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ABSTRACT

ANIK MALLIK. Performance Analysis and Enhancement of Delay-sensitive and
Energy-hungry Mobile AI Applications with Edge Computing. (Under the direction

of DR. JIANG XIE)

Artificial intelligence (AI) has enabled a new paradigm of smart applications, such

as extended reality (XR), which comprises mobile augmented reality (MAR), mixed

(MR), and virtual reality (VR), which have very stringent latency requirements, es-

pecially for applications on mobile devices (e.g., smartphones, wearable devices, and

autonomous vehicles). Edge computing-assisted mobile AI systems have emerged

as effective ways to support computation-intensive and latency-sensitive applications

for mobile devices due to the offloading capability of heavy computational burdens.

However, the high mobility of users and instability in wireless networks decrease the

overall Quality-of-Service (QoS) of an edge-AI application running on mobile devices

with non-linear battery discharge properties.

This dissertation presents a comprehensive experimental study of mobile AI ap-

plications, considering different DNN models and processing sources, focusing on

computational resource utilization, delay, and energy consumption. Additionally, a

novel Gaussian process regression-based general predictive energy model is proposed

based on DNN structures, computation resources, and processors, which can predict

the energy for each complete application cycle irrespective of device configurations.

In addition, a novel performance analysis modeling framework of XR applications

is proposed, considering heterogeneous wireless networks and using experimental data

collected from testbeds designed specifically for this research. A comprehensive per-

formance analysis model is challenging to design due to the dependence of the perfor-

mance metrics on several difficult-to-model parameters, such as computing resources

and hardware utilization of XR and edge devices, which are controlled by their oper-

ating systems, and the heterogeneity in devices and wireless access networks. These
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challenges and ways to overcome them are also presented in detail.

Following the performance analysis model, performance enhancement of mobile

AI applications is also proposed in this research. This dissertation focuses on the

high mobility of users in connected and autonomous vehicles (CAVs). Time-sensitive

information update services are necessary for these CAV-AI applications to ensure

the safety of people and assets, and satisfactory entertainment applications. However,

information from roadside sensors and nearby vehicles can get delayed in transmission

due to the high mobility of vehicles. This research proposes a novel periodic predictive

AoI-based service aggregation method for CAVs, which can process the information

updates according to their update cycles by maintaining a satisfactory latency and

data sequencing success rate (DSSR) for CAV-AI applications.

Furthermore, an unstable wireless network poses a critical challenge for real-time

mobile AI applications. An H.264 video encoding-based edge-MAR system is pro-

posed, with a focus on network conditions, resource utilization, detection accuracy,

and energy consumption of various mobile devices. This extensive study provides

essential guidelines for network- and energy-aware H.264 video encoding-based Edge-

MAR system design to overcome the challenges posed by unstable wireless networks.

Finally, a novel deep reinforcement learning-based smart edge-MAR system – Re-

inforced Edge-Assisted Learning (REAL), is proposed in this research, where the edge

server is exploited to unleash its potential by providing smart and dynamic MAR pro-

cessing decisions to the devices based on dynamically changing system states, such

as wireless link qualities and battery energy levels of mobile devices. The novelty of

REAL lies in solving the complex state-transition problem in a stochastic environ-

ment through online soft actor-critic learning and delivering reward-based actions to

mobile devices to improve the end-to-end latency, energy consumption, accuracy, and

offloaded data size collectively.
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CHAPTER 1: INTRODUCTION

1.1 Background on AI Applications in Mobile Devices using Edge Computing in a

Heterogeneous Wireless Network

Artificial intelligence (AI) is shaping every aspect of human lives nowadays. Fur-

thermore, mobile devices, i.e., smartphones, tablets, wearable devices, augmented

reality (AR) glasses, mixed reality (MR) and virtual reality (VR) headsets, Internet-

of-Things (IoT) devices, autonomous driving systems (ADSs) and unmanned aerial

vehicles (UAVs), are heavily invested in AI applications, having cellular networks,

edge, and cloud computing in the backbone. The number of devices using AI appli-

cations is increasing day by day, which is considered to be a multi-billion dollar at

this instance. Fig. 1.1 shows some primary user devices equipped with mobile AI

applications.

Figure 1.1: User devices in mobile AI.

AI applications consume considerably high energy and memory of these devices.

How AI uses these resources defines a device’s potential to interact with wireless
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networks. Therefore, it is crucial to understand the characteristics of AI applica-

tions running on a mobile device, which pushes back to the question — how can the

performance of mobile AI applications be accurately analyzed irrespective of device

configurations to ensure better service and user experience?

AI applications’ latency and energy consumption may depend on various properties

of a system. First, the AI models, crafted in specific ways to fit mobile devices due

to the models’ high computation and energy requirements, impact the applications’

behaviors. Research works suggest accelerating the processing time of deep neural

networks (DNNs) by quantizing [3], which is a compression technique run on DNN

models that can reduce the model size by converting some tensor operations to in-

tegers from floating points or reducing the weights or parameters in a model, but at

the cost of degraded accuracy. Quantized DNN (Q-DNN) models are generally inves-

tigated for vision-based applications, the most thriving areas of AI. Second, mobile

AI is not limited to vision applications only. Modern-day mobile devices are rigged

with non-vision applications as well, such as intelligent recommendations, natural

language processing (NLP), smart reply, speech recognition, and speech-to-text con-

version. While most of the research focuses on applications based on computer vision,

acquiring a thorough knowledge of mobile AI is only possible by including non-vision

applications. Third, the processing source used to run the AI models affects their

performance. Besides central processing units (CPUs) with high processing speeds,

some devices are now equipped with graphics processing units (GPUs), which enables

DNN models to run faster than ever, especially for vision applications [4]. In addition,

neural network application programming interfaces (NNAPI) are also developed to

make the processing of DNN models faster, using CPUs, GPUs, or neural process-

ing units (NPUs) [5]. These state-of-the-art technologies are researched for mobile

AI only to improve inference latency. Lastly, the hardware configuration of mobile

devices is distinctive and contributes to energy consumption with a unique signature.
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The system-on-chip (SoC), CPU/GPU parameters, and memory dictate how an AI

application runs on a specific device. Hence, an experimental study is required to

analyze mobile AI performance with unique devices and AI configurations.

Vision-based applications of mobile AI generally refer to object detection, image

classification, image segmentation, super resolution, image superposition, and so on.

These applications are heavily used in extended reality (XR) applications. XR is

comprised of three broad concepts: AR, MR, and VR [6]. AR is an interactive

experience of a real-world environment where objects in the real world are enhanced

by computer-generated perceptual information. When AR is used with a mobile

device, the concept is called mobile AR (MAR). Additionally, VR is an immersive

experience where the user can see a virtual world and objects around him while

wearing a head-mounted device (HMD). MR is a combination of both AR and VR,

where users are able to see the real world along with virtual objects. Fig. 1.2 shows the

domains of mobile AI considered in this research. This dissertation presents research

work on performance analysis and enhancement of mobile AI, XR applications, and

edge-assisted MAR applications.

Figure 1.2: Domains of mobile AI considered in this research.

Since XR applications combine all the aspects of AR, MR, and VR, they have to

follow the stringent Quality-of-Service (QoS) requirements imposed by each of these
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services, such as data rate, refresh rate, frame resolution, freshness of data, latency,

and battery support. However, XR devices are usually lightweight and equipped with

low computational capability to run high-complexity tasks, such as deep learning

applications, which usually cause a higher latency and energy consumption [7]. To

meet the QoS requirements, cloud and edge computing are often offered as solutions

to reduce latency and energy consumption as well as increase service accuracy [8,

9]. Edge computing is a distributed computing paradigm that brings computation

and data storage closer to the sources of data, where heavy computational tasks are

offloaded to a nearby edge server from a mobile device. The server completes the

computation and sends the result back to the mobile [10, 11]. In this way, mobile

devices can save battery life. Mobile vision applications, including XR, can now be

provided to mobile users being edge-assisted [12]. While edge computing can reduce

the computational load on XR client devices, it is also imperative to maintain the

expected QoS of XR applications, which brings attention to the performance analysis

of XR applications. A unified performance analysis model for XR applications is

necessary since XR is the next-generation medium for communication, entertainment,

manufacturing, defense, automobiles, education, and healthcare [13]. However, there

has been no significant research work on analyzing the comprehensive performance

of XR applications considering user mobility in a heterogeneous wireless network and

external control information from sensors and devices.

One prominent application area of XR is in connected and autonomous vehicles

(CAVs). Recent advancements in CAV applications have enabled vehicles and road-

side sensors in the vicinity to share and receive information updates on numerous

tasks, such as dynamic map updates, probable collision detection, and obstacle recog-

nition [14]. The communication between vehicles and sensors is used to run both

safety (e.g., collision, asset damages, and public safety) and entertainment appli-

cations (e.g., cooperative extended reality). In these applications, broadcasting by
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roadside sensors and nearby connected vehicles is a common way to convey informa-

tion to an ego vehicle (i.e., the vehicle in consideration or the target vehicle) [15].

The protocol design and security enhancement of such broadcast messages have been

well-studied for vehicular ad-hoc networks (VANETs) and CAVs [16]. However, new

challenges arise when more sensors and vehicles are connected to a single vehicle.

For instance, a CAV has to determine whether and when it needs the information

update service from another sensor or vehicle. Additionally, with mobility, the Age-

of-Information (AoI) or the freshness of information received from different sources

will vary as well, which may significantly impact the CAV application performance.

Furthermore, there is an increasing concern about the network resources, such

as bandwidth, used to support edge-assisted MAR or edge-MAR applications. A

straightforward way to minimize network resource utilization is to reduce the data size

transmitted to and from the edge server over the wireless network. From experimental

studies, it is observed that a 400×400 image frame sent to an edge server usually takes

about 1.2 MB of data, which results in 36 MB per second on average if frames are

being sent at a rate of 30 frames per second (fps). With the increase in the number

of edge-MAR users, the large amount of data being transmitted may cause severe

delays, which is in contrast to the requirements of real-time applications. Video

frame encoding schemes like H.264 help compress the source data and reduce the

data size [17]. H.264 encoding compresses the redundant background while keeping

the objects of interest in consecutive frames intact. Therefore, there is an opportunity

to explore this encoding scheme in MAR. However, with constantly varying wireless

link quality, there comes another challenge with the non-linear discharge property of

mobile devices’ batteries.

The experiments done in this research show that the batteries of mobile devices

do not discharge in a linear pattern. After a certain level of battery capacity is

reached, the discharge curve becomes even steeper. This property requires a smart
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decision framework for offloading and data processing tasks in edge-assisted mobile

XR or MAR services. The framework should be able to decide dynamically whether

to offload or how to process the input data to reduce the network and energy effects

to maximize the overall Quality-of-Service (QoS) of an XR application by reducing

latency, energy consumption, and data size along with maintaining the benchmark

service accuracy.

1.2 Problem Statement

1.2.1 Unique Latency and Energy Consumption Characteristic of Mobile AI

While mobile AI is often concluded as “no one-size-fits-all solution” [18], it is the

responsibility of the research community to provide the developers with precise mea-

surement data and a way to predict energy consumption. This research shows that

the power varies for the same device with the change in processing sources (Fig. 1.3).

The granularity of power consumption over a unit period of time needs to be measured

to develop a predictive energy model, which is not provided by the current works.

Battery profilers provided by third-party applications do not support precise energy

data collection [7]. Hence, the use of an external power measurement tool becomes

necessary [19].

Moreover, DNN models with different sizes and layers do not have a similar impact

on the latency, energy, and memory usage, which is presented in Fig. 1.4, where it is

evident that the correlation among latency, energy, and memory is not linear at all.

An interesting observation here is that the Quantized EfficientNet model causes high

latency and energy despite using the lowest memory, due to its compatibility issues

with NNAPI, which is described in detail in Sec. 3.3. Therefore, data from physical

testbeds are required to validate this relation before proposing a predictive energy

model. Existing research works do not involve experimental measurements of all the

parameters necessary to define the performance of DNN models on a mobile device,

such as latency, energy consumption, confidence scores, memory usage based on the
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processing sources, size of neural networks, and categories of AI applications (vision

and non-vision) [20, 21]. This motivates this research to collect data from a physical

testbed to validate this correlation before proposing a predictive energy model [22].

Challenges: Designing a predictive energy consumption model for mobile AI is
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not straightforward. First, a general energy prediction model is challenging to develop

due to different categorical and numerical variables involved in the non-parametric be-

havior of the energy consumption of AI applications. The regression model cannot

be linear since all the parameters do not have the same weight in all applications

and configurations. Gaussian process regression may provide a solution in this case.

Second, the kernel must be chosen carefully as there exists a clear link between kernel

functions and predictions [23], which contribute to the hyper-parameter optimization.

Third, measuring mobile AI parameters is challenging due to complicated power termi-

nal design in the latest mobile devices. Synchronizing the timestamps of latency and

energy data brings further difficulties as the retrieved log files have different formats.

However, these parameters must be measured since they are required for training the

regression model. Finally, the experiments should be controllable and repeatable for

enthusiastic researchers. Therefore, the environment must be chosen wisely so that

all the experiments can be carried out in a similar condition.

1.2.2 Performance Analysis Issues of Mobile AI in Heterogeneous Wireless

Networks

One of the prominent domains of mobile AI is extended reality (XR) using edge

computing. While edge computing can reduce the computational load on XR client

devices, it is also imperative to maintain the expected QoS of XR applications, which

brings attention to the performance analysis of XR applications. A unified perfor-

mance analysis model for XR applications is necessary since XR is the next-generation

medium for communication, entertainment, manufacturing, defense, automobiles, ed-

ucation, and healthcare [13]. So far, extensive experimental measurement research

with a testbed has been proven to be the best way to analyze an XR application’s

performance [19], which is a time-consuming and laborious process for XR develop-

ers and researchers. Moreover, producing datasets of XR applications’ performance

results is another strenuous task. A comprehensive and unified performance analy-
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sis model can offer the research community a way to avoid all these exhausting data

collection and processing jobs [24].

However, existing research works commonly use single performance metric analysis

methods from a macroscopic perspective rather than delving into individual compo-

nents, which cannot provide a comprehensive insight into an XR service. For instance,

end-to-end latency [25,26] is often considered an important XR performance metric,

but this research finds that small segments in the pipeline of running an XR ap-

plication, such as frame generation, conversion, extractions, and other components,

should be analyzed based on their dependencies on hardware settings, the complexity

of the task, number of layers in a neural network, and so on. These dependencies

influence the XR application’s end-to-end latency and energy consumption signifi-

cantly. Therefore, a comprehensive XR performance analysis model should focus on

the individual segments of the application pipeline.

The energy consumption of an XR device depends on the latency of the applica-

tion, including the computing latency of an edge server [7] and the power consumption

during the application run-time. Existing papers propose various ways to model the

energy consumption and then minimize the total energy consumption [27–29]. While

some researchers break down the total power consumption to hardware levels [30],

deeper insights into an XR application’s energy consumption can be found in the

small segments of an XR pipeline. Apart from these facts, it is well-known that the

use of edge computing can lower an XR device’s energy consumption via offloading

computation- and energy-intensive tasks to the edge. However, if heterogeneous net-

works and devices are involved in an XR application, the energy model should be

inclusive of the latency incurred by different networks, devices, and sensors, which is

not considered in existing research.

Sensors and devices of different kinds communicate with an XR device in order

to transmit control and environmental information, such as the locations of objects,
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traffic signals, and street map updates [31]. This communication takes place either

directly with the XR device or via an edge server or orchestrator [32]. Additionally,

these sensors and devices may be located in the same or different sub-networks using

different wireless access technologies such as cellular networks, wireless local area

networks (WLAN), and mobile (MANET) or vehicular (VANET) ad-hoc networks

[33]. The flow of information through these heterogeneous wireless networks and

devices can cause delays in arrival at an XR device, which causes the information

to be aged. How frequently the sensors and devices generate the information and

transmit it to the XR device is a way to measure the Age-of-Information (AoI), which

is an important performance metric for XR applications. Without maintaining the

freshness of information, XR users may get the wrong results at the wrong place and

time, which eventually can cause a series of effects spreading from nausea to horrible

accidents. Furthermore, the mobility of an XR device in heterogeneous networks

gives rise to the necessity of both horizontal (within the same sub-network and access

technology) and vertical handoffs (different sub-network and/or access technology),

which are also known as service migration in the domain of edge computing that plays

an important role in both the latency and AoI performance of an XR service.

In this dissertation, it is argued that a comprehensive performance analysis model is

necessary for XR applications, which enables researchers to analyze the performance

for both local and remote execution of an XR task irrespective of the number or type

of sensors or devices and access technologies involved in the service. Consequently,

this motivates toward a unified performance analysis model specifically designed for

XR applications performing in heterogeneous wireless networks considering latency,

energy consumption, and AoI as the performance metrics, which is the first research

work on comprehensive XR performance analysis.

Challenges: The latency and energy consumption of an XR device need to be cal-

culated for each individual segment in an XR application pipeline to get a complete



11

insight into the application’s performance. The performance of the individual seg-

ments depends on the specifications of an XR device, resource allocations, complexity

of the task, different parameters set by the applications (e.g., display and encoding),

mobility of the device, and wireless channel conditions. Each of these relations is very

difficult to present in analytical forms. For example, the computing resource alloca-

tion is dictated by the operating system of a device based on priority and parallel

operations. In addition, the computational complexity of a task is determined by its

type, scope, and goal. Furthermore, the heterogeneity of sensors and networks brings

additional challenges to the analytical modeling since it is hard to define each type

of sensor and network mathematically without making assumptions that simplify the

job but often contradict the field data. Finally, the validation of the model’s perfor-

mance should be done against data collected from experiments with a testbed, which

is challenging to design to replicate real-world scenarios.

1.2.3 Service Aggregation in High-Mobility and Low-Latency AI Applications

AoI has been used as a performance metric for low-latency applications, especially

in CAVs [34]. It is defined as the time elapsed between information generation by

a source and information reception by a requester. It is important for CAVs to

maintain a satisfactory AoI to keep track of the road and nearby objects in real-time

to ensure public safety as much as possible. Variations in the mobility of vehicles can

increase the AoI of the information received, which may fail to meet the application

requirements [31]. An initial study shown in Fig. 1.5 indicates that the mean AoI

satisfaction rate varies a lot with the relative speed of the ego vehicle with respect to

other sensors and vehicles with low coverage areas. AoI satisfaction rate is defined as

the percentage of the AoI of the information updates received from stationary sensors

and moving vehicles within the upper bound of the required AoI.

In low-latency CAV applications, it is of pivotal importance that the information

updates from different sources received by a CAV are sequenced within a short period
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Figure 1.5: Mean AoI satisfaction rate of stationary sensors and moving vehicles at
different relative speeds of the ego vehicle.

of time. According to [35], this latency requirement can be as low as 100 ms. If the

received information from different sources is not in the correct sequence, or the

expected information update is not received at all from a specific source, then the

entire application may not function. For example, a pedestrian’s exact location is

essential for a CAV to determine its next course of action. Another example can be

drawn from entertainment applications where out-of-sequence information received

from different sources may bring staleness to extended reality services, which in turn

will cause discomfort or nausea to the passengers in a CAV.

The high mobility of vehicles and low coverage areas of roadside sensors make the

information update service for CAVs more challenging. Existing technologies (e.g.,

IEEE 802.11p, WAVE, and DSRC) allow the roadside sensors and vehicles to have

coverage areas of 100m and 300-500m, respectively [36–38]. The high mobility of

vehicles causes serious data sequencing issues. The broadcast messages from the

sensors and vehicles received by the ego vehicle need to be processed sequentially and

within the required latency. However, due to the fast movement of the ego vehicle

from one coverage area to another, data may arrive out-of-sequence or not arrive at

all. In such high mobility scenarios, the ego CAV needs to quickly determine which
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information update service should be terminated, maintained, or established. In this

way, data sequencing can be executed more effectively.

“Service aggregation” in CAVs is defined as processing multiple information up-

date services according to their update cycles sequentially from different sensors and

nearby vehicles received by an ego vehicle via broadcast messages [39]. This research

considers that service aggregation involves two tasks: one is service connection (i.e.,

maintain/terminate/initiate a service), and the other is data sequencing. Note that

security is an important aspect of service aggregation in CAVs, which is widely stud-

ied in wireless sensor networks (WSNs) [40] and VANETs, and not in the scope of

this dissertation.

This research argues that AoI is so far used as a performance metric for CAVs,

while it has the potential to improve the performance of service aggregation in CAVs

as well. The question this work aims to address is, how can the true power of AoI be

unleashed (i.e., the use of AoI as a tool to enhance the overall system performance)?

This research presents a novel predictive AoI-based service aggregation method for

CAVs that can determine highly accurate data processing sequences ahead of time

and serve low-latency applications better than existing service aggregation methods

in terms of processing delay.

In Fig. 1.6, a simulation of CAVs is demonstrated where the ego vehicle is connected

to several roadside sensors and nearby vehicles. The ego vehicle is marked as “EGO”,

and other vehicles and sensors are denoted by V and S. In this experimental scenario,

sensors and vehicles have coverage areas of 100m and 300m, respectively. This figure

also shows the information update buffer of EGO with three distinct update groups

at different update cycles. The data denotation in the buffer denotes the information

source number and update cycle number (e.g, S3
2 means the third information update

from sensor S2). In the first scenario, EGO is moving toward the coverage area

of S2 from S1 and V2 from V1. When the relative speed of EGO is 15 m/s, and
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Figure 1.6: Service aggregation problem for varying mobility of the ego vehicle in a
CAV scenario.

the maximum AoI (considering all sensors and vehicles) is less than the maximum

AoI threshold (required latency), the sequence of the received information update

is found to be satisfactory, as shown in the figure. In the other scenario, EGO has

a new position at a speed of 30 m/s, where the maximum AoI is higher than the

maximum AoI threshold; it is observed that EGO has left the coverage area of S1

completely. Therefore, the second update from S2
1 is missing, although the buffer at

EGO is expecting it, causing a delay. At the same time, a new sensor’s update for

the second cycle, S2
3 , arrives at the buffer. At the next update cycle, this becomes

even more challenging when EGO leaves the coverage area of S2 and gains a longer

relative distance from V1. As a result, the expected update from S3
1 , S3

2 , and V 3
1 are

missing in the buffer, old update S2
1 arrives at the buffer, and data from V 4

2 arrives

earlier from the fourth cycle due to a lower AoI. This simulation study motivates us to

study the impact of relative speed and coverage area on AoI and service aggregation

for CAVs.

Challenges: here are several research challenges. First, the sensors and vehicles

are heterogeneous in nature, and so are their coverage sizes, which makes it challeng-

ing to model the AoI. Second, since service aggregation in CAVs has not been studied

before, new performance metrics need to be defined for this specific research. Third,
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the low-latency applications in CAVs have unique maximum tolerable processing la-

tency requirements, which makes it very challenging to make a service connection

decision within the maximum tolerable processing latency. N -step-ahead prediction

can be an answer to this problem, but defining N is a challenging task due to the het-

erogeneity of devices and services. Finally, the prediction will consume the computing

resources of the ego vehicle and cost even more time than the processing latency. How

to reduce the total number of predictions to save computational resources and time

is a crucial factor in such system design. Therefore, this research advocates that the

service aggregation system should adopt a periodic AoI prediction policy that requires

less latency and computational resources to meet the overall Quality-of-Service (QoS)

requirements of the application.

1.2.4 Performance Degradation in Edge-Assisted Mobile AI

Offloading computational tasks to edge servers reduces energy consumption on

mobile devices but brings challenges such as increased latency and congested networks.

Many resource allocation techniques are proposed that can reduce latency for real-

time applications. Nevertheless, mitigating network congestion or alleviating the

impact of poor wireless link quality is under-explored for MAR applications. The

measurement study presented in this dissertation shows that transmission latency

from mobile devices to an edge server increases over 10% and energy consumption

rises by around 5% due to a decrease in received signal strength (RSS) as shown

in Fig. 1.7. In such a case, reducing the data size through compression can be a

potential solution. Moreover, moving object detections in smartphones deal with a

high volume of data which can be further reduced using video compression techniques.

To reduce the data size of video frames, compression is a well-researched method

[41]. However, compression techniques are mainly studied for powerful machines, not

smartphones or other mobile devices. Consequently, there is a need for a trade-off

study among latency, energy consumption, data size, and inference accuracy. To
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Figure 1.7: Transmission (a) latency and (b) energy consumption at different RSS
levels at CPU freq.=1 GHz.

propose a model capable of balancing such trade-offs, how MAR applications behave

in terms of latency and energy consumption under different network conditions with

or without encoding needs to be understood clearly.

Challenges: The latency and energy consumption of mobile devices in different

MAR situations are not linear at all. Through extensive studies, experiments, and

measurements, these non-linear traits can be understood. However, setting up an

experimental testbed that resembles real-world difficulties involves many challenges.

Moreover, the testbed setup for energy measurement adds further challenges. For

Android OS-based smartphones, the energy consumption can be obtained from the

on-device log files. However, due to the low sampling rate of this method, it does

not provide a precise measurement. Hence, an external power measurement device

must be introduced in the testbed that can provide more accurate data with a better

sampling rate. However, the input terminal of a smartphone for energy supply is

nowadays designed so delicately that accessing these power input terminals and con-

necting those to an external measuring instrument becomes difficult. Additionally,

measuring and collecting the latency data during an MAR activity poses further chal-

lenges. While collecting the latency data for each element of the MAR pipeline, each
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task needs to be organized properly so that the time can be calculated accurately for

every event, which is very sensitive in the experiment.

1.2.5 Energy-Intensive Offloading and Data Processing in Edge-Enabled Mobile

AI

With the variations in wireless link quality, the communication latency between

the edge server and mobile devices may change [19]. Since offloading takes place

over the wireless network, the latency rises significantly if the wireless link quality

drops. Along with the quality of wireless links, the energy level of mobile devices

also plays a vital role in MAR experiences. A battery’s energy level or the remaining

battery capacity is defined by the difference between its full capacity and the Depth-

of-Discharge (DoD), where DoD is simply the percentage of battery capacity used.
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Figure 1.8: Offloading latency and energy consumption of a basic edge-MAR system.

A basic edge-assisted MAR (edge-MAR) application is implemented, and experi-

ments are conducted at different wireless link conditions, where the offloading latency

and energy consumption are observed to degrade with the deviation in received signal

strength indicator (RSSI), which is shown in Fig. 1.8. Additionally, Fig. 1.9 depicts

the energy level of a 3,300 mAh battery in a smartphone executing an object detec-

tion model locally and remotely in a good network (RSSI> −30 dBm) and a poor

network (RSSI< −75 dBm) using an edge server. This experiment demonstrates that

the local execution of a convolutional neural network (CNN) model drains out 90% of
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the energy in 3.13 hours. Using the remote execution in good network conditions, the

battery lasts 4.31 hours, but a poor wireless network causes a 30% reduced battery

life. Moreover, current state-of-the-art lithium-ion batteries used in mobile devices

are drained at an alarmingly fast rate after a certain DoD is reached [42], which

eventually drains the battery long before a user’s expectation. Therefore, it is evi-

dent that an MAR client will drain its battery much faster due to poor wireless link

quality while offloading tasks to an edge server. Needless to say, there is a demand

for a smart MAR system that can make offloading decisions dynamically based on

the wireless link quality and energy level of an MAR client.
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Figure 1.9: Battery discharge of an MAR system on a smartphone.

Besides making offloading decisions, processing input frames is also critical to an

MAR system under poor wireless connectivity. The transmitted data size during

offloading is determined by how the inputs are processed. Research shows that if the

data size gets smaller, the offloading latency goes down [19]. As a result, the effect of

poor wireless links on the offloading latency becomes less. Video encoding schemes

such as H.264 can compress the input frames and reduce the data size for offloading,

lessening the wireless network’s burden. However, despite better performances under

poor wireless link quality, the energy consumption of mobile devices rises due to

encoding. Hence, there is a need to consider the trade-off between latency and energy
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when deciding whether to process input frames. Therefore, input processing before

offloading becomes an integral part of a smart decision system for edge-MAR.

After carefully reviewing state-of-the-art research on edge computing in MAR, three

research questions have been identified that are worth exploring.

RQ-1: How can an edge server intelligently guide the MAR system to reach the

optimal point of latency and energy consumption without compromising the QoS?

Developing a smart edge-MAR system is necessary to defend the QoS against vary-

ing wireless link quality, whereas bringing energy efficiency to the system ensures

prolonged battery life. The edge server can optimize the performance metrics of an

MAR system if all the system states are readily available at any time. However, with

the network and energy levels being sets of continuous real numbers, the number of

system states becomes infinite with complex state transitions, which makes heuris-

tic optimization algorithms difficult to apply. Moreover, the state-of-health of the

batteries and the hardware configurations of mobile devices (e.g., CPU, GPU, and

memory) vary over a broad range, which makes it challenging to label the datasets

properly. Hence, online recurrent training is needed that enables the system to train

itself with the system states on-the-fly and learn from its past experiences. As a

result, an online deep reinforcement learning-based (DRL) smart edge-MAR system

is proposed — Reinforced Edge-Assisted Learning (REAL), which trains itself from

the large set of systems states and takes reward-based actions continuously starting

from the initial input.

RQ-2: How can an edge server provide smart decisions without introducing a sig-

nificant additional load to the system?

Introducing learning into an MAR system should be transparent and not hamper

the overall QoS. Therefore, the natural choice of placing the learning is on the client

side – the mobile device. However, the measurement based on a testbed shows that

executing this DRL remotely (at an edge server) can save 22% of the total latency
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compared to that being executed locally on a mobile device. Fig. 1.10 presents the

instantaneous and mean latency of executing DRL (based on a discrete soft actor-

critic model) locally and remotely for 200 frames in this experiment. Therefore, this

research advocates that the additional load this remote execution of DRL brings forth

to the end-to-end latency must be analyzed before adopting the concept of learning

at the edge.

RQ-3: How can the energy consumption and end-to-end latency of an MAR system

be obtained accurately under various conditions in order to make smart decisions?

A smart edge server in an MAR system chooses an appropriate input processing sys-

tem from multiple probable options for offloading to improve the QoS under various

conditions. To achieve this, the energy consumption, latency, and service accuracy

should be checked before each decision-making. Since neither analytical models nor

measurement data from experiments for energy consumption of an MAR system under

different wireless network scenarios are available publicly, physical testbed are needed

to collect such data. For Android OS-based mobile devices, the power consumption

can be obtained from the current and voltage data by accessing system-level files cur-
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rent_now and voltage_now from the directory /sys/class/power_supply/

battery/ [29], and from battery-level drop data by reading from the Android sys-

tem variable ACTION_BATTERY_CHANGED [43]. However, due to the low sampling

rate of this on-device file-logging method, it does not provide a precise measurement

of power consumption. Hence, an external power measurement device is needed in the

testbed that can provide more accurate data with a better sampling rate. While an

external power measurement device may provide better measurements, it associates

with other difficulties. Since the power input terminals of a smartphone for energy

supply are nowadays designed delicately to maximize space utilization, accessing these

terminals and connecting them to an external measuring instrument is very difficult.

These traits of experiments using a testbed make obtaining system states far more

challenging.

1.3 Overview of the Proposed Research

The overview of the proposed research is shown in Fig. 1.11. It discusses two broad

scopes of the research: one is the performance analysis, and the other is the perfor-

mance enhancement of mobile AI. The research objectives and work are summarized

below.

Research objectives: The objectives of this proposed research are to investigate

different mobile AI performance metrics (e.g., latency, energy consumption, service

accuracy, offloaded data size, memory consumption, and Age-of-Information) and to

formulate mobile AI performance. User mobility in heterogeneous wireless networks

is also addressed in this research. The final objective of this research is to design an

energy-efficient mobile AI system by mitigating wireless instability effects.

Research work summary: First, this dissertation introduces a measurement

study-based performance analysis of mobile AI applications. The latency, energy

consumption, and memory utilization are highly impacted by the hardware configu-

rations of a mobile device (e.g., System-on-Chip (SoC), processing sources, number
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Figure 1.11: The overview of the proposed edge-assisted mobile AI performance
analysis and enhancement research.

of threads used in processing, number of cores in the processor, and memory size),

application type, and the DNN configurations (depth and size of the DNN). After an-

alyzing all these mobile AI behaviors, this research proposes a novel Gaussian Process

Regression (GPR) based predictive energy model, which is trained offline, and can

predict one-step-ahead end-to-end energy consumption of a mobile AI application.

This prediction method is designed to predict the mobile AI energy irrespective of

device and DNN configurations.

Second, a comprehensive analytical model for mobile AI (XR) applications’ perfor-

mance analysis in heterogeneous wireless networks is proposed. This research shows

the unique challenges of proposing such analytical frameworks and ways to overcome

them. Proposing such a unified analytical model for XR performance analysis is not

straightforward. The analytical model cannot perform well without considering small
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individual segments in an XR pipeline since each segment has unique functions and

characteristics. Hence, a thorough understanding of each segment is necessary before

attempting to model XR performance analytically. Moreover, XR user mobility in

heterogeneous wireless networks makes the entire modeling challenging due to vertical

handoffs. Additionally, in an XR environment, multiple heterogeneous wireless sen-

sors and devices are considered to transmit control and environmental information to

the XR user device. The frequency of information generation by each of these sensors

and devices does not follow a similar pattern. This behavior gives rise to analyzing

the freshness of information (AoI). Consequently, this research introduces a new per-

formance metric – Relevance-of-Information (RoI). Finally, extensive experimental

research has been carried out to strengthen the analytical model with multiple linear

regression techniques and also to validate the effectiveness of the proposed model.

Third, since CAVs offer a high-mobility environment for AI applications with low

latency requirements, this research delves into solving the service aggregation prob-

lem in CAVs. A popular and effective performance metric for CAV applications is

AoI, which is used in this research as a tool to improve service aggregation per-

formance. The AoI from heterogeneous sensors and vehicles for the ego vehicle is

modeled first. Then, after comparing several prediction models, and based on predic-

tion latency, complexity, and accuracy, the long short-term memory (LSTM) network

is chosen for predicting the N -step-ahead AoI. This research also provides guidelines

for selecting an appropriate prediction period (N). After that, a novel service con-

nection policy and information update system is proposed for highly accurate service

aggregation using the predictive AoI. The proposed system determines when to initi-

ate/terminate/maintain a connection and how to aggregate a service in high-mobility

CAV scenarios.

Fourth, this research sheds light on a new aspect of edge-assisted mobile AI ap-

plications (MAR) being affected by unstable wireless link qualities. As the received
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wireless signal strength becomes weaker, the latency and energy consumption of an

edge-MAR application go higher. The size of the data to be offloaded to an edge

server plays a vital role in this scenario, as the experiment shows that a lower data

size can mitigate this challenge posed by the weak RSSI. Therefore, a novel H.264

video encoding-based edge-assisted MAR system is proposed to keep the overall la-

tency and energy consumption of the MAR application even in poor wireless signal

strength situations by compressing the offloaded data. However, this encoding has

different effects on the individual segments of the MAR pipeline as well as causes a

slight degradation in the service accuracy. All these performances are analyzed using

experimental data, which has potential future outcomes for the analytical modeling

of different MAR parameter designs.

Finally, this research proposes a smart offloading decision and data processing

framework for edge-assisted MAR applications to improve the overall Quality-of-

Service (QoS). To begin with, the experimental study conducted for this research

shows that the discharge pattern of the mobile devices’ batteries does not follow a

linear trend. With continuously varying wireless link conditions, the batteries dis-

charge even at an alarming rate. Therefore, the edge-MAR system should contain a

dynamic decision system based on the system state combinations of wireless signal

strength (RSSI) and the remaining battery capacity of the mobile device. However,

the complex and huge number of system state combinations make heuristic opti-

mization algorithms difficult to use in this research. As a result, using these two

system state information, a reinforcement learning-based solution named the discrete

soft-actor-critic method is adopted in the system, which provides actions for each

generated input frame. The actions dictate whether to offload and how to process

the data. The proposed framework is trained online that runs simultaneously with

the MAR application with a view to increasing the overall QoS.



25

1.4 Dissertation Organization

The rest of this dissertation is organized as follows.

• Chapter 2: Related work and novelty of the proposed research are discussed

in Chapter 2.

• Chapter 3: In Chapter 3, performance analysis and a predictive energy model

for mobile AI (EPAM) are presented. EPAM (Energy Prediction for AI in

Mobile devices) is designed to predict the end-to-end energy consumption of

both vision- and non-vision-based mobile AI application, irrespective of device

and neural network configurations. The influencing parameters of EPAM are

discussed and the performance evaluation is presented in this chapter.

• Chapter 4: A performance analysis framework of XR applications is proposed

in Chapter 4. This comprehensive analytical performance analysis model con-

siders local and remote execution of CNNs, user mobility in heterogeneous wire-

less networks, and communication with heterogeneous external sensors and de-

vices with the XR device to analyze an XR application’s performance from the

perspectives of latency, energy consumption, and average Age-of-Information

(AoI). Finally, the performance evaluation of the proposed framework is pre-

sented along with a comparison with state-of-the-art analytical methods.

• Chapter 5: A novel service aggregation system for low-latency CAV applica-

tions is proposed in Chapter 5. The proposed system provides insight on AoI

prediction with different machine learning models and guides the selection of

the period of prediction. The service aggregation system is evaluated based on

newly introduced performance metrics, and also compared with state-of-the-art

data queueing methods.

• Chapter 6: In this chapter, a novel H.264 video encoding-based edge-assisted
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MAR system is proposed to mitigate the challenges due to unstable wireless

networks and to reduce the energy consumption of the mobile device. The per-

formance of the proposed system is studied at different wireless link conditions

that resulted into regression-based models to predict MAR performances.

• Chapter 7: A smart offloading and data processing dynamic framework for

edge-enabled MAR is presented in Chapter 7, which is called REAL (Reinforced

Edge Assisted Learning). REAL edge-MAR system is designed to overcome

the challenges posed by continuously varying wireless link quality and non-

linear discharge properties of the energy storage of mobile devices. Performance

evaluation shows that the proposed system “REAL” outperforms other existing

offloading methods in terms of the overall QoS.

• Chapter 8: Lastly, in Chapter 8, the entire research work is summarized, and

future research direction is discussed. Additionally, the publications so far from

this research are listed.



CHAPTER 2: RELATED WORK

This chapter discusses the related work in performance analysis and enhancement

of different metrics of Mobile AI using edge computing in heterogeneous wireless

networks and the novelty of the proposed research work.

2.1 Existing Performance Analysis of Mobile AI

Performance analysis of mobile AI is not a widely researched topic. The param-

eters on which mobile AI’s performance depends need to be analyzed first. Mobile

AI applications behave differently in terms of latency and accuracy based on the pro-

cessing sources [18, 44]. Research works are done on maximizing CPU threads [45]

and hardware acceleration [46, 47] for DNN models. The use of GPU is also studied

for improving the training and inference time for mobile AI [4]. NPU architectures

are explored as well to expedite neural network operations [5, 48, 49]. Moreover,

hardware-software co-design methods are proposed to reduce latency in mobile AI

applications [50]. Research shows that the memory of mobile devices also impacts

the performance of AI applications [51–54]. However, there is no fundamental frame-

work to describe the impact of individual processing sources on energy consumption

for different mobile AI applications with disparate DNN models.

Additionally, floating point and quantized models are investigated for vision appli-

cations, e.g., image classification, segmentation, super-resolution, and object detec-

tion, to create benchmarks using inference latency for mobile devices [44]. Quantized

models are introduced in [3, 55–60] to lower the energy consumption and computa-

tion complexity as well. Besides, CNN compression is also researched to minimize the

energy consumption of mobile devices [61]. In addition, non-vision AI applications
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are also researched to achieve high accuracy and low latency [62–67]. Nevertheless,

a comprehensive performance analysis and predictive energy model for mobile AI re-

quires analysis of complete behaviors of vision and non-vision mobile AI applications

using floating point and quantized models, which are not yet explored.

Most existing research works propose performance optimization through analysis

models, which are not comprehensive at all [68]. Benchmark suits and testbeds are

also developed for such performance analysis of XR – the prominent sub-domain of

mobile AI [69]. Some researchers study analysis models from different application

perspectives instead of proposing a general one [70]. The performance of AR and VR

is analyzed with models for different metrics, such as video bitrate, responsiveness,

image noise and rendering, object locations and marker positions, and volumetric

data processing performance [71, 72]. However, the scope of these analysis models

does not include latency, energy consumption, and AoI, which are truly important in

analyzing the performance of XR services and is the key focus of this dissertation.

2.2 Existing Latency and Age-of-Information Analysis of Mobile AI

Latency models for mobile AI and AR/VR applications are presented in several

studies [73,74]. Most of these works focus on communication latency in edge-enabled

multimedia services [26, 75], which cannot be applied to either mobile AI or XR

applications due to their highly complex operations in computation. In addition,

[76] considers the queueing delay of tasks offloaded to an edge server along with

the transmission delay, but it considers neither the computation complexity of an

XR task nor the handoff. On the other hand, computation latency is considered in

several other research works where the computation capability of a device is modeled

as cycles [25, 77–79], whereas this research shows that it is a tuple of processing

speed (i.e., central processing unit (CPU) frequency), memory size, and available

resources determined by the operating system of the device. Furthermore, different

approaches toward latency calculation, such as callback functions of applications,
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are also proposed [80]. Lastly, assumptions are made to model an XR application’s

latency, such as the use of one single server at a time [1] without considering service

migration. This dissertation addresses all of these gaps in a latency analysis model.

In addition, AoI is a relatively newer concept that becomes a performance metric

in a mobile AI application when there are several other sensors/devices and network

access technologies involved [81]. AoI models are presented in [31, 32], where there

are assumptions of packet processing policies and single-access wireless networks.

For multi-hop networks, peak AoI is introduced as a performance metric [82], but it

does not involve the XR device, which is supposed to receive the information either

directly from sensors or from an edge server. Lastly, AoI is used to optimize the

overall performance in several research works [83–85], which cannot be applied to

general XR scenarios due to the lack of scalability. This dissertation presents a novel

AoI model which addresses all of these aforementioned research issues.

2.3 Existing Service Aggregation and AoI in High-Mobility AI Applications

Information fusion or data aggregation is a well-researched topic for WSNs. Nu-

merous information fusion techniques are proposed [86], such as data aggregation

based on clustering and compression [87]. However, these methods do not consider

the high mobility of CAVs connected to stationary sensors and moving vehicles, which

makes it not viable to implement for CAVs.

VANETs and UAVs are also studied in terms of service migration/handoff, data

fusion, and task scheduling. Methods for reducing handoff delay or improving the

handoff process, and reducing task scheduling load for CAVs and UAVs are proposed

[88–90]. Nevertheless, task scheduling often refers to prioritizing tasks on the basis of

their importance in a connected vehicular network, which does not solve the problem

of aggregation of a singular low-latency service for CAVs.

Furthermore, AoI is recognized as an essential performance metric for CAVs. Re-

searchers propose to minimize AoI through priority-based task scheduling, joint opti-
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mization, and machine learning [31,34]. However, there is a lack of extensive research

on the use of AoI to improve the overall system performance. In [91], AoI is applied

to schedule broadcast messages from vehicles to base stations to avoid collisions.

Nonetheless, the CAV system considered in this research studies the broadcast ser-

vice aggregation at a granular level where service connection and aggregation for a

single service take place to maintain satisfactory latency using AoI, which has not

been researched at all.

2.4 Existing Energy Consumption and Network Resource Utilization Analysis

and Measurement of Mobile AI

Energy measurement is necessary to describe mobile AI applications’ detailed be-

haviors. Eprof [92] and E-Tester [93] are proposed to measure and test the battery

drain of mobile devices, which use a finite state machine to measure the energy. How-

ever, these methods lack in providing granular and precise energy data since they

only act on system call traces. Researchers have proposed different energy models

for vision [2] and non-vision [94] applications. Furthermore, predictive energy models

are developed for devices, and sensors [95]. Nonetheless, developing accurate predic-

tive energy models general to all mobile AI applications requires knowledge of all the

environmental parameters such as network and model size, memory usage, and the

hardware accessed to run the AI application.

Moreover, energy modeling is a challenging research issue. Analytical models are

developed for mobile devices’ power consumption in the GPU [96]. In-device logging is

often used to measure the power consumption of mobile devices [80], as well as third-

party applications such as “Qualcomm’s Trepn Power Profiler” [97], “PowerBooter”

[98], or “PowerTutor utility” [99], which cannot provide precise measurement data.

Unlike these methods, recent research works prefer to use external power consumption

measuring instruments [100]. New energy models for mobile devices running deep

learning applications for MAR and energy-aware MAR systems are proposed in [2,7]
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based on measurements provided by an external power measuring tool. Considering

all these works together, analytical models and experimental studies are explored

on the energy consumption of mobile devices for edge-XR based on input model

sizes, CPU frequency scaling, camera sampling rates, input data conversion, and

network throughput. However, these works cannot be concluded as comprehensive

since each device has its own unique hardware configurations, such as the system-

on-chip, memory, CPU, GPU, and AI accelerators. Embracing all these parameters

in a generalized model is difficult, but can be achieved by deploying online deep

reinforcement learning.

Furthermore, making mobile AI applications network- and energy-aware still re-

mains a research problem. It is shown in [101] that the radio network is accountable

for around 33% of the total latency of an edge-MAR system, which infuses a need

for network-aware MAR systems. Moreover, preparing an energy-aware MAR system

is a dormant research issue since energy modeling is very challenging. Analytical

models are developed for smartphones’ energy consumption [96]. Some papers use

on-device logging to measure the energy consumption of smartphones [80], as well as

third-party applications, which do not provide precise measurements. Unlike these

methods, recent research works prefer to use external energy consumption measuring

instruments [100]. New energy models for MAR and an energy-aware MAR system

are proposed in [102, 103]. However, none of the existing systems considers latency

and energy consumption along with network resource usage altogether.

Additionally, algorithms are proposed for jointly optimizing configuration adaption

and bandwidth allocation for edge-based video analytics systems [104]. Deep neural

networks are proposed for runtime optimization in edge-AI devices [105]. Addition-

ally, deep reinforcement learning-based solutions are proposed to allocate resources for

edge-assisted applications [106]. Moreover, wireless resource-agnostic XR optimiza-

tion solutions are provided in [29]. Edge-assisted image quality assessment-based
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energy-efficient AR is also studied in [107]. Furthermore, computational resource and

energy optimization through video encoding is proposed in [19]. On the other hand,

sophisticated task scheduling is introduced with a view to bringing energy efficiency

in mobile devices [108]. However, all of these optimization works do not fit into the

research problem this dissertation addresses since they do not consider poor wireless

connectivity with the edge server and rapid battery drainage at low-capacity points of

the mobile device. This research addresses these issues while improving the real-time

processing of mobile AI applications and the battery health of mobile devices.

2.5 Existing Performance Enhancement of Edge-Assisted Mobile AI

Real-time object detection is one of the main attractions of mobile XR applica-

tions [109]. Deep learning networks, more specifically CNNs, are primarily used in

detecting objects for increased accuracy, especially in the case of large unstructured

training datasets [110]. To get rid of the heavy computational burdens, these ap-

plications often exploit edge-assisted services [111, 112]. Edge computing is widely

explored for MAR, especially for deep learning-based applications [12, 113]. These

works include offloading decisions, resource allocation, energy saving, and service

placement [1, 11, 79, 103, 114–119]. Researchers also propose guaranteed offloading

in unstable networks and high mobility conditions [120]. Furthermore, DNN parti-

tioning is proposed to deal with varying wireless link conditions [121–123]. Though

these research works consider saving computational resources of the mobile devices,

none of them investigates the effect of varying link qualities on XR applications and

solutions to these challenges, whereas input data processing is proven to be essential

to increase the QoS in poor wireless connectivity throughout this research. Data

compression may be a key to this problem.

H.264/AVC encoding scheme is a popular standard video coding technology in

streaming applications and video file generation [17]. It is also investigated for object

detection in video surveillance applications [124]. Existing papers involve the use
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of H.264 as feature descriptors [125] or for reducing latency [126]. Dynamic video

encoding is also used to improve the streaming latency [127]. Nevertheless, none of

the existing works describe the changes in MAR behaviors due to encoding in terms

of latency and energy, making it difficult to design adaptive systems.

In addition, Reinforcement learning is a popular tool for solving complex research

problems. Researchers propose Q-learning and DRL-based task scheduling schemes

for edge computing [9,128,129]. Additionally, DRL is adopted in [130–132] for video

processing, resource allocation, and task offloading in edge computing. However,

none of these theoretical works are based on experimental measurements of a mobile

device’s energy consumption and system latency. The defined states in these works do

not represent the whole complex real-world system with uncertainties in the wireless

link condition and energy drain of the mobile devices, which are the primary research

issues addressed in this dissertation.



CHAPTER 3: PROPOSED MOBILE AI PERFORMANCE STUDY AND

PREDICTION

In this chapter, a performance study of mobile AI applications is presented, along

with the proposed energy prediction model. An experimental testbed with four dif-

ferent smartphones is set up. A vision application (image classification) and two non-

vision applications (NLP and speech recognition) with seven different DNN models

are used in the experiment. The testbed is described in detail in Sec. 3.2. Differ-

ent mobile AI parameters are investigated through an extensive experimental study.

The latency, power consumption, and memory usage of individual segments of the

pipelines of three AI applications are measured for different applications using single-

and multi-threads CPU, GPU, and NNAPI and for different DNN models. The exper-

iment shows that the total energy consumption of a mobile AI application is related

to the device configuration, AI model, latency, and memory.

Additionally, a novel Gaussian process regression-based general predictive energy

model for mobile AI (EPAM) is proposed based on DNN structure, memory usage,

and processing sources to predict the energy consumption of mobile AI applications

irrespective of device configurations (Sec. 3.1). EPAM requires offline training with

past datasets. The trained model can be used to predict the overall energy consump-

tion, which reduces the necessity for further energy measurement and helps developers

design energy-efficient mobile AI applications.

Finally, the performance of “EPAM” is evaluated against experimental data, which

shows the credibility of the proposed model (Sec. 3.3).
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3.1 EPAM: Overview of the Predictive Model

The energy prediction of mobile AI involves a high dimension of influencing vari-

ables, making it a non-parametric model. Let us assume that the set of input data

points is X1:D, where D is the total number of dimensions. If a noisy observation is

considered, then the posterior distribution is found as

P (E(X) ∝ P (E(X)|Λ1:D)/P (Λ1:D|E(X)), (3.1)

where E(X) is the observed energy at data points X1:D and Λ1:D = {X1:D, E} is

observation points. Using Gaussian process [133], E(X) can be described as E(X) ∼

N (µ,K), where µ = [mean(X1), . . . ,mean(XD)] is the mean and Kij = k(xi, xj) is

the covariance or Kernel function, where xi and xj are distinct data points.

As new data points X∗ are provided, the posterior distribution of predicted energy

E(X∗) can be modeled as

P (E(X∗)|Λ1:D) ∼ N (µ(X∗), K(X∗)) (3.2)

The kernel must be chosen carefully as there exists a clear link between kernel

functions and predictions [23], which contribute to the hyper-parameter optimiza-

tion. From the experimental data, it is observed that the influencing parameters

on total energy consumption are sparse and vary over a broad range including both

numerical and categorical variables. Hence, the automatic relevance determination

(ARD) exponential squared kernel is chosen for the predictive model, which automat-

ically puts different weights on the parameters with differential scales assessing their

significance to the model. Hence, the kernel equation becomes:

K(xi, xj) = σ2
f exp[(−

1

2
)

D∑
m=1

(xim − xjm)
2

σ2
m

], (3.3)
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where σ2
f is the hyper-parameter to be optimized and σ2

m is the covariance of the mth

dimension. Finally, the log-likelihood of the trained model can be expressed as

logP (E(X)|X1:D) = −1

2
E(X)T (K + σ2

DI)
−1E(X)

− 1

2
log det(K + σ2

DI)−
D

2
log 2π,

(3.4)

where I is an identity matrix. EPAM is first trained offline with the observation

data points, then is run with an application alongside. The prediction is done either

simultaneously or at the end of an application. In this research, the model is trained

with a dataset containing 85, 500 data, validate with 19, 496, and test with 10, 000

data.

3.2 Experimental Setup

In this section, the application pipelines considered for this research, testbed, AI

models, and performance metrics are discussed in detail.

3.2.1 Pipelines of AI applications

Three mobile AI applications are used in this research: image classification, NLP,

and speech recognition. The pipelines of these applications are described below.

3.2.1.1 Image Classification

In image classification, as shown in Fig. 3.1, first, the image is captured by the

camera sensor, which then goes through a Bayer filter and image signal processor,

and then is stored in an image buffer. The image frame is then scaled and cropped

to be previewed while simultaneously going to an image reader, converted from YUV

color format to RGB, and cropped according to the input size of the DNN model.

Then the converted and cropped frame is taken as the DNN input, generating the

classification results to display.
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Figure 3.1: Pipeline of image classification application.

3.2.1.2 Natural Language Processing (NLP)

The NLP question-answer application takes both the paragraph input and the

question input from the keyboard (Fig. 3.2. The paragraph is then represented

with token, segment, and position embeddings. The keyboard input goes through

character, basic, and word piece tokenizer. These embeddings and tokens are passed

to a feature converter providing input to the DNN model. The model finds the answer

to the question input and highlights it in the paragraph.
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Highlight 

answer

Text pre-processing Inference
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Figure 3.2: Pipeline of NLP application.
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3.2.1.3 Speech Recognition

Speech recognition application records, converts, and decodes the audio input. The

decoded audio signal is converted to a spectrogram by running a short-time Fourier

transform (STFT) along with the calculation of the Mel frequency cepstral coefficients

(MFCCs). The spectrogram and MFCC are passed to the DNN model. The predicted

word is then displayed on the phone as depicted in Fig. 3.3.

“Go”

74%

Speech 

record

Convert to 

WAV

STFT

Convert to 

spectrogram

Calculate 

MFCC
Display Text

Speech 

decode

“Go”

74%DNN

Speech pre-processing Inference

Audio 

input

Figure 3.3: Pipeline of speech recognition application.

3.2.2 Testbed

The applications mentioned above are implemented on four Android OS-based

smartphones from different manufacturers with distinct configurations to make the

measurement study robust with a wide range of parameters. Table 3.1 shows the

specifications of the smartphones used in the experiment. However, the intended

thorough investigation of mobile AI brings several challenges during the experiment.

Challenge #1 – How to measure the power and memory usage of each segment

of an AI pipeline?

Android Studio, along with other third-party contributors, provides developers

with memory and battery profilers, which cannot generate the data necessary to

measure memory usage and power consumption precisely. In this experiment, latency

timestamp data of each segment of a mobile AI pipeline are collected along with their

corresponding memory usage. To measure energy consumption, an external power
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Table 3.1: Brief specifications of the devices used in the experiments for mobile AI
performance study and prediction

Denotation Device-1 Device-2 Device-3 Device-4

Model
Huawei
Mate
40Pro

One
Plus
8Pro

Motorla
One

Macro

Xiaomi
Redmi
Note8

SoC
Kirin
9000

(5 nm)

Snapdragon
865

(7 nm)

Helio
P70

(12 nm)

Snapdragon
665

(11 nm)

CPU

Octa-core
(1× 3.13GHz A77
3× 2.54GHz A77
4× 2.05GHz A55)

Octa-core
(1× 2.84GHz
3× 2.42GHz
4× 1.8GHz
Kryo 585)

Octa-core
(4× 2GHz A73
4× 2GHz A53)

Octa-core
(4× 2GHz Gold
4× 1.8GHz Silver

Kryo260)

GPU Mali
G78

Adreno
650

Mali
G72

Adreno
610

Dedicated
AI

accelerator

Ascend Lite+
Tiny NPU
Da Vinci

Hexagon
698 DSP

MediaTek
APU

Hexagon
686 DSP

RAM 8 GB
LPDDR5

8 GB
LPDDR5

4 GB
LPDDR4X

4 GB
LPDDR4X

OS Android 10 Android 10 Android 9 Android 10

NNAPI
Support Yes Yes Yes Yes

Release
Date

October,
2020

April,
2020

October,
2019

August,
2020

measurement tool “Monsoon Power Monitor” is used that provides data sampled

at every 0.2 ms interval. However, the latest smartphones’ power input terminals

are difficult to find since they are delicately connected to non-removable batteries.

Therefore, the devices need to be heated and opened to remove the battery and then

connected to the power monitor. After careful measurement of power data, they are

matched with the corresponding latency timestamps.

Challenge #2 – How to make the experiment environment controlled?
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To make the experiment environment controllable, all the experiments are carried

out in a similar condition, e.g., brightness, camera focus, image resolution, background

applications, processing sources, and test dataset. For this experiment, 640 × 480

pixels are used as the image resolution, and TensorFlow Lite Delegate to

control the processing sources. The 2017 COCO test dataset, WH-questions, and

fixed single words are used for testing the classification, NLP, and speech recognition,

respectively.

Challenge #3 – How to distinguish the power required by mobile AI from the base

power consumption of a mobile device?

Mobile devices start consuming power right from it is powered up. Even with-

out any applications running in the background, there is always a minimal power

consumption – which is called the base power in this research. To distinguish the

mobile AI power from the base power, an additional layer is used before the actual

AI application – assuring correct measurements.

3.2.3 AI models

In this research, seven DNN models are used for three different applications. In

Table 3.2, the details of each model, including the input size, number of layers, and

the trained model size (occupied storage space), are shown.

3.2.4 Performance metric

All the AI applications’ performances are analyzed in terms of their latency, energy

consumption, and memory usage. The total energy consumption is controlled by

latency and memory usage, as well as the category of AI applications, processing

sources, model types (float and quantized), and DNN structure and model size.

3.3 Mobile AI Performance Analysis

Experiments are conducted with all the devices listed in Table 3.1 and models listed

in Table 3.2 by switching to different processing sources, such as CPU thread 1 and
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Table 3.2: DNN models used in mobile AI performance study

Denotation Model Appliation Input size No. of Model
layers Size

Model 1 MobileNeV1 Image 224x224x3 31 16.9 MB
(Float) classification

Model 2 MobileNetV1 Image 224x224x3 31 4.3 MB
(Quantized) classification

Model 3 EfficientNet- Image 224x224x3 62 18.6 MB
lite (Float) classification

Model 4 EfficientNet- Image 224x224x3 65 5.4 MB
lite (Quantized) classification

Model 5 NASNet Image 224x224x3 663 21.4 MB
Mobile (Float) classification

Model 6 Mobile NLP int32 2541 100.7 MB
BERT QA [1, 384]

Model 7 Tensorflow Speech [20 Hz, 8 3.8 MB
ASR recognition 4 kHz]

thread 4, GPU, and NNAPI. Models 1 to 5 are for vision-based AI, and models 6 and

7 are for non-vision-based AI applications. It is to be noted that models 2, 4, 6, and

7 do not support GPU processing due to a lack of TensorFlow Lite optimization.

In general, the applications have input data processing (combining image generation

and conversion in classification) and inference tasks. Some of the interesting findings

from the analysis are shown in this chapter.

3.3.1 Latency and energy consumption of mobile AI

The end-to-end latency and energy consumption per cycle for all the models with

different processing sources are shown in Fig. 3.4. First, it is observed that quantized

models decrease the inference latency (13%) and energy consumption (25%) from

their respective float models. Additionally, there is a reduction in the overall latency

of 4% when switching to a 4-thread from a single-thread CPU. However, in quantized

models, the multi-thread CPU processing slightly increases the total energy consump-

tion (3% on average). The use of GPU even lowers the end-to-end latency and energy
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consumption compared to the use of single-thread CPU (8% and 27% respectively on

average) and 4-thread CPU (7% and 25% respectively on average). On the contrary,

NNAPI behaves differently than the other three processing sources on different de-

vices. First of all, a reduction is observed in overall latency of 19% from model 1 to

model 2, which is a quantized version of model 1, and a 7% reduction from model 3

to model 4. For models 4 and 5, NNAPI increases latency and energy considerably.

The insight here is that NNAPI can perform better with sufficient hardware support

from the manufacturers.

An interesting fact about the NLP application is that the text processing step

shows an entirely different latency pattern. This segment takes user input which

does not take uniform time, i.e., it varies with user habits of typing and thinking of

the question. Moreover, NLP processes the keywords based on the structure of the

sentences and punctuation marks from the input. Hence, the processing stage here is

completely unpredictable for different users. In NLP, each input consumes around 5.7

J, whereas, another non-vision application, speech recognition takes around 161.85

mJ to process one speech input sampled at a rate of 16 kHz using a single-thread

CPU. NNAPI consumes the least latency and energy for speech recognition.

In addition, the power consumption charts of different applications and processing

sources are also analyzed (Fig. 3.5). It is observed that a slight initiation delay occurs

for every application (marked with red arrows in Fig. 3.5), which varies with using

different processors and applications. This delay occurs during the time when the ap-

plication interface initiates till the activity-start point, which is mainly originated by

different hardware components being accessed at the beginning of an AI application,

such as the camera, keyboard, speaker, and microphone. Besides, different processor

delegations (e.g., GPU and NNAPI) are also done during this period.

From this observation, the energy consumption of a complete application cycle can

be modeled as:
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Figure 3.4: End-to-end mean latency and energy consumption per cycle of
vision-based models 1–5 for (a) single- and (b) multi-thread CPU, (c) GPU, and (d)

NNAPI, and non-vision-based (e) model 6 and (f) model 7.

Etotal = Eid + n(Eproc + Einf ) (3.5)

where Etotal is the total energy consumption during an application cycle, Eid is the

energy consumption during initiation delay, n is the total number of inputs processed

(e.g., image, text, or audio), Eproc is the mean energy during input processing (for

vision applications: image generation and conversion), and Einf is the energy during

inference per input.

Highlights: Non-vision applications cannot be generalized for latency and energy

like vision-based ones. GPU processing is not supported by non-vision applications,

which should be explored widely. The initiation delay (i.e., the delay between the

activity trigger and start point) varies along AI models, processing sources, and ap-
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Figure 3.5: Power consumption pattern for (a) classification, (b) NLP, and (c)
speech recognition.

plications, which is caused by accessing different hardware components by mobile AI

applications.

3.3.2 DNN structures and their inference latency and energy

DNN structures define the way inference activities work in a mobile AI application.

The behavior of DNN structures varies across different kinds of applications as well,

e.g., vision and non-vision AI. For instance, a smaller DNN structure for vision appli-

cations can incur higher latency and energy than a larger non-vision DNN structure.

Inference latency and energy consumption per cycle are shown in Fig. 3.6 for DNN

models with single-thread CPU processing. It is observed that model 5 takes longer

inference time and energy due to its larger structure than the other vision-based AI

models. The longest latency and highest energy are evident in model 6 (a complex

structure comprising 2541 layers).

Highlights: DNN structures influence inference latency and energy significantly,

but the relationship is not linear at all. Generally, larger DNN structures are respon-
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Figure 3.6: Inference latency and energy consumption per cycle by DNN models.

sible for higher latency and energy for a mobile AI application.

3.3.3 DNN model size, memory usage, and inference energy

DNN model size (i.e., the storage space occupied by the model) impacts memory

usage and energy consumption during inference. From the experiment, model 7 is

observed to have the lowest model size, hence causing the lowest memory and energy

consumption, whereas model 6 has the highest size, memory, and energy consumption.

This is more evident from Fig. 3.7, which shows a comparison among all the models’

sizes, inference memory, and energy consumption for single-thread CPU processing.
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Figure 3.7: Comparison of DNN model size, inference memory usage, and inference
energy consumption.

Additionally, In Table 3.3, the memory usage due to inference is shown for different

configurations. The slightest memory is used by CPU thread 4 for models 1 and 2, and

GPU for models 3 and 5. For model 4, CPU thread 1 provides the best performance
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Table 3.3: Memory usage by different DNN models with different processing sources

Models Processors Mean memory consumption
due to inference (MB)

Model 1

CPU1 114.314
CPU4 82.8112
GPU 92.698
NNAPI 101.430

Model 2
CPU1 78.131
CPU4 76.344
NNAPI 128.020

Model 3

CPU1 88.828
CPU4 96.722
GPU 81.539
NNAPI 119.844

Model 4
CPU1 58.291
CPU4 76.376
NNAPI 110.299

Model 5

CPU1 122.243
CPU4 118.424
GPU 114.281
NNAPI 139.072

Model 6
CPU1 436.276
CPU4 428.221
NNAPI 91.7534

Model 7 CPU1 39.230

since its quantization impacts the rich processors.

Highlights: Lower memory used by mobile AI applications ensures computation

resources and energy for other mobile device activities. From this perspective, quan-

tized and smaller DNN models are best suited for mobile AI. The larger the storage

occupied by a DNN model, the higher the memory and energy consumption.

3.3.4 Performance evaluation of EPAM

The Gaussian process regression-based predictive energy model, EPAM, is devel-

oped and trained with each device’s SoC, CPU frequency, no. of cores, memory size,

processing sources, no. of threads, application type, DNN model, DNN structure,

memory usage, processing latency, and inference latency from the large experimental

dataset from this research to predict the total energy consumption per application

cycle (data processing and inference for each input). An empty basis function and
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ARD squared exponential kernel function are used for the hyper-parameter optimiza-

tion. We use device-1, 2, and 4 for training and validation, and device-3 for 1-step

ahead prediction testing. In this section, only a few prediction results are shown in

Fig. 3.8. EPAM’s energy prediction per cycle is highly accurate for all the models.

The overall root mean squared error (RMSE) is 0.075 (3.06%), and the marginal

log-likelihood value is −1.449× 102, which show that the trained model is a good fit

for the prediction. The prediction latency depends on the machine used to run the

model.

2 4 6 8 10 12 14 16 18 20

Cycle No.

0

0.2

0.4

0.6

0.8

T
o

ta
l 

en
er

g
y

 c
o

n
su

m
p

ti
o

n
 (

J)

Model1 CPU1 observed

Model1 CPU1 predicted

Model2 CPU1 observed

Model2 CPU1 predicted

(a)

2 4 6 8 10 12 14 16 18 20

Cycle No.

0

0.2

0.4

0.6

0.8

T
o

ta
l 

en
er

g
y

 c
o

n
su

m
p

ti
o

n
 (

J)

Model3 CPU4 observed

Model3 CPU4 predicted

Model4 CPU4 observed

Model4 CPU4 predicted

(b)

2 4 6 8 10 12 14 16 18 20

Cycle No.

0

0.2

0.4

0.6

0.8

1

T
o

ta
l 

en
er

g
y

 c
o

n
su

m
p

ti
o

n
 (

J)

Model5 GPU observed

Model5 GPU predicted

Model5 NNAPI observed

Model5 NNAPI predicted

(c)

2 4 6 8 10 12 14 16 18 20

Cycle No.

2

4

6

8

10

T
o

ta
l 

en
er

g
y

 M
o

d
el

 6
 (

J)

0

0.1

0.2

0.3

0.4

T
o

ta
l 

en
er

g
y

 M
o

d
el

 7
 (

J)

Model6 observed

Model6 predicted

Model7 observed

Model7 predicted

(d)

Figure 3.8: Evaluation of EPAM for (a) model 1 and 2 (b) model 3 and 4, (c) model
5, and (d) model 6 and 7 with different processing sources.

Highlights: EPAM further helps developers and users to perceive the performance

of individual AI applications in terms of energy with high accuracy – which is the

primary motivation of this research work. The larger and more diverse the training

dataset, the higher the prediction accuracy.



CHAPTER 4: PROPOSED PERFORMANCE ANALYSIS FRAMEWORK FOR

MOBILE AI

In this chapter, a performance analysis framework is proposed for XR applications

performing in heterogeneous networks. First, the system model, along with the con-

sidered XR application pipeline, is discussed in Sec. 4.1. Then, the proposed modeling

of the key performance metrics, namely, latency, energy, and AoI in Sections 4.2, 4.3,

and 4.4, respectively, along with associated challenges and mitigation techniques are

presented.

Following this, the experimental research is discussed, which is conducted on an

XR testbed to create a dataset with a view to validating the proposed model and

strengthening the model where regression is needed to avoid unrealistic assumptions.

The methodology and experimental setup are discussed in Sec. 4.5.

Lastly, the performance of the proposed analytical framework is evaluated in terms

of latency, energy, and AoI with respect to real experimental data in Sec. 4.6. The

framework is also compared to other state-of-the-art analytical methods, where the

proposed framework outperformed every other methods.

4.1 Overview of the Proposed XR Performance Analysis Modeling Framework

XR applications are diverse in operation and scope. Ranging from virtual reality

games to futuristic infotainment systems in autonomous vehicles, XR applications can

have different pipelines and features of operation. Therefore, it is difficult to devise

a general performance analysis model for XR. To tackle this challenge, the operation

and pipeline of the application need to be understood in detail first. This knowledge of

the pipeline can further lead to the analysis modeling. The proposed XR performance
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analysis framework provides a guideline for enthusiastic researchers in this domain on

how to model different performance metrics of an XR application. The performance

metrics studied in this research are end-to-end latency, energy consumption, and AoI.

This research shows that the following steps are essentially helpful in designing such

analysis models.

• First, the XR application pipeline, including the individual segments, needs to

be identified.

• Second, the operation of the pipeline needs to be studied. For example, the seg-

ments operating sequentially and in parallel need to be distinguished. Moreover,

the operations in a data buffer need to be considered in such modeling.

• Third, the factors influencing the latency and energy of each segment need to

be analyzed. For example, the latency for frame generation depends on the

frame rate, frame resolution, data size, and the allocated computing resource

and memory bandwidth of the device. Other segments’ details are also discussed

in later sections.

• Fourth, when explicit analytical modeling form is not possible for some seg-

ments, other numerical methods, such as regression analysis, are required to

find the analytical form. For example, the encoding and decoding latency de-

pends on so many factors (e.g., different configuration parameters) that a direct

analytic form is very hard to find.

• Fifth, the analytical modeling for AoI of an XR application needs in-depth

knowledge of sensors and devices involved in the pipeline and their communi-

cation methods. The packet arrival and service rates, propagation models, and

path loss models need to be considered if applicable.



50

• Finally, the models’ validation needs to be done with appropriate data, prefer-

ably collected through experiments. This validation enables researchers to find

flaws in the models and fix them accordingly.

XR applications have complicated pipelines since they contain the attributes of

AR, MR, and VR applications. In this research, the basic components of an XR

application have been identified, which can explain any other XR application with

slight modifications. For example, a multiplayer XR game can include database

sharing [134], and a vehicular application can consider map data sharing with the

cloud and other vehicles – which are based on the example XR pipeline explained

below.

To illustrate the proposed modeling framework, in this section, the entire pipeline

of an XR application (object detection) is broken down into segments that have

unique functions and responsibilities. The segments having parallel operations are

considered accordingly in the analysis modeling framework. Fig. 4.1 shows these

individual segments and an overview of their functions.

• Frame generation: The XR device captures a frame from the real world using

the camera sensors at a predefined rate (i.e., frame rate). Then, the captured

frame is processed by a Bayer filter and signal processor to prepare it for the

input buffer.

• Volumetric data generation: The XR device calculates the inertial data

of the user (i.e., the person wearing the head-mounted device (HMD) or an

autonomous driving system (ADS)). The inertial data is used in the 6 Degrees-

of-Freedom (DoF) localization, which is necessary to understand the user’s exact

location in a three-dimensional (3D) space. Lastly, the 3D point cloud data is

extracted from the current scene the XR device is displaying. This data is

passed to the input buffer.
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Figure 4.1: XR application pipeline for object detection.

• External sensor information generation: In this research, external sensors

and devices are considered to be involved in the XR application. The sensors

or devices generate and/or provide control information, such as the location of

an object or a person in a scene (e.g., a virtual meeting, multiplayer games,

and pedestrian location in an ADS). This information is transmitted to the

XR device via a wireless medium and stored in the input buffer along with the

generated frame and volumetric data.

• Frame conversion: This segment is necessary for the local inference (i.e.,

on-device inference with a light-weight convolutional neural network (CNN)).

The raw frames captured in frame generation are generally in the color format

YUV, which needs to be converted to RGB to match the input format of the

CNN. Moreover, the input tensor of the CNN has specific frame resolution

requirements which are met through scaling and cropping in this segment. An

image reader reads the frames from the input buffer and passes them to the
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frame converter.

• Frame encoding: This segment is related to the remote inference. Frame

encoding compresses the size of the data to be transmitted to an edge server by

using predictions and removing redundant features in a frame. In this research,

the standard H.264 is considered for the encoding and decoding of the frames.

The encoding quality depends on several parameters such as the intervals of I-,

P-, and B-frames, bitrate, frame size (i.e., resolution), frame rate (i.e., frames

per second (fps)), and quantization value.

• Local inference: The XR device can detect objects using an on-device light-

weight CNN (i.e., CNN with a low number of layers and size), which is used

to calculate the inference results without incurring a high delay and energy

consumption since the device has a limited computation capability and battery

backup. The input from frame conversion is directly fed to the local inference,

and the output of this segment is passed to the frame renderer.

• Remote inference: If the XR device decides to calculate the inference results

on an edge server, the remote inference is used. In this segment, the encoded

frames, along with the volumetric data and control information, are passed to

the remote edge server via a wireless medium, which has higher computation

resources and a larger CNN to provide more accurate and faster results. The

edge server decodes the frame and generates the inference result. The result

is then passed to the frame renderer via the wireless medium. Note that the

computation task can also be distributed between the XR device and edge

server(s) (one or multiple servers), based on the application’s requirement.

• Frame rendering: The volumetric data, captured frame, and external control

information are used in frame rendering. The captured frame is scaled and

cropped as per the display requirement of the XR device. In this segment, all
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of these inputs to the frame preview are processed to be displayed accordingly.

Finally, the inference results, from either the XR device or the edge server, are

passed to the frame renderer to display the results alongside.

• XR cooperation: The XR device may communicate with other cooperative or

collaborative XR devices through edge or cloud servers via a wireless medium.

This scenario is common in multi-player gaming or cooperative XR applications.

In this segment, the XR device sends either the entire scene or fragments of

information to convey specific objects’ position and alignment. Generally, this

segment is executed alongside frame rendering, hence it is dependent on the

application whether to include XR cooperation to the end-to-end latency and

energy calculation.

4.2 The End-to-End Latency Analysis Model

4.2.1 Challenges in Latency Modeling

An XR application generally has two kinds of latency: computation and communi-

cation latency [1]. Due to the unique nature and functions of each individual segment

of an XR pipeline, analyzing the latency for each of the segments can provide a better

insight into the application [2]. However, the latency of each component depends on

several other distinct device and network parameters, which brings additional chal-

lenges. For example, most of the computation segments depend on the available

computation resources, which cannot be modeled simply. This is because, today’s

XR devices and edge servers are equipped with modern GPUs. Moreover, the use of

tensor processing units (TPUs) and neural processing units (NPUs) is also on the rise.

The XR application and the OS of each device together determine which processing

units to use and at what utilization ratio.

Furthermore, research shows that the depth and size of neural networks (NNs) have

impacts on the latency [22], but the modeling of such impact is not provided in existing
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works. Exploring the relationship between NNs and the corresponding latency is

challenging since each NN is unique in nature in terms of the interconnectivity and

use of layers. These challenges are addressed and solved in the following subsection.

4.2.2 The Proposed Latency Analysis Model

T proposed latency analysis model consists of the latency from each segment of

the XR pipeline for each generated frame. For instance, consider the latency for the

q-th frame, where q ∈ {1, 2, ...Qn} such that Qn is the final frame at the end of the

application. The end-to-end latency of an XR application can be expressed as

Lq
tot =Lq

fg + Lq
vol + Lq

ext + Lq
ren + ωlocL

q
fc

+ ω̄locL
q
en + ωlocL

q
loc + ω̄locL

q
rem

+ ω̄locL
q
tr + ω̄locL

q
HO + Lq

coop,

(4.1)

where Lfg, Lvol, Lext, Lren, Lfc, Len, Lloc, Lrem, Ltr, LHO, and Lcoop are the latency

due to frame generation, volumetric data generation, external sensor information gen-

eration, frame rendering, frame conversion, frame encoding, local inference, remote

inference, transmission, handoff (HO), and XR cooperation. The decision of local in-

ference is denoted as ωloc and ω̄loc means the remote inference task, where ωloc = {0, 1}

is a binary value. Depending on the application, some segments’ latency may not need

to be incorporated in this model. For example, XR cooperation may be executed in

parallel with rendering; therefore, it might be excluded from this calculation.

Frame generation: The delay in frame generation depends on the frame rate,

frame size, allocated computation resource, data size, and the memory bandwidth

of the device, which are denoted as nfps, sf1, cclient, δf1, and mclient, respectively.

The frame size describes the complexity of a task to be processed by the XR device’s

computation resource. The ratio of δf1 and mclient presents the delay in reading and

writing the frame by the memory of the device. Then, the frame generation latency
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of the q-th frame is

Lq
fg =

1

nq
fps

+
sqf1
cqclient

+
δqf1

mq
client

. (4.2)

The values of nfps (frames/s) and sf1 (pixel2) are predefined in the application, δf1

(MB) depends on sf1, and mclient (GB/s) is a device configuration parameter.

Computation resource availability: The XR application requests the OS of a device

(e.g., XR device or edge server) to allocate resources of certain processing units at

a specific utilization ratio. The OS then allocates the resource, which cannot be

expressed in an explicit analytical form easily. Using the collected experimental data,

the allocated computation resource is expressed using multiple linear regression as

cclient =ωc(18.24 + 1.84f 2
c − 6.02fc)

+ (1− ωc)(193.67 + 400.96f 2
g − 558.29fg),

(4.3)

where the processing speeds (i.e., the clock frequency) of CPU and GPU (GHz) are

represented as fc and fg, respectively. The utilization rate of the CPU is denoted as

ωc, where ωc ∈ [0, 1]. The GPU utilization rate is (1 − ωc), which means for a task

shared by both CPU and GPU, the total resource utilization rate will be equal to

1. The R2-value of this model is 0.87, which shows that the regression model is a

good fit for the data. Note that this equation can also accommodate the allocation of

TPU or NPUs depending on the data availability for proper training of the regression

model.

Volumetric data generation: The latency due to volumetric data generation

depends on the computation resource availability, data size, memory bandwidth, and

the virtual scene size. Therefore, the latency for volumetric data generation for the

q-th frame becomes

Lq
vol =

sqvol
cqclient

+
δqvol

mq
client

, (4.4)

where svol and δvol are the virtual scene size (pixel2) and the corresponding data size
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(MB).

External sensor information generation: Assume the external sensors and

devices are m ∈ {0, 1, ...,M}, and the XR application requires n ∈ {0, 1, ..., N},

updates during one frame processing time. Denote the m-th sensor’s latency at the

n-th update as Lmn
ext . Then the total latency for external sensor information generation

for frame q becomes,

Lq
ext =

M
max
m=0

N∑
n=1

Lmnq
ext . (4.5)

Lmnq
ext depends on the information generation frequency of the m-th sensor and

the propagation delay between the sensor and the XR device. Denote the distance

between the m-th sensor and the XR device at the n-th update during q-th frame

processing time as dmnq (m). Then Lmnq
ext becomes

Lmnq
ext =

1

fm
t

+
dmnq

c
, (4.6)

where fm
t and c are the information generation frequency by the m-th sensor (Hz)

and the propagation speed (m/s), respectively. It is assumed that there are no path

loss, shadowing, or fading effects in this propagation, which can be incorporated into

the model according to system requirements.

Frame rendering: Frame rendering delay consists of the latency due to compu-

tation and file reading and writing. Three types of data are queued in the input

buffer: captured frame, volumetric data, and external information, where the asso-

ciated buffering delays are denoted as tbufff , tbuffvol , and tbuffext , respectively. Then the

delay due to data buffering during the q-th frame processing time becomes

tqbuff = tbufff + tbuffvol + tbuffext . (4.7)

Assume data buffering in the input buffer is modeled as a stable M/M/1 queueing
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system. Then the buffering time of these data in the system would be 1
µ−λ

, where µ is

the average service rate and λ is the average arrival rate to the buffer with a Poisson

distribution.

Additionally, the frame conversion or encoding and the local or remote inference

take place in parallel to the rendering; hence, they are ignored in the calculation of

the rendering delay, which contributes to the end-to-end latency, Ltot. Therefore, the

total rendering latency can be expressed as

Lq
renTotal =

sqf1
cqclient

+
δqf1

mq
client

+ tqbuff

+ ωlocL
q
tr(loc) + ω̄locL

q
tr(rem),

(4.8)

where Ltr(loc) and Ltr(rem) are the latency for transmission of local and remote inference

results to the renderer, respectively.

Frame conversion: The latency of color conversion, scaling, and cropping of

frames depends on the computational resources of the device. Therefore, the frame

conversion latency during frame q’s processing time can be written as

Lq
fc =

sqf1
cqclient

+
δqf1

mq
client

. (4.9)

Frame encoding: As mentioned earlier, frame encoding delay is dependent on

the encoding scheme’s different parameters, such as the intervals of I-frame and B-

frame, bitrate, frame size, frame rate, and quantization value, which are denoted here

as ni, nb, nbitrate, sf1, nfps, and nquant, respectively. However, the relation between

the encoding latency and these parameters is challenging to express in an explicit

analytical form. Instead, multiple linear regression is used to find the encoding latency
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at the q-th frame as

Lq
en =

(
−574.36− 7.71ni + 142.61nb + 53.38nbitrate + 1.43sqf1

+ 163.65nfps + 3.62nquant)/c
q
client +

δqf1
mq

client

.

(4.10)

In this model, δqf1/m
q
client is included since the frames need to be read from the input

buffer before encoding. The R2-value of this regression model is 0.79, which shows a

good fitness of the model.

Local inference: The local inference latency model is a function of the computa-

tion complexity of a task, allocated computation resources, data writing and reading

delays, and the complexity of the CNN. Hence, the local inference computation la-

tency for frame q can be modeled as

Lq
loc = ωclient

[
sqf2

cqclient · CCNN(loc)

+
δqf2

mq
client

]
, (4.11)

where sf2 and δf2 are the converted frame size and data size, respectively. Due to the

activity of the image reader, δqf2/m
q
client is added in this model. The complexity of the

lightweight CNN stored on the XR device is denoted by CCNN(loc). Another variable

ωclient determines the portion of the split task to the XR device, where ωclient ∈ [0, 1].

CNN model complexity in XR performance analysis: A CNN model’s complexity

depends on two parameters: the depth (the number of layers) and the size (occupied

storage space on the device memory) of the CNN [20,22]. Generally, an XR applica-

tion uses a pre-trained CNN model. Therefore, the complexity of a CNN model is only

considered for the inference tasks, not the training. Note that this CNN complexity

is exclusive to XR applications’ latency and energy analysis. It is not applicable to

other applications. Furthermore, efficient CNN models are equipped with depth scal-

ing nowadays [135], which is also addressed in this research. Using linear regression,
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the complexity of a CNN model is found as

CCNN = 2.45 + 0.0025dCNN + 0.03sCNN + 0.0029dscale, (4.12)

where dCNN , sCNN , and dscale are the depth, size, and depth scaling factor of a CNN

model, respectively. The R2-value of this model is 0.844. The regression model is

trained with a vast dataset of different CNN models’ latency and energy consumption

data, which is later discussed in Section 4.5.

Remote inference: Remote inference in an XR application pipeline takes care of

two tasks: decoding the received frame and running inference on the decoded frame.

Therefore, the latency due to remote inference on a single edge server for the q-th

frame can be modeled as

Lq
rem = ωedge

[
sqf3

cqϵ · CCNN(rem)

+
δqf3
mq

ϵ
+ Lq

dec

]
, (4.13)

where sf3 and δf3 are encoded frame size and data size, cϵ and mϵ are allocated

computational resources and memory bandwidth of the edge server, CCNN(rem) is the

complexity of the large CNN model(s) running on the edge server, and ωedge represents

the portion of the split task to the edge server.

Decoding is usually faster than encoding due to the straightforward reconstruction

of videos, typically with the help of GPUs and dedicated hardware decoders, while

encoding has to deal with many issues, such as removing redundancies and predicting

frames. Through the experiments, the decoding delay is found to be around one-

third of the encoding delay if conducted on the same device. The percentage of the

encoding delay equal to the decoding delay is defined as the discount rate, γ, in this

research. Therefore, the decoding delay for the same frame can be expressed as

Ldec =
Len · cclient · γ

cϵ
. (4.14)
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Using the experimental data, a relation between the computational resources of the

XR device and edge server is derived from this equation as cϵ = 11.76cclient.

Remote inference on multiple edge servers: An XR application can split the infer-

ence task on multiple edge servers that execute the task in parallel. Let E be the set

of edge servers Hence, the latency due to remote inference on multiple edge servers

at frame q becomes

Lq
rem =

E
max
e=1

[
ωe
edgeL

eq
rem

]
, (4.15)

where, ωe
edge denotes part of the inference task assigned to the e-th edge server. Here,

ωclient +
∑E

e=1 ω
e
edge = ωtask where ωtask expresses the total inference task required by

the XR application for a single frame. Each edge server’s latency, Leq
rem at frame q

can be modeled according to (4.13).

Transmission latency: In the XR application pipeline, all data coming from and

to the edge server are transmitted via a wireless medium. The transmission latency,

therefore, is a function of the data rate and propagation delay, which at frame q can

be expressed as

Lq
tr =

δqf3
rqw

+
dqϵ
c
, (4.16)

where rw and dϵ are available wireless resources (network throughput in Mbps) and

the distance between the edge server and the XR device (m). Wireless path loss is

not considered in this model but can be added to the framework based on system

requirements.

Latency due to handoff (HO): In the proposed framework, an XR device is

considered leaving a wireless coverage zone toward another with the same or different

access technology, with the mobility of the XR device modeled by the Random walk

model. The probability that an XR device moves from one wireless coverage zone to

another, P (HO), can be derived using methods in existing papers such as [136]. In

addition, a vertical HO is considered for XR applications to find the HO latency, lHO
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using a similar analysis as in [137, 138]. The average total HO latency during frame

q’s processing time is

Lq
HO = lHO · P (HO). (4.17)

XR cooperation latency: XR cooperation takes place between the client XR

device and other cooperative devices via a wireless medium. Generally, this segment

is executed in parallel with rendering, which is why the latency due to XR coopera-

tion does not need to be considered in the end-to-end latency of an XR application.

However, this parallel operation is entirely dependent upon the application’s scope.

Application developers or researchers can still use the following model to separately

evaluate an XR application’s performance during cooperation or include this latency

into the overall latency calculation if needed. The latency due to XR cooperation is

expressed as

Lq
coop =

δqf4
rqw

+
dqcoop
c

, (4.18)

where δf4 and dcoop represent the data size to be transmitted to the cooperative XR

device and the distance between the two communicating devices.

4.3 The Energy Consumption Analysis Model

4.3.1 Challenges in Energy Modeling

The energy consumption analysis model for XR applications is not as straightfor-

ward as measuring the power consumption only. Before proposing an energy model,

there has to be sufficient insight into the power consumption behavior of an XR de-

vice during the application. For example, the power consumption trend is not the

same for all the XR devices running the same application. To tackle this challenge,

an analysis of a huge experimental power consumption dataset is required.

Additionally, the energy from the battery of an XR device is not entirely used for

the XR application. Electrical energy is usually converted to thermal energy by a

small percentage. Moreover, no matter whether the XR application is running or
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not, there is always a small amount of power consumption on the XR device, known

as base energy. Therefore, proposing an accurate energy model for XR applications

is a challenging task.

4.3.2 The Proposed Energy Consumption Analysis Model

The proposed energy consumption analysis model for an XR device while running

an XR application follows a similar procedure to the latency model described in

Section 4.2. The total energy consumption by an XR device for the q-th frame can

be expressed as

Eq
tot = Eq

fg + Eq
vol + Eq

ext + Eq
ren + ωlocE

q
fc

+ ω̄locE
q
en + ωlocE

q
loc + ω̄locE

q
rem

+ ω̄locE
q
tr + ω̄locE

q
HO + Eq

coop + Eq
θ + Eq

base,

(4.19)

where Efg, Evol, Eext, Eren, Efc, Een, Eloc, Erem, Etr, EHO, Ecoop, Eθ, and Ebase

represents energy consumption by the XR device during frame generation, volumetric

data generation, external information generation, frame rendering, frame conversion,

frame encoding, local inference, remote inference, transmission, HO, cooperation,

energy converted to thermal energy, and base energy, respectively. Here, (4.19) can

be further expressed as

Eq
tot =

(∫ Lq
fg

0
P q
fg dt+

∫ Lq
vol

0
P q
vol dt+

∫ Lq
ext

0
P q
ext dt

+

∫ Lren

0
P q
ren dt+ ωloc

∫ Lq
fc

0
P q
fc dt+ ω̄loc

∫ Lq
en

0
P q
en dt

+ ωloc

∫ Lq
loc

0
P q
loc dt+ ω̄loc

∫ Lq
rem

0
P q
rem dt

+ ω̄loc

∫ Lq
tr

0
P q
tr dt+

∫ Lq
HO

0
P q
HO dt+

∫ Lq
coop

0
P q
coop dt

+ Eq
θ + Eq

base,

(4.20)
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where Pfg, Pvol, Pext, Pren, Pfc, Pen, Ploc, Prem, Ptr, PHO, and Pcoop represents power

consumed by the XR device during frame generation, volumetric data generation,

external information generation, frame rendering, frame conversion, frame encoding,

local inference, remote inference, transmission, HO, and XR cooperation. It is found

that power consumption is a function of the computational resources allocated for

the task. The relationships between power and computational resources, base power,

and heat dissipation in an XR device are discussed below.

Computing resource dependent power consumption: Power consumption

during an XR application in an XR device is a function of the computational re-

sources allocated for the task. However, there has been no mathematical formula

to establish this relationship. As a result, the mean power consumption model of

an XR application is found based on multiple linear regressions using the collected

experimental dataset as

Pmean = ωc(18.85fc − 3.64f 2
c − 20.74)+

(1− ωc)(187.48fg − 135.11f 2
g − 62.197).

(4.21)

Pmean is a function of both CPU and GPU resource utilization. The R2-value

of this model in (4.21) is 0.863. Interested researchers can extend this relation to

accommodate TPU and NPU resources as well.

Base power in an XR device: The base power is defined as the small portion

of the total power consumption that is always consumed during an XR application

due to the minimal background activities and leakage current in the device. The

minimal background activities are run by the OS itself, such as the system clock,

display, and connectivity functions. Moreover, the leakage current is a semiconductor

property that flows even if the XR device is idle. These background activities and

the leakage current gives rise to a small amount of energy consumption throughout

an XR application, which is denoted as Ebase in this research.
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Heat dissipation: Heat dissipation in an XR device causes serious discomfort

among the users. This heat is generated by the CPU, GPU, and battery of an XR

device. A small portion of the total energy consumption is converted into thermal

energy and consequently dissipates heat, which is represented by Eθ in (4.19) and

(4.20).

4.4 The Age-of-Information (AoI) Analysis Model

4.4.1 Challenges in AoI Modeling

In the XR application scenario presented in Fig. 4.1, the XR device is connected to

a number of external sensors and devices that provide the XR device with control and

environmental information, as well as scene and other data for cooperative XR. These

sensors and devices are heterogeneous in characteristics, i.e., different information

generation frequencies, different arrival rates to the input buffer, and different service

rates by the buffer for each of the information packets. This makes mathematical

modeling of AoI difficult.

4.4.2 The Proposed AoI Analysis Model

In this research, a sample scenario is provided in Fig. 4.2, where three sensors are

generating and transmitting information. At time t = 0, the sensors start generating

the information. However, the information generation by all the sensors is not finished

at the same time, t = 1. This can happen due to different information generation

frequencies of different sensors and devices. This frequency of the m-th sensor or

device is denoted by fm
t , where m ∈ M and M is the set of external sensors and

devices connected to the XR device. Note that the packet length is the same for all

the sensors in this scenario.

Average service time and AoI: The information packets arrive at the input

buffer with different arrival rates, λ, due to differences in ft. If the service rate at

the buffer is µ, considering an M/M/1 stable system, the average time spent in the
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Figure 4.2: External sensor information generation, transmission, and service
process for XR.

buffer by each information packet is

T̄ =
1

µ− λ
. (4.22)

The information packets experience propagation delay through the wireless medium,

as well. Therefore, the AoI (in seconds) for the m-th sensor at the q-th frame is

tmnq = Tmnq +

(
dqm
c

+ T̄

)
− T nq

Req, (4.23)

where dm is the distance between the m-th sensor and the XR device, c is the propa-

gation speed, Tmn is the generation time of the information originated by the sensor

for the n-th cycle of information generation, and T n
Req is the time requested by the

XR device to generate information for the n-th cycle. This research does not consider

the wireless resources (i.e., bandwidth and TCP throughput) in this case since the

control information packets are very small. Now, the average AoI of the m-th sensor
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at frame q’s processing time is

Amq =
1

N

N∑
n=1

tmnq, (4.24)

Relevance-of-Information (RoI): This research introduces a new metric for XR

applications in this section, which is Relevance-of-Information (RoI). RoI (no unit)

is defined as the ratio of information generation frequency by an external sensor or

device to the information generation frequency required by an XR application to avoid

having out-of-date information in a frame. If RoI≥ 1, then the information can be

considered as fresh. The frequency of information processed by the XR device from

the m-th sensor is

f̄m
t =

1

Amq
. (4.25)

The required information generation frequency is fm
req = N/Lq

tot, where N is the

total number of information updates during the total processing time of frame q.

Then RoI can be expressed as

RoI =
f̄m
t

fm
req

. (4.26)

4.5 Experimental Setup and Methodology

An XR application is implemented on the devices with diverse hardware configura-

tions listed in Table 4.1. For energy measurement, an external tool named “Monsoon

Power Monitor” is used that provides power to XR devices with a data sampling

rate of once at every 0.2 ms. Due to the delicate input power terminal design in

these devices, the power measurement becomes challenging. Applying a heat gun

and soldering process with careful investigation of the power terminals mitigates this

problem. All the experiments are carried out in similar environmental conditions

to make the experiments controllable and repeatable. A simple configuration of the

testbed used in this research is illustrated in Fig. 4.3.
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Table 4.1: Brief specifications of the XR and edge devices used in the experiments
for mobile AI performance analysis

Denot- Model System- CPU GPU RAM OS Wi-Fi Release
ation on-Chip Date

XR 1 Huawei Kirin 9000 Octa-core Mali 8GB Android 802.11 October,
Mate (5 nm) (1×3.13GHzA77 G78 LPDDR5 10 a/b/g/ 2020
40 Pro 3×2.54GHzA77 n/ac/ax

4×2.05GHzA55)

XR 2 OnePlus Snapdragon Octa-core Adreno 8GB Android 802.11 April,
8 Pro 865 (7 nm) (1×2.84GHz 650 LPDDR5 10 a/b/g/ 2020

3×2.42GHz n/ac/ax
4×1.8GHz
Kryo 585)

XR 3 Motorola Helio P70 Octa-core Mali 4GB Android 802.11 October,
One (12 nm) (4×2.0GHzA73 G72 LPDDR4X 9 b/g/n 2019

Macro 4×2.0GHzA53)

XR 4 Xiaomi Snapdragon Octa-core Adreno 4GB Android 802.11 August,
Redmi 665 (11nm) (4×2GHzGold 610 LPDDR4X 10 a/b/g/ 2020
Note8 4×1.8GHzSilver) n/ac

Kryo 260

XR 5 Google Snapdragon Octa-Core Adreno 3GB Android 802.11 May,
Glass XR1 Kryo 615 LPDDR4 8.1 a/g/b 2019

Enterprise (2×2.52GHz /n/ac
Edition 2 6×1.7GHz)

XR 6 Meta Snapdragon Octa-core Adreno 6GB Oculus 802.11 October,
Quest 2 XR2 650 LPDDR5 OS a/g/b/ 2020

Kryo 585 n/ac/ax

Exter- Nvidia Tegra Dual-Core 256-core 8GB Ubuntu – March,
nal & Jetson NVIDIA NVIDIA LPDDR4 18.04 2017
XR 7 TX2 Denver2 Pascal

Quad-Core
A57 MPCore

Edge Nvidia Tegra Octa-core 512-core 32GB Ubuntu – October,
server Jetson ARM v8.2 Volta LPDDR4X 18.04 2018

AGX Tensor LTS
Xavier Cores aarch64

This research uses 11 CNN models with distinct architectures in this research that

are listed in Table 4.2. A LinkSys dual-band router (2.4 GHz and 5 GHz) is used

as the wireless medium, which connects the XR devices, external sensors, and the
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Figure 4.3: A snippet of the experimental testbed used in this research.

server via Wi-Fi. For the remote inference, YOLOv3 and YOLOv7 are used in the

edge server. The 2017 COCO test dataset is used for testing the XR application for

both local and remote inferences.

Regression model training: After conducting experiments, a huge dataset is

collected for the design and evaluation of the proposed XR performance analysis

modeling framework. To design and evaluate the framework, datasets containing

119, 465 and 36, 083 data, respectively, are used. The regression models are trained

Table 4.2: CNNs used in mobile AI performance analysis framework design

CNN Model depth
(no. of layers)

Storage
space (MB)

GPU
support

MobileNetv1_240 Float 31 16.9 Yes
MobileNetv1_240 Quant 31 4.3
MobileNetv2_300 Float 99 24.2 Yes
MobileNetv2_300 Quant 112 6.9
MobileNetv2_640 Float 155 12.3 Yes
MobileNetv2_640 Quant 167 4.5
EfficientNet Float 62 18.6 Yes
EfficientNet Quant 65 5.4
NasNet Float 663 21.4 Yes
YoLoV3 106 210 Yes
YoLoV7 Scaling (1.5) 142.8 Yes
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with the data collected from devices XR1, XR3, XR5, and XR6, and tested with the

data collected from XR2, XR4, and XR7. Training and testing with separate datasets

help evaluate the models’ performance. All the regression-based models used in this

research are generated using a 95% confidence boundary.

4.6 Performance Evaluation

The proposed XR performance analysis model’s performance is evaluated compared

to the test dataset collected during experiments, which are considered “Ground Truth

(GT)” in this research. First, the performance evaluation of the proposed model is

presented for end-to-end latency and energy consumption of the XR pipeline. Then

the AoI model’s performance is evaluated based on an emulated experiment. Finally,

the end-to-end latency and energy consumption analysis in different conditions by

the proposed model are compared with several state-of-the-art analysis models. The

proposed models’ performance is evaluated for each individual segment of the XR

application’s pipeline considered in this research. Some of the major evaluation results

are discussed in this section.

4.6.1 End-to-End Latency Validation

The end-to-end latency of the XR application calculated by the proposed analytical

model is compared with the ground truth for both local (Fig. 4.4a) and remote

inference (Fig. 4.4b). In remote inference, device mobility is not considered.

Insights: A mean error of 2.74% and 3.23% in local and remote inference latency

calculation is observed as compared to the ground truth, which means the proposed

model is very accurate in calculating the end-to-end latency for XR applications. It

is observed that the more diverse the training dataset for regression is, the more

accurate the model can be.
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Figure 4.4: Evaluation of the proposed XR performance analysis models: analysis of
end-to-end latency for (a) local and (b) remote execution, end-to-end energy

consumption for (c) local and (d) remote execution, AoI at different (e) information
generation frequency and (f) RoI for information generation frequency of 100 Hz.

4.6.2 End-to-End Energy Consumption Validation

The comparison of end-to-end energy consumption of the XR service obtained from

the proposed model and ground truth is shown in Figs. 4.4c and 4.4d for local and

remote inference, respectively.
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Insights: The mean errors for local and remote inference energy calculation are

3.52% and 5.38%, respectively, as compared to the ground truth. This error percent-

age can be reduced by improving the regression model’s performance of the power

consumption model.

4.6.3 Age-of-Information Validation

A sample AoI scenario is emulated where three sensors have a rate of information

generation of 1 every 5, 10, and 15 ms (200 Hz, 100 Hz, and 66.67 Hz), respectively.

The XR application has a requirement of 1 information update every 5 ms. From Fig.

4.4e, an increase in AoI is observed when the rate of generating information gets lower

(i.e., the larger value of frequency). The reason behind this increase is the increase

in the delay between information request and information generation at every update

cycle (e.g., the sensor generating information at the 67 Hz frequency is transmitting

the first information when the third update is required). This incident is explained in

detail in Fig. 4.4f, where the sensor with a 100 Hz information generation frequency

has incremental AoI at every XR information update period. The corresponding RoI

is also shown in the figure.

Insights: To maintain a proper AoI, sensors should follow the RoI and use a

necessary frequency of information generation.

4.6.4 Comparison of Model Performance

The latency and energy of the proposed model are compared with two existing

analytical models: FACT [1] and LEAF [2]. The reason behind considering these

two models is that these are the most comprehensive and accurate state-of-the-art

analytical models presented by researchers so far for augmented reality applications

– a subset of XR applications. No other existing models provide better insights into

such applications. Therefore, these two models are the best candidates for comparison

with the proposed performance analysis framework.
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• FACT [1]: FACT proposes to include computation, core network, and wireless

latency into the overall service latency model of an edge-assisted AR application.

The respective energy model can be found by following each component of the

service latency. However, FACT presents the computation latency as a function

of the computation complexity and available computation resources, which are

formulated without considering different processing sources, data size, and the

memory of the device, but they are taken into account in this research.

• LEAF [2]: LEAF overcomes several limitations of FACT by breaking down

the entire pipeline of an edge-AR application and considering each segment’s

latency separately. However, it still suffers from the simplicity in formulating

the computation latency and energy as FACT does. The proposed framework

presents a comprehensive way to model XR latency and energy consumption to

achieve more accurate performance results.

The performance comparisons for end-to-end latency and energy consumption us-

ing remote inference are shown in Figs. 4.5a and 4.5b in terms of normalized accuracy,

where the normalized accuracy of GT is 100%. The proposed analytical model per-

forms with higher accuracy than FACT and LEAF in latency calculation by 17.59%
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Figure 4.5: Comparison of (a) end-to-end latency and (b) end-to-end energy
consumption for remote inference obtained from GT and analytical models with

FACT [1] and LEAF [2] in terms of normalized accuracy.
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and 7.49%, and in energy calculation by 15.30% and 8.71%, respectively.

Insights: The proposed XR performance modeling framework achieves this su-

perior performance due to the consideration of the complex models of computation

resource, encoding, and transmission, and the relation between the computation re-

source of the XR device and edge server.



CHAPTER 5: PROPOSED SERVICE AGGREGATION MECHANISM IN

HIGH-MOBILITY AI APPLICATIONS

In this chapter, a novel service aggregation system based on periodic AoI prediction

is proposed (Sec. 5.1. The AoI prediction is done using an LSTM network, which is

chosen by comparing with two other machine learning models by trading off between

latency, memory consumption, and accuracy. A range of period for AoI prediction is

proposed that can reduce latency and memory consumption even more. The algorithm

of the proposed system is also presented in this section.

Finally, the proposed system’s performance is evaluated in terms of newly intro-

duced performance metrics in Sec. 5.2. A comparison of the proposed service aggre-

gation system with respect to three other state-of-the-art data queueing methods is

also presented.

5.1 Proposed CAV Service Aggregation using Predictive AoI

In this research, it is assumed that the information update messages contain in-

formation about the source node (i.e., whether it is a stationary roadside sensor or

a mobile vehicle). Moreover, all the connected vehicles exchange basic information

with each other, such as speed and geolocation (e.g., latitude-longitude). Thus, the

relative speed of the EGO vehicle with respect to other connected vehicles can be

derived.

5.1.1 AoI Prediction

From an initial study, it is observed that there is an implicit relation between the

relative speed of the ego vehicle and the AoI from specific information source nodes.

The predictive AoI model for each source node, n, thus has two input parameters:
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the timestamp and relative speed of Ev with respect to n. The relative speed is a

function of the relative distance between Ev and n, and time.

For a low latency CAV application, the prediction of AoI should be done in such a

way that it does not introduce significant additional load to the system. For instance,

if the system has a certain latency requirement for each update, the prediction needs

to be completed within a time frame, leaving sufficient time for service aggregation

tasks to be done by the required latency. Moreover, the accuracy of prediction is

of utmost importance in the case of CAVs due to the involvement of safety issues.

Finally, the prediction needs to be done for each source node. With an increase

in the number of sources, the computational load for prediction increases – which

emphasizes the use of a low-complexity prediction model. Therefore, before choosing

a prediction model, the latency, accuracy, and computing load need to be evaluated

first. Three prediction models are implemented to predict the AoI in CAVs, which

are linear regression, Random Forest, and long short-term memory (LSTM) network.

Fig. 5.1 shows the comparison results of the three prediction models. The necessity

of a trade-off is evident here since each model has different pros and cons. Being

the highest priority performance metric, accuracy and latency dictate the use of the

LSTM network in this research. The high accuracy provided by the LSTM network

is due to its better and recurrent understanding of the temporal dependencies of the

training dataset.

Though the LSTM network provides the best prediction performance in this re-

search, it still has a high latency and memory consumption, which may not satisfy

the overall QoS requirement of the CAV application (e.g., latency and computing

load). Consequently, a periodic prediction system is proposed that predicts the AoI

at a certain interval. Additionally, this prediction system clusters the AoI data of

several sources based on similarity over a specific time period. This reduces the com-

putational load and latency by a high margin since the prediction runs alongside
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Figure 5.1: Comparison of AoI prediction latency, memory consumption, and
accuracy of different prediction models.

the service aggregation tasks. Let the period of prediction be denoted as N . The

predictive model predicts AoI at every N -step, and it predicts N -step-ahead AoI. N

can be determined by the application developers in numerous ways that allow them

to execute the prediction within the upper bound of the latency requirement. This

research defines a new parameter called “speed-to-coverage area ratio (SCAR)”, which

is the ratio of the relative speed of Ev to the coverage area of a source node, n (source

node can be either stationary or moving). The prediction should be done at least once

before Ev leaves the coverage area of a source. If the prediction latency is denoted as

Lpred, then the range of N that is recommended can be expressed as

N =

[
Lpred

1/Q
,

Q

SCARn

]
, (5.1)

where 1/Q is the maximum AoI threshold. Fig. 5.2 shows the performance of unit-

step and a 3-step AoI prediction by an LSTM network. Using a multi-step periodic

prediction, the system is able to reduce the overall latency by at least 42%. The
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Figure 5.2: AoI prediction latency, periodic AoI prediction latency, and periodic AoI
prediction accuracy using LSTM network.

hyperparameter values and types for the training of the LSTM network are shown in

Table 5.1.

Table 5.1: Training Hyperparameters of LSTM Network for AoI Prediction

Hyperparameters Values/Type

No. of LSTM units in each layer 64

No. of LSTM layers 4

Dropout rate 0.1

Recurrent dropout rate 0.1

Activation function tanh

Weight initializer glorot_uniform
Recurrent weight initializer orthogonal
Training batch size 32

Training epochs 50

Optimizer Adam
Learning rate 0.001

Loss function mean_sqaured_error
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5.1.2 Service Aggregation using Predictive AoI

The proposed service aggregation using periodic predictive AoI can be divided into

five tasks. First, the system initializes two buffers: the outer one is for receiving

updates from information source nodes via broadcast messaging (data buffer), and

the inner one is to put updates according to their update cycle (update buffer).

Second, if the system receives an update from a new node that does not belong to

the node list, S ∪ V , based on its AoI, the system determines whether to establish a

new connection and put this update into the respective segment of the update buffer.

Third, the system checks whether it is the period for prediction, and if it is, then the

LSTM network predicts N -step-ahead AoI using the current relative speed, v, and

timestamp, t. If the N -step-ahead AoI is satisfactory, then it maintains the service

connection at that cycle; otherwise, it terminates the connection with the specific

node. The information update is also processed accordingly. Fourth, the system

clusters nodes based on the predictive AoI to reduce the computing load. Finally, the

system updates the node list, S ∪ V , and the information update set, U . This entire

process is illustrated in Algorithm 1.

5.2 Performance Results and Discussion

In this section, the experimental setup, performance metrics, performance evalua-

tion of the proposed CAV service aggregation using predictive AoI, and comparison

of the proposed system with state-of-the-art methods are discussed.

5.2.1 Experimental Setup

Extensive experiments are conducted using simulated CAV scenarios with OM-

Net++. For the mobility model of the CAVs, a modified version of the freeway model

is used from [139]. The speed of the CAVs ranges from 15 − 30 m/s. The coverage

areas of sensors and vehicles are set to be 100m and 300m, respectively. Each simula-

tion lasts for 20 minutes. The prediction periods for sensors and vehicles are set to be
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Algorithm 1 Proposed CAV service aggregation using periodic predictive AoI.
Input: Relative speed vmn , Timestamp tm, and AoImn .
Begin
Initialize Hyperparameter settings, data buffer, B, update buffer, U , and period of prediction,
Nn.
foreach update cycle, m do

if n is not in node list then
if AoImn ≤ AoImax then

Add n to node list, S ∪ V
Add Um

n to U

end
else

Discard Um
n

end
end
else

foreach source node, n do
if m mod Nn = 0 then

Input of LSTM ← vmn , tm
Output of LSTM: AoIm+Nn

n

if AoIm+Nn
n > AoImax then

Terminate connection with n at update cycle, m+Nn

Update node list, S ∪ V

end
else

Maintain connection with n at update cycle, m+Nn

Determine update segment, U , for datan
Put Un to selected update segment, U

end
end
else

if AoImn ≤ AoImax then
Add Um

n to U
Maintain connection with n at update cycle, m
Cluster n with other nodes with equal AoIm

Update node list, S ∪ V with cluster nodes

end
else

Discard Um
n

end
end

end
end

end
return node list, S ∪ V , and information update set, U

Output: Service connection decision and information update, Um
n .
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5 and 10. The training and testing dataset used for the LSTM network contains data

of 96, 000 and 12, 000 timestamps, respectively. The required information update fre-

quency is set to 3 updates per second, which makes the maximum AoI threshold 333

ms.

5.2.2 Performance Metric

The proposed system’s performance is evaluated and compared in terms of the over-

all latency and data sequencing success rate (DSSR) at different relative speed values

of the ego vehicle and continuously varying relative speeds at different timestamps.

DSSR is introduced in this research for the first time as a performance metric of CAV

service aggregation, which is defined as the percentage of successful data sequencing

with respect to the total number of data in a buffer segment.

5.2.3 Overall Latency of the Proposed System

The overall system latency of the proposed CAV service aggregation can be divided

into two parts: data sequencing and service connection. The mean overall latency
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Figure 5.3: (a) Mean system latency at different relative speed and (b) overall
latency of system tasks.
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at different relative speeds of the ego vehicle and the components of the system are

shown in Fig. 5.3. The mean overall latency of the system is around 326 ms, whereas

data sequencing takes around 85% of the total latency.

5.2.4 Proposed System’s Performance at Varying Speeds

In Fig. 5.4, the proposed system’s performance is shown at continuously changing

relative speeds of the ego vehicle in terms of mean latency per update and DSSR. It

is observed that the system is able to maintain a mean overall latency of 327 ms with

a DSSR of 98% considering all the relative speeds. The initial latency (at 100 ms

timestamp) of the system is a bit higher (around 337 ms) since the AoI prediction is

executed at a later timestamp. Note that the highest priority of the proposed system

is to maintain a latency that is under the maximum tolerable threshold (333 ms in

this case), which may come at a cost of slightly reduced DSSR at a higher relative

speed.
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Figure 5.4: Mean system latency and data sequencing success rate (DSSR) at
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5.2.5 Comparison of System DSSR and Latency

The performance of the proposed CAV service aggregation using periodic predictive

AoI (denoted as “Proposed System” in this subsection) is compared with three other

state-of-the-art data communication and queuing techniques listed below. Since there

are no existing service aggregation methods available, these methods are modified to

fit the research problem of service aggregation.

• FIFO: First-in-first-out (FIFO) is a common data queuing and dequeuing

method, where the data are served first that arrive first.

• Stop-N-Wait: This is a popular data link and transport layer protocol for

data communication, which is modified for this research to stop and wait for

the data in the correct information update cycle.

• Priority Queue: This is another queuing technique that assigns different pri-

orities to data and serves according to the pre-set priorities. In this research,

information updates from nearby vehicles are given a higher priority.

The comparison among the four service aggregation methods is shown in terms of

mean DSSR (%) and mean overall latency (ms) per update at different relative speeds

of the ego vehicle in Fig. 5.5 and 5.6, respectively. DSSR in FIFO declines sharply

with an increase in speed since the ego vehicle passes the coverage area but does not

terminate the connection or adjust its data buffer accordingly. Priority queue also

experiences a declining DSSR with an increase in speed due to a similar effect. An

interesting finding here is that the DSSR is almost the same in the case of Stop-N-

Wait and Predictive AoI in every relative speed because both methods wait for the

correct information update. However, the mean latency is much higher in Stop-N-

Wait because of the high waiting time. Predictive AoI can achieve 78% lower latency

due to its periodic prediction and clustering.
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The average increase in DSSR is 7%, and the decrease in latency is 51% for the

proposed predictive AoI-based CAV service aggregation system compared to the other

three methods. Additionally, the predictive AoI-based system successfully maintains

the average AoI below the maximum AoI threshold.



CHAPTER 6: PROPOSED MOBILE AI PERFORMANCE IMPROVEMENT

TECHNIQUE IN UNSTABLE WIRELESS NETWORK

In this chapter, a novel H.264 video encoding-based edge-assisted MAR system

is proposed to overcome the challenges due to unstable wireless network conditions.

The proposed system is described in Sec 6.1. This encoding scheme is chosen for the

system due to its high compression ratio and compatibility with object recognition

systems. Before designing this system, experiments are carried out with different

smartphones running a basic Edge-MAR application (object detection). The experi-

mental measurements of the total latency and energy consumption show the necessity

of applying compression in data transmission.

Additionally, he transmitted data size and inference accuracy are measured and

collected for an Edge-MAR application with H.264 encoding and compared with those

for an existing Edge-MAR application. The study shows that there is a trade-off

between data size and accuracy in order to use any of the systems. Moreover, three

different wireless transmission conditions are emulated in the testbed. The latency

and energy data for both systems are analyzed. It is evident that only the data

transmission part of an Edge-MAR pipeline gets affected due to worse wireless signal

strength. However, introducing encoding in an Edge-MAR system helps reduce the

latency and transmitted data size, but at the cost of additional energy consumption.

These findings are presented in Sec. 6.3. Lastly, multiple linear regression-based

models are proposed in this section that can predict the MAR system performance

and required parameter settings with high accuracy.
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Figure 6.1: System description of Edge-MAR with H.264.

6.1 Proposed System Description

This section presents an Edge-MAR system based on the H.264 video encoding

scheme to detect and recognize objects. This system includes an encoder on the

client side (mobile devices) and a decoder on the server side. Like other Edge-MAR

pipelines, the proposed system does not include a “frame conversion” segment since

the encoder can process raw frames with YUV color formats. The system workflow

is shown in Fig. 6.1.

A1: A frame is generated by the client’s camera capturing the intended AR object

with the available background.

A2: The raw frame is previewed on the client’s output display.

A3: The raw frame is sent to the encoder of the client and further encoded using the

H.264 scheme.

A4: The encoded frame is transmitted to the edge server over the wireless network.

This communication takes place by creating a TCP (transmission control protocol)
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socket at the server end.

A5: The server receives the encoded frame, and then decodes it. If running CNN on

each frame takes longer than the frame reception time, all the received and decoded

frames remain in the queue (buffer).

A6: The server runs the CNN inference model on each decoded frame and gets the

result of the object detection and recognition.

A7: The result is then transmitted back to the client using the TCP socket.

A8: The client receives the result for each frame and displays it with a bounding box

and inference accuracy.

This workflow is repeated while the MAR application is running.

6.2 Experimental Setup and Methodology

6.2.1 Testbed

Vast experiments are performed using the testbed implemented for this research,

consisting of different smartphones (as mobile client devices), an edge server, and a

WiFi router. In order to make the proposed system usable for most of the commer-

cially available Android OS-based smartphones, phones released in different years,

having different specifications are selected, which are listed in Table 6.1. A Jetson

AGX Xavier [140] is used as the edge server, which has an 8-core ARM 64-bit CPU

with 32GB 256-bit LPDDR4x 137GB/s RAM and 512-core Volta GPU with Tensor

Cores. As the WiFi access point, a Linksys dual-band router [141] is used, which

is connected to the edge server. For energy consumption measurement purposes, an

external instrument – “Monsoon Power Monitor” [142] is connected to smartphones.

6.2.2 Methodology

For “Edge-MAR with H.264”, Android’s “MediaCodec” library is used to encode

the generated frames from the mobile device’s camera. The camera is moved at a

constant speed and angle to capture the objects to be detected. MediaCodec pro-
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Table 6.1: Brief specifications of the smartphones used in the experiments of mobile
AI performance improvement in unstable wireless network

Phones Samsung Asus Motorola Vivo Google
Model Galaxy ZenFone One Macro IQOO Z1 Pixel

S5 AR (XT2016-2) 4a

OS Android Android Android Android Android
6.0.1 7.0 9.0 10.0 10.0

SoC Snapdragon Snapdragon MediaTek Mediatek Snapdragon
801 (28nm) 821 (14nm) (12nm) (7nm) 730G (8nm)

CPU 32-bit 4-core 64-bit 4-core 64-bit 8-core 8-core 8-core
2.5GHz 2.4GHz Kryo 2×2GHz A73 (4×2.6GHz (2×2.2GHz

Krait 400 2×2GHz A53 & 4×2GHz & 6×1.8GHz
Cortex) Kryo)

GPU Adreno 330 Adreno 530 Mali-G72 Mali-G77 Adreno 618

RAM 2GB 6GB 4GB 6GB 6GB

WiFi 802.11 802.11 802.11 802.11 802.11
n/ac n/ac/ad b/g/n a/b/g/n/ac a/b/g/n/ac

Release April, 2014 July, 2017 October, 2019 May, 2020 August, 2020
date

vides a compression ratio of around 92% (1:12.5) in this experiment. For ease of

development, 300 frames are saved into a video file. Then the file is encoded and

transmitted to the edge server. The encoding parameters used in this experiment

are 30 fps, I-frame interval 5, and a maximum video bitrate of 30 MB/s. For remote

execution in the edge server, a version of the famous CNN model, YOLOv3 [143],

is adopted that uses the COCO dataset [144] having 80 classes of objects. The 2.4

GHz band of the router is used to access the Wi-Fi network. To produce different

network conditions with different RSS, different distances are emulated with line-of-

sight considerations from the Wi-Fi access point to the mobile devices while keeping

the transceivers directional.

The energy consumption of smartphones is measured by the power monitor that

is connected to the smartphones via the battery terminals. In the case of the latest
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smartphones, the batteries need to be removed from the back panel of the phones by

applying heat from a heat gun. Then the terminals are soldered to extended wires,

which are then connected to the input/output terminals of the power monitor — the

power monitor powers up the phones.

This external power monitor provides voltage, current, and energy consumption

data every 2 ms. Before measuring the energy consumption, all the irrelevant features

and background applications are turned off in the smartphones to understand the

behavior of the object detection application properly. The latency data for different

segments of the Edge-MAR pipeline, on the other hand, are logged in separate files.

The application is run for 300 frames each time. Then the energy and latency are

considered for a single frame by taking the average of all the measurements for 300

frames. To compare the experimental results with an existing MAR system, the

work in [7] is implemented, which is named here as “Edge-MAR” only. Finally, using

multiple linear regression, new models are developed for different parameters of the

Edge-MAR system taking all the experimental data as inputs.

6.3 Performance Analysis of Edge-Assisted MAR Systems

6.3.1 Key parameters

6.3.1.1 Performance metrics

In any edge-based AR system, latency is the most important performance metric,

which defines whether a system is suited for real-time or other sensitive applica-

tions. The inference accuracy describes the system’s ability to recognize any object

correctly. Moreover, for Edge-MAR systems, energy consumption is another crucial

metric to determine a mobile device’s stability in terms of battery health. Lastly, the

transmitted data size dictates how much network resources are consumed.
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6.3.1.2 Control factors

The experimental testbed consists of an H.264 encoder, where the encoding con-

figuration regulates the encoding latency and energy consumption due to encoding.

Additionally, smartphones’ CPU frequency governs the way frames are processed and

encoded. The size of the captured frames does not necessarily control the compres-

sion, but the data size depends on it heavily. However, no matter what the data

size is, the transmission latency and energy vary on different signal strengths of the

wireless medium.

6.3.2 Latency and energy consumption of Edge-MAR and Edge-MAR with H.264

encoding

Experiments are conducted on both Edge-MAR and Edge-MAR with H.264 for 8

different sizes of frame resolution (300×300, 350×350, 400×400, 450×450, 500×500,

600× 600, 700× 700, and 800× 800) and for 3 different CPU frequencies (1, 2, and 3

GHz). The main difference between the pipelines of these two systems is the presence

and absence of frame conversion and frame encoding, and vice-versa. The latency

and energy measurements are shown in Fig. 6.2.

The overall latency and energy consumption for Edge-MAR varies from 677.6 ms

to 1156.35 ms and 5.87 J to 7.55 J for 1 GHz, 662.84 ms to 1144 ms and 6.45J to

7.81 J for 2 GHz, and 610.96 ms to 1115.5 ms and 6.58 J to 8.6 J for 3 GHz CPU

frequency for the above-mentioned frame sizes. The major latency is caused by the

transmission, and most of the energy is consumed by the frame generation. It is

observed that for frame sizes from 350×350, the latency does not increase drastically

for Edge-MAR till the frame size of 500 × 500. After that, the change in latency is

steeper. Similar trend goes for energy consumption also in Edge-MAR.

For Edge-MAR with H.264, it is found that the overall latency is reduced by around

80%, but at the cost of energy consumption increase of around 20%. Most of the
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latency and energy consumption is here caused by the encoding. Similar to Edge-

MAR, in this system, from frame size 350 × 350 to 500 × 500, latency and energy

consumption do not increase significantly.

Insight: With the increase in CPU frequency, latency decreases, and energy con-

sumption increases. However, for the increase in frame resolution, both latency and

energy consumption rise. Edge-MAR with H.264 provides less latency but at the cost

of an apparent increase in energy consumption. Frame size 350× 350 to 500× 500 is

observed to be an optimal range for MAR applications in terms of latency and energy

consumption due to the hardware limitations such as sensor size and frame rates of

mobile devices.
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Figure 6.2: Overall latency at CPU frequency (a) 1 GHz, (b) 2 GHz, and (c) 3 GHz,
and energy consumption at CPU frequency (d) 1 GHz, (e) 2 GHz, and (f) 3 GHz for

Edge-MAR and Edge-MAR with H.264 respectively.
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6.3.3 Data size and accuracy

The measured data show that with the increase in frame sizes, the size of transmit-

ted data per frame rises, as shown in Fig. 6.3. This is due to the increase in frame

information with the larger frame size. From frame size 400× 400 to 450× 450 and

from 600× 600 to 700× 700, there is a sharp rise in data size due to the sudden in-

troduction of additional information. The increment in data size is more stable from

frame sizes 450 × 450 to 500 × 500 because of a more minor increase in background
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Figure 6.3: Transmitted data size and decrease due to encoding for different frame
sizes and CPU frequencies.
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information with the movement of the camera or the object. This is true for the en-

coded data size as well. Another interesting finding is that there is a slight decline

in compression at frame sizes 600× 600 and 800× 800 because of small information

added to the frames compared to the other sizes. The data size for Edge-MAR varies

from 0.95 MB to 1.8 MB per frame, and for Edge-MAR with H.264, from 0.072 MB

to 0.13 MB per frame with an increase in frame sizes, i.e., additional information.

Furthermore, the inference accuracy varies a little across different frame sizes. It

ranges from 84.50% to 89.7% per frame, with YoloV3 running on the server. Another

However, due to encoding, this accuracy drops slightly by around 0.1% to 0.5% because

of the lossy compression of the frames, as depicted in Fig. 6.4.

Insight: Edge-MAR with H.264 provides a considerable reduction in data size in

this experiment, but at the cost of reduced inference accuracy by 0.5%, implying that

using H.264, an Edge-MAR system can save around 92% of the allocated bandwidth

with slightly reduced accuracy. Neither the data size nor the inference accuracy

depends on the CPU frequency. Though frame resolution does not influence encoding,

with additional information in a frame, encoded data size and compression ratio

increase.

6.3.4 Impact of RSS on transmission latency and energy

The impact of the signal strength of the wireless medium is pivotal in the transmis-

sion of data from mobile devices to the server. Both latency and energy consumption

due to transmission increase with the decrease in RSS, which in turn increases the

overall latency and energy consumption. Three RSS levels are generated for the ex-

periment: −30 dBm, −42 dBm, and −60 dBm. Fig. ?? and Fig. 6.5 show the

transmission latency and energy, respectively, for different RSS at different CPU freq.

for both Edge-MAR and Edge-MAR with H.264. For RSS=−60 dBm, in Edge-MAR

and Edge-MAR with H.64, transmission latency increases on average by 44.41 ms and

7.73 ms at 1 GHz, 32.13 ms and 6.38 ms at 2 GHz, and 25.36 ms and 5.08 ms at 3 GHz



93

of CPU freq. sequentially from RSS=−30 dBm. At the same RSS, a corresponding

increase in energy consumptions for transmission for these systems are 49.38 mJ and

9.38 mJ at 1 GHz, 89.75 mJ and 4.31 mJ at 2 GHz, and 75.63 mJ and 24.75 mJ at 3

GHz of CPU freq. from −30 dBm. Fig. 6.6 illustrates the difference in transmission

latency for encoding from Edge-MAR only for different RSS.
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Edge-MAR at 3 GHz
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Edge-MAR with H.264 at 1 GHz
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30
0x

30
0

35
0x

35
0

40
0x

40
0

45
0x

45
0

50
0x

50
0

60
0x

60
0

70
0x

70
0

80
0x

80
0

Frame Size

0

0.2

0.4

0.6

0.8

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

 (
J)

(e)

Edge-MAR with H.264 at 3 GHz
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Figure 6.5: Energy consumption for frame transmission for different RSS for
Edge-MAR at CPU frequency (a) 1 GHz, (b) 2 GHz, and (c) 3 GHz, and for

Edge-MAR with H.264 at (d) 1 GHz, (e) 2 GHz, and (f) 3 GHz.

Insight: It is evident that with the rise in CPU frequencies, transmission latency

decreases. However, at 2 GHz CPU frequency, the transmission energy does not

increase sharply, compared to the other frequencies, due to smartphone architectures’

high compatibility with the 2 GHz range. Moreover, due to encoding, transmission

latency reduces by almost 80% from that of only Edge-MAR.
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(a) (b)

(c)

Figure 6.6: Difference in transmission latency due to encoding in percentage for RSS
levels (a) −30 dBm, (b) −42 dBm, and (c) −60 dBm.

6.3.5 Impact of encoding on latency and energy consumption

Since the proposed Edge-MAR system involves H.264 at the client side, encoding

has an impact on both latency and energy consumption of mobile devices, shown in

Fig. 6.7. With the increase in CPU frequency, the encoding latency decreases, but

the encoding energy increases. However, at 2 GHz CPU frequency, the reduction in

latency is high, and the increase in energy consumption is much lower than that at 3

GHz.

Insight: At 2 GHz of CPU frequency, smartphones provide higher efficiency in

terms of both encoding latency and energy consumption due to encoding. For frame

size 450× 450, it gives the optimal latency and energy consumption.
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Figure 6.7: Latency and energy consumption due to H.264 encoding.

6.3.6 Regression model

To develop regression-based models, frame size is denoted as Sframe, data size as

Sdata, accuracy for encoded frames as Accencode, difference in overall and transmission

latency from Edge-MAR to Edge-MAR with H.264 as△tall and△ttransm respectively,

encoding latency as tencode, the difference in overall energy consumption from Edge-

MAR to Edge-MAR with H.264 as △Eall, RSS levels as SRSS, and finally CPU

frequency as f . The proposed models for Accencode, tencode, △ttransm, and Sframe are

summarized in Table 6.2. The R2 values show the strength of the relationship between

the model and the dependent variables, implying a good fit of the model. This model

can be used to further design network- and energy-aware H.264-based Edge-MAR

systems where developers can choose the independent variables to achieve desired

values of dependent variables within the 95% confidence boundary.
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Table 6.2: Proposed linear regression-based models for MAR systems

Parameters Proposed models R2 value

Accencode 0.81 + 2.94×10−5Sframe + 0.34f 0.73

tencode 382.77 + 0.53Sframe − 19.89f 0.64

△ttransm
23.08−0.21Sframe+5316.3Sdata−11.8f−
0.89SRSS

0.71

Sframe

−5306.5 − 2.33f − 1.18SRSS −
39.38△Eall + 1.2△tall + 0.96tencode −
2.43ttransm+6075.7Accencode+7508.2Sdata

0.97
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Figure 6.8: Performance of regression models in predicting MAR parameters at
consecutive input frames: (a) accuracy after encoding, (b) encoding latency, (c)

difference in transmission latency, and (d) frame size.



CHAPTER 7: PROPOSED MOBILE AI QUALITY-OF-SERVICE

ENHANCEMENT FRAMEWORK

In this chapter, a novel edge-MAR system based on deep reinforcement learning

– ‘REAL” (Reinforced Edge Assisted Learning) is proposed, where the edge server

is provided with the system states (i.e., the wireless link quality and battery energy

level) to make dynamic and smart decisions for mobile devices on whether to offload

and how to process the input image frames for the MAR service based on a reward

cost function of end-to-end latency, energy consumption, service accuracy, and data

size. The learning algorithm for the proposed system is trained online using the

system states and provides rewards based on the actions it takes, with the principle

objective of collectively optimizing the system’s latency and energy consumption of

the mobile devices. The design of the proposed framework REAL is described in

Section 7.1. The learning algorithm and the training are presented in Section 7.2.

In addition, extensive experiments using the implemented testbed are carried out

with different mobile devices and powerful machines under strictly controlled environ-

ments so that the experiment is repeatable and replicable by future researchers. The

experimental procedure is discussed in detail in Section 7.3. The latency is measured

using carefully placed timestamps at both the client and the server side, as well as

the energy consumption of the mobile devices using an external power measurement

tool. The offloaded data size and service accuracy are measured from within the

application. These performance metrics are used for the system performance eval-

uation (Sec. 7.4). The overall QoS of REAL is observed to be higher than all the

other benchmark MAR systems. Another comparison with state-of-the-art offloading

techniques proves the superior performance of REAL.
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Figure 7.1: Processing pipeline of an object detection application with the proposed
REAL smart edge-MAR system.
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7.1 Proposed System Architecture: REAL

In this section, the design of the proposed REAL edge-MAR system is presented

considering object detection, which is a basic MAR application. The system consists

of three major components: a client, an edge server, and a hybrid edge-client REAL

framework. The processing pipeline of the REAL edge-MAR system is discussed

below as shown in Fig. 7.1.

Client: The client (i.e., a mobile device) processes five major tasks for this appli-

cation which are listed below.

• First, it starts with image generation. Using the camera sensor, the client first

captures a frame with objects. Then, the frame goes through a Bayer filter and

a digital signal processor. After that, the frame is stored in a frame buffer.

• Second, it goes for frame preview. During the frame preview, the frame is first

scaled and cropped according to the display requirements. Next, the frame is

displayed on the screen. Then, depending on the action space from REAL, it

goes to any of the two stages: frame conversion, frame encoding.

• Third, for frame conversion, the frame goes to the frame reader first. Then,

it is converted to RGB from YUV color format and cropped according to the

requirement of the CNN. On the other hand, frame encoding encodes the frame

using H.264 encoder with specific encoding parameters, such as I-frame intervals

and video bitrates.

• Fourth, depending on the decided action, the converted frame may be passed to

a local light-weight CNN model, and a detection result is generated, which is the

final task called local inference. Another option is to send the color-converted

frame to the edge server for remote inference. Otherwise, if the action is to

transmit the encoded frames, frame conversion is skipped. These frames are
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sent to the edge server via a wireless medium (i.e., Wi-Fi or cellular networks).

• Finally, the results from either local inference or remote inference are then sent

back to the frame preview to be displayed together with the previewed frame.

Edge server: The edge server (i.e., a powerful computing machine) executes re-

mote inference with a larger and deeper CNN model. Depending on the actions

decided by REAL, the color-converted frame from frame conversion or the encoded

frames from frame encoding tasks are received from the client for remote inference.

The detection results are sent to the client’s frame preview to be displayed together

with the previewed frame on the screen of the client.

REAL framework: REAL is a hybrid client-edge-based smart decision system.

The workflow of the framework is listed as follows.

• In the proposed framework, whenever the camera sensor captures a frame, the

client first collects the wireless link quality data using the wireless link sensor

from the wireless medium. Then, using the battery sensor, it collects the current

energy level data. Afterward, the client sends this system state information to

the edge server.

• The edge server generates action decisions using the REAL decision handler

based on the optimal policy.

• The decision handler sends the decisions back to the client’s REAL action han-

dler. This action handler provides input to the frame reader, which then ex-

ecutes necessary actions. These processes are completed by the time a frame

reaches the frame reader at the client side.

• After the completion of object detection on a single frame, the client’s environ-

ment calculates the reward and sends it back to the edge server.



101

• The server recalculates the reward using a discount rate and updates its policy.

A detailed description of REAL with the algorithm and utility function is provided

in the next section.

7.2 REAL: Learning Algorithms and Training

In this section, the use of deep reinforcement learning is justified to solve the

research problems discussed earlier (Section 7.2.1), the utility function is defined

(Section 7.2.3), and the learning algorithm (Section 7.2.5) and the training process

(Section 7.2.6) are described.

7.2.1 Choosing the right learning

Introducing REAL in an edge-MAR system makes the whole process smart and

dynamic to deal with the varying wireless environments and limited energy constraints

of mobile devices. It takes the wireless link quality and the energy level of a mobile

device as the system state input and takes actions based on the states. The system

state, action space, reward function, and discount rate are denoted here as follows:

• System states, S = s(i,j)t , is a continuous space, where i ∈ R, is the wireless

RSSI value, and j ∈ [0, 100], is the energy level (i.e., the remaining battery

capacity) of the device at time t.

• Action space, A = ant , is a discrete set of actions at time, t, where n =

1, 2, ..., N . Here, N denotes the total number of actions, including local in-

ference, remote inference, and remote inference with encoding (with a com-

bination of encoding parameters that need to be controlled, e.g., I-frame and

P-frame intervals, video bitrate, frame rate, and resolution). For simplicity, the

actions are classified in broader categories of local inference action (al), remote

inference action with color-converted frames (ar), and remote inference action

with encoded frames (ae), where ae contains all the elements of set A with en-
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coding parameters such as I- and P-frame intervals, video bitrate, frame rate,

resolution, and profile.

• State transition probability matrix, Pa
ss′ = P[St+1 = s′(i,j)|St = s(i,j), At = ant ].

Here, the state transitions are quite uncertain, with a lot of possible transition

targets. For example, if a device is highly mobile during a time period, the RSSI

level can vary over a broad range. Additionally, the energy level may experience

non-linear degradation due to computation resource allocation, hardware con-

figurations, RSSI, and battery health (state-of-health). Moreover, the energy

level may also rise while getting recharged.

• Reward function, Ra
s = E[Rt+1 = rt|St = s(i,j)t , At = ant ], is calculated from the

latency and energy consumption at time, t, where rt ∈ [−1, 1].

• Discount rate is γ ∈ [0, 1]. The calculated reward is discounted toward the

policy update according to this rate, γ.

In short, the edge-MAR system appears to have infinite combinations of states

where the actions do not guide the next state. Therefore, it is a stochastic environment

with a discrete set of actions. Since the state transition is too complex, the use of

any heuristic optimization algorithm cannot solve the research problem of optimizing

the overall latency, energy, accuracy, and data size. Furthermore, the system runs

in a real-time manner, which requires online recurrent training. This training should

be off-policy to reduce the training latency since off-policy algorithms are good for

parallel processing and continuous exploration of suitable actions [145]. A specific

deep reinforcement learning tool – soft actor-critic (SAC) algorithm [146] can be

helpful in this research that assumes a stochastic environment with a continuous

action space. However, the action space considered in this research is discrete, i.e., it

has a limited number of actions. As a result, REAL needs a modified SAC algorithm,

namely discrete-SAC [147]. This DRL network takes latency and energy data to
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calculate the reward for each action. Hence, it is necessary to define the latency and

energy calculation.

7.2.2 Latency and energy calculation

The processing pipeline of REAL has several different components. The latency and

the energy models comprise of all the delays and energy consumption for the individual

tasks explained in Section 7.1. In addition, the latency and energy calculations are

different based on the actions taken according to REAL. Therefore, the total latency

for the nth frame is

Ln
tot =


Ln
gen + Ln

con + Ln
pre + Ln

loc, at = a1,

Ln
gen + Ln

con + Ln
pre + Ln

off + Ln
rem, at = a2,

Ln
gen + Ln

enc + Ln
pre + Ln

off + Ln
rem, at = a3,

(7.1)

where Lgen, Lcon, Lenc, Lpre, Lloc, Loff , and Lrem represent the latency for frame gen-

eration, conversion, encoding, preview, local inference, frame offloading, and remote

inference, respectively. With this model, the client’s total energy consumption model

for the nth frame can be developed as

En
tot =

(∫ Ln
gen

0

P n
gen dt+

∫ Ln
con

0

P n
con dt+

∫ Ln
enc

0

P n
enc dt

+

∫ Ln
off

0

P n
off dt+

∫ Ln
loc

0

P n
loc dt+

∫ Ln
rem

0

P n
rem dt

+

∫ Ln
pre

0

P n
pre dt+

∫ Ln
tot

0

P n
base dt

)
· Ln

tot,

(7.2)

where Etot, Pgen, Pcon, Penc, Ppre, Poff , Ploc, and Prem are the client’s total energy con-

sumption, power consumed during frame generation, conversion, encoding, preview,

offloading, local inference, and remote inference. There is another power consumption

that contributes to the total energy – base power (Pbase), which is always consumed

during an application due to the minimal background activities in a mobile device.
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7.2.3 Definition of QoS (The utility function)

In this chapter, the QoS of an MAR application is defined as a function of end-

to-end latency (Ltot), energy consumption (Etot), mean service accuracy (A), and

offloaded data size (Soff ) for frame n. This leads to the reward cost function, Rc as

given below

Rc =


Cl1Ltot + Ce1Etot − CaA+ CoffSoff , EB ≥ EBth

,

Cl2Ltot + Ce2Etot − CaA+ CoffSoff , EB < EBth
,

(7.3)

where Ca, Coff , EB, and EBth
are coefficients of accuracy and offloaded data size,

battery energy level, and threshold of battery energy level. When EB falls below

EBth
, coefficients of latency and energy Cl1 and Ce1 are changed to Cl2 (< Cl1) and

Ce2 (> Ce1). As more weight is put on energy consumption in the reward cost

function, REAL focuses more on saving energy during low battery energy levels,

which is essential to prolong the battery life of a mobile device during an MAR

application. The lower the value of Rc is, the higher QoS of the MAR system is.

7.2.4 Reward calculation

The reward for actions is calculated based on the total latency and energy con-

sumption of the client. Reward, rt, at time t can be expressed as

rt =


+1, when Rc ≤ Rcth ,

0, when Rc > Rcth & Ltot ≤ Lth&Etot ≤ Eth,

−1, else,

(7.4)

where Rcth , Lth, and Eth are threshold values of the reward cost, total latency, and

energy consumption, respectively. These values are pre-set using experimental data

for a few discrete system states. However, Rcth , Lth and Eth are subject to frequent
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updates. When a lesser total is detected than the threshold, the value is stored as

the threshold for a specific state, si,j, based on Algorithm 2.

Algorithm 2 The pseudo-code of REAL reward calculation.

Input: Rc, Ltot, and Etot at t, and Rcth , Lth, and Eth for si,j .
Begin
Initialize Reward buffer, R = ∅, reward, rt = ∅, threshold buffers, Rcth , LTH and ETH with
pre-set experimental data
foreach t do

if Rc ≤Rcth(i,j) then
rt = +1
Rcth(i,j) ← Rc ▷ Update Rcth

Lth(i,j) ← Ltot ▷ Update Lth

Eth(i,j) ← Etot ▷ Update Eth

end
else if Rc > Rcth(i,j) & Ltot ≤ Lth(i,j)&Etot ≤ Eth(i,j) then

rt = 0

end
else

rt = −1

end
R[t]← rt ▷ Store in R
return rt, Rcth(i,j), Lth(i,j), and Eth(i,j)

end
Output: Reward rt at t, updated Rcth , Lth, Eth for si,j .

7.2.5 Overview of the learning algorithm of REAL

REAL is a discrete-SAC-based process. The critic network has a value function

given as

V (s(i,j)t) = π(sT(i,j)t)
[
Q(s(i,j)t)− α log(π(s(i,j)t))

]
, (7.5)

where T , π(s), Q(s), and α are total timesteps, policy function, Q-function, and

temperature parameter, respectively. The objective function of the temperature pa-

rameter is

J(α) = π(sT(i,j)t)
[
−α log(π(s(i,j)t)) +H

]
, (7.6)
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where H represents the target entropy, which depicts the level of exploration of ac-

tions. Next, the new objective function for the policy, π becomes

Jπ(ϕ) = Es(i,j)t∼D

[
π(sT(i,j)t)[α log(πϕ(s(i,j)t))−Qθ(s(i,j)t)]

]
, (7.7)

where D is the replay buffer of past experiences consisting of current state s(i,j)t ,

current action at, current reward rt, and the next state s(i,j)t+1 . Finally, the soft-Q

function to be trained is

JQ(θ) = E(s(i,j)t ,at)∼D

[
1

2
(Qθ)(s(i,j)t , at)

−(r + γEs(i,j)t+1
∼p(s(i,j)t ,at)

[Vθ̄(s(i,j)t+1)])
2
]
,

(7.8)

where γ and Vθ̄(s(i,j)t+1) are the discount rate and the target network value func-

tion, respectively. To avoid over-estimation, two Q-parameters are introduced in the

network: θ1 and θ2.

Wireless RSSI, Energy level Environment

Actor network Critic network

Reward calculator

s(i,j)t, at, rt, s(i,j)t+1

Replay buffer

Minibatch 
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CNN
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Encoded 

frame 

offload

Latency and Energy calculator

Policy 

updateat

rt

s(i,j)t s(i,j)t

Figure 7.2: Overview of the proposed REAL smart edge-MAR system.

The overview of REAL is shown in Fig. 7.2. At time t, the environment first

collects the system states s(i,j)t , and sends them to both the actor and critic network.

Based on the policy object function from (7.7), the actor network generates action, at
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from the action space, A. This action is then sent to the REAL action handler at the

client. After completing the action, the client calculates the total latency and energy

consumption, then sends these data to the reward calculator along with the mean

accuracy and offloaded data size. Calculated by (7.4), reward, rt is first multiplied

by the discount rate, and then sent to both the critic network and the replay buffer,

D. From the minibatch samples from D, both the actor and critic network get past

experiences, s(i,j)t , at, rt, s(i,j)t+1 . Temporal difference (TD) error is calculated by the

critic, and an updated policy is shared with the actor network. Future actions are

adjusted based on this updated policy.

7.2.6 Training of REAL

REAL is trained for 100 episodes with 200 frames per episode. The learning rate

is carefully chosen to avoid the classic over-fitting and under-fitting problems in the

machine learning paradigm. The proposed learning model is tested with five different

learning rates, α: 0.01, 0.001, 0.0005, 0.0001, and 0.00001. Fig. 7.3 shows the

convergence pattern for different learning rates. Since each episode contains 200

frames, before applying the discount rate, γ, the maximum possible reward at each

episode is 200, according to the reward definition in this chapter. It is evident that

the training with α values of 0.0001 and 0.00001 reaches desired rewards (around

80% of the maximum possible reward) much sooner than with other learning rates.

However, to maintain satisfactory QoS of a real-time MAR application, the overall

latency of the learning algorithm should be considered, as well.

The total latency of a reinforcement learning model consists of exploration, ex-

ploitation, and execution delays [148]. Fig. 7.4 shows such latency comparison for

different learning rates of REAL. Choosing a value of α lower than 0.0001 causes a

higher delay, which can cause lower overall QoS for an MAR application. In addition

to this, the total latency of α = 0.0001 is similar to the higher values, which motivates

us to select this as the learning rate to train the proposed system. The significant
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Figure 7.3: Convergence at different learning rates (α) of the learning algorithm of
REAL (before applying discount rate, γ).

hyperparameter values and types are listed in Table 7.1.

The overall training performance of REAL is shown in Fig. 7.5. As the number

of episodes reaches around 85, the total rewards per episode get stable at around

190 with a mean reward of 78%, which is satisfactory for the proposed system. The

term “epoch” is not used here as each individual training episode may have different

data depending on several uncontrollable environmental parameters such as hardware

acceleration, CPU processing, and slight changes in lights.
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Figure 7.4: Total latency at different learning rates of the learning algorithm of
REAL.
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Table 7.1: Hyperparameters used for the training of the learning algorithm of REAL

Hyperparameter Value/Type

Layers 2 convolutional layers
and 1 fully connected layer

Convolutional channels per layer [32, 64, 64]
Fully connected layer hidden units 3

Batch size 64
Replay buffer size 5000

Discount rate 0.99
Learning rate 0.0001

Optimizer Adam
Loss Mean squared error
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Figure 7.5: Training performance (in rewards) of the learning algorithm of REAL at
learning rate, α = 0.0001 (before applying discount rate, γ).

7.3 Experimental Testbed and Methodology

Testbed implementation: Copious experiments are carried out using the imple-

mented testbed. The devices used in the experiment are listed in Table 7.2. Different

mobile devices of the latest releases from unique manufacturers with diverse configu-

rations (clients 1-6) are used as the client devices, including one high-performing com-

puting machine (client 7) for preliminary study. The most powerful device listed here

is the Jetson AGX Xavier [140], having an 8-core ARM 64-bit CPU with 32 GB 256-

bit LPDDR4x 137 GB/s memory and 512-core Volta GPU with tensor cores, which

is used as the edge server. A LinkSys dual-band router (2.4 GHz and 5 GHz) [141] is
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used as the wireless medium, which connects the clients and the server via Wi-Fi. An

external power measurement tool – Monsoon Power Monitor [142] is connected to mo-

bile devices for energy consumption measurement purposes. However, only clients 1-3

are considered for this energy measurement, as mobile devices with batteries (clients

4-6) are needed to test the proposed system completely because devices without bat-

teries cannot provide the changing battery level data, which is essential to creating

the dynamic system states.

Methodology: The local inference of object detection is executed with the Mo-

bileNetv1.0 model [149] optimized by TensorFlowLite [150] having 64 hidden

layers with an input size of 300. For the remote inference with converted frames,

YOLOv3 [143, 151] with 106 layers is used for remote inference on the edge server,

which uses COCO dataset with 80 different classes of objects [144]. The 2.4 GHz band

of the router is used to access the Wi-Fi network. To create different RSSI levels,

the mobile devices are moved away from the Wi-Fi access point at a constant speed

to a constant direction with line-of-sight considerations. For this experiment, three

actions from the action space, A are implemented only, which are: local inference

(al), remote inference with color-converted frames (ar), and remote inference with

encoded frames (ae) having the encoding configuration parameters I-frame interval

5, and maximum video bit-rate 30 MB/s. To encode the frames, an open-source

compression algorithm – OpenH264 [152] is applied, which uses H.264 encoding to

compress video frames that provides around 140% compression rate in the experi-

ments. For all the experiments, the frame rate is set to 30 fps, CPU frequency to 2

GHz, and captured input frame size at 500× 500 pixels, which is studied as optimal

parameters for edge-MAR systems [19]. Android Studio is used to develop the entire

client-side application with Java for Android OS-based phones and AR glass. Remote

inference and REAL applications are written in Python.

Energy consumption measurement requires connectivity between the power mon-
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Table 7.2: Brief specifications of the devices used in the experiments for mobile AI
QoS enhancement

Denot- Model System- CPU GPU RAM OS Wi-Fi Release
ation on-Chip Date

Client 1 Huawei Kirin 9000 Octa-core Mali 8GB Android 802.11 October,
Mate (5 nm) (1×3.13GHzA77 G78 LPDDR5 10 a/b/g/ 2020
40 Pro 3×2.54GHzA77 n/ac/ax

4×2.05GHzA55)

Client 2 OnePlus Snapdragon Octa-core Adreno 8GB Android 802.11 April,
8 Pro 865 (7 nm) (1×2.84GHz 650 LPDDR5 10 a/b/g/ 2020

3×2.42GHz n/ac/ax
4×1.8GHz
Kryo 585)

Client 3 Motorola Helio P70 Octa-core Mali 4GB Android 802.11 October,
One (12 nm) (4×2.0GHzA73 G72 LPDDR4X 9 b/g/n 2019

Macro 4×2.0GHzA53)

Client 4 Vivo Mediatek Octa-core Mali 6GB Android 802.11 May,
IQOO Z1 MT6889Z (4×2.6GHzA77 G77 LPDDR4X 10 a/b/g/ 2020

(7 nm) 4×2GHzA55) n/ac

Client 5 Google Snapdragon Octa-core Adreno 6GB Android 802.11 August,
Pixel 4a 730G (8 nm) (2× 2.2GHz 618 LPDDR4X 10 a/b/g/ 2020

Kryo470G n/ac
6× 1.8GHz
Kryo470S)

Client 6 Google Snapdragon Octa-Core Adreno 3GB Android 802.11 May,
Glass XR1 Kryo 615 LPDDR4 8.1 a/b/g/ 2019

Enterprise (2×2.52GHz n/ac
Edition 2 6×1.7GHz)

Client 7 Nvidia Tegra Dual-Core 256-core 8GB Ubuntu – March,
Jetson NVIDIA NVIDIA LPDDR4 18.04 2017
TX2 Denver2 Pascal

Quad-Core
A57 MPCore

Edge Nvidia Tegra Octa-core 512-core 32GB Ubuntu – October,
server Jetson ARM v8.2 Volta LPDDR4X 18.04 2018

AGX Tensor LTS
Xavier Cores aarch64

itor and mobile devices. Batteries are removed by applying heat to the back of the

phones. The power terminals are then soldered to wire extensions. These wires are
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connected to the power monitors external probes. The power monitor provides energy

to the mobile devices and simultaneously measures the power consumption every 2

ms. As mentioned before, there is a base power in every mobile device, which needs

to be minimized as much as possible to get the most precise measurement. Hence,

all the irrelevant background applications and features are closed, camera features

are disabled, the display brightness is kept at the lowest level, and wireless connec-

tivities other than Wi-Fi are shut down. To conduct the experiments in a closed

and controlled environment, all the measurement data are collected during the night

with constant light exposures. To test the object detection application, COCO test

dataset 2017 are used. All the latency and energy consumption data are stored in

log files, which later are analyzed to evaluate the performance of REAL and compared

with those from other baseline MAR systems.

7.4 Performance Evaluation of REAL

7.4.1 Key Performance Metric

For the proposed REAL edge-MAR system, the average end-to-end latency and

average energy consumed per frame by the client devices are considered to be the

vital performance metrics since the objective of REAL is to reduce latency and energy

consumption under different circumstances. In addition to these, the mean accuracy

of object detection and offloaded data size are considered as other key performance

metrics. A benchmark accuracy is essential to maintain in most MAR applications.

Moreover, the offloaded data size represents wireless network resource utilization by

the edge-MAR system. The QoS of an MAR system is calculated as a weighted sum

of these four key performance metrics, as explained in Section 7.2.3.

7.4.2 Overall Latency and Energy Consumption

Experiments are performed on baseline MAR systems to compare with the proposed

REAL edge-MAR system’s performance, where baseline-1, baseline-2, and baseline-
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3 denote the local inference only, remote inference only, and remote inference with

encoding only, respectively. The system states are varied over a broad range – RSSI

levels between the Wi-Fi access point and client devices from 0 dBm to −90 dBm

and devices’ battery energy level (1−DoD) from 100% to 10%. The overall latency

and energy consumption for the individual components in the processing pipeline of

the baseline MAR systems at RSSI < −30 dBm are shown in Fig. 7.6 averaged over

200 frames.

The “local inference” MAR system (baseline-1) executes the CNN model for object

detection locally on-device, whereas “remote inference” (baseline-2) and “remote infer-

ence with encoding” (baseline-3) execute it on the edge server remotely, which is why

these two systems offload frames to the edge. Additionally, “remote inference with en-

coding” deploys an H.264 encoder at the client side and a decoder at the server side to

encode/decode the frames. Therefore, these three systems have different components

in their pipelines. In “local inference”, the significant delay is caused by the frame

conversion and inference. On the other hand, “remote inference” has the maximum

delay from offloading frames. However, due to encoding, the frame offloading has a

much smaller delay under “remote inference with encoding,” but the system has a

high delay from encoding itself. The critical takeaway from this study is that in good

network conditions, the edge-MAR with encoding has 2% and 20% less total latency

as compared to local and remote inference systems, respectively.

The energy consumption of the three systems is also unique in nature. The most

energy is consumed in local and remote inference systems by frame generation. How-

ever, encoding consumes the maximum energy in remote inference with encoding.

Offloading takes much lesser energy in remote inference with encoding than in re-

mote inference. In all the systems, frame preview consumes about 15% of the total

energy. Moreover, there is a base energy consumption in all the systems. The overall

energy consumption of the encoding-based edge-MAR system surpasses that of the
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Figure 7.6: The overall average (a) latency and (b) energy consumption of baseline
MAR systems at RSSI < −30 dBm.

others. The least amount of energy is consumed by the remote inference system.

REAL edge-MAR system involves a deep reinforcement learning-based smart edge-

MAR decision process. Fig. 7.7 shows a sample REAL edge-MAR system’s individual

components and their latency and energy consumption at RSSI < −30 dBm, where

it adopts action ae (remote inference with encoding). The training, learning, and

decision feedback segment of REAL takes < 1% delay and energy of the total latency

and energy consumption of the mobile device. From this evidence, it can be concluded

that REAL can be implemented in an edge-MAR system without adding significant

load or causing crucial degradation of QoS.

The total latency and energy consumption of the two remote inference-based sys-

tems vary with RSSI levels. Fig. 7.8 depicts that the remote inference system gives

rise highest to the latency in all RSSI levels at 80% battery energy level. Offloading

is the only part in the processing pipeline of an edge-MAR system that is affected by

the degraded wireless link. However, due to the compressed data size, the offloading

latency does not vary much in varying RSSI for remote inference with encoding. On

the contrary, the energy consumption is higher with encoding due to the compression,
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(a) (b)

Figure 7.7: Average percentage breakdown of (a) latency and (b) energy
consumption of individual segments of REAL at RSSI < −30 dBm where REAL

adopts ae.
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Figure 7.8: Total (a) latency and (b) energy consumption at different RSSI and
battery energy level 80%.

and the lowest with the remote inference system, but the latter varies a lot with RSSI.

The local inference system does not change with the RSSI levels as it does not in-

volve any transmission over the wireless network. REAL edge-MAR adopts a system

among the three abovementioned MAR systems depending on the RSSI and energy

levels to increase the QoS. The mean latency of REAL edge-MAR is around 11%

lower than the other systems at different RSSI of the wireless link. Additionally, the

energy consumption of REAL edge-MAR is 5% lower than that of the baseline sys-
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tems on average under changing energy levels. Fig. 7.9 shows a similar performance

to REAL, where it optimizes both the latency and energy consumption collectively at

different battery energy levels and RSSI < −30 dBm. All the performance results of

REAL edge-MAR are shown as an average of 100 training episodes with 200 frames.

Highlights: Frame conversion produces a considerable amount of delay in both

local inference and remote inference systems. The highest delay is caused by encoding

in remote inference with encoding, but the offloading latency goes down due to the

compressed data size. Frame generation and preview consume a significant amount

of energy in all the systems. However, encoding takes a surge of energy but reduces a

significant amount while offloading. REAL edge-MAR adopts a system among these

three based on the RSSI and battery energy level so that the mean latency and energy

consumption of REAL edge-MAR are optimized dynamically. The deep reinforcement

learning in REAL edge-MAR causes < 1% latency and energy of the total consump-

tion, which makes it a feasible solution for edge-MAR applications without degrading

the QoS.
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Figure 7.9: Total (a) latency and (b) energy consumption at different energy levels
and RSSI < −30 dBm.
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Figure 7.10: Mean and peak (a) power consumption and (b) discharge current for
different systems at RSSI < −30 dBm and battery energy level 100%.

7.4.3 Power Consumption and Discharge Current Analysis

Mobile devices’ battery health immensely depends on power consumption and the

discharge current. Energy consumption analysis gives more comprehensive insights

into the delay and power, whereas instantaneous power and current provide knowledge

on how soon the state-of-health degrades due to thermal dissipation [153]. Moreover,

discharging current dictates the aging of a li-ion battery [154]. In Fig. 7.10, the mean

and peak power consumption and discharge current data are shown for the baseline

systems and the proposed framework, REAL.

For baseline-1, the mean power consumption is lower than that of baseline-3. How-

ever, Fig. 7.10a shows that the peak power consumption of the baseline-1 system is

the highest among all of them. This sudden rise in power consumption can harm the

battery’s health by dissipating high heat [42], causing user dissatisfaction. A similar

trend is observed in the discharge current data (Fig. 7.10b) since the voltage remains

stable during the experiments.

Highlights: Power consumption and discharge current are important parameters

to consider in mobile augmented reality as these are directly related to the state-of-
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health of the battery. Local inference of MAR applications causes a sudden increase

in current discharge and power, which is not observed in remote inference systems.

This high peak power and current can lead to faster degradation of mobile devices’

energy sources.

7.4.4 Latency and Energy due to Offloading and REAL

Experiments show that offloading is the only component of the entire edge-MAR

pipeline affected by varying wireless link quality. Fig. 7.11 exhibits such variations

at different RSSI and 80% energy levels. Remote inference with encoding involves

much lower offloading latency and energy due to the smaller offloaded data size. This

behavior is also shown by Fig. 7.12 at different energy levels and RSSI < −30 dBm.

However, since REAL edge-MAR actions suggest empowering different MAR systems

at different conditions, both latency and energy consumption are reduced at all lev-

els. The proposed system reduces the offloading latency and energy consumption by

around 116% and 83%, respectively, on average, compared to the baseline systems.

REAL is observed to have less latency and energy than baseline-2 and baseline-3

systems since it sometimes adopts local inference only (al) depending on the net-
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Figure 7.11: Offloading (a) latency and (b) energy consumption at different RSSI
and battery energy level 80%.
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Figure 7.12: Offloading (a) latency and (b) energy consumption different battery
energy level and RSSI < −30 dBm.

work conditions, which does not offload at all, resulting in reduced mean latency and

energy.

Since the reinforcement learning segment of the REAL edge-MAR system involves

transmitting state, action, and reward information over the wireless network, it also

encounters such varying natures of latency and energy consumption no matter how

smaller the variations are. According to the experiments, as the RSSI degrades from
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energy level 80%.
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−30 dBm to −75 dBm, the latency and energy consumption rise by 9% and 21%,

respectively at the battery energy level of 80%, which are shown in Fig. 7.13. This

deviation is negligible as the learning part of REAL takes a significantly small portion

of the overall latency and energy of the whole application.

Highlights: The latency and energy consumption of the encoding-based remote

inference system due to offloading are both lower since the offloaded data size is much

smaller than that of the remote inference only. REAL edge-MAR reduces offloading

latency and energy consumption due to changes in system states, showing significant

improvement in QoS of an MAR application. Apart from these, the experiment

shows that REAL action and decision handlers are affected negligibly by the degrading

wireless link.

7.4.5 Accuracy and Transmitted Data Size

The proposed REAL edge-MAR system should maintain a satisfactory accuracy

level and reduce offloaded data size while optimizing the latency and energy con-

sumption collectively. Fig. 7.14 presents the mean top-3 detection accuracy and

mean offloaded data size of REAL edge-MAR at different RSSI and energy level 80%.
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Figure 7.14: Mean detection accuracy and offloaded data size of REAL at different
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Table 7.3: Mean detection accuracy (%) and offloaded data size (MB) by REAL
during 100 episodes

Battery RSSI (dBm), accuracy (%), data size (MB)
energy −30 dBm −45 dBm −60 dBm −75 dBm

level (%) % MB % MB % MB % MB
100 85.84 0.13 86.53 0.17 81.97 0 84.76 0.14
90 84.69 0.15 84.73 0.19 85.3 0.14 84.6 0.17
80 85.85 0.12 85.93 0.12 85.47 0.11 76.84 0
70 86.13 0.13 85.11 0.13 86.41 0.47 86.89 0.46
60 85.45 0 86.07 0.09 84.88 0.08 77.31 0
50 84.76 0.17 85.53 0.1 86.39 0.41 77.74 0
40 85.62 0.11 85.23 0.14 87.17 0.51 77.19 0
30 87.05 0.13 86.67 0.37 81.68 0 75.49 0.4
20 85.03 0.12 85.7 0.49 86.71 0.45 76.54 0
10 86.62 0.46 82.77 0 82.54 0 76.58 0

The average detection accuracy of REAL edge-MAR at all system states is 83.84%,

which is 16% greater than that of the local inference only and close to remote inference

systems.

Transmitted data size plays a critical role in utilizing the wireless network resources,

e.g., bandwidth. Experimental data show that the REAL edge-MAR offloads a mean

of 0.16 MB of data on average that is extremely smaller than that of remote inference,

but slightly larger than that with encoding, which is a necessary trade-off to increase

the QoS. A more detailed representation of the detection accuracy and offloaded

data size at different system states is shown in Table 7.3. When REAL adopts local

inference, the offloaded data size becomes zero, but at a slight cost of detection

accuracy. The proposed system looks for an optimized trade-off to deal with challenges

from varying system states.

Highlights: REAL edge-MAR system maintains 83.84% accuracy and offloads

0.16 MB of data on average considering all the system states, which is reasonable

with the optimization it brings to the system.
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7.4.6 Performance of REAL Edge-MAR at Different States

The performance of REAL edge-MAR is evaluated under various system states.

From the experimental studies, it is observed that REAL takes suitable action de-

cisions based on the system state information and continuously learns from past

experiences to avoid taking wrong steps.

As mentioned in Section 7.2, the edge server calculates the reward based on (7.3)

and (7.4) with normalized performance metric data. The weights are set for Ca, Coff ,

and EBth
as 0.2, 0.05, and 40% (experimental data show a drastic depth-of-discharge

from 40%). Based on EBth
, Cl1 , Cl2 , Ce1 , and Ce2 are set as 0.4, 0.35, 0.25, and

0.5 with a view to prolonging the battery life. After the completion of 100 training

episodes with 200 runs, REAL edge-MAR provides around 87% better reward cost

function value than the other baseline MAR systems. Fig. 7.15 shows the reward

cost for the baseline systems and REAL edge-MAR at different RSSI and energy

levels. REAL edge-MAR shows a lower reward cost value than the other systems at

Figure 7.15: Reward cost function value at different energy and RSSI levels (the
lower, the better).
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Table 7.4: Mean rewards calculated by REAL during 100 episodes (before applying
discount rate, γ)

Energy
level (%)

RSSI (dBm)
−30 −45 −60 −75

100 1 1 0.74 0.84
90 1 1 0.82 0.76
80 1 1 1 –0.26
70 1 1 1 1
60 1 0.93 1 0.89
50 1 1 1 1
40 1 0.68 1 –0.17
30 1 1 1 1
20 1 1 1 1
10 1 1 1 1

almost every system states. This figure is explained in more detail by Table 7.4 with

mean reward values. The mean reward value (before applying the discount rate, γ) of

REAL after 100 episodes for the 40 system state combinations is 36.23, which asserts

that REAL is able to increase the QoS at 90% system states.

Highlights: After 100 training episodes, REAL can optimize the overall system

parameters by lowering the reward cost function value by around 87% compared to

other baseline systems. The mean reward value of REAL training before applying the

discount rate is around 90%, which makes the entire optimization process lucrative.

7.4.7 Performance of REAL Edge-MAR at Continuously Changing States

The performance of REAL is measured and evaluated in different system states.

However, it is also necessary to observe its performance in continuously changing wire-

less link conditions and battery energy level conditions. We collect experimental data

for thousands of continuous frames in changing states, where RSSI and remaining

battery capacity values range from −30 dBm to −75 dBm and 100% to 20%, respec-

tively. Fig. 7.16 shows some snippets of the overall latency (s), energy consumption

(J), accuracy (%), and offloaded data size (MB) of REAL, along with actions taken at
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Figure 7.16: Overall latency, energy consumption, detection accuracy, and offloaded
data size of REAL at continuously changing states.

different states continuously changing over a long period of time (the battery energy

level cannot be decreased manually).

REAL takes different action decisions depending on the system states and previous

reward experiences on optimizing the pre-set performance metrics according to the

cost function defined in Section 7.2. The interesting observation here is, whenever

the action taken by REAL causes higher energy, the latency and offloaded data size

are reduced, keeping accuracy above at least 70% to ensure proper QoS, and vice-

versa. In poor network conditions, REAL tries to reduce the offloaded data size. On

the other hand, when the battery energy level or remaining battery capacity becomes

low, REAL reduces energy consumption, keeping other parameters above an expected

level to maintain a higher QoS. These characteristics of REAL makes it an effective

solution in edge-MAR applications.
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Highlights: REAL takes advantage of a trade-off among the overall latency, en-

ergy, accuracy, and data size, depending on the changing system states. The reward

cost function defines the weights assigned to each of these four parameters, which dic-

tates the operation of the learning algorithm. The way REAL takes actions based on

the changing environments proves its effectiveness for such challenges in edge-based

MAR applications.

7.4.8 Comparison of REAL with other state-of-the-art systems

Finally, the proposed smart decision framework “REAL” is compared with other

state-of-the-art offloading systems in this subsection. The overall latency and energy

consumption comparisons are shown in Fig. 7.17 and Fig. 7.18, respectively.

The state-of-the-art systems for offloading decisions used in this experiment for

comparison are as follows:

• No-offloading scheme (NO offload): This scheme does not offload the data to

the edge server and executes the inference locally only on the client device.

• Greedy offloading (Greedy offload): In this scheme, the data are always of-

floaded to the edge server for remote inference of MAR tasks.

• Q-learning method (Q-learning): This system uses the Q-learning approach

where the temporal difference algorithm always tries to achieve the best reward

by making offloading decisions (whether to offload or not to the edge server)

[128].

• Dynamic reinforcement learning scheduling (DRLS): This is an offloading de-

cision framework based on reinforcement learning that incorporates device-to-

device and edge computing systems [129].

• Deep Reinforcement Learning-based offloading scheme for XR devices (DR-

LXR): This is a DRL-based offloading scheme for extended reality devices which
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Figure 7.17: Comparison of overall latency of REAL with other systems.
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Figure 7.18: Comparison of overall energy consumption of REAL with other
systems.

considers complete or partial offloading to the edge server [9].

These systems are chosen for comparison as most of them consider reinforcement

learning as the tool to make offloading decisions. They are implemented using the

physical testbed and collect data for comparison purposes. In varying wireless link

conditions, these methods do not suit well in terms of latency and energy consump-

tion. Moreover, the greedy offloading scheme may exhibit low energy consumption

but at a cost of high latency. The overall mean latency and energy consumption

of REAL are 18% and 7.5% lower than that of the other systems presented in this

comparison, respectively. The proposed decision framework “REAL” outperforms all
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the other systems in varying wireless link conditions by trading off among latency,

energy consumption, service accuracy, and offloaded data size.

Highlights: REAL considers the varying wireless link conditions and the remain-

ing battery capacity of a mobile device for MAR applications, whereas the other

state-of-the-art reinforcement learning-based systems only focus on the offloading de-

cisions with the purpose of reducing the overall latency and energy consumption.

REAL trades-off among end-to-end latency, energy consumption, service accuracy,

and offloaded data size, which brings out the most effective QoS in an MAR applica-

tion in changing environments.



CHAPTER 8: Conclusion

8.1 Completed Work

This dissertation advocates the necessity of providing an energy-efficient infras-

tructure for mobile AI applications to enhance their performance, considering edge

computing.

First, this dissertation presented a comprehensive study of mobile AI applications

with different processing sources and AI models. Overcoming the challenges with

measurement, experiments were conducted to assess the performance of different AI

models, processing sources, and devices. The measurement work shows that the

latency, energy consumption, and memory usage vary based on DNN models and

processing sources. Mobile AI systems’ performance is substantially improved using

quantized models than floating-point models in terms of latency and energy. Another

important finding is that the storage space occupied by DNN models influences the

memory and energy consumed during inference almost linearly. Additionally, non-

vision applications follow a different trend of latency and energy consumption than

vision-based AI since their input processing techniques differ from vision applications.

Every AI application has an initiation delay caused by accessing various hardware

components of mobile devices, which varies for different models and configurations.

Moreover, the latency, memory, AI model, and device configuration impact the total

energy consumption for a complete application cycle, albeit at different correlations.

This non-linear correlation in a non-parametric model led to the proposed predictive

energy model, EPAM, based on Gaussian process regression. In this research, EPAM

was trained and validated with the vast dataset obtained from the experiment. The

evaluation of EPAM shows high accuracy with an overall RMSE of 0.075 (3.06%).
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Developers can use EPAM to predict the energy consumption of their mobile AI

applications without measuring the energy externally to improve the comprehensive

user experience. To summarize, this novel predictive energy model, EPAM, will help

the mobile AI research community design energy-improved applications considering

all the control factors and parameters that can reduce energy requirements to enable

better service for smartphones, wearable devices, and autonomous vehicles.

Second, a novel modeling framework is presented for performance analysis of XR

applications in edge-assisted wireless networks. The proposed framework consists

of analytical methods to evaluate the performance of individual segments of an XR

pipeline in terms of end-to-end latency, energy consumption, and AoI. In wireless

networks, the mobility of XR devices causes unique transmission and HO delays.

Moreover, information from heterogeneous sensors and devices sent to the XR device

produces an additional load on the buffer, introducing delays in the overall latency

and an increase in energy consumption. In addition, external sensors and devices

generate information at their own frequencies, which may cause improper arrival of

information packets in the XR pipeline. The proposed model becomes comprehensive

by taking all these details into account, which have not been considered in existing

work. Consequently, the proposed analytical model was validated against ground

truth and compared with state-of-the-art models. The evaluation shows that the

proposed performance analysis modeling framework for XR applications effectively

captures and incorporates the important determining factors affecting the end-to-end

latency, energy consumption, and AoI, and thus performs better than the compared

models with high accuracy.

Third, in this research, a novel service aggregation system was proposed for time-

sensitive CAV applications based on predictive AoI. The initial study indicated that

due to the low coverage areas of connected roadside sensors and nearby vehicles to

a CAV, the high mobility of the CAV causes severe degradation in AoI, which in
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turn makes service aggregation even more challenging. To address this challenge, a

service aggregation system was proposed that uses AoI prediction at a specific interval

and clustering information source nodes based on the predicted AoI. The periodic

prediction and clustering of source nodes help reduce the computational load and

latency. Simulation results showed that the proposed system is capable of predicting

the AoI with high accuracy and providing high DSSR while maintaining the AoI

threshold for low-latency CAV applications. Lastly, the performance comparison of

the proposed system with other data sequencing methods showed the superiority of

the proposed service aggregation system in high-mobility CAV scenarios.

Fourth, a detailed, comprehensive experimental study of network and energy-

resource utilization by an Edge-MAR with H.264 in different wireless network condi-

tions was presented in this research for a variety of mobile devices. The measurement

study showed that the use of H.264 in Edge-MAR can substantially reduce latency,

but at the cost of slightly increased energy consumption – especially in worse wireless

network conditions. It was observed that with the increase in CPU frequency and

frame size, the overall transmission and encoding latency and energy consumption

varies to a great extent, but at some specific frequencies and frame sizes, the varia-

tions are different due to smartphones’ efficiency issues. The study showed the neces-

sity of trade-offs among Edge-MAR parameters to achieve desired outcomes. Lastly,

regression-based models were proposed to design Edge-MAR systems with H.264 en-

coding. Any MAR system involving video transmission can leverage the benefits of

these proposed models. In short, the findings from this research will provide great

insights into further designs of latency- and energy-aware Edge-MAR pipelines with

H.264.

In the end, this dissertation proposed a novel deep reinforcement learning-based

edge-MAR system – REAL, which makes dynamic and smart decisions to deal with

the varying wireless link quality and mobile devices’ battery energy levels. Since the
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change in the battery energy level of a mobile device is guided by the hardware con-

figurations, camera parameters, computation resource allocation, and battery health,

it represents the overall computing system of the device. With the changes under

these system states, the key performance metrics of an MAR system also experience

variations. As a result, the proposed REAL edge-MAR system ensures increased QoS

of an MAR application. The approach to the stochastic nature of the state transition

problem, followed by discrete realistic actions for processing and offloading frames

with an off-policy soft actor-critic online learning method, sets the work apart from

the state-of-the-art research. Through extensive experimental study with a physical

testbed, the algorithms of REAL was implemented on different mobile devices and

an edge server. The experiments showed that the proposed REAL edge-MAR sys-

tem outperforms all the baseline MAR systems by balancing the end-to-end latency,

energy consumption, mean service accuracy, and offloaded data size of mobile de-

vices without introducing additional load to the system. The training of REAL was

validated with reward calculations using a reward cost function under varying combi-

nations of states. REAL was tested in continuously changing system states in terms

of actions taken, latency, energy, service accuracy, and offloaded data size. Finally,

the proposed system was compared to other state-of-the-art reinforcement learning-

based offloading schemes for edge-MAR systems, where REAL outperformed all the

schemes in different wireless link conditions, since the other systems do not consider

the changing wireless network and battery energy levels. To summarize, REAL edge-

MAR increases the overall QoS of an MAR system under dynamic system states by

making smart decisions using online deep reinforcement learning.
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8.2 Future Work

This Ph.D. research opens up many theoretical and experimental research possi-

bilities in providing energy-efficient wireless infrastructures for sustainable AI appli-

cations. This dissertation directs but does not limit future efforts to the following

research topics:

• Performance enhancement of edge-assisted AI applications in hetero-

geneous wireless networks:

The performance analysis modeling framework presented in this dissertation

shows the importance of AI applications’ critical performance metrics (latency,

energy consumption, and AoI) to achieve superior QoS. However, there is al-

ways a trade-off going on among these performance metrics. Depending on the

application requirements, these metrics need to be optimized. For example, a

highly mobile user may encounter larger latency, which can impede the QoS.

On the contrary, devices with smaller battery capacity may need to save en-

ergy for a longer period by reducing the XR application’s energy consumption.

Moreover, an autonomous vehicle will need the highest possible accuracy to

ensure safety on the road. Additionally, the heterogeneity of wireless networks

and devices poses additional challenges in the dissemination of environmental

information. This dissertation is currently based on the fundamental objective

of performance enhancement for edge-assisted AI applications, which has the

potential to pursue this future direction.

• Energy-efficient Generative AI application for mobile devices:

Recent developments in Generative AI (Gen-AI) have made related applica-

tions quite popular all around the world. Starting from GPT models to gen-

erative image and video content are being used heavily by users. However,

these applications consume extremely high computational resources, which in
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turn increases the energy consumption. To improve the QoS of these Gen-AI

applications, the latency needs to be reduced to some point, as well. All these

issues make this research direction interesting. Right now, mobile devices with

state-of-the-art hardware configurations are incapable of providing such QoS.

The research question is: how can edge computing help Gen-AI applications

running on mobile devices to provide better QoS? This future research direction

is well-aligned with the research problem this dissertation has approached to

solve.
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framework for edge computing-enabled extended reality applications in high-

mobility wireless networks,” in Proceedings of IEEE International Conference on

Distributed Computing Systems (ICDCS), 2024. (acceptance rate 21.9%)

2. Anik Mallik, Dawei Chen, Kyungtae Han, Jiang Xie, and Zhu Han, “Un-

leashing the true power of Age-of-Information: Service aggregation in connected

and autonomous vehicles,” in Proceedings of IEEE International Conference on

Communications (ICC), 2024.

3. Xiaolong Tu, Anik Mallik, Haoxin Wang, and Jiang Xie, “DeepEn2023: En-

ergy datasets for edge artificial intelligence,” in Proceedings of NeurIPS 2023

Workshop: Tackling Climate Change with Machine Learning, 2023.

4. Xiaolong Tu, Anik Mallik, Dawei Chen, Kyungtae Han, Onur Altintas, Haoxin

Wang, and Jiang Xie, “Unveiling energy efficiency in deep learning: Measure-

ment, prediction, and scoring across edge devices,” in Proceedings of ACM/IEEE

Symposium on Edge Computing (SEC), 2023. (acceptance rate 25%)

5. Anik Mallik, Hoaxin Wang, Jiang Xie, Dawei Chen, and Kyungtae Han,

“EPAM: A predictive energy model for mobile AI,” in Proceedings of IEEE

International Conference on Communications (ICC), 2023.
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6. Anik Mallik and Jiang Xie, “H.264 video encoding-based edge-assisted mobile

AR systems: Network and energy Issues,” in Proceedings of IEEE International

Conference on Communications (ICC), 2022.
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