) to (5,8,0)."

Results:

GPT-3.5 Turbo: Successfully generated the correct command with a high rating of 5.

GPT-4: Similar performance to GPT-3.5, also achieving a perfect score.

GPT-4 with Context: Maintained a perfect score, indicating consistent accuracy

across all models for basic tasks.

3.3.2 Case Study 2

Test Scenario: "Label the midpoint of the selected line with text ’Midpoint’." Ta-

ble 3.4

Instructions Used: "Label the midpoint of the selected line with text ’Midpoint’."

Results:

This case consistently underperformed across all iterations, primarily due to im-

plementation constraints and the limitation to processing only single commands. A

significant contributing factor to the failure is Rhino 3D’s command line limitation,

which struggles with chaining the outputs of commands. Although the GPT-4 models

generated a sequence of commands that theoretically addressed the task, the imple-

25

Table 3.5: Case Study 3

GPT-3.5 Turbo GPT-4 RAG GPT-4
_-Cone 0,0,0 1 0’ _-Cone 0,0,0 1,0,0 0,2,0 2 _-Cone 0,0,0 0,0,1 1

NONE

mentation only utilized the first command. Further testing revealed that chaining

commands, especially when an output value from one command needs to be input

into the next, is not consistently effective in Rhino 3D. This limitation highlights

a critical area where the interface between the GPT models and Rhino 3D needs

enhancement to handle complex command sequences effectively.

3.3.3 Case Study 3

Test Scenario: Implicit Object Creation This case study examines the ability of GPT

models to interpret and execute an instruction that implicitly describes a common

object without explicit design parameters.

Instruction Used: "A birthday hat!" Table 3.5

Results: In this case, we also investigate the chain of thought based on the prompts

and chain architecture. The description in the output as shown earlier in the schema of

the output is used to explain the chain of thought of the model and the way the script

is created. Furthurmore, the verbosity of the chained model can help understanding

each step within the chain and investigate the context extraction and how it helps

the generation of the script.

GPT-3.5 Turbo:

’description’: ’It is a cone centering at point 0,0,0 with radius 1 unit and height 0.

The steps needed are 1.Using the Cone command, 2. Choosing the center point, 3.

Entering the radius, 4. Entering the height. The command used is Cone and the

26

parameters are the center point, radius, and height like _-Cone center radius height’

GPT-4:

’description’: ’This script creates a birthday hat by creating two cones. The first

cone is created with the base at the origin and the apex at (0,2,0) with a radius of 2.

The second cone is created with the base at the origin and the apex at (0,2,0) with

a radius of 2. The commands used are Cone and the parameters are the base point,

the apex point and the radius like _-Cone base apex radius’

RAG GPT-4:

Chain 1:

The top 2 best RhinoScript "command line" commands that can be used to create a

birthday hat in three Command keys are: ExtrudeCrv: This command can be used

to extrude a curve to create the main body of the hat. FilletEdge: This command

can be used to round off the edges of the hat to give it a more realistic look. The

shape that better describes the request in one word is "cone" Retriever Documents:

1 page_content=’Cone | Rhino 3-D modeling Cone

2 ...

3 Cone

4 The Cone command draws a cone.

5 Steps 1. Pick the center and radius of the base.

6 Note : See the Circle command for option descriptions.

7 2. Pick the end of the cone (apex).

8 Command -line options

9 Direction constraint options Direction constraints restrict the

direction of the circle. None

10 The center can be anywhere in 3-D space.

11 The second point can be placed anywhere using elevator mode ,

object snaps or other modeling aids.

12 Vertical

13 Draws an object perpendicular to the construction plane.

14 Pick the center and a radius or diameter.

27

15 AroundCurve

16 Draws a circle perpendicular to a curve.’ metadata={’source ’: ’/Cone

’, ’title ’: ’Cone | Rhino 3-D modeling ’}

’description’: This script creates a cone (birthday hat) with the base centered at point

0,0,0, a base radius of 1 unit, and an apex at point 0,0,1. The steps needed are 1.

Using the Cone command, 2. Choosing the center point and radius of the base, 3.

Choosing the apex of the cone. The command used is Cone and the parameters are

the center point, radius of the base, and apex like _-Cone center radius apex Please

note that the actual size and position of the birthday hat may need to be adjusted

based on the specific requirements of your 3D model."

CHAPTER 4: DISCUSSIONS AND FUTURE WORK

4.1 Challenges

Challenges in Integrating Natural Language Processing with Rhino 3D The inte-

gration of GPT-4 with Rhino 3D’s command-line interface highlighted several key

challenges that must be addressed to fully harness the potential of natural language

processing in 3D modeling environments. The primary limitations pertain to the

command-line scripting capabilities of Rhino 3D, where object selection tools lack

the sophistication needed for precise manipulations without direct user input. This

fundamental limitation complicates the automation of tasks that require detailed ob-

ject interactions, thereby impacting the system’s usability and effectiveness.

Additionally, the project encountered significant difficulties with sequencing actions

and understanding the spatial orientation of objects. The CLI’s limited ability to

interpret and execute sequences of commands based on varying views restricts its

capacity to handle complex modeling tasks. These challenges are further exacerbated

by the Rhino 3D environment’s inherent complexities, requiring a deep understanding

of 3D modeling concepts and interactions.

Performance issues also exist, particularly related to the speed and consistency of

the GPT-4 model’s responses. The model often demonstrated slow response times,

especially when handling multiple chained commands, leading to operational delays.

Moreover, inconsistencies in the model’s outputsâlikely due to ongoing modifications

in the GPT-4 implementationâresulted in outputs that varied significantly between

sessions, undermining the reliability and predictability of the system.

29

4.2 Future Work

Fine-Tuning Based on CLI Logs: Analyzing CLI logs to identify common errors

and inefficiencies could provide crucial insights that help refine the GPT model’s

training. This fine-tuning process would enhance the model’s accuracy in generating

Rhino 3D commands and its capacity to handle more complex scenarios.

Integration of Voice Commands: Implementing voice command capabilities

could offer a more intuitive and efficient method for user interaction with Rhino

3D. Voice commands would simplify the interface and could potentially accelerate

operations, making the system more accessible and reducing the learning curve for

new users.

Development of a Memory Component: Introducing a memory component

that retains information from previous interactions could significantly improve the

system’s functionality. Such a component would allow the system to reference earlier

commands and parameter values more effectively, facilitating the handling of complex

design tasks that require modifications and iterations over time.

CHAPTER 5: CONCLUSIONS

This thesis explored integrating LLMs in Rhino 3D’s command-line interface to

translate instructions in natural language into executable CAD commands to provide

a more accessible route to 3D modeling to users with varying levels of experience.

The project was focused on the potential of AI to help new users by providing a

more fluent interface that reduces the typical learning curve that characterizes highly

specialized design software. While the model was able to handle basic commands and

simple geometrical reasoning quite well, the study revealed shortcomings in applying

advanced design reasoning, which is a common limitation for NLP models.

In spite of these limitations, the study showed that it was feasible to bring natural

language processing into CAD tools, which should make digital design tools more

intuitive and easier to learn, and potentially impact the way users interact with soft-

ware. The study also showed the practical limitations of the current technologies,

pointing to a need for fine-tuning both the NLP models and the CAD software inter-

faces to achieve these benefits. For instance, tasks that require advanced reasoning

and understanding of spatial relationships pose a particular obstacle for the NLP

models and should be a focus for future improvements.

With attention to these spaces, the integration of AI into professional design tools

like Rhino 3D could lead to significant changes in digital design practice and allow

for faster learning and more efficiency. This has the potential to open the gateway

to more accessible, user-friendly computational design tools â and is part of a wider

trend of technological developments in the creative professions that ease access and

use. These findings demonstrate the transformative power of AI design, both as a

tool for beginners and as a complex problem with many miles to go.

31

REFERENCES

[1] Robert McNeel & Associates, “Rhino 3d - nurbs modeling for windows,” 2023.

[2] Robert McNeel & Associates, “Rhino developer docs,” 2023.

[3] Robert McNeel & Associates, “Rhino command line,” 2023.

[4] OpenAI, “Openai gpt-4,” 2023.

[5] P. Yin and G. Neubig, “A syntactic neural model for general-purpose code gen-
eration,” 2017.

[6] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey of machine
learning for big code and naturalness,” 2018.

[7] J. Berant, A. Chou, R. Frostig, and P. Liang, “Semantic parsing on Freebase
from question-answer pairs,” in Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing (D. Yarowsky, T. Baldwin, A. Korho-
nen, K. Livescu, and S. Bethard, eds.), (Seattle, Washington, USA), pp. 1533–
1544, Association for Computational Linguistics, Oct. 2013.

[8] M. Raza, S. Gulwani, and N. Milic-Frayling, “Compositional program synthe-
sis from natural language and examples,” in International Joint Conference on
Artificial Intelligence, 2015.

[9] V. Zhong, C. Xiong, and R. Socher, “Seq2sql: Generating structured queries from
natural language using reinforcement learning,” 2017.

[10] P. Janssen and R. Stouffs, “Types of parametric modelling,” in Proceedings of
the 20th International Conference of the Association for Computer-Aided Archi-
tectural Design Research in Asia (CAADRIA), pp. 157–166, 2015.

[11] K. Shea, R. Aish, and M. Gourtovaia, “Towards integrated performance-driven
generative design tools,” Automation in Construction, vol. 14, no. 2, pp. 253–264,
2005.

[12] J. Mccormack, A. Dorin, and T. Innocent, “Generative design: a paradigm for
design research,” 2005.

[13] T. B. Brown and et al., “Language models are few-shot learners,” arXiv preprint
arXiv:2005.14165, 2020.

[14] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al., “Language
models are unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9,
2019.

[15] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le,
and D. Zhou, “Chain-of-thought prompting elicits reasoning in large language
models,” 2023.

32

[16] “Question answering langchain documentation,” 2023. Accessed: 2023-04-17.

[17] J. Webster, “Chatting to a website with langchain, openai, and chromadb,” 2023.
Accessed: 2024-04-24.

[18] J. A. Maxwell, Qualitative research design: An interactive approach. Sage pub-
lications, 2012.

33

APPENDIX A: PROMPTS

1 You are an expert rhino3d designer who can work with rhino3d api ,

2 the user will give you instructions about an action in rhino and you

should give a list of ’RhinoScrip ’ for

3 running in RhinoCommon framework ’RunScript ’ method , list the

commands in a json.

4 RhinoScripts are like this <<

5 ’_Sphere 0,0,0 1’ for creating a sphere or

6 ’_ArrayPolar _Copy=_Yes _DeleteInput=_No _AngleBetweenCopies =90

_Center =0,0,0 _Count =4 _DeleteInput=No ’ for array the object

7 >>

8 This is users request: << {user_instruction} >>

9 """

Listing A.1: Prompt 1

1

2 You are an expert rhino3d designer who can work with rhino3d api ,

3 the user will give you instructions about an action in rhino and you

should give a list of ’RhinoScript ’ for

4 running in RhinoCommon framework ’RunScript ’ method , list the

commands in a json.

5 Take these steps to make sure you generate the proper script.

6 1. Find the steps needed for the instruction to be executed.

7 2. Find the proper command for each step

8 3. Make sure you are using the correct parameters and their orders

for each command.

9 4. Genereate the command for each step and fill in the unknown

values for parameters with default values.

10 5. structure the commands in a json format.

11 The following examples are here to help you with the structure of

the output:

12 1. user instruction: "please create a sphere" >> output: "{{"

34

RhinoScript" ["_-Sphere 0,0,0 1"]}}"

13 2. user instruction: "I want an array of the last object created" >>

output: "{{" RhinoScript ": ["_-SelLast", "_-ArrayLinear _Count =5

_Direction =1,0,0 _Distance =10 _DeleteInput=No "]}}"

14 3. user instruction: "Create an ellipse with a major axis of 15

units and a minor axis of 10 units." >> output: "{{" RhinoScript ":

["_-Ellipse 0,0,0 0,15,0 10 ,0 ,0"]}}"

15 The output should follow the structure above.

16 This is user ’s request: << {user_instruction} >>

17 Please make sure it is a valid syntax and works if I feed it to the

rhino command line!

Listing A.2: Prompt 2

1 You are an expert rhino3d designer who can work with rhino3d api ,

2 the user will give you instructions about an action in rhino and you

should give a command of ’RhinoScript ’ for

3 running in RhinoCommon framework ’RunScript ’ method , put the command

in a json.

4 Take these steps to make sure you generate the proper script.

5 1. Find the steps needed for the instruction to be executed.

6 2. Find the proper command for each step

7 3. Find the proper measurements based on the users instruction and

assign it to the parameters.

8 4. Make sure you are using the correct parameters and correct order

of parameters for each command.

9 5. Genereate the command for each step and fill in the unknown

values for parameters with default values.

10 6. structure the commands in a json format.

11 7. If you have any notes or description about the commands , put it

in the ’description ’ note in the json.

12 8. Reply in a JSON format.

13 The response format should follow the following JSON format. It has

to be a json without any notes. If any notes are needed they

35

should be put in the ’description ’ object of the JSON.

14 Examples:

15 These are a few examples of the user instructions and the proper

RhinoScript output:

16 {{

17 "Examples ": [

18 {{

19 "user_instruction ": "please create a sphere",

20 "output ": {{" RhinoScript ": ["_-Sphere 0,0,0 1"]}}"

21 }},

22 {{

23 "user_instruction ": "Create an ellipse with a major axis of 15

units and a minor axis of 10 units.",

24 "output ": {{" RhinoScript ": ["_-Ellipse 0,0,0 0,15,0 10 ,0 ,0"]}}

25 }}

26 {{

27 "user_instruction ": "Lock all objects on the ’Furniture ’ layer

.",,

28 "output ": {{" RhinoScript ": ["_-Layer _Lock Furniture]}}

29 }}

30]

31 }}

32

33 This is user ’s request: << {user_instruction} >>

34 Please make sure it is a valid syntax and works if I feed it to the

Rhino Command Line Interface.

35 ouptut format(JSON):

36 {{ "RhinoScript ": ["_-Sphere 0,0,0 1"],

37 "description ": "It is an sphere centering at point 0,0,0 with

radius of 1 unit. The steps needed are 1. Using the Cone command ,

2. Choosing the center point , 3. Entering the radius. The command

used is Sphere and the parameters are the center point and the

radius like _-Sphere center radius"

36

38 }}

Listing A.3: Prompt 3

1 You are an expert Rhino 3D designer who can work with Rhino 3D API ,

2 the user will give you instructions about an action in Rhino and you

should give a command of ’RhinoScript ’ for

3 running in the RhinoCommon framework ’RunScript ’ method , put the

command in a JSON.

4 This is the probable related context for the request.

5 {context}

6 Take these steps to make sure you generate the proper script.

7 1. Find the steps needed for the instruction to be executed.

8 2. Use the context to figure out the parameters and steps of the

command needed.

9 3. Find the proper measurements based on the user ’s instructions and

assign them to the parameters.

10 4. Make sure you are using the correct parameters and the correct

order of parameters for each command.

11 5. Generate the command for each step and fill in the unknown values

for parameters with default values.

12 6. structure the commands in a JSON format.

13 7. If you have any notes or description about the commands , put it

in the ’description ’ note in the json.

14 The response format should follow the following JSON format. It has

to be a json without any notes. If any notes are needed they

should be put in the ’description ’ object of the JSON.

15 {{ "RhinoScript ": ["_-Sphere 0,0,0 1"], "description ": "It is a

sphere centering at point 0,0,0 with radius of 1 unit. The steps

needed are: 1. Using the Cone command , 2. Choosing the center

point , 3. Entering the radius. The command used is Sphere and the

parameters are the center point and the radius like _-Sphere

center radius "}}

16 These are a few examples of the user instructions and the proper

37

RhinoScript output:

17 {{

18 "Examples ": [

19 {{

20 "user_instruction ": "please create a sphere",

21 "output ": {{" RhinoScript ": ["_-Sphere 0,0,0 1"]}}"

22 }},

23 {{

24 "user_instruction ": "Lock all objects on the ’Furniture ’ layer

.",

25 "output ": {{" RhinoScript ": ["_-Layer _Lock \" Furniture \"

_Enter]}}

26 }},

27 {{

28 "user_instruction ": "Create an ellipse with a major axis of 15

units and a minor axis of 10 units.",

29 "output ": {{" RhinoScript ": ["_-Ellipse 0,0,0 0,15,0 10 ,0 ,0"]}}

30 }}

31]

32 }}

33 This is user ’s request: << {input} >>

34 Please make sure it is a valid syntax and works if I feed it to the

Rhino Command Line Interface.

35 ouptut format(JSON):

36 {{ "RhinoScript ": ["_-Sphere 0,0,0 1"],

37 "description ": "It is an sphere centering at point 0,0,0 with

radius of 1 unit. The steps needed are 1. Using the Cone command ,

2. Choosing the center point , 3. Entering the radius. The command

used is Sphere and the parameters are the center point and the

radius like _-Sphere center radius"

38 }}

Listing A.4: Prompt 4

38

APPENDIX B: SOURCE CODE

1 using System ;

2 using System.Collections.Generic ;

3 using Rhino ;

4 using Rhino.Commands ;

5 using Rhino.Geometry ;

6 using Rhino.Input ;

7 using Rhino.Input.Custom ;

8 using System.Diagnostics ;

9 using System.IO ;

10 using System.Text ;

11 using System.Drawing ;

12 namespace OpenAiCommandHelper

13 {

14 [Rhino.Commands.CommandStyle(Rhino.Commands.Style.ScriptRunner)]

15 public class OpenAiCommandHelperSeries : Command

16 {

17 public OpenAiCommandHelperSeries()

18 {

19 // Rhino only creates one instance of each command class

defined in a

20 // plug -in, so it is safe to store a refence in a static

property.

21 Instance = this ;

22 }

23

24 ///<summary>The only instance of this command.</summary>

25 public static OpenAiCommandHelperSeries Instance { get ;

private set ; }

26

27 ///<returns>The command name as it appears on the Rhino

command line.</returns>

39

28 public override string EnglishName => "

OpenAiCommandHelperCommand" ;

29 protected override Result RunCommand(RhinoDoc doc , RunMode

mode)

30 {

31 string userInstructions = GetUserInstructions() ;

32 var tokens = userInstructions.Split(new char[] { ’ ’, ’\

t’, ’\n’, ’\r’ }, StringSplitOptions.RemoveEmptyEntries) ;

33 RhinoApp.WriteLine($"{tokens.Length}") ;

34

35 if (string.IsNullOrWhiteSpace(userInstructions) ||

tokens.Length < 2)

36 {

37 RhinoApp.WriteLine("No user instructions provided.

Aborting.") ;

38 return Result.Failure ;

39 }

40 var ScriptResult = CallPython(userInstructions) ;

41 try

42 {

43 RhinoApp.WriteLine("Generated Result !: ") ;

44 RhinoApp.WriteLine(ScriptResult) ;

45 var res = RhinoApp.RunScript(ScriptResult , true) ;

46 RhinoApp.WriteLine(res.ToString()) ;

47 CreateTextInTopView(doc , userInstructions) ;

48 }

49 catch (Exception e)

50 {

51 CreateTextInTopView(doc , "\n Error! \n Generated

Command: " +ScriptResult + "\n Error: " +e.Message) ;

52 RhinoApp.WriteLine(e.Message) ;

53 }

54 return Result.Success ;

40

55 }

56 private string GetUserInstructions()

57 {

58 // Implement your logic to obtain user instructions as a string

59 // You can use Rhino ’s GetString or any other method to collect

user input

60 // For example:

61 string prompt = "Enter your instructions in double

quotes: " ;

62 GetString getStr = new Rhino.Input.Custom.GetString() ;

63 getStr.SetCommandPrompt(prompt) ;

64

65 if (getStr.GetLiteralString() == GetResult.String)

66 return getStr.StringResult() ;

67

68 return null ; // Return null if user input is canceled

69 }

70

71

72 private string CallPython(string userInstruction)

73 {

74 const string cmd = "bash" ;

75 const string activateConda =

76 "source ./ anaconda3/bin/activate" ;

77 const string activateVenv = "conda activate openaienv" ;

78 string scriptPath = "./ call_openai.py" ;

79 var pythonCommand =

80 $"python \"{scriptPath}\" \"{userInstruction}\"" ;

81 try {

82 var startInfo = new ProcessStartInfo

83 {

84 RedirectStandardOutput = true ,

85 RedirectStandardInput = true ,

41

86 RedirectStandardError = true ,

87 UseShellExecute = false ,

88 CreateNoWindow = true ,

89 // Arguments = args ,

90 FileName = cmd ,

91 // WorkingDirectory = workingDirectory

92 } ;

93 RhinoApp.WriteLine("trying to run python script!") ;

94 var process = Process.Start(startInfo) ;

95 if (process == null)

96 RhinoApp.WriteLine("Could not start process") ;

97 var sw = process.StandardInput ;

98 if (sw == null)

99 RhinoApp.WriteLine("Could read the input") ;

100 if (sw.BaseStream.CanWrite)

101 {

102 sw.WriteLine(activateConda) ;

103 sw.WriteLine(activateVenv) ;

104 RhinoApp.WriteLine("source activated!") ;

105 sw.WriteLine(pythonCommand) ;

106 sw.Flush() ;

107 sw.Close() ;

108 }

109 else

110 RhinoApp.WriteLine("Could read the input") ;

111 var sb = new StringBuilder() ;

112 while (!process.HasExited)

113 sb.Append(process.StandardOutput.ReadToEnd()) ;

114 var error = process.StandardError.ReadToEnd() ;

115 if (!string.IsNullOrEmpty(error))

116 {

117 RhinoApp.WriteLine($"Error: \n{error}") ;

118 throw new Exception($"{error}") ;

42

119 }

120 return sb.ToString() ;

121 } catch (Exception e)

122 {

123 RhinoApp.WriteLine(e.Message) ;

124 return null ;

125 }

126 }

127 }

128 }

Listing B.1: RhinoCommon Plug-in

1 import openai

2 from dotenv import load_dotenv , find_dotenv

3 import os

4 import sys

5 from langchain_openai import ChatOpenAI , OpenAIEmbeddings

6 from langchain.output_parsers import ResponseSchema ,

StructuredOutputParser

7 from langchain.schema import StrOutputParser

8 from langchain.vectorstores.chroma import Chroma

9 from langchain.schema.vectorstore import VectorStoreRetriever

10 from langchain.prompts import PromptTemplate

11 from langchain_core.output_parsers import JsonOutputParser

12

13 # Specify the path to your .env file

14 env_file_path = ’.env ’ # Update this with the correct path

15 source_path = __file__

16

17 # Get the directory of the current file

18 source_dir = os.path.dirname(source_path)

19

20 from dotenv import load_dotenv , find_dotenv

43

21 _ = load_dotenv(find_dotenv ()) # read local .env file

22 openai.api_key = os.environ[’OPENAI_API_KEY ’]

23 db = Chroma(

24 persist_directory=source_dir + "/ chroma",

25 embedding_function=OpenAIEmbeddings(model ="text -embedding -ada

-002") ,

26)

27

28 def load_prompt(prompt_file):

29 with open(prompt_file , ’r’) as file:

30 prompt = file.read().replace(’\n’, ’’)

31 return prompt

32

33 def no_context(user_instruction , model):

34 parser = JsonOutputParser ()

35 template_string = load_prompt(source_dir +’/Project/prompts /3.txt

’)

36 prompt = PromptTemplate(

37 template=template_string ,

38 input_variables =[" user_instructions "],

39 partial_variables ={" format_instructions ": parser.

get_format_instructions ()},

40)

41 chain = prompt | model | parser

42 result = chain.invoke({’user_instruction ’: user_instruction })

43 print(result[’RhinoScript ’][0])

44

45 def with_context(user_instruction , model):

46 parser = JsonOutputParser ()

47 response_schemas = [

48 ResponseSchema(name=" RhinoScript", description ="the

runnable script for Rhino3d CLI"),

49 ResponseSchema(

44

50 name=" description",

51 description ="The description for the script and the

parameters",

52),

53]

54 output_parser = StructuredOutputParser.from_response_schemas

(response_schemas)

55 template_string = load_prompt(source_dir +’/Project/prompts

/4.txt ’)

56

57 command_question_template = """You are an expert rhino3d

designer who can work with rhino3d command line api.

58 Based on the user instruction , what is the top 2 best

RhinoScript "command line" command that can be used to complete

this request in three Command keys?

59 And what shape better describes the request in one word?

60 {input}

61 """

62 context_prompt = PromptTemplate(

63 template=command_question_template ,

64 input_variables =[" context", "input"],

65 partial_variables ={" format_instructions ": parser.

get_format_instructions ()},

66)

67 retriever: VectorStoreRetriever = db.as_retriever(

search_kwargs ={’k’: 3})

68 context_chain = context_prompt | model | StrOutputParser ()

69 context_result = context_chain.invoke({’input ’:

user_instruction })

70 docs = {" context ": retriever.get_relevant_documents(

context_result)}

71 command_prompt = PromptTemplate(

72 template=template_string ,

45

73 input_variables =[" input"],

74 partial_variables ={" format_instructions ": parser.

get_format_instructions ()},

75)

76 retrieval_chain_2 = command_prompt | model | output_parser

77 result_2 =retrieval_chain_2.invoke({’input ’:

user_instruction , ’context ’: docs})

78 print(result_2[’RhinoScript ’][0])

79

80 if __name__ == ’__main__ ’:

81 try:

82 user_instruction = sys.argv [1]

83 llm_model = "gpt -3.5- turbo" if len(sys.argv) < 3 else sys.

argv [2]

84 model = ChatOpenAI(temperature =0.0, model=llm_model)

85 with_context(user_instruction , model)

86

87 except Exception as e:

88 print(’ERROR ’, e)

Listing B.2: NLP Python

46

APPENDIX C: TEST CASES

1 "Draw a vertical line from (0,0,0) to (0,0,10)."

2 "Create an ellipse with a major axis of 15 units and a minor axis of 10 units."

3 "Switch the top viewport to wireframe mode."

4 "Duplicate the selected object and translate it 10 units in the X-axis

and 5 units in the Y-axis."

5 "Extrude the selected curve 15 units along the global Y-axis."

6 "hide all objects on a specific layer named ’Temp Layer’."

7 "Sweep a selected profile curve along a helix-shaped rail."

8 "Loft between these three curves."

9 "Revolve this curve around the Z-axis."

10 "Measure the radius of this sphere."

11 "Taper a box shape by a specified angle along the Z-axis."

Table C.1: Development Test Cases

47

BasicGeometryCreation

1 "Draw a straight line from (2,3,0) to (5,8,0)."

2 "Create a circle centered at (4,4,0) with a radius of 3 units."

3 "Construct a regular hexagon with each side measuring 4 units."

4 "Place a point at (7,7,7)."

5 "Sketch a curve passing through (0,0,0), (3,3,3), and (6,0,0)."

6 "Generate an equilateral triangle with a side length of 5 units at (2,2,0)."

7 "Create a rectangular plane with dimensions 4x6 units at the origin."

8 "Draw an arc with a radius of 3 units from angle 0 to 90 degrees."

9 "Create a polyline connecting points (0,0,0), (2,2,2), and (4,4,4)."

ViewAndDisplay

10 "Switch the current viewport to wireframe mode."

11 "Display all layers that are currently hidden."

12 "Zoom extents to fit all objects within the current viewport."

13 "Set the display mode to shaded for the current view."

14 "Activate the perspective view as the current viewport."

15 "Highlight all objects on the layer named ’Site Plan’."

16 "Switch to rendered view mode in the active viewport."

17 "Turn on the grid display for the top view."

18 "Set the view to show object edges as dashed lines."

19 "Enable the display of surface control points."

BasicObjectEditing

20 "Mirror the selected object across the global Y-axis."

21 "Copy and move the selected geometry 5 units along the Z-axis."

22 "Split a solid object using the selected cutting plane."

23 "Offset a selected polyline inward by 1 unit",

24 "Delete the currently selected free-form curve."

48

25 "Create a blend between two open curves."

26 "Scale the selected object down by 50%."

27 "Rotate the selected object 90 degrees around the global X-axis."

28 "Move the selected objects to layer ’Draft’."

LayersAndAnnotation

29 "Move the selected objects to layer ’Draft’."

30 "Lock the layer named ’Annotations’."

31 "Create a new layer named Electrical with a red color."

32 "Assign the selected objects to the ’Mechanical layer’."

33 "Change the line type of the selected curves to ’Hidden’."

34 "Set the print width of the selected objects to 0.25 mm."

35 "Isolate all objects on the ’Landscaping’ layer."

36 "Rename the ’OldLayer’ to ’Renovations’."

37 "Change the object color of selected items to blue."

38 "Lock all objects on the ’Furniture’ layer."

39 "Turn off the visibility of the ’HVAC’ layer."

40 "Dimension the distance between two selected points."

41 "Label the midpoint of the selected line with text ’Midpoint’."

42 "Show the area of the selected closed polyline."

43 "Place a dimension annotating the radius of the selected circle."

44 "Create a leader pointing to the selected object with text ’Main Entrance’."

45 "Measure and display the angle between two intersecting lines."

46 "Add a text block at point (5,5,0) saying ’Start Point’."

47 "Annotate the length of the selected curve."

48 "Place a linear dimension along the selected edge."

Table C.2: Evaluation Test Cases

49

APPENDIX D: GITHUB

openai_command_helper_plugin

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	METHODOLOGY
	EVALUATION AND RESULTS
	DISCUSSIONS AND FUTURE WORK
	CONCLUSIONS
	REFERENCES
	PROMPTS
	SOURCE CODE
	TEST CASES
	GITHUB

