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ABSTRACT 
 
 

AMÉLIE G. SCHINCK. Navigating the epistemological rocky waters of mathematics 
education: An instrumental multiple case study. (Under the direction of DR. DAVID K. 

PUGALEE) 
 

 
 The various beliefs about mathematics and its role in society led to differing 

beliefs about what it means to learn mathematics and how best to teach it. Mathematics 

education research and organizations such as the National Council of Teachers of 

Mathematics (NCTM) champion a combination of constructivist and sociocultural 

approaches to mathematics teaching and learning. Within this paradigm, mathematics 

teachers are cast as guides in their students’ individual meaning-making experience. 

However, since mathematics is at the heart of science and technology, which are in turn 

the basis of the new global, knowledge-based economy, mathematics achievement scores 

on standardized tests are inexorably tied to national policy discourses of global 

competitiveness. Meeting the “global challenge” has resulted in government policies 

which reflect a view of effective mathematics teaching focused on accountability and 

measured outcomes. Underlying such policies is a positivist view of mathematics as a 

fixed body of facts and procedures which students need to internalize. Mathematics 

teachers function at the nexus of these differing beliefs about mathematics teaching and 

learning. This dissertation offers a case study analysis of three high school mathematics 

teachers as they navigate different belief systems while making professional decisions 

related to their work. This study examines the periods of tension, conflict, reflection, and 

resolution teachers experience while managing competing goals. The study concludes 

with implications for teacher education, as well as recommendations for future research.  
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CHAPTER 1: INTRODUCTION 
 
 

Background 

The various beliefs about mathematics and its role in society led to differing 

beliefs about what it means to learn mathematics and how best to teach it. Researchers 

and faculty within mathematics education departments and organizations, such as the 

National Council of Teachers of Mathematics (NCTM) and the Association of 

Mathematics Teacher Educators (AMTE), promote a combination of constructivist and 

sociocultural approaches to mathematics teaching and learning (e.g. Chapman, 2002; 

Cobb, 1994; Cooney & Shealy, 1997; NCTM, 1980, 1989, 2000).  

Within this framework, teachers are cast as guides in their students’ mathematical 

meaning-making experience. The learning of mathematics is seen as an active, 

constructive process in which problem solving, reasoning and proof, communication, 

connections and representations are of fundamental importance (NCTM, 1989, 2000). 

The learning process is valued over the result of a mathematical activity. Mathematics is 

believed to be a part of human experience, not apart from it.  

Much time and effort is exerted in mathematics methods classes and professional 

development workshops to expose, and perhaps convert, pre-service and in-service 

teachers to the above set of beliefs about mathematics, its teaching and its learning. 

Curcio and Artzt (2005) stated that one of the most important and challenging jobs for 

teacher educators is to prepare pre-service and in-service teachers to enact the principles  
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and standards set forth by NCTM (1989, 2000).  

A look at textbook selections for mathematics methods classes sheds light on the 

belief system underlying these classes. For instance, textbooks selected for elementary 

and middle school mathematics methods classes, such as Van de Walle’s (2006) 

Elementary and middle school mathematics: Teaching developmentally, reflect the 

NCTM Principles and Standards for School Mathematics (2000), and discuss at length 

the benefits of constructivist and student-centered mathematics instruction. The back 

cover for Van de Walle’s (2006) book has the following message from the author:  

Research in mathematics education has consistently found that understanding and 

skills are best developed when students are allowed to wrestle with new ideas, to 

create and defend solutions to problems, and to participate in a mathematical 

community of learners. 

This approach is the central theme of Van de Walle’s book – one of the leading K-8 

mathematics methods text.  

Similarly, textbooks selected for secondary mathematics methods classes, such as 

Teaching secondary mathematics: Techniques and enrichment units (Posamentier & 

Stepelman, 2006), Mathematics classrooms that promote understanding (Fennema & 

Romberg, 1999) and Windows on teaching math (Merseth, 2003), make pedagogical 

recommendations to teachers based on a synthesis of mathematics education research. 

The motivation is to respond to the ongoing call by the National Council of Teachers of 

Mathematics to change both the content and practice of teaching mathematics to be more 

in line with research findings.  
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In general, mathematics methods classes, responsible for training the next wave of 

mathematics teachers, are taught by mathematics education specialists who are well 

versed in mathematics education research; they thus have a very clear idea of what a 

mathematics classroom should look like. As a consequence, these classes tend to promote 

the constructivist and sociocultural approaches to the teaching of mathematics found in 

the mathematics education literature.   

Mathematics content classes aimed at future teachers are taught by a combination 

of mathematics specialists as well as mathematics education specialists. Textbook 

selections for these classes cite the Principles and Standards of School Mathematics 

(NCTM, 2000) liberally, and often advocate a problem-solving approach (e.g. Beckmann, 

2004; Billstein, Libeskind, & Lott, 2007; Masingila, Lester, & Raymond, 2002).  

Moreover, much professional development material aimed at K-12 pre-service 

and in-service mathematics teachers base their recommendations and strategies on 

mathematics education research, encouraging teachers to develop learning through 

problem solving and to consider the sociocultural aspects of the mathematics classroom 

(e.g. Posamentier & Jaye, 2006; Richardson, 1999; Wall & Posamentier, 2007). Online 

professional development workshops by the National Council of Teachers of 

Mathematics (NCTM e-workshops) and the Annenberg Foundation (www.learner.org) 

also encourage mathematics teachers to adopt this approach to the teaching of 

mathematics. 

However, since mathematics is at the heart of science and technology, which are 

in turn the basis of the new global, knowledge-based economy, mathematics education 

has attracted much government and public interest.  Mathematics achievement scores on 
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standardized tests are inexorably tied to national policy discourses of global 

competitiveness emphasizing a strong causal relationship between mathematics 

achievement and economic prosperity (e.g. National Science Foundation, 2001; OECD, 

2007; TIMMS, 2003). One illustrative example of the use of the global competitiveness 

discourse to promote specific educational goals, is the letter written in January of 2009 by 

The National Science Board (N.S.B., 2009) to the Obama administration. The letter 

contained recommendations to advance STEM (science, technology, engineering, and 

mathematics) education by guaranteeing “that all American students are provided the 

educational resources and tools needed to participate fully in the science and technology 

based economy of the 21st  century” in order to ensure “the long-term economic prosperity of 

the Nation” (p. 1).  

The political dimension of mathematics education is not a recent development. 

For instance, the 1983 report A Nation at Risk: The Imperative for Educational Reform 

by the National Commission on Excellence in Education, greatly influenced the direction 

of mathematics education in the United States (Klein, 2003). A Nation at Risk harshly 

criticized the United States’ educational practice, and contributed to the public 

perception, present to this day, that American public schools fail to meet the nation’s 

need for a highly-skilled, globally competitive workforce. The report begins with:  

Our Nation is at risk. Our once unchallenged preeminence in commerce, industry, 

science, and technological innovation is being overtaken by competitors 

throughout the world…the educational foundations of our society are presently 

being eroded by a rising tide of mediocrity that threatens our very future as a 

Nation and a people” (National Commission on Excellence in Education, 1983,  

p. 5).   
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Among other things, the commission was charged with assessing the quality of 

the American education system as it compares to other advanced nations. It found, for 

instance, that approximately one-third of high school graduates in the United States could 

not solve a mathematics problem requiring several steps. Recommendations included that 

students should have a certain level of proficiency in basic skills and that they be guided 

in the development of deep conceptual understanding in order for them to become skilled 

problem-solvers.  

Still, globalization has reshaped the debate and amplified the urgency of the 

discussion. Meeting the “global challenge” has meant meeting business demands and the 

commodification and vocationalization of disciplines such as mathematics (Jordan & 

Yeomans, 2003). In fact, Morrow & Alberto Torres (2000) identify the commodification 

of education as the "crucial, pervasive structural effect that defines the specific, 

neoliberal form of globalization taking place" (p. 39). Education in general, and 

mathematics education in particular, has come to be perceived as a “personal good rather 

than public service” (Fitszimons, 2002, p. 60) due to the forces of globalization.   

The application of the corporate model resulting in the era of effectiveness 

focused on measured outcomes and accountability is now present in a great number of 

countries, including England, Australia, New Zealand, the U.S., and Japan (Astiz, 

Wiseman, & Baker, 2002; Atweh & Clarkson, 2002b; Hill, 2008; Jordan & Yeomans, 

2003). The standards and accountability movement reached a new level in the United 

States in 2001 with the enactment of the No Child Left Behind Act [NCLB] (U. S. 

Congress, 2001), significantly expanding the role of the federal government in school 
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reform by mandating that standards be adopted by states for which they would be held 

accountable.   

Twenty five years after a Nation at Risk was published, the U.S. Department of 

Education published A Nation Accountable (U.S Department of Education, 2008), 

highlighting this new era of educational accountability. The executive summary for A 

Nation Accountable states that “we remain a nation at risk but are also now a nation 

informed, a nation accountable, and a nation that recognizes there is much work to be 

done” (U.S. Department of Education, 2008, p. 1).    

Corporate managerialism has entered and permeated the structure of education in 

what Bourdieu (1998) called a heteronomic process; rules from one field entering another 

and causing a loss of autonomy in the field being entered. This approach to education has 

immense pedagogical implications: 

Continuous monitoring implies that learning takes place in measurable increments 

and that constant testing somehow contributes to enhanced performance. Whether 

it does or not, it reinforces educational practice which has no space for 

conversation, exploration, or the personalization of learning (Kohl, 2009, p. 2). 

Within this framework, teachers are asked to help students memorize facts and practice 

skills through repetitive exercises.  They are inundated by the focus on student 

achievement on high-stakes tests (NCLB, 2001).  

A test is termed "high-stakes" when the results are used to make important 

decisions that affect students, teachers, administrators, or schools. The market orientation 

of education as a result of neoliberal philosophy, has resulted in a rhetoric of competition 

and accountability to show a product for tax payers’ money—higher scores.  
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In a metasynthesis analyzing 49 qualitative studies on the effects of high-stakes 

testing on curriculum, Au (2007) found that one main effect was "an increase in teacher-

centered instruction associated with lecturing and the direct transmission of test-related 

facts" (p. 263). More specifically, the metasynthesis suggested that high-stakes tests 

encouraged "curricular alignment to the test themselves" (p. 263). Content was found to 

be narrowed and delivered in isolated and disconnected pieces.  

Newman & Beck (2000) claim that the existence of high content and performance 

standards without the existence of high opportunity to learn standards does not allow 

teachers the flexibility to meet students where they are. Teachers are pressed to push 

students along the predetermined, designated academic path. Howe (1995) sardonically 

stated that “better educational standards can eliminate low achievement…no more 

effectively than better nutritional standards can eliminate hunger under famine 

conditions” (p. 22).  

Underlying such policies is the view of school subjects, including mathematics, as 

a priori knowledge, which students need to internalize. The underpinning assumption by 

policy-makers and employers is one of mathematics as a static tool kit with an 

identifiable content and stable structure that are both teachable and, most importantly, 

testable (Apple, 1979; Ellis & Berry III, 2005). The forces of globalization have thus 

reinforced a positivist, pragmatic, and utilitarian approach to mathematics education.  

While mathematics education research, teacher education, and recommendations 

from organizations such as the NCTM have been increasingly influenced by sociocultural 

and constructivist perspectives, critical theorists such as Keitel, Kotzmann, and 

Skovsmose (1993) write of their concern that the mathematics curriculum implicitly 
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supports a positivist, absolutist philosophical stance that socializes students for routine 

work in the technologically advanced workplace. These authors note that much of the 

standardized curricula that are being implemented around the globe are designed to meet 

the needs of employers, developing in students “an ideological base for a servility 

towards technology” (Keitel, Kotzmann & Skovsmose, 1993, p. 269). Hill (2008) agrees 

with Keitel, Kotzmann, and Skovmose’s (1993) assessment, stating that "schooling and 

other education services train people for the market, developing 'appropriate' sets of 

skills, knowledges and personality dispositions suited to various niches in the labour 

market" (p. 7).  

This positivist approach to mathematics education is discordant with the wide 

spread acceptance of epistemological stances such as constructivism in mathematics 

education research. These incongruous dynamics are colliding and proving to be most 

challenging for classroom mathematics teachers who are asked to function at the nexus of 

the differing and overlapping beliefs about mathematics teaching and learning. This is 

especially true for teacher-scholars, well versed in mathematics education theories, who 

find themselves teaching in a context in which effective mathematics teaching is defined 

and measured differently by the various stakeholders.  

The Issue 

Mathematics teachers are charged with simultaneously being guides in the 

personal construction of students’ creation of their mathematical reality—preparing 

students to be productive members in the global knowledge society—while also 

producing high test scores and passing rates. They are told to use “differentiated 

instruction,” be “student-centered,” and to develop concepts through “problem-solving,” 
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while these notions are viewed in vastly different ways by their school administrators and 

their mathematics education professors. Teachers must navigate what the constructivist 

and sociocultural perspectives have taught them about mathematics education with the 

government policies which reflect a view of effective mathematics teaching focused on 

measured outcomes, accountability and standardization. 

Significance of the Study 

The effects of globalization on mathematics education have only just begun to be 

a topic of study in mathematics education research (Atweh & Clarkson, 2001; Atweh & 

Clarkson, 2002a, b; Keitel, Kotzmann, & Skovsmose, 1993; Thomas, 2001). As will be 

seen in Chapter 2, the effects of globalization on educational institutions are intimately 

tied to the discourse about the knowledge society, where the forces of globalization are 

seen as privileging a particular type of mathematical knowledge. Forstorp (2008) stated: 

“The thesis of the knowledge society is based on a theory of knowledge in its 

instrumentalized form. This form of knowledge is linked to a contemporary trajectory of 

work that is virtuous and explicitly placed at the very top of a production process” (p. 

233). This makes explorations into questions of epistemology that much more pressing. 

Apple (1997) claimed that “too little focus has been placed on the political economy of 

what knowledge is considered high status in this and similar societies”  

(p. 598).  

Much of the literature on the topic of varying epistemologies in mathematics 

education focuses on changing teacher beliefs about the nature of mathematics learning 

and teaching to more constructivist and sociocultural views (Chapman, 2002; Cooney & 

Shealy, 1997; Wilson & Cooney, 2002). This approach to teacher belief research often 
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disregards the socio-political milieu in which educators operate. In addition, the work 

done on the effects of political forces on mathematics education tends to take a macro 

level approach, or focus on the effects of one specific mandate such as the No Child Left 

Behind Act of 2001. No previous work has examined how clashing epistemologies are 

navigated by individual mathematics educators who have been strongly influenced by 

mathematics education research's perspective, yet must work in an educational system 

shaped by the demands of globalization.  

Dissertation Title 

The imagery offered by Thagard (2000) of a system of beliefs as a raft floating on 

a sea is part of the inspiration behind the title for this dissertation: Navigating the 

Epistemological Rocky Waters of Mathematics Education. According to Thagard (2000), 

a system of beliefs: 

 … is not like a house that sits on a foundation of bricks that have to be solid, but 

more like a raft that floats on the sea with all the pieces of the raft fitting together 

and supporting each other. A belief is justified, not because it is indubitable or is 

derived from some other indubitable beliefs, but because it coheres with other 

beliefs that jointly support each other (p. 5). 

Kenny (2007) referred to “the leaking constructivist boat adrift in an ocean of realism” 

(p. 58), further inspiring the imagery used throughout this dissertation of the 

“epistemological rocky waters of mathematics education.” 

The Researcher 

In order to better understand the purpose of this study, it will help the reader to 

get better acquainted with the researcher. I obtained a Bachelors of Science with a 
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Specialization in Mathematics and a Masters of Science with a concentration in Number 

Theory from Concordia University in Montréal, Canada. During this time, I also tutored 

and taught mathematics at local schools at various levels, in both French and English.  

I then took a position as a mathematics instructor at a 2-year college in a 

rural/suburban area of the Southeast of the United States, where I had the privilege to 

teach most of the mathematics courses offered in the first two years of college, such as 

Precalculus, Calculus I-III, College Algebra, Statistics, and many more. After four years 

of teaching full time, I began my Ph.D. in Curriculum and Instruction in Mathematics 

Education. I have been employed as a graduate research assistant at the University of 

North Carolina at Charlotte for the past two years, during which time I have worked on a 

number of research projects in the field of mathematics education.  

As a research assistant, I took advantage of the numerous opportunities offered to 

me to extend my scholarship. I have collaborated with professors to research, present and 

publish on a variety of research subjects, such as, writing in the mathematics classroom 

(Pugalee & Schinck, 2007), contemporary metaphor theory as a tool to reveal student 

beliefs about mathematics and as a catalyst for student reflection (Schinck, Neale, 

Pugalee, & Cifarelli, 2008), problem solving as a means to develop conceptual 

competence and adolescent girls' experience with mathematics (Lim, Schinck, & Chae, 

2009). I have also had occasion to work as an editor and reviewer on a number of projects 

(e.g. Pugalee, Rogerson, & Schinck, 2007). These opportunities have provided me with 

knowledge in a wide variety of important topics in mathematics education. 

Having these different experiences—coming from a pure mathematics 

background, teaching at different grade levels, in rural and urban areas, in different 
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countries, in different languages, and becoming familiar with mathematics education 

research—made me cognizant of the fact that various beliefs about mathematics and its 

teaching exist, and deeply influence teachers’ work. Furthermore, it made me aware of 

the powerful effect of the socio-political milieu on mathematics education. Although 

students and teachers are often more likely to focus on the local implications of education 

such as employment, and achievement scores, the socio-political milieu nonetheless 

undeniably affect their work. The following quote by Thomas (2001) profoundly 

impacted the direction of my study:   

Mathematics education is political…to ignore the effects of this in an 

economically globalized and changing world has the potential to constrain or 

render ineffectual much mathematics education research (p. 96). 

Purpose of the Study 

The purpose of this study is to provide a thick description of the lived experiences 

of three mathematics educators as they navigate different belief systems when making 

professional decisions related to their work as teachers. This dissertation endeavors to 

examine the tensions involved and the way in which these three mathematics educators 

manage competing goals. This study has been developed to follow the tradition of the 

instrumental, multiple case study in which an issue or phenomenon is explored by 

performing several case studies (Stake, 1995). The research design also borrows some 

features from phenomenology, which aims to explain how social phenomena are 

experienced and constructed by individuals or groups of individuals.  

This dissertation aspires to be a first step in answering the call for “richly 

elaborated case studies that focus on the long-term struggles of classroom teachers who 
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manage the intellectual challenges, pedagogical renewals, cultural transformations, and 

political upheavals of transforming one’s practice” (Windschitl, 2002,  p. 162), with 

associated implications for teacher education. 

Research Questions 

The specific research questions guiding the study are:  

1. How do individual, successful teachers navigate the beliefs shaped by 

mathematics education research, workshops, methods classes and the discourse of 

preparing students to be competitive in the global economy? 

2. How do mathematics educators experience the periods of conflict, reflection and 

resolution between the different belief systems to which they have been exposed?  

Summary and Introduction to Chapter 2 

Chapter 1 provided an introduction to this research study. The introduction gave a 

brief description of the issue that motivated the study: The clashing epistemologies about 

mathematics and its teaching that classroom mathematics teachers are asked to navigate. 

The introduction also presented to the reader the inspiration behind the title of this 

dissertation—Navigating the Epistemological Rocky Waters of Mathematics Education—

as well as the personal journey of the researcher to the topic, and the overarching purpose 

of the study, including the two guiding research questions.  

The following chapter will describe the literature relevant to the study. This 

includes an exploration of the literature on the paradigm shift which occurred in 

mathematics education, on teacher beliefs, on the current socio-political milieu, and on 

mathematics teachers’ experiences within this milieu. 

 
  



 

CHAPTER 2: REVIEW OF THE LITERATURE 
 

 
Introduction: Need for a Literature Review 

In order to better understand the rocky waters of beliefs about mathematics and its 

teaching in which teachers operate, this literature review will first focus on the paradigm 

shift from positivist to constructivist and sociocultural perspectives, which began in 

mathematics education in the 1970's. This historical discussion leads me to explore the 

recent research on teacher beliefs. I then discuss the current socio-political milieu, 

especially the associated discourses of globalization and the knowledge society, as they 

relate to the epistemological foundations of mathematics education. 

Ultimately, the purpose of the study guiding this review — to provide a thick 

description of the lived experience of three mathematics educators as they navigate 

different belief systems when making professional decisions related to their work as 

teachers—calls for a presentation of relevant literature on teacher experience as they 

teach mathematics in the knowledge society and mediate various belief systems. Since 

this study is situated within a socioconstructionist theoretical position, I also present a 

critical perspective of the literature in an effort to illustrate how the various belief 

systems involved have influenced classroom practices in the teaching of mathematics.  
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A Review of the Literature 

Paradigm Shift in Mathematics Education 

Mathematics is related to our understanding of the world. The effect various 

beliefs have on mathematics education shapes the way students will eventually view and 

interact with the world. Niss (1994) discerned four perspectives on the discipline of 

mathematics: as a pure or applied science, a system of instruments, a field of aesthetics, 

and as a teaching subject.  

First, mathematics can be viewed as a pure or applied science, where pure 

mathematics is directed at mathematical objects and applied mathematics is directed 

towards extra-mathematical objects such as physics. An example of pure mathematics is 

number theory, which is principally concerned with the properties of numbers. Applied 

mathematics enables the answering of questions about the physical world; the revelation 

of order from chaos (Kline, 1979).  

Secondly, mathematics can be seen as a system of instruments which can assist in 

decision-making, through statistical analysis for instance. Mathematics as an instrument 

is highly valued by industry: “It is only when mathematical theories such as linear 

optimization or graph theory are converted into computer programs, for example, that 

they can be applied to industrial or other sites in the economic system to maximize 

productivity” (Fitzsimons, 2002, p. 23).  

Thirdly, mathematics can be described as a field of aesthetics, which is beautiful 

on par with great art. Although inconceivable to some, as much pleasure can be derived 

from Euclid’s proof of the infinitude of primes as from Van Gough’s masterpiece Starry 

Night.  
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Finally, mathematics can be viewed as a teaching subject, a principal concern of 

mathematics education research. 

Mathematics education research is a relatively young field; only two centuries old 

and only burgeoning in the past forty years (Kilpatrick, 1992). Mathematics education 

encompasses the study of mathematics teaching, as mentioned above, as well as the study 

of mathematics learning, problems about the nature of mathematics, mathematical 

knowledge and the social contexts of mathematics learning and teaching (Ernest, 1998). 

It is a field of knowledge in its own right, with its own terms, concepts, problems, and 

theories. 

A paradigm shift occurred in mathematics education in the 1970’s as a result of 

revolutions in perspectives within the disciplines of mathematics and mathematics 

education. A paradigm refers to shared assumptions about the nature of reality 

(ontology), and knowledge (epistemology), and about the best way to investigate reality 

(methodology) (Kuhn, 1962). The three elements of a paradigm are undergrid by a 

system of basic beliefs.  

Adherents of a certain paradigm will generally work on similar problems using 

epistemologically compatible methodologies. Cooney and Shealy (1997) document the 

shift from the traditional view of mathematics as a well-defined field of inquiry that is 

timeless and unchanging to the view of mathematics as a “way of thinking about the 

external world, a category of constructing meaning” (Cooney & Shealy, 1997, p. 89). 

Tymoczko (1979) suggested that the shift in paradigm in mathematics was in part 

triggered by the proof of the Four-Color Theorem by Appel & Haken in 1977. The proof 

of the Four-Color Theorem was based entirely on a computer experiment. This shook the 
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foundation of mathematics at the time, which had been seen as an “a priori activity in 

which the mathematician chooses an axiomatic system and then, working in isolation, 

follows formal deductive methods to produce irrefutable conclusions” (Cooney & Shealy, 

1997, p. 88).  

Wilson and Cooney (2002) suggest that the movement away from an ontological 

perspective toward individual sense-making was also in part spurred by Kuhn’s (1962) 

classic work The Structure of Scientific Revolutions. In this groundbreaking work, Kuhn 

questioned the then unexamined ontological approach to mathematics, science and their 

education. Kuhn (1962) argued that the evolution of scientific thought does not emerge 

from the accumulation of facts, but from drastic, paradigm shifts.  

An example of such a paradigm shift in the mathematical domain is the shift from 

the monopoly of Euclidean geometry with the introduction of non-Euclidean geometry. 

In order for such a drastic change to occur, Euclid’s fifth postulate, which defines parallel 

lines in a way equivalent to saying that the sum of the angles in a triangle add up to 180 

degrees, needed to be questioned. Euclid’s fifth postulate had been accepted truth for 

millennia. As Dossey (1992) states, “the establishment of the consistency of non-

Euclidean geometry…finally freed mathematics from the restrictive yoke of a single set 

of axioms thought to be the only model for the external world” (p. 40).  It is important to 

note that Euclidean geometry was not shown to be wrong, but simply not the only way to 

see the world. 

Mathematics education was also experiencing a reexamining of traditional views 

during this period due to emerging theories from cognitive science and the surfacing of 
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the sociocultural perspective influenced in large part by the work of two psychologists: 

Jean Piaget and Lev Vygotsky.  

Piaget greatly influenced constructivist thought in mathematics education. Before 

Piaget’s contribution, mathematics was regarded as mind-independent. One would 

discover the fundamental mathematical structures through rationality. To know 

mathematics was to be able to identify concepts and perform procedures correctly. As 

Steffe & Kieren (1994) write, one of the long-lasting effects of Piaget’s work is that 

mathematics education research began to include, along side empirical studies of 

mathematics “best practices,” studies where researchers observed and described the 

mechanisms that mathematics learners use to build up mathematical knowledge in a 

particular learning space (Capraro, Capraro, & Cifarelli, 2007; Steffe & Wiegel, 1994; 

Thompson, 1994).  

One of the tenets of using constructivism in the mathematics classroom, as 

explained by Steffe (1991), is choosing to focus on a learner's mathematical activity in 

learning environments as opposed to focusing on the results or product of their activity. 

As Tom Kieren, in an interview with Carolyn Kieran about the changes that occurred in 

mathematic education (Kieran, 1994) stated, the field, in its infancy, was “linearizing 

learning, and learning isn’t linear” (p. 587). 

 The 1980’s were a time of constructivist revolution which caused a drastic shift 

in the way mathematical knowledge, its learning and its teaching were understood in 

mathematics education research. The first time the Journal for Research in Mathematics 

Education used “constructivist” in an article title was 1983 (Steffe & Cobb, 1983). The 

work of von Glasersfeld (1981, 1984, 1987, 1989), and Steffe & Cobb (1983, 1988) 
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provided a different theoretical framework for mathematics education. The key idea that 

emerged from these writings was that individuals create their own reality through actions 

and reflections within the space of their experience. This type of constructivism has come 

to be known as cognitive constructivism. The constructivist framework of mathematical 

knowledge called for mathematics educators to be recast as guides in the construction of 

students’ creation of their mathematical reality. 

Of fundamental importance to Piaget's theory, is the concept of viable knowledge 

and its construction. An individual makes sense of an experience using a scheme, that is, 

a certain way of organizing experience. An experience is assimilated by fitting into a pre-

existing conceptual structure. For Piaget, knowledge is a form of adaptation, where 

equilibrium is the goal. Equilibrium, in this context, can be understood as a satisfactory 

organization (Von Glasersfeld, 1987). The often-cited quote by Piaget states this 

concisely: "The mind organises the world by organising itself (Piaget, 1937, p. 311 qtd. 

by Von Glasersfeld, 1995). Learning occurs when a certain scheme encounters a 

perturbation and an individual must accommodate to maintain or return to equilibrium. A 

clash with a scheme means that the scheme did not work and should be reconsidered. 

Yet, when a scheme works, it is simply viable and "no inference about a real 

world can be drawn from this viability, because a countless number of other schemes 

might have worked as well" (Von Glasersfeld, 1995, p. 90). Learning occurs in this 

instance as well. Yet, one must keep in mind that facts remain viable only as long as they 

do not clash with what we expect them to do. In this model, social interaction is 

presumed to promote opportunities for the learner to come face to face with discrepancies 

between their views and the world, which would possibly lead to an accommodation of 
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their scheme: “In a sense, Piagetians are saying that what children are able to observe 

about the world is more dependent on what they already know – that is, on their own 

special system of thinking – than it is on what actually exists” (Gallagher & Reid, 2002, 

p. 1). 

The work of Vygotsky also greatly changed the landscape of mathematics 

education, by adding a social-interactionist orientation to the Piagetian individual-

cognitive theoretical framework (Kieran, 1994). Vygotsky (e.g. 1978, 1986) argued that 

an individual's development of higher-order functions can only really be understood 

when taking into account the external social world in which the individual developed. 

Knowledge was still seen as constructed, but the process of construction was socially and 

culturally situated.  

Vygotsky claimed that higher mental functions appear first on a social level, 

through interaction with a more capable individual. This is stage I of what Vygotsky 

termed the Zone of Proximal Development (ZPD). The ZPD is defined as the range of 

problems that are too complex for a learner to solve on their own, but that could be 

solved with the assistance of a more capable partner. In this stage, the novice still relies 

on socializing to assist their performance. Only later can the individual begin to 

interiorize the concept. 

The example given by Tharp and Gallimore (1991) is that of a father gently 

questioning a child as to the possible whereabouts of a lost toy. Through this interaction, 

the child is guided to recall the location of the lost item. With repeated similar 

interactions, it is implied that this will eventually develop to a higher stage in the ZPD, 

self-directed performance. The "assisted performance of apprentices in joint activity with 
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experts becomes the vehicle through which interactions of society are internalized and 

become mind" (Tharp and Gallimore, 1991, p. 8). Although Vygotsky's work mostly 

concerned children, self-directed speech also has been shown to assist adults in the ZPD. 

Thus, for Vygotsky, development is from the social to the individual. Piaget saw 

cognitive development working in the opposite direction: from the individual to social. 

These different views of the social aspect of the mind is summed up in the following 

quote by Rogoff (1990): "The two theories are based on different perspectives: Vygotsky 

focuses on the social basis of mind, while Piaget focuses on the individual as starting 

point" (p. 140). In fact, one of the main critiques of Piaget was that he significantly 

underestimated the role of the social context in the development of the individual.  

Piaget and Vygotsky came to different conclusions about many other aspects of 

human cognitive development. As stated above, Vygotsky promoted the idea of a novice 

interacting with a "more capable other" in order to be assisted in the zone of proximal 

development. In this model, the more capable other assists the learner by providing hints, 

questions, etc. This process is called scaffolding. In practice, this has resulted in the 

apprenticeship model, and to the cooperative learning movement. Vygotsky’s legacy also 

includes research focused on the culture of the mathematics classroom. Piaget, on the 

other hand, believed that to be truly fruitful, social interaction needed to be amongst 

equals trying to understand each other's alternative views (Rogoff, 1990).  

The different points of view of Piaget and Vygotsky led to the two main 

perspectives in mathematics education: The constructivist and sociocultural perspectives. 

Maturana’s (1978) notion of autopoiesis extended Piaget’s concept of the mind as a self-

organizing system to include the sociological alongside the psychological in the 
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constructive process. In other words, much of what an individual learns about 

mathematics and its teaching is through the interactions within different communities. 

Cobb (1994) makes a convincing case for the complementary nature of these two 

perspectives. Cobb (1994) argues that the constructivist perspective has much to say 

about the processes by which students learn, while the sociocultural perspective, which 

emphasizes the social and cultural nature of mathematics, its teaching, and its learning, 

can "inform theories of the conditions for the possibility of learning" (p. 13). 

The dispute, as related by Cobb, is whether "mathematical learning is primarily a 

process of active cognitive reorganization or a process of enculturation into a community 

of practice" (p. 13). Cobb (1994) is sensitive to the fact that "constructivist theories fail to 

account for the production and reproduction of the practices of schooling and the social 

order" (Cobb, 1994, p. 18). However, Cobb (1994) convincingly explains his view that 

"mathematical learning should be viewed as both a process of active individual 

construction and a process of enculturation into the mathematical practices of a wider 

society.” Cobb (1994) highlights the conflicts that teachers face when trying to navigate 

these two theories by citing Ball (1993): 

How do I create experiences for my students that connect with what they now 

know and care about but that also transcend the present? How do I value their 

interests and also connect them to ideas and traditions growing out of centuries of 

mathematical exploration and invention? (p. 375) 

One could add to the list of questions put forth by Ball (1993): How do I resolve what the 

constructivist and sociocultural perspectives have taught me about mathematics education 

with the government policies which reflect a view of effective mathematics teaching 
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focused on measured outcomes, accountability and standardization? Furthermore, what 

exactly is meant of me as a mathematics teacher when I am asked to prepare students to 

be competitive in the global economy? What mathematical knowledge should I help my 

students gain in order to prepare them to be global citizens of the knowledge society?  

Cobb (1994) states that teachers are asked to mediate between students' personal 

meanings and culturally established mathematical meanings. In the sociocultural 

perspective, the culture under question is often the classroom culture, or school culture. 

Unfortunately, very rarely in the mathematics education literature does the word culture 

include forces that inevitably influence school and classroom culture such as the effects 

that the discourse of globalization has had on mathematics education. This lies at the 

heart of effective teaching as "claims about what counts as improvement reflect beliefs 

and values about what it ought to mean to know and do mathematics in school (Cobb, 

1994, p. 19).  

Ellis and Berry III's (2005) historical account of mathematics education reform 

movements, documents a shift from what the authors termed the procedural-formalist 

paradigm (PFP) to the cognitive-cultural paradigm (CCP). In their article, Ellis & Berry 

III (2005) argue that previous reform movements such as the Progressive Movement, the 

New Math Movement, and the Back-to-Basics Movement were all firmly situated in the 

PFP paradigm.  

Within the framework of the PFP, mathematics is outside of human experience 

and mathematics education's focus is to help students "internalize a fundamental body of 

basic mathematical knowledge" (Ellis and Berry III, 2005, p. 11). An effective teacher is 

one that delivers well-organized lectures and then asks students to memorize facts and 
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practice skills through repetitive exercises. The authors claim that these reform 

movements failed because they stayed within an obsolete paradigm.  

The CCP, on the other hand, "takes mathematics to be a set of logically organized 

and interconnected concepts that come out of human experience, thought and interaction" 

(Ellis & Berry III, 2005, p. 12). Within the frame of the CCP, a teacher is asked to guide 

students' active role in developing mathematical concepts. Ellis and Berry III (2005) are 

optimistic about the move from PFP to CCP.  

The National Council of Teachers of Mathematics (NCTM, 1989, 2000) reflects 

the shift to the cognitive-cultural paradigm in past and current recommendations. NCTM 

(1989, 2000) recommendations are founded on the notion that learning is an active, social 

process in which students construct new ideas or concepts based on their current 

knowledge. NCTM’s Principles and Standards for School Mathematics (2000) emphasizes 

the need for teachers to create a culture of learning in their classroom in which students 

learn with understanding and construct conceptual mathematical meaning through a 

problem-solving approach. Recommendations by the NCTM (1980, 1989, & 2000) have 

included a call for a focus on problem solving by teachers, positioning problem solving 

ability as the overarching goal of mathematics education. For instance, NCTM's 1980 

recommendations stated that:  

The development of problem solving ability should direct the efforts of 

mathematics educators through the next decade. Performance in problem solving 

will measure the effectiveness of our personal and national possession of 

mathematical competence (p. 2). 
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Implementing a program of problem solving that is consistent with the NCTM Principles 

and Standards for School Mathematics (2000) for teaching mathematics means using 

problem solving as an approach to constructing new mathematical knowledge: 

Problem solving means engaging in a task for which the solution is not known in 

advance. In order to find a solution, students must draw on their knowledge, and 

through this process, they will often develop new mathematical understanding. 

Solving problems is not only a goal of learning mathematics but also a major 

means of doing so (NCTM, 2000, p. 51). 

Student understanding is connected to open-ended questions and an inductive teaching 

style. It is worth noting that the NCTM recommendations are interpreted by some as a 

reflection of what von Glasersfeld (1989) termed “trivial constructivism,” a form of 

constructivism that asserts that learners build up their mathematical cognitive structures 

while holding on to the notion that the cognitive structure being built up are reflections of 

an ontological reality. Indeed, von Glasersfeld (1995) has, in recent years, tried to avoid 

the use of the term “epistemology” and has instead written about human “knowing.” Von 

Glasersfeld (1995) reasons that: 

Though I have used them in the past, I now try to avoid the term ‘epistemology’ 

or ‘theory of knowledge’ for constructivism, because they tend to imply the 

traditional scenario according to which novice subjects are born into a ready-

made world, which they must try to discover and ‘represent to themselves’  

(pp. 1-2). 

Nevertheless, NCTM recommendations can be said to be a departure from the previously 

held views of mathematics learning and teaching. This is in contrast to the type of 
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objectives found in the NC Standard Course of Study, for instance. Competency goals for 

Algebra I in North Carolina, U.S., are phrased as follows (PSONC, 2003): 

• The learner will perform operations with numbers and expressions to solve 

problems.  

• The learner will use relations and functions to solve problems. 

Problems are not to be used to develop the concept of a relation or function. It is implied 

that the concepts of number, expression, relation and function will be taught by the 

teacher, formulas will be given, and then and only then will problems, most likely 

exercises, be introduced.  

Although Ellis & Berry III (2005) are hopeful about the educational consequences 

of the change of paradigm, Cooney & Shealy (1997) point out that the shift did not reach 

very far outside of academia. Parents, students, school administrators, employers and 

government policy makers still hold a view of mathematics as a fixed and unchanging 

body of facts and procedures. To do mathematics is to calculate answers to a set of 

problems. The method of assessment within this framework is naturally performance 

oriented.  

Such differing beliefs about mathematics and its teaching by the various 

stakeholders in mathematics education result in conflict, frustration, etc. This conflict, 

unresolved to this day, is illustrated by the debate between Brophy and Confrey in a 1986 

issue of JRME (Brophy, 1986). Brophy criticized Confrey’s  constructivist research in the 

following manner: 

If it is to be of much practical use, however, such input will have to become much 

more specific, prescriptive, and empirically based…it will have to come to grips 
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with the challenge facing the typical K-12 teacher (teach 20 to 40 students to 

preset curriculum objectives while working within time and resource constraints), 

and it will have to include process-outcome data that allow for a scientific 

assessment of the hypothesized effects of recommended procedures (p. 363). 

Although Brophy's point of view is considered somewhat outdated in mathematics 

education research circles, these concerns are very much at the forefront of teachers' day-

to-day decision-making process.  

The change in beliefs about what constitutes mathematics, its learning and, 

consequently, its teaching, meant different emphases in mathematics education research 

and different expectations of teachers. Teachers were called upon to teach and think 

differently. They were asked to consider the epistemology underpinning constructivism 

in which there are no objective truths independent of human perception and construction. 

This resulted in an explosion of literature on teachers’ beliefs. 

Teacher Beliefs 

The paradigm shift in mathematics education suggested that not only well-defined 

and quantifiable variables impacting mathematics teaching were worthy of study. 

Understanding and changing teacher beliefs was (and is) seen as vital to reforming 

mathematics education to be consistent with findings from mathematics education 

research and recommendations from organizations such as the National Council of 

Teachers of Mathematics. 

This new focus on teacher beliefs by educational researchers has undeniably 

impacted teacher education programs (e.g. Beck & Kosnick, 2006). Teachers are asked 

not only to transform the problems they pose and make use of small-group learning, but 
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to change their basic epistemological perspective about mathematics and its education 

(Cole, 1997; Fang, 1996; Franke, Fennema & Carpenter, 1997; Hofer & Pintrich, 1997; 

Leder, Pehkonen & Torner, 2002; Windschitl, 2002).  

The word belief has many meanings in the mathematics education literature. Still, 

underlying all studies on educational beliefs is the notion that epistemological beliefs 

influence knowledge acquisition and interpretation, task definition and selection, 

interpretation of course content, and comprehension monitoring (e.g. Leder, Pehkonen, & 

Torner, 2002; Pajares, 1992). Beliefs act as cognitive and affective filters through which 

new knowledge will pass. 

Teacher beliefs refer to teachers’ integrated system of personalized assumptions 

about students and the learning process, about the role of schools in society, about the 

nature of mathematics, knowledge (epistemology) and its acquisition. Also included are 

views about teachers themselves such as teacher efficacy, curriculum, and pedagogy. For 

instance, teachers may believe that learning mathematics is a function of drill and recall, 

that students in Algebra II should not be allowed to use calculators, that a multiple-choice 

test measures mathematical understanding, or that the use of writing in the mathematics 

classroom promotes students’ conceptual understanding.  

The literature on teacher beliefs suggests a strong link between beliefs and 

practice (Chapman, 2002; Fang, 1996; Franke, Fennema & Carpenter, 1997; Thompson, 

1992; Wilson & Cooney, 2002). Research findings in this field of study often take the 

form of categorization of beliefs. Some researchers have used Ernest’s (1989) three views 

on mathematics to sort teacher beliefs into problem solving, Platonist, and 

instrumentalist. Within this framework, teachers who hold the problem solving view see 
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mathematics as a “continually expanding field of human creation and invention” (Ernest, 

1989, p. 93), Platonists view mathematics as a static body of knowledge to be discovered, 

whereas instrumentalists view it as a collection of useful skills and procedures. 

Teacher beliefs about mathematics teaching have also been categorized. An 

example is Kuhs and Ball’s (1986) summarization of teachers’ views into four categories: 

“learner-focused” which emphasizes the learner’s construction of mathematical 

knowledge, “content-focused with an emphasis on conceptual understanding,” “content-

focused with an emphasis on performance” and “classroom-focused,” where classroom 

management and discipline is central. 

Science education researchers also followed suit with such categorization 

approaches to teacher beliefs. For instance, Luft and Roehrig (2007) classified science 

teacher beliefs into five categories: traditional, instructive, transitional, responsive, and 

reform-based. The obvious implications of the above findings are that teacher beliefs can 

be neatly sorted into discrete categories and that, furthermore, a hierarchy of beliefs 

exists: problem solving is more desirable than instrumentalist, learner-focused is more 

desirable than classroom-focused and reform-based is considered more desirable than 

traditional. 

Much of the literature in this field is thus concerned with how teachers’ basic 

epistemological perspectives can be changed to be more in line with the 

recommendations coming out of the field of mathematics education in order to improve 

mathematics teaching (Cobb, Wood, Yackel, & McNeal, 1992; Franke, Fennema, & 

Carpenter, 1997; Leder, Pehkonen, & Torner, 2002). The reasoning is if teacher beliefs 

are changed through exposure to mathematics education research findings in methods 
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classes and in-service professional development, you change the way teachers teach. 

Mathematics teacher educators are asked to “move teachers away from mathematics as 

teachers have most likely experienced it as students for over a decade and guide teachers 

toward a view of mathematics that is more consistent with the NCTM standards” (Taylor, 

2002, p. 138). 

However, a number of studies have shown that the relationship between beliefs 

and practice is much more complex than a simple causal-relationship (Ball, Lubiensky & 

Mewborn, 2005; Gates, 2006; Remillard, 2005; Speer, 2005). Many studies document the 

disconnect between what teachers say they believe and what they do once in the 

classroom; the gap between teachers’ professed beliefs and attributed beliefs (e.g. 

Cooney, 1985; Simon & Schifter, 1991; Speer, 2005).  

Some authors (e.g. Wilson & Cooney, 2002) see a cyclical relationship between 

changing beliefs and practice whereas others see teacher content knowledge as the 

missing piece in truly changing teacher practice in the classroom. Ball, Lubiensky & 

Mewborn (2001), for instance, found that changing beliefs is not sufficient in changing 

practice if content knowledge is lacking. Remillard’s (2005) analysis of twenty-five years 

of curriculum research concluded that curriculum implementation was substantially 

driven by teachers’ content knowledge, their knowledge required for teaching specific 

content, and their beliefs about teaching and learning. 

Simon and Schifter (1991) assessed the instruction and evolving beliefs of 

teachers involved in a Summer Math for Teachers project. The project is based on a 

constructivist epistemology. The researchers found that teachers could easily change the 
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implementation of a particular strategy but that the underlying views about learning were 

much more resistant to change. 

Speer (2005) attributes much of the inconsistencies between teachers’ professed 

and attributed beliefs to methodological reasons: “artifacts of the methods used to collect 

and analyze relevant data and the particular conceptualizations of beliefs implicit in the 

research designs” (p. 361). She also contends that the emphasis on categorizing teacher 

beliefs may be keeping the field from attaining a more comprehensive or holistic 

understanding of teacher’s beliefs.  

Leatham’s (2006) view of mathematics teachers’ beliefs as “sensible systems” 

based on previous work by Cooney (Cooney, 1995; Cooney & Shealy, 1997; Cooney, 

Shealy & Arvold, 1998) is a viable alternative to the discrete categorization approaches to 

teacher belief research.  

A key component of Leatham’s framework for seeing mathematics teachers’ 

beliefs is that beliefs tend to be clustered in isolation from other beliefs. This beliefs 

clustering allows for a person to believe one thing in one context and another, perhaps 

contradictory belief, in another context: “Consequently, seemingly contradictory beliefs 

may exist in different belief clusters with no explicit or delineation of context” (Leatham, 

2006, p. 95).  

If one accepts Leatham’s premise of beliefs as “sensible systems,” then the 

concept of inconsistencies in a teacher’s belief system and the gap between belief and 

practice vanish, as certain beliefs simply have more influence over certain actions in 

certain contexts. In educational research, such flexibility in choosing different 

components of ideologies in specific domains has been referred to as bricolage, where a 
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viewpoint is constructed and created from a diverse range of ideologies which happen to 

be available. This helps avoid the reductionism of much of the research on teacher belief 

centered on categorization. Pachler et al. (2008) put forth: 

The point to be made here is that there is no, and has probably never been an 

ideological homogeneity in the field of education, and teachers move through 

different aspects of their jobs using very different ideological tools and 

orientating-often simultaneously-toward different ideological ‘centers’: 

themselves, their colleagues, their groups of learners, the head teacher, the school 

as an institution with a tradition, the education system, the curriculum, the 

government, society-at-large, and so on. Their discourses reveal traces of such 

multiplicity and layering (p. 440). 

Other authors (e.g. Cuban, 1984; Ellis, 2005; Gates, 2006) have highlighted the 

stubbornness of beliefs and educational practice and have claimed that, perhaps, it is the 

“hegemonic nature” of education traditions and beliefs that may be responsible for the 

“widespread failure of the history of reform in mathematics education” (Gates, 2006,  

p. 349).  

In his 2005 doctoral dissertation, Ellis (2005) investigated, through an analysis of 

historical data, “how the discourse of school mathematics took shape in the United 

States” (p. 5) in such a way that: 

Despite the reform efforts of the past hundred years school mathematics practice 

in the United States today and the outcomes produced remain stubbornly similar 

to those of over a century ago. Teachers are still the center of authority; students 

are still assessed primarily on the basis of their success with times tests of 
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mathematical procedures and skills; classes are still tracked as students move into 

higher levels of mathematical study … (p. 16).  

The literature supports the contention that educational discourse has been historically 

stable and unyielding to change (e.g. Bourdieu, 1972; Brophy & Good, 1974; Cobb et al, 

1992; Cuban, 1984). Bourdieu (1972) refers to the truths taken for granted or “the 

universe of possible discourse” (p. 164) in any social realm, including the realm of 

education, as the doxa. The doxa of mathematics education is revealed through the 

description of the traditional mathematics teacher offered by Stodolsky (1988): 

Math instruction places all but the exceptional student in a position of almost total 

dependence on the teacher for progress through a course. In essence, the 

traditional math classes contain only one route to learning: teacher presentation of 

concepts followed by independent student practice (pp. 122-123). 

This situation has led researchers to argue that studies of educational beliefs, and 

mathematics education in general, need to consider the impact that the greater social, 

cultural and political context has on mathematics education (Atweh & Clarkson, 2002a, 

b; Barkatsas & Malone, 2005; Gates, 2006; Pajares, 1992). Mathematics educators do not 

operate in a vacuum. Their beliefs and consequent practice are influenced by their 

experience as a student, by the school’s environment, by their mathematics education 

training, and by the greater socio-political milieu. As Gates (2006) points out:  

To claim that studies of mathematics and mathematics teachers can only reside 

within mathematics itself will fail to address the very foundations upon which 

much mathematics and many teacher beliefs rest. This is consistent with the 
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position that mathematics itself is a social construct constituted by social forces 

and social needs and conventions (p. 347).  

Gates (2006) goes beyond the cognitive paradigm usually employed in mathematics 

education research to investigate teacher belief, choosing, instead, to develop a socially 

situated understanding of beliefs. Highly influenced by Bourdieu’s (1972) claim that 

educational institutions play a central role in social reproduction, Gates (2006) tackles the 

enduring problems of mathematics teacher change taking the social aspect of education 

into account: Why are teacher behaviors and beliefs so difficult to affect? 

Cole (1997) noted that teachers face many impediments to reflective practice that 

renders difficult the actualization of their beliefs into practice, resulting in the theory-

practice rift observed by educational researchers. Impediments cited by Cole (1997) 

include external structures imposed by schools, the profession, the government and the 

public at large. Consequently, teachers are "in danger of being socialized to adopt norms 

of compliance and conformity" and "those who resist such practices and strive to uphold 

their beliefs ... do so usually at great cost" (p. 15). These impediments, Cole (1997) 

argued, should be explicitly addressed in teachers' professional education.  

Windschitl (2002) developed a framework of dilemmas that teachers experience 

when trying to implement constructivist instruction, which included political dilemmas 

alongside conceptual, pedagogical and cultural dilemmas, in order to probe in depth the 

“full scope of challenges faced by teachers” (p. 131). Political dilemmas involved 

confronting issues of accountability with various stakeholders. Representative questions 

of concern in this category of dilemma included: “How can diverse problem-based 

experiences help students meet specific state and local standards?” and “Will 
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constructivist approaches adequately prepare my students for high-stakes testing …?” 

(Windschitl, 2002, p. 133). Thomas (2001) argued that mathematics educators cannot 

continue to ignore the political forces that influence their discipline: 

Mathematics education is political…to ignore the effects of this in an 

economically globalized and changing world has the potential to constrain or 

render ineffectual much mathematics education research. In spite of the attention 

given to social context, the politics of mathematics education research is given 

little attention, and many mathematics educators tend to ignore the political milieu 

in which their work is situated (p. 96). 

In reply to this criticism of mathematics education research, let us now turn our attention 

to a review of the literature on the socio-political milieu in which mathematics teachers’ 

work is situated. 

Socio-Political Milieu 

In this section, I begin by examining some useful definitions of globalization. The 

classic economic definition is visited and the concept of globalization as shared cognitive 

space is examined. The conversation then progresses to the effects of globalization on 

education. In particular, the translation of the business model to education institutions is 

considered. This discussion also includes a study of the concept of the knowledge 

society, also known as the knowledge economy or learning-community, which critically 

examines the question, “What knowledge is of value in such a society?” Finally, a 

lengthy discussion about the effects on mathematics education of the discourses of global 

competitiveness and the knowledge society is offered. The role of mathematics teachers 

in this context is also considered. 
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Globalization  

The term globalization has numerous meanings in the literature. This is to be 

expected as globalization is multifaceted and its progression ongoing. Meyer (2007) 

distinguishes between globalization as exchange and globalization as cultural and 

institutional. A brief discussion of globalization as exchange will first be presented, 

followed by a lengthier survey of the literature on globalization as cultural and 

institutional, especially as it relates to educational institutions. 

Globalization as exchange focuses on the expanded economic exchange between 

nation states, "including processes of production, consumption, trade, capital flow, and 

monetary interdependence" (Burbules & Alberto Torres, 2000, p. 2). Authors agree that 

globalization has meant a decline of state intervention in national economies in favor of 

neoliberal free-market ideology, a weakening of the nation state, an increase in 

international integration of national economies and flows of technology, labors and 

workers (Stromquist & Monkman, 2000; Jones, 2000; Levin, 2002). Stromquist and 

Monkman (2000) refer to globalization as the “strong, and perhaps irreversible, changes 

in the economy, labor forces, technologies, communication, cultural patterns, and 

political alliances … imposing on every nation” (p. 3).  

The liberal economic ideology started with Adam Smith’s 1776 book The Wealth 

of Nations. Smith believed that markets free of government interventions had their own 

rationality, seemingly guided by an “invisible hand.” Yet, when such laissez-faire proved 

to foster great inequalities in the distribution of wealth, economic theories that trumpeted 

the role of government in economic affairs became popular.  
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John Maynard Keynes’s theory, founded on the positive effect governments could 

have on investor confidence, was welcomed in the post-war era (Peet et al., 2003, p. 7). 

Influential organizations such as the International Monetary Fund were founded on 

Keynesian principles. Friedrich von Hayek, 1974 Nobel Prize winner in economic 

science, was influential in the rebirth of Smith’s austere liberal ideal in the form of 

neoliberalism.  

Von Hayek, believed that “collectivist economic planning leads inevitably to 

totalitarian tyranny” (Peet et al., 2003, p. 10). Von Hayek theorized that free markets 

were the best manner in which to regulate price and production of goods and services - 

not government bureaucracies. He also argued that traditional government services, such 

as schools and hospitals, should be privatized in order for them to be controlled by 

market forces. 

Neoliberalism brings us back to Smith’s time of complete faith in self-regulating 

markets and ideas about personal freedoms. Von Hayek’s view would ultimately win the 

day on the world stage. Peet et al. (2003) explains that neoliberalism is “founded on 

right-wing, but not conservative, ideas about individual freedom, political democracy, 

self-regulating markets and entrepreneurship” (p. 8).  

Some social scientists (Jordan & Yeomans, 2003; Peet et. al., 2003) have 

proposed that globalization may simply be a discursive construction by richer nations in 

order to facilate economic collaboration and to impose their economic ideology onto 

developing nations.  

Robertson (1992, qtd. in Henry & Taylor, 1997) defines globalization as referring 

to “both the compression of the world and the intensification of consciousness of the 
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world as whole” (p. 46), while Harvey (qtd. in Stromquist & Monkman, 2000, p. 3) 

called it a “time-space compression” due, in large part, to electronic media. This results 

in a shared cognitive space. The definition of globalization as a shared space is put in 

economic terms by Stromquist and Monkman (2000) in the following way: 

A set of processes by which the world is rapidly being integrated into production 

and financial markets, the international trade, the internationalization of 

production and financial markets, the internationalization of a commodity culture 

promoted by an increasingly networked global telecommunications system (p. 4). 

Globalization and Education 

Although the literature is in relative agreement on the economic definition of 

globalization, the effect of globalization on culture and social institutions, such as 

educational institutions, is a much more difficult phenomenon to comprehend. As 

mentioned in Burbules & Alberto Torres (2000), the economic effects of globalization  as 

described above "force national educational policies into a neoliberal framework" (p. 20) 

which among other things, tends to emphasize rational management of school 

organizations and performance assessment" (i.e. high-stakes testing). 

According to Spring (2008), the major global educational discourses are 

neoliberalism, the knowledge society or economy, lifelong learning (learning 

community) and brain circulation. I will first expand on the global education discourse of 

neoliberalism, and then nuance the discussion by introducing the knowledge society and 

the related concept of lifelong learning.  

Neoliberalism and education. Educational policies reflect what counts as 

legitimate or valued knowledge, and, furthermore, what is considered good teaching and 
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learning. Policy-makers see a strong role for the government in shaping the educational 

policies that will produce the skilled “knowledge-workers” required to compete in the 

global economy (Fitzsimons, 2002). Underlying this philosophy is the belief that 

“educational effectiveness comes from central control and formal accountability” 

(Thomas, 2001, p. 101). 

In this framework, education serves neoliberal goals by producing individuals that 

are enterprising and competitive. Hopper (2000) believes that neoliberalism has a certain 

slant on the foundations of truth and the nature of knowledge. To Hopper (2000), 

neoliberalism has an undeniably positivist epistemology, with a strong faith in scientific 

truths above other forms of knowledge. Technologically advanced countries thus have 

control over knowledge with the power to “construct the parameters of meaning” 

(Hopper, 2000, p. 103). Authors such as Burbules & Alberto Torres (2000), Labbert & 

Hattingh (2006) and Keitel, Kotzmann, and Skovsmose (1993) have also written at length 

about the pragmatist beliefs and positivist certainty of reality underlying much 

educational policy. 

It is well documented that many schools around the word and at all levels have 

adopted a corporate model of education in response to global forces (Currie & Subotzky, 

2000; Levin, 2002; Olssen & Peters; 2005). In practical terms, this has meant a 

managerial emphasis on measured outcomes and efficiency, a vocationalization of 

education, and a shift away from the liberal arts towards applied sciences, technology and 

other disciples with strong ties to the market (Abue, 2002).  

Olssen & Peters (2005) discuss the influence the rise neoliberalism has had on 

higher education. They argue that a mimicking of the business model by universities has 
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led to an abandonment of academics as independent professionals for an emphasis on 

measured outcomes. A higher value is placed on disciplines that garner grant money and 

grants are generally given to research areas that can demonstrate relevance to the labor 

market. Disciplines that have, at best, weak links to the market economy, such as 

philosophy or pure sciences, have had to redefine and even justify their existence.  

Since this is now the prevailing view in schools, it is no surprise that educational 

goals must be spelled out in concrete terms in order to measure effectiveness. For 

instance, syllabi must have goal-oriented objectives clearly spelled-out: “Upon 

completion, students will be able to solve quadratic equations.” Goals such as: “Students 

will gain a better appreciation of the beauty of mathematics” or “students will learn how 

to creatively and collaboratively problem solve” would be considered laughable and 

useless. How would we measure creativity?  How would appreciating the beauty of 

mathematics be relevant to current or future labor market conditions?  

Knowledge society. The effects of globalization on education institutions are 

intimately tied to the discourse about the knowledge society. This connection makes 

investigations about epistemology and what is valued knowledge in a global society, 

including the mathematics that is valued, that much more pressing. It also complicates 

and nuances the discussion of the effects of globalization on education, including 

mathematics education.  

On the one hand, the above discussion exposes how globalization and its 

discourse have meant the adoption of the corporate model in schools around the world 

and at all levels. This has brought about an era of performativity, measured outcomes, 
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high stakes testing and its consequent pedagogy with its underlying post-positivist and 

pragmatist beliefs about the nature of mathematics and its teaching. 

However, the concept of the knowledge society somewhat complicates this 

discussion. There is the claim that globalization has brought about an era of 

postmodernity in which the speed of change of knowledge has increased so rapidly that it 

has helped call into question matters of 'truth' and 'reality' as relative (e.g. Jarvis, 1999). 

Proponents of this position cite the quickness at which knowledge becomes obsolete 

(temporary knowledge) and the fact that schools are no longer the only providers of 

knowledge and truth. The mass media, the World Wide Web, businesses, etc. are now 

also purveyors of information.  

As Levin (2002) points out “synchronous global television broadcasts and 

asynchronous world wide web postings are among the symbols of a global culture”  

(p. 122). Interestingly, these are exactly the symbols used by postmodernists to explain 

their skepticism of a positivist certainty of reality. Postmodernists question the very 

foundations of reality and reject the possibility of certainty. The postmodernist view of 

the role of technology can best be summed up by Baudrillard (qtd. in Gubrium & 

Holstein, 1997): 

Through television, we are taken instantaneously to distant and disparate places. 

Space in terms of distance doesn’t seem to matter. In seconds, contrasting images 

are juxtaposed, jarring a modern sensibility built on things that are separate and 

distinct from one another … Reality or modern time and space, are “cranked up” 

to the point where the objects normally associated with the real no longer apply 

(p. 78). 



42 
 

  

Thus, while electronic media has allowed for the spread of the neoliberal positivistic idea 

of knowledge, it is also responsible for many scholars becoming uncomfortable with this 

approach to truth (epistemology). In the knowledge society, the new, “informational 

mode of development, the source of productivity lies in technology of knowledge 

generation, information processing, and symbol communication” (Castells, 1996, p. 17).  

The term knowledge society (sociology) is often used synonymously with the 

notions of (global) knowledge economy (economy), information society (computer 

science and information technology) and learning society (education). These notions 

have been written about at great length. 

A Google search (in January 2009) returned approximately 779,000 hits for 

knowledge society. An ERIC database search in education for “knowledge society” 

returned approximately 170 publications on the topic and 420 which prominently 

featured the notion of the learning society. In fact, the journal International Journal of 

Lifelong Education was founded in 1992 “with the expectation that we would soon be 

encountering lifelong education on an international scale” (Jarvis, 2006, p. 201). 

The knowledge society is often depicted as being driven by creativity and 

ingenuity where the primacy of manufacturing is replaced by knowledge. The World 

Bank (2003) defined it this way: “A knowledge-based economy relies primarily on the 

use of ideas rather than physical abilities and on the application of technology” (p. xvii).  

Members of the knowledge society must become life-long learners in order to 

remain abreast of the ever-changing valued knowledge and remain productive members 

of the society. In other words, in the knowledge society it is knowledge, not goods and 
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services, that is the primary exploitable commodity. Within this highly ideological 

discourse, knowledge is marketed as the main survival tool in a globalized world. 

Specifically, the knowledge of value in the knowledge society is scientific and 

technological knowledge. This is a society in which pragmatism rules as a theoretical 

framework, in which “knowledge, as such, has no intrinsic value; it is only its use-value 

as a scarce resource which is significant. Hence research and development are at the heart 

of the productive processes and knowledge has to be practical” (Jarvis, 2006, p. 203).  

In this vision of a globalized, ever-changing knowledge-driven world, teachers are 

asked to prepare students to become life-long learners in order for them to stay abreast of 

all innovations in their field of employment created by quickly changing technologies and 

knowledge. Spring (2008) discussed the role of K-12 educators given the discourse of the 

knowledge society and of life-long learning: “In this context, primary and secondary 

education becomes preparation for the lifelong learning required by the rapidly changing 

technology of the knowledge economy” (p. 9). The research centered on changing teacher 

beliefs about mathematics and its education documented above is partly motivated by the 

drive to encourage teachers to move toward a view of mathematics that will help them 

guide their students to engage in the complexities of the 21st century (Cooney & Shealy, 

1997).  

School teachers are charged with equipping students with the skills and deep 

cognitive abilities that are at a premium in such a vision of society: creative thinking, 

capability to reskill (life-long learners) and relocate as the economy shifts around them, 

ability to work collaboratively, identify and solve problems. In other words, the crucial 

skill that teachers are to be imparting to their students in order for them to be ready to 
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participate in the knowledge society is learning how to learn (Valimaa & Hoffman, 

2008).  

Morrow & Alberto Torres (2000) have said that the overall effect of neoliberal 

policies on education, as described above, has been a shift toward competence-based 

skills to the detriment of fundamental and critical competences an individual would need 

for autonomous learning key to life-long learning skills essential to participation in the 

knowledge society. Hargreaves (2003) agrees with Morrow & Alberto Torres (2000): 

In many parts of the world, the rightful quest for higher educational standards has 

degenerated into a compulsive obsession with standardization. By and large, our 

schools are preparing young people neither to work well in the knowledge 

economy nor to live well in a strong civil society” (p. 2). 

Lee (2005) points out that this emphasis on education for work and the consequent focus 

on facts and procedures in school mathematics will in fact prepare students for jobs that 

won't exist by the time they enter the job market. To truly prepare students for 

tomorrow's world, Lee (2005) proposes there should be an emphasis in the mathematics 

classroom on thinking skills and affective education in order to equip students with 

"skills to handle a world of non-linear change" (p. 172).  

In an education speech given September 9, 2008 in Ohio (Obama, 2008), then 

presidential candidate Barak Obama used the knowledge economy discourse to explain 

his position on his proposed reform of No Child Left Behind (2001): 

And don't tell us that the only way to teach a child is to spend most of the year 

preparing him to fill in a few bubbles on a standardized test. (Cheers, applause.) I 

don't want teachers to the -- teaching to the test. I don't want them uninspired and 
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I don't want our students uninspired. (Applause.) So what I've said is we will 

measure and hold accountable performance, but let's help our teachers and our 

principals develop a curriculum and assessments that teach our kids to become not 

just good test-takers. We need assessments that can improve achievement by 

including the kinds of research and scientific investigation and problem-solving 

that our children will need to compete in a 21st century knowledge economy.  

Globalization, Mathematics Education and the Mathematics Teacher   

Mathematics is related to our understanding of the world, and the effect 

globalization has on this discipline’s education shapes the way students will eventually 

view and interact with the world. Since mathematics is at the heart of science and 

technology, which are in turn the basis of the new global, knowledge-based economy, 

mathematics education is highly valued by governments around the world, including in 

the U.S. It is particularly valued for its perceived economic importance not its intrinsic 

value or as an important facet of human culture. The issues described above in the 

“globalization and education” section are thus particularly relevant to mathematics 

education. 

The Partnership for 21st Century Skills (Partnership for 21st Century Skills, 2007) 

lists mathematics as one of the core subjects and 21st century themes considered essential 

for students in the 21st century, and advocates moving “beyond a focus on basic 

competency in core subjects to promoting understanding of academic content at much 

higher levels” by weaving global awareness, entrepreneurial, civic and health literacy 

into the teaching of mathematics.  
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The essential Life and Career Skills identified by The Partnership for 21st Century 

Skills are: flexibility and adaptability, initiative and self-direction, social and cross-

cultural skills, productivity and accountability, and leadership and responsibility. In 

particular, students need be prepared to “work effectively in a climate of ambiguity and 

changing priorities” as well as “collaborate and cooperate effectively with teams” and 

“use problem-solving skills to influence and guide others toward a goal” (Partnership for 

21st Century Skills, 2007). 

Mathematics achievement scores on standardized tests have become inexorably 

tied to national policy discourses of global competitiveness emphasizing a strong causal 

relationship between mathematics achievement and economic prosperity (e.g. National 

Science Foundation, 2001, No Child Left Behind, 2001; OECD, 2007; TIMMS, 2003). 

Consequently, mathematics curriculum development is underpinned by the “human 

capital” discourse, in which quality mathematics education play a central role in 

providing individuals with the set of skills and knowledge to produce economic value. 

Because adequate preparation in mathematics is rapidly becoming a requisite for 

workplace entry and mobility in today’s information, knowledge society (Flowers & 

Moore, 2003), questions of unequal access to quality mathematics education are 

inexorably tied to social inequities. Namukasa (2004) is very critical of the privileged 

role of mathematics in our increasingly globalized world, describing it as a "cultural 

homogenizing force, a critical filter for status, a perpetuator of mistaken illusion of 

certainty and, an instrument of power" (pp. 2-3). Sriraman & Steinthorsdottir (2007) 

agree with Namukasa (2004) in that mathematics serves as a gatekeeper to other areas of 

study, pointing to the calculus sequence as a prime example of a way to filter out 
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students. Gates (2000, p. 14) contends that “mathematics plays a significant role in 

organizing the segregation of our society.” 

It is worth noting that although some studies support a causal link between 

mathematics and science achievement and a nation’s economic growth (e.g. Hanushek & 

Kimko, 2000; Drori et al. 2003), others (e.g. Ramirez, Luo, Schofer, & Meyer, 2006) 

have called this connection into question. The assumed causal links that tie mathematics 

and science achievement to national economic vitality are as follows: national curricular 

and pedagogical modernization leads to math and science interest and achievement, 

which in turn leads to scientists and engineers in higher education and in the labor force, 

which results in national economic development. 

Each step of this reasoning has its critics. For example, Ramirez, Luo, Schofer, 

and Meyer (2006) found that the relationship between a nation’s mathematics and science 

achievement and national economic growth was time and case sensitive. Although they 

found that countries with high science and mathematics achievement grow more rapidly, 

the effect was considerably reduced when the “Asian Tigers” were removed from the 

statistical analysis (i.e. Hong Kong, Singapore, South Korea and Taiwan between 1980 

and 2000).  

Furthermore, this study also found that moving from mid-achievement scores to 

top achievement scores had virtually no economic consequences. The only causal link 

between achievement and economic growth was found when a very low performing 

country increased its achievement scores in the mathematics and science fields to mid-

level performance. As the authors stated: 
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This is a striking finding that calls into question the disproportionate attention 

(and envy) focused on those few countries with the very highest achievement 

scores. Such countries do not experience substantially greater economic growth 

than countries that are merely average in terms of achievement (Ramirez, Luo, 

Schofer, & Meyer, 2006, p. 14).  

Nevertheless, policy discourse in the U.S. and in many countries around the world 

continues to emphasize a strong causal relationship between mathematics achievement 

and economic prosperity. The inordinate amount of interest about PISA 2006 (OECD, 

2007) and TIMMS (2003) results are part of this discourse. These international 

comparison data are taken very seriously by governments as a key measure of 

performance of their educational system. Poor mathematics scores on international 

standardized tests have embarrassed the U.S. and have led to calls for making schools 

more accountable, efficient and responsive to the public sector (e.g. Rimer, 2008; 

Rothstein, 2000).  

 There has been a convergence of school mathematics curricula including content 

sequencing. The content taught is very similar worldwide (Atweh, & Clarkson, 2002a). 

This has not been alarming until recently because many mathematics educators felt that 

this was simply due to the nature of mathematics itself. If one takes the view that 

mathematics and science are objective and acultural activities, homogeneous, 

unanimously agreed upon curricula are only natural.  

Mathematics education researchers and science historians have a different 

viewpoint. For instance, calculus was introduced in American schools in the late 50’s in 

response to the launch of Sputnik by the Soviet Union and the U.S.’s fear of falling 



49 
 

  

behind in science and technological development. This crisis led to educational reforms, 

especially in the areas of mathematics, science and technology (Fitzsimons, 2002). 

Historically, countries have chosen to include or exclude a particular subject from 

school mathematics because of political and military concerns, rather than economic 

goals as we are seeing more recently (Ramirez, Luo, Schofer & Meyer, 2006). The study 

of mathematics in the cultural context in which it arises is called ethnomathematics. 

Ethnomathematics has gained popularity in mathematics education circles in recent 

decades and has brought to the forefront the notion of mathematics as a culturally 

embedded knowledge (D’Ambrosio, 2001; Ruthven, 2001). So has the history of 

mathematics, which shows the variability of mathematical approaches and traditions of 

various countries and civilizations. Ironically, while researchers have been increasingly 

interested in the pedagogical needs of diverse learners and the effect of culture on 

learning, standardized/globalized curricula are being implemented in order to meet the 

needs of employers rather than students. 

Internationalization and globalization in mathematics education. International 

collaboration is not new to the mathematics community. Internationalization of the 

discipline refers to any academic activity that involves a cross-cultural collaboration 

(Atweh & Clarkson, 2001). Mathematics education is probably one of the most 

international subjects in higher education (Robitaille & Travers, 1992). Mathematics 

educators, for instance, welcome the increase in international students, and truly value the 

abundance and quality of international conferences and journals (Atweh & Clarkson, 

2002b). 
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The dramatic enhancement of communication technologies has facilitated the 

possibility of personal exchange and mutual understanding. Some examples of 

international organizations and coordinating bodies charged with the internationalization 

of mathematics education are: the International Group of Psychology of Mathematics 

Education, the International Congress in Mathematical Education (ICME), the Comité 

Interamericano de Educación Matemática, the African Mathematics Union, Mathematics 

Education Research Group of Australasia, the Congress of the European Society for 

Research in Mathematics Education (CERME) and the International Organization of 

Women and Mathematics Education (IOWME), to name but a few. Many of these 

organizations hold annual conferences and organize study projects, bringing together 

mathematics education researchers and educators from many countries.  

However, Atweh and Clarkson (2002a) argued that internationalization and 

globalization of mathematics education differ on the degree of autonomy they allow for 

participating nations and, consequently, participating educators: “While international 

collaborations tend to be transparent and enjoy a degree of autonomy in participation, 

globalization processes are often associated with forces that are impersonal and beyond 

the control and intentions of any individual or groups of individuals” (p. 23). 

Globalization is seen as “compelling rather than invitational” by mathematics educators 

and researchers around the world (McGinn, 1995, qtd. in Atweh & Clarkson, 2001,  

p. 80). 

Astiz, Wiseman & Baker (2002) would disagree with Atweh and Clarkson 

(2002a). These authors assert that choices have been made by governments, corporations, 
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communities and individuals, to participate in the process of globalization, at each level 

up to the transnational.  

Currie and Subotzky (2000) suggest that the emergence of the “entrepreneurial 

university” for instance, is not an inevitability, and that countries such as France, Norway 

and South Africa have found alternative practices to the managerial model. The point 

made by Currie and Subotzky (2000) is that, while countries can no longer “opt out” of 

the global economy, they have a say in the degree in which they want to embrace aspects 

of the free-market ideology and how their decision will affect the face of education. For 

instance, both France and Norway’s governments have made a concerted effort to 

maintain the welfare state while welcoming privatization.  

The compromise between unfettered market capitalism and government 

interventions is referred to as the “Third Way” by Currie and Subotzky (2000). Though it 

is true that some countries have successfully integrated some aspects of the managerial 

approach to education and rejected others, it is clear that countries with little economic 

power will find it difficult to take that “Third Way.” This alternative is a luxury that 

many countries will not be able to afford.  

Official documents from government science and mathematics agencies such as 

the National Science Foundation (NSF) often refer to globalization in positive terms. In 

NSF’s 2001 task force document, globalization is referred to as: “The worldwide 

integration of nations through trade, capital flows, diffusion of information, movements 

of people, and operational linkages among firms and other organizations” where science 

and engineering will be “key determinants of economic growth, quality of life, and the 

health and security of our planet in the 21st century” (NSF, 2001, p. 19). This document 
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emphasizes the value of international collaboration such as the concerted effort needed to 

reign in infectious diseases like AIDS, ebola, and tuberculosis (NSF, 2001, p. 25). 

Atweh and Clarkson (2002b) point out that many international gatherings are 

dominated by discussion of the UK and the US reforms such as the Cockroft report and 

the Standards documents published by NCTM. Further, keynote speakers from the United 

States tend to only refer to literature from the United States. A quick look at the reference 

list of most American mathematics education articles will convince any reader that U.S. 

researchers often omit work done in other countries. 

This has resulted in the fact that many countries do not have their own national 

identity in mathematics education and defer to the standards established by the West. For 

instance, Atweh and Clarkson (2002a) report the story of the induction ceremony of a 

group of Ph.D. students in Columbia at which a professor gave a lecture on the main 

developments of educational thought during this century. Although he cited Piaget, Von 

Glaserfeld, Kuhn and other familiar educational theorists, he did not make reference to 

Paulo Freire of Brazil or Orlando Fals Salvador of Columbia.  

Many mathematics educators and researchers feel uneasy about the uncritical 

globalization of issues and schools of thought in mathematics education and many have 

spoken up. For instance, at the 1992 International Congress on Mathematics Education 

(ICME) regional conference held in Canada, Usiskin (1992) mentioned, “the extent to 

which countries have become close in how they think about their problems and, as a 

consequence, what they are doing in mathematics education.” At this same conference, 

Rogers (qtd. in Atweh & Clarkson, 2002a) noted that: 
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All our theories about learning are founded in a model of the European Rational 

Man, and that this starting point might well be inappropriate when applied to 

other cultures…the assumptions that mathematics is a universal language, and is 

thus universally the same in all cultures cannot be justified. Likewise, the 

assumption that our solutions to local problems…will have universal applications 

is even further from the truth (p. 86). 

Interestingly, this concern is not felt by many developing countries. In fact, many 

mathematics educators in developing countries warn against an overemphasis on 

ethnomathematics. For instance the president of the African Mathematical Union in 1995 

posited that such an emphasis “may be at the expense of actual progress in the 

mathematics education of the students” (Kuku, 1995, p. 407).  

Some trends in mathematics education attributed to globalization in the literature 

include: similarity in research questions and methodologies, convergence of school 

curricula including content sequencing, standards of research and wide spread acceptance 

of epistemological stance (Atweh & Clarkson, 2002a). Many educators see the fact that 

“the value of an American-style education transverses the world as entire courses, 

complete with syllabus and textbooks” (Atweh & Clarkson, 2002a, p. 165) as a form of 

colonialism contradictory to the scientific philosophy of debate and free exchange of 

ideas. As a Columbian educator interviewed by Atweh and Philip (2002b) said, an 

uncritical adoption of concepts from overseas is a form of colonialism. She cites the 

worldwide adoption of calculus textbooks from the United States as an example of 

academic colonialism. 
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Just as pervasive, is the use of foreign educational consultants by many 

developing countries. For instance, a developing country in Latin America may call upon 

consultants in the U.S. or U.K. to help them with educational reforms. Often, developing 

countries see the use of imported mathematics curricula and even educational 

philosophies as their best chance for their country’s economic development. Thus, global 

collaboration runs the risk of being a subtler form of neo-colonialism. As one educator in 

an Australian Focus group as part of Atweh and Clarkson’s (2002b) study stated: 

The critical part is that there is an ideology out there, that if you take a western 

view, whatever that may be, and I think that even within the Western view, it’s a 

narrow American view, that if they take that view of the world then that’s what is 

going to give them access to power…That is the way they’re going to get out of 

their, in a sense, oppressed state, by adopting the American curriculum (p. 9). 

The mathematics educator. As governmental control has increased and 

educational theory has become subservient to educational policy, teachers and 

educational researchers have lost much of their autonomy (Hargreaves, 2003; Lewis, 

1998). Educators at all levels have been transformed into functionaries of the state. 

Mathematics educators lament the commodification and standardization of the curricula 

in an era when mathematics education research has concentrated on the pedagogical 

needs of the individual, diverse learners, social context and constructivism (Atweh & 

Clarkson, 2002a, b). As Lewis (1998) concluded: 

The intensified exploitation of teachers which has been exacted through the 

operationalization of source-book-curricula has pre-empted debate over the 

pedagogical impasse they present for educators. Indeed the worse excesses of 
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commodified curricula have seen teachers’ roles completely redefined and their 

professional autonomy undermined (p. 4). 

Kohl (2009) referred to the ambiance created in schools by scripted curriculum, teacher 

accountability, continuous monitoring of student performance, high stakes testing and 

punishment for not meeting standards as an “educational panopticon.” A panopticon is a 

type of prison designed in the 18th century in which control was asserted over prisoners 

by creating an environment in which inmates “would internalize and accept the idea of 

total and continuous surveillance whether or not it was actually happening” (Kohl, 2009, 

p. 2).  

The managerial approach to education is underpinned by the belief that 

“educational effectiveness comes from central control and formal accountability” 

(Thomas, 2001, p. 101). Further, when mathematicians and mathematics educators have 

spoken out against the commodification and vocationalization of mathematics, they are 

dismissed as elitists. To raise questions about a “standardized curriculum” has become 

raising questions about “education for all” and has effectively silenced most critics. The 

loss of control over their work results in teachers feeling anxious and conflicted as “they 

are forced to teach in ways that do not measure up to their personal standards of the way 

things should be” (Cole, 1997, p. 15).  

Although mathematics education has long been asked to meet industry’s needs 

and to be at the forefront of national economic competitiveness, political rhetoric was 

mediated by a powerful ideology of liberal education and a strong tradition and respect 

for educators’ and researchers’ autonomy and professionalism.  
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However, educators have seen their “values and expertise breached so that their 

work is now opened up to reconstruction as constituents of market-driven business 

enterprise" (Singh, Kenway, & Apple, 2005, p. 14). The cultural meaning of school has 

changed to become places where management authority, not collegial culture and 

humanistic values, establishes the ethos of the school.  

As teachers and educational researchers have been stripped of their 

professionalism, they have been simultaneously stripped of their agency to affect 

educational policy. According to Holland et al. (1998), agency is the ability to act and 

understand one’s power. A person with agency is a knowledgeable and committed 

participant. They have control over their own behavior and the ability to act on their 

world. Thomas (2001) surmises that:  

The mathematical scientists – teachers, mathematics educators, and discipline 

specialists – are more remote from decision making that is increasingly influenced 

by bureaucrats and global economic considerations rather than educational and 

equity considerations (p. 97). 

The research reflects a disconnect between the constructivist and sociocultural 

perspectives on teaching and learning advocated in mathematics education research and 

the positivist belief system espoused by mathematics education policy.  Although 

students and teachers alike tend to pay more attention to the local implications of 

education (e.g. employment, graduation rates, etc.) the discussion above shows that the 

greater socio-political milieu unequivocally affects their work.  

Surrounded by the rocky waters of mathematics education, teachers are shown as 

navigating the different belief systems in their day-to-day decision-making. If 
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mathematics education research suggests that one should incorporate writing in 

mathematics classes because it will help students gain meaningful understanding but 

“meaningful understanding” is not easily measured, what does one do and why? What is 

the decision making process behind whatever the decision might be? How do individual 

mathematics teacher interpret and mediate the major global educational discourses of 

neoliberalism and the knowledge society? What do teachers experience when faced with 

these decisions day in and day out?  

Summary and Introduction to Chapter 3 

This chapter reviewed the literature relevant to this study. It provided a survey of 

the literature on the paradigm shift from positivist to constructivist and sociocultural 

perspectives which occurred in mathematics education. An overview of the literature on 

teacher beliefs followed. An extensive discussion of the major political forces influencing 

education, including mathematics education, was then presented detailing the effects of 

the two main global educational discourses: Neoliberalism and the knowledge society. 

The role of the mathematics teacher in such a context was also explored.  

The following chapter will explain the method chosen to study the phenomenon 

of mathematics teachers navigating differing epistemologies – an instrumental multiple 

case study – as well as the theoretical framework which helped organize and explain the 

data. The way the data was collected and analyzed is also discussed.



 

CHAPTER 3: METHODOLOGY AND THEORETICAL FRAMEWORK 
 
 

As researchers are always informed by a theoretical perspective in their attempt to 

better understand the world, this chapter begins with a discussion of my theoretical 

framework. After having established the theoretical framework, I will then discuss the 

research methodology selected for this study, which was qualitative, instrumental, 

multiple case study employing components of phenomenology. This discussion includes 

a description of the participant selection, time line of the study and methods of data 

collection and analysis.  

Theoretical Framework 

The development of a good theoretical framework is vital to conducting high-

quality case study research. It is the lens used for data collection and it is the vehicle for 

generalizing particular results to a broader theory. It is the way that I, as the researcher, 

have chosen to know the world.  

I am using a social constructionist lens, derived from the work of Vygotsky and 

made prominent in the U.S. by Berger and Luckmann's 1966 book The Social 

Construction of Reality. Vygotsky argued that learning is a social activity and that an 

individual can only really be understood when taking into account the external social 

world in which the individual developed. That is, "the behaviour of man is the product of 

development of a broader system of social ties and relations, collective forms of 

behaviour and social co-operation" (Vygotsky & Luria, 1994, p. 138).  
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According to Vygotsky (1986), whose work social constructionism and 

sociocultural perspectives often rests, “the true direction of the development of thinking 

is not from the individual to the social, but from the social to the individual” (p. 36). 

Therefore, from a socio-constructionist perspective, when attempting to understand how 

an individual develops a concept, such as mathematics and its teaching, one must 

acknowledge what social constructs are informing that concept. To understand the 

phenomenon of an individual, their thinking and the development of that thinking, one 

must also understand the social constructs affecting and influencing the individual and, 

thus, the phenomenon, in their social and historical contexts.  

Since one of the main purposes of this study was to analyze how teachers of 

mathematics navigate the different beliefs about mathematics, I examine the social 

constructs influencing the formation of these beliefs. My research questions imply the 

political underpinnings of the participants’ concepts of mathematics and how they enact 

those concepts; I approach the data analysis stage of the study with a critical eye as a 

means to interpret and explain what is observed during data collection. Understanding 

these influences provides a greater depth of knowledge about how teachers come to 

conceptualize what mathematics is, which in turn informs their teaching practices. 

Underpinned by Vygotsky’s notion of multiple, socially constructed truths and 

experiences, this study is not centered on providing a version of correct teacher behavior 

or best practices as it is. Instead, the instrumental multiple case study approach, 

influenced by phenomenological research, is used to capture teachers’ lived-experiences 

as they mediate the beliefs in part shaped by mathematics education research and the 

external discourse of "effective teaching.” 
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Leatham’s (2006) view of mathematics teachers’ beliefs as “sensible systems,” 

discussed earlier in Chapter 2, provides a useful lens through which to see teacher beliefs 

and practice while circumventing value judgments about best practices and 

inconsistencies in attributed and professed teacher beliefs.  

A key component of Leatham’s framework for describing teachers’ lived-

experiences as they mediate different belief systems is the very important notion that 

beliefs tend to be clustered in isolation from other beliefs, and that this belief clustering 

allows for a person to believe one thing in one context and another, perhaps contradictory 

belief, in another context. As seen in Chapter 2, this allows for seemingly contradictory 

beliefs to exist in different belief clusters with no explicit or delineation of context 

(Leatham, 2006). Within Leatham’s framework, inconsistencies in a teacher’s belief 

system and the gap between belief and practice vanish as certain beliefs simply have 

more influence over certain actions in certain contexts.  

The concept of bricolage (see Chapter 2), where a viewpoint is constructed and 

created from a diverse range of ideologies which happen to be available, will also inform 

the way I will write about teacher beliefs. This helps avoid the reductionism of much of 

the research on teacher belief centered on categorization. 

I am also using aspects of Gates' (2000) framework for the sociological 

perspective on teacher beliefs developed in his unpublished Ph.D. dissertation. Gates’ 

framework is shaped by French sociologist Bourdieu’s (1972) claim that educational 

institutions play a central role in social reproduction. The resulting framework is 

comprised of three key components: habitus, ideology and discourse.  The term habitus, 

as described by Bourdieu (1972), is the set of dispositions which come largely from our 
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up-bringing. In practice, habitus is “history turned into second nature. It is through 

habitus that objective structures and relations of domination reproduce themselves within 

us” (Bourdieu, 1972, paraphrased by Gates, 2006, p. 352). In essence, habitus comprises 

the dispositions, values, skills and understandings individuals accumulate across their 

lifetimes. Bourdieu states that habitus is a consequence of socialization within specific 

contexts through which “one develops distinctive...ways of ‘seeing’, ‘being’, ‘occupying 

space’, and ‘participating in history’” (Carrington & Luke, 1997, p. 101).  

The formation of the habitus is deeply embedded in social and cultural influences 

and is significant in individuals’ sense of themselves and others, of the nature of 

interactions, and of the meanings made through individual’s interactions in specific social 

and cultural contexts. Bourdieu argues that through “habitus, we have a world of 

common sense, a world that seems self-evident” (Bourdieu, 1989, p. 19). According to 

Bourdieu, one’s habitus is in a constant state of ebb and flow with the world. The work of 

Bourdieu and the concept of habitus became an important addition to my theoretical 

framework.  

The operational definition offered by Gates (2006) for ideology is (a) the structure 

of ideas about the relations between individuals and (b) ideas about how power is used at 

a practical level in order for society to function. Teachers’ ideological framework 

includes their views on the role of education in society, the role of the teacher in the 

classroom and about learning.  

Discourses are the “interactional means whereby we live out and act out our 

ideological framework” (Gates, 2006, p. 354).  
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Also of importance to my study is Gates' (2006) concept of mediating relations 

described as the:  

Level of operation between one's values and one's engagement in external 

discourses. The terminology is intended to suggest that these relationships 

mediate, in the sense of working to bring about an agreement between one’s 

values and one’s position within and towards external discourses (p. 345). 

Gates (2006) goes on to say that "these relations form a conduit between agency and 

structure, between disposition and discourse" (p. 345) and that the amount of flexibility 

and tension an individual can manage will be a function of one's habitus.  

Methodology 

Why Qualitative? 

The main goal of qualitative research is to “describe and clarify experience as it is 

lived and constituted in awareness” (Polkinghorne, 2005, p. 138).  

Given that the purpose of this study is to provide a thick description of the lived 

experience of three mathematics educators as they mediate the different belief systems 

shaped by mathematics education research, recommendations by organizations such as 

the National Council of Teachers of Mathematics, workshops, mathematics methods 

classes and the major global educational discourses, it is crucial that I “describe and 

clarify” these ideas within their lived context. In order to describe these lived 

experiences, I draw upon case study methodology while also using phenonemenological 

techniques of interview (van Manen, 2001). 
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Research Design: Instrumental Multiple Case Study  

The current research was a semester long, instrumental multiple case study of 

three high school mathematics teachers as they navigate different belief systems when 

making professional decisions related to their work as teachers. The case study 

methodology was selected in order to relate a detailed description of the uniqueness and 

commonalities of the lived experiences of these three mathematics educators (Stake, 

1995). Yin (2003) defines a case study as "an empirical inquiry that investigates a 

contemporary phenomenon within its real-life context" (p. 13).  

In this study, the “real-life context” is situated within the socio-political context 

described in the review of the literature (see Chapter 2). As Merriam (1998) explains 

further:  

A case study design is employed to gain an in-depth understanding of the 

situation and meaning for those involved. The interest is in process rather than 

outcomes, in context rather than a specific variable, in discovery rather than 

confirmation (p. 19). 

A multiple case design was chosen for this study as it is considered less vulnerable than 

single-case design and because "the analytic benefits from having two (or more) cases 

may be substantial" (Yin, 2003, p. 53). For one, studying multiple cases instead of one 

case helps blunt possible criticisms about the uniqueness of a particular single case. 

Analytic conclusions arising from multiple cases are more powerful than those coming 

from a single case since the generalizability of the findings are expanded. Multiple case 

design makes use of the same procedures for each case.  



64 
 

  

Generalization is always a concern with case study research. Yin (2003) argues 

that case studies "are generalizable to theoretical propositions and not to populations or 

universes” (p. 10). He continues to state that, in contrast to survey research, which can 

make generalization on the basis of statistical tests, case study research relies on 

analytical generalization. This entails the researcher generalize particular results to a 

broader theory. This is accomplished by discussing broader theoretical issues along side 

the thick description of the lived experiences of the participants.   

The presented case studies are instrumental as I aspire to gain a greater 

understanding of the effects of a bigger, socio-political phenomenon through the study of 

these three cases. This is done in an effort to provide insight into an issue in order to 

produce better theorizing (Stake, 1995). An instrumental case study approach is in 

contrast to an intrinsic case study approach in which the cases are situated within a 

unique, unrepeatable sociocultural phenomenon, which results in an intrinsic and primary 

interest in the case itself.   

The present study also makes use of some components of phenomenology, 

primarily a reliance on in-depth, open-ended interviews as the primary data (Creswell, 

William, Hanson, Plano & Morales, 2007).  

The chief aim of phenomenological research is "to 'borrow' other people's 

experiences in order to better be able to come to an understanding of the deeper meaning 

or significance of an aspect of human experience, in the context of the whole of human 

experience" (van Manen, 2001, p. 62). Consequently, to collect data for each case, I used 

interviews to allow for a narrative description of teachers lived-experiences to emerge.  



65 
 

  

 In order to truly understand how any social phenomenon is experienced by 

individuals or groups of individuals, a researcher must strive to convey the individual’s 

words, thoughts, feelings and reactions as that individual is experiencing the 

phenomenon. The phenomenological perspective strives to do so by utilizing a 

participant’s own words or by portraying the experience from the participant’s 

perspective as accurately as possibly.  

The primary data source in phenomenological research, the interview, is also 

highly prized in case study research. The power of the interview was described as follows 

by Stake (1995) in his book on case study research: 

Much of what we cannot observe for ourselves has been or is being observed by 

others. Two principal uses of case study are to obtain the descriptions and 

interpretations of others. The case will not be seen the same by everyone. 

Qualitative researchers take pride in discovering and portraying the multiple 

views of the case. The interview is the main road to multiple realities (p. 64). 

The interview, as a data collection tool, allows the researcher to explore aspects of a 

teacher's thinking that cannot be easily captured through written self-report or 

observations. Much more will be said about the manner in which interviews were 

conducted in the “data collection” section below. 

Participant Selection 

The participant selection followed criteria-based sampling guidelines (Creswell, 

2005). As the purpose of the study is to explore the experiences of teachers mediating 

various belief systems, including the beliefs found in much of mathematics education 

literature and mathematics education methods classes, it was essential that my 
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participants have a strong background in mathematics education and that they be 

reflective and able to articulate their experiences.  

The initial pool of potential participants included seventeen high school 

mathematics teachers who, at a minimum, had taken three or more mathematics 

education classes. Preference in selection was given to teachers who were pursuing or 

held a Masters in Mathematics Education, or were currently pursuing a Ph.D.  in 

Mathematics Education, as these teachers had a demonstrably strong knowledge of 

mathematics education.  

This initial list of seventeen names was obtained through various sources, 

including recommendations from mathematics education professors, as well as principals, 

assistant principals and teachers at local high schools. Once this list was compiled, an e-

mail invitation to participate in the study was sent to all seventeen teachers (see 

APPENDIX A for example of invitation e-mail). Out of the seventeen initial potential 

participants, eight volunteered to be part of my study. 

 Again, as I am attempting to gain an understanding and describe the lived 

experiences of teachers mediating clashing epistemologies, it was vital that my 

participants had lived this experience and be able to articulate it. I thus informally 

interviewed these 8 potential candidates prior to formally inviting them to participate in 

the study in order to establish whether they have lived the phenomenon I am studying. 

This interview included questions about their educational background, the beliefs about 

teaching of mathematics they espouse, their current teaching context and whether they 

had encountered impediments to the actualization of their beliefs in their current context. 
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After these informal interviews were completed, a decision was made to collect 

data on six of the eight volunteering teachers (four males and two females). I thus 

approached these six teachers formally asking them to be part of my study. After 

explaining the research in greater detail, I asked them to read the rights and requirements 

of participation in the study and sign consent forms.  

The decision to report on only three teachers in this dissertation was taken after 

the data analysis process showed that these three cases were of singular interest due to the 

particular combination of commonalities and uniqueness of the themes that emerged from 

these three participants’ experiences.  

These three teachers had particularly well-developed knowledge in the 

constructivist and sociocultural epistemological foundations of mathematics education 

research, had strong mathematical content knowledge, had idealized images of 

themselves as teachers and were experiencing some impediments to the actualization of 

these beliefs in the reality of their current school context. The similarity in their 

experiences was a factor in the decision to report on these three particular cases, whereas 

the differences in their experiences provided a fuller narrative of the ways teachers 

mediate clashing epistemologies.  

The decision to concentrate on three cases was not made lightly. My decision to 

focus on only three cases was guided by Patton’s (2002) definition of information-rich 

cases: “Information-rich cases are those from which one can learn a great deal about 

issues of central importance to the purpose of the research…” (p. 46).  The analysis 

showed that the cases for three participants, Martin, Lea and Martha, were not 
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information-rich in that they did not provide the level of insight necessary for me to learn 

about issues of central importance to the purpose of my research.  

For one, Lea and Martha had difficulty in articulating mathematics education 

research, their teaching philosophy and/or beliefs and, thus, could not express their 

epistemological struggle in rich detail. For instance, although one participant (i.e. Lea) 

was conflicted about her role as a teacher, stating: “I feel kinda bad cramming it in their 

head, you have to do this and you have to learn this,” she could not answer the question: 

“How do you know when a student understands?” further than “they pass the test.” It is 

worth noting that Lea had considerable exposure to mathematics education research 

findings and recommendations, both from mathematics education classes and in-service 

professional development workshops. She also had very advanced mathematics content 

knowledge, having taken courses such as topology and non-Euclidean geometry. 

However, much of her answers centered on procedural knowledge acquisition. The 

following interview excerpt is representative of the data collected from Lea during 

interviews (R denotes the researcher’s part and L denotes Lea’s part): 

R:  Can you expand on what you mean when you say: they need to be able to 

think? What does that mean to be able to think mathematically? 

L:  Be able to apply your knowledge not just work out a problem that 

somebody has already given you. Use it. We're doing like now, we're 

starting the exponentials. If you put money in the bank, how long before 

you have $400… 

One teacher-participant (i.e. Martha), showed little willingness to provide course 

artifacts. Furthermore, interviews with this participant were much less in-depth than with 
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the other five participants due to her very busy schedule. For this reason, data was 

collected fully for only five out of the six original participants.  

Another participant (i.e. Martin) had extremely advanced content knowledge in a 

specialized area of mathematics (i.e. Rubik’s cubes and associated algorithms and group 

theory). While this participant had considerable familiarity with mathematics education 

research, extremely sophisticated mathematical content knowledge and did face 

impediments to the actualization of his beliefs, this individual’s focus during interviews 

was primarily on his specialized area of interest. A simple word search of Martin’s 

interviews resulted in 30 mentions of “Rubik’s cube” and associated concepts. For 

instance, when asked: “What do you like about teaching mathematics?,” Martin 

answered: “You know, every time you teach a kid how to solve a Rubik’s cube, that’s a 

little victory.” When asked: “Tell me about activities that you perform as a teacher that 

you find meaningful.” Martin’s response was: “I can get my kids excited by doing a 

blindfold Rubik’s cube demo, but it doesn’t carry over.” Although fascinating, this topic 

did not easily connect with a discussion of the greater socio-political issues. 

Data Collection 

Before beginning the data collection, I first obtained approval from the 

Institutional Review Board at the university at which the research was conducted. The 

participants all signed forms indicating their consent to be part of the study. See 

APPENDIX B for the participants’ consent form.  

The data collection period began in August, 2008 and ended in December, 2008. 

The data collection included multiple sources of data upon which to draw in order to 

write a “thick description” (Geertz, 1973) of these three teachers personal understanding 
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of their experiences. Thick description includes a description of the context as well as the 

behavior or phenomenon under study. Interview and artifacts were the primary methods 

of data collection. Observations were also conducted. 

Interviews 

A series of in-depth, open-ended interviews were the primary data source. Three 

interviews with each case study participant were performed. Each interview lasted no less 

than one hour and no more than two hours. The first round of interviews were conducted 

at the end of September, 2008, the second round at the beginning of November, 2008 and 

the third round at the beginning of December, 2008. Participants and I met in many 

locations, including on the university campus, their school/classroom, and local cafes and 

restaurants. All interviews were recorded using a digital voice recorder and transcribed 

verbatim. After transcription was completed, participants were encouraged to review each 

interview transcripts for accuracy.  

Interviews were used with the express purpose of gaining in-depth knowledge 

from participants about their experiences (deMarrais & Lapan, 2004). In keeping with the 

aim of the study, the guiding questions underpinning our conversations were open ended, 

and designed to invite participants to reflect about and share their experiences. The 

interview protocol used for this study can be found in APPENDIX C.  

I agree with Taylor and Bogdan’s (1998) view of the interview as “a form of 

social interaction” (p. 98). I thus constructed and conducted my interviews as a focused 

conversation. Although I made an effort to follow the structure of the interview protocol, 

I also allowed the participant to deviate as needed. A successful interview is described by 

Bogdan and Biklen (1992) as one “in which the subjects are at ease and talk freely about 
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their points of view” (p. 97) and which simultaneously yields useable and rich data that 

reveals the views of the participants. 

Before the first interview, I had already begun to gather and read course syllabi, 

teacher websites and policy documents from the target institutions. The first interview 

conducted primarily focused on each participant’s educational experiences, including 

their familiarity with mathematics education research, their teaching experiences and 

their beliefs. I also began to delve into each teacher’s school context, especially as it 

relates to the discourse about global competitiveness and how it manifests itself in 

practice.  

The interview protocol (APPENDIX C) is a representative, but not exhaustive list 

of interview questions.  Multiple interviews were necessary to pose these questions. In 

general, probing questions were constructed based on a participant's response. The 

participants were also encouraged to discuss relevant issues with the investigator, taking 

the interview in unforeseen directions. For instance, an e-mail communication from the 

school district’s superintendant received by two of the three participants prompted much 

discussion in the first interview about the meaning of “preparing students for the global 

economy.” Although this line of questioning had not been anticipated or planned by the 

researcher for the initial interview, it was more than welcomed and explored, as it ties 

directly to the research questions of this dissertation study.  

An interview excerpt that illustrates how I respected the above mentioned 

principles of interviewing can be found in APPENDIX D. After discussing what it means 

for this participant to be a “good teacher,” I wanted to delve a little deeper into this 

teacher’s beliefs about mathematics and its teaching. The excerpt presented in 
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APPENDIX D demonstrates how interviews were conducted in a conversational tone, 

where the participant’s answers inform the next interview questions, while still being 

mindful of the overall research focus. Much of the later questions in the interview 

revisited the realization by this teacher that he didn’t feel like he had a cohesive teaching 

philosophy. He felt confused by what he had learned as a student of mathematics, as a 

student of mathematics education and the expectations of him as a teacher communicated 

by his school. 

Interview questions were organized in several themes: background, beliefs about 

the teaching of mathematics, epistemology, mathematics education research, broader 

sociocultural dimensions and standards, and decision and change. These themes emerged 

from the research questions I am endeavoring to answer in this study: “How do 

individual, successful teachers navigate the beliefs shaped by mathematics education 

research, workshops, methods classes and the discourse of preparing students to be 

competitive in the global economy?” and “How do mathematics educators experience the 

periods of conflict, reflection and resolution between the different belief systems to 

which they have been exposed?” It was thus important to construct questions in order to 

ascertain my participant-teachers background, school context, beliefs and struggles.  

The aim of the first interview was to build a level of rapport and comfort between 

the teacher and I, as well as to lay down the broad strokes of a portrait of them as teachers 

by gathering background information and discussing their beliefs about mathematics and 

its teaching. Questions about the mathematics education literature that had influenced 

them were also raised. I wanted to learn about their journey into high school mathematics 

teaching. Examples of questions asked during the first interview are: “How long have you 
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been teaching?,” “What mathematics classes have you taught?,” “What does it mean to 

you to be a good mathematics teacher?,” “What does it mean for someone to know or 

understand a mathematical concept?” and “What are some essential skills you are trying 

to foster in your students?” Other areas of questioning such as 'context and standards' and 

'decision and change' (see interview protocol APPENDIX C) were introduced briefly in 

the first interview, but were reserved as central themes for the next interviews.   

 Subsequent interviews always began with the question: “What has been on your 

mind since we last talked?” This question often yielded topics which could be mined later 

on in the interview. It also reinforced that I cared about their day-to-day struggles as 

teachers and that I was there to listen as much as I was there to ask a predetermined set of 

questions.  

The second interview primarily focused on the broader sociocultural dimensions 

of their experiences as teachers, from their school context to the role of mathematics in 

society. Questions asked were: “Describe the atmosphere in your school.,” “What are 

some of the missions and goals?,” “What is the role of testing in your classroom?,” “How 

do EOC tests affect your teaching method?,” “Describe the job market for which you are 

preparing your students?,” and “Your school has as its mission to prepare students to be 

competitive in a global economy. What does that mean to you? What does that mean to 

your administration?” Questions about “decision and change” (see APPENDIX C) were 

also raised in the second interview, and were the primary topic of the third interview.  

The purpose of the third interview was to discuss at great length some of the 

struggles, mediation, conflicts, decision and change that these teachers have faced in their 

mathematics teaching career. Questions asked included: “What are some major changes 
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that you see in your teaching since you started?,” “To what do you attribute these 

changes?” and “Please describe a moment when you felt very far from being the ideal 

that you have of yourself as a teacher.” Questions also stemmed from statements made in 

previous interviews which needed clarification or further discussion, from e-mail 

communications or other artifacts.  

Artifacts 

Initially, participants were also asked to keep an informal journal, chronicling any 

event or thoughts they considered a good discussion point for the next interview. Key 

journal entries were to be used in guiding future interviews. In actuality, this request 

morphed into an electronic journal of sorts, with participants detailing certain events or 

thoughts through e-mail communication. The content of these e-mail exchanges were 

often used as fodder for future interviews.  

For instance, on December 1st, 2008, one of the teacher participants (i.e. Michael) 

sent me an e-mail which contained the following: “Last week, I was put on an action 

plan, i.e., my performance is below standards in class management and teacher 

effectiveness.” Another e-mail followed that day which provided details of Michael’s 

“action plan,” which included a “return to the traditional format” and strict adherence to 

the syllabus. Michael was asked to employ a protocol to conduct his classes (see p. 133). 

A subsequent interview with Michael focused on this new development, especially on the 

topic of the “traditional approach” to the teaching and learning of mathematics. See 

Chapter 4 for a lengthy discussion of Michael’s case. 

Participants were also asked to forward e-mails from their school or school 

district relevant to this study to me. Furthermore, I gathered artifacts either mentioned by 
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participants in the course of an interview, or documents that might help understand the 

teacher participant’s school. Artifacts included in this category are: textbooks, research 

literature referred to by participant teachers, information about the research sites and 

mathematics department publicly available (e.g. memos and meeting minutes/agendas, 

AYP, institutional demographic data), course syllabi, action plan, pilot study information, 

etc. Table 1 and 2 (see pp. 78-79) detail the artifacts collected from five teacher 

participants: John, Michael, Sergen, Martin and Lea.  

Artifacts such as school report cards, school improvement plans, principals’ 

messages, Algebra I common plans and school websites were assembled in order to better 

establish the school context of each participant. For instance, obtaining Alleny 

Academy’s (i.e. Sergen’s school) 2006-2007 report card and school improvement plan 

helped explain the intense focus by the school administration on raising End-of-Course 

(EOC) proficiency results in Algebra I and Algebra II.  It also provided some insight as to 

the pressure that mathematics teachers at Alleny Academy might be under to raise said 

scores.  

Artifacts such as course syllabi, teacher WebPages, projects, grading rubrics, 

review materials and participant created drawings and diagrams were collected in an 

effort to illustrate aspects of participants’ beliefs about the teaching of mathematics and 

their pedagogy identified during interviews. For instance, Sergen’s syllabus for AP 

Calculus BC contained a section about his teaching philosophy (see p. 155).  These 

artifacts also helped inform future interviews. 

Artifacts were often used to shape future interview questions. For instance, Lea 

Torres’ syllabus for Algebra II, which I obtained before our first interview on September 
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23rd, 2008, included a section entitled “method for mastery” corresponding to each stated 

curricular goal. A portion of this artifact is reproduced in Figure 1 below: 

Curricular Goal Time-line Method for mastery 
1.  Students will be able to graph, 
analyze and solve problems using 
absolute value, quadratic, 
exponential, cubic and linear 
equations and inequalities.  A 
special emphasis is on quadratic 
equations. 
 

 
Weeks 2 – 15 

 Daily warm-ups 
 Weekly assessments in 

the form of tests or small 
projects 

 Graphing equations on the 
calculator and on paper 

 

2.  Students will be expected to 
solve systems of equations in 
context of a word problem.  
These systems may be linear, 
exponential or conic in nature.   

 
 
Weeks 15 - 20 

 Daily warm-ups 
 Weekly assessments in 

the form of tests or in-
class group work 

 Graphing and solving 
systems (if possible) on 
the calculator 

3.  Students will be able to use 
matrices to solve problems.  
Especially to solve linear systems 
of equations. 

 
Weeks 12 - 20 

 Daily warm-ups 
 Weekly assessments in 

the form of tests or in-
class group work 

 
 
Figure 1. Portion of Lea Torres’ Algebra II syllabus (course artifact, 09/09/2008). 
 

The mention of “method for mastery” present in this course artifact led to 

questions about Lea’s beliefs about “mastery” in our first in-depth interview (R denotes 

the researcher’s part and L denotes Lea’s part): 

R: So can you help me understand what mastery means to you? 

L: (sigh)...You want to say it's not test scores...I am excited when my final 

exam scores are good. But for the kids to be able to do it, for them to help 

other people be able to do it. I do try to do a lot of group work. I might 

give 15 minutes of a test to just do a review. Five kids will gravitate 
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toward the smart kid in class, and he'll explain it, and I can hear two 

people debating you do this no you do this then you do this... 

R: Teach to mastery, that comes from your department that has decided to do 

that, or your whole school? 

L: The whole school decided. It was decided for us (laughs). 

R: It was decided for you? 

L: Yep … 

During this interview, Lea admitted that “mastery…it comes down to grades,  

which you hate to…It comes down to grades because that’s what we have to report.” 

Without this course artifact, questions about “mastery” most probably would not have 

been addressed during our first interview. 

Finally, artifacts such as midyear reviews, Mr. Gilbert’s action plan, Mr. Gilbert’s 

reply to his midyear review and e-mail communications were collected with the aim to 

help chronicle the particular struggles and impediments teacher-participants’ faced in the 

actualization of their beliefs. For instance, Michael Gilbert’s reply to his scathing 

midyear review, reproduced in Chapter 4, illustrates Michael’s frustration, dilemmas, 

conflicts and struggle. 
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Table 1. Artifacts collected from John Winslow, Michael Gilbert, and Sergen Manzik.  

John Winslow Michael Gilbert Sergen Mansik 

1. Southbrook HS 
2006-2008 EOC 

2. 2007-2008 EOC 
prelim results 

3. Southbrook HS 
graduation rate 
(2006-2008) 

4. 2007-2008 school 
report card 

5. S. B. HS 
Performance & Dem. 

6. Southbrook HS 
website 

7. Mr. Winslow’s 
online class page 

8. Mr. Winslow 
Resume 

9. AP stats project #1-3 
10. AP stats project 

grading rubric 
11. AP stats project 

format 
12. AP stats syllabus 
13. Mr. Winslow’s 

midyear review 
14. AP stats example 1 

& 2 of test 
15. Precal Project 1 &2 
16. Precal Project 

Grading Rubric 
17. KWL chart 
18. Precal Project 

Format 
19. Algebra I & II, precal 

syllabi 
20. The world is 

flat/Growing up 
digital 

21. Did you Know? 
22. E-mail 

communications  
 

1. Gregory HS school 
progress report 2007-
2008 

2. Gregory HS School 
improvement Plan 

3. E-mail by 
superintendant  

4. Algebra Alliance 
meetings notes 

5. Homeroom Teachers 
(e-mail) 

6. Attendance Procedures 
7. Team building 

committee 
8. EOC Common Plan 
9. Algebra I Plan 
10. Midyear Review 
11. Mr. Gilbert Resume 
12. Action Plan 
13. Mr. Gilbert’s reply to 

midyear review 
14. Mr. Gilbert website 
15. Review material for 

AFM 
16. AFM warm-ups 1-19 
17. AFM web search 

project 
18. AFM linear financial 

model 
19. Traditional teacher 

diagram 
20. AFM syllabus v1 
21. AFM syllabus v2 
22. Algebra I support 

material 
23. Algebra I warm-up 1-6 
24. Algebra I practice test 
25. E-mail 

communications  

1. Alleny Academy 
Report Card 2006-
2007 

2. Alleny Academy 
School Improvement 
Plan 

3. Alleny Academy 
website 

4. Alleny Academy 
Principal’s message to 
families 

5. Mr. Mansik’s 
webpage 

6. E-mail by 
superintendant 

7. Tardy policy sign 
8. Minutes for Algebra I 

meeting 
9. Attendance Policy 
10. Mr. Manzik’s midyear 

review 
11. AP council meeting 

minutes 9-4-08 
12. AP Calculus BC 

Syllabus  
13. Precalculus Syllabus 
14. Homework examples 

for AP Calculus BC 
15. Homework example 

for Precalculus 
16. Teaching Philosophy 
17. E-mail 

communications  
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Table 2. Artifacts collected from Martin Middleton and Lea Torres. 

Martin Middleton Lea Torres 

1. Alleny Academy Report Card 
2006-2007 

2. Alleny Academy School 
Improvement Plan 

3. Article about  
4. Alleny Academy website 
5. Alleny Academy Principal’s 

message to families 
6. Mr. Middleton’s webpage 
7. E-mail by superintendant 
8. Tardy policy sign 
9. Martin’s response paper “an 

instance of questionable 
scholarship” 

10. Martin’s resignation letter 
11. Discrete Math Syllabus 
12. Discrete Math Homework 
13. Principal message 
14. E-mail communication 
15. Hosiers 
16. Book about Rubik’s cube 
17. E-mail communications 

1. Vale HS school progress report 2007-
2008 

2. Vale HS School improvement Plan 
3. E-mail by superintendant  
4. Attendance Policy 
5. EOC Planning minutes 
6. Algebra II Planning minutes 
7. Ms. Torres Resume 
8. Ms. Torres website 
9. Review material for Algebra I & II 
10. Algebra I  & II support material 
11. Algebra I & II warm-up  
12. Algebra I & II practice tests 
13. Algebra I & II syllabi 
14. Algebra I & II 1st quarter objectives 
15. Algebra I & II 2nd quarter objectives 
16. Algebra I & II pacing guides 
17. E-mail communications  

Observations. Observations were conducted at the invitation of the teacher-

participants to experience the participants’ school context and to capture moments that 

might inform the interview protocol for a subsequent interview. Two observations for 

each participant took place. The first observation took place between the first and second 

interview (i.e. in October, 2008) and the second observation took place between the 

second and third interview (i.e. end of November, 2008).  

Observations lasted approximately half a day each. Field notes were taken and 

reviewed in order to plan the next interview protocol. It is important to note that the 

purpose behind these observations was not to render value judgments about best practices 

or to chronicle discontinuities in teacher attributed and professed beliefs. Stake (1995) 

noted that: “During observations, the qualitative case study researcher … lets the 
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occasion tell its story, the situation, the problem, resolution or irresolution of the problem 

(p. 62). As I am attempting to portray teachers’ experiences from their perspective, the 

primary aim of observations was to direct future interviews. With that in mind, the great 

majority of field notes were in the form of questions. For instance, on a visit to Alleny 

Academy (Martin’s school), I observed a huge banner hanging above the front entrance 

of the school featuring a photograph of Earth from space which claimed: Reach Further. 

Global competitiveness starts here. This observation led me to ask Martin in a subsequent 

interview about the presence of the global competiveness discourse in his school. 

Incidentally, this same banner was observed above the entrance of Michael’s school 

entrance. 

This array of sources of evidence all focused on my research questions. Using 

various sources of data is a staple of quality case study research. Yin (2003) states that: 

"With data triangulation, the potential problems of construct validity also can be 

addressed because the multiple sources of evidence essentially provide multiple measures 

of the same phenomenon" (p. 99).  In addition, participants were asked to review drafts of 

their interviews and of their case study reports for possible inaccuracies.  

A case study database containing raw data such as interview transcripts, e-mail 

communications and scanned documents was kept and available for independent 

inspection, increasing the reliability of the study (Yin, 2003). Pseudonyms were used 

throughout the database and identifying details were changed to preserve confidentiality 

and anonymity. 
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Data Analysis 

Data collection and data analysis are not mutually exclusive phases in case study 

research; in fact they are simultaneous activities in quality qualitative research (Merriam, 

1998). A good case study investigator will "create a rich dialogue with the evidence" 

(Yin, 2003, p. 59) by: 

... pondering the possibilities gained from deep familiarity with some aspect of the 

world, systemizing those ideas in relation to kinds of information one might 

gather, checking the ideas in the light of that information, dealing with the 

inevitable discrepancies between what was expected and what was found by 

rethinking the possibilities of getting more data, and so on. (Becker, 1998, p. 66) 

For that reason, a recursive and inferential data analytical process was adopted. Hence, a 

review and analysis of data collected in the first phase (first interviews plus related 

documents) was performed by adopting coding and category-building guidelines set forth 

by Merriam (1998), producing a set of emerging themes which helped focus the study. 

By theme I mean "a statement of meaning that (1) runs through all or most of the 

pertinent data, or (2) one in the minority that carries heavy emotional or factual impact" 

(Ely, Vinz, Downing & Anzul, 1997, p. 206). 

According to Merriam (1998), categories are to be created based on the following 

axioms: the categories should reflect the purpose of the research; they should be 

exhaustive in as much as all relevant data unit belongs to one category or another; they 

should be mutually exclusive; they should be sensitizing by yielding a meaningful picture 

of the phenomenon; and they should be conceptually congruent.  
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This initial analysis required an expansion and rethinking of the review of the 

literature, thus influencing the second round of data collection (i.e. second interviews and 

related documents). This process was repeated for each phase of the data collection.  

Once the data collection was completed for five teacher-participants, transcripts 

and archival material were once again coded using open coding and themes were 

identified for individual participants. ATLAS-ti was used to code the interview 

transcripts and categories were constructed from the codes using the above mentioned 

guidelines for category-building.  

Examples of codes include: two worlds (2w), adapt, agency,  assessment, beliefs 

about mathematics (b. math), beliefs about the teaching of mathematics (b. teach.), 

balance, battle, background (bckg), bricolage (bric), change, cluster, communicate, 

community, conceptual, confusion, control, culture, decisions, differentiated instruction 

(diff. instruct.), diplomat, discussion, empower, EOC, epistemological beliefs (epist), 

example of activity (Ex. Act.), fight, global discourse (glob disc), habitus, incorporate, 

global discourse/knowledge society (kno. soc.), linear (lin), mathematics education 

background (math. ed. bckg),  No Child Left Behind (NCLB), global discourse/neoliberal 

(neolib), reflect, respect, standards, student-centered (s-c), school context (school ctx), 

struggle, technology (tech), traditional, understanding, urban, writing.  

To illustrate the coding process, Table 3 below provides examples of participant 

quotes and the corresponding assigned codes. 

Table 3. Example of Coding 

Participant quote Codes 
Helping them learn how to read which I thought would be 
good for all their subjects. Not part of the math curriculum 

change, struggle, writing 
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Table 3. (continued) 

They wanted the kids to have an answer so they could have 
a feeling of getting it right to which I said “that wasn’t my 
goal!” 

battle, b. teach 

It is difficult to kind of see how conceptual understanding 
can improve procedurally based EOC scores 

conceptual, EOC, struggle 

…although we’ve been taught that alternative forms of 
assessment are good that doesn’t change the fact that you 
go out and you’re having to teach to the test. 

adapt, math. ed. bckg., 
neolib., school context. 

“One of the things I took from the World is Flat is that the 
future of any jobs in America is going to be for those who 
can take information and use it beneficially.”  

glob. disc. 

“I like and I express to my students that I like messy 
answers because those are what we have and then we need 
to work on those and reflect on those and develop strong 
concepts.” 

b. teaching, conceptual, 
reflect. 

“So that contradictory language in my interviews is 
because I exist in both worlds right now. And I feel 
comfortable in both worlds.” 
 

2w 

“…a little skepticism and critical thinking. Is that really 
math? I’m not sure. It’s not English, we know that. But it 
might be math. Am I putting that into my topics? Is that a 
world-wide skill? Yes.” 

b. math., b. teaching, 
decisions, glob. disc., 
writing. 

Merriam’s (1998) guidelines for category-building, as explained above, led me to 

the creation of the following categories from the above codes: background, beliefs, social 

context, global discourse, mediation/navigation/decision.  

Themes for the five individual participants were identified and a decision was 

made to report on three teachers in this dissertation after the data analysis showed that 

these cases exhibited a particular combination of commonalities and uniqueness of 

emergent themes, as explained in the participant selection section above. Individual case 

study reports were written for these three teachers and are reported in Chapter 4.  

Data were then analyzed across these three cases, examining within themes for 

similarities and differences (Stake, 2000). Findings of the cross-case analysis are visited 
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in Chapter 5, leading to a discussion of conclusions, including implications for teacher 

education and possibilities for future research. 

Summary and Introduction to Chapter 4 

In this chapter, I discussed the social constructivist framework used for this study, 

and the components of Leatham’s (2006) and Gates’ (2006) frameworks for studying 

teachers’ beliefs utilized in this study were mentioned. Chapter 3 also explained the 

instrumental multiple case study methodology selected for this study, including the 

manner in which participants were selected, the data collected and analyzed. This 

discussion also covered the aspects of phenomenology adopted together with the 

particular approach to interviews used by the researcher.   

The next chapter will present individual case study reports for the three teacher-

participants selected: John, Michael, and Sergen. 



 

CHAPTER 4: FINDINGS 
 
 

Chapter 4 will present individual case studies for John the Commuter, Michael the 

Boxer and Sergen the Diplomat. The metaphorical titles given to each case study is meant 

to reflect the distinct lived experiences of these three mathematics educators as they 

navigate different belief systems about mathematics when making professional decisions 

related to their work as teachers. In Latin, metaphora refers to something that is carried 

somewhere else. Metaphors allow a mapping between two conceptual domains, and 

provide a window for understanding a relatively abstract subject matter in terms of a 

more concrete subject matter (e.g. Lakoff, 1993; Schinck, Neale, Pugalee, & Cifarelli, 

2008). Metaphors link two meanings by transporting the meaning from one semantic 

sphere to another. According to Lakoff and Johnson (1980), metaphor is of fundamental 

importance to meaning making—how we think is fundamentally metaphorical. The 

creation of metaphors provides structure to our experiences. They are thus helpful in 

providing the reader some understanding of the teacher-participants’ lived-experiences 

and belief systems through the more concrete and familiar concepts of a commuter, a 

boxer and a diplomat.  

The choice of the image of a commuter to illustrate John’s case, boxer for 

Michael and diplomat for Sergen, will be made explicitly clear during the reading of each 

case. Pseudonyms are used throughout and identifying details have been changed to 

preserve confidentiality and anonymity.  
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All three participants had idealized images of themselves as teachers that they 

were finding difficult to actualize in their school context as their reality was often at odds 

with ideals and beliefs developed during exposure to mathematic education classes.  

Although John, Michael and Sergen encountered similar struggles during the 

studied semester, the manner in which they each navigate and mediate the different belief 

systems about mathematics was often times different, providing a fuller picture of how 

mathematics teachers live the periods of conflict, reflection and resolution between the 

different belief systems to which they have been exposed. 
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CASE 1: JOHN THE COMMUTER 

John Winslow's case reveals a complicated world in which the high school 

mathematics teacher must navigate the various discourses about “effective” mathematics 

teaching. John’s beliefs about mathematics, its learning and its teaching are complex, 

shaped as they are by his management experience in the textile industry and his graduate 

studies in mathematics and mathematics education. John, as a mathematics teacher, 

embodies the two main global educational discourses—the knowledge society discourse 

and neoliberalism—which, on the one hand, claims that education must prepare students 

to learn how to learn, and on the other, has meant a reinforcement of a positivistic and 

pragmatic perspective on mathematics education. In this case study, John will be shown 

as “commuting” between “worlds”, traveling between clusters of beliefs (Leatham, 2006) 

about mathematics and its teaching. 

Introduction to John 

John Winslow is a Caucasian male in his early forties who began teaching 

mathematics at South Brook High School in 2000.  South Brook High School will be 

described in more detail below. John is a dedicated mathematics teacher and scholar. 

During the time of this study, John was working full time as a high school mathematics 

teacher and pursuing his Ph.D. in mathematics education part time, all the while taking 

the time to obtain his National Board certification and becoming qualified to teach 

classes online with his state’s Virtual Public Schools System. John often attends research 

conferences and professional development workshops and frequently reads about 

mathematics education and education in general. 
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John’s previous career was as a manager in a textile factory (12 years). When the 

company for which he worked shut down, John decided it was time to make a change. 

Although interested in mathematics since high school, John stated in his first interview 

that he initially chose to teach mathematics "because that's where all the jobs were. They 

didn't want social studies teachers because they had a glut of those. They didn't want 

English teachers because they had a glut of those. They wanted math."  

After substitute teaching and tutoring algebra for a semester, John was hired at 

South Brook High School as a beginning teacher in 2000. During his eight year teaching 

career, John has taught Geometry, Algebra I and II (EOC classes), statistics and 

precalculus (non-EOC classes).  At the time of the study, John was teaching precalculus 

and statistics and was now the Chair of the Mathematics Department at South Brook 

High School. 

John's School Context: South Brook High School 

South Brook High School is a grades 9-12 public high school, located in a 

suburban area of the South East of the United States. In the 2008-2009 school year, South 

Brook High School employed 90 faculty members, nine of which are National Board 

certified and served approximately 1300 students. The demographic composition of 

South Brook High's student population is primarily Caucasian (79%), with 18% African 

American students and less than 3% Hispanic, Asian and American Indian students, 

where 20% of students have been designated Economically Disadvantaged.  The 

demographic information for South Brook High School has been summarized in Table 4 

below. 
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Table 4. Demographic Summary of South Brook High School. 

System 
Type 
 

Grades 
Serviced  

Student  
Population 

Students  
Eligible for Free or  
Reduced  
Lunch 

Racial 
Background 

Suburban 9-12 1293 20% Caucasian –  79% 
 

African American –  18% 
 

Hispanic –  2% 
 

Asian/Pacific Islander –  1% 
 

American Indian/Alaskan 
Native –  <1% 

 

South Brook High has a tight community of dedicated teachers with almost 60% 

of teachers with 10 or more years of experience and a low teacher turnover rate (approx. 

20%). When asked to describe his school, John replied that the aspect that sets his school 

apart is the very high expectations for student behavior, student involvement and student 

achievement. The expectations of passing rates, graduation rates and general student 

EOC proficiency is ever-present in conversations with administration and amongst 

teachers.   

One impetus for the performance-oriented culture now present at South Brook 

High School was the significant drop in Algebra I and Algebra II scores from the 2005-

2006 school year to 2006-2007 (see Table 5 below). During this period, the percentage of 

students on grade level or above plummeted from 90.1% to 67.8% in Algebra I and from 

72.1% to 48.3% in Algebra II. The End-of-Course proficiency results for geometry 

remained comparatively stable, although still significantly below the school target of 80% 

students on grade level or above.  
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Table 5. EOC Results for Algebra I, Geometry and Algebra II at South Brook HS. 

 
 

Algebra I  Geometry 
 

Algebra II 

2005-2006 
2006-2007 
2007-2008 

90.1% 
67.8% 
68.3% 

69.4% 
62.7% 
60.4% 

72.1% 
48.3% 
53.6% 

Target 80% 80% 80% 
 

South Brook High School did not meet its Annual Yearly Progress (AYP) in the 

2007-2008 academic year. AYP is a federal standard set for schools by the No Child Left 

Behind Act (2001). State test results are used to set targets, including attendance and 

graduation rates. For a school to meet its Annual Yearly Progress, all targets must be met. 

South Brook High school did not meet AYP in 2007-2008 since it did not meet all of its 

17 target goals.  

Mathematics teachers at South Brook High are under considerable pressure to 

raise the percentage of students on grade level or above to the school target of 80%. John 

stated that: 

Our administrative goal is to be number one or number two in the county in every 

category. So all EOC scores: US history, English, Civics and Economics, and all 

the mathematics. We want to be number one or number two. 

According to John, the expectation to be number one or number two in the county: 

“Flows from the administration to the teachers, and from the teachers to the students.” 

John’s Professional Background 

Between 2001 and 2004, while working full time at South Brook High School as 

a mathematics teacher, John obtained his license in secondary mathematics through a 

program at a local research university, Blue Coast University, designed specifically for 
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the lateral-entry secondary mathematics teacher. At the end of this process, John was 

considered "highly qualified" under the No Child Left Behind Act of 2001 in his state; 

John had passed the state teacher licensing examination, had earned a bachelor's degree 

and had demonstrated content knowledge in mathematics, a core academic subject. 

Having developed a strong interest in mathematics education during the licensure 

process and his experience in the classroom, John decided to continue on to the Masters 

of Art in Mathematics Education at the same university in 2004. John described the M.A. 

in Mathematics Education at Blue Coast University as a “hybrid” because it required him 

to take six graduate level mathematics classes, as well as a combination of mathematics 

and general education classes. This combination at once licensed him to be a state public 

school mathematics teacher with graduate level pay while also qualifying him to teach 

mathematics at a community college.  

John admits being frustrated at first with the advanced mathematics classes 

offered in the program as they were more abstract and proof-oriented than any of the 

mathematics classes to which he had previously been exposed: "I can remember talking 

about the epsilon-delta definition of a limit, and I can, in my mind, I can picture what that 

looks like, as something approaches something, it makes sense to me. But to use 

mathematical induction to prove it, that was difficult for me. So I was frustrated a lot."  

Although frustrated at the time of his first exposure to advanced mathematics, 

John admits that these courses changed his philosophy of teaching, and enabled him to 

see the beauty of mathematics, particularly the beauty of “empirical studies and 

quantifying phenomena mathematically.” John especially enjoyed his classes in Abstract 

Algebra and non-Euclidean geometry as it opened up his world about what mathematics 
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could be. He "flavors" his classes with some of the more interesting concepts he learned 

in these classes with the expressed purpose of exposing his students to alternative 

approaches to algebra and geometry. In his first interview, John claimed that these 

advanced mathematics classes were very influential in changing his perception and 

beliefs about mathematics from an instrumental belief, where mathematics is viewed as a 

collection of skills and procedures, to a way of looking and understanding the world 

around us.  

After five years in the classroom and equipped with the new knowledge and belief 

system he gained from his licensure and Masters of Mathematics Education, John had 

become increasingly fascinated by public schooling in general and mathematics 

education specifically. He thus decided to pursue a Ph.D. in Curriculum and Instruction 

with a specialization in Mathematics Education at the same university at which he had 

obtained his licensure and his Masters—Blue Coast University. At the time of the study, 

John had been pursuing his Ph.D. part time for three years. During this time, he was 

exposed to a vast amount of research in mathematics education.  

John especially remembers struggling with the constructivist and sociocultural 

epistemological foundations of much of mathematics education research which took him 

far away from his set of dispositions—his habitus. During his graduate studies, John 

studied at great lengths the work of Piaget, Steffe, Cobb and Von Glasersfeld, amongst 

others. Through these readings, John’s ideology and discourse have been (in part) 

transformed. John has come to believe that learning should be built upon a student’s 

schema, that is, knowledge that a student already possesses.  
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That being said, John recalls a failed attempt at incorporating a constructivist 

form of assessment in his teaching—the KWL(H) chart (WHAT we know, What we 

WANT to know, What we have LEARNED, HOW we know it.) The KWL(H) chart is 

meant to provide teachers a structure with which to guide and support their students’ 

construction of knowledge. In his account, John mentions the use of foldablesTM. An 

example of a foldableTM has been provided for the reader in Figure 2 below:  

  

 
Figure 2. Product of Role, Audience, Format, Topic Activity. 

Source: Pugalee (2007). 

John recalled: 

So I was teaching geometry one time, and I made my kids do these foldables, 

which is a graphic organizer. So I did that, and then I had them do the KWL chart 
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and uhm, I really just expected them to use this and pick it up and do something 

with it, and you know, I don’t see where it enabled students to learn. 

This incident left John feeling uncertain about the viability of much of mathematics 

education research in the classroom, and made him cautious to use further activities 

suggested by the research “lock, stock and barrel.”  

John and the Global Competitiveness Discourse 

John credits the advanced mathematics classes he took during his graduate studies 

for one of his main goals as a teacher: to develop his students' analytical mind:  

One day they're going to be paid for the decisions that they make. The way to 

make right decisions is to be able to take different sources of data and be able to 

successfully analyze them, and that requires an analytical ability. That's the 

benefit of higher-level math. It teaches one to think analytically.  

John’s desire to hone his students’ data analytical skills is inexorably tied to his view of 

the society for which he is preparing his students: a technologically-driven, knowledge 

society. John admits that although the global competitiveness discourse is present in his 

school, that the epistemological or pedagogical implications of this discourse have not 

been discussed either in his school context or in his extensive mathematics education 

studies. John has thus had to decipher this discourse on his own. John has surmised that 

collaboration, capability to adapt, data analysis and technological fluency are the main 

skills he needs to foster in his students to prepare them for such a world.  

John believes that the future belongs to individuals who can gather, synthesize 

and analyze great volumes of information. John’s beliefs are shaped by his time in 

industry, as well as his readings of books such as Friedman’s 2005 National Bestseller 
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The World is Flat: A Brief History of the 21st Century and Tapscott’s 1997 book Growing 

up Digital. Both books discuss the centrality of technology in the globalization 

movement and the qualities that American teachers need to cultivate in students so that 

the will be able to thrive in the new digital, knowledge society.  

John uses the video Did You Know? based on The World is Flat in his classes to 

open up discussions about globalization and its effects. Talking about this video and its 

place in his classroom, John stated that: 

It gives a lot of information. It just keeps throwing facts up there about India and 

China and their numbers of Ph.D.s and how information is gaining momentum, 

and it's got music in the background, and the point to it is that the future that high 

school students face today is different than the future that I faced, and it's different 

from the future my parents faced, and their parents, etc. The future that these kids 

face is more uncertain, but that's not necessarily a bad thing. For the future they 

face, they're going to have to learn to adapt to a lot of different things 

technologically. And their ability to adapt, their ability to harness and gather 

information and to use it to their advantage is going to be what gets them into the 

higher paid positions and into the better life than others. So with that in mind, I try 

to integrate how does math fit into that. Well generating information is the 

empirical part of things. That's data collection. 

More will be said below about John’s views of his role as a mathematics teacher 

preparing students to be competitive in a global society.   
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Themes for John the Commuter 

John’s case reveals the complex world in which the high school mathematics 

teacher must navigate the various beliefs about mathematical knowledge, its acquisition 

and its role in society. In what follows, John the Commuter’s main themes will be 

explored: two worlds, the real world and decisions. John will be shown as making 

decisions and “commuting” between “worlds”—between clusters of beliefs about 

mathematics and its teaching. 

Two Worlds 

While pursuing his Ph.D., John began to feel like he inhabited two worlds which 

understood mathematics, its learning and its teaching vastly differently. In our third in-

depth interview together, John admitted that he held, and acted on, a “collision of beliefs” 

about mathematics and it teaching: 

I’m in the classroom every day, with my high school students. I’m in the parent 

meetings, I’m in the principal meetings, I’m in the county meetings. I read the 

paper about the school that I teach at and about our school system. I see the stuff 

that every classroom teacher is going to see on a day-to-day basis. But then, I 

leave there in the afternoon, and I go to a university, and I sit in classes, and I hear 

the advanced theories…right now all I see is a collision between the two, and I 

want to see if there’s a road or a bridge that can be built between the two, so that 

student success can be enhanced … So that contradictory language in my 

interviews is because I exist in both worlds right now. And I feel comfortable in 

both worlds. 
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The complaint about the disconnect between education theory and practice has long been 

explored in the education literature (e.g. Cobb, 1988; 1947; Jones, Reid, & Bevins, 1997; 

Lerman, 1994; Malara & Zan, 2003). One criticism that continues to be raised is that 

teachers feel they are entering a world which was never discussed in the university setting 

when stepping into the classroom. They often state that there was too much theory in 

their preparation. 

John personifies Leatham’s (2006) view of teacher beliefs as sensible systems in 

which seemingly contradictory beliefs may coexist peacefully in isolated clusters. John 

has internalized and uses different belief clusters depending on context in order to 

function successfully as a high school mathematics teacher. The clustering of beliefs 

allows him to be comfortable in both worlds. 

John is seen as “commuting” between these isolated worlds. John was termed “the 

commuter” because, although isolated from one another, these worlds are relatively close 

to each other for John, and a road or a bridge could exist between them. On occasion, 

John brings back a souvenir or an idea from one world to the other, such as the KWL 

chart, but these worlds, on the whole, remain intact, distinct and separate. John’s 

background in administration affords him the opportunity to understand “administrative 

talk and thinking,” while John’s significant background in mathematics education allows 

him to understand the “talk and thinking” of that world.  

Although he sometimes feels like a “sell-out,” John is as comfortable writing a 

reflection about radical constructivism as he is brainstorming ideas for raising Algebra I 

EOC scores with his school administration. End-of-Course proficiency results are not 

discussed in the paper on radical constructivism, and Steffe or Von Glasersfeld are not 
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mentioned by John when he is in his principal’s office having a conversation about EOC 

results. John is ever-mindful of the differing languages that will be valued and understood 

in these different worlds. 

The beliefs espoused by the two worlds—the world of the high school classroom 

teacher and the world of mathematics education doctoral student—collide particularly 

violently for John on the concept of “student-centered.” Much of the literature on 

cognitive constructivism to which John was exposed during his graduate studies is 

focused on observing and describing the mechanisms that an individual mathematics 

learner uses to build up mathematical knowledge in a particular learning space (e.g. 

Thompson, 1994; Steffe & Wiegel, 1994).  

Within this paradigm, mathematics teachers are guides in the construction of a 

student’s creation of their mathematical reality. However, as John exclaimed in 

frustration during our second interview together: “I don’t teach one student. I teach a 

group of students!”   

John often talked about his frustration about the focus in mathematics education 

classes and methods classes on “student-centered” instruction, as he interprets this to 

mean “one student-centered” instruction. For John, doing what is best for the group, his 

school, is equal to doing what is best for individual students: “I don’t see why it’s wrong 

to claim that good test scores (on standardized tests) are benefiting the students.” 

Interestingly, this last statement was verbalized by John within minutes of voicing 

his uncertainty about whether or not these tests help students become better learners. It is 

also of interest to note, as we will see below, that much of the assessment and assignment 

in John’s classes are far removed from standardized, multiple-choice tests. 
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Although South Brook High School, like most high schools, proclaims to be 

student-centered, the measurements of student success are invariably based on aggregate 

statistics such as EOC pass rates in Algebra I, Algebra II and Geometry, as is required 

from the No Child Left Behind Act. These statistics, by definition, rely on a 

standardization of the mathematics curriculum and its teaching, where students are 

evaluated as a group.  

John struggles to find a way to keep the wonderful ideas that he learned from 

reading Piaget and Steffe alive in such a context. The related concept of “differentiated 

instruction” is also a sore point for John:  

Differentiated instruction comes across as I gotta teach this way to Johnny, and 

this way to Sally, and this way to Juan. And quite frankly, I can’t teach twenty-

five different ways to twenty-five different people.  I do love the classroom 

setting because it is such a diverse group of personalities. But to harness all those 

personalities and pull them together and get them ALL to meet a certain 

baseline…” 

The fact that John struggles with seemingly discordant, even contradictory or colliding 

beliefs about mathematics teaching is also evident in his discussion about the concept of 

standards. John's language in our interviews reflects the two main ways standards are 

discussed in the literature: State and federally mandated standards (NCLB, 2001 - e.g. 

EOC, AYP, etc.) and NCTM standards (and principles).  

State mandated standards are the standards of one world; the world in which John 

is in his classroom every day, with his high school students, in parent meetings, the 

principal’s office, in the county meetings, reading the paper about his school and his 
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school system. These standards are grounded in the belief that there are a set of grade-

appropriate, basic mathematics skills that students must internalize through directive 

teaching. If one takes this belief about mathematics for granted, then measuring students’ 

abilities and proficiencies through standardized, high-stakes tests is consistent.  

John’s administrative background in the textile industry has given him an 

appreciation for standards, or what John refers to as industrial standards, for which 

students, teachers, schools and the education system in general are held accountable 

under the No Child Left Behind Act (2001): "Pretty much everywhere you go, no matter 

where you work, there's always basic rules, procedures and guidelines to follow. Being in 

textiles gave me an appreciation of that." 

John believes that people tend to do better when there are clear, measurable goals 

defined for which they are accountable as it gives everyone a focus, "something to shoot 

for.” John relates that this mind-set, as he calls it, was formed in the industrial setting and 

that it naturally transferred to the educational setting. 

As a consequence, John believes in a linear progression in his teaching of 

mathematical concepts, which he likens to a product's progression in a textile factory and 

calls the “business of learning”: 

I'm still fairly linear in my progression, in my thinking and with my students. So 

what I do when I try to teach, I rarely try to jump from point A, to point C, to 

point F, to point Q. I generally try to go A to B to C to D. I think students have a 

comfort in knowing that there's a progression to this stuff. There's a logic. That 

came from industry. Because you know, in a textile factory there's a start and a 

stop, and in between, there's a progression. 
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John’s belief in the linearity of the mathematics teaching and learning enterprise means 

that he likes to “start with a concept and move that concept through more and more 

advanced progressions.” 

Given John’s belief in the linearity of mathematics teaching and learning, John 

approaches trigonometry in his precalculus class by first spending a considerable amount 

of time on the concept of angle formation. What it truly means to draw an angle “because 

you're taught one way in geometry and then in trigonometry you have this whole issue of 

this angle making circles. So I really spend a lot of time trying to ground them in that 

before I move into right triangle trigonometry and the unit circle and showing them the 

link between that.”  

The belief in the industrial standard affords John a high level of comfort while 

navigating his school context, which places a high premium, as discussed above, on 

student achievement: EOC pass rates, percentage drop out, graduation rates, etc. The fact 

that success in his education setting is measured numerically is consistent with John's 

belief in measurable, baseline standards. The application of the corporate model to 

education, or the actualization of the neoliberal global education discourse, is in line with 

John’s experience in industry.  

For instance, John appreciates the mathematics education research which argues 

that standardized multiple-choice tests facts and not process (Herman & Golan, 2005; 

Alfie, 2000) but he is easily swayed by the argument that multiple-choice tests are an 

efficient and economical way to assess students’ baseline level of conceptual 

understanding.  
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John loves his school, and his desire to do what is efficient and economical while 

producing competitive scores on high-stakes tests (e.g. EOC tests) and graduation rates is 

intimately tied to John's aspiration to do what is best for his school in general, not only 

individual students. As was previously mentioned, a test is termed "high-stakes" when the 

results are used to make important decisions that affect students, teachers, administrators, 

or schools.  

John at once understands and reports high-stakes testing results (EOC) while 

musing and enacting the belief that a more genuine assessment would come in the form 

of portfolios which would involve writing and projects. An example of an assignment 

given in John’s class which requires writing can be found in APPENDIX E.  

The above discussed one way that John understands the concept of educational 

standards and would seem to reflect the mathematics teacher and mathematics classroom 

described by Keitel, Kotzmann and Skovsmose (1993) in which a utilitarian approach to 

mathematics education has been adopted with the underpinning belief about mathematics 

as a static tool kit with an identifiable content and stable structure that are both teachable 

and testable. 

On the other hand, John studied the Principles and Standards for School 

Mathematics set by the National Council of Teachers of Mathematics (2000) during a 

course on Issues in Secondary Mathematics taken during his Masters in Mathematics 

Education at Blue Coast University.  

NCTM (2000) emphasizes the need for teachers to create a culture of learning in 

their classroom in which students “learn mathematics with understanding, actively 

building new knowledge from experience and prior knowledge” (NCTM, 2000, p. 20). 
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The advocated manner of helping students construct conceptual mathematical meaning is 

through problem solving. 

John delved deeper in his study of problem solving as a means of developing 

mathematical competency in students during his Ph.D. The NCTM Principles and 

Standards for School Mathematics (2000) changed John's beliefs about the teaching of 

mathematics, giving him his first glimpse at the time at a (constructivist) problem-solving 

approach to teaching. 

 John’s teaching was also greatly influenced by the Data Analysis and Probability 

Standard for Grades 9-12, which states that teachers should enable students to formulate 

and answer questions that can be addressed with data analysis. John interprets this 

standard as refocusing the teacher on "how a formula comes about" as opposed to the 

formula itself: "Math is based on data analysis; going out and observing something and 

quantifying it mathematically. That is something we lose sight of in our teaching." 

Although John believes in both types of standards he recognizes the fundamental 

differences involved in their application:  

I don’t think the intent of the state goals and the NCTM goals are different. I think 

the intent is to raise the bar for everyone mathematically. That's not what actually 

happens at the school level. It's a target, and so I'm going to shoot for that target, 

and that's all I'm going to do. It's not because I'm lazy or anything like that. It's 

just that my focus is on hitting that target, and so that's what I'm going to do. I'm 

going to hit that target. 
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The Real World 

For John, neither the corporate managerialism present in his school context nor 

the findings and recommendations from the field of mathematics education correspond to 

the “real” world. Strongly influenced by his years in a dying industry (textile), John is 

acutely aware that he is preparing his students for an uncertain world. As seen above, his 

graduate studies in mathematics education have given him insight into alternative 

learning theories and epistemological foundations for teaching.  

However, his management experience also gave him an appreciation for the 

corporate model of efficiency and accountability. As a result, John, personifies the 

nuanced discourse of globalization's effect on mathematics education which - on the one 

hand, claims that education must prepare students to learn how to learn in order to 

remain competitive in the global knowledge society – and on the other, that globalization 

has meant a reinforcement of the rational management of school, as well as a positivistic 

perspective on mathematics education. 

 It cannot be overstated that the fact that the textile industry was "solid for a long 

time but then became unsolid" has made John intensely aware that the world and, more 

specifically, the job market for which he is preparing his students is uncertain, 

knowledge-based, and that students will, above all else, need to be able to learn and adapt 

quickly: 

I think that most cases what students are going to be entering into, is a job market 

that, here's the job today. Tomorrow it may not be there. Therefore you need to be 

able to jump into the next job and have a fluid transition. The link between all of 

that is technology. So in my teaching, I'm looking at what can I use technology-
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wise specifically, but otherwise as well, to adapt to students new learning styles, 

but also to give them those skills that they can use so they know how to readily 

adapt to other things too.  So in my teaching, what I want to do is teach them to 

learn how to think and adapt quickly and move from here to here to here. 

Although, as mentioned above, John professed to me his belief in a traditional, linear 

lecture approach to teaching, John’s activities and assessment are often times project-

based, requiring writing and collaboration.  For instance, because he believes 

collaboration to be a skill his students will need in the knowledge society, John has 

focused on small-group learning in both his research and his teaching.  

Small Group Learning. Influenced by mathematics education research, John 

strongly believes in the cognitive and social benefits of small-group or cooperative 

learning. In his mathematics education studies, John became familiar with the work of 

Vygotsky who promoted the idea of a novice interacting with a "more capable other" in 

order to be assisted in the zone of proximal development. In this model, the more capable 

other assists the learner by providing hints and questions (scaffolding). As seen in 

Chapter 2, one of Vygotsky’s legacies is the apprenticeship model and the cooperative 

learning movement.  

Many educators and researchers in mathematics education advocate using small-

group learning, also called cooperative learning, as an alternative to the lecture method at 

all levels as it involves active learning, thinking and interpersonal communications (e.g. 

Wahlberg, 1997).  They argue that the lecture method promotes passive learning and rote 

memorization and that students who survive courses taught with the lecture method 
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develop a very skewed perception of mathematics as a collection of skills with no 

connection to critical reasoning. 

Still, for many teachers, putting aside the comfort and power that is inherent in the 

lecture method is not an easy task as is humorously pointed out by Jensen and Davidson 

in their 1997 article entitled 12-Step Recovery Program for Lectureholics. John admits 

that:  

I prefer to be the center of attention. They all listen to me, I talk about it. I can 

explain it to them. I want to stand in the middle and talk and have them listen to 

me and then they work on it a little bit and then I talk some more. That’s how I 

would prefer to do it. But I know that is not the best way to get a group to learn. 

For some time, collaboration in the classroom took a back seat to competition as business 

interests advocated competition among students (Johnson & Johnson, 1994).  However, 

as companies increasingly rely more heavily on teamwork to improve productivity, 

industry representatives are asking for graduates that have collaborative skills and can 

effectively communicate mathematics and technology. Because of the demand for such 

skills, most mathematics courses now have a collaborative work element as a course 

objective.  

The term cooperative learning has been used to describe a variety of learning 

environments.  It seems that each researcher in the area has her own definition. 

Nevertheless, it is agreed that cooperative learning is a structured, systematic 

instructional strategy in which small groups work together toward a common goal 

(Reynolds et al., 1995).  Putting students in groups has been recognized as insufficient to 

realizing the benefits of cooperative learning.  Structured learning tasks need to ensure 
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interaction among students and classroom norms need to be established that support that 

interaction (Reynolds et al., 1995).  

A recovering and occasionally relapsing lectureholic, John has worked very hard 

to become more adept at creating groups in which:  a significant amount of the course 

work is done in groups, there is a positive interdependence among team members, all 

members participate, and the assessment process includes group work. These are some of 

the essential elements of cooperative learning according to leading researchers in the 

subject (Johnson & Johnson, 1994; Leikin & Zaslavsky, 1999; Reynolds, et al., 1995).  

To welcome small-group learning, John had to relinquish some of his traditional 

notions of accountability in which assessment and measurement of individual 

understanding is paramount. John’s focus on small-group learning in his classroom is 

particularly interesting given his belief in the importance of individual performance 

assessments such as End-of-Course exams.  

Decisions 

As all teachers, John must make decisions daily that will fundamentally affect his 

students’ learning.  John bases each decision on the belief cluster that is appropriate 

within the given context. Two decisions exemplify the complexity of this process for 

John. During our second interview, I asked John: “In the school setting, how do you 

decide what to teach and what not to teach?” John recounted one particularly difficult 

decision he had had to make a few years prior to the study, while he was teaching 

Algebra I, an EOC course. As described above, South Brook High School has a set target 

of 80% students on grade level or above in all EOC courses, including Algebra I. Algebra 

I teachers are given a pacing guide, geared toward the selected Algebra 1 textbook, which 
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states what topics are to be taught, how much time is to be allocated for this topic, and the 

corresponding section in the textbook. 

For instance, the following is an example of a typical portion of an Algebra I 

syllabus (Fig. 3):  

Wednesday 11/5  3-6 Ratios and Proportions    HW 3-6 #1-23 odd  

Thursday 11/6  3-7 Solving Equations and Formulas /  
“Literal Equations”   HW 3-7 #2-18 even  

Figure 3. Selected portion of Algebra I syllabus (Course artifact, 10/12/2008). 

This particular section of the syllabus was selected as it highlights the decisions 

that a teacher with considerable background in mathematics education must make on a 

day-to-day basis. The National Council of Teachers of Mathematics declared that 

proportional reasoning “is of such great importance that it merits whatever time and 

effort must be expended to assure its careful development” (NCTM, 1989, p. 82).  

Furthermore NCTM (2000) identified proportional reasoning as a unifying thread 

that brings much of school mathematics together into a coherent whole. The attainment of 

proportional reasoning is considered a milestone in students’ cognitive development. 

Many mathematical concepts rely on a solid understanding of proportional reasoning: 

slope of a line, percentages, similarity, trigonometry, etc.  

However, as one can observe in Figure 3 above, “Ratios and Proportions” are 

allotted one class period: Wednesday 11/5. According to the syllabus, the teacher should 

move on to the topic “solving equations and formulas” (i.e. section 3-7), by Thursday 

11/6.  John admits that, as he was teaching Algebra 1: “About three-quarters of the way 

through, I realized uh oh, I spent too much time on this, and this. Then I started to think, 

how is this going to affect my passing rate?”  
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John had to make a decision—to stop three-quarters of the way through the 

curriculum and start reviewing to give his students a better chance at giving correct 

answers on the End-of-Course test on the topics that had been covered, or finish teaching 

all topics. John decided to “re-teach a bunch of stuff.” His thought was “I want 80% to 

pass.”  

When I hear a lot of people talk about skill and drill and they talk about it 

negatively, I understand the negative talk. But teach an EOC class and see if you 

don’t go back to skill and drill. See if you don’t do that. Because when it comes 

down to it, you want that passing rate, and the way to do it is practice. 

John’s decision to focus on tested material and to use “skill and drill” in this context is 

consistent with Au’s (2007) findings that the main effect of high-stakes tests was a 

narrowing of content and "an increase in teacher-centered instruction associated with 

lecturing and the direct transmission of test-related facts" (p .263).  

A compilation of teacher survey responses by Sunderman, Tracey, Kim, & 

Orfield (2004) also shows that as a result of the accountability system found in schools 

(NCLB, 2001) teachers “ignored important aspects of the curriculum, de-emphasized or 

neglected untested topics, and focused instruction on the tested subjects, probably 

excessively (p. 4). 

It is important to note that “the people who talk negatively about skill and drill” to 

whom John is referring in the above quote are his mathematics education professors, and 

the research literature. The fact that John distinctly, and emotionally, remembered this 

decision years after the fact, indicates that it was not made lightly.  It is crucial to keep in 

mind that even though John has been exposed to and partially converted to the belief 
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system about mathematics and its teaching promoted by the research, and has sufficient 

content knowledge to actualize these beliefs, this knowledge and change in belief system 

was not enough to change John’s practice in every context.  

In the situation described above, John’s belief that doing what is best for the 

school as a whole is also doing what is best for individual students was favored. The 

administrative goal to “be number one or number two in the county in every category” 

and the related goal to reach the school target of 80% students on grade level or above in 

all EOC courses took priority over John’s understanding and beliefs about the importance 

of concepts such as proportional reasoning.  

Interestingly, when faced with a similar situation, John chose differently. John 

related to me the main complaint from many mathematics teachers in the department, 

including him and the decision-making process behind his choice: 

I would love to teach students how to think outside the box and all that, but I can’t 

because they have to learn the basics. I’ve got to spend three weeks teaching them 

how to factor instead of three days. I understand that argument – I’ve made it 

myself. I just decided one day, I’m still going to teach that other stuff and see 

what happens. And I see a lot of students that are ready to look at some open-

ended, advanced stuff, without necessarily knowing how to factor. Alright they 

can’t factor. That doesn’t mean we can’t move on. 

In this case, John decided to let go of his belief in the linearity of learning and teaching in 

order to go “beyond the basics.”  
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Conclusion 

Throughout my work with John, it became clear that he navigates the different 

belief systems about mathematics, and the pedagogical practices they imply, by a 

combination of clustering and bricolage. The clustering of beliefs allows John to be 

comfortable in many worlds. John feels a twinge of guilt that he is sometimes short-

changing his students, however, he is accepting of the importance of pass rates as an 

overriding goal.  John also tries to bridge the many worlds by “picking and choosing” 

(i.e. bricolage) beliefs and practices from each.  

One example of bricolage, is John’s attempts at bringing in research that may 

help in raising achievement scores into the classroom. Another example is John’s 

selection of research relevant to the skills that John believes his students will need to be 

competitive in the ever-changing knowledge economy: adaptability, data-driven decision-

making, collaborative and communication skills. Another example is John’s easy and 

quick removal of the KWL (H) chart as a form of assessment - it did not meet John’s 

immediate goals and was thus summarily dismissed 

Let us now turn our attention to Michael’s case. Although Michael experiences a 

similar disconnect between worlds or beliefs about mathematics and its teaching as John, 

he chooses to navigate them in a markedly different way than John.   
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CASE 2: MICHAEL THE BOXER 

During the course of this study, Michael, a self-proclaimed non-traditional 

mathematics teacher and somewhat of an iconoclast, continually struggled to find a 

balance between actualizing his beliefs of effective teaching - primarily influenced by his 

time in industry, and his experience with mathematics education research - and the 

demands placed on him by his school. Michael sees his role as a mathematics teacher 

holistically, that is, he believes he has a responsibility to help students understand the 

mathematics curriculum with which he is charged, as well as help them develop writing, 

problem solving, critical thinking and general life skills. He describes his role as an 

educator-mentor.  

Throughout the academic year, Michael was chastised during his reviews, and put 

on a three-month action plan by his school in November. Michael’s interviews contained 

the words “battle,” “balance,” “struggle” and “tenacity” frequently, conjuring up the 

image of a boxer in the ring. Michael was termed the boxer because of his resilience and 

sense of agency in the face of impediments to the actualization of his beliefs about the 

teaching of mathematics. 

Introduction to Michael 

Michael Gilford is a Caucasian male in his late fifties who, like John, came to 

high school mathematics teaching as a second career. Michael had previously worked 35 

years in the Internet Technology (IT) field, was outsourced, and became a teacher with 

the express purpose to make a difference in young adolescents' lives. One of Michael’s 

main aspirations as a mathematics teacher is to develop his students' mathematics 
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literacy, which he describes on his website as "the ability to communicate and use 

concepts best described with analytical or numerical logic.” 

At the time of this study, Michael is in his third year of teaching at Gregory High 

School (see below for description of Gregory HS). Michael has had experience teaching 

various mathematics courses. In his first year of teaching, Michael taught Algebra II and 

Discrete Mathematics. In his second year, he taught Discrete Mathematics and Advanced 

Functions and Modeling (AFM). In his third year, the year in which this study is being 

conducted, Michael is teaching Algebra I and Advanced Functions and Modeling (AFM).  

Michael’s School Context: Gregory High School 

 Gregory High School is a large, grades 9-12, comprehensive, public high school 

in the DEC School District, located in a large urban center in the South East of the United 

States. In the year of this study, Gregory High School employed 240 faculty members 

and served over 2000 students. Gregory High School has a diverse student population 

composed of 49% African American, 29% Caucasian, 15% Hispanic, 5% Asian and 

approximately 2% of American Indian and Multi-Racial/Other. In addition, 43% of 

Gregory High's population is receiving Free or Reduced Lunch. See Table 6 below for a 

summary of Gregory High School’s demographics. 

 The Fifth Annual Report of the DEC Equity Committee provides statistics about 

the many ongoing equity disparities within DEC. This report is sobering, as it relates 

disparities in achievement according to geography, socioeconomic status and race. For 

instance, the equity committee reports that out of DECs 17 high schools, only four got a 

grade above D, which means that only four high schools had 60% or more students at 

grade level. 
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Table 6. Demographic Summary of Gregory High School. 

System 
Type 
 

Grades 
Serviced  

Student  
Population 

Students  
Eligible for Free or  
Reduced  
Lunch 

Racial  
Background 

Urban 9-12 2155 43% Caucasian –  29% 
 
African 
American –  49% 
 
Hispanic –  15% 
 
Asian/Pacific Islander –  5% 
 
American Indian/Alaskan 
Native –  2% 

The 2007-2008 School Progress Report for Gregory High School reports that it 

did not make its Adequate Yearly Progress (AYP) in the 2007-2008 academic year. Out 

of 27 targets Gregory High had set, they met 23. According to Gregory High School's 

School Improvement Plan, their number one goal is "attaining high academic 

achievement for all students" which includes targets for students on grade level or above 

on EOC classes including Algebra I, Algebra II and Geometry.  

Across the board, for all ethnicities and for all EOC classes, the target for students 

on grade level or above is 90%, surpassing overall district objectives. The actual 

percentage of students on grade level or above in Algebra I at Gregory High in the 2006-

2007 school year was 75% in Algebra I, 49% in Geometry and 49% in Algebra II, well 

below the 90% target. Improving Algebra I EOC scores has been a goal for Gregory High 

School since the poor performance of the 2004-2005 school year (40% of students’ 

scores at or above grade level for Algebra I).  
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Algebra I. According to the North Carolina Standard Course of Study (PSONC, 

2003) for Algebra I, students are expected to gain knowledge in algebraic concepts such 

as operations with polynomials and matrices, creation and application of linear functions, 

nonlinear functions such as exponential functions and algebraic representations of 

geometric relationships. Furthermore, "students will be expected to describe and translate 

among graphic, algebraic, numeric, tabular, and verbal representations of relations and 

use those representations to solve problems.”  

As Table 7 below shows, the EOC proficiency results for Algebra I rose from 

40% in 2004-2005 to 76% in 2005-2006 at Gregory High School. The main strategies 

implemented in order to increase student achievement have been to put into practice more 

assessments in order to analyze "student mastery on EOC tests" and to offer EOC blitzes 

toward the end of each semester.  

Table 7. EOC Results for Algebra I, Geometry and Algebra II at Gregory High School. 

 
 

Algebra I  Geometry 
 

Algebra II 

2004-2005 
2005-2006 
2006-2007 
2007-2008 

40% 
76% 
75% 
72% 

44% 
46% 
49% 
----- 

48% 
74% 
49% 
----- 

Target 90% 90% 90% 

Michael characterized the school context about Algebra I as follows: "They made 

no bones about it, there are no excuses. Anybody in the class must be passing the EOC 

exam." Michael defined Algebra I as first and foremost an EOC course for which the 

school and teachers are under tremendous pressure to show improved student 

achievement since schools are evaluated on the basis of test performance in EOC classes. 

Further focus on performance in Algebra I was added in the 2008-2009 academic year, as 
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a five-year pilot program aimed at improving student achievement in Algebra I was 

launched in Gregory High, as well as two other local high schools.  

As Algebra I is generally the first course in the high school mathematics 

sequence, is an EOC course and is required to graduate high school in North Carolina, the 

main focus for Michael in this class is the preparation of students for the EOC exam. His 

second goal - as expressed on his teacher website and in his interviews and as is evident 

in his teaching practice - is to develop math literacy. For Michael, this means that his 

Algebra I students are expected to gain knowledge in problem-solving skills, 

mathematical techniques and notation and English vocabulary in order to increase 

reasoning and literacy.  

During my interviews with Michael, he acknowledges that despite his best efforts, 

his Algebra I classroom is still primarily influenced by the EOC standardized test. 

Michael found that the culture of his school changed recently from “do the right thing for 

the kids” to “do the right thing for the grades.” 

As indicated by Michael, the success in raising Algebra I EOC proficiency results 

from 40% in 2004-2005 to 76% in 2005-2006 was a double-edged sword. Gregory High 

was praised in the local newspapers as improving, changing the public’s perception of the 

school for the better. However, the techniques that had shown success in raising student 

achievement - traditional teaching, frequent testing, after school test preparation blitzes - 

are now more entrenched than ever in the Gregory High School culture. As Michael 

describes: 

You could be a different kind of teacher if your school had not succeeded, in 

which case there were no risks. If you are coming from a school where the test 
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results are poor, you can then change procedures and take advantage of new 

educational logic, take advantage of new research. But if your school has 

succeeded, the risk of change is very high.   

Michael is uncomfortable with this version of success, but he knows that “the community 

understands a school’s success based on newspaper accounts and that “the newspaper 

reports of success are measurable with alignment to No Child Left Behind.” Michael 

understands that there are cultural and social norms and constructions related to the 

profession of teaching. In other words, teaching is a social practice and is, as Shulman 

(1993) argues, the property of the community in which it takes place. Michael knows and 

accepts the fact that this opens teachers to criticism and public scrutiny.  

Michael loves his school and understands that having measurable outcomes, such 

as the ones reported on the school's progress reports, is of paramount importance to a 

school's success, as it is tied to the community's perception of the school. Michael 

professes that even though he does not agree with much of the decisions engendered by 

what he termed the “No Child Left Behind Pedagogy,” doing what he can to help 

students perform better on tests that will be reported back to the community and be part 

of the school's evaluation, makes him feel proud and "part of the school.”  

Michael’s Professional Background 

After being outsourced from the field of Internet Technology (IT), and having 

decided that he wanted to be a mathematics teacher, Michael went back to school to 

obtain his Bachelors of Arts with a major in mathematics as well as his teacher 

certification at Blue Coast University. During this time, Michael took methods classes in 

which he was exposed to mathematics education research. In these classes, Michael 
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remembers reading about teaching mathematics to adolescents, cooperative learning, 

differentiated instruction and the work of Piaget and other constructivist scholars. When 

asked by the researcher, Michael stated that the political aspects of mathematics 

education were not discussed in these classes. 

Michael’s beliefs about the teaching of mathematics were also greatly influenced 

by workshops in the PEAK Teaching for Excellence ModelTM (PEAK). According to the 

PEAK Learning Systems Inc.’s website, PEAK was developed by Spence Rogers in order 

to build “high performance classrooms and learning environments” through “enhanced 

motivation; aligned curriculum; effective assessment; and research-supported, brain-

compatible instruction.” (PEAK, 2009).  

Michael attended these workshops at the direction of the Gregory High School 

Assistant Principal of Instruction during his first year as a mathematics teacher. 

Throughout his interviews, Michael mentioned a strong belief in the following 

components of PEAK:  

1. Differentiated instruction matched to the needs of each learner 

2. Value placed on quality of learning rather than speed of learning 

3. Forgiveness and coaching until standards are met.   

Because Michael believes in quality learning rather than its timing and in 

forgiveness when standards are not met (PEAK item 2 and 3 above), he is frustrated at 

the fact that his students are “not allowed to make mistakes. Great way to teach 

somebody something! You only get one shot. There’s no time for mistakes because 

we’ve got something else to do.”  
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Michael and the Global Competitiveness Discourse 

Gregory High School is part of the DEC school district whose motto, written on 

the top of web pages, on many e-mails and hardcopy communications with faculty and 

staff and, in some cases, on big banners exhibited at the entrance of schools is: Reach 

Further. Global competitiveness starts here. Gregory High also uses the discourse of 

global competitiveness freely to motivate the goal of increasing student achievement as 

part of their vision and strategy to prepare students to "compete in an ever-growing 

global community" (Gregory High’s School Progress Report 2007-2008).  

As discussed at length in the literature review (see Chapter 2), mathematics 

education is tied to notions of national economic competitiveness, which has resulted in a 

standardization of the mathematics curriculum emphasizing skills, procedures and a focus 

on pragmatic knowledge. One school of thought thus perceives the effects of 

globalization on mathematics education as a reinforcement of the positivistic perspective 

on mathematics and science. 

The result is an educational discourse of competition, as seen in DEC school 

district and Gregory High School, in which high-stakes tests are the primary (valued) 

means of assessing knowledge and in which students, teachers, schools, school districts 

and countries are in a competition over test scores.  

Like all other teachers employed by the DEC school district in the 2008-2009 

school year, Michael received an e-mail from DEC’s superintended the week before 

school started, welcoming teachers back to school and reiterating the main mission of the 

district: "Educating children for the global economy that they'll be joining as adults."  
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Although Michael stated that the DEC school district had “fallen in love with the 

global economy talk,” he also admits that the language of global competitiveness does 

not make it very far past the web pages and banners. Michael does not recall a meeting 

with teachers and/or administrators in which details were given about what exactly 

“preparing students to compete in an ever-growing global community” would entail for a 

mathematics teacher at Gregory High School.  

When asked by the researcher in our first in-depth interview about what such a 

discourse means to him as a mathematics teacher, Michael sighed, and paused for a long 

time to gather his thoughts. The following interview excerpt followed: (R denotes the 

researcher’s part and M denotes Michael’s):  

M: (sigh)...Adolescents at this age, have a view of the world that extends only 

a little bit farther than their car can drive. One of the things I'm 

consciously trying to extend is their idea of the geography of where we are 

in terms of what's happened, and that's probably the only global economy 

were talking about. I did more with discrete when we talked about voting 

patterns, in AFM we're just trying to get them to see beyond their own 

experience level...and in Algebra I. What we're really doing, and this goes 

back to Gregory High. Gregory High has a motto that says every eagle 

succeeds. 

R: Yeah. 

M: And the idea is we're trying to get the most out of every kid. And...it's 

not...it's a much more smaller goal. I've aligned myself with that one. 

[…] 
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R: A general question: As a math teacher, what kind of skills do you think 

that someone needs to be competitive in the global economy? 

M: For me that's easy. Did you see the title on my webpage? It has not 

changed. It's math literacy. My goal in all my classes is to teach math 

literacy, which means they should be as comfortable with numbers and 

numeric reasoning as they are with language and language reasoning. And 

that's really what I'm trying to do for all my students. 

In further interviews, Michael specified other skills that he is trying to cultivate in his 

students as a mathematics teacher in order to prepare them for membership in the 

knowledge society. In particular, Michael adamantly believes it is important for his 

students to develop critical thinking (skepticism) and the ability to cope with an 

ambiguous and non-linear world, in which issues are not black and white and answers are 

not right or wrong. These particular beliefs, and Michael’s attempts at their actualization, 

was a major source of conflict and frustration for Michael throughout the studied 

semester, as will be explored below.  

Themes for Michael the Boxer 

The beliefs Michael wants to enact in his mathematics classroom are in constant 

competition with the standardization of mathematics courses such as Algebra I. As 

mentioned in the introduction to this case study, the words “battle,” “balance,” “struggle” 

and “tenacity” were used quite frequently by Michael during interviews. The main 

themes that emerged from Michael’s lived experience as a mathematics teacher are the 

balancing act and battle—two important components of boxing. As we will see below, 
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Michael’s case highlights that educators who resist institutional norms and strive to 

uphold their beliefs often do so at great personal cost.  

Balancing Act  

Michael's beliefs about mathematics teaching is influenced by four main sources: 

his time in industry, the mathematics literature he has been exposed to such as 

constructivist theories, his PEAK methodology training, and his desire to do what's best 

for the school as a whole.  

When I asked him about what he feels or thinks about before walking into his 

classroom, he described a balancing act in which he must balance the syllabus and pacing 

guide requirements set out by Algebra I weekly meeting with his desire to help his 

students acquire "mathematics that has legs outside the classroom…outside of just 

pushing buttons on a calculator.”  

Michael has a well-developed and well-articulated belief about what it means for 

his students to understand, although he has had to adapt this teaching to be in line with 

the current culture of measured outcomes as evidence of student understanding.  For 

Michael, understanding requires a synthesis of information, putting together facts that 

haven't been put together before. It also requires time to process information out of short-

term memory and into long-term understanding.  

My theorem that I have to change is people need time to absorb and reflect. Time 

to make a fast answer doesn't indicate knowledge. It indicates parrothood. They 

can speak back what they've just been told and that's nothing to do with 

understanding. That has to do with short-term retention. The argument being that 
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if you do short-term retention multiple times, you get to understanding. My 

argument is you don’t, you get to short-term retention. 

Although his success as an Algebra I teacher is primarily measured by his students' test 

scores, Michael is also concerned with teaching his students "mathematics that has legs 

outside the Algebra I classroom."  Although Michael does not believe that EOC tests 

measure synthesis skills or long-term understanding, he continues to challenge his 

students to go beyond rote memorization.  Careful not to ask compound or ambiguous 

questions in testing situations, Michael often asks compound questions or questions that 

fall outside the curriculum in class or homework situations. Balance. 

For instance, after having introduced quadratic equations to his students, Michael 

asked more in depth question such as: "If you have a second degree equation, a parabola, 

with a positive coefficient, what's the maximum?" Michael reports that most of his 

students defaulted to giving the formula for calculating the vertex or the zeroes, which to 

Michael, meant that understanding had not been achieved. However, Michael concedes 

that his belief in what constitutes understanding is time consuming and perhaps not 

feasible in his current context. 

Because of his PEAK training and his familiarity with mathematics education 

literature through his methods classes, Michael also believes in differentiated instruction 

(PEAK item 1 above). Michael’s concept of “differentiated instruction” is in line with 

Tomlinson (2004) who defined the term as follows: "Ensuring that what a student learns, 

how he/she learns it, and how the student demonstrates what he/she has learned is a 

match for what that student's readiness, interests, and preferred mode of learning are"  

(p. 188). 
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Although the 2007-2008 School Progress Report for Gregory High School 

discusses with pride the overarching goal of using differentiated instruction in order to 

adapt the curriculum to individual learning needs, Michael found that the term 

“differentiated instruction” at Gregory High School means “teaching three or four 

different ways to do the same thing—not teaching at quantitatively different levels.” 

Michael is frustrated on this point as well: “Piaget has died in DEC! Everybody is the 

same! We’ve got them all jumping through that hoop on the same day!”  

Differentiated instruction has become synonymous at Gregory High with teaching 

to different learning styles according to Fleming’s VARK model: Visual, Auditory, 

Reading and Kinesthetics. Although learning style theories have been criticized by many 

educational psychologists/researchers (e.g. Stahl, 2002), Michael has been instructed to 

teach so that visual learners have access to visual aids such as slides, graphical 

representations and diagrams, auditory learners have lectures, readers are provided 

handouts and kinesthetic learners are afforded some hands on activity.  

Because of the “push” at Gregory High to cater to students’ learning styles, 

Michael found balance between these demands and his beliefs by bringing his students in 

the school library to take two different online learning style assessments. In doing so, 

Michael complied with “the powers that be.”  

However, Michael took this opportunity to begin a discussion about test validity, 

margins of error and skepticism/critical thinking: “Kids need to understand that when 

somebody gives you a test that says this test proves you’re exactly an auditory learner, 

and you have to do all these things, that’s o.k. There might be another test that says that 

you’re not that…”  
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Battle 

Recall that Michael sees his role as a mathematics teacher as a mentor-educator 

who believes it is part of his responsibility to guide students through the development of 

their writing, problem solving, critical thinking and general life skills. Michael stated that 

he quickly realized his students in his Algebra I and AFM classes had difficulty with 

word problems because they had difficulty with words as well as synthesizing thoughts: 

It turns out, they have problems with words like from and of. You subtract from. 

They also have problems when there are two sentences in a question, and they 

only answer the first one. 

To help his students with their difficulty with words, with the synthesis of 

thoughts, and to encourage students to share their beliefs about mathematics, Michael 

began including writing in his mathematics classroom.  

Writing in the Mathematics Classroom. Writing is an important mode of 

communication that has potential as a learning tool, which can assist students in the 

development of conceptual understanding. The mathematics education literature supports 

the premise that writing promotes a deeper understanding of mathematics as students 

extend their metacognitive and critical thinking abilities (Artzt & Armour-Thomas, 1992; 

Carr & Biddlecomb, 1998; Powell, 1997; Pugalee, 2004, 2001). The importance of 

communication in learning mathematics is emphasized by the National Council of 

Teachers of Mathematics (2000), who includes communication among the five process 

standards (communication, problem solving, reasoning and proof, connections and 

representation).  
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Writing, in general, is viewed as a generative act requiring a deliberate analytical 

action from the composer (Vygotsky, 1986) as association between current and new 

knowledge become part of deliberate web of meaning.  Writing in mathematics can 

provide a tool for students to reflect and verbalize about important mathematical concepts 

and ideas, thus supporting analysis, comparison of facts and ideas, and synthesis (Farrell, 

1978).  Such activities have been shown to promote ownership of mathematical learning 

and provide a strong foundation for continued growth of mathematical skills and 

understanding. 

One writing activity that Michael was particularly proud of including in his 

Algebra I and AFM classes was an activity he termed the cool down. This is an activity 

he adopted from PEAK and some of the research mentioned above on writing in the 

classroom. In this activity, Michael asked students to write a paragraph response to 

questions such as:  

• Why do people learn mathematics?  

• What is the hardest part of mathematics for others?  

Some of Michael’s cool down questions were not specifically about mathematics, but 

they reflect Michael's desire to encourage his students to think about ambiguous concepts 

and to synthesize their thoughts. Examples of these types of  cool down questions are:  

• I've heard it said that a good start means a good end. What do you think?  

• Some people say first impressions are most important. Other people say a tiger 

can't change its stripes. What do you think about it?"  

Michael took great care to formulate his questions in such a way that there were no 

right answers and that two thoughts, which didn’t naturally match, were being forced 
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together. Michael also asked his students to create their own cool down questions. 

Michael's goals with these activities are complex. He wants to give a voice to his 

students, "take the temperature of the room" sort of speak. Also, having spent thirty-five 

years in an ever-changing industry (IT) to finally be outsourced left Michael, like John, 

sensitive to the uncertain world for which he is preparing his students. Michael argues 

that an emphasis on education for work and the consequent focus on facts and procedures 

in school mathematics prepare students for jobs that won't exist by the time they enter the 

job market.  

With that in mind, Michael believes it is part of his responsibility as a mentor-

educator to place an emphasis in the mathematics classroom on thinking skills and 

affective education in order to equip students with "skills to handle a world of non-linear 

change" (Lee, 2005, p. 172). Michael thus believes it is important for his students to learn 

to process ambiguous statements, statements that do not have a correct answer, unlike the 

multiple-choice questions students are asked to answer in EOC tests. He also wants to 

encourage his students to write and create a culture in which writing is part of a 

mathematics classroom.  

During his review in November, Michael was told that his cool down questions 

were a "very bad idea because it's not part of the math curriculum.” Michael reasons that: 

I think that in education, I'll generalize to education, there are many, many linear 

thinkers…and for linear thinkers, the curriculum should be a box. The idea of a 

math teacher teaching English or worried about it seems to them not a plus but 

somewhere he's loosing out on what his role is. Which is less than I see my role. 
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Michael was promptly asked to remove his cool down questions that were not 

"mathematically oriented" and did not have a specific answer: “They wanted the kids to 

have an answer so they could have a feeling of getting it right. To which I said: That 

wasn't my goal!” 

Michael, being a relatively new teacher, did as he was told—he removed his cool 

down questions. However, Michael has a great sense of agency in the face of 

impediments to the actualization of his beliefs. His review also asked Michael to do more 

reviewing of concepts. Michael decided to substitute his cool down questions with a 

review in which he gives students a bullet point form summary of every lesson to 

reinforce concepts, and asked his students to translate each bullet point into sentences in 

order for them for formulate a coherent written  narrative of the lesson.  

In this instance, Michael skillfully navigated the different beliefs about the place 

of writing in the mathematics classroom. As Michael stated “there are a few battles I can 

win in Algebra I, but they’ll be small.” He is committed to his beliefs about writing's 

place in the mathematics classroom, while being equally committed to his school's 

mission and demands. Feeling like he had won a small victory, Michael quipped:  

The comedy of this routine is that the school is driving now at a curriculum level 

towards more word problems which makes me feel validated that I was doing 

things right. Do I feel understood? NO. Did I give up on that? I'm in my third 

year. I salute. I do whatever they tell me joyously. 

The poor performances on his November review made Michael rethink his 

teaching to be more in line with what he terms “traditional teaching.” 
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Traditional Teacher. Michael contrasts himself to traditional teachers often in his 

statements. In order to better understand Michael’s beliefs about his role as a 

mathematics teacher, it is important to understand what Michael means by the term 

traditional teacher as it is what he is actively rejecting. Michael also often referred to 

traditional pedagogy as the “No Child Left Behind Pedagogy”: 

We've all adopted the No Child Left Behind Pedagogy that says that whatever is 

necessary to pass the test must be the right thing to do, and since it has to be done 

now, we don’t have to worry about later.  

When asked to explain what he meant by traditional teaching, Michael drew a diagram 

which I have reproduced below in Figure 4. As he was drawing the diagram, Michael was 

describing that: 

I call it a traditional approach, which is introduction of a topic, homework on a 

topic, topic is complete. Add a second topic that's associated with it, that uses it 

possibly. Once you get a collection of those, have a review day where everything 

is brought together. Upon completion of the review day, there's an exam. And 

that's pretty much how I characterize the traditional approach as I've seen it 

practiced. 

Of the effect on students of traditional instruction, Michael believes that: 

Overall my view of traditional teaching methods is that it makes kids passive. 

They don’t learn critical thinking or knowledge. They learn how to rote respond.  

A lot of my students are very uncomfortable with me when they have open-ended 

questions ‘cause they would like to give me the right answer, and they don’t know 

what it is, and I haven’t told them what it is. 
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Figure 4. Michael’s diagram of traditional teaching. 

Because of his poor November review, Michael reluctantly adopted a teaching 

approach more in line with what he understands to be traditional teaching. Apart from the 

suggested changes to his teaching approach mentioned above, Michael was asked to 

drastically change the way he taught Advanced Functions and Models—to, in essence, 

dePEAK it. As the reader can see from the change in Michael’s AFM syllabus from 

before his November Review (APPENDIX G) to after his November Review 

(APPENDIX H): 

1. Resources external to the textbook have been removed. For instance, all 

references to activities and modules found on the North Carolina School of 

Science and Mathematics are no longer present in the “AFM Syllabus Version 2.” 

2.  The hierarchical/linear approach to mathematics teaching has been reestablished. 

Covering section 6-3 is followed by 6-4 which is followed by 6-5, and so on.   

3. More advanced topics, such as “Probability” and “Decisions through Data” have 

been eliminated in favor of review in preparation for the final exam.  
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Despite these concessions to school demands by Michael, his mid-year review was also 

quite poor (see APPENDIX F). Michael’s reply to this review, indicative of Michael’s 

sense of agency and resiliency, is reproduced in Figure 5 below: 

From: M. Gilford 

To: File 

RE: Response to Mid Year Appraisal    2/10/09 

 

At the direction of Gregory High administration, my classroom management 

practices, pacing guide and assessment methods were changed from ‘best 

practices’ to ‘old-school’ practices during the Fall 2008. The elimination of 

teaching using best practices was the major cause of this poor review. 

 

These best practices were learned during PEAK training. I attended PEAK at the 

direction of the Gregory High School Assistant Principal of Instruction my first 

year. My second year I attended Saturday sessions. Following this training, I had 

much success in the classroom (teaching Discrete Math and AFM) using best 

practices techniques. Administration at Gregory High School acknowledges that 

they do not understand PEAK encapsulated best practices, nor are they interested 

in using them at this time.  

 

Three years ago, I came to Gregory High school because of the school’s 

reputation and the principal’s ability to support his teachers and gain outstanding 

performance. My first year assessment was done by a math teacher who went on 
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to become a DEC assistant principal. My second year assessment was done by the 

Math Department chairman. Both evaluations were satisfactory.  

 

This appraisal reflects a discord between encouraging teachers to move to ‘best 

practices’ while assessment is done using models developed in the 1970’s and 

1980’s.  This year I had expected to continue to improve my teaching skills and 

took a summer course to enhance both AFM and Discrete Math instruction.  

However I was assigned to the Algebra I pilot project and told mid-semester to 

eliminate best practices from my AFM class.  The Pilot Project at Gregory High 

School was lead by teachers with many years of Algebra I teaching experience 

who choose to repeat their traditional methods with minor modifications. 

 

As I have been directed to not use ‘best practices’, I need to continue to regear my 

classroom management to ‘old school’ techniques (silent classroom, desks in neat 

rows, assessment practices without retesting, train-track pacing guides with 

review days to catch-up, etc.)  I have requested support from administration to 

reach a satisfactory review in order continue teaching within DEC and achieve 

organizational cohesion at GH. However, there is a question whether a fair 

evaluation is possible when my preference towards ‘best practices’ is so well 

known.    

 

I am challenging this appraisal. It is my understanding that best practices are 

supported by DEC.  Further I cite my prior appraisals and a current observation 
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(12/1/08) by the Curriculum Resource Teacher that my classroom management is 

within standard performance measures.  

Figure 5. Michael’s Response to Mid Year Review (artifact, 2/10/09). 

For Michael, being continuously monitored and evaluated limited the time he had 

for imagining and enacting transformative pedagogies. At the end of November, 2008, 

Michael was put on an “action plan” which included a return to the traditional format and 

strict adherence to the syllabus. Michael was asked to employ the following protocol to 

conduct his classes: 

1. Procedures review and adjust. 

2. Warm-up (on the overhead when the students arrive).  

3. Review of homework. 

4. Lesson (new material). 

5. Group activity (assessment/adjustment of new material). 

6. Homework assignment (reinforce new material). 

7. Summary review. 

The poor reviews in combination with the culture of high-stakes testing which 

exists at Gregory High School turned his school into a place of disenchantment.  As 

Sumsion (2002) noted, the process of becoming a teacher is not "a solitary or self-

contained process-it occurs in a time and space where others, some much more powerful 

than yourself, also are bent on constructing 'you' in an image they value" (p. 874). 

Because of this tension, Michael began to feel frustrated by the unreceptiveness of 

colleagues, and retreated somewhat to the personal landscape of the classroom which 

offered him the autonomy to pursue his vision and enact his epistemological beliefs. 
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Michael asserted that: “While there is absolute consensus on the test and the syllabus 

curriculum, what goes on in my classroom, I have control over!” Clandinin and Connely 

(1995) remarked that: "The privacy of the classroom is a safe place where teachers are 

free to live their stories of practice" (p. 13). Michael the Boxer found the need to retreat 

into his corner. Throughout the semester, Michael increasingly felt “managed” and 

stripped of his agency. The scripted curriculum, teacher accountability, continuous 

monitoring of student performance, high stakes testing and punishment for not meeting 

standards at Gregory High School mirrors what Khol (2009) described as an “educational 

panopticon,” frustrating and, often times, completely impeding much of Michael’s efforts 

at the actualization of his beliefs. In February, 2009, Michael sent me the following e-

mail (Fig. 6): 

Next year will probably not be at Gregory HS. Read the mid-year reply first. If you have 
contact who can help me finding a position that supports new methods to motivate 
students let me know.   
  
Michael Gilford 
Math Teacher, Gregory High School  

Figure 6. Michael e-mail communication (artifact, 02/19/09).   

Conclusion 

Michael the Boxer was shown to have a strong sense of agency in the face of 

impediments to the actualization of his beliefs about the teaching of mathematics. 

Michael sees himself as an educator-mentor who has a responsibility to help students 

understand the mathematics curriculum with which he is charged, as well as help them 

develop writing, problem solving, critical thinking and general life skills.  
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The manner in which Michael chose to mediate the external discourses, often at 

odds with his set of dispositions (habitus) and his ideology was through a combination of 

balance and battle. 

One example of balance is Michael’s attempt at both fulfilling the “differentiated 

learning” requirements of his school by administering “learning styles” assessments, 

while satisfying his need to instill of skepticism about such tests in his students.  

 Often times, Michael struggled to find a balance between his beliefs of effective 

teaching and the demands placed on him by his school. He found himself fighting the lure 

of the “traditional” teaching method and the reign of absolute mathematical truths, 

accountability and measured outcomes, in order to teach in a way which makes room for 

ambiguities and creativity.  

In certain instances, Michael would choose to wage battle. As Michael strongly 

believes that writing has its place in the mathematics classroom, he chose to keep writing 

in a form that would be more palatable to his administration than his cool down 

questions. Michael’s tough response to his poor mid year appraisal in another example of 

battle. 

Let us now explore the case of Sergen who will be shown to have fascinating 

areas of commonality and uniqueness with John and Michael in the manner with which 

he navigates the epistemological rocky waters of mathematics education.  
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CASE 3: SERGEN THE DIPLOMAT 

Sergen Manzik’s case reveals a well-balanced and relatively smooth navigation of 

the epistemological rocky waters of mathematics education by a successful high school 

mathematics teacher. Sergen was termed the Diplomat because he is seen as dealing 

tactfully and skillfully with others—engaging in negotiations and mediations about belief 

systems and often acting as an intermediary between his school administration and other 

mathematics teachers. Sergen’s interviews contained a high frequency of the words 

“reflect,” “discuss,” “understand,” “empower” and “respect.”  

Sergen, consciously and adamantly rejected the use of the word “struggle” in his 

interviews to describe his experiences: “It’s not really a struggle. It’s conflicting views 

that I’m happy, you know, to incorporate.” More will be said below about the manner in 

which Sergen incorporates different beliefs about mathematics and its teaching in his 

practice.  

As we will see, much of Sergen’s diplomatic acumen comes from his broad view 

of his role as a teacher, as well as his beliefs about the nature of knowledge and knowing. 

For Sergen, “there are all sorts of different types of knowing,” and these should be 

respected and incorporated. 

Sergen believes it is his role as a teacher to provide his students with basic 

mathematics skills so they can “survive in different countries, different institutions, with 

different teachers.” He also wants to help his students’ self-esteem by empowering them 

to become intellectuals, prepare students to be competitive in the knowledge society and 

help improve the reputation of his school in the broader community by producing high 

achievement scores on End-of-Course tests.  
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Introduction to Sergen 

Sergen Manzik is a male in his early thirties of Turkish origin. Sergen began his 

academic career in his country of origin in mechanical engineering. During the second 

year of his Masters of engineering, Sergen decided that he “didn’t want to do anything 

like what engineers do.” He thus decided to take an opportunity that was offered to high-

achieving graduate students in his country to study abroad in the field of education. He 

obtained a Masters and began a Ph.D. in Mathematics Education at East State University. 

After taking much of the required courses towards his Ph.D., Sergen decided to transfer 

to Blue Coast University, where both John and Michael also studied, to complete his 

Ph.D. 

At the time of this study, Sergen was in the second year of his doctoral program at 

Blue Coast University. The decision to transfer from East State to Blue Coast University 

was precipitated by two main factors: (1) Sergen wanted in-class teaching experience at 

the high school level. Blue Coast University allowed him to be a part-time doctoral 

student and thus be a teacher during the day. (2) Furthermore, Sergen found that East 

State University’s Mathematics Education program was primarily focused on the use of 

technology in the mathematics classroom, while he wanted to study a broader selection of 

mathematics education topics. 

Sergen began teaching mathematics at Alleny Academy in 2005; that is, Sergen 

was in his fourth year of teaching at the time of the study. Sergen’s school context will be 

described in further detail below.  During his teaching career, Sergen has taught 

Precalculus, Calculus, SAT Prep, Discrete Mathematics and Technical Mathematics. At 

the time of this study, Sergen was teaching Calculus BC and Precalculus, and was now 
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the Chair of the Mathematics Department at Alleny Academy. Sergen described his role 

as chair as, in part, being a spokesperson “taking the word from the administration and 

disseminating to math teachers, related to their classes and such.” 

Sergen’s overarching goal as a mathematics teacher is to help his students become 

intellectuals, equipped with as many “intellectual tools” as they will need to reason and 

analyze a variety of situations, in a variety of ways, depending on context.   

I want my students when they go to college or when they go to different venues or 

workplaces – I want them to be intellectuals. I want them to be able to look at 

problems and identify problems and have a clear sense of what the problem is and 

what a solution might look like … I want them to be aware of themselves … I 

want them to be critical about what other people are saying and what they’re 

saying.  

Sergen provided me with a variety of examples to illustrate what he means by 

“intellectual tools.” For instance, understanding how to prove or disprove a universal 

statement such as even + even = even is an “intellectual tool” because it is useful in 

mathematics, as well as in analyzing other “for all” statements in other contexts.  As can 

be seen in the quote above, Sergen wants to equip his students with critical thinking 

skills, which involves having many intellectual tools at their disposal with which to 

analyze a problem, a situation, or a statement. 

Sergen’s School Context: Alleny Academy. 

Alleny Academy  is a grades 9-12 public high school located in an urban area of 

the South East of the United States. Like Gregory High School, it is part of the DEC 

school district. In the year of the study, Alleny Academy employed 82 teachers, 3 of 
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which are National Board certified and served 975 students. Alleny Academy’s student 

population is composed of 82.5% African American, 7.8% Caucasian, 6.5% Hispanic and 

3.3% other, where 60% of the student population qualifies for Free or Reduced Lunch 

(see Table 8 below).  

Table 8. Demographic Summary of Alleny Academy. 

System 
Type 
 

Grades 
Serviced  

Student  
Population 

Students  
Eligible for Free 
or  
Reduced  
Lunch 

Racial  
Background 

Urban 9-12 975 60% African 
American – 82.5% 
 
Caucasian – 7.8% 
 
Hispanic – 6.5% 
 
Other –  3.3% 

Alleny Academy did not meet its Annual Yearly Progress in the 2007-2008 

academic year, as it met only 9 out of its 13 target goals. Alleny Academy was depicted 

by Sergen as an “urban school.” Sergen characterized the student population at Alleny 

Academy as such: 

90% of our student population is first-generation college bound kids, and 65-70% 

are getting free lunch. So they’re students of poverty. They’re coming from lower 

socio-economic backgrounds. But we are trying…those inputs, those outside 

effects, not to let them bother our education. We want those outside factors to 

have no effects at all. We want to maximize teacher effect and school effect and 

then mobilize kids and give them good math and science education. 
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As the Ph.D. in Curriculum and Instruction with a specialization in Mathematics 

Education at Blue Coast University is under the Urban Education umbrella, Sergen feels 

that he has gained a profound understanding of some of the sociocultural aspects of the 

educational enterprise. In particular, Sergen is familiar with the critical issues and 

characteristics of American urban centers, and how these issues impact urban schools, 

and this knowledge has affected how he views his role as a mathematics teacher. 

Although both John and Michael were also exposed to these issues during their 

education studies, and Michael’s school qualifies as an urban school, neither of the above 

participants mentioned this as a significant factor in their decision-making process as 

teachers. However, Sergen made mention of this fact about Alleny Academy and its 

population on numerous occasions during our various interactions, especially as it relates 

to his beliefs about the teaching of mathematics. It is thus important to take pause and 

briefly explore the issue in more depth here.  

Some characteristics usually associated with urban centers are high levels of 

poverty, single-parent families, English as a second language, crime and drug abuse and 

resegregation according to social economic status (Kozol, 2000, 2005; Wegmann, 1994). 

In general, the term urban has become "a signifier for poverty, nonwhite violence, 

narcotics, bad neighborhoods, an absence of family values, crumbling housing and failing 

schools" (Steinberg & Kincheloe, 2004, p. 2). The characteristics of urban centers 

discussed above contribute to inequalities in urban schools and result in consequences 

such as the under-preparedness of students for the next level of schooling, discipline 

problems, high drop out and teacher turn-over rates (Anyon, 1997, Spring, 2007).  
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Describing how his particular school context affects his beliefs about the teaching 

of mathematics, Sergen indicated that: 

We face different issues … we have a lower income school and population where 

we are facing all sorts of issues that need to be taken care of. If you treat our 

students and be insensitive to students, and treat them middle class students, and 

try to teach them like without having relationships, without helping them develop 

aspirations to go to college, and take the time…without supporting, building, 

reaffirming students. Boosting their self-esteem. If you don’t do those, then by 

just offering them plain mathematics education, just math concepts and 

procedures and relationships, they won’t grow I think, because they cannot. They 

have other issues that need to be addressed. So my job is to be sensitive to all the 

issues and in the mean time, give as much as I can in terms of conceptual, a little 

bit of this, a little bit of that, and in the mean time cover as much as possible in 

the curriculum. 

More than a third of the teachers at Alleny Academy have less than 3 years of experience. 

The teacher turnover rate is very high (approx. 36% in 2007-2008). This explains one 

reason why Sergen, after only three years of experience at Alleny, is Chair of the 

Mathematics Department. The high amount of teacher turn over in urban schools has 

been attributed in the literature to many factors: Low teacher salaries and under 

preparedness of teachers to work in an urban school environment (Anyon, 1997, Spring, 

2007). Better, more experienced teachers are generally rewarded with teaching posts in 

higher-status schools where salaries are higher and working conditions are better.   
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Borman and Overman (2004) found that teachers in urban schools are often 

directed to focus on the basics that will produce higher achievement scores on End-of-

Course proficiency tests and often report a lack of support for mathematics teaching 

focused on conceptual understanding. Sergen also points to the “new movement towards 

testing and such” as one reason for low retention rates in his school. Discussing the 

accountability movement present in his school and others:  

Because if we hold people accountable then, first of all we impose some external 

control factors onto dedicated artists, like teachers who are there for the kids who 

are there for their growth. It would impose some external factors that’s kind of 

disrespecting their art and their craft. And then you would kill the spirit of 

teacherhood, and you would produce business like adults who are producing those 

kinds of people who are unconsciously following here is what you got to do and 

here is the test and this is how we do it, and then the kid does well on the test. 

And then we look successful like we improved ten scores in our composite EOC 

scores. But look at our people. We have nobody there. We have all the building is 

all sleeping. All one thousand students are not thinking. And look at our people. 

Look at our teachers. They're not content. They're burned out and they're not 

happy with administrator e-mailing them you have to do this you have to that. 

Sergen describes his school as being in transition. A new principal with strong leadership 

skills and educational research background has meant a renewed focus on improving the 

reputation of Alleny Academy in the public forum. The drive is to attract better qualified 

teachers and lower the teacher turnover.  
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As part of the school’s strategy to improve their image, there has been a strong 

emphasis on raising EOC scores in order to meet AYP and improve their School Progress 

Reports and state School Report Card. In particular, raising EOC scores in Algebra I and 

Algebra II is of great importance to the school administration.  

As Table 9 below shows, the EOC proficiency results for Algebra I, Algebra II 

and Geometry have consistently remained well below the 80% target set by Alleny 

Academy and the DEC school district.  

Table 9. EOC Results for Algebra I, Geometry and Algebra II at Alleny Academy. 

 
 

Algebra I  Geometry 
 

Algebra II 

2005-2006 
2006-2007 
2007-2008 

66% 
72% 
62.9% 

24% 
40% 
NA 

50% 
23% 
NA 

Target 80% 80% 80% 

Sergen recalls the particular embarrassment the 2006-2007 Algebra II scores 

caused for his school (i.e. only 23% of students’ scores at or above grade level for 

Algebra II). Sergen is dedicated to his school, the mathematics department and their 

mission and reputation in the broader community.  

Sergen’s Professional Background 

Sergen feels that his mathematics education background has primarily given him 

an awareness of “different ideas like conceptual understanding and how to tap into 

students’ analytic thinking.” His mathematics education research knowledge and beliefs 

guide much of his actions. All lessons taught in Sergen’s classroom are geared toward 

conceptual understanding. Students are encouraged to explore concepts and to probe 

multiple solution paths. 
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Sergen related to me a revelation that he had during his study of mathematics 

education at East State University which drastically changed his beliefs about 

mathematics and the knowing of mathematics. Sergen reported being an excellent 

mathematics student throughout his academic career - in high school and in his 

engineering program. In the second year of his doctoral program in mathematics 

education at East State University, Sergen became really and truly conscious, for the first 

time, of certain very basic concepts in mathematics, such as the difference between the 

function f and f(x) at a specific value of x, seeing the expression x+1 as one object and 

proportional thinking.  

When talking about these revelations, Sergen is manifestly recalling a very 

profound moment in his life: “I never thought x+1 was one thing, you know. I never 

thought! … So this humbled me, I think, in terms of what do I know about math. What it 

means to know. What it means to not know.”   

This humbling experience changed Sergen’s epistemological beliefs. It helped 

him “reorganize” his “understanding of all of mathematics.” Sergen reached the 

conclusion that “there are all sorts of different types of knowing.” To illustrate this point, 

Sergen discussed the different ways one can understand fractions. For instance, as 2/3 

being two integers that are divided, versus memorizing the definition of a rational 

number, or seeing 2/3 as a symbol to be manipulated within the given mathematics 

problem. If a student can add 2/3 and 4/5 together, do they know about and understand 

fractions? In Sergen’s view, they do, on one level – the level at which symbol 

manipulation means knowing.  
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Sergen’s beliefs were greatly shaped by the constructivist and sociocultural 

approaches to mathematics teaching and learning found in the mathematics education 

literature. In his interviews, Sergen reflects a (radical) constructivist point of view, in 

which individuals create their own reality through actions and reflections. This 

individually constructed reality is not necessarily a reflection of an ontological reality. 

Sergen claims:  

I don't feel like I know anything. So I don't have strong convictions about things 

and meanings. So, in my mind a happy balance is a happy world and the 

confusion, the unknown. Because if I were to know something, if I said to myself 

that's what it is, then I would create a kind of illusion about reality and about the 

world. 

Sergen applies a constructivist perspective in his classroom by connecting open-ended 

questions and an inductive teaching style to student understanding. Sergen has also 

internalized some aspects of the sociocultural perspectives on mathematics education 

(e.g. Vygotsky & Luria, 1994), in which knowledge is socially and culturally situated: “I 

guess if the beliefs are consistent with or in concert with the community or the society's 

and other people's beliefs then they become knowledge you know.” 

Sergen and the Global Competitiveness Discourse 

Like Michael’s school – Gregory High School – Alleny Academy is part of the 

DEC school district whose motto is: Reach further. Global competitiveness starts here. 

Like all other teachers employed by the DEC school district in the 2008-2009 school 

year, including Michael, Sergen received an e-mail from DEC’s superintended the week 

before school started, welcoming teachers back to school and reiterating the main mission 
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of the district: "Educating children for the global economy that they'll be joining as 

adults." Alleny Academy also uses the discourse of global competitiveness to underline 

their mission. For instance, the principal’s welcome page includes the statement that “in 

an ever changing society, the expectation is that our students are prepared to compete on 

a global scale.”  

Alleny Academy’s mission, as stated on the school official website, is to offer a 

quality education which includes equipping students with the capability to “think 

creatively, make data-driven decisions, solve problems, visualize, and know how to learn 

and to reason.” This description is unmistakably designed to mirror the literature 

discussing the central role of K-12 education in preparing students to be competitive 

members of the knowledge society by imparting crucial skills such as learning how to 

learn, creative thinking and problem solving.  

Like John and Michael, Sergen admits that the epistemological and pedagogical 

implications of this discourse have not been made explicit in his school context (nor in 

his extensive study of mathematics education). Sergen does not recall of a meeting with 

teachers or administrators in which details were given about what exactly preparing 

students “to compete on a global scale” would require of a mathematics teacher at Alleny 

Academy.  

When asked directly by the researcher about what such a discourse means to him 

as a mathematics teacher, Sergen is forced to think about the issue, clearly for the first 

time (R denotes the researcher’s part and S denotes Sergen’s):  

R: This is on principal (name withheld)’s webpage: "In an ever changing society the 

expectation is that our students are prepared to compete on a global scale.” 
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S: Yeah… 

R: "As we prepare our students to meet these global demands it is imperative that we 

facilitate learning through ..." So what I would like to know, for you, what does 

that mean, as a math teacher? When you're teaching your classes, what does it 

mean to be preparing students for the... 

S: …global economy... 

R: To compete on a global scale...yes. 

S: These are developed by administration mainly, but with the administration lead, 

with the input of all the parents and committee members. There's also committee 

members...What it means is we should have high expectations. 

R: What does that mean? 

S: High expectations...uh... 

R: For grades? For ...? 

S: uh…teach a very rigorous math course, meaning that attend every class, as a 

teacher attend every class, be with your students every day. Attend. Be with your 

students, and don't waste any time during 90 minute period, meaning design 

lessons where students are constantly actively learning math, and also learning 

math content that is equivalent to what higher achieving schools learn in 

equivalent classes. Classes across the United States. For example when my 

student graduates from my class, passes my class and then goes to Ohio 

somewhere and then transfers to a high school and take calculus, AP calculus AB 

lets say there during senior year…they should be ready and should be just fine. 
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Because my student should have learned all the necessary requirements for high 

achieving high school in say Cleveland, Ohio. That's how I read it.    

The fact that Sergen begins his answer with “these are developed by administration” 

reflects his belief that much of the global competitiveness discourse found in his school is 

what he termed “lip-service,” detached from his role as a mathematics teacher. This is in 

great part due to the overall lack of discussion on the subject in his school context, or in 

his graduate studies:  

I said lip-service because in order for it to become an issue, in order for me to take 

what they say seriously, and for me to listen to them, to listen to what the 

politicians are saying or what people who talk about we need to be globally 

competitive and such and such…they at first have to lay out what that means 

(italics added for emphasis). 

This interview excerpt also shows how the concept of standardization has become 

inexorably tied to the discourse of preparing students for a global society. The argument 

“to be competitive globally, students need to be equipped with the same skills as all other 

students” was made by John, Michael and Sergen—seeming to be the default justification 

for the high focus on achievement on standardized test as part of the global 

competitiveness discourse. 

Themes for Sergen the Diplomat 

Sergen tries to “get along with everybody” by being “nice and respectful” toward 

other views about mathematics and its teaching: “Cause the reason I don’t complain is I 

don’t see the world in terms of these are the things that you gotta do otherwise the worst 

things will happen to you. Like that kind of world view.” However, Sergen does have a 
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sense of agency and uses it sparingly, like political capital, when it is important to him 

and he feels like he could actually make a difference in this particular arena.  

In what follows, the main themes that emerged from Sergen the Diplomat’s lived 

experience as a high school mathematics teacher will be examined: different types of 

knowing and reflection & discussion. 

Different Types of Knowing  

The fact that Sergen believes in “different types of knowing” is key to 

understanding his success at navigating the epistemological rocky waters of mathematics 

education. It also had profound implications for his approach to the teaching of 

mathematics: “As a teacher, I started expecting problems – expecting weaknesses. As 

opposed to thinking they should know this, this is very basic, and they should know this 

and they should know that.”  Sergen thus tries to incorporate and nurture in his teaching, 

different types of knowing about mathematics: from pure symbol manipulation to helping 

his students grasp the conceptual underpinnings of such manipulations.  

For instance, Sergen uses many procedural problems from the book in his 

precalculus class, but he supplements these “with little concept discussions.” For 

example, when a problem requires the use of the Pythagorean Theorem, Sergen is not 

satisfied with students “parroting” a2+b2=c2. He wants them to have “played with the 

concepts”—not to rely on rote memorization of formulas: “Every now and then one 

student will say yeah it depends if you call your hypotenuse b, then its a2+c2= b2. There 

you go that's right!”   

Sergen admits that it is sometimes difficult to see how nurturing conceptual 

understanding can quickly and directly improve “procedurally based EOC scores”: 
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I haven't heard anything about the clear path or the clear map of helping students 

to score well on the EOC. The problem with the EOCs is there are lots of topics. 

There are like hundreds, two hundred topics that need to be covered, if you 

explore ideas you will fall behind. You want to cover 200 you will cover 150. 

And those 50 they will miss. That's the only thing. Like if they can cover all 200 

topics AND teach conceptually, that would be great. But we don’t know, we don’t 

see the course of action, like the plan. We don't know how to squeeze in those 200 

topics into a conceptual plan of teaching and learning path. So we don’t know 

that. We don’t have that. 

Although Sergen wants to promote conceptual understanding in his students, he is 

sympathetic to the demands of the social contract and obligations that the school has with 

the community of parents in which success is measured by EOC scores:  

How could parents assess the success of schools by the number of teachers that 

provide conceptual understanding?” In the end, “no parent is demanding that their 

teacher is getting conceptual underpinnings of logarithms. No parent demands 

that. The only way, the only understanding they have about good school is the 

school’s reputation and the only measure of a good reputation is good EOC 

scores. 

Sergen’s quandary is reminiscent of the ones highlighted by Windschitl (2002) in his 

framework of dilemmas that teachers experience when trying to implement constructivist 

instruction. Recall from Chapter 2 that representative questions of concern in this 

category of dilemma included: How can diverse problem-based experiences help students 
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meet specific state and local standards?,” and “Will constructivist approaches adequately 

prepare my students for high-stakes testing …?”  

However, Sergen heavily relies on his readings of mathematics education research 

which suggests that conceptual understanding leads to higher achievement in procedural 

mathematics as well to help mediate these competing goals.  

Reflection and Discussion 

Sergen is a committed and reflective mathematics teacher – often spending ten 

hours per day at school and continuously thinking and rethinking about his teaching. This 

continuous reflection is part of the reason why Sergen can navigate different belief 

systems without much struggle or frustration: 

I like to reflect on things in my practice and my beliefs, constantly. Like a 

constant stream of reflective experience. So in that reflection experience, in the 

experience of reflecting all the time, I don’t stop anywhere and say, this is it. This 

is what it is [italics added]. But instead I go and reflect and reflect and then when 

I do certain things…like what I do is a kind of product of my earlier reflection 

sure. And then there is learning and connections that I developed and created but 

it's a kind of learning process… 

Sergen feels that his precalculus students, fresh out of Algebra II (an EOC course), have 

developed a “culture about the teaching and learning of mathematics.” Sergen compared 

his students to racehorses who have been discouraged from reflection and are thus 

unaware of the purpose of most of the mathematical symbol manipulation they are 

responsible in reproducing successfully on tests: “They're unconsciously multiplying 

things and adding them and moving things around, manipulating things.” 
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Within this culture, there is no room for reflection and the role of the teacher is to 

tell students whether they are right or wrong quickly. If they are wrong, the teacher’s role 

is then to give them step by step instructions on how to correct their solution: “They think 

that good learning means like clear, open and shut case. Like this is it, I got it, no I didn't 

get it. They're used to those affirmations with their answers being correct or rejections of 

their answers.” When I asked why he chose the term “culture,” Sergen said that it was a 

culture in that it is shared by the majority of students (and many teachers), it is expected 

and accepted behavior, and is communicated constantly verbally or through action.  

Sergen began his second interview in November, stating that he was fighting this 

culture: “Now, what I want is, I want to tell them that no, that’s not how it works, that’s 

not how we learn or teach math. Like here is how we do, step-by-step. How we solve 

these types of problems, and then you emulate that and then produce the same steps and 

then you will get an A.” Sergen reports that overall, his students are very resistant and 

uncomfortable with ambiguity and confusion.  

Although Sergen, like Michael, used the word “fight,” the manner in which he 

“fights” did not conjure up the image of a boxer standing his ground, but of a diplomat 

that is willing to compromise on many points, but not this one. For Sergen, this is not 

how he sees his role as a teacher and he is unwilling to make concessions on that one 

issue. 

Sergen fights this culture by slowing the process down, incorporating many 

discussions about ideas and concepts and promoting confusion. As mentioned above, 

Sergen’s beliefs about mathematics and its teaching were greatly influenced by the 

sociocultural and constructivist perspectives found in the mathematics education 
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literature. As such, Sergen often chooses to focus on his students’ mathematical activity 

in the classroom learning environment, as opposed to focusing on the results or product 

of their activity. Sergen’s teaching practices are rich in conversation as he believes that 

learners construct knowledge through interaction with their environment, including 

interaction with others. He thus often invites students into mathematical discussions in 

which they must explain and defend their ideas. On the whole, Sergen views 

understanding as:  

very dirty, and very ugly, and very laborsom, and multi-layered, and rich, and 

involves different functions of the mind. It’s kind of messy, the whole process of 

mind, and there will be lots of confusion. Like for example, in my class 

discussions, I promote confusions. I promote an environment where there will be 

a  lot of “what?,” “what is that?,” “I don’t understand,” “what do you mean?” 

Sergen is extremely well versed in constructivist theories and their pedagogical 

implications. For instance, Sergen referred to Piaget's schema theory several times during 

our interactions. As mentioned in Chapter 2, schema theory claims that individuals make 

sense of an experience using a scheme, which is a way of organizing experience. An 

experience is assimilated by fitting into a pre-existing conceptual structure. However, he 

is also realistic about the time constraints he is under and the other goals he must tend to. 

Nevertheless, as can be seen from the quote below, Sergen has created a compromise 

between using constructivist theories as described in the literature and giving up entirely 

on the this particular approach to teaching: 

I don't have a lot of time to design curricular material or worksheets and problem 

situations where they use their own existing preconceptions and then through 
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acting on certain problem situations and reflecting on their work and then 

developing more powerful concepts. That would be wonderful but I don't have 

time … but what I do I kind as sometimes a generic student who makes mistakes 

and I expose them to that students' mistakes and I leave to them to kind of see and 

assimilate because they can assimilate they do have similar conceptions. I make 

mistakes and then facilitate discussion and the students have access to it. 

Sergen described a particular “misconception” he brought up in class in order to facilitate 

discussion. Given (f(x)+g(x))/f(x), he cancelled the f(x)s out to simplify the expression to 

g(x). This initiated a long discussion with his students about this action: “I don’t say it's 

right or wrong. I don't say no you can not cancel there is no multiplication between f(x) 

and g(x) it's an addition.” Instead, Sergen asked his students to consider (2+3)/2:  

Let's add the numerator. 2+3=5 divided by 2 is 2.5. Alright. Let's do the other 

way, (2+3)/2, 2's cancel so the answer is 3. So which is correct? Students say well 

no it should be 2.5. And another one says no it's 3. O.K. so why do we get two 

different answers. Two different ways we should get the same answer right. They 

say yes, we should get the same answer. So how does that work? And then we 

start talking about the identity element of addition and subtraction, and the 

identity element of multiplication and division… 

In line with NCTM (2000) recommendations for teachers to create a culture of learning in 

their classroom in which students construct conceptual mathematical meaning through 

problem-solving and communication, Sergen wants to create a community of learners in 

his classroom by encouraging students to struggle with new concepts and to create and 

communicate solutions to problems. Sergen’s syllabus for AP Calculus BC reveals some 
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of his beliefs about the teaching of mathematics. In this document, Sergen explains how 

he probes student thinking by asking “what if” questions in order to stimulate discussions 

of concepts. He also includes a detailed description of his use of small group discussions 

in which students are grouped into “expert groups” and “home groups”: 

Within the expert groupings, student work with a small group of students to solve 

and fully understand a set of problems. They then return to their home group, and 

serve as the facilitator for their home group to solve a variety of problems. In this 

manner, each student is an “expert” for their questions, while being coached to 

successful solutions to all problems by other members of their “home” groups. 

This strategy is effective as it improves student involvement and ownership of 

achieving mastery in the desired content areas. Having to discuss and explain 

solutions verbally strengthens their understanding of the solution rationale.   

Much can be learned about Sergen as a teacher from the above artifact: his use of 

cooperative learning, his belief in empowering students by giving them ownership of 

their learning process, and his belief in verbal communication as a means to promote 

deep conceptual understanding.  

Like John, Sergen is rarely “on pace” and like Michael, he is not a linear teacher. 

Although Sergen experiences much resistance from his students when introducing 

confusion into his teaching, he believes it is the only way to reach a deep, conceptual 

understanding of mathematics: “I'm always behind the pacing guide because the pacing 

guide asks me to perform a laundry list of topic that needs to be thrown at students. So, I 

feel bad when I cover the curriculum because I'm not going to equip students with strong 

understandings.”  
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Not being “on pace” was a source of struggle and frustration for both John and 

Michael. I asked Sergen how he manages to navigate different goals without frustration. 

Sergen described his approach to tasks and objectives as “amorphous.” Instead of 

focusing on strict objectives that are related to a section in the textbook and given a time 

frame, Sergen looks at the pacing guide more in terms of concepts:  

I look at it very globally. O.K. we need to teach the function concept here. Second 

goal we need to look at polynomials. Sure. The third goal we need to study 

exponential and logarithmic functions. After I look at that, I never look back and 

say did I make sure that objective 3.3. Logarithmic such and such is 

accomplished. I don’t care about that. 

Being a reflective practioner himself, Sergen cultivates reflection in his students as he 

wants them to be aware of themselves as active participants in their mathematics learning 

and as intellectual beings. “I try to empower students with some powerful ideas and then 

having them enjoy and master and solve problems so they feel empowered to think.”  

He does this by respecting and incorporating different types of knowing and by 

creating a classroom environment in which discussions about conceptual underpinnings 

are daily occurrences. An example of a classroom interaction between Sergen and his 

students will illustrate how he “covers” procedural and conceptual understanding as well 

as empower his students as intellectuals. On the board:  and its corresponding 

graphical representation: 

Student 1:  You can’t have a negative inside the radical! 

Sergen:   Did you see me writing negative on the board inside a radical. I'd 
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never do that! I would never do. And I've never done that. 

Anybody see a negative number inside the radical?  

Student 2:  Yeah, there’s a negative there isn't there? 

Sergen:  No there’s no negative number there. Oh I see. Are you talking  

  about this  ?  

Student 2:  Yeah.  

Sergen:  That's not negative that's positive isn't it? 

Student 3:  Yeah, yeah, it's positive because x's are negative! Look at the  

  graph, the graph is facing towards  negative infinity and x is all 

from 0 towards negative infinity. When x's are negative and you 

multiply by a negative it becomes positive.  

Sergen:  Oh, alright, that's interesting. So let's try to understand that what he 

said. Can somebody else paraphrase that?  

Another way that Sergen promotes reflection in his students is by encouraging 

“messy answers” in which students do not erase any part of their thinking, but leave 

everything on the page, perhaps with some parts crossed out, in order to better reflect on 

their process: 

I like and I express to my students that I like messy answers because those are 

what we have and then we need to work on those and reflect on those and develop 

stronger concepts but at the same time, I'm kind of shaped or molded into a kind 

of a curricular spectrum sort of speak, curricular mind set, where accuracy and 

rigor and procedural math problem solving focused on, you know, answers, are 

welcome and are being tested on the EOC test on standardized test. 
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Conclusion 

Sergen’s viewpoint is constructed from a diverse range of ideologies (i.e. 

bricolage) which are woven together relatively harmoniously. Sergen was shown to 

navigate the epistemological rocky waters of mathematics education by choosing to view 

conceptual understanding as the connective tissue between his various goals as a 

mathematics teacher: helping his school’s reputation in the broader community by 

producing high EOC scores, empowering his students as intellectuals and preparing 

students to be competitive in the knowledge society. Although Sergen wants to prepare 

his students to be intellectuals who can participate in the knowledge economy, he also 

feels that much of the global competitiveness discourse present in his school and school 

district is just “lip-service” because the meaning and pedagogical implications behind the 

rhetoric have not been discussed. Like John and Michael, Sergen was left to individually 

decipher what is meant of him as a mathematics teacher when he is asked to prepare 

students to be competitive in the global economy.  

While Sergen must make decisions that affect student learning daily, frustration 

and struggle did not appear as prominent themes in Sergen’s case, as he could often find 

a suitable compromise. For instance, although Sergen’s beliefs were greatly shaped by 

the constructivist and sociocultural approaches to mathematics teaching and learning 

found in the mathematics education literature, he does not get frustrated in trying to 

incorporate constructivist ideas in his classroom despite the time and epistemological 

constraints.  

Instead, Sergen mediates the tension between the external discourse and his 

habitus and ideology by consciously making well-planned “mistakes” and then 



159 
 

  

facilitating discussions in order for students to “reflect, see, and assimilate, because they 

can assimilate. They do have similar conceptions.”  Furthermore, the “amorphous” 

manner in which Sergen views objectives on the pacing guide helps dull the possible 

frustration he might feel at never being “on pace” and not completely actualizing his 

beliefs.  

Summary and Introduction to Chapter 5 

In Chapter 4, individual case study reports for John the Commuter, Michael the 

Boxer and Sergen the Diplomat were presented. These case study reports offered a 

discussion of each participant’s school context, their experience as high school 

mathematics teachers with the global competitiveness discourse, and the personal journey 

that has shaped their current beliefs about the nature of mathematics, its role in society, 

and its teaching and learning. The main themes for John the Commuter (two worlds, the 

real world and decisions), Michael the Boxer (balancing act and battle), and Sergen the 

Diplomat (incorporating different types of knowing and reflection & discussion) were 

discussed at length in an effort to examine how clashing epistemologies are navigated by 

individual mathematics educators who have been strongly influenced by mathematics 

education research's perspective, yet must work in an educational system shaped by the 

demands of globalization.  

I now move to present the conclusions of this research. In Chapter 5, the major 

themes that emerged through a cross-case thematic analysis of the three individual case 

studies will be discussed, and implications for teacher education and areas of future 

research will be suggested. 



 

CHAPTER 5: CONCLUSION 
 

 
This qualitative study was designed to explore the manner in which mathematics 

educators navigate different beliefs about mathematics, its role in society, its teaching and 

its learning. One of the aims was to better understand how the greater socio-political 

milieu, as described in Chapter 2, affects mathematics education by providing a thick 

description of mathematics teachers’ lived experience within this milieu. 

In this chapter, I begin with the limitations of the study. Next, I examine in greater 

detail two major themes that emerged through a cross-case analysis of the three 

individual case studies reported in Chapter 4: “Navigating rocky waters” and the “Global 

discourse.” This discussion will be focused on answering the research questions posed in 

Chapter 1:  

1. How do individual, successful teachers navigate the beliefs shaped by 

mathematics education research, workshops, methods classes and the discourse of 

preparing students to be competitive in the global economy? 

2. How do mathematics educators experience the periods of conflict, reflection and 

resolution between the different belief systems to which they have been exposed?  

Then, implications for teacher education are discussed, as well as areas of further 

research that would enhance this study. 
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Limitations of the Study 

Prior to discussing the conclusions of this study, it is necessary to highlight some 

limitations. It is not possible to generalize from the experiences of these three 

mathematics teachers in order to make prescriptive suggestions as to a clear course of 

action. The purpose of this qualitative study was to chronicle the results of the 

exploration of a particular phenomenon—the lived experience of three mathematics 

educators as they navigate different belief systems when making professional decisions 

related to their work as teachers.  As discussed in Chapter 3, although generalization is 

always a concern with case study research, Yin (2003) has argued that case studies "are 

generalizable to theoretical propositions and not to populations or universes” (p. 10). This 

is accomplished below by discussing broader theoretical issues alongside the major 

themes which emerged from a comparison of all three cases.  

It is my hope that an audience of mathematics educators will be able to relate to 

this study, to these three teachers’ experiences depicted through thick descriptions, and 

that this could help influence the pedagogical practices of mathematics teachers and 

mathematics teacher educators and motivate future studies in this area.  

Cross-Case Analysis 

In what follows, the findings of a cross-case analysis of two major themes—

navigating rocky waters and global discourse—are discussed. 

Navigating Rocky Waters  

The three individual in-depth case studies for John, Michael and Sergen presented 

in Chapter 4 document the epistemological rocky waters that the successful classroom 

mathematics teachers must navigate.  
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Beliefs. John, Michael and Sergen have worked arduously to change their practice 

and beliefs to include some mathematics education research recommendations and 

findings – taking undergraduate and graduate courses in mathematics and mathematics 

education; familiarizing themselves with research findings; reflecting upon their practice 

and reorganizing their belief system about mathematics and its teaching. They are 

passionate, dedicated, reflective practioners.   

These three high school mathematics teachers are well versed in mathematics 

education theories. They are familiar with the epistemological underpinnings of 

constructivism and have incorporated, to varying degrees, the work of Piaget, Vygotsky, 

Von Glasersfeld, Steffe, Cobb, etc. into their beliefs about mathematics and its teaching. 

They have read research articles about small-group learning, writing, alternative 

assessments, differentiated instruction, etc. They are familiar with recommendations by 

the National Council of Teachers of Mathematics (NCTM, 2000) encouraging 

mathematics teachers to develop meaningful, conceptual learning through problem 

solving.  

In particular, John was shown to have moved from a strictly instrumental belief 

system about mathematics, mostly shaped by his time in the textile industry, to a belief 

system that incorporates elements of constructivism, such as scheme theory. According to 

John, his studies in mathematics and mathematics education bestowed him with a 

“maturity” as a teacher, which he described as a change in beliefs from “what’s the best 

way to teach this to what’s the best way to get the students to learn this. There’s a 

difference between the two. I’m not sure that I recognized those differences early on.”  
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John, who admittedly feels most comfortable (habitus) in a traditional, lecture, linear 

mode of teaching, and believes in the industrial standard, was shown to have a 

willingness to relinquish some of his control as the possessor of an absolute mathematical 

ontological reality in order to help his students’ individual sense making. John has 

incorporated small group learning, writing and attempts at constructivist activities in his 

practice.  

Michael has also been shown to have internalized many of the beliefs promoted 

by the research through his mathematics education studies and his participation in 

workshops in the PEAK Teaching for Excellence Model TM. He believes in guiding the 

development of his students’ critical thinking skills through open-ended and ambiguous 

problems, affective education (e.g. his cool down questions) and differentiated instruction 

as defined in the research (as opposed to learning styles). Michael considers himself a 

“standards” driven teacher, that is, he has adopted the principles and standards set forth 

by NCTM (1989, 2000).   

Sergen’s beliefs about mathematics and its teaching were greatly influenced by 

the constructivist and sociocultural perspectives in mathematics education. His 

understanding of what constitutes mathematical knowledge was drastically changed by 

his humbling experience during his graduate studies in mathematics education, as 

recounted in Chapter 4. Sergen allows for “different types of knowing” in his classroom, 

while encouraging the development of deeper conceptual understanding in his students 

through reflection, discussions and confusion. 

Furthermore, all three teacher-participants have sophisticated mathematical 

content knowledge, having, at a minimum, the equivalent of a Bachelors with a major in 
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Mathematics. These three participant teachers have taken such advanced courses as non-

Euclidean geometry, abstract algebra, differential equations and analysis.  

In sum, John, Michael and Sergen have changed their basic epistemological 

perspective about the nature of mathematics and its acquisition to be more in line with the 

recommendations coming out of the field of mathematics education, and have the 

sufficient content knowledge to put these new beliefs into practice. Nevertheless, as was 

seen in their individual case studies, these three participant-teachers still struggled to find 

a balance between the various, sometimes overlapping and sometimes clashing beliefs 

about effective mathematics teaching.  

Navigate. Although their lived experiences shared many similarities, the manner 

in which John the Commuter, Michael the Boxer and Sergen the Diplomat chose to 

navigate the different belief systems about mathematics, and the pedagogical practices 

they imply, also presented some marked differences. These differences provides a more 

complete portrait of the various approaches individual, successful teachers find to 

mediate the beliefs shaped by mathematics education research, workshops, methods 

classes and the discourse of preparing students to be competitive in the global economy. 

It also provided depth in understanding how mathematics educators experience the 

periods of conflict, reflection and resolution between the different belief systems to 

which they have been exposed. 

Leatham’s (2006) framework for viewing mathematics teachers’ beliefs as 

sensible systems in which belief clustering allows for different sometimes contradictory 

beliefs to be accessed depending on context is especially enlightening when attempting to 

understand why John, for instance, who was pursuing a Ph.D. in mathematics education 
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at the time of the study, would revert back to lecture and skill and drill in certain 

contexts. Although John’s habitus, his set of dispositions, are in line with the application 

of the corporate model as applied to education (i.e. linear, traditional teaching, with 

measurable, testable outcomes), John’s ideology and discourses have been intensely 

reshaped by his studies in mathematics education.  John mediates between his 

dispositions and discourses by a combination of clustering and bricolage – requiring him 

to commute between worlds. John has internalized different beliefs in clusters and he 

calls upon the appropriate cluster depending on context in order to function successfully 

as a high school mathematics teacher. Although this provides him with a high level of 

comfort while inhabiting and working within different worlds, it also diminishes his 

potential to affect change. The world of the classroom with its traditionally positivist, 

absolutist beliefs about the nature of mathematics and its teaching remains fairly 

untouched by the constructivist and sociocultural perspectives on knowledge with which 

John has become familiar during his mathematics education studies. Research findings 

are allowed to visit the world of the classroom if they are proven to raise achievement 

scores.  

Michael, whose beliefs are in constant competition with the standardization and 

positivist beliefs about mathematics and its teaching espoused by his school, chose to 

wage battle and, occasionally, seek balance. Michael’s priorities as a mathematics teacher  

–  mathematics literacy, communication and ambiguity – are certainly in line with 

recommendations by organizations such as The Partnership for the 21st Century Skills 

(2007). This organization identified the ability to “work effectively in a climate of 

ambiguity and changing priorities” as well as the capacity to “collaborate and cooperate 



166 
 

  

effectively with teams” as crucial skills with which to equip students in order for them to 

fully participate in the knowledge society.  

Yet, Michael’s beliefs and goals as a mathematics teacher frequently collided with 

the demands placed on him by his school context in which mathematical knowledge has 

been interpreted through a positivistic epistemological paradigm. What is revealed in 

Michael's case is the rocky waters that a teacher must navigate as he constantly chooses 

between his inherit desires to teach in a way in which ambiguities exists in order to 

prepare his students for critical and non-linear thinking, and the absolutes that must exist 

in a mathematics classroom reigned by accountability and measurable outcomes. 

Although Michael the Boxer was shown to have a strong sense of agency in the face of 

impediments to the actualization of his beliefs about the teaching of mathematics, his 

case also reveals the great personal cost that a teacher might pay when choosing to 

mediate the different beliefs through battle. 

Sergen’s case was in stark contrast to John the Commuter and Michael the Boxer 

who struggled or battled to balance the pedagogical implications of the different 

epistemologies available to them. Although Sergen must make decisions, and mediate 

between different belief systems daily, frustration and struggle did not appear as salient 

themes in his case. The radical shift in Sergen’s personal epistemology which occurred 

during his mathematics education graduate studies made him mindful of the various 

beliefs about mathematics, its learning, its teaching and its role in society. Sergen 

believes that there are many different kinds of knowing and he views it as his role as a 

mathematics teacher to successfully accommodate all types of mathematical knowledge.  
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Although for John, raising EOC scores and using his knowledge of constructivist 

and sociocultural theories to advance conceptual understanding were clustered into two 

different worlds between which he had to commute, and for Michael competing goals for 

which he had to stand his ground, find balance and fight, Sergen views fostering 

conceptual understanding as both the tool to potentially increase achievement scores on 

procedural tests and empower students as intellectuals. Because of this connection in his 

belief system, Sergen navigates the rocky waters of mathematics education without much 

frustration or inner conflict. 

This dissertation study helps explain why changing teacher beliefs is not 

sufficient to completely change teacher practice, even if the adequate mathematical 

content knowledge has been acquired by the teachers. The lived experiences of these 

three mathematics teachers could only be understood when taking the greater socio-

political milieu in which teachers’ work is situated into account.  

Global Discourse 

During the course of exploring how mathematics teachers navigate different belief 

systems related to their work as teachers, a sub research question suggested itself: How do 

individual mathematics teacher interpret and mediate the major global educational 

discourses of neoliberalism and the knowledge society?  

John, Michael and Sergen all discussed the presence of the global discourse of 

competitiveness in their school context and in their lives as mathematics teachers during 

their interviews. Both Michael and Sergen received an e-mail from the superintendant of 

the DEC school district at the beginning of the 2008-2009 school year, reminding them of 

the overarching mission of the district: “educating children for the global economy that 



168 
 

  

they’ll be joining as adults.” The global discourse is part of the landscape of their 

experience as high school mathematics teachers, the motto “Reach Further. Global 

competitiveness starts here” ever-present in the form of banners at the entrance of their 

school, in e-mail communications and on top of their teacher websites. In Michael’s words, 

schools have “fallen in love with the global economy talk.” 

The focus on raising mathematics achievement scores, especially in the EOC 

courses Algebra I, Algebra II and Geometry, is inexorably tied in their school context to 

the goal of preparing students to compete in a knowledge-driven, ever-changing global 

economy. In some cases, such as Sergen’s school Alleny Academy, general guidelines as 

to the skills teachers should be imparting to their students are also provided: the ability to 

be creative, identify and solve problems and to make data-driven decisions.  As 

mentioned in Chapter 4, this description is designed to mirror the literature which argues 

that the role of K-12 educators in the preparation of students to be competitive members 

of the knowledge society is to help them learn how to learn, think creatively and problem 

solve (Cooney & Shealy, 1997; Lee, 2005; Spring, 2008; Valimaa & Hoffman, 2008). Of 

course, these guidelines are vague and were of very little help to Sergen in guiding his 

practice as a mathematics teacher. 

All three participants related being aware, to varying degrees, of newspaper 

reports tying mathematics achievement scores on standardized tests to national policy 

discourses of global competitiveness emphasizing a strong causal relationship between 

mathematics achievement scores and economic prosperity. As discussed at length in the 

literature review (see Chapter 2), mathematics education is often tied to notions of 

national economic competitiveness. The result is an educational discourse of competition 
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and a focus on pragmatic knowledge, as seen in the school contexts of all three 

participants, in which high-stakes tests are the valued means of assessing knowledge and 

the success of a mathematics teacher. All three participants mentioned the desire to do 

what was best for their school as a whole. To all three teacher-participants, this meant 

raising the school’s reputation in the wider community, and “the measure of a good 

reputation is good EOC scores” (Sergen, Interview 2, 11/02/08). 

However, the concrete epistemological and pedagogical implications of such a 

discourse were not discussed in the school contexts or in the mathematics education classes 

of all three teacher-participants. Neither John, Michael, nor Sergen recalled a meeting with 

teachers or administrators in which details were given about what exactly preparing 

students “to compete on a global scale” would require of a mathematics teacher. Apart 

from brief (and alarmist) mentions of NAEP, TIMMS and PISA results, none of them 

could point to an instance when the greater socio-political context was examined in their 

mathematics education research classes or in their methods classes. The superficial use of 

the global competitiveness discourse left these teacher-participants, especially Michael and 

Sergen, feeling like it was “lip-service” or “talk,” detached from their roles as mathematics 

teachers. As explicitly mentioned by Sergen, for him to take this discourse into 

consideration “they first have to lay out what that means.”  

John, Michael and Sergen were thus forced to make sense of their role in the 

preparation of students for the global economy/knowledge society, without the help or 

guidance or their school or mathematics educators in their mathematics education 

programs. Not surprisingly, each participant interpreted this discourse in somewhat 

differing ways—John choose to focus on the concept of the industrial standard, data 
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analysis, collaboration and adaptability; Michael on mathematics literacy, communication 

(i.e. writing) and ability to cope with ambiguity; and Sergen on conceptual understanding 

(through much confusion), communication and collaboration (i.e. discussions) and on 

empowering his students to become intellectuals.  

Out of the three teacher-participants in this study, John had done the most outside 

readings on globalization and its implications for education, reading books such as The 

World is Flat: A Brief History of the 21st Century (Friedman, 2005) and Growing up 

Digital (Tapscott, 1997). This heightened awareness resulted in a clearer view for John of 

the skills he felt should be cultivated in students in order for them to thrive in the new 

digital, knowledge society. John makes explicit mention of globalization in his 

classroom, showing the video Did You Know? based on The World is Flat in order to 

promote discussions. He also has chosen to focus in his class on skills, such as 

collaboration and data analysis, which are directly related to his belief about the society 

for which he is preparing his students.  

Although each participant had different approaches, there was surprising 

agreement from all three teacher participants that students needed to be able to adapt, 

collaborate, cope with uncertainty, and gain a deeper knowledge of mathematics through a 

focus on analytical or conceptual understanding in order to be competitive in the 

knowledge society. That these goals were epistemologically opposite to much of the 

demands of the corporate managerialism which has entered the structure of education, such 

as high stakes testing and continuous monitoring, was also present in their discussions.  

As both John and Michael had considerable industry experience previous to their 

teaching careers, and that both were in industries that have seen drastic changes in the 
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past decades (textile and IT) they were particularly sensitive to the fact that students need 

to be able to adapt and deal with an uncertain “world of non-linear change” (Lee, 2005,  

p. 172).  For John, equipping students with adaptability is mostly centered on 

technological savviness and data analytical skills. Michael, on the other hand, chose to 

infuse adaptability and ambiguity in the form of open-ended problems and “cool down” 

writing prompts which had “no right or wrong answer.” Although Sergen did not mention 

the fact that he was preparing students for an uncertain world for which they would need 

adaptability, Sergen creates a classroom environment in which confusion is welcomed 

and in which he fights the culture about the teaching and learning of mathematics in 

which the role of the teacher is to “tell students whether they are right or wrong quickly.” 

Although all three participant-teachers incorporate the “ambiguity,” “confusion,” and 

“uncertainty” in their teaching practice, John and Michael do so because they feel they 

are preparing students for an uncertain world. Whereas Sergen incorporates confusion in 

his teaching because it is tied to his beliefs about “understanding” which is “messy” and 

involves “lots of confusion.”  

See Table 10 below for a summary of John, Michael and Sergen’s interpretation 

of the global discourse present in their school, the pedagogical implications as interpreted 

by each participant and representative quotes from their interviews. 
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Table 10. John, Michael, and Sergen’s interpretations of the global educational discourse. 

 Skills  Pedagogical 
Implications 

Representative Quote(s) 

John Industrial standard Linear, traditional, 
lecture focused on 
testable items. 

- The business of learning 
- I teach like a textile 
  factory. A linear 
  progression. 
- I want to be the center of 
  attention, so I want to 
  stand in the middle and 
  talk, and have all them 
  listen to me. 

Data Analysis Focus on problems 
solvable through 
statistics and 
modeling 

The future of any jobs in 
America is going to be for 
those who can take 
information and use it 
beneficially.  

Collaboration Small group learning Well the small group 
learning thing focuses more 
on how can the student 
learn rather than how can 
the teacher teach.  

Adaptability Technological 
fluency  and problem 
solving 

You need to be able to 
jump into the next job and 
have a fluid transition. The 
link between all of that is 
technology. 

Michael Math Literacy Focus on arithmetic 
and “real life” 
applications (e.g. 
compound interest)  

My goal in all my classes is 
to teach math literacy 

Communication Cool down/writing When somebody says to me 
"where is it in the math 
curriculum?,” and I’m 
going it’s reading, I'm in 
high school, I think it’ll 
help. And they’re saying 
"Well shouldn't that be 
taught in English?" 

Ambiguity Cool 
down/ambiguous or 
open-ended questions 

I tried to have ambiguous 
statements more than 
multiple questions. There 
would be two thoughts that 
would come together. There 
is no right answer.  
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Table 10. (continued) 

Sergen Conceptual Understanding Create a 
community of 
learners – students 
wrestle with ideas, 
create and defend 
solutions to 
problems. 
 

I like and I express to my 
students that I like messy 
answers because those are 
what we have and then we 
need to work on those and 
reflect on those and 
develop stronger concepts. 

Communication and 
Collaboration 

In-class 
discussions where 
confusion is 
created and 
student reflection 
promoted. 

- In my class discussions, I 
  promote confusions. I  
  promote an environment,  
  try to create an 
  environment there will  
  be a lot of confusion. A 
  lot of "what?" "What is 
  that?,” "I don't   
  understand,” "What do  
  you mean?" 
- That global  
  competitiveness!! That's 
  a skill (communicate  
  mathematically) that they 
  learn and I want them to  
  be more aware of  
  themselves intellectually. 

Empowering/Intellectuals Through 
discussion and 
promoting 
conceptual 
understanding. 

I try to empower students 
by not requiring them, 
here's what you gotta do. 
But instead exposing them 
to some powerful ideas 
and then having them 
enjoy and master and 
solve problems so they 
feel empowered to think. 
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Implications for Teacher Education  
 

The paradox of education is precisely this - that as one begins to become 

conscious one begins to examine the society in which he is being educated. The 

purpose of education, finally, is to create in a person the ability to look at the 

world for himself, to make his own decisions, to say to himself this is black or this 

is white, to decide for himself whether there is a God in heaven or not. To ask 

questions of the universe, and then learn to live with those questions, is the way 

he achieves his own identity. But no society is really anxious to have that kind of 

person around. What societies really, ideally, want is a citizenry which will 

simply obey the rules of society. If society succeeds in this, that society is about 

to perish (Baldwin, 1988, p. 4). 

Though one can not generalize from three cases to offer prescriptive suggestions, the 

findings of this dissertation study imply three starting points of conversations for 

mathematics teacher educators (MTEs). The first implication is: 

1. The effects of the greater socio-political milieu can not continue to be ignored in 

mathematics methods classes, mathematics education classes, mathematics 

content classes for future teachers, and in professional development.  

As educational policy has become dominant over educational theory, mathematics 

teachers have lost much of their autonomy, their professionalism, and their agency to 

affect change (Kohl, 2009; Lewis, 1998; Thomas, 2001). Mathematics teacher educators 

can help teachers regain some of their agency and professionalism by inviting them into a 

conversation of the political components of their chosen profession.  
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As was seen, the global discourse of competitiveness is very much present in 

teachers’ school contexts and in their lives as mathematics teachers. However, as was 

also seen, the epistemological or pedagogical implications of this discourse are not 

discussed in teachers’ school contexts or in their mathematics education studies. If 

mathematics teachers are to be charged with equipping students with the skills and deep 

cognitive abilities they will need to participate in the global knowledge society (Valimaa 

& Hoffman, 2008), an in-depth discussion of this discourse needs to be present in teacher 

education programs. MTEs can help individual mathematics teacher interpret and 

mediate the major global educational discourses of neoliberalism and the knowledge 

society. There is an urgent need for MTEs to facilitate a critical dialogue with teachers 

centered on questions such as:  

• What mathematical knowledge should I help my students gain in order to prepare 

them to be global citizens of the knowledge society?  

• How do I resolve what the constructivist and sociocultural perspectives have 

taught me about mathematics education with the government policies which 

reflect a view of effective mathematics teaching focused on measured outcomes, 

accountability and standardization? 

This conversation does not preclude the traditional focus in teacher education on 

enhancing teacher mathematical content and pedagogical knowledge. It is meant to be 

complementary. Relevant and effective teacher education must enable teachers to 

examine the nature of teachers’ work by making explicit mention of the socio-political 

context of education. As McLaren and Baltodano (2000) noted, teacher education should 
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“locate the schooling process in both local and global socio-economic and political 

contexts, while exploring the relations between them” (p. 43).  

The second implication is:  

2. Given the era of effectiveness focused on measured outcomes and accountability 

now present in schools (Ellis, 2005; Hill, 2008; Kohl, 2009; U.S. Department of 

Education, 2008), mathematics teacher educators can help teachers develop ways 

to cope with the conflicts and dilemmas they will surely face when trying to 

actualize the beliefs about mathematics learning and teaching they have acquired 

through their exposure to mathematics education research.  

It is not sufficient, for instance, to discuss the ways that writing can be used in the 

mathematics classroom to promote students’ conceptual understanding, without 

mentioning the probable impediments one will face in incorporating writing in one’s 

practice. Changing teachers’ beliefs about writing’s place in the mathematics classroom 

is inadequate in transforming practice if a teacher works in a context which views writing 

as “not part of the math curriculum.” Such impediments to the actualization of teacher 

beliefs into practice should be explicitly addressed in teacher professional education 

(Cole, 1997).  

Lastly, as was seen in Chapter 2, understanding and changing teacher beliefs is 

vital to reforming mathematics education (Beck & Kosnick, 2006; Leder, Pehkonen & 

Torner, 2002). The fact that three of the original six participant-teachers (i.e. Martin, 

Martha and Lea), all with extensive mathematics education backgrounds, had 

considerable difficulty in articulating their beliefs about mathematics and its education 

suggests a third implication for MTEs: 
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3. Mathematics teacher educators should provide opportunities for teachers to 

formulate and dialogue about their beliefs.  

This conversation could touch upon teacher beliefs about the nature of mathematics, 

about its learning and its teaching. Furthermore, teachers should be encouraged to reflect 

upon their beliefs about the role of school and mathematics in society.  

Areas for Future Research 

In bringing this dissertation study to a close, I suggest four main avenues for 

future research and conversation.  

Firstly, this study focused on three special cases. Further study needs to be done 

to describe the process by which mathematics educators successfully mediate between the 

constructivist and sociocultural perspectives on mathematics education and the view of 

effective mathematics teaching focused on measured outcomes, accountability and 

standardization present in their school contexts. Incorporating a greater number and 

diversity of teachers in future studies would broaden the scope of the findings.  Future 

studies on this topic would enhance the in-depth description provided herein of the 

struggles, mediation, conflicts, resolutions and decisions that classroom mathematics 

teachers face when navigating differing beliefs about mathematics teaching and learning.  

Secondly, studies on teacher retention are also suggested by the findings of this 

dissertation, especially the case of Michael the Boxer. How many qualified, passionate 

and dedicated mathematics teachers leave the teaching profession when they are 

prevented by their school context to move from an emphasis on procedural knowledge to 

conceptual knowledge? 
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Thirdly, this dissertation highlights the need for studies of mathematics teacher 

beliefs which resist the reductionism of categorization, and which take into account the 

greater socio-political milieu in which teachers’ work is situated. Gates’ (2006) 

admonition of much mathematics education research, quoted in Chapter 2, bares 

repeating here: “To claim that studies of mathematics and mathematics teachers can only 

reside within mathematics itself will fail to address the very foundations upon which 

much mathematics and many teacher beliefs rest” (p. 347).  

Fourthly, though this study focused on the lived experiences of three specific high 

school mathematics teachers, these case studies were meant to be instrumental in gaining 

a greater understanding of the effects of a bigger, socio-political phenomenon—the 

effects of globalization and its associated discourses on mathematics education. Future 

research focused on producing a theoretical model of the effects of the greater socio-

political milieu on mathematics education, including the effects on mathematics teachers, 

would be an immensely significant contribution to scholarship.  
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APPENDIX A: INVITATION E-MAIL TO PARTICIPATE IN STUDY 
 
 

Dear (name withheld), 
  
My name is Amelie Schinck. I am a doctoral student at UNC Charlotte, preparing to do 
my dissertation study, and I am inviting you to be a participant. I am contacting you on 
the recommendation of (name) who spoke to you about my topic and told me you had 
shown some interest in being a participant. My study explores how mathematics teachers, 
like you, navigate the different belief systems about the teaching of mathematics.  
  
If you are interested in participating, I will want to interview you at least three times 
during the Fall of 08, starting the third week of September. Each interview will last 
between 1 and 2 hours. We can schedule these interviews at a time and location that is 
convenient for you. You may benefit from participation in this study because it will provide a 
space for you to reflect on your practice as a teacher.  A pseudonym for you will be used in 
my writing.  
  
If you would like more information, or if you feel you would be interested in 
participating in my study, please contact me at agschinc@uncc.edu. You are also 
welcomed to call me at 704-345-7014. 
  
Thank you for your time and have a great day, 
  
Amelie Schinck 
Doctoral Candidate in Curriculum and Instruction 
Mathematics Education 
University of North Carolina at Charlotte 
9201 University City Blvd. 
Charlotte, NC 28223-0001 
704.345.7014 
agschinc@uncc.edu 
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APPENDIX B: INFORMED CONSENT FORM 
 

 
 

College of Education 
Department of Middle, Secondary, 

and K-12 Education 
704-687-8875 

 
Project Title and Purpose: 
 
Navigating the Epistemological Rocky Waters; A Multiple Case Study will be a 
qualitative study involving four high school teachers. The purpose of the proposed study 
is to provide a thick description of the lived experience of four mathematics educators as 
they navigate different belief systems about mathematics and its teaching when making 
professional decisions.  
 
Investigator: 
 
This study is being conducted by Amélie G. Schinck, B.Sc.; M.Sc. and Ph.D. Candidate 
at the University of North Carolina at Charlotte. The responsible faculty member is Dr. 
David K. Pugalee in the Department of Middle, Secondary, & K12 Education at UNC 
Charlotte. 
 
Description of Participation & Length of Participation: 
 
Case study methodology will be used in this study. You will be asked to participate in 
interviews, keep a journal, and keep relevant archival data such as memos and minutes of 
meetings. Initial interviews will be conducted in the beginning of August 2008. A 
minimum of three in-depth interviews will be conducted with each participant. Final 
interviews will be conducted between November and December of 2008. All interviews 
will be tape-recorded. Each interview will last approximately 1 to 2 hours.  
 
Risk and Benefits of Participation: 
There are no known risks to participate in this study. However, there may be risks which 
are currently unforeseeable. You may benefit from your participation in this study 
because it will provide a space for you to reflect on your practice as a teacher. 
 
Volunteer Statement: 
 
You are a volunteer.  The decision to participate in this study is completely up to you.  If 
you decide to be in the study, you may stop at any time.  You will not be treated any 
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differently if you decide not to participate in the study or if you stop once you have 
started. 
 
Confidentiality: 
 
Any information about your participation, including your identity, is completely 
confidential.  The following steps will be taken to ensure this confidentiality:  
 
1) You will choose a pseudonym, first and last name that will be used in all transcripts 
and publications. 
2) In any publication of the research results, your school’s identity will be masked. 
3) All tapes will be labeled with your pseudonym. 
4) Only people directly involved with analysis of the data will have access to the tapes 
and transcripts. 
5) All interview tapes will be destroyed before the expiration of the study. 
6) All records will be stored in a locked file cabinet, only available to the principle 
investigator. 
 
Fair Treatment and Respect: 
 
UNC Charlotte wants to make sure that you are treated in a fair and respectful manner.  
Contact the university’s Research Compliance Office (704.687.3309) if you have 
questions about how you are treated as a study participant.  If you have any questions 
about the actual project or study, please contact Ms. Amélie G. Schinck (704.345.7014; 
agschinc@uncc.edu) or Dr. David Pugalee (704.687.8887; dkpugale@uncc.edu). 
 
Approval Date: 
 
This form was approved for use on 02/18/2008 for use for one year. 
 
Participant Consent (for participants who are at least 18 years of age) 

 
I have read the information in this consent form.  I have had the chance to ask questions 
about this study, and those questions have been answered to my satisfaction.   I am at 
least 18 years of age, and I agree to participate in this research project.  I understand that I 
will receive a copy of this form after it has been signed by me and the principal 
investigator of this research study. 
 
___________________________________________________ _________ 
Participant Name (PRINT)      DATE 
 
___________________________________________________ 
Participant Signature 
 
___________________________________________________ __________ 
Investigator Signature       DATE 
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APPENDIX C: INTERVIEW PROTOCOL 
 
 

This is a representative, but not exhaustive list of interview questions.  Multiple 
interviews were necessary to pose these questions. In general, probing questions were 
constructed based on a participant's response. The participant was encouraged to discuss 
relevant issues with the investigator, taking the interview in unforeseen directions. The 
goal of the first interview was be to establish rapport with the participant, gather 
background information, and discuss their beliefs about the teaching of mathematics, 
including how research in mathematics education has influenced them. Other areas of 
questioning such as 'context and standards' and 'decision and change' were introduced 
briefly in the first interview, but were central to the subsequent interviews.  
 
 
1. Background 
 
 Tell me a bit about yourself... 

o How old are you? 
o Where are you from? 
o Where do you teach? 

 
 Describe your educational experiences so far in your life. 

o Where did you study? 
o What did you study? 
o What degrees do you hold? 

 
 Describe your teaching experiences so far in your life. 

o How long have you been teaching? 
o Where have you taught? 
o What subjects have you taught? 
o What subjects are you currently teaching? 
o What grade level have you taught? 
o Why did you become a mathematics teacher? 

 
2. Beliefs about the teaching of mathematics 
 
 Describe what it means to you to be a good mathematics teacher. 

 
 Describe what you think it means for your school/administrator/math department 

to be a good math teacher. 
 
 There are many different types of mathematics teacher. What type of teacher do 

you think you are? 
o What are your priorities as a mathematics teacher? 
o What do you think it is important for your students to know?  
o List three adjectives that best describe you in the classroom. 
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 Describe what you think it means to your students to have a good math teacher. 

o How do your students view you? How would your students describe you? 
 

 What do you like about teaching mathematics? 
 
 How do you maximize student learning in your classroom? 
 
 How do you describe your role as a teacher? 
 
 How do you know when your students understand? 
 
 How do you know when learning is occurring in your classroom? 

 
 What do you dislike about teaching mathematics? 

 
 List three adjectives that best describe you at school outside of the classroom. 

 
 Give me a picture of your mathematics class. What does it look like? 

 
 How do you feel when you are on your way to class? 

 
 Tell me about the ideal teacher. The teacher you would be if you worked in a 

perfect environment. 
 

 Tell me about activities that you perform as a teacher that you find meaningful. 
Meaningless. 
 

 What are some of the essential skills you are trying to foster in your mathematics 
students (creativity, problem solving, real life applications...) 

o What is the role of mathematics in society? 
o What are you preparing students for in your class?  

 
 

3. Epistemology 
 
 How do you think people learn mathematics? 

 
 What does it mean for someone to 'know' something (in math)...to understand 

something? 
 

 How does a student show you he/she 'knows' or understands a math concept. 
 

 What comes to mind when you think of mathematics (metaphor) 
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4. Mathematics Education Research 
  
 Describe some of the mathematics education research that influenced you. 

o Who are some of the authors that inspired you?  
o What school of thought on mathematics education do you most identify 

with? 
 

 What is the best way to teach mathematics? Is that how you teach? Why or why 
not? 
 

 Describe some changes you have made in your overall approach to teaching 
because of mathematics education research. 
 

 Did you ever take any methods classes? What did you learn about the teaching of 
mathematics in these classes?  

 
 You said you were a constructivist (or alternate answer). What does that mean to 

you? Give me an example where you used that belief system in your classroom. 
 
5. Broader Sociocultural Dimensions and Standards 
 
 Describe the atmosphere of your school. What are some of the missions or goals?  

 
o What about the math department? 
o Describe a math department meeting that stuck in your mind? 

Positive/Negative. 
 

 How do you get students ready for tests? Do you change your teaching method? 
 Have you changed anything about your teaching because another teacher or a 

superior told you to? 
 

 Tell me what 'math achievement' means to you?  
o How important is achievement in your school/department? 
o How do you measure 'math achievement'?  
o How would you measure achievement differently, if given the choice? 
 

 What is the role of testing in your classroom? What about EOC tests? How do 
they affect your teaching method?  
 

 How do you feel about EOC tests? 
 
 What type of work do you ask students to do in the classroom? Outside the 

classroom? 
 

 How do you use recommendations by NCTM in your classroom?  
 



202 
 

  

 Tell me about a moment recently where you took the 'easy way out' 
pedagogically. Where you knew what would be the best thing to do, but didn't do 
it. Why did you make that choice? 
 

 How do you think your department/administration sees mathematics? 
 

 What is a good result in your math classroom?  
o Tell me about a recent 'success' in your math classroom. 

 
 Describe the atmosphere in your math department. Describe your role. Describe 

how you act in a departmental meeting. 
 
 In the school setting, how do you decide what to teach and what not to teach? 

 
 Who do you feel has control over what you teach in the classroom? 

 
 Who do you feel has control over how you teach? 
 
 How do you decide when to move on to a new topic in your classroom? 

 
 Have you ever been asked to do things differently in your classroom by a 

superior? Describe this event. 
 

 Do you feel the math curriculum that you teach supports learner/student-centered 
instruction? Explain. Give me a specific example. 
 

 Question about satisfying state/national standards 
 

 How is your effectiveness as a teacher assessed? 
o Student grades 
o Student ratings 
o Open-ended student comments 
o Classroom observations 
o other 

 
 Have you attended workshops/professional development offered by your school? 

What did you learn about teaching math/expectations of teaching math from these 
professional development opportunities? 
 

 What kind of jobs/world do you feel you are preparing your students for? 
 

 I saw form your school’s website that their mission is to prepare students for the 
global economy. What does that mean to you as a mathematics teacher? Is this a 
topic of discussion in mathematics department meetings? 
 
 



203 
 

  

6. Decision and change 
 Can you give me an example of a pedagogical decision that you made recently 

where you relied on math ed. research? 
 

 Give me an example of a decision that you made pedagogically where you based 
decision on 'experience' as opposed to research. 

 
 What do you see as a major change in your mathematics teaching since you have 

started? What do you think caused this/these change(s)? 
 

 As a math teacher, is there something that you do that is hard, that students don't 
like, that the administration doesn't like, but that you 'know' is the 'best method'? 
 

 Give me an example of a view that you hold that is contrary to mathematics 
education research? 

 
 What different ideas about math and its teaching do you see circulating in your 

classroom? 
 

 Tell me about the development of your belief system. Literature, textbook, how 
you learned math. 
 

 How have your beliefs about mathematics changed in your life? 
 

 How have your beliefs about the teaching of mathematics changed in your life? 
 

 Please describe a moment when you felt you were being the teacher you want to 
be. When you got close to your ideal of yourself as a teacher. 
 

 Please describe a moment when you felt very far from being the ideal that you 
have of yourself as a teacher. 
 

 Have you tried to implement some pedagogical choice based on research but were 
met with resistance? What did you do? 

 
7. Good follow up prompts 
 
 What has been on your mind since we last talked? 
 Questions stemming from journal entries 
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APPENDIX D: MARTIN MIDDLETON INTERVIEW EXCERPT  
 
 

After discussing what it means for this participant to be a “good teacher,” I 

wanted to delve a little deeper into this teacher’s beliefs about mathematics and its 

teaching. R denotes the researcher’s part, and M denotes the teacher-participant’s (i.e. 

Martin Middleton):  

R:   You gave me a metaphor, an image, for what mathematics is to you. Could 

you do the same for what being a mathematics teacher is? 

M: (sigh) First thing that came to my mind was a short order cook. 

R: O.K. Can you explain that? 

M: I don't know why it came, it's just literally what happened. I was thinking 

of the guy you know, when you go to a restaurant, the guy back there 

doing the orders. You know someone hands him an order and he cooks 

whatever it is and hands it out. What I did yesterday on the last day, I had 

kids that hadn't been overly concerned about learning their math and aren't 

getting the grades they wanted, kids that are realizing that they need to 

take one last chance to pass for the quarter. And I had all sorts of kids in 

my class taking tests after school yesterday.  

R: So you as the short order cook, what are you pushing out there? 

M: Yesterday I was pushing tests to retake. So much of it is having a bag of 

tricks, things you know to do when you get into a particular situation. Uh, 

being able to teach well, and this is part of why you can't totally learn at a 

college setting how to be a good teacher is knowing o.k. whenever a kid 

does this here's your best reply to it. Having something at the ready. 
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Knowing the answer to your kids’ off the wall questions. Knowing how to 

answer it.  

R: The short order cook, that was because of the testing right? You're pushing 

out tests. 

J: Well part that, but you never know on a day-to-day basis what you're 

going to deal with and knowing what you're going to do if you suddenly 

found out one of your students is pregnant. You don't on a day-to-day 

basis have an overall strategy. You may have one but, on a day to day you 

can't really tell so long as you've got reasonable responses to whatever 

goes on. In some ways, it's kind of like working at an ER. Person comes in 

with a particular type of an injury and you have to know what to do with 

it. 

R: That's interesting, because it's very different from what you described 

when I asked you about the meaningful moments as a teacher. You told 

me about beautiful one-on-one moments where you... 

J: I know! 

R: You would see the light bulb...How would you paint an image of those 

moments as a teacher? That's not a short order cook or an ER doctor. 

J: NO! That's true. And if you're getting, if you're having difficulty 

understanding what teaching is to me, it’s probably because I don't know 

either. 
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APPENDIX E: EXAMPLE OF ASSIGNMENT GIVEN BY JOHN 
 
 

Are SAT Scores Linked? 
 

In this project you will use data given below on SAT-Verbal and SAT-Math scores to 
investigate the association between them. These are the actual scores of a group of 
students who took the exam in 2003. Your overall report should be a thorough and 
complete argument regarding your findings. In your report you should address the 
correlation coefficient, how it is derived, and its meaning within the context of the 
problem. Also tell which variable is an explanatory one and which is a response and why. 
Investigate in both ways – SAT Math vs. SAT Verbal, SAT Verbal vs. SAT Math and 
discuss the correlation changes, if at all? Furthermore, you should investigate how well 
one variable serves as a predictor for another. In this investigation discuss how the 
correlation coefficient influences the slope of the LSRL. Not only should you use the 
knowledge you have gained from chapter three about scatterplots, regression, analysis, 
and the appropriateness of the regression model but you may also want to consider using 
the display analysis knowledge you have gained from chapter one (i.e., boxplots or 
histograms with numerical summaries). The more substance you place in your argument 
the better your chance for a perfect score.   
 
The report will summarize your investigation and must follow all guidelines of the AP 
Stat Project Format document located on the class webpage. This project counts as a test 
grade and will be scored according to the rubric located on the class webpage. The due 
date for the project is Friday, February 27, 2009 at the beginning of the class period. 
 

SAT-Math SAT-Verbal SAT-Math SAT-Verbal 
680 780 570 500 
450 570 600 510 
440 550 700 680 
610 500 720 770 
730 720 650 800 
530 570 670 660 
700 600 800 590 
640 530 800 800 
740 800 570 580 
650 740 590 600 
580 550 610 680 
520 590 580 640 
620 580 690 600 
700 740 660 580 
640 560 620 670 
710 660 750 560 
700 730 610 610 
580 610 540 500 
520 480 500 470 
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APPENDIX F: MICHAEL GILFORD’S MIDYEAR REVIEW 
 

 
Teacher:  Michael Gilford 
School: Gregory High School 
Observation Date:  December 1, 2008 
Observer: Curriculum Resource Teacher 
 
Management of Instructional Time:  
Students were all seated and taking notes at their desks.  The class was already started 
when I entered the room.  The students were given a warm up on the coordinate plane 
and we were taking notes on the lesson for this topic.  There were no materials needed for 
this lesson other than overheads and student notebooks.  The teacher was using the book 
and a three ring binder to refer to when working through the lesson.  The students were 
on task as far as taking notes quietly at their desks.  The material presented was not an 
algebra 1 objective but a prerequisite skill taken from 8th grade.  The topic of study 
followed the East Mecklenburg Algebra 1a pacing guide.  Due to the low level of 
material there were no higher level thinking skills being used. 
 
Management of Student Behavior: 
The students were aware of what they were expected to do. There was no inappropriate 
behavior noted other than a few students sitting in the front/right-hand of the classroom 
(looking at the classroom from the back) who were talking during instruction.  This was 
not a disruption to the other class members and the behavior was ignored by the teacher.  
A few students in the room called out answers. 
 
Instructional Presentation: 
The objective on the board stated 4 -1 with the essential question “write coordinates on 
the graph.”  The instruction was teacher directed.  The students only participated in quick 
one word answers through out the lesson.  There was no room for critical thinking due to 
the level of the material.  The students were not engaged in ongoing problem solving, 
rather copying material from the overhead.  The teacher spoke fluently and had the 
assignment ready to hand out.   
 
Instructional Monitoring: 
The teacher moved throughout the desks one or two times during the presentation.  The 
questions that were used were often followed by the teacher answering for the students.  
The students were not called on.  One student in particular (red sweatshirt in the front of 
the room) answered 8 of the questions during the period I was observing.  The teacher 
made reference to independent and dependent variables, a student asked what that meant 
and the teacher used a very relevant example to explain the terms using pulse rate and 
time.  The teacher was very clear in describing these terms.   
  
Instructional Feedback: 
There was very little wait time for any instructional feedback.  The students were copying 
notes and then asked to complete an assignment.  Most questions were answered with one 
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word coming from random students.  Questions were asked such as “which axis?,” “are 
you sure?,” “what quadrant?,” “you ok with this?.”   
 
Notes from Observer:   
The students were very well behaved in this classroom and the teacher seemed to have a 
good rapport with the students.  The teacher was following the East Mecklenburg 
Algebra 1 pacing guide.  The topic of study was very general and could have been made 
much more challenging for the students.   
 
Suggestions:  
Due to the nature of the topic an anticipatory set to see what the students already knew 
would have been appropriate.  It is a shame to spend a whole class period on coordinate 
planes if the students already knew the material.  There are several questions that can be 
asked to heighten the level of critical thinking during this lesson.  The teacher could have 
used things as “If the x value is greater than zero and the y value is less then zero, what 
quadrant would you be in?.”  I would suggest using questioning strategies to check for 
student understanding.  Each student should be called on and answers should come from 
the students instead of the teacher.  During “their turn” students could have been called 
up to the board or given ample time to finish the assignment.  A lesson plan with terms 
and questions should be developed instead of having to go back and forth with the book.  
I suggest to the whole team to incorporate activities into the lessons that involve student 
participation.   
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APPENDIX G: MICHAEL GILFORD'S AFM I SYLLABUS V1 
 
 

Day Date Book /  
Section 

Notes Homework 

Monday 8/25  Hand out books, 
Review course scope. 

Complete  paperwork 

Tuesday 8/26 (G)  1 – 3  Graphing Linear 
Equations 

Chpt 1.3 Summarize, 
Examples 1, 2, 3, 4 Return 
paperwork 

Wednesday 8/27 (G) 1 – 4 Writing Linear 
Equations 

(G) 1.4 Summarize 
examples 
1,2,3 
(G) 1.3:  9,11,25-35 odd 

Thursday 8/28 (G) 1.6 Modeling: constant 
change 

(G) 1.4: 7-23 odd 
(G) 1.6 Summarize  
examples 1,2 

Friday 8/29 (G)  1 - 7 Piece – wise functions (G) 1.6: 7,15 odd 
(G) 1.7 Summarize 
examples 1,4,5 

Tuesday 9/2 Section 5 (NC 
Dept of Public 
Instruction)  

Class work Modeling 
with Piecewise 
functions 

(G) 1.7: 1, 5,11,17,19 

Wednesday 9/3 Section 5 (NC 
Dept of Public 
Instruction)  

Class work Modeling 
with Piecewise 
functions 

(G) pg 59 -60 31-51 

Thursday 9/4 Section 5 (NC 
Dept of Public 
Instruction)  

Class work Modeling 
with Piecewise 
functions 

(G) pg 60-61: 53-69 

Friday 9/5 TBD TBD  
Monday 9/8 (G) 4 – 1  Polynomial Functions 

Quadratic Forms 
Summarize 4-1 examples 
1-5 

Tuesday 9/9* (G) 4 – 2 Solving Quadratics 
graphing and Factoring 

(G) 4.1: 1, 5-27 odd 
(G) 4-2 Summarize 
examples 1-5 

Wednesday 9/10 (G) 4 – 2 Solving Quadratics 
completing the square 
and graphs 

(G) 4-2 3- 15 odd 

Thursday 9/11 (G) 4 - .3 Remainder and Factor 
Theorems 

(G) 4-3 Summarize 
examples 1-5 

Friday 9/12 (MMA) 4.4 Class work 
Homework 4.4 3-8 

(G) 4-2 Summarize 
examples 1-5 

Monday 9/15 (G) 4 – 2 Quadratic Equations: 
Completing the square 

Chpt.4.2 1-19 

Tuesday 9/16* (MMA) 4.5 Quadratics – 
TranslationClass work 
1 – 7 

Homework 1-8 handout. 
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Wednesday 9/17 (MMA) 4.5 Quadratic translation 
Class work 1-7 
Homework 1-8 

(G) 4.8 Summarize 
Example 1-3 

Thursday 9/18* TBD TBD  
Friday 9/19 (G) 4.8 Modeling Quadratics (G) 4.8 1-25 odd 

(G) 3.4 Summarize 
Examples 1-5 

Monday 9/22* (G) 3 – 4  Inverse Functions (G) 3.4 1-13 odd 
(G) 11.2 Summarize 
Examples 1-5 

Tuesday 9/23 (G) 11 – 2 Exponential Functions (G) 3.4 15, 17, 21-33 odd 
39 
(G) 11.3 Summarize 
Examples 1-2 

Wednesday 9/24* TBD TBD  
Thursday 9/25 (G) 11 – 3  The number “e” (G) 11.2: 9,19-20,23, 

25,27 
Friday 9/26 (G) 11 – 4 Logarithmic Functions 11-1, Exercises 19-35 
Monday 9/29* (MMA) 7.3 Compounding and 

Logs 
 

Wednesday 10/1 TBD TBD  
Thursday 10/2    
Friday 10/3 (G) 11 – 5 Common Logs  
Monday 10/6* (G) 11 – 6 Natural Logs  
Tuesday 10/7 (G) 11 – 7 Modeling Logs  
Wednesday 10/8  Modeling Project  
Thursday 10/9  Modeling project  
Friday 10/10  Modeling Project  
Monday 10/13 (G) 5 – 2 Trig Ratios  
Tuesday 10/14 (G) 5 – 2 ATrig Ratios  
Wednesday 10//15 TBD TBD  
Thursday 10/16 (G) 5 – 5 Solving Right Triangles  
Friday 10/17 (G) 5 – 4 Applying Trig Ratios  
Monday 10/20 (G) 5 – 5 Solving Right Triangles  
Tuesday 10/21    
Wednesday 10/22    
Thursday 10/23    
Friday 10/24    
Monday-
Friday 

10/27-
10/31 

MID TERM 
 

EXAMS  

End of 1st semester 
 
Day Date Book /  

Section 
Notes Homework 

Wednesday 11/5 (G)  5 – 6 Law of Sines  
Thursday 11/6 (G) 5 – 8  Law of Cosines  
Friday 11/7  Review  
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Monday 11/10  TEST  
Wednesday 11/12 (G) 5 – 1 Angles and Degrees  

 
***UNC Module 7 
• Resources 
(Trigonometric 
Functions) from 
NCSSM 
(http://www.dlt.ncssm
.edu/afm/topic.htm) 

Thursday 11/13 (G) 6 – 1 Unit Circle 
Friday 11/14 (G) 6 – 1 Angles and Radians 
Monday 11/17 (G) 6 – 3  Graphing Sine and Cosine 

Functions 
Tuesday 11/18 (G) 6 – 4  Amplitude and period 
Wednesday 11/19 (G)  6 – 5  Translations 
Thursday 11/20 (G) 6 – 6  Modeling with Sinusoidal 

Functions 
Friday 11/21 TBD   
Monday 11/24 TEST EMPT TEST  
Tuesday 11/25    
Monday 12/1 (G) 14 - 1 

(MMA)  2.2 
Decisions through Data  
Videos 1 & 2 

 
Decisions Through 
Data Lessons 1-8 
• ***UNC Module 2 
• Resources 
(Univariate Data) 
from NCSSM 
(http://www.dlt.ncssm
.edu/afm/topic.htm) 

Tuesday 12/2 (G)  14 - 2 
(MMA)  2.3 

Decisions through Data  
Videos 3 & 4 

Wednesday 12/3 (G) 14 – 3  Decisions through Data  
Videos 5 & 6 

Thursday 12/4 (G)  14 – 4  Decisions through Data  
Videos 7 & 8 

Friday 12/5 Flex Day Project (?) 
Monday 12/8 REVIEW   
Tuesday 12/9 Tbd   
Wednesday 12/10 (G) 13 – 1 & 13 

- 2 
Permutations and 
Combinations 
No circular permutations 

[Omit circular 
permutations] 
• ***UNC Module 3 
• “Basketball: With 
the game on the line 
…” and 
extensions, Resources 
for Algebra. 
• Modules 
(Frankfurter High, 
Torn Shirts) from 
Does This 
Line Ever Move? 
(Key Curriculum) or 
HS Operations 
Research website 
(www.hsor.org) 
• Resources 
(Probability) from 
NCSSM 
(http://www.dlt.ncssm
.edu/afm/topic.htm) 

Thursday 12/11 (G) 13 - 3 Probability no odds 
Friday 12/12 (G) 13 – 4  Probability of Compound 

events 
Monday 
 

12/15 (G) 13 – 5  Conditional probablility 

Tuesday 12/16 (G) 13 – 6  Binomial Theorem 
Wednesday 12/17 Flex Day (MMA) 4.1 thru 4.3 
Thursday 12/18 REVIEW  

Friday 12/19 Tdb   
Monday 1/5 (G) 12 – 1 

(MMA) 7.1 
Arithmetic Series and 
Sequences 
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Tuesday 1/6 (G) 12 – 2 
(MMA) 7.2 

Geometric Series and 
Sequences 

 
 
• ***UNC Module 8 
• Resources 
(Recursion) from 
NCSSM 
(http://www.dlt.ncssm
.edu/afm/topic.htm) 

Wednesday 1/7 (G) 12 – 3 
(MMA) 7.4 

Infinite Series and 
Sequences 

Thursday 1/8  Flex Day 
Friday 1/9 (G) 12 – 5 Sigma notation 
Monday 1/12 (G) 12 - 6 Binomial Theorem 
Tuesday 1/13 (G) 12 – 8 Sequences and Iteration 
Wednesday 1/14 (MMA)  7.5  
Thursday 1/15 Test   
Friday 1/16 TEST   
Tuesday- 
Thursday 

1/19 
– 
1/22 

Test   

 

 

  



213 
 

  

APPENDIX H: MICHAEL GILFORD'S AFM SYLLABUS VERSION 2 
 
 

Monday 11/3  Holiday  
Tuesday 11/4  Holiday  
Wednesday 11/5*  Media Center Using Excel, build a model 
Thursday 11/6*  Media Center Sensitivity analysis. 
Friday 11/7 5-6 and 5-7 Review Law of Sines   5.7: 19-29 odd 

5.7: 31-33-35 odd; 
Monday 11/10 5 – 8 Law of Cosines UNIT Circle Quiz 

5.8: 11-17 odd,  27, 29, 31 
odd; 

Tuesday 11/11*  HOLIDAY   
Wednesday 11/12*  Chapters 

 5.2 – 5.8 
Review “Solving 
Triangles” 

Study for test:  
Pg 336- 338: 
 23, 33, 37, 43, 45, 47, 53, and 
-55 

Thursday 11/13  Test 
  

Solving different 
kinds of triangles 

    

Friday 11/14*   6 – 1 Conversion Degrees 
and Radians; 
reference Angles 

6.1: 7- 15odd;   49-53 odd;   

Monday 11/17 Review Unit circle special 
cases 30, 60 90 

 

Tuesday 11/18  Sine = y, cosine  = x  
Wednesday 11/19*  Tan Cot, Sec  
Thursday 11/20 Quiz 

7- 5 
Unit circle 
Solving Trig 
Equations 

7.5: 
 17, 18, 21, 23, 25, 26, 30, 31, 
37, 39 

Friday 11/21* Review   
Monday 11/24 Practice 

Placement 
Ncempt.org  

Tuesday 11/25 Test Unit circle, 6 trig 
functions, solving 
equations.  

 

 11/26 – 
11/28 

Thanksgiving 

Monday 12/1   6 – 3  
6 -  4 

Graphing Sine and 
Cosine Functions; 
Amplitude and period 
Using 5 points 

6.3: 9-17 odd 
  6.3: 27, 29  
6.4: 9-51 odd;    

Tuesday 12/2   6 – 5  Translations of the 
Sine and Cosine 

6.5: 9-13, 27-33 odd; 

Wednesday 12/3   6 – 6  Modeling Sinusoidal 
Functions with a T 
table 

  6.6:1-15 odd 

Thursday 12/4   6 – 7 Graphing Other 
Trigonometric 
Functions: Sec, Csc 

   6.7: 1-7 odd;   21-33 odd: 
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Friday 12/5   6 – 7 Graphing Other 
Trigonometric 
Functions: Tan and 
Cot 

6.7: 37-43 odd 

Monday 12/8 Review Review 6-1 and  
6-3 –  6-7 

Pg 415 – 416:  
11, 12, 17,19, 31, 33, 37,  39 
and 41  

Tuesday 12/9 Test   
Wednesday 12/10   12 – 1 

12 - 5 
 

Introduction to Series 
and Sequence  
Σ (Sigma) notation  

12.1: 1-5 odd; 
    12.5: 1-5 odd;  

Thursday 12/11   12 – 1, 
 

Arithmetic Series and 
Sequences 

12.1: 9-15 odd 
 12.1: 21-31 odd; 

Friday 12/12   12 – 2 
 

Geometric Series and 
Sequences 

  12.2: 1-5 odd; 
12.2: 7-15 odd; 

Monday 12/15   12 – 2 
 

Geometric Series and 
Sequences 

12.2: 27-35 odd; 

Tuesday 12/16  Mixed problems Pg 830 – 832 
11 – 21 and 31, 33 

Wednesday 12/17 Review    
Thursday 12/18 Test   
Friday 12/19    
 12/22 – 

1/1/09 
Christmas Holiday 

Monday 1/5/09   12 - 6 Binomial Theorem   12.6: 1-5 odd; 
  12.6: 17-31 every other odd 

Tuesday 1/06   12 - 8 Sequence and 
Iteration 

12.8: 1-9 odd; 

Wednesday 1/07 Mindset Chapter 1 Chapter 1 Pg 1- 25 
Thursday 1/08  Chapter 1t  
Friday 1/09  Chapter 2 Chapter 2 pg 22 and 23 
Monday 1/12  Chapter 2  
Tuesday 1/13  Review   
Wednesday 1/14 Review   
Thursday 1/15 Review   
Friday 1/16 Exams   
Tuesday 6/3 Exams   

 
End of 2rd semester 
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