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ABSTRACT

JESSE REDFORD. Interpretable Methods for Quantitative Measurement and
Classification of Surface Topography. (Under the direction of DR. BRIGID

MULLANY )

The functionality of manufactured components is intricately linked to their surface

topography, a characteristic profoundly shaped by the fabrication process. Repeatable

quantitative characterization of surfaces is essential for detecting variations, defects,

and predicting performance. However, the plethora of surface descriptors presents

challenges in optimal selection of the correct assessment metric. This work addresses

two of these aspects: automatic selection of surface descriptors for classification and

an application-specific approach targeting scan path strategies in laser-based pow-

der bed fusion (LPBF) additive manufacturing. A framework, titled Surface Quality

and Inspection Descriptors (SQuIDTM), was developed and shown to provide an ef-

fective systematic approach for identifying surface descriptions capable of classifying

textures based on process or user-defined differences. Using a form of univariate anal-

ysis rooted in signal detection theory, the predictive capability of a discriminability

value, d′, is demonstrated in the classification of mutually exclusive surface states. A

discrimination matrix that offers a robust feature selection algorithm for multiclass

classification challenges is also introduced. The generality of the approach is vali-

dated on two datasets. The first is the open-source Northeastern University dataset

consisting of intensity images from six different surface classes commonly found in

rolled steel strip operations. The application of signal detection theory’s measure,

d′, proved successful in quantifying a texture parameter’s ability to discriminate be-

tween surfaces, even amidst violations of normality and equal variance assumptions

regarding the data. To further validate the approach, SQuIDTM is leveraged to clas-

sify different grades of surface finish appearances. ISO 25178-2 areal surface metrics

extracted from bandpass filtered measurements of a set of ten visual smoothness stan-
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dards obtained from low magnification coherent scanning interferometry are used to

quantify different grades of powder-coated surface finish. The highest classification

accuracy is achieved using only five multi-scale descriptions of the surface determined

by the SQuIDTM selection algorithm. In this case, spatial and hybrid parameters

were selected over commonly prescribed height parameters such as Sa, which proved

ineffective in characterizing differences between the surface grades.

Expanding surface metrology capabilities into LPBF additive manufacturing, ad-

ditional studies developed a methodology to comprehend the relationship between

scanning strategies, interlayer residual heat effects, and atypical surface topography

formation. Using a single process-informed surface measurement, a critical cooling

constant is derived to link surface topography signatures directly to process conditions

that can be calculated before part fabrication. Twelve samples were manufactured

and measured to validate the approach. Results indicate that the methodology en-

ables accurate isolation of areas within the parts known to elicit heterogeneity in

microstructure and surface topography due to overheating. This approach provides

not only a new surface measurement technique but also a scalable parameterization

of LPBF scan strategies to quantify track-to-track process conditions. The methodol-

ogy demonstrates a powerful application of surface texture metrology to characterize

LPBF surface quality and predict process outcomes.

Overall, this dissertation contributes a systematic approach for identifying dis-

criminatory parameters for surface classification and a novel process-informed surface

measurement for predicting track-scale overheating during LPBF-AM of a nickel su-

peralloy.
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PREFACE

"Measurement is the first step that leads to control and eventually to

improvement. If you can’t measure something, you can’t understand it. If

you can’t understand it, you can’t control it. If you can’t control it, you

can’t improve it."

-H. James Harrington



CHAPTER 1: INTRODUCTION

1.1 Motivation

Surface texture metrology is a fundamental tool for improving manufacturing pro-

cesses. Within any manufacturing undertaking, the resulting surface texture necessi-

tates measurement to ascertain its suitability for the intended application. However,

the measurement of surface texture encompasses numerous facets, including isotropy,

average deviation of heights, and more. Yet, no single solution can often ensure the

requisite performance for an application, whether it involves quantitatively discrim-

inating between defect types, evaluating visual grades of aesthetics, or discerning

between flawed and ordinary surface structures emerging during manufacturing pro-

cesses. Ideally, metrics aligned with functional aspects such as aesthetics, mechanical

properties, or process conditions are preferred and given precedence. Nonetheless,

the relevance of a surface metric can vary depending on the context, whether it per-

tains to functional or processing considerations of interest. Navigating the parameter

space, selecting appropriate measurement techniques, and establishing thresholds for

comparing measurement results to categorize surfaces or their distinctive features into

process or user-defined groups can be a perplexing endeavor. This complexity arises

from the multitude of approaches available for data analysis, algorithms, and param-

eter space navigation. This dissertation is motivated by two primary aspects: firstly,

the objective determination of relevant descriptors to classify surfaces categorized by

qualitative and process-related differences. Secondly, to explore previously uncharted

applications of surface texture metrology in the characterization of Laser Powder Bed

Fusion (LPBF) additive manufacturing processing.
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1.2 Aims and objectives

The first aim of the dissertation is to develop a general method for identifying rel-

evant parameters for surface classification. A metric from signal detection theory, d′,

will be used to assess a surface parameter’s ability to enable the correct classification

of mutually exclusive surface states. The objective is to create a framework that min-

imizes user input, and maximizes transparency. The second aim of this dissertation

is to expand surface metrology capabilities into Laser Powder Bed Fusion (LPBF)

manufacturing; additional studies aim to develop a methodology to comprehend the

relationship between scanning strategies, interlayer residual heat effects, and atypical

surface topography formation. Furthermore, the aim will be to assess if the method-

ology enables accurate isolation of areas within the parts that elicit heterogeneity in

microstructure and surface topography due to overheating.

In summary, the aims and objectives of this dissertation include:

• To develop, implement, and assess the capability of an interpretable systematic

framework for identifying parametric surface descriptions capable of classifying

surfaces based on process or user-defined differences.

• Quantify the ability of signal detection theory’s measure, d′, to assess texture

parameter discrimination abilities across various surfaces.

• Develop, implement, and assess a surface metrology-based framework to predict

melt pool-surface topography formation in the laser powder bed fusion process.

1.3 Structure of dissertation

This dissertation is structured around four distinct papers, each contributing to the

practical and theoretical advancement of surface texture metrology. In this chapter

the motivation of the dissertation is presented alongside a breakdown of the aims

and objectives. In Chapter 2, a review of relevant literature is provided to inform
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the research conducted throughout this dissertation. This chapter also contextualizes

the motivation and contributions in the broader context of surface texture charac-

terization. Chapter 3 focuses on the development and validation of an algorithmic

methodology known as SQuIDTM (surface quality and inspection descriptors) [6]. The

methodology aims to assess, select, and utilize the best surface metrics for the clas-

sification of surface topography according to user or process-defined groupings. The

findings of this work have been published in the Journal of Manufacturing Systems

and are included in Chapter 3. The citation for the article is given below:

• J. Redford, and B. Mullany. “Construction of a multi-class discrimination ma-

trix and systematic selection of areal texture parameters for quantitative surface

and defect classification." Journal of Manufacturing Systems vol. 71, pp. 131-

143, 2023. doi: doi.org/10.1016/j.jmsy.2023.08.002

Building upon the foundation established in Chapter 3, Chapter 4 extends the re-

search by addressing the multiscale aspects of surface topography evaluation. Here,

SQuIDTM , low magnification coherence scanning interferometry, and selective band-

pass filtering are employed to downselect multi-scale areal texture parameters, en-

abling the classification of visual smoothness standards [7]. This work has been

published in the Journal of Materials and the full citation is shown below.

• J. Redford, and B. Mullany. “Classification of Visual Smoothness Standards

Using Multi-Scale Areal Texture Parameters and Low-Magnification Coherence

Scanning Interferometry. " Journal of Materials - Manufacturing Processes and

Systems Special Edition on Surface Inspection and Description in Metrology and

Tribology (Volume II), vol. 2, p. 1653, 2024. doi: doi.org/10.3390/ma17071653

Chapter 5 ventures beyond statistical surface texture characterization based on

the ISO 25178-2 parameters and is focused on the basement of surfaces generated via
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LPBF, specifically. This paper demonstrated a method to quantitively measure and

analytically predict the formation of enlarged melt pools in a series of single-layer

trapezoidal geometries. Localization of the overheated regions in these samples was

achieved by determining a critical cooling constant from a single process-informed

surface topography measurement [8]. This work was presented at the 2023 joint spe-

cial interest group meeting between the European Society for Precision Engineering

and Nanotechnology (EUSPEN) and the American Society for Precision Engineering

(ASPE) on advancing precision in additive manufacturing and is published in the

proceedings. The citation is given below.

• J. Redford, J. Fox, C. Evans, B. Mullany, A. Allen, and E. Morse. “Center-

line-time functions and critical constants for predicting laser powder bed fusion

melt pool distortion using one surface topography measurement." Proceedings

of Joint Special Interest Group meeting between euspen and ASPE Advancing

Precision in Additive Manufacturing, Leuven, BE., 2023. link: https://tsap

ps.nist.gov/publication/get_pdf.cfm?pub_id=956293

Chapter 6 builds upon the methodology in Chapter 5 and provides further vali-

dation of the approach. Examples of how the underlying methodology and derived

critical cooling constant translate to completely different sample geometries produced

with the same machine, alloy, and process parameters are provided. The developed

pointwise parameterization of the scan strategy effectively identified areas of the part

expected to elicit heterogeneity of microstructure and surface topography. The con-

tents of Chapter 6 have been compiled into a paper that will be submitted to the

upcoming 2024 joint special interest group meeting between EUSPEN and ASPE on

advancing precision in additive manufacturing.

• J. Redford, J. Fox, C. Evans. “A critical cooling constant for elucidation of sys-

temic overheating in laser powder bed fusion additive manufacturing of IN625."
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Joint Special Interest Group meeting between euspen and ASPE Advancing Pre-

cision in Additive Manufacturing, Golden, USA., 2024.

Chapter 7 covers the dissertation’s overall conclusions, a summary of findings, and

contributions to the literature.



CHAPTER 2: PRELIMINARIES AND BACKGROUND

This chapter provides an overview of the relevance of surfaces and texture metrol-

ogy in manufacturing environments and the challenges in selecting metrics that can

enable functional characterizations or classifications of surface properties to improve

manufacturing processes and the quality of products. An overview of the approach

for classifying surface textures and state-of-the-art characterization of laser powder

bed fusion surfaces is also discussed.

2.1 Relevance of surfaces and texture metrology

A material’s surface constitutes its outermost layer, extending to include nearby

material depending on the context. This outer boundary encompasses the outermost

atoms. Surface topography defines the geometry of this boundary. The intricate

shape of the interface between a material and its surroundings significantly influences

its surface properties relating to various functions such as corrosion resistance, ad-

hesion, cleanliness, aesthetics, optical properties etc. Applications of surface texture

metrology have been around for over 110 years; for example, in 1912, Binder et al. de-

termined that the electrical conductivity of rough surfaces was lower than expected.

The decrease in conductivity was attributed to a reduction in contact area due to

surface roughness [9]. Discoveries such as these have prompted significant efforts

to understand topography-dependent properties better [10]. Widely available tactile

and optical technologies now provide fast digital reconstructions of surface topog-

raphy and are being incorporated into many manufacturing environments. Surface

properties are pivotal in various scenarios: determining whether paints and coatings

adhere effectively to consumer products, influencing the efficiency of energy utiliza-
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tion in engines of automobiles and airplanes, affecting the durability of cutting tools,

shaping the biocompatibility of medical devices, and even impacting the safety of

flooring tiles to prevent slip-and-fall incidents [10].

Much has been said about Industry 4.0 and the transition to zero-defect manufac-

turing. One area that is often overlooked is the role that surface texture metrology can

play in this transition. From a quality control perspective, it is essential to distinguish

between surfaces that perform and were fabricated, modified, or treated differently

[11]. Common net-shape manufacturing processes produce parts that require addi-

tional post-processing (i.e., polishing, lapping, honing, grinding, etc) to obtain desired

surface finishes. Surface texture parameters facilitate the control of surfaces by as-

signing a quantitative value calculated via a series of mathematical operations [1]. For

instance, the single-valued parameters listed in the ISO 25178-2 [12] standard provide

a way to measure surface finish in a holistic way, considering not just the roughness

of the surface but also other factors such as spatial periodicity and homogeneity. By

measuring these factors at appropriate scales, manufacturers can more accurately as-

sess the quality of their surfaces and make necessary adjustments to their processes.

This, in turn, can lead to reduced costs and increased efficiency. However, to be useful,

the selected parameter(s) should be function-related [13, 14, 15] manufacture-related,

and possess low sensitivity to measurement errors [16, 17]. Figure 2.1 illustrates the

link between surface texture and its characterization, specification, processing, and

function.
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Figure 2.1: Illustration of the link between surface texture, processing, and function.
Adopted from [1] [2].

2.2 Quantification of surfaces

The literature on surface quantification encompasses a wide range of analytical tech-

niques and terminologies. The following sections offer a brief overview of different met-

rics used in surface metrology and image processing communities for characterizing

surfaces. For further details and examples, readers are directed to [18, 19, 20, 21, 22]

for insights into tribological research, including friction squeal. Comprehensive re-

views of standard areal texture parameters for describing wear, friction, and fatigue

are available in [16, 17]. Quantitative characteristics are discussed in [23, 24]. Aspects

of surface texture’s influence on design, substrate performance, and bonded joints are

explored in [25, 26, 27]. An overview of different surface description parameters can

be found in [28, 29, 30, 31, 32], with feature parameters detailed in [33]. For a broader

understanding of natural surfaces and digital image texture representations, refer to

[34, 35, 36, 37, 38, 39, 40].

2.2.1 Surface texture and ISO 25178-2 parameters

Surface texture refers to the small-scale features that comprise a surface but not

those that contribute to the form or overall shape of the part [41]. The ISO 25178-2
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standard [12] specifies terms, definitions, and surface texture parameters for char-

acterizing 2.5D areal representations of surface topography. This standard provides

areal parameters that play a crucial role in characterizing surface topography and

are used in various scientific, industrial, and measurement applications. Areal pa-

rameters range from amplitude to spatial, functional, and hybrid parameters, such as

Sa, Str, V vv, and Sdr, respectively. Each parameter is designed to capture different

characteristics of the surface. Height parameters include the arithmetic mean of the

surface deviations Sa and second-order statistics Sq, equivalent to the root-mean-

square (RMS) of the surface, in addition to Skewness, Ssk, and kurtosis Sku. The

former provides insight into the sharpness of the roughness profile, while the latter

presents the degree of bias of the roughness shape with Sku > 3, indicating the height

distribution are spiked. An Ssk = 0 indicates that the height distribution of (peaks

and pits) are symmetrical about the mean plane. Hybrid parameters consider the

local slopes of the topography and comprise two parameters. The developed inter-

facial area ratio Sdr describes the relative increase in additional surface area due to

texture compared to the planar definition area of the surface. Hence, for a perfectly

flat surface, Sdr would equal zero. The RMS gradient of the surface Sdq considers

the averages of the local slopes along the x and y sample directions at all points

within the definition area. Again, Sdq would equal zero for a perfectly flat surface,

and becomes larger when surface slopes increase. The auto-correlation length Sal

represents the horizontal distance in the direction where the auto-correlation func-

tion (ACF) decays to a fixed value (0.2 by default) the fastest. The texture aspect

ratio Str is a measure of surface texture uniformity and is calculated by dividing Sal

by the horizontal distance in the direction of the slowest decay of ACF values [42].

Str is a great example of a parameter that can be intuitively linked to the structure

of a surface. Str describes the degree of anisotropy on a scale of 0 to 1, with one

indicating a spatially isotropic texture and zero indicating a dominant lay pattern on
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the surface. The parameter can often confirm what may appear qualitatively to look

like structures or patterns on a surface that can be difficult to describe with words.

For additional details of ISO parameters, readers are referred to the standard itself

[12] or works by [43, 16, 17, 44], and an industrial survey by [45].

2.2.2 Image processing and intensity metrics

It is not practical to provide an exhaustive survey of all texture features used

in the image processing community; this section concentrates on techniques that

are widely used in texture analysis. Readers are referred to texture analysis survey

papers [40, 46, 47, 48, 49, 50, 51] for more information. However, a general overview

of different methods is provided in this section. It should be noted that because many

image processing techniques are based on intensity representations of the surface, the

physical interpretation and meaning of the metrics concerning the actual surface can

be challenging.

Image processing metrics provide quantitative measures for analyzing digital im-

ages and discerning their characteristics. Unlike height maps, where surface texture

parameters are utilized, image processing metrics focus on intensity-based represen-

tations of surfaces. For example, contrast measures brightness discrepancies between

adjacent pixels, while entropy captures the unpredictability of pixel intensity distri-

bution, both revealing aspects of image complexity. Edge sharpness evaluates the

clarity of transitions between intensity regions, emphasizing defined edges within the

image. Texture features typically highlight spatial patterns of pixel intensities, offer-

ing insights into surface texture and structure. Histogram-based metrics, including

mean, standard deviation, skewness, and kurtosis, derive statistical information from

pixel intensity histograms, with some being akin to standard height parameters in

ISO 25178-2 standard. Spatial graylevel co-occurrence matrices (GLCMs) [52] are

one of the most well-known and widely used texture features. GLCMs produce a ma-

trix that captures the frequency of occurrence of different combinations of gray levels
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at specified spatial relationships. However, the results of GLCM analysis can be sen-

sitive to the parameters chosen during computation; there is generally no accepted

solution for choosing the optimal displacement vector [40]. Local binary patterns

(LBPs) transform each pixel to a zero or one based on comparisons with neighboring

pixels to create binary patterns. These patterns are then used to describe the texture

of the image. However, because LBP focus on local texture patterns within a neigh-

borhood of pixels, they fail to capture long-range spatial relationships in the image

[40]. Filter-based approaches typically consist of applying filter banks on an image

and characterizing some aspect of the filter response(s). The methods can be divided

into spatial, frequency, and joint spatial-frequency domain techniques. Filter methods

are generally used to extract edges, lines, isolated dots, etc. In the spatial domain

Sobel, Canny, and Laplacian are common, while frequency methods typically employ

Fourier transforms. Measuring edge strength and edge frequency is mentioned as be-

ing one of the earliest attempts to discriminate different textures [40]. Fractals were

originally proposed by Mandelbrot [53] as geometric primitives that are self-similar

and irregular in nature [53]. A fractal dimension serves as a measure of complexity

and irregularity, and lacunarity measures the structural variation or inhomogeneity

[40].

2.2.3 Parameter versus feature-based quantification

Feature-based characterization involves extracting higher-level descriptors from

surface data to capture complex surface patterns comprehensively. These features

may include texture histograms, fractal dimensions, and wavelet transforms. By con-

sidering a broader range of surface characteristics, feature-based methods can enhance

discrimination capabilities and capture intricate surface details that parameter-based

approaches may miss. Feature parameters can also imply calculation on one or more

unique region(s) or instance(s) found on the surface. Shape descriptions such as

volume, area, sphericity, etc, of unique instances are commonly used in the image
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processing community. Areal ISO-25178-2 parameters can still be computed, but a

possible "feature-based" approach would first segment the surface into regions, com-

pute ISO parameters for each region, and provide descriptive statistics of the results

(i.e., mean, std, max, etc). However, for feature based approaches the parameter val-

ues depend highly on how the surface is segmented and features isolated. Therefore,

a greater emphasis on segmenting the features of interest from the surface should

typically be prioritized before solving the problem of what parameters should be

used to characterize the segmented regions. Segmentation of the surface is critical to

applying ISO parameters on a macro scale. Superficial edges or unrelated surfaces

within the field of view render the measurement area incapable of being assessed

with traditional ISO parameters. Work by [54] highlights an excellent example of

a geometric-based approach, using dimensional measurands and functional ISO pa-

rameters to characterize critical dimensions and the bearing area of micro-dimpled

samples. Demonstrating how a well-tuned segmentation method provides a consis-

tent way to extract and assess the functional features of microstructured surfaces

[54]. However, selecting appropriate features requires domain expertise and careful

consideration of the specific characteristics of the surface texture data being analyzed

[52, 55].

2.2.4 Challenges in identifying appropriate metrics for quantification

Challenges in identifying the right metric for quantifying surface texture are gen-

erally amplified by the fact that there are simply too many metrics and length scales

that could be applied. Although the characterization of surfaces using texture param-

eters aims to provide a parametric description that enables the control of processing

or the prediction of surface performance, the relevance of the parameters used in

this description is paramount [1, 2, 15, 56]. A common challenge in applying surface

texture metrology to new or existing applications lies in selecting the most appropri-

ate parameters for specific applications and determining threshold values that signify
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meaningful changes in surface conditions or process states. Researchers have grappled

with this issue. As Brown et al. (2018) noted, "The lack of a system of characteri-

zations, analyses, and methods has handicapped research on topographically related

phenomena" [57]. Ideally, parameters should enable the ability to systematically de-

sign, impart, and measure surface topography to facilitate rational control surface

properties [10]. The ability to do so would enable manufacturers to overcome many

challenges such as defining thresholds for texture sensation and tolerance in relation

to customer expectations and satisfaction [58]. This example application is exception-

ally challenging because aesthetic preferences can be subjective, and therefore, there

may be no sure way of determining which metrics will be most relevant for trans-

lating qualitative groups of surfaces to quantitative ranges. "Relevant" parameters

can vary depending on the context, encompassing discriminatory power between sur-

faces processed differently or precision in measuring specific surface properties such

as oil retention [1]. One texture parameter may be more sensitive to the textural

differences between two cylinder bores but does not characterize the property of in-

terest (i.e., the amount of oil retained at the surface). Numerous case studies and

reviews demonstrate successful applications of topography measurements in discrim-

inating surfaces, controlling processes, or predicting functionality [59, 16, 17, 60].

However, a systematic and comprehensive approach to parameter selection is often

lacking [61, 62]. The following section provides an overview of feature selection and

classification algorithms commonly used in texture analysis.

2.3 Parameter selection for classification approaches

In binary classification, there are four possible prediction outcomes; the goal of

feature selection methods is generally to minimize or maximize some metric that

considers the relationship between these four outcomes: true positives (TP), false

positives (FP), true negatives (TN), and false negatives (FN). True positives (TP)

represent instances correctly predicted as positive, true negatives (TN) are instances
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correctly predicted as negative, false positives (FP) are instances incorrectly predicted

as positive, and false negatives (FN) are instances incorrectly predicted as negative.

Feature selection for classification aims to identify the most relevant features that

optimize these metrics, ultimately improving the model’s performance in correctly

classifying instances into their respective categories.

2.3.1 Feature selection methods

Feature selection for classification approaches involves choosing the most relevant

features (i.e., metric, parameter, etc.) from a dataset to improve model performance

and interpretability. Selection algorithms are crucial in identifying relevant surface

parameters for effective classification. These algorithms aim to balance reducing the

dimensionality of the feature space and preserving discriminatory power. Different

approaches offer varying trade-offs in terms of computational complexity, robustness,

and interoperability. Feature selection algorithms for classification can be divided

into three groups: filter, wrapper, and embedded methods illustrated in Figure 2.2.

This section will provide a brief overview of each.

Figure 2.2: Illustration of (a) filter methods, (b) wrapper methods, and (c) embedded
methods adopted from [3].

Filter methods evaluate the relevance of features independently of the classification

model. They rely solely on statistical measures or domain knowledge to assess the
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importance of features. This independence makes it easier to understand the criteria

used for feature selection, as it’s not influenced by the complexity of the classifica-

tion algorithm or the specific dataset. Since filter methods often employ straightfor-

ward criteria for feature selection, such as correlation coefficients, mutual information

scores, or statistical tests. These criteria are typically easy to interpret and explain to

stakeholders. For example, a high mutual information score indicates a strong depen-

dency between a feature and the target variable, making it clear why that feature was

selected. This makes the rationale behind feature selection more intuitive and easier

to understand. Although filter methods are generally computationally efficient and

independent of the classifier of choice, they may overlook interaction effects between

features.

Wrapper methods evaluate subsets of features by training a classification model

on different combinations of features and selecting the subset that yields the best

performance based on a predefined evaluation metric (e.g., accuracy, F1-score, etc)

[63]. Wrapper methods can lead to feature combinations that optimize model perfor-

mance but may not necessarily be easily interpretable. This is because a classification

model is involved in the selection process; thus, understanding why certain features

are selected also requires understanding the intricacies of the model’s decision-making

process. The interactions between features and their impact on model performance

may not be straightforward or easily explainable. This approach sometimes offers

better classification accuracy but at a higher computational cost.

Embedded methods integrate feature selection directly into the learning algorithm,

optimizing feature subsets during model training. Like wrapper methods, embedded

methods often involve complex classification models such as support vector machines

(SVMs), random forests, or neural networks. They modify the model’s parameters

to penalize or eliminate less relevant features, aiming to improve model performance

while simultaneously selecting informative features. The integration of feature selec-
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tion with model training makes it difficult to separate the impact of the model from

the feature selection process. While embedded methods may result in more parsimo-

nious models by removing irrelevant features, the exact criteria for feature selection

can be less transparent.

2.3.2 Classification algorithms

Classification algorithms are essential for distinguishing between different surface

textures based on selected parameters. Traditional approaches such as decision trees,

support vector machines (SVM), and k-nearest neighbors (k-NN) have been widely

used in surface texture classification tasks [64]. Each algorithm has its strengths and

weaknesses in terms of classification accuracy, scalability, and interoperability. Deci-

sion trees are easy to interpret and visualize, making them suitable for understanding

the decision-making process [65]. However, they may suffer from overfitting and lack

robustness when dealing with noisy data. SVMs excel in handling high-dimensional

data and effectively capture complex relationships between features. Still, they may

require careful selection of hyperparameters (i.e., kernel type, regularization parame-

ter, etc) and struggle with large datasets. KNN classifiers are simple and intuitive but

can be computationally expensive, particularly with increasing dataset size [66]. Neu-

ral networks and deep learning architectures, such as convolutional neural networks

(CNN), have shown promising results in surface texture classification tasks. CNNs

can automatically learn hierarchical representations of surface features from raw data,

eliminating the need for handcrafted feature extraction. However, CNNs generally

require a large amount of labeled training data to learn effectively and require more

computational resources for training [67]. Figure 2.3 provides a visual illustration of

different machine/deep learning algorithms used in classification tasks.
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Figure 2.3: Illustration of different classifcation algorithms (a) K-means clustering,
(b) support vector machines (c) Gaussian process (d) random forest, (e) artificial
neural networks, and (f) convolutional neural network adopted from [4].

2.3.3 Examples of improving or identifying parameters for classification

A variety of works can be found on the topic of the identification of relevant pa-

rameters for characterizing surface texture. This section provides a few examples of

different approaches for improving and/or selecting parameters for classification.

Kacalak et al. (2021) suggested multiple methods for evaluating the classification

ability of parameters considering the geometric and harmonic mean, variance, etc., of

normalized parameter increments calculated on one height map of lapped and elec-

trochemical machined bearing steel, titanium alloy, and ceramic surfaces [68]. Several

parameters are selected based on one or a combination of these classification ability

measures. However, no assessment of classifier performance was provided, nor was

there an intuitive explanation of what the classification ability metric(s) values indi-

cate in terms of performance expectations other than relative notions such as higher
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is better. Works by Lopez et al. (2023) presented a more systematic methodology,

including evaluating relevant roughness parameters and surface wettability [69]. The

authors use the degree of divergence (DDk) to isolate parameters to quantify the

surface differences calculated according to Equation 2.1:

DDk =

∑
µi,A(k)−

∑
µi,B(k)∑

σi,A(k)−
∑

σi,B(k)
(2.1)

where DDk refers to the degree of divergence of each roughness parameter with

a mean value µ(i) (i denotes the area of each image) and a standard deviation σ(i)

for two types of surface A or B that were processed or perform differently. When

DDk is higher than or equal to two, roughness parameters for the two sample types

are distinguished with a 95% reliability, meaning that the parameter has high rele-

vance for further description. However, if the DDk is greater than or equal to 1, the

roughness parameters are distinguished with 68% reliability. The authors claim that

by analyzing the DDk values, the most relevant roughness parameters to describe

the influence of the different manufacturing methods can be identified [69]. However,

roughness parameters with a DDk higher than or equal to two are selected as relevant

parameters. Hence, the user must make an arbitrary setting.

Jordan et al. (2006) suggested the F-test as a quantitative method for comparing

the efficacy of texture characterization methods. However, the analysis was limited to

only a few of surface types and parameters [62]. Singh et al. (2024) demonstrated sur-

face roughness characterization using representative elementary area (REA) analysis

on differently polished quartz and glass surfaces, highlighting the impact of sampling

interval on ISO 25178-2 parameter values [70]. The authors identified representa-

tive scales by determining a sampling interval threshold beyond which parameter

values stabilized. This increases the possible predictive power of parameters for clas-

sification but does not inherently address the selection issues. Senge et al. (2022)

extended conventional ISO 25178-2 surface texture parameters to shot peen surfaces
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characterizing coverage; however, the study was limited to only height and hybrid

parameters [71]. Caravella et al. (2022) examined CuCrZr-manufactured cubic spec-

imens fabricated from selective laser melting (SLM) using only height parameters.

Their findings suggested correlations between laser scanning speed, layer thickness,

and surface roughness, but these observations were constrained by the narrow scope

of parameters analyzed [72].

Bigerelle et al. (2008) employed multiscale statistical analysis to discriminate

roughness in surfaces produced by injection molding. The highest value of a dis-

criminant function based on the Fisher variate is used to compare differences in pa-

rameter values calculated at difference scales [61]. This study addresses aspects of

increasing the classification ability parameters but not selecting them. This is likely

because of the complexity involved with systematically evaluating more than a few

parameters. The software application MesrugTM was introduced by Bigerelle et al.

(2011) attempted to solve both of these problems (i.e., relevant scale and parame-

ter) simultaneously. An experimental design is created to generate surfaces, and the

inquiry pertains to the influence of process parameters on surface topography. The

authors reformulated the question in surface topography formalism: What are the

best roughness parameters, evaluated on an appropriate scale, to better discern the

effect of the process on surface topography? The MesrugTM system systematically

selects parameters and appropriate length scales using the Fisher variate F to quan-

tify the relevance [73]. Fisher discriminant analysis involves comparing the ratio of

between-class variance to within-class variance. However, caution must be exercised

when applying these scores to assess parameters across three or more surface types.

In the context of analysis of variance (ANOVA) for multiple groups, rejecting the

null hypothesis and finding a statistically significant difference between one or more

of the groups does not specify which particular group(s) are different. Consequently,

without pairwise comparisons, all but one of the groups may appear statistically dif-
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ferent. In multiclass classification, metrics ranking based on the F value or p values,

typically at a significance level of α = 0.05 or α = 0.01, may bias the selection of

parameters to ones with high or low values that can only distinguish one surface type

from others but not each surface group individually. Such parameter ranking may

result in top metrics primarily relevant for distinguishing one type of surface from

others. Conducting pairwise comparisons between groups is essential to mitigate this.

2.4 Theory of signal detection and applications of d′ index to parameter selection

Signal Detection Theory (SDT) is a fundamental framework widely applied in var-

ious fields, including industrial quality control, to model observer decision-making

processes [74]. Originating in the early 20th century, SDT gained prominence during

World War II in the field of radar technology for distinguishing between signal (enemy

aircraft) and noise (natural phenomena) [75]. Since then, it has found applications in

diverse domains, offering a robust methodology for evaluating performance in tasks

involving the detection of signals amidst noise. A graphical representation of a theory

of signal detection is provided in Figure 2.4

Figure 2.4: A graphical representation of a theory of signal detection adopted from
[5].
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As pointed out by Baker [74] investigators have applied SDT to the inspection

of defects in small fabricated parts (Smith and Barany [76]), flat glass (Drury [77],

Drury and Addison [78]), hooks (Sheehan and Drury [79]), electronic conductors

(Wallack and Adams [80]), and microminature electronic components (Smith [81]).

One of the central tenets of SDT is its capability to provide a measure of detection

ability independent of variations in the response criterion, a critical factor in industrial

quality control settings [74]. The response criterion represents the subjective standard

observers use to determine whether items are classified as conforming or defective,

highlighted as β in Figure 2.4. Specifically, d′ remains constant despite changes in

the response criterion affecting the accept or reject decision. However, this is only

necessarily true when the two distributions are normal and are of equal variance. The

calculation of d′ in this case is shown in Equation 2.2.

d′ =
µPS

− µPN

σ
(2.2)

Where µPN and µP S are the means of noise and signal distribution, respectively

with equal variance σ = σPN = σP S. d′ is helpful as a measure that can be translated

from humans’ performance ability relative to the expected performance of a quantitive

surface measurement. When normality and equal variance assumptions are met, the

d′ index makes it possible to describe the difficulty of a task independent of the

decision criterion and, therefore, also the classification algorithm applied to the data.

Historically in manufacturing environments, the SDT framework was used to model

the decision-making process involved in human visual inspection (HVI), with d′ pro-

viding the means to quantify the ease of detection and characterize expected perfor-

mance variations within the decision process [5]. A 2021 review paper by See et al.

[82] and works by [83] suggest that most HVI systems have d′ in the 2.5 range, with

3.5 being considered a very easy detection task and d′ values less than 1.5 regarded

as very difficult. The d′ metric provides a distinct advantage over Receiver Operating
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Characteristic (ROC) curves in terms of interpretability and handling imbalanced

class distributions. ROC curves [84] illustrate the trade-off between true positive and

false positive rates at various classification thresholds, however, d′ is expressed as a

single value, representing the separation between distributions in terms of standard

deviations. Although the Area Under the Curve (AUC) can be derived from ROC

curves, it is limited to a maximum value of 1. While a high AUC suggests a good

separation between distributions, it does not provide information on the full extent of

the separation. In contrast, d′ can take on infinite values, allowing for a more explicit

understanding of the separation between the distributions. Readers are referred to [5]

for a graphical representation of the relationship between d′ ∈ [0, 3] and ROC curves

[6].

2.5 State of the art surface measurement & characterization for AM

Several methods are available for providing topography measurements of AM sur-

faces, and each has different technologies and operating principles for how the 2,

2.5, 3D data is acquired. Insitu monitoring enables the characterization of the liquid

melt pool during LPBF fabrication. However, due to the long working distance the

sampling interval is typically on the order of 8-100 µm per pixel [85, 86]. Also, the

bright emission of the laser leads to high contrast, which can over-saturate detec-

tors. Therefore, many details of the as-built surface cannot be resolved by melt-pool

monitoring alone. Surface topography measurements can provide a wealth of infor-

mation about meltpool conditions after the build process. For instance, the ends

of the tracks reveal a snapshot of a frozen solidified meltpool [87]. Observing the

topography formed by one more multiple tracks made up of solidified melt pool(s)

provided a sense of melt pool stability during part fabrication. A common ex-situ

surface measurement or image used in LPBF is single laser tracks on smooth, bare

metal surfaces. This assessment provided data on melt pool behavior that is free of

the variability of the powder layer, substrate roughness, and irregularities. Much of
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this characterization is often qualitative. For instance, plateau Rayleigh instabilities,

balling, distortion, and other effects can be interpreted without numerical quantifi-

cation. Ricker et al. (2019) analyzed the chevrons of single tracks. The authors

provide a characterization of the steady-state melt pool morphology that could be

represented by a normal distribution with parameters that were dependent on the

build conditions used to create the tracks. The authors also mention that examining

single or overlapping autogenous laser tracks may offer a relatively simple, rapid, and

inexpensive way of evaluating the amenability of an alloy to the high thermal gradi-

ents, solidification rates, and stresses inherent in additive manufacturing [88]. Similar

studies that focus on analysis of single scan or multi-scan track analysis are included

in [89, 90, 91, 92, 93, 94, 95].

Parameter-based characterization methods for AM surfaces focus on quantifying

the statistical arrangement of topographical data. According to a review paper by

Townsend et al. (2016) [96], most AM surface characterization up until 2016 was

predominantly achieved by stylus measurements and computing ISO 4287 texture

parameters on profiles, with the Ra parameter being the most widely adopted. The

review also suggested that texture characterization is primarily performed to im-

prove understanding of the capabilities of the AM technology being studied. Surface

texture metrology tends to lend itself to early-stage development of manufacturing

technologies. However, at that point in time, there has been limited research into

the correlation between component functional performance and surface texture [96].

It has been pointed out Fox et al. (2016) and many others that Ra provides little

information on the specific features that make up the surface texture [97, 98]. Still,

measuring Ra and Sa is common. This is because the legacy parameters have an inti-

mate history rooted in tolerance for different applications, such as mating or bearing

surfaces. The average surface roughness of parts produced through Laser Powder Bed

Fusion (LPBF) varies depending on the material, process parameters, part geometry,
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etc. Generally, LPBF parts exhibit smoother top surfaces with average roughness

(Ra) ranging from 5 to 30 µm [99, 100, 101]. In contrast, side walls and overhangs

tend to have higher roughness, typically ranging from 5 to 50 µm or higher, due to

layering effects, laser angles, and dross formation [102, 103, 104, 105]. Achieving de-

sired surface finishes often involves post-processing techniques like machining, shot

blasting, or chemical treatments. However, this is one application of surface texture

metrology, and Ra is not always the most relevant parameter for characterizing AM

surfaces. The correlation between surface texture and internal defects or density of

LPBF parts has been an area of research aiming to elucidate the effect of process pa-

rameters on surface roughness and the influence of internal defects and inconsistencies

in surface roughness during melting and solidification [106]. Gockel et al. looked at

the relationship between fatigue, process parameters, and surface roughness. The

authors used structured light scanning to measure fabricated tensile samples. They

show that Sa and Sv decrease with increasing power; at high speeds, there is a large

variation in the measured Sa values for the replicate samples. This indicated that

the process might be unstable and create additional variation in the surface results

at higher laser velocity speeds. The authors also highlight challenges with using the

ISO 25178-2 parameters in isolation. This is because the powder particles stick to

the surface, and other protrusions superficially make it difficult to observe changes in

the melted surface [107]. Work by Thompson (2019) and others provides examples

of common texture parameter values when particles are segmented from the surface

before their computation [108].

To provide quality assurance to additive manufacturing processes, there is a growing

desire to measure and certify each process layer using different optical systems. Insitu

fringe projection and line scanner systems can provide topographic information of the

powder and subsequently fused layers. However, there are several tradeoffs involved

in terms of the accuracy and resolution of the measurements that can be acquired.
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Meanwhile, the use of texture parameters to characterize spread powder layer quality

is an increasing research trend. Notably, Berez et al. (2022) used a Keyence LJ-X8080

laser line profiler, providing a 12.5 µm sampling interval. The preliminary works

indicated that the profiler and use of areal surface texture parameters were viable

for characterizing defect content, but an algorithmic approach was currently lacking

[85]. Sien et al. (2018) provide good examples of how DigitalSurf MountainsMap

software can be used to isolate spatter, geometric features of weld track features, and

enhance chevron patterns using different data processing techniques [109]. However,

the use of these measures to inform scan strategies is not well established. Other

state-of-the-art methods focus on predicting what surface parameters would be based

on variations in processing parameters [110].

2.6 Discussion

The literature indicates that many industries and research would benefit from clear

examples of how to relate surface topography to processing conditions. Furthermore,

the literature review also suggests that a continued concerted effort towards stan-

dardization and methodological transparency could enhance the transferability of

knowledge in this dynamic field. Researchers and manufacturers alike face a variety

of challenges when trying to select appropriate surface texture parameters to char-

acterize their process. To make matters worse, the so-called "parameter rash" and

an existing plethora of surface descriptors for areal intensity maps and height maps

make the selection of optimal surface descriptors Edisonian in nature and dependent

on experiential knowledge. Additionally, choosing an appropriate surface scale and

set of filtering/form removal operations further complicates the selection processes,

as changes to both the latter and former can significantly change parameter values.

In the absence of domain expertise, anything less than a brute-force evaluation of

all possible parameter combinations, surface scales, and filtering sequences leaves

the question of whether a suggested characterization is truly best for an open-ended
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application.

The literature also suggests quantifying a part’s surface using only one or a few

metrics in a way that can be easily understood and correlated directly with undesir-

able process variations and performance outcomes is far from trivial, with additive

manufactured surfaces being a prime example. The variety of high and low-frequency

spatial content of LPBF surfaces has the potential to make statistical characteriza-

tions of the surface topography highly variable in comparison to more conventional

processes such as milling or turning. General characterizations of the surface, such as

Sa, can provide a general sense of surface roughness but may not be a reliable pro-

cess monitoring index for statistical process control and qualification. The question

remains as to what surface measurements are most helpful and can be leveraged to

support the qualification of LPBF parts and processes. Surface characterization could

aid in understanding the relationship between processing parameters and part qual-

ity; however, there remains a significant gap in understanding how these parameters

actually affect part quality and defect generation mechanisms [111]. Addressing this

gap is essential for advancing additive manufacturing technologies and improving the

quality and reliability of AM-produced components. Additionally, although flawed

surface topography will be described qualitatively, the literature does not provide

well-established measurands for determining the relative shape and size of atypical

solidified melt pool geometries report in [87, 112, 113, 59].

Overall, the literature underscores the complexity of surface characterization and

the challenges involved in selecting appropriate parameters and thresholds for clas-

sification. Developing systematic methodologies for isolating relevant descriptions

and gaining a deeper understanding of the relationship between surface parameters,

processing conditions, and part quality are crucial steps toward advancing surface

characterization techniques and optimizing surface properties.
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2.7 Summary

Through the review of state of the art, key findings in relation to the aims and

objectives of this dissertation can be found:

• Parameters are selected ideally based on their relevance to the functional re-

quirements of the surfaces being analyzed. For example, in automotive or

aerospace applications, parameters related to sealing, friction, or wear resis-

tance may be prioritized.

• The large variety of applications and the multitude of available parameters for

specifying and characterizing surface texture present challenges in selecting the

most relevant parameters for a given application.

• No reported use of d′ index for selecting the best surface texture parameters to

quantify the effect of a process on the surface topography. However, the Fisher

score, ANOVA, and other measures are reported.

• Laser powder bed fusion additive manufacturing produces complex surface struc-

tures, creating challenges in isolating features of interest and quantifying topog-

raphy with conventional texture parameters.

In this complex landscape of developing surface characterization solutions to ap-

plication specific problems, algorithmic and intuitive measures of the surface area are

preferable. Given the number of standardized texture parameters that can be used

to describe a surface and its features, it was decided that the developed methodology

to meet the aims and objectives of this dissertation should automatically down-select

parameters for the user without requiring an arbitrary threshold. However, for LPBF

AM surface characterization, a separate algorithmic methodology will be developed

to isolate and characterize topographical regions of interest. The intent will be to

establish new quantitative measures of flawed topography that can be used to better



28

understand the relationship between local process conditions during part fabrication

and meltpool-surface formation.



CHAPTER 3: (Paper 1) CONSTRUCTION OF A MULTI-CLASS

DISCRIMINATION MATRIX AND SYSTEMATIC SELECTION OF AREAL

TEXTURE PARAMETERS FOR QUANTITATIVE SURFACE AND DEFECT

CLASSIFICATION

Overview of paper 1

The first paper presents a comprehensive evaluation of the framework developed to

achieve the aims and objectives of this dissertation. A systematic and interpretable

methodology, SQuIDTM , is introduced to objectively select the best subset of ISO

25178-2 parameters for classifying various surface states. An algorithm for construct-

ing a discrimination matrix and selecting parameters for multiclass classification is

proposed. The benefit of this approach lies in its ability to determine the effectiveness

of the chosen parameters in distinguishing between different surface types, indepen-

dent of the classifier used. By minimizing the number of parameters required for

accurate classification and eliminating subjective threshold-setting, the methodology

ensures objectivity in the selection process. Additionally, the paper provides an as-

sessment of the d′ metric to quantify the ability of surface parameters to facilitate

successful classification. The methodology is evaluated using the open-source NEU

dataset to establish a common benchmark between the developed approach and ex-

isting techniques in image processing, machine learning, and deep learning. This

contribution is significant as previous reports lack a holistic assessment enabled by

the d′ matrix to assess classification capabilities. Furthermore, the paper presents a

graphical relationship between the accuracy of unbiased classifiers and the d′ value

for the respective metrics employed by those classifiers, illustrating the complexity of

achieving different levels of classification accuracy.



30

Abstract

The surface of every manufactured component has a topography resulting from its

fabrication route, which influences its final functionality (optical performance, wear

resistance, aesthetic quality, etc.). While the quantitative characterization of the

surface is essential for detecting process-induced variations or defects and predicting

functional performance, the plethora of surface descriptors developed by the image

processing and surface metrology communities makes the selection of optimal surface

descriptors Edisonian in nature and highly dependent on experiential knowledge. This

work proposes a systematic approach for selecting surface parameters that best dis-

tinguish between different surfaces as grouped by visual or process-related differences.

Using a form of univariate analysis rooted in signal detection theory, the predictive

capability of a discriminability value, d′, is demonstrated in the classification of mu-

tually exclusive surface states. A ’discrimination matrix’ that offers a robust feature

selection algorithm for multiclassification challenges is also introduced. The generality

of the approach is demonstrated on the Northeastern University dataset consisting of

intensity images from six different surface classes commonly found in hot-rolled steel

strip operations. Using the outlined approach, it was found that only four surface

descriptors used in conjunction with a simple decision tree classifier achieved a 95%

classification accuracy. Surface descriptors used in the study were limited to those

described within the ISO 25178-2 standard, while machine learning approaches were

limited to a decision tree classifier. The reasoning for both is to maintain as much

algorithm output interpretability as possible; the advantages of such is discussed from

the perspective of the larger goal of linking surface texture to manufacturing processes

and surface functionality fundamental mechanisms.
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3.1 Introduction

An Automated Visual Inspection (AVI) system has two main functions in manu-

facturing environments: surface defect detection and classification [1]. The detection

of surface defects is critical to the closed-loop quality problem, while defect classifi-

cation allows manufacturers to better understand the state of the process, enabling

them to make more informed decisions about the appropriate actions to take after

the defect has been detected. Although the concept of detecting and classifying a

defect is simple, quantitatively defining exactly what constitutes a defect, and the

logic which is employed to assign the defect to a particular category is far from trivial

[2]. The lack of a standardized framework to perform systematic surface analysis

impedes efforts to identify appropriate surface texture metrics to operate as process

monitoring indices and support statistical process control [3], and to understand how

the surface topography of the part relates to its functional performance [4]. This also

reduces opportunities for manufacturers to isolate metrics that can, at a fundamen-

tal level, help understand how process physics govern the formation of the resulting

surface topography and hence its functionality. While a solution (appropriate met-

rics and processing algorithm) can typically be found for a specific application, the

trial-and-error approach used in its isolation can come at the expense of overfitting,

reduced interpretability, and a limited understanding of the final solution’s suitability

for the application or other classification challenges. In short, selecting optimal im-

age processing routines and metrics to achieve high defect detection and classification

accuracy remains Edisonian in nature. For example, many different approaches have

been taken to quantify a variety of surface types: [5–11] use gray-level co-occurrence

matrices (GLCMs), and [5,12] use local binary patterns (LBP) and its variants for

rolled steel covered extensively in the survey by [13]. However, little discussion was

provided as to how the metrics were chosen, or indeed as to why they were selected

as being the best for the application at hand. The chosen metrics when combined
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with machine learning approaches achieve classification accuracies ranging from 94%

to 98%. While impressive, the complex feature vector resulting from the aforemen-

tioned image transforms is generally difficult to interpret and correlate back to the

physical nature of the surface topography. This limits a reader’s ability to assess

whether such approaches would translate to their specific application and expected

surface texture variations [5–7,14]. The use of convolutional neural networks (CNNs)

to automatically classify common defect types has also found application in manu-

facturing environments, i.e. [15,16]. Although this approach can be very successful

in emulating human visual inspection, it does not inherently provide standardized

output metric(s) that designers and manufacturers can use to intuitively link the

state of the surface topography to process conditions and/or functionality. Two key

elements, currently missing, that would be highly desirable in any interpretable AVI

system for defect and texture classification are; (1) quantitative, intuitive metrics,

and (2) a systematic method to identify and assess effective metrics for the classifi-

cation challenge at hand. To address the first, the surface metrics proposed are not

the conventional image processing metrics, but rather those found in the ISO 25178-2

standard defining areal surface texture parameters. The reasoning for their use is

that they focus on the geometric state of a surface’s topography, and by virtue of

their lineage and deep roots in manufacturing environments, can provide intuitive

characterizations of a surface’s physical topography; in turn, this can provide rich

insight into correlations and causations arising from processing physics, surface for-

mation, and final functionalities. For instance, works summarized by Jansons et al.

[17] and Das et al. [18] infer functional characterizations by correlating ISO 25178-2

metrics with fluid retention abilities and tribological properties [19], in addition to

fatigue, friction, adhesion, bonding, and corrosion resistance [20]. To assess the sec-

ond element, i.e. the poten-tial effectiveness of a metric in any specified classification

challenge, an approach grounded in signal detection theory (SDT) utilizes a single,
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easily interpretable d′value. The ability of the proposed framework to automatically

isolate metrics from a predefined list and correctly classify surfaces in binary or mul-

ticlass classification inspection sce-narios via a simple decision tree will be compared

to those found in the literature using more complex image analysis features combined

with machine learning (ML), and deep learning (DL) approaches. The robustness

of the d′metric and the overall framework is demonstrated on the publicly available

Northeastern University (NEU-CLS) dataset containing six different hot-rolled steel

surface classes.

The organization of this paper is as follows: Section 3.2 includes details of the NEU-

CLS dataset and a summary of the ISO 25178-2 areal parameters used in this study.

Section 3.3 outlines the SDT-based method-ology for predicting the ability of areal

parameters to correctly classify the challenging NEU-CLS dataset. Section 3.4 details

the data processing framework that formalizes the methods described in Section 3.3

into a set of systematic steps and automatic identification of surface classification

metrics. Section 3.5 presents experimental results and validation of this framework

when applied to the NEU-CLS dataset. The performance of the approach is also

compared to other classification approaches applied to the NEU-CLS dataset as found

in the literature. Section 3.6 summarizes the proposed method’s advantages, future

work directions, and extended use cases for other surface metrology applications.

3.2 Dataset and metrics used for analysis

The following sections provide details on the image dataset and metrics included

in the analysis.

3.2.1 Dataset details

The NEU-CLS dataset, see Fig. 3.1, is a popular and publicly available dataset

used in surface classification research; the original paper by [5] has more than 400

citations. The dataset consists of images of six different surface classes resulting from
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steel rolling operations; hot-rolled steel samples containing inclusions (In), scratches

(Sc), patches (Pa), crazing (Cr), pitted surfaces (PS), and rolled-in-scale (RS). Each

class contains 300, 200 × 200, 8-bit bitmap images, a total of 1800 images. Four

examples of each defect class are shown in Fig. 3.1. A link to the original dataset

can be accessed at [21]. The NEU-CLS dataset, while only addressing one type of

manufactured surface, is chosen as it provides good examples of commonly encoun-

tered classification challenges that can be difficult to replicate in a synthetic database.

The initial classification of the six types of defects was done via a qualitative, visual

assessment; this is a process that inherently lends itself to subjectivity and high

degrees of variability [2,22,23]. The images contain similar, yet differently labeled

surface textures, i.e. the three rightmost columns in Fig. 3.1. The pitted surface

(PS), crazing (Cr), and rolled-in-scale (RS) defect classes all contain small discrete,

isolated darker regions on quasi-homogeneous backgrounds. Identification of metrics,

never mind their associated threshold values, that will differentiate one class of de-

fect from another is far from obvious. The dataset also contains within-image and

image-to-image variations in illumination conditions. For example, in the topmost

left image, there is a general increase in background intensity going from left to right,

which is not as strong in the other images within the same class. While in column

four there is a large difference in the level of background illumination between the

top- and bottom most images. Both these types of issues could require some level of

preprocessing or normalization to overcome illumination variations; the selection of

an optimal algorithm to achieve this is also nontrivial
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Figure 3.1: Examples of the six surface classes included in the NEU-CLS dataset.
Surface classes exhibiting high interclass similarities include Cr and RS, and surface
classes exhibiting low interclass similarities include Cr and Sc.

3.2.2 The ISO 25178-2 areal texture parameters

The ISO metrics extend beyond amplitude parameters and include those that

within their calculation incorporate the spatial relationship between the surface height

variations and have demonstrated their ability to track surface functionality [24,25].

The ISO 25178-2 metrics are typically applied to areal height maps acquired via

contact stylus profilometry, coherence scanning interferometry, focus variation mi-

croscopy, etc. Traditionally, these metrics have not been applied to intensity images

(i.e. images represented by a single channel of pixel values, with each pixel indicating

brightness or intensity) captured from conventional CCD and CMOS cameras. While

it is acknowledged there is no guarantee that intensity correlates directly with height

values, the former does capture the spatial content of a surface. The aim of this work

is not to assign equivalency between intensity images and height maps but to offer
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ISO 25178-2 parameters as an alternative to conventional image processing metrics

for characterizing surface textures described by non-physical units. The initial range

of features is limited to ISO 25178-2 metrics to both limit the scope of the work

and highlight the potential of these interpretable metrics for tough multiclassification

challenges. The ISO 25178-2 standard details over forty metrics to describe surface

topographies and textures. A subset of these metrics which are used in this work

are listed in Table 1. While this paper will not provide full descriptions of all, a few

key ones will be described. For full descriptions refer to the standard itself or other

published literature [24-27]. The height metrics are perhaps the most used and un-

derstood by industry, with the average surface height, Sa, and the root mean square

roughness, Sq, terms being ubiquitous. Skewness, Ssk, and kurtosis, Sku, are the

third and fourth central moments of the surface height distributions. The Ssk term

is useful in assessing the existence of peaks on the surfaces, while the Sku term is

useful for describing the sharpness of peaks on surfaces [25]. The max height of the

surface Sz is defined as the distance between the max peak height Sp and max valley

depth Sv; representing the absolute highest and lowest points found on the surface.

Hybrid parameters combine information on both surface amplitude and wavelength

and consist of two metrics, namely, the interfacial area ratio, Sdr, and the root mean

square gradient, Sdq. The former expresses the increase in surface area due to texture

relative to the surface’s planar definition. Whereas the latter is calculated as the root

mean square of the surface slopes. Sdr and specifically Sdq demonstrate utility for

assessing surfaces in sealing applications and controlling cosmetic appearance [24].

Functional and volume categories are metrics derived from the material ratio curve,

i.e. cumulative probability density function of surface heights. These metrics char-

acterize different aspects of the surface by dividing into it three parts peak, valley,

and core. These categories are commonly used in tribological and automotive ap-

plications for characterizing oil retention and wear. Readers are referred to [25] for
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detailed descrip-tions. All the metrics are reported after applying specific processing

operations outlined in the ISO 25178 standard, i.e. the surface form and appropriate

high and low-frequency spatial content should be filtered from the surface prior to

calculating the metrics. In this work, only a best-fit plane is removed from any image

prior to computing the ISO metrics.

The metrics listed in Table 3.1, key to the computational framework detailed in

section Section 4, are calculated using Python 3.7 and a NumPy library. Metrics de-

noted by ‘*’ have been verified against the NIST surface metrology algorithm testing

system [28]. The same table details the time required to compute a particular cate-

gory of metrics. The computational time is based on an image size of 200 × 200 using

an Intel(R) Core (TM) i7-7700 CPU with a 3.60 GHz processor. The reported times

include the contributions of pre-processing operations such as form removal and con-

struction of the autocorrelation function (ACF) and the material ratio curve, with the

former contributing to most of the computational overhead. The ACF, a prerequisite

for the spatial parameters auto-correlation length, Sal, and texture aspect ratio, Str,

posed the only potential bottleneck for real-time implementation, accounting for over

97% of the total computation time of the twenty-two metrics. Apart from these two

spatial metrics, which take nearly three seconds to compute, the remaining twenty

metrics can be calculated in less than 30 ms. Undoubtedly, the reported times could

be significantly reduced with optimized implementations of the algorithms and better

hardware.

By mathematical definition, some of the metrics listed in Table 3.1 are correlated,

meaning that they measure similar aspects of the surface. For example, Sa and Sq

are positively correlated, with Sq being more sensitive to abrupt changes in surface

height. In addition, as demonstrated by [25] the Sdq and Sdr parameters are highly

correlated with Czifra et al. [29] obtaining a determination coefficient of 0.998 between

them.
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Table 3.1: ISO 25178-2 areal metrics used in the study and associated category com-
putational times
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3.3 Optimal metric selection for classification

3.3.1 Signal detection theory, d′, and evaluation criteria

Signal detection theory (SDT) provides a framework for quantifying the ability of

an observer to differentiate between (or classify) two different stimuli. This section

outlines the implementation of SDT to select the optimal areal texture metrics to

differentiate between two surface states, i.e. between different surface classes within

the NEU-CLS dataset. A generalized example of the SDT premise is given in Fig.

3.2.

Figure 3.2: SDT-based approach for predicting a surface class according to a single
surface metric.

The SDT model requires two probabilistic distributions, PA and PB, of a calculated

surface metric, see Fig. 3.2. For example, PA could be the distribution based on a

metric listed in Table 3.1 for the Cr (crazing) surfaces, while PB could represent the

distribution for the same metric but calculated on RS (rolled-in-scale) surfaces. The

‘evidence’ shown along the x-axis in Fig. 3.2 represents the probabilistic range of

values for the metric. The distributions PA and PB are independently constructed by

the probability density function given in Eq. (3.1).
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P (x;µ, σ) =
1

σ
√
2π

exp(−1
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(
x− µ

σ
)2) (3.1)

where σ and µ represent the mean and standard deviation of the metric values

associated with a surface class, i.e. the mean and standard deviation of the numerical

Ssk values associated with class ‘A’ (Cr) or ‘B’ (RS), and where xi is the random vari-

able corresponding to an Ssk value obtained exclusively from surface measurements

of surface class ‘A’ or ‘B’. The decision criterion, c, shown in Fig. 3.2, indicates the

threshold between the two classes. Any newly observed surface with metric value

xi ≥ c will be classified as surface class ‘B’ and any xi is classified as the surface

class ‘A’. A prediction resulting in a correct surface classification can be arbitrarily

defined as either a true positive (TP) or true negative (TN), for example, the former

referring to correctly classifying a type ‘B’ surface as ‘B’, and the latter referring to

correctly classifying a type ‘A’ surface as ‘A’. It should also be clear from Fig. 3.2

that incorrect classifications may be made. This is because the probability of ob-

serving an xi computed on a type ‘A’ surface to the right of the decision criteria c,

or observing a random variable xi computed on a type ‘B’ surface to the left of the

decision criteria c, is not zero. Hence, a combination of predictions resulting in a false

positive (FP) (i.e. classifying a type ‘A’ surface as ‘B’) and/or a false negative (FN)

(i.e. classifying a type ‘B’ surface as ‘A’) is to be expected. Depending on the appli-

cation, the implications of mistaking a surface type ‘B’ for ‘A’, may be greater than

that of misclassifying‘A’ for ‘B’. One of these outcomes may allow defective parts to

escape a manufacturing plant, while the other could result in scrapping good parts.

It’s intuitive to see how shifting the decision criteria from 0 to -2.5 in Fig. 3.2 would

result in an inspection system that always correctly classifies a type ‘B’ surface as

‘B’, at the risk of incurring a lot of false positives. For generality, in this work, no

preference is given to minimizing the number of false positives over false negatives or

vice versa. For this reason, the performance of an observer or classifier is determined
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by dividing the total number of correct predictions by the total number of predictions

made. The assessment given by Eq. (3.2) is referred to as accuracy.

Accuracy =
# correct predictions

# predictions made
=

TP + TN

TP + TN + FP + FN
(3.2)

Although the use of accuracy as a performance indicator is common, accuracy

varies according to the placement of the decision criteria as well as the number of

samples that are used in the evaluation. For example, for a binary task, with an even

number of examples in ‘A’ and ‘B’, random guessing would provide 50% accuracy.

However, if there are two examples of ‘A’ and four of ‘B’, random guessing would

increase the accuracy of classifying ‘B’ correctly to 66%. Hence, balanced accuracy

should be used in these cases. The focus of this work is not to determine the optimal

placement of decision criteria in order to optimize accuracy but to determine if ISO

metrics can sufficiently resolve the differences between any arbitrary surface groups

‘A’ and ‘B’, thus providing an optimal classifier. To do this the d′ shown in Fig. 3.2

is used to approximate the number of standard deviations between the means of the

two distributions being compared. The calculation of d′ is given by Eq. (3.3).

d′(PA, PB) =


|µB−µA|

σ
if σA = σB

|µB−µA|√
(σ2

A
+σ2

B
)

2

if σA ̸= σB

(3.3)

The first and second cases shown in Eq. (3.3) apply when the two distributions

are of equal and unequal variance. For rigorous mathematical details of the d′ equa-

tion, its various forms, and assumptions regarding the data distributions, readers are

referred to [30]. In any of its forms, the d′ value provides an intuitive measure of the

ability of a chosen single-valued metric to differentiate between the two surface types;

greater d′ magnitudes imply less overlap between the two distributions thus mean-

ing the chosen metric is more likely to assist in correct classification of new unseen
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surfaces independent of where the decision criterion is placed. The following sections

investigate the ability of this simple d′ metric on datasets containing non-Gaussian

datasets combined with unequal variances. Historically in manufacturing environ-

ments, the SDT framework was used to model the decision-making process involved

in human visual inspection (HVI), with d′ providing the means to quantify the ease of

detection and characterize expected performance variations within the decision pro-

cess [2]. A 2021 review paper by See et al. [31,32] suggest that most HVI systems

have d′ in the 2.5 range, with 3.5 being considered a very easy detection task and

d′ values less than 1.5 regarded as very difficult. The d′ metric provides a distinct

advantage over Receiver Operating Characteristic (ROC) curves in terms of inter-

pretability and handling imbalanced class distributions. ROC curves [33] illustrate

the trade-off between true positive and false positive rates at various classification

thresholds (ci), however, d′ is expressed as a single value, representing the separation

between distributions in terms of standard deviations. Although the Area Under the

Curve (AUC) can be derived from ROC curves, it is limited to a maximum value of

1. While a high AUC suggests a good separation between distributions, it does not

provide information on the full extent of the separation. In contrast, d′ can take on

infinite values, allowing for a more explicit understanding of the separation between

the distributions. Readers are referred to [2] for a graphical representation of the

relationship between d′ ∈ [0, 3] and ROC curves.

3.3.2 Application to binary classification cases

In binary classification tasks, the goal is to simply differentiate between two differ-

ent classes, i.e. Cr and RS. To achieve this, the d′ term is calculated for each metric

listed in Table 1, and the calculated d′ values are used to rank the metricâs poten-

tial to make a correct classification. Metrics with the greatest potential to discern

between surfaces ‘A’ and ‘B’ will have larger associated d′ values. For the chosen

metrics, the threshold level, c, is simply set mid-way between the two distributionâs
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mean values, such that c = µa+µb

2
.

3.3.3 Application to multiclass classification cases

This section outlines how the proposed method can be extended to multiclass

problems, like classifying all six classes within the NEU-CLS dataset. In such cases,

the metric with the maximum d′ value is identified for each unique binary classification

task that can be constructed from the multi-class dataset, i.e. determine the best

metric for each of the following classification tasks. In vs. Sc, In vs. Pa, In vs. Ps,

etc. These individual tasks are denoted as Ti. Eq. (3.4) can be used to determine

the number of unique binary classification tasks which can be constructed from a

multi-class dataset containing a total of L class labels (i.e. types of surfaces).

k = L(L− 1)/2 (3.4)

In Eq. (3.4) k represents the number of unique classification tasks. For instance,

the NEU-CLS dataset comprises six surface types, (i.e., L = 6), hence a total of 15

binary classification tasks can be constructed. For easy interpretation of the results,

a discrimination matrix, or d′ matrix for short, is constructed whereby the d′ values

associated with each candidate metric fi (rows) and classification task Ti (columns)

are displayed in a matrix-like format with a superimposed heat map where matrix

elements are colored according to the magnitude of the d′values. More formally this

matrix can be expressed as a lookup table represented by the function d′(fi, Ti).

Figure 3.3 illustrates the concept for a multiclass dataset including four surface

types, yielding six classification tasks with seven candidate metrics. Metrics with

d′ ≥ 4 are favorable (highlighted in green), 2 ≤ d′ ≤ 4 are considered less favorable

(highlighted in orange), and d′ ≤ 2 are in gray. Highlighting the d′ matrix by color

can serve as a quantitative visual reference for quickly determining the suitability of

ISO metrics for specific classification tasks, with the added value of making it easier
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for interested observers to understand what type of physical differences exists between

classes. Of course, to automate the selection process, the top-ranked metric for each

classification challenge is all that is required.

Figure 3.3: Example of d′ matrix for a multiclass dataset consisting of 4 categories
A, B, C, D. Selected descriptors represent the highest-ranking metrics (rows) for each
classification task (columns) according to the calculate d′ value. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

The algorithm for choosing the best surface metrics for the multi-class problem

is carried out by selecting the metric with the maximum d′ value for each column

of the matrix, aggregating the results and removing redundant descriptions. In the

ideal case, there would be a single row of highlighted green entries, indicating that a

single metric alone can differentiate all the surface types in the dataset with little to

no overlap. That, however, is not the case for this dataset. For example, in the d′

matrix illustrated in Fig. 3.3, Sa is selected three times (‘A’ vs. ‘B’, ‘A’ vs. ‘D’, and

‘B’ vs. ‘D’) while Str is selected twice (‘A’ vs. ‘C’, and ‘C’ vs.‘D’). Applying this

procedure to the example d′ matrix shown in Fig. 3.3, these two metrics are selected
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for distinguishing between surfaces classes ‘A’, ‘B’, ‘C’, ‘D’. Notice the Sa value bolded

for task ‘B’ vs. ‘D’ serves as a visual indication that despite Sa having the greatest

d′ among other candidate metrics, a value of 1.5 indicates the distributions are not

well separated. Therefore based on the discussion in Section 3.3, it is unlikely that

Sa, or any of the candidate ISO metrics, will be effective for differentiating between

classes ‘B’ vs. ‘D’, i.e. the entire column is in gray. This indication intuitively

infers that another candidate metric must be added to the analysis or developed

specifically for the ‘B’ vs. ‘D’ task. Without intervention, it can be expected that

a classifier which uses the suggested two metrics to make predictions will result in

many misclassifications between surface types ‘B’ and ‘D’. On the other hand, one

can also infer from this matrix that because Sa has large d′ for tasks ‘A’ vs. ‘B’,

‘A’ vs. ‘D’,‘B’ vs. ‘C’, these surface types exhibit a unique roughness signature with

respect to one another. In addition, the relatively large d′ values for tasks ‘A’ vs.

‘B’ and ‘C’ vs. ‘D’ based on Str indicate that these surface types have different

degrees of isotropy and/or anisotropy, which could be intuitively linked to process

conditions. The proposed feature selection method inherently tries to minimize the

number of suggested metrics to use for classification, and to reduce the ‘parameter

rash’ phenomenon [34] of over-reporting and/or use of non-relevant metrics; at most

k metrics (Eq. (3.4)) will be returned irrespective of the number of candidate metrics

(rows of the d′ matrix). Given a dataset (X) that consists of target class labels (L)

and input metrics (F ), construction of the d′ matrix and subsequent down-selection

of metrics is implemented according to algorithm 3.1.
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Algorithm 3.1: Construction of d′ matrix and down selection of metrics

3.3.4 Utilization of machine learning for multiclass problems

Although the suggested selection algorithm helps eliminate unnecessary metrics,

resolving the differences between multiple surface types (i.e. multiclass classification

tasks) often requires more than a single metric. In these cases, determining a set

of thresholds/decision rules can be a difficult task. For this reason, machine learn-

ing models are often employed. Decision trees, a form of machine learning, offer an

interpretable solution for automating both binary and multiclass classification prob-

lems. Because they are a type of non-parametric supervised learning method, unlike

CNNs, they do not require the specification of model parameters such as the num-

ber of convolutional, pooling, and fully connected layers, prior to training. Instead,

decision trees predict the class/type of surface by learning a series of decision rules

directly from the training data. The deeper the tree the more complex the decision
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rules become [35]. However, one has the option to balance model complexity and

performance by specifying a maximum tree depth prior to training (i.e. pre-pruning)

or by removing parts of it afterward (i.e. post-pruning) [36,37]. Figure 3.4 depicts

a decision tree model resulting from the training dataset in Section 3.3 where four

different surface types were represented by two metrics, surface roughness Sa and

surface isotropy Str. The resulting tree provides a visualization of nonlinear data

patterns and removes any ambiguity from how an automated decision will be made

regarding the classification of new surfaces. For example, given measurement values

of Str and Sa of a surface the tree represents the logic that is followed for predicting

which class the surface belongs to. This decision process starts at the root node where

Str is compared to decision criteria C1 learned from the training data. If the Str

value of the surface is greater than c1 then the next comparison would be to compare

the Sa of the surface to decision criteria c2. If the Sa value is less than c2 the surface

in question would be classified as ‘C’ and otherwise as a type ‘A’ surface. Another

advantage of decision tree classifiers is that they do not require normalization (i.e. a

preprocessing step that involves scaling all of the metric values to a common range,

typically between 0 and 1 or -1 and 1) of the data, further reducing implementation

complexity
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Figure 3.4: Example of a decision tree model for multiclass classification.

3.4 Data processing pipeline and analysis tools

3.4.1 Surface quality and inspection descriptors (SQuIDTM)

The developed approaches described in Sections 3.1-3.4 are formalized as a soft-

ware framework called Surface Quality and Inspection Descriptors (SQuID). The

package integrates the elements discussed in previous sections within a single soft-

ware package/application to characterize the differences between surfaces according

to categorical visual appearances, processes, or other functionally related differences

using single-valued surface metrics. The flow diagram illustrating how the data is

processed is detailed in Fig. 3.5. The software utilized to develop SQuID is based

on Python programming language, uses NumPy and Pandas packages for data pro-

cessing and manipulation, Scikit-learn for machine learning modules, and Streamlit

for the graphical user interface. Users can access a web-based version of the tool [38]

and source code through GitHub link [39]. To classify the six surface types in the
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NEU-CLS dataset, twenty-two surface descriptors taken from ISO 25178-2 [26] are

utilized, see Table 3.1. Prior to calculating the twenty-two metrics for each surface,

a best-fit plane is removed from each image; this is the only pre-processing operation

undertaken. The d′ matrix is calculated for the

fifteen classification tasks and the metrics with the highest d′ values identified. A

decision tree classifier is implemented with an opensource package [40]. All default

input arguments are used except for the criterion which is set to ââentropyââ. Com-

plete details regarding the decision tree package used in this work can be found at

[35,40,41]. For generality, the workflow of the SQuID pipeline consists of the following

steps, with steps 4-9 being completely automated:

Collect images or areal measurements of the types of surfaces that need to be

characterized and differentiated from one another. (For this example, the NEU-CLS

dataset consists of 1800 grayscale images.) 2. Organize the data files into separate

folders with the name of each folder indicating the classification. (The NEU-CLS

dataset consists of six folders, one for each surface type.) 3. Determine data pre-

processing sequence which should be applied to the surface image and subsequent

metrics to be computed. (In this case study, best-fit plane removal and the calculation

of the twenty-two ISO-based metrics) 4. Apply step 3 to each image and store the

resulting data in tabular format; one row for each sample. 5. Split the dataset

into training and testing sets using an equal number of samples for each class. (By

default, a 50/50 train/test split is used) 6. Using the training dataset only, construct

the d′ matrix described in Section 3.4. 7. Apply the selection algorithm detailed

in Section 3.4 and/or manually down-select metrics based on data analysis. 8. Use

optimal metrics from the previous step to generate a decision tree. 9. A report

is generated detailing the d′ matrix, decision tree diagram, and confusion matrix

indicating classification performance on the testing dataset.

In this approach, the greatest time investment is during data collection rather
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than during the analysis. The amount of time spent computing the ISO metrics to

create the tabulated dataset for analysis will scale according to the speed at which

the metrics and digital filtering can be applied. Once constructed, generating the

discrimination matrix and evaluation of the decision tree occurs in less than a couple

of seconds or minutes depending on the number of classes and examples used.

Figure 3.5: Surface Quality and Inspection Descriptions (SQuID) frame work

In addition to decision trees, other classification models such as Support Vector

Machine (SVM) [42], K-Nearest Neighbors (KNN) [43], and Naive Bayes (Bayes)

[44], can also be employed. However, these off-the-shelf machine learning models,

accessible at [45-47] that are used in the results with default parameters, have their

limitations in terms of interpretability when compared to decision trees. For instance,

SVM may exhibit biased predictions towards features with inherently larger values

due to the distance metric used in the fitting process. To mitigate this issue, data

normalization is required, which can complicate the interpretability of the model. The

KNN classifier operates on an intuitive principle of predicting the class based on prox-

imity to other classes in the dataset, however, visualizing or interpreting the decision
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space becomes challenging when more than three features are used for classification.

Moreover, although both decision trees and KNN are non-parametric classifiers the

latter relies on the dataset itself for making predictions, making scalability an is-

sue with large datasets and complicating implementation and transferability across

diverse manufacturing environments. The implementation of Gaussian Naive Bayes

algorithm [47] for classification may also be considered less interpretable as the model

does not provide the explicit rules that define the decision boundaries that are used

as the basis for future predictions like decision trees.

3.5 Results

3.5.1 Binary classification

Figure 3.6 plots d′ versus accuracy (Eq. (3.2)) for each ISO parameter associ-

ated with each of the fifteen binary classification datasets within the multiclass NEU

dataset. This consists of a total of 330 data points; one per ISO metric for each of the

fifteen classification tasks. In general, it was found that d′ greater than 2 results in

prediction accuracies of about 0.82, and that d′ greater than 4 indicates an accuracy

of 0.95, or higher, is feasible. It is not surprising that some ISO 25178-2 metric cat-

egories perform better at certain classification tasks than others. The height metrics

(represented by △) are seen to cover the entire d′ spectrum, while the hybrid metrics

(diamonds ⋄) achieve some of the highest d′ values. This is likely because metrics

such as Sdr and Sdq consider both spatial and height content, while the height met-

rics do not capture spatial relationships. That said, hybrid metrics are not infallible;

Instances of low d′ values for certain tasks can still be found in the bottom left of the

plot.
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Figure 3.6: Classification accuracy versus d′ value for each ISO 25718-2 parameter on
every unique binary classification task in the NEU-CLS dataset. references to color
in this figure legend, the reader is referred to the web version of this article.)
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The variation in reported accuracy values for any d′ value can range by ±5%. This

variation can be caused by a multitude of factors such as; the random selection and

ratio of samples in the training and testing sets, the suboptimal placement of the

decision criterion, the presence of erroneous outliers in the dataset, and the degree

to which the distribution of the metric values representing the surface types for a

particular classification task deviate from a normal distribution. Figure 3.7, which

illustrates the distributions associated with two selected ISO metrics, clearly indicates

that the calculated metrics are not uniform or standard normal distributions. The

light green line in Fig. 3.6 represents the best-fit line obtained for a synthetically gen-

erated Gaussian dataset which satisfies the normality assumptions. As little difference

exists between this line and the best-fit line through the NEU-CLS dataset (dark-gray

heavy line in Fig. 3.6) it suggests that the d′ value, even calculated for a range of

data distributions, is a robust indicator of a metric’s ability to differentiate between

two different classes. This is supported by Fig. 3.7 depicting the non-Gaussian dis-

tributions formed by the training (shaded) and test (dashed hatted lines) sets for Sq

and Sdr on two different classification tasks. The bottom left plot shows Sdr for Sc

vs. Cr having a d′ > 6 and achieving 99% test accuracy.
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Figure 3.7: Examples of decision variable distributions from select NEU-CLS binary
classification datasets Top left (In vs. Pa d′ of 4.5, accuracy = 0.94) Top right (Pa vs.
Cr d′ 2.9, accuracy = 0.89) Bottom left (Sc vs. Cr d′ 6.08, accuracy = .99) Bottom
right (PS vs. Cr d′ 3.76, accuracy = 0.94).

Table 3.2 lists the metrics with the highest d′ value for each classification task; for

the NEU-CLS case study, they are all either height or hybrid parameters.



55

Table 3.2: Best metric for each classification task, associate d′ values, and the resulting
classification accuracy

3.5.2 Multiclass classification

Figure 3.8 depicts the d′ matrix based on the twenty-two ISO metrics in Table

3.1 and the 15 pairwise surface comparisons constructed from the six aforementioned

NEU-CLS surface classes. As noted in the previous section, the hybrid metrics Sdq

and Sdr, appear to be among the better predictors; in all but four cases (Cr vs. Pa,

In vs. Sc, PS vs. RS, and PS vs. Sc) they had d′ values greater than 3. PS vs. RS is

the only task that does not a have candidate metric with a d′ greater than two, i.e.

the entire column is gray, indicating no classifier is expected to perform well for this

classification challenge.
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Figure 3.8: Illustration of d′ matrix based on the NEU-CLS dataset and the twenty-
two ISO 25178-2 parameters. Columns are indexed by different binary classification
tasks with rows indexed by ISO metric. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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Figure 3.9 depicts the probability density estimations for selected height (Sa, Sq, Sv,

Sp, Sz, Ssk, Sku) and hybrid parameters (Sdr, Sdq), for the six defect classes defined

by NEU-CLS dataset, i.e. those that produced among the highest d′ values for each

classification pair. For viewing clarity, the metric values have been normalized, and

the y-axis, representing the density estimation, removed. In nearly all distributions

unequal variances exist, with Sdr distribution for the crazing defects in the bottom

of Fig. 3.9 actually exhibiting a binomiallike distribution. Notice that sa and Sq are

highly correlated metrics, as are Sdq and Sdr. Since their mathematical definitions

are very similar, it is not surprising that their respective distributions are very similar

in nature, i.e. compare the top two rows for Sa and Sq, and the bottom two rows for

Sdq and Sdr. Using a few of the selected metrics to intuitively analyze the different

surface types, both scratches (Sc) and inclusion (In) classes exhibit low ââintensity

roughnessââ given by the Sa parameter, relative to the surfaces with patches (Pa)

(where the ratio of light to dark areas is closer to one), spanning a larger intensity

range on average. Inclusion (In) surfaces have low Sdr and Sdq values, indicative of a

ââflatterââ and more uniform intensity image compared to crazing (Cr) surfaces which

display more complex variations in composition and texture. Scratched (Sc) surfaces

exhibit distinct bright streaks creating an asymmetry between the intensity values

that represent the surface. Notice skewness Ssk (third row from top) can characterize

this asymmetrical appearance as a distinct range of quantitative values (i.e. purple

distribution) relative to the nominal Ssk ranges of the other surface types.
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Figure 3.9: Density functions of ISO 25178-2 parameters selected by Algorithm 1
based on d′ matrix for NEU-CLS dataset. Parameter values were normalized to a
range of 0-1 for visualization, the y-axis corresponds to density estimation. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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As noted earlier, PS vs. RS did not have any d′ values higher than 2 in the d′

matrix. The In vs. PS task also has no metrics with a d′ value greater than 2.3.

Examination of the seven plots in Fig. 9 clearly shows that the distributions for each

metric significantly overlap for both PS (light gray) and RS (dark gray) classes. The

same is true for In vs. PS. To reliably differentiate between these surface classes, it

is necessary to explore additional filtering operations and/or alternative ISO metrics.

In comparison d′ values of 6.5, 6.3, and 5.9 are recorded for Cr vs. In for metrics Sdq,

Sdr, and Sz respectively, hence little to no overlap between these distributions appear

in the bottom three rows of Fig. 3.9. It is expected that any reasonably optimized

machine-learning model which uses these metrics to make predictions would rarely, if

ever, misclassify crazing defects (Cr) for inclusion (In) and vice versa.

3.5.3 Machine learning for multiclass problems

Based on a 0.5/0.5 train/test split of the NEU-CLS dataset, 900 images (150 per

class) for training and 900 images for testing, a decision tree model trained on all

twenty-two metrics reported in Table 1 yielded a maximum test accuracy of 95.19%

and took approximately 3 s to process a 200 × 200-pixel image. Using only metrics

with d′ less than or equal to 2 to train the model results in a test accuracy of 80.56%.

In comparison, a decision tree trained using the seven metrics (Sa, Sq, Ssk, Sp, Sz,

Sdq, Sdr) isolated by the outlined approach, the lowest d′ value being 1.9, achieved a

test accuracy of 95.72% and took only 6 ms to process new images. Processing time is

further reduced by approximately 1 ms for each additional metric that is withdrawn.

Removing redundant, i.e. highly correlated parameters, Sdq and Sq, and the skew-

ness metric Ssk, the decision tree model trained using the remaining four metrics Sa,

Sp, Sz, Sdr achieved 94.07% test accuracy. Using only three metrics Sa, Sp, and

Sdr, still provided a respectable test accuracy of 92.78%.

Figure 3.10 depicts how the test accuracy (y-axis) of different machine learning

classifiers vary according to different training/testing splits. In all cases the seven
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metrics (Sa, Sq, Ssk, Sp, Sz, Sdq, Sdr) were used as inputs to the model(s). For each

split, the dataset is shuffled and the training and evaluation process is performed a

total of five times. The error bars represent the standard deviation of the recorded

test accuracy. According to Fig. 3.10, maximizing the proportion of training exam-

ples tends to increase classification performance in most cases. However, reducing

the number of examples withheld for testing makes it progressively more difficult

to assess how a model may perform when classifying unseen examples. Even with

the challenging 0.1/0.9 split, where only 30 out of 300 images per class are used for

training and the remaining 1620 images are used for testing, the suggested approach

achieves accuracies exceeding 89%. This demonstrates noteworthy sample efficiency,

which is highly desirable in many manufacturing environments. For the 0.9/0.1 split

where 270 out of 300 images per class are used for training and the remaining 180

images for testing, accuracies greater than 96% are reached. The decision tree classi-

fier consistently outperforms other models when averaged across all train/test splits.

In comparison, the SVM classifier exhibits significantly lower performance, with an

average reduction in accuracy of approximately 20% compared to the decision tree.

The Bayes classifier shows slightly better performance for the 0.2/0.8 and 0.1/0.9

train/test splits, but there is no noticeable improvement as the ratio of training sam-

ples is increased. On the other hand, the KNN classifier demonstrates considerable

performance improvement, with accuracies increasing from 78% to 90% for the 0.1/0.9

and 0.9/0.1 train/test splits, respectively.
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Figure 3.10: Test accuracy of different machine learning classifiers for different
train/test splits of the NEU-CLS dataset using seven ISO metrics (Sa, Sq, Ssk, Sp,
Sz, Sdq, Sdr) isolated by Algorithm 1.

The average and standard deviation of the number of correct and incorrect pre-

dictions on the testing sets made by the decision tree classifier for the 0.5/0.5 split

shown in Fig. 3.10 is depicted by the modified confusion matrix in Fig. 3.11. Correct

predictions, colored in green, correspond to the average number of instances that the

predicted label matched the true label for images in the testing set. The off-diagonal

elements colored in red represent instances of incorrect predictions. If all of the test

samples were classified correctly each time the training and testing data was shuffled

then the confusion matrix in Fig. 3.11 would be a diagonal matrix. The intuition

described in Section 3.3, which is empirically quantified in Fig. 3.6, suggests that a
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diagonal confusion matrix is only expected when each classification task (i.e. Cr vs.

In, Cr vs. Pa, RS vs. Sc, etc.) is characterized by at least one ISO metric with a d′

greater than seven.

Figure 3.11: Modified confusion matrix representing average and standard deviation
of correct and incorrect predictions on the test set after five independent evaluations
of the decision tree classifier using seven ISO metrics (Sa, Sq, Ssk, Sp, Sz, Sdq,
Sdr) isolated by Algorithm 1. For each evaluation, 150 samples per class are used
for training and 150 per class are reserved for testing. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Based on Fig. 3.11, there were, on average, a total of 18 instances where surfaces

with inclusion (In) were incorrectly classified as pitted surfaces (PS), and vice versa.

The d′ matrix in Fig. 3.8 supports these findings, indicating that the highest-ranking
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ISO metric, Sz, achieved a d′ value of 2.3 for the In vs. PS task. Similar trends

were observed for other tasks: an average of twelve instances for Cr vs. Pa with Sq

achieving a d′ value of 2.9, eight instances for In vs. Sc with Sp having a d′ value

of 3.9, and three instances for Sc vs. Pa with Sdr achieving the highest d′ value

of 4.9. No incorrect predictions were recorded for Cr vs. In or In vs. Pa. The d′

matrix reported Sdq as the highest-ranking ISO metric with a d′ value of 6.5 for the

former task, and Sz with a value of 6.3 for the latter. Deviations from the trend were

observed. For example an average of eight instances of incorrect predictions between

PS and RS with Sa achieving a d′ of 1.9 and an average of one instance between PS

and Cr with Sdr having a value of 3.7. However, the average accuracy of the decision

tree for each task was always higher than the conservative estimate obtained from the

d′ vs. accuracy curve(s) in Fig. 3.6. This is because a reasonably optimized decision

tree tends to outperform the curveâs criterion of c = µA+µB

2
.

3.5.4 Comparison to other approaches

Following the release of the NEU-CLS dataset, several approaches have been ex-

plored for automating the classification of the six classes. Table 3.3 summarizes a

range of metric extraction techniques and classification models applied to the NEU-

CLS found in published literature. For comparison, the result from this work is

listed in the last row of the table. Yi et al. [15] demonstrated that a custom CNN

deep-learningbased architecture could achieve a test accuracy of 99.05%. However,

to achieve this the authors required extensive data augmentation (i.e. artificially

increasing the size of a training dataset by applying various transformations to the

original data, such as flipping, rotating, cropping, or adding noise) to artificially

inflated the training dataset. Without these additional processing steps, accuracy

drops to 88.25%. Their reported accuracy is also based on a 0.9/0.1 train-test split,

unlike the conventional 0.5/0.5 train-test benchmark introduced by [5]. The perfect

0.8/0.2 train-test result reported by Fu et al. [16] also utilized augmentation and
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required the input images to be converted into pseudo color images of size 224 × 224

× 3. These types of dataset and image modifications are ubiquitous among reported

state-of-the-art deep learning approaches for the NEU-CLS dataset.

Three approaches listed in Table 3.3 utilized machine learning. Song et al. [5,14]

combined machine learning with features resulting from local binary patterns (LBP)

[48], scattering convolution network (SCN), or adjacent evaluation of completed local

binary patterns (AECLBP) image processing techniques to achieve classification accu-

racies be-tween 95.07% to 98.93%. Xioa et al. [7] combined machine learning with an

ensemble of image processing techniques for feature extraction including gray-level co-

occurrence matrices (GLCM) [49], uniform local binary patterns (ULBP), histogram

of gradients (HOG) [50,51], and Gabor filters resulting in 153 descriptions for each

image. The approach achieves high classification performance with an accuracy of

98.24%. Ashour et al. [6] pre-processed the images using direct shearlet trans-forms

(DST) [52] and GLCM transforms and then distilled the resulting 744 image features

to 90 using principal component analysis (PCA) prior to classification of the surface

image to achieve 94.11% accuracy. As with the deep learning approaches, no system-

atic or generalized framework is outlined to inform the reader why the pre-processing

route and chosen metrics work. This limits the readers’ ability to assess whether such

approaches would translate to their specific application.

3.6 Final summary and conclusions

This paper outlines a systematic, SDT-based framework to assess a metric’s abil-

ity to differentiate between two different surface classes, or indeed multiple different

surfaces. A metric’s d′ value for two surface types provides a priori insights into how

well a classification model could perform if a particular surface metric were used.

This offers opportunities to significantly reduce the amount of effort required to se-

lect appropriate metrics and optimize a classification algorithm. The d′ calculation is

sufficiently robust to be applied to non-Gaussian datasets. To demonstrate its effec-
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Table 3.3: Summary of different approaches for classifying the six types of surfaces
included in the NEU-CLS dataset

tiveness, an empirical relationship between d′ values and classification accuracy was

constructed using twenty-two ISO metrics and over 15 different binary datasets. Fur-

thermore, a comprehensive evaluation of the performance of the ISO 25178-2 metrics

and a decision tree for classifying the six types of surface classes in the NEU-CLS

dataset are reported and compared to existing image processing and deep learning

approaches. The discrimination matrix and automated metric selection method based

on d′ was found to be effective in isolating relevant ISO metrics, reducing the num-

ber used for classification from twenty-two to seven without decreasing accuracy. A

decision tree model that utilized only these seven ISO metrics achieved accuracies

exceeding 89% for a 0.1/0.9 train/test split and 96% for a 0.9/0.1 train/test split.

Using an even smaller subset of the seven metrics including Sdr, Sa, and Sp achieved

92.78% accuracy on a 0.5/0.5 train/test split and reduced processing time from 166

to 332 frames per second. This speed makes the approach suitable for high-speed
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in-situ and/or online surface inspection tasks. To the best of our knowledge, this is

the first report involving the use of ISO 25178-2 parameters to characterize defects

on NEU-CLS dataset or other collections of intensity-based images. The reasoning

for their use (as opposed to conventional image processing metrics) is because of

their deep linage in manufacturing environments, in addition to their standardized

equations and definitions that provide intuitive characterizations of a surface’s to-

pography, regardless of the units. Combining the metrics isolated by the d′ matrix

with a decision tree offers the opportunity for easier interpretation compared to black

box outputs of other machine and deep learning approaches. This can be particularly

important in a manufacturing setting where it is highly desirable to have traceable

decisions and the ability to explain the reasons for (or assign numerical definitions

to) defects or conformance specifications. Knowing the d′ values of the metrics a clas-

sifier uses provides an indication of the level of confidence or skepticism one should

have in relation to its predictions. A machine learning model that utilizes multiple

metrics with low d′ values is not expected to make accurate or reliable classifications.

Another advantage of this approach is the ability to adapt and preserve the original

input image resolution. ISO metrics can be computed on images of any size and aside

from standard form removal and optional digital filtering methodologies, no numeri-

cal or dimensional resizing of the image is required prior to classification. Moreover,

the suggested d′ matrix could be extended to any other univariate metrics, such as

profile metrics defined by ISO 4287 [53] or other image processing metrics. The pro-

posed methodology is widely applicable to other classification tasks, such as surfaces

grouped by functionalities such as wettability, aesthetic appearance, or haptic sen-

sation. Investigations like these will be carried out and reported in future work to

better understand the relationships between surface texture and function.
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CHAPTER 4: (Paper 2) CLASSIFICATION OF VISUAL SMOOTHNESS

STANDARDS USING MULTI-SCALE AREAL TEXTURE PARAMETERS AND

LOW-MAGNIFICATION COHERENCE SCANNING INTERFEROMETRY

Overview of paper 2

The work in this chapter has been published in the Journal of Materials [7]. To

further assess the framework introduced in Chapter 3 while also addressing multi-

scale aspects of surface characterization, in this chapter SQuIDTM is leveraged to

classify different grades of surface finish appearances. This chapter also provides an

end-to-end example of the SQuIDTM workflow incorporating data collection, dataset

preparation, processing, and assessment of the results. In this work, ISO 25178-2 areal

surface metrics extracted from bandpass filtered measurements of a set of ten visual

smoothness standards obtained from low magnification coherent scanning interferom-

etry are used to quantify different grades of powder-coated surface finish. The ability

to automatically classify the standard tiles using multi-scale areal texture parame-

ters is compared to parameters obtained from a hand-held gloss meter. The results

indicate that the ten different surface finishes can be automatically classified with ac-

curacies as low as 65% and as high as 99%, depending on the filtering and parameters

used to quantify the surfaces. The highest classification accuracy is achieved using

only five multi-scale topography descriptions of the surface. In this case, spatial and

hybrid parameters were selected over commonly prescribed height parameters such as

Sa, which proved ineffective in characterizing differences between the surface grades.

It was also found that standard appearance parameters provided by the RhoPoint-

IQ gloss meter successfully differentiated only four of the ten tiles, underscoring the

superior accuracy of areal surface texture measurements in linking topography to
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subjective visual grading. Furthermore, the results demonstrate how the developed

framework can be leveraged to automate visual inspection tasks, proving the means

to not only select the required parameters that enable successful classification but

also provide the explicit decision logic used to determine the grade(s) of the surfaces.

The contributions of this chapter include: 1) a benchmark assessment of the

SQuIDTM framework on challenging multi-classification tasks; 2) a comprehensive

evaluation and comparison of texture parameters and gloss parameters for classifying

visual smoothness standards; 3) the derivation of a unique multiscale description and

decision logic for classifying a set of ten visual smoothness standards.

Abstract

The ability to objectively specify surface finish to ensure consistent visual appear-

ance addresses a vital need in surface coating engineering. This work demonstrates

how a computational framework, called surface quality and inspection descriptors

(SQuIDTM), can be leveraged to effectively rank different grades of surface finish ap-

pearances. ISO 25178-2 areal surface metrics extracted from bandpass-filtered mea-

surements of a set of ten visual smoothness standards taken on a coherent scanning

interferometer are used to quantify different grades of powder-coated surface finish.

The ability to automatically classify the standard tiles using multi-scale areal texture

parameters is compared to parameters obtained from a hand-held gloss meter. The

results indicate that the ten different surface finishes can be automatically classified

with accuracies as low as 65% and as high as 99%, depending on the filtering and pa-

rameters used to quantify the surfaces. The highest classification accuracy is achieved

using only five multi-scale topography descriptions of the surface.

4.1 Introduction

The surface texture can impact a manufactured surfaceâs functionality and aes-

thetic quality. Some examples of where surface texture affects functional perfor-
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mance include wettability [1-3], reflectance [4,5], corrosion resistance [6,7], fatigue

[7,8], and heat exchange [9,10]. While the surface aesthetic (visual and tactile) in-

cludes human perception and thus encroaches on the psychophysics domain [11-14],

the topographical amplitudes and spatial relationships between different features on

the surface, along with other traits such as color, thermal conductivity, and modulus,

affect how the surface is perceived and valued [12,13,15-18]. Central to understanding

how surface texture affects functionality and aesthetics is to isolate metrics capable of

quantifying relevant surface topographies at the appropriate length scales. Similarly,

quantitative metrics are needed to assist in fine-tuning processes used to generate

the surfaces and for subsequent process control and part acceptance. That said, the

identification of appropriate qualitative metrics is far from trivial [19,20]. While sur-

faces can be easily measured in digital environments, merely assigning a numerical

assessment to a surface that does not correlate with its intended function provides

incomplete and potentially misleading information. Additionally, while visual com-

parisons to defined standards are utilized in many instances, especially regarding

aesthetics, human visual inspection (HVI) processes are inherently subjective, as dis-

cussed in [11]. There is a strong desire to replace HVI with automated systems

and a longstanding goal of definitively linking functionality to sur-face topographies.

However, there remains a need to make it easier to find suitable metrics that can

reliably discriminate between surfaces grouped or ranked by functionality, subjective

appearance, or, indeed, processing-induced differences [21-23].

4.1.1 Challenges in quantifying surface quality

Information on surface quality can be obtained by multiple modes of acquisition

and processing, giving different outputs. For example, functional gloss meter read-

ings quantify a surfaceâs specular reflectance and/or the directional distribution of

light reflected by surfaces illuminated under specified conditions [24]. The gloss unit

(GU) reports the amount of luminous flux reflected from a specimen to that of a ref-



75

erence glass tile with a known refractive index (1.567) having a specular reflectance

of 100 GU at a specified angle and wavelength (λ = 587.6 nm or 546.1 nm) [25].

Typical gloss meter systems are designed around standard measurement angles of

20◦ for high-gloss surfaces, 60◦ for semi-gloss surfaces, and 85◦ for matte surfaces

[25,26]. Although multiple surface characteristics influence gloss values derived from

these measurement angles, they may fail to characterize certain aspects that reduce

appearance quality (haze, orange peel, etc.). As such, additional appearance ter-

minology and parameters characterizing surface quality, such as the distinctness of

image DOI, the "aspect of gloss charac-terized by the sharpness of images of objects

produced by reflection at a surface", have been developed [27] and used to quantify

the severity of orange peel. DOI values close to 100 indicate a very high sharpness,

and values close to 0 indicate a very high induced waviness in the reflected image

[28]. Other industry standards have been developed by Rho-Point, two of which are

Rspec for smoothness quantification and the reflected image quality RIQ parameter

[29]. On the other hand, conventional imaging techniques provide intensity images

of how light interacts with the different spatial regions of the surface. While fast

and effective in providing insights into the nature of the surface texture, they are

sensitive to lighting conditions and lack topographical height data to provide full

three-dimensional representations. Conventional image-processing metrics used to

quantify surface textures, such as grayscale histograms, local binary patterns (LBP),

and gray-level co-occurrence matrices (GLCMs), are often difficult to interpret with

respect to the physical nature of the surface and thus have limited value in under-

standing what drives a particular functionality. As such, they will not be the focus of

this paper. A surfaceâs composition and geometric topography ultimately dictate its

functional performance. Tactile or optical-based instruments can provide either line

or areal height information pertaining to the geometric nature of the surface topog-

raphy [30]. The speed at which a measurement is taken will vary depending on the
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system, with coherence scanning interferometry (CSI) being among the fastest but

still slower than high-speed intensity imaging systems. Datasets from these systems

can provide a wealth of geometrical topographical data with the scale of resolvable

features dependent on system-limiting factors, tip radii for tactile measurements, and

numerical aperture considerations for optical systems [31]. While the wealth of the

available data is advantageous, effectively processing the data to give useful metrics

still poses challenges [11,21]. Statistical parameters used to describe surfaces within

the manufacturing community include height, spatial, hybrid, functional, and other

parameters detailed in the ISO 25178-2 standard [32]. Even though there is a shift

away from relying on two of the most commonly utilized areal metrics [33], the arith-

metic average roughness, Sa, and the root mean square roughness, Sq, they remain

prevalent despite having potentially similar values for surfaces that drastically differ

in their topographical arrangements. Using other standardized parameters is promis-

ing, but questions about how alternative parameters should be selected for a specific

application still arise. Surface geometries can be complicated; using only one or a

small finite number of statistical parameters may fail to provide a full description.

Increasing the number of parameters used can result in a more accurate description

[34], but excessive reporting of redundant and/or irrelevant parameters leads to what

Whitehouse coined in 1982 as "parameter rash" [35]. Further complicating the selec-

tion process, surface texture and its relationship to different functions is inherently

multi-scale [22]. Single or multiple parameters calculated only at one specific spatial

bandwidth may not always provide an adequate description. Even for the same sur-

face, texture parameter values can change by orders of magnitude depending on the

definition area of the measurement, sampling interval, form-removal operations, and

cutoff frequencies used for high-, low-, or band-pass filtering of the data. If the search

space is left unbounded, the number of parameter and length scale combinations are

seemingly infinite. While particular combinations of areal parameters may provide
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a strong foundation for correlating process variations, function, or subjective visual

appearance with statistical representations of the surfaceâs topography, it is crucial

to understand that a heuristic approach to parameter selection might not always

yield the most useful surface descriptions for a particular application. Objective and

data-driven methodologies should complement heuristic approaches to ensure more

accurate and effective surface characterizations, especially when aiming to capture

subjective aspects of surface quality. However, using black-box machine learning

(ML) models to carry out data-driven methodologies for classifying surface quality

can limit the ability of designers, manufacturers, and researchers alike to use texture

parameters to unambiguously communicate surface quality expectations and specifi-

cations for in-spection. Therefore, achieving a balance between traditional methods

and AI-driven approaches is essential. Integrating the strengths of both can lead to

more robust and effective surface quality assessments while addressing the limitations

of each approach.

4.1.2 Paper description and organization

To address the challenges of selecting the relevant length scale and parameters to

reliably differentiate between different surface texture classes, this paper outlines an

approach demonstrated on a set of ten ranked visual smoothness panels available from

the Powder Coating Institute (PCI). These panels are commonly used in industry for

HVI of powder coatings. Currently, there is no clear pathway for automatically classi-

fying a workpiece finish as one of the ten PCI textured samples. The ASTM D3451-06

standard [36] for testing powder coatings notes that subjective HVI comparison is the

most common method to quantify differences in the surface profile, primarily the lev-

els of reflectance and orange peel of cured powder coatings. A second method refers

to a portable instrument that, when scanned across the surface, acts like the human

eye and detects differences in reflectance (light → dark areas), then transforms them

into a numerical number relating to orange peel. A third method, alluded to within
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the standard, mentions a combination of surface amplitude and spatial content but

clearly defines neither within. To circumvent the need for subjective visual analysis, a

previously published systematic framework, SQuIDTM [21], will be built upon to de-

rive quantitative descriptions using areal maps subdivided into multiple length scale

measurements and a set of logical rules to objectively classify the aforementioned set

of subjectively graded visual smoothness panels. Section 4.2.1 includes an overview

of the standardized visual smoothness tiles investigated in this study. Section 4.2.2

includes acquisition and data collection details of the tiles using a CSI and a gloss

meter. Gloss meter readings are included in the analysis due to their simplicity.

Areal parameters considered and spatial bandwidths used in generating the datasets

for subsequent analysis are covered in Section 4.2.3. The parameter selection and

classification methodology employed for down-selecting metrics and classifying the

standard appearance tiles is covered in Section 4.3. The performance of a decision

tree classifier and a summary of the down-selected parameters using this algorithmic

methodology is covered in Section 4.4. A summary of the results and areas for future

work is outlined in Section 4.5.

4.2 Samples and measurements

4.2.1 Visual smoothness standards

The PCI visual smoothness standards shown in Figure 1 cost approximately 650

USD and consist of ten 100 mm × 150 mm black powder-coated tiles with varying

degrees of smoothness. The samples are numbered such that tile 01 appears to be the

"roughest" sample, containing the most orange peel, and tile 10 is the "smoothest",

visually exhibiting the least orange peel and the highest reflectance levels. The or-

ange peel texture appears as its name suggests: visible local surface undulations or

waviness. It is most visible in tiles 01 and 02 and within the region of the reflected

overhead light in tiles 04 and 05 (see the indicated regions in Figure 4.1). Industrial

equipment manufacturers pre-scribe different quality designations to surfaces with
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an orange peel rating of 05-09 versus those with a rating of 02-09 [37]. Typically,

classification is carried out via HVI in illuminated cells by comparing the standard

tile grades to the part surfaces. Under non-ideal lighting conditions, only PCI tiles

01, 02, and potentially tile 03 can be reliably differentiated. Resolving the differ-

ences between tiles 04 to 10 is more challenging, requiring specific lighting conditions,

viewing angle, and visual acuity to resolve minor variations in spatial periods and

specular reflection. To correctly classify all ten tiles over long periods of time would

be considered a difficult inspection task and would undoubtedly lead to inconsistency

between inspectors.

Figure 4.1: Images of PCI visual smoothness standards captured by an iPhone under
non-ideal lighting conditions. Circular regions shown in T01, T04, and T05 illustrate
the reflected image distortion caused by the severity of the orange peel.

The PCI tiles in Figure 4.1 were kept in a protective case during shipping and

storage. Direct handling was limited to the edges of each tile to avoid damage or

contamination of the measurement area. Before each measurement described in the
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next section, the tiles were gently wiped with a clean microfiber cloth to remove any

dust or contaminates on the surface.

4.2.2 Gloss meter and CSI measurements

The different measurement strategies for the two different measurement approaches

are depicted in Figure 4.2. Thirty measurements of each PCI tile were collected

using a RhoPont-IQ meter [29]. This was achieved by rotating about the z-axis

normal to the surface and translating the device across the central region of the

100 mm × 150 mm tiles. The assessment areas were uniformly distributed over

approximately 50 mm × 50 mm center region of the tile, maintaining a buffer around

the edges to prevent inaccurate readings. The PCI tiles would generally be considered

"high-gloss" surfaces; as such, 20◦ angle gloss measurements are most appropriate for

quantifying the tiles compared to 85◦ and 60◦ angles. By design, DOI, Rspec, and

RIQ assessments are expected to correlate with the severity of orange peel, which

is assumed to determine the ascending ordering of the tiles, i.e., from tile 01 to

10. Surface measurements of the PCI visual smoothness standards were obtained

using a Zygo NexView CSI (Middlefield, CT, USA) configured with a Michelson

2.75× objective and 0.5× tube lens, providing a numerical aperture (NA) of 0.08 and

sampling interval of 5.91 µm. The objective chart for the instrument uses the term

spatial sampling in units of µm per pixel to describe the latter, noting it is the pixel

size on the sample and is derived from the camera pixel size divided by the system

magnification. The instrument is housed in a laboratory environment temperature

controlled to 20 ± 0.1 degrees C. Plastic toe clamps were used to secure and flatten

each tile to the stage of the CSI. The CSI measurements were taken from the center

region of the tile. The measurements comprise partially overlapping 6.05 mm × 6.05

mm scans stitched together to increase the nominal field of view to 30.25 mm × 30.25

mm. Stitching enables a larger field of view without comprising the measurementâs

spatial resolution. The stitching process was carried out using Zygo MXTM (v8.0.0)
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software using 20% overlap between sequential scans in the adaptive adjust mode.

Figure 4.2: (a) Illustration of sampling locations on the PCI tiles for gloss meter (b)
and CSI measurements (c).

4.2.2.1 Measured gloss metric values

Figure 4.3 depicts box and whisker plots highlighting the relationship between the

values of selected gloss metrics (y-axis) and PCI tile number (x-axis). Gray boxes

represent the interquartile (IQR) range, with whiskers denoting the minimum and

maximum quartiles. Each box displays the median and mean of the data. The median

is indicated by a horizontal line, while the mean is represented by "×" symbol(s).

Outliers are shown as circles.
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Figure 4.3: Box and whisker plots of select Rho-Point IQ gloss meter readings vs.
PCI tile number.

For Gloss20, there is a clear distinction between tile 01 and tile 02, with average

values of approximately 50 and 83 gloss units, respectively. Metrics DOI, Rspec, and

RIQ demonstrate a positive correlation for tile 01 through tile 04 (the mean value of

the measurements increases as a function of the tile number.). However, even using

the data illustrated in Figure 4.3, it is clear that no one of the functional parameters

(Gloss20, DOI, Rspec, RIQ, etc.) would enable the ability to distinguish between

all ten tiles, nor facilitate the ability of a machine learning model to automate the

classification of new tiles. This is because there is too much overlap between metric

values computed on tile 04 through tile 10. For example, the range of Gloss20 values

for T04, T05, T06, and T07 are almost identical.

4.2.2.2 Measured CSI data and the power spectral density curves

The images at the top of Figure 4a show stitched 30.25 mm × 30.25 mm CSI mea-

surements, with typical 6 mm × 6 mm single CSI measurements taken from each tile

shown below (Figure 4b). The lower section, Figure 4.4c, depicts the Power Spectral

Density (PSD) for each of the ten stitched measurements (30.25 mm × 30.25 mm).
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The PSD of a surface is the average of the square of the Fourier transform for each

row (or column) of an areal measurement [38]. The graph provides insights into the

spatial content of a surface, whereby the x-axis covers the range of spatial wavelengths

possible to capture within a measurement. In Figure 4.4, a non-directional PSD was

calculated using Zygo MXTM (v8.0.0) for each 30.25 mm × 30.25 mm stitched CSI

measurement (see Figure 2c) using default settings. The non-directional PSD is cal-

culated by summing the 2D PSD data for a single frequency in all directions for each

frequency for which there is data. Readers are referred to the MXTM (v8.0.0) software

manual for complete details. In this case, the highest frequency coincides with the

sampling interval of 5.9 µm, limited by the pixel size of the CSI detector and system

magnification. The lowest frequency is bounded by the 30.25 mm dimension(s) of the

stitched measurement. However, the longest feasible wavelength discernible with any

degree of confidence is approximately 7 mm, i.e., one-quarter of the overall length of

the stitched measurement. This is slightly larger than the nominal field-of-view of

the single 6 × 6 mm CSI measurements (see Figure 4.2c). Different surface features

(micro-scale surface roughness affecting reflectance or longer-scale surface undula-

tions referred to as orange peel) occupy different length scales on the surface; both

influence the classification of the ten different tiles. However, exactly which surface

features and length scales correlate with the visual ranking of the tiles is unknown.

Therefore, the surface is split into five different spatial bands for further analysis. The

bands (cut-off-frequencies) chosen are those commonly used to access paint finish in

the automotive industry [39-41]: WA (0.1 mm → 0.3 mm), WB (0.3 mm → 1 mm),

WC (1 mm → 3 mm), WD (3 mm → 10 mm), and WE (10 mm → 30 mm). The

additional band WR (0.018 mm → 0.1 mm) is included to account for the shortest

spatial content on the surface, i.e., between three times the sampling interval and the

lowest 0.1 mm cutoff of the WA band. The additional P bands indicated the unpro-

cessed surface data of either the larger stitched file PStitched or a single measurement
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from the stitch, Psingle. Integrating the PSD curve(s) shown in Figure 4.4 across the

entire range of spatial frequencies would result in the total power of the primary sur-

face(s) comparable to the squared root-mean-square roughness (Sq) of the stitched

measurement(s). Band-limited calculations of Sq can be obtained using the stated

cut-offs of a given band as the bounds for integration. The WD band shows a more

"ideal" (strictly negative) correlation between amplitude parameters and tile number

(relative to other bands); T01 has the highest band-limited Sq value (0.37 µm), and

Sq generally decreases with every other subsequent tile number. However, the Sq

value for T10 (0.124 µm) is approximately equal to that for T09 (0.123 µm), the Sq

value of T04 (0.276 µm) is greater than T03 (0.261 µm), similar for T06 (0.243 µm)

and T05 (0.230 µm). WD does not provide the required amount of separation that is

needed for reliable classification. Using cut-offs for the WA or WR band would result

in the Sq of T03 greater than T02. Bands WB and WC would rank T09 and T10

above T04, T05, and T06. Band WE does not rank the sample correctly, either. For

subsequent analysis, only WA, WB, and WC bands are used on the 360 individual

smaller measurements (6.05 mm × 6.05 mm). The additional band WR that captures

shorter wavelengths (0.1 mm → 0.018 mm) and a P band (the primary surface) will

also be used. Limiting the evaluation to these bandwidths eliminates the need to

obtain stitched measurements to accommodate the field of view (FOV) required for

bands WE, WD, which in turn reduces overhead in data storage (24 MB vs. 262 MB),

measurement time ( 4 s vs. 10 min), and subsequent processing time ( 1 s vs. 10 s).
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Figure 4.4: (a) Examples of stitched 30.25 mm × 30.25 mm CSI measurements. (b)
Examples of single 6.05 mm × 6.05 mm CSI measurements. (c) Power spectrum
density curves of stitched 30.25 × 30.25 mm CSI measurements of PCI tiles 01-10
with spatial bands WE, WD, WC , WB, WA, and WR overlaid.

4.2.3 Dataset generation

Table 4.1 summarizes the acquisition details, measurements, and parameters used

in the subsequent analysis. The field of view (FOV) for Rhopoint-IQ measurements

varies depending on the calculated metric. For the 85◦ gloss metric, it corresponds to

4.4 mm × 44 mm; for the 60◦ gloss, a 6 mm × 12 mm area is required; and for the

20◦ gloss, DOI, RIQ, and Rspec 6 mm × 6.4 mm definition areas are needed. The

gloss dataset consists of only these eight parameters provided by the Rhopoint-IQ.

Twenty-one ISO 25178-2 parameters were computed for each CSI measurement after

the pre-processing operations listed below in Table 4.2 were applied. The specified

filtering operations and subsequent parameter calculations were performed using Zygo
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Table 4.1: Instrument specifications and datasets collected for analysis.

MXTM (v8.0.0) software [42]. Each unique dataset, P, WC , WB, WA, and WR, consists

of 360 individual measurement sites (6.05 mm × 6.05 mm), 36 per sample, and 22

ISO parameters calculated for each of the 360 areal maps. The tabulated results

were exported in .csv format for subsequent analysis. For brevity, only the shorthand

abbreviations of the ISO 25178-2 areal parameters are included in Table 4.1; readers

are referred to the standard itself [32] or to references [19,43] for detailed verbal

descriptions and numerical definitions of each parameter.

Table 4.2 includes the processing information for each dataset, specifying the low-

pass filter, bandpass filter, form removal, spike removal, and edge clipping applied

to data prior to computing ISO 25178-2 parameters. The cut-off wavelength of the

initial lowpass Gaussian spline filter used in each case is set to three times the sam-

pling interval to remove high-frequency noise from the data. Note that the sampling

interval remains constant, irrespective of the filtering applied to the data. A few false

height readings were observed in the measurements, likely caused by dust particles

or contamination on the surface. Although these will have little effect on the values
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Table 4.2: Detailed information on datasets and filtering operations: low-pass, band-
pass, form re-moval, spike removal, and edge clipping.

of texture parameters such as the average roughness (Sa) or root mean square gra-

dient (Sdq), as the million other pixel values will average them out, a single outlier

in the measurement can significantly affect the extreme value parameters such as the

maximum peak height (Sp), maximum pit height (Sv), and maximum height (Sz);

therefore, spike clipping is used to ensure these parameters characterize the actual

topography and not single-pixel measurement artifacts. The spike filter is set at 6Ï;

the maximum number of data points removed from any measurement was less than

0.3% and visually has no impact on the topography image or values of other ISO

parameters. Edge cropping was employed to remove filtering artifacts. Examples of

processed height maps after bandpass filtering are shown in Figure 4.5.
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Figure 4.5: Examples of CSI measurements after pre-processing operations used to
create datasets P, WC , WB, WA, and WR. Color ranges have been optimized for each
image to improve viewing quality. Red and blue colors correspond to areas of higher
or lower elevation, respectfully.

Optimized color representation for each height map shown in Figure 4.5 makes

it much easier to see differences in the spatial aspects of the topography than if a

fixed color bar (height scale) was used for the image or any row/column; as such,

the colors depict different height ranges for each image. The primary surface (P)

of tile 01 exhibits an isotropic topography (no apparent surface structure or direc-
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tionality). However, traveling down the same column from T01 to T10, notice that

as the degree of isotropic orange peel (longer undulations) decreases, there is an

increase in anisotropic vertical striations. Still, identifying unique surface character-

istics that distinguish between tiles 05, 07, and 10 is extremely difficult, regardless of

the applied filtering. Figure 4.6 depicts the areal roughness (Sa) and the root-mean-

square-gradient (Sdq) of the tile surfaces at the different spatial bands. Notice the

lack of a strictly negative correlation between parameter values and the tile number.

For the primary surface (the P dataset shown in Figure 4.5), the areal surface rough-

ness Sa of the 10 tiles ranged from 0.25 µm to 2 µm, Sq from 0.15 µm to 2.02 µm,

and Sdq ranged from 0.07◦ to 0.77◦. A fourth-order fit between Sdq and tile number

yields correlation coefficient R2 values of 0.98, 0.99, 0.96, and 0.96 for P, WC , WB,

and WA datasets, respectively. Similar R2 values were observed for Sa. Although

there is a high correlation, the fitted function will not enable explicit classification

criteria; there is insufficient separation in the metricsâ values for the higher-numbered

tiles. While not shown here, none of the other 20 ISO 25178-2 parameters considered

delivered clear distinctions and/or strictly linear trends between all ten tiles.
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Figure 4.6: (a) Sdq (P, WC , WB) vs. tile number. (b) Sdq (WA, WR) vs. tile number.
(c) Sa (P, WC , WB) vs. tile number. (d) Sa (WA, WR) vs. tile number.

4.3 Parameter selection and classification methodology

Surface Quality and Inspection Descriptors (SQuIDTM) Instead of relying on pre-

conceived notions of parameter selection for accurately classifying the PCI tiles, an

algorithmic method outlined in [21] called SQuIDTM (Surface Quality and Inspec-

tion Descriptors) is used to down-select optimal surface parameters for classification.

SQuIDTM uses a selection method that breaks down a user-defined multi-class clas-

sification task into a series of binary classification tasks. For instance, in this case,

the multi-class task involves using areal texture or gloss descriptions from Nexview

CSI or Rhopoint-IQ to determine a measured tile designation (01, 02, 03 ... 10). The

procedure begins by decomposing the multiclass task into a finite series of binary

classification tasks (T01 vs. T02, T01 vs. T03, and so on). For each binary task,

a reference set of measurements quantified by a single areal or gloss description is
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sampled from the dataset. The difference in means between the two groups is di-

vided by the root-mean-square of the standard deviations. Taking the absolute value

of this resulting quantity yields a discriminability index referred to as d′, describing

the separation between the two groups in terms of normalized standard deviations.

The process is repeated for each parameter on each binary classification task derived

from the multi-class dataset, resulting in a d′ matrix. In this matrix, parameters

are indexed as rows, and binary classification tasks are represented as columns. The

optimal set of parameters for the multi-class task is derived by selecting the param-

eter (row index) with the maximum d′ value for each task (column index). If, for

every binary task, the corresponding selected parameter exhibits a d′ value of ap-

proximately seven or higher, a reasonably optimized decision tree classifier trained

using these selected parameters is expected to achieve near-perfect classification ac-

curacy on the multi-class dataset. Following the down-selection process, SQuIDTM

employs a decision tree as the default machine-learning model to determine a logical

mapping between the selected parameters and the target surface classes. The fitted

decision tree can intuitively communicate how the selected surface texture parameters

and associated thresholds can be employed as rules for classifying a newly measured

surface, providing an objective basis for assessing surface quality in accordance with

user-defined grades of surface quality. Readers are referred to the original paper [21]

for complete details, including examples of the selection procedure, construction of

the d′ matrix, and graphs related to the expected classification outcomes versus d′

values of the selected parameters.

4.4 Results

4.4.1 Summary of d′ matrix

Figure 4.7 represents the combined d′ matrix generated for the P, WC , WB, WA,

and WR dataset(s). Columns are indexed as tasks following the sequence T01 vs. T02,

T01 vs. T03, etc., and rows are indexed as ISO parameters for each band (see Table
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4.1 for ordering). For this discussion, reading the fine print associated with the rows

and columns on the matrix is not important; what is important is the distribution

of the gray values on the d′ matrix. The shading represents the magnitude of the

d′ values computed for each row (parameter)-column (task) combination. Ideally,

one row (metric) would have a d′ value greater than seven (black shading) across all

columns (tasks), though this is not the case for any datasets considered. Notice that

the d′ values for most ISO parameters along the first column (task T01 vs. T02)

tend to be greater than those of the last column (task T09 vs. T10). This implies

that differentiating between the topography of tiles 01 and 02 using ISO parameter

values is relatively trivial compared to 09 and 10, regardless of the pre-processing

routine applied to the data. The d′ matrix also suggests that a classification model

that uses metrics computed for the P and WC bands will perform worse than a model

that uses ISO metrics computed for the WB and WA bands. This is because there

is an increased coverage of higher d′ values across the entire task space in the WA

and WB bands. A combination of metrics with dark values (d′ ≥ 7) across all tasks

implies the data are likely separable, and near-perfect classification performance is

expected. The expanse of white cells (d′ < 2) in the P and WC bands implies less-

than-ideal performance (≈ 80% classification accuracy or less); see the experimental

curve in [21] for the empirical relationship between d′ and classification accuracy. The

relevant regions are highlighted by the dashed red and green boxes in Figure 4.7.
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Figure 4.7: Example of the d′ matrix generated for combined datasets. P, WC , WB,
WA, and WR comprise 110 metrics (rows) and 45 tasks (columns).
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4.4.2 Identified parameters and classification performance

Table 4.3 indicates the top metrics identified by SQuIDTM for each analysis set and

the classification performance of a fitted decision tree that used the selected metrics

to predict the tile number (i.e., surface grade). The average and standard deviation of

the test accuracy based on stratified five-fold shuffle split cross-validation [44] using

train/test splits of 0.1/0.9, 0.5/0.5, and 0.9/0.1 for each dataset is shown in the

rightmost columns. The evaluation provides a more comprehensive estimate of the

expected classification performance compared to using a single dataset for training

and testing. The first row of Table 4.3 indicates that gloss metrics fail to provide

enough information to discern between the ten standard surface tiles. This comes as

no surprise given the overlap of the gloss data illustrated in Figure 4.3; no reduction

in the number of selected features is observed, and average accuracies as low as 58%

are recorded for the 0.1/0.9 split, 74% for the 0.5/0.5 split, and 75% for the 0.9/0.1

split. For the primary dataset P, a total of five features are selected by SQuIDTM .

Still, they fail to perform any better than the gloss metrics, averaging around 65%

classification accuracy or less across all train/test splits. This is unsurprising given

that only 2% of metrics had values of d′ > 3 for tasks T04 vs. T > 04 (see the

dashed red box in the top right corner of Figure 4.7). Coincidentally, this is where

most incorrect classifications occurred. Classification accuracy marginally improves

between 5% and 8% depending on the train/test split for the WC dataset, where

seven features are selected. Again, better performance is expected; the d′ values in

Figure 4.7 for this dataset tend to be greater than those of the ISO metrics of the

P dataset. For the latter, only 31% of all entries had d′ values greater than three,

with the former having 50%. For tasks T04 vs. T05 to T10, 29% of entries were

greater than three. Most incorrect classifications occur between T08, T09, and T10.

Seven metrics (with higher d′ values) were also selected for the WB dataset; the

classification performance ranges between 78% to 82%, approximately a 10% increase
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over the WC dataset. However, again, most incorrect classifications occur for tasks

T08 vs. T09 and T10, where none of the d′ values of the selected metrics were greater

than four. A drastic increase in performance is observed for the WA and WR datasets.

The former achieved an average accuracy of 97% using ten selected features, and the

latter reached 98% based on eleven selected parameters for the 0.5/0.5 split. Both

consist of selected metrics with d′ > 4 for tasks T08 vs. T09 and T10. Less than five

incorrect classifications in total were recorded in both cases. For the combined dataset

(i.e., P, WC , WB, WA), which includes 88 ISO features, near-perfect classification is

achieved for the 0.5/0.5 and 0.9/0.1 splits using only five multi-scale metrics selected

from the WB and WA datasets. Less than five incorrect predictions were made, each

being off by a single tile designation and occurring only on tasks T07 vs. T08 to T10.

The fact no ISO metrics were selected from the P and WC datasets indicates there

was always an ISO metric computed on either the WB or WA dataset that possessed

a greater d′ value for a given classification task (column(s) on the d′ matrix).
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Table 4.3: Classification accuracy of decision tree based on selected features for seven
different datasets.

4.4.3 Interpretation of classification criteria

Figure 4.8 depicts the decision tree generated using down-selected parameters, in-

cluding the auto-correlation length Sal and root-mean-square gradient Sdq computed

for the WB and WA bands, in addition to the texture aspect ratio Str computed on

the WA band. Figure 9 plots the values of the ISO metrics selected for use in the

decision tree for all ten tiles. Examination of the three graphs illustrates that a com-

bination of metrics can exist to differentiate the tiles from each other but that no one

metric could differentiate between all ten; the decision tree is required to achieve the

latter. Verification of the decision tree logic used for classifying the data is depicted in
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Figure 4.9. Following the logic of the tree (Figure 8), the first split for differentiating

tiles 01-06 from 07-10 is by comparing autocorrelation length Sal on the WB surface

to a threshold of 133 µm (the root node top of the tree). Based on inspection of the

data in Figure 9a, it is obvious that if the SalWB value of the surface in question is

less than or equal to this value, a classification of grades 07-10 is most appropriate.

The next split to the left of the root node (decision node a) compares the Sal of the

surface to a value of 64.4 µm but, in this case, on the WA surface, differentiating a

tile 07 or 08 from a 09 or 10 designation. Finally, a minor difference in the Sdq of the

surface for spatial band WA is used to assign a final designation of 07, 08, 09, or 10

(see decision nodes b and c). Following the logic to the right of the root node (decision

node d), the Sdq of the WA band is used to split the group of designations (04, 05,

06) from (01, 02, 03). In the case of the latter group, the presence of what appears

to be rolling marks on the surface, exhibiting a dominant lay pattern, becomes more

noticeable as the degree of orange peel is reduced, resulting in a departure from an

isotropic texture (see Figure 4.5). This trend in increasing anisotropy is captured by

the texture aspect ratio (Str) at the WA band shown at the bottom of Figure 4.9c,

which can be used to resolve the individual differences. For the former group (04, 05,

06), it is important to note that the Sdq for the WB band is less for tile 05 than for

04 and 06. This initial split (decision node e), followed by comparing the Sdq value

for the WB band, enables individual designations (see Figure 4.9b and decision node

g in Figure 4.8).
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Figure 4.8: Decision tree generated from SQuIDTM based on five parameters selected
from combined P + WC + WB + WA datasets. For visualization, parameter values
are truncated to two decimal places. Callouts (a-h) represent the logic used to classify
a surface as one of the ten tile grades.
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Figure 4.9: Decision tree verification by graphical assessment of the parameters se-
lected by SQuIDTM for classification. (a) Measured auto-correlation length Sal and
(b) rms-slope Sdq values for WA and WB bands plotted against tile designation T01-
T10. (c) Texture aspect ratio Str values computed for the WA band of the ten different
tiles.
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This result highlights a unique approach for characterizing topography with ISO

25178-2 parameters, which does not limit the evaluation to a single pre-processing

routine. Using a script configured to run the CSI and automate the data process-

ing/evaluation steps would enable the classification of new surfaces in less than 10

s, bypassing visual inspection. The parameter values in Figure 9 and decision tree

logic in Figure 4.8 are subject to change for different measurement conditions and

data processing. For example, the calculated values of hybrid parameters Sdq and

the interfacial area ratio Sdr depend on the sampling interval. This can be modi-

fied by adjusting the system magnification of the CSI or increased digitally after the

measurement is acquired. The use of different filter types, instrument settings, and

environmental disturbances such as temperature and vibrations can also affect pa-

rameter values. Further study is required to evaluate the impact of these conditions

on classification performance in addition to different modes of acquisition, such as

confocal and profilometry.

4.5 Summary and conclusions

This work demonstrates the ability of a multi-scale methodology called SQuIDTM

to down-select both ISO 25178-2 and gloss metrics to quantify ten different grades

of powder-coated surfaces objectively. A set of only five multi-scale quantitative de-

scriptions of the surface coupled with interpretable decision logic was provided to

classify ten PCI visual smoothness standard tiles with near-perfect classification ac-

curacy. This performance was achieved despite a limited sample size and nonlinear

correlation between the qualitative ranking of the tiles (grades 01-10) and the val-

ues of parameters obtained from CSI measurements of each sample. Moreover, in

cases where incorrect classification occurred, the predictions were only off by a single

sample grade. Central to achieving this is leveraging the fact that a tileâs texture

comprises features of varying spatial wavelength and amplitude; this is apparent from

the varied PSD trends for each tile illustrated in Figure 4c and the bandwidth-filtered
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measurements depicted in Figures 4.5 and 4.6. While features of different wavelength

variations may not always be re-solvable by a humanâs eye (if the amplitude is too

low or the wavelength is too short), they all affect a lightâs interaction with a surface

and, hence, how the same is perceived. Filtering at selected bandwidths enables their

isolation, and subsequent quantification provides the additional metrics necessary for

successful correct classification. For this work, filtering bandwidths used in the au-

tomotive industry for powder-coating and painting processes were utilized. No effort

was expended on isolating optimal band-widths; however, pursuing this avenue could

yield even better outcomes. Incorporating additional segmentation methods and fea-

ture parameters defined within the ISO 25178-2 standard may also yield even more

robust and accurate classification. Of equal importance is to note that the presented

classification criteria(s) provide the explicit logic to make predictions; it is not a black

box function. It is possible to use this decision rule diagram in an automated way

with a machine vision or measurement system and/or as a reference to support visual

inspection effects when subjectivity arises. Overall, this approach demonstrates great

potential in removing the need for visual inspection. In conclusion, the SQuIDTM

framework is shown to be a practical, systematic, interpretable, multi-scale approach

for selecting standardized statistical parameters to transform subjective grades of

surface quality into objective descriptions of surface topography.
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CHAPTER 5: (Paper 3) CENTER-LINE-TIME FUNCTIONS AND CRITICAL

CONSTANTS FOR PREDICTING LASER POWDER BED FUSION MELT

POOL DISTORTION USING ONE SURFACE TOPOGRAPHY MEASUREMENT

Overview of paper 3

The work in this chapter was presented at the 2023 joint special interest group

meeting between EUSPEN and ASPE on advancing precision in additive manufac-

turing and is published in the proceedings [8].

This chapter includes the paper titled "Center-line-time functions and critical con-

stants for predicting laser powder bed fusion melt pool distortion using one surface

topography measurement," which introduces a novel approach to both measure and

predict overmelting during laser powder bed fusion (LPBF). Using a center-line-time

function (CLTF) to describe the time-dependent position(s) of the laser during part

fabrication, the study evaluates the length of distorted solidified melt pools in eight

rapid turnarounds (RTR) samples manufactured from nickel super alloy 625 using a

commercial LPBF machine with vendor-recommended build parameters. To isolate

the topography of interest, the programmed layer height for the build is used to in-

form the placement of a reference plane that enables the surface to be classified into

distorted and non-distorted regions. Next, the size of the distorted region is related

to the scanning strategy to determine a critical time/cooling constant. The constant

describes the track-to-track processing conditions that result in the observed atypical

surface formation during part fabrication. Using the analytical equations derived to

describe the time-dependent locations of the laser relative to the parts center axis,

the critical time constant (CTC) is used to predict the initiation, continuation, and

termination locations of melt pool distortion in the different sample geometries. This
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research represents a significant step towards a quantitative procedure for character-

izing LPBF surfaces by linking process conditions to topography measurements. The

results offer valuable insights into understanding and addressing challenges in laser

powder bed fusion processes.

Abstract

This work introduces a center-line-time function (CLTF) to characterize common

scan strategies used in laser powder bed fusion (LPBF) that result in melt pool distor-

tion. Eight rapid turnaround (RTR) samples, manufactured from nickel super alloy

625 using a commercial laser powder bed fusion machine with vendor-recommended

build parameters, were utilized. The CLTF, in conjunction with a definition of melt

pool distortion and a corresponding measurement procedure, was employed to evalu-

ate the length of distorted melt pool regions in these samples. A critical time constant

(CTC) was derived from the CLTF and measurement procedure, enabling the pre-

diction of initiation, continuation, and termination locations of melt pool distortion

for each sample geometry. Comparing the predicted and measured distorted melt

pool lengths, an average error of 0.19 mm ± 0.77 mm was observed, with measured

lengths ranging from 1.72 mm to 14.24 mm. The calculated CTC and CLTF values

may vary depending on the material and machine parameters used for manufacturing

the RTR samples. However, the methodology for determining the CTC and CLTF

remains consistent, irrespective of material and machine parameters. These results

demonstrate a step towards a quantitative procedure capable of characterizing the

occurrence and location of melt pool distortion in both past and future builds. This

approach provides practical insights that can aid in understanding and addressing

melt pool distortion in laser powder bed fusion processes.
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5.1 Introduction

Commercial laser powder bed fusion (LPBF) machines often employ fixed pro-

cess parameters for specific materials, including laser power, scan velocity, and hatch

spacing. [1] The vendor-recommended settings offer a general process window for the

bulk regions of a build. However, previous studies by [2] have demonstrated that these

fixed parameters lead to melt pool distortion in rapid turnaround regions (RTRs),

typically found near stripe boundaries or narrow geometric features of the part. This

melt pool distortion, resembling swelling [2-5], has been further investigated in recent

work [6], which focused on novel part geometries to study the scan strategies and

build conditions causing distorted melt pools. The resulting superelevation, where

solidified regions exceed the powder layer thickness, poses a risk of impact with the

recoater blade during subsequent layer spreading. [7,8] Moreover, variations in the

depth of the melt pool, as observed in [6], can introduce irregularities in the subsur-

face microstructure, impacting both machine health and part quality. Despite the

prevalence of distorted melt pool regions in LPBF manufacturing, there remains a

need for a quantitative ex-situ procedure to consistently identify and measure these

features. By combining prior knowledge of scan strategies and build parameters with

reproducible measurements of distorted melt pool regions, it becomes feasible to en-

hance and evaluate the effectiveness of optimization efforts targeted at eliminating

these regions

5.2 Methology

This paper builds upon existing conceptual models [2,6] of distorted melt pool

formation in rapid turnaround (RTR) samples. Using coherent scanning interferom-

etry (CSI), we manufactured and measured eight samples with different geometries.

To characterize the distorted melt pool regions and laser trajectories used in sample

production, we developed a center-line-time function (CLTF) and a corresponding
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measurement procedure. From these, we derived a critical time constant (CTC) to

predict the length of distorted melt pool regions for each sample geometry. By com-

paring the predicted quantities with manual measurements, we assessed the accuracy

of the predictions when utilizing a CTC value based on a distorted melt pool length

measurement from a single or multiple RTR samples.

5.2.1 Rapid turn-around artifacts vs samples

RTR artifacts, such as the one shown in figure 5.1, consist of two single layer RTR

samples connected by a rectangular waist built on top of a rectangular pedestal. The

surface topography of an RTR artifact and a profile section along the center x-axis of

the part are shown in figure 5.1(a) and figure 5.1(b), respectively. Elevated regions

in the build direction caused by distorted melt pools on either end of the sample are

shaded in red.

Figure 5.1: (a) Stitched CSI measurement of manufactured RTR artifact using Zygo
Zegage Pro HR with a 5.5× objective showing elevated topography and melt pool
distortion at the narrow ends of RTR samples. (b) Profile along the center axis of
the artifact showing only isolated regions of elevated topography due to severe melt
pool distortion

The length of a single RTR sample, denoted LRTR, is controlled by a prescribed

included angle, expressed as θRTR. Equation 5.1 provides a formal expression for the

RTR sample length LRTR as a function of the prescribed included angle θRTR, w, the

width of the narrow region, and W , the width of the waist region.
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LRTR(θRTR) =
.5 sin

(
90◦−θRTR

2

)
W

cos
(
90◦−θRTR

2

) −

[
.5w

tan
(
θRTR

2

)]︸ ︷︷ ︸
∆x

(5.1)

The ∆x term in equation 5.1 accounts for the RTR sample trapezoidal geometry.

Dimensions of the pedestal upon which the RTR samples and waist region are built

are presented in [5].

5.2.2 Rapid turn-around artifacts and acquisition details

A total of eight RTR samples were considered within included angles of 5◦, 10◦,

15◦, 20◦, 25◦, 30◦, and 35◦. W was held constant at 5 mm and w held at 1 mm. Each

sample is manufactured from nickel super alloy 625 (IN625) using an EOS M290 LPBF

machine with vendor-recommended build parameters: laser power of 285 W, scan

velocity of 960 mm/s, hatching spacing of 110 µm, and programmed layer thickness

of 40 µm. Contouring and stripe boundaries were turned on. The scan strategy

is designed such that during the manufacturing of the RTR sample the laser step-

over direction is parallel to the x-axis of the RTR sample. The surface topography

measurements of the entire sample area were obtained by stitching together multiple

individual measurements using Zygo Nexview CSI with a 10× objective and 0.5×

tube lens. Data processing was performed in the instrument’s native software, using

Mx ver. 8.0.0.26, with a 20% stitching overlap. Distorted melt pool regions were

isolated, and their lengths were measured following the procedure described in the

next section, utilizing MountainsMapTM Version 10.0 software.
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5.2.3 Measurement procedure for distorted melt-pool lengths

The following outlines a definition of a distorted melt pool and a procedure for

measuring the length of a distorted melt pool in RTR samples, as depicted in figure

5.2. The purpose of this definition and procedure is to minimize variability in the

measurement of the distorted melt pool length by eliminating operator subjectivity

in determining the start and end points of the distorted melt pool with respect to the

narrow end of an RTR sample. A distorted melt pool is defined as a continuous region

of solidified material that exceeds a reference surface. This reference surface is parallel

to a best-fit plane through the pedestal region and is offset by the programmed layer

thickness (H = 40 µm) along the z-axis. The distorted melt pool length is determined

as the maximum perpendicular distance between the narrow end (i.e., tip) of the RTR

sample and the end of the distorted melt pool region. By implementing this definition

and measurement procedure, the assessment of the distorted melt pool length in RTR

samples can be consistently and objectively performed, reducing variability in the

measurement process.

Figure 5.2: Schematic defining the distorted melt-pool length ( ˆLRTR). The tip of
the RTR geometry is datum B. The end of the distorted melt pool region is the
intersection between the surface topography (dashed region) and reference surface
offset from a least-squares plane (LSP) through pedestal region (datum A) by the
programmed layer thickness H.
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5.2.4 Derivation of a center-line-time function and critical constants for

predicting distorted melt pool regions

By leveraging the mirror symmetry about the center x-axis of the RTR artifacts,

exemplified in figure 5.1, a CLTF that characterizes the time needed for the laser

to cross the user- defined center-line-axis twice, at any sequential scan increment

n, is derived using prior knowledge of the designed laser trajectories, scan velocity

(vs), hatch spacing (∆h), and nominal variables controlling the geometry of the RTR

artifact. As shown in figure 5.3, this is achieved by summing the durations of times ta,

tb, tc that describe the three sequential paths the laser must traverse before arriving

back at the same nominal position along the center y-axis of the artifact but displaced

along the x-axis by a fixed distance, ∆h. If the laser begins manufacturing the

RTR artifact starting at the left end (i.e., diverging case) it follows that ta < tc for

each track n ∈ [0, LRTR1

∆h
], and for the waist region it follows ta = tc on the interval

n ∈ [LRTR1

∆h
, LRTR1

∆h
+ W

∆h
] until reaching the wide end of the RTR sample on the right

(converging case) where ta > tc for each sequential track, n ∈ [LRTR1

∆h
+ W

∆h
, LRTR1

∆h
+

W
∆h

+ LRTR2

∆h
]. The skywriting time (tb) where the laser is turned off may vary according

to the part geometry and build parameters. Relative to ta and tc, small variation in tb

is considered negligible and the average time is assumed constant (i.e., ∆h · v−1
s ∈ n).

However, further study will be required to measure and quantify the full range and

impact of skywriting time variations.
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Figure 5.3: Conceptual illustration of scan strategy used to manufacture RTR samples
and examples of diverging (left) and converging (right) cases.

The CLTF for any RTR sample geometry in the case of a diverging scan strategy,

depicted in figure 5.3, is described by equation 5.2.

t(n) =
tan(θRTR)

(
w

2 tan(θRTR/2) +∆h(n)
)

2vs︸ ︷︷ ︸
ta

+
∆h

vs︸︷︷︸
tb

+
tan(θRTR)

(
w

2 tan(θRTR/2) +∆h(n+ 1)
)

2vs︸ ︷︷ ︸
tc

(5.2)

In this equation, t(n) represents the CLTF for the sample and n is a user-defined

scan line number that ranges from 0 to LRTR

∆h
. The scan line number acts as an index to

track the evolving laser path trajectories along the center axis of the sample. All the

variables for calculating the CLTF (e.g., included angle θRTR, and width W , defining

the RTR sample geometry and build parameters including the scan velocity v, and

hatch spacing ∆h are known or assigned prior to the build. Intuitively, if the duration

of time for the laser to cross the center axis of the part twice is less than the time

for the melt pool to completely solidify from the previous scan line (i.e., melt pool n

shown in figure 5.3) some amount of melt pool distortion is expected. However, this

may be an underestimate of the minimum duration of time to completely avoid melt

pool distortion, as the previous statement neglects effects from residual heat in fully
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solidified material. Still, a conservative assumption regarding the LPBF build process

is if any incremental scan strategy trajectory evaluated at an increment n results in

a CLTF solution that is less than the time for a nominal melt pool (i.e., quasi-steady

state melt pool size in regions free from rapid turnarounds and residual heating effects)

to solidify, then some melt pool distortion between adjacent tracks is expected. This

is also consistent with the underling mechanisms hypothesized to create the "double

wide" weld tracks along stripe boundaries and RTR regions of the build shown in

[2]. Calculating a geometry dependent critical constant, ncrit, (i.e., the number of

scan lines that can be divided into measured length of the RTR sample’s distorted

melt pool length, LMP ) and substituting the value into equation 5.2, a critical time

constant (CTC) value, tcrit = t(n) , where n= LMP

∆h
= ncrit, is acquired and assumed to

be independent of the RTR sample geometry. Instead, the calculated value of tcrit is

a result that characterizes the thermal conditions created by the alloy, machine, and

build parameters described in section 5.2.2. This is because tcrit serves as a measurand

that encompasses all these factors. By equating the right-hand side of equation 5.2 to

the value of tcrit and rearranging the equation to solve for n, we obtain an expression

for the track number at which melt pool distortion terminates. Multiplying this

non-dimensional expression by the hatch spacing (∆h) yields a closed-form solution

to calculate the length of the distorted melt pool in millimeters. This calculation

is applicable to samples with various geometries but manufactured with the same

build parameters as the RTR sample used to determine tcrit. The predicted length of

the distorted melt pool (LMP ) for any RTR sample geometry, denoted as (L̂MP ), is

determined using equation 5.3, which leverages the critical time constant (CTC) value.

L̂MP represents the distance between the narrow end of an RTR sample (datum B)

and the point where the distorted melt pool originates or ends, depending on whether

it is converging or diverging. Equation 5.3 is as follows:
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L̂MP = (
−0.5∆h− ∆h

tan(θRTR)
−∆x+ tcritvs

tan(θRTR)

∆h
)∆h (5.3)

In this equation, ∆h, vs, and tcrit are constants, while θRTR and ∆x from equation

5.1 can be adjusted to predict the length of the distorted melt pool for different RTR

sample geometries.

5.3 Results

5.3.1 Tabulated measurements & critical constants

Table 5.1 lists the distorted melt pool length measurements (LMP ) for the eight

RTR samples using the definition and procedure described in section 2.3. Measure-

ments related to converging cases (i.e., 20◦, 25◦, 30◦, 35◦) are shown in white and

diverging cases are highlighted as grey rows (i.e., 5◦, 10◦, 15◦, 25◦). The critical con-

stants (ncrit) were calculated by dividing the measured distorted melt pool lengths

(LMP ) by the programmed hatch spacing (∆h) of 110 µm. The individual CTC, tcrit,

values were obtained by evaluating equation 5.2 according to the calculated ncrit and

prescribed θRTR for each sample.

From table 5.1, the longest reported distorted melt pool length of 14.24 mm occurs

for the 5◦ included angle and the shortest recorded length of 1.72 mm occurs for the

35◦ sample (i.e., the widest angle). The distorted melt-pool measurements exhibit an

inverse relationship to the included angle of the RTR sample. Comparing the relative

ranges of tcrit and ncrit the variation of the latter is large and dependent on the

sample geometry and build parameters, whereas the standard deviation of the former

is small and independent of the sample geometry, supporting the assumption that the

CTC value, tcrit, describes a geometry- agnostic estimate of the minimum duration

of time, 2.68 ms ± 0.27 ms in this case, that needs to elapse between sequentially

formed melt pools to avoid melt pool distortion when manufacturing IN625 using the

machine and build parameters described in section 5.2.2. A disparity of 0.59 mm
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Table 5.1: Tabulate measurements of distorted melt pool lengths for different RTR
sample geometries

is observed between measurements of the diverging and converging cases for the 25◦

sample geometry that could be related to changes in residual heat effects caused by

the laser step-over direction. However, whether this difference exceeds the dispersion

of values that can reasonably be attributed to the realization of the measurand (i.e.,

distorted melt pool length) is yet to be determined. Ongoing work is being conducted

to provide a provisional assessment of the Type A and Type B uncertainties associated

with the measurement results.

5.3.2 Predictions vs measurements for other RTR geometries

The dashed blue line in figure 5.4 provides a plot of RTR sample length according

to a prescribed included angle given by equation 5.1. Blue text/diamonds correspond

to the eight manufactured samples. For example, the manufactured sample with an

included angle, θRTR, of 5◦ has a length, RTR, of 45.81 mm. The initiation/end of

a distorted melt pool region relative to the narrow end of the sample is indicated

with white triangles, △ and , representing converging and diverging cases, respec-

tively. The vertical distance between a triangle and blue diamond corresponds to the
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measured distorted melt pool length (LMP ) tabulated in table 5.1. Values are given

as black text. The predicted initiation/end regions, according to equation 5.3, are

shown as red crosses (×) with predicted melt pool lengths, L̂MP , given as red text.

For example, the measured distorted melt pool length (LMP ) for the 5◦ sample is

14.24 mm and the predicted length (L̂MP ) is 15.39 mm. The predicted distorted melt

pool lengths given by the dashed red line are based on the CTC value, tcrit = 2.57 ms,

obtained from a single distorted melt pool length (LMP ) measurement of 1.72 mm

corresponding to the 35◦ RTR sample. The shaded red regions describe the solution

space of predictions if any one of the tcrit values shown in table 5.1 were used as the

basis for predicting the distorted melt pool length for all other RTR geometries.

Figure 5.4: RTR sample length as a function of included angle, 1 mm tip and 5
mm waist, with a comparison between the measured versus predicted initiation/end
regions and distorted melt pool lengths relative to the tip of the fabricated RTR
samples



118

Comparing the measurements of distorted melt pool length with the predictions

(i.e., LMP - L̂MP ) for the eight RTR samples reveals an average error of 0.19 mm with

a standard deviation of 0.77 mm. This indicates symmetric errors centered around

the mean, with a standard deviation of approximately 7× the hatch spacing. The

largest discrepancy of 1.15 mm is observed for the RTR sample with a 5◦ included

angle. Utilizing the average tcrit value of 2.68 ms from table 5.1 results in an average

error of -0.22 mm with a standard deviation of 1 mm. Employing the maximum

calculated value of 3.21 ms for tcrit shifts the predicted trend line to the lower end of

the shaded region, while using the minimum value of 2.39 ms shifts the predictions

to the upper end. The former CTC value tends to overestimate the distorted melt

pool lengths compared to the latter

5.4 Summary and conclusions

A distorted melt pool length measurement of a single RTR sample was used to de-

rive a CTC value that is directly linked to the thermal conditions created by the alloy,

machine, and build parameters described in section 5.2.2. The CTC value is used in

conjunction with a CLTF to predict the locations melt pool distortion is expected to

initiate, continue, or terminate over a large range of RTR sample geometries. An av-

erage error of 0.19 mm ± 0.77 mm was recorded between predicted and measured melt

pool lengths, the latter ranging from 1.72 mm to 14.24 mm. The outlined method-

ology for deriving CLTFs, measuring distorted melt pool lengths, and obtaining a

CTC value provides an intuitive approach to characterize why and where melt pool

distortion may occur in future or past builds. For example, if manufacturing IN625

using an EOS M290 with vendor recommended settings, the duration of time for the

laser to turn around (i.e., skywriting time) at each sequential scan track is consis-

tently less than the range of CTC values obtained using the outlined approach. This

implies that the distorted melt pools observed in [2] at stripe boundaries and RTR

regions of the build are/can be expected. Increasing the skywriting time to be greater
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than the calculated CTC value is hypothesized to eliminate melt pool distortion in

these areas. The calculated value for this CTC and CLTF may vary depending on

the material and machine parameters used to manufacture the RTR samples, but the

method of determining the CTC and CLTF is the same regardless of material and

machine parameters. The results of this work demonstrates a practical step toward

a quantitative procedure that is independent of the specific build, alloy, and machine

used. Researchers and manufacturers can utilize this procedure to derive a critical

time constant (CTC) value for the characterization, evaluation, and prediction of

build parameters and scan strategies that either produce or avoid distorted melt pool

regions for different materials. Continuing efforts involve further development, eval-

uation, and utilization of this CLTF and CTC. Future investigations will explore the

links between the calculated CTC and CLTF values with in-situ thermal conditions,

as well as melt pool morphology. Additionally, the research will encompass ex-situ

measurements of surface topography and subsurface microstructures in both distorted

melt pool and nominal regions of RTR samples.
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CHAPTER 6: (Paper 4) A CRITICAL COOLING CONSTANT TO CLARIFY

TRACK-TO-TRACK OVERHEATING IN LPBF AM OF IN625

Overview of paper 4

The work in this chapter will be submitted to the 2024 joint special interest group

meeting between EUSPEN and ASPE on advancing precision in additive manufactur-

ing in Golden, USA. This chapter generalizes the analytical centerline time functions

described in Chapter 5 to the entire scan strategy, introducing a new point-wise char-

acterization of LPBF scan strategies referred to as "cross-over time." In this case,

cross-over time maps of the scanning strategies used to fabricate a new set of parts

are used in combination with the derived critical cooling constant(s) determined in

Chapter 5 to isolation all the areas within a layer that are expected to exhibit atypical

melt-pool-surface formation, as opposed to only one region of the part. This chap-

ter also clearly demonstrates how the methodology can be leveraged for feed-forward

control and the determination of tuning parameters employed by commercial LPBF

software to mitigate thermally induced flaw formation. The contributions of this work

include the linking of topography observations directly to process outcomes that can

be calculated directly from scan strategy data. Furthermore, the developed methodol-

ogy does not depend on arbitrary constants or coefficients making it interpertable and

easy to understand. Overall, a single surface measurement enabled useful predictions

of thermal flaws expected to occur in new geometries.

Abstract

This study introduces a new point-wise parameterization of laser powder bed fusion

(LPBF) scan strategies. Preliminary results suggest the approach could be a scalable
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approach to predict areas within layers of a part known to elicit heterogeneity in

micro-structure and surface topography due to overheating.

6.1 Introduction

In laser powder bed fusion (LPBF) processes, the back-and-forth raster scanning

method produces varying melt pool sizes along the laser’s travel path. Specifically,

turn-around areas near the ends of tracks encounter localized increases in residual

heat, causing the merging of melt pools from adjacent tracks [1, 2]. To mitigate these

well-known overheating effects and avoid entering a keyhole mode at the ends of tracks

due to slow down of the laser, the practice of "skywriting" has emerged, where the

laser is intentionally turned off upon reaching the edges of parts to maintain a con-

sistent laser power input and scanning speed throughout the trajectory. This simple

alteration to LPBF scan strategies has proven effective in reducing near-edge porosity

and has become widely adopted in industry [3,4,5]. However, even with the incorpora-

tion of skywriting, systemic residual heat effects, and melt pool inconsistencies within

a layer or at track ends persist. For example, scanning progressions within narrow

regions of a layer can lead to continuous merging of melt pools over 50+ tracks and

increase the solidified surface height by more than 125% [2]. Newer software features

developed by EOS aim to further mitigate this type of interlayer overheating created

by short-hatching vectors. This includes the power reduction factor (PRF), which is

a percentage set by the user that linearly reduces power depending on the length of

a scan vector. The other, known as time homogenization, deals with residual heat-

ing effects by introducing waiting times between vectors (i.e., additional skywriting

time). Works by [6] provides an investigation of these parameters and their effect on

part/build quality relative to default scanning parameters for maraging steel. Aside

from different implementations of the heat equation and machine learning techniques

notable nonproprietary methods developed to combat residual heating effects include

the geometric conductance factor (GCF), which approximates the effect of geometry-
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based heat accumulation due to small, solidified volumes enclosed by powder [7]. The

second is the residual heat factor (RHF) introduced by [8] that characterizes dynamic

reheating effects by parameterizing the relationship between each programmed point

and its neighbors within the scan strategy using a time and distance threshold. Both

methods normalize the GCF or RHF values to modulate laser power and reduce melt

pool variability within a layer. However, there’s still no clear quantitative measure

for determining optimal settings used by all these feed forward control methods. This

poses a challenge for users seeking to quickly optimize their processes. Prior work

in [9] demonstrated a methodology to quantitively measure and analytically predict

the formation of enlarged melt pools in a series of single layer trapezoidal geometries

built on top of a 10.76 mm tall pedestal (see Figure 1 in [2]). Localization of the over-

heated regions in these samples was achieved by determining a critical time constant

(tcrit) from a single process informed surface topography measurement. Building on

this work, the next sections describe how the methodology and derived tcrit value

translate to completely different sample geometries produced with the same machine,

alloy, and process parameters.

6.2 Methodology

6.2.1 Cross over time mapping

Cross over time (COT) is a pointwise parameterization of the scan strategy that

refers to the amount of time that elapses between the formation of adjacent (track to

track) melt pools. For example, in Figure 6.1, as a typical "serpentine" scan strategy

is executed, consider the duration of time ∆ti that elapses before the laser arrives

back in the same position in x but offset by the programmed hatch spacing in the

y-direction. This is referred to as the "cross over time" or COT for short.
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Figure 6.1: (top) Example of cross over time calculation for a programmed position
in the scan strategy. (bottom) Illustration of cross over time map representing local
cooling times at each programmed position for an arbitrary scan strategy.

A COT map (see bottom of Figure 6.1) for a scan strategy is generated by calcu-

lating a COT value at each programmed position where the laser is on (e.g., ∆t1,∆t2

... etc.). Notice that local COT values near turn arounds (∆t3,∆t7,∆t11) or areas
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with shortening scanning vectors (∆t14,∆t15,∆t16,∆t17) shown as dashed red arrows

will be less than areas far from turn around regions (blue dashed arrows). If local

COT values are necessarily small, there will be insufficient cooling time to enable

the deposited heat to properly evacuate. Results presented in [9] suggest that at any

given scan position where the COT is less than a critical value, local overheating and

melt pool development along the step over direction will occur. The critical value

(tcrit) represents the minimum cooling time required to prevent the latter.

6.2.2 Process parameters & data collection

The IN625 parts designed for this study, detailed in Figure 6.2, were manufactured

using the same EOS M290 machine and vendor-recommended process parameters

used to fabricate samples detailed in prior work [2,9]. This includes skywriting, a laser

power 195 W, scanning speed of 965 mm/s, hatch spacing of 0.11 mm, programmed

layer thickness of 0.04 mm, and 67 degree layer wise rotations. Each part (P1, P2,

P3, P4) consists of one or more unique single-layer geometries built on top of a 10.76

mm pedestal.
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Figure 6.2: Examples of the single layer parts built on top of a 10.76 mm pedestal
manufactured for the study.

Scan strategy data was acquired from a Sigma Labs system installed on the EOS

M290 machine. Commanded signals sent to the laser and galvos are sampled at 100

khz (i.e., every 10 µs) during part fabrication. For convenience, the data was post-

processed in Python to calibrate the voltage signals into commanded x-y positions.

However, COT values can be determined directly from the voltage signals. Next, COT

maps were calculated for each scan strategy used to produce the parts, as detailed in

Figure 6.2. After thresholding the COT maps using tcrit values derived in [9] the result

is compared to stitched top surface bright field images of the samples collected with

a Zeiss AxioImager.Z2 microscope equipped with a 5× objective (sampling interval

of 3.45 µm) and processed using native ZenCore 3.2 software.
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6.3 Results

Figure 6.3 shows a modified version of the single layer part geometry introduced in

[2] that was used to derive tcrit in [9]. The two ends have 15 degrees included angles

and converge to a 1 mm tip. The top image represents the COT map computed for

the scan strategy. The center image is the COT map after removing points where the

COT value is less than the largest tcrit value of 3.5 ms derived in [9]. The remaining

dark red regions indicate the expected areas to form large melt pools that persist

across multiple tracks along the step over direction.

Figure 6.3: Examples of predicted and observed overheated in fabricated samples.
(top) Cross over time map. (center) Cross over time map after thresholding values
using tcrit= 3.5 ms. (bottom) Bright-field image of the fabricated part.

The predicted length of overheated regions in Figure 6.3 given by the COT map

after thresholding show good agreement with the fabricated sample. Notice the initi-

ation and termination sites of the overheated regions that develop in the far left and

right side of the sample coincide with the same locations predicted by the tcrit map.

This is also the case for the center most region, where the stripe width is less than 3

mm.

The sample in Figure 6.4 consists of a series of 2-, 3- and 4-mm stripes connected

by a smaller 1 mm stripe. As expected, the lateral flow of material along the stepover
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direction persists in both the 1 mm and 2 mm stripe sections but immediately dissi-

pates at the transition point from the 1 to 3 mm stripe. This is to be expected, as

the cross-over times (taken along the center axis) of the 3 mm and 4 mm stripe is

greater than tcrit.

Figure 6.4: (top) Series of 2-,3-,4 mm stripes connected by a 1 mm stripe. (center)
Cross over time map. (bottom) COT map after thresholding using tcrit= 3.5 ms.

The abrupt transition in lateral flow of the melt pool at the intersection of the 1

mm and 3- or 4-mm stripe depicted in Figure 6.5 suggests this melt pool behavior can

be controlled on a track-to-track basis. Although the lateral flow of material along

the center axis of the 3- and 4-mm stripes is eliminated; notice the tcrit map (bottom

image Figure 6.4) suggests track to track melting is still expected to take place near

the ends of tracks. This agrees with the systemic a-periodic "doublewides" show

in Figure 6.5 that also appear in all previously manufactured samples [2,9]. Notice

that the lateral melt pool flow at the edges of the parts does not persist across more

than 1 track because every other track has time to sufficiently cool according to tcrit.

Previous works by [10] referred to these cases as type 1 and type 2 melt pools.
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Figure 6.5: (left) Example of transitions from 1 to 3 and 3 to 1 mm. (right) Example
of 1 to 4 mm and 4 to 1 mm transition.

Asymmetries in the scanning condition, stepping out of or into a narrow region

(diverging vs converging) create different melt pools along the stepover direction.

The converging cases tend to show less lateral flow than diverging cases. This can be

observed in Figure 6.6, which includes a series of disks with diameters of 1-,2-,3,4-,

and 5 mm.

Figure 6.6: Brightfield image of the fabricated 1-,2-,3-,4-, and 5 mm disks.
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In the case of the converging scanning condition (stepping into the narrow region),

a larger amount of solidified material trails behind the stepover compared to the

diverging case. This is because for the diverging case, the initial track begins in

powder, and all newly solidified material that trails behind the step over direction

was just recently formed and is presumably still at an elevated temperature. The

local diffusivity is decreased in this case. This could explain the difference between

the asymmetric overheating which occurs at the top and bottom of the disks in Figure

6.6.

Lateral melt pool development in the top center 3.5 mm disk show in Figure 6.7 is

reduced compared to the single 3.5 mm disk below. Adding the additional disks to

the left and right artificially increases the COT along the center axis of the middle

disk, reducing the lateral flow.

Figure 6.7: (right) Examples of fabricated 3.5-,2.5,1.5 mm disks. (Left) Example of
reduced melt pool flow along the stepover direction in 3.5 mm diameter disks due to
artificially increasing skywriting time.

6.4 Discussion

The initial derivation of tcrit in [9] assumed that skywriting time at each turn

around could be approximated as the hatch spacing divide by the programmed scan
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velocity, giving a constant value of 0.12 ms. After collecting the scan strategy data

from the machine, it was found that the average turnaround time is closer to 0.3

ms. Using this information to recalculate the tcrit values described in [9] increased

the largest calculated tcrit value from 3.1 ms to 3.5 ms. Other factors such as build

height, exposure time, and overhang conditions are expected to change the effective

value of tcrit. Further study is required to understand how much of an effect these con-

ditions have on the predictions and whether a straightforward analytical relationship

exists. However, the current constant value approximation of tcrit still demonstrates

the ability to characterize the machine/alloy/parameter combination used to fabri-

cate the analyzed parts. This is because tcrit is a measurand that depends on all

these factors. While a COT map provides insight into the scanning conditions, tcrit

provides the means to directly link COT values to process outcomes (i.e. merging

of melt pools between adjacent tracks). This is an important aspect to consider in

the context of interoperability as LPBF machines with different galvo systems will

have different response characteristics. For example, the large, overheated regions

that span multiple tracks observed in the samples shown here have not been observed

in similar geometries produced with same alloy, power, and scan speed on the NIST

additive manufacturing and metrology test bed (AMMT). This is to be expected since

the nominal skywriting time on the AMMT is 4.24 ms, which is not only greater than

tcrit but about 14 times slower than the EOS M290 machine. However, when the

AMMT is upgraded with galvos that are 100 times faster than the previous system

itâs expected that the skywriting time will need to be artificially increased to avoid

systemic overheating without changing power and scan speed. The tcrit parameter

does not depend on or use any non-physical coefficients to make predictions, instead

surface topography signatures are directly linked to a process condition which can be

calculated and measured.
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6.5 Summary and conclusions

Deriving an estimate of tcrit for the given process (e.g., EOSM290 machine, IN625

alloy, vendor recommended parameters) required a single build of one or more hexago-

nal samples detailed in [2]. Next, the surface topography measurement and calculation

described in [9] is carried out to determine tcrit. If tcrit and a scan strategy is known,

COT maps can be calculated and subsequently thresholded to isolate overheated re-

gions within a layer. Pointwise COT information can also be used to mitigate local

overheating by increasing the skywriting time in the predicted areas to be greater

than tcrit. Homogenizing a typical LPBF scan strategy once tcrit is known is straight-

forward. Determine the minimum COT of a programmed position along a given scan

vector and then subtract this value from tcrit. The result is the amount of additional

skywriting time that needs to be added at the end of the track to avoid overheating,

or the skywriting time can simply be set to 3.5 ms. The EOS time homogenization

software feature already performs this type of scan strategy correction. Works by

[6] found that the use of time homogenization to manufacture EOS Maraging Steel

MS1 decreases the maximum residual stress by 70% and increases surface hardness

compared to default parameters. Type 1 melt pools and merging of adjacent track

near turnarounds were also eliminated. All of this was achieved by simply adding ap-

proximately 3.91 ms to the skywriting time at each turnaround. However, this value

was determined arbitrarily by subtracting the minimum cross-section dimension of

the sample geometry from the programmed stripe width and dividing the results by

the scan velocity. The derivation of the critical cooling constant tcrit proposed here

could provide a quantitative procedure for determining this value, with the goal being

to determine the minimum skywriting time that enhances part quality but minimizes

the increase in build time due to the added delays at the end of each track.
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CHAPTER 7: CONCLUSIONS

7.1 Summary and major contributions

The first objective of this dissertation was to develop, implement, and validate a

systematic framework for identifying surface descriptions capable of classifying tex-

tures based on process or user-defined differences. The second was to quantify the

ability of signal detection theory’s measure d′ to assess texture parameter discrimi-

nation abilities across various surfaces. Both of these objectives were addressed in

Chapter 3 and Chapter 4. SQuIDTM provides a new interpretable systematic frame-

work that automates and can replace the Edisionaion nature of identifying discrim-

inatory features for surface texture classification. The framework provides the first

reported use of a d′ metric, originating from the theory of signal detection, specifically

for binary-multi-class surface texture classification and parameter selection. The ca-

pabilities and robustness of the SQuIDTM framework for surface classification were

demonstrated through two challenging case studies. 1) ISO 25178-2 parameters to

classify intensity images of rolled steel defects, and 2) low magnification coherence

scanning interferometry measurements to classify ten powder-coated visual smooth-

ness standards. The proposed discrimination matrix, presented in a heatmap format,

and automatic parameter selection algorithm based on this matrix, introduces a new

down-selection approach. In addition, examining the magnitudes of the d′ values that

make up the matrix entries enables direct insights into the separability of surface data

in a structured and interpretable way.

The final objective of this dissertation was to develop, implement, and assess a sur-

face metrology-based framework to predict anomalous melt pool-surface topography

formation in the laser powder bed fusion process. Chapter 5 successfully demon-
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strates an application of a single process-informed surface measurement to derive a

temporal process constant to predict track-to-track overheating during LPBF AM of

IN625. Chapter 6 generalized the methodology by introducing a pointwise charac-

terization of the scan strategy informed by the critical cooling constant derived in

Chapter 5 to predict overheated regions in different sample geometries. The method-

ology and results provide a new, powerful application of surface metrology in LPBF

manufacturing. Furthermore, in line with this dissertation’s overall scope and aims,

each paper introduced a systematic methodology for linking quantitative surface to-

pography measurements to user-defined categories or process outcomes.

The main contributions of each article are summarised concisely by chapter; they

consist of the key findings and critical observations of the work within the dissertation.

The major contributions of this dissertation are outlined below.

Paper 1:

• The use of signal detection theory measures d′ effectively identified ISO 25178-2

parameters that enable correct classification of different surface types despite

violations of normality and equal variance regarding the data.

• The d′ matrix, overlayed heatmap, and metric selection algorithm provided

the means to systematically down-select and assess the expected classification

outcomes of machine learning models based on the features used to describe the

surfaces.

• The ISO 25178-2 parameters, devised for surface height map analysis, effectively

characterized intensity-based surface images using significantly fewer metrics

than deep learning and image processing approaches with comparable classifi-

cation accuracy.

Paper 2:
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• Bandpass filtering is an effective way to augment a dataset; multiscale ISO

25187-2 texture parameters provided a more accurate classification of visual

smoothness standards than metrics obtained on primary unfiltered dataset.

• The visual intuition gained from the d′ matrix successfully informed a user of

the expected classifier performance before evaluation.

Paper 3 & 4:

• The application of datums to inform surface topography measurements enables

precise isolation and characterization of overmelted regions in LPBF parts.

• A single process informed ex-situ surface topography measurement can be used

to characterize systemic overmelting in LPBF AM of IN625.

• A point-wise cross-over-time characterization and a critical cooling constant,

tcrit, provide an interpretable way to locally link scan strategy data to undesir-

able LPBF process outcomes during fabrication.

7.2 Future Work

7.2.1 Future work based on paper 1,2

SQuIDTM provides a solution to the parameter selection problem for multi-class

classification; however, a systematic and automated approach for determining optimal

scales that enable classification is a logical next step to refine further and enhance the

robustness of the proposed framework. A complimentary framework aimed at solving

regression problems as opposed to classification would be another logical addition

to SQuIDTM . Additional parameter development is also an area for future work.

In terms of applications, general additive networks (GANs) have emerged as a vi-

able solution to generate synthetic data to offset data imbalances and labor-intensive

measurement processes [114]. The SQuIDTM framework and ISO parameters could
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be leveraged to optimize the loss function and ensure the generated synthetic data is

quantitative and qualitatively similar to the reference surfaces.

7.2.2 Future work based on paper 3,4

Deriving tcrit values for different LPBF machines and alloys is a logical next step for

the methodology presented in Chapter 5 and Chapter 6. Formulating an analytical

dependence between local thermal and material characteristics, like temperature-

dependent diffusivity, could enable tcrit to augment parameters like volumetric energy

density that are not scan strategy aware. In Chapters 5 and 6, future work should

incorporate high-fidelity thermal modeling to complement the experimental results.

This would enable the simulation of the process conditions and determination of the

relative influence of factors such as different process parameters, material, overhang

conditions, dwell time, etc., on tcrit. Furthermore, developing a software application

that enables users to quickly process and visualize scan strategy data for the entire

build using the thresholded cross-over time maps could provide a route to identify

defects and flaws that develop over multiple layers and inform corrective control

strategies.
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