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ABSTRACT 

 
 

VASISHTA GANGULY.  Characterization of the dynamic performance of machine 
spindles.  (Under the direction of Dr. TONY SCHMITZ) 

 
 

Machine spindle dynamics and (axis of rotation) error motions may vary as a function 

of spindle speed due to gyroscopic effects, changes in bearing preload, centrifugal forces, 

and thermals effects. It is necessary to characterize these changes in order to fully define 

the spindle’s performance. In this research, two different aspects of spindle performance 

are considered: a) spindle dynamics; and b) spindle error (SE) motions. The objective is 

to simultaneously measure the (potential) changes in both the error motions and dynamic 

response with spindle speed. 

This work is motivated by the influence of spindle performance on machining 

operations. Machining instability (chatter) leads to poor surface finish, high rejection 

rates, rapid tool wear, and, potentially, spindle damage. Stable machining conditions may 

be identified using well-known milling process models. To do so, the dynamics of the 

tool-holder-spindle-machine assembly as reflected at the tool tip is required. Here, the 

dynamics of an artifact-spindle-machine combination are measured at the tip of a 

standard artifact when the spindle is rotating. Tests are conducted at different spindle 

speeds to capture the speed-dependent changes in the spindle dynamics. Receptance 

coupling substructure analysis (RCSA) is then applied to predict the tool point response 

for arbitrary tool-holder combination in the same spindle. RCSA is used to first decouple 

the artifact dynamics from the measured artifact-spindle-machine assembly dynamics (to 

isolate the spindle contributions) and then analytically couple the dynamics of a modeled 

tool-holder to the spindle-machine in order to predict the tool point frequency response 
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function (FRF). A speed-dependent milling stability lobe diagram, which graphically 

depicts the allowable axial depth of cut as a function of spindle speed, is obtained by 

identifying the changes in tool point dynamics with spindle speed. 

Spindle error motions, which describe the variable position and orientation of the 

spindle axis as a function of the rotation angle, can affect machined surface quality. Non-

contact sensors (such as capacitance gages) may be used to measure the SE motions 

while the spindle is rotating. A multi-probe error separation method is used to accurately 

isolate the SE motions and the artifact form error. Tests are repeated at different spindle 

speeds to examine the associated effects. Together, the identification of the speed-

dependent SE motions and tool point FRF will enable an improved capability to predict 

the milling performance for a given tool-holder-spindle-machine combination. 

In this research, the speed-dependent spindle dynamics and the SE motions for three 

different Haas TM1 machine spindles were studied. At a spindle speed of 3800 rpm, the 

critical stable axial depth of cut predicted using the stationary tool point FRFs was 6 mm 

while that predicted using the speed-dependent FRFs was 10 mm. Stable machining was 

observed at an axial depth of cut of 9 mm at a spindle speed of 3800 rpm. The results 

showed that incorporating the changing dynamics of the spindle in machining stability 

models improved the ability to predict chatter. Further, the dynamics and error motions of 

an NSK HES-500 high speed spindle were also measured. 
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INTRODUCTION CHAPTER 1: 

1.1 High-speed Machining 

Milling is a subtractive manufacturing process, where a rotating tool with defined 

cutting edges is fed into the workpiece to remove material. Milling finds extensive 

application in the aerospace and automotive industries, where complex components are 

often manufactured from single billets of stock material via material removal. Over the 

last few decades, improvements in rotary bearing and drive technology and performance 

has led to the development of high-speed machine spindles, capable of speeds over 

20,000 rpm, while delivering power in excess of tens of kW. Higher spindle speeds and 

increased power enable larger material removal rates (MRR) and increased productivity. 

The MRR, which depends on the depth of cut, is limited by the dynamics of the system. 

Under certain machining conditions, the dynamics of the process become unstable. 

Instability, or self-excited vibration, in machining is commonly referred to as chatter. 

Drawbacks of chatter include: 

• poor machined surface quality 

• excessive noise 

• high part rejection rates 

• potential damage to the machine spindle 

• higher power consumption 

• reduced tool life. 
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1.2 Machining Stability 

In milling operations, material is removed by feeding a rotating cutting tool into the 

workpiece. The cutting forces during the machining operation depend on the 

instantaneous chip thickness. Since the tool is not rigid, the cutting forces lead to tool 

vibration. These vibrations are imprinted on the machined surface as a wavy profile. As 

the tool rotates, the wavy surface produced by one cutting edge is removed by the next. 

This is called regeneration of waviness. Therefore, the instantaneous chip thickness 

depends both on the current state of vibration, as well as on the wavy surface left behind 

by the previous cutting edge. This introduces a “memory”, or time delay, into the system 

dynamics [1]. If the instantaneous tool deflection is in phase with the wavy surface 

produced by the previous cutting edge, then, although the tool is vibrating, the cutting 

forces depend only on the tool geometry and selected machining parameters and the 

process is more likely to be stable. However, if the instantaneous tool deflection is out of 

phase with the previously generated wavy surface, it leads to a variable chip thickness 

which influences the cutting forces and, subsequently, the tool vibrations. Again, the tool 

vibrations influence the chip thickness. This introduces a feedback mechanism, which 

may result in self-excited vibration, referred to as chatter, depending on the depth of cut. 

Over the last 50 years, significant effort has gone in developing models to identify 

machining stability limits that enable pre-process identification of chatter free machining 

conditions. A stability lobe diagram (SLD), which plots the spindle speed on the abscissa 

and the axial depth of cut on the ordinate, is used to identify the stability limits. 

Pioneering work to develop the SLD is described in papers by Tlusty [2], Tobias [3] and 

Meritt [4]. In 1995, Altintas and Budak [5] proposed a zeroth order approximation of a 
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Fourier series expansion of the cutting forces to derive an analytical expression for the 

SLD. The model provided accurate results for milling operations with high radial 

immersion and/or a large number of cutting edges. Insperger and Stepan [6] used a semi-

discretization (SD) method to solve the delayed differential equations to predict chatter. 

Sims et al. [7] employed the SD approach to predict chatter for variable pitch and 

variable helix angle milling operations. Quintana et al. [8] proposed an experimental 

method to develop a SLD, without the measurement of the tool point dynamics or the 

cutting force coefficients. Slotting operations were performed on a wedge shaped 

workpiece and the depth at which chatter occurred was estimated as the stability limit. 

The process was repeated for different spindle speeds to develop a complete SLD. 

 
Figure 1.1: Stability lobe diagram: (x) unstable, (o) stable.  

In industrial environments, operators often employ conservative machining 

parameters to avoid chatter, leading to reduced productivity. The ability to predict stable 

machining parameters (spindle speed and axial depth of cut combinations), enables 
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machine operators to identify the most favorable machining conditions and maximize 

productivity. Often, stable machining conditions may be realized by increasing the 

operating spindle speed, which also increases the MRR and productivity. Figure 1.1 

shows an example SLD, where blim is the limiting axial depth of cut and Ω is the spindle 

speed. By changing the machining conditions from A to B, the process becomes stable. 

The spindle speed and permissible axial depth of cut also increase, thereby increasing the 

MRR. 

In order to develop a SLD, the following system and process parameters must be 

known: 

1) tool point frequency response function (FRF) in two orthogonal directions 

perpendicular to the tool axis 

2) cutting force coefficients (CFCs) 

3) radial immersion or step-over distance 

4) number of cutting edges on the tool. 

The radial immersion and the number of cutting edges are operator defined. The 

CFCs relate the instantaneous chip area to the cutting forces. The CFCs depend on the 

workpiece material and the tool geometry and may be identified experimentally for a 

particular tool-workpiece combination. The tool point FRF depends on the machine-

spindle-holder-tool dynamics. The tool point FRF may be measured by modal testing or 

predicted. 

1.3 Effects of Spindle Speed on Spindle Dynamics 

Typically, the tool point FRF used in stability analysis is measured when the spindle 

is stationary. However, the dynamics of a machine spindle may change with spindle 



 

5 
speed due to centrifugal effects, gyroscopic effects, changes in bearing preload, and 

thermal effects. The changes in the tool point dynamics with spindle speed must be 

considered to accurately estimate the stability boundary. 

With the development of faster and more powerful machine spindles, substantial 

research effort has focused on developing spindle models that include speed-dependent 

thermal and structural effects. These models provide machine tool designers with a useful 

tool for optimizing spindle designs. For example, Jorgensen  [9, 10] and Shin [10] 

developed a finite element (FE) model for a machine spindle system which coupled the 

non-linear bearing model with the Timoshenko beam FE spindle model. 

The spindle drive motor and friction in rolling contact bearings are significant heat 

sources in machine spindles. The temperature increase during spindle operation leads to 

dimensional changes in spindle components. These dimensional changes may affect the 

bearing preload and subsequently, the spindle dynamics. Bossmanns and Tu [11] 

proposed a power flow model which predicted the thermal distribution for the entire 

motorized spindle assembly and included the thermal effects of the drive motor and 

friction in the angular contact bearings. Lin et al. [12] proposed an integrated thermo-

mechanical-dynamic model, which integrated the thermal model with the bearing model 

and the spindle FE model. They observed that, for a constant preload, the system stiffness 

is reduced due to the centrifugal effects of the spindle shaft. The paper identified the 

effects of spindle speed on bearing preload and changes in natural frequencies of the 

system, but did not illustrate the FRF. Li and Shin [13] examined the effect of bearing 

configuration on speed-dependent spindle dynamics. 
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Cao and Altintas [14-16] also developed a FE model to identify spindle dynamics. 

The spindle shaft was modeled using the Timoshenko beam FE model and the bearing 

was described using Jones’ theory. Thermal effects were not incorporated in the spindle 

model. The model coupled the dynamics of the spindle-holder-tool assembly with the 

measured dynamics of the milling machine without the spindle. The model also predicted 

the time domain response of the spindle to cutting forces using incremental FE methods. 

Holkup et al. [17] developed a thermo-mechanical model using FE modeling in ANSYS 

to examine both transient and steady-state spindle speed-dependent thermal effects on 

bearing preload. 

Movahhedy and Mosaddegh [18] used Timoshenko beam theory to show that 

gyroscopic effects lower the critical depth of cut, especially at high speeds. Gagnol et al. 

[19] proposed a model-based speed-dependent SLD where the speed-dependent spindle 

dynamics were estimated using a FE model. A global readjustment procedure was 

employed to tune the material and damping properties of the spindle model to match the 

modeled FRF with the measured FRF. Later, Gagnol et al. [20] proposed a three 

dimensional speed-dependent SLD which also accounted for the workpiece dynamics. 

When machining thin walled sections, for example, the workpiece dynamics become 

relevant to chatter prediction. More recently, Cao et al. [21] also used a FE model to 

model the spindle assembly and studied the effects of centrifugal and gyroscopic effects 

on the tool point FRF. It was suggested that, while the gyroscopic effects have minimal 

influence on the tool point FRF, the centrifugal forces lower the stiffness of the spindle 

system. None of the models described here account for thermal effects on the spindle 

dynamics. 
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Often, the bearing preload of machine spindles is deliberately changed with spindle 

speed to compensate for speed-dependent structural and thermally induced changes. 

Changes in bearing preload influence the spindle dynamics. Alfares and Elsharkawy [22] 

examined the effects of axial preload on grinding machine dynamics and found that 

increased preload resulted in higher spindle stiffness and natural frequencies. Ozturk et 

al. [23] examined the effects of bearing preload on spindle dynamics for a Starrag 

Heckert ZT-1000 CNC machining center. The results showed an increase in the natural 

frequencies with bearing preload. Smith et al. [24] examined the effect of drawbar force 

on spindle dynamics and found that the drawbar force influences both the damping and 

the natural frequencies of the spindle system. 

Models used to simulate spindle behavior require knowledge of the spindle design 

and construction, bearing stiffness, and drawbar force, which are typically not available 

to machine tool users. Furthermore, the damping characteristics used in models are not 

easily predicted and must generally be determined experimentally. Models are more 

useful in spindle design optimization to identify trends, rather than as tools to accurately 

predict the tool point FRF necessary for chatter prediction. Previously, Cheng et al. [25] 

performed rotating FRF measurements to measure the speed-dependent spindle 

dynamics. 

This research expands on Cheng’s preliminary work. Here, the dynamic response of 

an artifact clamped in the machine spindle was measured during rotation using impact 

testing. Tests were conducted at different spindle speeds. A setup was designed to impart 

an impulse force to the rotating artifact and the dynamic response was measured using 
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non-contact sensors. A phase correction algorithm was also developed to correct for 

amplifier-induced, frequency dependent phase lags in the FRF measurement. 

1.4 Receptance Coupling Substructure Analysis 

In industrial settings, a variety of different tool-tool holder combinations are used in 

machining processes. It can be prohibitively expensive and time consuming to measure 

the tool point FRF for each tool- holder combination individually. Receptance Coupling 

Substructure Analysis (RCSA) is an analytical technique used to couple/de-couple the 

receptances (or frequency response functions, FRFs) of different components for a 

structural assembly. The difficult-to-model machine-spindle sub-assembly receptances 

are measured and archived for each machine spindle. The receptances of the tool- holder 

sub-assembly are modeled. RCSA may then be used to couple the tool- holder sub-

assembly receptances with the machine-spindle sub-assembly receptances to obtain the 

tool tip FRF for the machine-spindle-holder-tool assembly. RCSA has been shown to 

significantly reduce the experimental effort required in predicting tool point FRFs for a 

variety of tool holder-tool combinations. The SLD may then be developed. 

Schmitz [26-28] first introduced the application of RCSA to predict tool tip 

receptances in machining applications. The model considered the translational 

receptances. Park et al. [29] expanded Schmitz’s model to include both translational and 

rotary degrees of freedom and found improved agreement between simulated and 

predicted receptances. Duncan and Schmitz [30] introduced the three component RCSA 

method where the spindle-holder-tool assembly was divided into three components. The 

measured spindle receptances were coupled with the modeled holder and tool receptances 

using RCSA. Later, Duncan et al. [31] used RCSA to show that the dynamic absorber 
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effect may by exploited in machining operations to increase the critical stability limit by 

adjusting the tool length. Erturk et al. [32] used Timoshenko beam theory to develop a 

FE model for the spindle-holder-tool assembly using RCSA to couple the different 

sections of the subassembly. The influence of the bearing was also considered. Schmitz 

[33] also developed and experimentally verified the RCSA model for torsional and axial 

frequency response prediction. 

The receptances of the tool and tool holder are modeled using FE methods here. 

Timoshenko beam theory includes rotary inertia and shear deformation effects [34]. 

Timoshenko beam FE models accurately predict the receptances for both low and high 

aspect ratio beams. Yokohama [35] proposed the mass and stiffness matrices for a 

stationary Timoshenko beam. Nelson [36] upgraded the model for a spinning beam to 

account for rotary inertia, gyroscopic effects, and damping. Later, Greenhill et al. [37] 

upgraded Nelson’s rotating Timoshenko beam model to account for conical beam 

elements. Hutchinson [38] proposed a model to identify shear coefficients to be used in 

Timoshenko beam theory for a number of different beam cross-sections. Other 

investigators have used spectral-Tchebychev methods [39-41] and equivalent beam 

diameter methods [42, 43] to model the fluted portion of end mills, which have helical, 

variable cross-sections. 

Kumar and Schmitz [44] used a sum of equivalent fixed-free Euler-Bernoulli (EB) 

beams to fit the measured displacement-to-force spindle receptance (measured using a 

simple artifact inserted in the spindle under test). The displacement-to-moment, force-to-

rotation, and rotation-to-moment receptances were then identified using the parameters of 

the fitted EB beams. This method was shown to improve RCSA predictions with less 
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experimental effort. This fitting procedure was manually completed mode-by-mode. 

Ganguly and Schmitz [45] developed a particle swarm optimization (PSO) method to 

automate the identification of the EB beam parameters. The PSO was specifically tailored 

to be robust enough to handle a variety of different FRFs. Here, the optimization 

algorithm is upgraded to make it faster and more reliable. The PSO algorithm was 

replaced with a number of constrained simplex based Nelder-Mead [46-49] optimization 

subroutines, which was found to improve optimization performance. 

In order to accurately predict assembly receptances using RCSA, translational and 

rotational connection stiffnesses and damping parameters at the assembly interfaces must 

be considered. Schmitz et al. [50] developed a FE method to estimate the connection 

parameters for a shrink fit tool holder. Erturk et al. [51] conducted an effect analysis 

using a FE model to show that the natural frequency of the tool mode was most effected 

by the translational connection stiffness, while the magnitude of the tool mode depends 

on the translational contact damping at the tool holder-tool interface. Ozsahin et al. [52] 

proposed a closed form solution to identify contact parameters for a spindle-holder-tool 

assembly based on experimental data. Wang et al. [53] proposed a particle swarm 

optimization method to optimize for the connection parameters. 

1.5 Spindle Error Motions 

Spindle error (SE) motions quantify the “wandering” of the spindle axis as a function 

of the rotation angle. Characterizing the SE motions provides a quantitative estimate of a 

machine spindle’s quality. As noted previously, spindle speed has been shown to have a 

significant effect on spindle dynamics. Here, the effects of spindle speed on SE motions 

were studied. 
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SE motion measurements are complicated by the necessity to accurately isolate the 

errors in the motion of the spindle axis from artifact form errors. Evans et al. [54] 

surveyed the different reversal techniques and provided an overview of methods used to 

isolate instrument errors from part errors. Donaldson [55] proposed a ball reversal 

technique for isolating SE motions from the ball errors. Gredja et al. [56] improved upon 

the implementation of the Donaldson ball reversal technique by incorporating a precision 

rotary table. The rotary table was used in the reversal process, eliminating any errors 

which may occur due to handling and fixturing of setup components. All reversal 

techniques required more than one measurement to isolate SE motions from artifact form 

error. Whitehouse [57] first suggested the use of multiple displacement sensors, 

strategically positioned around the spindle to measure the SE motions in a single setup 

without the need to perform any reversal. Marsh et al. [58] employed the multi-probe 

error separation method to identify the SE motions of high precision spindles and 

identified the optimal angular orientations for the multiple sensors. The multi-probe error 

separation method can identify both the SE motions and the artifact form errors from one 

measurement. The multi-step error separation technique [58], operates on a similar 

mathematical basis as the multi-probe error separation method, but requires multiple 

measurements to accurately isolate SE motions and artifact form errors. Marsh et al. [59] 

performed a comparative study of the reversal and multi-probe methods and found them 

to be comparable. 

In this study, a setup was built to simultaneously measure the SE motions, the artifact 

form error, and the dynamic response of the spindle at the artifact tip. Typically, in SE 

motion measurements a precision ground sphere with negligible form error is used as the 
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artifact. However, in this study, the standard cylindrical artifact used in RCSA was used. 

Therefore, the artifact form errors cannot be ignored and must be captured with each 

measurement. Consequently, a multi-probe error separation method was used here. In this 

study, the SE motions were measured over the entire range of spindle speeds. The results 

showed a significant influence of spindle speed on SE motions. 

1.6 Research Objectives and Scope 

The objective of the research was to experimentally characterize the effects of spindle 

speed on spindle performance. An experimental setup was designed, constructed, and 

calibrated to apply a selectable impulse force and measure the dynamic response while 

the spindle is rotating. The SE motions were also measured simultaneously using a three-

probe error separation method. The speed-dependent changes in the tool point FRF were 

used to develop an interpolated speed-dependent SLD that provides an accurate 

estimation of the machining stability boundary. A robust optimization procedure was 

developed to identify equivalent fixed-free EB beam parameters for each mode of the 

displacement-to-force spindle receptance. Identifying the EB beam parameters reduced 

the experimental effort required and improved the quality of predictions in RCSA. The 

changes in the SE motions were also measured to quantitatively assess the quality of a 

machine spindle over its entire speed range. In this study, the speed-dependent dynamics 

and SE motions of three different, yet nominally identical Haas TM1 vertical machining 

centers were measured. Further tests were also performed on an NSK HES-500 high 

speed spindle. 

The dissertation is structured as follows. In chapter 2, a time domain simulation of the 

contact dynamics and the influence of the dynamic properties of the hammer and target 
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on the measured FRF are described. The design and construction of the test setup is also 

discussed. The data analysis procedure is discussed in chapter 3. The experimental 

measurements are reported in chapter 4. The equivalent fixed-free Euler Bernoulli 

optimization algorithm and the RCSA technique are described in chapter 5. The speed-

dependent stability lobe diagrams and results from experimental chatter trials are reported 

in chapter 6. Chapter 7 provides conclusions and discussion of the research effort. 



 

EXPERIMENTAL SETUP – DESIGN AND CALIBRATION CHAPTER 2: 

The dynamic response of the machine spindle may be measured by modal testing. In 

modal testing, a known force, F(t), is imparted to the structure and the response, X(t), is 

measured using an appropriate sensor. For example, the input force may be a hammer 

impact and the response may be recorded using a displacement sensor. The FRF of the 

structure may be estimated from [60], 
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ω
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(2.1) 

where X(ω) and F(ω) are the fast Fourier transforms (FFT) of the response and force 

signals, respectively. 

2.1 Time Domain Simulation of Impact Dynamics 

In order to measure the dynamics of the spindle, it is necessary to impart an impulse 

force which excites the entire bandwidth of interest. The impulse force and excited 

bandwidth depend on the dynamics of the hammer, the dynamics of the target, as well as 

on the geometries and the material properties of the two colliding interfaces. In this 

section, a time domain simulation to evaluate the influence of the hammer and target 

dynamics on the excited bandwidth and response is discussed. 
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Figure 2.1: Schematic representation of hammer and target interaction. 

In order to predict the impulse forces, excited bandwidth and target response levels, 

an analytical model was developed to simulate the interaction of the hammer and the 

target. Figure 2.1 shows a schematic representation of the lumped parameter model used 

to describe the impulse hammer and target. As shown in Figure 2.1, Xh, Kh, Mh, and Ch 

represent the position, spring constant, mass, and viscous damping coefficient for the 

hammer. Similarly, Xt, Kt, Mt, and Ct represent the position, spring constant, mass, and 

viscous damping coefficient for the target. Xh0 and Xt0 represent the resting positions of 

the hammer and the target, respectively. The point of contact, Xt0, was kept to the right of 

the resting position of the hammer, Xh0. This ensures a restoring force exerted by the 

hammer spring, Kh, at the point of contact which pulls the hammer away from the target. 

To cause an impact the hammer was retracted away from the target and released. The 

initial position of the hammer at release was defined as Xhi. The initial velocity and 

acceleration of both the hammer and target were set to zero. 

At each step, i, in the time domain simulation, the equations of motion of the hammer 

and target were evaluated. They were defined as, 

 1 1i i i i
h h h h h h cM X C X K X F− −+ + = 

 and 
1 1i i i i

t t t t t t cM X C X K X F− −+ + = − 

 
(2.2) 
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respectively. Here, i
cF , represents the contact force due to the collision between the 

hammer and the target. Rearranging the terms in Eq. (2.2), the accelerations at the current 

simulation time step were evaluated as, 

 1 1i i i
i c h h h h
h

h

F C X K XX
M

− −− −
=



  and 
1 1i i i

i c t t t t
t

t

F C X K XX
M

− −− − −
=



 . 
(2.3) 

When 1i
hX −  was greater than 1i

tX − , there was no contact between the two bodies, and i
cF  

was set to zero. However, when 1i
hX −  was less than 1i

tX − , it implied that the two bodies 

were in contact with each other. The difference 1 1i i
t hX X− −−  was defined as i

cδ  and 

represents the sum of the deformations of the two colliding bodies in the region of 

contact. Under these conditions, the contact force was defined using sphere-sphere 

Hertzian contact theory [61-65]. The contact force including hysteresis damping was 

expressed as [61, 63], 
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where Vi is the velocity at the point of impact and e is the coefficient of restitution. K was 

defined as, 
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Here, r1 and r2 represent the radii of the two colliding bodies. The k1 and k2 terms depend 

upon the material properties and were defined as, 
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respectively. Here, E1 and E2 denote the elastic modulus, while ν1 and ν2 represent the 

Poisson’s ratio. Other contact interactions such as plane-cylinder, sphere-cylinder, or 

sphere-plane may also be used depending upon the geometries of the colliding bodies. 

Once the contact force, i
cF , was estimated, the accelerations of the two bodies were 

calculated using Eq. (2.3). Then, the velocities and positions for the hammer and target at 

the current simulation step, i, were evaluated using numerical Euler integration: 

 1i i i
h h hX X X tδ−= + ⋅    and 1i i i

t t tX X X tδ−= + ⋅   , 

1i i i
h h hX X X tδ−= + ⋅  and 1i i i

t t tX X X tδ−= + ⋅ , 

(2.7) 

where tδ  represents the integration time step. Note that both the hammer and the target 

may be modelled as multiple degree of freedom systems. 

To demonstrate the simulation, an example is provided here. The mass, Mh, and 

stiffness, Kh, of the hammer were 0.01 kg and 100 N/m, respectively. The mass, Mt, and 

stiffness, Kt, of the target were 0.1 kg and 1×107
 N/m, respectively. The initial retracted 

position of the hammer, Xhi, was 10 mm. The point of contact, Xt0, was –3 mm. The 

contact forces were estimated assuming the two colliding bodies to be steel spheres  with 

Young’s modulus = 200 GPa and Poisson’s ratio = 0.29. The radii of the two spheres, r1 

and r2, were set as 6.35 mm and 1 mm respectively. The coefficient of restitution was 

assumed to be 0.95. Note that these contact parameters and initial conditions were 

maintained constant throughout this study. Figure 2.2 shows a plot of the normalized 

hammer position, Xh – Xt0, the tool position, Xt – Xt0, and the deformation in the region of 

contact δc. The magnified views of the positions are shown on the right which captures 

the interaction between the two colliding bodies. Figure 2.3 shows a plot of the contact 

force. 
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Figure 2.2: Plot of hammer position, Xh, tool position, Xt, and elastic deformation at 
interface, δc. 

 
Figure 2.3: Contact force at the point of impact. 

In the following section, the influence of the dynamic properties of the hammer and 

target on the excited bandwidth and response magnitude is examined. First, three terms 

are defined here. 

(i) Excited bandwidth: The excited bandwidth was defined as the frequency 

where the normalized amplitude of contact force spectrum represented in 

the frequency domain first falls below -10 dB. Figure 2.4 (left) shows a 

plot of the force signal in the frequency domain. The excited bandwidth is 

shown. 
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(ii) Impulse time: The impulse time was defined as the duration between the 

time at which the hammer first makes contact with the target to the time at 

which the hammer last touches the target. Figure 2.4 (right) shows a plot 

of the impulse profile. The defined impulse time is clearly indicated. 

(iii) Response magnitude: The response magnitude was defined as the 

magnitude of the displacement of the target, expressed in the frequency 

domain, evaluated at the natural frequency of the target. Figure 2.5 (left) 

shows a plot of the target displacement in the frequency domain. Figure 

2.5 (right) shows the target displacement in the time domain. Note that the 

target displacement is offset by the contact point Xt0. The damping of the 

hammer, Ch, and the target, Ct, was assumed to be zero. The response 

magnitude provides an indication of the amplitude of the response. In the 

presence of sensor noise, it is essential for the applied input impulse to 

elicit sufficient output target displacement so as to accurately measure the 

response. This is particularly critical in measuring rotating FRFs as the 

response is further corrupted by the error motions of the rotating spindle. 

Therefore, the response magnitude is used as an indicator of the expected 

target displacement. 
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Figure 2.4: Excited bandwidth (left); Impulse time (right). 

 
Figure 2.5: Response magnitude: frequency domain (left); time domain (right). 

2.1.1 Influence of Hammer Mass and Stiffness 

In this section the influence of the hammer mass, Mh, and stiffness, Kh, on excited 

bandwidth, impulse time and response magnitude is discussed. Here, the mass, Mt, and 

stiffness, Kt, of the target were kept constant at 0.1 kg and 5×107 N/m, respectively. The 

time domain simulation was performed for a wide range of Mh and Kh values. Figure 2.6 

(top), (middle), and (bottom) shows the excited bandwidth, the impulse time and the 

response magnitude, respectively. The excited bandwidth was found to be the highest at 

low values of Mh. It was observed that as Mh increased, the excited bandwidth decreased 

and impulse time increased. A sharp increase in impulse time was observed at around Mh 

= 0.05 kg. As Mh was increased through 0.05 kg, the impulse time increases drastically 
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from around 0.13 ms to around 0.27 ms. An increase in impulse time was accompanied 

by a decrease in excited bandwidth. The natural frequency of the target in this simulation 

was 3558 Hz. This corresponds to an oscillation period of approximately 0.28 ms. 

Therefore, when the impulse time approached half the period of the target’s natural 

frequency (0.14 ms), a drastic increase in the impulse time was observed. 

The plot of the response magnitude (Figure 2.6 bottom) shows that at very low values 

for Mh the response magnitude was low. Also, at high values of Mh the impulse time 

increases and the magnitude of the output response decreases. An optimal value of the 

response magnitude was observed at Mh = 0.0525 kg and Kh = 1000 N/m. 



 

22 

 

 

 
Figure 2.6: Excited bandwidth (top), impulse time (middle), and response magnitude (m) 
as a function of hammer mass, Mh, and hammer stiffness, Kh. 



 

23 
Figure 2.7 shows a plot of the force impulse in the time and frequency domains 

(right). Kh was kept constant at 500 N/m and Mh was increased from 0.03 kg to 0.07 kg. 

As Mh increases beyond 0.05 kg, a second peak appears in the impulse force profile 

resulting in an increase in the impulse time and the subsequent decrease in excited 

bandwidth. 

 
Figure 2.7: Influence of hammer mass, Mh, on impulse time and excited bandwidth for a 
constant hammer stiffness Kh = 500 N/m. 

Figure 2.8 shows the normalized hammer position, Xh - Xt0, the target position, Xt - 

Xt0, and the deformation in the region of contact δc. As Mh increases, the hammer stays in 

contact with the target for a longer period of time. It was also observed that as Mh 

increased, the resulting extended contact time is due to the continuation of contact even 

after the target has reversed direction and is moving in the same direction as the hammer. 

Therefore, under these conditions, the hammer takes a longer period to leave the target 

resulting in a higher impulse time and subsequently a lower excited bandwidth. 
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Figure 2.8: Normalized hammer position, Xh – Xt0, normalized toll position, Xt – Xt0, and 
contact deformation, δc, for different values of hammer mass, Mh. Kh = 500 N/m. 

2.1.2 Influence of Target Mass and Stiffness 

In this section the influence of the target mass, Mt, and stiffness, Kt, on excited 

bandwidth, impulse time and response magnitude is studied. Here, the mass, Mh, and 

stiffness, Kh, of the hammer were maintained constant at 0.1 kg and 200 N/m 

respectively. The time domain simulation was performed for a range of Mt and Kt values. 

Figure 2.9 (top), (middle), and (bottom) shows the excited bandwidth, the impulse time 

and the response magnitude, respectively. It was observed that for 93% of the 

combinations of Kt and Mt, the excited bandwidth was above 5000 Hz and for 99 % of the 

combinations of Kt and Mt, the impulse time was below 0.3 ms. However, for a few 

combinations at low Mt and Kt values, it was observed that the impulse time and excited 

bandwidth deteriorates. Under these conditions, as described earlier, the hammer 

maintains contact with the flexible target for an extended time period, which reduces the 

excited bandwidth. 
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Figure 2.9: Excited bandwidth (top), impulse time (middle), and response magnitude (m) 
as a function of target mass, Mt, and target stiffness, Kt. 
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As expected, the response magnitude was found to be higher for low Kt and high Mt 

combinations. These combinations of target properties have low natural frequencies 

which are excited by the impulse hammer. As the natural frequency of the target 

increases (low Mt and high Kt), the excited bandwidth and the response magnitude 

reduce. 

Figure 2.10 shows a plot of the impulse force in the time (left) and frequency (right) 

domains. The mass of the target, Mt, was kept constant at 0.01 kg and the stiffness was 

increased. At lower stiffness values, the hammer stays in contact with the target for a 

longer period of time, which results in higher impulse time and, subsequently, a decrease 

in excited bandwidth. 

 
Figure 2.10: Influence of target stiffness, Mh, on impulse time and excited bandwidth for 
a constant target mass Mt = 0.01 kg. 

2.1.3 Influence of Hammer Mass on Multiple Degree of Freedom Targets 

In this section the influence of the hammer mass on two different multiple degree of 

freedom targets was explored. Each target is modelled using 10 modes. It must be noted 

that the mass, stiffness, and damping properties of the multiple degrees of freedom are 

defined in the modal parameter space. The modal parameters for the two targets are 

defined in Table 2.1. 
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Table 2.1: Modal parameters for multiple degree of freedom targets. 

Mode Target 1 Target 2 

 Mass 

(kg) 

Stiffness 

×106 N/m 

Damping 

×103 Ns/m 

Mass 

(kg) 

Stiffness 

×106 N/m 

Damping 

×103 Ns/m 

1 2.56 76.90 1.11 0.06 11.90 0.08 

2 1.94 78.96 1.04 0.60 30.71 0.41 

3 6.25 69.35 7.50 4.31 157.60 1.35 

4 125.99 813.04 27.07 0.54 36.40 0.59 

5 14.97 234.46 9.09 7.10 103.74 3.90 

6 125.80 547.60 39.60 0.27 101.09 0.29 

7 1.32 278.99 3.85 0.17 149.96 0.23 

8 2.13 1016.30 3.82 0.22 328.74 0.21 

9 19.26 2177.73 55.61 1.05 342.52 1.39 

10 3.97 4781.16 7.29 0.54 1488.68 0.99 

The hammer was modelled as a single degree of freedom mass with a stiffness, Kh, of 

100 N/m. As before, the initial position of the hammer, Xh0, at the point of release was 10 

mm and the point of contact of the hammer with the target, Xt0, was -3 mm. At the end of 

the time domain simulation, a randomly distributed noise with standard deviation of 25 

nm was added to the response signal in order to simulate sensor noise. The simulation 

was repeated for three values of Mh: 0.001 kg, 0.01 kg, and 0.1 kg. Figure 2.11 shows the 

response (left column), impulse (middle column) and frequency response (right column) 

plotted in the frequency domain for target 1. Each row in the plot corresponds to a 

different Mh; Mh = 0.001 kg (top row), Mh = 0.01 kg (middle row), and Mh = 0.1 kg 
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(bottom row). Figure 2.12 shows the same for target 2. It should be noted that the 

maximum amplitude of the FRF for target 1 is around 20% that of target 2. 

It was found that when Mh = 0.001 kg, the response magnitude was the lowest and the 

excited bandwidth was the highest. Therefore, although the hammer impulse excites the 

entire bandwidth of interest, the magnitude of the response is low and therefore 

susceptible to sensor noise. This is reflected in the FRF. As Mh is increased, the response 

magnitude increases and the excited bandwidth decreases. At Mh = 0.1 kg, low noise was 

observed in the FRF below 4000 Hz, while the impulse excitation is low above 8000 Hz 

resulting in increased FRF noise. A similar trend was also observed for the simulations 

performed on target 2. At Mh = 0.001 kg, the excited bandwidth is high, but the impulse 

response is low leading to high noise in the FRF over the entire bandwidth. As Mh 

increases, the FRF noise at low frequencies decrease, while the high frequency content of 

the FRF becomes more susceptible to sensor noise as the excited bandwidth decreases. 

In summary, it was shown that the measurement of the target FRF depends upon both 

the dynamics of the impulse hammer and the target which is being measured. In this 

study, FRF measurements were performed on three targets: a cylindrical spindle artifact, 

a half inch diameter carbide blank clamped in a shrink fit holder, and a half inch diameter 

carbide square end mill tool clamped in a shrink fit holder. To accommodate the varying 

dynamics of the different targets, two different setups were designed and built with 

different hammer dynamic properties. The two setups are described in more detail in the 

following section. 
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2.2 Experimental Setup Description 

Modal testing was performed on three targets: (1) a cylindrical spindle artifact; (2) a 

half inch diameter solid carbide cylindrical blank clamped in a shrink fit tool holder, and 

(3) a half inch diameter square endmill clamped in a shrink fit tool holder. Figure 2.13 

shows 3D Solidworks models of the three targets. As demonstrated in the previous 

section, the noise in the measured FRF depends on the excited bandwidth and response 

magnitudes. In turn, these parameters depend on the dynamics of the hammer and the 

target. To accommodate the different dynamics, two different hammer setups were 

designed and constructed. 

 
Figure 2.13: 3D Solidworks model of three targets. 

2.2.1 Setup 1: High Mass Excitation Hammer 

The first setup was designed to measure the dynamics of a standard artifact mounted 

in the machine spindle at different spindle speeds; see Figure 2.14. A standard cylindrical 

artifact was mounted in the machine spindle and the FRF at the free end of the artifact 

was measured. A sub-assembly consisting of a three-axis force dynamometer (Kistler 

9252A), an impact tip, and the sensor mount was attached to the carriage of a linear 
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bearing. A three-axis force dynamometer was selected to measure the normal impulse 

forces as well as any frictional forces that may arise due to impacting the rotating artifact. 

A three-channel Kistler 5010B dual mode charge amplifier was used to convert the 

charge output from the force dynamometer to a voltage signal. This sub-assembly formed 

the oscillating impact hammer, which translated along the linear bearing and imparted an 

impulse force to the artifact. The impact hammer, mounted on the carriage of the linear 

bearing, was spring loaded. The mass of the impulse hammer was 0.21 kg and the 

stiffness of the spring was estimated to be 200 N/m at the resting position. Note that in 

this setup the spring constant along the direction of motion of the impulse hammer is 

nonlinear and depends upon the position of the impulse hammer. Nonlinear spring 

constants may be accommodated in the time domain simulation. 

A 12 V DC electromagnet mounted on a linear motion stage (Zaber Technologies A-

LSQ075B-E01) captured and pulled the impact hammer away from the spindle axis. The 

electromagnet voltage was controlled by a variable voltage DC power supply (Extech 

Instruments – 382200). When the spring load exceeded the electromagnetic force, the 

hammer was released. The restoring spring force caused the hammer to impact the 

artifact. The position of the artifact axis relative to the equilibrium position of the 

hammer was tuned to avoid multiple impacts. After each strike, the direction of the linear 

stage was reversed and the stage was moved towards the hammer until it was recaptured 

by the electromagnet. Dynamic response data was collected for a number of impulses and 

averaged. The electromagnetic force was controlled by the supply voltage. This provided 

a control for the retracted length before the striker was released, which, in turn, controlled 
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the impulse force. A calibration was performed to find the relationship between the 

supply voltage and the retracted distance before release. 

The response of the structure was recorded using a non-contact displacement 

measuring sensor. In this setup, capacitance gages (Lion Precision C5D) were used to 

measure the response. The capacitance gage signals were converted to analog voltage 

outputs by a three-channel Lion Precision Elite Series CPL-290 amplifier. The 

capacitance gages were mounted in a capacitance gage nest. The nest was mounted on a 

micrometer-controlled linear stage to position the sensors with respect to the artifact axis. 

Because the response was measured when the spindle was rotating, the measured 

response data was corrupted by out-of-roundness form errors of the artifact, as well as 

any SE motions. To accurately isolate the structural response data, the artifact form errors 

and spindle axis error motions needed to be identified and extracted. To do so, a multi-

probe error separation technique was employed [58]. In this method, three displacement 

measuring sensors, positioned at strategically selected angular locations around the 

artifact are used to simultaneously measure both the artifact form errors and the SE 

motions. The performance of the algorithm is sensitive to the angular orientations of the 

three displacement measurement sensors. Therefore, the angles selected for the three 

gages were 0°, 99.84°, and 202.5°. The algorithm to extract the form error and SE 

motions from the three displacement measurement signals is discussed in section 3.2. 

2.2.2 Setup 2: Low Mass Excitation Hammer 

To measure the dynamics of the half inch diameter carbide blank, the hammer mass 

of setup 1 was found to be too high. This resulted in multiple impulse hits and lower 

excited bandwidths. Therefore, a secondary setup was designed; see Figure 2.15. In this 
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setup, a PCB086E80 force sensor was mounted on the oscillating part of a parallelogram 

leaf spring flexure. The flexure was manufactured from Delrin® acetal resin. This 

material was chosen for its easy machinability, good impact resistance, fatigue properties 

and low Young’s modulus compared to metals. The mass of the oscillating part was 

found to be 0.01 kg and the spring stiffness of the flexure was 623 N/m. The linear 

motion stage and DC electromagnet were used to retract the oscillating part and trigger 

the impulse. A laser Doppler vibrometer (Polytec OFV – 534 laser head with OFV-5000 

controller), or LDV, was used to measure the response of the structure. The OFV-5000 

controller provides an output voltage proportional to the change in velocity of the target. 

The SE motions and blank form errors were not identified with this setup. However, the 

once per revolution content of the displacement signal due to these errors were removed 

from the response signal as described in Section 3.1. 

In both setups, a laser tachometer (Terahertz Technologies Limited LT-880) was used 

to measure the spindle speed and identify the spindle orientation. The tachometer signal 

served as an indicator to synchronize the angular position of the artifact with the 

displacement signals measured by the capacitance gages. The angular orientation of the 

spindle was required to accurately estimate the SE motions and the artifact form errors, 

which were, in turn, required to extract the dynamic response data from the displacement 

measurement signals. The tachometer also tracked any variations in the nominally 

constant spindle speed. 

In this study, a National Instruments (NI) data acquisition system (two 16-bit NI 9215 

analog input modules mounted in a NI 9417c compact DAQ chassis) was used to collect 

data. To estimate FRFs over a wide bandwidth, data was collected at a high sampling rate 
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(100 kHz). The NI DAQ card and the linear motion stage were controlled by a laptop 

using MATLAB to coordinate the impact and the data collection. 

In this study, measurements were performed on three nominally identical Haas TM1 

CNC vertical machining centers as well as the NSK HES-500 high speed spindle. 

Henceforth, in this document, the three Haas machines are referred to as Haas1, Haas2, 

and Haas3. 
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2.2.3 Setup 3: Measurement of SE motions of High Speed Spindle 

To measure the SE error motions of the high speed NSK HES-500 spindle, the LDV 

was used as the motion sensor. The high speed spindle has a maximum collet size of 

3.175 mm. In this study, a 3.175 mm carbide blank was used as the target to measure the 

SE motions of the high speed spindle. The LDV has a significantly smaller measurement 

area (40 μm diameter at a stand-off distance of 300 mm) than the capacitance gage probe 

(2 mm diameter) and was therefore chosen for this measurement. Figure 2.16 shows a 

picture of the setup. The LDV was mounted on a rotary table. The axis of the rotary table 

was aligned with the axis of the high speed spindle. As it was not possible to collect the 

displacements at all three angles, as required by the multi-probe error separation method, 

simultaneously, the measurement for each angle was performed independently. First, the 

measurements were performed with the LDV aligned with the x-axis of the machine. 

Then, the rotary table was commanded to rotate to the next desired angle (99.84°) and the 

measurements were repeated for the entire desired range of spindle speeds. Finally, 

measurements were performed at the third angle (202.5°). The laser tachometer was fixed 

to the machine table and did not rotate with the LDV. The tachometer signal was used to 

synchronize the three independently measured displacements at the three angles. The 

form error of the blank and the SE motions were then calculated using the multi-probe 

error separation technique discussed in section 3.2. 
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Figure 2.16: Setup used to measure SE motions of NSH HES – 500 high speed spindle. 

2.3 Phase Correction Algorithm 

In this study, two different non-contact displacement measuring sensors were used to 

measure the dynamic response. In both cases, an amplifier is used to convert the change 

in target displacement/velocity into a proportional change in motion-dependent output 

voltage. Depending on its design, the amplifier can induce a time delay in the 

measurement signal, i.e., there is a small time delay between the input 

displacement/velocity of the target and the output voltage from the amplifier. This time 

delay translates into a frequency-dependent phase shift in the frequency domain. This 

phase shift is critical when measuring the dynamic response of a structural system 

because the complex FRF characterizes both the magnitude and phase (or real and 

imaginary parts) of the structure’s response to the force input. 

In modal testing [60], an impulse is often used to excite the structure and a linear 

transducer is used to measure the response. For these impact tests, two signals are 

measured: the impulsive force and the vibration response. Any lack of synchronization in 
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the time domain acquisition of the two signals results in a frequency-dependent phase 

error in the FRF. However, knowledge of the time delay may be used to correct the FRF. 

In this research, tests were conducted to measure the frequency-dependent phase lag for 

both the capacitance gage system and LDV system and a frequency domain technique is 

proposed to correct the FRF for the phase lag. The method was also validated using an 

FRF measurement of an artifact mounted in a milling machine spindle. 

2.3.1 Experimental Setup to Measure Amplifier-induced Phase Lag  

The amplifier-induced phase lag was evaluated by measuring the phase shift between 

a “known” accelerometer and the capacitance gage/LDV system. The target was 

oscillated using a modal shaker (TIRAvib 51075) capable of generating oscillations up to 

5000 Hz. A function generator (Hewlett Packard 33120A) was used to drive the shaker at 

the desired fixed frequency. The target motion was measured using a low-mass 

accelerometer (PCB 352C23), a capacitance gage sensor (Lion Precision C23 B), and the 

LDV (Polytec OFV-534). The capacitance gage signal was amplified using a Lion 

Precision CPL 290 Elite series amplifier. The amplifier bandwidth was set to 15 kHz. The 

LDV signal was amplified using the Polytec OFV-5000 controller. The time delay of the 

OFV-5000 controller is sensitive to the range and low pass filter settings. In this research, 

measurements were performed with the controller range at 50 mm/s/V and the low pass 

filter set at 20 kHz. Data was acquired at 100 kHz using a NI 9215 data acquisition card 

mounted in a NI 9174 CompactDAQ chassis. Figure 2.17 shows a schematic 

representation of the measurement setup. The amplifier induced phase error, dispφ (deg), 

between the sinusoidal acceleration and displacement signals, a and x, with frequency, f, 

may be calculated using, 
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 ( ) 1cos 180disp

x af
ax

φ −  ⋅
= −  

 
 

(2.8) 

The amplifier induced phase error, velφ (deg), between the sinusoidal acceleration and 

velocity signals, a and v, with frequency, f, may be calculated using, 

 
 ( ) 190 cosvel

v
v a

afφ −  ⋅
= −   

 
 

(2.9) 

 
Figure 2.17: Schematic setup of experimental setup to measure amplifier induced phase 
lag. 

Measurements were conducted over a frequency range of 100 Hz to 5000 Hz. The 

measured data was digitally filtered using a 3rd order band pass filter with a bandwidth of 

100 Hz centered at the oscillation frequency. Figure 2.18 shows the measured phase lag 

as a function of the oscillation frequency. Within the measured bandwidth, the phase lag 

for the capacitance gage system changed linearly with respect to the oscillating frequency 

at a rate of -13.84 deg/kHz. For the LDV system, the rate of change of phase lag was 

found to be -10.27 deg/kHz. Both these values were consistent with the manufacturer-
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reported values [66, 67]. Scatter from the line in the 1000 Hz to 2000 Hz range was 

attributed to the rotary modes of vibration of the target. 

  
Figure 2.18: Measured phase lag as a function of oscillation frequency (CG – capacitance 
gage). 

2.3.2 Correction for Phase Lag 

FRF tests were performed on an artifact mounted in the spindle of a Haas TM-1 CNC 

vertical machining center. A modally tuned hammer (PCB 086C04) was used to impart 

an impulse force on the artifact and the response was measured using both a capacitance 

gage (Lion Precision C5D) and an accelerometer (PCB 352C23). The data was acquired 

at 100 kHz using the NI data acquisition device. For any FRF, the measured frequency-

dependent phase difference between the input force and the output response is, 

 
( ) ( )( )

( )( )
1

meas

Im FRF
tan

Re FRF
ω

φ ω
ω

−
 

=  
  

 
(2.10) 

where Re indicates the real part and Im indicates the imaginary part of the complex FRF. 

The phase difference is corrected to account for the amplifier induced phase lag using, 

 ( ) ( )  cor measφ ω φ ω θ ω= −∆ ⋅ , (2.11) 
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where Δθ is the rate of change of phase lag with frequency (the slope of the line in Figure 

2.18).The corrected Re and Im parts of the FRF may then be computed as [68], 

 ( )( )( )cor cor
Re FRF FRF cos φ ω= , and 

( )( )( )cor cor
Im FRF FRF sin φ ω= , 

(2.12) 

where |FRF| is the FRF magnitude, which is not affected by the amplifier-induced phase 

lag. Figure 2.19 shows the measured and corrected FRFs obtained using the capacitance 

gage. Notice that the uncorrected capacitance gage measurement deviates from the 

accelerometer FRF at higher frequencies, while the corrected capacitance gage FRF 

aligns closely with the accelerometer result. 

  
Figure 2.19: Comparison of FRF obtained using capacitance gage and accelerometer. 
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 DATA ANALYSIS CHAPTER 3: 

In this study, the dynamic response of a standard artifact mounted in the machine 

spindle was measured while the spindle was rotating. The out-of-roundness form errors 

and the SE motions compose part of the displacement measurement and must be 

extracted to accurately identify the machine spindle dynamics. The dynamics of a 

machine spindle are known to change as a function of spindle speed due to centrifugal 

effects, gyroscopic effects, and changes in bearing preload. The objective of the study is 

to measure these changes in spindle dynamics. Simultaneously, the SE motions were also 

measured to track any changes with spindle speed. The multi-probe error separation 

method was used to identify the SE motions and out-of-roundness form errors for the 

standard artifact. In this chapter, the data collection and analysis steps are presented. 

3.1 Dynamic Response of Machine Spindle 

3.1.1 Filtering Synchronous SE Motions and Artifact Form Error 

A laser tachometer was used to provide a once-per-revolution index which related the 

angular orientation of the machine spindle to the displacement and force signals. Figure 

3.1 shows a plot of the tachometer signal. Note that in this section, all the data used to 

demonstrate the data analysis procedure was collected with the setup oriented along the 

y-direction of the machine with the spindle rotating at 1000 rpm. The falling edge of the 

tachometer signal was selected as the beginning of each revolution (θ = 0). 
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Figure 3.1: Tachometer signal. 

 Figure 3.2 shows the displacement measurements for a single impulse load. Apart 

from the fundamental mode displacement signal, the SE motions and form errors in the 

nominally cylindrical artifact corrupt the response data. Therefore, it is necessary to 

eliminate the once-per-revolution data from the displacement signals to obtain the 

dynamic response. 

 
Figure 3.2: Displacement measurement for single impulse load. 
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The once-per-revolution displacement signal is estimated by averaging the 

displacement signals for a number of rotations. Note that the average is obtained from a 

part of the signal which does not include the dynamic response data. The tachometer 

provides an index which was used as a reference to identify the start point of each 

revolution of the spindle. The spindle speed may vary marginally leading to a different 

number of measured points for each rotation because the data was collected at a constant 

sampling rate. In order to obtain the once-per-revolution displacement at the same 

angular orientations for each revolution, the data for each rotation was mapped onto an 

angular orientation vector using piece-wise interpolation [69]. Once an average was 

obtained for a few revolutions, the once-per-revolution errors were mapped back to the 

original time vector and subtracted from the displacement signal to isolate the dynamic 

response. Figure 3.3 shows the averaged once-per-revolution errors obtained for the 

direct response signal. It should be noted that the averaged once-per-revolution errors 

only represents the synchronous error motions along the x- or y- fixed-sensitive direction 

in which the displacement sensor is oriented. Asynchronous error motions, which are not 

consistent for each rotation of the spindle, cannot be captured and continue to form part 

of the response data. 
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Figure 3.3: Once-per-revolution SE motion and artifact form error. 

Figure 3.4 shows the measured response data as well as the once-per-revolution fit. 

The direct response data, obtained by subtracting the fit, is shown in Figure 3.5.  

 
Figure 3.4: Plot of the measured response and the once-per-revolution fit. 
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Figure 3.5: Extracted direct response measurement. 

3.1.2 Windowing 

The dynamic response of the structure is estimated as the complex ratio of the 

discrete fast Fourier transforms (FFT), X(ω) and F(ω), of the response displacement, x(t), 

and the input impulse force, F(t), respectively; see Eq. 3.1. The FFT only predicts 

accurate values of the magnitude and phase of a sinusoidal signal if there are an integer 

number of cycles within the finite sampling time. Incomplete cycles within the sampling 

time result in the appearance of spectral content at frequencies surrounding the true 

sinusoidal frequency of the time domain signal. Energy is said to have “leaked” into the 

neighboring frequencies [60]. Leakage is an artifact that arises from the data analysis and 

is not a true representation of the input signal in the frequency domain. Leakage may be 

reduced by applying windows to the impulse and response data [60]. Windowing 

involves the imposition of a known profile on the time domain signals. A rectangular 

window was applied to the impulse signal while an exponentially decaying window was 

applied to the transient vibrations of the response. Figure 3.6 shows both the rectangular 
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impulse window and the exponential response window. In Figure 3.6 (right), the time 

axis is magnified to provide a better representation of the rectangular window. 

 

Figure 3.6: Impulse and response window. Magnified time axis (right). 

Figure 3.7 shows the effect of the exponentially decaying window on the response 

data. In Figure 3.7 (right), the vertical scale is expanded. The plot clearly shows that at 

the beginning of the response, where much of the important information is, the window 

has little effect on the data while after 0.1 s the response data is quickly suppressed. 

Therefore, the effects of the asynchronous SE motions are also reduced by applying an 

exponential window. Figure 3.8 shows the effect of the rectangular impulse window on 

impulse force data. The vertical scale is magnified in Figure 3.8 (right). The plot shows 

that the force data picked up due to the oscillations of the impact hammer after impulse 

are eliminated from the impulse force signal by applying the rectangular window. The 

width of the rectangular impulse window is 6.5 ms and the time constant of the 

exponential response window is 0.113. Note that for the exponential window, decay 

begins only at the end of the rectangular impulse window. These values are consistent 

with those used in commercially available instrumentation (MetalMax©) used for 

predicting the dynamic response of structures. In effect, applied windows also serve the 

purpose of zero padding. Zero padding consists of extending the force and response 
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signals with zeros. Zero padding improves the frequency domain resolution of the FRF. 

Zero padding serves the same purpose in the frequency domain that interpolation does in 

the time domain [60]. 

 
Figure 3.7: Effect of response window on displacement data. Magnified displacement 
axis (right). 

 
Figure 3.8: Effect of impulse window on force data. Magnified force axis (right). 

3.1.3 Impact Synchronous Time Domain Averaging 

To improve the fidelity of the FRF measurement, a number of measurements were 

averaged. Typically, averaging is performed in the frequency domain [60]. However, 

frequency domain averaging does not reduce the noise level of the measurement. For the 

rotating FRF measurements, an impact synchronous time domain averaging was 

performed [70]. Here, the different impulse force and response displacement 
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measurements were averaged in the time domain. The different measurements were 

synchronized so that the maximum value of the impact force occurs at the same time in 

the analysis. In this study, 20 measurements were averaged to obtain the mean impulse 

force and response displacement data. Figure 3.9 shows a plot of the different impulse 

forces and the average impulse force in the time domain. Figure 3.10 shows a plot of the 

direct response displacements and its average. By averaging in the time domain, the 

effect of the asynchronous SE motions was reduced. 

 
Figure 3.9: Impact synchronized time average of impulse force. 
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Figure 3.10: Impact synchronized time average of direct response data. 

3.1.4 Frequency Response Function 

Once the force and response data were processed in the time domain, the discrete fast 

Fourier transforms (FFT) of the averaged time domain response and force signals were 

calculate. Figure 3.11 shows the FFT of the response (left) and impulse signals (right). 

 
Figure 3.11: FFT of response (left) and impulse (right) signals. 

The FRF of the artifact tip mounted in the machine spindle was estimated using 

Eq.(2.1). It is repeated here for completeness. 
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( ) ( )

( )
X

H
F

ω
ω

ω
=  

(3.1) 

where X(ω) and F(ω) are the fast Fourier transforms (FFT) of the response signal, x(t), 

and force signal, F(t), respectively. The coherence provides an estimate of the reliability 

of the FRF prediction. The coherence is defined as [60], 

2

 xf

xx ff

S
Coherence

S S
=  

(3.2) 

where Sxf is the cross power spectral density function for a force signal f, and 

displacement signal x; Sff is the direct power spectral density function for a force signal f, 

and Sxx is the direct power spectral density function for a displacement signal x. The 

coherence should be less than or equal to 1. Ideally, the coherence is 1 over the entire 

measurement bandwidth. Figure 3.12 shows a plot of the estimated FRF. The coherence 

is plotted in Figure 3.13. A sharp drop in coherence was found at around 730 Hz. At this 

frequency, a significant increase in synchronous SE motions was observed (see Figure 

3.25). This showed that, although the synchronous error components and the artifact form 

errors were eliminated from the response while calculating the FRF as shown in the 

previous steps, high synchronous error motions may still influence the measured FRF. 

Figure 3.13 shows a plot of the coherence for a FRF measured at 1500 rpm. At this 

spindle speed the synchronous error motions at 730 Hz is low at the coherence of the FRF 

is close to 1 for the entire bandwidth on interest. 
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Figure 3.12: Real (top) and imaginary (bottom) parts of the estimated FRF. 

 
Figure 3.13: Coherence measured at 1000 rpm (left) and 1500 rpm (right): Haas1, y – 
direction.  

3.1.5 Frequency Response Function from Velocity Measurements 

The LDV produces an output voltage proportional to a change in velocity. In order to 
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( ) ( )

( )
1 V

H
i F

ω
ω

ω ω
= , 

(3.3) 

where V(ω) and F(ω) represent the FFTs of the velocity response and force signals 

respectively, ω is the frequency in rad/s. The once-per-revolution error elimination 

method used was the same as described earlier except with the velocity signal rather than 

a displacement signal. Figure 3.14 shows the measured velocity response in the time 

(left) and frequency (right) domains. The FRF is plotted in Figure 3.15. The velocity-to-

force response was integrated in the frequency domain to obtain the displacement-to-

force FRF. 

 
Figure 3.14: Measured velocity response: time domain (left), frequency domain (right). 

 
Figure 3.15: FRF estimated using velocity response data.  
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3.2 Multi-probe Error Separation 

In this study, the response of an artifact mounted in the machine spindle was 

measured as the spindle rotates. The position of the axis of the machine spindle is known 

to deviate from its ideal location as the spindle rotates. These deviations of the position of 

the spindle axis are known as spindle error motions. The magnitude of the error motions 

serves as a metric of the quality of the machine spindle. These errors may be dependent 

on the spindle speed. At different spindle speeds, different modes of the machine spindle 

structural assembly may be excited. Also, the errors may be affected by changes in 

centrifugal forces, gyroscopic effects, and spindle bearing preload which are all known to 

change with spindle speed. Therefore, it was necessary to characterize the SE motions for 

the entire range of spindle speeds. 

SE motions can be estimated by measuring the displacement of a precision ground 

spherical target mounted in the machine spindle along two orthogonal directions normal 

to the spindle axis. The out-of-roundness of the sphere leads to errors in the 

characterization of SE motions. The out-of-roundness of the target sphere may be 

accounted for using reversal methods [54, 55, 58, 59]. However, reversal techniques 

require more than one measurement. In this study, an imperfect cylindrical artifact, 

suitable for measuring the spindle’s dynamic response, was used as the target to measure 

both the SE motions and the spindle dynamics. Also, the artifact cylindrical profile is 

subject to change considering it is constantly subjected to impact loads. Therefore, to 

accurately extract the dynamic response data from the displacement measurement, it was 

necessary to accurately identify the out-of-roundness form errors in the artifact as well as 

the SE motions. In this study a multi-probe error separation approach was implemented 
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[58]. In this method, three displacement measuring sensors positioned at different angular 

orientations around the spindle axis are used to measure the displacement of the artifact 

mounted in the machine spindle as it rotates. The error separation approach and data 

analysis method is described here. 

 
Figure 3.16: Schematic of setup for multi-probe error separation. 

The three displacement capacitance gages are labeled as A, B, and C in Figure 3.16. 

The three displacement measurement signals are, 

 ( ) ( ) ( )Am R xθ θ θ= + , 

( ) ( ) ( ) ( ) cos sinBm R x yθ θ σ θ σ θ σ= − + + , and 

( ) ( ) ( ) ( ) cos sinCm R x yθ θ ρ θ ρ θ ρ= − + + , 

(3.4) 

where θ is the angular orientation of the machine spindle, σ is the angular orientation of 

gage B (99.84°), and ρ is the angular orientation of gage C (202.5°). R(θ), x(θ), and y(θ) 

are the artifact out-of-roundness form errors and SE motions in the x- and y-directions, 

respectively, as a function of spindle angular orientation, θ. Figure 3.17 shows the 

displacement measurements from the three sensors. To demonstrate the process, the data 
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collected at 1000 rpm on Haas1 is used with the setup oriented along the machine y-

direction. 

 

 
Figure 3.17: Displacement signal for a single revolution at 1000 rpm. 0 deg (top left), 
99.84 deg (top right), 202.5 deg (bottom). 

The three measurement signals are manipulated to eliminate the contributions of the 

error motions, x(θ) and y(θ). Figure 3.18 shows the combined signal. 

 ( ) ( ) ( ) ( ) A B CM m a m b mθ θ θ θ= + ⋅ + ⋅ . (3.5) 
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Figure 3.18: Combined displacement signal M. 

Upon substitution from Eq. (3.4), 

 ( ) ( ) ( ) ( ) ( )( )
( )( )

   1 cos sin

 sin cos .

M R aR bR x a b

y a b

θ θ θ σ θ ρ θ σ ρ

θ σ ρ

= + − + − + + ⋅ + ⋅

+ ⋅ + ⋅  

(3.6) 

The values of a and b are selected so that the contributions of x(θ) and y(θ) towards 

M(θ) are eliminated. 

 ( )0 1 cos sina bσ ρ= + ⋅ + ⋅  

0 ( sin cos )a bσ ρ= ⋅ + ⋅  

(3.7) 

Solving Eq. (3.7) simultaneously gives, 

 sin
sin(  )

a ρ
σ ρ

=
−

, and  

sin
sin(  )

b σ
σ ρ

−
=

−
. 

(3.8) 

The out-of-roundness form error predictions must maintain continuity at 0° and 360°. 

Therefore, the out-of-roundness errors are defined in terms of undulations per revolution 

(UPR). UPR corresponds to the number of complete sinusoidal cycles in the form profile 

of the artifact. The total out-of-roundness error can be expressed as the sum of individual 

contributions from the different UPRs. The out-of-roundness errors of a circular artifact 
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may be expressed as the sum of a Fourier series. The coefficients of the Fourier series 

terms relate to the magnitude and phase (relative to spindle orientation) of the 

corresponding UPR. Therefore, the out-of-roundness form errors of the artifact may be 

expressed as, 

 
( )

1

cos  cos k k
k

R A k B kθ θ θ
∞

=

= +∑  
(3.9) 

where k is the number of UPR. Substituting Eq. (3.6) into Eq. (3.9), expanding, and 

grouping the like terms gives, 

 
( ) ( ) ( )

( ) ( )

1 1

1 1

1 cos sin cos  sin cos sin  

1 cos sin sin   sin cos cos . 

k k
k k

k k
k k

M A a k b k k A a b k

B a k b k k B a b k

θ σ ρ θ σ ρ θ

σ ρ θ σ ρ θ

∞ ∞

= =

∞ ∞

= =

= + ⋅ + ⋅ + ⋅ + ⋅

+ + ⋅ + ⋅ − ⋅ + ⋅

∑ ∑

∑ ∑
 

(3.10) 

M(θ) may also be expressed as the sum of a Fourier series, 

 
( )

1

cos  cos k k
k

M F k G kθ θ θ
∞

=

= +∑  
(3.11) 

The coefficients Fk and Gk can be evaluated from the FFT of M(θ). Figure 3.19 shows 

a plot of Fk and Gk, plotted as a function of UPR. 

 
Figure 3.19: Fourier coefficients of combined measurement signal: real part Fk (left) and 
imaginary part Gk (right). 
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The Fourier coefficients of the out-of-roundness form errors of the artifact, Ak and Bk, 

may then be evaluated as, 

 1
k k k k

k k k k

A F
B G

α β
β α

−−     
=    

     
, 

(3.12) 

where ( )1 cos sin  k a k b kα σ ρ= + ⋅ + ⋅ and ( )sin cosk a bβ σ ρ= ⋅ + ⋅ . Figure 3.20 shows 

the Fourier coefficients of the artifact form error, Ak and Bk, plotted as a function of UPR. 

The artifact form error may then be reconstructed using Eq. (3.9). Figure 3.21 shows a 

polar plot of the artifact form error as a function of theta. 

 
Figure 3.20: Fourier coefficients of constructed artifact form error: real part Ak (left) and 
imaginary part Bk (right). 
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Figure 3.21: Polar plot of artifact form error. 

Once the form errors of the artifact are evaluated, the SE motions along the 

measurement direction may be estimated as, 

 ( ) ( ) ( )  Ax R mθ θ θ= − . (3.13) 

The synchronous SE motions correspond to the component of the error which is 

consistent for each revolution of the spindle. The synchronous error motions may be 

obtained by averaging the total SE motions for a number of rotations. In the averaging 

process, the asynchronous component of the error is eliminated. The asynchronous 

component of the SE motion is calculated by subtracting the synchronous part from the 

total error. Figure 3.22 (left) shows the total SE as a function of spindle orientation in the 

fixed sensitive y-direction. The synchronous component is shown in Figure 3.22 (middle) 

and the asynchronous component is shown in Figure 3.22 (right). The magnitude of the 

synchronous SE is defined as the difference between the maximum and minimum value 
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for any polar orientation, i.e., the difference between two solid circles as shown in Figure 

3.22 (middle). The magnitude of the asynchronous SE is also defined similarly. 

 
Figure 3.22: Polar plot of SE motions: total SE (left), synchronous SE (middle), 
asynchronous SE (right). 

The asynchronous error standard deviation is a polar plot of the standard deviation of 

the asynchronous error at each angular orientation taken for a number of rotations. Figure 

3.23 shows a polar plot of the standard deviation in the asynchronous SE as a function of 

θ. Notice the change in scale. 

 
Figure 3.23: Polar plot of standard deviation of asynchronous SE motions measured 
along the fixed sensitive y-direction on Haas1. 
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motions were combined to produce a rotating sensitive direction SE motions. The 

rotating-sensitive direction error, r(θ), is, 

 ( ) ( ) ( ) ( ) ( ) cos sinr x yθ θ θ θ θ= + . (3.14) 

Figure 3.24 shows the synchronous SE motions measured in the fixed sensitive x- and 

y-directions as well as in the rotating sensitive direction. The results plotted here were 

measured on Haas1 at a spindle speed of 1000 rpm. 

 
Figure 3.24: Polar plot of synchronous SE motions: fixed sensitive x- (left), fixed 
sensitive y- (middle), rotating sensitive (right). 

A fast Fourier transform (FFT) of the SE motions provides an estimate of the 

frequency content. The FFT was computed separately for the synchronous and 

asynchronous SE motions. For the plots of FFT of the synchronous SE motions, the 

horizontal axis was normalized by the spindle speed to represent ‘undulations per 

revolution’. Figure 3.25 shows the magnitudes of the FFT of the synchronous SE motions 

in the fixed-sensitive x- (left) and y-directions (middle) as well as in the rotating-sensitive 

direction (right) measured at a spindle speed of 1000 rpm. It is evident from the plots that 

the synchronous errors occur at the harmonics of spindle speed as expected. There is a 

sharp peak at 44 cycles per revolution in the synchronous error in the fixed-sensitive y-

direction. 
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Figure 3.25: FFT of synchronous SE motions: fixed sensitive x- (left), fixed sensitive y- 
(middle), rotating sensitive (right). 

The FFT of the asynchronous SE motions may also be evaluated. Figure 3.26 shows a 

plot of the magnitude of the FFT of the asynchronous SE motions in the fixed sensitive x- 

(left), the fixed sensitive y- (middle), and the rotating sensitive (right) directions. In the 

case of the asynchronous SE motions, the horizontal axis represents frequency. It was 

observed from the plot of FFT in the fixed sensitive y-direction that there is an increase in 

errors at around 730 Hz. This frequency corresponds to 44 UPRs at 1000 rpm. It was 

shown in Figure 3.25 that a peak in the fixed sensitive y-direction SE motions occurs at 

44 UPRs. 

 
Figure 3.26: FFT of synchronous SE motions: fixed sensitive x- (left), fixed sensitive y- 
(middle), rotating sensitive (right). 
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the integrated displacement was processed through a high pass 3rd order Butterworth 

filter. The cut-off frequency was set at half the spindle speed. The measured velocity 

(left), the integrated displacement (middle), and the high pass filtered displacement 

(right) are shown in Figure 3.27. 

 
Figure 3.27: Velocity (left), integrated displacement (middle), and high pass filtered 
displacement (right) derived from LDV output. 
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curves represent the ±3 σ lines, where σ represents the standard deviation. Note that a 

different standard deviation was calculated for each angular orientation. The mean 

standard deviation was also calculated. The mean standard deviation for the form 

measurement was 6.3 nm, while that for the synchronous SE motions was 63 nm. 

 
Figure 3.28: Superimposed form errors (left) and synchronous SE motions (right) for ten 
averages. 

 
Figure 3.29: Mean and ±3 σ standard deviation curves for form error (left) and 
synchronous SE (right). 
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the accuracy of SE measurements. In this section, the influence of sampling rate on SE 

motion measurements is discussed. 

In order to make accurate estimations of SE motions over a wide range of UPRs, a 

large number of data points per revolution are required. At high spindle speeds, the 

number of data points acquired per rotation decreases for a fixed sampling rate and the 

ability to estimate the magnitude of the higher UPRs is compromised. For example, for a 

measurement performed at 50,000 rpm with a sampling rate of 100,000 Hz, 120 data 

points are collected for each rotation of the spindle. This corresponds to an angular 

resolution of one data point every three degrees of rotation. This sets the Nyquist limit at 

60 UPRs (half the number of data points per revolution). Any SE motions or artifact form 

errors which may be present at a spatial frequency higher than 60 UPRs cannot be 

measured. The Nyquist limit in UPRs may be estimated as, 

 30 SRNyquist ⋅
=

Ω , 

(3.15) 

where SR is the sampling rate (Hz) and Ω is the spindle speed (rpm). Furthermore, when 

the Nyquist limit is low, the presence of frequency content above the Nyquist cut-off 

frequency results in aliasing unless analog filters are applied. 

Furthermore, in order to evaluate SE motions, data is collected for a number of 

rotations and averaged. A laser tachometer is used to synchronize the angular orientation 

of the spindle with the displacement signal. The tachometer signal provides a reference to 

indicate the 0°orientation. The measurement data is then mapped from the time domain 

onto a corresponding angular orientation vector. However, the tachometer signal, 

acquired using the data acquisition system, collects data at discrete time intervals. This 

may result in a delay in observing the actual 0° orientation of the spindle. Figure 3.30 
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provides an illustration where the falling edge of the tachometer signal, which indicates 

the 0° orientation, is observed only after a delay δθ. This delay results in mapping errors 

when the displacement signal is mapped onto the angular orientation. As the number of 

samples collected per rotation decreases, the standard deviation of the error δθ increases, 

resulting in larger errors in the estimated form and SE motions. 

 
Figure 3.30: Delay in detecting spindle 0° orientation.  

3.2.3 SE Motion Validation 

In order to validate the SE motion measurements, the SE motions were measured for 

a different artifact cross section with different form errors. The estimated synchronous SE 

motions were then compared. Figure 3.31 shows a comparison of the synchronous error 

motions measured at two different sections of the artifact in the fixed sensitive y-

direction measured at 1000 rpm on Haas1. Both the error profiles were within the ± 3 σ 

curves. The artifact form at the two sections is plotted in Figure 3.32. 
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Figure 3.31: Measured synchronous SE motions at the two different cross-sections. 

 

 
Figure 3.32: Form error of the artifact at the two different cross-sections. 
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 EXPERIMENTAL RESULTS CHAPTER 4: 

In this study, speed-dependent structural dynamics and SE motion tests were 

performed on three nominally identically Haas TM1 CNC vertical machining centers and 

an NSK HES-500 high speed spindle. In this section, the experimental results for Haas1 

and the high speed spindle are presented. The experimental results of Haas2 and Haas3 

are presented in Appendix A and Appendix B. 

4.1 Haas1 CNC Vertical Machining Center Studies 

4.1.1 Speed-dependent Dynamics 

In this study, rotating FRF tests were performed on two different targets: 1) the 

standard cylindrical artifact, and 2) a half inch diameter solid carbide blank mounted in a 

shrink fit tool holder. Tests were performed over a spindle speed range of 0 to 4000 rpm 

in increments of 500 rpm. 

4.1.1.1 Standard Cylindrical Artifact 

The FRF measurements on the standard cylindrical artifact were measured using 

setup 1 described previously. Figure 4.1 shows a plot of the magnitude of the FRF 

measured along the machine x-direction. Two distinct modes were observed at 881 Hz 

and 1043 Hz. Figure 4.2 shows a magnified view of the FRF around the two most 

compliant modes. Spindle speed was found to have a significant effect on the measured 

FRF. 
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The variation of the magnitude and frequency of the two largest peaks in the FRF 

were tracked as a function of spindle speed. Figure 4.3 shows a plot of the changes in 

magnitude and natural frequency of the two modes at 881 Hz and 1043 Hz. Note that the 

two frequencies used to identify the modes were as observed in the FRF measured at 0 

rpm. The vertical axis of the plots in Figure 4.3 only denotes the changes in magnitude 

and frequency. After an initial increase up to 1000 rpm, the magnitude of the FRF was 

found to decrease with an increase in spindle speed suggesting an increase in stiffness at 

higher spindle speeds. 

Figure 4.4 shows a plot of the magnitude of the FRF measured along the machine y-

direction. The magnified view of the FRF is shown in Figure 4.5. As seen, the portion of 

the FRF between 900 Hz and 1000 Hz consists of two modes which interact with each 

other. The magnitude of the mode at 961 Hz was found to increase with spindle speed up 

to 2000 rpm following which it decreases to less than its original magnitude. Once again, 

a stiffening effect is observed with spindle speed. Also, note that the magnitude of the 

FRF measured along the machine y-direction is around three times as high as the 

magnitude measured in the machine x-direction. This suggests that the machine is stiffer 

along the x-direction. 
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Figure 4.1: Standard cylindrical artifact FRF: x-direction. 

 
Figure 4.2: Standard cylindrical artifact FRF: x-direction (magnified view). 

 
Figure 4.3: Changes in magnitude and frequency of two most compliant modes: 
cylindrical artifact FRF measurement, x-direction. 
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Figure 4.4: Standard cylindrical artifact FRF: y-direction. 

 
Figure 4.5: Standard cylindrical artifact FRF: y-direction (magnified view). 

 
Figure 4.6: Changes in magnitude and frequency of two most compliant modes: 
cylindrical artifact FRF measurement, y-direction. 
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4.1.1.2 Solid Carbide Blank 

The FRF measurements on the solid carbide blank were performed using setup 2. 

Figure 4.7 shows the magnitude of the FRF measured along the machine x-direction. The 

magnified view is plotted in Figure 4.8. Once again, the spindle speed was found to have 

a strong influence on the measured FRF. 

The magnitude of the FRF for the mode at 1127 Hz was found to increase up to a 

spindle speed of 1500 rpm following which it decreases to approximately its original 

magnitude. Also, the frequency of the mode at 1127 Hz was found to steadily increase to 

approximately 1339 Hz. Figure 4.9 tracks the changes in the two most compliant modes 

of the FRF. 

Figure 4.10 shows a plot of the magnitude of the FRF measured along the machine y-

direction. Once again, a stiffening effect was observed with increase in spindle speed.  
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Figure 4.7: Solid carbide blank FRF: x-direction. 

 
Figure 4.8: Solid carbide blank FRF: x-direction (magnified view). 

 
Figure 4.9: Changes in magnitude and frequency of two most compliant modes: solid 
carbide blank FRF measurement, x-direction. 
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Figure 4.10: Solid carbide blank FRF: y-direction.  

 
Figure 4.11: Solid carbide blank FRF: y-direction. (magnified view).  

 
Figure 4.12: Changes in magnitude and frequency of two most compliant modes: solid 
carbide blank FRF measurement, y-direction. 
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4.1.2 SE Motions for Haas1 

4.1.2.1 Artifact Form Error 

Figure 4.13 shows a plot of the artifact form error measured at eight different spindle 

speeds superimposed on each other. The artifact form error measured at different spindle 

speeds was found to match closely. That maximum deviation in form error between the 

eight predictions was found to be 73 nm. 

 
Figure 4.13: Comparison of artifact form error measured at different spindle speeds. 

4.1.2.2 Synchronous SE Motions 

Figure 4.14 and Figure 4.15 show polar plots of the synchronous SE motions in the 

fixed sensitive x-direction (left column), fixed sensitive y-direction (middle column), and 

rotating sensitive direction (right column). The encompassing lines represent the ± 2 σ 

standard deviations, evaluated as discussed in section 3.2.2.1. The highest synchronous 

SE motions were observed at 1000 rpm in the fixed sensitive y-direction. 
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Figure 4.14: Synchronous SE motion: fixed sensitive x-direction (left); fixed sensitive y-
direction (middle); rotating sensitive direction (right). Spindle speeds: 500 rpm, 1000 
rpm, 1500 rpm, 2000 rpm. 
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Figure 4.15: Synchronous SE motion: fixed sensitive x-direction (left); fixed sensitive y-
direction (middle); rotating sensitive direction (right). Spindle speeds: 2500 rpm, 3000 
rpm, 3500 rpm, 4000 rpm. 
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Figure 4.16: Peak-to-valley estimate of synchronous SE motions. 

Figure 4.16 shows a plot of the peak-to-valley magnitude of the synchronous error 

motions as defined in section 3.2. The error bars indicate the ±1 σ deviations in peak-to-

valley magnitude. The maximum error was observed in the fixed sensitive y-direction at 

1000 rpm. 

4.1.2.3 Asynchronous SE Motions 

Figure 4.17 shows a polar plot of the 1σ standard deviations of the asynchronous SE 

motions as a function of spindle orientation in the fixed sensitive x-direction (top), fixed 

sensitive y-direction (middle), and rotating sensitive direction (bottom). The maximum 

values of the 1σ standard deviations are plotted in Figure 4.18. The magnitude of the 

asynchronous error was found to be maximum at the highest speed in the fixed sensitive 

y-direction and the rotating sensitive direction. However, in the fixed sensitive x-

direction, the asynchronous error magnitude was highest at 3000 rpm. 
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Figure 4.17: 1σ standard deviation of asynchronous SE motion: fixed sensitive x-
direction (top); fixed sensitive y-direction (middle); rotating sensitive direction (bottom). 
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Figure 4.18: Maximum 1σ standard deviation of asynchronous SE motion. 

4.1.2.4 Frequency Content of SE Motions 

Figure 4.19 to Figure 4.21 show the frequency content of the synchronous SE 

motions in the fixed sensitive x-direction, fixed sensitive y-direction, and the rotating 

sensitive direction respectively. The horizontal axis is normalized by the spindle speed to 

denote undulations per revolution (UPR). There is a sharp peak at 44 UPRs in the fixed 

sensitive y-direction. This peak corresponds to a synchronous error which repeats 44 

times every revolution. This is also evident in Figure 4.14. In the rotating sensitive 

direction, two peaks were observed at 43 and 45 UPRs. 

Figure 4.22 to Figure 4.24 show the frequency content of the asynchronous SE 

motions in the fixed sensitive x-direction, fixed sensitive y-direction and the rotating 

sensitive direction respectively. In this case the horizontal axis represents frequency. An 

increase in asynchronous error content was observed at 730 Hz in the fixed sensitive y-

direction (Figure 4.23) at 1000 rpm. This frequency corresponds to 44 UPRs at 1000 rpm 

at which there is also an increase in synchronous error motions. Also, poor coherence was 

observed in the measured FRF at 730 Hz as previously observed (Figure 3.13). 
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Figure 4.19: Magnitude of FFT of synchronous SE in fixed-sensitive x-direction. 
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Figure 4.20: Magnitude of FFT of synchronous SE in fixed-sensitive y-direction. 
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Figure 4.21: Magnitude of FFT of synchronous SE in rotating sensitive direction. 
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Figure 4.22: Magnitude of FFT of asynchronous SE in fixed-sensitive x-direction. 
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Figure 4.23: Magnitude of FFT of asynchronous SE in fixed-sensitive y-direction. 
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Figure 4.24: Magnitude of FFT of asynchronous SE in rotating sensitive direction. 
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4.2 NSK HES-500 HIGH SPEED SPINDLE 

4.2.1 Speed-dependent Spindle Dynamics 

The NSK HES-500 high speed spindle has a maximum permissible spindle speed of 

50 krpm. In this study, dynamics measurements were performed between 0 rpm to 50 

krpm in increments of 5 krpm. The high speed spindle was mounted in the Haas1 spindle 

using a CAT-40 connection. A solid carbide blank (3.175 mm diameter) was mounted in 

the high speed spindle. The stick-out length of the carbide blank from the collet face was 

5 mm. Both the structural dynamics, and SE motion measurements were performed with 

the carbide blank as the target. The structural dynamics measurements were performed 

using setup 2. 

Figure 4.25 shows a plot of the magnitude of the FRF measured along the machine x-

direction. Firstly, it was observed that the stationary condition (0 rpm) FRF was 

significantly different than the rotating FRFs. Figure 4.26 tracks the changes in stiffness 

and natural frequencies of the two most compliant modes in the FRF. The natural 

frequency of the mode at 3048 Hz was found to steadily decrease with spindle speed. At 

50 krpm, the difference in natural frequency was approximately 400 Hz. The magnitude 

of the mode at 3048 Hz was also found to decrease (relative to magnitude at 5 krpm) with 

spindle speed implying a stiffening effect. 

Figure 4.27 shows the FRF magnitude along the machine y-direction. Once again, the 

natural frequency of the mode at 2959 Hz steadily decreases with spindle speed. Figure 

4.28 shows the changes in the magnitude and frequency of the two most compliant modes 

of the FRF. 
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The carbide blank was mounted in the high speed spindle using a collet chuck. The 

dynamics of the system is highly sensitive to the connection stiffness at the collet. The 

repeatability of the measurement and the influence of connection stiffness and tightening 

torque on the dynamic response of the high speed spindle warrants further investigation. 

 
Figure 4.25: Speed-dependent FRF measurements on high speed spindle: x-direction. 

 
Figure 4.26: Changes in magnitude and frequency of two most compliant modes: x-
direction. 
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Figure 4.27: Speed-dependent FRF measurements on high speed spindle: y-direction. 

 
Figure 4.28: Changes in magnitude and frequency of two most compliant modes: y-
direction. 
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krpm in increments of 5 krpm). The data was then segmented into ten sections of 450 

rotations, and the mean form and synchronous SE motions were estimated as described in 

section 3.2.2.1. 

4.2.2.1 Artifact Form Error 

Figure 4.29 shows a plot of the artifact form error for the ten spindle speeds, 

superimposed on each other. The maximum deviation in form error between the ten 

predictions was found to be 434 nm. The variation in the measured form error was 

attributed to the constraints imposed by the low sampling rate relative to the spindle 

speed and the integration errors. These errors may be remedied by using a higher 

sampling rate data acquisition system and a displacement sensor. The influence of 

sampling rate on the performance of the multi-probe error separation technique warrants 

further investigation. 

 

Figure 4.29: Comparison of artifact form error measured at different spindle speeds. 
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4.2.2.2 Synchronous SE Motions 

Figure 4.31 shows the synchronous SE motions in the fixed sensitive x-direction 

(top), fixed sensitive y-direction (middle), and the rotating sensitive direction (bottom). 

The synchronous SE motions for the 10 different measurement speeds are superimposed 

on each other. In the case of the high speed spindle, the form of the synchronous SE 

motions was found to remain consistent over the entire speed range unlike for the Haas1 

machine described earlier. 

Figure 4.30 shows a plot of the peak-to-valley synchronous errors. The error bars 

indicate the ±1 σ deviation in the estimate. The synchronous SE motions were found to 

decrease with increasing spindle speed. However, this may be due to the difficulty in 

estimating high angular frequency error content due to constraints in the sampling rate. 

As previously mentioned, the influence of sampling rate on SE motion estimation 

warrants further investigation. 

 
Figure 4.30: Peak-to-valley estimate of synchronous SE motions. 
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Figure 4.31: Synchronous SE: fixed sensitive x-direction (top), fixed sensitive y-direction 
(middle), rotating sensitive direction (bottom). 
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4.2.2.3 Asynchronous SE motions 

Figure 4.33 shows polar plots of the 1σ standard deviations of the asynchronous SE 

motions as a function of spindle orientation in the fixed sensitive x-direction (top), the 

fixed sensitive y-direction (middle), and the rotating sensitive direction (bottom). The 

asynchronous error motions were found to increase with spindle speed. A strong 

directionality was observed in the polar plot of the asynchronous errors. The standard 

deviation of the asynchronous errors was found to be highest at spindle orientations 

between 30° and 60°. This was particularly true in the fixed sensitive y-direction and the 

rotating sensitive direction. 

The maximum values of the 1σ standard deviations of the asynchronous error motions 

are plotted in Figure 4.32. The maximum asynchronous errors were observed at 45 krpm. 

 
Figure 4.32: Maximum 1σ standard deviation of asynchronous SE motion. 
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Figure 4.33: 1σ standard deviation of asynchronous SE motion: fixed sensitive x-
direction (top); fixed sensitive y-direction (middle); rotating sensitive direction (bottom).  
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4.2.2.4 Frequency Content of SE Motions 

Figure 4.34 to Figure 4.36 show the frequency content of the synchronous SE 

motions in the fixed sensitive x-direction, fixed sensitive y-direction, and the rotating 

sensitive direction, respectively. The horizontal axis is normalized by the spindle speed to 

denote undulations per revolution (UPR). Figure 4.37 to Figure 4.39 show the frequency 

content of the asynchronous SE motions in the fixed sensitive x-direction, fixed sensitive 

y-direction and the rotating sensitive direction respectively. In this case the horizontal 

axis represents frequency. An increase in the higher frequency content of the 

asynchronous errors was observed with increasing spindle speed. As the spindle speed 

increases, the frequency band influenced by unbalances in the spindle also increases. 
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Figure 4.34: Magnitude of FFT of synchronous SE in fixed-sensitive x-direction. 
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Figure 4.35: Magnitude of FFT of synchronous SE in fixed-sensitive y-direction. 
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Figure 4.36: Magnitude of FFT of synchronous SE in rotating-sensitive direction. 
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Figure 4.37: Magnitude of FFT of asynchronous SE in fixed-sensitive x-direction. 

0 500 1000 1500 2000
0

5

10

15

20
x 10

-8

 

 
5000

0 500 1000 1500 2000
0

5

10

15

20
x 10

-8

 

 
10000

0 500 1000 1500 2000
0

5

10

15

20
x 10

-8

 

 
15000

0 500 1000 1500 2000
0

5

10

15

20
x 10

-8

 

 
20000

0 500 1000 1500 2000
0

5

10

15

20
x 10

-8

M
ag

ni
tu

de
 o

f F
FT

 o
f a

sy
nc

hr
on

ou
s 

er
ro

rs
 in

 fi
xe

d 
x-

se
ns

iti
ve

 d
ire

ct
io

n 
(m

)

 

 
25000

0 500 1000 1500 2000
0

5

10

15

20
x 10

-8

 

 
30000

0 500 1000 1500 2000
0

5

10

15

20
x 10

-8

 

 
35000

0 500 1000 1500 2000
0

5

10

15

20
x 10

-8

 

 
40000

0 500 1000 1500 2000
0

5

10

15

20
x 10

-8

Frequency (Hz)

 

 
45000

0 500 1000 1500 2000
0

5

10

15

20
x 10

-8

Frequency (Hz)

 

 
50000



 

103 

 

 
Figure 4.38: Magnitude of FFT of asynchronous SE in fixed-sensitive y-direction. 
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Figure 4.39: Magnitude of FFT of asynchronous SE in rotating-sensitive direction. 
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RECEPTANCE COUPLING SUBSTRUCTURE ANALYSIS CHAPTER 5: 

Machining instability (chatter) leads to poor surface finish, high part rejection rates, 

rapid tool wear, and, potentially, spindle damage. Stable machining conditions may be 

identified using well-known milling process models [1]. This aids in pre-process 

parameter selection for optimal machining conditions. In order to identify stable 

machining conditions, the dynamics of the tool-holder-spindle-machine assembly as 

reflected at the tool tip is required. The FRF, which represents the structural dynamics, 

may be measured using modal techniques. In practice, a large number of different tool-

holder combinations are available for a selected machining center. The cost of 

experimentally identifying the tool tip dynamics for each tool-holder combination may be 

prohibitively high in some cases. Receptance coupling substructure analysis (RCSA) 

provides a useful approach to predict the tool point response from a single measurement 

of the spindle-machine and models of the desired tool-holder combinations [1]. 

To complete the RCSA procedure, four spindle-machine receptances are required: 

displacement-to-force, displacement-to-couple, rotation-to-force, and rotation-to-couple. 

Only the former is convenient to measure. Therefore, in recent work [44], a procedure 

was described where each displacement-to-force mode in the measurement bandwidth 

was modeled as a fixed-free Euler-Bernoulli (EB) beam. Given an analytical description 

of each mode’s fixed-free EB model, the other three receptances can also be described 

analytically [71] for that mode and no additional measurements are required. The sum of 
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the single mode fits are used to describe the four required spindle responses. This fitting 

procedure was manually completed mode-by-mode in the previous work. In this study, an 

optimization technique is implemented to automate the identification of the EB beam 

parameters for each mode. 

5.1 RCSA Background 

RCSA enables assembly dynamics to be predicted when the receptances of the 

individual components are known. The receptances of the individual components may be 

analytically modeled or measured. Conversely, the component receptances may be 

determined if the assembly receptances (as well as the other components receptances) are 

known, again through either models or measurements. This is referred to as inverse 

RCSA. For milling applications, the tool-holder-spindle-machine may be separated into 

two individual components: (I) the tool (endmill) and holder combination; and (II) the 

spindle-machine. In practice, many different tool-holder combinations are used in 

machining operations. The tool-holder receptances may be modeled as free-free 

Timoshenko beams. On the other hand, it is challenging to model the spindle-machine 

receptances. The spindle-machine receptances are also subject to change over the lifetime 

of the spindle. Therefore, it is generally more convenient to experimentally identify the 

spindle-machine receptance and archive it for each machine. Once the spindle-machine 

receptances are identified experimentally, they may be coupled with the modeled tool-

holder receptances using RCSA to predict the tool point direct FRF. 

In order to experimentally identify the spindle-machine receptances, a standard 

artifact with the appropriate taper geometry (e.g., CAT or HSK) is inserted in the spindle. 

Figure 5.1 provides a schematic of the setup, where { } { }T
i i iU X= Θ represents the 
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assembly generalized displacement coordinates and consists of a displacement, Xi, and a 

rotation, Θi. { }T i i iQ F M= represents the assembly generalized forces and consists of a 

force, Fi, and a couple (or moment), Mi. The four assembly receptances are then defined 

as: 

 ij ij
ij

ij ij

H L
G

N P
 

=  
 

, 
(5.1) 

where{ } { }i ij jU G Q =   . 

Similarly, { }T
i i iu x θ= represents the component generalized displacement 

coordinates and consists of a displacement, xi, and a rotation, θi. { }T i i iq f m=

represents the component generalized forces and consists of a force, fi, and a couple (or 

moment), mi. The component receptances are then defined as: 

 ij ij
ij

ij ij

h l
R

n p
 

=  
 

, 
(5.2) 

where { } { }i ij ju R q =   . 

The direct, displacement-to-force FRF at the free end of the artifact-spindle-machine, 

G11, assembly is measured. The direct, R11 and R2a2a, and cross, R12a and R2a1, receptance 

matrices for the portion of the standard artifact beyond the flange are described using 

free-free Timoshenko beam models. The spindle-machine receptances at the flange, R2b2b, 

are unknown. The assembly receptance at the tip can be defined as [1, 44]: 

 ( ) 1
11 11 12 2 2 2 2 2 1  a a a b b aG R R R R R−= − + , (5.3) 

where R2b2b is the only unknown. It is obtained by rearranging Eq. (5.3).  
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 ( ) 1
2 2 2 1 11 11 12 2 2   b b a a a aR R R G R R−= − − . (5.4) 

 

Figure 5.1: Schematic of the RCSA components. 

As shown in Eq. (5.4), the receptances for the spindle-machine may be determined 

from the modeled direct and cross artifact receptances and the assembly receptances, G11, 

where G11 consists of H11, L11, N11, and P11 as previously described. H11 = X1/F1 can be 

measured using impact testing methods. Kumar and Schmitz [44] developed a method to 

fit the assembly response using multiple fixed-free EB beams. The number of EB beams 

corresponded to the number of modes within the measurement bandwidth. A manual, 

iterative approach was used to identify the individual beam geometries. Once the fixed-

free EB beams were fit, the model parameters were used to compute L11, N11, and P11 

[71] and fully populate the G11 matrix. The spindle-machine component receptances are 
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then identified using Eq. (5.4). These spindle receptances are coupled to modeled tool-

holder receptances to predict the assembly tool point FRF. 

Kumar and Schmitz [44] used the analytical, close-form EB beam receptances 

presented by Bishop and Johnson [71] to describe each measured displacement-to-force 

mode; see Eq. (5.5), where ω is the frequency (rad/s), dj is the beam diameter, Lj is the 

beam length (m), ρj is the density (kg/m3), Ej is the elastic modulus (N/m2), ηj is the 

unitless solid damping factor, and fnj is the natural frequency. The subscript j corresponds 

to the jth mode. 

 
 

( ) ( ) ( ) ( )
( ) ( )11 3

sin cosh cos sinh  

(1 )(cos cosh 1)
j j j j j j j jj

j j j j j j j j

L L L L
H

E I i L L

λ λ λ λ

λ η λ λ

−
=

+ −
, 

(5.5) 

where
2

4

(1 )
j j

j
j j j

A
E I i
ω ρ

λ
η

=
+

,
2

4
j

j

d
A

π
= , and 

4

64
j

j

d
I

π
= . 

For a given diameter, dj, natural frequency, fnj, density, ρj, and elastic modulus, Ej, the 

beam free length is obtained from a closed form expression for the natural frequency of a 

fixed-free cylindrical beam [72]; see Eq. (5.6). This free length of the beam is used in Eq. 

(5.5). 

 1
1 2

2 21.87510407
2 16

j j
j

n j j

d E
L

fπ ρ

 
  =    
  

 

 

(5.6) 

All the beams were modeled assuming the material properties of steel (ρ = 7800 

kg/m3 and E = 200 GPa). Then, for each mode within the measured bandwidth, a 

corresponding diameter, dj, solid damping factor, ηj, and a natural frequency, fnj, was 

identified by an iterative process such that the combined receptance for all modes 

accurately represents the fit displacement-to-force receptance, H11
f; see Eq. (5.7). 
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 .   

11 11
1

no of modes
f j

j

H H
=

= ∑  
(5.7) 

In this study a simplex based Nelder-Mead optimization technique was applied to 

identify the fixed-free EB beam properties. This considerably reduces the difficulty in 

identifying the beam parameters in comparison with the manual, iterative fitting 

procedure. The FRF for each mode within the measured bandwidth may also be 

represented by an equivalent modal mass, Mj, damping ratio, 𝜉j , and natural frequency, 

fnj, as: 

 
11 2

1j

j j j

H
M i C Kω ω

=
− + +

, 
(5.8) 

where ( )2
2j j n jK M fπ=  and  2j j j jC M Kξ= . Eq (5.8) is computationally less 

expensive than Eq (5.5) and was therefore used in the optimization process to identify an 

equivalent modal mass, Mj, damping ratio, 𝜉j , and natural frequency, fnj, for each mode. 

Eq. (5.7) was used to sum the contributions of all the modes within the measured 

bandwidth. The optimization objective was to minimize the difference between the fit 

receptance and the measured receptance, H11
m. For each mode within the measured 

bandwidth, an equivalent modal mass, Mj, damping ratio, 𝜉j , and natural frequency, fnj, 

was identified  in order to minimize the error between H11
f and H11

m. The objective 

function, O, was defined as: 

 ( ) ( ){ } ( ) ( ){ }2 2
2

11 11 11 11   m f m fO re H re H im H im H= − + − , 
(5.9) 

where re indicates the real part and im indicates the imaginary part of the fit and 

measured receptances. The equivalent fixed-free EB beam diameter, dj and solid damping 

factor, ηj, may then be estimated for each mode from the corresponding modal mass, Mj, 
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and damping ratio, 𝜉j, by solving a set of non-linear optimization subroutines, one for 

each mode. The natural frequency, fnj, used to compute the FRF is constant irrespective of 

whether the FRF is expressed in terms of modal parameters (Mj and 𝜉j), or in terms of 

fixed-free EB beam parameters (dj and ηj). 

The total number of variables for the optimization problem is three times the total 

number of modes identified within the measured bandwidth because there are three beam 

parameters (diameter, solid damping factor, and natural frequency) that must be 

identified for each mode. Once the equivalent beam geometries were identified using the 

optimization process, the other receptances of the G11 matrix were specified using Eqs. 

(5.10) - (5.12). 

 ( ) ( )
( ) ( ) ( )( )11 11 2

sin sinh
 

1 cos cosh 1
j j j jj j

j j j j j j j j

L L
L N

E I i L L

λ λ

λ η λ λ

−
= =

+ −
 

(5.10) 

 ( ) ( ) ( ) ( )
( ) ( )11

sin cosh cos sinh  

(1 )(cos cosh 1)
j j j j j j j jj

j j j j j j j j

L L L L
P

E I i L L

λ λ λ λ

λ η λ λ

+
=

+ −
 

(5.11) 

 .   

11 11
1

[ / / ] [ / / ]
no of modes

f j

j

L N P L N P
=

= ∑  
(5.12) 
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5.2 Simplex Based Nelder-Mead Optimization 

In this section, the steps of the optimization algorithm are discussed in more detail. 

Figure 5.2 shows a flow chart of the optimization process. 

5.2.1 Step 1: Individual Mode Identification 

In this step, the different modes within the measured bandwidth are identified. For 

tool point direct FRFs (H11
m), the imaginary part of the response is purely negative. 

Therefore, the natural frequencies of the different modes may be identified by searching 

for negative peaks in the imaginary part of the FRF. The mode identification algorithm 

compares each element within a vector with its neighboring elements and recognizes 

those which are less than both its neighboring elements, i.e., the search is for negative 

peaks. This method is highly susceptible to noisy response data. This is addressed by 

incorporating a moving average filter which smoothes the (potentially) noisy data. The 

number of points which defines the moving average filter is denoted as the horizontal 

sensitivity factor, Hsens. This value is defined by the optimizer through visual inspection 

of the real and imaginary parts of response function. A low Hsens value retains noise 

susceptibility, while a high value may miss closely-spaced modes along the frequency 

axis. A vertical sensitivity factor, Vsens, is also defined, which establishes a cutoff limit as 

a percentage of the magnitude of the imaginary part of the most flexible mode. All the 

modes with an imaginary part amplitude less than the cutoff limit (i.e., very stiff modes) 

are ignored. 

Figure 5.3 shows the real and imaginary parts of a measured FRF. The selected peaks 

are identified by crosses. The effect of Hsens is demonstrated in Figure 5.4. The figure 

shows a magnified portion of the response. When Hsens = 1, six modes (circles) are 
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identified in this region, but when Hsens = 20, only two mode (cross) is recognized. The 

difference in the FRFs plotted in Figure 5.4 is due to the effect of the moving average 

filter. It should be noted here that, although the natural frequencies for the modes were 

identified in this step itself, they continued to remain as variables in the optimization 

process. This is not completely necessary, but it did provide some flexibility in the 

optimization process to account for any errors in the selected frequencies. 

 
Figure 5.3: Measured direct FRF (H11

m) with selected modes (crosses). 

 
Figure 5.4: The effect of Hsens on peak identification (Hsens = 1: circles ; Hsens = 20: cross). 
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5.2.2 Step 2: Optimization for Individual Modes 

Before optimizing for the combined response of all the modes together, Nelder-Mead 

optimization subroutines were executed over small frequency ranges to identify the 

modal mass, Mj, the damping ratio, 𝜉j, and natural frequency, fn, for each mode 

independently. These parameters were used to provide an initial estimate of the solution 

before optimizing for the combined response of all the modes together. This ensured 

faster convergence towards the optimal solution when optimizing for the combined FRF. 

The equation for H11
f, Eq. (5.7), was modified to include only the mode under 

consideration. When optimizing for the individual modes, the objective function was also 

modified to include only the imaginary part of the FRF. The real part of the measured 

FRF in the frequency region of the mode under consideration is typically offset along the 

vertical axis due to effects of neighboring modes. 

5.2.2.1 Step 2.1: Determining Frequency Range 

When optimizing for the individual modes, only the data points of the FRF within a 

frequency range around the mode under consideration were considered. However, caution 

must be exercised when defining this frequency range. If the range is too small, there is 

not sufficient response data to find an optimal solution which accurately represents the 

contribution of the mode under consideration to the combined response. If the ramge 

selected is too large, the response data may be polluted by contributions of the 

neighboring modes, resulting in errors in the optimal beam parameter predictions for the 

mode under consideration. 

 A number of different constraints were established to identify the optimization 

frequency range for the individual modes. The lower and upper limits for the frequency 
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range for the jth mode were defined as δf j
lower and δf j

upper, respectively. The natural 

frequency of the jth mode identified in step one was defined as fm
j. The constraints were 

then described as: 

 a)  δf jlower < 0.4 (fm
j-1 - fm

j)      fm
0 = 0 

 δf jupper < 0.4 (fm
j - fm

j+1)      fm
no. of modes +1 = 10 kHz 

b) δf jlower < 200 Hz 

     δf jupper < 200 Hz      

c) δf jlower / δf jupper < 3 

δf jupper
 / δf jlower < 3 

(5.13) 

Constraint a) ensures that δf j
lower and δf j

upper were not greater than 40% the distance 

to the adjacent mode. Constraint b) ensures that δf j
lower and δf j

upper were not greater than 

200 Hz from the natural frequency of the mode under consideration. Constraint c) ensures 

that the ratio of δf jlower to δf jupper was no more than three. The inverse was also held true. 

This ensured that the frequency range for optimization for a single mode was not 

unevenly distributed about the natural frequency for that mode. These constraints were 

developed on a trial and error basis, with continuous verification to ensure that they are 

robust for different FRFs. Figure 5.5 shows the influence of constraints a) and c) for a 

part of the FRF with closely spaced modes. Figure 5.6 shows the influence of constraint 

b) for a part of the FRF where the individual modes are well spread out. 
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Figure 5.5: Selection of frequency range. Influence of constraints a) and c). 

 
Figure 5.6: Selection of frequency range. Influence of constraint b). 
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equivalent modal parameters as previously described [48]. The mode near 2254 Hz is 

used to demonstrate the process. Figure 5.7 shows the real and imaginary part of the 

measured response as well as of the simulated optimal solution at different iterations of 

the optimization process. As seen from the figure, the algorithm converges to the 

measured FRF. 

 
Figure 5.7: Optimal fit at different steps of the individual mode optimization process for 
mode at 2254 Hz. 

5.2.3 Step 3: Floating modes 
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rand function in MATLAB on the basis of some criterion. These criterions are defined 

below. First two ratios are defined as: 

 
1

1

2

ImRat
Im

= , and 2
3

1ImRat
Im

= , 
(5.14) 

where, Im1, Im2, and Im3 correspond to the magnitude of the imaginary parts of the three 

modes selected in step 1 with highest absolute value of the imaginary part; see Figure 5.8. 

The floating modes were then distributed in three frequency ranges centered at the three 

corresponding frequencies f1, f2, and f3 as shown in Figure 5.8. 

 
Figure 5.8: Identification of three modes with the largest absolute value of the imaginary 
part. The floating modes were distributed around these modes. 

The number and distribution of the floating modes was then decided as follows, 

 i) if Rat1 > 2 and Rat2> 2 

Floatmodes = 60 ; 

Modesrange1 = 0.5 Floatmodes ; 

Modesrange2 = 0.3 Floatmodes ; 

Modesrange3 = 0.2 Floatmodes. 

ii) else if Rat1<2 and Rat2>2 

FloatModes = 40 ; 

(5.15) 
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Modesrange1 = 0.6 Floatmodes ; 

Modesrange2 = 0.4 Floatmodes ; 

Modesrange3 = 0. 

iii) else  

FloatModes = 20 ; 

Modesrange1 = Floatmodes ; 

Modesrange2 = 0 ; 

Modesrange3 = 0. 

where Modesrange1, Modesrange2, and Modesrange3 were defined as the number of modes 

randomly distributed in the three frequency ranges, frange1, frange2, and frange3 respectively. 

Here, frange1, frange2, and frange3 are defined as f1 ± 200 Hz, f2 ± 200 Hz, and f3 ± 200 Hz 

respectively. The corresponding mass and damping properties for the floating modes 

were randomly generated from within a range of 0 to 3 and 0 to 0.03 respectively. 

5.2.4 Step 4: Optimization for All Modes 

Once the modal mass, Mj, damping ratio, 𝜉j, and natural frequency, fnj, were identified 

for all the different modes as described in step two, these optimized values were used 

provide an initial estimate for when optimizing for the combined effects of all modes 

simultaneously. Eq (5.9) was used to compute the value of the objective function. Unlike 

in step two, the contributions from the other modes were also considered. For each mode, 

the frequency range and interpolated data points were attained as described in step 2. 

Here, optimization sub-routines were performed for each individual mode to obtain an 

updated optimized equivalent modal mass, Mj, damping ratio, 𝜉j, and natural frequency, 
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fnj. The contributions from the other modes within the frequency range of interest were 

calculated based on the optimized values obtained from the previous optimization step.  

Figure 5.9 shows an example of a single optimization sub-routine to optimize for the 

mode at 3000 Hz. The combined contribution from the other modes is also shown which 

remains constant. 

 
Figure 5.9: Optimization for individual mode with contributions of other modes taken 
into account. 

Once the modal parameters for each mode were optimized, the process was repeated a 

few times to achieve convergence. It was found that convergence was achieved within 20 

iterations. Figure 5.10 shows a plot of the optimized fit and the experimental data for the 

20 iterations. The plot shows that the fit is in good agreement with the experimental 

measurement. 

5.2.4.1 Mode Deletion 

After 14 iterations, the modes that did not contribute to the solution were identified 

and deleted. These modes may be identified by examining the optimized the modal mass, 
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Mj, damping ratio, 𝜉j, and natural frequency, fnj values. If the optimal values equal the 

limits set on the variables in the constrained optimization problem, it may be concluded 

that these modes do not contribute to the solution. These modes were then removed from 

the solution space. 

 
Figure 5.10: Comparison between optimized fit and experimental measurement. The fit 
for all 20 iterations are superimposed on the same plot. 

5.2.5 Step 4: Mapping from Modal to Equivalent EB Beam Parameters 

In this step, simplex based Nelder-Mead optimization subroutines were performed for 

each individual mode to map the optimized modal parameters (mass, Mj, and damping 

ratio, 𝜉j) to the equivalent fixed-free EB beam parameters (diameter, dj, and solid 

damping factor, ηj). The optimized natural frequency, fnj, remained the same. 
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Figure 5.11: Comparison of fit and measured H11 direct FRF measured at tip of the 
spindle artifact. 

 
Figure 5.12: Individual H11 

j FRFs for the individual fixed-free EB beams. 

Figure 5.11 shows the comparison of the measured FRF at the free end of the artifact 
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optimized simulated FRFs. Figure 5.12 shows the real and imaginary parts of the 

individual FRFs for each of the optimized modes. In this example, after deletion, a total 

of 35 modes were used to best regenerate the measured FRF as a summation of the 

receptances of fixed-free EB beams. The assembly FRF was obtained by summing all the 

individual FRFs; see Eq. (5.7). Once the equivalent fixed-free EB beam parameters were 

identified, the other receptances, L11, N11, and P11, were calculated using Eqs. (5.10) and 

(5.11). Combined, these receptances completely populate the G11 matrix. Figure 5.13 

(left) shows L11 and N11. Note that they are identical; see Eq. (5.10). The P11 receptance is 

displayed in Figure 5.13 (right). 

 
Figure 5.13: Simulated L11 and N11 (left) and P11 (right) receptances at the tip of the 
artifact. 

The spindle receptances, R2b2b, were computed by decoupling the modeled artifact 

receptances (for the portion of the artifact beyond the flange) using Eq. (5.4). The artifact 

was modeled as a free-free Timoshenko beam. 

5.3 Equivalent Diameter Model of Fluted Endmill 

In this study, a 12.7 mm diameter solid carbide tool with 76.2 mm overall length, 25.4 
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was modelled using Solidworks. A diamond dicing wheel was used to slice the end mill 

at a number of different sections. Slicing was performed on a Harig grinding machine. 

Then, a digital microscope (DinoCapture) was used to image the cut sections of the 

endmill. These images were imported into Solidworks and a 3D model of the end mill 

was generated. Figure 5.14 shows the images of the different sliced sections of the fluted 

portions as well as the generated 3D model. 

 
Figure 5.14: Solidworks model of fluted end mill. 

A modal analysis of the tool was performed in ANSYS with free-free boundary 

conditions. The natural frequency of the first bending mode of the tool was identified as 

10610.9 Hz. Figure 5.15 shows a plot of first bending mode shape obtained from 

ANSYS. An equivalent beam diameter approach was employed to model the fluted 

portion of the endmill. By modelling the fluted section as a cylinder, the receptances to 

be used in RCSA may then be computed using Timoshenko beam models. The equivalent 

diameter was identified as the diameter which produced the same natural frequency of the 

first bending modes when the frequency response was computed using Timoshenko beam 

theory. The length of the cylinder modelled using the equivalent diameter was the length 
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of the fluted portion plus half the diameter of the tool (31.75 mm). For this tool, with the 

defined geometry, the equivalent diameter was found to be 10.98 mm. Figure 5.16 shows 

the equivalent diameter depiction of the tool. Now, the two sections of the tool may be 

modelled using Timoshenko beam theory. 

 
Figure 5.15: Modal analysis of endmill performed in ANSYS. First bending mode. 

 
Figure 5.16: Equivalent diameter depiction of the fluted section. 

5.4 Experimental Results 

In this study, two different artifacts and the tool were modelled using Timoshenko 

beam theory. Both the artifact and the tool holder-tool combination were modeled as 

assemblies with tapered slices. The model receptances were estimated using FE methods 
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where the different slices of the artifact and holder-tool combination were modeled using 

conical (potentially) Timoshenko beam elements [37]. The assembly receptances were 

obtained by coupling the different slices using RCSA. Figure 5.17 shows the cross 

sectional views and identifies the different sections of the spindle artifact, the carbide 

blank, and the carbide endmill. The geometries and materials are defined in Table 5.1. All 

dimensions are defined in mm. 

 

 

 
 

Figure 5.17: Models of the spindle artifact, blank-holder, and tool-holder assembly. 
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Table 5.1: Section geometries. All dimensions are in mm. 

Artifact section properties 

 1 2  

dsout 44.00 47.70 

dttout 44.00 47.70 

din 0.00 0.00 

L 17.5 66.2 

Mout Steel Steel 

Min - - 

Blank-Holder section dimensions 

 1 2 3 4 5 6 7  

dsout 44.46 31.76 31.76 31.08 30.98 28.04 12.70 

dttout 44.46 31.76 31.08 30.98 28.04 24.20 12.70 

din 9.00 9.00 9.00 13.56 12.70 12.70 0.00 

L 15.88 1.56 4.24 6.90 13.05 25.05 51.2 

Mout Steel Steel Steel Steel Steel Steel Carbide 

Min - - - - - Carbide Carbide 

Tool-Holder section dimensions 

 1 2 3 4 5 6 7 8 

dsout 44.46 31.76 31.76 31.08 30.98 28.04 12.70 10.99 

dttout 44.46 31.76 31.08 30.98 28.04 24.20 12.70 10.99 

din 9.00 9.00 9.00 13.56 12.70 12.70 0.00 0.00 

L 15.88 1.56 4.24 6.90 13.05 25.05 19.05 15.88 

Mout Steel Steel Steel Steel Steel Steel Carbide Carbide 
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Min - - - - - Carbide Carbide Carbide 

Here, dsout, is the outside diameter of the section at the end towards the spindle, dttout, 

is the outside diameter of the section and the end towards the tool tip, din, is the inside 

diameter, L, is the length of the section. Mout and Min define the materials. Note that the 

inside may be a different material than the outside. The material properties used are 

defined in Table 5.2. 

Table 5.2: Material properties 

 Young’s modulus 

E 
(GPa) 

Poisson’s 

 ratio 

ν 

Density 

ρ 
(Kg/m3) 

Solid 

damping 

η 

Steel 200 0.29 7800 0.0015 

Carbide 550 0.22 15000 0.0015 

In this research, two different artifacts were used to predict the tool point FRF. Figure 

5.18 and Figure 5.19 show the comparison between the measured tool point FRF, the 

FRF predicted using the standard cylindrical artifact receptances, and the FRF predicted 

using the blank receptances. In both cases, the prediction made using the blank artifact 

was found to be a closer match to the experimental measurements. This was attributed to 

the compliance in the shrink fit tool holder-tool interface. The RCSA prediction made 

using solid artifact receptances did not capture the compliance in the tool-holder 

interface. These compliances were better captured in the measurement performed on the 

carbide blank. Schmitz et al. [1] developed a method to incorporate the interface stiffness 

and damping in the RCSA model. Eq. (5.4) may be altered to include the interface 

stiffness: see Eq. (5.16). 
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 ( ) 11
11 11 12 2 2 2 2 2 1  a a a b b aG R R R K R R

−−= − + + , (5.16) 

where, 

 
 yf yf ym ym

f f m m

k i c k i c
K

k i c k i cθ θ θ θ

ω ω
ω ω

+ + 
=  + + 

. 
(5.17) 

Here, kij and cij represent stiffness and damping terms, respectively. The first subscript 

corresponds to the displacement coordinate, displacement (y)/ rotation (θ), and the second 

subscript corresponds to the applied force co-ordinate, force (f)/ moment (m). The 

incorporation of the interface compliance in the RCSA model would reduce the 

discrepancies between the simulated and measured tool point FRF. 

 
Figure 5.18: Comparison between predicted and measured tool tip FRF: x– direction. 
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Figure 5.19: Comparison between predicted and measured tool tip FRF: y– direction. 
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 MACHINING STABILITY  CHAPTER 6: 

In order to generate a SLD for a milling process, four parameters about the machining 

process must be identified: 

1) the number of cutting teeth on the endmill, 

2) the radial immersion, 

3) the cutting force coefficients, and 

4) the FRF at the tool tip in two orthogonal directions. 

The number of cutting edges on the tool depends upon the selected tool and the radial 

immersion is commanded by the machinist. The cutting force coefficients and tool point 

FRF must be identified through experimentation or modeling. 

6.1 Speed-dependent Cutting Force Coefficients 

The cutting force coefficients provide a relationship between the chip area and the 

cutting forces. The cutting force coefficient may be represented by the specific cutting 

force, Ks, and the cutting angle, β, which relates the normal and tangential cutting forces 

[1]. In this study, the cutting force coefficients were measured at four different spindle 

speeds: 1000 rpm, 2000 rpm, 3000 rpm, and 4000 rpm. Figure 6.1 shows a plot of the 

specific cutting force coefficient, Ks, and the cutting force angle, β, as a function of 

spindle speed. The measured data points were interpolated using cubic interpolation to 

obtain an estimate of the cutting force coefficients at finer increments of spindle speed. 

These interpolated cutting force coefficients were used in the prediction of the speed-
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dependent SLD to incorporate any dependence of spindle speed on the cutting force 

coefficients. 

 
Figure 6.1: Speed-dependent specific cutting force coefficient, Ks (left), and cutting force 
angle, β (right). 

6.2 Tool Tip FRF 

Typically, the tool tip FRF may be measured directly by modal analysis. However, 

the objective of this study is to capture the changes spindle dynamics as a function of 

spindle speed and incorporate the influence of the changing dynamics into a speed-

dependent SLD. Since it is not possible to measure the dynamics at the tool tip at speed, 

the dynamics were measured at the end of a cylindrical artifact which was impacted when 

the spindle was rotating. The RCSA method, described in the previous chapter, was then 

used to decouple the receptances of the artifact to isolate the spindle and then couple the 

receptances of the holder-tool subassembly to the spindle in order to predict the FRF at 

the tool tip. The artifact and holder-tool subassembly receptances were modeled using 

finite element theory. In this study, the speed-dependent dynamics were measured on two 

different artifacts. 
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6.2.1 Standard Cylindrical Artifact 

Figure 6.2 shows a plot of the real and imaginary parts of the predicted tool point 

FRFs in the machine x-direction. The y-direction tool point FRF predictions are shown in 

Figure 6.3. These predictions were made using the dynamic measurements performed on 

the standard cylindrical artifact. 

 
Figure 6.2: Tool tip FRF estimated using standard cylindrical artifact FRF measurements: 
x-direction. 
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Figure 6.3: Tool tip FRF estimated using standard cylindrical artifact FRF measurements: 
y-direction.  

6.2.2 Solid Carbide Blank 

Figure 6.4 shows the real and imaginary parts of the predicted tool point FRFs in the 

machine x-direction. The y-direction tool point FRF predictions are shown in Figure 6.5. 

These predictions were made using the dynamic measurements performed on the solid 

carbide blank. 
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Figure 6.4: Tool tip FRF estimated using solid carbide blank FRF measurements: x – 
direction. 

 
Figure 6.5: Tool tip FRF estimated using solid carbide blank FRF measurements: y – 
direction. 
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6.3 Speed-Dependent Stability Lobe Diagram 

In order to develop a speed-dependent SLD, first, the tool point FRFs predicted using 

RCSA were interpolated using cubic interpolation to obtain a FRF in finer increments of 

spindle speed. Figure 6.6 shows a plot of the magnitude of the interpolated FRF. The 

interpolated FRFs were generated every 5 rpm. The tool point FRFs predicted using the 

carbide blank measurements are shown here. Secondly, the interpolated cutting force 

coefficients were identified. Then, for each spindle speed, the Altintas [5] stability model 

was used to identify the limiting stable depth of cut corresponding to that particular 

speed. In such a manner, the critical stability limit for every spindle speed was calculated 

and a speed-dependent SLD was developed. 

 
Figure 6.6: Magnitude of interpolated speed-dependent tool tip FRF: x-direction (left), y-
direction (right). 

In this study, machining trials were performed using a four-fluted, 12.7 mm diameter, 

30° right handed helix, solid carbide endmill Figure 6.7 shows the speed-dependent SLD 

for a 25% radial immersion upmilling cut at a cutting feed rate of 76.2 μm/tooth (0.003 

in/tooth) with the tool feeding along the machine x-direction. The SLD obtained using the 

standard artifact measurement, the SLD obtained from the solid carbide blank 

measurements, and the SLD obtained using the tool point FRF is plotted. The SLD 
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obtained using the tool point FRF corresponds to the stationary case stability limit as it 

does not incorporate the changes in dynamics with spindle speed. Note that in this case, 

all the three stability limits account for speed-dependent changes in cutting force 

coefficients. 

 
Figure 6.7: Speed-dependent stability lobe diagram comparison. 

6.4 Machining Stability Trials 

Figure 6.8 shows a picture of the machining setup used to evaluate the speed-

dependent SLD. Two piezoelectric accelerometers (PCB 352 B10) were mounted on the 

stationary spindle housing along the orthogonal machine x- and y-directions. The two 

accelerometers produces time domain signals, ax(t), and ay(t). The two accelerometer 

signals were combined to obtain a metric to ascertain chatter. 
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 ( ) ( ) ( )x yA f A f A f= + , (5.1) 

where |Ax(f)| and |Ay(f)| correspond to the absolute values of the FFTs of the time domain 

acceleration signals ax(t), and ay(t), respectively. 

 
Figure 6.8: Experimental setup for machining stability trials. 
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Figure 6.9: Machining stability trials: blue star indicates stable cut; red cross indicates 
unstable cut. 

Figure 6.9 shows a plot of the three SLDs. The tested combinations are also plotted, 

where a red cross indicates chatter and the blue star indicates stable machining. Stable 

machining conditions were observed at combinations of spindle speed, Ω, and axial depth 

of cut, b, above the stationary tool point FRF stability limit. The SLD predicted using the 

carbide blank measurements were found to best predict machining stability. The SLD 

predicted using the standard cylindrical artifact measurements may be improved by 

incorporating the effects of the holder-tool connection stiffness. The holder-tool 

connection stiffness was captured in the speed-dependent FRF measurements performed 

on the carbide blank resulting in improved predictions of the speed-dependent tool point 

dynamics and, subsequently, improved prediction of chatter. 
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Figure 6.10 shows the plot of the acceleration metric, |A(f)|, used to identify chatter. 

Notice that the vertical axis was kept constant for all the subplots. Machining chatter 

conditions can be clearly identified by the peaks in the frequency content of the 

acceleration signal at 3200 Hz and 6400 Hz. Referring to Figure 6.4 and Figure 6.5, these 

frequencies correspond to the portion of the FRF where the magnitude of the real part is 

lowest. 
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Figure 6.10: Magnitude of |A(f)| at the different combinations of blim and Ω. 
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Ω  = 3150 ; b =  7 (mm)
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Ω  = 3800 ; b =  7 (mm)
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Ω  = 3800 ; b =  8 (mm)
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 CONCLUSIONS AND FUTURE WORK CHAPTER 7: 

7.1 Conclusions 

First, a time domain simulation model was developed to investigate the influence of 

the dynamic properties of the impulse hammer and the target on contact forces and 

excited bandwidths. In this study, the model used to study the influence of hammer 

dynamics on excitation forces was enhanced to include the influence of the target 

dynamics. Hertzian contact theory was used to model the impact mechanics. The contact 

forces, excited bandwidth and response magnitude were studied from the perspective of 

modal testing. The excited bandwidth was found to have a strong relation with the target 

dynamics. Also, for constant hammer stiffness, the excited bandwidth was found to 

increase with a decrease in the mass of the impulse hammer. However, the magnitude of 

the target response was also found to decrease as the mass of the impulse hammer was 

reduced, making the FRF measurement more susceptible to sensor noise. 

To account for the potentially different dynamics of the different targets studied here, 

two different setups were designed and constructed with different capabilities. The 

automated excitation setup enabled the ability to apply a consistent and controlled 

excitation impulse on the target. 

Synchronization errors between the force and response signals result in frequency 

dependent phase errors in the calculated FRF. In this study, the time delay was measured 

for a Lion Precision capacitance gage sensors and a Polytec LDV sensor. A frequency 
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domain correction algorithm was used to rectify the measured FRF to account for 

synchronization errors. 

In this study, speed-dependent FRF measurements were performed on a standard 

cylindrical artifact and on a solid carbide blank clamped in a shrink fit tool holder. The 

FRF measurements performed on the Haas TM1 CNC machines showed an increase in 

dynamic stiffness with increase in spindle speed. A multi-probe error separation 

technique was used to simultaneously identify the SE motions. 

The dynamics of the NSK HES-500 high speed spindle were measured using a 3.175 

mm carbide blank as the target. The dynamic stiffness of the spindle was found to 

increase with increasing spindle speed. The SE motions were measured using a multi-

position error separation technique. The displacement data collected at the three angles 

was synchronized using a laser tachometer. The SE motion measurements of the high 

speed spindle were found to be constrained by the sampling capabilities. Note that for the 

high speed spindle, the dynamics and SE motions were measured independently using 

different setups. 

To determine spindle receptances, a robust simplex based Nelder-Mead optimization 

algorithm was developed to automate the identification of equivalent fixed-free Euler 

Bernoulli beams for a direct force-to-displacement FRF measurement. The equivalent EB 

beam technique significantly reduces the experimental effort required to completely 

populate the receptance matrices. The method reduces the experimental noise associated 

with finite difference methods used to identify moment-to-rotation receptances. The 

optimization algorithm eliminates the previously employed iterative process used to 

identify the beam parameters, thereby streamlining the process. 
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The tool tip FRF predictions were made using RCSA. The speed-dependent spindle 

dynamics used in RCSA were identified using two different artifacts: a standard 

cylindrical artifact and a solid carbide blank clamped in a shrink fit tool holder. The 

predictions made using the carbide blank measurements were found to be a better match 

to the measured tool tip FRF. This was attributed to the connection stiffness in the shrink 

fit holder-tool connection. The connection stiffness was captured in the blank 

measurement but was unaccounted for in the cylindrical artifact predictions. 

A speed-dependent SLD was developed which incorporated the spindle speed 

dependence of the tool point dynamics and the cutting force coefficients. The stability 

trials performed at seven different combinations of spindle speed and axial depth of cut 

indicated that the speed-dependent SLD provided a better estimate of machining stability. 

7.2 Future Work 

The maximum spindle speed for the Haas TM1 CNC machine is 4000 rpm. In the 

future, the measurement setup built in this work can be used to experimentally study the 

speed-dependent dynamics of other macro-milling machines with higher maximum 

spindle speed (greater than 15,000 rpm). The low mass excitation hammer setup can be 

used to characterize the speed-dependent dynamics of other miniature ultra-high speed 

spindles (greater than 100,000 rpm). The speed-dependent SLD developed here may then 

be applied and validated for micro-machining applications. 

The time domain impact simulation provides the capability to simulate impact forces 

while accounting for the dynamics of the target. Further effort to validate the model for a 

variety of different combinations of geometries, material properties, and dynamics 

properties of the colliding bodies is warranted. 
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The time domain impact excitation model may be used to develop and optimize 

excitation systems to impart high bandwidth excitation for miniature structures which 

cannot be excited using commercially available impact hammers. 

Further investigation of the influence of different holder/ tool geometries, types, and 

materials on holder-tool contact stiffness with the objective of improving RCSA 

predictions is necessary. 

The speed-dependence of cutting force coefficients has been reported in this work. 

Theoretical models to capture these changes in cutting force coefficients with spindle 

speed may be developed. 

The ability to measure SE motions was found to be impeded by constraints on the 

sampling rate. A study to examine the influence of sampling rate on measured SE 

motions is warranted. 



 

147 

 

REFERENCES 

[1] Schmitz TL, Smith KS. Machining dynamics: frequency response to improved 
productivity: Springer New York, 2009. 
 

[2] Tlusty J, Polacek M. The stability of machine tools against self excited vibrations in 
machining. International research in production engineering, ASME. 1963:465-74. 
 

[3] Tobias S, Fishwick W. Theory of regenerative machine tool chatter. The Engineer. 
1958;205:199-203. 
 

[4] Merritt HE. Theory of self-excited machine-tool chatter: Contribution to machine-
tool chatter research—1. Journal of Engineering for Industry. 1965;87:447. 
 

[5] Altintaş Y, Budak E. Analytical prediction of stability lobes in milling. CIRP 
Annals-Manufacturing Technology. 1995;44:357-62. 
 

[6] Insperger T, Stépán G. Semi‐discretization method for delayed systems. 
International Journal for numerical methods in engineering. 2002;55:503-18. 
 

[7] Sims N, Mann B, Huyanan S. Analytical prediction of chatter stability for variable 
pitch and variable helix milling tools. Journal of Sound and Vibration. 
2008;317:664-86. 
 

[8] Quintana G, Ciurana J, Teixidor D. A new experimental methodology for 
identification of stability lobes diagram in milling operations. International Journal 
of Machine Tools and Manufacture. 2008;48:1637-45. 
 

[9] Jorgensen BR. Robust modeling of high-speed spindle-bearing dynamics under 
operating conditions. 1996. 
 

[10] Jorgensen BR, Shin YC. Dynamics of spindle-bearing systems at high speeds 
including cutting load effects. Journal of manufacturing science and engineering. 
1998;120:387-94. 
 

[11] Bossmanns B, Tu JF. A thermal model for high speed motorized spindles. 
International Journal of Machine Tools and Manufacture. 1999;39:1345-66. 
 

[12] Lin C-W, Tu JF, Kamman J. An integrated thermo-mechanical-dynamic model to 
characterize motorized machine tool spindles during very high speed rotation. 
International Journal of Machine Tools and Manufacture. 2003;43:1035-50. 
 

[13] Li H, Shin YC. Analysis of bearing configuration effects on high speed spindles 
using an integrated dynamic thermo-mechanical spindle model. International 
Journal of Machine Tools and Manufacture. 2004;44:347-64. 



 

148 

 

[14] Altintas Y, Cao Y. Virtual design and optimization of machine tool spindles. CIRP 
Annals-Manufacturing Technology. 2005;54:379-82. 
 

[15] Cao Y, Altintas Y. A general method for the modeling of spindle-bearing systems. 
Journal of mechanical design. 2004;126:1089. 
 

[16] Cao Y, Altintas Y. Modeling of spindle-bearing and machine tool systems for 
virtual simulation of milling operations. International Journal of Machine Tools and 
Manufacture. 2007;47:1342-50. 
 

[17] Holkup T, Cao H, Kolář P, Altintas Y, Zelený J. Thermo-mechanical model of 
spindles. CIRP Annals-Manufacturing Technology. 2010;59:365-8. 
 

[18] Movahhedy MR, Mosaddegh P. Prediction of chatter in high speed milling 
including gyroscopic effects. International Journal of Machine Tools and 
Manufacture. 2006;46:996-1001. 
 

[19] Gagnol V, Bouzgarrou B, Ray P, Barra C. Model-based chatter stability prediction 
for high-speed spindles. International Journal of Machine Tools and Manufacture. 
2007;47:1176-86. 
 

[20] Mañé I, Gagnol V, Bouzgarrou BC, Ray P. Stability-based spindle speed control 
during flexible workpiece high-speed milling. International Journal of Machine 
Tools and Manufacture. 2008;48:184-94. 
 

[21] Cao H, Li B, He Z. Chatter stability of milling with speed-varying dynamics of 
spindles. International Journal of Machine Tools and Manufacture. 2012;52:50-8. 
 

[22] Alfares MA, Elsharkawy AA. Effects of axial preloading of angular contact ball 
bearings on the dynamics of a grinding machine spindle system. Journal of 
Materials Processing Technology. 2003;136:48-59. 
 

[23] Ozturk E, Kumar U, Turner S, Schmitz T. Investigation of spindle bearing preload 
on dynamics and stability limit in milling. CIRP Annals-Manufacturing Technology. 
2012;61:343-6. 
 

[24] Smith S, Jacobs T, Halley J. The effect of drawbar force on metal removal rate in 
milling. CIRP Annals-Manufacturing Technology. 1999;48:293-6. 
 

[25] Cheng C-H, Schmitz TL, Scott Duncan G. Rotating tool point frequency response 
prediction using RCSA. Machining Science and Technology. 2007;11:433-46. 
 

[26] Schmitz T, Davies M, Medicus K, Snyder J. Improving high-speed machining 
material removal rates by rapid dynamic analysis. CIRP Annals-Manufacturing 
Technology. 2001;50:263-8. 



 

149 

 

[27] Schmitz TL, Davies MA, Kennedy MD. Tool point frequency response prediction 
for high-speed machining by RCSA. Journal of manufacturing science and 
engineering. 2001;123:700-7. 
 

[28] Schmitz TL, Donalson R. Predicting high-speed machining dynamics by 
substructure analysis. CIRP Annals-Manufacturing Technology. 2000;49:303-8. 
 

[29] Park SS, Altintas Y, Movahhedy M. Receptance coupling for end mills. 
International Journal of Machine Tools and Manufacture. 2003;43:889-96. 
 

[30] Schmitz TL, Duncan GS. Three-component receptance coupling substructure 
analysis for tool point dynamics prediction. Journal of manufacturing science and 
engineering. 2005;127:781-90. 
 

[31] Duncan GS, Tummond M, Schmitz TL. An investigation of the dynamic absorber 
effect in high-speed machining. International Journal of Machine Tools and 
Manufacture. 2005;45:497-507. 
 

[32] Ertürk A, Özgüven H, Budak E. Analytical modeling of spindle–tool dynamics on 
machine tools using Timoshenko beam model and receptance coupling for the 
prediction of tool point FRF. International Journal of Machine Tools and 
Manufacture. 2006;46:1901-12. 
 

[33] Schmitz TL. Torsional and axial frequency response prediction by RCSA. Precision 
Engineering. 2010;34:345-56. 
 

[34] Timoshenko S. Vibration problems in engineering. 1974. 
 

[35] Yokoyama T. Vibrations of a hanging Timoshenko beam under gravity. Journal of 
Sound and Vibration. 1990;141:245-58. 
 

[36] Nelson H. A finite rotating shaft element using Timoshenko beam theory. Journal of 
mechanical design. 1980;102:793. 
 

[37] Greenhill L, Bickford W, Nelson H. A conical beam finite element for rotor 
dynamics analysis. ASME, Transactions, Journal of Vibration, Acoustics, Stress, 
and Reliability in Design. 1985;107:421-30. 
 

[38] Hutchinson J. Shear coefficients for Timoshenko beam theory. Journal of Applied 
Mechanics. 2001;68:87-92. 
 

[39] Bediz B, Kumar U, Schmitz TL, Burak Ozdoganlar O. Modeling and 
experimentation for three-dimensional dynamics of endmills. International Journal 
of Machine Tools and Manufacture. 2012;53:39-50. 



 

150 

 

[40] Filiz S, Cheng C-H, Powell K, Schmitz T, Ozdoganlar O. An improved tool–holder 
model for RCSA tool-point frequency response prediction. Precision Engineering. 
2009;33:26-36. 
 

[41] Yagci B, Filiz S, Romero LL, Ozdoganlar OB. A spectral-Tchebychev technique for 
solving linear and nonlinear beam equations. Journal of Sound and Vibration. 
2009;321:375-404. 
 

[42] Kivanc E, Budak E. Structural modeling of end mills for form error and stability 
analysis. International Journal of Machine Tools and Manufacture. 2004;44:1151-
61. 
 

[43] Kops L, Vo D. Determination of the equivalent diameter of an end mill based on its 
compliance. CIRP Annals-Manufacturing Technology. 1990;39:93-6. 
 

[44] Kumar UV, Schmitz TL. Spindle dynamics identification for Receptance Coupling 
Substructure Analysis. Precision Engineering. 2012;36:435-43. 
 

[45] Ganguly V, Schmitz TL. Spindle dynamics identification using particle swarm 
optimization. Journal of Manufacturing Processes. 2013;15:444-51. 
 

[46] Lagarias JC, Reeds JA, Wright MH, Wright PE. Convergence properties of the 
Nelder--Mead simplex method in low dimensions. SIAM Journal on Optimization. 
1998;9:112-47. 
 

[47] Nelder JA, Mead R. A simplex method for function minimization. The computer 
journal. 1965;7:308-13. 
 

[48] D'Errico J. fminsearchbnd, fminsearchcon. MATLAB Central File Exchange. 2012. 
 

[49] Box M. A comparison of several current optimization methods, and the use of 
transformations in constrained problems. The Computer Journal. 1966;9:67-77. 
 

[50] Schmitz TL, Powell K, Won D, Scott Duncan G, Gregory Sawyer W, Ziegert JC. 
Shrink fit tool holder connection stiffness/damping modeling for frequency response 
prediction in milling. International Journal of Machine Tools and Manufacture. 
2007;47:1368-80. 
 

[51] Ertürk A, Özgüven H, Budak E. Effect analysis of bearing and interface dynamics 
on tool point FRF for chatter stability in machine tools by using a new analytical 
model for spindle–tool assemblies. International Journal of Machine Tools and 
Manufacture. 2007;47:23-32. 
 

[52] Özşahin O, Ertürk A, Özgüven HN, Budak E. A closed-form approach for 
identification of dynamical contact parameters in spindle–holder–tool assemblies. 
International Journal of Machine Tools and Manufacture. 2009;49:25-35. 



 

151 

 

[53] Wang E, Wu B, Hu Y, Yang S, Cheng Y. Dynamic parameter identification of tool-
spindle interface based on RCSA and Particle Swarm Optimization. Shock and 
Vibration. 2013;20:69-78. 
 

[54] Evans CJ, Hocken RJ, Estler WT. Self-calibration: reversal, redundancy, error 
separation, and ‘absolute testing’. CIRP Annals-Manufacturing Technology. 
1996;45:617-34. 
 

[55] Donaldson R. Simple method for separating spindle error from test ball roundness 
error. California Univ., Livermore. Lawrence Livermore Lab., 1972. 
 

[56] Grejda R, Marsh E, Vallance R. Techniques for calibrating spindles with nanometer 
error motion. Precision Engineering. 2005;29:113-23. 
 

[57] Whitehouse D. Some theoretical aspects of error separation techniques in surface 
metrology. Journal of Physics E: Scientific Instruments. 1976;9:531. 
 

[58] Marsh ER. Precision spindle metrology: DEStech Publications, Inc, 2010. 
 

[59] Marsh ER, Arneson DA, Martin DL. A comparison of reversal and multiprobe error 
separation. Precision Engineering. 2010;34:85-91. 
 

[60] Ewins DJ. Modal testing: theory, practice and application: Research studies press 
Baldock, 2000. 
 

[61] Bediz B, Korkmaz E, Ozdoganlar OB. An Impact Excitation System for Repeatable, 
High-Bandwidth Modal Testing of Miniature Structures.  Topics in Modal Analysis, 
Volume 7: Springer, 2014. p. 249-57. 
 

[62] Gilardi G, Sharf I. Literature survey of contact dynamics modelling. Mechanism and 
machine theory. 2002;37:1213-39. 
 

[63] Lankarani HM, Nikravesh PE. Continuous contact force models for impact analysis 
in multibody systems. Nonlinear Dynamics. 1994;5:193-207. 
 

[64] Puttock MJ, Thwaite EG. Elastic compression of spheres and cylinders at point and 
line contact: Commonwealth Scientific and Industrial Research Organization 
Melbourne, VIC, Australia, 1969. 
 

[65] Stronge WJ. Impact mechanics: Cambridge university press, 2004. 
 

[66] Lion Precision. TechNote LT03-0031 EliteSeries Amplitude/Phase Frequency 
Response. 2011. 
 

[67] Polytec OFV - 5000 Vibrometer Controller - User Manual. 



 

152 

 

[68] Ganguly V, Schmitz TL. Phase correction for frequency response function 
measurements. Precision Engineering. 2013. 
 

[69] Anandan KP, Ozdoganlar OB. An LDV-based methodology for measuring axial and 
radial error motions when using miniature ultra-high-speed (UHS) micromachining 
spindles. Precision Engineering. 2012. 
 

[70] Rahman AGA, Chao OZ, Ismail Z. Effectiveness of impact-synchronous time 
averaging in determination of dynamic characteristics of a rotor dynamic system. 
Measurement. 2011;44:34-45. 
 

[71] Bishop RED, Johnson DC. The mechanics of vibration: Cambridge University 
Press, 2011. 
 

[72] Blevins RD. Formulas for natural frequency and mode shape. 1979. 



 

153 

 

APPENDIX A: FRF MEASUREMENTS 

 Speed-Dependent FRF : Haas2 A.1: 

A.1.1:  Standard Cylindrical Artifact 

 
Figure A.1: Standard cylindrical artifact FRF (Haas2): x-direction. 

 
Figure A.2: Standard cylindrical artifact FRF (Haas2): y-direction. 
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A.1.2:  Solid Carbide Blank 

 
Figure A.3: Solid carbide blank FRF (Haas2): x-direction. 

 
Figure A.4: Solid carbide blank FRF (Haas2): y-direction.  
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 Speed-Dependent FRF : Haas3 A.2: 

A.2.1:  Standard Cylindrical Artifact 

 
Figure A.5: Standard cylindrical artifact FRF (Haas3): x-direction. 

 
Figure A.6: Standard cylindrical artifact FRF (Haas3): y-direction. 
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A.2.2:  Solid Carbide Blank 

 
Figure A.7: Solid carbide blank FRF (Haas3): x-direction. 

 
Figure A.8: Solid carbide blank FRF (Haas3): y-direction. 
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APPENDIX B: SE MOTION MEASUREMENTS 

 SE Measurements : Haas2 B.1: 

B.1.1:  Synchronous SE Motions 

 
Figure B.1: Peak-to-valley estimate of synchronous SE motions. 
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Figure B.2: Synchronous SE motion: fixed sensitive x-direction (left); fixed sensitive y-
direction (middle); rotating sensitive direction (right). Spindle speeds: 500 rpm, 1000 
rpm, 1500 rpm, 2000 rpm. 

1 µm
0.5

0
-0.5

-1
0ο

30ο

60ο
90ο

120ο

150ο

180ο

210ο

240ο

270ο
300ο

330ο

 

 

500

1.5 µm
0.75

0
-0.75

-1.5
0ο

30ο

60ο
90ο

120ο

150ο

180ο

210ο

240ο

270ο
300ο

330ο

 

 

500

1 µm
0.5

0
-0.5

-1
0ο

30ο

60ο
90ο

120ο

150ο

180ο

210ο

240ο

270ο
300ο

330ο

 

 

500

1 µm
0.5

0
-0.5

-1
0ο

30ο

60ο
90ο

120ο

150ο

180ο

210ο

240ο

270ο
300ο

330ο

 

 

1000

1.5 µm
0.75

0
-0.75

-1.5
0ο

30ο

60ο
90ο

120ο

150ο

180ο

210ο

240ο

270ο
300ο

330ο

 

 

1000

1 µm
0.5

0
-0.5

-1
0ο

30ο

60ο
90ο

120ο

150ο

180ο

210ο

240ο

270ο
300ο

330ο

 

 

1000

1 µm
0.5

0
-0.5

-1
0ο

30ο

60ο
90ο

120ο

150ο

180ο

210ο

240ο

270ο
300ο

330ο

 

 

1500

1.5 µm
0.75

0
-0.75

-1.5
0ο

30ο

60ο
90ο

120ο

150ο

180ο

210ο

240ο

270ο
300ο

330ο

 

 

1500

1 µm
0.5

0
-0.5

-1
0ο

30ο

60ο
90ο

120ο

150ο

180ο

210ο

240ο

270ο
300ο

330ο

 

 

1500

1 µm
0.5

0
-0.5

-1
0ο

30ο

60ο
90ο

120ο

150ο

180ο

210ο

240ο

270ο
300ο

330ο

 

 

2000

1.5 µm
0.75

0
-0.75

-1.5
0ο

30ο

60ο
90ο

120ο

150ο

180ο

210ο

240ο

270ο
300ο

330ο

 

 

2000

1 µm
0.5

0
-0.5

-1
0ο

30ο

60ο
90ο

120ο

150ο

180ο

210ο

240ο

270ο
300ο

330ο

 

 

2000



 

159 

 

 
Figure B.3: Synchronous SE motion: fixed sensitive x-direction (left); fixed sensitive y-
direction (middle); rotating sensitive direction (right). Spindle speeds: 2500 rpm, 3000 
rpm, 3500 rpm, 4000 rpm. 
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Figure B.4: Magnitude of FFT of synchronous SE in fixed sensitive x-direction. 
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Figure B.5: Magnitude of FFT of synchronous SE in fixed sensitive y-direction. 
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Figure B.6: Magnitude of FFT of synchronous SE in rotating-sensitive direction. 
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B.1.2:  Asynchronous SE Motions 

 
Figure B.7: Maximum 1σ standard deviation of asynchronous SE motion. 
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Figure B.8: 1σ standard deviation of asynchronous SE motion: fixed sensitive x-direction 
(top); fixed sensitive y-direction (middle); rotating sensitive direction (bottom). 
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Figure B.9: Magnitude of FFT of asynchronous SE in fixed sensitive x-direction. 
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Figure B.10: Magnitude of FFT of asynchronous SE in fixed sensitive y-direction. 
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Figure B.11: Magnitude of FFT of asynchronous SE in rotating sensitive direction.
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 SE Measurements : Haas3 B.2: 

B.2.1:  Synchronous SE Motions 

 
Figure B.12: Peak-to-valley estimate of synchronous SE motions. 
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Figure B.13: Synchronous SE motion: fixed sensitive x-direction (left); fixed sensitive y-
direction (middle); rotating sensitive direction (right). Spindle speeds: 500 rpm, 1000 
rpm, 1500 rpm, 2000 rpm. 
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Figure B.14: Synchronous SE motion: fixed sensitive x-direction (left); fixed sensitive y-
direction (middle); rotating sensitive direction (right). Spindle speeds: 500 rpm, 1000 
rpm, 1500 rpm, 2000 rpm. 
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Figure B.15: Magnitude of FFT of synchronous SE in fixed sensitive x-direction. 
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Figure B.16: Magnitude of FFT of synchronous SE in fixed sensitive y-direction. 
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Figure B.17: Magnitude of FFT of synchronous SE in rotating sensitive direction. 
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B.2.2:  Asynchronous SE Motions 

 
Figure B.18: Maximum 1σ standard deviation of asynchronous SE motion. 
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Figure B.19: 1σ standard deviation of asynchronous SE motion: fixed sensitive x-
direction (top); fixed sensitive y-direction (middle); rotating sensitive direction (bottom). 
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Figure B.20: Magnitude of FFT of asynchronous SE in fixed sensitive x-direction. 
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Figure B.21: Magnitude of FFT of asynchronous SE in fixed sensitive y-direction. 
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Figure B.22: Magnitude of FFT of asynchronous SE in rotating-sensitive direction. 
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APPENDIX C: RCSA COMPARISONS 

 RCSA Comparison : Haas2 C.1: 

 
Figure C. 1: Comparison between predicted and measured tool tip FRF: x– direction. 

 
Figure C. 2: Comparison between predicted and measured tool tip FRF: y– direction. 
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 RCSA Comparison : Haas3 C.2: 

 
Figure C. 3: Comparison between predicted and measured tool tip FRF: x– direction. 

 
Figure C. 4: Comparison between predicted and measured tool tip FRF: y– direction. 
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