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ABSTRACT

XINGNAN ZHANG. Multivariate Dickman Distribution and Its Applications.
(Under the direction of DR. MICHAEL GRABCHAK)

In this dissertation, we develop multivariate Dickman distribution and explore its

properties. In addition, we utilize the Dickman distribution to approximate the small

jumps of Lévy processes of finite variation, building upon the work presented in [1] for

the univariate case. Our central theorem establishes that the limit distribution of an

appropriately transformed truncated Lévy process with finite variation is the Dickman

distribution. We also provide equivalent conditions to further characterize this result.

Drawing inspiration from this, we partition the Lévy process into small jumps and

large jumps. Small jumps are effectively approximated by the Dickman distribution,

while the remaining large jumps follow a compound Poisson distribution. We then

apply this to simulate Lévy processes within the generalized multivariate gamma class.

Further, we extend our findings to stochastic integral processes particularly related

to Ornstein-Uhlenbeck (OU) processes. Our investigation encompasses two scenarios:

the truncated OU process and the OU process driven by a truncated Lévy process. In

general, employing the same transformation outlined in our main theorem, we observe

that the limit distribution of the truncated OU process aligns with a multivariate

Dickman distribution. Notably, for the OU process with a truncated driving process,

the limit distribution remains consistent with that of the OU process with a truncated

driving process having the multivariate Dickman distribution.
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CHAPTER 1: INTRODUCTION

The Dickman function, first introduced by Karl Dickman, satisfies the delay dif-

ferential equation xD′(x) + D(x − 1) = 0 with the initial condition D(x) = 1 for

any x ∈ [0, 1]. Then, researchers developed two types of Dickman distributions.

The first type, which is called type A Dickman distribution in [2], takes the form of

F (x) = 1 − D(x). While type B Dickman distribution takes D(X) as the density

of the distribution. The Dickman distribution has been extensively studied in the

literature. It can be applied in various domains such as number of species, random

graphs, small jumps observed in Lévy processes, and Hoare’s quickselect algorithm,

see [3], [4], [1], [5], [6], and [2]. In this dissertation, we study the type B Dickman

distribution and use the definition as Penrose and Wade [5].

Definition 1. A random variable X has the Dickman distribution if

X = U1 + U1U2 + U1U2U3 + · · · (1.1)

where Ui
iid∼ U(0, 1) and U(0, 1) stands for uniform distribution on (0, 1).

Remark 1. There is also an equivalent definition:

X
d
= U(1 +X) (1.2)

where U ∼ U(0, 1) and U and X are independent on the right-hand side. The Dickman

distribution is the only one with this property. If we factor out U1 in equation (1.1),

we can get the form of equation (1.2); if we recursively substitute X in Equation (1.2),

then we can have the form of Equation (1.1).
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They also introduced the generalized Dickman distribution, studied its probabilistic

properties, and provided the Laplace transform. Let us introduce the definition in

their work.

Definition 2. A random variable X has a generalized Dickman distribution with

parameter θ > 0 if

X = U
1
θ

1 + (U1U2)
1
θ + (U1U2U3)

1
θ + · · · d= U

1
θ (1 +X) (1.3)

One probabilistic property of the Dickman distribution is that it is infinitely divis-

ible. See Proposition 3 in [5]. From here, we review closely related concepts and cite

definitions in the monograph of Sato [7].

Definition 3. A probability measure µ on Rd is infinitely divisible, if ∀n ∈ N,

there exists µn on Rd such that µ = µnn, where µ
n
n stands for the n-fold convolution.

Remark 2. The equivalent way to say the infinitely divisible distribution is that a

distribution F is infinitely divisible if, ∀n ∈ N, there exists n i.i.d. random variables

X1, X2, · · · , Xn such that X1 +X2 + · · ·+Xn ∼ F .

The characteristic function can uniquely describe the infinitely divisible distribu-

tion, which makes it the most important tool for proofs in our work.

Definition 4. The characteristic function of an infinitely divisible distribution µ

on Rd has the form

µ̂(z) = E(ei〈z,x〉) = exp

{
−1

2
〈z,Az〉+ i 〈γ, z〉

+

∫
Rd
(ei〈z,x〉 − 1− i 〈z, x〉 I|x|≤1(x))ν(dx)

}
, z ∈ Rd

(1.4)

where A is a symmetric nonnegative-definite d × d matrix, γ ∈ Rd, ν is a Lévy
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measure satisfying

ν({0}) = 0 and
∫
Rd

(|x|2 ∧ 1)ν(dx) <∞ (1.5)

We write it as X ∼ ID(A, ν, γ) where (A, ν, γ) is called the generating triplet of the

distribution of X. The A is the Gaussian covariance matrix, and the ν is the Lévy

measure of the distribution.

Remark 3. When ν satisfies
∫
|x|≤1

|x|ν(dx) <∞, we have the following form of the

characteristic function:

µ̂(z) = exp

{
−1

2
〈z, Az〉+ i 〈γ0, z〉+

∫
Rd

(ei〈z,x〉 − 1)ν(dx)

}

where γ0 = γ −
∫
Rd
xI|x|≤1(x)ν(dx) is called the drift. In this case, we write it as

X ∼ ID0(A, ν, γ0).

Remark 4. When we write X ∼ ID0(ν, 0) in this paper, we mean A = 0 and γ0 = 0.

Remark 5. The characteristic function of the generalized Dickman distribution on

R has the following form

E(eizx) = exp

{
θ

∫
R
(eizx − 1)I(0,1](x)x−1dx

}
(1.6)

Lévy process is closely related to the infinitely divisible distribution. For a Lévy

process {Xt : t ≥ 0}, when we fix t, Xt is a random variable and its distribution

is infinitely divisible. Since the Lévy process has been studied in the literature ever

since the 1940’s, we will not strengthen its importance anymore, but we will give the

definition.

Definition 5. A cadlag stochastic process {Xt : t ≥ 0} on (Ω,F ,P) with values in

Rd such that X0 = 0 is called a Lévy process if
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1. Independent increments: for every increasing sequence of times t0, t1, · · · ,

tn, the random variables Xt0 , Xt1 −Xt0 , · · · , Xtn −Xtn−1 are independent.

2. Stationary increments: the distribution of Xt+h −Xt does not depend on t,

i.e. Xt+h −Xt
d
= Xh.

3. Stochastic continuity: ∀ε > 0, lim
h→0

P(|Xt+h −Xt| ≥ ε) = 0.

Remark 6. The term “cadlag” in the Definition 5 means right continuous with left

limits, i.e. lim
s↓t

X(s) = X(t) and lim
s↑t

X(s) exists.

For the distribution of the Lévy process, there is a Lévy measure associated with

the distribution.

Definition 6. Let {Xt : t ≥ 0} be a Lévy process on Rd and A ∈ B(Rd). The Lévy

measure ν of the distribution of X is defined by:

ν(A) = E(#{t ∈ [0, 1] : ∆Xt 6= 0,∆Xt ∈ A})

i.e. ν(A) is the expected number, per unit time, of jumps whose size belongs to A.

For the Lévy process having the Dickman distribution, there must be a Lévy mea-

sure associated with this distribution. To see what this Lévy measure looks like, let us

start with the next lemma and gradually process the definition of the Dickman-type

Lévy measure.

Lemma 1. Let D be a σ-finite measure on (0,∞). If, for B ∈ B(R \ {0}), we have,

∀a ∈ R, D(aB) = D(B), then for all c ∈ R, D({c}) = 0.

Proof of Lemma 1. For the sake of contradiction, we assume that there exists c ∈ R

s.t. D({c}) > 0. Then, for any a ∈ R, D({c}) = D(a{c}) = D(a2{c}) = ... > 0, i.e.

D({c}) = D({ac}) = D({a2c}) = ... > 0. Note that the set {anc : n ∈ N, a ∈ R} is

uncountable, by Theorem 10.2 (iv) of [8], this is a contradiction. �
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Proposition 1. Let D be a σ-finite measure on (0,∞). If, for B ∈ B(R \ {0}), we

have, ∀a ∈ R, D(aB) = D(B), then D(B) =

∫ ∞
0

θIB(x)x−1dx, for some θ > 0.

Proof of Proposition 1. Define θ = D((1, e]), since D(aB) = D(B) ∀a ∈ R, then,

for any n ∈ N,

D((1, e]) = D((e, e2]) = ... = D((en−1, en])

Thus,

nθ = nD((1, e])

= D((1, e]) + D((e, e2]) + ...+ D((en−1, en])

= D((1, e] ∪ (e, e2] ∪ ... ∪ (en−1, en])

= D((1, en])

Note that, n = ln en − ln 1, then

D((1, en]) = (ln en − ln 1)θ

=

∫ ∞
0

θI(1,en](x)x−1dx

Similarly, for any m ∈ N,

D(
(

1, e
1
m

]
) = D(

(
e

1
m , e

2
m

]
) = ... = D(

(
e
m−1
m , e

]
)

then

m(
(

1, e
1
m

]
) = D((1, e]) = θ
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Thus,

D(
(

1, e
1
m

]
) =

θ

m

= θ(ln e
1
m − ln 1)

=

∫ ∞
0

θI
(1,e

1
m ]

(x)x−1dx

Hence,

θ
n

m
= nD((1, e

1
m ]) = D((1, e

n
m ])

So, for any rational number q ∈ Q, θq = D((1, eq])

1. For any a ∈ R s.t. a > 1, ln a ∈ R and ln a > 0, there exists an increasing

sequence {qk} of rational numbers s.t. lim
k→∞

qk = ln a, then

θ ln a = θ lim
k→∞

qk

= lim
k→∞

θqk

= lim
k→∞

D((1, eqk ])

Since {qk} is increasing, then {(1, eqk ]} is increasing, by continuity of measure

lim
k→∞

D((1, eqk ]) = D

(
∞⋃
k=1

(1, eqk ]

)
= D((1, e

lim
k→∞

qk
])

= D((1, eln a))

= D((1, eln a])

= D((1, a])
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So,

D((1, a]) = θ ln a

=

∫ ∞
0

θI(1,a](x)x−1dx

2. For any a ∈ R s.t. 0 < a < 1, then ln a ∈ R and ln a < 0

D((a, 1]) = D((eln a, 1])

= D(eln a(1, e− ln a])

= D((1, e− ln a])

= θ(− ln a)

=

∫ ∞
0

θI(a,1](x)x−1dx

3. For any 0 < a < 1 < b,

D((a, b]) = D((a, 1] ∪ (1, b])

= D((a, 1]) + D((1, b])

=

∫ ∞
0

θI(a,1](x)x−1dx+

∫ ∞
0

θI(1,b](x)x−1dx

=

∫ ∞
0

θI(a,b](x)x−1dx

From above we can conclude that, for any a < b, D((a, b]) =

∫ ∞
0

θI(a,b](x)x−1dx.

Let A = {(a, b] : a ∈ R, b ∈ R}, by Proposition 1.15 of [7], we have σ(A ) ⊂ B(R),

since σ(A ) is the collection of all Borel sets, it follows that D(B) =

∫ ∞
0

θIB(x)x−1dx,

for all B ∈ B(R \ {0}). �
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Definition 7. We call Da
θ with parameter θ and a the generalized Dickman-type

Lévy measure on R, if ∀B ∈ B(R),

Da
θ(B) =

∫ a

0

θIB(x)x−1dx, θ > 0 (1.7)

Remark 7. From now on, when we use the notation D, we refer to θ = 1 and a = 1

in the Definition 7; if we use Dε, we mean θ = 1 and a = ε.

As mentioned at the beginning, Dickman distribution can be applied to approxi-

mate the small jumps of the Lévy process. Here, small jumps mean those jumps in

the process whose magnitudes are capped by a constant number ε, i.e. we truncate

the whole Lévy process by this ε. Associated with this truncated Lévy process, there

is a Lévy measure. Let ν be a Lévy measure on (0,∞). For all ε ∈ (0, 1], define

νε(A) =

∫
R
IA(x)I(0,ε](x)ν(dx) (1.8)

where A ∈ B((0,∞)), and

Dε(B) =

∫ 1

0

IB(x)I(0,ε](x)D(dx) (1.9)

where B ∈ B((0, 1]).

From Proposition 3.(i) in [5], we know the Lévy process having the Dickman dis-

tribution is a pure jump process, i.e. X ∼ ID0(ν, 0).

Proposition 2. let {Xε
t } be the pure jump Lévy process consisting of jumps of {Xt}

not exceeding ε with Lévy measure νε. Assume
∫
x≤1

xνε(dx) <∞. If, for all ε ∈ (0, 1],

ε−1Xε
t
d
= X1

t , then, ν
ε(B) = Dε

θ(B), for all B ∈ B(R \ {0})

Proof of Proposition 2. If
∫
x≤1

xνε(dx) <∞, then by equation (8.7) in [7] we have
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the following characteristic function:

µ̂Xεt (z) = exp

{
t

∫
R
(eizx − 1)νε(dx)

}

then,

µ̂Xε
1
(z) = exp

{∫
R
(eizx − 1)νε(dx)

}

µ̂ε−1Xε
1
(z) = µ̂Xε

1

(z
ε

)
= exp

{∫
R
(ei

z
ε
x − 1)νε(dx)

}

Let M be the Lévy measure of ε−1Xε
1, then M(B) =

∫
R
IB(

x

ε
)νε(dx) =

∫
R
IεB(x)νε(dx)

= νε(εB) where εB = {εy : y ∈ B}. Since ε−1Xε
t
d
= X1

t , then, by Theorem 7.10(iii) of

[7], Pε−1Xε
t

= PX1
t
, so µ̂ε−1Xε

t
(z) = µ̂X1

t
(z). By Theorem 8.1 of [7], the characteristic

function is unique, hence M(B) = ν1(B), i.e. νε(εB) = ν1(B). Note that,

νε(εB) =

∫
R
IεB(x)I(0,ε](x)ν(dx)

=

∫
R
IεB(x)Iε(0,1](x)ν(dx)

=

∫
R
Iε(B∩(0,1])(x)ν(dx)

= ν(ε(B ∩ (0, 1]))

Similarly, ν1(B) = ν((B ∩ (0, 1])). So, we have ν(ε(B ∩ (0, 1])) = ν((B ∩ (0, 1])). By

Proposition 1, we have ν = Dθ. Then, we conclude that νε = Dε
θ. �

The dissertation is organized as follows. In Chapter 2, we introduce the multivari-
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ate Dickman distribution and its properties. We also develop the first main theorem

which implies the only possible limit distributions of small jumps of Lévy process are

Brownian motion and Dickman distribution. In the meantime, we provide equivalent

conditions of the main theorem. In Chapter 3, we construct the method of simulating

multivariate Dickman random variables. In Chapter 4, we propose the approximation

of the Lévy process using the multivariate Dickman process and compound Poisson

process and also provide the simulation method and results. In Chapter 5, we study

the density of the truncated Lévy process. Then, we apply our findings to the stochas-

tic integral process in Chapter 6 and consider two scenarios: truncate the stochastic

integral process itself and truncate the background driving Lévy process. In Chapter

7, we apply our results in the stochastic volatility models.



CHAPTER 2: Multivariate Dickman Distribution

In this section, we extend the univariate Dickman distribution to the multivariate

case. We also study its properties and develop several limit theorems. First, we

introduce polar decomposition, which we will use soon.

Suppose B ∈ B(Rd \ {0}), then the polar decomposition of a Lévy measure ν

has the following form:

ν(B) =

∫
Sd−1

∫ ∞
0

IB(rξ)νξ(dr)σ(dξ) (2.1)

where Sd−1 = {x ∈ Rd : |x| = 1} is the (d− 1)-sphere; σ is a finite measure on Sd−1;

νξ is a measure on (0,∞) which depends on ξ. See Lemma 2.1 in [9] for details.

Now, we introduce some notation. Define:

R+ = {a ∈ R : a > 0} (2.2)

Let C ∈ B(Sd−1) and a, b ∈ R+, we define the following cross product set:

(a, b]C = {x ∈ Rd : |x| ∈ (a, b],
x

|x|
∈ C} (2.3)

In Bhattacharjee [10], they introduced a generalized multivariate Dickman distri-

bution.

Definition 8. A random variable X follows a multivariate Dickman distribution

if

X
d
= U

1
θ (V +X) (2.4)
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where θ > 0, U ∼ U([0, 1]), V ∼ σ

σ(Sd−1)
, and U , V , X are independent on the

right-hand side.

From Theorem 5 in [11], we know the Lévy process having the multivariate Dickman

distribution is a pure jump process with finite variation. Let us recall the definition

of finite variation.

Definition 9. We say the Lévy process {Xt} are of finite variation, if

Vt(X) = sup
∆

n∑
j=1

|Xsj −Xsj−1
| <∞ (2.5)

where ∆ is any partition of (0, t], i.e. 0 = s0 ≤ s1 ≤ s2 ≤ · · · ≤ sn = t

Remark 8. If {Xt} is a Lévy process with finite variation, then A = 0 and
∫
Rd

(1 ∧

|x|)ν(dx) <∞, so the characteristic function of X1 can be written as

µ̂(z) = E(ei〈z,x〉) = exp

{
i 〈γ0, z〉+

∫
Rd

(ei〈z,x〉 − 1)ν(dx)

}
, z ∈ Rd (2.6)

where γ0 = γ −
∫
Rd
xI|x|≤1(x)ν(dx). And we denote it as X ∼ ID0(ν, γ0).

The same as the univariate case, the following will lead us to the definition of the

multivariate Dickman-type Lévy measure.

Proposition 3. Let D be a σ-finite measure on Rd \ {0}. If, ∀a ∈ R+ and ∀B ∈

B(Rd \ {0}), D(aB) = D(B), then there exists a finite measure σ defined on Sd−1,

s.t.

D(B) =

∫
Sd−1

∫ ∞
0

IB(rξ)r−1drσ(dξ) (2.7)

Proof of Proposition 3. For any C ∈ B(Sd−1), define σ(C) = D((1, e]C). For any

n ∈ N, we have

D((1, e]C) = D((e, e2]C) = ... = D((en−1, en]C)
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then

nσ(C) = D((1, e]C) + D((e, e2]C) + ...+ D((en−1, en]C) = D((1, en]C)

Note that n = ln en − ln 1, thus

D((1, en]C) = σ(C)(ln en − ln 1)

= σ(C)

∫ ∞
0

I(1,en](r)r
−1dr

=

∫
Sd−1

∫ ∞
0

I(1,en]C(rξ)r−1drσ(dξ)

Similarly, for any m ∈ N,

D((1, e
1
m ]C) = D((e

1
m , e

2
m ]C) = ... = D((e

m−1
m , e]C)

then

mD((1, e
1
m ]C) = D((1, e

1
m ]C) + D((e

1
m , e

2
m ]C) + ...+ D((e

m−1
m , e]C)

= D((1, e]C)

= σ(C)

thus

D((1, e
1
m ]C) =

1

m
σ(C)

= (ln e
1
m − ln 1)σ(C)

=

∫
Sd−1

∫ ∞
0

I
C(1,e

1
m ]

(rξ)r−1drσ(dξ)
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Hence, we have

D((1, e
n
m ]C) =

n

m
σ(C)

= (ln e
n
m − ln 1)σ(C)

=

∫
Sd−1

∫ ∞
0

I
C(1,e

n
m ]

(rξ)r−1drσ(dξ)

Then, we conclude that, for any q ∈ Q,

D((1, eq]C) =

∫
Sd−1

∫ ∞
0

IC(1,eq ](rξ)r
−1drσ(dξ)

1. For any a ∈ R s.t. a > 1, we have ln a ∈ R, so there exists an increasing

sequence {qk} of rational numbers s.t.

lim
k→∞

qk = ln a

Then

σ(C) ln a = σ(C) lim
k→∞

qk

= lim
k→∞

σ(C)qk

= lim
k→∞

D((1, eqk ]C)

Since {qk} is increasing, then {(1, eqk ])} is increasing. Thus,

lim
k→∞

D((1, eqk ]C) = D

(
∞⋃
k=1

((1, eqk ]C)

)
= D((1, e

lim
k→∞

qk
]C)

= D((1, eln a)C)

= D((1, a)C)
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The same as the proof of Lemma 1, since D is a σ-finite measure, then D({a}) =

0. Hence, we get

lim
k→∞

D((1, eqk ]C) = D((1, a]C)

So

D((1, a]C) = σ(C) ln a

= σ(C)(ln a− ln 1)

=

∫
Sd−1

∫ ∞
0

I(1,a]C(rξ)r−1drσ(dξ)

2. For any a ∈ R s.t. 0 < a < 1,

D((a, 1]C) = D

(
a

(
1,

1

a

]
C

)
= D

((
1,

1

a

]
C

)
= σ(C) ln

1

a

= σ(C)(ln 1− ln a)

=

∫
Sd−1

∫ ∞
0

I(a,1]C(rξ)r−1drσ(dξ)

3. For any 0 < a < 1 < b,

D((a, b]C) = D((a, 1]C) + D((1, b]C)

= σ(C) ln
1

a
− σ(C) ln

1

b

= σ(C)(ln b− ln a)

=

∫
Sd−1

∫ ∞
0

I(a,b]C(rξ)r−1drσ(dξ)
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Then we conclude that, for any 0 < a < b,

D((a, b]C) =

∫
Sd−1

∫ ∞
0

I(a,b]C(rξ)r−1drσ(dξ)

Let A = {(a, b]C : C ∈ B(Rd−1), 0 ≤ a < b, a ∈ R, b ∈ R}, then σ(A ) is the

collection of all Borel sets in {x ∈ Rd : |x| > 0}, by Proposition 1.15 of [7], it follows

that

D(B) =

∫
Sd−1

∫ ∞
0

IB(rξ)r−1drσ(dξ), for all B ∈ B(Rd \ {0})

�

Definition 10. We call the measure Dσ is the multivariate Dickman Lévy mea-

sure with parameter σ, if, ∀B ∈ B(Rd),

D(B) =

∫
Sd−1

∫ 1

0

IB(rξ)r−1drσ(dξ) (2.8)

Definition 11. Let ε > 0 be any constant. We call Dε
σ a multivariate Dickman-

type Lévy measure with parameters σ and ε, if , ∀B ∈ B(Rd),

Dε(B) =

∫
Sd−1

∫ ε

0

IB(rξ)r−1drσ(dξ) (2.9)

Remark 9. Let {Xt} be the Lévy process with the multivariate Dickman-type Lévy

measure Dε, then the cummulant function of X is:

Cµ(z) = t

∫
R

(ei〈z,x〉 − 1)Dε(dx) = t

∫
Sd−1

∫ ε

0

(ei〈z,rξ〉 − 1)r−1drσ(dξ) (2.10)
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Since

E(Xjt) = (−i) ∂

∂zj
Cµ(z)

∣∣∣∣
z=0

= (−i)t
∫
Sd−1

∫ ε

0

ei〈z,rξ〉irξjr
−1drσ(dξ)

∣∣∣∣
z=0

= tε

∫
Sd−1

ξjσ(dξ)

then the mean vector is E(Xt) = tε

∫
Sd−1

ξσ(dξ).

E(XjtXkt) = (−i)2 ∂2

∂zj∂zk
Cµ(z)

∣∣∣∣
z=0

= (−i)2t

∫
Sd−1

∫ ε

0

ei〈z,rξ〉(ir)2ξjξkr
−1drσ(dξ)

∣∣∣∣
z=0

=
1

2
tε2
∫
Sd−1

ξjξkσ(dξ)

So the covariance matrix is Cov(Xt) =
1

2
tε2
∫
Sd−1

ξξTσ(dξ)

Let {Xt} be a pure jump Lévy process of finite variation with Lévy measure ν, and

consider {Xε
t } as the truncated process with Lévy measure νε as defined in Equation

(1.8), but in Rd instead of in R. So {Xε
t } consists of jumps of {Xt} bounded by ε.

Also
∫
|x|≤1

|x|νε(dx) <

∫
|x|≤1

|x|ν(dx) <∞, then by equation (8.7) in [7] we have the

following characteristic function:

µ̂Xε
t
(z) = exp

{
t

∫
Rd

(ei〈z,x〉 − 1)νε(dx)

}

where ν is a Lévy measure on Rd, and ∀ε > 0, νε(B) =

∫
|x|≤ε

IB(x)ν(dx), B ∈

B(Rd). Next, consider the transformation ε−1Xε, then all the jumps will be bounded

by 1. Let Mε be the Lévy measure of ε−1Xε
1, then Mε(B) =

∫
Rd

IB(
x

ε
)νε(dx) =∫

Rd
IεB(x)νε(dx) = νε(εB) where εB = {εy : y ∈ B}. Furthermore, we can have
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B

f(x)Mε(dx) =

∫
Rd

IεB(x)f(
x

ε
)Iε|x|≤ε(x)ν(dx) =

∫
εB

f(
x

ε
)ν1(dx) for all bounded

and continuous function f . In this paper, we will always use the notation Mε as the

Lévy measure of this transformation.

Proposition 4. Let {Xε
t } be the pure jump truncated Lévy process consisting of jumps

of {Xt} bounded by ε with Lévy measure νε. Assume
∫
|x|≤1

|x|νε(dx) <∞. If ε−1Xε d
=

X1, then νε(B) = Dε(B) for all B ∈ B(Rd).

Proof of Proposition 4.

µ̂Xε
1
(z) = exp

{∫
Rd

(ei〈z,x〉 − 1)νε(dx)

}

µ̂ε−1Xε
1
(z) = µ̂Xε

1

(z
ε

)
= exp

{∫
Rd

(ei〈
z
ε
,x〉 − 1)νε(dx)

}

Since ε−1Xε
t

d
= X1

t , then, by Theorem 7.10(iii) of [7], Pε−1Xε
t

= PX1
t
, so µ̂ε−1Xε

t
(z) =

µ̂X1
t
(z). By Theorem 8.1 of [7], the characteristic function is unique, hence M(B) =

ν1(B), i.e. νε(εB) = ν1(B). Note that,

νε(εB) =

∫
Rd

IεB(x)I(0,ε](|x|)ν(dx)

=

∫
Rd

IεB(x)Iε(0,1](|x|)ν(dx)

=

∫
Rd

Iε(B∩(0,1]Sd−1)(x)ν(dx)

= ν(ε(B ∩ (0, 1]Sd−1))

Similarly, ν1(B) = ν((B ∩ (0, 1]Sd−1)). So, we have ν(ε(B ∩ (0, 1]Sd−1)) = ν((B ∩

(0, 1]Sd−1)). By Proposition 3, we have ν = D. Then, we conclude that νε = Dε. �
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After studying the distributional property of the multivariate distribution, we pro-

ceed to its limiting property. Let {Xt} be a pure jump Lévy process with a finite vari-

ation. Define µ(ε, C) =

∫
Rd
|x|νε(dx) =

∫
Rd
|x|I(0,ε]C(x)ν(dx), for every C ∈ B(Sd−1).

Consider another pure jump Lévy process {Y 1
t : t ≥ 0} with the Dickman Lévy mea-

sure D1 as defined in Equation (1.9), and we denote this as Y 1 ∼ ID0(D1, 0) which

means it is a pure jump Lévy process with finite variation. Before we arrive at the

limiting property, we start with two lemmas that will be used later.

Lemma 2. Let Mε and D1 be defined as above. If ∀C ∈ B(Sd−1) with σ(∂C) = 0,
µ(ε, C)

ε
→ σ(C) as ε ↓ 0, then, Mε v→ D1.

Proof of Lemma 2. Since all jumps of ε−1Xε are bounded by 1, then by Lemma

4.9 in [12], Mε v→ D1 if and only if, for every 0 < h ≤ 1 and every C ∈ B(Sd−1),

Mε(|x| > h,
x

|x|
∈ C) → D1(|x| > h,

x

|x|
∈ C) with D1({x ∈ Rd : |x| = h}) = 0.

Define, for B ∈ B(Rd \ {0}),

ηε(B) =

∫
Rd
|x|IB(x)Mε(dx)

η(B) =

∫
Rd
|x|IB(x)D1(dx)

then, for all C ∈ B(Sd−1) and h ∈ (0, 1],

ηε ((0, h]C) =

∫
(0,h]C

|x|Mε(dx)

=

∫
(0,εh]C

|x|
ε
ν1(dx)

=
1

ε

∫
Rd
|x|I(0,εh]C(x)ν(dx)

=
µ(εh, C)

ε
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η ((0, h]C) =

∫
(0,h]C

|x|D1(dx)

=

∫
C

∫ ∞
0

I(0,h]C(rξ)|rξ|r−1drdξ

= σ(C)

∫ h

0

dr

= hσ(C)

lim
ε↓0

ηε ((0, h]C) = lim
ε↓0

µ(εh, C)

ε

= lim
ε↓0

h
µ(εh, C)

εh

= hσ(C)

= η ((0, h]C)

Specifically, when h = 1, lim
ε↓0

ηε ((0, 1]C) = η ((0, 1]C). Then ∀0 < h < 1

ηε ((h, 1]C) = ηε ((0, 1]C)− ηε ((0, h]C)

→ η ((0, 1]C)− η ((0, h]C)

= η ((h, 1]C)

Note,

∫
(h,1]C

1

|x|
ηε(dx) =

∫
(h,1]C

1

|x|
|x|Mε(dx) = Mε ((h, 1]C)∫

(h,1]C

1

|x|
η(dx) =

∫
(h,1]C

1

|x|
|x|D1(dx) = D1 ((h, 1]C)

By theorem 1 of [13], since
1

|x|
is bounded continuous on (h, 1]C and η(∂((0, h]C)) = 0,
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then

∫
(h,1]C

1

|x|
ηε(dx) →

∫
(h,1]C

1

|x|
η(dx) as ε→ 0

So, Mε ((h, 1]C)→ D1 ((h, 1]C), ∀0 < h < 1, ∀C ∈ B(Sd−1). �

Remark 10. In Lemma 2, Mε v→ D1 means vague convergence. For the definition

of vague convergence, we can refer to Definition 4.2 in [12]. Lévy processes need this

kind of convergence for finite variation. Because, near 0, small jumps can accumulate

and, at last, generate a Guassin part even if the original process does not have the

Guassin part.

Lemma 3. Let Mε and D1 be defined as above. If ∀C ∈ B(Sd−1) with σ(∂C) = 0,
µ(ε, C)

ε
→ σ(C) as ε ↓ 0, then for any h ∈ (0, 1],

∫
|x|≤h

xxTMε(dx)→
∫
|x|≤h

xxTD1(dx) ⇐⇒ lim
h→0

lim
ε→0

∫
|x|≤h
〈z, x〉2Mε(dx) = 0

Proof of Lemma 3. (⇒) Suppose, for any h ∈ (0, 1], lim
ε→0

∫
|x|≤h

xxTMε(dx) =∫
|x|≤h

xxTD1(dx), then, when h = 1, lim
ε→0

∫
|x|≤1

xxTMε(dx) =

∫
|x|≤1

xxTD1(dx)

lim
ε→0

∫
0<|x|≤1

xxTMε(dx) = lim
h→0

lim
ε→0

(∫
0<|x|≤h

xxTMε(dx) +

∫
h<|x|≤1

xxTMε(dx)

)

By Lemma 2 and Theorem 1 in [13],
∫
h<|x|≤1

xxTMε(dx)→
∫
h<|x|≤1

xxTD1(dx), so

lim
ε→0

∫
0<|x|≤1

xxTMε(dx) = lim
h→0

lim
ε→0

∫
0<|x|≤h

xxTMε(dx) + lim
h→0

∫
h<|x|≤1

xxTD1(dx))
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note,

∫
|x|≤1

xxTD1(dx)

= lim
h→0

∫
0<|x|≤h

xxTD1(dx) + lim
h→0

∫
h<|x|≤1

xxTD1(dx)

= lim
h→0

∫
Sd−1

∫ h

0

rξξTdrσ(dξ) + lim
h→0

∫
h<|x|≤1

xxTD1(dx)

= lim
h→0

h2

2

∫
Sd−1

ξξTσ(dξ) + lim
h→0

∫
h<|x|≤1

xxTD1(dx)

= lim
h→0

∫
h<|x|≤1

xxTD1(dx)

So lim
h→0

lim
ε→0

∫
0<|x|≤h

xxTMε(dx) = 0.

(⇐) Suppose, for any h ∈ (0, 1], lim
h→0

lim
ε→0

∫
0<|x|≤h

xxTMε(dx) = 0. Then, for 0 <

δ < h,

lim
ε→0

∫
|x|≤h

xxTMε(dx) = lim
δ→0

lim
ε→0

∫
|x|≤δ

xxTMε(dx) + lim
δ→0

lim
ε→0

∫
δ<|x|≤h

xxTMε(dx)

= lim
δ→0

lim
ε→0

∫
δ<|x|≤h

xxTMε(dx)

= lim
δ→0

∫
δ<|x|≤h

xxTD1(dx)

=

∫
|x|≤h

xxTD1(dx)

Therefore,
∫
|x|≤h

xxTMε(dx)→
∫
|x|≤h

xxTD1(dx) ⇐⇒ lim
h→0

lim
ε→0

∫
0<|x|≤h

xxTMε(dx) =

0.

Next, we prove
∫
|x|≤h

xxTMε(dx)→
∫
|x|≤h

xxTD1(dx) ⇐⇒
∫
|x|≤h
〈z, x〉2Mε(dx)→∫

|x|≤h
〈z, x〉2D1(dx).
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(⇒) Suppose
∫
|x|≤h

xxTMε(dx)→
∫
|x|≤h

xxTD1(dx), then, for any z ∈ R,

〈z,
∫
|x|≤h

xxTMε(dx)z〉 → 〈z,
∫
|x|≤h

xxTD1(dx)z〉

〈z,
∫
|x|≤h

xxTMε(dx)z〉 =

∫
|x|≤h
〈z, xxT z〉Mε(dx)

=

∫
|x|≤h
〈z, x〈z, x〉〉Mε(dx)

=

∫
|x|≤h
〈z, x〉2Mε(dx)

Similarly, 〈z,
∫
|x|≤h

xxTD1(dx)z〉 =

∫
|x|≤h
〈z, x〉2D1(dx). Thus,

∫
|x|≤h
〈z, x〉2Mε(dx) →∫

|x|≤h
〈z, x〉2D1(dx).

(⇐) Suppose
∫
|x|≤h
〈z, x〉2Mε(dx)→

∫
|x|≤h
〈z, x〉2D1(dx), then by Corollary 2.1.9 in

[14],
∫
|x|≤h

xxTMε(dx)→
∫
|x|≤h

xxTD1(dx). Thus,
∫
|x|≤h

xxTMε(dx)→∫
|x|≤h

xxTD1(dx) ⇐⇒
∫
|x|≤h
〈z, x〉2Mε(dx)→

∫
|x|≤h
〈z, x〉2D1(dx). Therefore

lim
h→0

lim
ε→0

∫
0<|x|≤h

xxTMε(dx) = 0 ⇐⇒ lim
h→0

lim
ε→0

∫
|x|≤h
〈z, x〉2Mε(dx) = 0.

Combine these two necessary and sufficient conditions, and we conclude that

∫
|x|≤h

xxTMε(dx)→
∫
|x|≤h

xxTD1(dx) ⇐⇒ lim
h→0

lim sup
ε→0

∫
|x|≤h
〈z, x〉2Mε(dx) = 0

�

Theorem 1. Let σ be a finite measure defined on Sd−1. If, ∀C ∈ B(Sd−1) with

σ(∂C) = 0 and ∀ε ∈ (0, 1],
µ(ε, C)

ε
→ σ(C) as ε ↓ 0, then ε−1Xε d→ Y 1.

Proof of Theorem 1. By Theorem 15.14 of [15] , to prove ε−1Xε d→ Y 1 is equivalent

to prove:

1. Mε v→ D1.
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2.
∫
h<|x|≤1

xMε(dx)→
∫
h<|x|≤1

xD1(dx) and∫
|x|≤h

xxTMε(dx)→
∫
|x|≤h

xxTD1(dx), for every h > 0.

By Lemma 2, condition 1 holds. Since x is continous and bounded on (h, 1], by

Theorem 1 in [13],
∫
h<|x|≤1

xMε(dx)→
∫
h<|x|≤1

xD1(dx). And, by Lemma 3, it suffices

to prove

0 ≤ lim
h→0

lim
ε→0

∫
|x|≤h
〈z, x〉2Mε(dx)

≤ lim
h→0

lim sup
ε→0

∫
|x|≤h
|z|2|x|2Mε(dx)

≤ lim
h→0

lim sup
ε→0

|z|2h
∫
|x|≤h
|x|Mε(dx)

≤ lim
h→0

lim sup
ε→0

|z|2h
∫
|x|≤1

|x|Mε(dx)

= |z|2 lim
h→0

lim sup
ε→0

h

∫
|x|≤ε

|x|
ε
ν1(dx)

= |z|2 lim
h→0

lim sup
ε→0

1

ε
h

∫
Rd
|x|I|x|≤ε(x)ν(dx)

= |z|2 lim
h→0

lim sup
ε→0

1

ε
h

∫
Rd
|x|I(0,ε]Sd−1(x)ν(dx)

= |z|2 lim
h→0

lim sup
ε→0

h
µ(ε,Sd−1)

ε

= |z|2σ(Sd−1) lim
h→0

h

= 0

So, condition 2 holds. �

Corollary 1. Let σ be a finite measure defined on Sd−1. If, ∀C ∈ B(Sd−1) with

σ(∂C) = 0 and ∀ε ∈ (0, 1],
µ(ε, C)

ε
→ σ(C) as ε ↓ 0 and σ(C) 6= 0, then

Xε

µ(ε, C)

d→

Y 1

σ(C)
.

Proof of Corollary 1.
Xε

µ(ε, C)
=
Xε

ε

ε

µ(ε, C)
, then by Theorem 1 and the Slutsky’s
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theorem, we can get
Xε

µ(ε, C)

d→ Y 1

σ(C)

�

In the following proposition, we provide broad cases that we can use to get the

convergence condition in the Theorem 1.

Proposition 5. Let σ be a finite measure defined on Sd−1. For every C ∈ B(Sd−1),

the following statements are equivalent:

1. For all p > 0,
1

εp

∫
(0,ε]C

|x|pν1(dx)→ σ(C)

p
as ε ↓ 0.

2. For some p > 0,
1

εp

∫
(0,ε]C

|x|pν1(dx)→ σ(C)

p
as ε ↓ 0.

3. For all 0 < h < 1, ν1((εh, ε]C)→ σ(C) ln
1

h
as ε ↓ 0.

Proof of Proposition 5. It suffices to show 1⇒ 2⇒ 3⇒ 1.

1. (1⇒ 2) This is obvious.

2. (2⇒ 3) Assume ∃ p > 0, s.t.
1

εp

∫
(0,ε]C

|x|pν1(dx)→ σ(C)

p
. Define

ηε(dx) = |x|pMε(dx)

η(dx) = |x|pD1(dx)
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∀0 < h ≤ 1 and C ∈ B(Rd−1)

lim
ε↓0

∫
(0,h]C

ηε(dx) = lim
ε↓0

∫
(0,h]C

|x|pMε(dx)

= lim
ε↓0

∫
(0,εh]C

|x|p

εp
ν1(dx)

= lim
ε↓0

hp

hpεp

∫
(0,εh]C

|x|pν1(dx)

= hp
σ(C)

p∫
(0,h]C

η(dx) =

∫
(0,h]C

|x|pD1(dx)

=

∫
C

∫ ∞
0

I(0,h]C(rξ)|rξ|pr−1drσ(dξ)

= σ(C)

∫ h

0

rp−1dr

= hp
σ(C)

p

So, lim
ε↓0

ηε ((0, h]C)) = η ((0, h]C). Then similar to the proof of theorem 1, we

have ηε((h, 1]C)→ η((h, 1]C). Therefore,

lim
ε↓0

ν1((εh, ε]C) = lim
ε↓0

Mε((h, 1]C)

= lim
ε↓0

∫
(h,1]C

1

|x|p
ηε(dx)

=

∫
(h,1]C

1

|x|p
η(dx)

=

∫
(h,1]C

1

|x|p
|x|pD1(dx)

= D1((h, 1]C)

= σ(C) ln
1

h

So, condition 3 holds.
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3. (3 ⇒ 1) Assume lim
ε↓0

ν1((εh, ε]C) = σ(C) ln
1

h
, ∀0 < h < 1. Fix p > 0 and

N ∈ N

1

εp

∫
( ε

2N
,ε]C

|x|pν1(dx) =

∫
( 1

2N
,1]C

|x|pMε(dx)

=

∫
N⋃
k=1

(
1

2k
, 1

2k−1

]
C

|x|pMε(dx)

=
N∑
k=1

∫(
1

2k
, 1

2k−1

]
C

|x|pMε(dx)

=
N∑
k=1

∫
( 1

2
,1]C

∣∣∣ x

2k−1

∣∣∣p Mε(dx)

=
N∑
k=1

1

2p(k−1)

∫
( 1

2
,1]C

|x|pMε(dx)

From the process of proving theorem 1 we know that condition 3 implies Mε v→

D1. Therefore, ∀θ > 0, ∃δ > 0, if 0 < ε < δ, then

∣∣∣∣∣
∫

( 1
2
,1]C

|x|pMε(dx)−
∫

( 1
2
,1]C

|x|pD1(dx)

∣∣∣∣∣ < θ
∞∑
k=1

1
2p(k−1)

⇒
N∑
k=1

1

2p(k−1)

∣∣∣∣∣
∫

( 1
2
,1]C

|x|pMε(dx)−
∫

( 1
2
,1]C

|x|pD1(dx)

∣∣∣∣∣
≤

∞∑
k=1

1

2p(k−1)

∣∣∣∣∣
∫

( 1
2
,1]C

|x|pMε(dx)−
∫

( 1
2
,1]C

|x|pD1(dx)

∣∣∣∣∣
< θ
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So,

∣∣∣∣∣ 1

εp

∫(
ε

2N
,ε
]
C

|x|pν1(dx)−
N∑
k=1

1

2p(k−1)

∫
( 1

2
,1]C

|x|pD1(dx)

∣∣∣∣∣ < θ. Since

∫
( 1

2
,1]C

|x|pD1(dx) =

∫
C

∫ ∞
0

I( 1
2
,1]C(rξ)|rξ|pr−1drσ(dξ)

= σ(C)

∫ 1

1
2

rp−1dr

=
σ(C)

p

(
1− 1

2p
)

take the limit as N →∞

lim
N→∞

∣∣∣∣∣ 1

εp

∫(
ε

2N
,ε
]
C

|x|pν1(dx)−
N∑
k=1

1

2p(k−1)

∫
( 1

2
,1]C

|x|pD1(dx)

∣∣∣∣∣
=

∣∣∣∣∣ lim
N→∞

1

εp

∫(
ε

2N
,ε
]
C

|x|pν1(dx)− lim
N→∞

N∑
k=1

1

2p(k−1)

∫
( 1

2
,1]C

|x|pD1(dx)

∣∣∣∣∣
=

∣∣∣∣∣ lim
N→∞

1

εp

∫(
ε

2N
,ε
]
C

|x|pν1(dx)− lim
N→∞

N∑
k=1

1

2p(k−1)

σ(C)

p

(
1− 1

2p
)∣∣∣∣∣

=

∣∣∣∣∣∣ 1

εp

∫
∞⋃
N=1

(
ε

2N
,ε
]
C

|x|pν1(dx)− 1

1− 1
2p

σ(C)

p

(
1− 1

2p
)∣∣∣∣∣∣

=

∣∣∣∣ 1

εp

∫
(0,ε]C

|x|pν1(dx)− σ(C)

p

∣∣∣∣
< θ

i.e. ∀θ > 0, ∃δ > 0, if 0 < ε < δ, then

∣∣∣∣ 1

εp

∫
(0,ε]C

|x|pν1(dx)− σ(C)

p

∣∣∣∣ < θ

So, condition 1 holds.

�
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Proposition 6. If for every C ∈ B(Sd−1) such that σ(∂C) = 0, then any of the

statements in Proposition 5 are equivalent to:

4.
Xε

ε

d→ Y 1 as ε ↓ 0

Proof of Proposition 6.

1. (1⇒ 4) Assume condition 1 is true, when p = 1

lim
ε↓0

1

ε

∫
(0,ε]C

|x|ν1(dx) = lim
ε↓0

µ(ε, C)

ε
= σ(C)

By theorem1,
Xε

ε

d→ Y 1.

2. (4⇒ 3) Assume
Xε

ε

d→ Y 1. According to the proof of the theorem 1,

Mε((h, 1]C)→ D1((h, 1]C)

lim
ε↓0

ν1((εh, ε]C) = lim
ε↓0

Mε((h, 1]C)

= D1((h, 1]C)

=

∫
C

∫ ∞
0

I(h,1]C(rξ)r−1drσ(dξ)

= σ(C)

∫ 1

h

r−1dr

= σ(C) ln
1

h

�

We can generalize Theorem 1 in many ways. First, it is not necessary that we

truncate the Lévy process by a constant ε. In the next proposition, we generalize the

truncating constant to a non-negative function.
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Proposition 7. Assume f is nonnegative and lim
x→0

f(x)

x
= a, a ∈ (0,∞). Let C ∈

B(Rd) and {Xf(ε)
t } be the Lévy process truncated by f(ε). If

µ(ε, C)

f(ε)
→ σ(C)

a
, as ε→

0, then
Xf(ε)

f(ε)

d→ Y 1, as ε→ 0.

Proof of Proposition 7.

lim
ε→0

µ(ε, C)

ε
= lim

ε→0

µ(ε, C)

f(ε)

f(ε)

ε

=
σ(C)

a
a

= σ(C)

Then, by Theorem 1,
Xf(ε)

f(ε)

d→ Y 1 �

Next, we generalize the Lévy measure. Originally, for every B ∈ B(Sd−1), ν(B) =∫
Sd−1

∫ ∞
0

IB(rξ)drσ(dξ). Now, we generalize it by a Borel function ρ, ν(B) =∫
Sd−1

∫ ∞
0

IB(rξ)ρ(r, ξ)drσ(dξ).

Proposition 8. Let σ be a finite measure defind on Sd−1 and Xε be the pure jump

Lévy process such that Xε ∼ ID0(νε, 0), where, for every B ∈ B(Sd−1),

ν(B) =

∫
Sd−1

∫ ∞
0

IB(rξ)ρ(r, ξ)drσ(dξ)

Define, for any measurable function h, σh(B) =

∫
B

h(ξ)σ(dξ) <∞. Define D1
h(dx) =

I|x|≤1(x)Dh(dx), where Dh(B) =

∫
Sd−1

∫ ∞
0

IB(rξ)r−1drσh(dξ). Let {Y 1
t : t ≥ 0} be a

Lévy process with generating triplet (0,D1, 0). If rρ(r, ξ) → h(ξ) in L1(σ) as r → 0,

i.e.
∫
Sd−1

|rρ(rξ)− h(ξ)|σ(dξ)→ 0 as r → 0, then
Xε

ε

d→ Y 1 as ε ↓ 0

Proof of Proposition 8. For any C ∈ Sd−1 such that σ(∂C) = 0, obviously



31

σh(∂C) =

∫
∂C

h(ξ)σ(dξ) = 0.

lim
ε→0

µ(ε, C)

ε
= lim

ε→0

∫
Rd |x|I(0,ε]C(x)ν(dx)

ε

= lim
ε→0

∫
C

∫ ε
0
rρ(r, ξ)drσ(dξ)

ε

= lim
ε→0

∫
C

∫ ε
0
rρ(r, ξ)dr

ε
σ(dξ)

= lim
ε→0

1

ε

∫ ε

0

∫
C

rρ(r, ξ)σ(dξ)dr

Note
∫
C

|rρ(r, ξ)−h(ξ)|σ(dξ) ≤
∫
Sd−1

|rρ(r, ξ)−h(ξ)|σ(dξ), since lim
r→0

∫
Sd−1

|rρ(r, ξ)−

h(ξ)|σ(dξ) = 0, then lim
r→0

∫
C

|rρ(r, ξ) − h(ξ)|σ(dξ) = 0. ∀η > 0 ∃δ > 0, if r <

ε < δ, then
∫
C

|rρ(r, ξ) − h(ξ)|σ(dξ) < η, thus
∣∣∣∣1ε
∫ ε

0

∫
C

(rρ(r, ξ)− h(ξ))σ(dξ)dr

∣∣∣∣ ≤
1

ε

∫ ε

0

∫
C

|rρ(r, ξ) − h(ξ)|σ(dξ)dr ≤ 1

ε

∫ ε

0

ηdr = η. So lim
ε→0

µ(ε, C)

ε
=

∫
C

h(ξ)σ(dξ) =

σh(C), then by Theorem 1,
Xε

ε

d→ Y 1 as ε ↓ 0. �

Remark 11. If σ is a finite measure, then rρ(r, ξ)→ h(ξ) uniformly on Sd−1 always

implies rρ(r, ξ)→ h(ξ) in L1(σ) as r → 0. Since rρ(r, ξ)→ h(ξ) uniformly on Sd−1,

then ∀ε > 0, ∃δ > 0, ∀ξ ∈ Sd−1, r > 0, if r < δ, then |rρ(r, ξ) − h(ξ)| < ε

σ(Sd−1)
.

Thus
∫
Sd−1

|rρ(r, ξ)− h(ξ)|σ(dξ) ≤
∫
Sd−1

ε

σ(Sd−1)
σ(dξ) = ε.

For further generalization, we consider the p-tempered α-stable distribution. The

class of TSpα relates to many important subclasses that have been well-studied such as

tempered stable distributions [16], the Jα,p class [17], the Thorin class [9], the Goldie-

Steutel-Bondesson class [9], and the class of type-G distributions [18]. For details of

these infinitely divisible distribution classes, reference to [18]. So, it deserves to pay

attention to this class.

Definition 12. For α < 2 and p > 0, an infinitely divisible distribution with no

Gaussian part and Lévy measure ν(B) =

∫
Sd−1

∫ ∞
0

IB(rξ)q(rp, ξ)r−α−1drσ(dξ), B ∈
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B(Rd) is called a p-tempered α-stable (TSpα) distribution, where σ is a finite mea-

sure on Sd−1 and q : (0,∞)× Sd−1 7→ (0,∞) is a Borel function such that ∀ξ ∈ Sd−1,

q(·, ξ) is completely monotone and lim
r→∞

q(r, ξ) = 0.

In Grabchak [19], the author provided the condition under which ν is a Lévy

measure; see Equation (8b) in the paper. In the following, we provide the condition

in a direct way without defining a new measure. Recall ν is a Lévy measure if and

only if
∫
Rd

(|x|2 ∧ 1)ν(dx) <∞. Define Q(r, ξ) = q(rp, ξ)r−α =

∫
(0,∞)

r−αe−r
psQξ(ds).

Then ν(B) =

∫
Sd−1

∫ ∞
0

IB(rξ)Q(r, ξ)r−1drσ(dξ).

∫
Rd

(|x|2 ∧ 1)ν(dx) =

∫
Sd−1

∫ ∞
0

(r2 ∧ 1)

∫ ∞
0

e−r
pxQξ(dx)r−1drσ(dξ)

=

∫
Sd−1

∫ ∞
0

∫ ∞
0

(r2 ∧ 1)r−1e−r
pxdrQξ(dx)σ(dξ)

=

∫
Sd−1

∫ ∞
0

(∫ 1

0

re−r
pxdr +

∫ ∞
1

r−1e−r
pxdr

)
Qξ(dx)σ(dξ)

Let t = rpx, then r =

(
t

x

) 1
p

, dr =
1

p

(
t

x

) 1
p
−1

1

x
dt
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∫
Sd−1

∫ ∞
0

∫ 1

0

re−r
pxdrQξ(dx)σ(dξ)

=

∫
Sd−1

∫ ∞
0

∫ x

0

x−
2
p

1

p
t

2
p
−1e−tdtQξ(dx)σ(dξ)

≤
∫
Sd−1

∫ ∞
0

∫ x

0

x−
2
p

1

p
t

2
p
−1dtQξ(dx)σ(dξ)

=

∫
Sd−1

∫ 1

0

∫ x

0

x−
2
p

1

p
t

2
p
−1dtQξ(dx)σ(dξ) +

∫
Sd−1

∫ ∞
1

∫ x

0

x−
2
p

1

p
t

2
p
−1dtQξ(dx)σ(dξ)

=

∫
Sd−1

∫ 1

0

∫ x

0

x−
2
p

1

p
t

2
p
−1dtQξ(dx)σ(dξ)

+

∫
Sd−1

∫ ∞
1

(∫ 1

0

x−
2
p

1

p
t

2
p
−1dt+

∫ x

1

x−
2
p

1

p
t

2
p
−1dt

)
Qξ(dx)σ(dξ)

≤
∫
Sd−1

∫ 1

0

∫ 1

0

x−
2
p

1

p
t

2
p
−1dtQξ(dx)σ(dξ)

+

∫
Sd−1

∫ ∞
1

(
x−

2
p

1

2
+

∫ x

1

x−
2
p

1

p
x

2
p t−1dt

)
Qξ(dx)σ(dξ)

=

∫
Sd−1

∫ 1

0

∫ 1

0

x−
2
p

1

2
Qξ(dx)σ(dξ) +

∫
Sd−1

∫ ∞
1

(
x−

2
p

1

2
+

∫ x

1

1

p
t−1dt

)
Qξ(dx)σ(dξ)

<

∫
Sd−1

∫ 1

0

∫ 1

0

x−
2
pQξ(dx)σ(dξ) +

∫
Sd−1

∫ ∞
1

(
x−

2
p +

1

p
log x

)
Qξ(dx)σ(dξ)

=

∫
Sd−1

∫ 1

0

∫ 1

0

x−
2
pQξ(dx)σ(dξ) +

∫
Sd−1

∫ ∞
1

(
x−

2
p + log x

1
p

)
Qξ(dx)σ(dξ)

≤
∫
Sd−1

∫ 1

0

∫ 1

0

x−
2
pQξ(dx)σ(dξ) +

∫
Sd−1

∫ ∞
1

(
1 + log x

1
p

)
Qξ(dx)σ(dξ)

=

∫
Sd−1

∫ ∞
0

(
x−

2
p ∧ [1 + log x

1
p ]
)
Qξ(dx)σ(dξ)
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∫
Sd−1

∫ ∞
0

∫ ∞
1

r−1e−r
pxdrQξ(dx)σ(dξ)

=

∫
Sd−1

∫ ∞
0

∫ ∞
x

1

p
t−1e−tdtQξ(dx)σ(dξ)

=

∫
Sd−1

(∫ 1

0

∫ ∞
x

1

p
t−1e−tdtQξ(dx) +

∫ ∞
1

∫ ∞
x

1

p
t−1e−tdtQξ(dx)

)
σ(dξ)

=

∫
Sd−1

(∫ 1

0

[ ∫ 1

x

1

p
t−1e−tdt+

∫ ∞
1

1

p
t−1e−tdt

]
Qξ(dx)

+

∫ ∞
1

∫ ∞
x

1

p
t−1e−tdtQξ(dx)

)
σ(dξ)

≤
∫
Sd−1

(∫ 1

0

[∫ 1

x

1

p
t−1dt+

∫ ∞
1

1

p
e−tdt

]
Qξ(dx) +

∫ ∞
1

∫ ∞
x

1

p
e−tdtQξ(dx)

)
σ(dξ)

=

∫
Sd−1

(∫ 1

0

[
log x−

1
p +

1

p
e−1

]
Qξ(dx) +

∫ ∞
1

1

p
e−1Qξ(dx)

)
σ(dξ)

=

∫
Sd−1

∫ ∞
0

(
[log x−

1
p +

1

p
e−1] ∨ 1

p
e−1

)
Qξ(dx)σ(dξ)

So if
∫
Sd−1

∫ ∞
0

(
x−

2
p ∧ [1 + log x

1
p ]
)
Qξ(dx)σ(dξ) <∞ and∫

Sd−1

∫ ∞
0

(
[log x−

1
p +

1

p
e−1] ∨ 1

p
e−1

)
Qξ(dx)σ(dξ) <∞, then ν is a Lévy measure.

Proposition 9. Let σ be a finite measure defind on Sd−1 and Xε be the pure jump

Lévy process with generating triplet (0, νε, 0). If, for any ξ ∈ Sd−1, Q(r, ξ)→ h(ξ) in

L1(σ) as r → 0, i.e.
∫
Sd−1

|Q(r, ξ) − h(ξ)|σ(dξ) → 0 as r → 0, then
Xε

ε

d→ Y 1 as

ε ↓ 0

Proof of Proposition 9. Define ρ(r, ξ) = Q(r, ξ)r−1, then it holds immediately fol-

lowing Proposition 8. �



CHAPTER 3: Construct the Random Variable

We have studied the limit properties of multivariate Dickman distribution. Nev-

ertheless, all these are done in the background of Lévy processes. Now, we turn to

the limit property of the multivariate Dickman distribution in the view of distribu-

tion. Finally, this property can lead us to construct multivariate Dickman random

variables.

Definition 13. l is a slowly varying at 0 function, if for every t > 0, lim
x→0+

l(xt)

l(x)
=

1.

Proposition 10. Suppose σ is a probability measure defined on Sd−1 and G is a

probability measure such that 1−G(x) = (1− x)αl(1− x) where l is a slowly varying

at 0 function and α > 0. Assume Ti
iid∼ σ, Xi

iid∼ G and 0 ≤ Xi ≤ 1, and Ti

and Xi are independent for i = 1, 2, 3, · · · . Define Sn =
Nn∑
i=1

TiX
n
i , where Nn is

an integer depending on n and Nn → ∞ as n → ∞. Let Y be a random variable

that has the infinitely divisible distribution with Lévy measure νy((0, x] × C) = 1 −

σ(C)a

(
ln

(
1

x

))α
. If

Nn

nα
l(

1

n
)→ a where a ∈ R+, then Sn

d→ Y as n→∞.
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Proof of Proposition 10. Let P be the probability measure, for any A = (s, 1]× C,

lim
n→∞

NnP(A) = lim
n→∞

NnP

(
|T1X

n
1 | > s,

T1X
n
1

|T1Xn
1 |
∈ C

)
= lim

n→∞
NnP(Xn

1 > s, T1 ∈ C)

= lim
n→∞

NnP(Xn
1 > s)P(T1 ∈ C)

= σ(C) lim
n→∞

NnP(X1 > s
1
n )

= σ(C) lim
n→∞

Nn(1− s
1
n )αl(1− s

1
n )

= σ(C) lim
n→∞

Nn
1

nα
l(

1

n
)

(
1− s 1

n

1
n

)α
l(1− s 1

n )

l( 1
n
)

= σ(C)a

(
ln

(
1

s

))α
= 1− νy(A)

For all t ∈ Rd,

lim
ε↓0

lim sup
n→∞

NnE[〈t,Xn
1 T1〉2I(|Xn

1 T1| < ε)]

= lim
ε↓0

lim sup
n→∞

Nn

∫ ∞
0

P(|〈t, T1X
n
1 〉2I(|T1X

n
1 | < ε)| > s)ds

= lim
ε↓0

lim sup
n→∞

Nn

∫ ∞
0

P(|〈t, T1X
n
1 〉I(|T1X

n
1 | < ε)|2 > s)ds

= lim
ε↓0

lim sup
n→∞

Nn

∫ ∞
0

P(|〈t, T1X
n
1 〉|2 > s,Xn

1 < ε)ds

≤ lim
ε↓0

lim sup
n→∞

Nn

∫ ∞
0

∫ B

0

P((

√
s

|t|
)

1
n < X1 < ε

1
n )dσ(t)ds

= lim
ε↓0

lim sup
n→∞

Nn

∫ |t|2ε2
0

∫ B

0

[
P

((√
s

|t|

) 1
n

< X1

)
− P(ε

1
n < X1)

]
dσ(t)ds

=

∫ B

0

lim
ε↓0

∫ |t|2ε2
0

(
a(ln

(
|t|√
s

)
)α − a(ln(

1

ε
))α
)

dsdσ(t)

=

∫ B

0

(
0− a|t| lim

ε↓0
ε(ln(

1

ε
))α
)

dσ(t)

= 0
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The second equation holds because 〈t, T1X
n
1 〉 is a scalar. By Jensen’s inequality,

E2[〈t,Xn
1 T1〉I(|Xn

1 T1| < ε)] ≤ E[〈t,Xn
1 T1〉2I(|Xn

1 T1| < ε)], then we have

lim
ε↓0

lim sup
n→∞

NnE2[〈t,Xn
1 T1〉2I(|Xn

1 T1| < ε)] = 0. Thus, we conclude that

lim
ε↓0

lim sup
n→∞

Nn

(
E(〈t,Xn

1 T1〉2I(|Xn
1 T1| < ε))− E2(〈t,Xn

1 T1〉I(|Xn
1 T1| < ε))

)
= 0

According to Thoerem 1.2.21 and Example 1.2.22 in Meerschaert and Scheffler [14],

the measure of Sn converges vaguely to Φ on B((0, 1] × Sd−1). Then by Theorem

3.2.2 in Meerschaert and Scheffler [14], we have Sn
d→ Y . �

Remark 12. If we let Nn = n, α = 1, l(x) = 1, and X ∼ Unif([0, 1]), then
Nn

nα
l(

1

n
) = 1, νy = D1, then by Proposition 10,

n∑
i=1

TiX
n
i

d→ Y 1 where the distribution

of Y 1 has the Dickman Lévy measure D1.

Remark 13. Recall Equation (2.4) in Definition 8, Remark 12 coincides with the

multivariate Dickman distribution. Thus, we can define the multivariate Dickman

distribution as the summation of series, which is the same as the univariate case. A

random variable X defined on Rd follows the multivariate Dickman distribution,

if

X = V1U1 + V2U1U2 + V3U1U2U3 + · · ·

where Vi are i.i.d. random variables defined on Sd−1, Ui are i.i.d. uniform random

variables defined on [0, 1], and Vi and Ui are independent.



CHAPTER 4: Lévy Process Approximation

Cohen and Rosiński (Theorem 2.2) [20] provided the condition under which the

transformed truncated Lévy process converges to the Brownian motion. For every

ε ∈ (0, 1], let {Xε
t : t ≥ 0} be a Lévy process with characteristic function

µ̂Xε
t
(z) = exp

{
t

∫
Rd

(
ei〈z,x〉 − 1− i〈z, x〉

)
νε(dx)

}

Let {Wt : t ≥ 0} be a standard Brownian motion and Σε =

∫
Rd
xxTνε(dx). Assume Σε

is non-sigular. Then Σ
− 1

2
ε Xε d→ W as ε ↓ 0 if and only if

∫
〈Σ−1
ε x,x〉>h

〈Σ−1
ε x, x〉νε(dx)→

0 as ε ↓ 0, for every h > 0. And then they use Brownian motion and compound

Poisson process to approximate the Lévy process.

Example 1. Assume Xε is a Lévy process with generating triplet (0, νε, 0) where

νε(dx) = − lnx

x
I(0,ε](x)dx and W is standard Brownian mothion, then

Xε

1
2
ε
√

1− ln ε2
d→ W

Σε =

∫
Rd
x2(− lnx

x
I(0,ε](x))dx =

∫ ε

0

−x lnxdx

=
1

4
ε2(1− ln ε2)
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For every h > 0,

lim
ε→0

∫
x2

1
4 ε

2(1−ln ε2)
>h

x2

1
4
ε2(1− ln ε2)

(
− lnx

x

)
I(0,ε](x)dx

= lim
ε→0

4

ε2(1− ln ε2)

∫ ∞
0

I
( 1

2
ε
√
h(1−ln ε2),ε]

(x)(−x lnx)dx

Note,
1

2
ε
√
h(1− ln ε2) < ε then ε > exp{1

2
− 2

h
}. Since we fix h, then when ε goes to

0, this condition doesn’t hold. then the indicator function is 0, so the limit is 0.

However, this is not always true. If we have a Dickman-type Lévy measure, this

condition does not hold.

Example 2. Assume Xε is a Lévy process with generating triplet (0, νε, 0), where

νε(dx) =
1

x
I(0,ε](x)dx. Note that,

Σε =

∫ ∞
0

x2I(0,ε](x)
1

x
dx =

∫ ε

0

xdx =
ε2

2

Then, for any 2 > h > 0,

lim
ε→0

∫
x2

ε2
2

>h

x2

ε2

2

I(0,ε](x)
1

x
dx = lim

ε→0

∫ ε

ε
√

h
2

2x

ε2
dx

= lim
ε→0

1

ε2
x2
∣∣ε
ε
√

h
2

= lim
ε→0

1− h

2

= 1− h

2
6= 0

So, in this case, we can not use Brownian motion to approximate the Lévy process.

In the following sections, we provide an alternative way to approximate a Lévy pro-

cess. By doing this, we complete the family of approximating the Lévy process in a

new perspective.
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4.1 Decomposition

Consider a Lévy process {Xt} in Rd, where X1 ∼ ID0(γ0, ν), with the Lévy-

Khinchine representation

µ̂Xt(z) = exp

{
ti〈γ0, z〉+ t

∫
Rd

(
ei〈z,x〉 − 1

)
ν(dx)

}
, z ∈ Rd (4.1)

Assume we are given a decomposition

ν = νε + ν̃ε

where, ε ∈ (0, 1] and for every B ∈ B(Rd), νε(B) =

∫
B

I|x|≤ε(x)ν(dx) and ν̃ε(B) =∫
B

I|x|>ε(x)ν(dx). Also, we assume that

∫
Rd
|x|νε(dx) <∞ and ν̃ε(Rd) <∞

Then

∫
|x|>1

|x|νε(dx) ≤
∫
|x|>1

|x|2νε(dx)

≤
∫
|x|>1

|x|2νε(dx) +

∫
|x|≤1

|x|2νε(dx)

=

∫
Rd
|x|2νε(dx) <∞

∫
|x|≤1

|x|ν̃ε(dx) ≤
∫
|x|≤1

ν̃ε(dx)

= ν̃ε(|x| ≤ 1)

≤ ν̃ε(Rd) <∞
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Hence, we have the following decomposition

µ̂Xt(z) = exp

{
ti〈γ0, z〉+ t

∫
Rd

(
ei〈z,x〉 − 1

)
ν(dx)

}
= exp

{
t

∫
Rd

(
ei〈z,x〉 − 1

)
νε(dx)

}
exp

{
t

∫
Rd

(
ei〈z,x〉 − 1

)
ν̃ε(dx)

}
exp {ti〈γ0, x〉}

= µ̂Xε
t
(z) µ̂Nεt (z)

(
δ̂γ0(z)

)t
So

X
d
= Xε +N ε + γ0 (4.2)

where N ε is a compound Poisson process with the jump measure ν̃ε, and γε is a drift.

Proposition 11. Let {Xt : t ≥ 0} be a Lévy process in Rd determined by Equation

(4.1) and let decomposition (4.2) be given. Suppose assumptions in Theorem 1 hold.

Let Y 1, N ε, and γ0 be as above. Then for every ε ∈ (0, 1], there exists a cadlag process

Zε = {Zε
t : t ≥ 0} such that

X
d
= εY 1 +N ε + γ0 + Zε

such that, for each T > 0,

sup
t∈[0,T ]

|ε−1Zε
t |

p→ 0 as ε→ 0

Proof of Proposition 11. By Theorem 1,
Xε

ε

d→ Y 1 . Then by Theorem 15.17 of

[15], there exists Lévy process Rε = {Rε
t : t ≥ 0} such that

Rε d
=
Xε

ε
and sup

t∈[0,T ]

∣∣Rε
t − Y 1

t

∣∣ p→ 0
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as ε→ 0, for each T > 0. Let

Zε = ε
(
Rε − Y 1

)
Then

X
d
= Xε +N ε + γ0

d
= εRε +N ε + γ0

= εY 1 +N ε + γ0 + Zε

with sup
t∈[0,T ]

∣∣ε−1Zε
t

∣∣ p→ 0 as ε→ 0

�

4.2 Simulation of Lévy process with Dickman-type Lévy measure

As Proposition 11 described, a Lévy process can be approximated by small jumps

and large jumps. In this section, we introduce the algorithm that simulates small

jumps, i.e. Xε in Equation (4.2), using multivariate Dickman distribution.

The simulation of univariate Dickman distribution and the Vervaat perpetuities

which are closely related to the Dickman distribution has been extensively studied in

the literature, see [21], [22], [23], and [24]. Here we use an exact method in Cont [25].

We use LePage’s series representation for the σ-finite measure D(B) =∫
Sd−1

∫ ∞
0

IB(rξ)r−1drσ(dξ) which we defined in Proposition 3. Specifically, we use

the method that is the same as Example 6.17. In our situation, for all C ∈ B(Sd−1),

define Π(C) =

∫
C

σ(dξ)

σ(Sd−1)
, then Π is a probability measure on the unit sphere Sd−1



43

of Rd, since our σ is finite. We can rewrite D as the following

D(B) =

∫
Sd−1

∫ ∞
0

IB(rξ)r−1drσ(dξ)

=

∫
Sd−1

∫ ∞
0

IB(rξ)r−1dr
σ(dξ)

σ(Sd−1)
σ(Sd−1)

=

∫
Sd−1

∫ ∞
0

IB(rξ)r−1drσ(Sd−1)Π(dξ)

=

∫
Sd−1

∫ ∞
0

IB(rξ)µ(dr, ξ)Π(dξ)

µ(∗, ξ) is a Lévy measure on (0,∞) for each ξ ∈ Sd−1. Thus, for the Dickman Lévy

measure D1, we have µ(dr, ξ) = θI(r ≤ 1)r−1dr, where θ = σ(Sd−1).

Proposition 12. Assume {Γi} is a sequence of arrival times of a standard Poisson

process, {Vi} is an independent sequence of independent random variables having dis-

tribution Π on unit sphere Sd−1, and {Ui} is an independent sequence of independent

random variables having uniform distribution on [0, 1]. Suppose Y 1 ∼ ID0(D1, 0).

∀t ∈ [0, 1], define

Xt =
n∑
i=1

e−
Γi
θ ViI[0,t](Ui) (4.3)

Then Xt → Y 1
t almost surely and uniformly as n→∞.

Proof of Proposition 12. For 0 < x < 1, define

U(x, ξ) =

∫ ∞
x

µ(dr, ξ) =

∫ ∞
x

θI|rξ|≤1(rξ)r−1dr = θ

∫ ∞
x

I(0,1](r)r
−1dr = − lnxθ

so U−1(z, ξ) = e−
z
θ , z > 0. Then define

σ(r, C) =

∫
Sd−1

IC(e−
r
θ ξ)Π(dξ) =

∫
Sd−1

I
e
r
θ C

(ξ)Π(dξ)
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Hence,

A(s) =

∫ s

0

∫
|x|≤1

xσ(r, dx)dr

=

∫ s

0

∫
|x|≤1

xΠ(e
r
θdx)dr

=

∫ s

0

e−
r
θdr

∫
|x|≤1

e
r
θxΠ(e

r
θdx)

= θ(1− e−
s
θ )

∫
Sd−1

ξΠ(dξ)

= θ(1− e−
s
θ )E(V )

Then γ = lim
s→∞

A(s) = θE(V ). By Theorem 6.2 in Cont [25],

µ̂Xt → exp

{
t

(
i〈u, γ〉+

∫
Rd

(ei〈u,x〉 − 1− i〈u, x〉I(|x| ≤ 1))D(dx)

)}
= exp

{
t

(
i〈u, θE(V )〉+

∫
Rd

(ei〈u,x〉 − 1− i〈u, x〉I(|x| ≤ 1))D(dx)

)}

Note,

∫
Rd
〈u, x〉I(|x| ≤ 1)D(dx) =

∫
Sd−1

∫ 1

0

〈u, rν〉θr−1drΠ(dν)

= 〈u, θ
∫
Sd−1

νΠ(dν)〉

= 〈u, θE(V )〉

Thus µ̂Xt → exp

{
t

∫
Rd

(ei〈u,x〉 − 1)D1(dx)

}
= µ̂Y 1

t
. �

Proposition 12 works for t ∈ [0, 1]. To simulate the whole process with small jumps,

we extend it to t in[0, T ] for any T > 0 in the next proposition.

Proposition 13. Assume {Γi} is a sequence of arrival times of a standard Poisson

process, {Vi} is an independent sequence of independent random variables having dis-

tribution Π on unit sphere Sd−1, and {Ui} is an independent sequence of independent
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random variables having uniform distribution on [0, 1]. Suppose Y 1 ∼ ID0(D1, 0).

∀t ∈ [0, T ] for any T > 1, define

Xt =
n∑
i=1

e−
Γi
θT ViI[0, t

T
](Ui) (4.4)

Then Xt → Y 1
t almost surely and uniformly as n→∞.

Proof of Proposition 13. First, note that, if X1 ∼ ID0(D1, 0), then

XT ∼ ID0(TD1, 0). Let {Yt} be another Lévy process such that Y1 ∼ ID0(TD1, 0).

The same procedure as previous, we can get U−1(z, ξ) = e−
z
θT ,

σ(r, A) =

∫
Sd−1

IA(e−
z
θT ξ)Π(dξ) =

∫
Sd−1

I
e
z
θT A

(ξ)Π(dξ), A(i) = θT (1 − e−
i
θT )E(V ),

γ = θTE(V ), ci = θT (e
1
θT − 1)E(V )e−

i
θT . Then the series representation of a Lévy

process with Lévy measure D1 has the following form

Yt
d
=
∞∑
i=1

e−
Γi
θT ViI[0,t](Ui), for t ∈ [0, 1] (4.5)

Note that XT
d
= Y1, then XsT

d
= Ys, let t = sT , then Xt

d
= Y t

T
, i.e.

Xt =
∞∑
i=1

e−
Γi
θT ViI[0, t

T
](Ui), for t ∈ [0, T ]

�

Example 3. In application, we can only use a finite series to approximate the Lévy

process with Dickman-type Lévy measure. Assume T1, T2, · · ·
iid∼ Exp(1), define Γi =

i∑
j=1

Tj, then Γi ∼ Gamma(n, 1). Let Ui ∼ U [0, 1] and {Vi} are i.i.d with mean E(V ).
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Γ, V, U are independent. For any n ∈ N, Xt,n =
n∑
i=1

e−
Γi
θT ViI[0, t

T
](Ui), for t ∈ [0, T ].

E(Xt,n) = E

(
n∑
i=1

e−
Γi
θT ViI[0, t

T
](Ui)

)

=
n∑
i=1

E
(
e−

Γi
θT

)
E(Vi)E

(
I[0, t

T
](Ui)

)
=

n∑
i=1

E
(
e−

Γi
θT

)
E(V )

t

T

= E(V )
t

T

n∑
i=1

(
1−

(
− 1

θT

))−i
= E(V )

t

T

n∑
i=1

(
1 +

1

θT

)−i
= E(V )

t

T
θT [1−

(
θT

θT + 1

)n
]

= E(V )θt[1−
(

θT

θT + 1

)n
]

So E(Xt) =
t

T
E(V )

(1 + 1
θT

)−1

1− (1 + 1
θT

)−1
=

t

T
E(V )θT = θtE(V ). Then

E(Xt)− E(Xt,n) = E(V )θt

(
θT

θT + 1

)n

So, if we want a precision δ, then n ≥ log(θtE(V ))− log δ

log(θT + 1)− log(θT )
. We notice that n will

increase at the speed that is proportional to log δ.
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4.3 Simulation of Compound Poisson Process

The remaining large jumps, i.e. N ε in Equation (4.2), is a compound process. Sim-

ulation of a compound Poisson process has been extensively studied in the literature.

Applying the Algorithm 6.1 in [25] to our case, we can simulate the compound Poisson

process at the specific time t using the following steps:

• simulate ei ∼ exp(1/λ), i = 1, 2, · · · , n,

• let M(t) =

{
max(k)|

k∑
i=1

ei < t

}
,

• simulate Zi from the distribution ν̃ε/λ, i = 1, 2, · · · ,M(t),

• set N ε(t) =

M(t)∑
i=1

Zi,

where eis are jumping times from time 0 to t, M(t) is the total number of jumps and

is a Poisson process, i.e. M(t) ∼ Pois(λt), and λ = ν̃ε(Rd).

To simulate Z and to calculate λ, we need to know the specific form of ν̃ε. The

gamma distribution can be used to model heavy-tailed and asymmetric data and allow

for flexibility in modeling the tail behavior of data. Thus, for the Lévy measure ν̃ε, we

consider the generalized gamma distribution, i.e., in Definition 12 we are interested

in the case when α = 0. Under this consideration, for any A ∈ B(Rd),

ν̃ε(A) =

∫
Sd−1

∫ ∞
ε

∫ ∞
0

IA(rξ)r−1e−r
psQξ(ds)drσ(dξ),

then λ =

∫
Sd−1

∫ ∞
ε

∫ ∞
0

r−1e−r
psQξ(ds)drσ(dξ) and

1

λ
ν̃ε is a probability measure.

Since we know ν̃ε, we can simulate Z ∼ ν̃ε/λ. However, it is difficult to directly

simulate a random variable from this distribution. Nevertheless, we notice that if we

define

k(ξ) =

∫ ∞
ε

∫ ∞
0

r−1e−r
psQξ(ds)dr =

1

p

∫ ∞
0

Γ(0, εps)Qξ(ds), (4.6)
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where Γ(., .) is the upper incomplete gamma function, and

σp =
k(ξ)

λ
σ, (4.7)

then σp is a probability measure. Let ξ ∼ σp. Given this ξ and define

l(s) =

∫ ∞
ε

r−1e−r
psdr =

1

p
Γ(0, εps), (4.8)

and

ΠS(ξ, ds) =
l(s)

k(ξ)
Qξ(ds), (4.9)

then ΠS is a probability measure. Let S ∼ ΠS. Given ξ and S, define

ΠR(s, dr) =
1

l(s)
r−1e−r

psI(r ≥ ε)dr, (4.10)

then ΠR is a probability distribution. Let R ∼ ΠR.

Proposition 14. Let Z = Rξ, then Z ∼ ν̃ε/λ.
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Proof of Proposition 14. For any A ∈ B(Rd),

P(Z ∈ A) = E(IA(Z))

= E(E(E(IA(Rξ)|S)|ξ))

=

∫
Sd−1

E(E(IA(Rξ)|S)|ξ = z)σp(dz)

=

∫
Sd−1

E(E(IA(Rz)|S))
kξ
λ
σ(dz)

=

∫
Sd−1

E(IA(Rz)|S = s)ΠS(ds)
kξ
λ
σ(dz)

=

∫
Sd−1

∫ ∞
0

E(IA(Rz))
l(s)

kξ
Qξ(ds)

kξ
λ
σ(dz)

=

∫
Sd−1

∫ ∞
0

∫ ∞
ε

IA(rz)
1

l(s)
r−1e−r

psdr
l(s)

kξ
Qξ(ds)

kξ
λ
σ(dz)

=

∫
Sd−1

∫ ∞
ε

∫ ∞
0

1

l(s)

l(s)

kξ

kξ
λ
IA(rz)r−1e−r

psQξ(ds)drσ(dz)

=
1

λ

∫
Sd−1

∫ ∞
ε

∫ ∞
0

IA(rz)r−1e−r
psQξ(ds)drσ(dz)

�

Still, it is difficult to simulate R directly. We need to find a distribution that we

can simulate random variables easier than ΠR using the acceptance-rejection method.

The next lemma leads us to the distribution we want.

Lemma 4. Let X be a random variable from the distribution having density g(x) =

1

l(s)
x−1e−x

pI(x ≥ εs
1
p ). Define R = X/s1/p, then R is the random variable from the

distribution having the density f(r) =
1

l(s)
r−1e−r

psI(r ≥ ε).
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Proof of Lemma 4. The CDF of R is

FR(r) = P(R ≤ r)

= P(
X

s
1
p

≤ r)

= P(X ≤ rs
1
p )

=
1

l(s)

∫ rs
1
p

εs
1
p

x−1e−x
p

dx,

so the pdf of R is f(r) =
1

l(s)
(rs

1
p )−1e−(rs

1
p )ps

1
p =

1

l(s)
r−1e−r

ps and r ≥ ε. �

Even for X, we are unable to simulate it directly. However, until now, we can use

the acceptance-rejection method. This leads us to the next lemma.

Lemma 5. Let X be a random variable from the distribution having density g(x) =

1

l(s)
x−1e−x

pI(x ≥ εs
1
p ). Then, for U ∼ U(0, 1),

X =


[εps− ln(U)]

1
p , εs

1
p > 1

(εs
1
p )(1−2U), U ≤ 1

2

[1− ln(2(1− U))]
1
p , U >

1

2

, εs
1
p ≤ 1

when the acceptance condition is satisfied, we consider X as a sample from g(x).

Proof of Lemma 5. 1. When εs
1
p > 1,

g(x) =
1

l(s)
x−1e−x

pI(x ≥ εs
1
p )

≤ 1

l(s)peεps
pxp−1eε

ps−xpI(x ≥ εs
1
p ).

Let c1 =
1

l(s)peεps
and h1(x) = pxp−1eε

ps−xpI(x ≥ εs
1
p ) is a pdf, then g(x) ≤

c1h1(x). The CDF is H1(x) =

∫ x

εs
1
p

pyp−1eε
ps−ypdy = 1 − eεps−xp , so H−1

1 (x) =
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[εps− ln (1− x)]
1
p . Thus we generate U1, U2

iid∼ U(0, 1), and let

X = [εps− ln(U1)]
1
p , if U2 ≤

g(X)

c1h1(X)
= X−p, then we accept X.

2. When εs
1
p < 1,

g(x) =
1

l(s)
x−1e−x

pI(x ≥ εs
1
p )

=
1

l(s)
x−1e−x

p

(I(εs
1
p ≤ x < 1) + I(x ≥ 1))

≤ − ln(εs
1
p )

l(s)

x−1

− ln(εs
1
p )
I(εs

1
p ≤ x < 1) +

1

l(s)pe
pxp−1e1−xpI(x ≥ 1)

≤ 2 max

{
1

l(s)pe
,
− ln(εs

1
p )

l(s)

}
1

2

(
x−1

− ln(εs
1
p )
I(εs

1
p ≤ x < 1)

+pxp−1e1−xpI(x ≥ 1)

)
,

due to the fact that
1

l(s)
x−1e−x

pI(x ≥ 1) ≤ 1

l(s)pe
pxp−1e1−xpI(x ≥ 1) and

1

l(s)
x−1e−x

pI(εs
1
p ≤ x < 1) ≤ 1

l(s)
x−1I(εs

1
p ≤ x < 1) =

− ln(εs
1
p )

l(s)

x−1

− ln(εs
1
p )
I(εs

1
p ≤ x < 1). Let c2 = 2 max

{
1

l(s)pe
,
− ln(εs

1
p )

l(s)

}
and

h2(x) =
1

2

(
pxp−1e1−xpI(x ≥ 1) +

x−1

− ln(εs
1
p )
I(εs

1
p ≤ x < 1)

)
is a pdf, then

g(x) ≤ c2h2(x).

Note P(1 ≤ X <∞) = 0.5, and when x ≥ 1,

H2(x) =
1

2

(∫ 1

εs
1
p

y−1

− ln(εs
1
p )

dy +

∫ x

1

pyp−1e1−ypdy

)
=

1

2

(
1 + 1− e1−xp) = 1− 1

2
e1−xp ,

then H−1
2 (x) = [1− ln 2(1− x)]

1
p .
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Also P(εs
1
p ≤ x < 1) = 0.5, and when εs

1
p < x < 1,

H2(x) =
1

2

∫ x

εs
1
p

y−1

− ln(εs
1
p )

dy

=
1

2

(
1− lnx

ln(εs
1
p )

)
,

then H−1
2 (x) = e(1−2x) ln(εs

1
p ) = (εs

1
p )(1−2x).

Thus, we generate U1, U2
iid∼ U(0, 1), if U1 ≤

1

2
, let X = (εs

1
p )(1−2U1), else let

X = [1− ln(2(1− U1))]
1
p , and if U2 ≤

g(X)

c2h2(X)
, then we accept X.

�

Remark 14. Notice, lim
ε→0

l(s) = lim
ε→0

1

p
Γ(0, εps) =∞ and lim

ε→0

− ln(εs
1
p )

l(s)
=

lim
ε→0

− ln(εs
1
p )∫∞

ε
r−1e−rpsdr

= lim
ε→0

−ε−1

−ε−1e−εps
= lim

ε→0
eε
ps = 1, so lim

ε→0
c2 =

lim
ε→0

2 max

{
1

l(s)pe
,
− ln(εs

1
p )

l(s)

}
= 2. This indicates that the probability of acceptance

is around 0.5 when ε is small.

Now that we have everything, we can simulate the compound Poisson process using

the following algorithm.

Algorithm 1. 1. Simulate ei ∼ exp(λ), i = 1, 2, · · · , n.

2. Let M(t) = {max(k)|
k∑
i=1

ei < t}.

3. For i = 1, 2, · · · ,M(t):

(a) Simulate ξi ∼ σp.

(b) Given ξi, simulate Si ∼ ΠS

(c) Given ξi and Si, simulate Ri ∼ ΠR, and this is in two cases:
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i. When εS
1
p

i > 1, generate U1, U2
iid∼ U(0, 1), and let

Xi = [εpSi − ln (1− U1)]
1
p . If U2 ≤

g(Xi)

c1h1(Xi)
= X−pi , then set

Ri =
Xi

S
1
p

i

, otherwise repeat this step.

ii. When εS
1
p

i < 1, generate U1, U2
iid∼ U(0, 1), let

Xi = (εS
1
p

i )1−2U1I(U1 ≤
1

2
) + [1− ln(2U1)]

1
p I(U1 >

1

2
). If

U2 ≤
g(Xi)

c2h2(Xi)
then set Ri =

Xi

S
1
p

i

, otherwise repeat this step.

(d) Set Zi = Riξi.

4. set N ε(t) =

M(t)∑
i=1

Zi

Example 4. In this example, we implement the Algorithm 1 in the bivariate case, i.e.

N ε(t) = (N ε
1(t), N ε

2(t)). For simplicity, we take p = 1, θ ∈ [0, 2π), ξ = (cos θ, sin θ),

Qξ = δ1, and σ(Sd−1) = 1. Then ΠS(ds) = δ1(ds), the random variable S = 1,

λ = kξ = l(s) = Γ(0, ε), σp = σ, and ΠR(dr) =
1

Γ(0, εs)
r−1e−r

psI(r ≥ ε)dr. Further,

we take σ as a uniform distribution on {θi : i = 1, · · · , n}, where θi =
2π

n
(i − 1),

i = 1, 2, · · · , n, with probability
1

n
. Then we have the following theoretical values:

E(N ε
1(t)) = te−ε

1

n

n∑
i=1

cos θi, E(N ε
2(t)) = te−ε

1

n

n∑
i=1

sin θi,

Var(N ε
1(t)) = t(ε+ 1)e−ε

1

n

n∑
i=1

cos2 θi,Var(N ε
2(t)) = t(ε+ 1)e−ε

1

n

n∑
i=1

sin2 θi,

Cov(N ε
1(t), N ε

2(t)) = t(ε+ 1)e−ε
1

n

n∑
i=1

cos θi sin θi.

We can see that they are all linear with t; when we compare the theoretical value with

the empirical value, the error will also be linear with t. To get rid of the effect of t
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Figure 4.1: Plots of errors comparing different Monte Carlo numbers and different
epsilon values. The x-axis represents t, the time, and the y-axis represents the total
errors.

and focus on the effect of distribution, we define our metric as this:

ErrorMean1(t) =
|E(N ε

1(t))−m1(t)|
t

, ErrorMean2(t) =
|E(N ε

2(t))−m2(t)|
t

ErrorVar1(t) =
|Var(N ε

1(t))− s1(t)|
t

, ErrorVar2(t) =
|Var(N ε

2(t))− s2(t)|
t

ErrorCov(t) =
|Cov(N ε

1(t), N ε
2(t))− s1,2(t)|
t

where m1(t),m2(t) are sample means, s1(t), s2(t) are sample variances, and s1,2(t) is

the sample covariance. Then we define the total error as the mean square error of the

above errors, i.e. TotalError(t) =
{
ErrorMean1(t)2 + ErrorMean2(t)2+

ErrorVar1(t)2 + ErrorVar2(t)2 + ErrorCov(t)2
}1/2

In our experiment, taking n = 10, we first fix ε = 0.1 and compare different Monte

Carlo numbers: 10000, 100000, 500000, 1000000; Then we fix Monte Carlo number

N = 1000000 and compare different epsilons: 0.1, 0.8, 1.2, 2. Increasing the Monte

Carlo number will decrease the total error; however, if we want to decrease the total

error further, we need very large numbers.
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4.4 Simulation of Multivariate Dickman Random Variable

Until now, we have three methods to simulate the multivariate Dickman random

variables. Xia and Grabchak [26], introduce the discretization and simulation(DS)

method using univariate random variables to simulate multivariate random variables,

see Theorem 2 in detail. We can also use Equation (4.3) in Proposition 12 by letting

the indicator function always be 1, and we call this the shot noise (SN) method. Last,

we use the method described in Remark 12 as the third method, and we call it the

triangular array (TA) method.

Example 5. In this example, we simulate 2-d Dickman random variables. To simu-

late a random variable V defined on Sd−1, we first generate θ ∼ Beta(α, β) on [0, 2π],

then V = (cos θ, sin θ). By Remark 9, we can calculate the theoretical mean, variance,

and covariance as below:

E(X1) =
1

B(α, β)(2π)α+β−1

∫ 2π

0

cos θθα−1(2π − θ)β−1dθ

E(X2) =
1

B(α, β)(2π)α+β−1

∫ 2π

0

sin θθα−1(2π − θ)β−1dθ

Var(X1) =
1

2B(α, β)(2π)α+β−1

∫ 2π

0

cos2 θθα−1(2π − θ)β−1dθ

Var(X2) =
1

2B(α, β)(2π)α+β−1

∫ 2π

0

sin2 θθα−1(2π − θ)β−1dθ

Cov(X1, X2) =
1

4B(α, β)(2π)α+β−1

∫ 2π

0

sin(2θ)θα−1(2π − θ)β−1dθ

where X = (X1, X2) is the 2-d Dickman random variable, B(α, β) is the beta function.

We use the following metric to measure the error of the simulation:

TotalError =
{

(E(X1)−m1)2 + (E(X2)−m2)2 + (Var(X1)− s1)2

+(Var(X2)− s2)2 + (Cov(X1, X2)− s1,2)2
}1/2

where m1,m2 are sample means, s1, s2 are sample variances, and s1,2 is the sample
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Figure 4.2: Plots of errors in the beta model with all three methods and several
choices of the parameters. The x-axis represents k, the number of terms in the sum,
and the y-axis represents the errors.

covariance.

In our experiment, we compare the result of the simulation under different com-

binations of the parameters (α, β) of the Beta distribution: (1, 1), (2, 2), (2, 5), and

(5, 1). We use Monte Carlo to generate random variables and run 160, 000 replica-

tions. Generally speaking, the SN method converges quickly in all the cases; the DS

method and the TA method need more terms to converge. All these methods are ap-

proximations, however, in the discrete case, the DS method is an exact method instead

of an approximation. In our experiment, the TA method is only a simplified version

of Proposition 10. People can choose different distributions other than the uniform

distribution.

4.5 Approximation of the Lévy Process

In this section, we provide the simulation of the whole Lévy process. We consider

the same general gamma distribution as in Section 4.3 and parameters as in Example
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4. In this case, X ∼ ID0(0, ν) where ν(B) =

∫
Sd−1

∫ ∞
0

IB(rξ)r−1e−rdrσ(dξ) for

B ∈ Rd. Then

E(Xt) = t

∫
Rd

(1− I|x|≤1(x))xν(dx) = te−1

∫
Sd−1

ξσ(dξ)

E(Xit, Xjt) = t

∫
Rd
xixjν(dx) = t

∫
Sd−1

ξiξjσ(dξ)

We use Equation (4.4) to simulate Y 1
t , thus Y

1
t =

m∑
i=1

e−
Γi
θT ViI[0, t

T
](Ui), and in the

simulation we take m = 10000. The metric of the error is the same as Example 4.

In the simulation, we consider the bivariate case and take p = 1, Qξ = δ1, and

σ(Sd−1) = 1. Further, we take σ as a uniform distribution on {θi : i = 1, · · · , n},

where θi =
2π

n
(i−1), i = 1, 2, · · · , n, with probability

1

n
, ξi = (cos θi, sin θi), and take

the tuning parameter n = 30. We first fix the number of Monte Carlo N = 500000

and compare different values of ε. The result shows that the total error decreases

as ε decreases. The plot on the right compares different numbers of Monte Carlo

when we fix ε = 0.1. It shows that the total error will decrease as we increase the

number of Monte Carlo. Note that we do not need a very large number of Monte

Carlo, though it will result in a small total error because the difference is not obvious

between 100000 and 500000. To further reduce the total error, we need a huge number

of Monte Carlo, which is not necessary since the total error is already small enough.

Next, we provide the plots of sample paths of Dickman process and Lévy process.

In the plot, we take m = 10000, ε = 0.1, n = 30, and T = 40 with timestep 0.5.
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Figure 4.3: Plots of errors comparing different Monte Carlo numbers and different ε
values. The x-axis represents t, the time, the timestep is 0.5, and the y-axis represents
the total errors.

0 10 20 30 40

−
4

−
2

0
2

Time

Dickman Process

x−coordinate
y−coordinate

0 10 20 30 40

−
4

−
2

0
2

4
6

8

Time

Compound Poisson Process

x−coordinate
y−coordinate

0 10 20 30 40

−
4

−
2

0
2

4
6

8

Time

Levy Process

x−coordinate
y−coordinate

Figure 4.4: Plots of sample path of MD process, Compound Poisson process, and
Lévy process. The x-axis represents t, the time, the timestep is 0.5, and the y-axis
represents the value of the process at time t.



CHAPTER 5: The Density of the Truncated Subordinator

In previous sections, we studied the limit properties of the truncated Lévy process.

Now, let us turn to study the distributional properties of the density.

Let X ∼ ID0(ν, 0) with the density function fX . The characteristic function of Xt

is µ̂Xt(u) = et
∫
Sd−1

∫∞
0 (ei〈u,rξ〉−1)νξ(dr)σ(dξ). Let Xb be the truncated Lévy process with

the Lévy measure νb which is upper bounded by a level b > 0 and has the density

function fb. The characteristic function is µ̂Xb
t
(u) = e{t

∫
Sd−1

∫ b
0 (ei〈u,rξ〉−1)νb(dr)σ(dξ)}.

Define V =

∫
Sd−1

∫ ∞
b

νξ(dr)σ(dξ).

Proposition 15. The density of the truncated Lévy process is

fb(x) = eV
∞∑
n=0

(−1)n

n!

∫
Rd
· · ·
∫
Rd

fX(x− y1 − y2 − · · · − yn)I(|y1| > b) · · · I(|yn| > b)ν(dy1) · · · ν(dyn)
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Proof of Proposition 15. By Proposition 2.5 xii in [7],

fb(x) =
1

(2π)d

∫
Rd
e−i〈z,x〉µ̂Z1(z)dz

=
1

(2π)d

∫
Rd
e−i〈z,x〉e

∫
Sd−1

∫ b
0 (ei〈z,rξ〉−1)νξ(dr)σ(dξ)dz

=
1

(2π)d

∫
Rd
e−i〈z,x〉

[
e
∫
Sd−1

∫∞
0 (ei〈z,rξ〉−1)νξ(dr)σ(dξ)

e−
∫
Sd−1

∫∞
b (ei〈z,rξ〉−1)νξ(dr)σ(dξ)

]
dz

=
1

(2π)d

∫
Rd
e−i〈z,x〉e

∫
Sd−1

∫∞
0 (ei〈z,rξ〉−1)νξ(dr)σ(dξ)e

∫
Sd−1

∫∞
b νξ(dr)σ(dξ)

e−
∫
Sd−1

∫∞
b ei〈z,rξ〉νξ(dr)σ(dξ)dz

=
eV

(2π)d

∫
Rd
e−i〈z,x〉e

∫
Sd−1

∫∞
0 (ei〈z,rξ〉−1)νξ(dr)σ(dξ)

∞∑
n=0

(−1)n

n!

(∫
Sd−1

∫ ∞
b

ei〈z,rξ〉 νξ(dr)σ(dξ)

)n
dz

=
eV

(2π)d

∫
Rd
e−i〈z,x〉µ̂X1(z)

∞∑
n=0

(−1)n

n!

(∫
Sd−1

∫ ∞
b

ei〈z,rξ〉 νξ(dr)σ(dξ)

)n
dz

=
eV

(2π)d

∫
Rd
e−i〈z,x〉µ̂X1(z) (1+

∞∑
n=1

(−1)n

n!

(∫
Sd−1

∫ ∞
b

ei〈z,rξ〉 νξ(dr)σ(dξ)

)n)
dz

= eV fX(x) +
eV

(2π)d∫
Rd
e−i〈z,x〉µ̂X1(z)

∞∑
n=1

(−1)n

n!

(∫
Sd−1

∫ ∞
b

ei〈z,rξ〉 νξ(dr)σ(dξ)

)n
dz



61

When n = 1,

− 1

(2π)d

∫
Rd
e−i〈z,x〉µ̂X1(z)

∫
Sd−1

∫ ∞
b

ei〈z,rξ〉 νξ(dr)σ(dξ)dz

= −
∫
Sd−1

∫ ∞
b

1

(2π)d

∫
Rd
e−i〈z,x−rξ〉µ̂X1(z)dzνξ(dr)σ(dξ)

= −
∫
Sd−1

∫ ∞
b

fX(x− rξ)νξ(dr)σ(dξ)

= −
∫
Rd
fX(x− y)I(|y| > b)ν(dy)

When n = 2,

1

2

1

(2π)d

∫
Rd
e−i〈z,x〉µ̂X1(z)

(∫
Sd−1

∫ ∞
b

ei〈z,rξ〉 νξ(dr)σ(dξ)

)2

dz

=
1

2

1

(2π)d

∫
Rd
e−i〈z,x〉µ̂X1(z)

∫
Rd
ei〈z,y1〉I(|y1| > b)ν(dy1)∫

Rd
ei〈z,y2〉I(|y2| > b)ν(dy2)dz

=
1

2

∫
Rd

∫
Rd

1

(2π)d

∫
Rd
e−i〈z,x−y1−y2〉µ̂X1(z)dzI(|y1| > b)I(|y2| > b)ν(dy1)ν(dy2)

=
1

2

∫
Rd

∫
Rd
fX(x− y1 − y2)I(|y1| > b)I(|y2| > b)ν(dy1)ν(dy2)

Similarly, we have

(−1)n

n!

1

(2π)d

∫
Rd
e−i〈z,x〉µ̂X1(z)

(∫
Sd−1

∫ ∞
b

ei〈z,rξ〉 νξ(dr)σ(dξ)

)n
dz

=
(−1)n

n!

1

(2π)d

∫
Rd
e−i〈z,x〉µ̂X1(z)

∫
Rd
ei〈z,y1〉I(|y1| > b)ν(dy1) · · ·∫

Rd
ei〈z,yn〉I(|yn| > b)ν(dyn)dz

=
(−1)n

n!

∫
Rd
· · ·
∫
Rd

1

(2π)d

∫
Rd
e−i〈z,x−y1−···−yn〉µ̂X1(z)du

I(|y1| > b) · · · I(|yn| > b)ν(dy1) · · · ν(dyn)

=
(−1)n

n!

∫
Rd
· · ·
∫
Rd
fX(x− y1 − y2 − · · · − yn)

I(|y1| > b) · · · I(|yn| > b)ν(dy1) · · · ν(dyn)
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Thus

fb(x) = eV
∞∑
n=0

(−1)n

n!

∫
Rd
· · ·
∫
Rd
fX(x− y1 − y2 − · · · − yn)

I(|y1| > b) · · · I(|yn| > b)ν(dy1) · · · ν(dyn)

�

Remark 15. the density fb of Xt within (0, b) is fb(x)I(0 < x < b) = eV fXt(x)I(0 <

x < b)

Corollary 2. Define µb =
ν||y|>b
V

, then µb is a probability measure. Suppose

Y1, Y2, · · · , Yn
iid∼ µb, then

fb(z) = eV
∞∑
n=0

(−V )n

n!
fX1+Y1+···+Yn(z), and

fX1+Y1+···+Yn(z) =
1

V

∫
Rd
· · ·
∫
Rd
fX(z − y1 − y2 − · · · − yn)

I(|y1| > b) · · · I(|yn| > b)ν(dy1) · · · ν(dyn).

Proof of Corollary 2. Since Y1, Y2, · · · , Yn
iid∼ µb, then µ̂X1+Y1+···+Yn(u) =

µ̂X1(u)
(
E(ei〈u,Y 〉)

)n
. Since

∫
Sd−1

∫ ∞
b

ei〈u,rξ〉 νξ(dr)σ(dξ) = V

∫
Rd
ei〈u,y〉µb(dy) =

V E(ei〈u,Y 〉), then, if Y ∼ νb,

∫
Rd
e−i〈z,u〉µ̂X1(u)

∞∑
n=0

(−1)n

n!

(∫
Sd−1

∫ ∞
b

ei〈u,rξ〉 νξ(dr)σ(dξ)

)n
du

=

∫
Rd
e−i〈z,u〉µ̂X1(u)

∞∑
n=0

(−1)n

n!

(
V E(ei〈u,Y 〉)

)n
du

=

∫
Rd
e−i〈z,u〉

∞∑
n=0

(−1)n

n!
V nµ̂X1(u)

(
E(ei〈u,Y 〉)

)n
du



63

Thus,

∫
Rd
e−i〈z,u〉µ̂X1(u)

∞∑
n=0

(−1)n

n!

(∫
Sd−1

∫ ∞
b

ei〈u,rξ〉 νξ(dr)σ(dξ)

)n
du

=

∫
Rd

∞∑
n=0

(−V )n

n!
e−i〈z,u〉µ̂X1+Y1+···+Yn(u)du

=

∫
Rd

lim
m→∞

m∑
n=0

(−V )n

n!
e−i〈z,u〉µ̂X1+Y1+···+Yn(u)du

= lim
m→∞

∫
Rd

m∑
n=0

(−V )n

n!
e−i〈z,u〉µ̂X1+Y1+···+Yn(u)du

= lim
m→∞

m∑
n=0

(−V )n

n!

∫
Rd
e−i〈z,u〉µ̂X1+Y1+···+Yn(u)du

=
∞∑
n=0

(−V )n

n!

∫
Rd
e−i〈z,u〉µ̂X1+Y1+···+Yn(u)du

= (2π)d
∞∑
n=0

(−V )n

n!
fX1+Y1+···+Yn(z)

Then, by Proposition 15, fb(z) =
eV

(2π)d
(2π)d

∞∑
n=0

(−V )n

n!
fX1+Y1+···+Yn(z) =

eV
∞∑
n=0

(−V )n

n!
fX1+Y1+···+Yn(z). By comparing with the result in Proposition 15, we

have

fX1+Y1+···+Yn(z) =
1

V

∫
Rd
· · ·
∫
Rd
fX(z − y1 − y2 − · · · − yn)

I(|y1| > b) · · · I(|yn| > b)ν(dy1) · · · ν(dyn)

�

Remark 16. Furthermore, we have, for z ∈ Rd,

FXb
1
(z) =

∫ z1

−∞
· · ·
∫ zd

−∞
eV

∞∑
n=0

(−V )n

n!
fX1+Y1+···+Yn(z)dz1 · · · dzd

= eV
∞∑
n=0

(−V )n

n!
FX1+Y1+···+Yn(z)



CHAPTER 6: Extension to Stochastic Integral Process

Definition 14. Given a Lévy process {Zt : t ≥ 0} on Rd and c > 0. Let {Xt : t ≥ 0}

be a stochastic process such that dXt = −cXtdt+ dZt, then {Xt} is a OU-process.

The differential equation in Definition 14 has an almost surely unique solution

Xt =

∫ t

0

e−c(t−s)dZs, see Proposition 2.9 in Arteaga and Sato [27]. We call {Xt}

having this integral form a stochastic integral process, for a detailed introduction of

the stochastic integral process see [9] and [28]. Now, let’s consider a more general

stochastic integral process Xt =

∫ t

0

ft(s)dZs where {Zt} is a Lévy process having

the Lévy measure νz such that
∫
Rd

(1 ∧ |x|)νz(dx) < ∞ and ft is a strictly positive

real-valued bounded measurable function on finite interval depending on the time t,

and we denote the Lévy measure of Xt as νXt . The characteristic function of Xt is

(see Proposition 2.2 in Arteaga and Sato [27])

E(ei〈z,Xt〉) = exp

{∫ t

0

ψZ1(ft(s)z)ds

}
= exp

{∫ t

0

∫
Rd

(ei〈ft(s)z,x〉 − 1)νz(dx)ds

}
(6.1)

So νXt(B) =

∫ t

0

∫
Rd

IB(ft(s)x)νz(dx)ds.

Assume ∀γ > 0, {Sγt } is a stochastic integral process having the solution Sγt =∫ t

0

ft(s)dY
γ
s where {Y γ

t } is a Lévy process having the Dickman-type Lévy measure

Dγ(B) =

∫
Sd−1

∫ ∞
0

IB(rξ)I(0,γ](r)r
−1drσ(dξ). We denote the Lévy measure of Sγt as

νSγt .

Proposition 16. The characteristic function of
Sγt
γ

is

E(ei〈z,
S
γ
t
γ
〉) = exp

{∫ t

0

∫
Sd−1

∫ ∞
0

(ei〈z,rξ〉 − 1)I(0,1∧ft(s)](r)
−1drσ(dξ)ds

}
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Proof of Proposition 16.

E(ei〈z,
S
γ
t
γ
〉) = exp

{∫ t

0

∫
Rd

(ei〈ft(s)z,
x
γ
〉 − 1)Dγ(dx)ds

}
= exp

{∫ t

0

∫
Sd−1

∫ ∞
0

(ei〈ft(s)z,
r
γ
ξ〉 − 1)I(0,γ](r)r

−1drσ(dξ)ds

}
= exp

{∫ t

0

∫
Sd−1

∫ ∞
0

(ei〈ft(s)z,rξ〉 − 1)I(0,1](r)r
−1drσ(dξ)ds

}
= exp

{∫ t

0

∫
Sd−1

∫ ∞
0

(ei〈z,rξ〉 − 1)I(0,1∧ft(s)](r)r
−1drσ(dξ)ds

}

�

Remark 17. It’s obvious that from the third equation in the proof of Proposition 16,

Sγt
γ

d
= S1

t . (6.2)

However, Sγt does not have stationary increments; thus it is not a Lévy process, Propo-

sition 4 does not apply, and νSγt 6= Dγ.

Remark 18. Assume Mγ
t is the Lévy measure of

Sγt
γ
, then from the proof of Propo-

sition 16 we know that

Mγ
t (B) = νS1

t
(B) =

∫ t

0

∫
Sd−1

∫ 1

0

IB(ft(s)rξ)r
−1drσ(dξ)ds (6.3)

Recall, in Theorem 1, we truncate the Lévy process and then transform it. For

the stochastic integral process, we have two ways to get the same transformation: we

directly truncate the stochastic process Xt or truncate the background driving Lévy

process Zt.

6.1 Truncate the Stochastic Integral Process

Suppose {Xε
t } is a truncated stochastic process having Lévy measure νXε

t
(B) =∫

Rd
I(0,ε](|x|)νXt(dx) =

∫ t

0

∫
Rd

IB(ft(s)x)I(0,ε](|x|)νz(dx)ds for B ∈ B(Rd). Let Y 1
t be
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defined as in Theorem 1, i.e. Y 1 ∼ ID0(D1, 0). Define µz(ε, C) =∫
Rd
|x|I(0,ε]C(x)νz(dx), for any C ∈ B(Sd−1).

Proposition 17. If, ∀C ∈ B(Sd−1) with σ(∂C) = 0 and ∀ε > 0,
µz(ε, C)

ε
→ σ(C)

as ε ↓ 0, then
Xε
t

ε

d→ Y 1
t for any t > 0.

Proof of Proposition 17. For any fixed T > 0, from Equation (6.1) we can infer

that the distribution of {Xε
t } is infinitely divisible. Also, for every infinitely divisible

distribution, there is an associated Lévy process. Thus, there is a Lévy process {Lt}

such that Xε
T

d
= LεT , and they have the same Lévy measure. As ε→ 0,

µX(ε, C)

ε
=

1

ε

∫
Rd
|x|I(0,ε]C(x)νX(dx)

=
1

ε

∫ T

0

∫
Rd
|fT (s)x|I(0,ε]C(ft(s)x)νz(dx)ds

=
1

ε

∫ T

0

∫
Rd
fT (s)|x|I(0,ε/ft(s)]C(x)νz(dx)ds

=

∫ T

0

∫
Rd |x|I(0,ε/fT (s)]C(x)νz(dx)

ε/fT (s)
ds

=

∫ T

0

µZ(ε/fT (s), C)

ε/fT (s)
ds

→ Tσ(C)

Define σ∗(C) = Tσ(C), obviously σ∗(∂C) = 0. Then, by Theorem 1, we have
LεT
ε

d→

Y 1
T . Thus, we get

Xε
T

ε

d→ Y 1
T �

In the next example, we show how to use Proposition 17 and consider the back-

ground driving process as a Gamma process.

Example 6. If Zt has the Lévy measure νz(B) =

∫
Sd−1

∫ ∞
0

IB(rξ)r−1e−rdrσ(dξ) for

any Borel set B, then {Zt} is a Gamma process. Assume the stochastic integral



67

process {Xt} is driven by this Gamma process.

µz(ε, C)

ε
=

1

ε

∫
Rd
|x|I(0,ε]C(x)νz(dx)

=
1

ε

∫
Sd−1

∫ ∞
0

|rξ|I(0,ε]C(rξ)r−1e−rdrσ(dξ)

=
1

ε

∫
C

∫ ε

0

e−rdrσ(dξ)

= σ(C)
1− e−ε

ε

→ σ(C)

Then, by Proposition 17,
Xε
t

ε

d→ Y 1
t .

6.2 Truncate the Driving Lévy Process

Suppose {Xε
t } is driven by a truncated Lévy process {Zε

t} and we denote the

Lévy measure of Xε
t as νXε

t
. Define νft(B) =

∫
Rd

IB(ft(s)x)I(0,ε](|x|)νz(dx) for any

B ∈ B(Rd), the characteristic function of Xε
t is

E(ei〈z,X
ε
t 〉) = exp

{∫ t

0

ψZε1(ft(s)z)ds

}
= exp

{∫ t

0

∫
Rd

(ei〈ft(s)z,x〉 − 1)I(0,ε](|x|)νz(dx)ds

}
= exp

{∫ t

0

∫
Rd

(ei〈z,x〉 − 1)νft(dx)ds

}

then νεXt(B) =

∫ t

0

∫
Rd

IB(x)νft(dx)ds.

Suppose, for γ > 0, Sγt =

∫ t

0

ft(s)dY
γ
t where {Y γ

t } is the truncated Lévy pro-

cess having Dickman-type Lévy measure Dγ. From Remark 18, the Lévy measure

of
Sγt
γ

is Mγ
t (B) =

∫ t

0

∫
Sd−1

∫ ∞
0

IB(rξ)I(0,ft(s)](r)r
−1drσ(dξ)ds. Define µz(ε, C) =∫

Rd
|x|I(0,ε]C(x)νz(dx), for any C ∈ B(Sd−1).

Theorem 2. If, ∀C ∈ B(Sd−1) with σ(∂C) = 0,
µz(ε, C)

ε
→ σ(C) as ε ↓ 0, then, for



68

any t > 0,
Xε
t

ε

d→ Sγt
γ

as ε→ 0.

Proof of Theorem 2. The same as Theorem 1, it suffices to prove

1. Mε v→ Mγ
t .

2.
∫
h<|x|≤1

xMε(dx)→
∫
h<|x|≤1

xMγ
t (dx) and∫

|x|≤h
xxTMε(dx)→

∫
|x|≤h

xxTMγ
t (dx), for every h > 0.

Define ηε(dx) = |x|Mε
t(dx) and η(dx) = |x|Mγ

t (dx). For any 0 < h,

ηε((0, h]C) =

∫
(0,h]C

|x|Mε
t(dx)

=

∫
(0,εh]C

|x|
ε
νXε

t
(dx)

=

∫
Rd

|x|
ε
I(0,εh]C(x)νXε

t
(dx)

=

∫ t

0

∫
Rd

|x|
ε
I(0,εh]C(x)νf (dx)ds

=

∫ t

0

∫
Rd
ft(s)

|x|
ε
I(0,hε]C(ft(s)x)I(0,ε](|x|)νz(dx)ds

=

∫ t

0

ft(s)
1

ε
µ((1 ∧ h/ft(s)))ε, C)ds

Thus, given
µ(ε, C)

ε
→ σ(C), by dominated convergence theorem,

ηε((0, h]C)→
∫ t

0

ft(s)(1 ∧ h/ft(s))σ(C)ds = σ(C)

∫ t

0

(h ∧ ft(s))ds
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η((0, h]C) =

∫
(0,h]C

|x|Mγ
t (dx)

=

∫ t

0

∫
Sd−1

∫ ∞
0

|rξ|I(0,h]C(rξ)I(0,ft(s)](r)r
−1drσ(dξ)ds

= σ(C)

∫ t

0

∫ ∞
0

I(0,h∧ft(s))(r)drds

= σ(C)

∫ t

0

(h ∧ ft(s))ds

Thus, ηε((0, h]C) → η((0, h]C) as ε → 0 for any h > 0. Then the same as the proof

in Lemma 2, ηε
v→ η. Also, the same as the proof of Theorem 1,

∫
h<|x|≤1

xMε(dx)→∫
h<|x|≤1

xMγ
t (dx). By Lemma 3, to show

∫
|x|≤h

xxTMε
t(dx) →

∫
|x|≤h

xxTMη
t (dx), it

suffices to show lim
h→0

lim
ε→0

∫
|x|≤h
〈z, x〉2Mε

t(dx) = 0.
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0 ≤ lim
h→0

lim sup
ε→0

∫
|x|≤h
〈z, x〉2Mε

t(dx)

≤ lim
h→0

lim sup
ε→0

∫
|x|≤h
|z|2|x|2Mε

t(dx)

≤ lim
h→0

lim sup
ε→0

|z|2
∫
|x|≤h
|x|Mε

t(dx)

≤ lim
h→0

lim sup
ε→0

|z|2
∫
|x|≤1

|x|Mε
t(dx)

= |z|2 lim
h→0

lim sup
ε→0

∫
|x|≤ε

|x|
ε
νXε

t
(dx)

= |z|2 lim
h→0

lim sup
ε→0

∫ t

0

∫
Rd

|ft(s)x|
ε

I(0,ε](|ft(s)x|)I(0,ε](|x|)νz(dx)ds

= |z|2 lim
h→0

lim sup
ε→0

∫ t

0

∫
Rd
ft(s)I(0,(1∧ε/ft(s))]Sd−1(x)νz(dx)ds

= |z|2 lim
h→0

lim sup
ε→0

∫ t

0

ft(s)
1

ε
µ((1 ∧ 1/ft(s))ε,Sd−1)ds

= |z|2σ(Sd−1)

∫ t

0

(1 ∧ 1/ft(s))ds lim
h→0

h

≤ |z|2σ(Sd−1)

∫ t

0

ds lim
h→0

h

= 0

�

Theorem 2 tells us for any t > 0, E(ei〈z,
Xεt
ε
〉) → E(ei〈z,

S
γ
t
γ
〉) as ε → 0. However,

this one-dimensional convergence only involves random variables. It does not show

properties related to the process. In the next corollary, we study the property of

increments of the stochastic integral process and show that the increments are also

convergent.

Corollary 3. If, ∀C ∈ B(Sd−1) with σ(∂C) = 0,
µz(ε, C)

ε
→ σ(C) as ε ↓ 0, then,

for any 0 < r < t,
Xε
t −Xε

r

ε

d→ Sγt − Sγr
γ

as ε→ 0.
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Proof of Corollary 3.

E(ei〈u,
Xεt
ε
〉) = E(e

i
ε

∑d
n=1 un

∫ t
0 ft(s)dZ

ε
n,s)

= E(e
i
ε

∑d
n=1 un(

∫ r
0 ft(s)dZ

ε
n,s+

∫ t
r ft(s)dZ

ε
n,s))

= E(e
i
ε

∑d
n=1 un

∫ r
0 ft(s)dZ

ε
n,s)E(e

i
ε

∑d
n=1 un

∫ t
r ft(s)dZ

ε
n,s)

The last equation holds because f is deterministic, and the increments of the Lévy

process are independent. From Theorem 2, we know E(ei〈u,
Xεt
ε
〉) → E(ei〈z,

S
γ
t
γ
〉) and

E(e
i
ε

∑d
n=1 un

∫ r
0 ft(s)dZ

ε
n,s)→ E(e

i
γ

∑d
n=1 un

∫ r
0 ft(s)dY

γ
n,s), thus we must have

E(e
i
ε

∑d
n=1 un

∫ t
r ft(s)dZ

ε
n,s)→ E(e

i
γ

∑d
n=1 un

∫ t
r ft(s)dY

γ
n,s).

E(ei〈u,
Xεt−X

ε
r

ε
〉) = E(e

i
ε

∑d
n=1 un(

∫ r
0 (ft(s)−fr(s))dZεn,s+

∫ t
r ft(s)dZ

ε
n,s))

= E(e
i
ε

∑d
n=1 un

∫ r
0 (ft(s)−fr(s))dZεn,s)E(e

i
ε

∑d
n=1 un

∫ t
r ft(s)dZ

ε
n,s)

→ E(e
i
γ

∑d
n=1 un

∫ r
0 (ft(s)−fr(s))dY γn,s)E(e

i
γ

∑d
n=1 un

∫ t
r ft(s)dY

γ
n,s)

= E(e
i
γ

∑d
n=1 un(

∫ r
0 (ft(s)−fr(s))dY γn,s+

∫ t
r ft(s)dY

γ
n,s))

= E(ei〈u,
S
γ
t −S

γ
r

γ
〉)

�

To further study the limit property of the stochastic integral process, we provide

the convergence of finite-dimensional distribution in the next proposition.

Proposition 18. For any k ∈ N, let 0 = t0 < t1 < t2 < · · · < tk,

X = (Xt1 , Xt2 , · · · , Xtk), and S = (St1 , St2 , · · · , Stk). If, ∀C ∈ B(Sd−1) with σ(∂C) =

0,
µz(ε, C)

ε
→ σ(C) as ε ↓ 0, then

Xε

ε

d→ Sγ

γ
as ε→ 0.

Proof of Proposition 18. First, the characteristic function of
Xε

ε
is E(ei〈u,

Xε

ε
〉) =

E(e
i
ε

∑k
n=1〈un,Xε

tn
〉). Notice, for any n = 1, 2, · · · , k, 〈un, Xε

tn〉 = 〈un, Xε
tn − Xε

tn−1
+

Xε
tn−1
〉 = 〈un, Xε

tn−X
ε
tn−1
〉+〈un, Xε

tn−1
〉. Thus, we have 〈u,Xε〉 = 〈u1+· · ·+uk, Xε

t1
〉+
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〈u2 + · · ·+ uk, X
ε
t2
−Xε

t1
〉+ · · ·+ 〈uk−1 + uk, X

ε
tk−1
−Xε

tk−2
〉+ 〈uk, Xε

tk
−Xε

tk−1
〉

E(e
i
ε
〈u,Xε〉) = E

(
e
i
ε

(
〈u1+···+uk,Xε

t1
〉+〈u2+···+uk,Xε

t2
−Xε

t1
〉+···+〈uk,Xε

tk
−Xε

tk−1
〉
))

= E
(
e
i
ε
〈u1+···+uk,Xε

t1
〉
)

E
(
e
i
ε
〈u2+···+uk,Xε

t2
−Xε

t1
〉
)
· · ·E

(
e
i
ε
〈uk,Xε

tk
−Xε

tk−1
〉
)

→ E
(
e
i
γ
〈u1+···+uk,Sγt1 〉

)
E
(
e
i
γ
〈u2+···+uk,Sγt2−S

γ
t1
〉
)
· · ·E

(
e
i
γ
〈uk,Sγtk−S

γ
tk−1

〉
)

= E(e
i
γ
〈u,Sγ〉)

The convergence dues to Corollary 3: the increments are also convergent. �

Now, we will give an example to show how Theorem 2 works. Let’s consider the

background driving Lévy process having the p-temple α-stable distribution as defined

in the Definition 12.

Example 7. Assume {Zε
t} is a Lévy process having the p-temple α-stable distribution,

i.e. νz(B) =

∫
Sd−1

∫ ε

0

IB(rξ)q(rp, ξ)r−α−1drσ(dξ) for any Borel set B ∈ Rd. If, for

any ξ ∈ Sd−1, q(rp, ξ)r−α → h(ξ) in L1(σ) as r → 0, where h is any Borel function

defined on Sd−1 such that σ1(C) =

∫
C

h(ξ)σ(dξ) <∞. then
Xε
t

ε

d→ Sγt
γ

as ε→ 0

µz(ε, C)

ε
=

1

ε

∫
Rd
|x|I(0,ε]C(x)νz(dx)

=
1

ε

∫
Sd−1

∫ ∞
0

rI(0,ε]C(rξ)q(rp, ξ)r−α−1drσ(dξ)

=
1

ε

∫
C

∫ ε

0

q(rp, ξ)r−αdrσ(dξ)

Note lim
ε→0

∫ ε
0
q(rp, ξ)r−αdr

ε
= lim

ε→0
q(εp, ξ)ε−α = h(ξ), so

µz(ε, C)

ε
→
∫
C

h(ξ)σ(dξ) =

σ1(C). It’s straightforward that σ1 satisfies the condition in Theorem 2, then
Xε
t

ε

d→
Sγt
γ

as ε→ 0

Next, let’s consider the situation in which the condition in Theorem 2 is not satis-
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fied.

Example 8. Consider {Xt} is driven by a Lévy process {Zt} having Lévy measure

νz (see Theorem 1 in [29]), that is, for any Borel set B ∈ Rd and α > 0 but α 6= 1,

νz(B) =

∫
Sd−1

∫ ∞
0

IB(rξ)αr−1(− ln(r))α−1dr.

µ(ε, C) =

∫
Rd
|x|I(0,ε]C(x)νz(dx)

=

∫
C

∫ ε

0

rαr−1(− ln(r))α−1drσ(dξ)

= σ(C)

∫ ε

0

α(− ln(r))α−1dr

It’s obvious that when α > 1, µ(ε, C) → ∞. So the condition in Theorem 2 is not

satisfied. Actually, the characteristic function of
Xε
t

ε
is

E(ei〈z,
Xεt
ε
〉) = E(ei〈

z
ε
,Xε
t 〉)

= exp

{∫ t

0

∫
Sd−1

∫ ∞
0

(ei〈
z
ε
,uξ〉 − 1)I(0,εe−c(t−s)](u)αu−1(− ln(ec(t−s)u))α−1

duσ(dξ)ds

}
= exp

{∫ t

0

∫
Sd−1

∫ ∞
0

(ei〈z,rξ〉 − 1)I(0,e−c(t−s)](r)αr
−1(− ln(ec(t−s)rε))α−1

drσ(dξ)ds

}
= exp

{∫ t

0

∫
Sd−1

∫ ∞
0

(ei〈z,rξ〉 − 1)I(0,e−c(t−s)](r)αr
−1

(− ln r − ln(ec(t−s)ε))α−1drσ(dξ)ds

}

This can not converge to the characteristic function of
Sγt
γ

described in Proposition

16.



CHAPTER 7: Application In Stochastic Volatility

One of the applications of the O-U process in mathematical finance is the stochastic

volatility model, see [30]. Before we talk about the details of the application, let’s

introduce the definition we will use later.

Definition 15. A filtration is an increasing family of σ-algebras (Ft) such that

∀t ≥ s, Fs ⊆ Ft.

Let {Wt} be the standard Brownian motion and (Ft) be the filtration generated

by the Lévy process {Zt}. Assume the PDE of the jump-diffusion model is

dXε
t = β(σεt)

2dt+ σεtdWt + ρdZε
t

d(σεt)
2 = −λ(σεt)

2dt+ dZε
t

where {Zε
t} is the truncated background driving Lévy process, β > 0, ρ > 0, λ > 0.

Note that the volatility σεt follows the O-U process instead of a constant process, and

we assume (σ0)2 = 0. Define E (λ, t − s) =
1− e−λ(t−s)

λ
, then by Equation 15.27 in

[25] we have the following solutions:

Xε
t = β

∫ t

0

(σεs)
2ds+

∫ t

0

σεsdWs + ρZε
t (7.1)

∫ t

0

(σεs)
2ds =

∫ t

0

1− e−λ(t−s)

λ
dZε

s =

∫ t

0

E (λ, t− s)dZε
s (7.2)
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Now, considering Y 1 ∼ ID0(D1, 0), and

V 1
t = β

∫ t

0

(σ1
s)

2ds+

∫ t

0

σ1
sdWs + ρY 1

t∫ t

0

(σ1
s)

2ds =

∫ t

0

1− e−λ(t−s)

λ
dY 1

t =

∫ t

0

E (λ, t− s)dY 1
t

In the next proposition, we consider the transformation of the stochastic integral

componentwisely and then give the joint convergence condition.

Proposition 19. Suppose Xε
t =

(
1

ε
β

∫ t

0

(σεs)
2ds,

1√
ε

∫ t

0

σεsdWs,
1

ε
ρZε

t

)
and V 1

t =(
β

∫ t

0

(σ1
s)

2ds,

∫ t

0

σ1
sdWs, ρY

1
t

)
. If, ∀C ∈ B(Sd−1) with σ(∂C) = 0,

µz(ε, C)

ε
→

σ(C) as ε ↓ 0, then Xε
t

d→ V 1
t as ε→ 0.

Proof of Proposition 19. First, for any constant u,

E

(
e
u 1√

ε

∫ t
0 σ

ε
sdWs

)
= E

(
e
u2

2ε

∫ t
0 (σεs)

2ds

)
= E

(
e
u2

2ε

∫ t
0 E (λ,t−s)dZεs

)
= E

(
e

1
ε

∫ t
0
u2

2
E (λ,t−s)dZεs

)
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E

(
e〈U,X

ε
t 〉
)

= E

(
e
u1

1
ε
β
∫ t
0 (σεs)

2ds+u2
1√
ε

∫ t
0 σ

ε
sdWs+u3

1
ε
ρZεt

)
= E

{
E

(
e
u1

1
ε
β
∫ t
0 (σεs)

2ds+u2
1√
ε

∫ t
0 σ

ε
sdWs+u3

1
ε
ρZεt |Ft

)}
= E

(
eu1

1
ε
β
∫ t
0 (σεs)

2ds+u3
1
ε
ρZεtE

(
e
u2

1√
ε

∫ t
0 σ

ε
sdWs

))
= E

(
eu1

1
ε
β
∫ t
0 (σεs)

2ds+u3
1
ε
ρZεt e

u2
2

2ε

∫ t
0 (σεs)

2ds

)
= E

(
e

1
ε

∫ t
0 (u1β+

u2
2
2

)(σεs)
2ds+u3

1
ε
ρZεt

)
= E

(
e

1
ε

∫ t
0 (u1β+

u2
2
2

)E (λ,t−s)dZεs+ 1
ε

∫ t
0 u3ρdZεs

)
= E

(
e

1
ε

∫ t
0 [(u1β+

u2
2
2

)E (λ,t−s)+u3ρ]dZεs

)

For any fixed U = (u1, u2, u3) and t, (u1β +
u2

2

2
)E (λ, t − s) + u3ρ is a real func-

tion of s, suppose we define f(s) = (u1β +
u2

2

2
)E (λ, t − s) + u3ρ and define Oε

t =∫ t

0

f(s)dZε
s. Recall Theorem 2, we have proven that

Oε
t

ε

d→ S1
t where S1

t is driven

by a Dickman-type Lévy process {Y 1
t } in the same setting as Xt but with ε = 1. So

E(e
u1

1
ε
β
∫ t
0 (σεs)

2ds+u2
1√
ε

∫ t
0 σ

ε
sdWs+u3

1
ε
ρZεt )→ E(eu1β

∫ t
0 (σ1

s)2ds+u2

∫ t
0 σ

1
sdWs+u3ρY 1

t ). �
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