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ABSTRACT 

 
 

TIANJIA YANG. Transit Signal Priority Control with Connected Vehicle Technology: Deep 
Reinforcement Learning Approach.  

(Under the direction of DR. WEI FAN) 
 
 
 

Transit Signal Priority (TSP) is a traffic signal control strategy that can provide priority to 

transit vehicles and thus improve transit service. However, this control strategy generally causes 

adverse effects on other traffic, which limits its widespread adoption. The development of 

Connected Vehicle (CV) technology enables the real-time acquisition of fine-grained traffic 

information, providing more comprehensive data for the optimization of traffic signals. 

Simultaneously, optimization algorithms in the field of TSP have been advancing at a rapid pace. 

Artificial intelligent (AI)-powered techniques, such as Deep Reinforcement Learning (DRL), 

have become promising approaches for addressing TSP problems recently. In this study, we 

developed adaptive TSP control frameworks for both isolated intersection scenarios and multiple 

intersection scenarios, assuming the implementation of CV technology. Leveraging the 

comprehensive traffic data obtained from CVs, our frameworks employ both single-agent DRL 

and multi-agent DRL techniques to address optimization problems. The controllers, based on our 

proposed frameworks, were tested in simulation environments and compared with various widely 

used traffic signal controllers across different scenarios, demonstrating superior performance. 
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Chapter 1. Introduction 

1.1. Problem Statement 

As urbanization and population growth continue, travel demand continues to rise. 

However, the growth rate of transportation infrastructure supply, especially in metropolitan 

areas, is low, leading to a significant increase in traffic congestion. In general, there are two 

options to address this issue: One is to build more transportation infrastructure, and the other is 

to improve the efficiency of the existing transportation system. Given the limitations of space 

and funding, improving efficiency is the more realistic choice. As a result, public transportation, 

which is more efficient than private transportation, is gaining prominence in the urban 

transportation system. However, users of public transportation often have to share spaces and 

experience longer travel times, which makes it less attractive than private transportation. To this 

end, transit priority strategies, which can greatly help in developing a more sustainable, 

equitable, and efficient urban transportation system, have been extensively studied. The 

implementation strategies include the formulation of policies to prioritize public transportation, 

the provision of financial subsidies for public transportation, the construction of high accessible 

public transportation system, and the granting of priority to transit vehicles, etc. Among them, 

transit signal priority (TSP) is a critical operational strategy that can improve the service 

performance of transit vehicles on the road.  

TSP generally adjusts the signal plan to ensure priority for transit vehicles at 

intersections, arterials, or networks (Skabardonis, 2000). However, this control strategy generally 

causes adverse effects on other traffic, which limits its widespread adoption. In order to solve 

this problem, adaptive TSP, which can mitigate negative effects while still providing priority to 
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transit vehicles, has been studied for decades (Christofa & Skabardonis, 2011; Ma et al., 2010; 

Skabardonis & Geroliminis, 2008). Generally, adaptive TSP has to obtain real-time traffic data to 

optimize the traffic signal plan. Traditional traffic data sensors, such as loop detectors, cameras, 

and radars, are installed in fixed positions and are therefore more or less deficient in acquiring 

real-time data. Recently, with the rapid development of connected vehicle (CV) technology, 

more accurate and more comprehensive real-time traffic data can be easily obtained. This 

advantage can surely boost the advancement of adaptive TSP, and many researchers have 

integrated CV technology with adaptive TSP (Ghanim & Abu-Lebdeh, 2015; Zeng et al., 2021). 

The U.S. Department of Transportation (USDOT) has also included TSPCV on its list of High-

Priority Applications and Development Approaches (U.S. Department of Transportation, 2011).  

CV technology refers to the integration of wireless communication technology, such as 

dedicated short-range communication and cellular technology, in vehicles, enabling them to 

communicate with other vehicles, infrastructure, and other traffic participants within a certain 

distance (Guo et al., 2019). With the advent of CV technology, real-time detailed information, 

such as passenger occupancy, can be obtained. This enables the adoption of more fine-grained 

metrics, such as average person delay, as the objective for optimizing traffic signals. As a result, 

transit vehicles with more passengers can cross intersections more efficiently, reducing travel 

time for passengers and encouraging greater usage of public transportation services. 

Furthermore, the availability of rich real-time traffic data provided by CV technology opens up 

the possibility of optimizing traffic signal controllers through data-driven approaches. 

Optimization algorithms in the field of TSC have been advancing at a rapid pace. Among 

them, deterministic algorithms such as mixed-integer nonlinear programming (MINLP) and 



 

 

3 

 

dynamic programming (DP) have been widely used to optimize traffic signal control (Feng et al., 

2015; Li & Ban, 2019; Priemer & Friedrich, 2009). However, these algorithms have to model the 

traffic environment as comprehensively as possible, which is computationally intensive, time-

consuming, and thus impractical (Mohamad Alizadeh Shabestary, 2019). On the other hand, 

conventional stochastic algorithms, like genetic algorithms (Lee et al., 2006; Teklu et al., 2007; 

Yang & Fan, 2023), tend to get stuck in sub-optimal solutions, making them unreliable for real-

world implementation. Due to the availability of real-time traffic data in CV environments, 

reinforcement learning (RL) algorithms, which are data-driven and can learn the optimal control 

strategies when interacting with the environment, have gained significant attention as potential 

solutions to optimize TSC problems (Aslani et al., 2017; Chow et al., 2021; Li et al., 2016). RL 

was initially developed to solve problems with discrete states and actions. However, when 

integrated with deep learning, the method is commonly referred to as deep reinforcement 

learning (DRL) and becomes a promising approach for TSC problems (Genders & Razavi, 2016; 

Mao et al., 2023; Shabestary & Abdulhai, 2022). 

Most of the existing DRL studies have focused on optimizing the signal control problem 

that only considers the purely private traffic mode. This study, however, seeks to propose a 

robust adaptive TSP controller in a CV environment that grants priority to transit vehicles while 

minimizing the negative impact on regular traffic. DRL approaches will be employed in this 

research to solve the signal control optimization problem. Comprehensive simulation 

experiments based on real-world traffic configurations will be conducted to evaluate the 

effectiveness of the proposed control algorithms. This study contributes to the development of 
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adaptive TSP controllers in the CV environment by utilizing advanced learning-based 

optimization approaches.   

1.2. Research Objectives 

The main goal of this research is to develop adaptive TSP control systems utilizing CV 

technology and the DRL approach to optimize the performance of both transit vehicles and 

private vehicles. The detailed objectives of this research are to: 

1) Conduct a comprehensive literature review on exiting intersection management, 

TSP control strategies, and optimization algorithms. 

2) Propose adaptive TSP control systems by applying the DRL approach to solve 

optimization problems on two different levels: isolated intersections and corridors. 

3) Build simulation testbeds based on both hypothetical and real-world traffic 

configurations. 

4) Conduct comprehensive simulation experiments to evaluate the effectiveness of 

the proposed control systems. 

1.3. Expected Contributions 

Based on the research objectives, the major outcomes from this research are expected as 

follows: 

1) Identification of robust DRL algorithms for adaptive TSP controllers suitable for 

implementation at isolated intersections and corridors. 

2) Development of adaptive TSP control systems by utilizing DRL approaches, and 

real-time traffic data obtained via CVs; 
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3) Evaluation of the performance of proposed TSP control systems and providing 

insightful conclusions.  

1.4. Dissertation Overview 

The research is organized as shown in Figure 1-1. In chapter 1, the motivation of the 

research has been explained, followed by the description of research objectives and expected 

contributions.  

In Chapter 2, a comprehensive literature review of the state-of-the-art and state-of-the-

practice on the research topic will be presented, which covers the development of intersection 

management and transit signal priority, and the application of optimization algorithms in the 

field of traffic signal control. 

In Chapter 3, methodologies employed in the research are described, including genetic 

algorithms, deep reinforcement learning, and multi-agent deep reinforcement learning 

algorithms. Additionally, detailed settings used in the development of optimization components 

in TSP controllers are presented. 

In Chapter 4, we introduce the traffic configurations of the selected isolated intersection, 

including layouts, traffic signal plans, and traffic demands. In addition, basic settings, such as 

parameters used in the microscopic traffic simulation model, as well as scenario configurations, 

are presented. Subsequently, the experimental results are presented including a detailed 

evaluation and comparison of each proposed controller. Furthermore, sensitivity analysis is 

performed to identify the impact of critical parameters. 

Chapter 5 introduces the traffic configurations and settings of simulations and DRL 

models concerning corridors. This chapter also presents experimental results, assesses the 
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performance of the proposed MARL-based controllers, and includes a thorough sensitivity 

analysis. 

In Chapter 6, the major findings and contributions of this research are summarized, 

followed by suggestions for future work in this field. 

 

Figure 1-1 Dissertation Structure 
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Chapter 2. Literature Review 

2.1. Introduction 

This chapter provides a comprehensive review of the development of intersection 

management, as well as the development of TSP and the advancement of optimization 

algorithms employed in the field of traffic signal control.  

The following sections are organized as follows. Section 2.2 discusses the existing 

research and practices on intersection management. The development of TSP research and the 

studies on the integration of TSP and CV are reviewed in section 2.3. The applications of 

optimization algorithms are reviewed in section 2.4. Finally, a summary of the chapter is given in 

section 2.5. 

2.2. Intersection Management  

Intersections play a critical role in traffic delays and crashes, as well as traffic emissions. 

Intersection management is a complex problem that has been consistently studied for over 60 

years (Webster, 1958). With the development of connected and autonomous vehicle (CAV) 

technology, more advantages can be gained to advance intersection management. 

2.2.1. Pre-timed Signal Control 

Pre-timed signal control is the most traditional and widely used control strategy because 

it is economically competitive and easy to implement. The signal phase and timing of this 

strategy are predefined and fixed, so it is suitable for intersections with stable traffic demand. 

And the control plans can be predefined for different traffic situations (e.g., peak, and off-peak). 

Generally, the pre-timed signal plans are set based on historic traffic data. Due to the fact that 
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traffic demand is unstable most of the time, this strategy is not efficient. Nevertheless, in the 

field of CAV research, many studies focusing on vehicle control still employed a pre-timed 

signal control strategy to simplify the research problem. 

Wu et al. (2010) applied the simulation-based approach to investigate the energy and 

emission impacts of a specific CAV application. This CAV application was advanced driving 

alert systems (ADAS), and two types of ADAS were proposed in this paper, i.e., stationary 

ADAS and in-vehicle ADAS. The two-phased pre-timed signal control strategy was employed in 

the simulation scenarios. Results demonstrated that the proposed ADAS could reduce fuel 

consumption and CO2 emissions by up to 40%. 

Katsaros et al. (2011) proposed a Green Light Optimized Speed Advisory (GLOSA) 

application to control vehicles passing through pre-timed signal intersections. The fuel and 

traffic efficiency of GLOSA was proved by a simulation-based approach. Results suggested that 

the impact on fuel consumption could be noticed when more than 50% of vehicles on the road 

were equipped with GLOSA. In the high-traffic density scenario, the benefits could be up to an 

80% reduction in stop time and a 7% reduction in fuel consumption. 

Ubiergo and Jin (2016) presented a hierarchical green driving strategy based on the V2I 

technology. Signal control with fixed time was set up in simulation scenarios and the 

effectiveness of the proposed strategy was demonstrated. Results showed that by using the 

proposed vehicle control strategy, about 15% in traffic delay and about 8% in fuel consumption 

and GHG emissions would be saved. 

Tang et al. (2018) introduced a speed guidance strategy aimed at eco-driving on a single-

lane road with multiple intersections. Some numerical tests were conducted to investigate the 
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effectiveness of the proposed strategy. Results showed that due to the speed guidance strategy, 

total fuel consumption was reduced by 13.92% and 16.45% in the two scenarios studied in this 

paper, respectively. Besides, the proposed strategy could also be beneficial to improve traffic 

efficiency in studied scenarios. 

2.2.2. Actuated Signal Control 

Actuated signal control was first proposed by Dunne and Potts (1964). Since then, many 

studies have focused on this topic. This signal control strategy is based on real-time data 

collected from infrastructure-based sensors (e.g., inductive loops, and cameras). It utilizes some 

relatively simple control logic, such as green phase extension, gap out, and max out (Eom & Kim, 

2020). Compared with the fix-time signal control strategy, the actuated signal control strategy 

can improve traffic efficiency to some extent. However, this improvement may not necessarily 

lead to global optimization in the long run since future traffic conditions are not considered. CV 

technology can provide more accurate real-time traffic conditions when compared with 

traditional sensors. This advantage can be of great benefit to the actuated signal control strategy.  

Day and Bullock (2016) statistically analyzed the thresholds for CV market penetration 

rate that could provide feasible traffic data to implement detector-free optimization in signal 

control practice. A simulation-like approach was then applied to investigate the performance of 

the optimized signal on a nine-intersection corridor in Indiana under different market penetration 

rate scenarios. Results suggested that effective offline optimization with a 3-hour window 

required only a 1% CV market penetration rate. Moreover, successful offline optimization 

required only 0.1% penetration rates if using multiple days of data. At least 5% penetration rates 

were needed for online optimization with 15-minute windows. 
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Day et al. (2017) used vehicle trajectory data collected from a private-sector vendor for 

two corridors comprising 25 signalized intersections as a proxy for CV data. The CV-like data 

had penetration rates between 0.09% and 0.80% on the studied corridors. These data were 

compared with those data obtained from physical detectors on the same corridors and showed 

statistically significant goodness of fit at a 90% confidence level. These data were then used to 

optimize the signal plans and compared to those optimized signal plans based on the data 

collected from physical detectors. Results indicated that these CV-like data could provide good-

quality optimized signal plans even with low penetration rates. 

2.2.3. Adaptive Signal Control 

The adaptive signal control strategy utilizes predicted short-time traffic conditions to 

optimize the signal adjustments. An accurate and comprehensive traffic detection system is 

required to obtain real-time traffic conditions in a network. Additionally, effective prediction 

algorithms are needed for signal adjustment. These systems (e.g., SCATS, and SCOOT) are 

mature and have been implemented in many cities. In combination with the CAV technology, 

these control strategies will gain more advantages. 

He et al. (2012) introduced a platoon-based optimization model named PAMSCOD to 

control arterial signals to deal with the request of multiple travel modes. To identify the platoon, 

a headway-based platoon recognition algorithm was developed. Considering the platoon 

information, signal status, and priority requests from special vehicles, the signal control problem 

was then formulated into a mixed-integer linear program (MILP). The use of platoons rather than 

individual vehicles made the problem easier to solve by reducing the number of variables. 

Simulation results showed that, under a 40% penetration rate, PAMSCOD could reduce the 
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overall traffic delay by about 20-30% compared to the transit signal priority (TSP) control plan 

optimized by SYNCHRO, while the average bus delay increased by only 3%. In addition, the 

throughput could be increased by more than 10% in congested scenarios.  

Beak et al. (2017) proposed an integrated algorithm that consists of two levels of 

optimization to control the signals on the corridor. The lower level of the model used a dynamic 

programming approach to optimize the SPaT in each intersection. At the higher level, a mixed-

integer linear program was developed to solve the optimization problem for the signal offsets 

along the corridor. The coordination constraint for the lower-level optimization was the 

optimized offsets derived from the higher level. A simulation experiment was then conducted to 

evaluate the effectiveness of the proposed model. Results indicated that, at penetration rates as 

low as 25%, the average delay and the average number of stops in the coordinated route were 

still reduced by 6.3% and 3.4% compared to the actuated coordination control strategy. The 

network performance was more sensitive to the penetration rate than the corridor performance. 

At the 25% penetration rate, the average network delay and the number of stops increased by 

0.72% and 2.56%, respectively, compared to the actuated coordination control strategy. 

Liang et al. (2018) developed a real-time traffic signal optimization algorithm in a mixed 

traffic environment. Platoons were identified with a predetermined headway value using the 

information obtained from CVs approaching the intersections. SPaT was then optimized with the 

objective of allowing these platoons to pass through the intersection to minimize total vehicle 

delay. Furthermore, longitudinal trajectory guidance was provided to the leading autonomous 

vehicle (AV) in platoons to control travel behaviors and thus minimize the total number of stops. 

Comparative simulation tests indicated that the proposed platoon-based algorithm reduced the 
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computational burden by more than 95% with respect to a previous planning-based algorithm. 

Evaluation tests also showed that traffic performance improved with the increase in CAVs’ 

penetration rate. However, after CAVs in the platoon exceeded 40%, the marginal benefits 

decreased significantly. 

2.2.4. Signal Vehicle Coupled Control  

Traditionally, signal control and vehicle control have been studied separately, despite the 

fact that signal control and vehicle control interact with each other. By adopting the CAV 

technologies, the ability to exchange information between signals and vehicles in real-time 

makes it possible to implement the signal vehicle coupled control (SVCC) strategy. Furthermore, 

when the CAV penetration reaches 100%, autonomous intersection management had the 

potential to eliminate the stops in intersections while ensuring the safety of conflicting 

movements (Zhong et al., 2021). 

Z. Li et al. (2014) developed an algorithm for a signalized intersection with single-lane 

through approaches to optimize the signal timing and vehicle trajectories simultaneously based 

on V2V and V2I technologies. Based on basic constraints such as signal cycle, minimum and 

maximum green time, all feasible timing plans were enumerated. Considering the minimum 

average travel time delay (ATTD), the optimal vehicle trajectories were computed, and a related 

signal timing plan was identified. For consecutive vehicles entering the communication areas, a 

rolling horizon scheme was developed to perform the optimization process over the time horizon. 

Two measurements, ATTD and throughput, were used to evaluate the performance of the 

proposed algorithm. Results showed that this algorithm could reduce the ATTD by 16.2-36.9% 

and increase the throughput by 2.7-20.2%, compared to traditional actuated signal control. 
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Sun et al. (2017) developed an innovative intersection operation method named 

Maximum Capacity Intersection Operation Scheme with Signals (MCross). To utilize all 

approaching lanes of a road simultaneously, some unconventional intersection designs were 

introduced, such as continuous flow intersection (CFI) and tandem intersection (TI). CAVs were 

grouped as platoons to control their uninterrupted arrival and were assigned to specific lanes 

according to their destinations. In order to control the SPaT, mobility and safety objectives were 

then considered in formulating the optimization problems as a multi-objective mixed-integer 

non-linear programming (MO-MINLP) problem. Numerical results indicated that the proposed 

method could almost double the throughput of the intersection compared to the conventional 

signal plan. 

Xu et al. (2017) presented an algorithm based on V2I technology to control the SPaT and 

vehicle trajectory simultaneously. The proposed cooperative algorithm consisted of two 

components, which are roadside signal timing optimization and onboard vehicle speed control. 

The former was used to calculate the optimal signal timing to minimize the travel delay. Based 

on the signal plans determined in the former, the latter aimed to control the 

acceleration/deceleration of the vehicle to minimize energy consumption. Simulation tests were 

conducted using MATLAB and VISSIM to evaluate the performance of the cooperative 

algorithm. Results indicated that the proposed algorithm could significantly improve traffic 

efficiency and fuel consumption by 19.7% and 23.7%, respectively, compared to the actuated 

signal control algorithm.  

Du et al. (2021) proposed a signal vehicle coupled control algorithm considering the 

mixed traffic environment. The objective of this algorithm was to minimize the total delay as 
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well as the fuel consumption. The performance was evaluated and compared to the traditional 

CACC control and GlidePath (a classic eco-driving model). Simulation results showed that the 

proposed algorithm could significantly improve traffic performance at intersections in a mixed 

traffic environment. The algorithm could save 6-14% in fuel consumption and increase average 

speed by 1-5% when the CAV penetration rate was greater than 40%. 

Table 2-1 Literature Review on the Intersection Management with CAV 

Control Strategy Work Findings 

Pre-timed 

Wu et al. (2010) Proposed ADAS can reduce fuel consumption and 
CO2 emissions by up to 40%. 

Katsaros et al. 
(2011) 

In the high traffic density scenario, the benefits of 
GLOSA could be up to an 80% reduction in stop time 
and a 7% reduction in fuel consumption. 

Ubiergo and Jin 
(2016) 

By using the proposed vehicle control strategy, about 
15% in traffic delay and about 8% in fuel 
consumption and GHG emissions would be saved. 

Tang et al. (2018) 
The speed guidance strategy could reduce total fuel 
consumption by 13.92% and 16.45% in the two 
scenarios studied in this paper, respectively.  

Actuated 

Day and Bullock 
(2016) 

Effective offline optimization with a 3-hour window 
required only a 1% CV market penetration rate. 
Successful offline optimization required only 0.1% 
penetration rates if using multiple days of data. At 
least 5% penetration rates were needed for online 
optimization with 15-minute windows. 

Day et al. (2017) 
These CV-like data could provide good-quality 
optimized signal plans even with low penetration 
rates between 0.09% and 0.80%. 

Adaptive 
He et al. (2012) 

Under a 40% penetration rate, PAMSCOD could 
reduce the overall traffic delay by about 20-30% 
compared to the transit signal priority (TSP) control 
plan optimized by SYNCHRO, while the average bus 
delay increased by only 3%. In addition, the 
throughput could be increased by more than 10% in 
congested scenarios.  

Beak et al. (2017) At penetration rates as low as 25%, the average delay 
and the average number of stops in the coordinated 
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route were still reduced by 6.3% and 3.4% compared 
to the actuated coordination control strategy. 
However, the average network delay and the number 
of stops increased by 0.72% and 2.56%, respectively. 

Liang et al. (2018) 

The proposed platoon-based algorithm reduced the 
computational burden by more than 95% with respect 
to a previous planning-based algorithm. The traffic 
performance improved with the increase in CAVs 
penetration rate. However, after CAVs in the platoon 
exceeded 40%, the marginal benefits decreased 
significantly. 

Signal Vehicle 
Coupled  

L. Li et al. (2014) 
This algorithm could reduce the ATTD by 16.2-
36.9% and increase the throughput by 2.7-20.2%, 
compared to traditional actuated signal control. 

Sun et al. (2017) 
The proposed method could almost double the 
throughput of the intersection compared to the 
conventional signal plan. 

Xu et al. (2017) 

The proposed algorithm can significantly improve 
traffic efficiency and fuel consumption by 19.7% and 
23.7%, respectively, compared to the actuated signal 
control algorithm.  

Du et al. (2021) 
The algorithm could save 6-14% in fuel consumption 
and increase average speed by 1-5% when the CAV 
penetration rate was greater than 40%. 

2.3. Transit Signal Priority 

The main purpose of transit priority is to provide higher-quality transit services to the 

public. The implementation measures include the formulation of policies to prioritize public 

transportation, the provision of financial subsidies for public transportation, the construction of 

high accessible public transportation system, and the granting of priority to public transportation 

on the roads. At the micro level, transit priority generally consists of two categories, namely 

facility-based design and signal-based control. Facility-based design measures typically ensure 

transit priority by implementing facilities, including dedicated transit vehicle lanes, bus bays, and 

bus bulbs. Signal-based control strategies generally adjust the signal plan to ensure priority for 
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transit vehicles at intersections, arterials, or networks (Skabardonis, 2000). This dissertation 

mainly focuses on the latter transit priority strategy named transit signal priority (TSP). 

2.3.1. Conventional Transit Signal Priority 

As early as 1962, the concept of transit signal priority was introduced and tested in 

Washington, D.C. (Chada & Newland, 2002). With the development of Intelligent 

Transportation Systems (ITS) technology, the TSP has evolved over the decades. Early studies 

focused on extending green time or reducing red time for buses to cross intersections as quickly 

as possible (Finger, 1992; Jacobson & Sheffi, 1981; Ludwick & John, 1975; Seward & Taube, 

1977). While positive benefits can be identified for buses, competing traffic may experience 

extra delays. TSP control strategies can be categorized into two types: passive priority and active 

priority (Sunkari et al., 1995). 

2.3.1.1. Passive Priority 

In passive priority, priority is given to buses by predetermining the signal plan based on 

the bus schedule. There are several methods to adjust the signal plans, including adjustment of 

cycle length, splitting phases, areawide timing plans, and metering vehicles (Lin et al., 2014). 

 Adjustment of Cycle Length 

In general, a shorter cycle length may reduce the bus delay at intersections since a shorter 

cycle length can serve more buses over time (Balke, 1998). However, there is a tradeoff between 

shorter cycle lengths and a reduction in total throughput. 

 Splitting Phases 
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Splitting the green time into multiple shorter phases can also reduce the bus wait time by 

increasing the chances of a bus arriving at the green time. Applying this method does not require 

shortening the cycle length. However, it may increase the total delay due to frequent signal phase 

transitions. Moreover, short phases may not provide sufficient green time for pedestrians to cross 

the intersection. Based on simulation analysis, Garrow and Machemehl (1999) found that this 

method can offer more efficiency and reduce the impact on the entire intersection compared to 

the adjustment of cycle length. 

 Areawide Timing Plans 

Based on the bus travel times, areawide timing plans provide priority for buses by 

controlling signal offsets in a coordinated signal system. This method is difficult to implement 

because of the high fluctuation of bus travel time due to boarding and dropping off passengers at 

bus stops. By using a signal timing optimization program TRANSYT-7F, Skabardonis (2000) 

developed a passive priority strategy to optimize the traffic performance in favor of buses on a 

major arterial with 21 signalized intersections. Simulation results indicated that the proposed 

strategy reduced bus delays by 14%. Stevanovic et al. (2008) combined genetic algorithm (GA) 

and TRANSYT-7F to optimize the offline signal timing plans with transit priority settings. 

Simulations were performed to evaluate the effectiveness of this GA-based signal optimization 

program on an urban corridor with transit operations. Results indicated that the proposed 

program could improve overall traffic performance. 

 Metering Vehicles 

This method provides priority to buses by restricting other traffic, such as passenger cars, 

from entering congested areas. While the reliability and efficiency of transit can be guaranteed, 



 

 

18 

 

other traffic may experience significant delays. This disadvantage makes it difficult to be applied 

in urban road networks. 

The cost of implementing passive priority is low, as no extra hardware or software 

investment is required beyond the normal equipment. However, effective passive priority 

requires a determined transit arrival time or a high transit demand environment. Such strict 

application conditions have limited the research and popularity of this control strategy. 

2.3.1.2. Active Priority 

This control strategy applies TSP only when the transit vehicles are approaching the 

intersection. In the traditional active priority strategy, sensors need to be installed upstream of 

the intersection to detect the arrival of transit vehicles. In general, there are four types of active 

priority methods that have been most widely used: phase extension, early start, special phase, 

and phase suppression (Sunkari et al., 1995). Each of these methods is detailed below. 

 Phase Extension 

This method is applied when a transit vehicle is detected arriving at the intersection at the 

end of a green phase. The green time will be extended until the transit vehicle crosses the 

intersection or the predefined maximum green extension is reached. The maximum green 

extension is determined to prevent excessive disruption to conflicting traffic. 

 Early Start 

Early Start (or Red Truncation) is adopted when the transit vehicle is detected arriving at 

the intersection during a red phase. The red phase will be truncated, the priority green phase will 

start earlier in the cycle, and the green time of other non-priority phases may be shortened. This 
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method can also be used to clear long queues before the arrival of transit vehicles, so they do not 

have to wait in line. 

 Special Phase 

When a priority request is made, a special phase favoring the transit vehicle will be 

inserted into the normal phase sequence. This special phase is generally very short and can be 

inserted at any point in the cycle. 

 Phase Suppression 

With Phase Suppression, some non-priority phases with low demand may be skipped to 

facilitate the transit priority phase. 

In addition, there is a concept of compensation in the active priority signal control 

strategies. Extra green time can be added to the non-priority phases as compensation to keep 

traffic on the non-priority approaches from deteriorating as a result of granting transit priority. 

The methods mentioned previously can be adopted individually or in combination, which is very 

flexible and depends on the application scenario.  

Based on computational complexity, the active priority strategies can be further 

categorized into rule-based priority and model-based priority (Imran et al., 2021). 

2.3.1.2.1 Rule-based Strategy 

This strategy generally grants priority to transit vehicles based on some predefined logic, 

which is developed according to the presence of transit vehicles, headway adherence, and 

duration of lateness. Rule-based strategies are relatively simple and have a relatively low 

computational burden, which makes them widely used in practice.  
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Ludwick and John (1975) introduced an unconditional TSP strategy to grant priority 

based on the presence of transit vehicles at signalized intersections. If a bus was detected arriving 

at the end of the green phase, the green time would be extended by 10-20s to clear the detected 

bus. This strategy was validated via simulation experiments under different traffic 

configurations. Results showed that the proposed strategy with 10s green time extension could 

save 20% of bus travel time while only causing a 7% increase in cross-street traffic travel time, 

even with a half-minute headway frequency. However, with the development of public transit, 

the signal control agency may receive multiple priority requests at the same time. A basic policy 

to address this issue is first-come-first-serve (FCFS). The agency responds to the request once at 

a time in sequence and ignores other requests until the served transit vehicle crosses the 

intersection (Francois & Hesham, 2005; Muthuswamy et al., 2007). Meanwhile, alternative 

solutions for multiple request scenarios have been proposed (Kim et al., 2005; Lin et al., 2013; 

Tlig & Bhouri, 2011). 

As the TSP study evolved, researchers found that granting priority to all transit vehicles 

without considering other traffic on the road could result in serious degradation of overall traffic 

performance. In order to mitigate the negative impact of TSP on other traffic, several basic rules 

were introduced.  

1. The performance of non-priority traffic cannot be severely degraded after adopting 

TSP. 

2. On a coordinated arterial, the adoption of TSP cannot disrupt the designed signal 

progressions or cause overflow at the downstream intersections. 
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3. The TSP cannot frequently disrupt the phase sequence as the change in the phase 

sequence may confuse drivers. 

4. Only the transit vehicle that is behind schedule can be granted priority. 

5. For multiple priority requests, the transit vehicle being served should be determined 

based on the delay of each transit vehicle. 

With the development of advanced signal control and traffic sensor technologies, more 

sophisticated active priority control strategies with consideration of overall traffic performance 

emerged in the 1990s. Bowen et al. (1994) first integrated TSP control into the split cycle offset 

optimization technique (SCOOT), a mature adaptive signal control system. Simulation results 

indicated that it is feasible to provide bus priority in SCOOT. After that, TSP control was also 

added to other well-known adaptive signal control systems, such as Sydney coordinated adaptive 

traffic system (SCATS), real-time advanced priority and information delivery (RAPID), and 

balancing adaptive network control method (BALANCE). 

Balke et al. (2000) summarized the limitations of TSP applied along an arterial and 

proposed a comprehensive bus priority control framework to solve this problem. Four basic 

modules were introduced according to the functional requirements, i.e., arrival time prediction 

module, priority assessment module, strategy selection module, and strategy implementation 

module. Simulation tests were performed under three volume-to-capacity levels: 0.5, 0.8, and 

0.95. Results suggested that the proposed TSP approach could significantly reduce the bus travel 

time at all three levels while resulting in only minor decreases in overall traffic delay at moderate 

traffic levels (volume-to-capacity less than 0.9). 
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Skabardonis and Geroliminis (2008) proposed an active priority control strategy to grant 

priority based on real-time estimation of travel time and bus arrivals along the arterials. This 

strategy tried to minimize the adverse impacts on competing traffic while favoring efficient bus 

operations through the aforementioned active priority methods at unsaturated intersections, 

taking into account queuing, headway adherence, remaining green time, and the progress of bus 

routes. 

2.3.1.2.2 Model-based Strategy 

In a model-based strategy, priority is granted to specific transit vehicles based on a model 

that optimizes certain traffic performance criteria. The most commonly used criteria have been 

passenger delay and vehicle delay. Using the actual traffic conditions as input and minimization 

of passenger/vehicle delays as the objective, the models calculated the optimal signal timing 

plans (Christofa et al., 2013; Christofa & Skabardonis, 2011; Han et al., 2014; Head et al., 2006; 

Liao & Davis, 2007; Yu et al., 2017). 

Head et al. (2006) developed an optimization model to handle multiple priority requests 

based on the traditional North American traffic signal controller. The objective of the model was 

to minimize the total delay for all the requesting vehicles (not all vehicles). A relatively simple 

example was presented in the paper, and the results showed that the proposed model can perform 

better than FCFS in terms of multiple priority requests. 

Christofa and Skabardonis (2011) proposed a real-time, traffic-responsive TSP system 

aimed at managing multiple priority requests from conflicting transit routes while minimizing the 

negative impacts on other traffic. In order to grant priority equitably, the optimization model 

minimized the total person delay by considering the passenger occupancy of both passenger cars 
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and transit vehicles in the network. Meanwhile, it can also assign priority to the approaches with 

long queues to reduce the negative impact on other traffic. The simulation test for this system 

was conducted on a complex signalized intersection in Greece. Results showed that the total 

person delay for all passengers and bus passengers was reduced by 9.5% and 35.5%, 

respectively, compared to the vehicle-based optimization results. In the meantime, the delay for 

passengers in other vehicles increased by only 2.8%. 

There are also TSP studies that focused on ensuring the reliability of transit service, such 

as transit schedule adherence. Ma et al. (2010) developed a TSP control strategy with the 

optimization model to minimize the bus headway deviation. Unlike studies that focused on 

minimizing traffic delays, the optimization model in this paper generated the optimal 

combination of two priority strategies (increase and decrease bus delay strategies) to ensure that 

the buses traveling along the corridor adhere to the bus schedule. A corridor with four signalized 

intersections in China was selected as the test bed to evaluate the proposed coordinated and 

conditional bus priority (CCBP) strategy. Compared with the no priority and unconditional 

priority, CCBP could reduce bus headway deviation to guarantee the reliability of bus service 

while not greatly reducing delays of other traffic. 

Instead of considering a single traffic performance criterion, some model-based TSP 

strategies used a weighted summation of various criteria as the optimization objective to reflect 

the weights of different traffic performances (Han et al., 2014; Xu et al., 2019; Ye & Xu, 2017).  

Han et al. (2014) formulated the adaptive TSP strategy into a quadratic programming 

problem and the global optimization results were solved by MATLAB. The objective function of 

this optimization problem was the sum of the weights of bus delay and average traffic delay, 
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where the appropriate weights were determined by sensitivity analysis. In the case study, 

VISSIM was used to evaluate the performance of the proposed strategy on a 7.4 km corridor in 

Edmonton, Alberta. Results showed that the proposed strategy significantly outperformed the 

conventional active TSP strategy in reducing bus delays while balancing the services of the non-

TSP approaches. 

Xu et al. (2019) developed a bi-level optimization model to solve the problem of multiple 

priority requests on the corridors. The upper level controlled the signal phases between every 

two adjacent bus stops to maximize the green bandwidths. The lower-level controlled 

intersections on the corridor, and its optimization objective was to minimize the weighted sum of 

in-bus passenger delay and passenger waiting delay at the downstream stop. The proposed 

optimization model was solved by using a hybrid genetic algorithm and tested by a simulation 

approach. Three other models were used to conduct the performance comparison, i.e., the 

baseline model without TSP, model 1 with regular TSP and the classical coordination, and model 

2 with low level and the classical coordination. Results indicated that the proposed model could 

significantly reduce the average delay and stops for buses compared to those three models. 

Moreover, the advantage of the proposed model over other models increased with the increase in 

traffic demand. 

2.3.2. Transit Signal Priority with Connected Vehicle 

Recently, researchers are incorporating CV technology to advance TSP control strategies. 

Hill and Garrett (2011) stated that combining CV technology with TSP (TSPCV) is a key 

application of CV technology that will greatly enhance mobility and safety. The USDOT has 

also included TSPCV in its list of high-priority applications and development approaches. In 
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general, there are three ways to improve the transit signal priority control: enhancing the arrival 

time prediction accuracy, extending the TSP logic library, and improving the priority selection 

algorithm (Hu et al., 2014). Among them, the most fundamental problem has been to accurately 

predict the trajectory of the transit vehicle. With the emergence of CV technology, real-time 

information such as vehicle trajectory can be easily obtained (Yang et al., 2019; Zeng et al., 2015; 

Zeng et al., 2021). 

Zeng et al. (2015) utilized the advantage of CV technology and proposed a TSP control 

optimization model. The objective of this model was to minimize the total person delay during 

the planning period. Since real-time vehicle speed, location, and the number of passengers on 

board were available by using CV technology, it was possible to calculate the person delay for 

every vehicle traveling through the intersection more accurately, which provided a more reliable 

basis for optimization. The performance of the proposed model was evaluated using the 

simulation approach. Compared with the signal plans optimized by SYNCHRO, the proposed 

model reduced the bus passenger delay by 39%, 49%, and 30% with one, two, and three 

conflicting bus routes, respectively. Meanwhile, person delays in other vehicles decreased by 8-

11%. Moreover, the proposed model could perform well even at CV penetration rates as low as 

30%. 

Zeng et al. (2021) proposed two types of real-time TSP optimization models, i.e., 

intersection-based optimization model and route-based optimization model. The objective of 

these models was to minimize the timing and progression deviation along the route. For 

simplicity, both models were formulated as mixed integer linear models without considering the 

uncertainty of the bus travel time. Instead, the models were continuously formulated and 
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resolved to utilize real-time travel data obtained via CV technology to account for the uncertainty 

of bus travel times. Considering various cycle lengths and different definitions of progression 

deviations, five variants of proposed models were derived and tested in a simulation 

environment. Results suggested that the route-based model could reduce the progression 

deviation by as much as 98% while causing as little as a 5.5% increase in the delay to other 

traffic. In contrast, the intersection-based model could not provide as many benefits for buses yet 

cause more negative impacts on other traffic. 

With the explosion of machine learning (ML) and artificial intelligence (AI), some 

researchers have integrated data-driven approaches into TSP control strategies in recent years 

(Ghanim & Abu-Lebdeh, 2015). This trend was facilitated by the availability of real-time big 

data along with the rapid development of CV technology. 

Chow et al. (2021) refined their previous works (Chow & Li, 2017; Chow et al., 2017) 

using the reinforcement learning (RL) approach to manage the adaptive signal controller to 

improve bus service reliability on the corridor. By approximating the relationship between the 

traffic control variables and the corresponding states and system performances, RL techniques 

can address the curses of dimensionality when solving optimization problems on large networks 

in real-time. The proposed RL signal controller was tested using a real-world configuration on a 

corridor with five intersections in London, UK. Results indicated that the proposed model could 

significantly reduce traffic delays and bus progression deviations. Meanwhile, compared with the 

simple linear regression model used in other studies such as (Cai et al., 2009), this model was 

more effective when applied to adaptive traffic controllers because of the shorter computational 

time. 
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Additionally, with the adoption of CAV technology, SVCC can be implemented to 

improve the TSP control strategy. This kind of control strategy could guide transit vehicles to 

travel at a specific speed while adjusting the SPaT for better optimization (Hu et al., 2015, 2016; 

Seredynski et al., 2015; Wu et al., 2016). 

Hu et al. (2015) proposed a person-delay-based optimization model to control both the 

transit vehicle and signals in a CV environment and to coordinate signals along the corridor. The 

vehicle/signal cooperation provided another perspective for solving the optimization problem. 

The coordination feature took the mobility benefits of all intersections along the corridor into 

consideration. With minimizing average person delay as the objective, the problem was 

formulated as a Binary Mixed Integer Linear Program (BMILP) and solved using the classical 

branch-and-bound approach. In addition, priority was granted only when the bus was behind 

schedule. Both analytical and simulation results indicated that the proposed model 

overperformed the conventional TSP and TSP with CV, and there was no statistically significant 

negative impact when the volume-to-capacity ratio was less than 1.0. 

Wu et al. (2016) developed an optimization model to control not only the signal timings 

and bus speed but also the dwell time at bus stops. The objective of this model was to minimize 

the average vehicle delays, including bus delays and competing traffic delays at isolated 

intersections, while in the meantime controlling the buses to pass the intersection without 

stopping. The numerical experiment showed that the proposed model outperformed the models 

without TSP, TSP only, and TSP with controlled bus dwell time while causing few negative 

impacts on general traffic. Compared with the three base models, the proposed model could 

reduce the average delay by 54%, 24.2%, and 32.6% and the average number of stops by 88.2%, 
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83.6%, and 72.9%, respectively. Sensitivity analyses demonstrated that the proposed model has 

the potential for real-world application, as it was effective in different traffic conditions. 

Table 2-2 Literature Review on Transit Signal Priority  

TSP Type Work Control 
Object Research Object Performance 

Measurements 

Passive TSP Jacobson and Sheffi 
(1981) Signal Intersection Total person delay 

Active TSP Bowen et al. (1994) Signal Network Total passenger delay 

Passive TSP Skabardonis (2000) Signal Corridor Bus delay 

Active TSP Balke et al. (2000) Signal Corridor Bus travel time; Total 
delay; Approach delay 

Active TSP Kim et al. (2005) Signal Network Travel time; Bus 
headway; Speed 

Active TSP Head et al. (2006) Signal Intersection Total delay 

Active TSP Muthuswamy et al. 
(2007) Signal Corridor Travel time 

Passive TSP Stevanovic et al. 
(2008) Signal Corridor 

Person delay; Bus 
delay; Total delay; 
Total travel time; 
Number of stops; 
Throughput 

Active TSP Skabardonis and 
Geroliminis (2008) Signal Corridor 

Average bus delay; 
Average vehicle delay; 
Average person delay 

Active TSP Tlig and Bhouri 
(2011) Signal Network Total bus delay; 

Headway deviation 

Active TSP Christofa and 
Skabardonis (2011) Signal Intersection 

Total person delay; 
Bus passenger delay; 
Auto passenger delay 

Active TSP Lin et al. (2013) Signal Corridor 
Headway deviation; 
Bus passenger delay; 
Total person delay 

Active TSP Han et al. (2014) Signal Corridor 
The weighted sum of 
bus delay and average 
traffic delay 

TSP with 
CV Zeng et al. (2015) Signal Intersection Total person delay 
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TSP with 
CAV Hu et al. (2015) Signal and 

Bus Corridor Bus delay; Total delay 

TSP with 
CAV Wu et al. (2016) Signal and 

Bus Intersection 
Average bus delay; 
Average number of 
bus stops 

Active TSP Xu et al. (2019) Signal Corridor 

The weighted sum of 
in-bus passenger delay 
and passenger waiting 
delay at the 
downstream stop 

TSP with 
CV Zeng et al. (2021) Signal Corridor 

Progression deviation; 
Bus delay; Passenger 
car delay 

TSP with 
CV Chow et al. (2021) Signal Corridor 

Total delay; Schedule 
deviation; Headway 
deviation 

2.4. Optimization Algorithm in Traffic Signal Control 

Optimization algorithms can generally be classified as deterministic and stochastic 

algorithms (Yang, 2010). Deterministic algorithms, such as linear and nonlinear programming, 

are capable of generating reproducible solution paths and values. In contrast, stochastic 

algorithms, such as genetic algorithms and reinforcement learning, are characterized by their 

propensity for producing randomized results. The application of optimization algorithms in the 

research field of traffic signal control (TSC) has kept pace with the rapid development of these 

algorithms. In this subsection, we will begin by reviewing the existing TSC research that 

employs conventional optimization algorithms. It is worth noting that the primary focus of this 

subsection is to provide a comprehensive review of more promising optimization algorithms, 

namely reinforcement learning. 



 

 

30 

 

2.4.1. Conventional Optimization Algorithms  

2.4.1.1. Deterministic Algorithms 

The majority of conventional optimization algorithms are deterministic. In the TSC 

domain, these algorithms require the TSC system to be modeled as comprehensively as possible, 

which is often computationally intensive and time-consuming. As a result, the significant 

challenge when utilizing deterministic algorithms is to balance the complexity of the algorithm 

with the practical value of the controller, especially in dynamic real-world conditions.  

Feng et al. (2015) proposed an adaptive traffic signal controller that can optimize the 

signal phase and timing in a connected vehicle environment. A two-level optimization problem 

was formulated, and dynamic programming (DP) was employed to solve this problem. Given the 

low CV market penetration rate, a vehicle state estimation model based on the traffic data 

obtained via CVs was developed to provide complete information on vehicles approaching the 

intersection. The performance of the proposed controller was evaluated by modeling a real-world 

isolated intersection in VISSIM. Results showed that the proposed controller was more effective 

than a well-tuned fully actuated controller in reducing total delay by as much as 16.33% at a 

100% CV market penetration rate, and exhibited similar performance at a 25% market 

penetration rate. 

Li and Ban (2019) proposed a signal timing controller for optimizing the signal timing at 

an isolated intersection with a fixed cycle length. The controller utilized vehicle arrival data 

obtained via CV technology as input to find optimal green time durations, with the objective of 

minimizing the weighted sum of vehicle fuel consumption and travel time. The optimization 

problem was formulated as a mixed-integer nonlinear program (MINLP), which was then solved 
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by decomposing it into a sequential of signal-stage timing decision problems using dynamic 

programming. A stage in these sequential problems was referred to as a signal phase. Simulation 

experiments were conducted in VISSIM to evaluate the performance of the proposed model. The 

results indicated that the proposed controller outperformed actuated controller under all 

scenarios. Additionally, in terms of computational times for solving the MINLP problem, the DP 

method outperformed the NOMAD solver in MATLAB, especially for large-scale problems. 

He et al. (2014) proposed a multimodal traffic signal controller that can handle multiple 

active priority requests while ensuring signal coordination and vehicle actuation in the corridor, 

under the condition that V2I technology is available. The optimization problem was formulated 

as a request-based mixed-integer linear program (MILP) that simultaneously considered multiple 

priority requests, coordination, and real-time actuation. Numerical experiments were conducted 

in VISSIM based on a real-world two-intersection corridor to test the effectiveness of the 

proposed controller. The results showed that, compared to the coordinated-actuated traffic signal 

controller with TSP, the proposed controller reduced bus delay and pedestrian delay by 24.9% 

and 14%, respectively, in high traffic demand scenarios, while providing similar performance in 

terms of passenger car delay. In the meantime, real-time actuated control was maintained.  

2.4.1.2. Stochastic Algorithms 

Given that TSC systems are large, complex, nonlinear, and stochastic in nature (Dongbin 

et al., 2012), stochastic algorithms, which are mostly model-free, are more likely to provide 

feasible solutions to TSC problems. However, conventional stochastic algorithms, such as 

metaheuristic algorithms, have their limitations. They tend to converge to suboptimal solutions, 



 

 

32 

 

and the decision-making process can also be time-consuming. These disadvantages make these 

algorithms less reliable for real-world applications. 

Lee et al. (2006) developed a real-time adaptive traffic signal control system composed of 

a genetic algorithm optimization module, an internal traffic simulation module, and a database 

management module. This system operated in an acyclic rolling horizon real-time manner to 

control traffic signals in an arterial with three intersections. Simulation experiments were 

conducted in PARAMICS, considering three scenarios with different levels of traffic demand, 

namely high, medium, and low. The performance of the proposed signal control system was 

analyzed, and the results showed that it performed efficiently in all scenarios. For example, when 

compared to the pre-timed controller, the proposed system reduced the total vehicle delay by 

12.9% in the high-demand scenario. Moreover, the system significantly reduced the delay 

standard deviations in high and medium-demand scenarios. 

Ghanim and Abu-Lebdeh (2015) presented an innovative real-time traffic signal control 

system utilizing a combination of a genetic algorithm optimizer and an artificial neural network 

(ANN). The optimizer was responsible for optimizing traffic signal timing with TSP control, 

while the ANN predicted bus arrival times taking into account dwell times at bus stops. The 

authors evaluated six different signal control systems using VISSIM on a two intersecting one-

way network with four bus stops. Results showed that the proposed signal control system 

significantly reduced traffic delay and stops by up to 90%. Regarding transit traffic, it had the 

capability to reduce transit delay and number of stops, varied by 15% to 85%, depending on the 

traffic demand and control type. Importantly, experimental results indicated that the proposed 

signal control system did not have an adverse impact on crossing traffic. 
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García-Nieto et al. (2012) developed a network-wide signal control system that can 

optimize the duration of each phase in all traffic lights in an entire urban road network. The 

system utilized a particle swarm optimization (PSO) algorithm to maximize the number of 

vehicles reaching their destinations and minimize the total travel time. Two road networks 

located in metropolitan areas of different cities were modeled in SUMO to evaluate the 

performance of the proposed system. Results indicated that the proposed system outperformed 

two other signal control systems, namely the SUMO cycle programs generator and a random 

search algorithm. The system demonstrated improvements in the number of vehicles that reach 

their destinations as well as the mean travel time. 

2.4.2. Reinforcement Learning Algorithms 

The Markov Decision Process (MDP) is a mathematical framework usually used to 

model sequential decision-making problems where an agent interacts with an environment to 

maximize the reward (Sutton & Barto, 2018). The TSC problem can be formulated as an MDP 

and reinforcement learning (RL) algorithms are well-suited for solving MDPs because they learn 

through trial and error by continuously updating the policies based on the rewards received. This 

allows the agent to adapt to changing states and make better decisions over time. Besides, due to 

the availability of real-time traffic data in CV environments, RL algorithms, as data-driven 

approaches, have gained significant attention as potential solutions to optimize TSC problems. 

The operation of an RL algorithm typically involves the following steps: observation of the 

current state of the environment, selection of an action based on the current policy, receipt of a 

reward from the environment, and transition to the next state. According to the received reward, 

the agent iteratively updates its policy to eventually achieve an optimum control policy. 
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2.4.2.1. Reinforcement Learning  

RL has been utilized in TSC research since the mid-1990s, with a significant increase in 

the publication of research papers starting in 2010. The performance improvements provided by 

the use of RL as an optimization approach are compelling even in the initial stage of 

implementation (Mannion et al., 2016). 

Thorpe and Anderson (1996) proposed a traffic signal controller with the goal of 

minimizing the time taken for a fixed number of vehicles to traverse a 4 x 4 grid road network. 

To achieve this, they utilized SARSA, an RL algorithm, that employed replace traces and greedy 

action selection in the controller. The RL agent was modeled using three different state 

representations, namely, the vehicle count representation, the fixed distance representation, and 

the variable distance representation. Simulation experiments were conducted to test the 

performance of the proposed controller. Results indicated that it could learn signal control 

strategies that approached the optimal performance. The most effective state representation was 

found to be the fixed or variable distance methods.  

Abdulhai et al. (2003) presented a case study using Q-learning, one of the most popular 

RL algorithms, to control the traffic signal at an isolated intersection. The state information 

provided to the proposed RL agent included queue lengths on the four approaches and the 

elapsed phase time. The action was defined as the choice to remain or switch the current phase. 

The reward for the RL agent was the total vehicle delay in the queue incurred between the 

successive decision points. The findings of the study revealed that the proposed RL agent 

exhibited superiority compared to the pre-timed signal controller, especially in scenarios where 
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traffic demand varied over time. This was attributed to the ability of the RL agent to adapt to 

fluctuations in traffic flow.  

El-Tantawy and Abdulhai (2010) proposed an acyclic adaptive signal control system that 

utilized Q-learning to optimize the signal plan. The action defined in the RL agent was the 

selection of the phase index, allowing for variable phase sequences in the signal controller. The 

reward was defined as the change in the total summation of the cumulative delay for all vehicles 

in the system. Furthermore, three different state representations were defined, namely, the arrival 

of vehicles in the current green direction and queue length in the red direction, the queue length, 

and the cumulative delay. To evaluate the performance of the proposed controller, a real-world 

intersection located in downtown Toronto and the traffic volume obtained in the morning peak 

hour were modeled in a simulation environment. The performance of the proposed Q-learning 

signal controller was compared to a pre-timed controller optimized using the Webster method. 

The results showed that the proposed controller consistently outperformed the pre-timed signal 

controller, regardless of the state representations and traffic demand conditions. Additionally, the 

cumulative delay representation proved to be superior to other state representations in high-

demand scenarios. 

2.4.2.2. Deep Reinforcement Learning  

RL was originally proposed to solve problems with discrete states and actions. however, 

it may become less effective in addressing TSC problems that have large state and action spaces. 

The integration of RL with deep learning, referred to as Deep Reinforcement Learning (DRL), 

offers a promising approach to TSC optimization. In recent years, numerous research papers 

have been published in this area, highlighting the potential of DRL in TSC optimization. 
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Wei et al. (2018) introduced an intelligent traffic signal controller that utilized Deep Q-

Network with modifications named Phase Gate and Memory Palace. The state in this study was a 

combination of various factors, including the queue length, number of vehicles, updated waiting 

time of vehicles, an image representation of vehicles’ positions, current phase, and next phase. 

The action was defined as the selection of whether to keep or change the current phase. The 

reward was defined as a weighted sum of total queue length, total delay, total waiting time, an 

indicator of phase switches, total number, and total travel time of vehicles that passed the 

intersection. Evaluation experiments were conducted on the simulation platform SUMO using 

both synthetic and real-world traffic demand data. Results showed that the proposed controller 

outperformed the other three controllers named pre-timed controller, self-organizing traffic light 

controller, and DRL for traffic light controller. Additionally, the authors investigated the policies 

learned from the real-world data and demonstrated that the proposed DRL algorithm could 

effectively accommodate the changes in traffic demand in the real world. 

Liang et al. (2019) proposed a DRL traffic signal controller that utilized a modified DQN 

algorithm to control the SPaT. To enhance its performance, the authors incorporated various 

techniques, including dueling network, target network, double Q-learning network, and 

prioritized experience replay, into the DQN agent. The state was defined as an image-like input 

that consisted of two matrices representing the position and speed of vehicles approaching the 

intersection. The action was defined as how to change the duration of every phase in the next 

cycle. The reward was defined as the change in the cumulative waiting time between consecutive 

cycles. The performance of the proposed controller was evaluated using SUMO, and results 

showed that it could reduce the average waiting time by more than 25% compared to the pre-
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timed controller. Moreover, the modified DQN agent outperformed the conventional DQN agent 

in terms of learning speed and other metrics. 

Shabestary and Abdulhai (2022) proposed an innovative adaptive traffic signal controller 

that utilizes real-time traffic data obtained through CV technologies. This controller is capable of 

handling unprocessed, high-dimensional traffic data from CVs and is self-learning. A DQN agent 

with a convolutional neural network was developed to minimize vehicle delay. The real-time 

position and speed of CVs were preprocessed into an image-like structure that consisted of two 

same-sized matrices, along with the elapsed time, which was then used as the state in the DQN 

agent. The action space included all possible phases, each of which was a combination of 

nonconflicting movements. The reward was defined as the reduction of cumulative delay in 

consecutive time steps. The authors conducted comprehensive experiments to evaluate the 

performance of the proposed controller, and the results showed that it outperformed other 

alternatives, including pre-timed, actuated, and conventional Q-learning controllers. 

Furthermore, the results demonstrated the generalization and robustness of the proposed 

controller to some extent. 

2.4.2.3. Multi-Agent Reinforcement Learning 

In fact, intersections are not isolated from each other, the control for one intersection will 

impact other intersections in the network. Since RL-based signal controllers exhibit superior 

performance at isolated intersection scenarios, one approach is to train a centralized agent to 

control the whole network. However, it is hard for a centralized agent to scaler to a large 

network. To address the scalable issue, a feasible way is to implement multiagent reinforcement 

learning (MARL) algorithms. The road network contains multiple intersections, it can be 
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formulated as a multi-agent system, each agent controls a single intersection or a subgroup of 

intersections. Recent years, with the rapid advancement of MARL algorithms, many researchers 

have been working on applying these sophisticated algorithms to multiple intersection scenarios. 

Song and Fan (2023) introduced an innovative traffic signal control framework that 

integrates MARL algorithms for traffic control with CAV platooning techniques for vehicle 

control. The integration is designed to improve the overall traffic performance along corridors. 

The MARL algorithm utilized in this study was the state-shared MADQN. Assuming the 

presence of infrastructure to infrastructure (I2I) communication technology, each intersection 

can share its state with adjacent intersections. Therefore, the input state for each agent is a matrix 

including the state of the ego intersection along with the states of its neighboring intersections. 

This information sharing mechanism can ensure a certain degree of signal coordination between 

the intersections. Additionally, the CACC technique is leveraged to facilitate the formation of 

platoons among CAVs, thereby further enhancing traffic efficiency. A testbed corridor with 

seven intersections is built based on real-world traffic configurations. The results demonstrated 

the superiority of the proposed framework over alternative approaches, such as fixed-time 

control and actuated control. Notably, the integration of shared-state MARL and CAV 

platooning further enhances the performance compared to deploying these technologies 

separately. 

Mao et al. (2023) proposed a multi-agent attention-base soft actor-critic (MASAC) model 

to control the traffic signals along arterials. They use MASAC method to search for more 

solution space. Besides, the attention mechanism is also being integrated into their model to 

extract enriched traffic information. To assess the efficacy of their proposed mode, three 
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hypothetical arterials were built using SUMO. Results showed that their proposed model 

outperformed other approaches, including the multiband-based method and various DRL 

algorithms. They also conducted comprehensive ablation experiments to investigate the 

contribution of each component within their model. The findings demonstrated the substantial 

impact of attention mechanisms on performance enhancement. Interestingly, the study revealed 

that the communication module might not be useful when employing the centralized training 

technique.  

With the goal of improving the services for both cars and buses, Yu et al. (2023) 

proposed a traffic signal controller enhanced by the MARL framework. The novelty of their 

contribution lies in the design of a unique reward function capable of simultaneously minimizing 

total vehicle delays and homogenizing bus headways. There are two essential components in the 

reward function, one reflecting the car traffic efficiency and the other representing the efficiency 

of the bus system. An adjustable weight coefficient is introduced to balance the performance of 

cars and buses. DQN, which is a very popular DRL algorithm in TSC research area, is utilized in 

this study. The authors firstly explored the tradeoff between car and bus traffic performance by 

varying the weight coefficient in the reward function, identifying the optimal value for the 

weight. Subsequently, extensive experiments were conducted to validate the superiority of the 

proposed controller. More importantly, unlike general research in this field, the authors used 

different networks for training and testing, demonstrating the scalability and transferability of 

their proposed controller. 
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Table 2-3 Literature Review on Optimization Algorithms in TSC  

Work Algorithm Scenario Simulator Result 
comparison 

Thorpe and 
Anderson 
(1996) 

SARSA 4 x 4 grid 
network Not specified Pre-timed 

controller 

Abdulhai et 
al. (2003) Q-learning Isolated 

intersection Not specified Pre-timed 
controller 

Lee et al. 
(2006) GA 

Three-
intersection 
corridor 

PARAMICS 
Pre-timed 
controller; 
 

El-Tantawy 
and Abdulhai 
(2010) 

Q-learning Isolated 
intersection PARAMICS Pre-timed 

controller 

García-Nieto 
et al. (2012) PSO 

A 0.75km2 
network in a 
metropolitan 

SUMO 

Pre-timed 
controller; 
Random search 
controller 

He et al. 
(2014) MILP Two-intersection 

corridor VISSIM 
Actuated 
coordination 
controller 

Ghanim and 
Abu-Lebdeh 
(2015) 

GA 
A two 
intersecting one-
way network 

VISSIM 

Pre-timed 
controller; 
Actuated 
controller 

Feng et al. 
(2015) DP, Enumeration Isolated 

intersection VISSIM Actuated 
controller 

Wei et al. 
(2018) Modified DQN Isolated 

intersection SUMO 

Pre-timed 
controller; 
Actuated 
controller; 
DQN controller 

Li and Ban 
(2019) MINLP, DP Isolated 

intersection VISSIM Actuated 
controller 

Liang et al. 
(2019) 

double dueling 
DQN 

Isolated 
intersection SUMO 

Pre-timed 
controller; 
Adaptive 
controller; 
DQN controller 

Shabestary 
and Abdulhai 
(2022) 

DQN Isolated 
intersection PARAMICS 

Pre-timed 
controller; 
Adaptive 
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controller; 
Q-learning 
controller 

Song and Fan 
(2023) MADQN 

Seven-
intersection 
corridor 

SUMO 

Pre-timed 
controller; 
Actuated 
controller 

Mao et al. 
(2023) MASAC 

Three-
intersection 
corridor, six-
intersection 
corridor, ten-
intersection 
corridor. 

SUMO 

multiband-based 
controllers; 
DRL-based 
controllers 

Yu et al. 
(2023) Independent DQN 

Five-intersection 
corridor, ten-
intersection 
corridor, two 
crossing 
corridors with 
nine 
intersections. 

SUMO 

Pre-timed 
controller; 
Longest queue 
first controller; 
Max pressure 
controller; 
Centralized RL-
based controller 

2.5. Summary 

In the preceding sections, a comprehensive review of the state-of-the-art and state-of-the-

practice of existing research on intersection management, transit signal priority control, and the 

utilization of optimization algorithms in the field of traffic signal control has been discussed and 

presented. This is intended to provide a solid reference and aid in the identification of suitable 

control strategies, efficient optimization algorithms, and the development of robust TSP 

controllers. 
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Chapter 3. Methodology 

In this chapter, the details of the optimization algorithms and parameter settings utilized 

in the proposed TSP controllers of this research are described.  

3.1. Genetic Algorithm 

Since Foy et al. (1992) introduced the genetic algorithm (GA) to optimize the SPaT, this 

approach has been extensively studied and has become one of the classical optimization methods 

in the area. GA is a meta-heuristic algorithm inspired by the natural selection process to 

efficiently search for optimal or near-optimal solutions (Holland, 1992). A genetic algorithm 

consisting of three basic components is used in this project. A list of variables used in this 

research is summarized in Table 3-1.  

Table 3-1 List of Important Variables 

Notation Description 
Pc Probability of crossover 
Pm Probability of mutation 
a Private car index 
b Bus index 
i Vehicle index 
j Phase index 
k Cycle index 
m Travel direction index 
A Current car set at each decision time 
B Current bus set at each decision time 
oa Passenger occupancy of car a 
ob Passenger occupancy of bus b 
da,k Delay of car a in cycle k 
db,k Delay of bus b in cycle k 
ti Time for vehicle i to reach the stop line 
Li Distance to stop line for vehicle i 
hi saturation headway for vehicle i 
li Vehicle length for vehicle i 
gapi Minimum gap when vehicle i is stopped 
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di Delay for vehicle i 
gj Green time for phase j 
wi Cumulative waiting time for vehicle i 
tj,k Time between the start of optimization and the start of phase j in cycle k 
tj,k+1 Time between the start of optimization and the start of phase j in cycle k+1 
vi Free-flow speed for the vehicle i 
qm Maximum queue delay in travel direction m 

3.1.1. Basic components 

3.1.1.1. Encoding and Decoding 

Encoding refers to the use of chromosomes to symbolize traffic signal timing decision 

variables. Decoding is a reverse process of encoding, which refers to the process of translating 

these decision variables from chromosomes. The decision variable used in the research is the 

duration of the green time for each phase. 

3.1.1.2. Fitness/Evaluation 

Each chromosome is decoded and sent to the fitness function to obtain the corresponding 

fitness value for the selection process. Elitism is a widely used selection process that is adopted 

in this project. For the problem being considered here, the objective of the fitness function is to 

minimize the total person delay at the intersection. The calculation method of the total person 

delay is described in detail in the next subsection. 

3.1.1.3. Reproduction, Crossover, and Mutation 

These three manipulations are used to produce new generations. The reproduction 

process copies elite chromosomes to produce new generations. During crossover, elite 

chromosomes exchange their genetic materials with a predefined probability Pc. The mutation is 

conducted by selecting a random bit on the offspring’s chromosome and then changing the value. 
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The likelihood of mutation occurring on a given chromosome is determined by the probability 

Pm (Teklu et al., 2007). 

3.1.2. Objective Function 

The objective of this study is to minimize the total person delay of an isolated 

intersection. The objective function is given in equation (3.1).  

 min (∑ 𝑜𝑜𝑎𝑎𝑑𝑑𝑎𝑎,𝑘𝑘 + ∑ 𝑜𝑜𝑏𝑏𝐵𝐵
𝑏𝑏=1 𝑑𝑑𝑏𝑏,𝑘𝑘)𝐴𝐴

𝑎𝑎=1   (3.1) 

Where 𝑜𝑜𝑎𝑎 and 𝑜𝑜𝑏𝑏 represent the passenger occupancy of cars and buses, respectively. 𝑑𝑑𝑎𝑎,𝑘𝑘 

and 𝑑𝑑𝑏𝑏,𝑘𝑘  denote the delays of cars and buses in cycle 𝑘𝑘, respectively. A and B are the total 

numbers of cars and buses at each decision time step, respectively.  

The passenger occupancy of each vehicle can be obtained via CV technology. The most 

important part of this function is the accurate estimation of the vehicle delay. Existing studies 

mainly use three kinds of approaches to estimate vehicle delay, i.e., the Highway Capacity 

Manual (HCM) approach (Ghanim & Abu-Lebdeh, 2015), Webster’s delay formula (Christofa et 

al., 2013), and individual vehicle trajectory-based delay estimation model (Hu et al., 2015; Yang 

et al., 2019; Zeng et al., 2015). The last type is a more sophisticated estimation approach but 

requires a large amount of real-time traffic data. However, in the CV environment, these data are 

easily available. In this research, a vehicle delay estimation model is developed accordingly. A 

simplified delay calculation is used in this model. During the delay calculation process, not only 

the current cycle but also the next cycle is taken into consideration. In this way, the probability 

of the myopic result is reduced. The individual vehicle delay is categorized into two types: (a) 
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delays of vehicles that have already stopped and queued before the stop line at the decision time 

step and (b) delays of vehicles that are still approaching the intersection at the decision time step.  

3.1.2.1. Queuing Delay 

Stopped vehicles are identified by their speed. Those vehicles with speeds lower than 5 

m/s are classified as stopped vehicles. Based on the position in the queue, stopped vehicles can 

be divided into two groups, and the queuing delay is calculated as follows: 

Queuing 1. Vehicles that can leave the stop line during the corresponding green time of 

the current cycle. 

Queuing 2. Vehicles that cannot leave the stop line during the corresponding green time 

of the current cycle. 

First, the time 𝑡𝑡𝑖𝑖 for the stopped vehicle i to reach the stop line is calculated with equation 

(3.2).  

 𝑡𝑡𝑖𝑖 = (𝐿𝐿𝑖𝑖 ∗ ℎ𝑖𝑖) (𝑙𝑙𝑖𝑖 + 𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖)⁄  (3.2) 

Where 𝐿𝐿𝑖𝑖 is the distance to the stop line for vehicle 𝑖𝑖. ℎ𝑖𝑖 denotes the saturation headway 

for vehicle 𝑖𝑖 . 𝑙𝑙𝑖𝑖  means the vehicle length, and 𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖  represents the minimum gap when the 

vehicle stopped. 

The delay for vehicles in Queuing 1 can be calculated with equation (3.3). 

 𝑑𝑑𝑖𝑖 = 𝑤𝑤𝑖𝑖 + 𝑡𝑡𝑖𝑖 + 𝑡𝑡𝑗𝑗,𝑘𝑘 − 𝐿𝐿𝑖𝑖/𝑣𝑣𝑖𝑖 (3.3) 

The delay for vehicles in Queuing 2 can be calculated with equation (3.4). 

 𝑑𝑑𝑖𝑖 = 𝑤𝑤𝑖𝑖 + 𝑡𝑡𝑖𝑖 + 𝑡𝑡𝑗𝑗,𝑘𝑘+1 − 𝑔𝑔𝑗𝑗 − 𝐿𝐿𝑖𝑖/𝑣𝑣𝑖𝑖 (3.4) 
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Where 𝑑𝑑𝑖𝑖 denotes the delay of vehicle 𝑖𝑖. 𝑤𝑤𝑖𝑖 is the cumulative waiting time for vehicle 𝑖𝑖. 

𝑡𝑡𝑗𝑗,𝑘𝑘  and 𝑡𝑡𝑗𝑗,𝑘𝑘+1 represent the time between the start of optimization and the start of phase 𝑗𝑗 in 

cycle 𝑘𝑘 and 𝑘𝑘 + 1, respectively. 𝑔𝑔𝑗𝑗 is the green time of phase 𝑗𝑗. 𝑣𝑣𝑖𝑖 means the free-flow speed of 

vehicle 𝑖𝑖. 

3.1.2.2. Delay for Approaching Vehicles 

Based on the time that vehicles arrive at the stop line, approaching vehicles can be 

divided into three groups. The arrival time of the vehicle is calculated based on the vehicle's 

speed and position. The effective green time for the corresponding travel direction is used to 

classify the arrival groups, which is calculated as the green time minus the current queue 

dissipation time of the corresponding phase. 

Arrival 1. Vehicles that reach the stop line before the start of the corresponding effective 

green time for the current cycle. 

Arrival 2. Vehicles that reach the stop line during the corresponding effective green time 

for the current cycle. 

Arrival 3. Vehicles that reach the stop line after the end of the corresponding green time 

for the current cycle. 

For vehicles in Arrival 1, the delay can be calculated with equation (3.5). In which 𝑞𝑞𝑚𝑚 is 

the queue dissipation time in the travel direction 𝑚𝑚. 

 𝑑𝑑𝑖𝑖 = 𝑡𝑡𝑗𝑗,𝑘𝑘 + 𝑞𝑞𝑚𝑚 − 𝑡𝑡𝑖𝑖 (3.5) 

For vehicles in Arrival 2, the delay is zero. 

For vehicles in Arrival 3, the delay can be calculated with equation (3.6). 
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 𝑑𝑑𝑖𝑖 = 𝑡𝑡𝑗𝑗,𝑘𝑘+1 + 𝑞𝑞𝑚𝑚 − 𝑡𝑡𝑖𝑖  (3.6) 

3.1.3. Control Logic 

This research uses Simulation of Urban MObility (SUMO) as the simulation platform to 

evaluate the traffic performance of proposed TSPCV control strategies. SUMO is open-source 

software and one can use Python to control the simulation loop through Traffic Control Interface 

(TraCI) provided by SUMO. The control logic is presented in Figure 3-1. The control horizon is 

set for every half cycle so as to capture vehicle trajectory data as comprehensively as possible 

during the control process. 

 

Figure 3-1 Flowchart for Optimization Process and Simulation Environment Integration 

The optimization and signal control process is triggered at the end of each half cycle. 

Through TraCI, all the required data are obtained from the simulation environment, including 

vehicle locations, speeds, types, signal timing parameters, etc. These data are passed along to the 

GA optimizer. The optimizer then finds an optimal or near-optimal SPaT plan by minimizing the 
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total person delay calculated by the delay estimation model. The optimized signal plan solution 

is returned to the simulation environment and used to control the SPaT for the next half cycle. 

This process is iterated every half cycle until the end of the simulation experiment. 

3.2. Reinforcement Learning 

3.2.1. Single-Agent Reinforcement Learning 

3.2.1.1. Markov Decision Process Formulation 

The Markov Decision Process (MDP) is a mathematical framework usually used to 

model sequential decision-making problems where an agent interacts with an environment to 

maximize the reward signal. During the interaction, the agent takes actions based on the current 

state of the environment, and in response, the environment presents a new state as well as a 

reward (Sutton & Barto, 2018). The traffic signal control problem can be formulated as an MDP 

in which the state, action, and reward are properly defined. The interaction between the traffic 

signal control agent and the traffic environment can be mathematically described by a five-tuple 

〈𝑆𝑆,𝐴𝐴,𝑃𝑃,𝑅𝑅, 𝛾𝛾〉, where 𝑆𝑆 (state space) generally represents the set of traffic information obtained 

from the environment, 𝐴𝐴 (action space) represents the possible operations to control the SPaT, 𝑃𝑃 

is the state transition matrix determining the next state based on the current state and action, 𝑅𝑅 is 

the reward received from the environment after taking the action, and 𝛾𝛾 is the discount factor. To 

formulate the TSC problem as MDPs, it is essential to properly define the state space, action 

space, and reward function. The state includes information such as queue length, cumulative 

waiting time, number of vehicles per lane, and phase duration. Actions can correspond to 

different signal control strategies, such as selecting possible green phases, keeping or changing 
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the current phase, and updating the phase duration with a predefined length. The reward function 

can be defined to reflect various objectives, e.g., minimizing delays, reducing fuel consumption, 

and improving safety (Haydari & Yilmaz, 2022). Reinforcement learning algorithms are well-

suited for solving MDPs because they learn through trial and error by continuously updating the 

policies based on the rewards received. This allows the agent to adapt to changing states and 

make better decisions over time. The operation of an RL algorithm typically involves the 

following steps: observation of the current state of the environment, selection of an action based 

on the current policy, receipt of a reward from the environment, and transition to the next state. 

According to the received reward, the agent iteratively updates its policy to eventually achieve 

an optimum control policy.  

• State space 

Two types of state spaces are used in this study: the vehicle-based array state, and the 

combined state consisting of a vehicle-based array and a feature-based vector, as illustrated in 

Figure 3-2. 

For the vehicle-based array state space, the input traffic states used in the study are the 

passenger occupancy and speed of CVs approaching the intersection, which is formatted into 

image-like representations by using the discrete traffic state encoding (DTSE) method. DTSE is 

favored as it offers the most complete traffic information at the intersection. Additionally, real-

time, high-resolution traffic data can be easily obtained via CV technology. 

Specifically, each approaching lane within a certain distance 𝐿𝐿𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙 from the intersection 

stop line is discretized into small cells with a specific length 𝑑𝑑, which is usually the average 

headway distance between stopped vehicles. The state array is formed by assigning the 
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information of each vehicle to the corresponding cells, as illustrated in Figure 3-2. The location 

of each vehicle is identified based on the position of its head. Therefore, even when a vehicle 

covers multiple cells on the road, there will be no problem of being recognized in multiple cells. 

The state array consists of two tables, resulting in a state space of 2 × (𝐿𝐿𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙 𝑑𝑑⁄ ) × 𝑁𝑁𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙. One 

table is used to store the passenger occupancy and the other is used to store the speed of each 

CV. This vehicle-based information can be obtained via CV technology. Please note that the 

vehicle-based array only contains information from CVs, as the controller cannot communicate 

with non-CVs (NCVs) to gather their information.  

The combined state space utilizes fusion data obtained from multiple data sources. A 

feature-based vector is combined with the previously defined vehicle-based array. The vector has 

a length of 𝑁𝑁𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙 corresponding to the number of lanes. In this study, the feature value used in 

the vector is the number of queued vehicles in each lane. This information is assumed to be 

extractable from images captured by cameras located at the intersection, leveraging the 

advancements of computer vision techniques in the field of transportation. 

In the isolated intersection scenario, a typical four-approach intersection with four lanes 

in each approach is investigated. To capture the traffic information effectively, we set the 

detection range 𝐿𝐿𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙  to 350 meters and the cell length 𝑑𝑑 to 7 meters. Therefore, the vehicle-

based array has a size of 2*50*16, and the feature-based vector has a size of 16. 
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Figure 3-2 Illustration of State Representations for Isolated Intersection in the Study 

• Action space 

In this study, two types of action spaces are defined: discrete action space and multi-

discrete action space. The discrete action space only includes possible phases, while the multi-

discrete action space contains both possible phases and timings. 

Except for right-turn movements, there are eight traffic movements in a typical four-

approach intersection, namely east through (E), west through (W), east left-turn (EL), west left-

turn (WL), north through (N), south through (S), north left-turn (NL), and south left-turn (SL). 

These movements can be combined into eight non-conflicting movements, corresponding to 

eight valid phases. Each phase indicates that the corresponding movements will be set to green, 



 

 

52 

 

while other movements except right-turn movements will be set to red. Right turns are permitted 

all the time with a lower right-of-way. 

The discrete action space has eight actions, representing the eight different phases：𝐴𝐴 =

 {(𝑁𝑁𝐿𝐿, 𝑆𝑆𝐿𝐿), (𝑁𝑁,𝑁𝑁𝐿𝐿), (𝑆𝑆, 𝑆𝑆𝐿𝐿), (𝑆𝑆,𝑁𝑁), (𝐸𝐸𝐿𝐿,𝑊𝑊𝐿𝐿), (𝐸𝐸,𝐸𝐸𝐿𝐿), (𝑊𝑊,𝑊𝑊𝐿𝐿), (𝐸𝐸,𝑊𝑊)}. At each decision step, 

an action is selected from this set. If the phase represented by the action is the same as the 

current phase, the green time is extended by one second. Otherwise, the signal is switched to the 

chosen phase. Please note that the switching operation includes a transition time, which includes 

the yellow time, all-red time, and minimum green time. During the transition time, the signal 

controller remains on hold and does not take any action. Otherwise, it makes decisions every 

second. In this study, the yellow time is set to 3 seconds, the all-red time is set to 2 seconds, and 

the minimum green time is set to 5 seconds. 

The multi-discrete action space is defined as the cartesian product of two discrete action 

spaces, denoted as 𝐴𝐴 =  �(𝑛𝑛, 𝑡𝑡)|𝑛𝑛 ∈ 𝑁𝑁𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑙𝑙 and 𝑡𝑡 ∈ 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑𝑖𝑖𝑑𝑑𝑙𝑙�. The 𝑁𝑁𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑙𝑙 represents the set of 

valid phases and is the same as the previously mentioned action space, 𝑁𝑁𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑙𝑙 = {0,1, … ,7}. The 

𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑𝑖𝑖𝑑𝑑𝑙𝑙  represents the set of time durations for determining the green time of the selected 

phase. In this study, the phase durations range from 0 to 45 seconds, which aligns with the range 

used in the ASC. Considering that the minimum green time is set to 5 seconds, the range of valid 

phase durations, denoted as 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑𝑖𝑖𝑑𝑑𝑙𝑙, is defined as {0,1, … ,40}. Therefore, the multi-discrete 

action space defined in this study is 𝐴𝐴 =  {(𝑛𝑛, 𝑡𝑡)|𝑛𝑛 ∈ {0,1, … ,7} and 𝑡𝑡 ∈ {0,1, … ,40}}. At each 

decision step, a two-element tuple is selected. The first element indicates the phase, and the 

second element indicates the duration of that phase. The phase-switching logic remains the same 

as in the discrete action space. The key distinction is that in this action space, the action not only 
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determines the next phase but also specifies the duration of that phase. Therefore, the decision-

making frequency is significantly reduced. 

• Reward function 

In the field of traffic signal control research, various reward functions have been utilized, 

including the negative number of vehicles in queues, the negative cumulative queue length, and 

the negative cumulative delay. In this study, the reward function used is the reduction in 

cumulative person delay between sequential decision steps. 

 𝐶𝐶𝑃𝑃𝐶𝐶𝑘𝑘 = ∑ 𝑑𝑑𝑙𝑙𝑘𝑘𝑙𝑙∈𝑆𝑆𝑘𝑘 ∗ 𝑂𝑂𝑙𝑙𝑘𝑘  (3.7) 

 𝑟𝑟𝑘𝑘 = 𝐶𝐶𝑃𝑃𝐶𝐶𝑘𝑘−1 − 𝐶𝐶𝑃𝑃𝐶𝐶𝑘𝑘 (3.8) 

Where 𝑘𝑘 represents the current decision step. 𝑛𝑛 is the CV index. 𝑆𝑆𝑘𝑘  denotes the set of 

CVs at decision step 𝑘𝑘. 𝐶𝐶𝑃𝑃𝐶𝐶𝑘𝑘 means the cumulative person delay in decision step 𝑘𝑘. 𝑟𝑟𝑘𝑘 denotes 

the reward in decision step 𝑘𝑘. At each decision step 𝑘𝑘, the controller obtains 𝑆𝑆𝑘𝑘, which is the set 

of CVs approaching the intersection within the given distance 𝐿𝐿𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙, and 𝑑𝑑𝑙𝑙𝑘𝑘, which represents 

the delays of CV 𝑛𝑛 at step 𝑘𝑘, as long as 𝑂𝑂𝑙𝑙𝑘𝑘, which represents the passenger occupancy of CV 𝑛𝑛. 

The cumulative person delay of CVs at step 𝑘𝑘, denoted as 𝐶𝐶𝑃𝑃𝐶𝐶𝑘𝑘, is calculated using equation 

3.7. The cumulative person delay of CVs at step 𝑘𝑘 − 1, denoted as 𝐶𝐶𝑃𝑃𝐶𝐶𝑘𝑘−1, is stored in the 

controller, and the reward at step 𝑘𝑘, denoted as 𝑟𝑟𝑘𝑘, is calculated using equation 2. It is worth 

noting that when the passenger occupancy of all CVs is set to 1 regardless of their vehicle type, 

the DRL agent is a typical traffic signal controller without TSP. 

3.2.1.2. Deep Q-Network 

Deep Q-Network (Mnih et al., 2015), as far as I know, is the most popular DRL 
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algorithm used in the field of traffic signal control. DQN is a value-based RL algorithm, where 

the state-action value function, known as the Q-function, plays a critical role. The Q-function 

evaluates the quality of a given action in a particular state. The optimal Q-function can be 

expressed by the following equation.  

 𝑄𝑄∗ (𝑠𝑠,𝑔𝑔) = 𝑚𝑚𝑔𝑔𝑚𝑚𝜋𝜋𝔼𝔼[𝑟𝑟𝑑𝑑 + 𝛾𝛾𝑟𝑟𝑑𝑑+1 + 𝛾𝛾2𝑟𝑟𝑑𝑑+2+. . . |𝑠𝑠𝑑𝑑 = 𝑠𝑠,𝑔𝑔𝑑𝑑 = 𝑔𝑔,𝜋𝜋] (3.9) 

Where 𝑠𝑠 refers to the current state, 𝑔𝑔 is the current action, 𝑟𝑟 is the reward. The 𝑄𝑄∗ (𝑠𝑠,𝑔𝑔) is the 

maximum value of the state-action pair (𝑠𝑠,𝑔𝑔) as determined by the policy 𝜋𝜋 . This value is 

calculated by summing the present values of all future rewards in each time step 𝑡𝑡. To determine 

the present value of a future reward, a discount rate denoted as 𝛾𝛾, is introduced. 

The optimal Q-function follows an important principle known as the Bellman equation. 

 𝑄𝑄∗ (𝑠𝑠,𝑔𝑔) = 𝔼𝔼𝑎𝑎′[𝑟𝑟 + 𝛾𝛾𝑚𝑚𝑔𝑔𝑚𝑚𝑎𝑎′𝑄𝑄∗ (𝑠𝑠′,𝑔𝑔′)|𝑠𝑠,𝑔𝑔] (3.10) 

This equation is straightforward. If we know 𝑄𝑄∗ (𝑠𝑠′,𝑔𝑔′), which represents the optimal value of 

the next state-action pair (𝑠𝑠′,𝑔𝑔′), then 𝑄𝑄∗ (𝑠𝑠,𝑔𝑔) can be achieved by selecting the action that 

maximizes the expected value of 𝑟𝑟 + 𝛾𝛾𝑄𝑄∗ (𝑠𝑠′,𝑔𝑔′). 

By iteratively using the Bellman equation, the optimal Q value can be estimated. However, in 

many scenarios, it may be impractical to employ this equation for value iteration. For example, 

when the state/action space is large for some real-world problems, the value iteration process can 

become computationally intensive. Therefore, algorithms that utilize functions, such as linear 

and non-linear functions, to approximate the Q-function have been developed. When a deep 

neural network with weights 𝜃𝜃, such as the deep convolutional neural network used in this study, 

is employed to approximate the Q value, it is referred to as a Deep Q-network. 

 𝑄𝑄(𝑠𝑠,𝑔𝑔;𝜽𝜽) ≈ 𝑄𝑄∗ (𝑠𝑠, 𝑔𝑔) (3.11) 
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The loss function used to update the weights of the neural network is as follows: 

 𝐿𝐿𝑜𝑜𝑠𝑠𝑠𝑠 = (𝑟𝑟 + 𝛾𝛾𝑚𝑚𝑔𝑔𝑚𝑚𝑎𝑎′𝑄𝑄(𝑠𝑠′,𝑔𝑔′;𝜽𝜽) − 𝑄𝑄(𝑠𝑠,𝑔𝑔;𝜽𝜽))2 (3.12) 

As depicted in Figure 3-3, a standard DQN agent training process consists of two 

important components, namely the experience relay and the target network. Training large neural 

networks may lead to divergence, as subsequent updates can be correlated. To address this issue, 

the experience replay is used, which is operated in the following manner. 

 

Figure 3-3 The Structure of DQN Used in the Study 

 Initialize a memory dataset 𝐶𝐶.  

 Store the experience (𝑠𝑠,𝑔𝑔, 𝑟𝑟, 𝑠𝑠′) obtained from the environment for each time step into 

the dataset. 

 Sample a mini-batch of experiences randomly and uniformly from 𝐶𝐶. 

 Train the agent using the mini-batch of experiences instead of the most recent 

experiences from the environment. 
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 The memory dataset 𝐶𝐶 stores only a fixed number of recent experiences. 

To avoid oscillations or divergence caused by using the same weights 𝜃𝜃 to calculate both 

the target value and predicted value in the loss function, a separated network called the target 

network 𝑄𝑄�  is employed to calculate the target value during the training process. Therefore, the 

loss function is reformulated as follows. 

 𝐿𝐿𝑜𝑜𝑠𝑠𝑠𝑠 = (𝑟𝑟 + 𝛾𝛾𝑚𝑚𝑔𝑔𝑚𝑚𝑎𝑎′𝑄𝑄(𝑠𝑠′,𝑔𝑔′;𝜽𝜽−) − 𝑄𝑄(𝑠𝑠,𝑔𝑔;𝜽𝜽))2 (3.13) 

The target network works as follows: every 𝐶𝐶 decision step, the weights in the network 𝑄𝑄 

are copied and used to update the target network 𝑄𝑄� . The target values 𝑦𝑦𝑖𝑖  for the following 𝐶𝐶 

updates are then generated based on the updated target network 𝑄𝑄� . 

In this study, SUMO is utilized as the simulation platform, which is the environment that 

interacts with the proposed agent.  

3.2.1.3. Proximal Policy Optimization 

Proximal Policy Optimization (PPO) is a model-free actor-critic DRL algorithm proposed 

by Schulman et al. (2017). PPO is improved based on Trust Region Policy Optimization (TRPO) 

introduced by Schulman, Levine, et al. (2015). The actor-critic algorithm has two key 

components, namely the actor and the critic. The actor, usually refers to as the policy network in 

DRL, is responsible for selecting actions based on the current state, with the goal of learning an 

optimal policy. The critic, often refers to as the value network in DRL, evaluates the quality of 

the action selected by the actor. 



 

 

57 

 

The policy can be interpreted as a set of rules used by the agent to choose actions based 

on the current state. The objective of the actor is to maximize the expected cumulative reward by 

optimizing the policy. This optimization process can be expressed as follows: 

 𝜋𝜋∗ = 𝑔𝑔𝑟𝑟𝑔𝑔max
𝜋𝜋

𝐽𝐽(𝜋𝜋)  (3.14) 

where 𝜋𝜋∗  denotes the optimal policy, and the function 𝐽𝐽(𝜋𝜋)  is used to calculate the 

expected cumulative reward. This optimization problem is solved by gradient ascent. In DRL, 

the policy is parameterized by a set of parameters, such as the weight and bias of a neural 

network. Therefore, it is often expressed as 𝜋𝜋𝜃𝜃, where 𝜃𝜃 refers to the parameter set. The gradient 

ascent process iteratively updates the parameters 𝜃𝜃 using the policy gradient ∇𝜃𝜃𝐽𝐽(𝜋𝜋𝜃𝜃) with a step 

size 𝛼𝛼, which can be expressed as the following equation: 

 𝜃𝜃𝑘𝑘+1 = 𝜃𝜃𝑘𝑘 + 𝛼𝛼∇𝜃𝜃𝐽𝐽(𝜋𝜋𝜃𝜃)|𝜃𝜃𝑘𝑘  (3.15) 

The most widely used equation to estimate the policy gradient is shown as follows: 

 ∇𝜃𝜃𝐽𝐽(𝜋𝜋𝜃𝜃) ≈ E𝑑𝑑�[∇𝜃𝜃 log𝜋𝜋𝜃𝜃 (𝑔𝑔𝑑𝑑|𝑠𝑠𝑑𝑑)𝐴𝐴𝑑𝑑�]  (3.16) 

where E𝑑𝑑� is the expectation that can be calculated using a batch of samples. 𝐴𝐴𝑑𝑑�  is an 

estimator of the advantage function at timestep 𝑡𝑡, which evaluates the quality of taking a specific 

action in a given state compared to the expected average performance. We employ Generalized 

Advantage Estimation (GAE) to approximate the advantage function, For implementation details 

of GAE, please refer to the paper of Schulman, Moritz, et al. (2015).  

In the implementation of the policy optimization method, a loss function is constructed to 

facilitate the automatic differentiation process. The loss function is as follows: 

 𝐿𝐿𝑃𝑃𝑃𝑃(𝜃𝜃) = E𝑑𝑑�[log𝜋𝜋𝜃𝜃 (𝑔𝑔𝑑𝑑|𝑠𝑠𝑑𝑑)𝐴𝐴𝑑𝑑�]  (3.17) 
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However, in practice, this vanilla policy gradient algorithm may lead to unstable policy 

updates. PPO is one of the algorithms developed to address this issue, which uses a simple clip 

operation to constrain the update size. The refined loss function is as follows: 

 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃(𝜃𝜃) = E𝑑𝑑�[min(
𝜋𝜋𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛�𝑔𝑔𝑑𝑑�𝑠𝑠𝑑𝑑�
𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜�𝑔𝑔𝑑𝑑�𝑠𝑠𝑑𝑑�

𝐴𝐴𝑑𝑑�, 𝑐𝑐𝑙𝑙𝑖𝑖𝑔𝑔 �
𝜋𝜋𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛�𝑔𝑔𝑑𝑑�𝑠𝑠𝑑𝑑�
𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜�𝑔𝑔𝑑𝑑�𝑠𝑠𝑑𝑑�

, 1 − 𝜀𝜀, 1 + 𝜀𝜀�𝐴𝐴𝑑𝑑�)]  (3.18) 

where 𝜋𝜋𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛(𝑔𝑔𝑑𝑑|𝑠𝑠𝑑𝑑) 𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜(𝑔𝑔𝑑𝑑|𝑠𝑠𝑑𝑑)⁄  denotes the probability ratio between the new policy 

and the old policy, and 𝜀𝜀 is a hyperparameter introduced to constrain the update size, usually set 

to 0.2. In this way, the ratio is constrained within a range determined by 𝜀𝜀, therefore limiting the 

magnitude of policy updates and preventing drastic changes that could lead to instability. 

Additionally, the loss function is augmented by incorporating the entropy bonus to encourage 

exploration. Entropy is used to measure the uncertainty or randomness of a policy. Higher 

entropy values indicate more diverse action selections. The entropy can be calculated using the 

following equation: 

 𝐻𝐻(𝜋𝜋𝜃𝜃(∙ |𝑠𝑠𝑑𝑑)) = −∑ 𝜋𝜋𝜃𝜃(𝑔𝑔|𝑠𝑠𝑑𝑑) log𝜋𝜋𝜃𝜃(𝑔𝑔|𝑠𝑠𝑑𝑑)𝑎𝑎∈𝐴𝐴   (3.19) 

Therefore, the loss function utilized for the policy optimization is formulated as follows: 

 𝐿𝐿𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑_𝑑𝑑(𝜃𝜃) = E𝑑𝑑�[𝐿𝐿𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃(𝜃𝜃) − 𝑐𝑐𝐻𝐻�𝜋𝜋𝜃𝜃(∙ |𝑠𝑠𝑑𝑑)�]  (3.20) 

where 𝑐𝑐 is the coefficient to adjust the impact of the entropy value. The critic network is 

denoted as  𝑉𝑉𝜔𝜔, with 𝜔𝜔 as the parameters of the critic network. The goal of the critic network is to 

minimize the mean squared error, which is given by the following equation: 

 𝐿𝐿𝑎𝑎𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑎𝑎_𝑑𝑑(𝜔𝜔) = mean∑(𝑟𝑟𝑑𝑑 + 𝛾𝛾𝑉𝑉𝜔𝜔(𝑠𝑠𝑑𝑑+1) − 𝑉𝑉𝜔𝜔(𝑠𝑠𝑑𝑑))2  (3.21) 
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where 𝑉𝑉𝜔𝜔(𝑠𝑠𝑑𝑑) denotes the value based on the state 𝑠𝑠𝑑𝑑 , which is the output of the critic 

network. 𝛾𝛾 is the discount factor with a range of [0, 1], and 𝑟𝑟𝑑𝑑 is the immediate reward received 

from the environment at time step 𝑡𝑡. 

3.2.1.4. Neural Network Construction 

Based on the state space and the DRL algorithm employed in the study, the neural 

network (NN) consists of three components: the feature extractor, the actor network, and the 

critic network. The feature extractor takes the observed state information from the environment 

as input and generates feature vectors. The actor network and the critic network process the 

output of the feature extractor, generating actions and values, respectively. The detailed 

architecture of the NN is depicted in Figure 3-4.  

In the feature extractor, we employ a convolutional neural network (CNN) similar to 

what was adopted by Mnih et al. (2015), with slight modifications to accommodate the size of 

the state space in our study. This CNN consists of five layers, including three convolutional 

layers, one flatten layer, and one fully connected layer. The first layer has 32 filters with a size of 

2*4 and a stride of 1*2. The second layer has 32 filters with a size of 2*3 and a stride of 1*2. 

The third layer has 32 filters with a size of 2*2 and a stride of 1*1. The output of the fourth 

layer, after being flattened, is a vector of length 3008. This vector is then processed by a fully 

connected layer with 128 units, resulting in an output vector of length 128. When the combined 

state space is used as input, the feature-based vector is concatenated with the output of the fifth 

layer, producing an output vector of length 144. ReLU activation functions are used in the CNN. 

The actor network and the critic network have the same architecture, consisting of two fully 

connected layers with 64 units and a ReLU activation function each, followed by an output layer. 
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When the DQN algorithm is adopted, only the critic network is used to output the Q value. When 

employing the PPO algorithm, both the actor and critic network are used. 

 

Figure 3-4 Illustration of the Neural Network Structure for Single-Agent PPO 

3.2.2. Multi-Agent Reinforcement Learning 

3.2.2.1. Decentralized Partially Observable Markov Decision Processes Formulation 

The traffic signal control problem for multiple intersections can be formulated as a 

Decentralized Partially Observable Markov Decision Process (DEC-POMDP). In this 

framework, decentralization involves the utilization of multiple agents, where each agent can 

only perceive a certain range of the environment and control either a single intersection or a 

subset of intersections. Within this system, each agent operates according to its individual 

Partially Observable Markov Decision Process (POMDP) and interacts with each other. A DEC-

POMDP can be defined as a tuple ⟨𝑆𝑆,𝐴𝐴,𝑂𝑂,𝑅𝑅,𝑃𝑃,𝑛𝑛, 𝛾𝛾⟩. 𝑆𝑆 is the state space, represents the set of 

possible states in the system. 𝐴𝐴 is the action space, 𝐴𝐴 = {𝑔𝑔𝑖𝑖, … ,𝑔𝑔𝑙𝑙} is the joint action of all the 
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agents. 𝑂𝑂 is the local observation space, 𝑜𝑜𝑖𝑖  =  𝑂𝑂(𝑠𝑠; 𝑖𝑖) denotes the partially observed information 

specific to agent 𝑖𝑖. 𝑅𝑅(𝑠𝑠,  𝐴𝐴) defines the shared reward function, which calculates the feedback 

according to the current state 𝑠𝑠 and the joint action 𝐴𝐴. 𝑃𝑃(𝑠𝑠′|𝑠𝑠,  𝐴𝐴) is the transition probability 

from 𝑠𝑠 to 𝑠𝑠′ given the joint action 𝐴𝐴. 𝑛𝑛 is the number of agents involving the DEC-POMDP. 𝛾𝛾 is 

the discount factor, which functions similarly to the discount factor in an MDP. 

• Local observation  

The local observation is a vehicle-based array state, which is the same as the setting in 

the isolated intersection scenario in section 3.2.1.1. In the DEC-POMDP framework, each agent 

𝑖𝑖 obtain its local observation 𝑜𝑜𝑖𝑖,𝑑𝑑 at decision time step 𝑡𝑡.  

• Global state  

The global state has two components and can be denoted as 𝑆𝑆𝑑𝑑 = {𝑜𝑜𝑑𝑑,𝑔𝑔𝑑𝑑}. 𝑜𝑜𝑑𝑑 is the set of 

the local observations from all the agents at decision step 𝑡𝑡, which can be expressed as 𝑜𝑜𝑑𝑑 =

�𝑜𝑜1,𝑑𝑑, … , 𝑜𝑜𝑙𝑙,𝑑𝑑�. 𝑔𝑔𝑑𝑑 is the set of the phase state of all the agents at decision step 𝑡𝑡, which can be 

expressed as 𝑔𝑔𝑑𝑑 = �𝑔𝑔1,𝑑𝑑, … ,𝑔𝑔𝑙𝑙,𝑑𝑑�.  Each phase state is represented using the one-hot encoding 

technique, forming a vector with a length equal to the number of phases plus a yellow phase and 

an all-red phase. For example, in a typical four-leg intersection with eight phases, the encoded 

vector would have a length of ten. 
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Figure 3-5 Illustration of Global State Representations for corridor in the Study 

• Action space 

Two types of action spaces are utilized in the study, namely discrete action space and 

multi-discrete action space. The settings of these action spaces are the same as defined in the 

isolated intersection scenario in section 3.2.1.1. Each agent 𝑖𝑖 selects its action 𝑔𝑔𝑖𝑖,𝑑𝑑  at decision 

step 𝑡𝑡. 

• Reward function 

In multi-agent scenarios, the reward function for each agent is still the difference in the 

cumulative person delay, the calculation process also follows the definition in section 3.2.1.1. 

3.2.2.2. Multi-Agent Actor Critic 

Traditionally, MARL can be implemented in two frameworks, i.e., centralized and 

decentralized. In centralized implementation, a single policy is trained to generate joint actions 

for all agents. However, this framework may face scalability challenges. On the other hand, 

decentralized implementation involves each policy optimizing its own reward independently. 
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While it can address scalability problems, it may suffer from instability issues due to the non-

stationary problem.  

We follow the study conducted by Yu et al. (2022), utilizing PPO as the training 

algorithm and employing the centralized training and decentralized execution (CTDE) 

framework in this study, as shown in Figure 3-6. In the CTDE framework, global observations 

are used as input for the centralized critic network during the training stage, outputting a more 

accuracy critic values, and therefore providing more precise guidance for the gradient update of 

the actor network. This strategy effectively mitigates the non-stationary issues. During the 

execution stage, only local observations are needed to generate actions for each agent, providing 

a robust solution to scalability concerns. The gradient update mechanism in this framework can 

be expressed mathematically as follows (Lowe et al., 2017). 

 ∇𝜃𝜃𝑖𝑖𝐽𝐽�𝜋𝜋𝜃𝜃𝑖𝑖� ≈ E[∇𝜃𝜃𝑖𝑖 log𝜋𝜋𝑖𝑖 (𝑔𝑔𝑖𝑖|𝑜𝑜𝑖𝑖)Q𝑖𝑖
𝜋𝜋(s,𝑔𝑔1, … ,𝑔𝑔𝑙𝑙)] (3.22) 

The above equation is derived from the classical policy gradient equation employed in 

policy-based RL. However, a key difference lies in the computation of Q values, where inputs 

are the global state 𝑠𝑠 and the joint actions of all agents, 𝑔𝑔1, … ,𝑔𝑔𝑙𝑙. Consequently, the Q value 

function takes the form of a centralized function Q𝑖𝑖
𝜋𝜋(s,𝑔𝑔1, … ,𝑔𝑔𝑙𝑙). In this study, we opt for the 

advantage function and employ the GAE method to approximate advantages. 
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Figure 3-6 Illustration of Centralized Critic and Decentralized Actor 

3.2.2.3. Neural Network Construction 

The neural network structure employed in this study is shown in Figure 3-7. The are also 

three major components, namely feature extractor, actor network, and critic network. The critic 

network receives a concatenated vector that incorporates the outputs of feature extractors along 

with the phase states of all agents. It then computes advantage values for each actor, forming a 

centralized critic network. This centralized critic network assesses the effectiveness of actions 

and guides the optimization process of the actor network. On the other hand, the actor network 

takes as input the output vector from the corresponding feature extractor of an individual agent. 

The output of the actor network is a vector containing probabilities for each possible action for 
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the specific agent. Operating in a decentralized manner, it focuses solely on the local 

observations of each agent. 

 

Figure 3-7 Illustration of the Neural Network Structure for Multi-Agent PPO 
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Chapter 4. Isolated Intersection 

This chapter focuses on the experimental settings and results analysis regarding isolated 

intersection scenarios. 

4.1. Traffic Configuration 

In order to evaluate the performance of the proposed traffic signal controllers, a 

simulation testbed is built using Simulation of Urban MObility (SUMO), an open-source traffic 

simulation software that can be controlled via the Traffic Control Interface (TraCI) by Python. A 

typical four-approach intersection of Central Avenue and Eastway Drive in Charlotte, North 

Carolina, U.S.A. is selected as the test intersection, as shown in Figure 4-1. Each approach has 4 

lanes. In the north and southbound approaches, there are two lanes for through traffic and one 

exclusive lane each for left-turn and right-turn traffic, respectively. In the east and westbound 

approaches, there are two dedicated left-turn lanes, one through lane, and one right-turn and 

through shared lane. The yellow time is set to 3 seconds and the red clearance time is 2 seconds. 

The speed limit for the south-north road is 45 mph and for the east-west road is 35 mph. Buses 

operate on a north-south route only. 

 

Figure 4-1 Layout for the Test Intersection 
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Table 4-1 Traffic Volumes of Each Travel Direction, veh/h 

Time 
period 

SB WB NB EB 
R T L R T L R T L R T L 

PM Peak 176 793 88 68 341 206 325 883 180 193 547 246 
Off-peak 152 707 36 40 319 235 122 541 138 128 197 91 

Note: SB=southbound; WB=westbound; NB=northbound; EB=eastbound; R=right turn; T=Through, L=Left turn. 

4.2. Simulation Settings 

The intelligent driving model (Treiber et al., 2000) and LC2013 Model (Erdmann, 2015) 

are employed to control the longitudinal and lateral movements of the vehicle, respectively. The 

car-following and lane-changing parameters are the same for both connected and unconnected 

vehicles. For traffic demand, the peak hour and off-peak hour volumes at the test intersection are 

used. The peak hour is 5 - 6 PM on Wednesday, April 21, 2021, and the off-peak hour is 9 - 10 

AM that day. The traffic volume data is obtained from the Charlotte Department of 

Transportation (CDOT) and is presented Table 4-1. The traffic flows generated in the simulation 

follow the Poisson distribution. Each simulation run lasts one hour, with a ten-minute warm-up 

period. 

Six traffic signal controllers are developed based on corresponding signal control 

strategies. Specific scenarios are established based on these basic simulation environments by 

considering factors such as traffic demand, bus occupancy, CV market penetration rate (MPR), 

and bus arrival headway. For simplicity, the passenger occupancy of cars is set to be one 

passenger per vehicle. The passenger occupancy of buses is also set as a constant, but it varies 

according to the specific scenario settings. The basic simulation environment conditions and the 

corresponding signal control strategies are detailed as follows.  
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Figure 4-2 Signal Phase Program Used in the Research 

• Pretimed Signal Controller (PSC): In this controller, a stage-based phase program is used, 

as shown in Figure 4-2(b). The signal timing for each phase is calculated using the Webster 

method (Koonce & Rodegerdts, 2008). Both buses and cars are human-driven vehicles 

(HDVs). 

• Actuated Signal Controller (ASC): A fully actuated signal control strategy is adopted in 

this controller. A typical National Electrical Manufacturers Association (NEMA) phase 

diagram is adopted, and the phase sequence is shown in Figure 4-2(a). The minimum and 

maximum green time are set following the signal plan obtained from the Charlotte 

Department of Transportation. Both buses and cars are HDVs. 

• Actuated Signal Controller with TSP Using the Traditional Detector (ATSP-T): In this 

controller, the bus detectors are placed 100 meters before the stop line in the south and north 

approaches. When a bus crosses the detector, the signal will be switched to the 

corresponding phase. Otherwise, the SPaT is controlled by fully actuated control strategy. 

The buses and cars are HDVs. 
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• Actuated Signal Controller with TSP Using CV (ATSP): Buses are CVs, and no bus 

detector is installed. When a bus approaches the intersection within 100 meters, the signal 

will be switched to the corresponding phase. Otherwise, the SPaT is controlled by fully 

actuated control strategy. The cars are HDVs. 

• GA Optimized Signal Controller with TSP (GA-TSP): The stage-based signal phase 

shown in Figure 4-2(b) is adopted in the GA optimizer. The decision variable is the duration 

of green time for each phase. The minimum green time for the left turn phases is 6 seconds 

and for the through phases it is 12 seconds. The maximum green time is 20 seconds for the 

left turn phases and 35 seconds for the through phases. Accordingly, the cycle length ranges 

from 56 seconds to 130 seconds. Buses are CVs, and the MPR of cars varies from 20% to 

100% in 20% intervals. For the parameters related to the genetic algorithm, the maximum 

generation is set to 250, the population size is 20, the probability of mutation is 0.7, and the 

probability of crossover is 0.7. Elitism is applied to retain the best solution in a generation. 

• DQN signal controller with TSP (DQN-TSP): In this controller, the SPaT is controlled by 

a DQN agent. All vehicles, including both buses and cars, are CVs, and hence, their real-

time positions and speeds are available. The communication range between CVs and the 

DQN agent is set to 350 meters. Note that in scenarios where the MPR is below 100%, the 

states of unconnected vehicles are not considered by our controller.  

In addition, we delve into the problem of robustness enhancement of the DRL-based 

traffic signal controllers in mixed traffic environments. To this end, we have further developed 

four DRL-based signal controllers, outlined as follows: 
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• Double DQN Signal Controller (DDQNSC): A DRL agent is implemented to control the 

traffic signal. The control algorithm employed in the agent is Double DQN (DDQN), which 

is known for its improved stability compared to the vanilla DQN algorithm. For detailed 

implementation of DDQN, please refer to the papers written by Mnih et al. (2015) and Van 

Hasselt et al. (2016). In this agent, the state space is the vehicle-based array state, the action 

space is the discrete action space, and the reward function is defined as described in section 

3.2.1.1.  

• PPO Signal Controller (PPOSC): PPOSC utilizes the same state space, action space, and 

reward function as in DDQNSC, but the control algorithm is PPO. 

• PPO Signal Controller with Multi-discrete Action (PPOSC-M): PPOSC-M utilizes the 

multi-discrete action space. Other than that, the state space, reward function, and control 

algorithm are the same as in PPOSC. 

• PPO Signal Controller with Multi-discrete Action and Combined State (PPOSC-M-C): 

PPOSC-M-C utilizes both the multi-discrete action space and the combined state space. The 

reward function and the control algorithm remain the same as in PPOSC. 

4.3. Training 

The DQN-TSP agent’s experience is stored in a replay memory, with a capacity of 

50,000 experiences, following a First-in-First-Out storage rule. The discount factor for the agent 

is set to 0.65, and the batch size for updating the model is set to 32. The training process employs 

the Adam optimizer with a learning rate of 0.001. The action selection process follows an ε-

greedy policy, where 𝜀𝜀 decreases as the number of episodes increases. The equation used to 

determine 𝜀𝜀 is presented below. 
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𝜀𝜀 =  0.01 +  (0.9 − 0.01)  ∗  𝑒𝑒𝑚𝑚𝑔𝑔(−0.1 ∗  𝑒𝑒𝑔𝑔𝑖𝑖𝑠𝑠𝑜𝑜𝑑𝑑𝑒𝑒)                            (4.1) 

The DQN-TSP agent employs a neural network consisting of three convolutional layers 

and three fully connected layers, as outlined in Table 4-2. The input obtained from the simulation 

testbed is an image-like representation with dimensions of 50*16*2, and the output is 8 actions 

representing 8 possible phases.  

Table 4-2 The Neural Network Structure of DQN-TSP 

Layer Filter size Stride Num Filters Activation 

Conv1 2*4 1*2 32 ReLU 

Conv2 2*3 1*2 32 ReLU 

Conv3 2*2 1*1 32 ReLU 

Fc4   128 ReLU 

Fc5   64 ReLU 

Fc6   8 Linear 
 

The simulations are run on a laptop equipped with an AMD Ryzen 7 5800H processor, 32 

GB of RAM, an NVIDIA GeForce RTX 3070 Laptop GPU, and the Windows 10 operating 

system. Two DQN-TSP agents are trained, one based on the peak hour traffic demand, and the 

other based on the off-peak hour traffic demand. The training time required for the peak agent 

and the off-peak agent is 6 hours and 3 hours, respectively. The training curves are shown in 

Figure 4-3. 
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Figure 4-3 Episode Reward Curves for Peak and Off-peak DQN-TSP Agents 

 

These DDQSC, PPOSC, PPOSC-M, PPOSC-M-C are also trained before evaluation to 

ensure stable performance. Specifically, they have been trained using both peak and off-peak 

demand scenarios with 100% MPR, generating a total of eight trained controllers. Python 

libraries used to implement these controllers include TracI, Gymnasium, Pytorch, and Stable-

baseline3. The Adam (adaptive moment estimation) optimizer is employed in the training 

process. The hyperparameters of both DDQN and PPO have been well-tuned, and their values 

are presented in Table 4-3. 
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Table 4-3 Hyperparameters used for DDQN and PPO 

Hyperparameter DDQN PPO 

Training steps 400,000 400,000 
Discount factor 0.65 0.65 

Learning rate 0.0003 0.0001 (actor), 0.00005 (critic) 
Buffer size 50,000 - 

Batch size 32 64 
Target update interval 200 - 
Exploration rate Decrease from 1 to 0.01 - 

Clip range - 0.2 
Entropy coefficient - 0.01 

Max gradient update - 0.5 
 

Their training performance under both peak and off-peak demand with 100% MPR is 

shown in Figure 4-4. While all controllers can converge to similar rewards, the PPO algorithm 

exhibits faster convergence and more stable performance compared to the DDQN algorithm, 

particularly in peak traffic conditions. The utilization of the multi-discrete action space 

effectively accelerates the training process. Additionally, employing both the multi-discrete 

action space and the combined state space ensures a more stable training performance. 
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Figure 4-4 Mean Episode Reward Curves for DRL-based TSC Controllers under Peak and 

Off-peak Conditions 

4.4. Results Analysis 

The experimental results are presented in two sections. The first section focuses on the 

performance of the DRL-based signal controllers concerning TSP strategy. The second section 

focuses on evaluating the robustness of DRL-based signal controllers in mixed traffic 

environments, without considering TSP. 

4.4.1. TSP Performance Evaluation 

The performance metrics used to evaluate traffic performance are average bus delay, 

average car delay, and average person delay. Each scenario is run for a simulation time of one 

hour, with a warm-up period of ten minutes that is excluded from the analysis of the results. To 
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ensure a more accurate evaluation of performance, the metrics for each scenario are averaged 

over fifty runs with different seeds. In addition, the random seeds are kept consistent across 

scenarios to guarantee a fair comparison. The DQN-TSP agent’s performance is evaluated using 

peak and off-peak agents, respectively, for peak and off-peak traffic demands. 

4.4.1.1. Performance Evaluation 

The performance of six basic scenarios with different signal control strategies is 

evaluated and compared, with the performance of PSC serving as the baseline. In these 

scenarios, each bus is set to have a passenger occupancy of 30 passengers, while the number of 

passengers in each car is set to 1. The average bus arrival headway is set to five minutes. A 

detailed comparison of these six basic scenarios is shown in Table 4-4. 
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Table 4-4 Comparison of Average Delay for Basic Scenarios at Isolated Intersection Considering TSP 

Demand Type PSC ASC ATSP-T ATSP GA-TSP DQN-TSP 
Peak Average Bus Delay (s) 41.43 38.67 18.61 16.94 30.75 19.43 

 Delay Change  -6.66% -55.08% -59.11% -25.78% -53.10% 
 Average Car Delay (s) 40.19 35.48 38.02 36.14 36.27 35.24 
 Delay Change  -11.72% -5.40% -10.08% -9.75% -12.32% 
 Average Person Delay (s) 40.38 35.97 35.96 33.18 35.68 32.80 
 Delay Change  -10.92% -10.93% -17.83% -11.63% -18.77% 

Off-peak Average Bus Delay (s) 28.52 27.80 13.73 12.37 22.13 13.10 
 Delay Change  -2.52% -51.86% -56.63% -22.41% -54.07% 
 Average Car Delay (s) 27.31 25.49 26.00 25.27 27.94 23.32 
 Delay Change  -6.66% -4.80% -7.47% 2.31% -14.61% 
 Average Person Delay (s) 27.57 25.99 24.16 22.50 27.07 21.13 
 Delay Change   -5.73% -12.38% -18.39% -1.82% -23.36% 
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The DQN-TSP has the best performance in terms of average person delay under both 

peak and off-peak traffic demand conditions. Compared to the baseline, the proposed DQN-TSP 

controller reduces average person delay by 18.77% and 23.36% in peak and off-peak conditions, 

respectively. The larger reduction in the off-peak condition suggests that there may be more 

room for improvement in traffic efficiency under lower traffic demand conditions. The ATSP has 

the lowest average bus delay in both peak and off-peak conditions, reducing by 59.11% and 

56.63% respectively compared to the baseline. However, in the peak condition, the average car 

delay of ATSP is 36.14 seconds, slightly higher compared to both ASC and DQN-TSP 

controllers. It is due to the unconditional priority given to buses in ATSP. Yet, during off-peak, 

ATSP’s average car delay of 25.27 seconds is slightly lower than ASC’s, implying that granting 

priority to buses has a less negative impact on other traffic in low-traffic demand conditions. In 

addition, the comparison of the two actuated control strategies with TSP indicates that the CV 

technology offers a better performance than just using traditional fixed detectors to sense bus 

arrivals. As for the TSP-GA scenario, the average bus delay decreases by 25.78% and the 

average car delay decreased by 9.75% during the peak hour. The average bus delay is reduced by 

22.41% and the average car delay increases by 2.31% during the off-peak hour. These results 

indicate that the GA optimizer with TSP performs better in peak hours than in off-peak hours. 

The detailed impacts of the six basic control strategies on average vehicle delays in each 

traffic movement direction are shown in Figure 4-5. Right-turn movements are not presented as 

signal control strategies have little impact on these directions. In peak traffic demand, PSC and 

ASC provide balanced services in all directions. Meanwhile, those TSP controllers need to grant 

priority to buses, resulting in longer waiting times for vehicles in conflicting movements, such as 
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southbound and northbound left turns. Such adverse impacts are mitigated during off-peak, 

which makes sense. However, compared to ATPS-T and ATSP, DQN-TSP can provide more 

balanced services to vehicles in conflicting directions. For example, in the ATSP scenario, the 

average vehicle delay in southbound and northbound left turns is 56.01 and 76.56 seconds, 

respectively. Meanwhile, in the DQN-TSP scenario, the average vehicle delay in both directions 

is about 64 seconds. In the off-peak traffic demand condition, all three scenarios, except for PSC 

and GA-TSP, maintain similar performance in all directions as there is no need to sacrifice other 

directions to prioritize buses. The unbalanced performance in PSC and GA-TSP during off-peak 

is due to an imbalance in traffic volume, with westbound left-turn having 2.6 times the volume of 

eastbound left-turn, but they still share the same phase. 

Compared to PSC, during the peak hour, average vehicle delays of GA-TSP are reduced 

by 12-25% in almost all left turn directions, except for a 19.62% increase in the northbound left 

turn. This is understandable, as the traffic demand for northbound left turn is more than twice 

that of southbound left turn. Regarding the through traffic, the average vehicle delay is reduced 

by 19.39% and 13.53% in southbound and northbound, respectively. During the off-peak hour, 

average vehicle delays for GA-TSP decrease in southbound through, westbound left, and 

northbound through. The average vehicle delays of other travel directions increase by ranging 

from about 7% to 13%. 

These results indicate that GA-TSP and DQN-TSP have the potential to provide 

conditional priority to buses while minimizing the negative impact on conflicting traffics. 

However, the DQN controller outperforms the GA controller in all metrics.  
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Note: SB=Southbound, WB=Westbound, NB=Northbound, EB=Eastbound, T=Through, L=Left turn. 

Figure 4-5 Average Vehicle Delay in Each Direction of Basic Scenario Considering TSP 

4.4.1.2. Sensitivity Analysis 

• CV Market Penetration Rate 
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In the basic scenario, we assume that both cars and buses are CVs, so all the real-time 

traffic information of vehicles is available. However, as CV technology is still in its early stages 

of development, it will take many years for a fully CV environment to become a reality. 

Furthermore, due to privacy concerns, 100% market penetration of CVs may never be reached. 

Thus, it is crucial to investigate the impact of the CV market penetration rate on the performance 

of the proposed controllers. Ten scenarios have been designed, covering both peak and off-peak 

traffic demand conditions, with MPR ranging from 20% to 100% in increments of 20%. Other 

settings are the same as in the basic scenarios.  

The results shown in Figure 4-6 illustrate that, with the increase in MPR, the performance 

of the proposed controllers improves across all metrics and scenarios. During the peak hour, the 

average bus delay is lower than the baseline, even with the MPR being as low as 20%. In off-

peak hours, the DQN-TSP controlled average bus delay is lower than the baseline at an MPR of 

40%, whereas the GA-TSP controlled average bus delay outperforms the baseline at an MPR of 

20%. This suggests that DQN-TSP requires a certain threshold of information to ensure 

satisfactory performance, while the performance of GA-TSP is more robust than DQN-TSP in 

low MPR environments. These results are consistent with findings from the broader field of RL 

research, indicating the partially observable issue is a research topic worthy of attention. When 

controlled by DQN-TSP, during peak hours, the average person delay is lower than the baseline 

when the MPR exceeds 60%. Furthermore, even with an MPR as low as nearly 40% in off-peak 

hours, the performance in terms of average person delay is better than the baseline. These results 

suggest that the proposed DQN controller also has a certain level of robustness even when only 

partial traffic information is available.  
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Figure 4-6 Sensitivity of Controllers to CV Market Penetration Rate at Isolated 

Intersection 

• Bus Passenger Occupancy 

We all know in the real world, the passenger occupancy of buses, which can be easily 

obtained through CV technology, varies from bus to bus. To study the sensitivity of the proposed 

controllers to changes in bus occupancy, we conduct experiments where the bus occupancy is 
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varied while all other settings remain the same as in the basic scenarios. In this sensitivity 

analysis, the number of passengers on each bus is different in each scenario, including 1 

passenger per bus, 10 passengers per bus, 30 passengers per bus, 50 passengers per bus, and 70 

passengers per bus. The results shown in Figure 4-7 indicate that, as the bus occupancy 

increases, both the average bus delay and average person delay decrease during both peak and 

off-peak hours. At the same time, the average car delay experiences a slight increase. 

Additionally, even as bus occupancy continues to increase, the increase in average car delays 

does not accelerate, while the decline in average bus delays becomes more moderate. In addition, 

compared to DQN-TSP, the GA-TSP controllers exhibit lower sensitivity. When the bus 

occupancy is greater than 10 passengers per vehicle, the average bus delays for GA-TSP largely 

remain constant, especially during peak hours. These findings underscore the superior capability 

of the proposed DQN-TSP controllers in handling fluctuations in bus occupancy, a crucial 

feature that enhances their suitability for real-world application. 
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Figure 4-7 Sensitivity of Controllers to Bus Occupancy at Isolated Intersection 

• Bus Arrival Headway 

In this part, the impact of bus arrival headway on the effectiveness of the proposed 

controllers is explored by considering five different headways, including 2 minutes, 5 minutes, 

10 minutes, 15 minutes, and 30 minutes, under two different traffic demand conditions. The rest 

of the scenario settings are in line with the basic scenarios. As illustrated in Figure 4-8, an 
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increase in bus arrival headway results in a decrease in the average car delay and an increase in 

the average person delay. Meanwhile, the average bus delay also decreases a little. This aligns 

with expectations, as with the increase in headway, fewer buses are traveling on the road, 

allowing the traffic signal to give more consideration to the cars. As the headway increases, the 

gap between the average person delay and average car delay becomes closer. However, the 

impact of changes in bus arrival headway on traffic performance is not significant. 
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Figure 4-8 Sensitivity of Controllers to Bus Arrival Headway at Isolated Intersection 

4.4.2. Robustness Evaluation 

In this section, we focus on evaluating the robustness performance of DRL-based signal 

controllers in mixed traffic environments without considering TSP. We have developed four 

DRL-based controllers, i.e., DDQNSC, PPOSC, PPOSC-M, and PPOSC-M-C. Their settings are 

detailed in previous sections. 

4.4.2.1. Comparison of Basic Scenarios 

Firstly, we compare traffic performance in basic scenarios in terms of average vehicle 

delay. All settings remain the same except for differences in traffic demand and control 

strategies. The performance of PSC is used as the baseline for comparison. As shown Table 4-5, 

all four DRL-based controllers outperform these two traditional controllers under both peak and 

off-peak conditions in terms of the average delay. PPO-based controllers perform slightly better 

than DDQNSC. PPOSC-M shows the best performance in the peak scenario, with a 24.29% 

reduction in average delay compared to the baseline. PPOSC-M-C has the best performance in 

the off-peak scenario, with a 27.24% reduction of average delay compared to the baseline. The 

standard deviations of the average delay among 50 simulation runs demonstrate that PPOSC-M 

has the most stable performance in the off-peak scenario. In peak scenarios, PSC provides the 

most stable service while PPO-based controllers show almost the same level of stable 

performance. These results indicate that PPO-based controllers, especially PPOSC-M and 

PPOSC-M-C, can provide better service while ensuring good stability. 
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Table 4-5 Performance Comparison of Basic Scenarios without TSP 

Type 
Peak 

PSC ASC DDQNSC PPOSC PPOSC-M PPOSC-M-C 
Average Delay (s) 39.90 34.58 33.47 31.90 30.21 30.37 

SD 0.80 0.95 1.38 0.97 1.06 0.99 
Delay Change  -13.34% -16.12% -20.06% -24.29% -23.89% 

Type 
Off-peak 

PSC ASC DDQNSC PPOSC PPOSC-M PPOSC-M-C 
Average Delay (s) 27.35 25.21 22.24 22.49 19.97 19.90 

SD 0.65 0.73 0.79 0.63 0.56 0.61 
Delay Change  -7.84% -18.69% -17.77% -27.00% -27.24% 

 

As presented in Table 4-1, the traffic volumes in the real world are unbalanced, such as 

the northbound left-turn volume being more than 2 times higher than the southbound left-turn 

volume during the peak hour. To evaluate the effectiveness of traffic signal controllers in a more 

comprehensive manner, it is necessary to investigate vehicle delays in different turning 

movements. Figure 4-9 illustrates the average delay of each turning movement under basic 

scenarios for each controller. Right-turn Delays are excluded from the comparison as they have 

little to do with the controller’s behavior. In general, left-turning vehicles experience longer 

delays compared to those traveling through. In terms of service balance across all directions, the 

traditional controllers, PSC and ASC, outperform the DRL-based controllers. In peak scenarios, 

DDQNSC exhibits the least balanced service, with a maximum delay difference of 42.33 seconds 

between the northbound left-turn (71.73 s) and the westbound through (29.40 s). Similarly, in 

off-peak scenarios, DDQNSC also provides the least balanced service, with a maximum delay 

difference of 29.91 seconds between the southbound left-turn (45.07 s) and the northbound 

through (15.16 s). However, PPO-based controllers, especially those using multi-discrete action 
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space, namely PPOSC-M and PPOSC-M-C, can provide nearly the same level of balancing 

services as traditional controllers. 

Based on these comparisons, PPO-based controllers using multi-discrete action space 

have the most favorable performance. They not only demonstrate the most effective performance 

in terms of overall average delay but also exhibit a good balance in serving vehicles traveling in 

different directions. 

 

Note: SB=Southbound, WB=Westbound, NB=Northbound, EB=Eastbound, T=Through, L=Left turn. 

Figure 4-9 Average Delays in Each Turning Movement of Basic Scenarios without TSP 
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4.4.2.2. Comparison of Mixed Traffic Scenarios 

The DRL-based controllers heavily rely on traffic information obtained from CV 

technologies. However, achieving a pure CV environment may take a long time or may never be 

able to realize. It is more realistic to consider a mixed traffic environment where both CVs and 

NCVs travel on the road. Thus, it is crucial to evaluate the impact of CV’s MPR on the 

performance of DRL-based controllers, as a controller that remains robust in mixed traffic 

environments would be more desirable. The statistical comparison of these DRL-based 

controllers, which are training in scenarios where the MPRs of CV are 100%, is depicted in 

Figure 4-10 and Figure 4-11.  
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Figure 4-10 Delay Statistics under Different MPRs in Peak Scenarios at Isolated 

Intersection 
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Figure 4-11 Delay Statistics under Different MPRs in Off-peak Scenarios at Isolated 

Intersection 

In general, PPO-based controllers utilizing the multi-discrete action space have more 

robust performance regardless of the variation of MPR. This demonstrates that the 

implementation of the multi-discrete action space in PPO-based controllers is well suited for 

adoption in the field of TSC, especially in mixed traffic environments. This advantage may be 

due to the reduced frequency of decision-making, which leads to a significantly decreased 

sensitivity to the information obtained. 
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In addition, PPOSC-M-C outperforms PPOSC-M in terms of robustness. PPOSC-M-C 

can provide better services to NCVs while providing the same level of services to CVs compared 

to PPOSC-M, especially in low MPR scenarios. For example, in the peak demand with a 20% 

MPR scenario, the NCVs’ average delay (36.92 s) is only 2.96 seconds greater than CVs’ 

average delay (33.96 s) when controlled by PPOSC-M-C. In contrast, the average delay gap is 

9.62 seconds between NCVs (44.86 s) and CVs (35.24 s) when controlled by PPOSC-M. This 

difference is even more obvious in the off-peak demand with a 20% MPR scenario, where the 

delay difference between NCVs and CVs is 3.22 seconds with PPOSC-M-C and 15.33 seconds 

with PPOSC-M. Besides, when using PPOSC-M-C, even in scenarios with as low as 20% MPR, 

the average delays of both CVs and NCVs are less than the baseline, represented by the average 

delays in scenarios controlled by the pretimed controller (39.90 s in the peak scenario and 27.35 

s in the off-peak scenario). These results demonstrate that the implementation of the combined 

state space significantly enhances robustness in mixed traffic environments. 

The comparison exhibits a notable deterioration in the performance of PPOSC in 

scenarios of 20% MPR, even compared to DDQNSC. However, in other scenarios, PPOSC and 

DDQNSC show similar levels of performance. This phenomenon suggests that PPO is more 

sensitive to the information it can observe compared to DDQN. Nevertheless, this issue can be 

effectively addressed by implementing the multi-discrete action space and the combined state 

space. This enhancement is likely due to the utilization of a broader set of actions and states, 

leading to improved adaptability across different scenarios, including those with sparse 

information availability. The results also indicate that, while all vehicles will experience reduced 

waiting times compared to traditional controllers, NCVs are expected to have longer average 



 

 

92 

 

waiting times than CVs. This fact can be interpreted in a positive way, as suggested by Zhang et 

al. (2021), where this difference can incentivize people to equip their vehicles with connected 

functions and be more willing to share real-time vehicle information. 
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Chapter 5. Corridor 

This chapter focuses on the experimental settings and results analysis in corridor 

scenarios. 

5.1. Traffic configuration 

Two corridor scenarios are constructed to evaluate the performance of MARL-based 

signal controllers: a hypothetical scenario and a real-world scenario.  

The hypothetical corridor consists of five identical intersections along the east-westbound 

direction, as shown in Figure 5-1. The distance between intersections is 500 meters. Each 

intersection is a four-leg intersection, with approaching roads having three lanes: one right-turn 

lane, one left-turn lane, and one through lane, as shown in Figure 5-2. The speed limit is 45 mph, 

which is 20 m/s. Buses travel in both the eastbound and westbound directions. Bus stops are 

positioned downstream of the intersections. The bus arrival headway is set at 5 minutes, which is 

implemented in the simulation by the time interval between buses entering the road network.  

 

Figure 5-1 The Layout of the Hypothetical Corridor 
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Figure 5-2 The Layout of the Hypothetical Intersection 

The real-world corridor is modeled after the Central Avenue corridor located east of 

downtown Charlotte, North Carolina, USA. Five consecutive intersections have been selected 

and are listed from west to east: Central Avenue & Eastcrest Drive, Central Avenue & Briar 

Creek, Central Avenue & Eastway Drive, Central Avenue & Kilborne Drive, and Central 

Avenue & Rosehaven Drive. The corridor layout is illustrated in Figure 5-3. The distances 

between these intersections vary, ranging from 400 meters to 875 meters. The intersection 

layouts are further detailed in Figure 5-4. Among them, Intersection 1 is a T-shaped intersection, 

while the other intersections are four-leg intersections with varying numbers of approaching 

lanes and different channelization schemes. Otherwise, all other traffic settings remain consistent 

with those in the hypothetical corridor scenario. 
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Figure 5-3 The Layout of the Real-World Corridor Scenario 
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Figure 5-4 Layouts of the Intersections in the Real-World Corridor Scenario 

5.2. Simulation Settings 

We investigate two levels of traffic demand, namely high demand and low demand. In 

the hypothetical scenario, under high demand conditions, the traffic flow entering each boundary 

road is set at 850 veh/h, resulting in a total traffic volume of 10,200 veh/h along the corridor. In 

low demand conditions, 400 vehicles are inserted into each boundary road per hour, resulting in 

a total traffic demand of 4800 veh/h. Within the intersections, each approach road has the same 

turn ratio: a left-turning ratio of 10%, a through ratio of 75%, and a right-turning ratio of 15%.  

For the real-world scenario, the peak hour volumes (representing high demand) and off-

peak hour volumes (representing low demand) at the test corridor are utilized. The peak hour is 

from 5 to 6 PM on Wednesday, April 21, 2021, while the off-peak hour is from 9 to 10 AM on 
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the same day. Traffic volume data is obtained from the Charlotte Department of Transportation 

(CDOT) and is presented Table 5-1. The traffic flows generated in the simulation follow a 

Poisson distribution. Each simulation run lasts one hour, with a ten-minute warm-up period. 

Table 5-1 Traffic Volume data in the Real-world Scenario, veh/h 

Int. Demand SB WB NB EB 
R T L R T L R T L R T L 

1 PM Peak - - - - 583 3 62 - 29 50 984 - 
Off-peak - - - - 495 3 28 - 21 17 354 - 

2 PM Peak 12 10 8 11 564 166 251 5 140 179 908 2 
Off-peak 3 6 6 1 421 158 68 9 92 107 324 2 

3 PM Peak 176 793 88 68 341 206 325 883 180 193 547 246 
Off-peak 152 707 36 40 319 235 122 541 138 128 197 91 

4 PM Peak 77 52 246 193 466 66 105 101 23 10 808 123 
Off-peak 79 42 128 116 486 41 24 39 8 12 298 51 

5 PM Peak 41 10 50 23 676 101 38 27 66 69 1011 76 
Off-peak 44 9 27 21 560 73 23 16 41 22 416 26 

Note: SB=southbound; WB=westbound; NB=northbound; EB=eastbound; R=right turn; T=Through, L=Left turn. 
 

To comprehensively evaluate the effectiveness of the proposed MARL-based signal 

controllers, we have developed nine traffic signal controllers employing various signal control 

strategies. Specific settings for each controller are detailed below. 

• Pretimed Signal Controller (PSC): The intersections are controlled by pretimed signal 

controllers utilizing the stage-based phase program, as shown in Figure 4-2(b). The signal 

timings are calculated using the Webster method (Koonce & Rodegerdts, 2008), based on 

the corresponding traffic volumes.  

• Actuated Signal Controller (ASC): The intersections are controlled by fully actuated 

signal controllers, employing a typical National Electrical Manufacturers Association 

(NEMA) phase diagram. The phase sequence is shown in Figure 4-2(a).  

• Actuated Signal Controller with TSP Using CV (ATSP): The intersections are controlled 

by fully actuated signal controllers, identical to ASC. However, a TSP strategy is activated 
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when a bus approaches within 100 meters of the intersection. The TSP strategy implemented 

is an unconditional, active, rule-based strategy. Specifically, the traffic signal will switch to 

the appropriate phase upon activation to favor the buses progress. The buses are CVs and 

cars are HDVs. 

The above three controllers represent conventional traffic signal controllers widely used 

in real-world practice. Their performance serves as baselines for real-world implementations. 

• Max Pressure Controller (MP): This controller utilizes the Max Pressure strategy to 

control the SPaT at each intersection. Proposed by Varaiya (2013), this strategy introduces 

“pressure” as a metric to assess the traffic state at intersections. At each decision step, the 

phase with the maximum “pressure” will be chosen. Originally, “pressure” was defined as 

the product of link capacity and the difference in queue length between the input and the 

output links. Various formulations exist for pressure calculation. In this study, we employ 

the method proposed in Wei et al. (2019).  

• Max Pressure Controller with TSP (MP-TSP): The SPaT at each intersection is 

controlled by the MP controller. However, this controller slightly modifies the pressure 

calculation by adding weights to buses. In this way, bus delays can be reduced. 

• Longest Queue First Controller (LQF): Utilizing the Longest Queue First strategy 

introduced by Wunderlich et al. (2008), this controller regulates signals at each intersection 

with a straightforward control logic. At each decision step, the current queue length for each 

phase is obtained, and then the phase with the longest queue length is selected.  

• Longest Queue First Controller with TSP (LQF-TSP): Similar to MP-TSP, this controller 

modifies the queue length calculation by adding weights to buses. 
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The above four controllers employ decentralized control strategies, and their decision-

making processes have low computational cost, and therefore are easily scalable. 

• Multi-agent PPO (MAPPO): This controller adopts the MARL framework to manage the 

SPaT at intersections. The control algorithm is PPO with necessary modifications to be 

compatible with multi-agent systems. Configurations pertaining to the global state, local 

observation, action space, and reward function are detailed in section 3.2. 

• Multi-agent PPO with Multi-discrete action (MAPPO-M): MAPPO-M utilizes the multi-

discrete action space. Aside from this modification, it shares the same configurations as 

MAPPO. 

5.3. Training 

Eight MARL controllers are trained, incorporating variations in controller configurations 

(MAPPO and MAPPO-M), corridor layouts (hypothetical corridor and real-world corridor), and 

traffic demands (high demand and low demand). Critical Python libraries used to implement 

these controllers include TracI, Gymnasium, PettingZoo, Pytorch, and RLlib. The Adam 

(adaptive moment estimation) optimizer is employed in the training process. The 

hyperparameters for both MAPPO and MAPPO-M have been well-tuned, and their values are 

presented in Table 5-2. All the MARL controllers are trained on a machine with Intel Core i7-

11700 CPU, 32 GB of RAM, NVIDIA GeForce RTX 3080, and the Ubuntu 22.04.3 LTS 

operating system. 

 

 

Table 5-2 Hyperparameters used for MAPPO and MAPPO-M 
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Hyperparameter Hypothetical 
Scenario Real-world Scenario 

Training episode 1000 1000 
Discount factor 0.9 0.85 
Learning rate 0.001 - 0.0003 0.001 - 0.0005 

Train batch size 2048 2048 
Batch size 256 256 

Number of SGD iteration 3 3 
Value function loss coefficient 0.5 0.5 

Clip range 0.2 0.2 
Entropy coefficient 0.01-0.001 0.01-0.001 

Max gradient update 0.5 0.5 
 

Their training performance for two types of corridors under both high and low traffic 

demand with 100% MPR is depicted in Figure 5-5 and Figure 5-6. MAPPO exhibits faster 

convergence and more stable performance compared to MAPPO-M, particularly under high-

demand conditions. The utilization of the multi-discrete action space might make the training 

process more challenging in multi-agent systems, which differs from the phenomenon observed 

in single-agent systems in the previous chapter. 
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Figure 5-5 Mean Episode Reward Curves for MARL-based controllers under Peak and 

Off-peak Conditions in the Hypothetical Scenario 
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Figure 5-6 Mean Episode Reward Curves for MARL-based controllers under Peak and 

Off-peak Conditions in the Real-world Scenario 
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5.4. Results Analysis 

5.4.1. Performance Evaluation 

We employ four metrics to comprehensively evaluate the performance of the controllers 

in corridor scenarios, with the performance of PSC serving as the baseline.  

• Average travel time (ATT): The average travel time for all assessed targets from entering 

the road network to exiting the road network. 

• Average delay (AD): The average delay for all assessed targets travel in the road network. 

• Average speed (AS): The average speed for all assessed targets in the road network. 

• Average number of stops (ANS): The average number of stops for all assessed targets in 

the road network, excluding scheduled stops such as bus stops at the bus station. 

A detailed performance comparison of the nine controllers in hypothetical corridor 

scenarios is presented in Table 5-3 and Table 5-4, while Table 5-5 and Table 5-6 display the 

results in real-world corridor scenarios. 

5.4.1.1. Performance of Buses 

First, the performance metrics of buses are examined. MAPPO-M demonstrates the best 

performance in terms of ATT, AD, AP, and ANS in almost all scenarios, regardless of testbeds 

and traffic demand conditions. 

In the hypothetical corridor scenarios, when compared with the baseline, MAPPO-M 

reduces ATT, AD, and ANS by 52.17%, 78.26%, and 65.86%, respectively, under the high-

demand condition. In low-demand conditions, it reduces ATT, AD, and ANS by 12.38%, 
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36.04%, and 49.75%, respectively. Additionally, the AS of buses increased by 108.77% and 

13.26% under high and low demand conditions, respectively.  

In the real-world corridor scenarios, compared to the baseline, MAPPO-M reduces ATT, 

AD, and ANS by 21.78%, 51.67%, and 62.18%, respectively, during peak hours. In addition, AS 

is increased by 26.83%. During off-peak hours, compared with the baseline, ATT and AD 

decrease by 21.37% and 52.35%, respectively, while AP increased by 26.85%. When controlled 

by MAPPO-M, the ANS during off-peak hours is 1.57, slightly higher than ATSP but still better 

than the baseline with a reduction of 66.55%. Additionally, MAPPO also significantly improves 

the performance of buses in terms of mobility regardless of the testbeds and traffic demands, 

although its performance is slightly worse than MAPPO-M.  

5.4.1.2. Performance of Cars 

Regarding the performance of cars, fully actuated controllers exhibit superior 

performance.  

In hypothetical scenarios, under high demand, ASC reduces ATT and AD by 13.29% and 

24.19%, respectively. In low demand scenarios, ATSP performs the best, achieving reductions of 

8.63% in ATT and 22.44% in AD. MP demonstrates the best performance in AS, with increases 

of 6.05% in high-demand and 5.89% in low-demand. MP also achieves the least ANS in the low-

demand condition, which is 0.92, while PSC has the least ANS in the high demand condition, 

with a value of 1.04.  

In real-world scenarios, fully actuated controllers, ASC and ATSP, continue to show the 

best performance in terms of ATT, AD, and AS. During peak hours, ASC reduces ATT and AD 

by 6.36% and 15.39%, respectively, and increases AS by 5.78% compared to the baseline. 
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During off-peak hours, ATSP achieves reductions of 5.18% in ATT and 15.20% in AD, with an 

increase in AS by 4.78%. However, MAPPO-M outperforms other controllers in terms of ANS 

in both peak and off-peak conditions.  

In terms of car performance, ASC performs the best in high-demand scenarios, while 

ATSP excels in low-demand scenarios. This is because in low-demand conditions, prioritizing 

buses has a less negative impact on other traffic. Additionally, MARL-based controllers, 

MAPPO and MAPPO-M, provide almost the same level of services to cars, which is desirable.  

5.4.1.3. Performance of Person  

In the hypothetical corridor scenarios under high-demand conditions, MAPPO-M 

outperforms other controllers in terms of ATT and AD, reducing ATT by 22.15% and AD by 

38.92% compared to the baseline. It also ranks second in terms of AS and ANS among all 

controllers. Under low-demand conditions, ATSP has the best performance in terms of ATT, AD, 

and AS. Compared to the baseline, it reduces the ATT and AD by 7.72% and 20.89% 

respectively, while increasing AS by 5.28%. MAPPO-M has the least ANS, with a value of 0.98. 

MAPPO shows a similar level of capability to MAPPO-M, though with a slightly worse 

performance.  

In real-world corridor scenarios, ATSP outperforms other controllers in terms of ATT, 

AD, and AS, while MAPPO-M has the best performance in terms of ANS. However, MARL-

based controllers perform nearly as well as ATSP. 

Overall, MAPPO-M and MAPPO demonstrate the best performance in terms of bus 

metrics, while ASC and ATSP excel in car metrics. Regarding metrics related to the average 

person, ATSP demonstrates superior performance, and MARL-based controllers also perform 
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well. It is worth noting that MARL-based controllers can prioritize buses based on passenger 

occupancy, a capability lacking in conventional TSP controllers. Additionally, MARL-based 

controllers perform better in hypothetical scenarios than in real-world scenarios, possibly due to 

these problems having very different complexities. In hypothetical scenarios, traffic 

configurations remain identical across intersections, whereas in real-world scenarios, they vary 

significantly. 
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Table 5-3 Performance Comparison of Different Controllers in Hypothetical Corridor Scenarios under High Demand  

Peak 
Bus Car Person 
ATT AD AS ANS ATT AD AS ANS ATT AD AS ANS 

PSC 749.43 499.56 4.00 5.58 151.12 83.91 10.85 1.04 195.39 114.66 10.34 1.38 
Change rates - - - - - - - - - - - - 
ASC 599.32 349.45 5.11 5.80 131.03 63.61 11.37 1.20 165.95 84.93 10.90 1.54 
Change rates -20.03% -30.05% 27.77% 3.91% -13.29% -24.19% 4.77% 14.87% -15.06% -25.93% 5.39% 11.79% 
ATSP 393.18 143.31 7.63 3.27 140.23 72.76 10.62 1.40 160.42 78.39 10.38 1.55 
Change rates -47.54% -71.31% 90.67% -41.43% -7.21% -13.29% -2.08% 34.12% -17.90% -31.63% 0.40% 12.29% 
MP 568.37 318.49 5.33 6.28 146.83 79.59 11.50 1.31 178.69 97.65 11.04 1.69 
Change rates -24.16% -36.25% 33.12% 12.63% -2.84% -5.14% 6.05% 25.95% -8.55% -14.84% 6.73% 22.53% 
MP-TSP 402.52 152.64 7.47 3.45 151.03 83.75 10.75 1.34 171.19 89.28 10.49 1.51 
Change rates -46.29% -69.44% 86.80% -38.22% -0.06% -0.18% -0.90% 28.58% -12.38% -22.14% 1.41% 9.52% 
LQF 553.91 304.03 5.49 6.02 150.98 83.72 10.47 1.51 181.41 100.35 10.09 1.85 
Change rates -26.09% -39.14% 37.20% 7.98% -0.10% -0.22% -3.47% 45.03% -7.15% -12.47% -2.38% 34.44% 
LQF-TSP 500.51 250.64 6.06 5.61 152.86 85.59 10.26 1.51 179.67 98.31 9.93 1.83 
Change rates -33.21% -49.83% 51.43% 0.59% 1.15% 2.01% -5.45% 45.02% -8.04% -14.25% -3.95% 32.63% 
MAPPO 359.20 109.31 8.34 1.98 138.11 70.55 10.54 1.46 155.74 73.64 10.37 1.50 
Change rates -52.07% -78.12% 108.33% -64.44% -8.61% -15.92% -2.82% 39.62% -20.29% -35.77% 0.24% 8.69% 
MAPPO-M 358.46 108.59 8.35 1.90 134.21 66.69 10.97 1.34 152.10 70.04 10.76 1.39 
Change rates -52.17% -78.26% 108.77% -65.86% -11.19% -20.51% 1.10% 28.69% -22.15% -38.92% 4.04% 0.62% 
Note: ATT represents average travel time (s); AD represents average delay (s); AS represents average speed (m/s); ANS represents average number of stops. 
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Table 5-4 Performance Comparison of Different Controllers in Hypothetical Corridor Scenarios under Low Demand 

Off-peak 
Bus Car Person 
ATT AD AS ANS ATT AD AS ANS ATT AD AS ANS 

PSC 380.52 130.66 7.92 2.02 110.92 43.24 13.26 1.18 152.76 56.81 12.43 1.31 
Change rates - - - - - - - - - - - - 
ASC 419.93 170.04 7.17 4.14 101.43 33.62 13.98 1.02 150.72 54.74 12.92 1.50 
Change rates 10.36% 30.14% -9.47% 105.36% -8.56% -22.24% 5.38% -13.99% -1.33% -3.64% 3.94% 14.39% 
ATSP 356.99 107.12 8.38 1.81 101.35 33.54 13.95 1.04 140.97 44.94 13.09 1.16 
Change rates -6.18% -18.02% 5.85% -10.45% -8.63% -22.44% 5.20% -12.16% -7.72% -20.89% 5.28% -11.76% 
MP 420.62 170.73 7.16 3.96 107.59 39.83 14.04 0.92 156.03 60.09 12.98 1.39 
Change rates 10.54% 30.67% -9.56% 96.14% -3.00% -7.88% 5.89% -22.46% 2.14% 5.78% 4.39% 5.73% 
MP-TSP 346.29 96.41 8.64 1.82 108.21 40.44 13.85 0.93 145.16 49.13 13.04 1.06 
Change rates -9.00% -26.21% 9.16% -9.67% -2.44% -6.46% 4.44% -21.77% -4.98% -13.51% 4.91% -18.88% 
LQF 426.94 177.07 7.05 4.11 109.84 42.08 13.20 1.17 158.96 62.99 12.25 1.62 
Change rates 12.20% 35.52% -10.92% 103.75% -0.97% -2.68% -0.45% -1.15% 4.06% 10.88% -1.47% 23.81% 
LQF-TSP 409.14 159.27 7.34 4.09 110.19 42.43 13.15 1.17 156.56 60.55 12.25 1.62 
Change rates 7.52% 21.90% -7.33% 102.73% -0.66% -1.87% -0.82% -1.27% 2.49% 6.60% -1.46% 23.52% 
MAPPO 345.54 95.68 8.66 1.62 108.14 40.37 13.48 0.94 145.00 48.95 12.74 1.05 
Change rates -9.19% -26.77% 9.42% -19.79% -2.50% -6.64% 1.67% -20.37% -5.08% -13.82% 2.44% -20.22% 
MAPPO-M 333.68 83.81 8.96 1.08 107.86 40.05 13.41 0.96 142.87 46.84 12.72 0.98 
Change rates -12.31% -35.85% 13.19% -46.53% -2.76% -7.36% 1.14% -18.61% -6.47% -17.55% 2.33% -25.27% 
Note: ATT represents average travel time (s); AD represents average delay (s); AS represents average speed (m/s); ANS represents average number of stops. 
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Table 5-5 Performance Comparison of Different Controllers in Real-world Corridor Scenarios under High Demand 

Peak 
Bus Car Person 
ATT AD AS ANS ATT AD AS ANS ATT AD AS ANS 

PSC 502.94 212.04 7.65 4.22 164.44 69.08 11.97 1.60 203.65 85.64 11.47 1.90 
Change rates - - - - - - - - - - - - 
ASC 485.92 195.02 7.90 4.05 153.98 58.45 12.66 1.50 192.29 74.20 12.11 1.79 
Change rates -3.39% -8.03% 3.26% -4.13% -6.36% -15.39% 5.78% -6.20% -5.58% -13.36% 5.60% -5.74% 
ATSP 408.93 118.01 9.33 2.09 154.46 58.91 12.57 1.53 184.65 65.92 12.19 1.60 
Change rates -18.69% -44.34% 21.98% -50.55% -6.07% -14.72% 5.01% -4.32% -9.33% -23.03% 6.24% -16.12% 
MP 480.57 189.68 7.99 4.19 178.76 83.16 11.59 1.62 213.96 95.58 11.17 1.92 
Change rates -4.45% -10.55% 4.36% -0.82% 8.71% 20.39% -3.18% 1.02% 5.06% 11.61% -2.62% 0.64% 
MP-TSP 417.96 127.06 9.15 2.38 199.84 104.26 10.57 1.65 225.90 106.98 10.40 1.74 
Change rates -16.90% -40.08% 19.58% -43.58% 21.53% 50.93% -11.68% 3.03% 10.92% 24.92% -9.30% -8.81% 
LQF 496.56 205.66 7.73 4.63 170.37 74.97 11.57 1.92 207.99 90.04 11.13 2.24 
Change rates -1.27% -3.01% 1.05% 9.70% 3.61% 8.53% -3.37% 20.22% 2.13% 5.14% -3.01% 17.43% 
LQF-TSP 474.56 183.65 8.07 4.61 177.28 81.86 11.08 1.97 212.09 93.78 10.73 2.28 
Change rates -5.64% -13.39% 5.42% 9.26% 7.81% 18.50% -7.44% 23.19% 4.14% 9.50% -6.48% 19.78% 
MAPPO 405.48 114.58 9.42 2.17 155.69 60.00 12.49 1.48 185.31 66.48 12.12 1.56 
Change rates -19.38% -45.96% 23.07% -48.67% -5.32% -13.14% 4.28% -7.75% -9.01% -22.38% 5.66% -18.17% 
MAPPO-M 393.38 102.48 9.70 1.60 158.59 62.86 12.31 1.45 186.44 67.56 12.00 1.47 
Change rates -21.78% -51.67% 26.83% -62.18% -3.56% -9.00% 2.81% -9.49% -8.45% -21.11% 4.60% -23.00% 
Note: ATT represents average travel time (s); AD represents average delay (s); AS represents average speed (m/s); ANS represents average number of stops. 
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Table 5-6 Performance Comparison of Different Controllers in Real-world Corridor Scenarios under Low Demand 

Off-peak 
Bus Car Person 
ATT AD AS ANS ATT AD AS ANS ATT AD AS ANS 

PSC 491.49 200.58 7.78 4.68 140.28 48.59 13.27 1.45 196.62 72.98 12.39 1.97 
Change rates - - - - - - - - - - - - 
ASC 458.74 167.84 8.36 3.78 133.16 41.37 13.94 1.29 188.71 62.95 12.98 1.71 
Change rates -6.66% -16.32% 7.43% -19.18% -5.07% -14.86% 5.03% -11.04% -4.02% -13.74% 4.81% -12.85% 
ATSP 395.62 104.71 9.64 1.54 133.00 41.21 13.90 1.30 178.19 52.13 13.17 1.34 
Change rates -19.51% -47.80% 23.84% -67.21% -5.18% -15.20% 4.78% -10.04% -9.37% -28.56% 6.30% -31.73% 
MP 448.13 157.22 8.56 3.49 145.30 53.50 13.31 1.25 197.10 71.24 12.50 1.63 
Change rates -8.82% -21.62% 10.05% -25.49% 3.58% 10.09% 0.30% -13.96% 0.24% -2.38% 0.88% -17.14% 
MP-TSP 400.19 109.30 9.54 2.10 163.63 71.86 11.94 1.44 204.45 78.32 11.53 1.55 
Change rates -18.58% -45.51% 22.60% -55.24% 16.65% 47.88% -10.00% -0.58% 3.98% 7.33% -6.95% -21.04% 
LQF 465.31 174.39 8.23 4.17 142.39 50.68 13.09 1.53 197.23 71.69 12.26 1.98 
Change rates -5.33% -13.06% 5.74% -10.90% 1.51% 4.28% -1.35% 5.65% 0.31% -1.77% -1.00% 0.59% 
LQF-TSP 456.26 165.35 8.38 4.36 149.55 57.86 12.45 1.60 202.19 76.31 11.75 2.07 
Change rates -7.17% -17.56% 7.65% -6.92% 6.61% 19.07% -6.17% 10.22% 2.83% 4.57% -5.14% 5.26% 
MAPPO 391.11 100.21 9.75 1.83 139.00 47.18 13.35 1.27 182.39 56.30 12.73 1.36 
Change rates -20.42% -50.04% 25.35% -60.99% -0.91% -2.92% 0.62% -12.51% -7.24% -22.85% 2.78% -30.68% 
MAPPO-M 386.48 95.58 9.87 1.57 139.84 48.03 13.24 1.23 182.30 56.22 12.66 1.29 
Change rates -21.37% -52.35% 26.85% -66.55% -0.31% -1.15% -0.24% -14.87% -7.28% -22.96% 2.17% -34.39% 
Note: ATT represents average travel time (s); AD represents average delay (s); AS represents average speed (m/s); ANS represents average number of stops. 
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Figure 5-7 Average Delay statistics in different Controllers in Hypothetical Corridor 

Scenarios 
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Figure 5-8 Average Delay statistics in different Controllers in Real-world Corridor 

Scenarios 
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Figure 5-7 and Figure 5-8 illustrate average delay statistics for different controllers in 

different scenarios. Generally, controllers without TSP exhibit greater variances in average bus 

delay compared to controllers with TSP. ATPS, MP-TSP, MAPPO, and MAPPO-M significantly 

reduce the average bus delays, with MAPPO-M performs the best and demonstrating the smallest 

variance. In real-world scenarios, MP-TSP and LQF-TSP greatly increase average car delay. 

However, in hypothetical scenarios, their performance in terms of average car delay is not 

significantly compromised. This may suggest that these two controllers struggle to balance bus 

priority with car services under unbalanced traffic demand conditions. These figures further 

emphasize that MARL-based controllers provide stable services for buses.  

5.4.2. Sensitivity Analysis 

5.4.2.1. CV Market Penetration Rate 

In corridor scenarios, we also examine the impact of the CV market penetration rate on 

the performance of the proposed controllers. Ten scenarios, encompassing both peak and off-

peak hours, have been designed with the MPR ranging from 20% to 100%, in increments of 

20%. Other settings remain consistent with the basic scenarios. The results are shown in Figure 

5-9 and Figure 5-10. 

As the MRP increases, both MAPPO-M and MAPPO demonstrate improved performance 

in terms of average delays across all scenarios. This improvement becomes more pronounced 

when the MPR is lower than 60%. In hypothetical scenarios, the average person delay is lower 

than the baseline when the MRP reaches 60%, while in real-world scenarios, the average person 

delay is lower than the baseline when the MPR reaches 40%. The MAPPO controller trained in 
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the hypothetical scenario with high traffic demand outperforms MAPPO-M in low MPR 

scenarios. However, MAPPO-M outperforms MAPPO in the other three scenarios when the 

MPR is low, providing more stable services for both buses and cars. This suggests that the 

introduction of multi-discrete action space can enhance the robustness of MARL-based 

controllers in mixed traffic environments, aligning with our findings in isolated intersection 

scenarios.  
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Figure 5-9 Sensitivity of Controllers to CV Market Penetration Rate in Hypothetical 

Corridor Scenarios 
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Figure 5-10 Sensitivity of Controllers to CV Market Penetration Rate in Real-world 

Corridor Scenarios 
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5.4.2.2. Bus Passenger Occupancy 

In this section, we investigate the sensitivity to bus passenger occupancy by varying the 

number of passengers per bus across scenarios. All other settings remain the same as in the basic 

scenarios. Specifically, we set the number of passengers on each bus to 1, 10, 30, 50, and 70 

passengers.  

The results, as shown in Figure 5-11and Figure 5-12, indicate that as bus passenger 

occupancy increases from 1 passenger per bus to 30 passengers per bus, the average bus delay 

decreases significantly across all scenarios. When the passengers on the bus exceed 30, the 

MARL-based controllers become insensitive to it, especially during peak hours. The average car 

delay experiences a slight increase with more priority given to buses. However, these increases 

are minimal compared to the reduction in average bus delays, which suggests that the adverse 

impacts on the car are likely to be negligible, even with buses receiving more priority. Compared 

to MAPPO, except for the hypothetical scenario during peak hours with bus passenger 

occupancy less than 30, MAPPO-M provides better service for buses. 
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Figure 5-11 Sensitivity of Controllers to Bus Passenger Occupancy in Hypothetical 

Corridor Scenarios 
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Figure 5-12 Sensitivity of Controllers to Bus Passenger Occupancy in Real-world Corridor 

Scenario 
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5.4.2.3. Bus Arrival Headway 

This section explores the impact of bus arrival headways on the effectiveness of the 

proposed controllers by considering five different headways: 2 minutes, 5 minutes, 10 minutes, 

15 minutes, and 30 minutes. The rest of the scenario settings align with the basic scenarios.  

As illustrated in Figure 5-13 and Figure 5-14, changes in bus arrival headway have 

insignificant impacts on the average bus delay, especially in scenarios controlled by MAPPO-M. 

As bus arrivals become less frequent, the average car delay decreases, as well as the average 

person delay. This occurs because a reduced frequency of bus arrivals results in less interruption 

to traffic, as fewer buses requiring priority. 
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Figure 5-13 Sensitivity of Controllers to Bus Arrival Headway in Hypothetical Corridor 

Scenarios 
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Figure 5-14 Sensitivity of Controllers to Bus Arrival Headway in Real-world Corridor 

Scenario  
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Chapter 6. Summary and Conclusions 

6.1. Overview 

TSP is an important signal control strategy in traffic engineering, addressing the critical 

need for efficient transportation systems. By prioritizing transit vehicles at intersections, TSP 

aims to enhance the service quality of transit systems. However, potential drawbacks, especially 

the negative impact on other vehicular traffic, pose challenges to its widespread implementation. 

The emergence of CV technology will profoundly change the way we perceive and manage 

transportation systems. CVs, equipped with advanced communication techniques, generate real-

time data that offers an unprecedented level of insight into traffic dynamics. At the meantime, AI 

technology is developing rapidly. Among them, RL, particularly DRL, has proven to be a 

powerful tool for optimizing complex decision-making processes. The integration of these 

technological advancements opens new frontiers for TSP research, with the potential to enhance 

the efficiency and adaptability of TSP strategies. 

This study begins with a comprehensive literature review, systematically examining 

intersection management, TSP, and optimization algorithms in TSC. The analysis of the state-of-

the-art and state-of-the-practice approaches reveals research gaps and provides the basis for our 

contribution. The following chapter outlines the methodology adopted in this study, 

encompassing GA, DRL algorithms, and MARL algorithms. Detailed configurations of RL 

algorithms are also covered, including global state spaces, local observation spaces, action 

spaces, reward functions, and neural network structures. 

The core of our work is the development of adaptive TSP controllers utilizing DRL 

algorithms and leveraging real-time data obtained through CV technology. These controllers, 
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proposed in this study, aim to overcome the limitations of existing conventional controllers as 

well as state-of-the-art controllers. The study can be divided into two parts: (1) isolated 

intersection-level DRL-based TSP control and (2) corridor-level MARL-based TSP control.  

At the isolated intersection level, we introduce the DQN-TSP controller, designed to 

prioritize transit vehicles while mitigating adverse effects on the whole traffic system. We also 

delve into the aspect of enhancing robustness in mixed traffic environments. This is achieved by 

leveraging multiple data sources and introducing innovative action spaces. Therefore, we 

proposed the PPOSC-M-C controller is proposed, which is built on PPO and utilizes traffic 

information from both CVs and cameras within the intersection. Besides, this controller adopts a 

novel action space, multi-discrete action space, which is seldom used in the TSC research area, 

aiming to obtain better performance.  

At the corridor level, we introduced MARL-based controllers to manage individual 

intersections while ensuring coordination between them. Simultaneously, the proposed MARL-

based controllers prioritize bus progress. These controllers utilize the PPO algorithm with minor 

modifications. Specifically, it is adapted to be compatible with the framework of centralized 

training and decentralized execution, enhancing overall performance. Additionally, parameter 

sharing, which is an efficient training technique, is also implemented to achieve faster and more 

stable training processes.  

To comprehensively evaluate the proposed controllers, extensive work has been carried 

out. We first built three simulation testbeds, i.e., the real-world isolated intersection testbed, the 

real-world corridor testbed, and the hypothetical corridor testbed. Subsequently, we conducted 

numerous experiments within the testbeds, exploring various scenarios involving different traffic 
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demands, signal control strategies, etc. Additionally, we delved into sensitivity analysis, focusing 

on critical factors such as CV market penetration rates, bus passenger occupancies, and bus 

arrival headways. 

6.2. Major Findings 

6.2.1. Isolated Intersection 

The findings from the experimental results at isolated intersections are as follows: 

• The DQN-TSP has the best performance in terms of average person delay under both 

peak and off-peak traffic demand conditions.  

• The larger reduction in the off-peak condition suggests that there may be more room 

for improvement under lower traffic demand conditions.  

• The ATSP has the lowest average bus delay in both peak and off-peak conditions. 

However, in the peak condition, the average car delay of ATSP is slightly higher 

compared to both ASC and DQN-TSP controllers. It is due to the unconditional 

priority given to buses in ATSP.  

• During off-peak, ATSP’s average car delay is slightly lower than ASC’s, implying 

that granting priority to buses has a less negative impact on other traffic in low-traffic 

demand conditions.  

• CV technology offers a better performance than just using traditional fixed detectors 

to sense bus arrivals.  

• The GA optimizer with TSP performs better in peak hours than in off-peak hours. 
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• In peak traffic demand, both PSC and ASC provide balanced services in all 

directions. However, due to the priority granted to buses, these TSP controllers result 

in longer waiting times for vehicles in conflicting movements. It is worth noting that 

such adverse impacts are mitigated during off-peak.  

• Compared to ATPS-T and ATSP, DQN-TSP can provide more balanced services to 

vehicles in conflicting directions.  

• GA-TSP and DQN-TSP have the potential to provide conditional priority to buses 

while minimizing the negative impact on conflicting traffic. However, the DQN 

controller outperforms the GA controller in all metrics.  

• With the increase in MPR, the performance of GA-TSP and DQN-TSP improves 

across all metrics and scenarios.  

• DQN-TSP requires a certain threshold of information to ensure satisfactory 

performance, while the performance of GA-TSP is more robust than DQN-TSP in 

low MPR environments. These results are consistent with findings from the broader 

field of RL research, indicating the partially observable issue is a research topic 

worthy of attention. However, DQN-TSP controller also has a certain level of 

robustness even when only partial traffic information is available.  

• As the bus occupancy increases, both the average bus delay and average person delay 

decrease during both peak and off-peak hours. The average car delay experiences a 

slight increase. Additionally, even as bus occupancy continues to increase, the 

increase in average car delays does not accelerate, while the decline in average bus 

delays becomes more moderate.  
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• Compared to GA-TSP, the DQN-TSP controllers exhibit higher sensitivity, 

underscoring the superior capability of the proposed DQN-TSP controllers in 

handling fluctuations in bus occupancy. This crucial feature enhances their suitability 

for real-world application. 

• An increase in bus arrival headway results in a decrease in the average car delay and 

an increase in the average person delay. Meanwhile, the average bus delay also 

decreases a little. The impact of changes in bus arrival headway on traffic 

performance is not significant. 

• All four DRL-based controllers, DQNSC, PPOSC, PPOSC-M, and PPOSC-M-C, 

outperform these two traditional controllers under both peak and off-peak conditions 

in terms of the average delay.  

• PPO-based controllers perform slightly better than DDQNSC. PPOSC-M shows the 

best performance in the peak scenario, with a 24.29% reduction in average delay 

compared to the baseline. PPOSC-M-C has the best performance in the off-peak 

scenario, with a 27.24% reduction of average delay compared to the baseline.  

• PPO-based controllers using multi-discrete action space have the most favorable 

performance in terms of overall average delay and serving vehicles traveling in 

different directions. 

• PPO-based controllers utilizing the multi-discrete action space have more robust 

performance regardless of the variation of MPR. This advantage may be due to the 

reduced frequency of decision-making, which leads to a significantly decreased 

sensitivity to the information obtained. 
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• PPOSC-M-C outperforms PPOSC-M in terms of robustness. PPOSC-M-C can 

provide better services to non-CVs while providing the same level of services to CVs 

compared to PPOSC-M, especially in low MPR scenarios. These results demonstrate 

the significantly enhancement of robustness in mixed traffic environments by the 

leveraging of multiple data sources. 

• PPO is more sensitive to the information it can observe compared to DDQN. 

Nevertheless, this issue can be effectively addressed by implementing the multi-

discrete action space and the combined data sources.  

• While all vehicles will experience reduced waiting times compared to traditional 

controllers, non-CVs are expected to have longer average waiting times than CVs. 

This service discrepancy can serve as an incentive for people to equip their vehicles 

with connected functions and be more willing to share real-time vehicle information. 

6.2.2. Corridor 

The findings from the experimental results at corridors are as follows: 

• MAPPO exhibits faster convergence and more stable performance compared to 

MAPPO-M, particularly under high-demand conditions. The utilization of the multi-

discrete action space might make the training process more challenging in multi-agent 

systems, which differs from the phenomenon observed in single-agent systems in the 

previous chapter. 
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• Regarding the performance metrics of buses, MAPPO-M demonstrates the best 

performance in almost all scenarios, regardless of testbeds and traffic demand 

conditions. 

• Regarding the performance of cars, fully actuated controllers exhibit superior 

performance. 

• MAPPO-M and MAPPO demonstrate the best performance in terms of bus metrics, 

while ASC and ATSP excel in car metrics. Regarding metrics related to the average 

person, ATSP demonstrates superior performance, and MARL-based controllers also 

perform well.  

• MARL-based controllers demonstrate superior performance in hypothetical scenarios 

compared to real-world scenarios, probably attributed to the complexity disparities 

between these two types of scenarios. 

• As the MRP increases, both MAPPO-M and MAPPO demonstrate improved 

performance in terms of average delays across all scenarios. This improvement 

becomes more pronounced when the MPR is lower than 60%. 

• MAPPO in the hypothetical scenario with high traffic demand outperforms MAPPO-

M in low MPR scenarios. However, MAPPO-M outperforms MAPPO in the other 

three scenarios when the MPR is low, providing more stable services for both buses 

and cars. This suggests that the introduction of multi-discrete action space can 

enhance the robustness of MARL-based controllers in mixed traffic environments, 

aligning with our findings in isolated intersection scenarios. 
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• When bus passenger occupancy increases from 1 to 30 passengers per bus, the 

average bus delay decreases significantly across all scenarios. When it exceeds 30, 

the MARL-based controllers become insensitive to it, especially during peak hours.  

• The average car delay experiences a slight increase. However, the increases are 

minimal compared to the reduction in average bus delays, suggesting that the adverse 

impacts on the car are likely to be negligible, even with buses receiving more priority. 

Compared to MAPPO, except for the hypothetical scenario during peak hours with 

bus passenger occupancy less than 30, MAPPO-M provides better service for buses. 

• Changes in bus arrival headway have insignificant impacts on the average bus delay, 

especially in scenarios controlled by MAPPO-M. As bus arrivals become less 

frequent, the average car delay decreases, along with the average person delay. 

6.3. Contributions 

The main contributions of this study can be summarized as follows: 

1. Design an efficient reward function: We designed a straightforward yet efficient 

reward function that leverages real-time passenger occupancy data available in CV environments 

to provide conditional priority to transit vehicles. This reward function has the capability to adapt 

to the dynamics of on-board passenger count, enabling decisions based on all passengers, 

regardless of the vehicle type. This approach enhances overall traffic efficiency. We applied this 

reward function in the development of DQN-TSP, MAPPO, and MAPPO-M controllers for 

managing traffic signals in both isolated intersection scenarios and corridor scenarios, 

prioritizing transit vehicles. 
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2. Introduce multi-discrete action space: We introduced a novel action space, the 

multi-discrete action space, into the field of applying DRL in TSC optimization research. To the 

best of our knowledge, this is the first research to employ the multi-discrete action space in this 

area. This action space allows DRL-based controllers to simultaneously decide the next phase 

and timing, presenting the potential to further improve the performance of DRL-based 

controllers. We applied the multi-discrete action space in the development of PPOSC-M, 

PPOSC-M, and MAPPO-M-C controllers. 

3. Enhance robustness with multiple data sources: We Investigated approaches that 

leverage multiple sources of traffic data to enhance the robustness of DRL-based controllers in 

mixed traffic environments. While the development of DRL-based controllers can benefit from 

CV technology, a significant limitation is their heavy reliance on CV market penetration rates. 

To address this limitation, we proposed the PPOSC-M-C controller, integrating multiple traffic 

information sources to augment the robustness of DRL-based controllers in scenarios with low 

market penetration rates.  

4. Comprehensive experiments and evaluations: We systematically and holistically 

conducted experiments to evaluate the performance of the proposed controllers. Three simulation 

testbeds were constructed, each with two types of traffic demand, resulting in a total of six basic 

simulation environments. We also developed 19 signal controllers, including conventional and 

state-of-the-art controllers, to facilitate comprehensive performance compassion. Additionally, 

we examined the sensitivity of key factors, such as CV market penetration rate, passenger 

occupancy, and bus arrival headway. 
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6.4. Future Work 

The traffic signal controllers proposed in this study addressed several limitations present 

in existing controllers, yet there are numerous opportunities for further improvement, particularly 

when considering the novelty of applying RL in the TSC domain. The following research 

directions are promising and worth attention. 

1. Integrating traffic state prediction components: In mixed traffic environments with 

both CVs and non-CVs, the input state representation does not align with the assumption that it 

contains all relevant information for RL decision-making. Consequently, the performance of RL-

based controllers becomes unreliable in such environments. Integrating traffic state prediction 

functions that use CVs’ states to predict non-CVs’ states can address this issue and significantly 

enhance the robustness of RL-based controllers. 

2. Developing hybrid controllers: RL-based controllers make decisions within a black 

box, potentially leading to arbitrary actions that may be difficult for humans to interpret or trust 

in real-world implementations. To address this concern, developing hybrid controllers that 

combine the strengths of DRL algorithms with baseline control rules is a promising strategy. 

This integration can help avoid catastrophic behavior and ensure the reliability of the control 

system. 

3. Refining the basic RL model: In this study, we employed vanilla RL algorithms 

without any modification. However, given the complexity of the TSP problem, effective 

customization of the RL model can significantly improve its performance. For example, 

incorporating recurrent neural networks (RNNs) to capture time-series features in consecutive 

inputs, integrating attention-based techniques to extract important information, etc., are avenues 
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for refinement. Additionally, conducting more detailed investigations into the training and 

execution process is essential to pinpoint the theoretical limitations of the chosen RL algorithms 

and gain insight into how to refine them. 

4. Considering more comprehensive traffic conditions: While the study evaluated the 

proposed controllers under various conditions, additional comprehensive evaluations are still 

worthy of being conducted. This includes scenarios with multiple transit priority requests, 

different bus stop locations, and oversaturated traffic flow situations. Additionally, traffic 

environments involve many kinds of traffic participants. While transit vehicles have been 

considered, pedestrians, bicycles, and motorcycles are also worth attention. 

5. Expanding the control objects: This study primarily focused on optimizing traffic 

signals. With the advancement of autonomous vehicle (AV) technology, AVs are potential 

control objects that can be integrated into the optimization process to achieve further progress. 

For instance, signal-vehicle coupled control is a promising research topic. In addition, applying 

MARL network-wide is also a challenging but promising research direction. 

6. Exploring different reward functions: In exploring various optimization goals by 

constructing different reward functions, objectives may encompass mitigating bus bunching, 

stabilizing bus arrival headway, reducing greenhouse gas emissions, enhancing traffic safety, and 

more. 

7. Optimizing at the network level: This study focuses solely on improving system 

efficiency at the operational level. Transit vehicles are granted conditional priorities based on 

their passenger occupancy, leading to fluctuations in bus arrival times due to uncertainty.  These 

fluctuations can hinder the development of public transportation systems, as a stable arrival 
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schedule facilitates trip planning and increases the attractiveness of public transportation. Future 

research could be conducted from the planning level. For example, researchers could solve 

network-level optimization problems involving transit vehicle priority, assuming a multimodal 

transportation environment with a fixed travel demand and flexible travel mode selection. 
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