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ABSTRACT

KEXIN DING. Multi-modal Data Analysis for Patient Outcome Prediction in
Colorectal Cancer. (Under the direction of DR. AIDONG LU)

Understanding and characterizing cancer patient outcomes is challenging and involves

multiple clinical measurements (e.g., imaging and genomics biomarkers). Enabling

multimodal analytics promises to reveal novel predictive patterns that are not avail-

able from singular data input. In particular, exploring histopathological and genomics

sequencing data provides a synergistic path to understanding the deep insights of can-

cer biology. In this dissertation, we first present a graph-based neural network frame-

work that allows multi-region spatial connection of tiles to predict molecular profile

status in colorectal cancer. We demonstrate the validity of spatial connections of tu-

mor tiles built upon the geometric coordinates derived from the raw histopathological

images. These findings capture the interaction between histopathological character-

istics and a panel of molecular profiles of treatment relevance. Second, we propose

a multimodal transformer integrating pathology and genomics insights into colorec-

tal cancer survival prediction. The proposed unsupervised pretraining captures the

intrinsic interaction between tissue microenvironments in WSI and a wide range of

genomics data (e.g., miRNA-sequence, copy number variant, and methylation). After

the knowledge aggregation in pretraining, the task-specific model finetuning expands

the scope of data utility applicable to both multi- and single-modal data. Finally,

we introduce a contrastive pathology-and-genomics pretraining to enhance patient

survival prediction by extracting the multimodal interaction for each patient while

distinguishing the differences among various patients. This dissertation provides solu-

tions for addressing the challenges in understanding multimodal disease data, leading

to improved overall performance of patient outcome prediction in colorectal cancer.
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CHAPTER 1: INTRODUCTION

1.1 Background and Motivation

Colorectal cancer ranks as the third most common cancer globally, with approx-

imately 10% of all newly diagnosed cancers and around 9.4% of all cancer-related

deaths in 2020 [3]. The five-year survival rate of colorectal cancer is 67%, meaning

that patients with colorectal cancer can likely survive more than five years with proper

treatment. Timely diagnosis and proper treatment decision-making become crucial

factors in improving patient survival rates. Targeted therapy is a type of cancer

treatment that is highly related to molecular alteration and utilizes drugs to attack

specific molecular targets, such as proteins in cancer cells. These treatments have

demonstrated their capability for patient treatment without affecting normal cells.

Such treatments for improving patient survival ratio require a deep understanding of

genetic changes and proteins that drive cancer, which is beneficial to the selection of

targeted therapy that works best against a particular type of cancer.

Benefits from the rapid evolution of gene sequencing technology, genomics profiles

(e.g., miRNA-sequence) are widely used for regulating patient cancer progression and

treatment [4, 5, 6, 7, 8, 9]. For instance, genome-wide molecular portraits play an

important role in patient prognostic assessment and treatment decision-making [10].

Multi-level molecular characteristics are able to show spatial differences within the

tumor tissue microenvironment [11]. Specific molecular profile alterations, such as

KRAS mutation, are known as the driver gene related to cancer progression and are

strongly associated with patient therapy in colorectal cancer [12]. Microsatellite in-

stability (MSI), characterized by defective DNA mismatch repair (MMR) systems,

provides key insights for colorectal cancer prognostic [13]. Additionally, protein an-
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alytics can broaden the landscape of cancer genomics for various biomarker discov-

ery [14]. In summary, these multi-scale molecular-wise biomarkers can deepen our

understanding of cancer evolution, enabling better patient stratification and treat-

ment [12]. Spatially intertwined regions within tumor tissues, harboring molecularly

distinct features, indicate the existence of intra-tumoral heterogeneity [11]. Such

tumor spatial heterogeneity shows the diverse distribution of tumoral molecular sub-

populations, reflecting varying levels of sensitivity to treatment decision-making [15].

Evidence of spatial heterogeneity is primarily derived from transcriptional and genetic

profiles obtained through physically isolated biopsies from a single tumor [1].

The growth of digitalized histopathological images becomes a valuable resource that

enables rapid and precise cancer diagnosis, patient outcome understanding, and treat-

ment decision-making. These images can capture extensive and detailed pathological

patterns of disease that are not available in other modalities of medical images, such

as ultrasound images and magnetic resonance imaging (MRI). The high-resolution

images can provide a unique avenue to assess the spatial context of the entire tu-

moral microenvironment (e.g., cancer cells and their surrounding tissues) and tissue

interactions. The rich tissue characteristics are highly related to patient disease assess-

ment [16, 17]. Furthermore, the disease can be triggered by histopathological changes

associated with key molecular variations, such as genetic mutations, copy number

alterations, and protein expressions [12]. With heterogeneous disease causes, under-

standing the complex interactions between histopathological and genomic biomarkers

in tumor tissue environments becomes a promising direction for enhancing patient

outcomes in colorectal cancer [18]. For instance, cancer-related genotypes can man-

ifest as histopathological phenotypes in images, which can be evaluated by pathol-

ogists for precise patient outcome predictions [18]. Histopathological images have

demonstrated their unique benefits for enhancing prognostic biomarker prediction by

exploring tissue microenvironment features. Such prognostic biomarkers are highly
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related to target therapy treatment decision-making for improving patient survival.

The identification of unique histopathological patterns that are sensitive to the un-

derlying molecular mechanisms is crucial to improving our biological understand-

ing and making more informed diagnoses. The conventional deep-learning methods,

i.e., convolutional neural networks, have demonstrated their superior capabilities for

image-based feature discovery [19, 20, 21]; however, these methods are unable to

directly characterize the underlying spatial information of tumoral sub-regions and

their interactions. Graph convolutional neural networks (GCNs) open the possibility

of quantitative WSI integrating regional and spatial contexts in depth in terms of

associations with cancer molecular signatures[22, 1, 23]. Considering the tumor mi-

croenvironment with strong regional differences in image contents, the interactions of

image tiles are key to understanding the status of molecular outcomes. GCNs pro-

vide a viable path to discover differential spatial characteristics from histopathology

to help assess molecular variation, patient outcome, and targeted therapy for patients

with colorectal cancer.

While single-modal data (either imaging or genomics) has demonstrated its clin-

ical significance, there have been limited efforts to leverage the joint multimodal

information between cancer morphology (e.g., histopathological image) and molec-

ular biomarkers (e.g., genomics sequencing data). In a broader context of patient

assessment, evaluating cancer prognosis inherently involves a multimodal task that

expects to integrate pathological and genomic insights. Hence, integrating multi-

modal knowledge can facilitate a deeper understanding across different scales, lead-

ing to the improvement of patient prognosis. The primary objective of fusing data

in multiple modalities is to exploit modality-complementary knowledge among var-

ious modalities [24]. Supervised methods [25, 26, 27] have explored the feasibility

of fusing multimodal data, including both image and non-image biomarkers. Con-

ventional fusion strategies such as the Kronecker product can explore the complex
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interactions between WSI and genomic characteristics for predicting patient survival

outcomes [25, 26]. Alternatively, approaches like the co-attention transformer [27]

can investigate genotype-phenotype interactions for patient prognostic understand-

ing. However, these supervised methods are constrained by feature generalization

issues and a heavy reliance on data annotation, which potentially increases the bur-

den of human efforts. To mitigate the need for labeled data, unsupervised data fu-

sion assesses the intrinsic relationships among multimodal representations for effective

knowledge integration. For instance, the knowledge fusion among histopathological

images, genomics sequencing data, and patient tabular clinical data can be achieved

by unsupervised modality relevance calculations [24]. To expand the applicability of

data, a study [28] developed a two-stage workflow to explore the multimodal infor-

mation to guide the single-modal model for glioma grading. The workflow utilizes

pathological and genomic information by training a multimodal teacher model firstly.

Then, the pathology-only student model can distill multimodal knowledge from the

teacher model and be optimized by the specific single-modal knowledge in the second

stage. There is a growing recognition that the flexibility of data modality in model

finetuning can broaden the application scenario of multimodal learning. Moreover,

unlike natural vision-language datasets, the volume of multimodal medical datasets

is not extensive enough, which increases the need to develop data-efficient analytics.

1.2 Contribution

In this dissertation, we first introduced a graph neural network approach that

emphasizes the spatialization of tumor tiles toward a comprehensive evaluation of

predicting cross-level molecular profile alterations from whole-slide images. Second,

we developed a multimodal framework (i.e., PathOmics) for survival outcome un-

derstanding on pathological and genomics data. Finally, we designed a contrastive

learning-based pathology-and-genomics multimodal framework for enhancing survival

prediction. To summarize, our work of deep learning-based high-throughput analysis
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for histopathological image analysis has the following contributions, which will be

elaborated on in each chapter:

• We developed a graph neural network approach, highlighting the spatial rep-

resentation of tumor tiles, aiming for a comprehensive assessment of predict-

ing multi-scale molecular profile alterations, including a wide range of gene

mutations, copy number alterations, and the level of protein expression from

whole-slide images. To address the spatial heterogeneity inherent in colorectal

cancer, we introduced a transformation strategy that converts whole-slide im-

ages (i.e., grid-structured data) to graph-structured data. We developed and

evaluated the performance of our model on The Cancer Genome Atlas colorec-

tal adenocarcinoma (TCGA-COAD) dataset, and its validation was conducted

on two external datasets: The Cancer Genome Atlas rectum adenocarcinoma

(TCGA-READ) and Clinical Proteomic Tumor Analysis Consortium colorectal

adenocarcinoma (CPTAC-COAD). Additionally, we conducted predictions for

microsatellite instability and provided result interpretability.

• We introduced a multimodal framework (i.e., PathOmics) to explore the in-

teraction among pathology-and-genomics patterns for survival outcome assess-

ment. Our contributions are summarized as follows. (1) Unsupervised Multi-

modal Pretraining: We leverage unsupervised pretraining to capture interac-

tions between morphological and molecular biomarkers. We bridge the gap of

modality heterogeneity by projecting multimodal embeddings into a shared la-

tent space through relevance evaluation. The pretrained data fusion facilitates

unique cross-modal pattern extraction using relevance-guided modality fusion.

(2) Flexible Modality Finetuning: Our framework is able to combine the benefits

of unsupervised pretraining and supervised finetuning data fusion. Task-specific

finetuning could broaden the dataset utility by easily adapting the model with

both single- and multi-modal data scenarios. (3) Data Efficiency with Limited
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Data Size: Even with fewer finetuned data, our approach achieves a comparable

performance, demonstrating efficiency compared to using the entire finetuning

dataset(e.g., only 50% of the finetuned data).

• We designed a contrastive learning-based pathology-and-genomics framework

(i.e., C-PathOmics) for enhancing multimodal survival outcome understanding.

Our main contribution focuses on the unsupervised contrastively multimodal

pertaining. Our contrastively unsupervised pretraining aims to fuse the mul-

timodal data, enabling the exploration of inherent relevance between morpho-

logical and genomics biomarkers. To address the disparity in modality between

histopathological images and genomic sequencing data, we employ a method

that involves mapping the embeddings from each modality into a shared la-

tent space by exploring the relevance between the embeddings from different

modalities. In the latent space, we are able to achieve multimodal embedding,

which could provide complementary modality information for enhancing pa-

tient outcome assessment. To evaluate the modality relevance, we developed

a multimodal contrastive relevance evaluation to learn the relevance between

different modalities in a single patient and distinguish the differences among

different patients. The pre-trained model provides a unique path to utilizing

relevance-guided modality data fusion, allowing the extraction of cross-modal

patterns characterized by unique modality features from patients.

1.3 Dissertation Outline

We organized this dissertation as follows: Chapter 2 reviews relevant studies us-

ing histopathological image genomics data for patient outcome analysis. Chapter 3

presents an approach for utilizing the global context and spatial information of the

histopathological image by utilizing a graph convolutional network for a large-scale

molecular profile prediction on colorectal cancer. Chapter 4 introduces a multimodal
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analysis for patient survival prediction via extracting the interaction of histopatholog-

ical image and genomics non-image data. Chapter 5 proposes a contrastive learning-

based multimodal method for enhancing survival prediction. Chapter 6 concludes the

dissertation and discusses the future direction of the field.



CHAPTER 2: RELATED WORKS

2.1 Histopathological Imaging Enables Molecular Profile Predictions

In histopathological imaging, the diagnostic-related phenotypic alterations in tumor

cells and their microenvironment can inherently be caused by molecular changes [29].

Properly utilizing image-based biomarkers for molecular profile alteration understand-

ing can help us explore the interaction that reveals the characteristics of cancer

among diverse data modalities. Several efforts have been made to explore associ-

ations between histopathological images and genomic data in cancer research. With

advancements in genomics data accessibility, the cost and time constraints associated

with genomic analysis have considerably reduced in recent years. Consequently, deep

learning models have performed an important role in revealing complex relationships

among tissue morphological characteristics, biomarkers, and disease diagnosis.

Convolutional neural networks (CNNs) successfully achieved good performance by

using histopathological images to predict molecular profiles in colorectal cancer. A

widely used workflow involves convolutional feature extraction and tile weight deter-

mination for outcome prediction [19]. Schmauch et al. [30] extended an image-based

CNN model to predict RNA-based transcriptomic profiles. With model finetuning,

they reported AUC 81% on MSI classification on the TCGA-CRC-DX. Recently, a

deep learning framework[20] explored the association between cellular composition

profile and molecular profiles for the molecular pathway and key mutation predic-

tions in colorectal cancer. They use both four-fold cross-validation (AUC 86%) and

train-test splits (AUC 90%) for the MSI prediction performance on the TCGA-CRC-

DX cohort. Additionally, with train-test splits of the dataset, they also reported

the TP53 mutated and wildtype prediction (AUC 73%) and KRAS mutated and
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wildtype prediction (AUC 60%). A clinical-grade CNN model is developed to pre-

dict microsatellite instability on histopathological slides on colorectal cancer [31]. By

using three-fold cross-validation, they achieved the performance of MSI prediction

on the TCGA-CRC-DX cohort (e.g., the combination of TCGA-COAD and TCGA-

READ datasets) with an AUC value of 74%. Under the scenario of limited data,

the deep learning model still showed superior performance in molecular profile pre-

diction. For instance, MSINet [32] was proposed for classifying MSI status using

a small number of whole-slide images (WSIs). Additionally, to better leverage lim-

ited patient annotations for robust model training, weakly supervised methods have

been widely used in predicting molecular profile alterations using histopathological

slides. With achieving good performance on various types of molecular profile pre-

diction tasks, the weakly supervised architecture [20] has demonstrated its capability

for assisting automatically cancer understanding. The ResNet18 model was used to

classify tumor and non-tumor regions, enabling tumor region patch selection, which

was then utilized for tuning an adapted ResNet34 for molecular alteration predic-

tion. The possibility score of specific gene mutation classes of tumor region tiles

predicted by the model. Then, a pretrained cell nuclei segmentation and classifica-

tion tool is applied to the identified tiles, which are ranked and selected by their

possibility score. Beyongd focusing a specific cancer, pan-cancer studies are emerging

because of the complex interactions among multiple cancers. These studies [33, 29]

utilized CNN-based frameworks with transfer learning to extract image tile features

and achieve patient-wise genetic profile prediction by the average prediction results

among tiles. Kather [29] evaluated multiple tumor types in the TCGA dataset to pre-

dict molecular and genomic subtypes, point mutation, and hormone receptor status

from histopathological mage images. Fu [33] extended a relative study across multiple

types of cancers in the TCGA dataset. In the TCGA-COAD cohort, they reported

five-fold cross-validated AUC values ranging from 59.61% to 72.02% for APC, TP53,
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KRAS, PIK3CA, SMAD4, and FBXW7mutations. In the TCGA-READ cohort, they

reported cross-validated AUC values ranging from 50.21% to 74.79% for KRAS, APC,

TP53, PIK3CA, FBXW7, and SMAD4 mutations.

Despite the promising performance of CNN models in predicting biomarkers en-

abling better cancer understanding, there remains limited exploration of the topo-

logical structure within tissue microenvironments. Graph neural networks (GNNs)

offer a novel approach to linking histopathological images with molecular outcomes,

although they have not been extensively explored in this context. Notably, a study

utilized cell-based graph analysis to predict the HER2 and PR status of breast cancer,

which relies on a dependency on extra cell detection and neighborhood clustering [34].

HoverNet has emerged as a popular model for nuclei segmentation and classification,

facilitating the construction of cell graphs. Then, the neighboring nuclei will be clus-

tering as clusters. These clusters serve as nodes in the cell-based graph, with node

attributes determined by the standard deviation of nuclei sizes. Edges are established

by calculating the geometric distance of the cluster centers based on their geometric

coordinates with a distance threshold. Both patch- and cell-based approaches play

integral roles in integrating histopathology and genomics data, particularly as more

biological data become available. Graph-based models offer an efficient framework for

capturing cross-modality differences. Beyond the graph neural network, graph trans-

formers also show a promising capability to analyze non-euclidean graph structures

for molecular biomarker prediction. Furthermore, a graph transformer architecture

with local attention [35] is proposed for genomics profile alteration understanding via

pathological image. In the proposed graph transformer architecture, DenseNet121 is

used to extract features from pathological images, which are used as graph node at-

tributions. Meanwhile, k-nearest neighbor graph edge construction is used to provide

topological information among nodes. Such an operation allows the proposed method

to explore the correlation between local and spatial morphology.
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2.2 Pathology-and-genomics Multi-modal Analysis Enhances Survival Prediction

With the advancement of computational capabilities, multimodal datasets (e.g.,

imaging and genomic data) are increasingly integrated into disease diagnosis analysis.

Multimodal data fusion can help with exploring the biologically cancer-related pat-

terns and aggregate complementary information from various modalities to enhance

cancer diagnosis and patient prognosis [36]. Several works successfully exploited the

integration of image and non-image genomics biomarkers in assisting real-world clin-

ical tasks, particularly in predicting patient survival outcomes. Typically, diverse

domain-specific models are used to extract representations of serval modality data.

These multimodal representations are then fused together for downstream tasks. Fu-

sion strategies include several methods in various model training stages, such as mul-

timodal feature concatenation or mapping multimodal features into a shared latent

space via a well-designed optimization function. For example, a multimodal fusion

framework [25] has been proposed to predict survival outcomes across various can-

cers by fusing histopathological images and genomic data, including mutations, CNV,

and RNAseq data. This framework utilizes VGG19 to extract image-wise biomarker

features and employs a cell-spatial graph to capture cellular associations. A Self-

Normalizing Network (SNN) is used for extracting genomic features. Multimodal

interactions are explored through Kronecker’s product between unimodal features,

with a gating-based attention mechanism controlling the relevance of each modal-

ity. PORPOISE, an extension of the previous multimodal framework [26], focuses

on pan-cancer patient outcome understanding. It preserves the key components of

the previous study [26] while excluding the cell-spatial graph representation. POR-

POISE assigns learnable attention scores to image patches for each patient based

on the contribution and importance of patient outcome prediction, enhancing feature

representation. In contrast, the multimodal co-attention transformer (MCAT) frame-

work [27] revolutionizes survival outcome prediction by incorporating image-genomic
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interaction during intermediate model training stages rather than fusing them prior to

a final prediction by using concatenation operations. In the tumor microenvironment,

the genomics-guided co-attention strategy enables the capture and interpretation of

complex genotype-phenotype interactions.

In addition to supervised approaches, an unsupervised method [24] can be used to

reduce the human expert burden in data annotation. Such a method can leverage

similarity evaluation among multimodal representations, which can project multi-

modal representations into a unified space during modality fusion. Deep highway

networks [37] is used for extracting features on genomics data (e.g., gene expression

and miRNA data), and SqueezeNet [38] is used for histopathological image feature

extraction. Without model retraining, the multimodal feature representations can

be achieved based on the previously trained model in the inference stage. The mul-

timodal features are combined into a unified multimodal representation, facilitating

overall survival prediction across pan-cancer datasets. The diverse combinations of

multimodal data demonstrate varying performance, underscoring the potential of

multimodal data in clinical diagnosis.

Different from natural vision-language datasets in the medical domain, the well-

developed multimodal datasets remain limited in the medical domain. To address

this challenge, a discrepancy and gradient-guided distillation framework [28] is devel-

oped based on a teacher-student knowledge distillation method to transfer pathology

and genomic knowledge acquired by the teacher architecture to single modal (i.e.,

pathology-only) student model for glioma grading. Firstly, the teacher model in-

tegrates ResNet18-extracted pathological features with SNN-extracted genomic fea-

tures. The multimodal knowledge fusion and refinement are achieved by training

the model with a discrepancy-induced distillation loss. In the second stage, the stu-

dent model distills multimodal information from the first-stage model and aggregates

image-only knowledge from a mean-teacher model. Each modality of knowledge sends
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a gradient on the student model, enabling it to be effectively employed in clinical-

related tasks with only single-modality data while retaining multimodal knowledge.



CHAPTER 3: SPATIALLY-AWARE GRAPH NEURAL NETWORKS For

CROSS-LEVEL MOLECULAR PROFILE ALTERATION PREDICTION IN

COLON CANCER

3.1 Motivation

The advancements in graph convolutional networks (GCNs) have significantly ad-

vanced computational histopathology, particularly in terms of annotation efficiency

and multi-scale context representation. Firstly, leveraging graph structures provides

a feasible approach to represent entire slides in terms of tissue content connectivity.

Such representations alleviate the need for fine-grained patch-wise label annotation,

which is often time-intensive and impractical to encompass all ranges of tumor patches

annotated by human experts. Secondly, graph structural representations enable the

capture of multi-scale contexts by integrating global and local image-wise features,

thereby enhancing disease outcome prediction. Thirdly, the utilization of graph struc-

tural representations facilitates interaction among spatially separated tiles, enabling

a more flexible and comprehensive receptive field. These advancements mirror the

workflow of human experts, who consider tumor environment, tissue contents, and

their interactions rather than focusing solely on individual tumor tiles for diagnosing

patient tissue status.

However, the high-resolution histopathological images do not naturally present a

graph structure, so developing efficient graph representation is essential for model de-

velopment and optimization. Current graph construction methodologies in histopathol-

ogy can broadly be categorized into two approaches: patch-based and cell-based meth-

ods. Patch-based graph construction aims to extract information by considering the

entire micro-environment, encompassing cells, and tissues, to capture comprehensive
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tissue micro-environment and cell dynamics. In contrast, cell-based graph methods

emphasize deriving possible biological insights from histopathology, exploring the rel-

evance between different cells and tissue microenvironments using graph-based fea-

tures [39]. It is worth noting that constructing a cell-based graph and conducting

subsequent graph computations entail excessive computational complexity.

3.2 Methodology

3.2.1 Overview

In this dissertation, we proposed a spatially-aware graph neural network (GNN)

architecture (see Figure 3.1)(g)) to predict cross-scale molecular profiles of gene muta-

tions, copy number alterations and the level of protein expressions from histopatholog-

ical images. We designed the image-to-graph transformation that converts the entire

WSI into the spatially connected graph representation, where the spatial connections

of tumor tiles are uniquely built upon the geometric coordinate from the raw WSI.

The spatially-connectivity graph construction (Figure 3.1)(c) includes n tumoral tiles

as graph nodes and their corresponding spatial grid coordinates. The graph nodes

represent the identified WSI tiles and their attributes are the ResNet18-extracted im-

age features. We also calculated the Euclidean distance between tile coordinates to

determine the potential connectivity between tiles. Finally, we were able to generate

spatially-connected graphs after graph node definition and edge connection. Mul-

tiple subgraphs were then constructed by node sampling with replacement on the

WSI tiles to ensure a broad coverage of data samples. Next, our GNN-model ar-

chitecture consists of five main modules, including a graph-based feature extractor,

jumping knowledge structure, graph-level READOUT operation, multi-layer percep-

tron (MLP) classifier, and model ensemble strategy. We trained the proposed model

on TCGA-COAD to predict the molecular outcome probabilities of the corresponding

WSI slides. For each model, the input is a group of constructed spatially-connected

subgraphs that are generated from each WSI slide. In the training and prediction
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process, we use the constructed spatial subgraphs as the input of the proposed model

to predict a series of molecular outcomes. For visualization and interpretation, we use

four quantitative graph-structure measurement metrics on the constructed spatially-

connected graphs ((Figure 3.1)(g)).

3.2.2 Spatially-connected Subgraph Construction

We designed the spatially-connected subgraph construction to represent the entire

WSI by graph G = (V,E), where V = {vi, i ∈ N} is the collection of graph vertices,

E = {eij, i, j ∈ N} is the collection of graph edges, and N is the number of vertices.

We defined selected tiles as graph nodes in each subgraph. For each whole slide im-

age (WSI), we only focused on analyzing tiles within the detected tumor region. We

randomly selected a set of sampled patches P = {P1, P2, · · · , PN} from all tumor tiles

generated from WSIs, where N is the number of tiles. In statistics, random sampling

is defined to facilitate generalization from the samples to the population, which en-

sures that sampling results approximate the population, especially when the entire

population has been measured [40]. We measured all the tumor tissues in WSI, and

thus, the multi-tile random sampling could maintain representative characteristics of

the original WSI. Next, we utilized a ResNet18 feature extractor, which is pretrained

on ImageNet, to extract tile features for each node as its feature matrix (e.g., node

attributes, X = {xi, i ∈ N}). The spatial distance between two tiles determines

whether there exists a graph edge eij between two vertices (e.g., vi and vj). The

entire structure of graph edge connectivity is represented by the adjacency matrix A,

where we determine it by the Euclidean distance between tiles’s geometric coordinates

located in their raw WSI. We construct an edge between two nodes by calculating the

Euclidean distance among them with a distance threshold. If the distance of the node

is larger than the threshold, no edge is constructed between nodes. To determine the

proper threshold, we calculated the mode value of from the statistical distribution of

the spatial Euclidean distances among all pairs of tiles to determine the fixed thresh-
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old value. Hereby, the graph G = (V,E) denotes a graph with node feature vectors

X and the adjacency matrix A. The constructed graphs are known as non-isomorphic

graphs because of the different number of graph nodes and edge connections. Re-

peating the above strategy, we generated multiple subgraphs for each tumor WSI.

The nodes in the different subgraphs can be overlapped because of the node selection

strategy mentioned in the section on histopathology data preprocessing and image

tile selection.

3.2.3 Graph-based Feature Extractor

The graph-based feature representation contains graph node attributes and their

topological structures. We utilized the graph isomorphism network (GIN) layers in

our study as the graph convolutional layer to aggregate and update the node repre-

sentations (e.g., node features are extracted by ResNet18) [41]. In particular, the GIN

layer utilizes a neighborhood aggregation strategy that updates the node representa-

tions by AGGREGATE and COMBINE operations iteratively that are widely used

in spatial-based graph models [42, 41]. In Equation (3.1) and (3.2), for each node

v, the AGGREGATE operation aggregates information from its neighboring nodes.

In contrast, the COMBINE operation can integrate the representations of the center

node (i.e., v) and its neighboring node to update node v’s representation. After k

iterations of aggregation and combination, the node representation is able to contain

topological information within its k-hop connected neighboring nodes. The kth layer

spatial-based graph convolutional network can be represented as

h
(k)
N(v) = AGGREGATEk(h(k−1)u ,∀u ∈ N(v)) (3.1)

h(k)v = σ(W k · CONCAT (hk−1v , h
(k)
N(v)) (3.2)

In GIN layers, the node representations are updated as follows:
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h(k)v = LINEAR(k)((1 + ε(k)) · h(k−1)v + Σu∈N(v)h
(k−1)
u ) (3.3)

The LINEAR is a single-layer perceptron that could represent the composition of

functions. The ε is a learnable parameter or a fixed scale (by default with 0). An

adjacency matrix of N×N is used for representing the structure of the input graph,

and a node feature matrix of N×256. N is the number of constructed graph nodes

(i.e., tumoral tiles) in our dissertation.

3.2.4 Jumping Knowledge Structure

Our WSI-based graph contains both dense and sparse connectivity nodes since each

WSI has a complex spatial distribution of cancerous regions. To consider different

levels of feature representations, we used the jumping knowledge (JK) structure to

emphasize the integration of useful information obtained from all depths of network

layers [43]. The JK structure aggregates node representation from each previous

convolution layer to the last convolution layer by a max-pooling max(h
(1)
v , · · · , h(k)v )

to combine the node embeddings which are generated from each layer. By this de-

sign, the jumping knowledge connectivity between different convolutional layers could

adaptively select the most evident representation from each layer. In other words,

the model can select the most fitted neighborhood size for each node as needed in the

training toward the proper node representation. Therefore, in our dissertation, the

use of the JK structure allows spatial information integration from an adaptive range

of nodes (i.e., tumoral tiles).

3.2.5 Graph-level READOUT Operation

Our focus is placed on the graph classification task that requires a function to con-

vert the node embeddings into graph embedding. We thus used the GlobalAddPooling

as a READOUT function to integrate node representations and produce a represen-

tation for each graph. As shown in Figure 3.1(g), we utilized jumping connectivity
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to concatenate all layers. The graph representation can be written as:

hG = READOUT (max(h(1)v , · · · , h(k)v ), v ∈ G) (3.4)

k is 3 in our dissertation.

3.2.6 Multi-layer Perceptron (MLP) Classifier

We leveraged the MLP classifier to generate prediction results based on the graph-

wise features extracted from the previous step. The MLP classifier consists of three

fully connected (FC) layers with activation functions. We designed the first two fully

connected layers to have 128 and 256 neurons, while the last FC layer has two neurons

for the binary classification tasks.

3.2.7 Subgraph Model Ensemble Strategy

Our ensemble strategy utilized the majority vote to aggregate all subgraphs’ predic-

tion outcomes derived from the same WSI scan. To do so, we averaged the prediction

scores from each subgraph model to achieve the slide-level prediction outcomes. The

ensemble strategy is motivated by the fact that a high-resolution WSI can contain

a large number of tumor tiles (e.g., 13k) that allows us to explore the diversity of

WSI characteristics via combinations from individual subgraphs. We highlighted that

ensemble learning allowed us to increase its generalization power by exploiting the

advance of multiple spatial subgraphs for which the predictive error can be reduced

by the majority vote.

3.2.8 Visualization and Graph Measurements

We evaluated the contribution of graph nodes by utilizing the global sort pool-

ing [44]. Global sort pooling is devised to arrange the node features in descending

order, determined by the outputs of their final feature channel. The outcome of the

last convolutional layer is the first k nodes(e.g., the k is 10 as the top 10 tiles). The

global sort pooling layer is used only for node contribution analysis. In other words,
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the node contribution evaluation results of the global sort pooling layer will be used

for model parameter training. We selected key tiles from the top ten nodes for each

trained model and saved the tiles for visualization and interpretation. Figure 3.3

to Figure 3.5 provides the visualization of the top 10 tiles in each model and their

located areas in the slides. For genetic mutation prediction, considering the clinical

significance, we selected the mutated or CNA genes that are highly related to cancer

treatment decisions. For protein expression prediction, we selected the proteins that

are related to the evolution of colorectal cancer or the predictive mutated or copy

number alteration gene in our previous experiments.

In addition, we utilized key graph measurements to provide an understanding of

the constructed graph structures [45]. The average node degree calculates the average

degree of the neighborhood of each node. We utilized average node degree to delin-

eate the connectivity between nodes and their neighbors. The clustering coefficient

quantifies the tendency of nodes in a graph to form clusters. Closeness centrality

identifies nodes that have easy access to other nodes, with higher values indicating

closer proximity to all other nodes. Betweenness centrality computes the total num-

ber of shortest paths between pairs of nodes and identifies nodes that serve as bridges

connecting different parts of the network.

3.3 Experiments and Results

3.3.1 Image Data Collection and Selection

We used whole slide images of patients from The Cancer Genome Atlas Database

and specifically focused on Colon Adenocarcinoma (TCGA-COAD) dataset and Rec-

tum Adenocarcinoma (TCGA-READ) [46], which contain 459 Formalin-Fixed Paraffin-

Embedded (FFPE) stained histopathology WSIs of colon tumor and 165 WSIs of

rectum tumor. We collected the Clinical Proteomic Tumor Analysis Consortium

(CPTAC) dataset, which contains 161 Fresh-Frozen (FF) WSIs of colon cancer tu-

mors as the external validation dataset [47]. We show the statistics of patients in
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Table 3.1: Patient characteristics from the collected TCGA-COAD cohort, TCGA-
READ, and CPTAC-COAD cohort (reproduced with permission from Elsevier [1]).

TCGA-COAD
(n=306)

TCGA-READ
(n=123)

CPTAC-COAD
(n=94)

Age(year)
Average 65.47 64.82 64.23
Sex, n(%)

Male 156 (50.98) 66 (53.65) 39 (41.30)
Female 150 (49.02) 66 (46.35) 39 (58.70)

Stages, n(%)
I/IA 48 (15.68) 16 (13.00) 9 (9.57)

II/IIA/IIB/IIC 112 (36.60) 44 (35.77) 34 (36.17)
III/IIIA/IIIB/IIIC 92 (30.07) 36 (29.27) 44 (46.81)

IV/IVA/IVB 45 (14.70) 19 (15.44) 7 (7.45)
N/A 9 (2.94) 8 (6.50) 0

Table 3.1.

We selected FFPE WSI slides according to the following criteria: (1) The slide

exhibits blur-freed regions or tissue in regions with abnormal stains; (2) The slide

presents sufficient and visible tumor regions; (3) One slide per patient comes with

available gene mutation, copy number alteration (e.g., amplifications and deletions),

microsatellite instability, and proteomic information. After preprocessing, we col-

lected 306 patients with 40X magnification (0.25 microns/pixel) in TCGA-COAD.

We selected the slide in mpp=0.25 microns/pixel due to its higher resolution to reflect

image details than others. A similar selection approach is applied to the validation

cohort of TCGA-READ and CPTAC-COAD. For TCGA-READ and CPTAC-COAD

datasets, we collected 123 and 94 patients with WSI slides and associated molecular

information. For microsatellite instability status (MSI) classification, we selected 288

slides in TCGA-COAD, 112 slides in TCGA-READ, and 94 slides in CPTAC-COAD

with the available MSI records. For proteomics analysis, we obtained high-quality

proteomic profiles generated by the antibody-based technique of reverse phase pro-

tein array (RPPA) from the TCPA database [13]. To ensure sufficient amounts of

WSIs as training samples, we covered a wide range of available data samples in our
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study. We selected the top 20 mutated genes in colon cancer with a mutation rate

of at least 15% from patients, and for copy number alteration, we selected 20 genes

with a mutation rate of at least 7.5%. For the validation tasks of rectum cancer, we

selected 20 mutated genes in colon cancer, which were mutated at least 7% in the

123 patients, and for copy number alteration, we selected 20 mutated genes, with

mutation percentages at least larger than 6%. For both colon cancer and rectum can-

cer, the cut-off ratio of high- and low-level protein expression was between 47% 52%

based on the original TCPA proteomics records.3,4 For the external validation of

colon cancer on CPTAC-COAD, we selected twenty genes in colon cancer with a mu-

tation ratio of at least 12%. To achieve the CNA prediction, we determined five genes

that have at least a 5% mutation rate. After WSI preprocessing (e.g., tile extraction

and tumoral tile selection) and graph construction, a total of 670,901 tiles were used

for the evaluation of colon cancer, and 225,146 tiles were used for the validation of

rectum cancer.

3.3.2 Molecular Profile Collection and Label Identification

We identified the associated colorectal genetic mutational profiles and microsatel-

lite instability status from Cbioportal (https://www.cbioportal.org/) [48]. Also, we

collected protein expression profiles based on the reported clinical relevance of colon

cancer and rectum cancer from The Cancer Proteome Atlas [13, 14]. Given the

gene mutation rates, we focused on the top 20 frequently-mutated genes (e.g., APC,

RYR1, KRAS, PIK3CA, TP53, TTN, SYNE1, OBSCN, FAT3, DNAH11, MUC16,

FAT4, ZFHX4, LRP1B, FBXW7, CSMD1, RYR2, DNAH5, FLG, FAT3, DNAH11,

CSMD3). We also collected the top 20 copy number alteration genes (e.g., CCSER1,

COX4I2, CSMD1, DEFB118, DUSP15, FOXS1, ID1, MACROD2, MYLK2, HCK,

KIF3B, PDRG1, PLAGL2, POFUT1, RBFOX1, REM1, TM9SF4, TPX2, TSPY26P,

WWOX) that are associated with colorectal cancer evolution over various clinical

stages. We obtained 20 functional protein expression profiles (e.g., ARID1A, BRAF,
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P53, EGFR, STAT3_pY705, PTEN, EGFR_pY1173, HER3, SRC_pY416, BCL2,

BRCA2, NOTCH1, CMYC, CMET_pY1235, ACC1, ACC_pS79, ATM, ERALPHA,

HER2, AMPKALPHA_pT172) that have shown clinical relevance with targeted ther-

apy [14]. For each type of mutational profile in each patient, we assigned the outcome

label as a positive class if mutated and as a negative class if non-mutated. For mi-

crosatellite instability status classification, we assigned the status label as positive

class if it is microsatellite instability, otherwise, we assigned it as negative class. For

protein expression, the patient samples are separated into two groups by the median

value of protein expression. If the value of protein expression is larger than the me-

dian value, we identified the sample with a high degree of protein expression and

assigned it as a positive class. Otherwise, the sample was labeled with a degree of

protein expression and assigned as a negative class.

3.3.3 Experimental Setting and Implementations

In our dissertation, we used Macenko’s method for color normalization across all

WSI slides to remove the bias of slide color. We split the WSI into non-overlapping

square tiles with 512 pixels x 512 pixels edge length [49]. We utilized the OTSU

segmentation algorithm to localize the histopathological tissue area (including tumor

and non-tumor tissues) [50]. To further detect tumor regions, we first pretrained

the ResNet on ImageNet and then fine-tuned the model (i.e., we retrained the entire

model while modifying the output size of the last output layer as 2) on the NCT-

CRC-HE-100K dataset [51], which contained 100,000 image tiles of colorectal cancer

with pathologist-delineated, single-tissue regions as tumoral ground truth. As proved

in a previous study [19], Resnet18 is more efficient for training and yields a better

classification performance than models of Alexnet and VGG to reduce the risk of

overfitting. We randomly spit the dataset into three sets: training set (70%), valida-

tion set (15%), and test set (15%) by following the previous study [19]. Also, for the

input size of the tumor detection model, we resized WSI tiles to 224 x 224 pixels that
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follow previous settings [19, 32]. We achieved >99% accuracy in the test set. The

fine-tuned tumor detection model is applied to our WSI tissue data, and we found

that the false-tolerant tumor region delineation is effective since the tile-focused anal-

ysis does not require precise tumor pixel segmentation. After tumor detection, we

selected large amounts of tumor tiles from WSI for the tile-connected graph devel-

opment, as detailed next. We chose to generate spatially-connected subgraphs via

downsampling with replacement. For the slides containing a large tumor region, we

randomly selected five subsets of tiles to build subgraphs. The number of selected tiles

in each subset was set to 1,000, which is able to represent approximately 82% of the

tissue area for the sake of computational efficiency. For the slides that only contain

a small-sized tumor (e.g., the total number of tiles from the tumor region is smaller

than 1,000), we kept all tumor tiles within the tumor for the subgraph construction.

Together, the aggregated amount of non-overlapped tumor tiles from subgraphs of

the entire tumor region and we found such sampling brings a good trade-off between

model performance in prediction and computation efficiency.

To facilitate model training, we randomly duplicated the constructed graphs from

the minority class in the training set for sample class balance. Data balancing ensures

that the model learns characteristics equally from the majority and minority classes

and avoids potential false positive or negative predictions. The benefit of duplication

balancing class without requiring further data collection or augmentation. Notably,

we only duplicated data samples in the training stage, and we always kept the real

positive-and-negative ratio at the validation stage. The optimal hyperparameters

were obtained by a grid search. We always kept the same hyperparameter settings

for each prediction task to ensure that the differences only came from the variants

of the model architectures. We set an initial learning rate of 1e-3 with Adam opti-

mizer, where the batch size is 64. for training all models [52]. In our dissertation,

we designed all predictions as classification tasks. Hence, we use the cross-entropy
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as the loss function for model training and parameter optimization. In all prediction

tasks (e.g., gene mutation, copy number alteration, MSI status, and protein expres-

sion prediction), we randomly initialized the weight parameters of the models before

training. The model of each task was trained and evaluated separately without inter-

vention. For the TCGA-COAD cohort, we used 10-fold cross-validation to train and

evaluate the primary performance of our model. The entire TCGA-COAD dataset

is randomly split into ten groups (e.g., ten-fold cross-validation) that have a similar

number of samples. Each group is used as the evaluation set, which keeps the original

positive and negative ratio of the dataset. When one group is used as an evaluation

set, the class balancing is utilized for the other nine groups of data (e.g., training set)

without changing the class ratio in the evaluation set. When one group is used as an

evaluation set, the other nine groups of data are used for model training. Especially

our data split (e.g., 10 folds) was slide-wise, which guarantees that the tiles in the

same WSI will not appear simultaneously in different folds. The overall performance

was reported based on the slide-level AUCs drawn for the concatenated results from

all 10 folds. Next, we used all available slides from the TCGA-READ and CPTAC-

COAD cohorts as the external validation data. In particular, we trained and selected

a top model trained on the TCGA-COAD for one type of prediction task and directly

validated on TCGA-READ and CPTAC-COAD for the same type of task without

any transfer learning. The validation strategy is challenging due to the differences

between two different datasets, such as their original collection source, screen instru-

ment, and staining process. We used four Tesla V100 SXM2 GPUs for the prediction

tasks.

To quantify the performance of our approach in molecular profile prediction tasks,

we utilize the area under the curve (AUC) for model evaluation. The AUC represents

the area under the ROC curve, which is plotted to represent the true positive rate

against the false positive rate for different threshold values. AUC provides insight
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into a model’s ability to differentiate between classes. ROC curves and AUC are par-

ticularly effective for severely imbalanced classification problems with few samples of

the minority class. For each AUC value, we calculate the 95% confidence interval (CI)

using 1,000 bootstraps to determine the uncertainty of AUC. Additionally, we employ

a student t-test to compute the significance by using a p-value (i.e., significance level

set at p < 0.05).

3.3.4 Results

Cancer evolution is inherently associated with genetic alterations [53]. Detecting

key genetic mutations is critical to assess staging, prognosis, and treatment for pa-

tients. In our dissertation, we evaluated the performance by the prediction scores

of AUC, their 95% CIs, and student t-test p values. Our model achieved high-level

performance on predicting multiple genetic mutations as shown in Figure 3.2(a), Fig-

ure 3.2(d) (top 10 predictable genes) and Table A.1 (the full results of predictable

genes). In particular, we found that KRAS mutation (AUC 80.16) is well predicted

by our approach (Table A.1), which has been recognized as a key determinant for

measuring resistance to anti-EGFR therapy of colon cancer [54]. We also achieved

a good prediction performance of TP53 (Table A.1) mutation (AUC 81.68 (95% CI

77.94-85.50)), a notable prognostic biomarker for colorectal patients treatment with

5FU chemotherapy [55]. As shown in Figure 3.2(a) and Figure 3.2(d), our image-

based models well predict a panel outcome of gene mutations (top 10 predictable

genes) with full prediction results in Table A.1.

The alternation of DNA fragments can cause the Copy number alterations (CNA),

which are determined as the somatic change [56]. The accurate prediction of cCNA

leads to the identification of relevant oncogenes, which is crucial for accurate diag-

nostics and therapy decision-making [57]. Following the same training process, as

seen in Figure 3.2(b), Figure 3.2(d) (top 10 predictable genes) and Table A.2 (the

full results of predictable genes), our model performed strongly (all AUC > 85.00)
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in predicting the top 10 CNA genes in colon cancer. For instance, both POFUT1

(AUC 87.99 (95% CI 77.31-92.24)) and PLAG2 (AUC 90.55 (95% CI 86.02-94.89))

were highly predictive from our findings.

The signature of functional protein expression can be used to determine cancer

progression, metastasis, and treatment that are not faithfully reflected by genetic al-

terations [13, 14]. Compared with genetic changes, protein-level activities occur at a

functional level that is closely associated with cellular biology and drug development.

We here present differential evidence for a comprehensive panel of key functional

protein-expression degrees in colon cancer (see Figure 3.2(c)-(f) and Table A.3). For

instance, the PTEN protein expression is predictable in our dissertation (AUC 86.01

(95% CI 81.97-90.06)), which represents a unique protein marker for predicting re-

sponse to the treatment of Cetuximab [58]. The result of protein expression of HER3

(AUC 85.59 (95% CI 81.39-89.48)), broadens our positive findings since it is viewed

as a determinant for poor prognosis of colon cancer [59].

To assess the cross-cancer generalization power of the model, we developed the

model on the TCGA-COAD dataset while externally validating it on the rectum

cohort from TCGA-READ without leveraging transfer learning. Multiple genetic

mutations were confirmed predictive by our model as shown in Figure 3.2(g) and

Figure 3.2(j) (e.g., top 10 predictable genes) and Table A.1 (e.g., the entire result of

predictable genes). For instance, our model could predict KRAS mutation (the results

is shown in Table A.1) on rectum cancer (AUC 71.02 (95% CI 63.39-89.48)) which

is highly valuable to predict non-response to anti-EGFR target therapy (cetuximab

and panitumumab) [54, 60]. Our model also achieved a high prediction performance

on ZFHX4 (AUC 81.80 (95% CI 72.20-89.70)) that is associated with poor prognosis

of patients. Additionally, we found potential predictive variables on the CNA status

in rectum cancer with clinical relevance [12] for CNA prediction in Figure 3.2(h),

Figure 3.2(k) (top 10 predictable genes), and Table A.2 (the rest of predictable CNA
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Figure 3.2: Molecular profile prediction results (reproduced with permission from
Elsevier [1]). The GNN-based model was trained to predict the molecular profile
outcomes (e.g., gene mutation, CNA gene, and protein expression) on colon cancer
(TCGA-COAD) and validation results on rectum cancer (TCGA-READ). For each
molecular profile, we show the prediction performance of AUC values with student
t-test P value for the prediction scores (the significance level of 0.05). (a)–(c) The
prediction results and its 95% CI in TCGA-COAD. (d)–(f) The prediction results
and their P-values in TCGA-COAD. (g)–(i) The prediction results and their 95%
CI in TCGA-READ cohort. (d)–(f) The prediction results and their P-values in
TCGA-READ.



30

genes). We reported the level of protein expression prediction performance in Fig-

ure 3.2(i) and Figure 3.2(l) (top 10 predictable proteins) and Table A.3 (the rest of

predictable proteins).

We further validate the model’s potential generalization by training the model

on the TCGA-COAD while directly validating it on the CPTAC-COAD with FF

slides. We recognize positive findings on the CPTAC-COAD to inform the model’s

usefulness. For example, the model could validate DNAH5 (the results are shown in

Table A.4) mutation (AUC 76.16 (95% CI 67.11-83.55)) that is highly associated with

poor prognosis in colon cancer [61]. Also, we were able to predict FLG (the results

are shown in Table A.4) mutation prediction (AUC 73.45 (95% CI 63.26-83.25)) on

CPTAC-COAD, which is associated with loss of barrier function and deregulation of

immune response [62]. Furthermore, multiple gene mutations confirm the prediction

power of our model on the CPTAC-COAD dataset (Table A.4 and Table A.5).

We used our approach to achieve comparable performance (AUC 83.92 (95% CI

77.42-87.59)) of microsatellite instability status classification (MSI) in colon cancer.

The validated finding is lower in rectum cancer (AUC 61.28 (95% CI 53.28-67.93)) due

to the inherent cancer difference, meanwhile the additional MSI prediction evidence

is positive (AUC 73.15 (95% CI 63.21-83.13)) on the CPTAC-COAD cohort despite

of the slide format variance. The reliable imaging examination of MSI markers is

ongoing, and our findings reiterate supportive evidence that predictive signals of MSI

outcome were available [19].

Despite the inherent gap between cancer types and image formats, we achieved a

set of good findings. As seen in Table A.1 to Table A.3 and Table A.4 to Table A.5,

we achieved positive gene mutation and CNA gene prediction results, such as ZFHX4

(AUC on TCGA-COAD is 83.17 (95% CI 78.00-87.98), AUC on TCGA-READ is

81.80 (95% CI 72.20-89.70)), CSMD1 (AUC on TCGA-COAD is 79.86 (95% CI 73.08-

85.67), AUC on TCGA-READ is 76.48 (95% CI 64.78-86.71)). In addition, similar
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findings include DNAH11 (AUC on TCGA-COAD is 82.42 (95% CI 77.16-87.75),

AUC on CPTAC-COAD is 82.01 (95% CI 74.16-88.82)), and CCSER1 (AUC on

and TCGA-COAD is 81.90 (95% CI 77.16-86.54), AUC on CPTAC-COAD is 78.50

(95% CI 67.87-87.34)). Interestingly, two molecular profiles could even be predicted

better, such as CSMD3 (AUC on TCGA-COAD 82.17 (95% CI 77.82- 86.57), AUC

on CPTAC-COAD 82.90 (95% CI 73.69-90.71)) and FOXS1 (AUC on TCGA-COAD

79.83 (95% CI 73.18-88.14), AUC on CPTAC-COAD 86.08 (95% CI 79.67-91.74)).

The lack of model understanding and interpretation of results has been a height-

ened concern for deep learning applications in medical domain research. Our graph

network model employs a global sort pooling mechanism to provide possible inter-

pretability. We display the top 10 tiles with the highest contribution based on the

entire graph representation from each subgraph model (Figure 3.3-Figure 3.6). In

Figure 3.3, we illustrated the result of TP53 mutation by the ensemble prediction

from five subgraph models, which are separately trained by tile subgraphs generated

from the entire WSI. Identified from each subgraph model, these top image tiles tend

to be spatially distributed (colored regions), meaning that such a spatial characteri-

zation is of substantial interest for assessing molecular status in WSI. Also, the graph

structure with a higher node degree and closeness centrality value (Figure 3.4-3.5 (h))

than the average statistics (Table 3.2) is informative by yielding accurate prediction

for PLAGL2 copy number alteration (Figure 3.4) and PTEN protein expression (Fig-

ure 3.5).

3.3.5 Ablation Study

We designed ablation studies to analyze the performance of the proposed methods

and make a comparison to baseline methods. We first designed a comparison between

whether using ensemble strategy in the proposed workflow (Figure 3.7 (c)-(e)), which

is a key factor for integrating multiple tile-connected graphs. Overall, the ensemble

results were higher than those of other individual models without ensemble strategy,
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Figure 3.3: TP53 mutation prediction on TCGA-COAD (reproduced with permis-
sion from Elsevier [1]). (a) The original WSI with TP53 mutation outcome. (b)
Highlighted regions marked by the five subgraph models within the WSI. Different
colors represent different key tile regions from subgraph models. (c)-(g) The zoom-in
view of the identified top-10 tiles from five subgraph models which are ranked by
their importance score in a decreasing order. From a pathologist’s perspective, the
gross necrosis is common in tiles from model 2 and model 3 while is rare in tiles
from model1, model 4, and model 5. In addition, single cell necrosis is common in
tiles from model 1 while are rare in model 5. (h) The average statistical results of
the graph measurements among five subgraphs. Such graph measurements reflect the
network structure of subgraphs.
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Figure 3.4: PLAGL2 CNA prediction on TCGA-COAD (reproduced with permission
from Elsevier [1]). (a) The original WSI with PLAGL2 CNA. (b) Highlighted regions
marked by the five subgraph models within the WSI. Different colors represent differ-
ent key tile regions from subgraph models. (c)-(g) The zoom-in view of the identified
top-10 tiles from five subgraph models which are ranked by their importance score in
a decreasing order. Tiles from model 2 to model 4 almost do not contain lymphocytes
while include rare apoptotic cells in model 2 and model 3. Furthermore, about 40%
tiles from model 1 contain single cell necrosis. (h) The average statistical results of
the graph measurements among five subgraphs. Such graph measurements reflect the
network structure of subgraphs.



34

Figure 3.5: PTEN protein expression prediction on TCGA-COAD (reproduced with
permission from Elsevier [1]). (a) The original WSI with PTEN protein. (b) High-
lighted regions marked by the five subgraph models within the WSI. Different colors
represent different key tile regions from subgraph models. (c)-(g) The zoom-in view
of the identified top-10 tiles from five subgraph models which are ranked by their
importance score in a decreasing order. Tiles from model 1 to model 5 include muci-
nous tumor cells with background fibrosis. Significant surrounding lymphocytes are
includes in model 2 to model 4. Furthermore, single cell necrosis is visible in model 5.
(h) The average statistical results of the graph measurements among five subgraphs.
Such graph measurements reflect the network structure of subgraphs.
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Figure 3.6: MSI status prediction on TCGA-COAD (reproduced with permission
from Elsevier [1]). (a) The original WSI with MSI. (b) Highlighted regions marked
by the five subgraph models within the WSI. Different colors represent different key
tile regions from subgraph models. (c)-(g) The zoom-in view of the identified top-
10 tiles from five subgraph models which are ranked by their importance score in a
decreasing order. Tiles from model 1 to model 4 include mucinous tumor cells and
tumor necrosis. In addition, tumor necrosis is common in tiles from model 2 to model
5, and mucinous tumor cells are common in tiles from model 2 to model 4. (h) The
average statistical results of the graph measurements among five subgraphs. Such
graph measurements reflect the network structure of subgraphs.
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Table 3.2: The average statistics of graph measurements on TCGA-COAD and
TCGA-READ, and CPTAC-COAD among all patients (reproduced with permission
from Elsevier [1]).

Number of
nodes (SD)

Node degree
(SD)

Clustering
coefficient

(SD)

Closeness
centrality

(SD)

Betweenness
centrality

(SD)
TCGA
COAD

816.1025
(267.56)

600.1998
(328.1868)

0.9274
(0.1317)

0.7972
(0.2014)

0.0004
(0.0008)

TCGA
READ

758.5920
(214.08)

564.7778
(342.6462)

0.9410
(0.1427)

0.8109
(0.2208)

0.0005
(0.0015)

CPTAC
COAD

752.3900
(234.98)

668.2027
(308.4395)

0.9665
(0.0386)

0.9092
(0.1347)

0.0001
(0.0003)

and models without ensemble strategy displayed various results. Such variety could

probably be explained by the intra-tumor heterogeneity that makes the performance

of subgraphs different. Next, we ablated the aggregation strategy of jumping connec-

tivity between convolutional layers in the GNN model. We leveraged three layer-wise

aggregation strategies (e.g., max-pooling, concatenation, and LSTM-based attention

aggregation) to integrate the node embeddings achieved by each previous convolu-

tional layer [43]. As shown in Figure 3.7 (a), the max-pooling aggregation strategy

achieves the best result, and LSTM-attention aggregation maintains a relatively sta-

ble performance. Furthermore, we assessed the distance threshold as a factor that

determines the edge connectivity between graph nodes. A larger distance threshold

leads to a denser connected graph, indicating that more graph edges are permitted

to be connected. As seen in Figure 3.7 (b), the width and height of the original

tiles are fixed at 512, and we set the distance threshold as their multiples (such as

T = 25, 45, and 85 times). We found that dense graphs (T = 85) tend to be infor-

mative with higher results than other settings in genetic mutation, CNA gene, and

protein expression degree prediction. Finally, we utilized the ResNet18 classifier as

a baseline for the convolutional networks approach to compare with our GNN-based

approach. To fairly compare our model with the ResNet18 model, we followed the

exact same setting (e.g., data splitting and up-sampling augmentation during model
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training). Further, we chose the same tiles for training ResNet18 without any data

augmentation. The ResNet18 was pretrained on the ImageNet while we only trained

the parameters in the last ten layers of the model and kept freezing weights in other

layers, which followed the experiment setting in the previous study [19]. For ge-

netic mutation, the convolutional approach has the average AUC of ResNet18 (AUC

64.87), which is evidently lower than the average AUC of our model (AUC 82.77) on

the TCGA-COAD cohort. For MSI mutation, the AUC of ResNet18 (AUC 74.62) is

also lower than the AUC of our model (AUC 83.92). Overall, we identified that the

ensemble strategy of multiple subgraphs combined with jumping connectivity between

convolutional layers achieved favorable results based on systematic comparisons.

To compare with the previous study [29], we conducted ablation experiments us-

ing gene mutations as benchmark targets on the TCGA-CRC-DX cohort (e.g., the

combined TCGA-COAD and TCGA-READ FFPE diagnostic tissue slide cohort).

We randomly split the entire TCGA-CDC-DX cohort into three groups (3-fold cross-

validation) that have a similar number of samples for MSI status and gene mutation.

Each group is used as the evaluation set in turn that keeps the original class ratio

(e.g., the ratio between positive vs negative, and the ratio between TCGA-COAD

and TCGA-READ patients) of the dataset. When one group is used as an evaluation

set, the class balancing (e.g., only for positive and negative classes) is utilized for

the other two groups of data (e.g., model training set) without changing the class

ratio in the evaluation set. Especially our data split (e.g., 3 folds) was slide-wise,

which guarantees that the tiles in the same WSI will not appear simultaneously in

different folds. The mean cross-validated slide-level AUC values is used for perfor-

mance evaluation. We found that our method outperformed a series set of results

from the study [29], including APC (AUC 68.09 versus 65.40), PIK3CA (AUC 65.35

vs 62.20), and KRAS (AUC 64.46 vs 60.40) mutation prediction. Also, we achieved

a comparable performance of TP53 (AUC 65.31 vs 68.50).
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Figure 3.7: Ablation study of graph networks model performance (reproduced with
permission from Elsevier [1]). (a) Layer aggregation strategy. We compared the
average performance between different aggregation methods between GIN blocks, in-
cluding max-pooling, LSTM-attention, and concatenation aggregation for three tasks,
including gene mutation, CNA gene, and protein status prediction. Max-pooling is
ranked the top result among all variations of blocks (b) Distance threshold. We av-
eraged the AUC value of the top 10 predictions for each task. Outputs of distance
threshold kept a relatively stable performance (all AUC>75%) with the choice of
512 x 85 as our desired selection. (c)-(f) Performance comparison between different
subgraph models and ensemble model results. For the top 10 predicted genes, the
performance between models with ensemble operation consistently outperformed all
remaining models without ensemble operation.
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3.4 Discussion

We proposed a graph neural network approach to explore spatial information via

interactions of tumoral tiles of whole slide imaging (WSI). The presence of spatial and

topological structures in histopathology is well documented but seldom explored in

the context of quantitative cancer imaging and machine learning [63]. our dissertation

emphasizes spatial context to construct tile-connected graphs to represent histopatho-

logical slides without explicit tile annotation, offering an efficient means to address

intra-tumor spatial heterogeneity that is crucial to understand patient outcome in

colon cancer [11]. In particular, our findings demonstrated that a broad range of

molecular-histopathological associations was found to (i) infer prognostic value (e.g.,

KRAS and TP53 mutations), (ii) assess cell progression (e.g., PLAGL2 and POFUT1

copy number alterations), and (iii) identify targeted therapies (e.g., EGFR protein

expressions) in colon cancer.

The rapid growth of whole-slide histopathology promises to uncover more meaning-

ful genome-imaging associations via data integration [19]. Our analysis emphasizes

a synergistic approach to the prediction and understanding of colon cancer based on

molecular profiles in mutation, copy number alteration, and functional proteomics.

In particular, proteomics exemplifies an emerging field to extend our landscape of

genomic signature, which permits the direct discovery of diagnostic biomarkers from

a cancer cellular perspective [64]. By definition, protein dynamics represent their

own biological and cellular traits to complement roles of mRNA expressions [13, 14].

However, predictive analytics of proteomics profiles and their associations with other

molecular signatures have not been explicitly researched in histopathology. In our

dissertation, we achieved good predictions on both TP53 gene mutation prediction

(AUC 81.68) and P53 protein expression prediction (AUC 86.41). From the perspec-

tive of cancer evolution, these findings reinforced our understanding that the symbolic

TP53 mutation could promote colon cancer evolution leading to the abnormal protein
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expression of P53 [55]. In addition, we identified the joint evidence that the protein

expressions of Notch1 and copy number alterations of POFUT1 and PLAGL2 can be

predicted because of their biological relationship [65]. our dissertation also achieved

a good prediction of the functional protein BRAF (AUC 85.84 (95% CI 81.68-90.03))

and EGFR_pY1173 protein (AUC 89.64 (95% CI 86.29-93.19)), both of which are

the parts of the EGFR-MAPK pathway to reflect the robustness of our dissertation.

Thus our dissertation makes it possible to observe cross-scale molecular activities

via histopathology that were not reported in previous studies. Also, diagnosis and

therapy differ considerably between colon and rectum cancers, and our results offered

helpful evidence that key mutational outcomes (e.g., ZFHX4 with AUC> 80% and

RYR1 with AUC>77% on both cancers) can be predicted to enhance the potential

clinical utility of our approach.

The image-to-graph transformation in our dissertation opens up perspectives for

analyzing tumoral spatial heterogeneity as seen in histopathology. Our contribu-

tions fall into multiple aspects, including spatial distance definition, image-tile graph

construction and labeling, and topological interpretation of spatial characteristics.

Driven by the observation that spatial heterogeneity is present within and across

tumoral tiles in the entire cancer microenvironment, the proposed spatial distance

builds upon tiles’ physical geometric coordinates to objectively capture tumoral re-

gional differences. In addition, our tile-based graph representation enables whole

slide-level predictions, avoiding the uncertainty of tile label assignment for a particu-

lar molecular outcome. Such tile-based graph does not involve extra pre-preprocessing

like nuclei or tissue segmentation which likely brings unfavorable performance vari-

ance.28 Assessing the full repertoire of multi-sized tiles is neither practical nor likely,

given the excessive combinations of tiles required; thus, we focused on maximizing

the information gleaned through efficient tile samplings. To faithfully depict the tile

distribution, the whole-slide tile sampling creates an unbiased space allowing for the
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subgraph construction from the divided tumoral tiles, which enhances model gener-

alization and maintains a reasonable trade-off between efficiency and accuracy. We

further provided a graph structure interpretation to quantitatively reveal the spatial

interactions of image tiles. Finally, our graph approach is purely data-driven on the

aggregated tumor tiles and does not rely on conventional morphological patterns that

have been routinely assessed by pathologists. Consequently, it can serve as an aug-

mented tool to diagnose suspicious malignancies and locate differential regions via

the identified tumoral tiles in histopathology.

The multigenic complexity presents a daunting challenge for understanding the

underlying mechanisms of colon cancer, motivating us to leverage the macroscopic

view of histopathology via powerful graph networks. The strength of our approach

relies on its capability to explore the relational context among complex graph en-

tities that are beyond the scope of standard convolutional approaches [66]. Our

analysis provides a comprehensive histopathological representation by extracting lo-

cal (within tile) and topological (among tiles) information simultaneously, enabling a

direct correlation measurement among regional tissues via importance ranking. The

multi-parameter evaluation further reveals the stability of the proposed shallow graph

neural networks across multiple prediction tasks. In addition, we acknowledge that

there is a significant lack of consensus guidelines on the definition and utility of the

tumoral image-based tiles. To address this challenge and enable detailed distribution

analysis, the adopted random down-sampling with replacement ensures enough tiles

to be selected for subgraph model development [40]. Our ensemble strategy further

presents a simple yet effective means to merge the dynamics of tiles by aggregating

the prediction results between different tile-connected subgraph models.

Although exploring the potential relationship between histopathology and molec-

ular profiles is promising, more multi-site clinical verifications are necessary to add

translational potential in the clinic and assist pathologists in gaining insights for
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the identification of molecular signatures in colon cancer and management of other

cancers. Emerging techniques in spatial transcriptomics may provide highly defined

annotations to locate fine-grained histopathological regions and further enhance deep-

learning performance [67]. Also, we recognize that the class imbalance of molecular

profiles is commonly seen across cancers, making the training samples insufficient to

optimize the model development. For example, copy number alteration genes like

TM9SF4, TPX2, TSPY26P, and WWOX only have about 7.69% mutation ratio in

the cohort, although they represent meaningful clinical relevance in colon molecu-

lar pathology [68]. We recognize that data format differences of histopathology can

impact model robustness for certain mutational outcome predictions. It is also mean-

ingful to extend our graph analysis into the pan-cancer setting by assessing the model

consistency across cancer types. Considering the limited number of data samples, we

have not analyzed the joint molecular activity prediction that could provide knowledge

about measuring complex image-genome relationships. The landscape of molecular,

pathological, and predictive studies of cancer is changing rapidly, and the continued

investigation of modeling long-tail characteristics of molecular classes will be crucial

to uncover additional insights into genome-pathology associations in cancer.

3.5 Summary

In conclusion, we contributed a spatially-aware graph neural networks approach to

predict molecular profiles and converted the WSI slides into graph structures with

spatial-preserving information. Despite multiple levels of molecular heterogeneity, our

findings offered a panel of predictable molecular profiles, including mutational out-

comes, copy number alteration outcomes, MSI status, and protein expression from

WSIs in colon cancer. Our computational approach provides a unique means to char-

acterize spatial heterogeneity of colon cancer that has the potential generalization to

uncover widespread imaging-molecular correlations, which impacts treatment deter-

mination, prognosis assessment, and improved management of colon cancer.



CHAPTER 4: PATHOLOGY-AND-GENOMICS MULTIMODAL

TRANSFORMER FOR SURVIVAL OUTCOME PREDICTION

4.1 Motivation

We introduce a multimodal framework named PathOmics for survival outcome

prediction by integrating the pathological and genomics characteristics (Figure 4.1).

We showed our three contributions as below. (1) Unsupervised multimodal data

fusion: Our unsupervised pretraining leverages the inherent interaction between mor-

phological and molecular biomarkers (Figure 4.1a). To address the modality hetero-

geneity gap between images and genomics data, we map the multimodal embeddings

into a shared latent space by assessing their relevance. Notably, the pretrained model

employs relevance-guided modality fusion to extract cross-modal patterns. (2) Flex-

ible modality finetuning: A significant contribution of our multimodal framework

is that it can utilize the benefits from both unsupervised pretraining and supervised

finetuning data fusion (Figure 4.1b). Consequently, task-specific finetuning extends

dataset utility (Figure 4.1b and c), which allows flexible data modality usage (e.g.,

both single- and multi-modal data). (3) Data efficiency with limited data size:

Our approach achieves comparable performance even with fewer finetuned data (e.g.,

utilizing only 50% of the finetuned data) compared to using the entire finetuning

dataset.

4.2 Methodology

4.2.1 Overview

Figure 4.1 illustrates our multimodal transformer framework. Our method includes

unsupervised multimodal data fusion pretraining and supervised flexible-modal fine-



44

Attention 
Refiner 1

Attention
Refiner n

Image-wise
Transformer

Image-wise 
GAP

SNN 1

SNN n

Omics-wise
Transformer

Omics-wise 
GAP

?

(a) Unsupervised multimodal data fusion in pretraining

(b) Supervised multimodal finetuning (c) Supervised single-modal finetuning 

Feature
Extractor

N groups 
of patches

N groups of 
omics 

tabular data
GAP: Global attention pooling

Multimodal 
Embedding Fusion

Risk 
Classifier

Survival 
Prediction

Feature
Extractor

Risk Classifier

Risk Classifier

Survival Prediction

Survival Prediction

Omics 
embedding

Image 
embedding

Group-wise Feature Embedding Patient-wise Feature Embedding

Image embedding

Omics embedding

Figure 4.1: Workflow overview of the pathology-and-genomics multimodal trans-
former (PathOmics) for survival prediction (reproduced with permission from
Springer Nature [2]). In (a), we show the pipeline of extracting image and genomics
feature embedding via an unsupervised pretraining towards multimodal data fusion.
In (b) and (c), our supervised finetuning scheme could flexibly handle multiple types
of data for prognostic prediction. With the multimodal pretrained model backbones,
both multi- or single-modal data can be applicable for our model finetuning

tuning. From Figure 4.1a, in the pretraining, our unsupervised data fusion aims to

capture the interaction pattern of image and genomics features. Overall, we formu-

late the objective of multimodal feature learning by converting image patches and

tabular genomics data into group-wise embeddings and then extracting multimodal

patient-wise embeddings. More specifically, we construct group-wise representations

for both image and genomics modalities. For image feature representation, we ran-

domly divide image patches into groups. Meanwhile, for each type of genomics data,

we construct groups of genes depending on their clinical relevance [69]. Next, as seen

in Figure 4.1b and c, our approach enables three types of finetuning modal modes

(i.e., multimodal, image-only, and genomics-only) towards prognostic prediction, ex-

panding the downstream data utility from the pretrained model.
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4.2.2 Group-wise Image and Genomics Embedding

We define the group-wise genomics representation by referring toN = 8 major func-

tional groups obtained from [69]. Each group contains a list of well-defined molecular

features related to cancer biology, including transcription factors, tumor suppression,

cytokines and growth factors, cell differentiation markers, homeodomain proteins,

translocated cancer genes, and protein kinases. The group-wise genomics represen-

tation is defined as Gn ∈ R1×dg , where n ∈ N , dg is the attribute dimension in

each group which could be various. To better extract high-dimensional group-wise

genomics representation, we use a Self-Normalizing Network (SNN) together with

scaled exponential linear units (SeLU) and Alpha Dropout for feature extraction to

generate the group-wise embedding Gn ∈ R1×256 for each group.

For group-wise WSI representation, we first cropped all tissue-region image tiles

from the entire WSI and extracted CNN-based (e.g., ResNet50) di-dimensional fea-

tures for each image tile k as hk ∈ R1×di , where di = 1, 024, k ∈ K and K is

the number of image patches. We construct the group-wise WSIs representation by

randomly splitting image tile features into N groups (i.e., the same number as ge-

nomics categories). Therefore, group-wise image representation could be defined as

In ∈ Rkn×1024, where n ∈ N and kn represents tile k in group n. Then we apply

an attention-based refiner (ABR) [70], which is able to weight the feature embed-

dings in the group, together with a dimension deduction (e.g., fully-connected lay-

ers) to achieve the group-wise embedding. The ABR and the group-wise embedding

In ∈ R1×256 are defined as:

ak =
epx{wT (tanh(V1hk)� (sigm(V2hk))}∑K
j=1 epx{wT (tanh(V1hj)� (sigm(V2hj))}

(4.1)

where w,V1 and V2 are the learnable parameters.
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In =
K∑
k=1

akhk (4.2)

4.2.3 Patient-wise Multimodal Feature Embedding

To aggregate patient-wise multimodal feature embedding from the group-wise rep-

resentations, as shown in Figure 4.1a, we propose a pathology-and-genomics multi-

modal model containing two model streams, including a pathological image and a

genomics data stream. In each stream, we use the same architecture with different

weights, which is updated separately in each modality stream. In the pathological

image stream, the patient-wise image representation is aggregated by N group repre-

sentations as Ip ∈ RN×256, where p ∈ P and P is the number of patients. Similarly,

the patient-wise genomics representation is aggregated as Gp ∈ RN×256. After gen-

erating patient-wise representation, we utilize two transformer layers [71] to extract

feature embeddings for each modality as follows:

H l
p = MSA(Hp) (4.3)

where MSA refers to Multi-head Self-attention [71], l denotes layer index of the

transformer, and Hp could either be Ip or Gp. MSA is the combination of k self-

attention (SA) operations via concatenation operation. The SA uses dk-dim patient

embedding as the query Q, key K, and value V to learn paired relationship aij ∈ A

among qi ∈ Q and ki ∈ K:

softmax(
QKT

√
dk

) = A (4.4)

SA(Q,K, V ) = AV (4.5)

Then, we construct global attention poolings [70] as Equation 4.4 to adaptively
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determine a scored sum of each modality feature embeddings to finally construct

patient-wise embedding as Ipembedding ∈ R1×256 and Gp
embedding ∈ R1×256 in each modal-

ity.

4.2.4 Multimodal Fusion in Pretraining and Finetuning

Due to the domain gap between image and molecular feature heterogeneity, a proper

design of multimodal fusion is crucial to advance integrative analysis. In the pretrain-

ing stage, we develop an unsupervised data fusion strategy by decreasing the mean

square error (MSE) loss to map images and genomics embeddings into the same

space. Ideally, the image and genomics embeddings belonging to the same patient

should have a higher relevance to each other. MSE measures the average squared

difference between multimodal embeddings. Sequentially, in the latent space, the

pretrained model is developed to project the paired image and genomics embeddings

to be closer, leading to novel insights into multimodal interaction.

Lfusion = argmin
1

P

P∑
p=1

((Ipembedding −G
p
embedding)

2) (4.6)

In the single modality finetuning, even if we use image-only data, the model is able to

produce genomic-related image feature embedding due to the multimodal knowledge

aggregation already obtained from the model pretraining. As a result, our cross-modal

information aggregation relaxes the modality requirement in the finetuning stage. As

shown in Figure 4.1b, for multimodal finetuning, we deploy a concatenation layer

to obtain the fused multimodal feature representation and implement a risk classifier

(FC layer) to achieve the final survival stratification. As for single-modality finetuning

mode in Figure 4.1c, we simply feed Ipembedding or Gp
embedding into risk classifier for the

final prognosis prediction. During the finetuning, we update the model parameters

using a log-likelihood loss for the discrete-time survival model training [27]. We extend

the definition and detailed proof of "discrete-time survival prediction" as follows. The
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continuous event time Tj,continue ∈ [tr, tr +1) could be discretized as Tj, which is equal

to r, where r ∈ {0, 1, 2, 3} and j is the index of four non-overlapped intervals. The

discrete ground truth is Yj ∈ {0, 1, 2, 3}. With patient-wise embedding hfinalj , we

define the hazard function fhazard(r|hfinalj) as P (Tj = r|Tj ≥ r, hfinalj), which is

used for calculating the survival function (i.e., C-index calculation) fsurv(r|hfinalj)

through P (Tj > r|hfinalj) (i.e.,
∏r

u=1(1 − fhazard(u|hfinalj))). During the supervised

finetuning, the log-likelihood loss for model parameter updation is defined as −cj ·

log(fsurv(Yj|hfinalj))−(1−cj)·log(fsurv(Yj−1|hfinalj))−(1−cj)·log(fhazard(Yj|hfinalj)),

where cj = 0 means patient passed away during Tj and cj = 1 means patient lived

after Tj.

4.3 Experiments and Results

4.3.1 Datasets

All image and genomics data are publicly available. We collected WSIs from

The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) dataset (CC-

BY-3.0) [72, 47] and Rectum Adenocarcinoma (TCGA-READ) dataset (CC-BY-

3.0) [73, 47], which contain 440 and 153 patients. We cropped each WSI into 512 ×

512 non-overlapped patches. We also collected the corresponding tabular genomics

data (e.g., mRNA sequence, copy number alteration, and methylation) with overall

survival (OS) times and censorship statuses from Cbioportal [74, 48]. We removed

the samples without the corresponding genomics data or ground truth of survival

outcomes. Finally, we included 426 patients of TCGA-COAD and 145 patients of

TCGA-READ.

4.3.2 Experimental Settings and Implementations

We implement two types of settings that involve internal and external datasets

for model pretraining and finetuning. As shown in Figure 4.2a, we pretrain and

finetune the model on the same dataset (i.e., internal setting). We split TCGA-
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Figure 4.2: Dataset usage (reproduced with permission from Springer Nature [2]). In
a, we use TCGA-COAD dataset for model pretraining, finetuning, and evaluation. In
b, we use TCGA-COAD dataset for model pretraining. Then, we use TCGA-READ
dataset to finetune and evaluate the pretrained models

COAD into training (80%) and holdout testing set (20%). Then, on the training set,

we implement four-fold cross-validation for pretraining and hyperparameter-tuning

in the finetuning. The test set is only used to evaluate the best finetuned models

from each cross-validation split. For the external setting, we implement pretraining

and finetuning on the different datasets, as shown in Figure 4.2b; we use TCGA-

COAD for pretraining; Then, we only use TCGA-READ for finetuning and final

evaluation. We use a five-fold cross-validation for pretraining while we only use the

best pretrained models for finetuning. We split TCGA-READ into finetuning (60%),

validation (20%), and evaluation set (20%). For all experiments, we calculate the

average performance on the evaluation set across the best models.

The number of epochs for pretraining and finetuning is 25, and we set the batch

size as 1; the learning rate is 1e-4 for pretraining and 5e-5 for finetuning with an

Adam optimizer [52]. We used one 32GB Tesla V100 SXM2 GPU and Pytorch. The

concordance index (C-index) is used to measure the survival prediction performance.

We followed the previous studies [27, 25, 26] to partition the overall survival (OS)

months into four non-overlapping intervals by using the quartiles of event times of
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uncensored patients for discretized-survival C-index calculation (see Appendix 2).

For each experiment, we reported the average C-index among three-times repeated

experiments. Conceptionally, our method shares a similar idea to multiple instance

learning (MIL) [75, 76]. Therefore, we include two types of baseline models, including

the MIL-based models (DeepSet [77], AB-MIL [70], and TransMIL [78]) and MIL

multimodal-based models (MCAT [27], PORPOISE [26]). We follow the same data

split and processing, as well as the identical training hyperparameters and supervised

fusion as above. Notably, there is no need for supervised finetuning for the baselines

when using TCGA-COAD (Table ??), because the supervised pretraining is already

applied to the training set.

4.3.3 Results

In Table 4.1 and Table 4.2, our approach shows improved survival prediction per-

formance on both TCGA-COAD and TCGA-READ datasets. Compared with su-

pervised baselines, our unsupervised data fusion is able to extract the phenotype-

genotype interaction features, leading to achieving a flexible finetuning for different

data settings. With the multimodal pretraining and finetuning, our method outper-

forms state-of-the-art models by about 2% on TCGA-COAD and 4% TCGA-READ.

We recognize that the combination of image and mRNA sequencing data leads to

reflecting distinguishing survival outcomes. Remarkably, our model achieved positive

results even using a single-modal finetuning when compared with baselines (more re-

sults in Appendix 3.1). In the meantime, on the TCGA-READ, our single-modality

finetuned model achieves a better performance than multimodal finetuned baseline

models (e.g., with model pretraining via image and methylation data, we have only

used the image data for finetuning and achieved a C-index of 74.85%, which is about

4% higher than the best baseline models). We show that with a single-modal finetun-

ing strategy, the model could generate meaningful embedding to combine image- and

genomic-related patterns. In addition, our model reflects its efficiency on the limited



51

Table 4.1: The comparison of C-index performance on TCGA-COAD dataset.
"Methy" is used as the abbreviation of Methylation

Model Pretrain
data modality TCGA-COAD

Finetune
data modality

C-index
(STD)

image+mRNA - 58.70 (1.10)
DeepSets

[77] image+CNA - 51.50 (2.60)

image+Methy - 65.61 (1.86)
image+mRNA - 54.12 (2.88)

AB-MIL
[70] image+CNA - 54.68 (2.44)

image+Methy - 49.66 (1.58)
image+mRNA - 54.15 (1.02)

TransMIL
[78] image+CNA - 59.80 (0.98)

image+Methy - 53.35 (1.78)
image+mRNA - 65.02 (3.10)

MCAT
[27] image+CNA - 64.66 (2.31)

image+Methy - 60.98 (2.43)
image+mRNA - 65.31 (1.26)

PORPOI
-SE [26] image+CNA - 57.32 (1.78)

image+Methy - 61.84 (1.10)

Ours

image+mRNA
image+mRNA 67.32 (1.69)

image 63.78 (1.22)
mRNA 60.76 (0.88)

image+CNA
image+CNA 61.19 (1.03)

image 58.06 (1.54)
CNA 56.43 (1.02)

image+Methy
image+Methy 67.22 (1.67)

image 60.43 (0.72)
Methy 61.06 (1.34)

finetuning data (e.g., 75 patients are used for finetuning on TCGA-READ, which are

only 22% of TCGA-COAD finetuning data). In Table 4.1 and Table 4.2, our method

could yield better performance compared with baselines on the small dataset across

the combination of images and multiple types of genomics data.
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Table 4.2: The comparison of C-index performance on TCGA-READ dataset.
"Methy" is used as the abbreviation of Methylation

Model Pretrain
data modality TCGA-READ

Finetune
data modality

C-index
(STD)

image+mRNA image+mRNA 70.19 (1.45)
DeepSets

[77] image+CNA image+CNA 62.50 (2.52)

image+Methy image+Methy 55.78 (1.22)
image+mRNA image+mRNA 68.79 (1.44)

AB-MIL
[70] image+CNA image+CNA 66.72 (0.81)

image+Methy image+Methy 55.78 (1.22)
image+mRNA image+mRNA 67.91 (2.35)

TransMIL
[78] image+CNA image+CNA 62.75 (1.92)

image+Methy image+Methy 53.09 (1.46)
image+mRNA image+mRNA 70.27 (2.75)

MCAT
[27] image+CNA image+CNA 60.50 (1.25)

image+Methy image+Methy 59.78 (1.20)
image+mRNA image+mRNA 68.18 (1.62)

PORPOI
-SE [26] image+CNA image+CNA 60.19 (1.48)

image+Methy image+Methy 68.80 (0.92)

Ours

image+mRNA
image+mRNA 74.35 (1.15)

image 74.85 (0.37)
mRNA 59.61 (1.37)

image+CNA
image+CNA 73.95 (1.05)

image 71.18 (1.39)
CNA 63.95 (0.55)

image+Methy
image+Methy 71.80 (2.03)

image 64.42 (0.72)
Methy 65.42 (0.91)

4.3.4 Ablation Analysis

We verify the model efficiency by using fewer amounts of finetuning data in finetun-

ing. For TCGA-COAD dataset, we include 50%, 25%, and 10% of the finetuning data.

For the TCGA-READ dataset, as the number of uncensored patients is limited, we
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Figure 4.3: Ablation study (reproduced with permission from Springer Nature [2]). In
(a) and (b), we evaluate the model efficiency by using fewer data for model finetuning
on TCGA-COAD and TCGA-READ. We show the average C-index of baselines, the
detailed results are shown in the Appendix 3.2

use 75%, 50%, and 25% of the finetuning data to allow at least one uncensored patient

to be included for finetuning. As shown in Figure 4.3a, by using 50% of TCGA-COAD

finetuning data, our approach achieves the C-index of 64.80%, which is higher than

the average performance of baselines in several modalities. Similarly, in Figure 4.3b,

our model retains a good performance by using 50% or 75% of TCGA-READ finetun-

ing data compared with the average of C-index across baselines (e.g., 72.32% versus

64.23%). For evaluating the effect of cross-modality information extraction in the

pretraining, we kept supervised model training (i.e., the finetuning stage) while re-

moving the unsupervised pretraining. The performance is lower 2%-10% than ours

on multi- and single-modality data. For evaluating the genomics data usage, we de-

signed two settings: (1) combining all types of genomics data and categorizing them

by groups; (2) removing category information while keeping using different types of

genomics data separately. Our approach outperforms the above ablation studies by

3%-7% on TCGA-READ and performs similarly on TCGA-COAD. In addition, we

replaced our unsupervised loss with cosine similarity loss; our approach outperforms

the setting of using cosine similarity loss by 3%-6%.
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4.4 Summary

Developing data-efficient multimodal learning is meaningful in advancing the pa-

tient survival assessment in a variety of clinical data scenarios. We demonstrated that

the proposed PathOmics framework is useful for improving the survival prediction of

colon and rectum cancer patients. Importantly, our approach opens up perspectives

for exploring the key insights of intrinsic genotype-phenotype interactions in complex

cancer data across modalities. Our finetuning approach broadens the scope of dataset

inclusion, particularly for model finetuning and evaluation, while enhancing model ef-

ficiency on analyzing multimodal clinical data in real-world settings. In addition, the

use of synthetic data and developing a foundation model training will be helpful to

improve the robustness of multimodal data fusion [79, 80].



CHAPTER 5: CONTRASTIVE PATHOLOGY-AND-GENOMICS MULTIMODAL

LEARNING FOR SURVIVAL OUTCOME PREDICTION

5.1 Motivation

Inspired by the previous success of PathOmics [2] in patient survival outcome pre-

diction, image-genomics multimodal analysis becomes a viable solution enabling pre-

cise patient prognosis in real-world applications. Yet, several challenges remain to

be addressed for better performance and more reliable multimodal knowledge acqui-

sition. The pertaining scheme in PathOmics can potentially mix the unique charac-

teristics among individual patients because of the missing scheme for distinguishing

patients. To overcome this challenge, we propose an effective contrastive pathol-

ogy and genomics pretraining scheme to capture the multimodal interactions while

distinguishing the differences among different patients.

5.2 Preliminary

5.2.1 Multimodal Contrastive Pretraining

The advent of contrastive learning introduces a discriminative method aiming to

lead similar samples to be closer to each other while making the different samples

far from each other [81]. For instance, within the image domain, contrastive learning

trains image encoders by generating augmented image data, optimizing to maximize

the similarity between their projected embeddings while maximizing the dissimilarity

with embeddings of other samples [82]. Notably, implementations like SimCLR [83],

BYOL [84], and MOCO [85] have popularized contrastive learning, showing their

promising feature representation capabilities across single modality studies, including

images or text.
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An effective contrastive loss function is widely used, which is called InfoNCE [86]:

Lq,k+,k− = − log
exp(q · k+/τ)

exp(q · k+/τ) +
∑

k−
exp(q · k−/τ)

. (5.1)

q denotes a query, k+ represents the representation of a positively related (similar)

key sample, and k− is the representation of negatively related (dissimilar) key sam-

ples [87]. The parameter τ refers to a temperature hyper-parameter. In the pretext

task of instance discrimination [88], a query and a key form a positive pair if they

originate from the same image source. Conversely, if the query and key are from

different sources, they constitute a negative pair. In an end-to-end setup, keys as-

sociated with negative pairs are sampled from the same batch and updated through

backpropagation. SimCLR [83] employs the above mechanism, requiring a large num-

ber of batch sizes to provide a sizable set of negative pairs. Conversely, in the MoCo

mechanism [85], the negative pairs are stored in a queue, while positive pairs of the

queries and keys can be encoded during each training step.

Inspired by such latent representation learning ability, contrastive learning becomes

a viable solution for multimodal information aggregation and embedding generation.

Such as CLIP [84], which integrates images and language, is a leading model for multi-

modal analysis. It also shows promising generalizability by yielding good performance

on zero-shot inference tasks. Such models are generally training on a large-scale web-

curated dataset with millions of parameters, which are known as foundational models,

such as UniCL [89], Florence [90], and ALIGN [91]. In the medical domain, there are

limited studies in analyzing multimodal data by foundation models because of the

limited size of medical datasets for model development. Recently, image and genomics

data have been explored for multimodal knowledge aggregating, aiming to enhance

disease diagnosis and prognosis performance (e.g., imaging and genetic data multi-

modal analysis [92]). Furthermore, self-supervised tabular and imaging models [93]

have shown the possibility of utilizing multimodal models for clinical-related analysis,
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Yet they use only two or four clinical features.

Among the introduced promising multimodal contrastive learning studies, CLIP is

widely used several fields, including the medical domain. The proposed pair-wise pre-

training strategy enables promising generalizability of downstream tasks. In detail,

CLIP (Contrastive Language-Image Pretraining) [84] is a pretraining method devel-

oped by OpenAI, designed to fill the gap between images and texts. CLIP jointly

optimizes a vision encoder and a text encoder to produce single-modality embedding.

It ensures that image-text pairs are closely aligned while unpaired image and text are

far from each other in a shared latent space. Unlike the previous methods that rely

on extensive manual efforts or complex model architecture, CLIP introduces an effi-

cient and simple means for multimodal information aggregation and yields promising

performance, especially on zero-shot tasks.

5.2.2 Contrastive Pre-training Architecture and Principles

The architecture of CLIP integrates a vision encoder model with a language encoder

model by following a loss function principle similar to that of InfoNCE. The visual

encoder can be based on either ResNet [94] or Vision Transformer (ViT) [95], while the

text encoder is selected as a transformer-based architecture like BERT [96]. During

the pretraining stage, CLIP is fed by a batch of images and their corresponding text

captions as input in each iteration. Similar to the single-modal encoding process,

each single-modal embedding in CLIP is normalized and projected to a joint image-

text latent space. The original images and texts are encoded into I ∈ RN×D and

T ∈ RN×D, respectively, where N denotes batch size, and D represents embedding

dimensionality.

In CLIP, contrastive pretraining plays a crucial role in image-text modality knowl-

edge alignment. Different from the conventional models that are supervised by a single

or predefined task, CLIP learns the inherent interactions between paired image-text

information by contrastive pretraining. In detail, N2 image and text pairs can be
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constructed by the batch size of N , where N matched pairs of image and text data

(i.e., positive pairs) and (N2 −N) unmatched image-text pairs (i.e., negative pairs).

The pretraining loss function for the image encoder is hence denoted as

Limg = − 1

N

N∑
i=1

log
exp(Φ(Ii, Ti)/τ)∑N
j=1 exp(Φ(Ii, Tj)/τ)

, (5.2)

where Φ(·, ·) is denoted as cosine similarity calculation, the symbol τ is a learnable

temperature parameter, Ii and Ti refers to the ith image embedding and text embed-

ding, respectively. The loss function for the text encoder is:

Ltxt = − 1

N

N∑
i=1

log
exp(Φ(Ti, Ii)/τ)∑N
j=1 exp(Φ(Ti, Ij)/τ)

. (5.3)

The total optimization loss function of CLIP is designed as the average of Equation

5.2 and Equation 5.2:

Ltotal =
Limg + Ltxt

2
. (5.4)

5.2.3 The Generalizability of CLIP on Zero-shot Tasks

With the advent of pretraining CLIP by predicting whether an image matches a

textual caption instead of specific supervised tasks, CLIP is naturally suitable for

applying to zero-shot scenarios. In the inference stage, CLIP will not be fine-tuned

as conventional methods. Alternatively, the pretrained CLIP is used to generate the

embedding of query images or text. Then, the generated image or text embeddings

will be used to compare with the other embeddings. CLIP presents a unique means

for solving zero-shot classification tasks as follows. I1 represents the image features

extracted by the image encoder for a query image x, and {Wi}Ki=1 is a set of class

embeddings generated by the text encoder of CLIP, where K denotes the number

of classes, and each Wi is a text prompt resembling “a photo of a [CLASS]”. The
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probability of class prediction is calculated by:

p(y = i|I1) =
exp(Φ(I1,Wi)/τ)∑K
j=1 exp(Φ(I1,Wj)/τ)

, (5.5)

where τ is a temperature parameter achieved during pretraining, and Φ(·, ·) is the

operation of the cosine similarity. Although originally trained on web-curated images

and the corresponding text captions, CLIP has demonstrated its promising capability

in several downstream tasks. The unique inference capability in zero-shot allows CLIP

to understand a query image without explicit prior training.

5.3 Methodology

5.3.1 Overview

We show our contrastive-based pathology-and-genomics multimodal framework (C-

PathOmics) in Figure 5.1. Our framework develops an unsupervised pretraining

approach for multimodal data fusion by exploiting contrastive learning, along with

a supervised flexible-modal finetuning that allows for specific task alignment. In

the unsupervised pretraining phase, illustrated in Figure 5.1a, our contrastive-based

data fusion aims to capture the interaction pattern of pathological images and ge-

nomics embeddings while enhancing the distinction among different patients. We

start by randomly partitioning image patches into groups [2]. Simultaneously, for

each type of genomics data, we create groups of genes based on their clinical rel-

evance [69]. Subsequently, we transform image patches and tabular genomics data

into group-wise embeddings, followed by the integration of single-modal group-wise

embeddings into multimodal patient-wise embeddings. In Figure 5.1b, our approach

facilitates a modality-flexible finetuning strategy (e.g., multimodal, image-only, and

genomics-only data), enabling enhanced patient prognostic prediction by broadening

the downstream data utility derived from the pretrained model. Such a modality-

flexible fine-tuning scheme also provides a viable solution for addressing real-world
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Multimodal Embedding Fusion

(a) Contrastive-based Unsupervised Pretraining

Survival 
Outcome

Classifier
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(b) Multi-modal Multi-task Finetuning
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Figure 5.1: Workflow overview of the contrastive-based pathology-and-genomics mul-
timodal model (C-PathOmics) for survival prediction. In (a), we illustrate the
pipeline for extracting image and genomics feature embeddings via contrastive-based
unsupervised pretraining, facilitating multimodal data fusion. In (b), our modality-
flexible supervised finetuning scheme can handle multiple data modalities for patient
outcome prediction. Leveraging the multimodal pretrained model backbones, both
multi- and single-modal data can be utilized for our model finetuning.

patient data modality missing concerns.

5.3.2 Contrastive Pathology-and-genomics Pretraining

To fill the domain gap between histopathological image and molecular characteris-

tics heterogeneity, proper multimodal knowledge fusion is crucial in advancing inte-

grative analysis and enabling precise patient outcome prediction. In the pretraining

stage, different from the previous study [2], we develop an unsupervised data fusion

strategy based on the success of contrastive multimodal pretraining. We hypothesized

that the histopathological image and genomics embeddings belonging to the same pa-

tient should be more relevant to each other. Alternatively, the pathology-genomics

pairs belonging to different patients should have a lower relevance to each other.

To bridge the gap between the heterogeneity between multimodal characteristics

(i.e., image and genomics data), effective multimodal knowledge fusion is promising
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for enabling precise patient outcome prediction. In the pretraining stage, unlike the

approach in the previous study [2], we introduce an unsupervised pretraining strategy

based on contrastive multimodal data fusion. Our hypothesis is that the histopatho-

logical images and genomics embeddings belonging to the same patient should have

higher relevance compared to those belonging to different patients. We aim to de-

velop a contrastive-based multimodal pretraining scheme for the model by mapping

the paired image and genomics embeddings to be more relevant to the latent space

while the unpaired pathology-genomics embeddings should be far from each other.

Such contrastive-based multimodal knowledge integration is able to enhance the rele-

vance among multiple modalities while distinguishing the differences between various

patients. We list our algorithm for contrastive pathology-and-genomics pretraining

as follows:
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Input: P[n, h, w, c] - minibatch of pathological images

G[n, l] - minibatch of the corresponding genomic sequence of the images

Wp[dp, de] - learned projection of image for embedding

Wg[dg, de] - learned projection of text for embedding

t - learnable temperature parameter

Output: loss

// Extract feature representations of each modality

Pf ← pathological_encoder(P) ; // [m, dp]

Gf ← genomics_encoder(G) ; // [n, dg]

// Joint multimodal embedding

Pe ← l2_normalize(np.dot(Pf ,Wp), axis=1) ; // [m, de]

Ge ← l2_normalize(np.dot(Gf ,Wg), axis=1) ; // [n, de]

// Scaled pairwise cosine similarities

logits ← np.dot(Pe, G
>
e )× exp(t) ; // [m, n]

// Symmetric loss function

labels ← np.arange(n)

loss_p ← cross_entropy(logits, labels, axis=0)

loss_g ← cross_entropy(logits, labels, axis=1)

loss ← (loss_p + loss_G)/2

return loss
Algorithm 1: Multimodal Symmetric Loss Algorithm

5.3.3 Modality-flexible Finetuning

Following the previous study [2], we use a modality-flexible finetuning strategy

to extend the usage of our method. In the real-world scenario, such a modality-

flexible finetuning strategy is able to introduce benefits to patients with missing data.

The input in the finetuning stage can either be multimodal data (e.g., pathological
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Figure 5.2: Dataset usage. we combine TCGA-COAD and TCGA-READ datasets for
model pretraining, finetuning, and evaluation. In the figure, we use a four-fold cross-
validation for model training and selection (i.e., validation) in both the unsupervised
pretraining and supervised finetuning stages. In the evaluation stage, we use a hold-
out test set for model performance evaluation to avoid data leakage issues and ensure
the fairness of the evaluation.

image and genomics data) or single-modal data (e.g., image- or genomics-only data).

In the stage of multimodal finetuning, we utilize a simple concatenation operation

to integrate the feature representations from multiple modalities and exploit a risk

classifier (FC layers) to predict patient survival outcomes. Regarding the single-

modality finetuning scheme, we directly use either the image or genomics embedding

as the input for the risk classifier to access the patient prognosis prediction. In

finetuning, we update the parameters of the model using a log-likelihood loss for the

discrete-time survival model training as introduced in[2].

5.4 Experiments and Results

5.4.1 Experimental Settings and Implementations

To include as much data as we can, we use both TCGA-COAD and TCGA-READ

datasets (e.g., named TCGA-CRC) for further experiments. As shown in Figure 5.2,

we pretrain and finetune the model on the TCGA-CRC dataset. We split TCGA-
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CRC into a training set (80%) and a holdout testing set (20%). Subsequently, we

perform four-fold cross-validation on the training set for both pretraining and fine-

tuning. In Kth cross-validation split, where k = 4, we randomly select one fold as

the validation fold for hyperparameter-tuning while training the model on the rest

of the three folds. The hold-out test set is solely set to evaluate the best finetuned

models, which are selected in each cross-validation split. The number of epochs is set

to 25 and the batch size of 8 in both pretraining and finetuning. We set the initial

learning rate as 5e-4 for pretraining and 1e-4 for finetuning. We also use a learn-

ing rate scheduler to decrease the learning rate in every ten epochs. We utilize the

Adam optimizer [52] in our experiments. We did the experiments on a single 48GB

Nvidia RTX A6000 GPU using Pytorch. Similar to the previous study [2], we use

the concordance index (C-index) to measure survival outcome prediction performance

by using the risk score, event time, and censored status. Following previous studies

[27, 25, 26], we partition the overall survival (OS) months into four non-overlapping

intervals by using the quartiles of event times of uncensored patients for discretized-

survival C-index calculation. For each experiment, we report the average C-index

among three times repeated experiments with different random seeds (i.e., 42, 1024,

and 2048). Our method shares similarities with the concept of multiple instance

learning (MIL) [75, 76]. Hence, we first contain MIL-based models (DeepSet [77],

AB-MIL [70], and TransMIL [78]) as baseline models. Then, we include SOTA multi-

modal methods (MCAT [27], PORPOISE [26], and PathOmics [2]). We use the same

dataset split, model training hyperparameters, and supervised fusion as mentioned

above. Notably, supervised finetuning is not required for the baselines (Table 5.1), as

they undergo supervised training directly on the training set without an unsupervised

training stage.
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Table 5.1: The comparison of C-index performance on TCGA-CRC dataset. "Methy"
is used as the abbreviation of Methylation

Model Pretrain
data modality TCGA-CRC

Finetune
data modality

C-index
(STD)

image+mRNA - 57.19 (4.04)
DeepSets

[77] image+CNA - 56.38 (4.81)

image+Methy - 56.78 (2.70)
image+mRNA - 60.80 (1.50)

AB-MIL
[70] image+CNA - 51.62 (1.51)

image+Methy - 58.49 (4.75)
image+mRNA - 60.72 (4.01)

TransMIL
[78] image+CNA - 58.89 (3.06)

image+Methy - 52.47 (3.49)
image+mRNA - 64.52 (3.79)

MCAT
[27] image+CNA - 56.22 (2.39)

image+Methy - 56.25 (2.75)
image+mRNA - 57.43 (3.30)

PORPOI
-SE [26] image+CNA - 56.87 (1.66)

image+Methy - 54.59 (1.86)
image+mRNA image+mRNA 61.80 (1.43)

PathOmics [2] image+CNA image+CNA 64.53 (1.66)
image+Methy image+Methy 58.39 (2.11)

Ours

image+mRNA
image+mRNA 66.03 (2.39)

image 56.22 (2.36)
mRNA 67.29 (2.72)

image+CNA
image+CNA 61.20 (2.19)

image 62.14 (1.70)
CNA 61.30 (3.48)

image+Methy
image+Methy 59.06 (2.80)

image 58.45 (1.55)
Methy 57.06 (1.79)
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5.4.2 Results

As shown in Table 5.1, our proposed method shows improved survival predic-

tion performance on TCGA-CRC among different types of baseline models. Com-

pared with supervised baselines, our contrastive-based unsupervised data fusion shows

a promising capability in extracting the phenotype-genotype interaction features,

leading to a good survival outcome prediction performance with flexible finetuning

among different data modality settings. The state-of-the-art supervised baseline is

MCAT [27], which yields a c-index of 64.52% for survival outcome prediction us-

ing multimodal data (i.e., image and miRNA data). Our proposed method is able

to outperform 2% performance improvement compared with MCAT by using image

and miRNA data for model pretraining and finetuning. Promisingly, pretraining our

model on image and miRNA data and finetuning on miRNA-only data can yield the

best performance (e.g., the c-index of 67.29%), which is about 4% higher than the

best baseline model on any combination of multimodal data. Even compared with

our two-stage workflow PathOmics [2], which does not have contrastive learning in

the pretraining scheme, our current method achieves better performance among the

majority of data modality combinations. For example, under the same pretraining

and finetuning data modality usage, we achieved about 9% performance improvement

by pretraining the model with image and miRNA data and 1% performance improve-

ment by pretraining on image and Methylation data. Such significant performance

improvement demonstrates the efficiency of our contrastive-based pretraining strat-

egy. Our contrastive-based pretraining is able to capture the complex interactions

among multimodal data while distinguishing the difference between patients, while

the pretraining scheme in PathOmics does not have the capability to learn patient

differences.



67

5.4.3 Ablation Analysis

We verify the optimal design of model architecture and training parameters by

designing two groups of ablation studies by comparing model performance with the

various parameter settings: (1) the model performance of batch size and (2) the effect

of the group of images. Different from the previous studies for survival outcome

predictions (e.g., MCAT, PathOmics, etc.), which specify the batch size as 1, our

proposed method is flexible to increase the batch size. Furthermore, as demonstrated

in multiple contrastive-based methods, the larger the batch size is, the more available

pairs will exist, and the conclusion could be different from our specific dataset. Unlike

natural image-text datasets, the medical-domain dataset is not large enough. Hence,

it could be crucial to select the proper batch size in our study to achieve the optimal

performance of patient survival outcome prediction. Because of the total number

of TCGA-COAD, we set the batch sizes as 2, 4, 8, and 16 for both the pertaining

and finetuning stages. Our approach can yield the optimal performance by setting

batch size as 8. We determined the optimal option for the number of batch sizes as

8 in our study, which yields the best performance among 2/3 types of multimodal

combinations. Finally, we explore the effect of the group of images. We evaluated

the different number of image groups, which vary in 2, 4, and 8. We found that the

number of image groups can affect the model performance, as shown in Figure 5.3(b).

We determined the optimal option for the number of image groups is 4 in our study,

which yields the best performance among 2/3 types of multimodal combinations.

5.5 Summary

With the emergence of multimodal learning in the medical domain, it is promising

to develop the domain-specific multimodal model to enhance the survival progno-

sis of colorectal cancer patients across various clinical data scenarios. Our study

demonstrates the capability of the proposed contrastive-based PathOmics model in
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(a) (b)

Figure 5.3: Ablation study. In (a) and (b), we evaluate the effect of using various
batch size and the number of image group on TCGA-CRC. We show the average
C-index among three times of running in the figure.

improving the survival prediction performance for patients with colorectal cancer.

This approach opens the way for investigating the fundamental insights into the intri-

cate genotype-phenotype interactions present in complex cancer data across different

modalities. Furthermore, we improved the design of the previous study to enable a

robust prediction of survival outcomes by introducing contrastive-based multimodal

learning to distinguish patient differences. The modality-flexible finetuning strategy

opens the possibility of broadening the usage of the dataset. In the real-world applica-

tion scenario, the proposed modality-flexible finetuning strategy is able to introduce

benefits to patients with missing data. In the stage of single modality finetuning, even

when only utilizing image data, the model demonstrates the capability to generate

genomic-related image embeddings. The reason is that the multimodal knowledge ag-

gregation has been acquired during the model pretraining phase. Consequently, our

cross-modal information aggregation alleviates the strict modality constraints during

the finetuning stage.



CHAPTER 6: CONCLUSIONS AND FUTURE WORKS

Exploring histopathological and genomics data promises to enhance our under-

standing of complex cancer biology, enabling a better patient outcome assessment.

In this dissertation, we proposed a graph neural network (GNN) framework that al-

lows multi-region spatial connection of tiles to predict cross-scale molecular profile

status in colon cancer. We demonstrated the validity of spatial connections of tumor

tiles built upon the geometric coordinate from the raw whole-slide images (WSI) that

were not reported in prior studies. We provided the interpretation by visualizing the

image tiles and measuring the topological structure of tile-connected graphs. The

explorations broadened our understanding of histopathological characteristics, estab-

lishing connections to a wide range of cross-scale molecular profile alterations, ranging

from gene mutations and copy number alterations to functional protein expressions

indicative of treatment relevance.

To better explore and utilize the inherent interaction among histopathological and

genomics data, developing multimodal workflow becomes crucial to advance the sur-

vival assessment of cancer patients in real-world clinical applications. We demon-

strated that the proposed PathOmics framework is useful for improving the sur-

vival prediction of colon and rectum cancer patients compared with the conventional

attention-based and multimodal-based state-of-the-art models. Unsupervised pre-

training reduces the dependency on data annotation and opens up perspectives for

extracting and understanding the intrinsic genotype-phenotype interactions hidden

in complex cancer data across modalities. Yet, the patient distinguishes the challenge

that remains to be addressed. We demonstrated that the proposed contrastive-based

PathOmics framework is useful for improving the survival prediction of colon and
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rectum cancer patients. We further improved the design of the previous workflow to

enable a robust prediction of survival outcomes by introducing a contrastive-based

multimodal pretraining strategy to distinguish patient differences when aggregating

the multimodal knowledge. Furthermore, the efficient finetuning approach broadens

the scope of dataset usage, particularly for model finetuning and evaluation. The

proposed modality-flexible finetuning strategy introduces the possibility to patients

whose data has missing modalities. In single-modality finetuning, the single-modal

data can still utilize the complementary knowledge from other modalities. For exam-

ple, even if the patient in finetuning only has image-based data, the model is able to

generate genomic-related image feature embedding for patient survival outcome pre-

diction. The complex multimodal knowledge aggregation has already been finished

in the model pretraining stage. Hence, cross-modal information aggregation reduces

the requirement for data modality in the finetuning stage.

To fully leverage the inherent interactions between histopathological and genomics

data, the development of multimodal workflow is important for advancing the survival

assessment of cancer patients in real-world clinical scenarios. Our study demonstrates

that the proposed PathOmics framework significantly enhances the survival prediction

performance for colorectal cancer patients compared to conventional attention-based

and multimodal-based state-of-the-art models. Leveraging an unsupervised pertain-

ing scheme allows us to reduce reliance on data annotation and facilitate the intrin-

sic genotype-phenotype interactions present in complex cancer data across different

modalities. However, the patient distinction remains a challenge that needs to be ad-

dressed in the PathOmics workflow. To overcome this challenge, our contrastive-based

PathOmics framework introduces a robust strategy for survival outcome prediction by

emphasizing patient differences during multimodal knowledge aggregation. Moreover,

our proposed workflow continues using a modal-flexible finetuning approach, expand-

ing the usage of datasets for model finetuning and evaluation. The modality-flexible
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finetuning strategy accommodates patients with missing modalities, enabling a more

inclusive approach to survival prediction. The proposed modality-flexible finetuning

strategy introduces the possibility to patients whose data has missing modalities. In

single-modality finetuning, the single-modal data can still utilize the complementary

knowledge from other modalities. For instance, even if the patient in finetuning only

has image-based data, the model is capable of generating genomic-related image fea-

ture embeddings for patient survival outcome prediction. The multimodal knowledge

aggregation has already been done in the pretraining stage.

As a limitation of the proposed pathology-and-genomics for patient outcome predic-

tion pipelines in this dissertation, we acknowledge that we only perform and validate

our models on colorectal cancer in this dissertation. It is reasonable to evaluate the

generalization power of our proposed pipelines by extending the scope across different

types of cancers in the future. For example, we would like to extend our pretraining

scheme on the multimodal pan-cancer dataset to aggregate multiple disease patterns,

enabling a comprehensive understanding of human cancer. The potential interactions

among cancers may also introduce novel benefits to patient outcome analysis. Finally,

we plan to make more efforts on our methodology to enhance the performance of pa-

tient outcome prediction, including introducing recent powerful foundation models

enabling a better capability in disease pattern capturing [97, 98, 99]. Also, a general-

purpose foundation model can be a promising application in the healthcare domain.

In this dissertation, all proposed model architectures focused on solving the unique

question, e.g., molecular profile alteration and patient survival outcome prediction.

Yet, in the real-world clinical workflow, the patient does not have to find two doctors

to answer these questions, while a single doctor can provide the answers to multiple

questions to the patient. In the future, a general-purpose foundation model in health-

care can help accelerate the real-world clinical workflow by producing the answer to

multiple tasks.
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APPENDIX A: SUPPLEMENTARY TABLES

Table A.1: Gene mutation prediction results (reproduced with permission from El-
sevier [1]). For TCGA-COAD, we summarized AUC (with 95% CI) of our graph
networks models. For TCGA-READ, we trained the model on colon cancer (TCGA-
COAD) and directly evaluated the gene mutation data on rectum cancer.

TCGA-COAD TCGA-READ

Gene Mutation
percentage

Slide AUC
(95% CIs)

Mutation
percentage

Slide AUC
(95% CIs)

APC 73.40% 82.19 (78.00, 86.25) 77.60% 66.70 (57.46, 75.60)
TP53 58.65% 81.68 (77.94, 85.50) 73.60% 68.02 (59.63, 76.30)
TTN 50.64% 79.48 (75.21, 83.44) 35.29% 63.71 (54.83, 71.74)
RYR1 44.55% 84.86 (81.06, 88.47) 40.00% 77.44 (70.31, 84.33)
KRAS 42.95% 80.16 (75.83, 83.93) 38.40% 71.02 (63.16, 77.67)
PIK3CA 32.37% 79.85 (75.14, 84.18) 21.60% 67.93 (58.22, 76.91)
SYNE1 28.53% 81.94 (75.21, 83.44) 21.60% 70.46 (61.37, 79.61)
MUC16 27.24% 79.94 (74.87, 84.51) 15.20% 75.27 (67.12, 82.76)
FAT4 24.68% 83.40 (79.02, 87.65) 14.40% 62.20 (50.29, 73.49)

OBSCN 20.51% 82.52 (77.43, 87.22) 8.80% 77.09 (63.43, 89.47)
ZFHX4 19.87% 83.17 (78.00, 87.98) 7.20% 81.80 (72.20, 89.70)
RYR2 19.55% 87.08 (83.28, 90.82) 15.20% 66.14 (55.56, 76.45)
LRP1B 19.15% 84.18 (79.21, 88.39) 14.40% 66.70 (51.06, 71.62)
FBXW7 18.91% 82.95 (78.20, 87.03) 13.60% 65.01 (54.36, 75.79)
CSMD3 18.90% 82.17 (77.82, 86.57) 9.60% 70.58 (55.79, 84.83)
CSMD1 18.59% 84.18 (79.23, 88.97) 11.20% 66.22 (54.71, 76.96)
DNAH5 18.59% 83.75 (79.20, 87.65) 9.6% 66.00 (51.55, 79.46)
FLG 16.35% 82.54 (77.41, 87.14) 13.60% 70.91 (60.35, 82.70)
FAT3 15.38% 87.01 (82.03, 91.76) 10.40% 73.94 (63.29, 83.81)

DNAH11 15.06% 82.42 (77.16, 87.75) 9.60% 73.16 (59.23, 86.70)
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Table A.2: Copy number alteration gene prediction results. For TCGA-COAD, we
summarized AUC (with 95% CI) of our graph networks models (reproduced with
permission from Elsevier [1]). For TCGA-READ, we trained the model on colon
cancer (TCGA-COAD) and directly evaluated the gene CNA data on rectum cancer.

TCGA-COAD TCGA-READ

Gene Alteration
percentage

Slide AUC
(95% CIs)

Alteration
percentage

Slide AUC
(95% CIs)

CCSER1 23.08% 81.91 (77.16, 86.54) 17.60% 63.68 (51.51, 74.71)
COX4I2 14.42% 78.07 (71.51, 83.35) 6.40% 70.03 (45.67, 70.58)
CSMD1 11.22% 79.86 (73.08, 85.67) 8.00% 76.48 (64.78, 86.71)
DEFB118 9.29% 88.39 (83.51, 93.33) 11.20% 71.72 (57.49, 84.58)
DUSP15 8.10% 79.23 (71.28, 86.65) 15.20% 57.60 (44.60, 69.94)
FOXS1 8.65% 79.83 (73.18, 88.14) 8.80% 73.52 (62.13, 84.29)
ID1 8.01% 79.81 (69.27, 89.18) 15.20% 62.44 (50.55, 73.45)

MACROD2 8.01% 81.98 (73.34, 89.68) 15.20% 58.64 (47.29, 69.75)
MYLK2 8.01% 80.91 (72.65, 88.38) 15.20% 62.66 (48.24, 71.84)
HCK 7.69% 80.39 (72.31, 87.94) 15.20% 60.50 (48.24, 71.84)
KIF3B 7.69% 85.74 (78.36, 92.23) 15.20% 57.30 (44.86, 69.20)
PDRG1 7.69% 87.47 (80.16, 93.33) 14.40% 58.41 (45.67, 70.58)
PLAGL2 7.69% 90.55 (86.02, 94.89) 15.20% 59.36 (48.44, 70.33)
POFUT1 7.69% 87.99 (77.31, 92.24) 15.20% 57.45 (45.81, 68.64)
RBFOX1 7.69% 77.86 (78.69, 94.22) 14.40% 59.45 (46.86, 71.82)
REM1 7.37% 87.99 (80.25, 94.73) 14.40% 62.98 (50.64, 74.40)

TM9SF4 7.69% 86.79 (79.06, 93.54) 15.20% 58.02 (45.45, 70.94)
TPX2 7.69% 81.97 (74.04, 89.09) 14.40% 63.06 (50.49, 74.18)

TSPY26P 7.69% 86.89 (79.16, 94.28) 14.40% 59.01 (46.55, 70.42)
WWOX 7.69% 86.62 (78.96, 93.11) 14.40% 62.05 (48.94, 73.46)
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Table A.3: Functional protein expression prediction results. For TCGA-COAD, we
summarized AUC (with 95% CI) of our graph networks models (reproduced with
permission from Elsevier [1]). For TCGA-READ, we trained the model on colon
cancer (TCGA-COAD) and directly evaluated the protein expression prediction on
rectum cancer.

TCGA-COAD TCGA-READ

Protein
High level
expression
percentage

Slide AUC
(95% CIs)

High level
expression
percentage

Slide AUC
(95% CIs)

CMET
_pY1235 52.91% 84.03 (79.69, 88.05) 52.94% 50.39 (41.37, 60.05)

P53 52.47% 86.41 (82.44, 90.19) 50.98% 49.65 (40.29, 58.89)
STAT3
_pY705 52.47% 85.57 (81.16, 89.44) 48.04% 53.89 (60.29, 87.45)

ACC1 50.67% 85.50 (81.33, 89.60) 50.00% 51.77 (42.53, 61.83)
BRCA2 50.67% 84.97 (80.97, 88.81) 50.98% 52.83 (42.96, 63.08)
BCL2 50.67% 83.54 (78.80, 87.51) 51.96% 59.79 (50.79, 68.57)

SRC_pY416 50.67% 86.23 (82.21, 90.20) 43.13% 53.89 (40.33, 59.26)
NOTCH1 50.22% 84.66 (80.34, 88.66) 50.00% 48.35 (38.97, 57.66)
PTEN 50.22% 86.01 (81.97, 90.06) 49.02% 50.65 (41.07, 59.94)
CMYC 50.22% 84.17 (79.72, 88.06) 53.92% 50.02 (40.69, 59.52)

ACC_pS79 50.22% 85.12 (80.97, 89.04) 50.98% 48.75 (39.30, 58.49)
EGFR 47.09% 84.00 (79.36, 88.36) 52.94% 53.26 (43.62, 63.01)
BRAF 49.78% 85.84 (81.68, 90.03) 50.00% 52.96 (43.69, 62.38)
ATM 49.78% 88.28 (84.43, 91.67) 52.94% 53.38 (43.87, 62.92)

ERALPHA 49.77% 85.80 (81.51, 89.77) 51.96% 57.16 (47.54, 66.46)
ARID1A 48.88% 85.77 (81.41, 89.57) 51.96% 50.90 (41.17, 61.50)
HER2 48.43% 84.46 (79.79, 88.76) 50.00% 51.92 (42.34, 61.19)
HER3 48.43% 885.59 (81.39, 89.48) 50.00% 39.81 (30.15, 49.15)

AMPKAL
PHA_pY172 46.64% 81.94 (77.70, 86.55) 47.06% 56.06 (46.83, 65.28)

EGFR
_pY1173 45.29% 89.64 (86.29, 93.19) 50.98% 48.65 (38.85, 58.17)
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Table A.4: External validation on CPTAC-COAD for gene mutation prediction
(reproduced with permission from Elsevier [1]). We trained the model on colon cancer
(TCGA-COAD) and directly validated the gene mutation data on the same cancer
cohort in CPTAC-COAD.

Gene Mutation percentage Slide AUC (95% CIs)
APC 73.00% 36.12 (25.79, 46.55)
TP53 51.00% 40.04 (30.34, 49.76)
TTN 49.00% 60.01 (50.64, 68.93)
KRAS 31.00% 44.06 (35.52, 53.46)
RYR1 18.00% 81.38 (79.63, 94.48)

PIK3CA 16.00% 72.47 (55.76, 85,84))
SYNE1 22.00% 68.85 (59.30, 78.23)
MUC16 33.00% 69.04 (59.36, 77.76)
FAT4 22.00% 53.35 (43.84, 62.97)

OBSCN 24.00% 79.39 (70.05, 87.91)
ZFHX4 16.00% 51.67 (40.72, 63.20)
RYR2 16.00% 50.26 (36.36, 64.45)
LRP1B 20.00% 69.59 (60.72, 78.10)
FBXW7 14.00% 49.50 (37.62, 60.92)
CSMD3 22.00% 82.90 (73.69, 90.71)
CSMD1 22.00% 38.64 (28.18, 49.49)
DNAH5 14.00% 76.16 (67.11, 83.55)
FLG 15.00% 73.45 (63.26, 83.25)
FAT3 21.00% 63.74 (52.92, 75.37)

DNAH11 12.00% 82.01 (74.16, 88.82)

Table A.5: External validation on CPTAC-COAD fo gene CNA prediction (repro-
duced with permission from Elsevier [1]). We trained the model on colon cancer
(TCGA-COAD) and directly validated the gene CNA status on the same cancer co-
hort in CPTAC-COAD.

Gene Alteration percentage Slide AUC (95% CIs)
CCSER1 22.00% 78.50 (67.87, 87.34)
FOXS1 12.00% 86.08 (79.67, 91.74)

DEFB118 9.00% 62.39 (51.37, 73.76)
COX4I2 8.00% 43.75 (29.05, 57.29)
CSMD1 5.00% 51.16 (39.79, 63.27)


