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ABSTRACT 

 

 

TIANYANG CHEN. Spatially Context-Aware 3D Deep Learning for Geospatial Object 

Detection. 

(Under the direction of DR. WENWU TANG) 

 

This dissertation explores the intersection of Geographic Information Science (GIScience) and 

Artificial Intelligence (AI), specifically focusing on the enhancement of 3D deep learning models 

by spatial principles for understanding 3D geospatial data. With the rapid advancement in 

geospatial technologies and the proliferation of 3D data acquisition methods, there is a growing 

necessity to improve the capability of AI models to interpret complex 3D geospatial data 

effectively. This work seeks to leverage spatial principles, particularly spatial autocorrelation, to 

address the challenges pertaining to 3D geospatial object detection. 

The research is structured around three pivotal questions: the utility of spatial autocorrelation 

features for understanding 3D geospatial data, the approach to derive content-adaptive spatial 

autocorrelation features, and the enhancement of post-processing in the task of 3D geospatial 

object detection by spatial interpolation. Through a series of experiments and model developments, 

this dissertation demonstrates that incorporating spatial autocorrelation features, such as 

semivariance, significantly enhances the performance of 3D deep learning models in geospatial 

object detection. A novel spatial autocorrelation encoder is introduced, integrating spatial 

contextual features into the 3D deep learning workflow and thereby improving accuracy in 

detecting objects within complex urban and natural environments. Further, the dissertation delves 

into the challenges brought by data partitioning and sampling in large-scale 3D point clouds, as 

evidenced in the DeepHyd project focusing on the detection of hydraulic structures (i.e., bridge 

and its components). The findings highlight the critical role of spatial dependency patterns in 
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optimizing object detection accuracy and pave the way for future improvement of the 3D deep 

learning frameworks. 
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1 INTRODUCTION 

“Geographers study places” (Tuan 1977, p. 3). Geospatial technologies represented by remote 

sensing (e.g., LiDAR), and Global Navigation Satellite System (GNSS) (e.g., GPS, Beidou, and 

GLONASS) enable us to acquire geospatial big data. The data collected in space have been used 

to improve our understanding of our place by analyzing the data, as well as making it a better place 

by planning - “[p]lanners would like to evoke a sense of place” (Tuan 1977, p. 3). Geographic 

information systems (GIS) and Geocomputation are adopted by researchers and practitioners for 

geospatial analytics, featured by geovisualization (cartography), spatial statistics, spatial 

optimization, and spatial simulation. Conventionally, GIS application is operated based on a two- 

dimensional (e.g., latitude and longitude) geospatial dataset to analyze and visualize the 

relationship between the geospatial features (e.g., point, line, and polygon). Even though 3D data 

can provide more details by adding the other dimension to represent the shape of an object as to 

how we sense the world in reality, 3D data are more likely to be used for geovisualization not for 

analytics in early studies. By 2002, Zlatanova, Rahman and Pilouk (2002) reviewed GIS related 

software (i.e., OpenGIS) at that time where he addressed that the significant 3D progress mainly 

contributed to the presentation of the data. Around a decade ago, Goodchild (Goodchild 2010) 

reviewed the progress of GIS from the 1990s. He claimed that the truly 3D GIS (as opposed to 

2.5D, such as a digital elevation model) can be very useful for applications within complex internal 

structures, such as mines and buildings; however, the progress is hindered because of lacking cost- 

effective indoor data acquisition and positioning technologies (compared with efficient 2D remote 

sensing data collection, and outdoor GPS positioning). There is an emerging trend of 3D GIS 

especially with the increase of availability of 3D data, enhancing capability in data transferring 

(i.e., 5G network), development in computing resource (i.e., quantum computer, cutting-edge 
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GPU), and evolving virtual reality technique (or augmented reality technique), where they cannot 

be imagined in the previous periods. 

Acquisition of the 3D point cloud data for indoor and outdoor scenes becomes increasingly 

efficient, productive, and affordable with the rapid development of the geospatial technologies 

featured by remote sensing and global navigation satellite system (GNSS). A variety of types of 

sensors including LiDAR instruments, 3D scanners, RGB-D cameras can be mounted to tripods, 

mobile vehicles, and drones to facilitate the 3D data acquisition for different applications, as well 

as different purposes. The collected 3D data can provide productive information of real-world 

objects including geometry, location, and spectrum (e.g., color). 3D data is designed to be 

represented in different ways (e.g., point cloud, voxel, and mesh) as per the different sensors or in 

terms of different utilizations. Many 3D data benchmarks had become available in 2010s, 

containing challenges such as 3D object detection, 3D classification, and 3D semantic 

segmentation. Early 3D object reconstruction challenges are provided by ISPRS Benchmark Test 

on Urban Object Detection and Reconstruction (Rottensteiner et al. 2014). RGB-D (i.e., color and 

depth) imagery are essentially geospatial data collected by RGB-D sensors, featured by low-cost 

but low poor resolutions compared to laser scanners (i.e., LiDAR). The corresponding datasets 

include NYU (New York University) Kinect dataset (Silberman et al. 2012) and Sun RGB-D 

benchmark (Song, Lichtenberg and Xiao 2015). Early 3D point cloud benchmark dataset are 

acquired by mobile device such as the Sydney Urban Objects benchmark (De Deuge et al. 2013), 

the Paris-rue-Madame database (Serna et al. 2014), and TerraMobilita/iQmulus urban point cloud 

analysis benchmark (Vallet et al. 2015). Static LiDAR (i.e., terrestrial LiDAR) is able to collect 

higher resolution point cloud than the mobile one; Semantic3D benchmark (Hackel et al. 2017) is 

such a high-density point cloud dataset for scenes of urban and rural areas. All of the datasets 
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above opened challenges to AI researchers and they served as a platform for competition purposes 

among the AI models; moreover, they also played a role of qualified sources for machines to gain 

knowledge so that they could be better applied to different applications (e.g., by transfer learning 

technique). 

Artificial Intelligence (AI), imitating human intelligence to assist human solving problems in an 

intelligent way, has intrigued researchers from many STEM (science, technology, engineering, 

and mathematics) domains from academia over the years, benefiting the understanding of 

sophisticated phenomena, assisting complex decision making, spurring evolution of the 

contemporary society, and facilitating human life. Other than academia, it also plays an integral 

role in the modern industry - the emergence of the Fourth Industrial Revolution claimed by Schwab 

(2017) who is the founder and executive chairman of the World Economic Forum, along with other 

state-of-the-art technologies such as the Internet of Things (Philbeck and Davis , Magomadov , 

Atzori, Iera and Morabito 2017), and geospatial technologies (Yusoff, Ramli and Al-Kasirah 2021). 

As per an online survey - Global Survey: The state of AI in 2020 - by Mckinseys & Company 

(2020), 1,151 over 2,395 (around 56%) participants as a representation ranging from academia to 

industries stating that AI are adopted in at least one functions in their organizations. With AlphaGo 

(Silver et al. 2016), the first computer program defeated the 9-dan expert, Lee Sedol, in a Go match 

in March 2016, deep learning-based AI exhibited a monstrous intelligence in this ancient human 

intelligent game outperforming traditional machine learning algorithms designed for the Go game. 

Deep learning as a sub-domain of AI based on deep neural network algorithms have been 

representing frontier capabilities of AI, not only performing high intelligence but also waiving the 

need of human interaction during the training process (Bengio, Lecun and Hinton 2021, Zlochower 

et al. 2020). The rapid evolution of computing GPUs and availability of big data are assumed to 
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be the main reasons triggering the success of deep learning (Ioannidou et al. 2017). Impressive 

progress has been made using deep learning in the recent decade in natural language processing 

tasks (LeCun, Bengio and Hinton 2015, Young et al. 2018), such as machine translation (Singh, 

Sharma and Nagesh 2017), speech recognition (Nassif et al. 2019), and image recognition (Minaee 

et al. 2021). 

Is there a way to make machines understand 3D data as “...[n]onhuman animals also have a sense 

of territory and of place” (Tuan 1977, p. 4)? Deep learning-based algorithms driven by 3D data 

are just designed to contribute to this thread, which are featured by a series of tasks comprising: 

3D object classification, 3D object detection, and 3D semantic segmentation (i.e., part 

segmentation, and scene parsing). 3D object classification is to make the machine recognize what 

the 3D data represents. Object detection in 3D context can further detect the bounding box of an 

object in 3D data. 3D semantic segmentation is to further label each point from a point cloud. 

These algorithms are designed to understand different 3D representations: voxel (i.e., 3D pixel), 

2D views of 3D data, and 3D point cloud to satisfy the need of different scenarios. Even though 

there are other 3D representations like mesh, which is commonly used for 3D visualization but 

rarely seen as the input of deep learning algorithms in my literature review. 

Early deep learning methods in 3D context tried to exploit the descriptors extracted from 3D data. 

For example, Liu, Salzmann and He (2014) use SIFT (Scale-invariant feature transform) 

descriptors to generate the 3D features from depth images, and use them to prepare training data 

fed to a Deep Belief Networks, introduced by Hinton (2009). Early such studies using deep 

learning in 3D context adopted voxel, 2D views of 3D data, and mesh to represent 3D data 

(Ioannidou et al. 2017) in order to make the data structured so that they can be fed to neural 

networks. 3D ShapeNets (Wu et al. 2014) and VoxNet (Maturana and Scherer 2015), represent 
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early methods to work on 3D representations - consuming a 3D voxel grid as input to a 3D 

convolutional neural network, where a 3D filter was applied to extract local features of the 3D 

data, outperforming the other state-of-the-art methods at that time (i.e., early to mid-2010s). There 

is also a study trying to take mesh as input to generate 3D features like Mesh Convolutional 

Restricted Boltzmann Machine (Han et al. 2016). Adopting multiple 2D views of a 3D object from 

different directions is another way to represent the 3D object. Zhu et al. (2014) represents one of 

the early approaches that take multiple 2D views as input to CNN-based architectures. Multi-View 

CNN (Su et al. 2015) as a representation of the methods on 2D views of 3D data outperformed 

other tested methods in ModelNet40. The above approaches, no matter taking descriptors and 

multiple 2D views, or the voxel grids and mesh of 3D objects as input to the types of deep neural 

networks, require manipulations on the 3D data collected by the sensors (e.g., LiDAR) so that the 

converted data can fit the structures of input of types of deep neural networks. Such manipulations 

can result in either loss of local feature or introducing more error to the original data; moreover, 

the manipulations, especially voxel-based method, make the computational cost of processing 3D 

data a notable bottleneck (Ioannidou et al. 2017, Qi et al. 2017). 

The emerging era of deep learning directly on 3D point clouds has been triggered since 2017 by 

introducing PointNet (Qi et al. 2017) featured by its capability of directly using point clouds as 

input. Rather than previous methods on multiple 2D views, voxel grids or mesh, which require 

data transformation from point cloud, PointNet firstly takes raw point cloud as input making it as 

an end-to-end method, and mitigating the computational challenge when scaling up in the size and 

resolution of the data (Qi et al. 2017). 

In the past decade, deep learning has also begun to be adopted by geographers to gain meaningful 

information by exploring the spatial and temporal data (Goodchild and Li 2021, Li 2021, 
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Reichstein et al. 2019). The research domain at the junction between geography and AI, termed as 

GeoAI nowadays (Goodchild and Li 2021), can be traced back to the late 20th century. Early 

pioneers, (Smith 1984), (Couclelis 1986), especially (Openshaw 1992), and (Openshaw and 

Openshaw 1997), introduced AI to solve geospatial problems and brought the discussions of 

potential impact of AI in geographic theories and practices. A ‘new’ quantitative revolution had 

been witnessed in the 1990s in geoscience, which emphasized the necessity of data driven AI 

approaches in solving geospatial problems (Openshaw 1992). The increasing amount of geospatial 

big data nowadays demands the ability of GeoAI to solve geospatial problems by taming 

computational challenges brought by geospatial big data. Thus, some studies treat high- 

performance computing as one pier of GeoAI (Li 2021, VoPham et al. 2018). Rather than from AI 

to geography (Openshaw and Openshaw 1997), GeoAI also calls for developing AI by 

incorporating geographical principles (e.g., spatial dependency, and spatial heterogeneity) 

(Goodchild and Li 2021). As the developments in geospatial technologies, such as remote sensing, 

cutting edge devices (e.g., drone, and mobile robot) and sensors (e.g. RGB-D camera, and LiDAR) 

have been making it more effective, accurate, and cost-efficient to acquire 3D geospatial data (e.g. 

geometric information, color information, intensity) of real-world objects. Under the demand of 

cutting-edge applications (e.g., vehicle autonomous), deep learning on 3D geospatial data (a.k.a 

3D deep learning), which makes machines understand 3D geospatial data, has been becoming ever 

more important. Plenty of studies in 3D deep learning have been published in the domain of 

computer science but few have been witnessed in the research area of GeoAI yet. Understanding 

3D geospatial data, especially from the perspective of spatial principles (e.g., spatial dependency, 

and spatial heterogeneity) can be one of the most important focuses in the state-of-the-art GeoAI. 
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This dissertation will contribute to the development of GeoAI with a focus on making deep 

learning models better understand 3D geospatial data by leveraging spatial principles. The primary 

research questions are as follows: 1) whether spatial autocorrelation features are helpful for 3D 

deep learning models to understand 3D geospatial data? 2) How to extract effective spatial 

autocorrelation features by using deep neural networks? 3) How to leverage spatial principles to 

address the challenge pertaining to the framework of 3D geospatial object detection. The 

corresponding study objectives are listed below: 

(1) Examine the effectiveness of semivariance as a representation of spatial autocorrelation- 

based features in 3D geospatial object detection. 

(2) Develop a deep learning-based framework leveraging spatial dependency principle to 

extract spatial autocorrelation features based on pairwise differences within a local 

neighborhood. 

(3) Improve current framework of 3D deep learning-based geospatial object detection from a 

metamodel perspective with a focus on using spatial interpolation in the post-processing. 

In the following chapters, I will briefly review the background of deep learning including basic 

concepts, basic components, and related problems in Chapter 2. In Chapter 3, I evaluated the 

effectiveness of spatial autocorrelation features in understanding 3D geospatial data by control 

experiments from a data perspective (a.k.a taking semivariance as additional input). In Chapter 4, 

I developed a deep learning-based approach to derive spatial autocorrelation features for enhancing 

the performance of the 3D geospatial object detection. In Chapter 5, I improved the current 3D 

deep learning-based framework for 3D geospatial object detection by integrating spatial 

interpolation in the post-processing, where hydraulic structure detection is used as an exemplary 

study case. Chapter 6 is for overall conclusions and potential future work. 
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2 LITERATURE REVIEW 

 

2.1 Background of Neural Networks 

 

2.1.1 Conception of neural networks 

Artificial neural network (ANN) is a method in the machine learning domain, which is originally 

inspired by the communication (see Figure 2.1 as a demonstration) between neurons within a 

nervous system from the human brain (McCulloch and Pitts 1943). 

“The nervous system is a net of neurons, each having a soma and an axon. Their adjunctions, 

or synapses, are always between the axon of one neuron and the soma of another. At any 

instant a neuron has some threshold, which excitation must exceed to initiate an impulse.” 

(McCulloch and Pitts 1943, p. 101) 

An artificial neural network also consists of a bunch of neurons with a soma (i.e., sum function), 

an axon (i.e., activation function), and synapses (i.e., weighted connections). Functioning similar 

to a neuron gets excitation and sends out an electrical impulse to other neurons through synapse in 

the nervous system, a neuron in ANN will transmit the output to other neurons via connections if 

it is activated or fired by input values in particular threshold defined by the activation function. 
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Figure 2.1. Illustration of a neuron consisting of a soma, an axon, and several synapses. 

 

2.1.2 History of neural networks 

 

Schmidhuber (2015) conducted a systematic review on development of deep learning with a focus 

on artificial neural networks. A timeline is drawn based on this systematic review as shown in 

Figure 2.2. 

 

 

 

 

Figure 2.2. Timeline of development of artificial/deep neural networks. 
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In 2001, Doug Laney from META Group (latter renamed to Gartner) firstly defined big data from 

a three-dimensional perspective: “Big data is high volume , high velocity , and/or high variety 

information assets that require new forms of processing to enable enhanced decision-making, 

insight discovery and process optimization” (Laney 2001, p. 67). 

In 2009, Dr. Fei-Fei Li, an AI professor from Stanford University, launched ImageNet, which is 

an image classification benchmark with over 14 million labeled images. “Our vision was that big 

data would change the way machine learning works” said by Dr. Li (Li, Deng and Li 2009). 

The speed of GPUs gained a dramatic increase by 2011, making it possible to train convolutional 

neural networks directly, which was never ever computationally feasible. With the increasing 

computing speed, deep learning has been outperforming other machine learning algorithms by its 

essential advantages regarding efficiency and accuracy. AlexNet, developed by Krizhevsky, 

Sutskever and Hinton (2012), is a convolutional neural network. It achieved notable success in 

image recognition competitions during 2011 and 2012. The network employed rectified linear 

units (ReLUs) as activation functions. This approach helped speed up training and tackle the 

vanishing/exploding gradient problem. 

 

2.2 Basic Components of Neural Networks. 

 

In this section, I am going to introduce the basic conceptual components of a neural network as 

well as embedded mathematics. I will focus on a typical neural network used for classification 

problems, which predicts a class label for a given input. 
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Figure 2.3. Illustration of the architecture of a feed-forward neural network (a.k.a multilayer 

perceptron) with two hidden layers. 

As shown in Figure 2.3, a neural network is composed of an input layer, several hidden layers, and 

an output layer. In the input layer, each sphere represents a channel as well as a feature channel of 

the input data. For example, the basic three channels of a spatial point can be x, y and z coordinates 

in a space with respect to a coordinate system. A hidden layer comprises a series of neurons as 

well as corresponding activation functions following the neurons. The outputs are the probability 

of classes, into which each input is predicted to fall. 

Basically, a neural network can be denoted as a function shown as follows: 

 

𝐶 = 𝑓(𝑋) (2.1) 

𝑋 = [𝑥1, 𝑥2, 𝑥3. . . 𝑥𝑚] (2.2) 

𝐶 = [𝑐1, 𝑐2, 𝑐3. . . 𝑐𝑛] (2.3) 
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where X is the input with m feature channels. C is the output with n classes, which contains 

probability values of the input that are predicted to fall in each class. f represents a neural network 

with a designed number of hidden layers as well as a designed number of neurons within 

corresponding layers. 

In the rest of this section, I am going to demonstrate what operations happen in each hidden layer 

after the inputs are fed to the neural network. 

 

2.2.1 Neurons 

 

Each hidden layer of a neural network comprises a series of neurons and corresponding activation 

functions following each neuron. Each neuron (see Figure 2.4) is a weighted sum function to 

aggregate data fed into it from either an input layer or from a previous hidden layer. The operations 

within each neuron as well as an activation function can be denoted in the following formula: 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑔(𝑋 ∙ 𝑊 + 𝑏) (2.4) 

𝑊 = [𝑤1, 𝑤2, 𝑤3. . . 𝑤𝑚] (2.5) 

 

 

where g is an activation function associated with this neuron, W is a set of weights separately for 

each input X associated with this neuron. Connections between the input to a neuron and the neuron 

has a set of weights, where the number of weights is equal to the number of connections as well 

as the number of inputs. b is a bias value to be added to the weighted sum value from a neuron 

before feeding them into an activation function. Both weight and bias can be updated during 

training. Therefore, the number of learnable parameters of the neuron is (m+1) (i.e., m weights 

and one bias). 



13 
 

 

 

Figure 2.4. Demonstration of operations within a neuron following an activation function. The 

input of a neuron can be input of the neural network or output of a previous hidden layer. 

 

 

 

2.2.2 Bias 

 

Bias is a learnable constant per node that adds to the dot product of weights and input before fed 

into the activation function. Bias can shift the activation function, resulting in activating a neuron 

or deactivating the neuron (whether to fire a neuron). The role of bias in activation function is 

similar to the role of a constant value in a linear regression model, giving more flexibility to better 

fit a model to the observations. Bias is widely used in current neural networks, even though it is 

not mentioned commonly, since it becomes a default option when creating a layer for a neural 

network in the deep learning libraries (e.g., Pytorch). 

 

 

 

2.2.3 Activation function 

 

From a conceptual perspective, activation function is to decide whether a neuron is going to be 

activated or deactivated as per the input. In other words, it is to decide whether the input 
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information is useful or not-that-useful to this neuron. If the information is judged as useful, it will 

be passed to the other neurons in the next layer. If it is not that useful, the information will be 

segregated, meaning it will pass 0 to the next layer, where it will not impact deeper neurons. There 

may not be an absolute activation and inactivation of neurons depending on the nature (i.e., the 

threshold of output) of an activation function. The closer the output value is, the more inactivated 

a neuron will be. If a neuron is inactivated or close to being inactivated. The information will be 

segregated. Segregation is important to a neural network that helps the model to pursue useful 

information instead of stuck on a not that useful information. 

From a mathematical perspective, activation function can be understood as an affine 

transformation, which transforms the input value to a specific range of values. There are a bunch 

of activation functions with different target ranges of values developed for different applications. 

Sigmoid/logistic 

Sigmoid or logistic activation function is an S-shape function (see Figure 2.5) commonly used in 

prediction tasks due to the nature of its shape that the threshold of sigmoid activation function is 

[0,1]. The function transforms the input values to the range [0,1], which can be interpreted as 

probability. 

 

 

 

where x is the input. 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 
1

 
1+𝑒−𝑥 

(2.6) 
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Figure 2.5. Demonstration of Sigmoid/logistic activation function. 

 

 

Hyperbolic tangent function 

Hyperbolic tangent function (Tanh) is the other type of S-shape function (see Figure 2.6) that 

transforms the input to a value ranging in [-1, +1]. This activation function is designed to be 

sensitive to input values within the range of -3 to +3. In other words, it does not care how far it is 

smaller than -3 or larger than +3. “… the hyperbolic tangent activation function typically performs 

better than the logistic sigmoid” (Goodfellow, Bengio and Courville 2016, p. 195). 

 

 

 

where x is the input. 

𝑇𝑎𝑛ℎ(𝑥) = 
𝑒2𝑥−1

 
𝑒2𝑥+1 

(2.7) 
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Figure 2.6. Demonstration of Hyperbolic tangent activation function. 

 

 

 

 

ReLU 

Rectified linear activation function (ReLU) is commonly used in image classification tasks, which 

outperforms other activation functions in practice of image classification tasks. ReLU (see Figure 

2.7) is designed to be sensitive to positive values and ignore the negative values. In the other word, 

only positive values can fire a neuron with ReLU as the activation function. “In modern neural 

networks, the default recommendation is to use the rectified linear unit or ReLU” (Goodfellow et 

al. 2016, p. 174) because it can handle the problem of vanishing gradient to make neural networks 

deeper. 

 

 

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (2.8) 

where x is the input. 
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∑ 

 

 

Figure 2.7. Demonstration of ReLU activation function. 
 

 

Softmax 
 

 
𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑐 ) = 

exp (𝑐𝑖)
 

 

 
, 𝑖 ∈ [1, 𝑛] (2.9) 

𝑖 𝑛 
𝑖=1 exp (𝑐𝑖) 

 

 
where ci is the output of class i. n is the number of classes in a classification problem. 

 

Softmax is a mathematical function that map a vector of values to a vector of probabilities with a 

sum of 1, which is commonly used as the activation function of the output layer of a neural network 

in order to gain a vector of probabilities of the input falling into different classes in a classification 

task. Rather than a max function, softmax can give a probability of the predicted label for a given 

input. 
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2.3 Basic Mechanism of Neural Network 

 

In this section, I will introduce the mechanism of how a neural network learns based on the input 

by demonstrating conceptual ideas as well as mathematical foundations. There are five steps: 

1. Initialize the parameters (i.e., weights and bias) of neural network. 

 

2. Forward propagation to pass the input through the neural network. 

 

3. Calculate the loss function. 

 

4. Backpropagation to compute the gradients with respect to each parameter. 

 

5. Update each parameter regarding the optimization algorithm (i.e., optimizer). 

 

Repeat steps 3 to 5 until it meets the stop criteria. 

 

 

 

 

2.3.1 Parameters Initialization 

 

Parameter initialization gives initial values for parameters (i.e., weights and biases) of a neural 

network. A well-designed algorithm for initialization is important to have the neural network well 

trained with respect to activation function. There are a bunch of algorithms to initialize the 

parameters. 

Zero initialization 

 

Zero initialization, as the name implies, is to initialize all parameters as 0 before training. When 

initializing the parameters with 0, the backpropagation will result in the same gradients with 

respect to each parameter. Therefore, the parameters will be updated in the same way through the 

training process. In this case, the neural network will work no better than a linear model. 
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Random initialization 

 

To address the problem of zero initialization, random initialization can prevent all neurons from 

being the same and updated in the same way. However, a random value can easily result in either 

exploding or vanishing gradients in backpropagation because a random initial value can be too big 

or too small (close to 0). Xavier initialization and Kaiming initialization (He et al. 2015), two of 

the most popular stochastic initialization approaches, help to reduce the vanishing and exploding 

gradient problem. 

 

2.3.2 Forward propagation 

 

Forward propagation is to describe the way to pass input through a feed-forward neural network 

layer by layer until the output of the neural network (as demonstrated in Figure 2.3). Each hidden 

layer takes the output of the previous hidden layer (the first hidden layer will take directly from 

the input layer). Feed-forward neural networks are different from recurrent neural networks (RNN), 

where connections between nodes can form a cycle. RNN, derived from the feedforward network, 

is used to take a sequence of inputs, which is commonly used for speech recognition or time series- 

related predictions. In this study, I will only focus on feedforward network since most architectures 

used for classification task is a feedforward network (e.g., convolution neural network) 

 

2.3.3 Loss function calculation 

 

In an optimization problem, an objective function is the one we want to maximize or minimize. In 

a neural network, we want to minimize an error function between the predicted value and ground 

truth. The error value, here, is also called the loss in the context of a neural network, which can be 

calculated based on a loss function. Loss will be calculated for each input and then they will be 

https://paperpile.com/c/uyb1HQ/klEc
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𝑖 

aggregated by sum or mean depending on the optimizer. At the end of each step (i.e., each mini- 

batch or the entire dataset was propagated forward until the output layer), all the errors of the input 

(i.e., a mini-batch or the entire dataset) will be passed to the loss function to calculate loss. 

From a mathematical point of view, there are various loss functions designed for different tasks. 

In the rest of this section, I am going to demonstrate two classic loss functions designed separately 

for regression tasks and classification tasks. 

Mean squared error loss function 

 

Mean squared error (MSE) loss function is to calculate the average squared loss for each input 

over the entire dataset. Apparently, it is to calculate differences between two vectors. MSE is 

commonly used for a regression task to predict a continuous variable. 

𝑀𝑆𝐸 = 
𝛴(𝑞𝑖−𝑝𝑖)

2 

, 𝑖 ∈ [1, 𝑚] (2.10) 
𝑚 

 

where qi is the ground truth of the ith input and pi is the predicted value regarding this input; m is 

the number of inputs. 

 

 

Cross entropy (Logarithmic) loss function 

Cross Entropy is usually applied to classification problems (i.e., binary classification and multi- 

class classification). Cross entropy is to calculate loss between two distributions (ground truth, and 

predictions) of probabilities. It should be converted to probabilities using softmax activation 

function before fed into cross entropy loss function. 

𝐶𝐸(𝑝, 𝑞) = − ∑𝑛[𝑝𝑖 ∗ 𝑙𝑜𝑔(𝑞𝑖)] , 𝑝, 𝑞 ∈ [0,1], 𝑖 ∈ [1, 𝑛] (2.11) 

where o is the number of input (of the entire dataset or a mini-batch) and n is the number of 

channels; q is the probability of the output for each input and p is the ground truth. When p is close 
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to q, the loss is approaching 0. 

 

 

2.3.4 Gradient calculation based on backpropagation. 

 

An optimizer or optimization algorithm in a neural network depicts an approach to update 

parameters within a neural network with respect to the gradient. Gradient is a set of derivatives of 

loss with respect to each of the parameters (i.e., weights and biases) in a neural network. An 

optimizer seeks to minimize the loss function by minimizing the gradient as well as the derivatives 

of loss with respect to the parameters. 

Gradient descent (GD) is an optimization method that helps to minimize the loss function by using 

the product of gradient and learning rate. The prerequisite of using GD is that the function to be 

minimized must be differentiable and convex. Therefore, loss functions in neural networks are 

designed to meet the two requirements. Regular gradient descent is sensitive to the value of 

learning rate. The general strategy is to start with a relatively large learning rate and gradually 

decrease it in each step. This process that changes the learning rate from relatively large to small 

is scheduled. Learning rate schedulers can help to arrange this schedule in a different manner. 

Gradient descent can be used for many optimization problems in statistics and machine learning. 

Different from least squares which optimizes the parameter and seeks the derivative equals to 0, 

GD can gradually find the minimum derivative by steps from the initial parameter. Therefore, GD 

is useful when it is not possible to solve for where the derivative is 0. The closer the parameters 

get to optimal values, the closer the derivative gets to 0. GD is efficient because it will take a 

relatively larger step when the derivative is far from 0 but it will take a smaller step when 

approaching 0. To avoid taking too big steps when the derivative is far from 0, a small value (i.e., 

learning rate) is applied to restrict the step. 
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The GD will stop when the step size is smaller than at a set threshold or the number of steps reach 

the set maximum number of steps. 

𝐺 = 
1 

∑(𝑑𝐿𝑜𝑠𝑠/𝑑𝑊  ) , 𝑘 ∈ [1, 𝐾] (2.12) 
𝐾 𝑘 

𝑊𝑡+1 = 𝑊𝑡 − 𝐺 ∗ 𝑙𝑟, 𝑙𝑟 ∈ [0,1] (2.13) 

where G is the sum of gradients based on o input samples. K is the number of weights of the neural 

network. dLoss/dWk is the derivative of the loss with respect to the kth weight. t is the current 

iteration in a training process, W is a set of weights for a neural network. Wt is the current weights. 

Wt+1 is the updated weight. lr is the learning rate. 

A general step of GD is as follows: 

1. Calculate the derivative of the loss function with respect to each parameter. 

 

2. Calculate the gradient of the loss function. 

 

3. Calculate the step sizes for each parameter. 

 

4. Calculate the new parameters. 

 

Loop from step 1 to step 4 until the step size is small or equal to the set value or reach the maximum 

number of iterations (steps). 

Gradient descent calculates the gradient with respect to the loss of the entire datasets, which can 

result in computational issues when the entire dataset is too big. Therefore, Stochastic gradient 

descent (SGD) (Bottou 2010) is proposed to solve this problem. SGD will randomly select a small 

subset of the entire dataset (also called mini-batch) for each step that updates the parameters (i.e., 

weight and bias). SGD will also help to optimize the parameters when there is new data coming 

instead of training from scratch (if we use GD, we have to include the entire dataset), where it can 
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use the trained parameters as initial values but optimize them based on new data only. SGD 

performs better than GD especially because there are a lot of parameters and big dataset because 

it may not be computationally feasible if using GD. 

 

2.4 Basic Problem Related to Neural Network. 

 

If the gradients in early layers are vanishingly small (close to zero), it makes the parameters in 

these layers barely update in each training step. In other words, the model is not efficiently learning 

within the training process. In this case, it is called a vanishing gradient problem (Hochreiter 1998). 

Generally, this is due to the nature of backpropagation. The more it is early in the network, the 

quicker it is going to vanish. When SGD computes the gradient for a specific weight, it applies 

this gradient to modify the weight accordingly. Thus, the adjustment made to the weight is directly 

proportional to the magnitude of the gradient. If the gradient is small, the resulting update will also 

be extremely small. Under such circumstances, if the weight is adjusted by a trivial amount, it 

results in barely modifications to the weights of the neural networks. Consequently, such minor 

adjustments fail to propagate effectively throughout the network, rendering them ineffective in 

significantly reducing the loss, as the weight remains almost unchanged from its value prior to the 

update. 

Therefore, it almost becomes a problem that the weights never actually be updated efficiently to 

reduce the loss or reach its optimal value, which will impact the rest of the layers in this network 

and prevent the ability of the network from learning. 

On the other hand, it will make the parameters update too much in each training step if the gradients 

in early layers are extremely large. Moreover, due to the backpropagation, the more the layers are 
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early in the network, the more the gradients are going to explode. In this case, it is called an 

exploding gradient problem. 

 

2.5 Artificial Neural Networks and Deep Neural Networks 

 

The existence of vanishing/exploding gradient problems within the traditional artificial neural 

networks prevents training with more layers within a neural network, which limits the ability to 

solve more complex problems. 

There has been a revolutionary development of neural networks during 2010s, especially the 

related techniques and activation functions associated with neural networks, aiming to remove the 

barrier that prevents the neural network from going deeper. Various strategies have been used to 

mitigate the vanishing gradient issue, such as employing specific methods for weight initialization 

(Mishkin and Matas 2015), utilizing second-order optimization techniques (Martens 2010), and 

implementing updates on a per-layer basis (Vincent et al. 2008). 

With the development in both hardware and techniques, deep learning can concatenate a series of 

hidden layers in a designed way for different tasks (Potok et al., 2018). Same as machine learning, 

deep learning can be either supervised or unsupervised. In this study, I will only focus on 

supervised architectures in deep learning. There are two basic supervised deep learning 

architectures, recurrent neural networks, and convolutional neural networks. Recurrent neural 

networks are commonly used in processing natural language or time series data. CNN is often used 

for video analysis, natural language processing, and image recognition. The image-related tasks 

are object detection, image classification, semantic segmentation, instant segmentation. 
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2.6 Convolutional Neural Network 

 

In the following section, I am going to introduce the basic components of a Convolutional Neural 

Network (CNN). 

The basic components of a CNN consist of an input layer, convolutional layers, pooling layers 

(e.g., max pooling), fully connected layers, and an output layer as shown in Figure 2.8. Using 

imagery as input for an example, the input layer has three dimensions, heigh, width, and feature 

channels (e.g., red, blue, and green). The height and width are the size of an image, and the feature 

channels can be either colors in RGB color space, or one gray channel. The output layers are the 

labels to be predicted on the input. For example, if the model is designed to predict cat or dog 

based on the input imagery, the output layer will be the probabilities of the input to be predicted 

as cat and dog, when a softmax is used as the activation function in the last hidden layer. Hidden 

layers can have a series of combinations of convolutional layers and pooling layers, as well as fully 

connected layers. Convolutional layers and pooling layers are to extract feature maps using a series 

of receptive fields (i.e., kennels). On the other hand, fully connected layers are designed for 

classification based on a high dimensional feature derived by flattening the feature maps from 

feature extraction layers. 

In the following sections, I am going to explain the conceptual and mathematical details of each 

layer. 



26 
 

 

 

 

Figure 2.8. Illustration of the architecture of a convolutional neural network. An input image with 

three channels is fed into the neural network. The output layer contains the probabilities of each 

class the input can fall into. 

 

2.6.1 Convolutional layer 

 

A convolution layer consists of a series of kernels and an activation function associated with each 

kernel. A convolutional operation (see Figure 2.9) is to aggregate the information of the data fed 

into the convolutional layer with respect to a designed stride and padding. Basically, a 

convolutional operation can be denoted as the following formula: 

Output = g (Sum (W.*X) + b) (2.14) 

W = [w1, w2, w3, … wn’] (2.15) 

X = [x11, x12, x13, … xmn’] (2.16) 

where g is an activation function associated with a kernel. W represents the weights of the kernel; 

X are the values of input that the current kernel covers. m is the number of channels of the input. 

n’ is the number of cells in a kernel. b is the bias associated with each kernel. 
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Figure 2.9. Demonstration of convolutional operation with a 3*3 kernel along with an activation 

function on a particular cell. A feature map can be derived by conducting the convolutional 

operation on each cell. 

 

 

A convolutional layer conducts convolutional operations with each designed kernel on each cell 

along with an activation function to generate an output feature map (a.k.a., activation map) as 

shown in Figure 2.9. From a conceptual perspective, feature maps are representations of spatial 

presence of patterns or concepts (e.g., edges). 

 

Figure 2.10. Demonstration of stride and padding in the convolutional operation. 

Rather than the size of a kernel, there are the other two hyper parameters to configure when 

conducting the convolutional operation, stride and padding (as shown in Figure 2.10). Stride and 

padding are adjustable parameters that can maintain the dimensions of the output feature map equal 
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to those of the input. The stride refers to the distance by which a kernel shifts across the input with 

each step, while padding involves appending extra rows and columns of zeroes to the input, 

ensuring the size of the output remains consistent with that of the input. 

 

2.6.2 Pooling 

 

Pooling is one of the layers of a CNN following a convolutional layer, which is an optional layer 

in a CNN-based architecture design of a neural network. Features used for a classifier (i.e., fully 

connected layer in the context of CNN) represented by an output feature map from a convolutional 

layer can be sensitive to the location of the features. To address the sensitivity, a typical approach 

is down sampling the feature maps. Conceptually, a down-sampled feature map makes it robust to 

changes in terms of the locations of a feature from a feature map. Theoretically, a pooling layer 

can make feature maps local translation invariance (Goodfellow et al. 2016). 

As explained by (Goodfellow et al. 2016, p. 342), “…pooling helps to make the representation 

become approximately invariant to small translations of the input. Invariance to translation means 

that if we translate the input by a small amount, the values of most of the pooled outputs do not 

change”. Pooling layers come in two primary forms, max pooling and average pooling. Max 

pooling selects the maximum value from each patch of the input feature map, while average 

pooling computes the average value of the elements in each patch, thereby reducing the spatial 

dimensions of the input feature map. However, “it’s more informative to look at the maximal 

presence of different features than at their average presence” (Ketkar and Santana 2017, p. 129). 

A max pooling operation can be simply denoted by the following equation. I demonstrated the 

pooling operation in Figure 2.11. 
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output=Max(X) (2.17) 

X= [x1, x2, x3, … xn] (2.18) 

where X is the input and n is the number of input. 
 

 

Figure 2.11. Demonstration of pooling operation in a convolutional neural network. A 3*3 pooling 

kernel is used for demonstration purposes. 

 

 

 

2.6.3 Fully connected layer 

 

Fully connected layers play a role of classifier in a CNN as shown in Figure 2.12, which take the 

flattened feature maps extracted by the feature extraction hidden layers (i.e., convolutional layers 

and pooling layers) as input and output probabilities of labels that the input is predicted to be. It is 

called fully connected because each feature is connected to each neuron within this layer, where it 

is only partially connected in the convolutional and pooling layers. 
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Figure 2.12. Demonstration of fully connected layer and output layer. Feature maps are from 

feature extraction layers (e.g., convolutional, and pooling layers). 

The feature maps are flattened to be a high dimensional feature vector before fed into a fully 

connected layer. A fully connected layer consists of a series of neurons and an activation function 

associated with each neuron. The flattened features as to the fully connected layer in a CNN is the 

same as the input as to the hidden layers of a multilayer perceptron shown in Figure 2.3. 
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3 EXPLICIT INCORPORATION OF SPATIAL AUTOCORRELATION IN 3D DEEP 

LEARNING FOR GEOSPATIAL OBJECT DETECTION 

 

3.1 Introduction 

The accelerating convergence between geographic information science (GIScience) and artificial 

intelligence (AI), collectively termed GeoAI (Goodchild 2022), has been changing the ways we 

use and interpret 3D geospatial data. In an era marked by quasi-exponential growth in such data 

(Li, Hodgson and Li 2018), from RGB-D images to 3D point clouds, the demand for identification 

and localization of 3D objects (i.e., 3D object detection) has been increasing in applications 

ranging from autonomous vehicles to crime scene investigations. The importance of accurate 3D 

object detection cannot be underestimated in these contexts. For example, accuracy in identifying 

and localizing 3D objects in autonomous vehicles is not only a technological achievement for 

researchers and practitioners but also a critical safety requirement demanded by the general public. 

Any small error in detecting obstacles can potentially result in accidents, posing risks to human 

lives. In the realm of crime scene investigations, accurate 3D object detection is essential for the 

faithful reconstruction of criminal events such as detecting the position of a victim, exhibits 

evidence from the surrounding environment, which can help corresponding agencies accurately 

interpret and document criminal scenes. Deep learning has become a powerful solution in these 

contexts due to its outstanding performance surpassing traditional machine learning methods. 

Moreover, its evolution also outpacing them, given unprecedented focus and contributions by 

different domains (e.g., engineering, medicine, computer science, and geography). 

GIScience has been able to better derive knowledge from geospatial data by using deep learning 

(Goodchild and Li 2021). For example, Man and Liu (2021) used deep neural network to reliably 

downscale air quality related variables. Duan et al (2020) adopted reinforcement learning to 
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automate the alignment between vector data and historical maps. The origins of GeoAI can be 

traced back to the late 20th century when pioneers like Smith (1984), Couclelis (1986), and 

especially Openshaw (1992), Openshaw and Openshaw (1997) began applying AI techniques to 

detect patterns embedded in geographic data, contributing to the early development of spatial data 

science. Over time, GeoAI has evolved to not only adopt AI techniques for geographic applications 

but also contribute to the development of AI itself by incorporating geographic principles such as 

spatial dependency and spatial heterogeneity, whether it is explicitly stated or not (Goodchild and 

Li 2021). For example, Goodchild and Li (2021) attributed the exceptional performance of 

convolutional neural networks (CNN) on object detection tasks to its spatial dependency 

incorporated methodological design. 

While deep learning has shown unprecedented capabilities in geospatial object detection from 

remotely sensed data, it is still an open question with respect to the handling of spatial 

dependencies of observed attributes (e.g., color information and LiDAR1 intensity) within 3D 

geospatial data. Traditional models especially rely on the spatial properties (i.e., XYZ coordinates) 

of 3D data as well as the shape features embedded in them. Some of them include hand-crafted 

features (e.g., pre-estimated surface normal) to enhance model performance on object detection 

(Qi et al. 2017a, Zhao et al. 2021). Nevertheless, these studies often overlook the potential benefits 

of color and its spatial autocorrelation features in improving model performance. This might be 

due to the lack of color information for many benchmark datasets (e.g., ShapeNet 2 , 

SemanticKITTI3) where a neural network architecture might not be designed to require color as 

input. However, color information has been increasingly incorporated in modern data acquisition 

 

1 LiDAR stands for light detection and ranging technology. 
2 

ShapeNet: https://shapenet.org/ 
3 

SemanticKITTI: http://www.semantic-kitti.org/ 

http://www.semantic-kitti.org/
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using instruments such as LiDAR and RGB-D4 cameras (e.g., S3DIS5, Semantic3D6). Therefore, 

it is important to make use of, and take advantage of such observed non-spatial attributes as well 

as the spatial autocorrelation features inherent to this data to achieve better performance. 

This study pioneered efforts to bridge this gap by explicitly incorporating spatial autocorrelation 

of color information into 3D deep learning models for geospatial object detection. Inspired by the 

success of spatial autocorrelation features in object detection on 2D geospatial data (Bian and Xie 

2004, Bian and Lee 2005). We explore their potential for boosting the performance of 3D deep 

learning models. Our study aims to both advance the field of GeoAI by promoting the linkages 

between deep learning and GIScience and contribute to the ongoing development of deep learning 

techniques adapted for geospatial applications. 

Our main contributions are: 

 

1. Explicit incorporation of spatial autocorrelation into 3D deep learning: Our study breaks 

new ground by being the first to explicitly integrate spatial autocorrelation features, 

particularly semivariances, to enhance the performance of 3D deep learning models in 

geospatial object detection. 

2. Novel approach of spatial autocorrelation estimation in 3D data: We propose a novel 

framework to estimate spatial autocorrelation features for object detection in the context of 

3D deep learning, and tackle challenges posed by the nature of unstructured and unevenly 

distributed 3D data. 

3. Insights of spatial autocorrelation as contextual information in 3D deep learning: We 

provide insights into the effectiveness of spatial autocorrelation features serving as context 

information affected by how neighborhood or extent is defined in different environments, 

such as indoor and outdoor settings. This contributes to the understanding of the uncertain 

 

4 
RGB-D stands for Red, Green, Blue and Depth. 

5 
S3DIS: http://buildingparser.stanford.edu/ 

6 
Semantic3D: http://www.semantic3d.net/ 

http://buildingparser.stanford.edu/
http://www.semantic3d.net/
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geographic context problem (Kwan 2012) with respect to 3D geospatial object detection, 

and the development of more robust and accurate models in the field of 3D deep learning. 

The remainder of this paper is organized as follows: Section 2 reviews relevant work, 

encompassing deep learning techniques applied to 3D point clouds as well as prior studies on the 

use of spatial autocorrelation features in geospatial object detection for remotely sensed data. 

Section 3 elaborates on our methodologies, particularly highlighting our novel framework for 

extracting spatial autocorrelation features from 3D data. Section 4 introduces the datasets used in 

our study, while Section 5 details two experiments designed to explore the role of spatial 

autocorrelation in 3D deep learning. The results and findings of these experiments are reported 

and discussed in Section 6. We draw the conclusions in Section 7. 

 

3.2 Related Work 

 

3.2.1 Related work of 3D deep learning on point cloud data 

3D point clouds are inherently unstructured, unordered, and unevenly distributed in space. 

Handling their unstructured nature is an important problem in 3D deep learning. Early approaches 

attempted to convert 3D point clouds into structured 3D voxels so that it can be fed to deep neural 

networks. However, this approach posed challenges as it scaled up in terms of data size (Maturana 

and Scherer 2015, Qi et al. 2016). One revolutionary work in this domain was the development of 

PointNet (Qi et al. 2017a), which marked a breakthrough by directly taking unstructured point 

cloud data as input. PointNet introduced the concept of extracting permutation- and rotation- 

invariant features (a.k.a., symmetric features) from these unstructured and unordered point clouds. 

This was achieved through the ingenious use of symmetric functions, specifically max pooling, to 

aggregate point-wise features to global features that are permutation and rotation invariant. 

PointNet not only provided architecture for 3D deep learning but also shifted the way 3D deep 
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learning architectures were designed. A generic framework for 3D deep learning based on the 

empirical knowledge by PointNet (see Figure 3.1) comprises two main components, data sampling 

and structuralization, and the deep learning architecture. 

 

Figure 3.1. Generic framework for 3D deep learning-based object detection. The demonstrated 

point cloud is from the Semantic3D benchmark dataset by Hackel et al. (2017). 

 

 

Data sampling involves the spatial partitioning of the input 3D point cloud into smaller and 

manageable subsets and sampling a fixed number of points from them to make the input 

structuralized. These subsets are often referred to as blocks (see in Figure 3.1). Data sampling 

serves two primary purposes, structuring the input and efficient processing. By dividing the point 

cloud into smaller blocks and sampling with a fixed number of points, input data is structured so 

that it can be fed into deep learning architectures. On the other hand, data sampling can make the 

processing more efficient. Working with smaller blocks enables efficient processing, as it reduces 

computation time and required computing resources. This is crucial for handling large point cloud 

datasets. 

Deep learning architecture learns from structured blocks of points and makes predictions to detect 

geospatial objects within them. The architecture of deep neural network typically consists of two 

components, a feature extractor (i.e., backbone) and a classification head. The primary function of 

a backbone is to extract and aggregate features for further analysis or task-specific applications 



37 
 

(e.g., object detection, and classification). The initial layers of the architecture perform feature 

extraction. After feature extraction, there are neural network layers that aggregate information 

from neighboring points or an entire block (e.g., a max pooling layer in PointNet), which is crucial 

for capturing global feature and understanding the relationships between points. There are three 

main types of modules (Guo et al. 2021) serving as the feature extraction modules including multi- 

layer perceptron (MLP) layer, convolutional layer, or graph-based layers. PointNet-like methods 

feed pointwise local features to shared MLP and generate pooling-derived global features (Qi et 

al. 2017b). CNN-based methods use loosely connected convolutional kernels to extract such 

invariant features by cascaded layers (Wu, Qi and Fuxin 2019, Boulch 2020). Graph-based 

methods treat each point as a vertex of a graph to generate invariant features based on neighbors 

defined by directed edges (Simonovsky and Komodakis 2017, Landrieu and Simonovsky 2018). 

Classification head refers to the final layers of the architecture (e.g., fully connected layers in a 

CNN), taking extracted features for predictions. 

 

3.2.2 Spatial autocorrelation in object detection 

Many studies prove the effectiveness of spatial autocorrelation features in object detection by 

explicitly involving such features in machine learning models. The ability of local context 

awareness of spatial autocorrelation (e.g., semivariogram) is commonly used for representing 

texture features (Humeau-Heurtier 2019). The incorporation of spatial autocorrelation features is 

backed by not only practical evidence as aforementioned but also theoretical foundations. The 

theoretical underpinning of its effectiveness in pattern recognition as explained by Haralick, 

Shanmugam and Dinstein (1973) is that human beings interpret pictorial information based on 

spectral, textural, and contextual features, which are the three essential pattern elements of imagery. 

Spectral information depicts tonal variations in different bands of a spectrum. For example, color 
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information of an image are such values captured by corresponding sensors. Textural information 

describes the spatial pattern of a spectrum channel. Tso and Olsen (2004) defined it as a joint tonal 

variation within a prescribed area. Practically, textural features are derived from values within a 

predefined window from an image, describing the spatial relations between the center point and 

its neighbors. Contextual features encompass information extracted from a specific section of an 

image and its surrounding environment, assisting humans to interpret imagery. 

Shekhar et al. (2002) explored the source of spatial dependency within remotely sensed data, 

attributing it to the difference between the fine spatial resolution of the data collected by sensors 

and the size of the object represented in the data. To illustrate, consider an image of a conference 

room where a chair is represented by multiple pixels. In this case, the spatial resolution of the 

imagery is finer than the chair represented in the image. This pixel correlation representing the 

chair allows us to distinguish it from the background, where the background pixels are less 

correlated with those belonging to the chair. It is also mentioned as internal spatial continuity (e.g., 

the chair an object itself) and external spatial discontinuity (e.g., chair and background) by Bian 

and Xie (2004). Therefore, spatial autocorrelation is inherent in the data collected by sensors (e.g., 

digital camera and LiDAR), where pixels within a close distance tend to be more similar than 

distant ones in terms of radiation (Karasiak et al. 2022). As a result, early researchers (Atkinson 

and Lewis 2000, Haack et al. 2000, Miranda, Fonseca and Carr 1998, Bian and Xie 2004) further 

fed spatial autocorrelation features (e.g., semivariance) as a representation of texture information 

to their object detection models. 

In the task of object detection from landcover data, it has been observed that different land cover 

categories exhibit distinct semivariogram patterns (Miranda et al. 1998). The parameters (e.g., 

range, sill, nugget) estimated for semivariogram models have the potential to be used as the 
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representation of spatial autocorrelation features (Durrieu and Nelson 2013, Pereira et al. 2019). 

Using semivariograms as additional features to geospatial data feeding to machine learning models 

have been suggested with advantages including effectiveness in increasing the accuracy of object 

detection (Kattenborn et al. 2021). Other than parameters of a semivariogram model, semivariance 

is also used as a spatial autocorrelation feature. The studies incorporating semivariance for object 

detection showed significant improvement in model performance (Miranda et al. 1998, Miranda, 

Macdonald and Carr 1992, Zawadzki et al. 2005, Bian and Lee 2005, Bian and Xie 2004). In terms 

of the improvement in previous geospatial object detection tasks brought by including spatial 

autocorrelation features, this study investigated the potential of its capability in a 3D context. 

 

3.3 Methodology 

 

3.3.1 3D Deep Learning Framework 

In this section, we present our 3D deep learning framework for the explicit incorporation of spatial 

autocorrelation to detect geospatial objects (see Figure 3.2). The input data is, for example, point 

cloud with spatial and color information that can be retrieved via LiDAR techniques. The spatial 

autocorrelation feature is extracted based on both information through the approach to be discussed 

in Section 3.3.2. The spatial autocorrelation features are subsequently concatenated with the spatial 

and color information – serving as the input layer of 3D deep learning. Through training and 

validation, the model is equipped with prediction capabilities to detect geospatial objects (e.g., 

trees, grass, and road as demonstrated in Figure 3.2). 
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Figure 3.2. 3D deep learning framework with explicit incorporation of spatial autocorrelation for 

geospatial object detection. A typical 3D deep learning architecture is used for demonstration 

purpose. The demo point cloud is from the Semantic3D benchmark dataset. 

In this study, we used PointNet as a representative 3D deep learning architecture. First, PointNet 

is highly efficient in terms of computation due to its relatively low number of parameters favored 

by shared Multilayer Perceptron (MLP) layers, which allows for rapid training and validation. The 

clean and straightforward design of the architecture not only accelerates the training process but 

also improves the interpretability of the deep learning model. Second, its concise architecture 

offers us direct control over hyper-parameter configurations, enabling us to carefully assess how 

various features affect the model’s ability to detect geospatial objects. Third, its strong 

representational power, as highlighted in the study by Guo et al. (2021), as another reason to 

support our selection. Finally, its capability to effectively capture spatial hierarchies in 3D data 

renders it outstanding for object detection tasks. Given these considerations, PointNet stands out 

as an ideal candidate for this study – It offers a balanced combination of efficiency, interpretability, 

and representational power, thus making it well-suited for our study. 

PointNet was not originally implemented with a primary focus on large-scale semantic 

segmentation. Instead, it is designed for general purposes, such as classification, part segmentation, 
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and semantic segmentation (Qi et al. 2017a). Therefore, we modified the PointNet for large-scale 

semantic segmentation in our study by excluding the T-net (spatial transformer network) module 

(Jaderberg, Simonyan and Zisserman 2015), which was designed to automatically rotate point 

clouds making small-scale objects spatially invariant. For small-scale semantic segmentation (i.e., 

part segmentation on point cloud of an object), T-net can help make the input spatially invariant 

no matter how it was spatially transformed. However, it is not needed for large-scale semantic 

segmentation (i.e., scene parsing) since the x-y plane will always be on ground and the z-axis is 

the only axis on which rotation can be operated. Therefore, for large-scale semantic segmentation, 

it is simply required to make the z-axis rotation invariant. The design of PointNet++ for scene 

parsing can support this point, which excluded the T-net module. The modified architecture of 

PointNet is shown in Figure A1 and we implemented it using PyTorch (version 1.12.1). 

 

3.3.2 Retrieve spatial autocorrelation features in 3D point cloud 

In this section, we introduced the extraction of spatial autocorrelation features (specifically the 

semivariance) from unstructured 3D point clouds. Semivariance, essentially an experimental 

semivariogram, enables us to measure the spatial decay of a variable over distance (referred to as 

lag) by calculating and aggregating pairwise differences of observed value (specifically color 

information in our case) between any locations within a specified extent. 

Early approaches, as pioneered by Miranda et al. (1992), Miranda and Carr (1994), Miranda et al. 

(1998), Bian and Lee (2005), Bian and Xie (2004), Kamal, Phinn and Johansen (2014), and Wu et 

al. (2015), directly used semivariance at different lag values as textural features, or spatial 

continuity and discontinuity properties for object detection on remotely sensed data. Typically, in 

the 2D context, a fixed-size moving window (r*r; r: window size) was used to extract a subset of 

pixels centered around each pixel, where semivariance is calculated at each spatial lag within the 
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window. However, when dealing with the inherently unstructured points within a 3D point cloud, 

the potential absence of points within a predefined spatial lag presents a unique challenge, resulting 

in a null semivariance value for the lag bin. Therefore, it poses a challenge to derive semivariance 

from a 3D point cloud for use in geospatial object detection. 

We propose a novel approach to address this challenge. Our solution, detailed in Figure 3.3, 

introduces a four-step approach to tackle the aforementioned challenge, namely: searching for 

neighbors, estimating pairwise differences, binning, and estimating semivariance. Each of these 

steps is elucidated further in the following subsections. Furthermore, we provided more insights 

about applicability of the traditional approach to extract semivariance for point cloud data. 

 

Figure 3.3. Spatial autocorrelation feature extraction – a demo of deriving semivariance for one 

point. 

 

 

3.3.2.1 Searching neighborhood 

A neighborhood is a band of distance or number of points that all points within the neighborhood 

will be used for deriving the semivariance. In traditional studies, a neighborhood is defined by a 

certain square window. For example, 22*22 window size and 7*7 kernel size are used by Miranda 

and Carr (1994) for their study since this particular size is identified by the trade-off between 

semivariance estimation accuracy and lowering the risk of the moving window overlapping on 

class boundary. However, a certain distance may not be suitable for an unevenly distributed point 
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cloud, where there might not always be a neighbor within a certain neighborhood (a certain radius 

for neighbor searching is demonstrated in Figure 3.4A). To make it more adaptive to the irregularly 

spaced nature of point clouds, we use k-nearest neighbor (kNN) as the neighborhood searching 

method as shown in Figure 3.4B. Therefore, there will always be neighbors in a neighborhood. 

 

 

Figure 3.4. Conceptual illustration of neighborhood searching methods. Red dots are points of 

interest, where the searching is conducted. Yellow dots are the neighbors within radius r or k 

nearest neighbors with respect to the selected point. Gray dots are points outside of the 

neighborhood ranges. A: searching with a defined radius r in Euclidean space; B: searching with 

k-nearest neighbor (e.g., k = 3 as shown). 

 

3.3.2.2 Binning 

The method of grouping pairwise differences into categories is termed “binning”. Traditional 

binning is to classify by equal intervals, where each lag bin encompasses a uniform range of lag 

distances (as illustrated in Figure 3.5A). However, this approach can be problematic for 3D point 

clouds due to their varied density distribution. Specifically, equal intervals may result in null 

values in empty bins, introducing issues to subsequent deep learning. To address this challenge, 

we adopt quantile classification, which allocates pairwise differences to lag bins based on equal 

number of pairs. This ensures a more uniform distribution of pairwise differences across lag bins 

(as shown in Figure 3.5B), eliminating the risk of null values in any lag bin. 
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Figure 3.5. Demonstration of binning methods. A: equal interval; B: quantile. There can be 

scenarios where there are no pairwise difference values falling into some lag bins classified by 

equal interval. 

The combination of the kNN searching and quantile binning is the key of the proposed approach, 

which can address the challenge brought by the unstructured nature of 3D point cloud as 

aforementioned. We also observe that this solution might bring uncertainty to the scale for 

semivariance calculation as the spatial extent defined by kNN can be different across points. This 

impact on model generalization can be mitigated by the sampling strategies used in this study. For 

example, the training samples are randomly generated by a fixed size of blocks. Moreover, the 

points within a block are also randomly sampled (see detailed configurations in Section 3.4). That 

is, for the same point, it can be captured multiple times with different nearest neighbors. This idea 

was also used in Klemmer, Safir and Neill (2023), who used such random sampling before 

convoluting k nearest neighbor to mitigate the impact of the scale so as that to learn scale- 

insensitive features. 
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𝑖=1 

3.3.2.3 Estimator of semivariance 

Various estimators can be employed to compute experimental semivariance, including but not 

limited to methods developed by Matheron (1963), Dowd (1984), and Cressie and Hawkins (1980). 

In our study, we focus on utilizing the two foundational semivariance estimators from Matheron 

(1963) and Dowd (1984), which inherently rely on the mean and the median of pairwise differences. 

The Matheron estimator’s formula for calculating semivariance at a given spatial lag h is presented 

in Equations 3.1 and 3.2: 

 

𝛾(ℎ) =  
1 

2𝑁(ℎ) 
∗ ∑

𝑁(ℎ)
(𝑑)2

 (3.1) 

𝑑 = 𝑍(𝑥𝑖) − 𝑍(𝑥𝑖+ℎ) (3.2) 

where Z(x) is the observation (e.g., color information) at the location x. N is the number of point 

pairs at the bin lag h; d is the pairwise differences at a given lag h. 

The Matheron estimator computes the mean of the squared pairwise differences as semivariance. 

However, Matheron semivariance is sensitive to extreme values by using means. The Dowd 

estimator uses the median value, which is robust to extreme values. The formula of the Dowd 

estimator is defined in Equations 3.3 and 3.4. 

 

𝛾(ℎ) = 1 ∗ 𝑚𝑒𝑑𝑖𝑎𝑛(𝑑)2 
2 

(3.3) 

𝑑 = 𝑍(𝑥𝑖) − 𝑍(𝑥𝑖+ℎ) (3.4) 

The computational complexity (Cormen et al. 2022), denoted as O, of deriving the semivariance 

for one point with respect to the number of nearest neighbor, k, is O(k2) because the number of 

pairwise differences is k*(k-1)/2. Therefore, k is one important hyperparameter to be configured 

for semivariance derivation considering computing resources. An increasing k can result in 

dramatic increase in the amount of computation. 
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3.4 Data 

In this study, we leveraged two benchmarks to evaluate the effectiveness of spatial autocorrelation 

features in diverse scenarios (i.e., indoor and outdoor environment settings) for 3D deep learning. 

These benchmarks are listed as follows. 

1. S3DIS (Stanford 3D Indoor Scene Benchmark): S3DIS (Armeni et al. 2016) is a 

representative dataset of small-scale indoor scenes. It serves as an essential resource for 

understanding indoor environments, including room- and object-level classification. 

2. Semantic3D (a.k.a Large-scale Point Cloud Classification Benchmark): Semantic3D 

(Hackel et al. 2017) provides a large-scale outdoor point cloud classification benchmark. 

It is a valuable dataset for evaluating algorithms designed for point cloud processing and 

classification tasks in expansive outdoor environments. 

We aim to offer a better understanding of how explicit incorporation of spatial autocorrelation 

impacts 3D deep learning in different environment settings. Specifically, we sought to determine 

if semivariance improves object detection in both narrow indoor spaces and expansive outdoor 

settings. 

 

3.4.1 Stanford 3D Indoor Scene Dataset 

S3DIS is a representative indoor scene dataset with 13 semantic classes, including ceiling, floor, 

wall, beam, column, window, door, table, chair, sofa, bookcase, board, and clutter. There are in 

total 271 indoor scene of rooms (e.g., office, conference room, classroom, etc.) across 6 main areas, 

namely Areas 1-6, where each area represents a part of a building as demonstrated in Figure 3.6 

(4 of 6 are shown for demonstration purpose). In this study, Area 1-4 and 6 are used for training, 

and Area 5 is used for validation purpose as per previous studies working on the dataset (Qi et al. 

2017b, Fan et al. 2021). The preprocessing generally followed the steps outlined in Qi et al. 

(2017b), where 4,096 points are sampled from each one meter block. 
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However, we dropped any blocks with less than 128 unique points to fit downstream processing 

of semivariance. Based on the current block generating template, the points within a block are 

resampled (with replacement). If the original number of points is less than 4,096 but the output is 

oversampled to 4,096, there must be duplicated points. Therefore, we only take unique point 

location into consideration so that it will not be impacted by duplicated points resulted by the 

resampling template. In this case, if the number of unique points is less than 128, it will violate 

one configuration (k = 128) in Experiment 2 (see Section 3.5.2 for detail). 

We demonstrated the semivariance value for each class along the bins in Figure 3.7. Generally, we 

can observe that semivariance increases along the lag bin which is reasonable as the values can 

differ more in distant points. Moreover, semivariance of different objects show various responses 

to the lag bins. The patterns of their semivariance values along the lag bins can potentially help 

identify them. We observed that floor and ceiling had a similar pattern. They both may have less 

variance of texture within the given lag bin. 
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Figure 3.6. Demonstration of S3DIS datasets. The ceiling is hidden in this figure so that the objects 

within each room can be visualized. 
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Figure 3.7. Demonstration of averaged semivariance value derived for each class in S3DIS dataset. 

The semivariances are derived by Matheron estimator with 16 nearest neighbors for demonstration 

purpose. 
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3.4.2 Large-scale point cloud classification benchmark 

Semantic3D (Hackel et al. 2017) is a large-scale outdoor scene dataset with 8 semantic classes 

including man-made and natural terrain, high and low vegetation, building, hard scape, scanning 

artefacts, and cars (see Figure 3.8). There are 15 labeled rural and urban scenes. We used 9 of them 

for training and the rest for validation. This outdoor scene dataset is challenging in 3D deep 

learning due to its large spatial extent and the extremely uneven distribution in the space. 

 

 

 

 

 

 

Figure 3.8. Demonstration of the Semantic3D dataset. Semantic3D dataset has 15 labeled scenes 

ranging from rural to urban areas with 8 classes. 

 

 

We preprocessed the dataset by using 8 meters as the block size as suggested by previous study 

(Boulch 2020) and 4,096 points as the number of points. The semivariance values are calculated 

prior to being fed into the 3D deep learning model. We demonstrate an averaged value for each 

class in Figure 3.9. Car has the highest value as car since the texture of a car is more complex 
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given a defined neighborhood (i.e., k=16 in this case). Natural terrain and high vegetation show a 

lower value indicating the color of points are more similar within the given bin. 

 

 

 

Figure 3.9. Demonstration of averaged semivariance value derived for each class in Semantic3D 

dataset. The semivariances are derived by Matheron estimator with 16 nearest neighbors for 

demonstration purpose. 

 

3.5 Experimental Design 

In this study, we designed two experiments to address the research question of how the explicit 

incorporation of spatial autocorrelation features impacts 3D deep learning on object detection in 

different environment settings. The first one investigates whether semivariance is beneficial to the 

model performance. The other one perturbs the configuration of semivariance generation and 

explores insights of different configurations towards various environments. 
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3.5.1 Experiment 1: Effectiveness of spatial autocorrelation features in 3D deep learning 

This experiment aims to assess the impact of explicitly incorporating semivariance as a spatial 

contextual feature on the performance of 3D deep learning models. Specifically, the experiment 

compares models trained solely on spatial information against those trained on a combination of 

spatial, color, and/or semivariance data. 

We designed three treatments with different features in input data (see Table 3.1), spatial 

information only, color information as additional features, and spatial autocorrelation features as 

the other additional feature channels. The semivariance of 3 lag bins – 3 additional feature channels 

– are generated based on 16 nearest neighbors within a block of points, where the configurations 

of blocks for different datasets refers to Sections 3.4.1 and 3.4.2. To address the uncertainties 

introduced by the randomization in the deep learning process, we trained and validated the model 

for each treatment with 10 repetitions. The number of repetitions was influenced by the 

computational challenges against our available computing resources. Additionally, our results (see 

Appendix 3.2 for detail) suggest that 10 repetitions were adequate for reliable outcomes. The 

validation dataset was pre-generated so that the performance measurements were comparable. 

Then, we compared the averaged performance measurements over the 10 repetitions, where 

Intersection over Union (IoU), mean Intersection over Union (mIoU) and Overall Accuracy (OA) 

were used as indicators to identify how well the model generalizes on a validation dataset. IoU and 

OA are two measurements commonly used for object detection (Rezatofighi et al. 2019, Qi et al. 

2017a, Boulch 2020). Jaccard similarity index or Lee-Salle shape index (Lee and Sallee 1970), 

were commonly used in the domain of geography or GIScience (Shelton 2019, Clarke 1996), 

which have a similar concept of IoU. The equations of the three metrics are shown below. 
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𝐼𝑜𝑈 = 
 𝑇𝑃𝑖 

 

𝑇𝑃𝑖+𝐹𝑁𝑖+𝐹𝑃𝑖 
(3.5) 

𝑚𝐼𝑜𝑈 = 𝑚𝑒𝑎𝑛(𝐼𝑜𝑈𝑖) (3.6) 
 

𝑂𝐴 = 
 𝑇𝑃𝑎𝑙𝑙  

𝑇𝑃𝑎𝑙𝑙+𝐹𝑃𝑎𝑙𝑙 
(3.7) 

where TP, FP, and FN are True Positive, False Positive, and False Negative; subscript all means 

across all classes and i refers to each individual class. 

 

Table 3.1. Configuration of Experiment 1. 
 

Treatment ID Features Attributes Repetition 

1 Spatial information only XYZ 10 

2 Spatial and color information XYZ + RGB 10 

3 Spatial, color, and spatial 

autocorrelation information 
XYZ + RGB + 
Semivariance 

10 

 

 

 

After training, the average performance metrics across the 10 repetitions were calculated for each 

treatment. Subsequently, comparisons were conducted to assess the observed differences. By 

employing the systematic approach, this experiment aims to offer an in-depth understanding of the 

effectiveness of semivariance as a spatial autocorrelation feature in 3D deep learning models for 

geospatial object detection. 

 

3.5.2 Experiment 2: Investigation into Uncertainty of Spatial Context affected by Configurations 

The objective of this second experiment is to investigate the uncertainty of contextual information 

with respect to the effectiveness of spatial autocorrelation features that are affected by the 

configurations. The parameters perturbed for the configuration are estimators (i.e., Matheron 

estimator and Dowd estimator) and the number of nearest neighbors (k), which specifies the size 

of the local neighborhood used for computing semivariance as shown in Table 3.2. 
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The challenges of k value settings come from two aspects. A smaller value for k may result in loss 

of color variation within the local neighborhood, particularly when the LiDAR sensor offers a finer 

resolution than the RGB color sensor at a certain distance7. A larger k value poses computational 

challenges, as the computational complexity (see detail in Section 3.3.2.3) scales quadratically 

with O(k2). Through initial exploratory experiments and trial runs, we have identified a k-value 

range of 8 to 128 as suitable for further investigation. These values were chosen based on their 

balance between capturing local variations and maintaining computational efficiency. 

Multiple datasets with varying characteristics were used to train and validate the models. For each 

combination of k and estimator, we trained and validated the deep learning models. Each 

configured model was trained 10 times to investigate uncertainties inherent in deep learning 

processes brought by the stochastic processes, for example, the random initialization of weights. 

The training data and validation data were pre-generated so as to avoid extra time spent on 

generating the data and make the outcomes comparable, where 3 bins of semivariance values were 

derived for each point with respect to a number of nearest neighbors within a block of points. We 

computed mean and variance for the model’s performance metrics across all repetitions. Metrics 

such as IoU for each class, mIoU of classes, and OA serve as key indicators for assessing the 

models’ performance. 

By systematically manipulating these parameters and analyzing the performance outcomes, this 

experiment seeks to provide insights to configurations for utilizing semivariance in object 

detection from different scenarios (i.e., indoor and outdoor scenes). 

 

 

 
7 

The spatial information and color information of point clouds are fused based on laser scanner and RGB sensor (e.g., 

camera). Due to their different resolutions, points can correspond to the same pixel from RGB imagery. 
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Table 3.2. Configuration of Experiment 2. 
 

Treatment k Estimator #Repetition 

1 8 Matheron 10 

2 16 Matheron 10 

3 32 Matheron 10 

4 64 Matheron 10 

5 128 Matheron 10 

6 8 Dowd 10 

7 16 Dowd 10 

8 32 Dowd 10 

9 64 Dowd 10 

10 128 Dowd 10 

*k refers to k nearest neighbors. 

 

3.6 Results and Discussion 

 

3.6.1 Computing Performance of the Experiments 

To overcome the computational challenge brought by repetitions of model training for each 

treatment in this study, we leverage high-performance computing (HPC) cluster resources. HPC 

has been widely utilized to assist geospatial research in addressing computational challenges (Tang 

and Wang 2020). Furthermore, HPC equipped with Graphics Processing Units (GPUs) enables 

unprecedented power to solve geospatial problems (Tang and Jia 2014). Specifically in this study, 

we have 10 nodes with GPUs in our HPC cluster, where each node has 1 NVIDIA A40 GPU, 8 

cores of an Intel Xeon Gold 6326 CPU, and 64 GB memory. The total sequential computing time 

for Experiments 1 and 2 are about 368.07 hours and 1,362.68 hours. The computing time by 

leveraging 10 nodes in parallel for the two experiments are 38.15 hours and 142.78 hours. They 

are sped up by 9.65 and 9.54 times. The average computing time and the corresponding standard 

deviation for each treatment for corresponding datasets are shown in Table 3.3. As a result, GPU- 

based HPC computing resources provide solid support for the computational needs of training of 

our 3D deep learning model as required by the experiments in this study. 
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Table 3.3. Computing time for each type of treatment categorized by features included (Std: 

standard deviation). 
 

Treatment Dataset Number of 

Channel 

Average 

Computing 

Time 

Std. 

Computing 

Time 

Spatial information 

only 

Semantic3D 3 8.56 hours 0.35 hours 

Spatial and color 

information 

Semantic3D 6 8.95 hours 0.18 hours 

Spatial, color, and 

spatial autocorrelation 

information 

Semantic3D 9 10.35 hours 0.28 hours 

Spatial information 

only 

S3DIS 3 2.92 hours <0.01 hours 

Spatial and color 

information 

S3DIS 6 2.99 hours <0.01 hours 

Spatial, color, and 

spatial autocorrelation 
 information  

S3DIS 9 3.02 hours 0.01 hours 

 

 

 

 

3.6.2 Effectiveness of Spatial Autocorrelation Features in 3D Deep Learning 

This underscores the integral role that color information plays in providing essential context for 

geospatial object detection in 3D deep learning. We report the results on the two benchmark 

datasets, S3DIS and Semantic3D in the following subsections. 

 

3.6.2.1 Results on Semantic3D dataset 

Table 3.4 summarizes the comparison among the three treatments for Semantic3D dataset while 

using Treatment 2 (i.e., the one with spatial and color information) as the baseline. The detailed 

results of 10 repetition treatments for each treatment are presented in Appendix 3.2 (see Tables 

A1-A4). Observed from Table 4, the baseline treatment has averaged OA and mIoU values of 

81.95% and 51.58%, respectively. However, omitting color information from the dataset led to 

substantial decrease in performance metrics. Specifically, OA declined by 15.46%, and mIoU 
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dropped by 20.84% (Table 4). Thus, incorporating semivariance as an additional feature provided 

a moderate but meaningful increase in performance: OA improved by 1.37%, and mIoU saw a 

2.47% increase. 

As evident in the IoU metrics for specific classes, the inclusion of semivariance not only enhances 

global accuracy but also boosts performance at the class level. The IoU across classes exhibited 

gains between 0.33% and 5.17%. Notably, the IoU scores for scanning artefacts and cars saw 

significant improvement, around 5%. 

Table 3.4. Performance comparison across treatments (Semantic3D Dataset). 
 

Measurements Treatment 1 
Treatment 2 

(Baseline) Treatment 3 

OA 66.49% (-15.46%) 81.95% 83.32% (+1.37%) 

mIoU 30.74% (-20.84%) 51.58% 54.05% (+2.47%) 

Man-made terrain 69.18% (-21.51%) 90.69% 91.02% (+0.33%) 

Natural terrain 27.03% (-45.56%) 72.59% 73.45% (+0.86%) 

High vegetation 36.80% (-20.21%) 57.01% 60.15% (+3.14%) 

Low vegetation 8.58% (-15.54%) 24.12% 26.41% (+2.29%) 

Buildings 65.64% (-14.21%) 79.85% 81.38% (+1.53%) 

Hard scape 11.80% (-9.75%) 21.55% 23.19% (+1.64%) 

Scanning artefacts 12.60% (-7.65%) 20.25% 25.10% (+4.85%) 

Cars 14.29% (-32.26%) 46.55% 51.72% (+5.17%) 

*OA: Overall Accuracy. mIoU: mean Intersection over Union. The class name (e.g., cars) indicates 

the IoU for each class. The values are averaged across the repetitions. 

 

 

These results suggest that feature selection plays a crucial role in the performance of 3D deep 

learning models on semantic datasets. Specifically, the incorporation of color information and 

spatial autocorrelation features can substantially enhance model generalization capabilities in 

terms of the performance metrics. 
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3.6.2.2 Results on S3DIS benchmark 

Table 3.5 summarizes the comparison between three treatments for the S3DIS dataset, using the 

treatment with both spatial and color information as the baseline. Appendix 3.2 reports detailed 

results from 10 repetitions for each treatment (see Tables A5-A8). 

In terms of global accuracy, the baseline treatment exhibits average OA and mIoU values of 82.83% 

and 50.19% (see Table 5). Omitting color information led to a substantial drop in these metrics: 

OA declined by 3.03%, and mIoU fell by 4.88%. In contrast, the incorporation of semivariance as 

an extra feature resulted in moderate improvements. Specifically, OA increased by roughly 1.36%, 

and mIoU improved by 2.35%. 

Regarding IoU for 13 classes in S3DIS data, the treatment 3 outperformed other treatments in 

predicting most of the classes. According to the IoU values for individual classes, the average IoU 

across different classes ranged from 0.04% to 5.44%. In particular, the IoUs for board and 

bookcase saw a remarkable rise of around 4-5%. 

The treatment with spatial information only shows dramatical weakness in understanding windows 

and doors with 17.95% and 20.92% lower than those of the baseline treatment. This can be due to 

the spatial structure of window and door that is very close to that of a flat wall so that models 

trained on spatial information-only dataset appear to be less accurate in this scenario. It is 

noteworthy that the simulation shows the highest IoU for the sofa and column class among the 

three treatments. Boulch (2020) also found that the column class is better detected by a no-color 

model than the color model. Boulch attributed this to more importance given to RGB features in 

the presence of color information during the stochastic training process, but columns often share 

the same color. Therefore, color does not serve as a distinguishing feature, resulting in a worse 
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performance for such classes (Boulch 2020). Similarly, we found that both chair and sofa exhibited 

comparable behaviors. 

In summary, color information can help improve the performance of the model trained only on 

spatial information in our experiments. Engelmann et al. (2017) also advocated this finding in their 

experiments that there was approximately 3% improvement in OA and mIoU when color was 

added. Our experiments further suggest that semivariance, representative of spatial autocorrelation 

features, can boost the model performance of 3D deep learning. This aligns with the findings by 

Bian and Xie (2004) that semivariance can help identify geospatial objects but our study focuses 

its capability in 3D context. However, the uncertainty introduced by this framework for deriving 

semivariance, as opposed to the conventional method of searching neighbors within a given radius 

and binning with fixed lag distances, is worth further investigation in future work. This need arises 

especially due to the spatial heterogeneity in point density, which may affect robustness of spatial 

autocorrelation features. These features are derived from neighbors identified through the kNN 

searching process. To illustrate, in areas of sparse point density, some neighbors identified by kNN 

might not actually be relevant to the reference point. They could be so far apart that spatial 

dependency might no longer exist. Such scenarios highlight potential limitations in our current 

approach that need more in-depth analysis. From our understanding, we assume that an adequate 

selection of block size (see Figure 3.1), for partitioning and sampling the point cloud could help 

mitigate such effect because that allows the models to be trained on samples with varying point 

densities, potentially enhancing the robustness of model performance. 

Table 3.5. Performance comparison across treatments (S3DIS Dataset). 
 

Measurements Treatment 1 
Treatment 2 

(Baseline) Treatment 3 

OA 79.80% (-3.03%) 82.83% 84.19% (+1.36%) 
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mIoU 45.31% (-4.88%) 50.19% 52.54% (+2.35%) 

Ceiling 87.02% (-2.01%) 89.03% 90.82% (+1.79%) 

Floor 96.68% (-0.46%) 97.14% 97.18% (+0.04%) 

Wall 59.92% (-6.07%) 65.99% 68.54% (+2.55%) 

Beam 44.80% (-0.70%) 45.50% 46.90% (+1.40%) 

Column 9.82% (+3.83%) 5.99% 7.72% (+1.73%) 

Window 19.45% (-17.95%) 37.40% 39.04% (+1.64%) 

Door 37.86% (-20.92%) 58.78% 61.64% (+2.86%) 

Table 56.88% (-2.37%) 59.25% 60.51% (+1.26%) 

Chair 62.99% (+1.96%) 61.03% 64.29% (+3.26%) 

Sofa 26.05% (+19.72%) 6.33% 9.00% (+2.67%) 

Bookcase 35.13% (-5.07%) 40.20% 44.29% (+4.09%) 

Board 9.99% (-28.55%) 38.54% 43.98% (+5.44%) 

Clutter 42.40% (-4.95%) 47.35% 49.07% (+1.72%) 

*OA: Overall Accuracy. mIoU: mean Intersection over Union. The class name (e.g., sofa) 

indicates the IoU for each class. The values are averaged across the repetitions. 

 

3.6.2.3 Summary of findings in different scenarios 

In terms of 3D deep learning for geospatial object detection, the importance of feature selection 

cannot be overstated. The performance of model on generalization capabilities, and understanding 

of specific classes, are heavily influenced by the choice of features. An observation from the 

experiments on both datasets (see Sections 3.6.2.1 and 3.6.2.2) was the significant impact of color 

information on performance. Specifically, the omission of color data resulted in a marked 

reduction in key performance metrics, such as OA and mIoU in different scenarios (indoor and 

outdoor environments). This underscores the integral role that color information plays in providing 

essential context for geospatial object detection in 3D deep learning. Moreover, the spatial 

autocorrelation of color information, specifically semivariance, further produces moderate but 

significant improvements in model performance across both datasets. This is evident not only in 

global metrics such as OA and mIoU but also in class-specific IoU metrics. The ability of 

semivariance in capturing spatial relationships and providing local contextual information was 

particularly pronounced, with certain classes showing substantial performance boosts (e.g., 5% 
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improvement in IoU of cars in Semantic3D dataset). The experiments further reveal the advantages 

of integrating spatial autocorrelation features, with semivariance to boost model performance. 

 

3.6.3 Uncertainty of spatial context 

Experiment 2 investigates the uncertainty of spatial context brought by the spatial autocorrelation 

features (i.e., semivariance) affected by diverse configurations (e.g., number of nearest neighbors). 

To do this, we identified the optimal settings for generating effective semivariance metrics for 3D 

object detection across various scenarios. We perturbed the number of nearest neighbors, k, from 

8 to 128 using a quadratic increase step and compared the performance of two semivariance 

estimators: Matheron estimator and Dowd estimator. In this section, we present the results for 

treatments that involved perturbed k with the Matheron estimator, as the outcomes with the Dowd 

estimator exhibited similar patterns. Tables A11 and A12, and Figures A2 and A3 from Appendix 

3.4 report the detailed results of the Dowd estimator. 

 

 

3.6.3.1 Number of Nearest Neighbors for Outdoor Environment 

Table 3.6 depicts the mean values of performance metrics for each configuration. The OA and 

mIoU values range from 82.80% to 83.14% and 52.81% to 53.52%, respectively. These results 

suggest that the overall performance is relatively unaffected by variations of k. A moderate decline 

in the mean values of OA and mIoU was noted with an increasing k, though there was an exception 

at k = 64. We conducted one-tailed t-test to explore if they have significant difference, see Table 

A9. The t-test results suggest that only the results of k=8 appear to only be significantly higher 

than that of k=32 (both OA and mIoU) and k=128 (mIoU only) at a 90% confidence level. 

Regarding the OA and mIoU, a smaller k generally results in a higher IoU in the outdoor 

environment. 
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Table 3.6. Performance metrics across different k values (Semantic3D dataset). 
 

Measurements k = 8 k = 16 k = 32 k = 64 k = 128 

OA 83.14% 82.87% 82.78% 82.97% 82.80% 

mIoU 53.52% 53.19% 53.00% 53.34% 52.81% 

Man-made terrain 91.08% 90.57% 90.83% 90.89% 90.71% 

Natural terrain 73.93% 72.53% 73.43% 73.16% 72.54% 

High vegetation 60.17% 59.72% 58.93% 59.47% 59.44% 

Low vegetation 25.70% 24.95% 24.67% 25.25% 25.14% 

Buildings 81.53% 81.18% 81.00% 81.03% 81.13% 

Hard scape 22.37% 22.89% 22.95% 22.99% 22.58% 

Scanning artefacts 24.02% 24.22% 22.93% 23.79% 23.39% 

Cars 49.39% 49.44% 49.29% 50.14% 47.56% 

*k: number of nearest neighbors. OA: Overall Accuracy. mIoU: mean Intersection over Union. 

The class name (e.g., Cars) indicates the IoU for each class. The values are averaged across the 

repetitions. 

Figure 3.10 shows the variation across ten repetitions for each configuration. Generally, the mIoU 

and OA for the ten repetitions varied between 49.5% to 55.5% and 81.0% to 84.5%, respectively. 

A noticeable trend suggests a slight decrease in accuracy with a rising k. In summary, a smaller k 

is preferred in an outdoor environment. Specifically, the treatment with k = 8 exhibits the best 

performance compared to others. 

 

Figure 3.10. Box chart of performance measures for the Semantic3D dataset with Matheron 

semivariance. A: mean Intersection over Union; B: Overall Accuracy. Centerline is for median. 
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3.6.3.2 Number of Nearest Neighbors for Indoor Environment 

The performance metrics showcased in Table 3.7 reveal patterns for the S3DIS dataset. The metrics 

exhibit consistent trends across different k. Specifically, the mIoU values fall in between 

approximately 52% to 53%. Similarly, the OA values span from approximately 84% to 85%. One 

noticeable trend is the gradual increase in both averaged OA and mIoU as k increases. This trend 

reaches a peak when k = 128, with the model achieving 84.56% of OA and 53.04% of mIoU. The 

results of one-tailed t-test are shown in Table A10. The performance (i.e., both OA and IoU) of k 

= 8 is significantly lower than the other three treatments; moreover, when k = 128, the performance 

is significantly higher than others at a 95% confidence level. The trend is not significant when we 

compare the three treatments in between (i.e., k = 16, 32, and 64) with each other. Generally, a 

larger number of nearest neighbors can be preferred by indoor environment, while the data 

partitioning and sampling configuration (i.e., block size and number of points per block) can also 

impact the optimal value of k. 

Table 3.7. Performance metrics across different k values (S3DIS dataset). 
 

Measurements k = 8 k = 16 k = 32 k = 64 k = 128 

OA 84.11% 84.39% 84.39% 84.36% 84.56% 

mIoU 52.16% 52.73% 52.81% 52.72% 53.04% 

Ceiling 90.62% 90.69% 90.69% 90.64% 90.75% 

Floor 97.26% 97.40% 97.26% 97.30% 97.27% 

Wall 68.25% 68.82% 68.91% 68.80% 69.29% 

Beam 46.60% 46.71% 47.07% 47.24% 47.53% 

Column 7.28% 7.83% 7.37% 8.20% 8.32% 

Window 38.53% 38.67% 39.08% 38.68% 39.43% 

Door 60.75% 62.18% 62.65% 61.54% 63.62% 

Table 60.81% 61.06% 61.13% 61.48% 61.61% 

Chair 64.27% 64.96% 64.28% 64.41% 64.87% 

Sofa 7.47% 8.99% 9.21% 9.85% 9.39% 

Bookcase 44.17% 44.97% 45.15% 44.89% 45.48% 

Board 42.75% 43.65% 44.00% 42.45% 42.01% 

Clutter 49.28% 49.62% 49.69% 49.90% 49.93% 
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*k: number of nearest neighbors. OA: Overall Accuracy. mIoU: mean Intersection over Union. 

The class name (e.g., Sofa) indicates the IoU for each class. The values are averaged across the 

repetitions. 

Table 3.7 indicates that configuring k can impact the performance of the 3D deep learning model. 

In indoor environments, where objects can be closely spaced, the model benefits from considering 

a larger number of neighbors for its spatial autocorrelation features (also supported by Figure 3.11). 

 

 

 

Figure 3.11. Box plot of performance measures for S3DIS dataset with Matheron semivariance. A: 

mean Intersection over Union; B: Overall Accuracy. Centerline is for median. 

 

 

3.6.3.3 Insights for Number of Nearest Neighbor in Different Scenarios 

Our findings on global performance in different environment settings indicate that optimal value 

of k values depend on the relative scale of the dataset. Scale defines the resolution and extent 

(Goodchild 2011). When it comes to our case, the relative scale is with respect to the two 

parameters configured during data preprocessing (see details in Section 3.4 Data), block size (i.e., 

extent) and number of points per block (i.e., related to resolution). The relative scale of the block 

needs to be carefully configured to fit different datasets since the objects have various spatial 

extents and details across datasets. For example, an indoor dataset commonly demands a smaller- 
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scale block (1 meter in this case). For an outdoor dataset, a larger-scale block is commonly used, 

for instance, 8 meters in the study. The number of points per block is 4,096, which were set the 

same for the two datasets in this study for comparison purpose. Therefore, the actual 3D spatial 

extent of the 8 nearest neighbors in the outdoor dataset should be larger than that of 8 neighbors 

in the indoor dataset, given the same configuration on the number of points per block. In such as 

setting, large-scale outdoor environments tend to benefit from smaller k values, whereas indoor 

environments generally perform better with larger k values. Our findings can be explained as 

follows. In outdoor datasets, such as Semantic3D, the relative scale of a point cloud subset is 

typically larger, capturing a broader range of contextual information. For these datasets, a smaller 

k often effectively captures local context. In contrast, for small-scale indoor settings like S3DIS, 

the more limited spatial extent may require a larger k to better represent the local context. In 

summary, we demonstrated how the model performance reacts to the number of nearest neighbors, 

along with the datasets in different relative scales. Although the optimal value of k may vary among 

datasets, these insights offer valuable guidance for future research in configuring appropriate value 

of k for their datasets. 

In the rest of this section, we investigate how varying k affects the performance of models on 

specific classes within the two different datasets. The aim is to understand whether different classes 

and different environment settings (large-scale outdoor versus small-scale indoor) have distinct 

optimal values of k for achieving the best model performance. While the investigation is not to 

suggest good value of k for all datasets, it is intended to provide insights into the how the 

performances on different classes response to the impact from k nearest neighbor and the relative 

scale of the block. Even though the current method may not be able to customize a k value for a 
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specific class, the experiment results and discussion may help inform future methodological design 

for better performance. 

The IoU of each class was averaged over 10 repetitions and aggregated at various k values. Figure 

3.12 and Figure 3.13 show these metrics, indicating the number of points per class and illustrating 

the IoU differences in comparison to baselines. 

For Semantic3D datasets, the four dominant classes (i.e., buildings, man-made terrain, high 

vegetation, and natural terrain) appear to prefer less k nearest neighbors (i.e., k = 8, see Figure 

3.12). Car seems to be outstandingly detected when k = 64, where k from 8 to 32 seems to have a 

similar IoU value, indicating that each class prefers a specific k. It appears k = 128 is too big in 

this large-scale outdoor scenario, where it seems not to be preferred by any of the classes. We 

observed that there can be an upper limit of k that is informative in a particular environment setting, 

where semivariance may not be functioning over a specific limit. An extreme scenario is that the 

influence of semivariance will disappear if k equals the number of points in this block (i.e., 4,096 

in this study) since all points have the same values. 
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Figure 3.12. Relative differences in Intersection over Union (colored lines) along the increase of 

k nearest neighbors (k =128 as baseline) for Semantic3D dataset. Number of points are shown in 

columns. The values are averaged across the repetitions. 

For S3DIS dataset, the trend of k against IoU (Figure 3.13), seems to be opposite from that of 

Semantic3D benchmark (see Figure 3.12) because a larger k is preferred. The IoU of the two 

dominant classes (i.e., ceiling and floor) seem to be insensitive to a change in k, which, to our 

understanding, could be potentially attributed to either the sufficient training data for them or the 

less variation of textural information. Others in this dataset seem to prefer k = 128 most of the time 

except for the board and sofa. We assume there can be a lower limit of k that the corresponding 

semivariance will be less informative if k is smaller than a specific threshold. For example, the 

semivariance within eight nearest neighbors in a small block can be close to zero. 

Above all, the impact of the number of neighboring points on prediction performance may vary 

for different classes and datasets. Certain classes derive greater benefits from the local context— 

such as car in the Semantic3D dataset and door in the S3DIS dataset—whereas others do not 

exhibit the same level of sensitivity. The approach outlined in our study lacks the capability to 
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dynamically adjust the number of neighbors for each class individually. However, the presented 

findings serve as an insightful indicator for guiding the development of future methodologies. 

These insights underscore the importance of considering class-specific characteristics in the design 

of more adaptable and efficient neighbor-selection algorithms. 

 

 

 

Figure 3.13. Relative differences in Intersection over Union (colored lines) along the increase of 

k nearest neighbors (k = 8 as baseline) for S3DIS dataset. Number of points are shown in columns. 

The values are averaged across the repetitions. 

 

 

3.6.3.4 Discussion on Estimators for Spatial Autocorrelation Features 

In our experiments, Matheron semivariance and Dowd semivariance show quite similar results, 

where Matheron results seem to be slightly higher (around 1%) than that of the Dowd results (see 

Tables A11 and A12). Moreover, they also show similar patterns with an increasing k ( ee Dowd’s 

in Figures A2 and A3), where there is a decreasing performance when incorporating more 

neighbors. We attribute this similarity to the relatively low color variability in the lag distance in 
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the experiments as the Dowd semivariance estimator was originally proposed to derive a more 

robust semivariance by using the median instead of mean which is sensitive to extreme outliers 

(Dowd 1984). The results of the Dowd semivariance are presented in Appendix 3.4. 

 

3.7 Conclusion 

This study sheds new light on the potential of spatial autocorrelation features, specifically 

semivariance serving as local spatial context, in enhancing 3D deep learning’s ability to understand 

complex 3D point cloud data with additional channels (i.e., color information in this study). Our 

observations have emphasized the importance of spatial autocorrelation features in refining 3D 

deep learning models. Its integration has resulted in noticeable improvements in per class accuracy 

across different environment settings. 

Our first finding demonstrates the significance of spatial autocorrelation features in 3D deep 

learning for geospatial object detection. Specifically, the improved performance observed when 

incorporating color information and spatial autocorrelation features, as compared to using only 

spatial information, reinforces that the explicit incorporation of spatial autocorrelation enhances 

the power of 3D deep learning models for geospatial object detection. The spatial inner continuity 

and external discontinuity broadly exist in remotely sensed geospatial data no matter whether it is 

2D or 3D. Moreover, the results from the examination of 3D point cloud data in this study and 

previous studies on 2D geospatial data suggest its ability to inform machine learning models to 

distinguish different objects. 

In this study, we recognized the constraints of conventional methodologies for deriving 

semivariance from geospatial data, especially when applied to spatially unstructured and uneven 

distributed 3D point cloud. We have introduced a novel framework that seamlessly integrates kNN 



69 
 

searching with the quantile binning method. This framework adeptly addressed the challenges 

presented by the unstructured nature of 3D point cloud, ensuring effective extraction of spatial 

autocorrelation features. 

Our exploration into model generalization further validated the insights we presented as our third 

main contribution. We have provided insightful guidance for upcoming research by understanding 

the uncertainty of spatial context. This understanding is crucial for deriving spatial autocorrelation 

features. A key aspect of this process involves recognizing the sensitivities tied to the number of 

nearest neighbors. These sensitivities vary notably depending on the environmental settings. For 

instance, there are distinct considerations for indoor versus outdoor scenes. In a future study, we 

will keep seeking the potential of spatial autocorrelation features in helping identify 3D geospatial 

objects, especially finding a way to adaptively select the number of nearest neighbors for better 

performance. 

This study not only underpins the potential of spatial autocorrelation features such as semivariance 

in transforming the way 3D deep learning interprets complex 3D geospatial data but also 

underscores the efficacy of our proposed framework. It guides future studies to further enhance 

the power of spatial autocorrelation in 3D deep learning—i.e., the use of spatial information or a 

spatial algorithm to inform deep learning algorithms while using the latter to resolve spatial 

problems. Embracing this bridge between deep learning and GIScience is not just an advancement 

for GeoAI; it represents a significant advancement in a broader field of geospatial applications. 
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Appendix 3.1 Modified Implementation of PointNet 
 

 

Figure A1. Modified PointNet architecture incorporating spatial autocorrelation features as 

additional channels for large-scale semantic segmentation. The numbers on top of the layers 

suggest the number of input channels, number of neurons per layer, and number of outputs channel. 

n is the number of points per block and c is the number of classes. 
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Appendix 3.2 Summary of the Statistics for Accuracy Measurements in Experiment 1 

Table A1. Results of 10 repetitions for models trained on spatial information only on Semantic3D 

dataset. 

Statistics Mean Std. Max Min 

OA 66.49% 2.97% 69.26% 59.59% 

mIoU 30.74% 1.80% 33.35% 28.48% 

Man-made terrain 69.18% 6.23% 77.29% 58.40% 

Natural terrain 27.03% 8.50% 38.27% 14.60% 

High vegetation 36.80% 3.52% 44.09% 31.15% 

Low vegetation 8.58% 2.68% 11.60% 2.65% 

Buildings 65.64% 5.31% 70.65% 55.02% 

Hard scape 11.80% 3.79% 18.65% 6.47% 

Scanning artefacts 12.60% 1.66% 16.45% 10.74% 

Cars 14.29% 4.77% 20.05% 6.43% 

*OA: Overall Accuracy. mIoU: mean Intersection over Union. 
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Table A2. Results of 10 repetitions for models trained on spatial information and color information 

on Semantic3D dataset. 

Statistics Mean Std. Max Min 

OA 81.95% 1.06% 83.10% 79.66% 

mIoU 51.58% 1.56% 53.30% 47.84% 

Man-made terrain 90.69% 0.77% 91.75% 89.02% 

Natural terrain 72.59% 4.15% 77.64% 64.96% 

High vegetation 57.01% 2.33% 61.81% 53.54% 

Low vegetation 24.12% 1.38% 25.64% 20.75% 

Buildings 79.85% 1.63% 81.60% 77.22% 

Hard scape 21.55% 3.08% 26.44% 14.68% 

Scanning artefacts 20.25% 2.69% 23.89% 14.23% 

Cars 46.55% 4.49% 51.44% 36.98% 

*OA: Overall Accuracy. mIoU: mean Intersection over Union 
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Table A3. Results of 10 repetitions for models trained on datasets with additional spatial 

autocorrelation information on Semantic3D dataset.  
 

Statistics Mean Std. Max Min 

OA 83.32% 1.17% 84.86% 81.38% 

mIoU 54.05% 1.83% 56.52% 51.55% 

Man-made terrain 91.02% 0.85% 92.23% 89.58% 

Natural terrain 73.45% 2.37% 78.30% 68.82% 

High vegetation 60.15% 3.32% 63.54% 54.51% 

Low vegetation 26.41% 2.09% 30.25% 23.36% 

Buildings 81.38% 1.88% 83.91% 78.24% 

Hard scape 23.19% 1.52% 25.15% 20.33% 

Scanning artefacts 25.10% 2.90% 28.52% 20.38% 

Cars 51.72% 5.28% 59.07% 42.40% 

*OA: Overall Accuracy. mIoU: mean Intersection over Union 
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Table A4. One-tailed t-test results in terms of p-value for treatments on Semantic3D dataset. 

Statistics Spatial info. v.s. RGB RGB v.s. Semivariance 

OA <0.01 0.01 

mIoU <0.01 <0.01 

Man-made terrain <0.01 0.19 

Natural terrain <0.01 0.29 

High vegetation <0.01 0.01 

Low vegetation <0.01 <0.01 

Buildings <0.01 0.03 

Hard scape <0.01 0.07 

Scanning artefacts <0.01 <0.01 

Cars <0.01 0.01 

*Spatial info., RGB, and Semivariance are the three treatments aforementioned. 
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Table A5. Results of 10 repetitions for models trained on spatial information only on S3DIS dataset. 
 

Statistics Mean Std. Max Min 

OA 79.80% 0.27% 80.07% 79.21% 

mIoU 45.31% 0.34% 45.74% 44.64% 

Ceiling 87.02% 0.69% 88.08% 85.94% 

Floor 96.68% 0.32% 96.93% 96.16% 

Wall 59.92% 0.52% 61.01% 59.32% 

Beam 44.80% 1.32% 46.72% 42.65% 

Column 9.82% 1.61% 13.58% 7.73% 

Window 19.45% 2.78% 23.40% 13.76% 

Door 37.86% 0.83% 39.71% 36.51% 

Table 56.88% 0.84% 58.39% 55.48% 

Chair 62.99% 2.01% 65.47% 59.08% 

Sofa 26.05% 2.24% 28.47% 22.11% 

Bookcase 35.13% 1.80% 38.16% 33.17% 

Board 9.99% 0.82% 11.19% 8.46% 

Clutter 42.40% 0.53% 43.18% 41.43% 

*OA: Overall Accuracy. mIoU: mean Intersection over Union. 
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Table A6. Results of 10 repetitions for models trained on spatial information and color information 

on S3DIS dataset.  
 

Statistics Mean Std. Max Min 

OA 82.83% 0.51% 83.47% 81.90% 

mIoU 50.19% 0.72% 51.05% 48.99% 

Ceiling 89.03% 0.45% 89.80% 88.36% 

Floor 97.14% 0.08% 97.27% 97.04% 

Wall 65.99% 1.33% 67.89% 63.43% 

Beam 45.50% 0.99% 47.17% 43.95% 

Column 5.99% 1.09% 7.61% 4.83% 

Window 37.40% 1.34% 39.15% 35.29% 

Door 58.78% 1.93% 62.19% 56.18% 

Table 59.25% 1.67% 61.43% 56.38% 

Chair 61.03% 1.89% 63.32% 56.38% 

Sofa 6.33% 1.49% 9.28% 4.93% 

Bookcase 40.20% 2.07% 43.63% 36.27% 

Board 38.54% 3.14% 42.38% 32.40% 

Clutter 47.35% 1.27% 48.65% 44.68% 

*OA: Overall Accuracy. mIoU: mean Intersection over Union. 
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Table A7. Results of 10 repetitions for models trained on datasets with additional spatial 

autocorrelation information on S3DIS dataset.  
 

Statistics Mean Std. Max Min 

OA 84.19% 0.33% 84.78% 83.55% 

mIoU 52.54% 0.56% 53.38% 51.34% 

Ceiling 90.82% 0.60% 91.53% 89.63% 

Floor 97.18% 0.21% 97.41% 96.75% 

Wall 68.54% 0.70% 69.87% 67.31% 

Beam 46.90% 1.18% 48.85% 44.86% 

Column 7.72% 1.36% 9.51% 5.33% 

Window 39.04% 1.04% 40.10% 37.09% 

Door 61.64% 2.56% 67.14% 58.98% 

Table 60.51% 1.11% 62.89% 58.71% 

Chair 64.29% 0.71% 65.29% 62.84% 

Sofa 9.00% 4.57% 17.91% 3.42% 

Bookcase 44.29% 1.36% 46.29% 41.89% 

Board 43.98% 1.54% 46.21% 41.82% 

Clutter 49.07% 0.96% 50.46% 47.44% 

*OA: Overall Accuracy. mIoU: mean Intersection over Union. 
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Table A8. One-tailed t-test results for treatments on Semantic3D dataset in terms of p-value. 

Statistics Spatial info. v.s. RGB RGB v.s. Semivariance 

OA <0.01 <0.01 

mIoU <0.01 <0.01 

Ceiling <0.01 <0.01 

Floor <0.01 0.26 

Wall <0.01 <0.01 

Beam 0.13 0.01 

Column <0.01 <0.01 

Window <0.01 0.01 

Door <0.01 <0.01 

Table <0.01 0.04 

Chair 0.03 <0.01 

Sofa <0.01 0.05 

Bookcase <0.01 <0.01 

Board <0.01 <0.01 

Clutter <0.01 0.01 

*Spatial info., RGB, and Semivariance are the three treatments aforementioned. 
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Appendix 3.3 One-tailed t-test Results for Different kNN 

Table A9. One-tailed t-test results for Semantic3D dataset in terms of p-value. 
 

kNN OA mIOU 

8-16 0.14 0.17 

8-32 0.05 0.07 

8-64 0.29 0.34 

8-128 0.11 0.06 

128-8 0.11 0.06 

128-16 0.30 0.18 

128-32 0.49 0.35 

128-64 0.21 0.09 

*kNN: k nearest neighbor. OA: Overall Accuracy. mIoU: mean Intersection over Union. 



83 
 

Table A10. One-tailed t-test results on S3DIS dataset in terms of p-value. 
 

kNN OA mIOU 

8-16 <0.01 <0.01 

8-32 <0.01 <0.01 

8-64 0.01 <0.01 

8-128 <0.01 <0.01 

128-8 <0.01 <0.01 

128-16 0.02 0.02 

128-32 0.05 0.05 

128-64 <0.01 0.01 

*kNN: k nearest neighbor. OA: Overall Accuracy. mIoU: mean Intersection over Union. 
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Appendix 3.4 Results of Perturbing k Nearest Neighbors Using Dowd Estimator 

Table A11. Performance metrics across different k values (Semantic3D dataset) using Dowd 

estimator. 

Measurements k = 8 k = 16 k = 32 k = 64 k = 128 

OA 82.99% 82.94% 83.06% 82.91% 82.66% 

mIoU 53.36% 53.12% 53.22% 52.99% 52.71% 

Man-made terrain 90.90% 90.72% 90.93% 90.59% 90.78% 

Natural terrain 72.95% 73.52% 73.78% 72.01% 72.51% 

High vegetation 60.47% 60.19% 60.33% 60.53% 59.39% 

Low vegetation 25.56% 25.69% 25.23% 25.21% 25.74% 

Buildings 81.31% 81.35% 81.51% 81.47% 81.06% 

Hard scape 22.62% 22.52% 22.50% 22.00% 21.89% 

Scanning artefacts 24.43% 22.87% 23.55% 23.42% 22.78% 

Cars 48.66% 48.11% 47.96% 48.72% 47.52% 

*k: number of nearest neighbors. OA: Overall Accuracy. mIoU: mean Intersection over Union. 

The class name (e.g., Cars) indicates the IOU for each class. The values are averaged across the 

repetitions. 
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Figure A2. Box chart of performance measures for Semantic3D dataset with Dowd estimator. A: 

mean Intersection over Union; B: Overall accuracy. Centerline is for median. 
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Table A12. Performance metrics across different k values (S3DIS dataset) using Dowd estimator. 

Measurements k = 8 k = 16 k = 32 k = 64 k = 128 

OA 83.86% 84.14% 84.16% 84.29% 84.37% 

mIoU 51.74% 52.30% 52.48% 52.56% 52.82% 

Ceiling 90.40% 90.54% 90.44% 90.62% 90.57% 

Floor 97.26% 97.24% 97.27% 97.32% 97.28% 

Wall 67.74% 68.39% 68.31% 68.79% 68.77% 

Beam 46.11% 46.69% 47.27% 47.26% 47.22% 

Column 6.48% 7.18% 7.56% 8.02% 7.99% 

Window 37.63% 37.80% 38.37% 38.59% 38.70% 

Door 60.12% 61.71% 61.49% 61.85% 62.70% 

Table 60.43% 60.76% 60.39% 60.48% 61.10% 

Chair 63.68% 64.19% 63.87% 64.31% 64.69% 

Sofa 8.41% 9.47% 10.02% 9.40% 10.31% 

Bookcase 44.17% 44.97% 45.15% 44.89% 45.48% 

Board 42.75% 43.65% 44.00% 42.45% 42.01% 

Clutter 49.28% 49.62% 49.69% 49.90% 49.93% 

*k: number of nearest neighbors. OA: Overall Accuracy. mIoU: mean Intersection over Union. 

The class name (e.g., Sofa) indicates the IOU for each class. The values are averaged across the 

repetitions. 
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Figure A3. Box plot of performance measures for S3DIS dataset with Dowd estimator. A: mean 

Intersection over Union; B: Overall accuracy. Centerline is for median. 
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4 SPATIAL AUTOCORRELATION ENCODER FOR 3D DEEP LEARNING 

 

4.1 Introduction 

3D geospatial object detection is underscored in its critical role in building accurate 3D models for 

state-of-the-art applications of geographical information science (GIScience). These applications 

span digital earth (Guo, Goodchild and Annoni 2020), twin cities (Goodchild 2022b, Batty 2023), 

and Building Information Modeling (BIM) (Goodchild 2021, Batty 2013), where the 3D 

representations are important not only for visualizing but also for analyzing, and management. In 

the domain of GIScience, the past decades have witnessed a remarkable evolution in 3D techniques, 

ranging from the development of data acquisition technologies (e.g., LiDAR8) to the evolution of 

data processing and analyzing technologies supported by computing technologies. Early studies 

naively represent 3D spatial objects, essentially reflecting the spatial location of the object in a 3D 

space. For example, objects were represented by spatial points in a 3D network (Kwan and Lee 

2005) to describe the spatial relationship among them. Moreover, the representations of buildings 

are simply derived from blueprints (Evans, Hudson-Smith and Batty 2006, Batty and Hudson‐ 

Smith 2005, Batty 2000) without the as-built status of them. However, nowadays, the 

advancements of 3D techniques have made it possible to generate up-to-date, and as-is 

representations of diverse geospatial objects, laying the foundation for the development of 3D 

geographical information systems (GIS). Therefore, there is a demand for accuracy and efficiency 

for 3D geospatial object detection. 

An illustrative example of this is Tree Folio NYC9, which is a digital twin of New York City (NYC) 

Urban Canopy produced by the Design Across Scales Lab at Cornell University. It is a web-based 

 

8 LiDAR stands for light detection and ranging. 
9 https://labs.aap.cornell.edu/daslab/projects/treefolio 

https://labs.aap.cornell.edu/daslab/projects/treefolio
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GIS application designed to provide practitioners and stakeholders with a user-friendly platform 

for querying, analyzing, and visualizing the 3D point cloud representations of individual trees in 

NYC. The development of such applications requires the detection and extraction of trees from 3D 

point clouds. Due to the number of trees in NYC (approximately 8 million), it would become 

incredibly time-consuming and labor-intensive work if performed manually. 

3D deep learning algorithms can be potentially used to address this challenge. Deep learning for 

object detection in 3D context has been attracted unprecedented focus since the first architecture, 

PointNet (Qi et al. 2017a), which is a deep neural network designed to directly consume point 

cloud as input, shaping the development of neural network architectures in recent years. The 

variants of this architecture have been continuously serving as a key part in many cutting-edge 

architectures from recent studies (Xie et al. 2021, Wu et al. 2020, Ren et al. 2024, Qian et al. 2022). 

Parallel to these advancements, the emergence of GeoAI—a synthesis of GIScience and Artificial 

Intelligence (AI)—marks a pivotal shift towards not only using cutting-edge AI methodologies to 

inform geographical studies but also to enrich AI with geographical insights (Goodchild 2022a, Li 

2021). A few efforts have been seen since then. For example, Chen (2024) conducted a systematic 

investigation and proved the effectiveness of semivariance as a representation of spatial 

autocorrelation in informing 3D deep learning. 

Semivariance is essentially estimated by a function, such as Matheron's estimator (Matheron 1963) 

and Dowd’s estimator (Dowd 1984), on pairwise differences in a neighborhood. Even though there 

are enhancement brought by explicitly feeding the semivariance into the model for object detection, 

there are two weaknesses of the method that may entangle the practitioners to use it. One is that 

pre-calculation of semivariance is required, which demands additional effort towards object 
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detection rather than end-to-end10. The other weakness is that it is difficult for users especially 

those without expert knowledge to well configure the parameters, such as number of nearest 

neighbors, number of bins, and semivariance estimators, whose optimal setting might differ for 

various datasets. 

Therefore, this study proposed a spatial autocorrelation encoder, which is a neural network-based 

module to extract high-dimensional vector as a representation of spatial contextual features for the 

neighborhood of each point based on pairwise differences ordered by spatial lag distance. The 

proposed spatial autocorrelation encoder neither requires the user to pre-calculate the contextual 

features for each point, nor demands expert knowledge to carefully configure the dataset- 

dependent parameters for the model. The proposed encoder directly extracts a context embedding 

from the ordered pairwise difference and the parameters are configured during the training process. 

This study also conducted environments to investigate the effectiveness of ordered pairwise 

differences to prove the validity in using it as the initial representation of 3D spatial autocorrelation. 

The proposed encoder not only enhances the capability of GIS in handling and interpreting 3D 

geospatial data but also paves the way for further investigation on geographical insights in 

benefiting AI models. The implications of this are significant for various applications, including 

urban planning, environmental monitoring, and disaster management, where quick and accurate 

interpretation of spatial data is crucial. The contributions of this study are highlighted as follows: 

• Enhanced Geospatial Object Detection: The study underscores the utility of ordered 

pairwise differences for identifying diverse geospatial objects, reinforcing the synergy 

 

 

10 End-to-end, in the domain machine learning, typically refers to a process or a model that takes raw data as input 

and directly produces the expected output, without demanding any manual intermediate steps operated by humans. 
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between geographic theories, statistical methods, and deep learning advancements. It 

demonstrates the pivotal role of spatial statistics in enriching AI technologies for geospatial 

object detection from complex environments. 

• Automate Contextual Representation Extraction: By developing a neural network-based 

encoder that effectively extracts spatially contextual embeddings from ordered pairwise 

differences, this research showcases an innovative integration of AI in geospatial analysis. 

This approach simplifies the application of traditional semivariance estimations, offering a 

streamlined, dataset-specific learning mechanism that enhances model accuracy and 

efficiency in geospatial object detection. 

The remainder of this manuscript is organized as follows: Section 4.2 reviews the related 

literature with a focus on contextual features in object detection. Sections 4.3 to 4.5 detailly 

explained the methodology of this study, including the design of the proposed encoder, 

processing to derive ordered pairwise difference, dataset used in this study, and experimental 

designs. Section 4.6 delineated the results of the experiments followed by discussion about 

them. Finally, the conclusions are depicted in Section 4.7. 

 

4.2 Literature Review 

Spatial context is important to the task of 3D object detection (Mottaghi et al. 2014, Pohlen et al. 

2017, Engelmann et al. 2017). To improve the performance of deep learning architectures on 3D 

datasets, many studies focus on using different feature extraction modules to improve the deep 

learning model. We listed some of them from a scope of geographical insights enhancing AI model. 

Wu et al. (2020) presents an advanced method for 3D object detection in point clouds, improving 

upon the Frustum PointNet (Charles et al. 2018) by incorporating local neighborhood information 
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into point feature computation. This approach enhances the representation of each point through 

the neighboring features. The novel local correlation-aware embedding operation leads to superior 

detection performance on the KITTI dataset compared to the F-PointNet baseline. This method 

emphasized the importance of local spatial relationships for 3D object detection in deep learning 

frameworks. Klemmer, Safir and Neill (2023) adds a positional encoder using Moran’s I as an 

auxiliary task to enhance the graphic neural network in interpolation tasks. Fan et al. (2021) 

designed a module based on the distance between points to capture its local spatial context to 

inform object detection. Engelmann et al. (2017) proposed a network to incorporate larger-scale 

spatial context in order to improve the model performance by considering the interrelationship 

among subdivisions (i.e., blocks) of the point cloud. While most of the endeavors contribute to 

improving the model capability to derive discriminative feasters from spatial information, 

information from other channels seems to be overlooked (Chen 2024). Current LiDAR often 

captures more information rather than the position, such as intensity, and RGB, while some special 

sensor can further collect other spectrum information such as near inferred for thermal studies. 

Even though some studies integrate RGB as input (Qi et al. 2017b, Qi et al. 2017a, Boulch 2020), 

colors are not their focus and limited considerations are taken on utilizing them. Chen (2024) 

pioneered a study with a focus on making more use of RGB information by explicitly incorporating 

semivariance variables to improve the model performance, which are estimated based on the 

variation of observed color information and corresponding spatial lag distance. Extending the 

scope of Chen (2024), we would further explore the spatial variances of non-spatial information. 

The color information as well as the texture embedded in it, for example, is important for humans 

to recognize different objects (Haralick, Shanmugam and Dinstein 1973, Tso and Olsen 2004). 

Therefore, we emphasize the importance of color in geospatial object detection, moreover, we call 
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for investigation of the channels other than spatial information and corresponding endeavor to 

improve the performance of models. We are leading a focus shift towards bridging the gap between 

the development of 3D deep learning and better utilizing non-spatial information. 

 

4.3 Methodology 

 

4.3.1 Architecture design of the spatial autocorrelation encoder 

Inspired by Chen (2024) explicitly feeding semivariance as contextual features for object detection, 

we aim to automate the estimation process and derive dataset-dependent contextual embeddings 

by using a spatial autocorrelation encoder (see Figure 4.1). One important requirement for the 

design of the neural network architecture for 3D deep learning is that the embeddings should be 

permutation invariant to the input (Qi et al. 2017). PointNet uses max pooling as a symmetric 

function that makes the output global signatures invariant in terms of permutation. ConvPoint 

(Boulch 2020) adopted a continuous convolution operation to ensure the convoluted features are 

permutation invariant to the input point cloud. The spatial dependency embeddings extracted by 

the proposed encoder are naturally permutation invariant to the input point cloud because the input 

unordered point cloud for the contextual feature estimation will be resorted based on the lag 

distance (see Figure 4.2). 
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Figure 4.1. Proposed spatial autocorrelation encoder for spatial autocorrelation features extraction. 

PointNet is used as the basic structure for demonstration purposes. The numbers in parenthesis are 

the # input channels, # neurons in hidden layers, and # output channels. 

 

4.3.2 Ordered pairwise differences. 

Ordered pairwise differences is the initial input of the sub-neural network from the spatial 

autocorrelation encoder. We demonstrate how to derive ordered pairwise difference using one 

point as example shown in Figure 4.2. To calculate ordered pairwise differences, we would need 

to define the neighbors. Due to the unstructured nature of a 3D point cloud, it is not feasible to use 

a fixed distance to identify the neighbors. For example, the number of neighbors within a certain 

distance can vary across different points. Moreover, one point in point sparse areas may not find a 

neighbor within a given distance. Therefore, it is essential to use k nearest neighbor to identify the 

neighborhood. This idea is supported by many cutting-edge studies, such as PointNet++ (Qi et al. 

2017b), PointNext (Qian et al. 2022), and ConvPoint (Boulch 2020) using the kNN approach. kNN 

is also adopted in this paper. One argument that is often associated along with kNN is that the local 

neighborhood captured by kNN varied its size for different points, which may lead to inconsistent 
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features. However, we are aware of this difficulty brought by kNN that feature might not be 

inconsistent, but we address this challenge through random sampling as suggested by ConvPoint. 

Randomly sampling points to represent the same object within the same scene in the training 

process is a way to mitigate the inconsistencies brought by the kNN approach. 

 

Figure 4.2. Illustration of the preprocessing to prepare a training dataset and derive ordered 

pairwise differences. One point from a block is used for demonstration purpose. 

To make it more clear how the original point clouds are prepared, we illustrate how the pairwise 

differences are calculated from the initial dataset. Data partitioning and subsampling are two 

essential steps in the preprocessing steps of cutting-edge 3D deep learning methods. This is due to 

the consideration related to computing resources and the nature of neural networks. The point 

cloud datasets directly collected by sensors like LiDAR instruments commonly include millions 

of points with the dataset often gigabytes in size, which is too large to be efficiently, or feasibility 

be fed to the CPU and/or GPU. On the other hand, neural networks require structured input, but 

the unstructured nature of 3D point clouds does not satisfy this requirement. Therefore, we have 

to perform data partitioning and subsampling to prepare structured and memory-manageable 

datasets for deep neural networks. These two steps are demonstrated as the first two steps in Figure 

4.2. Data partitioning is implemented by using a particular size of blocks to subtract a subset from 

the original point cloud. Furthermore, a sampling method is conducted to sample from the subset 

to an anticipated number. Considering the unevenly distributed nature of 3D point cloud, this step 
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is often done by sampling with replacement. This is to overcome the case that the number of points 

within the subset does not reach the expected number of points per block. 

A block of sampled points is the input for the ordered pairwise differences extraction. We used 

one point from such a block as an example to explain how the pairwise differences are extracted. 

First, we identify the neighbors of the point by kNN. While kNN is computationally intensive, 

especially in current 3D deep learning methods that employ k , it takes around 1 ⁄ 3 of the total 

computing time to train a deep learning model. We used tree searching embedded in SciPy11 to 

implement kNN, which is more efficient than calculating all pair distances. Once k nearest 

neighbors are identified, the pairwise differences are calculated between the center point (key point) 

and its neighbors. In the traditional calculation of semivariance, the pairwise differences not only 

consider the key point and its neighbors within total n values. The total number of that is n*(n-1) 

differences because all pair differences are calculated among the identified neighbors. We chose 

to use the former design because it is simpler in computational complexity, and it is as powerful 

as the latter one in identifying different objects in our preliminary experiments. Finally, we ordered 

the k nearest neighbors by its lag distance away from the key points, using this as a representation 

of initial context features of the point. Subsequently, we applied this to all points in the block to 

prepare a dataset. We chose 16 as the k value to identify the nearest neighbor in this study, referring 

to the empirical setting from the previous studies when aggregating features from neighbors (Fan 

et al. 2021, Boulch 2020). 

 

 

 

 

 

 

 

 

11 https://scipy.org/ 

https://scipy.org/
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4.3.3 Feature grouping 

In a deep neural network, each feature extraction layer can extract the features from the previous 

layer (either input or hidden layers). In such a way, high-level features (from later layers) can be 

eventually extracted, while the final abstract features should be adequately invariant to most local 

changes from early layers (e.g., input layer). In our design, we are trying to extract such high-level 

embedding features from pairwise differences within a neighborhood and use these features along 

with embedding features from spatial and color information for the final prediction. The k nearest 

neighbors will be found for each point and pairwise differences will be calculated based on the 

values of the neighbors as demonstrated in Figure 4.2. The ordered pairwise differences will be 

fed to the spatial autocorrelation encoder (see Figure 4.1). Finally, the high-level embedding 

features will be concatenated for classification. 

Aggregating local features to a larger scale (up to global scale) can effectively improve the model 

performance. By incorporating the spatial autocorrelation module, we would group the spatial 

dependency embeddings to other features of a neural network. There are three types (Qi et al. 

2017b) of grouping templates (three settings of framework), single-scale point grouping (SSG), 

multi-scale point grouping (MSG), and multi-resolution point grouping (MRG). Single-scale point 

grouping (SSG) is used to extract abstraction by layers and only use the final layer features as the 

feature of a point for classification. Multi-resolution point grouping (MRG) is extremely 

computationally expensive (Qi et al. 2017b), in which larger scale features are derived based on 

features from smaller scale. Multi-scale point grouping (MSG) appears to be a simple but effective 

approach to group layers from different scales. The final features of points combine features from 

different scales, where features for each scale can be independently derived. The grouping 

templates can also help to mitigate the impact from uneven distribution of point clouds. Multi- 
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scale and single scale grouping, claimed by (Engelmann et al. 2017), appear to have similar 

performance, where MSG is 2.1% higher than SS in terms of IoU. Therefore, we followed an MSG 

template to group the features. We concatenated the local contextual features with the global and 

point-wise local features (see Figure 4.1). 

 

4.4 Dataset 

Semantic3D, introduced by Hackel et al. (2017), stands as a substantial and diverse dataset 

specifically tailored for outdoor scene analysis. We selected this dataset because its context is close 

to GIS applications such as twin city, where it can serve as the original data for 3D modeling 

geospatial objects, such as buildings, trees, traffic lights, and road surface. The Semantic3D dataset 

offers a detailed and complex dataset with 15 scenes ranging from urban to rural. It covers a wide 

range of eight semantic categories, man-made and natural terrains, high and low vegetation, 

structures like buildings and hardscape (e.g., road light, and fencing), scanning artefacts (e.g., 

dynamic noise during scanning), and vehicles (see Figure 4.3). 

As we are moving towards the concept of twin cities, where urban environments are enriched with 

sensors and technology for better management and planning, the need for accurate and efficient 

processing of 3D spatial data becomes increasingly critical (Batty 2023, Guo et al. 2020). The 

ability to accurately segment and interpret this data can inform various aspects of smart city 

planning, including infrastructure development, environmental monitoring, and emergency 

response strategies (Kwan and Lee 2005, Batty 2023, Li, Batty and Goodchild 2020, Batty 2013, 

Batty 2008, Evans et al. 2006). The Semantic3D benchmark serves as a bridge between academic 

research and real-world applications. It provides a common ground for researchers to test and 

compare their methodologies, fostering an environment of collaboration and continuous 



99 
 

improvement. This is particularly important in fast-evolving fields like GIS, where the gap 

between theoretical research and practical application needs to be constantly narrowed. 

In our methodology, we carefully chose nine of these scenes for our training dataset, selected in 

terms of their diversity. The other six scenes were used for validation to examine the generalization 

capability of our model. For preprocessing, we adopted an 8-meter block size for dataset 

partitioning, aligning with recommendations of Boulch (2020), and targeted a density of 4,096 

points per block. A block size of 8 meters indicates that the dataset is divided by an 8-meter grid, 

where each block covers an area of 8 meters by 8 meters. This setting is a good rule of thumb for 

large scale outdoor dataset, which is also supported by (Tang et al. 2022). This segmentation 

facilitates the handling and analysis of large datasets by breaking them down into more 

manageable units, allowing for detailed processing and analysis of each segment while maintaining 

the structural nature of spatial data. To maintain the quality of ordered pairwise difference 

estimation, blocks containing fewer than 128 unique points were excluded. This approach 

addresses the issue of duplicated points in oversampled blocks by prioritizing unique point 

locations, ensuring that our model input is not skewed by artificial data replication. For example, 

when estimating the ordered pairwise differences, only unique points are taken into consideration, 

otherwise, oversampled points can count towards k nearest neighbors, which can lead a weak 

representation of spatial relationships within the dataset for accurate geospatial object detection. 
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Figure 4.3. Demonstration of Semantic3D benchmark dataset. 

 

There are two main challenges in the dataset, uneven point distribution and a long tail problem. 

The points within these scenes are not uniformly distributed; instead, they exhibit an extremely 

uneven spatial distribution as is the nature of LiDAR data. This unevenness poses a unique 

challenge as it requires algorithms to be highly adaptable and sensitive to a wide variety of spatial 

contexts and densities. Furthermore, the classes exhibit extremely uneven distribution, known as 

a long tail problem. As suggested in Figure 4.4, the first four largest classes (i.e., building, man- 

made terrain, high vegetation and natural terrain) represent approximately 90% of the whole 

dataset. In particular, the building class is approximately 45% of the points in the entire dataset. 

The remaining four classes, hard scape, low vegetation, cars, and scanning artefacts only represent 

<10% proportion of the dataset. The ability to adequately represent non-uniform point-cloud data 

are essential for developing sophisticated 3D deep learning models that can accurately interpret 

and interact with complex and variable real-world environments. The Semantic3D dataset, 
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therefore, serves as an invaluable resource for advancing research and development in 3D scene 

analysis and understanding. 

 

 

Figure 4.4 Distribution of different classes in Semantic3D dataset. 

 

4.5 Experiment 

We designed two experiments, where one is to investigate the effectiveness of ordered pairwise 

difference for object detection and the other is to examine the effectiveness of the proposed 

architecture to inform the 3D deep learning for geospatial object detection. 

The first experiment is to investigate the usefulness of ordered pairwise difference in identifying 

different geospatial objects using 3D deep learning methods. Practically, we only feed pairwise 

differences to a 3D deep neural network except any spatial information or RGB data. We used 

PointNet here not only because it is concise and powerful to derive good representations (Guo et 

al. 2021) but also because of its compatibility to handle any type of input features. Cutting edge 

architectures have a more sophisticated design requiring an explicit feed of spatial information. 
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For example, neural network architectures designed by Boulch (2020) and Fan et al. (2021) have 

an essential need of explicit spatial information as an input. In this case, we would not be able to 

solely examine the effectiveness of ordered pairwise differences for distinguishing geospatial 

objects. 

The second experiment aims to assess the effectiveness of the designed architecture In benefiting 

the 3D deep learning in terms of the object detection capability. Moreover, we will compare the 

results with models directly trained on a combination of spatial information, color information, 

and contextual information. 

To address the uncertainties introduced by the stochastic process during the training, we trained 

and validated the model for each treatment with 10 repetitions. The number of repetitions was set 

by considering the computational challenges against our available computing resources. The 

validation dataset was pre-generated so that the performance measurements were comparable. 

Then, we summarized the averaged performance measurements over the 10 repetitions, where 

Intersection over Union (IoU), mean Intersection over Union (mIoU), Average Accuracy (AA) 

and Overall Accuracy (OA) were used as indicators to identify how well the model generalizes on 

a validation dataset. The average performance metrics across the 10 repetitions were calculated for 

each treatment. Subsequently, comparisons were conducted to assess the observed differences. 

One tailed t-test is applied to examine if their mean is significantly different. The equations of the 

three metrics are shown below. By employing the systematic approach, this experiment aims to 

offer an in-depth understanding of the effectiveness of the module to inform 3D deep learning. 

 

𝐼𝑜𝑈 = 
 𝑇𝑃𝑖 

 

𝑇𝑃𝑖+𝐹𝑁𝑖+𝐹𝑃𝑖 
(4.1) 

𝐴𝐴 = 𝑚𝑒𝑎𝑛(
  𝑇𝑃𝑖 ) (4.2) 
𝑇𝑃𝑖+𝐹𝑁𝑖 
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𝑚𝐼𝑜𝑈 = 𝑚𝑒𝑎𝑛(𝐼𝑜𝑈𝑖) (4.3) 
 

𝑂𝐴 = 
 𝑇𝑃𝑎𝑙𝑙  

𝑇𝑃𝑎𝑙𝑙+𝐹𝑃𝑎𝑙𝑙 
(4.4) 

where TP, FP, and FN are True Positive, False Positive, and False Negative; subscript all means 

across all classes and i refers to each individual class. 

 

4.6 Results and Discussion 

 

4.6.1 Computing performance of the experiments 

In this study, to address the computational challenges brought by either hyperparameter tuning or 

repeated models training, we utilized high-performance computing (HPC) cluster resources 

equipped with Graphics Processing Units (GPUs). HPC has been widely applied in geospatial 

research to tackle computational challenges, as noted by Tang and Wang (2020), and the 

integration of GPUs, as mentioned by Tang and Jia (2014), offers remarkable capabilities for 

solving geospatial issues. Our HPC cluster comprises 10 nodes, each equipped with an NVIDIA 

A40 GPU, an Intel Xeon Gold 6326 CPU with 8 cores, and 64 GB of memory. This setup 

significantly saved hundreds of hours for hyper-parameter tuning in this study so that we can have 

an adequate configuration for Experiment 2. The computing time of Experiments 2 shrunk from 

126.8 hours as sequential time to 13.4 hours, when utilizing all 10 nodes in parallel. This represents 

a speed-up of approximately 9.46 times. Consequently, the GPU-enhanced HPC resources provide 

robust support for the computational demands of our 3D deep learning model training in the 

experiments conducted in this study. 

 

4.6.2 Investigating effectiveness of ordered pairwise difference. 

Experiment 1 investigated the effectiveness of ordered pairwise differences in terms of geospatial 

object detection. The measures are reported in Table 4.1 and demonstration of the results are shown 
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in Figure 4.5. It is interesting to see the overall accuracy can achieve 63% while the input data is 

only the ordered pairwise difference without any explicit spatial locations or RGB information, 

which supports a moderate capability of pairwise difference in identifying geospatial objects. Even 

though it does not show a good performance in all classes, it still has an adequate performance for 

several of them, such as building and high vegetation. This performance is especially visible on 

selected scenes as shown in Figure 4.5. 

Table 4.1. Performance results for Experiment 1. 
 

OA 63% 

AA 40% 

 mIOU  28%  

Man-made terrain 39% 

Natural terrain 38% 

High vegetation 54% 

Low vegetation 8% 

Buildings 63% 

Hard scape 12% 

Scanning artefacts 0% 

 Cars  11%  

*OA: Overall Accuracy. AA: Average Accuracy. mIoU: mean Intersection over Union. The class 

name (e.g., Cars) indicates the IoU for each class. The values are averaged across the repetitions. 

The IoU for each class shows a big difference across classes. The model performance on buildings 

and high vegetation separately reaches 63% and 54% in IoU. The second tier of classes are man- 

made terrain and natural terrain, on which the model has an IoU of 39% and 38% correspondingly. 

The rest of classes, hard scape, low vegetation, cars, and scanning artefacts, are not well detected 

by the model, where the IoU ranges from 0% to 12%. 

We observed that the model performance on different classes seems to be related to the proportion 

of the class within the dataset and the volume of the objects. As shown in Figure 4.3, buildings, 

man-made terrain, natural terrain, and high vegetation are the four largest classes, where a 
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cumulative proportion is around 90% of the whole dataset. The model shows better performance 

on these four classes and appears far better than the rest of classes in terms of IoU. One potential 

reason that causes the diversity performance of the model on each class is the proportion of the 

class within the dataset. Even though man-made terrain has more points than high vegetation class, 

the performance on high vegetation is better than that of man-made terrain. It seems ordered 

pairwise differences have the capability to identify different objects while it also appears to be 

sensitive to the volume of the objects. We attribute this finding to the nature of data partitioning 

and sampling process. While in this process, the number of points for objects in the original dataset 

directly impacts how many points from this object can be captured during this process. Moreover, 

the volume of the object also impacts the analysis. For example, a cubic object (e.g., building and 

tree) tends to be captured with more points than the planar one since ground only exists on the 

floor surface of a block but cubic objects exist across the space. Hardscape, scanning artefacts, and 

cars take a small volume as well as the number of points as opposed to the whole scene. Therefore, 

they might be less represented using the pairwise differences as the points sampled for them might 

be more subject to boundary effects. 

Even though there are less represented classes, we still innovatively find the capability of ordered 

pairwise difference as context features to identify many objects. We can tell from Figure 4.5 that 

buildings, trees and terrains, even though confusion between natural terrain and man-made terrain, 

are adequately identified by the model. The cutting-edge results from a model based on spatial 

information and RGB surpasses the performance of the ordered pairwise difference (Boulch 2020, 

Fan et al. 2021), but knowing the usefulness of pairwise difference is also an important finding. 
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Figure 4.5. Visualization of the prediction results of using order pairwise differences only as the 

input. Ordered pairwise differences only show an adequate performance on objects with a large 

volume in the scene, such as high vegetation, natural/man-made terrain, and buildings. 

The visualization of the prediction results demonstrated the confusion among classes especially 

around the boundaries. For example, the natural terrain and man-made terrain are not well 

differentiated by the model. Moreover, we also observed that some man-made surfaces are 

predicted as trees if the points are close to a tree. These results represent a challenge of current 

method to that spatial autocorrelation features of those points on boundaries may not adequately 

be represented since the neighboring points can be from other classes. This problem is also seen 

in the classification task on 2D remotely sensed imagery when spatial autocorrelation is considered. 

Myint (2003) tried to mitigate this challenge by excluding the samples on the boundaries during 

model training. Wu et al. (2015) addressed the boundary issue by considering the object-based 

spatial contextual features instead of the window-based one. However, further studies have to be 

conducted to adapt these solutions from 2D to 3D content so that this challenge can be well 

addressed. 
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4.6.3 Performance of spatial autocorrelation encoder 

Experiment 2 is to investigate the effectiveness of the designed spatial autocorrelation encoder. 

Once we derived the ordered pairwise differences based on the partitioned block of point with a 

fixed number of points, they were fed separately to a sub neural network for feature encoding. The 

features were grouped with global features and point features from a normal 3D deep neural 

network, PointNet in our case. In this section we demonstrated the measurement statistics across 

the 10 repetitions (see detail in Appendix 4.1) using the measures delineated in Table 4.2. We 

further demonstrate our results in Figure 4.6 comparing with the results without the encoder. 

The OA, AA, and mIOU are 85.5%, 69.7%, and 57.6% separately, providing a global measure for 

the model performance for this dataset. The IoU across the classes ranges from 26.8% (scanning 

artefacts) to 92.8% (man-made terrain). Same as reflected in Experiment 1, the classes with higher 

proportion from the original datasets tend to have a better performance. For example, man-made 

terrain (IoU 92.8%), buildings (IoU 84.0%), natural terrain (IoU 78.7%), and high vegetation (IoU 

66.1%) are the four classes that the model best performed on, while they are also the four largest 

classes with a cumulative proportion of 90% of the original dataset. We attribute their better 

performance to the amount of data compared to the rest of the classes. The model shows a moderate 

performance on cars with 55.6% IoU. Scanning artefacts, hard scape, and low vegetation seems to 

be not well detected by the model with IoU ranging from 26.8% to 28.8%. 

 

 

 

Table 4.2. Statistical results across 10 repetitions. 
 

Statistics Mean Std. Max Min 

OA 85.5% 0.2% 85.1% 85.8% 

AA 68.7% 0.5% 68.1% 69.6% 
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mIoU 57.6% 0.4% 56.9% 58.4% 

Man-made terrain 92.8% 0.3% 92.4% 93.1% 

Natural terrain 78.7% 1.4% 76.4% 80.4% 

High vegetation 66.1% 1.2% 63.9% 68.3% 

Low vegetation 28.8% 2.6% 25.7% 33.2% 

Buildings 84.0% 0.4% 83.0% 84.7% 

Hard scape 27.7% 0.9% 26.1% 28.9% 

Scanning artefacts 26.8% 1.6% 23.9% 29.0% 

Cars 55.6% 1.8% 52.6% 57.8% 

*OA: Overall Accuracy. AA: average accuracy mIoU: mean Intersection over Union. The class 

name (e.g., Cars) indicates the IOU for each class. The values are averaged across the repetitions. 

 

 

 

 

 

Figure 4.6. Comparison between ground truth, and the predicted results w./w.o. spatial 

autocorrelation encoder. 

 

4.6.4 Comparison analysis 

We conducted a comparison analysis between the results from our study with the one in Chen 

(2024). Chen (2024) systematically analyzed how the input feature will impact the model 

performance on geospatial object detection, where the three treatments are spatial information only, 

spatial information and RGB, and one with additional semivariances. While, it has been shown 

that the latter two produced a significant increase in accuracy as compared to the use of spatial 
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information on its own in the analysis. In this comparison analysis, we compare our results with 

results from Chen (2024) for treatments including RGB and additionally combining semivariances. 

We use RGB as a baseline to investigate how context information can inform the model for 

geospatial object detection and a one tailed t-test is performed against the baseline to explore its 

statistical significance (see Table 4.3). 

Table 4.3. Comparison analysis results. 
 

Statistics RGB Semivariance (gain, p-value) Our study (gain, p-value) 

 

OA 

 

81.95% 

 

83.32% (+1.37%, 0.01) 

 

85.55% (+3.60%, < 0.01) 

AA 64.03% 66.04% (+2.01%, 0.01) 68.72% (+4.69%, < 0.01) 

mIOU 51.58% 54.05% (+2.47%, 0.00) 57.58% (+6.00%, < 0.01) 

 

Man-made terrain 

 

90.69% 

 

91.02% (+0.33%, 0.19) 

 

92.78% (+2.09%, < 0.01) 

Natural terrain 72.59% 73.45% (+0.86%, 0.29) 78.67% (+6.08%, < 0.01) 

High vegetation 57.01% 60.15% (+3.14%, 0.01) 66.10% (+9.09%, < 0.01) 

Low vegetation 24.12% 26.41% (+2.29%, < 0.01) 28.81% (+4.69%, < 0.01) 

Buildings 79.85% 81.38% (+1.53%, 0.03) 84.05% (+4.20%, < 0.01) 

Hard scape 21.55% 23.19% (+1.64%, 0.07) 27.73% (+6.18%, < 0.01) 

Scanning artefacts 20.25% 25.10% (+4.85%, < 0.01) 26.83% (+6.58%, < 0.01) 

Cars 46.55% 51.72% (+5.17%, 0.01) 55.64% (+9.09%, < 0.01) 

*OA: Overall Accuracy. AA: average accuracy mIoU: mean Intersection over Union. The class 

name (e.g., Cars) indicates the IOU for each class. The values are averaged across the repetitions. 

RGB and semivariance represent the two treatments from Chen (2024). 

For the global measurements, OA, AA, and mIOU, there is an increasing trend in accuracy as we 

consider spatial context with more sophisticated measures. Without considering the spatial content, 

the three measurements are 81.95%, 64.03%, and 51.58% using RGB data on its own. Explicitly 
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incorporating semivariance as a spatial context feature can result in a 1-3% increase in the global 

measurements. Once we applied a neural network to directly learn a spatial context embedding 

from ordered pairwise differences, accuracy improved 3.60%, 4.69%, and 6.00% for the three 

assessment measures with the increase being significant at 99% confidence interval. 

The comparison analysis significantly underscores the advancement our study brings to the field 

of geospatial object detection using 3D deep learning. By directly learning spatial context 

embeddings from ordered pairwise differences, our approach outperforms previous models trained 

on RGB and/or semivariance in terms of OA, AA, and mIOU. The substantial gains across various 

classes, particularly in categories like high vegetation and cars, highlight the effectiveness of 

incorporating spatial autocorrelation features. The comparison results validate the advancement of 

the proposed encoder over previous approaches in deriving spatial contextual features in geospatial 

object detection tasks. The statistical significance of these results emphasizes the critical role of 

spatial contextual features in enhancing 3D deep learning models, paving the way for future 

advancements in this rapidly evolving field. 

 

4.7 Conclusion 

This study introduces a spatial autocorrelation encoder to integrate spatial contextual features into 

3D deep learning for enhancing object detection within point clouds. By leveraging ordered 

pairwise differences, the encoder significantly improves the accuracy of geospatial object 

detection, especially in complex urban and natural environments. Experimental results underscore 

the effectiveness of this approach, suggesting its potential for a wide range of applications in GIS 

and smart city planning. Moreover, it also supported the effectiveness of ordered pairwise 

differences in geospatial object detection, which can stand alone to have adequate performance on 



111 
 

some of the objects. This finding is innovative and suggests the potential use of pairwise 

differences in future improvements in geospatial object detection. Furthermore, the proposed 

spatial autocorrelation encoder not only streamlines the workflow for geospatial object detection 

explicitly considering spatial autocorrelation but also simplifies the extraction of sophisticated 

spatial autocorrelation features, making it accessible to practitioners without deep expertise in the 

field. 

Our study started initially from the call for integrating GIS, and AI to enhance the development of 

state-of-the-art GIS applications, such as digital twin projects like Tree Folio. By innovating in the 

realm of geospatial object detection, we provide a robust foundation for future research and 

applications in urban planning, environmental monitoring, and beyond. The exploration and 

findings presented serve not only as a remarkable progress witnessed in these domains but also as 

a bridge connecting the theoretical underpinnings of GIS with the practical applications of AI in 

3D geospatial object detection. 
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Appendix 4.1 Inference Performance of 10 Repetitions 
 

 

 
Treat 

 

 
OA 

 

 
AA 

 

 
mIoU 

Man-made 

terrain 

Natural 

terrain 

High 

vegetation 

Low 

vegetation 

 

 
Building 

Hard 

scape 

Scanning 

artefacts 

1 85.7% 68.3% 57.7% 93.0% 79.6% 67.0% 28.4% 84.3% 28.3% 26.4% 

2 85.6% 68.1% 57.3% 92.5% 78.8% 66.2% 28.3% 84.1% 28.9% 25.2% 

3 85.8% 69.6% 58.4% 92.8% 80.4% 66.8% 29.7% 84.4% 28.3% 26.9% 

4 85.6% 68.7% 57.5% 92.8% 78.4% 66.5% 25.8% 84.0% 27.2% 28.6% 

5 85.3% 68.6% 57.4% 92.7% 76.4% 66.3% 25.7% 83.8% 27.6% 29.0% 

6 85.4% 68.8% 56.9% 92.4% 78.0% 68.3% 25.7% 84.7% 26.1% 27.4% 

7 85.4% 69.0% 57.6% 92.8% 77.3% 63.9% 31.2% 84.2% 28.3% 27.0% 

8 85.1% 69.5% 57.1% 92.5% 77.2% 66.0% 29.4% 83.8% 26.5% 25.8% 

9 85.8% 68.3% 58.0% 93.1% 80.4% 64.8% 33.2% 83.0% 28.3% 23.9% 

10 85.7% 68.4% 57.9% 93.1% 80.2% 65.4% 30.8% 84.1% 28.0% 28.1% 

*Treat is for treatment IDs. OA is Overall Accuracy. AA is Average Accuracy. mIoU is for 

mean Intersection over Union. The name of the class represents the IoU for each class. 
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5 SPATIAL INTERPOLATION TO ENHANCE DEEP LEARNING-BASED 3D 

GEOSPATIAL OBJECT DETECTION FOR LARGE-SCALE SCENES 

 

5.1 Introduction 

3D geospatial object detection has been attracting unprecedented attention, driven by an increasing 

availability of 3D data. This is largely attributed to innovations in 3D data acquisition technologies, 

including light detection and ranging (LiDAR), RGB-D sensors, and the supportive systems 

provided by unmanned aerial, ground, and surface vehicles. 3D geospatial object detection has 

seen a significant boost from recent breakthroughs in 3D deep learning techniques, which have 

been used for obstacle detections for self-driving vehicles, and building highly accurate 3D models 

for cutting-edge applications, such as digital twin cities (Batty 2023, Goodchild 2022), and 

Building Information Modeling (BIM) (Goodchild 2021). The demand for prediction accuracy in 

these applications is more focused than ever, given its potential impact on public safety. 

The recent development of 3D deep learning techniques has been largely benefiting the tasks of 

3D geospatial object detection. One milestone of the current 3D deep learning techniques is the 

study of (Qi et al. 2017a), where a deep learning architecture, PointNet, was developed to directly 

take raw point cloud as input. The design of the architecture, especially the symmetric function, 

inspired and shaped the recent development in 3D deep learning, addressing the challenge brought 

by the unstructured and unordered nature of point cloud data. Following this conceptual design, 

scholars have applied successful architectures from different tasks to 3D deep learning, where 

these architectures are but not limited to multi-layer perceptron (Qi et al. 2017a, Qi et al. 2017b), 

convolutional neural networks (Boulch 2020, Wu, Qi and Fuxin 2019), graph neural networks (Shi 

and Rajkumar 2020), and attention-based neural networks (Zhao et al. 2021). 
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In this context, the DeepHyd project (Tang et al. 2022) emerges as a pivotal development of a deep 

learning-based application used for a particular domain, hydrology. DeepHyd is specifically 

designed for the detection of hydraulic structures, such as bridges and their components (i.e., 

pillars, retaining walls, and railings), from LiDAR datasets collected through field work. This 

framework is not just a technological advancement but paves the way for critical downstream 

applications including asset inventory, hydraulic modeling, and safety inspection, showcasing the 

practical impact of deep learning in enhancing infrastructure management and public safety. 

The enhancement in LiDAR data resolution, coupled with the integration of additional sensor data 

(e.g., RGB), leads to a significant increase in the size of LiDAR datasets, which brings big data 

challenges to data processing as well as deep learning. A single LiDAR scan can encompass up to 

billions of points, occupying several gigabytes of storage. This increase in data size further 

presents substantial challenges for 3D geospatial object detection, especially due to the constraints 

of computational resources when processing large-scale 3D geospatial datasets. Therefore, current 

3D deep learning frameworks, Qi et al. (2017a) for example, used a fixed size of block to partition 

a large-scale 3D point cloud and followed by a random sampling to structuralize the inferencing 

datasets. Moreover, some approaches use overlapped blocks to improve model performance. This 

strategy of data partitioning and sampling can make the input data manageable by limited memory 

size. Qi et al. (2017a) discusses the challenges of processing large-scale point clouds and the 

benefits of partitioning them into smaller blocks for memory and computational efficiency. 

Moreover, data partitioning can also help to capture the local context of the point cloud, especially 

beneficial to semantic segmentation. Moreover, neural network architectures that leverage 

Convolutional Neural Network (CNN), as exemplified by Boulch (2020), require structured inputs 

to facilitate structured convolution operations. This necessity ensures that the input data can 
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undergo convolution in a manner that preserves its inherent structure. Although numerous 

frameworks, including point-wise MLPs like PointNet and attention-based architectures such as 

Point Transformer (Zhao et al. 2021), can process point clouds of varying sizes, sampling a fixed 

number of points often emerges as a practical decision under constraints of computational 

resources. The configuration of data partitioning and sampling, including block size and the 

number of points per block, varies depending on the characteristics of the dataset. For instance, 

Chen (2024) highlighted that the effectiveness of local contextual features is closely related to 

scale, which directly ties to the settings of data partitioning and sampling. Effective choices of 

both block size and the number of points to sample can differ based on multiple factors, such as 

the nature of the dataset, and the demands of the specific application. 

However, the strategy of data partitioning and sampling by blocks introduces a significant 

challenge: not all points from a point cloud may be effectively predicted by deep neural networks. 

This limitation stems from the inherent design of current deep learning algorithms, which only 

allow a fixed number of points from a specific spatial extent (i.e., block) to be processed. This 

problem is commonly overlooked in the studies proposing types of neural network architecture. 

Furthermore, this aspect of postprocessing is often not explicitly mentioned, being embedded only 

within the implementation scripts. Therefore, this study aims to delve into the existing solutions 

to this challenge and seek improved methodologies for handling it, particularly in the context of 

large-scale 3D point cloud datasets. 

In this study, we leveraged the datasets and fine-tuned models from the DeepHyd project (Tang et 

al. 2022) as a practical study case. Our main contributions are delineated as follows: 
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1. We explored the current implicit solution to address the issue brought by data partitioning 

in geospatial object detection for large-scale scenes. 

2. We investigated various spatial dependency patterns for different classes using the 

DeepHyd project as a study case. 

3. We implement spatial interpolation methods to refine the post-processing phase of deep 

learning-based 3D geospatial object detection for large-scale 3D point cloud datasets. 

 

5.2 Literature Review 

In practice, those unpredicted points are often labeled based on their nearest neighbor during post- 

processing, a method depicted in Figure 5.1A and exemplified by (Boulch 2020). Additionally, 

many studies (Qi et al. 2017a, Wu et al. 2019, Boulch 2020) have employed overlapping spatial 

extents of blocks as a strategy to mitigate this issue, enabling more points within a specific spatial 

extent to be predicted and thereby enhancing the accuracy for those unpredicted points. However, 

relying solely on the nearest neighbor to label unpredicted points is an overly simplistic approach, 

as a point's label may be influenced not only by its nearest neighbor but also by other surrounding 

points. Consequently, we have introduced the concept of a surrogate model as a way to improve 

the accuracy of labeling these unpredicted points. 
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Figure 5.1. Post-processing—assign labels to unpredicted points. Colored points represent 

predicted points with three different classes (Red, blue, and green). Grey points represent 

unpredicted points. A: nearest neighbor method; B: spatial interpolation method. 

The surrogate model (also known as a metamodel or "model of the model"), as discussed by 

(Kleijnen 1987, Kleijnen 2009) has been used in engineering to approximate the outcomes of 

interest, which are either too costly to access, or cannot be directly accessed. Kleijnen (2009) 

defined that “[m]etamodels are fitted to the I/O data produced by the experiment with the 

simulation model” (p. ). Viewed through this lens, the nearest neighbor method, employed for 

labeling unpredicted points in 3D deep learning, can be considered a naive form of a surrogate 

model—a model designed to approximate the outputs generated by primary deep learning models. 

In this scenario, utilizing the nearest neighbor method as a surrogate during the post-processing 

phase of 3D semantic segmentation represents a basic approach that could be significantly 

enhanced through the adoption of more sophisticated surrogate models. Various methods have 

been used as surrogate modeling techniques in previous studies, such as polynomial response 

surface (Engelund et al. 1993, Venter, Haftka and Starnes 1996), artificial/deep neural networks 

(Smith 1993, Tang, Liu and Durlofsky 2020), multivariate adaptive regression splines (Friedman 

1991), and radial basis functions (Hardy 1971, Buhmann 2000). For addressing spatial problems 

specifically (see Figure 5.1B), spatial interpolation methods such as Kriging (Sacks and Welch 

1989, Simpson et al. 1998, Kleijnen 2009) and Inverse Distance Weighting (IDW), have been 
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employed due to their capability in spatial interpolation—estimating values at unobserved 

locations based on observed values from surrounding neighbors. In this light, our study aims to 

leverage spatial interpolation not as a method for spatial analysis but as a sophisticated surrogate 

model to address the challenges of 3D deep learning-based geospatial object detection for large- 

scale scenes. 

 

5.3 Methodology 

 

5.3.1 Metamodel for labeling unpredicted points 

The outcome of a deep learning-based 3D geospatial object detection model does not only predict 

a final label for each predicted point but also evaluates the uncertainty and probability of these 

predictions, represented as scores and probabilities. Initially, the model outputs a score for each 

class that it is trained to recognize for a given point. A higher score indicates greater confidence 

that the point belongs to that class. These scores are subsequently normalized using a softmax 

function (Goodfellow, Bengio and Courville 2016), converting them into probability values that 

sum to one, which represent the relative confidence of the model across the different classes. For 

instance, in a model trained to differentiate between chickens, cats, and dogs, a clear image of a 

cat might have scores of [50, 80, 30] for chickens, dogs, and cats respectively. These scores could 

translate to probabilities of [<0.1%, >99.9%, <0.1%] after softmax normalization, demonstrating 

a high confidence in the cat classification. In contrast, a blurred cat image might result in scores 

of [5, 8, 3], translating to probabilities of [4.8%, 94.6%, 0.6%], suggesting a high likelihood but 

less certain of being a cat rather than the other two classes. 

Deep learning-based 3D geospatial object detection for large-scene is not only related to predicting 

labels by the deep neural network itself but also relies on metamodel for labeling all other 
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unpredicted points. It becomes evident that an advanced approach to refining these predictions is 

essential. This detailed process that models output scores for each class that reflect confidence 

levels and then normalized to probabilities, lays a crucial foundation for understanding model 

behavior. For example, the difference in model confidence between clear and blurred images of a 

cat highlights the variability in certainty that can significantly influence the accuracy and reliability 

of object detection. 

Based upon this understanding, our study pioneered the approach to bring spatial interpolation 

method, specifically IDW, in addressing the inherent challenges of deep learning-based 3D 

geospatial object detection for large-scale scenes. Moreover, by manually perturbing the parameter 

configurations, specifically searching radius and power values, we are able to investigate how the 

performance of 3D geospatial object detection correlates to the configuration of these parameters, 

reflecting the underlying spatial dependencies. 

 

5.3.2 Deep learning models of DeepHyd 

There are two tasks of DeepHyd software corresponding to two fine-tuned models (see Figure 5.2). 

One task is to detect bridge from an outdoor scene represented by a 3D point cloud. The other 

task is to detect different bridge components from the bridge. The project leverages ConvPoint 

(Boulch 2020) as the architectures and trained models on 41 labeled point cloud datasets for 

bridges. The models are fine-tuned by detailed hyperparameter tuning. 
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Figure 5.2. Conceptual illustration of the DeepHyd framework and corresponding models (Tang 

et al. 2022). 

ConvPoint (see Figure 5.3) is a pioneering approach in the field of 3D point cloud processing, 

characterized by its innovative continuous convolutional neural network design specifically 

tailored for classification and segmentation tasks. Its introduction marked a significant 

advancement in handling point clouds, which are sets of data points in space representing the 

external surface of objects or three-dimensional shapes. One of the standout achievements of 

ConvPoint is its top-ranking performance on the Semantic3D dataset since 2020, where it has 

consistently outperformed all other cutting-edge neural network architectures entered in the 

competition 12 . This success underscores the effectiveness of ConvPoint in directly applying 

 

12 http://www.semantic3d.net/view_results.php?chl=1 

http://www.semantic3d.net/view_results.php?chl=1
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convolutions to irregular and unordered point data, especially for large-scale outdoor scenes. By 

dynamically selecting relevant points within a certain radius for convolution and efficiently 

managing varying densities and distributions of point clouds, ConvPoint has proven to be a 

scalable and computationally efficient solution for real-world applications in 3D object detection, 

classification, and beyond. 

 

 

 

Figure 5.3. Architecture of ConvPoint for 3D object detection (adapted from Boulch, 2020). 

 

Semantic3D, introduced by Hackel et al. (2017), stands as a substantial and diverse dataset 

specifically tailored for outdoor scene analysis. The Semantic3D dataset offers a detailed and 

complex dataset with 15 scenes ranging from urban to rural. It covers a wide range of eight 

semantic categories, man-made and natural terrains, high and low vegetation, structures like 

buildings and hardscapes (e.g., road light, and fencing), scanning artefacts (e.g., dynamic noise 

during scanning), and vehicles. The final models of DeepHyd projects leverage a pre-trained model 

trained on the Semantic3D dataset to boost the performance on detecting bridges and their 

component structures. 
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5.4 Data 

The data used in this study was collected from selected bridges around Charlotte, NC. We collected 

in total 10 scans for 7 bridges, where we collect 1-2 scans for each bridge depending on the 

fieldwork environment. Moreover, we labeled them based on the settings of DeepHyd—one 

dataset is prepared with labeling bridge, vegetation and ground, and the other one is annotated for 

bridge components only, such as deck, wall, pillar, and railing (see Figure 5.4 for a demonstration). 

 

 

Figure 5.4. Illustration of the collected LiDAR data and corresponding labels. 

 

5.5 Experiment 

In this study, we used DeepHyd project as a study case to investigate the effectiveness of using 

spatial interpolation as the metamodeling for the postprocessing of 3D deep learning-based 

geospatial object detection. We employed IDW to explore different characteristics of spatial 

autocorrelations for diverse classes and its impact on the final results. The neighbor searching 
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method can be fixed radius or kNN but we chose to use the latter one. Due to the uneven 

distribution of 3D point cloud data, particularly in LiDAR-generated point clouds where the 

density of points increases closer to the scanning center, using fixed-radius settings can lead to 

empty values for certain points, resulting in labeling issues. However, kNN will not have such an 

issue and has been broadly used in the 3D deep learning problems. The number of nearest 

neighbors is set with a minimum value of 1 and the maximum value of 32. The maximum number 

follows a generic setting (e.g., 16-32 neighbors) when local context is considered for a point during 

the deep learning process. The range of power is set to from 0.1 to 3.0 with 0.1 as the interval. We 

assume the maximum value of 3.0 is big enough because of the nature of IDW that the weights of 

near neighbors as opposed to distant ones increase exponentially with the increase in power. 

Moreover, our results also support this idea (see response surfaces of performance to kNN and 

power in Section 5.4). IDW is separately applied to both Model 1 and Model 2 of DeepHyd, where 

one is to detect bridges on a relative larger scale and the other is to detect bridge components on a 

relative smaller scale. 

The performance measurements used in this study are overall accuracy (OA), mean Intersection 

of Union (mean IoU), and IoU for each class. IoU and OA are two measurements commonly used 

for object detection (Rezatofighi et al. 2019, Boulch 2020). IoU has a similar principle as Jaccard 

index, which is used for similarity measurements in the geography domain (Shelton and Poorthuis 

2019). The equations of the three metrics are shown below. 

 

𝐼𝑜𝑈 = 
 𝑇𝑃𝑖 

 

𝑇𝑃𝑖+𝐹𝑁𝑖+𝐹𝑃𝑖 
(5.1) 

𝑚𝐼𝑜𝑈 = 𝑚𝑒𝑎𝑛(𝐼𝑜𝑈𝑖) (5.2) 
 

𝑂𝐴 = 
 𝑇𝑃𝑎𝑙𝑙  

𝑇𝑃𝑎𝑙𝑙+𝐹𝑃𝑎𝑙𝑙 
(5.3) 
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where TP, FP, and FN are True Positive, False Positive, and False Negative; subscript all means 

across all classes and i refers to each individual class. 

 

 

5.6 Results and Discussion 

 

5.6.1 Prediction results on the collected data in this study 

In this section, we used the direct predictions results on the dataset collected for this study as a 

baseline. The direct prediction results are retrieved by directly using the command line-based 

DeepHyd software13, where the nearest neighbor is used to label those points that are not predicted 

by the deep learning-based model in the inferencing step. At first, we demonstrated the number of 

points for each scan and number of predicted points followed by a predicted rate in Table 1 with 

respect to Model 1 and Model 2 The predicted rates for various sites depend on the characteristics 

of the sites (e.g., size of the bridge, and distance of the bridge to the scanning center), the 

configuration of preprocessing (e.g., sampling), the configuration of the postprocessing (e.g., step 

size). For Model 1, the predicted rate ranges from 16.16% - 59.58% with an average value of 

31.91%. It ranges from 15.70% to 96.71% with an averaged value of 38.46% when it comes to 

Model 2. We observed the diverse predicted rates with respect to different scans and an averaged 

predicted rate is less than 40% for both Model 1 and Model 2. In other words, over 60% percent 

of points are labeled by its nearest neighbor that predicted by the deep neural network. Therefore, 

it is important to carefully select a method to take care of this post processing step in practice. 

Table 5.1. Statistics of number of points and predicted points for each scan. 
 

 Model 1 Model 2 

Scan name # Points # Predicted 

Predicted 

rate # Points # Predicted 

Predicted 

rate 

Scan 1 719,106 350,558 48.75% 243,688 160,499 65.86% 

Scan 2 1,085,824 242,730 22.35% 766,940 120,383 15.70% 
 

13 https://rosap.ntl.bts.gov/view/dot/62502 

https://rosap.ntl.bts.gov/view/dot/62502


127 
 

 

Scan 3 8,009,476 2,539,892 31.71% 3,831,684 1,128,015 29.44% 

Scan 4 3,382,589 1,381,216 40.83% 1,060,047 431,250 40.68% 

Scan 5 4,239,833 1,289,660 30.42% 1,919,714 451,409 23.51% 

Scan 6 1,313,687 782,698 59.58% 272,321 263,374 96.71% 

Scan 7 11,061,405 2,790,427 25.23% 1,895,694 638,301 33.67% 

Scan 8 6,253,579 1,044,304 16.70% 3,465,144 519,195 14.98% 

Scan 9 4,435,961 1,214,976 27.39% 1,222,273 534,298 43.71% 

Scan 10 5,705,619 921,896 16.16% 3,202,886 650,979 20.32% 

Average 4,620,708 1,255,836 31.91% 1,788,039 489,770 38.46% 

 

 

 

We demonstrated the performance measurements in Table 5.2 and Table 5.3 for Model 1 and 

Model 2 respectively. This performance served as a baseline for comparison purposes. The 

performance of Model 1 on the collected dataset reaches 86.71% and 73.08% for OA and IoU, 

which is relatively good for outdoor 3D object detection datasets referring to those model 

performance in large-scale outdoor classification benchmarks (e.g., Semantic3D). The IoU for 

bridge is 94.11%, which means the bridge is well detected. These results support the effectiveness 

of the DeepHyd model to detect bridges from a 3D scene. It appears that vegetation and ground 

have a relatively lower performance. Tang (2022) also found that vegetation and ground have 

lower IoU as opposed to the bridge. This can be attributed to the fact that lower vegetation can be 

potentially misclassified as ground, where DeepHyd software was not designed to identify natural 

ground or man-made ground (e.g., pavement). 

Table 5.2. Performance of Model 1 on the datasets. 
 

 Measurement  Values  

OA 86.71% 

mIoU 73.08% 

Bridge IoU 94.11% 

Vegetation IoU 51.49% 

 Ground IoU  73.65%  

*OA: Overall Accuracy. mIoU: mean Intersection over Union. 
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The OA and mIoU for Model 2 are 70.29% and 40.99%, which is relatively lower than that of 

Model 1. This is due to the limitation of the accessible classification data for Model 2. This can be 

attributed to many reasons, ranging from the types of bridge, and setting for scanning in the 

fieldwork (e.g., location and distance to bridge). For example, some bridges may not have specific 

components, such as pillars, and retaining walls. On the other hand, the setting for scanning may 

also impact it. For example, under-bridge scans may not capture the railing of a bridge. All the 

above reasons can lead to an imbalance of the dataset, further resulting in a relatively lower 

performance of Model 2. Among different bridge components, the deck shows the highest IoU as 

78.42% and pillar is ranked in the second with an IoU of 51.95%. Deck and pillar are the two most 

important classes to be detected for DeepHyd project due to their essential roles in the safety 

evaluation of the hydraulic structure (Tang, 2022). Improving detection performance in hydraulic 

modeling is indeed critical for various applications such as hydraulic structure management, and 

infrastructure planning. Enhanced detection capabilities can lead to more accurate predictions and 

better-informed decision-making. 

Table 5.3. Performance of Model 2 on the datasets. 
 

Measurement Values 

OA 70.29% 

mIoU 40.99% 

Deck IoU 78.42% 

Wall IoU 21.29% 

Pillar IoU 51.95% 

Railing IoU 12.28% 

*OA: Overall Accuracy. mIoU: mean Intersection over Union. 
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5.6.2 Spatial interpolation results for Model 1 

The global performance for Model 1 with IDW for post-processing are demonstrated in Figure 5.5. 

Since only using the nearest neighbor for post-processing is a special case when we apply IDW 

with a searching radius as 1 nearest neighbor (i.e., k=1 for kNN). Therefore, the baseline 

performance is also included in the figure, where it is located on the far-left end of the x axis. The 

OA and IoU range separately from 86.72% to 86.88%, and from 73.04% to 73.22%. The variations 

are not obvious (i.e., 0.16% and 0.18% for OA and IoU) but we observe an increasing trend when 

the number of nearest neighbors increases as suggested by the response surface of Figure 5.5. The 

increasing pattern along the x axis indicates that the overall performance benefits with more nearest 

neighbors. Moreover, a lower power results in a higher performance, suggesting the accuracy of 

points rely more on the local context rather than on only the nearest ones. 

 

Figure 5.5. Response surface of Overall Accuracy (A) and Intersection over Union (B) for Model 

1 with respect to number of nearest neighbor and power of Inverse Distance Weighting. 

 

When it comes to the class-wise performance, we can see diverse patterns for the response surfaces. 

Generally, there is an increase in IoU of different classes when we apply spatial interpolation, 

where the increases are separately 0.10%, 0.25%, and 0.45% for bridge, vegetation, and ground, 

respectively. The IoU of bridge appears to benefit more with a smaller number of nearest neighbors 
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and higher power values (see Figure 5.6A). The pattern of response surface points out that the 

identification of bridge data depends more on the relatively local neighbors. We can tell that when 

there is an increase in the number of nearest neighbors, a higher power is more preferred, indicating 

more weights are given to the near neighbors than distant ones. There is a fluctuation in the trend 

of the IoU for vegetation along with the increase in the number of nearest neighbor (see Figure 

5.6B), where the maximum values are located on the left end of the x axis. Moreover, the IoU is 

more sensitive to the number of neighbors when the number is around 1 and 2. The Intersection 

over Union (IoU) metric for ground classification in point cloud data, as indicated by a range from 

73.65% to 74.1%, suggests a noteworthy level of accuracy in distinguishing ground points from 

non-ground points. This range is similar to the pattern observed in the mean Intersection over 

Union (mIoU) across different classes, implying that the accuracy of point classification is 

significantly influenced by the local context of points, rather than being solely dependent on the 

nearest neighbors. This observation underscores the importance of considering a broader 

neighborhood and the spatial relationships among points to capture the underlying structure and 

features of the data effectively. 

 

Figure 5.6. Response surface of Intersection over Union on bridge (A), vegetation (B), and 

ground (C) for Model 1 with respect to number of nearest neighbor and power of Inverse 

Distance Weighting. 
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5.6.3 Spatial interpolation results for model 2 

The DeepHyd Model 2, specifically designed for detecting bridge components such as decks and 

pillars from bridge-only point clouds, showcases its effectiveness through its performance metrics. 

The ranges of OA and mIoU for Model 2 on the dataset collected for this study are separately from 

70.3% to 70.9%, and from 41.0% to 42.2%. Compared to Model 1, there is a slightly larger 

increase when we apply IDW for the post-processing step. 

This performance boost aligns with observations from Model 1, suggesting that both models from 

DeepHyd benefit from considering a larger neighborhood of points. The trend, as depicted in 

Figure 5.7, illustrates a positive correlation between the model accuracy and the number of 

neighbors taken into account, indicating that a broader spatial context contributes to the refinement 

of classification outcomes. Such findings highlight the importance of spatial relationships and the 

local environment of points in achieving higher accuracy in point cloud segmentation and 

classification tasks, underscoring the potential of IDW or similar spatial-aware metamodels in 

elevating the performance of deep learning models like DeepHyd. 

 

 

Figure 5.7. Response surface of Overall Accuracy (A) and Intersection over Union (B) for Model 

2 with respect to number of nearest neighbor and power of Inverse Distance Weighting. 
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The improvements observed across various classes in Model 2 provide a compelling insight into 

the impact of spatial context on point cloud classification. Specifically, the model shows 

incremental improvements of 0.2% for railing, 0.35% for deck, 1% for wall, and a notable 3.5% 

improvement for pillar. These enhancements underscore the hypothesis that a broader spatial 

context significantly contributes to refining classification outcomes for complex structures within 

bridge-only point clouds. 

The optimal performance across different classes in Model 2 (see Figure 5.8) begins to emerge at 

specific thresholds of nearest neighbors—12 for pillars, 16 for decks, and 29 for retaining walls. 

Remarkably, beyond these thresholds, the classification accuracy remains stable, demonstrating 

that additional nearest neighbors do not compromise performance. This finding suggests that while 

each class requires a minimum spatial context to achieve optimal classification, further expansion 

of this context does not detract from the accuracy. Such a pattern emphasizes the significance of 

identifying the minimum number of nearest neighbors necessary to reach peak performance for 

each class. This strategy not only ensures high precision in classification but also optimizes 

computational resources by avoiding the inclusion of superfluous neighbors that do not contribute 

to further accuracy improvements. This approach underlines a nuanced understanding of spatial 

dependencies within each class, highlighting the delicate balance between the depth of spatial 

context considered and the computational efficiency in point cloud processing. 

Railing presents an interesting case where the relationship between classification accuracy and the 

number of nearest neighbors deviates from the trend observed in other classes. Its performance 

shows a negative correlation with an increasing number of neighbors, akin to the behavior noted 

for vegetation in Model 1. Furthermore, the analysis reveals that railing classifications prefer a 

higher power value when considering more nearest neighbors, suggesting that railings, similar to 
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vegetation, rely more heavily on immediate spatial neighbors rather than distant ones. This 

behavior indicates a distinct pattern of spatial autocorrelation for railings, different from other 

structural components. 

 

 

 

 

 

Figure 5.8. Response surface of Intersection over Union on deck (A), retaining wall (B), pillar (C), 

and railing (D) for Model 2 with respect to number of nearest neighbor and power of Inverse 

Distance Weighting. 

These observations highlight the varying characteristics of spatial autocorrelations within each 

class, illustrating the complex interplay between spatial context and classification performance in 
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point cloud analysis. Understanding these dynamics is essential for the development of more 

efficient and accurate point cloud processing algorithms, enabling tailored approaches that 

consider the unique spatial dependencies of each class to optimize both computational resources 

and classification accuracy. 

In this study, the application of the Inverse Distance Weighting (IDW) method was subject to a 

uniform parameter setting across all classes, meaning it did not support the customization of the 

number of points for each class individually. Despite this limitation, the study's findings lay a 

foundational groundwork for future advancements. By identifying the optimal number of nearest 

neighbors for peak performance in different classes and highlighting the importance of spatial 

context, this research paves the road for developing more sophisticated methods. Future 

approaches could allow for class-specific customization in the number of points considered, 

potentially enhancing classification accuracy and computational efficiency. This evolution would 

mark a significant step forward, offering a more tailored and precise approach to point cloud 

classification that adapts to the unique characteristics and requirements of each class. 

 

5.7 Conclusion 

The convergence of advancements in 3D data acquisition technologies and breakthroughs in 3D 

deep learning has revolutionized the field of 3D geospatial object detection, marking a significant 

milestone in the digital representation of the physical world. These innovations have not only 

facilitated the expansion of high-quality (e.g., resolution and additional channels such as RGB) 3D 

data collections but also underscored the critical need for accuracy in applications impacting public 

safety and infrastructure management. Within this evolving stage, the DeepHyd project emerges 

as a notable effort, using deep learning to effectively detect hydraulic structures in large-scale 
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LiDAR datasets. This study, building upon the foundation laid by the DeepHyd project, sought to 

address the inherent challenges posed by large-scale 3D point clouds, particularly focusing on the 

implications of data partitioning and sampling for object detection. 

By analyzing datasets optimized for the DeepHyd framework, this study made several important 

contributions. The study first explicitly investigated the data partitioning method (e.g., using 

blocks with a fixed size) used to address the challenge brought by the unmanageable size of 3D 

large-scale point cloud. Furthermore, it delved into the characteristics of spatial dependency 

patterns for different classes, providing an insight of spatial correlations in point cloud data. 

Specifically, the study reveals the distinct spatial dependencies of various bridge components, with 

optimal performance thresholds identified for pillars, decks, and retaining walls, beyond which the 

additional nearest neighbors does not further improve accuracy. This suggests that there is a 

maximum spatial extent, while further expansion does not necessarily enhance performance. Such 

findings emphasize the need for a balanced approach to computational resource allocation and the 

potential for more sophisticated methods that allow for class-specific customization. The study 

also highlights the unique spatial autocorrelation patterns within different classes, such as the 

negative correlation between classification accuracy and the number of nearest neighbors observed 

in railings, indicating it relies more on nearest neighbors. These observations underscore the 

complex relations between spatial context and classification performance, pointing to the necessity 

for approaches that consider unique spatial dependencies for each class. 
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6 CONCLUSION 

 

6.1 Summary 

This dissertation represents a comprehensive exploration into the realm of GeoAI, specifically 

focusing on the enhancement of 3D deep learning models' understanding of 3D geospatial data 

through the lens of spatial principles. The research journey commenced with a foundational 

understanding of geospatial technologies, including the significance of 3D data acquisition 

advancements and the evolving role of artificial intelligence in geospatial analytics. At its core, 

the dissertation seeks to answer pivotal research questions centered around the utility of spatial 

autocorrelation features in 3D deep learning, the development of a neural network architecture 

encoding spatial dependencies, and the improvement of post-processing in the task of 3D object 

detection. 

Chapter 3 shed light on the potentials of spatial autocorrelation features, particularly semivariance, 

in refining 3D deep learning models for geospatial object detection. The incorporation of these 

features alongside spatial information and color information led to marked improvements in 

accuracy across varied environmental settings, underscoring the importance of spatial context in 

enhancing model performance. 

Chapter 4 further advanced the discourse by introducing a spatial autocorrelation encoder designed 

to seamlessly integrate spatial contextual features into 3D deep learning models. This innovation 

not only boosts accuracy in geospatial object detection but also streamlined the workflow, making 

sophisticated spatial autocorrelation features more accessible to practitioners without expert 

knowledge in geospatial analytics. 
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Chapter 5 focused on a practical study case of 3D geospatial object detection, DeepHyd project 

which aimed at detecting hydraulic structures within large-scale LiDAR datasets. The chapter 

delved into the challenges of data partitioning and sampling in large-scale 3D point clouds, 

offering insights into spatial dependency patterns and the implications for object detection 

accuracy. 

Collectively, this dissertation underscores the pivotal role of spatial autocorrelation features in 

enhancing the interpretive capabilities of 3D deep learning models. This work contributes to the 

field of GeoAI by bridging the gap between GIScience and AI, with a focus on offering innovative 

methodologies for 3D geospatial object detection. It advances theoretical understanding but also 

has empirical implications in urban planning, environmental monitoring, and beyond, marking a 

significant step forward in the integration of spatial principles into AI research for enhanced 

geospatial analytics. This work lays a solid foundation for future research at the intersection of 

GIScience and AI, driving forward the quest for more intelligent, spatially aware technology 

solutions. 

 

6.2 Future Work 

This dissertation has made efforts in the integration of spatial principles, specifically spatial 

autocorrelation, with 3D deep learning for enhancing geospatial object detection. The exploration 

of spatial autocorrelation in 3D deep learning paves roads for future research. This section outlines 

potential directions for extending this line of study, addressing challenges, and leveraging 

emerging technologies and methodologies in GIS and AI. 

Expanding the Scope of Spatial Features 
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While this research has focused on the utility of spatial autocorrelation, particularly semivariance 

of optical data, future studies could explore other spatial and non-spatial features and their 

integration into deep learning models for a particular study case. For example, spatial context of 

elevation can be a strong indicator to detect surface microtopography in case study of carbon 

dynamics. Investigating other aspects of spatial relationships, such as spatial heterogeneity and the 

scale effect, could lead to further improvements in model performance for geospatial object 

detection. Additionally, the development of new spatially aware neural network architectures that 

inherently understand the spatial autocorrelation, and geometry of spatial data could offer novel 

ways to process and analyze 3D geospatial information. 

Leveraging Advanced Deep Learning Architectures 

 

The advancements in deep learning architectures, such as Transformer models and GNNs, provide 

solid ground for future research. These architectures, known for their ability to capture complex 

relationships in data, could be adapted and optimized for handling 3D geospatial datasets as well 

as spatial autocorrelation and spatial heterogeneity nature of them. For example, integrating spatial 

autocorrelation features within Transformer models designed for 3D data could potentially offer 

more nuanced understandings of spatial dependencies and enhance object detection capabilities in 

complex urban and natural environments. 

Addressing Challenges Brought by Data Partition and Sampling 

 

As the demand for processing large-scale 3D geospatial datasets, future research can explore 

approaches to better handle the aforementioned issue brought by the data partitioning and sampling. 

Exploring efficient ways to handle large-scale 3D point clouds could make deep learning 

applications more feasible for real-world GIScience problems. Moreover, future studies could 
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explore a broader range of spatial interpolation methods beyond the current implementation. 

Advanced techniques such as kriging or machine learning-based interpolation could offer better 

ways to incorporate spatial dependencies, potentially leading to further improvements in detection 

accuracy across diverse geospatial datasets. 

Ethical Considerations and Societal Impact 

 

Future studies could extend the methodologies developed in this dissertation to practical 

applications such as urban planning, environmental monitoring, and autonomous navigation. Each 

of these domains presents unique challenges and opportunities for leveraging spatial principles 

and deep learning to derive insights from 3D geospatial data. As the capabilities of AI in 

understanding and interpreting 3D geospatial data advance, it is crucial to consider the ethical 

implications and societal impacts of these technologies. Future research should not only focus on 

technical advancements but also address concerns related to privacy, data security, and the 

potential bias in AI algorithms. Developing frameworks and guidelines for the responsible use of 

3D deep learning in GIScience could ensure that these technologies are safe and trustworthy to the 

public. 

This dissertation represents a step forward in the integration of spatial principles into 3D deep 

learning for geospatial object detection. As the evolution of GeoAI, these future studies will play 

an essential role in shaping the next generation of geospatial technologies. 
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