
INTEGRATING AI INTO CCTV SYSTEMS: A COMPREHENSIVE
EVALUATION OF SMART VIDEO SURVEILLANCE IN COMMUNITY SPACE

WITH ONLINE ANOMALY TRAINING

by

Shanle Yao

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in

Computer Engineering

Charlotte

2024

Approved by:

Dr. Hamed Tabkhivayghan

Dr. Asis Nasipuri

Dr. Ran Zhang

ii

©2024
Shanle Yao

ALL RIGHTS RESERVED

iii

ABSTRACT

SHANLE YAO. Integrating AI into CCTV Systems: A Comprehensive Evaluation of
Smart Video Surveillance in Community Space with Online Anomaly Training.

(Under the direction of DR. HAMED TABKHIVAYGHAN)

This research introduces and evaluates an advanced AI-enabled Smart Video Surveil-

lance (SVS) system designed to enhance safety across community spaces such as edu-

cational institutions, recreational areas, parking lots, small businesses, and in broader

smart city applications. Our proposed system seamlessly integrates with existing

Closed-Circuit Television (CCTV) systems and wired camera networks, making it easy

to adopt and capitalizing on recent AI advancements. It uniquely employs metadata

instead of pixel data for activity recognition to maintain privacy, adhering to stringent

ethical standards. The SVS system features a cloud-based infrastructure and a mobile

app for real-time, privacy-conscious alerts within communities.

In our comprehensive evaluation, conducted in a community college environment,

we delve into AI-driven visual processing, statistical analysis, database management,

cloud communications, and user notifications. The system was tested using sixteen

CCTV cameras, achieving a consistent throughput of 16.5 frames per second over 21

hours with an average end-to-end latency of 26.76 seconds for detecting behavioral

anomalies and alerting users. We also explore sophisticated data representation and

visualization techniques such as Occupancy Indicators, Statistical Anomaly Detection,

and Bird’s Eye View. These tools help analyze pedestrian behaviors and enhance

safety, offering intuitive visualizations and actionable insights for stakeholders like

law enforcement, urban planners, and social scientists. The findings underscore the

vital role of visualizing AI surveillance data in emergency management, public health,

crowd control, resource distribution, predictive modeling, city planning, and informed

decision-making.

This pioneering work is the first to examine the performance of a physical-cyber-

iv

physical anomaly detection system, crucial for identifying potential safety incidents

and guiding urban development.

v

TABLE OF CONTENTS

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF ABBREVIATIONS ix

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: LITERATURE REVIEW 6

CHAPTER 3: System Feature 9

3.1. AI Module/Modules 9

3.1.1. Object Anomaly Detection 10

3.1.2. Behavioral Anomaly Detection 11

3.2. Server Module 11

3.3. Cloud Node 12

3.4. End User Devices 13

CHAPTER 4: System Setup and Configuration 15

4.1. AI Pipeline Setup 16

4.2. Load Stress Setup 17

4.3. Endurance Setup 17

CHAPTER 5: Data Analysis and Representation 20

5.1. Descriptive Data 20

5.2. Situational Awareness 21

5.2.1. Occupancy Indicator 22

5.2.2. Statistical Anomaly 24

vi

5.2.3. Bird’s Eye View 27

CHAPTER 6: Real-World Results and Evaluation 31

6.1. AI Pipeline Configuration Evaluation 31

6.2. Load Stress Evaluation 32

6.3. Real-World Endurance Evaluation 34

6.4. Physical-Cyber-Physical Evaluation 36

CHAPTER 7: CONCLUSION AND FUTURE 42

REFERENCES 44

vii

LIST OF TABLES

TABLE 3.1: Example visualization of the database at Server Node 12

TABLE 6.1: Performance comparison among different system configura-
tions. Data collected using lab server with a single node.

32

TABLE 6.2: Average P-C-P latency with different number of cameras 38

TABLE 6.3: Average latency of cloud server with different number of
cameras

38

TABLE 6.4: Statistical PCP latency data for object and behaviour anomaly
for different number of cameras

39

viii

LIST OF FIGURES

FIGURE 1.1: Conceptual Model. 2

FIGURE 3.1: End-to-end detailed system. C0 represents the camera ID
and for each camera, one AI Module N0 including multi-AI-vision-
models pipeline is assigned with. All the AI modules send processed
data to one Server Module database, and Server Module will re-
identify the human track ID based on the feature extractor data.
The statistical analyzer analyzes all the data in the database stored
across all the cameras and communicates the results with Cloud Node.
Cloud-native services are utilized to host the end users’ applications.

10

FIGURE 4.1: Locations of Cameras on the Campus. A maximum of 16
cameras are used; 3 of them are outdoors, and the other 13 are indoors

16

FIGURE 4.2: This represents an example of 4 pipelines running in the
testbed with IP cameras deployed at different locations.

18

FIGURE 5.1: Comparing the Occupancy indicator of the same camera in
an hour in two days. The graph (1) shows the Weekend. The graph
(2) represents weekday.

24

FIGURE 5.2: Comparing the normal distributions of the same camera
in an hour period in two scenarios. The graph (1) shows the non-
detections included in the calculation. The graph (2) represents
excluding non-detections.

25

FIGURE 5.3: Comparing the normal distributions of the same camera in
four scenarios. The graph (1) shows when statistical anomaly happens
during weekdays. The graph (2) shows the normal distribution of
an hour during weekdays. The graph (3) represents when statistical
anomaly happens during weekends. The graph (4) represents the
normal distribution of an hour during weekends.

25

FIGURE 5.4: Comparing different views of camera 8 from 2023-10-17
12:17:42 to 12:17:47. The graph (1) generated directly from database
shows the original camera view. The graph (2) represents the average
birdseye view coordinates.

29

FIGURE 6.1: Throughput and latency trends with respect to crowd
densities across different nodes number running in parallelism.

33

ix

FIGURE 6.2: Latency and throughput trends concerning crowd densities
during a 21-hour-length period for different camera nodes number
(a) represents 8 camera nodes, (b) represents 12 camera nodes, (c)
represents 16 camera nodes

35

FIGURE 6.3: Latency and throughput trends concerning crowd densities
during a week-long period for 8 camera nodes

36

FIGURE 6.4: Notification’s data flow through Physical-Cyber-Physical set
up. S1 represents the first scene that detects a behavior anomaly. The
yellow line shows the notification data flow to the notification service.
Sn shows the nth scene where a suspicious object has been detected.
The red line shows the notification data flow when detecting object
anomalies.

37

FIGURE 6.5: Object Anomaly Latency Rug plot with each run during
PCP test. 50 data points for each camera number

39

FIGURE 6.6: Behavior Anomaly Latency Rug plot with each run during
PCP test. 50 data points for each camera number

40

x

LIST OF ABBREVIATIONS

AI Artificial Intelligence

API Application Programming Interface

AWS Amazon Web Services

CAGR Compound Annual Growth Rate

CCTV Closed-Circuit Television

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

FPS Frames Per Second

GPU Graphics Processing Unit

IoT Internet of Things

IP Internet Protocol

IT Information Technology

NMS Non-Maximum Suppression

ONNX Open Neural Network Exchange

PCP Physical-Cyber-Physical

SOTA Simple Online and Realtime Tracking

SVS Smart Video Surveillance

CHAPTER 1: INTRODUCTION

Video surveillance systems have long been acknowledged as crucial for maintaining

public safety and security [1]. Recent progress in machine learning algorithms, involving

advancements in both hardware and software, has resulted in the widespread adoption

of Smart Video Surveillance (SVS) systems in various sectors [2]. The video surveillance

industry has grown substantially, attaining a value of USD 53.7 billion in 2023.

Projections indicate a Compound Annual Growth Rate (CAGR) of 9.2%, compared

to the average CAGR of 5% in the information technology (IT) sector, estimated at

USD 83.3 billion by 20281.

A primary concern is the effective oversight and interpretation of these video

outputs [3]. Legacy video surveillance frameworks, dependent on human operators

for manual video review, are becoming less feasible for two main reasons. Firstly, the

vastness of video content renders comprehensive and effective simultaneous monitoring

a daunting task [4], especially when pinpointing specific incidents amid hours of

footage. Secondly, many global law enforcement bodies face personnel deficits [5],

resulting in an inadequate workforce to oversee the expanding camera networks. This

scenario underscores the imperative to transition to intelligent surveillance systems

capable of independent video analysis and delivering meaningful insights.

With the increasing significance of SVS systems for public safety, features like

anomaly detection and real-time notifications are vital, as Raty and Komninos et

al. [6, 7]. These systems are central to safeguarding communities by constantly

monitoring and responding to anomalies. Anomaly detection in our system focuses on

three key aspects: behavioral, object, and statistical anomalies. The former detects
1https://www.marketsandmarkets.com/

2

Cloud Node

N

End UserLocal Node

Pipeline

Pipeline

Pipeline

AI Module Server Module

t AWSD

……

Local

Database

Figure 1.1: Conceptual Model.

unusual activities like trespassing or fighting, while the second identifies out-of-place

items like unattended bags or unauthorized items and the last can detect unusual

crowdedness grow with historical data. Swift recognition of these anomalies is crucial

for preventing security breaches and facilitating rapid response from law enforcement.

However, transitioning these systems from labs to real-world settings poses challenges.

Latency can have unexpected consequences. Scalability is also necessary to cover

diverse areas effectively. Privacy must also be addressed to protect individuals’ rights

while maintaining robust security measures [8, 9].

Research on AI-enabled computer vision and alert systems has mainly focused on lab

performance, with limited real-world testing data [10, 11, 12, 13, 14]. Studies on alert

systems prioritize latency and throughput over full performance analysis [15, 16, 17, 18],

and many overlook real-world conditions like scalability in testbed environments or

the practical transition of these systems for public safety [19, 20, 21, 22]. Overall,

existing research work only stays at evaluation in a highly controlled lab environment

and often reports their results based on standard datasets while running one or two

algorithms in isolation. They also lack full end-to-end evaluation. This indicates a

need for empirical studies on their real-world effectiveness and challenges.

This research introduces and evaluates an AI-based real-time Smart Video Surveil-

lance (SVS) system in a practical, real-world setting to overcome prevalent challenges.

3

Deployed in a community college, the system adeptly handles real-world constraints,

including computational limitations and the integration of legacy infrastructure such

as Internet Protocol (IP) and Closed-Circuit Television (CCTV) cameras that utilize

LAN connectivity. As illustrated in Figure 1.1, the study adopts a conceptual end-

to-end model. Drawing inspiration from previous research by Pazho et al. [14] and

[23], this work achieves comprehensive end-to-end integration, embracing community-

in-the-loop principles. It synergizes real-time video analytics and edge computing

within community spaces, facilitating immediate notification to communities and

stakeholders. The system comprises four key components: (1) an AI pipeline for

real-time, privacy-preserving video analytics; (2) a local node that aggregates processed

information from multiple AI pipelines across various cameras; (3) a cloud node for

external communication beyond the monitored physical environment; and (4) end-user

applications designed to keep communities and stakeholders informed and engaged.

Our approach also employs data analysis techniques to generate statistical outputs

that assist human observers in comprehending historical data and trends. Such

approach could help the application users has better understanding of the environment

rather than just anomaly notifications. These methodology could also help the end

users to make their own decisions even more. First, we used statistical analytics

to provide stats such as headcounts, the average number of people detected hourly,

and the total number of people over time to provide general overview of the raw AI

data. Furthermore, we employ visualization techniques on top of these statistical

outputs to enhance situational awareness. For instance, by extracting and analyzing

data such as bounding boxes and human trajectories, we applied a transformation

matrix considering the camera angle to get the bird’s eye view at specific times. We

also utilized the historical data of each camera to generate occupancy indicators that

represent a meaningful visualization of current people at each location regarding the

historical data. Also, we present the statistical anomalies by extracting the normal

4

distribution of the data trend per location.

This research evaluates the Physical-Cyber-Physical system’s performance under

varying real-world conditions, such as different crowd densities and extended oper-

ational durations. We monitored up to 16 existing CCTV cameras. Our results,

obtained on a server with a 16-core CPU and four 10496 CUDA-cores GPUs, demon-

strate the system’s robustness and efficiency. Specifically, the system maintains a

throughput of 16.5 FPS and a latency of 6.5 seconds during a 21-hour continuous

operation. Our real-world experiments also show that the system can detect suspicious

objects within an average of 4.7 to 19.68 seconds and notify end-users of anomalous

behavior within 9.34 to 26.76 seconds, depending on the camera setup. These results

validate the system’s effectiveness, scalability, and reliability, emphasizing the role of

hardware in achieving these outcomes.

In summary, the contributions of this research are:

• To the best of our knowledge, this research is the first to propose, deploy,

and measure an end-to-end AI-based real-time video surveillance that can run

over existing legacy infrastructure for real-time situational awareness such as

peak hour analysis at the desired location, rapid decision-making in case of

emergency, and enhancing safety and operational efficiency in various high-stakes

environments.

• We delve into the valuable insights extracted from data visualization, emphasizing

their potential role in augmenting safety measures.

• This research performs the extensive evaluation and real-world experimental

study over existing CCTV cameras, focusing on AI Pipeline latency, throughput,

scalability, and endurance of the proposed system over the increasing number

of cameras with vulnerable environmental conditions and density of human

subjects in the scene and set the first benchmark for future studies.

5

• To the best of our knowledge, this research is the first to evaluate user-in-the-

loop anomaly detection aspects of video surveillance (Physical-Cyber-Physical

aspects), representing the total end-to-end time from when an anomaly appears

in front of the camera to the instant the end user receives a notification which

is crucial in applications such as emergency responses, security monitoring in

sensitive locations, and monitoring critical infrastructure.

The rest of this paper is organized as follows. Section 2 begins by reviewing the

relevant works on this topic. Section 3 describes the system features. Sections 4 and 6

presents our experiments’ test setup and results. Section 6.4 focuses on the latency

measurement of anomaly detection in the real world, and Section 7 concludes this

research.

CHAPTER 2: LITERATURE REVIEW

Machine learning and artificial intelligence advancement in various domains have

paved the way for complex data analysis and visualization. The criticality of analyzing

the outputs of these machine learning models is evident in numerous applications,

ranging from urban planning to safety considerations. However, the effectiveness of

these models heavily relies on the presentation and interpretation of the analyzed

data.

The advent of machine learning techniques, especially when combined with IoT

devices, has revolutionized urban planning and smart cities. Mahdavinejad et al.

underline the importance of such methods in forecasting urban congestion and paving

the way for solutions [24]. Complementing this, Zanella et al. argue for the accessibility

of urban IoT data to authorities and citizens, fostering civic participation and swift

responsiveness to urban challenges [25]. Taking this a step further, Rathore et al.

delve deep into the capacities of IoT systems for urban development, focusing on

vehicular traffic datasets [26]. However, the true potential of these systems is realized

when combined with big data analytics, as highlighted by Al Nuaimi et al., who stress

iterative improvements based on analytical feedback [27].

Transitioning from holistic urban planning, it’s imperative to focus on specific

aspects, like traffic and pedestrian safety, which are paramount for the efficient

functioning of a city.

Safety remains at the forefront of urban considerations, and several studies have

dedicated efforts to analyze traffic patterns and potential hazards. Mouchili et al.

venture into vehicle traffic data, shedding light on anomalies and parking occupancy [28].

Abberley et al. expand this scope by using machine learning to study traffic accidents,

7

revealing patterns similar to human traffic analytics [29]. Similarly, Bharadwaj et

al. apply image processing techniques on highway images, concentrating on vehicle

placements with a unique approach to data representation [30]. The realm of pedestrian

safety isn’t untouched either, with Chen et al. employing machine learning on Street

View images to detect pedestrians, albeit without delving into intricate visualizations

[31]. However, safety isn’t confined to traffic. He et al. highlight the use of machine

learning in detecting crime-facilitating factors in neighborhoods, emphasizing the dire

need for robust visual representation for impactful insights [32].

SVS research is generally divided into two main areas: real-time object tracking

and anomaly detection in both vehicular and human contexts [33][34]. Some studies

have focused on using lightweight models for edge devices to minimize latency as

demonstrated by Pramanik et al. [35]. In 2023, an innovative SVS system was intro-

duced that employs advanced pre-processing techniques specifically for fall detection

as introduced by Singh et al. [36].

The preceding year witnessed the emergence of the E2E-VSDL as introduced by

Gandapur [37] method, employing a combination of BiGRU and CNN to compare

video frames with pre-identified anomaly videos within their trained model, resulting

in approximately 98 percent accuracy with the available dataset. Another notable

contribution is the TAC-Net methodology [38], which introduces a novel deep con-

trastive learning approach for SVS. TAC-Net employs a self-supervised learning model

to capture high-level semantic features, leading to superior performance in addressing

anomaly scenarios compared to existing state-of-the-art methods on popular datasets

in 2021.

A range of Smart Cities studies aims to bridge the gap between research and real-

world applications. [39] A 2019 paper as introduced by Alshammari et al. [40] presents

a functional SVS system implemented with surveillance cameras, moving beyond

simulation-based evaluations. To enhance anomaly detection models and achieve

8

better training outcomes, researchers from RV College of Engineering Bengaluru [41]

focus on refining object detector model localization, improving validation accuracy

by around 98.5 percent. The paper published by Y. Yuan et al. [42] brings a very

advanced methodology about using decentralized framework into Cyber-Physical

system to optimize the traffic and pedestrian waiting time, while the response time of

the system is discussed in a real world scenario. Publication [43] with a very impressive

self-awareness Cyber-Phycical system also lacks of data with system latency which we

values this a lot in our testbed community.

Optimizing large-scale SVS systems has become a focus of recent research, with

various systems [44] concentrating on optimizing data transformation, communication,

and even incorporating blockchain technology in diverse domains. These efforts go

beyond model performance to consider the broader scalability of the entire system.

Efficient detection of suspicious objects is crucial for real-life security applications.

However, widely used object classification datasets like COCO often lack harmful

object categories. A study on Real-Time Abnormal Object Detection introduced

by Ingle et al [45] demonstrates the training and implementation of an abnormal

object detection model in smart cities, achieving an accuracy of approximately 90

percent. Additionally, a 2023 publication focuses on person re-identification using deep

learning-assisted techniques [46], highlighting the significance of spatial and channel

attention mechanisms in achieving improved re-identification scores.

While significant progress has been made in SVS research, a notable gap remains

regarding comprehensive testbed support to evaluate real-world SVS system perfor-

mance. Motivated by this gap, our study aims to demonstrate the capabilities of a

state-of-the-art SVS system within a public setting, specifically a community college.

In the subsequent sections, we present our achievements and offer insights into the

potential of our endeavors.

CHAPTER 3: System Feature

Our proposed system represents a pioneering advancement in the realm of AI-

based real-time video surveillance, uniquely designed to integrate seamlessly with

existing legacy CCTV camera infrastructures, and it is a Physical-Cyber-Physical

(PCP) system to alert the end users about anomalies. The proposed system comprises

four distinct components: (1) AI Module/Modules, (2) Server Module, (3) Cloud

Node, and (4) End user devices. Figure 3.1 provides an architectural overview of the

end-to-end system. One five-stage computer vision pipeline is assigned to each on-site

camera within the testbed. The output generated from these pipelines is subsequently

channeled to a global tracker and a database for human re-identification and statistical

analyses. The cloud node facilitates the transmission of the processed data to the end

users, enabling the visualization of the data and notifications. In the following, we

describe each component in detail.

3.1 AI Module/Modules

As Figure 3.1 shows, the AI Module is architected as a modular, multi-stage pipeline

tailored for computer vision tasks. This modularity offers the flexibility to adapt

the system for optimal performance in real-world security applications for real-world

response instead of running it sequentially.

Inspired by [14], AI Module runs the deep learning pipeline within the physical

environment next to the cameras. The images are then organized into batches of 30

frames, aligning with the window size prerequisites for high-level tasks. The batched

image data is first processed by an object detector [47][48], identifying and localizing

objects like people and high-priority items like guns and knives. Object Anomalies are

10

Object

Detector
Tracker

Pose

Estimator

Anomaly

Detector

Feature Extractor

Global

Tracker

Statistical

Analysis

Database

AI Module N0 Server

Module

Crop Selection

C0

Object

Detector
Tracker

Pose

Estimator

Anomaly

Detector

Feature Extractor

AI Module Nn

Crop Selection

Cn

...

...

End Users

Cloud

Node

Low-latency

DB

App

Development

Messaging
Authenti-

cation Service

Figure 3.1: End-to-end detailed system. C0 represents the camera ID and for each
camera, one AI Module N0 including multi-AI-vision-models pipeline is assigned with.
All the AI modules send processed data to one Server Module database, and Server
Module will re-identify the human track ID based on the feature extractor data. The
statistical analyzer analyzes all the data in the database stored across all the cameras
and communicates the results with Cloud Node. Cloud-native services are utilized to
host the end users’ applications.

flagged at this stage. The bounding box of detected persons is then sent to a tracking

algorithm [49], where tracklets with local IDs are created. These IDs and bounding

boxes are used in the subsequent pose estimation stage, where HRNet [50] extracts

2D skeletal data for each individual.

3.1.1 Object Anomaly Detection

For object anomaly detection, the object detection methodology employed leverages

the YOLO algorithm [47][48]. This approach facilitates the identification of all

objects of interest. Models can be tailored using custom datasets, encompassing both

conventional object classes and anomalous ones. Upon detecting anomalous objects

via YOLO, alerts are transmitted to the Cloud Node through a rule-based messaging

service, triggering notifications on end users’ devices. The objective is to optimize

object anomaly detection for efficiency, aiming to minimize response latency.

11

3.1.2 Behavioral Anomaly Detection

Our system’s AI pipeline uses the Graph Embedded Pose Clustering for Anomaly

Detection (GEPC) [51] to analyze 2D pose-estimation data in 30-frame windows

with a 20-frame stride. It scores individual movements in batches, contributing to a

frame anomaly score. Each frame gets a scene anomaly score if it contains person

detections. The pipeline then selects the most informative frame from each batch

to enhance database efficiency. Next, a feature extraction algorithm [52] is used

for human re-identification across different camera feeds. This process ensures that

processed data, without pixel data, is effectively stored on the server for extended

analysis and cross-camera identification.

3.2 Server Module

The server module serves as a repository for both metadata and historical data,

which are transmitted from each of the AI modules. This data is systematically stored

within a database, which is structured utilizing MySQL. Table 3.1 exemplifies the data

storage schema within this database. It comprises several columns, each providing

unique insights.

The database logs entries with precise timestamps in the "Record_Time" column,

identifies the camera source in the "Camera_ID" column, and classifies detected

objects using the "Class_ID" column, based on the COCO dataset, which "0" is

human. The "Bounding_Box" column details the position and dimensions of bounding

boxes around detected objects with the X and Y coordinates of the top-left corner

of the bounding box and its width and height. In contrast, the "Feature" column

stores human feature data as Tensors from the OSNet for re-identification. The

"Local_ID" column assigns unique identifiers for object tracking within a single

camera view, whereas the "Global_ID" column provides universal identifiers for cross-

camera tracking. Lastly, the "Anomaly_Score" column rates the likelihood of an

12

Table 3.1: Example visualization of the database at Server Node
Record
Time Camera Class ID Bounding

Box Feature Local ID Global ID Anomaly
Score

00:00:00 1 0 [x, y, w, h] Tensors 15 1001 40
00:00:01 2 0 [x, y, w, h] Tensors 21 1001 40

....
23:59:59 1 0 [x, y, w, h] Tensors 9999 1001 40

anomaly on a scale from negative infinity to 40, with 40 indicating no anomalies.

The server module primarily handles global tracking and statistical analysis. Global

tracking uses the cosine similarity method to compare the feature data of individuals

from all cameras. This approach allows the system to re-identify people across different

cameras and assign a unique global identifier to each pedestrian within a specific time

interval.

As shown in Figure 3.1, we perform a statistical analysis on the dataset housed

within the Server Module. This analysis leverages the data depicted in Table 3.1

and encompasses a variety of data analytics techniques. This step holds pivotal

significance within the overarching system for two primary reasons. The system’s

design significantly enhances privacy and usability for real-world applications in two

ways. First, not transmitting raw data to the Cloud Node reduces the reversibility

of pipeline output, thereby bolstering privacy. Second, the analysis provides end

users with valuable insights beyond raw data. This includes real-time metrics such

as location-specific headcounts and occupancy patterns and longitudinal analyses

of population trends and resource consumption, all illustrated through occupancy

indicators and heatmaps. These features collectively improve the system’s utility for

end users.

3.3 Cloud Node

As shown in Figure 3.1, the system leverages a suite of cloud-native services,

including robust data storage, management solutions, and API generators, to meet

its objectives [53] to achieve its goals. The system architecture aims to minimize the

13

time lag between detecting an anomaly and the notification received by the end-user.

We utilize a rule-based messaging service to send real-time push notifications. The

service generates specific topics and messages based on the type of detected anomalies.

These notifications are disseminated using the JSON protocol and can be received

via email, text, or app notifications. We primarily use email notifications to mitigate

potential latency issues due to service outages.

We used a low-latency database service as our cloud-based data storage solution,

enabling real-time data access. The database is organized into two types of tables:

one for tracking objects across each camera and another for storing analytical results

over time. These tables are indexed by timestamps and camera IDs, allowing for easy

data retrieval.

For the smartphone application, we use an application development kit to generate

the necessary APIs. This kit employs a GraphQL schema to pull data from existing

tables, optimizing data retrieval and minimizing over-fetching, shown as Figure 3.1

[54]. User management and authentication are other aspects of the mobile application

that cloud services handle [55]. The specifics of our implementation are beyond the

scope of this paper. In summary, our developed end-to-end system architecture offers

an efficient and scalable platform for the smartphone application, which is responsible

for delivering notifications to the end user.

3.4 End User Devices

The system’s primary goal is to secure and timely notify end users in case of detected

anomalies. To achieve this, we use a smartphone application that provides users with

a wealth of real-time data [8]. This includes the statistical analysis in section 3.2 and

detailed information on detected anomalies. Our system is engineered to notify users

promptly if any anomalies are identified. Users can choose their preferred notification

methods.

The smartphone application has been designed to cater to a broad audience, offering

14

seamless functionality across different operation systems and platforms. This cross-

platform consistency ensures that users can access the same features and benefits

regardless of their chosen device or operating system. This approach not only enhances

accessibility but also provides a unified user experience, optimizing the dissemination

of crucial information to the end users.

CHAPTER 4: System Setup and Configuration

In our testbed, we deployed a network of 16 AXIS IP cameras, each operating at

a frame rate of 30 FPS with 720p resolution, distributed across the college campus.

Figure 4.1 visually represents the camera placements. Three of the 16 cameras were

installed outdoors to monitor the parking areas. The remaining 13 were placed indoors

across three separate buildings. Specifically, three cameras were allocated to oversee

entry and exit points, another trio focused on vending machine areas, four captured

hallway activities, and the last three monitored communal study spaces. The indoor

cameras are located at the height of seven feet and six inches while the outdoor

cameras are located at the height of ten feet and eight inches. Each camera’s lens had

a varifocal from 3.4 to 8.9 mm with a horizontal field of view of 100 to 36 degrees and

a vertical field of view of 53 to 20 degrees. Around 35000 square feet of area is covered

by thirteen indoor cameras and around 60000 square feet by three outdoor cameras.

The system runs on a dedicated server (physically located within the community

college) with a single 16-core CPU with 1500 MHz clock speed and 252 GB memory

and four 10496 CUDA-cores GPUs, each with 1700 GHz boost clock and 24 GB

VRAM. We established multiple endpoints to facilitate comprehensive multi-user

testing. An individual topic was created on the rule-based messaging console. Initially,

four endpoints were used in controlled tests to measure end-to-end latency. This

was later expanded to 50 endpoints for broader, open-world testing. We conducted

experiments under three distinct scenarios, examining "AI Pipeline," "Load Stress,"

and "Endurance" to assess the system’s real-world capabilities, performance metrics,

and latency in real-time.

16

7

3

2
4

Indoor

Outdoor

Figure 4.1: Locations of Cameras on the Campus. A maximum of 16 cameras are
used; 3 of them are outdoors, and the other 13 are indoors

4.1 AI Pipeline Setup

The primary aim of the first scenario is to pinpoint the most effective configuration

for the AI Module [14], tailored to meet real-world security demands as outlined in

section 3. The configuration encompasses four core tasks: object detection, pedestrian

tracking, human pose estimation, and human re-identification. Additionally, a high-

level task-behavioral anomaly detection-integrates the results of these core tasks. Each

core task offers a range of alternative methods, each with its trade-offs between accuracy

and computational speed. While some SotA methods offer impressive accuracy, they

often fall short in real-world SVS applications due to their high computational demands

and complex parameter settings.

As demonstrated by Pazho et al. [14], the GEPC method [51] is particularly well-

suited for behavioral anomaly detection. ByteTrack [49] and OSNet [52] excel in

pedestrian tracking and human re-identification, respectively. The recently introduced

YOLOv8 [48] stands out for its object detection capabilities and enhances human pose

estimation through a top-down approach.

17

In this evaluation, our primary objective is to rigorously evaluate the performance of

various algorithmic approaches to identify the most optimal one for integration into our

system for real-world scenarios. We conducted a comprehensive performance evaluation,

comparing the features of our existing system [14] against other popular methods

recently developed in the field. The metrics for this comparative analysis included

throughput, latency, and the number of detected outputs with their computation

loads on GPU and CPU. We utilized video clips from the DukeMTMC dataset [56]

for this evaluation, each lasting one minute and featuring different crowd densities.

To ensure the scientific rigor of our experiments, these tests were initially performed

on a separate laboratory server. Only after confirming the superiority of the chosen

algorithm did we proceed with its full-scale integration into our designated testbed.

4.2 Load Stress Setup

We comprehensively examine the system’s performance under escalating input loads

in the second scenario. The focus is quantifying key metrics such as average latency

and throughput across videos with varying crowd densities. We progressively increased

crowd density. This rigorous evaluation provides valuable insights into the system’s

resilience and adaptability under increased workloads, a crucial factor for its real-world

applicability.

To robustly assess the system’s scalability, we conduct evaluations using different

numbers of pipeline modules. This methodology allows us to gauge how the system

adapts to varying levels of computational complexity. During the experimental phase,

we designed concurrent tests that ran the system with one, four, eight, and twelve

modules, all processing identical crowd density.

4.3 Endurance Setup

The final scenario focuses on deploying the system in a genuine real-world setting,

utilizing all 16 cameras in our testbed. The primary aim is to assess the system’s

18

Camera 1 Camera 2

Camera 3 Camera 4

Figure 4.2: This represents an example of 4 pipelines running in the testbed with IP
cameras deployed at different locations.

long-term stability and endurance. To this end, we conducted extended trials with

configurations of eight, twelve, and sixteen modules, each running continuously for 21

hours. To ensure the video length does not significantly affect the results, we ran the

system with 8 modules for a week period.

• Eight-Module Configuration: Covers one entrance point, one vending machine

location, two hallway segments, and two common areas.

• Twelve-Module Configuration: Adds three additional outdoor cameras monitor-

ing the parking lot and one more indoor camera at an entrance point.

• Sixteen-Module Configuration: Utilizes all available cameras for data acquisition.

As depicted in Figure 4.2, a sample output from the Local Node is displayed during

a scenario with four operational cameras. For privacy reasons, instance segmentation

masks have been applied to the visualizations. Specifically, Cameras 1 and 4 monitor

19

hallway points, while Cameras 2 and 3 oversee parking lot areas. This rigorous test

aimed to validate the system’s robustness and ability to maintain optimal performance

under realistic, extended operational conditions.

CHAPTER 5: Data Analysis and Representation

In this section, we explore the detailed data stored in our database. The aim is

to transform raw, unprocessed data into insightful and actionable information. Our

exposition begins with presenting descriptive data, offering the end user a foundational

and general grasp of the dataset’s landscape. This preliminary understanding is then

augmented with more sophisticated analyses designed to delve deeper into the data’s

nuances. Through these advanced analytical techniques, we endeavor to magnify the

end user’s situational awareness, equipping them with a more comprehensive and

enriched perspective of the environment.

We gathered the data for data representation with 8 cameras from the testbed, 2

outdoor parking lot and six indoor ones, over 8 days, commencing on October 12th,

2023, and concluding on October 20th, 2023. Our deliberate selection of this timeframe

encompassed 4 holidays, including 2 fall break days, 2 weekend days, and 4 working

days.

5.1 Descriptive Data

In our descriptive data analysis, the linchpin is the Global ID, derived from the

human feature data as outlined in Table 3.1. This Global ID is a unique identifier,

ensuring consistent tracking across various data streams. Five foundational metrics

have been presented in this analysis, designed to provide end users with a better

understanding of the system’s capabilities of the data. Although these data do not

provide insightful information to the end user, they can provide a general overview of

the traffic flow in the environment over time.

Current Number of People at Real-Time: AI pipelines allow the real-time

21

assessment of the number of individuals detected across all cameras. We can determine

the current number of people under surveillance by querying the most recent timestamp

entries from our database and aggregating the Global IDs.

Hourly Average Number of People Per Camera: By grouping the database

entries by hour for each camera and averaging the unique Global IDs detected, we

can compute the average number of individuals per camera identified hourly. This

statistic gives the end user a general understanding of hourly people distribution.

Hourly Average Number of People Per Location: Beyond individual cam-

eras, understanding the overall occupation trends in the environment is crucial. By

categorizing entries based on the group of cameras and then by hour and subsequently

counting and averaging unique Global IDs, we can determine the average traffic across

all cameras. This data is incredibly valuable as it offers insights into the anticipated

average number of individuals in the environment, leveraging historical data. Such

information can prove instrumental for conducting evacuation drills and planning

emergency procedures.

Total Number of People Over Time: The cumulative flow of people over a

specified duration provides a broader understanding of traffic flow. By organizing

database entries chronologically and counting unique Global IDs, we can chart a time

series that depicts the total number of detected individuals, which is a very important

metric for controlling the traffic of individuals.

Peak Hour Analysis: Identifying periods of maximum foot traffic is crucial for

various operational decisions. We can pinpoint the peak traffic hours by aggregating

data hourly and ranking these hours based on the count of unique Global IDs and use

this data to optimize security personnel assignments.

5.2 Situational Awareness

Situational awareness is a key concept in various domains, encapsulating the ability

to identify, process, and comprehend critical elements of information about the

22

environment. Situational awareness is about clearly understanding one’s surroundings,

which is essential for decision-making and proactive responses. Its value enables entities,

individuals, or systems to anticipate needs and potential challenges, facilitating timely

and informed actions. In the context of surveillance and safety, situational awareness

is indispensable. This section delves into four key visualization techniques that

support situational awareness: the Occupancy indicator, Statistical anomaly, Bird’s

eye view, and Heat map. We explain each technique’s significance and the underlying

methodology employed for its computation. Further, we underscore these visualizations’

insights, accentuated with practical examples. When employed judiciously, these

techniques serve as powerful tools, shedding light on patterns and anomalies elevating

our understanding and proficiency in environment monitoring.

5.2.1 Occupancy Indicator

The Occupancy Indicator is a vital tool in video surveillance, aiming to provide

contextual understanding concerning the number of people present in a specified

location captured by a particular camera. It interprets raw data, such as a head count

of seven individuals, into meaningful information by illustrating the relative occupancy

level concerning the historical data, whether crowded or within the normal interval.

For instance, a count of seven in a small room might signify a high occupancy, whereas

in a larger hall, it might denote a low occupancy level. In emergencies like evacuations,

knowledge of occupancy levels optimizes response effectiveness. Amid health crises,

such as the COVID-19 pandemic, controlling occupancy is essential for public health.

By providing a visual or numerical indicator, audiences can grasp the spatial dynamics

at a glance.

Algorithm 1 demonstrates an algorithm to calculate and categorize the occupancy

level at different camera locations using the data frame (df), which is continuously

updated with new data. The algorithm iterates through each camera ID within

the data frame and, for every camera, executes a loop every 5 seconds within a

23

Algorithm 1 Occupancy Indicator Algorithm
Input: data frame df , historical_data
for each camera_id in df do

for every 5 seconds in record_time do
current_number_of_people = length(unique(global_IDs))

end for
if current_number_of_people ≤ percentile(historical_data, 25) then

occupancy = "Low Occupancy"
else if current_number_of_people ≤ percentile(historical_data, 75) then

occupancy = "Normal Occupancy"
else

occupancy = "High Occupancy"
end if
update_historical_data(historical_data, current_number_of_people)

end for

specified range of (record_time). Each iteration of this nested loop computes the

current number of people by determining the length of the set of unique global IDs

(global_IDs) present in the data frame during that time interval.

The occupancy level is then evaluated by comparing the current_number_of_people

against the percentiles (25th and 75th) from the historical data (historical_data).

Specifically, if the current_number_of_people is less than or equal to the 25th per-

centile of the historical data, the occupancy is categorized as "Low Occupancy." If it

falls between the 25th and 75th percentiles, it is categorized as "Normal Occupancy".

Otherwise, if it is greater than the 75th percentile, the occupancy is deemed as "High

Occupancy".

Once the occupancy level is redetermined, the algorithm calls a function up-

date_historical_data to update the historical data with the current_number_of_people.

This updating step ensures the historical data remains current, allowing for more

accurate and relevant occupancy level determinations in subsequent iterations. This

process is carried out for every camera ID in the data frame, ensuring a comprehensive

evaluation of occupancy levels across all monitored locations.

In Figure 5.1, we can observe a comparison of occupancy indicators for the same

24

(1)

(2)

Figure 5.1: Comparing the Occupancy indicator of the same camera in an hour in two
days. The graph (1) shows the Weekend. The graph (2) represents weekday.

camera during the same hour on two distinct days. Graph 1 illustrates the occupancy

indicator for a weekend, whereas Graph 2 depicts the occupancy indicator for a

weekday. The figure highlights that, during weekends, the detection of 2 people is

categorized as "High Occupancy," whereas on weekdays, this number is considered

"Normal."

5.2.2 Statistical Anomaly

In surveillance and safety, understanding statistical anomalies plays a pivotal

role. This is primarily because anomalies, or deviations from the norm, often signal

unexpected or unusual events. For instance, a sudden surge in crowd density in

monitoring public spaces can indicate potential risks such as unauthorized gatherings,

evacuations, or charges. By analyzing historical data, a baseline or ’norm’ for crowd

density can be established. Any significant deviation from this baseline, especially an

increase in crowd density, would be considered an anomaly.

Being able to detect such anomalies in real time enables quick response mechanisms.

For safety personnel, it provides an opportunity to proactively address potential

25

(1) (2)

Figure 5.2: Comparing the normal distributions of the same camera in an hour period
in two scenarios. The graph (1) shows the non-detections included in the calculation.
The graph (2) represents excluding non-detections.

(1) (2) (3) (4)

Figure 5.3: Comparing the normal distributions of the same camera in four scenarios.
The graph (1) shows when statistical anomaly happens during weekdays. The graph (2)
shows the normal distribution of an hour during weekdays. The graph (3) represents
when statistical anomaly happens during weekends. The graph (4) represents the
normal distribution of an hour during weekends.

26

Algorithm 2 Statistical Anomaly Detection
Input: df , start_time, end_time
Filter df for camera ID in the specified time range
Initialize mean to 0 and std to 1
Initialize detected_objects list
for each 5-second interval from start_time to end_time do

Count unique detected objects in the interval
if detected objects > 0 then

Update detected_objects, mean, and std
end if

end for

threats, ensuring the well-being and security of the public.

Algorithm 2 identifies unexpected numbers of detected individuals for each camera

relative to historical trends. Recognizing that different locations display varying crowd

densities over time, we compute these statistical anomalies hourly. The strategy

involves constructing a normal distribution based on historical hourly data. Every

5 seconds, as new detections occur, this distribution is updated. As delineated in

Algorithm 2, the mean and standard deviation for a specific hour are computed to

characterize the data’s distribution. Concurrently, current detections are compared

against this historical backdrop. If the present number of detections exceeds two

standard deviations from the mean, there’s a less than 0.05 probability of such an

occurrence. This implies that, with 95% confidence, such an event can be labeled a

statistical anomaly.

We’ve intentionally omitted detections amounting to 0 in our approach. This decision

stems from the rationale that, within a 5-second window, the absence of detections

(i.e., detecting no individuals) is more probable than any detection. Including 0

detections in our computations would skew the results towards 0, introducing a bias.

This inclusion would result in diminished thresholds for defining anomalies, rendering

the statistical analysis less meaningful and effective. Figure 5.2, compares the normal

distributions of the detected objects under these two scenarios for the same camera

during the same period. We did not exclude the zeros from our computations in the

27

graph (1). The graph (2) does not include zeros. We can see the skewness of graph (1)

toward Zero, resulting in the mean between 0 and 1. In the other scenario, however,

the mean is between 1 and 2. As a result, detecting 3 objects in the first scenario

is considered an anomaly, while detecting the same number of objects in the second

scenario is considered normal.

In Figure 5.3, we present a comparative analysis of four distinct scenarios captured

at two separate temporal intervals of the same camera. Graphs (1) and (2) derive

from weekday data. Specifically, Graph (1) illustrates a statistical anomaly, evidenced

by detecting 5 individuals within 5 seconds, deviating from the expected probability

distribution. In contrast, Graph (2) delineates the typical distribution over an hour-

long weekday period. Graphs (3) and (4) are predicated on weekend data, with Graph

(3) highlighting another statistical anomaly with 5 people detected. Graph (4) portrays

the standard distribution over an hour during weekends. A comparative assessment

of Graphs (2) and (4) reveals a higher mean value during weekdays for Graph (2),

aligning with anticipated trends.

5.2.3 Bird’s Eye View

A bird’s eye view, often referred to as a top-down or overhead view, offers a unique

vantage point that eliminates perspective distortion commonly associated with ground-

level or diagonal images. This perspective allows for accurate spatial representation,

ensuring that objects’ relative positions and distances from one another are preserved

[57]. In surveillance or monitoring, a bird’s eye view ensures that the entire area

of interest is observed without any hidden spots or overlapping regions, a feature

often compromised in traditional camera views due to their limited field of view and

perspective distortion [58].

Understanding how people are scattered in a specific area is crucial for various

applications such as crowd management, security, and area planning. Accurate

representation of people’s positions helps determine crowd densities, identify potential

28

Algorithm 3 Bird’s Eye View Transformation
Input: data frame df , camera_width, camera_height, min_theta, max_theta
Compute normalized values: df [normalized_W], df [normalized_H]
for each object in df do

Compute scale_factor using df [normalized_H]
Calculate centroid CX and CY

Compute BirdsEyeX and BirdsEyeY using scale_factor and normalized values
end for
for camera_id from 1 to 8 do

Define start_time and end_time
Filter df based on camera_ID and time range

end for

choke points, and facilitate effective emergency responses. By utilizing a bird’s eye

view, these patterns can be more easily discerned, leading to better decision-making

and prediction of crowd behaviors.

In Algorithm 3, a systematic approach is taken to calculate the Bird’s Eye View

coordinates for objects detected by cameras of the model AXIS P3225-VE Mk II

Network Camera 1. The primary objective of this transformation is to project the

detected objects onto a top-down view, simulating an overhead perspective.

The first step involves normalizing the object’s width and height by dividing them by

the camera’s resolution parameters, namely, camera_width and camera_height. This

normalization ensures that the object dimensions are represented as scale-independent

relative to the camera’s resolution.

Next, a scale factor is computed for each object, a function of its normalized height

and the angular field of view parameters, min_teta and max_teta. Notably, these

angular parameters, min_teta and max_teta, are derived directly from the technical

specifications provided by the camera producer. The scale factor is crucial for adjusting

the object’s dimensions in the Bird’s Eye View, ensuring that objects farther away

appear smaller than those closer to the camera, thereby preserving depth perception.

The centroid of each object is then determined by calculating the average of its
1https://www.axis.com/products/axis-p3225-ve-mk-ii/support#technical-specifications

29

(1) (2)

Figure 5.4: Comparing different views of camera 8 from 2023-10-17 12:17:42 to 12:17:47.
The graph (1) generated directly from database shows the original camera view. The
graph (2) represents the average birdseye view coordinates.

width and height dimensions. This centroid represents the object’s central point,

essential for accurate positioning in the Bird’s Eye View.

Finally, the Bird’s Eye View coordinates, BirdsEye_X and BirdsEye_Y, are cal-

culated by applying the previously computed scale factor to the object’s centroid

coordinates. The result of this transformation is an accurate representation of the

object’s position in a top-down perspective.

The algorithm also includes a data filtering step, where records are filtered based on

specific camera IDs and a specified time frame. Therefore, in every 5-second interval,

we calculated the unique number of global_IDs, and based on that, we captured the

number of detected objects. This ensures that only relevant data for a given camera

and time range is considered for further analysis.

Figure 5.4 presents a comparative representation between the original perspective

and the processed birdseye view from Camera 8, captured concurrently. The initial

graph displays approximately 13 data points within a five-second interval. Post-

processing, the bounding boxes corresponding to identical global IDs are averaged,

30

resulting in a birdseye representation of nine distinct individuals. This transformation

underscores the efficacy of the bird’s eye view process in refining and consolidating

data for enhanced clarity and precision.

CHAPTER 6: Real-World Results and Evaluation

6.1 AI Pipeline Configuration Evaluation

Two challenging videos, Extreme Level and Heavy Level, depicting high crowd

levels, were designated as input to facilitate a performance comparison across various

methods. Each video lasted 60 seconds, operating at a frame rate of 60 per second,

resulting in 120 batches for inference. To ensure statistical robustness, performance

metrics were averaged over the middle 80 batches in each run, thus mitigating potential

bias arising from the initial 20 batches (warm-up) and including the last 20 batches

(cool-down).

Four distinct methods underwent testing:

• YOLOv5+HRNet: The original system method

• YOLOv8pose: A variant of YOLOv8 incorporating human pose estimation as a

top-down method.

• YOLOv8pose-p6: The most complex model of YOLOv8 for human pose estima-

tion.

• YOLOv8+HRNet: Object detection method with pedestrian tracking interacted.

For the AI Pipeline Configuration Test, Table 6.1 outlines the performance of

each method across different crowd density levels using four distinct metrics: average

latency and throughput, total detection count, average GPU and CPU memory usage,

and total FLOPs of every AI models. For the "Extreme" crowd density video,

YOLOv8pose exhibited superior latency and throughput performance, accompanied

by the fewest detections. This method leverages a top-down approach, excelling

32

Table 6.1: Performance comparison among different system configurations. Data
collected using lab server with a single node.

Crowd
Density Method Latency

(s) FPS Detections
(counts)

GPU
Memory

(G)

CPU
Memory

(G)

Total
FLOPs

(B)

Extreme
(∼50 detects
per second)

YOLOv5+HRNet 14 14.82 1033 5.3 19.1 126.08
YOLOv8pose-p6 3.7 26.39 911 12.2 12.68 1067.38

YOLOv8pose 2.2 49.07 679 6.9 12.38 264.18
YOLOv8+HRNet 9.09 19 1217 5.5 19.3 182.18

Heavy
(∼20 detects
per second)

YOLOv5+HRNet 3.47 81.2 237 5.0 15.28 126.08
YOLOv8pose-p6 3.54 26.45 358 11.9 12.4 1067.38

YOLOv8pose 2.6 45.11 308 6.9 12.3 264.18
YOLOv8+HRNet 2.76 67.63 342 5.5 15.4 182.18

at processing larger human crops that show full-body movement while potentially

ignoring smaller or just upper-body ones. In the real world, missing potential human

detections could result in undetected objects and behavioral anomalies, which is

unacceptable. Conversely, YOLO + HRNet enables the detection of more crops. In

this context, YOLOv8+HRNet demonstrated a latency of 9.09 seconds, a throughput

of 19 FPS, and comparable GPU memory usage of around 5.5 GB, better than the

YOLOv5+HRNet method.

In the case of the "Heavy" crowd density video, where crowd density is lower than

"Extreme," the YOLOv8+HRNet method maintained its competitive edge. With

a latency of 2.76 seconds, a throughput of 67.63 FPS, 342 total detections, 5.5 GB

GPU memory usage, and 15.4 GB CPU memory usage, it showcased a formidable

performance against other methods.

6.2 Load Stress Evaluation

To rigorously assess the system’s performance under varying crowd densities and

parallel module operations, we curated ten videos with density levels ranging from 0

to 9. Each video lasted 150 seconds and operated at a frame rate of 30 frames per

second. To ensure the statistical validity of our results, we averaged metrics over the

central 100 batches in each run, excluding the initial 25 batches to account for system

warm-up and the last 25 batches for cool-down effects.

33

(a) (b)

Figure 6.1: Throughput and latency trends with respect to crowd densities across
different nodes number running in parallelism.

Figure 6.1 graphically presents the trends for throughput and latency. The X-axis,

labeled "Density" (count), represents the average number of humans detected per

batch (comprising 30 frames) for each input module in the experiment.

In tests with one and four cameras, our system maintained latency under 10 seconds,

showcasing stability. However, with eight module s, latency increased beyond 20

seconds at higher density levels, particularly from level 5 onwards. A notable decrease

in latency was observed with 12 nodes, especially at density levels 8 and 9, correlating

with processing 108 individuals (12 nodes x 9 density). Throughput consistently

declined linearly with increasing density and node count, reaching a low of 4.56 FPS

at the highest density level 9 with 12 nodes. The observed decrease in performance

can be primarily attributed to the computational demands of HRNet operating high

density for keypoint processing. Additionally, the system’s performance is constrained

by the CPU computation limits. As the number of nodes and density increases, these

factors collectively contribute to the bottleneck, leading to the observed decline in

system throughput and latency.

34

6.3 Real-World Endurance Evaluation

The primary objective of this experiment is to validate the system’s durability and

capacity to maintain optimal performance within a realistic, sustained operational

configuration. Figure 6.2 offers a detailed presentation of the latency and throughput

trends with varying crowd density traffic. The experiment encompassed a continuous

21-hour runtime, employing different camera node configurations. The evaluation

commenced at 2:00 p.m. on the first day and concluded at 11:00 a.m. the following

day. During the experiment, we observed that system latency decreased when the

server node’s database reached around 50,000 queries. To address this and maintain

privacy, we implemented an auto-reset feature for the database. It clears and resets

after accumulating 50,000 queries or after 24 hours of run time.

Analyzing Figure 6.2, each data point epitomizes the average value over a 60-second

interval. The "Density" metric signifies the sum of human detections per camera

node within the middle 60-second window. This is attributed to the data collection

period aligning with a summer break, resulting in lower human flow within the testbed,

particularly about indoor camera nodes.

For configurations with 8, 12, and 16 camera nodes, we observed varying performance

metrics: average latencies were 2.6-4.8s, 5.3-6.5s, and 6.7-10.5s, respectively, while

corresponding throughputs ranged from 28.5-26.5 FPS, 20.5-18 FPS, to 16.5-14.5 FPS.

As shown in Figure 6.3, the system’s performance over a week, running with eight

cameras, demonstrated consistent latency and throughput results about crowd density.

Specifically, the latency ranged from 2.5-7.8s, and throughput varied from 22.3-29.8

FPS. These findings confirm that irrespective of crowd density, the latency increased.

At the same time, the FPS decreased, aligning with expectations and underscoring

that the length of the videos does not significantly impact the system’s performance.

It is essential to note that the specific data spikes observed within the metrics

for the eight and twelve-camera node configurations could stem from various factors,

35

(a)

(b)

(c)

Figure 6.2: Latency and throughput trends concerning crowd densities during a 21-
hour-length period for different camera nodes number (a) represents 8 camera nodes,
(b) represents 12 camera nodes, (c) represents 16 camera nodes

36

1 6 : 0 0 0 0 : 0 0 0 8 : 0 0 1 6 : 0 0 0 0 : 0 0 0 8 : 0 0 1 6 : 0 0 0 0 : 0 0 0 8 : 0 0 1 6 : 0 0 0 0 : 0 0 0 8 : 0 0 1 6 : 0 0 0 0 : 0 0 0 8 : 0 0 1 6 : 0 0 0 0 : 0 0 0 8 : 0 0 1 6 : 0 0 0 0 : 0 0 0 8 : 0 0
0 . 0 0
2 . 0 0
4 . 0 0
6 . 0 0
8 . 0 0

1 4 . 5
1 8 . 5
2 2 . 5
2 6 . 5
3 0 . 5

W e d T h u T h u T h u T h u F r i F r i F r i S a t S a t S a t S u n S u n S u n M o n M o n M o n T u e T u e W e d W e d

2 . 5
4 . 5
6 . 5
8 . 5

1 0 . 5

De
nsi

ty
(co

un
t)

T i m e

 D e n s i t y

Th
rou

gh
pu

t (F
PS

) T h r o u g h p u t

La
ten

cy
(s)

 L a t e n c y

Figure 6.3: Latency and throughput trends concerning crowd densities during a week-
long period for 8 camera nodes

including network irregularities within the environment (as the input streams originate

from IP cameras) or CPU memory usage nearing its limits. However, in light of the

comprehensive experiment, these occasional data point spikes remain within acceptable

bounds. The system consistently maintained optimal performance levels, showcasing

its robustness and capacity to effectively manage and adapt to various operational

scenarios.

Knowing how much these key parameters, such as the number of cameras and crowd

density, could affect system performance, such as latency and throughput in different

public safety scenarios in case of emergency, is crucial in decision making and taking

the proper actions. For example, retail and transport hubs could analyze foot traffic

and crowd density, offering insights into peak hours and emergency response planning.

6.4 Physical-Cyber-Physical Evaluation

In this section, we dive into the details of setup and evaluation of both behavioral

and object anomaly detection. We measure PCP latency, representing the total

end-to-end time from when an anomaly appears in front of the camera to when the

end user receives a notification.

37

Rule ased Messaging

Object Anomaly

Cyber

Pipeline N₁

…

AI Module Server Module

Behavioral Anomaly

…

Physical Physical

Local

Database

Statistical

Analysis
Object Detector

Pipeline Nₙ

…

…

S₁

Sₙ

Cloud Node

Figure 6.4: Notification’s data flow through Physical-Cyber-Physical set up. S1

represents the first scene that detects a behavior anomaly. The yellow line shows
the notification data flow to the notification service. Sn shows the nth scene where
a suspicious object has been detected. The red line shows the notification data flow
when detecting object anomalies.

In practical SVS deployments, using a small number of camera nodes is uncommon.

Our tests involved four, eight, twelve, and sixteen nodes and simulated two distinct

types of notifications: object anomaly and behavioral anomaly. The former measures

the latency between detecting high-priority objects and alerting the end user, while

the latter focuses on dangerous activities such as fighting or falling. Throughout

these tests, scene density was carefully controlled, involving two individuals and three

end-user devices receiving notifications. 400 data samples were collected across twenty

experiments for each type of anomaly, offering a robust measure of the system’s PCP

latency under various conditions. In Figure 6.4, Sn with red dots represent object

anomalies, notifications are directly transmitted through the notification service as

soon as an anomaly object is detected from an object detector stage from AI node. S1

with yellow dots represents behavioral anomalies that are subject to further scrutiny

to minimize False Negatives (FN) and False Positives (FP). The behavioral anomaly

score is compared with the two preceding scores in the server node database to ensure

consistent anomaly detection. Once the analyzed anomaly score crosses a predefined

threshold, notifications are dispatched via the notification service, yellow dotted line in

Figure 6.4. The average PCP latency is shown in Table 6.2. It should be noted that

38

Table 6.2: Average P-C-P latency with different number of cameras
Physical-Cyber-Physical Latency (s)

Node Object Anomaly Behaviour Anomaly
4 4.7 9.34
8 10.99 14.53
12 15.76 18.45
16 19.68 26.76

Table 6.3: Average latency of cloud server with different number of cameras
DynamoDB

Latency (ms)
SNS

Latency (ms)
AppSync

Latency (ms)
Nodes GetItem PutItem Action Statistical

4

14.6 17.5

140

105 14.48 150.5
12 186
16 172

the timing data were manually recorded, as there is currently no scientific method for

achieving extreme accuracy in measuring PCP latency. This manual approach may

introduce some minor discrepancies in the time measurements. In the experiment,

the camera node density was controlled as two humans in front of the camera. Each

test was conducted a minimum of 20 times, with notifications transmitted to three

end-user devices. The increase in camera numbers significantly affects the results.

For instance, the object anomaly PCP latency rose from 4.7 seconds with four cameras

to 19.68 seconds with sixteen. Given that each AI pipeline consumes up to 5.5 GB

of GPU memory and the local node can handle a maximum of 24 GB, a GPU can

support up to four pipelines simultaneously. Thus, the local node server’s maximum

capacity is limited to sixteen parallel AI pipelines. A similar trend is observed in

behavioral anomaly latency, increasing from 9.34 seconds (4 cameras) to 26.76 seconds

(16 cameras). These patterns are attributed to increased system traffic, overall latency

increments (as shown in Table 6.3), and the multitasking overhead, ranging from

footage loading to notification publishing on user devices. On the other hand, Table

6.2 indicates that the average object detection PCP latency for four cameras is around

4.7 seconds. In contrast, the behavioral anomaly PCP latency shows a 4-second

39

Table 6.4: Statistical PCP latency data for object and behaviour anomaly for different
number of cameras

Object Anomaly Behaviour Anomaly

Nodes Min (s) Max (s) Standard
deviation Min (s) Max (s) Standard

deviation
4 3.06 5.55 0.65 7.81 10.41 0.68
8 9.18 12.55 0.84 13.23 16.46 0.71
12 14.05 18.31 1.04 16.32 20.35 0.97
16 17.67 21.6 1.12 24.23 29.54 1.52

0

0.2

0.4

0.6

0.8

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

16 Nodes
12 Nodes
8 Nodes
4 Nodes

Latency (s)

Pr
ob

ab
lit

y

Figure 6.5: Object Anomaly Latency Rug plot with each run during PCP test. 50
data points for each camera number

increment. This observation is also similar among different experiments. The reason

is that the behavioral anomaly notification needs to run through more stages and

be recorded in the server node before being pushed to the notification service at the

cloud node, as shown in Figure 6.4.

It’s important to note that a latency of approximately three seconds was observed

in the frame transmission from the cameras to the AI Nodes. This latency was slightly

higher compared to other IP camera systems. The primary reason for this elevated

latency can be attributed to the unique network configuration implemented within our

40

0

0.2

0.4

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

16 Nodes
12 Nodes
8 Nodes
4 Nodes

Latency (s)

Pr
ob

ab
lit

y

Figure 6.6: Behavior Anomaly Latency Rug plot with each run during PCP test. 50
data points for each camera number

testbed environment. Importantly, it is imperative to note that the PCP measurement

results encompassed this latency incurred by the cameras.

Figures 6.5 and 6.6 show the distribution of 400 data points from our PCP experi-

ments. Figure 6.5 illustrates that data points in the four-camera object detection PCP

are less varied compared to the more scattered data in the sixteen-camera experiment.

As reported in Table 6.4, the standard deviation (sd) of object detection PCP increases

from 0.65 to 1.12 as camera numbers rise from four to sixteen. The minimal latency

for detecting a suspicious object was 3.06s (four cameras) and 9.18s (eight cameras).

The slight increase in sd across different node quantities indicates that increased

node numbers and system traffic marginally broaden latency ranges, possibly due to

increased system complexity, synchronization issues, resource contention, and network

congestion.

Our system’s evaluation of PCP latency with different node numbers at a real-world

testbed demonstrates its utility in enhancing safety and operational efficiency. For

41

event venues and public spaces, the system could manage different locations, aiding in

anomaly detection and resource allocation by notifying all the end users around 20

seconds, which could prevent further loss from danger. This analysis could provide

communities with a clearer vision for managing and responding to anomalies with the

SVS system, thereby bolstering public safety and efficiency.

CHAPTER 7: CONCLUSION AND FUTURE

SVS systems have emerged as powerful tools for enhancing public safety and security,

with advancements in machine learning algorithms bolstering their reliability. As this

technology is poised for substantial growth, it is crucial to address challenges related to

scalability, latency, throughput, and privacy concerns for practical deployment. This

thesis evaluated an SVS system’s performance in a real world setting, demonstrating

its capacity to deliver timely alerts with an end-to-end latency of under 30 seconds

across 16 cameras. Comparatively, this system outperforms traditional police response

benchmarks 1 2, which are typically measured in minutes.

The potential of AI-driven SVS systems to improve urban safety and planning

is profound. By integrating surveillance data with IoT sensors, we can achieve

comprehensive environmental monitoring, capturing essential metrics such as air

quality and noise levels. Furthermore, the use of better resource allocation algorithms

can enhance the responsiveness of emergency services and traffic management systems

in critical situations. Advanced computer vision techniques can also be employed

to detect suspicious activities in densely populated areas, thereby bolstering public

safety.

Additionally, the creation of simulation models for urban environments enables the

testing of various planning scenarios, while the adoption of privacy-preserving tech-

niques ensures the responsible usage of collected data. The integration of multimodal

data sources, including transportation and weather information, provides a holistic

view of urban dynamics, aiding informed decision-making.
1https://www.alicetraining.com/wp-content/uploads/2018/12/ALICE-Fact-Sheet-with-

references.pdf
2https://leb.fbi.gov/image-repository/police-response-time-to-active-shooter-attacks.jpg/view

43

This study underscores that AI-driven SVS systems can be effectively implemented

in real-world settings, enhancing surveillance capabilities while addressing privacy con-

cerns. Future research should focus on refining algorithms, involving local communities

in the deployment of SVS systems, and exploring the concept of "community-in-the-

loop" to tackle scalability and privacy challenges. Continuously evaluating SVS

performance across diverse environments will further enhance the system’s reliability

and efficiency.

44

REFERENCES

[1] D. Fraser, Goals for MinneapolisâA City for the 21st Century, pp. 83–103. Rout-
ledge, 2018.

[2] S. Nikouei, Y. Chen, S. Song, B. Choi, and T. Faughnan, “Toward intelligent
surveillance as an edge network service (isense) using lightweight detection and
tracking algorithms,” IEEE Transactions on Services Computing, vol. 14, no. 6,
pp. 1624–1637, 2019.

[3] N. Dilshad, J. Hwang, J. Song, and N. Sung, “Applications and challenges in
video surveillance via drone: A brief survey,” in 2020 International Conference on
Information and Communication Technology Convergence (ICTC), pp. 728–732,
IEEE, 2020.

[4] J. Tang, Y. Zhou, T. Tang, D. Weng, B. Xie, L. Yu, H. Zhang, and Y. Wu, “A
visualization approach for monitoring order processing in e-commerce warehouse,”
IEEE Transactions on Visualization and Computer Graphics, vol. 28, no. 1,
pp. 857–867, 2021.

[5] A. De Biasi, J. M. Krupa, A. Rzotkiewicz, E. McGarrell, G. Circo, and J. Liebler,
“Insights from law enforcement personnel during the covid-19 pandemic: a focus
on violence reduction and prevention initiatives and firearm violence,” Police
Practice and Research, vol. 24, no. 3, pp. 322–345, 2023.

[6] T. RÃ€ty, “Survey on contemporary remote surveillance systems for public safety,”
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), vol. 40, no. 5, pp. 493–515, 2010.

[7] N. Komninos, E. Philippou, and A. Pitsillides, “Survey in smart grid and smart
home security: Issues, challenges and countermeasures,” IEEE Communications
Surveys and Tutorials, vol. 16, no. 4, pp. 1933–1954, 2014.

[8] B. Ardabili, A. Pazho, G. Noghre, C. Neff, S. Bhaskararayuni, A. Ravin-
dran, S. Reid, and H. Tabkhi, “Understanding policy and technical aspects
of ai-enabled smart video surveillance to address public safety,” arXiv preprint,
vol. arXiv:2302.04310, 2023.

[9] R. Xu, S. Nikouei, Y. Chen, A. Polunchenko, S. Song, C. Deng, and T. Faughnan,
“Real-time human objects tracking for smart surveillance at the edge,” in 2018
IEEE international conference on communications (ICC), pp. 1–6, IEEE, 2018.

[10] R. F. Mansour, J. Escorcia-Gutierrez, M. Gamarra, J. A. Villanueva, and N. Leal,
“Intelligent video anomaly detection and classification using faster rcnn with deep
reinforcement learning model,” Image and Vision Computing, vol. 112, p. 104229,
2021.

45

[11] A. Anagnostopoulos, B. E. Griffiths, N. Siachos, J. Neary, R. F. Smith, and
G. Oikonomou, “Initial validation of an intelligent video surveillance system for
automatic detection of dairy cattle lameness,” Frontiers in Veterinary Science,
vol. 10, p. 1111057, 2023.

[12] C. Huang, Z. Wu, J. Wen, Y. Xu, Q. Jiang, and Y. Wang, “Abnormal event
detection using deep contrastive learning for intelligent video surveillance system,”
IEEE Transactions on Industrial Informatics, vol. 18, no. 8, pp. 5171–5179, 2021.

[13] J. Usha Rani and P. Raviraj, “Real-time human detection for intelligent video
surveillance: An empirical research and in-depth review of its applications,” SN
Computer Science, vol. 4, no. 3, p. 258, 2023.

[14] A. Pazho, C. Neff, G. Noghre, B. Ardabili, S. Yao, M. Baharani, and H. Tabkhi,
“Ancilia: Scalable intelligent video surveillance for the artificial intelligence of
things,” arXiv preprint, vol. arXiv:2301.03561, 2023.

[15] E. O. Asani, O. D. Akande, E. E. Okosun, O. T. Olowe, R. O. Ogundokun, and
A. E. Okeyinka, “Ai-paas: Towards the development of an ai-powered accident
alert system,” in 2023 International Conference on Science, Engineering and
Business for Sustainable Development Goals (SEB-SDG), vol. 1, pp. 1–8, IEEE,
2023.

[16] A. Dash, S. Bandopadhay, S. R. Samal, and V. Poulkov, “Ai-enabled iot framework
for leakage detection and its consequence prediction during external transportation
of lpg,” Sensors, vol. 23, no. 14, p. 6473, 2023.

[17] V. Padmavathi and R. Kanimozhi, “Pandemic alert with smart covid-19 using
blockchain-powered digital twins’ collaboration,” 2023.

[18] H. Cui, K. Hou, J. Zhang, S. Yan, M. Seraj, Y. Wang, M. Tavakoli, and T. Qiu,
“Vision-based work zone safety alert system in a connected vehicle environment,”
Transportation Research Record, p. 03611981231165997, 2023.

[19] T. Dutta, A. Soni, P. Gona, and H. P. Gupta, “Real testbed for autonomous
anomaly detection in power grid using low-cost unmanned aerial vehicles and
aerial imaging,” IEEE MultiMedia, vol. 28, no. 3, pp. 63–74, 2021.

[20] D. L. Marino, C. S. Wickramasinghe, V. K. Singh, J. Gentle, C. Rieger, and
M. Manic, “The virtualized cyber-physical testbed for machine learning anomaly
detection: A wind powered grid case study,” IEEE Access, vol. 9, pp. 159475–
159494, 2021.

[21] L. Maglaras, T. Cruz, M. A. Ferrag, and H. Janicke, “Teaching the process
of building an intrusion detection system using data from a small-scale scada
testbed,” Internet Technology Letters, vol. 3, no. 1, p. e132, 2020.

46

[22] M. Zhang, J. Cao, Y. Sahni, Q. Chen, S. Jiang, and L. Yang, “Blockchain-based
collaborative edge intelligence for trustworthy and real-time video surveillance,”
IEEE Transactions on Industrial Informatics, vol. 19, no. 2, pp. 1623–1633, 2022.

[23] B. Ardabili, A. Pazho, G. Noghre, C. Neff, A. Ravindran, and H. Tabkhi, “Under-
standing ethics, privacy, and regulations in smart video surveillance for public
safety,” arXiv preprint, vol. arXiv:2212.12936, 2022.

[24] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi, and A. P.
Sheth, “Machine learning for internet of things data analysis: A survey,” Digital
Communications and Networks, vol. 4, no. 3, pp. 161–175, 2018.

[25] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of things
for smart cities,” IEEE Internet of Things journal, vol. 1, no. 1, pp. 22–32, 2014.

[26] M. M. Rathore, A. Ahmad, A. Paul, and S. Rho, “Urban planning and building
smart cities based on the internet of things using big data analytics,” Computer
networks, vol. 101, pp. 63–80, 2016.

[27] E. Al Nuaimi, H. Al Neyadi, N. Mohamed, and J. Al-Jaroodi, “Applications of
big data to smart cities,” Journal of Internet Services and Applications, vol. 6,
no. 1, pp. 1–15, 2015.

[28] M. N. Mouchili, S. Aljawarneh, and W. Tchouati, “Smart city data analysis,” in
Proceedings of the First International Conference on Data Science, E-learning
and Information Systems, pp. 1–6, 2018.

[29] L. Abberley, N. Gould, K. Crockett, and J. Cheng, “Modelling road congestion
using ontologies for big data analytics in smart cities,” in 2017 international
smart cities conference (isc2), pp. 1–6, IEEE, 2017.

[30] N. Bharadwaj, P. Kumar, S. Arkatkar, A. Maurya, and G. Joshi, “Traffic data
analysis using image processing technique on delhi–gurgaon expressway,” Current
Science, pp. 808–822, 2016.

[31] L. Chen, Y. Lu, Q. Sheng, Y. Ye, R. Wang, and Y. Liu, “Estimating pedestrian
volume using street view images: A large-scale validation test,” Computers,
Environment and Urban Systems, vol. 81, p. 101481, 2020.

[32] L. He, A. Páez, and D. Liu, “Built environment and violent crime: An environ-
mental audit approach using google street view,” Computers, Environment and
Urban Systems, vol. 66, pp. 83–95, 2017.

[33] A. Pazho, G. Noghre, A. Purkayastha, J. Vempati, O. Martin, and H. Tabkhi, “A
survey of graph-based deep learning for anomaly detection in distributed systems,”
arXiv preprint, vol. arXiv:2206.04149, 2022.

47

[34] J. S., S. C., Y. E., and J. GP., “Real time object detection and trackingsystem for
video surveillance system,” Multimedia Tools and Applications, vol. 80, pp. 3981–
96, 2021.

[35] A. Pramanik, S. Sarkar, and J. Maiti, “A real-time video surveillance system
for traffic pre-events detection,” Accident Analysis and Prevention, vol. 154,
p. 106019, 2021.

[36] R. Singh, H. Srivastava, H. Gautam, R. Shukla, and R. Dwivedi, “An intelligent
video surveillance system using edge computing based deep learning model,” in
2023 International Conference on Intelligent Data Communication Technologies
and Internet of Things (IDCIoT), pp. 439–444, IEEE, 2023.

[37] M. Gandapur, “E2e-vsdl: End-to-end video surveillance-based deep learning
model to detect and prevent criminal activities,” Image and Vision Computing,
vol. 123, p. 104467, 2022.

[38] C. Huang, Z. Wu, J. Wen, Y. Xu, Q. Jiang, and Y. Wang, “Abnormal event
detection using deep contrastive learning for intelligent video surveillance system,”
IEEE Transactions on Industrial Informatics, vol. 18, no. 8, pp. 5171–5179, 2021.

[39] M. Ma, S. M. Preum, M. Y. Ahmed, W. Tärneberg, A. Hendawi, and J. A.
Stankovic, “Data sets, modeling, and decision making in smart cities: A survey,”
ACM Trans. Cyber-Phys. Syst., vol. 4, nov 2019.

[40] A. Alshammari and D. Rawat, “Intelligent multi-camera video surveillance sys-
tem for smart city applications,” in 2019 IEEE 9th Annual Computing and
Communication Workshop and Conference (CCWC), pp. 0317–0323, IEEE, 2019.

[41] R. Franklin and V. Dabbagol, “Anomaly detection in videos for video surveillance
applications using neural networks,” in 2020 Fourth International Conference on
Inventive Systems and Control (ICISC), pp. 632–637, IEEE, 2020.

[42] Y. Yuan, M. Ma, S. Han, D. Zhang, F. Miao, J. A. Stankovic, and S. Lin,
“Deresolver: A decentralized conflict resolution framework with autonomous
negotiation for smart city services,” ACM Trans. Cyber-Phys. Syst., vol. 6, nov
2022.

[43] L. Esterle and J. N. A. Brown, “I think therefore you are: Models for interaction
in collectives of self-aware cyber-physical systems,” ACM Trans. Cyber-Phys.
Syst., vol. 4, jun 2020.

[44] R. Wang, W. Tsai, J. He, C. Liu, Q. Li, and E. Deng, “A video surveillance
system based on permissioned blockchains and edge computing,” in 2019 IEEE
international conference on big data and smart computing (BigComp), pp. 1–6,
IEEE, 2019.

[45] P. Ingle and Y. Kim, “Real-time abnormal object detection for video surveillance
in smart cities,” Sensors, vol. 22, no. 10, p. 3862, 2022.

48

[46] M. Maqsood, S. Yasmin, S. Gillani, M. Bukhari, S. Rho, and S. Yeo, “An
efficient deep learning-assisted person re-identification solution for intelligent
video surveillance in smart cities,” Frontiers of Computer Science, vol. 17, no. 4,
p. 174329, 2023.

[47] G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, NanoCode012, Y. Kwon,
K. Michael, TaoXie, J. Fang, imyhxy, Lorna, Z. Yifu, C. Wong, A. V, D. Montes,
Z. Wang, C. Fati, J. Nadar, Laughing, UnglvKitDe, V. Sonck, tkianai, yxNONG,
P. Skalski, A. Hogan, D. Nair, M. Strobel, and M. Jain, “ultralytics/yolov5:
v7.0 - yolov5 sota realtime instance segmentation.” https://doi.org/10.5281/
zenodo.7347926, 2022.

[48] G. Jocher, A. Chaurasia, and J. Qiu, “Yolo by ultralytics (version 8.0.0).” https:
//github.com/ultralytics/ultralytics, 2023.

[49] Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo, W. Liu, and
X. Wang, “Bytetrack: Multi-object tracking by associating every detection box,”
in Computer VisionâECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23â27, 2022, Proceedings, Part XXII, pp. 1–21, Cham: Springer Nature
Switzerland, 2022.

[50] K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution representation
learning for human pose estimation,” in CVPR, 2019.

[51] A. Markovitz, G. Sharir, I. Friedman, L. Zelnik-Manor, and S. Avidan, “Graph
embedded pose clustering for anomaly detection,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10539–10547, 2020.

[52] K. Zhou, Y. Yang, A. Cavallaro, and T. Xiang, “Omni-scale feature learning
for person re-identification,” in Proceedings of the IEEE/CVF international
conference on computer vision, pp. 3702–3712, 2019.

[53] F. Dahunsi, J. Idogun, and A. Olawumi, “Commercial cloud services for a robust
mobile application backend data storage,” Indonesian Journal of Computing,
Engineering and Design (IJoCED), vol. 3, no. 1, pp. 31–45, 2021.

[54] S. Mohammed, J. Fiaidhi, D. Sawyer, and M. Lamouchie, “Developing a graphql
soap conversational micro frontends for the problem oriented medical record
(ql4pomr),” in Proceedings of the 6th International Conference on Medical and
Health Informatics, pp. 52–60, 2022.

[55] H. Lessa, “Production-grade full-stack apps with aws amplify,” in AWS Re: Invent
2019, 2019.

[56] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi, “Performance measures
and a data set for multi-target, multi-camera tracking,” in European conference
on computer vision, pp. 17–35, Cham: Springer International Publishing, 2016.

49

[57] R. Liu, X. Wang, W. Wang, and Y. Yang, “Bird’s-eye-view scene graph for vision-
language navigation,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 10968–10980, 2023.

[58] N. Dubos, X. Porcel, M. A. Roesch, J. Claudin, R. Pinel, J.-M. Probst, and
G. Deso, “A bird’s-eye view: Evaluating drone imagery for the detection and
monitoring of endangered and invasive day geckos,” Biotropica, 2023.

