
SPATIALLY CONTEXT-AWARE 3D DEEP LEARNING FOR

GEOSPATIAL OBJECT DETECTION

by

Tianyang Chen

A dissertation submitted to the faculty of

The University of North Carolina at Charlotte

in partial fulfillment of the requirements for

the degree of Doctor of Philosophy in

Geography

Charlotte

2024

Approved by:

Dr. Wenwu Tang

Dr. Craig Allan

Dr. Gang Chen

Dr. Shen-En Chen

ii

©2024

Tianyang Chen

ALL RIGHTS RESERVED

iii

ABSTRACT

TIANYANG CHEN. Spatially Context-Aware 3D Deep Learning for Geospatial Object

Detection.

(Under the direction of DR. WENWU TANG)

This dissertation explores the intersection of Geographic Information Science (GIScience) and

Artificial Intelligence (AI), specifically focusing on the enhancement of 3D deep learning models

by spatial principles for understanding 3D geospatial data. With the rapid advancement in

geospatial technologies and the proliferation of 3D data acquisition methods, there is a growing

necessity to improve the capability of AI models to interpret complex 3D geospatial data

effectively. This work seeks to leverage spatial principles, particularly spatial autocorrelation, to

address the challenges pertaining to 3D geospatial object detection.

The research is structured around three pivotal questions: the utility of spatial autocorrelation

features for understanding 3D geospatial data, the approach to derive content-adaptive spatial

autocorrelation features, and the enhancement of post-processing in the task of 3D geospatial

object detection by spatial interpolation. Through a series of experiments and model developments,

this dissertation demonstrates that incorporating spatial autocorrelation features, such as

semivariance, significantly enhances the performance of 3D deep learning models in geospatial

object detection. A novel spatial autocorrelation encoder is introduced, integrating spatial

contextual features into the 3D deep learning workflow and thereby improving accuracy in

detecting objects within complex urban and natural environments. Further, the dissertation delves

into the challenges brought by data partitioning and sampling in large-scale 3D point clouds, as

evidenced in the DeepHyd project focusing on the detection of hydraulic structures (i.e., bridge

and its components). The findings highlight the critical role of spatial dependency patterns in

iv

optimizing object detection accuracy and pave the way for future improvement of the 3D deep

learning frameworks.

v

ACKNOWLEDGMENTS

I am profoundly grateful to my advisor and committee chair, Dr. Wenwu Tang, for his exceptional

guidance and mentorship throughout my PhD journey. Dr. Tang has been much more than a

scholar; he has truly shown the role of a mentor in every aspect, profoundly influencing my

understanding not only of my field but also enriching my personal development in mind, humanity,

and ethics. His support during the challenging time of the pandemic was important to me in terms

of spiritual and physical, for which I am eternally thankful.

I extend my sincere thanks to my committee members, Drs. Craig Allan, Gang Chen, and Shen-

En Chen, for their insightful comments and suggestions which have significantly contributed to

the refinement of this dissertation. Their expertise and thoughtful guidance have been instrumental

in shaping both the academic rigor and the direction of my research. Each of them has provided

unique perspectives that have challenged me to think more deeply and critically, enhancing not

only my work but also my growth as a scholar. Their commitment to excellence and their

willingness to share their profound knowledge have been invaluable to my academic journey.

Additionally, I want to thank Dr. Wei-Ning Xiang, whose unique perspective and philosophical

approach to geography, encapsulated by his mantra to "sharpen your mind," have dramatically

broadened my understanding of the discipline and deeply impacted my intellectual growth. He has

been training me to be a thinker and a practical researcher, challenging me to exceed my

boundaries and strive for new levels of scholarly inquiry.

Special thanks go to Navanit Sri Shanmugam for his assistance in collecting LiDAR data for my

dissertation, and to my colleagues at the Center for Applied GIScience, Zachery Slocum and Tarini

Shukla, whose friendship and insights were invaluable.

vi

My deep appreciation extends to my mother Suying Zhang and my father Yingsheng Chen, whose

endless encouragement and support have been pivotal throughout my journey. They have been the

cornerstone of my life. Their unchanged belief in my abilities and their constant love have

supported me against the challenges of this rigorous academic endeavor. I hold dear the memories

of my late grandmothers, Aizhi Ma and Fuqin Feng, who passed away during my PhD studies.

They always hoped to witness any of my achievements in my life, and their belief in my potential

continues to inspire me.

Last, I must express my appreciation to my girlfriend, Siyuan Zhao. Meeting you was the luckiest

thing during my PhD journey. Your presence during my hardest time has not only brought light

and color to my cloudy world but has also made me appreciate you more, for the way you are and

the way you make me feel. I could not have completed this dissertation without your love and

support. To our future children who may one day read this: know that your mother has been my

inspiration and my strength. Her love makes me a better person every day, and it is with this love

that I hold dear for her and for all of you.

vii

TABLE OF CONTENTS

LIST OF TABLES ... X

LIST OF FIGURES ... XI

LIST OF ABBREVIATIONS .. XIV

1 INTRODUCTION .. 1

2 LITERATURE REVIEW ... 8

2.1 Background of Neural Networks... 8

2.2 Basic Components of Neural Networks. ... 10

2.3 Basic Mechanism of Neural Network ... 18

2.4 Basic Problem Related to Neural Network ... 23

2.5 Artificial Neural Networks and Deep Neural Networks ... 24

2.6 Convolutional Neural Network ... 25

Reference ... 31

3 EXPLICIT INCORPORATION OF SPATIAL AUTOCORRELATION IN 3D DEEP

LEARNING FOR GEOSPATIAL OBJECT DETECTION ... 32

3.1 Introduction ... 32

3.2 Related Work .. 35

3.3 Methodology ... 39

3.4 Data ... 46

3.5 Experimental Design ... 50

3.6 Results and Discussion .. 54

3.7 Conclusion ... 68

Reference ... 70

Appendix 3.1 Modified Implementation of PointNet ... 73

viii

Appendix 3.2 Summary of the Statistics for Accuracy Measurements in Experiment 1 74

Appendix 3.3 One-tailed t-test Results for Different kNN ... 82

Appendix 3.4 Results of Perturbing k Nearest Neighbors Using Dowd Estimator 84

4 SPATIAL AUTOCORRELATION ENCODER FOR 3D DEEP LEARNING 88

4.1 Introduction ... 88

4.2 Literature Review .. 91

4.3 Methodology ... 93

4.4 Dataset ... 98

4.5 Experiment .. 101

4.6 Results and Discussion .. 103

4.7 Conclusion ... 110

Reference ... 112

Appendix 4.1 Inference Performance of 10 Repetitions ... 114

5 SPATIAL INTERPOLATION TO ENHANCE DEEP LEARNING-BASED 3D

GEOSPATIAL OBJECT DETECTION FOR LARGE-SCALE SCENES 115

5.1 Introduction ... 115

5.2 Literature Review .. 118

5.3 Methodology ... 120

5.4 Data ... 124

5.5 Experiment .. 124

5.6 Results and Discussion .. 126

5.7 Conclusion ... 134

Reference ... 136

6 CONCLUSION .. 138

ix

6.1 Summary .. 138

6.2 Future Work ... 139

REFERENCE ... 142

x

LIST OF TABLES

Table 3.1. Configuration of Experiment 1. ... 52

Table 3.2. Configuration of Experiment 2. ... 54

Table 3.3. Computing time for each type of treatment categorized by features included (Std:

standard deviation). ... 55

Table 3.4. Performance comparison across treatments (Semantic3D Dataset). 56

Table 3.5. Performance comparison across treatments (S3DIS Dataset). 58

Table 3.6. Performance metrics across different k values (Semantic3D dataset). 61

Table 3.7. Performance metrics across different k values (S3DIS dataset). 62

Table 4.1. Performance results for Experiment 1.. 104

Table 4.2. Statistical results across 10 repetitions. .. 107

Table 4.3. Comparison analysis results. .. 109

Table 5.1. Statistics of number of points and predicted points for each scan. 126

Table 5.2. Performance of Model 1 on the datasets .. 127

Table 5.3. Performance of Model 2 on the datasets .. 128

xi

LIST OF FIGURES

Figure 2.1. Illustration of a neuron consisting of a soma, an axon, and several synapses. 9

Figure 2.2. Timeline of development of artificial/deep neural networks. 9

Figure 2.3. Illustration of the architecture of a feed-forward neural network (a.k.a multilayer

perceptron) with two hidden layers. .. 11

Figure 2.4. Demonstration of operations within a neuron following an activation function.

The input of a neuron can be input of the neural network or output of a previous hidden layer. 13

Figure 2.5. Demonstration of Sigmoid/logistic activation function. ... 15

Figure 2.6. Demonstration of Hyperbolic tangent activation function. ... 16

Figure 2.7. Demonstration of ReLU activation function. .. 17

Figure 2.8. Illustration of the architecture of a convolutional neural network. An input image

with three channels is fed into the neural network. The output layer contains the probabilities

of each class the input can fall into. .. 26

Figure 2.9. Demonstration of convolutional operation with a 3*3 kernel along with an

activation function on a particular cell. A feature map can be derived by conducting the

convolutional operation on each cell ... 27

Figure 2.10. Demonstration of stride and padding in the convolutional operation. 27

Figure 2.11. Demonstration of pooling operation in a convolutional neural network. A 3*3

pooling kernel is used for demonstration purposes... 29

Figure 2.12. Demonstration of fully connected layer and output layer. Feature maps are from

feature extraction layers (e.g., convolutional, and pooling layers) ... 30

Figure 3.1. Generic framework for 3D deep learning-based object detection. The

demonstrated point cloud is from the Semantic3D benchmark dataset by Hackel et al. (2017). 36

Figure 3.2. 3D deep learning framework with explicit incorporation of spatial autocorrelation

for geospatial object detection. A typical 3D deep learning architecture is used for

demonstration purpose. The demo point cloud is from the Semantic3D benchmark dataset. 40

Figure 3.3. Spatial autocorrelation feature extraction – a demo of deriving semivariance for

one point .. 42

Figure 3.4. Conceptual illustration of neighborhood searching methods. Red dots are points of

interest, where the searching is conducted. Yellow dots are the neighbors within radius r or k

nearest neighbors with respect to the selected point. Gray dots are points outside of the

neighborhood ranges. A: searching with a defined radius r in Euclidean space; B: searching

with k-nearest neighbor (e.g., k = 3 as shown) .. 43

xii

Figure 3.5. Demonstration of binning methods. A: equal interval; B: quantile. There can be

scenarios where there are no pairwise difference values falling into some lag bins classified

by equal interval. ... 44

Figure 3.6. Demonstration of S3DIS datasets. The ceiling is hidden in this figure so that the

objects within each room can be visualized. ... 48

Figure 3.7. Demonstration of averaged semivariance value derived for each class in S3DIS

dataset. The semivariances are derived by Matheron estimator with 16 nearest neighbors for

demonstration purpose .. 48

Figure 3.8. Demonstration of the Semantic3D dataset. Semantic3D dataset has 15 labeled

scenes ranging from rural to urban areas with 8 classes. .. 49

Figure 3.9. Demonstration of averaged semivariance value derived for each class in

Semantic3D dataset. The semivariances are derived by Matheron estimator with 16 nearest

neighbors for demonstration purpose .. 50

Figure 3.10. Box chart of performance measures for the Semantic3D dataset with

Matheron semivariance. A: mean Intersection over Union; B: Overall Accuracy. Centerline

is for median. ... 61

Figure 3.11. Box plot of performance measures for S3DIS dataset with Matheron

semivariance. A: mean Intersection over Union; B: Overall Accuracy. Centerline is

for median. .. 63

Figure 3.12. Relative differences in Intersection over Union (colored lines) along the increase

of k nearest neighbors (k =128 as baseline) for Semantic3D dataset. Number of points are

shown in columns. The values are averaged across the repetitions. ... 66

Figure 3.13. Relative differences in Intersection over Union (colored lines) along the increase

of k nearest neighbors (k = 8 as baseline) for S3DIS dataset. Number of points are shown in

columns. The values are averaged across the repetitions. ... 67

Figure 4.1. Proposed spatial autocorrelation encoder for spatial autocorrelation features

extraction. PointNet is used as the basic structure for demonstration purposes. The numbers in

parenthesis are the # input channels, # neurons in hidden layers, and # output channels. 94

Figure 4.2. Illustration of the preprocessing to prepare a training dataset and derive ordered

pairwise differences. One point from a block is used for demonstration purposes. 95

Figure 4.3. Demonstration of Semantic3D benchmark dataset. .. 100

Figure 4.4 Distribution of different classes in Semantic3D dataset. ... 101

Figure 4.5. Visualization of the prediction results of using order pairwise differences only as

the input. Ordered pairwise differences only show an adequate performance on objects with a

large volume in the scene, such as high vegetation, natural/man-made terrain, and buildings. 106

xiii

Figure 4.6. Comparison between ground truth, and the predicted results w./w.o. spatial

autocorrelation encoder. .. 108

Figure 5.1. Post-processing—assign labels to unpredicted points. Colored points represent

predicted points with three different classes (Red, blue, and green). Grey points represent

unpredicted points. A: nearest neighbor method; B: spatial interpolation method. 119

Figure 5.2. Conceptual illustration of the DeepHyd framework and corresponding

models (Tang et al. 2022) .. 122

Figure 5.3. Architecture of ConvPoint for 3D object detection (adapted from Boulch, 2020) ... 123

Figure 5.4. Illustration of the collected LiDAR data and corresponding labels. 124

Figure 5.5. Response surface of Overall Accuracy (A) and Intersection over Union (B) for

Model 1 with respect to number of nearest neighbor and power of Inverse Distance

Weighting. ... 129

Figure 5.6. Response surface of Intersection over Union on bridge (A), vegetation (B), and

ground (C) for Model 1 with respect to number of nearest neighbor and power of Inverse

Distance Weighting. .. 130

Figure 5.7. Response surface of Overall Accuracy (A) and Intersection over Union (B) for

Model 2 with respect to number of nearest neighbor and power of Inverse Distance

Weighting. ... 131

Figure 5.8. Response surface of Intersection over Union on deck (A), retaining wall (B),

pillar (C), and railing (D) for Model 2 with respect to number of nearest neighbor and power

of Inverse Distance Weighting. ... 133

xiv

 LIST OF ABBREVIATIONS

2D Two dimensional

3D Three dimensional

AI Artificial Intelligence

AA Average Accuracy

ANN Artificial neural network

CE Cross Entropy

CNN Convolutional neural network

FP False Positive

FN False Negative

GIS Geographic information systems

GNSS Global navigation satellite system

GPU Graphic processing unit

GD Gradient descent

GeoAI Geospatial Artificial Intelligence

HPC High Performance Computing

IoU Intersection over Union

I/O Input and output

IK Indicator Kriging

ISPRS International Society for Photogrammetry and Remote Sensing

KNN K nearest neighbor

LiDAR Light Detection and Ranging

MSE Mean squared error

MSG Multi-scale point grouping

MRG Multi-resolution point grouping

xv

MLP Multi-layer perceptron

mIoU Mean Intersection over Union

OA Overall Accuracy

OK Ordinary Kriging

RGB-D Red, green, and blue with depth

RNN Recurrent neural network

STEM Science, technology, engineering, and mathematics

SIFT Scale-invariant feature transform

SGD Stochastic gradient descent

SSG Single-scale point grouping

S3DIS Stanford Large-Scale 3D Indoor Spaces Dataset

TP True Positive

TN True Negative

UK Universal Kriging

1

1 INTRODUCTION

“Geographers study places” (Tuan 1977, p. 3). Geospatial technologies represented by remote

sensing (e.g., LiDAR), and Global Navigation Satellite System (GNSS) (e.g., GPS, Beidou, and

GLONASS) enable us to acquire geospatial big data. The data collected in space have been used

to improve our understanding of our place by analyzing the data, as well as making it a better place

by planning - “[p]lanners would like to evoke a sense of place” (Tuan 1977, p. 3). Geographic

information systems (GIS) and Geocomputation are adopted by researchers and practitioners for

geospatial analytics, featured by geovisualization (cartography), spatial statistics, spatial

optimization, and spatial simulation. Conventionally, GIS application is operated based on a two-

dimensional (e.g., latitude and longitude) geospatial dataset to analyze and visualize the

relationship between the geospatial features (e.g., point, line, and polygon). Even though 3D data

can provide more details by adding the other dimension to represent the shape of an object as to

how we sense the world in reality, 3D data are more likely to be used for geovisualization not for

analytics in early studies. By 2002, Zlatanova, Rahman and Pilouk (2002) reviewed GIS related

software (i.e., OpenGIS) at that time where he addressed that the significant 3D progress mainly

contributed to the presentation of the data. Around a decade ago, Goodchild (Goodchild 2010)

reviewed the progress of GIS from the 1990s. He claimed that the truly 3D GIS (as opposed to

2.5D, such as a digital elevation model) can be very useful for applications within complex internal

structures, such as mines and buildings; however, the progress is hindered because of lacking cost-

effective indoor data acquisition and positioning technologies (compared with efficient 2D remote

sensing data collection, and outdoor GPS positioning). There is an emerging trend of 3D GIS

especially with the increase of availability of 3D data, enhancing capability in data transferring

(i.e., 5G network), development in computing resource (i.e., quantum computer, cutting-edge

2

GPU), and evolving virtual reality technique (or augmented reality technique), where they cannot

be imagined in the previous periods.

Acquisition of the 3D point cloud data for indoor and outdoor scenes becomes increasingly

efficient, productive, and affordable with the rapid development of the geospatial technologies

featured by remote sensing and global navigation satellite system (GNSS). A variety of types of

sensors including LiDAR instruments, 3D scanners, RGB-D cameras can be mounted to tripods,

mobile vehicles, and drones to facilitate the 3D data acquisition for different applications, as well

as different purposes. The collected 3D data can provide productive information of real-world

objects including geometry, location, and spectrum (e.g., color). 3D data is designed to be

represented in different ways (e.g., point cloud, voxel, and mesh) as per the different sensors or in

terms of different utilizations. Many 3D data benchmarks had become available in 2010s,

containing challenges such as 3D object detection, 3D classification, and 3D semantic

segmentation. Early 3D object reconstruction challenges are provided by ISPRS Benchmark Test

on Urban Object Detection and Reconstruction (Rottensteiner et al. 2014). RGB-D (i.e., color and

depth) imagery are essentially geospatial data collected by RGB-D sensors, featured by low-cost

but low poor resolutions compared to laser scanners (i.e., LiDAR). The corresponding datasets

include NYU (New York University) Kinect dataset (Silberman et al. 2012) and Sun RGB-D

benchmark (Song, Lichtenberg and Xiao 2015). Early 3D point cloud benchmark dataset are

acquired by mobile device such as the Sydney Urban Objects benchmark (De Deuge et al. 2013),

the Paris-rue-Madame database (Serna et al. 2014), and TerraMobilita/iQmulus urban point cloud

analysis benchmark (Vallet et al. 2015). Static LiDAR (i.e., terrestrial LiDAR) is able to collect

higher resolution point cloud than the mobile one; Semantic3D benchmark (Hackel et al. 2017) is

such a high-density point cloud dataset for scenes of urban and rural areas. All of the datasets

3

above opened challenges to AI researchers and they served as a platform for competition purposes

among the AI models; moreover, they also played a role of qualified sources for machines to gain

knowledge so that they could be better applied to different applications (e.g., by transfer learning

technique).

Artificial Intelligence (AI), imitating human intelligence to assist human solving problems in an

intelligent way, has intrigued researchers from many STEM (science, technology, engineering,

and mathematics) domains from academia over the years, benefiting the understanding of

sophisticated phenomena, assisting complex decision making, spurring evolution of the

contemporary society, and facilitating human life. Other than academia, it also plays an integral

role in the modern industry - the emergence of the Fourth Industrial Revolution claimed by Schwab

(2017) who is the founder and executive chairman of the World Economic Forum, along with other

state-of-the-art technologies such as the Internet of Things (Philbeck and Davis , Magomadov ,

Atzori, Iera and Morabito 2017), and geospatial technologies (Yusoff, Ramli and Al-Kasirah 2021).

As per an online survey - Global Survey: The state of AI in 2020 - by Mckinseys & Company

(2020), 1,151 over 2,395 (around 56%) participants as a representation ranging from academia to

industries stating that AI are adopted in at least one functions in their organizations. With AlphaGo

(Silver et al. 2016), the first computer program defeated the 9-dan expert, Lee Sedol, in a Go match

in March 2016, deep learning-based AI exhibited a monstrous intelligence in this ancient human

intelligent game outperforming traditional machine learning algorithms designed for the Go game.

Deep learning as a sub-domain of AI based on deep neural network algorithms have been

representing frontier capabilities of AI, not only performing high intelligence but also waiving the

need of human interaction during the training process (Bengio, Lecun and Hinton 2021, Zlochower

et al. 2020). The rapid evolution of computing GPUs and availability of big data are assumed to

4

be the main reasons triggering the success of deep learning (Ioannidou et al. 2017). Impressive

progress has been made using deep learning in the recent decade in natural language processing

tasks (LeCun, Bengio and Hinton 2015, Young et al. 2018), such as machine translation (Singh,

Sharma and Nagesh 2017), speech recognition (Nassif et al. 2019), and image recognition (Minaee

et al. 2021).

Is there a way to make machines understand 3D data as “...[n]onhuman animals also have a sense

of territory and of place” (Tuan 1977, p. 4)? Deep learning-based algorithms driven by 3D data

are just designed to contribute to this thread, which are featured by a series of tasks comprising:

3D object classification, 3D object detection, and 3D semantic segmentation (i.e., part

segmentation, and scene parsing). 3D object classification is to make the machine recognize what

the 3D data represents. Object detection in 3D context can further detect the bounding box of an

object in 3D data. 3D semantic segmentation is to further label each point from a point cloud.

These algorithms are designed to understand different 3D representations: voxel (i.e., 3D pixel),

2D views of 3D data, and 3D point cloud to satisfy the need of different scenarios. Even though

there are other 3D representations like mesh, which is commonly used for 3D visualization but

rarely seen as the input of deep learning algorithms in my literature review.

Early deep learning methods in 3D context tried to exploit the descriptors extracted from 3D data.

For example, Liu, Salzmann and He (2014) use SIFT (Scale-invariant feature transform)

descriptors to generate the 3D features from depth images, and use them to prepare training data

fed to a Deep Belief Networks, introduced by Hinton (2009). Early such studies using deep

learning in 3D context adopted voxel, 2D views of 3D data, and mesh to represent 3D data

(Ioannidou et al. 2017) in order to make the data structured so that they can be fed to neural

networks. 3D ShapeNets (Wu et al. 2014) and VoxNet (Maturana and Scherer 2015), represent

5

early methods to work on 3D representations - consuming a 3D voxel grid as input to a 3D

convolutional neural network, where a 3D filter was applied to extract local features of the 3D

data, outperforming the other state-of-the-art methods at that time (i.e., early to mid-2010s). There

is also a study trying to take mesh as input to generate 3D features like Mesh Convolutional

Restricted Boltzmann Machine (Han et al. 2016). Adopting multiple 2D views of a 3D object from

different directions is another way to represent the 3D object. Zhu et al. (2014) represents one of

the early approaches that take multiple 2D views as input to CNN-based architectures. Multi-View

CNN (Su et al. 2015) as a representation of the methods on 2D views of 3D data outperformed

other tested methods in ModelNet40. The above approaches, no matter taking descriptors and

multiple 2D views, or the voxel grids and mesh of 3D objects as input to the types of deep neural

networks, require manipulations on the 3D data collected by the sensors (e.g., LiDAR) so that the

converted data can fit the structures of input of types of deep neural networks. Such manipulations

can result in either loss of local feature or introducing more error to the original data; moreover,

the manipulations, especially voxel-based method, make the computational cost of processing 3D

data a notable bottleneck (Ioannidou et al. 2017, Qi et al. 2017).

The emerging era of deep learning directly on 3D point clouds has been triggered since 2017 by

introducing PointNet (Qi et al. 2017) featured by its capability of directly using point clouds as

input. Rather than previous methods on multiple 2D views, voxel grids or mesh, which require

data transformation from point cloud, PointNet firstly takes raw point cloud as input making it as

an end-to-end method, and mitigating the computational challenge when scaling up in the size and

resolution of the data (Qi et al. 2017).

In the past decade, deep learning has also begun to be adopted by geographers to gain meaningful

information by exploring the spatial and temporal data (Goodchild and Li 2021, Li 2021,

6

Reichstein et al. 2019). The research domain at the junction between geography and AI, termed as

GeoAI nowadays (Goodchild and Li 2021), can be traced back to the late 20th century. Early

pioneers, (Smith 1984), (Couclelis 1986), especially (Openshaw 1992), and (Openshaw and

Openshaw 1997), introduced AI to solve geospatial problems and brought the discussions of

potential impact of AI in geographic theories and practices. A ‘new’ quantitative revolution had

been witnessed in the 1990s in geoscience, which emphasized the necessity of data driven AI

approaches in solving geospatial problems (Openshaw 1992). The increasing amount of geospatial

big data nowadays demands the ability of GeoAI to solve geospatial problems by taming

computational challenges brought by geospatial big data. Thus, some studies treat high-

performance computing as one pier of GeoAI (Li 2021, VoPham et al. 2018). Rather than from AI

to geography (Openshaw and Openshaw 1997), GeoAI also calls for developing AI by

incorporating geographical principles (e.g., spatial dependency, and spatial heterogeneity)

(Goodchild and Li 2021). As the developments in geospatial technologies, such as remote sensing,

cutting edge devices (e.g., drone, and mobile robot) and sensors (e.g. RGB-D camera, and LiDAR)

have been making it more effective, accurate, and cost-efficient to acquire 3D geospatial data (e.g.

geometric information, color information, intensity) of real-world objects. Under the demand of

cutting-edge applications (e.g., vehicle autonomous), deep learning on 3D geospatial data (a.k.a

3D deep learning), which makes machines understand 3D geospatial data, has been becoming ever

more important. Plenty of studies in 3D deep learning have been published in the domain of

computer science but few have been witnessed in the research area of GeoAI yet. Understanding

3D geospatial data, especially from the perspective of spatial principles (e.g., spatial dependency,

and spatial heterogeneity) can be one of the most important focuses in the state-of-the-art GeoAI.

7

This dissertation will contribute to the development of GeoAI with a focus on making deep

learning models better understand 3D geospatial data by leveraging spatial principles. The primary

research questions are as follows: 1) whether spatial autocorrelation features are helpful for 3D

deep learning models to understand 3D geospatial data? 2) How to extract effective spatial

autocorrelation features by using deep neural networks? 3) How to leverage spatial principles to

address the challenge pertaining to the framework of 3D geospatial object detection. The

corresponding study objectives are listed below:

(1) Examine the effectiveness of semivariance as a representation of spatial autocorrelation-

based features in 3D geospatial object detection.

(2) Develop a deep learning-based framework leveraging spatial dependency principle to

extract spatial autocorrelation features based on pairwise differences within a local

neighborhood.

(3) Improve current framework of 3D deep learning-based geospatial object detection from a

metamodel perspective with a focus on using spatial interpolation in the post-processing.

In the following chapters, I will briefly review the background of deep learning including basic

concepts, basic components, and related problems in Chapter 2. In Chapter 3, I evaluated the

effectiveness of spatial autocorrelation features in understanding 3D geospatial data by control

experiments from a data perspective (a.k.a taking semivariance as additional input). In Chapter 4,

I developed a deep learning-based approach to derive spatial autocorrelation features for enhancing

the performance of the 3D geospatial object detection. In Chapter 5, I improved the current 3D

deep learning-based framework for 3D geospatial object detection by integrating spatial

interpolation in the post-processing, where hydraulic structure detection is used as an exemplary

study case. Chapter 6 is for overall conclusions and potential future work.

8

2 LITERATURE REVIEW

2.1 Background of Neural Networks

2.1.1 Conception of neural networks

Artificial neural network (ANN) is a method in the machine learning domain, which is originally

inspired by the communication (see Figure 2.1 as a demonstration) between neurons within a

nervous system from the human brain (McCulloch and Pitts 1943).

“The nervous system is a net of neurons, each having a soma and an axon. Their adjunctions,

or synapses, are always between the axon of one neuron and the soma of another. At any

instant a neuron has some threshold, which excitation must exceed to initiate an impulse.”

(McCulloch and Pitts 1943, p. 101)

An artificial neural network also consists of a bunch of neurons with a soma (i.e., sum function),

an axon (i.e., activation function), and synapses (i.e., weighted connections). Functioning similar

to a neuron gets excitation and sends out an electrical impulse to other neurons through synapse in

the nervous system, a neuron in ANN will transmit the output to other neurons via connections if

it is activated or fired by input values in particular threshold defined by the activation function.

9

Figure 2.1. Illustration of a neuron consisting of a soma, an axon, and several synapses.

2.1.2 History of neural networks

Schmidhuber (2015) conducted a systematic review on development of deep learning with a focus

on artificial neural networks. A timeline is drawn based on this systematic review as shown in

Figure 2.2.

Figure 2.2. Timeline of development of artificial/deep neural networks.

10

In 2001, Doug Laney from META Group (latter renamed to Gartner) firstly defined big data from

a three-dimensional perspective: “Big data is high volume , high velocity , and/or high variety

information assets that require new forms of processing to enable enhanced decision-making,

insight discovery and process optimization” (Laney 2001, p. 67).

In 2009, Dr. Fei-Fei Li, an AI professor from Stanford University, launched ImageNet, which is

an image classification benchmark with over 14 million labeled images. “Our vision was that big

data would change the way machine learning works” said by Dr. Li (Li, Deng and Li 2009).

The speed of GPUs gained a dramatic increase by 2011, making it possible to train convolutional

neural networks directly, which was never ever computationally feasible. With the increasing

computing speed, deep learning has been outperforming other machine learning algorithms by its

essential advantages regarding efficiency and accuracy. AlexNet, developed by Krizhevsky,

Sutskever and Hinton (2012), is a convolutional neural network. It achieved notable success in

image recognition competitions during 2011 and 2012. The network employed rectified linear

units (ReLUs) as activation functions. This approach helped speed up training and tackle the

vanishing/exploding gradient problem.

2.2 Basic Components of Neural Networks.

In this section, I am going to introduce the basic conceptual components of a neural network as

well as embedded mathematics. I will focus on a typical neural network used for classification

problems, which predicts a class label for a given input.

11

Figure 2.3. Illustration of the architecture of a feed-forward neural network (a.k.a multilayer

perceptron) with two hidden layers.

As shown in Figure 2.3, a neural network is composed of an input layer, several hidden layers, and

an output layer. In the input layer, each sphere represents a channel as well as a feature channel of

the input data. For example, the basic three channels of a spatial point can be x, y and z coordinates

in a space with respect to a coordinate system. A hidden layer comprises a series of neurons as

well as corresponding activation functions following the neurons. The outputs are the probability

of classes, into which each input is predicted to fall.

Basically, a neural network can be denoted as a function shown as follows:

𝐶 = 𝑓(𝑋) (2.1)

𝑋 = [𝑥1, 𝑥2, 𝑥3. . . 𝑥𝑚] (2.2)

𝐶 = [𝑐1, 𝑐2, 𝑐3. . . 𝑐𝑛] (2.3)

12

where X is the input with m feature channels. C is the output with n classes, which contains

probability values of the input that are predicted to fall in each class. f represents a neural network

with a designed number of hidden layers as well as a designed number of neurons within

corresponding layers.

In the rest of this section, I am going to demonstrate what operations happen in each hidden layer

after the inputs are fed to the neural network.

2.2.1 Neurons

Each hidden layer of a neural network comprises a series of neurons and corresponding activation

functions following each neuron. Each neuron (see Figure 2.4) is a weighted sum function to

aggregate data fed into it from either an input layer or from a previous hidden layer. The operations

within each neuron as well as an activation function can be denoted in the following formula:

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑔(𝑋 ∙ 𝑊 + 𝑏) (2.4)

𝑊 = [𝑤1, 𝑤2, 𝑤3. . . 𝑤𝑚] (2.5)

where g is an activation function associated with this neuron, W is a set of weights separately for

each input X associated with this neuron. Connections between the input to a neuron and the neuron

has a set of weights, where the number of weights is equal to the number of connections as well

as the number of inputs. b is a bias value to be added to the weighted sum value from a neuron

before feeding them into an activation function. Both weight and bias can be updated during

training. Therefore, the number of learnable parameters of the neuron is (m+1) (i.e., m weights

and one bias).

13

Figure 2.4. Demonstration of operations within a neuron following an activation function. The

input of a neuron can be input of the neural network or output of a previous hidden layer.

2.2.2 Bias

Bias is a learnable constant per node that adds to the dot product of weights and input before fed

into the activation function. Bias can shift the activation function, resulting in activating a neuron

or deactivating the neuron (whether to fire a neuron). The role of bias in activation function is

similar to the role of a constant value in a linear regression model, giving more flexibility to better

fit a model to the observations. Bias is widely used in current neural networks, even though it is

not mentioned commonly, since it becomes a default option when creating a layer for a neural

network in the deep learning libraries (e.g., Pytorch).

2.2.3 Activation function

From a conceptual perspective, activation function is to decide whether a neuron is going to be

activated or deactivated as per the input. In other words, it is to decide whether the input

14

information is useful or not-that-useful to this neuron. If the information is judged as useful, it will

be passed to the other neurons in the next layer. If it is not that useful, the information will be

segregated, meaning it will pass 0 to the next layer, where it will not impact deeper neurons. There

may not be an absolute activation and inactivation of neurons depending on the nature (i.e., the

threshold of output) of an activation function. The closer the output value is, the more inactivated

a neuron will be. If a neuron is inactivated or close to being inactivated. The information will be

segregated. Segregation is important to a neural network that helps the model to pursue useful

information instead of stuck on a not that useful information.

From a mathematical perspective, activation function can be understood as an affine

transformation, which transforms the input value to a specific range of values. There are a bunch

of activation functions with different target ranges of values developed for different applications.

Sigmoid/logistic

Sigmoid or logistic activation function is an S-shape function (see Figure 2.5) commonly used in

prediction tasks due to the nature of its shape that the threshold of sigmoid activation function is

[0,1]. The function transforms the input values to the range [0,1], which can be interpreted as

probability.

where x is the input.

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+𝑒−𝑥

(2.6)

15

Figure 2.5. Demonstration of Sigmoid/logistic activation function.

Hyperbolic tangent function

Hyperbolic tangent function (Tanh) is the other type of S-shape function (see Figure 2.6) that

transforms the input to a value ranging in [-1, +1]. This activation function is designed to be

sensitive to input values within the range of -3 to +3. In other words, it does not care how far it is

smaller than -3 or larger than +3. “… the hyperbolic tangent activation function typically performs

better than the logistic sigmoid” (Goodfellow, Bengio and Courville 2016, p. 195).

where x is the input.

𝑇𝑎𝑛ℎ(𝑥) =
𝑒2𝑥−1

𝑒2𝑥+1

(2.7)

16

Figure 2.6. Demonstration of Hyperbolic tangent activation function.

ReLU

Rectified linear activation function (ReLU) is commonly used in image classification tasks, which

outperforms other activation functions in practice of image classification tasks. ReLU (see Figure

2.7) is designed to be sensitive to positive values and ignore the negative values. In the other word,

only positive values can fire a neuron with ReLU as the activation function. “In modern neural

networks, the default recommendation is to use the rectified linear unit or ReLU” (Goodfellow et

al. 2016, p. 174) because it can handle the problem of vanishing gradient to make neural networks

deeper.

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (2.8)

where x is the input.

17

∑

Figure 2.7. Demonstration of ReLU activation function.

Softmax

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑐) =

exp (𝑐𝑖)

, 𝑖 ∈ [1, 𝑛] (2.9)

𝑖 𝑛
𝑖=1 exp (𝑐𝑖)

where ci is the output of class i. n is the number of classes in a classification problem.

Softmax is a mathematical function that map a vector of values to a vector of probabilities with a

sum of 1, which is commonly used as the activation function of the output layer of a neural network

in order to gain a vector of probabilities of the input falling into different classes in a classification

task. Rather than a max function, softmax can give a probability of the predicted label for a given

input.

18

2.3 Basic Mechanism of Neural Network

In this section, I will introduce the mechanism of how a neural network learns based on the input

by demonstrating conceptual ideas as well as mathematical foundations. There are five steps:

1. Initialize the parameters (i.e., weights and bias) of neural network.

2. Forward propagation to pass the input through the neural network.

3. Calculate the loss function.

4. Backpropagation to compute the gradients with respect to each parameter.

5. Update each parameter regarding the optimization algorithm (i.e., optimizer).

Repeat steps 3 to 5 until it meets the stop criteria.

2.3.1 Parameters Initialization

Parameter initialization gives initial values for parameters (i.e., weights and biases) of a neural

network. A well-designed algorithm for initialization is important to have the neural network well

trained with respect to activation function. There are a bunch of algorithms to initialize the

parameters.

Zero initialization

Zero initialization, as the name implies, is to initialize all parameters as 0 before training. When

initializing the parameters with 0, the backpropagation will result in the same gradients with

respect to each parameter. Therefore, the parameters will be updated in the same way through the

training process. In this case, the neural network will work no better than a linear model.

19

Random initialization

To address the problem of zero initialization, random initialization can prevent all neurons from

being the same and updated in the same way. However, a random value can easily result in either

exploding or vanishing gradients in backpropagation because a random initial value can be too big

or too small (close to 0). Xavier initialization and Kaiming initialization (He et al. 2015), two of

the most popular stochastic initialization approaches, help to reduce the vanishing and exploding

gradient problem.

2.3.2 Forward propagation

Forward propagation is to describe the way to pass input through a feed-forward neural network

layer by layer until the output of the neural network (as demonstrated in Figure 2.3). Each hidden

layer takes the output of the previous hidden layer (the first hidden layer will take directly from

the input layer). Feed-forward neural networks are different from recurrent neural networks (RNN),

where connections between nodes can form a cycle. RNN, derived from the feedforward network,

is used to take a sequence of inputs, which is commonly used for speech recognition or time series-

related predictions. In this study, I will only focus on feedforward network since most architectures

used for classification task is a feedforward network (e.g., convolution neural network)

2.3.3 Loss function calculation

In an optimization problem, an objective function is the one we want to maximize or minimize. In

a neural network, we want to minimize an error function between the predicted value and ground

truth. The error value, here, is also called the loss in the context of a neural network, which can be

calculated based on a loss function. Loss will be calculated for each input and then they will be

https://paperpile.com/c/uyb1HQ/klEc

20

𝑖

aggregated by sum or mean depending on the optimizer. At the end of each step (i.e., each mini-

batch or the entire dataset was propagated forward until the output layer), all the errors of the input

(i.e., a mini-batch or the entire dataset) will be passed to the loss function to calculate loss.

From a mathematical point of view, there are various loss functions designed for different tasks.

In the rest of this section, I am going to demonstrate two classic loss functions designed separately

for regression tasks and classification tasks.

Mean squared error loss function

Mean squared error (MSE) loss function is to calculate the average squared loss for each input

over the entire dataset. Apparently, it is to calculate differences between two vectors. MSE is

commonly used for a regression task to predict a continuous variable.

𝑀𝑆𝐸 =
𝛴(𝑞𝑖−𝑝𝑖)

2

, 𝑖 ∈ [1, 𝑚] (2.10)
𝑚

where qi is the ground truth of the ith input and pi is the predicted value regarding this input; m is

the number of inputs.

Cross entropy (Logarithmic) loss function

Cross Entropy is usually applied to classification problems (i.e., binary classification and multi-

class classification). Cross entropy is to calculate loss between two distributions (ground truth, and

predictions) of probabilities. It should be converted to probabilities using softmax activation

function before fed into cross entropy loss function.

𝐶𝐸(𝑝, 𝑞) = − ∑𝑛[𝑝𝑖 ∗ 𝑙𝑜𝑔(𝑞𝑖)] , 𝑝, 𝑞 ∈ [0,1], 𝑖 ∈ [1, 𝑛] (2.11)

where o is the number of input (of the entire dataset or a mini-batch) and n is the number of

channels; q is the probability of the output for each input and p is the ground truth. When p is close

21

to q, the loss is approaching 0.

2.3.4 Gradient calculation based on backpropagation.

An optimizer or optimization algorithm in a neural network depicts an approach to update

parameters within a neural network with respect to the gradient. Gradient is a set of derivatives of

loss with respect to each of the parameters (i.e., weights and biases) in a neural network. An

optimizer seeks to minimize the loss function by minimizing the gradient as well as the derivatives

of loss with respect to the parameters.

Gradient descent (GD) is an optimization method that helps to minimize the loss function by using

the product of gradient and learning rate. The prerequisite of using GD is that the function to be

minimized must be differentiable and convex. Therefore, loss functions in neural networks are

designed to meet the two requirements. Regular gradient descent is sensitive to the value of

learning rate. The general strategy is to start with a relatively large learning rate and gradually

decrease it in each step. This process that changes the learning rate from relatively large to small

is scheduled. Learning rate schedulers can help to arrange this schedule in a different manner.

Gradient descent can be used for many optimization problems in statistics and machine learning.

Different from least squares which optimizes the parameter and seeks the derivative equals to 0,

GD can gradually find the minimum derivative by steps from the initial parameter. Therefore, GD

is useful when it is not possible to solve for where the derivative is 0. The closer the parameters

get to optimal values, the closer the derivative gets to 0. GD is efficient because it will take a

relatively larger step when the derivative is far from 0 but it will take a smaller step when

approaching 0. To avoid taking too big steps when the derivative is far from 0, a small value (i.e.,

learning rate) is applied to restrict the step.

22

The GD will stop when the step size is smaller than at a set threshold or the number of steps reach

the set maximum number of steps.

𝐺 =
1

∑(𝑑𝐿𝑜𝑠𝑠/𝑑𝑊) , 𝑘 ∈ [1, 𝐾] (2.12)
𝐾 𝑘

𝑊𝑡+1 = 𝑊𝑡 − 𝐺 ∗ 𝑙𝑟, 𝑙𝑟 ∈ [0,1] (2.13)

where G is the sum of gradients based on o input samples. K is the number of weights of the neural

network. dLoss/dWk is the derivative of the loss with respect to the kth weight. t is the current

iteration in a training process, W is a set of weights for a neural network. Wt is the current weights.

Wt+1 is the updated weight. lr is the learning rate.

A general step of GD is as follows:

1. Calculate the derivative of the loss function with respect to each parameter.

2. Calculate the gradient of the loss function.

3. Calculate the step sizes for each parameter.

4. Calculate the new parameters.

Loop from step 1 to step 4 until the step size is small or equal to the set value or reach the maximum

number of iterations (steps).

Gradient descent calculates the gradient with respect to the loss of the entire datasets, which can

result in computational issues when the entire dataset is too big. Therefore, Stochastic gradient

descent (SGD) (Bottou 2010) is proposed to solve this problem. SGD will randomly select a small

subset of the entire dataset (also called mini-batch) for each step that updates the parameters (i.e.,

weight and bias). SGD will also help to optimize the parameters when there is new data coming

instead of training from scratch (if we use GD, we have to include the entire dataset), where it can

23

use the trained parameters as initial values but optimize them based on new data only. SGD

performs better than GD especially because there are a lot of parameters and big dataset because

it may not be computationally feasible if using GD.

2.4 Basic Problem Related to Neural Network.

If the gradients in early layers are vanishingly small (close to zero), it makes the parameters in

these layers barely update in each training step. In other words, the model is not efficiently learning

within the training process. In this case, it is called a vanishing gradient problem (Hochreiter 1998).

Generally, this is due to the nature of backpropagation. The more it is early in the network, the

quicker it is going to vanish. When SGD computes the gradient for a specific weight, it applies

this gradient to modify the weight accordingly. Thus, the adjustment made to the weight is directly

proportional to the magnitude of the gradient. If the gradient is small, the resulting update will also

be extremely small. Under such circumstances, if the weight is adjusted by a trivial amount, it

results in barely modifications to the weights of the neural networks. Consequently, such minor

adjustments fail to propagate effectively throughout the network, rendering them ineffective in

significantly reducing the loss, as the weight remains almost unchanged from its value prior to the

update.

Therefore, it almost becomes a problem that the weights never actually be updated efficiently to

reduce the loss or reach its optimal value, which will impact the rest of the layers in this network

and prevent the ability of the network from learning.

On the other hand, it will make the parameters update too much in each training step if the gradients

in early layers are extremely large. Moreover, due to the backpropagation, the more the layers are

24

early in the network, the more the gradients are going to explode. In this case, it is called an

exploding gradient problem.

2.5 Artificial Neural Networks and Deep Neural Networks

The existence of vanishing/exploding gradient problems within the traditional artificial neural

networks prevents training with more layers within a neural network, which limits the ability to

solve more complex problems.

There has been a revolutionary development of neural networks during 2010s, especially the

related techniques and activation functions associated with neural networks, aiming to remove the

barrier that prevents the neural network from going deeper. Various strategies have been used to

mitigate the vanishing gradient issue, such as employing specific methods for weight initialization

(Mishkin and Matas 2015), utilizing second-order optimization techniques (Martens 2010), and

implementing updates on a per-layer basis (Vincent et al. 2008).

With the development in both hardware and techniques, deep learning can concatenate a series of

hidden layers in a designed way for different tasks (Potok et al., 2018). Same as machine learning,

deep learning can be either supervised or unsupervised. In this study, I will only focus on

supervised architectures in deep learning. There are two basic supervised deep learning

architectures, recurrent neural networks, and convolutional neural networks. Recurrent neural

networks are commonly used in processing natural language or time series data. CNN is often used

for video analysis, natural language processing, and image recognition. The image-related tasks

are object detection, image classification, semantic segmentation, instant segmentation.

25

2.6 Convolutional Neural Network

In the following section, I am going to introduce the basic components of a Convolutional Neural

Network (CNN).

The basic components of a CNN consist of an input layer, convolutional layers, pooling layers

(e.g., max pooling), fully connected layers, and an output layer as shown in Figure 2.8. Using

imagery as input for an example, the input layer has three dimensions, heigh, width, and feature

channels (e.g., red, blue, and green). The height and width are the size of an image, and the feature

channels can be either colors in RGB color space, or one gray channel. The output layers are the

labels to be predicted on the input. For example, if the model is designed to predict cat or dog

based on the input imagery, the output layer will be the probabilities of the input to be predicted

as cat and dog, when a softmax is used as the activation function in the last hidden layer. Hidden

layers can have a series of combinations of convolutional layers and pooling layers, as well as fully

connected layers. Convolutional layers and pooling layers are to extract feature maps using a series

of receptive fields (i.e., kennels). On the other hand, fully connected layers are designed for

classification based on a high dimensional feature derived by flattening the feature maps from

feature extraction layers.

In the following sections, I am going to explain the conceptual and mathematical details of each

layer.

26

Figure 2.8. Illustration of the architecture of a convolutional neural network. An input image with

three channels is fed into the neural network. The output layer contains the probabilities of each

class the input can fall into.

2.6.1 Convolutional layer

A convolution layer consists of a series of kernels and an activation function associated with each

kernel. A convolutional operation (see Figure 2.9) is to aggregate the information of the data fed

into the convolutional layer with respect to a designed stride and padding. Basically, a

convolutional operation can be denoted as the following formula:

Output = g (Sum (W.*X) + b) (2.14)

W = [w1, w2, w3, … wn’] (2.15)

X = [x11, x12, x13, … xmn’] (2.16)

where g is an activation function associated with a kernel. W represents the weights of the kernel;

X are the values of input that the current kernel covers. m is the number of channels of the input.

n’ is the number of cells in a kernel. b is the bias associated with each kernel.

27

Figure 2.9. Demonstration of convolutional operation with a 3*3 kernel along with an activation

function on a particular cell. A feature map can be derived by conducting the convolutional

operation on each cell.

A convolutional layer conducts convolutional operations with each designed kernel on each cell

along with an activation function to generate an output feature map (a.k.a., activation map) as

shown in Figure 2.9. From a conceptual perspective, feature maps are representations of spatial

presence of patterns or concepts (e.g., edges).

Figure 2.10. Demonstration of stride and padding in the convolutional operation.

Rather than the size of a kernel, there are the other two hyper parameters to configure when

conducting the convolutional operation, stride and padding (as shown in Figure 2.10). Stride and

padding are adjustable parameters that can maintain the dimensions of the output feature map equal

28

to those of the input. The stride refers to the distance by which a kernel shifts across the input with

each step, while padding involves appending extra rows and columns of zeroes to the input,

ensuring the size of the output remains consistent with that of the input.

2.6.2 Pooling

Pooling is one of the layers of a CNN following a convolutional layer, which is an optional layer

in a CNN-based architecture design of a neural network. Features used for a classifier (i.e., fully

connected layer in the context of CNN) represented by an output feature map from a convolutional

layer can be sensitive to the location of the features. To address the sensitivity, a typical approach

is down sampling the feature maps. Conceptually, a down-sampled feature map makes it robust to

changes in terms of the locations of a feature from a feature map. Theoretically, a pooling layer

can make feature maps local translation invariance (Goodfellow et al. 2016).

As explained by (Goodfellow et al. 2016, p. 342), “…pooling helps to make the representation

become approximately invariant to small translations of the input. Invariance to translation means

that if we translate the input by a small amount, the values of most of the pooled outputs do not

change”. Pooling layers come in two primary forms, max pooling and average pooling. Max

pooling selects the maximum value from each patch of the input feature map, while average

pooling computes the average value of the elements in each patch, thereby reducing the spatial

dimensions of the input feature map. However, “it’s more informative to look at the maximal

presence of different features than at their average presence” (Ketkar and Santana 2017, p. 129).

A max pooling operation can be simply denoted by the following equation. I demonstrated the

pooling operation in Figure 2.11.

29

output=Max(X) (2.17)

X= [x1, x2, x3, … xn] (2.18)

where X is the input and n is the number of input.

Figure 2.11. Demonstration of pooling operation in a convolutional neural network. A 3*3 pooling

kernel is used for demonstration purposes.

2.6.3 Fully connected layer

Fully connected layers play a role of classifier in a CNN as shown in Figure 2.12, which take the

flattened feature maps extracted by the feature extraction hidden layers (i.e., convolutional layers

and pooling layers) as input and output probabilities of labels that the input is predicted to be. It is

called fully connected because each feature is connected to each neuron within this layer, where it

is only partially connected in the convolutional and pooling layers.

30

Figure 2.12. Demonstration of fully connected layer and output layer. Feature maps are from

feature extraction layers (e.g., convolutional, and pooling layers).

The feature maps are flattened to be a high dimensional feature vector before fed into a fully

connected layer. A fully connected layer consists of a series of neurons and an activation function

associated with each neuron. The flattened features as to the fully connected layer in a CNN is the

same as the input as to the hidden layers of a multilayer perceptron shown in Figure 2.3.

31

Reference

Bottou, L. 2010. Large-Scale Machine Learning with Stochastic Gradient Descent. In Proceedings

of COMPSTAT'2010, 177-186. Physica-Verlag HD.

Goodfellow, I., Y. Bengio & A. Courville. 2016. Deep Learning. MIT Press.

Hochreiter, S. (1998) The Vanishing Gradient Problem During Learning Recurrent Neural Nets

and Problem Solutions. Int. J. Uncertainty Fuzziness Knowledge Based Syst., 06, 107-116.

Ketkar, N. & E. Santana. 2017. Deep learning with Python. Springer.

Krizhevsky, A., I. Sutskever & G. E. Hinton (2012) Imagenet classification with deep

convolutional neural networks. Advances in neural information processing systems, 25.

Laney, D. (2001) 3D data management: Controlling data volume, velocity and variety. META

group research note.

Li, F.-F., J. Deng & K. Li (2009) ImageNet: Constructing a large-scale image database. J. Vis., 9,

1037-1037.

Martens, J. (2010) Deep learning via hessian-free optimization.

McCulloch, W. S. & W. Pitts (1943) A logical calculus of the ideas immanent in nervous activity.

Bull. Math. Biophys., 5, 115-133.

Mishkin, D. & J. Matas (2015) All you need is a good init. arXiv [cs.LG].

Schmidhuber, J. (2015) Deep learning in neural networks: an overview. Neural Netw., 61, 85-117.

Vincent, P., H. Larochelle, Y. Bengio & P.-A. Manzagol. 2008. Extracting and composing robust

features with denoising autoencoders. In Proceedings of the 25th international conference

on Machine learning, 1096-1103. Association for Computing Machinery.

32

3 EXPLICIT INCORPORATION OF SPATIAL AUTOCORRELATION IN 3D DEEP

LEARNING FOR GEOSPATIAL OBJECT DETECTION

3.1 Introduction

The accelerating convergence between geographic information science (GIScience) and artificial

intelligence (AI), collectively termed GeoAI (Goodchild 2022), has been changing the ways we

use and interpret 3D geospatial data. In an era marked by quasi-exponential growth in such data

(Li, Hodgson and Li 2018), from RGB-D images to 3D point clouds, the demand for identification

and localization of 3D objects (i.e., 3D object detection) has been increasing in applications

ranging from autonomous vehicles to crime scene investigations. The importance of accurate 3D

object detection cannot be underestimated in these contexts. For example, accuracy in identifying

and localizing 3D objects in autonomous vehicles is not only a technological achievement for

researchers and practitioners but also a critical safety requirement demanded by the general public.

Any small error in detecting obstacles can potentially result in accidents, posing risks to human

lives. In the realm of crime scene investigations, accurate 3D object detection is essential for the

faithful reconstruction of criminal events such as detecting the position of a victim, exhibits

evidence from the surrounding environment, which can help corresponding agencies accurately

interpret and document criminal scenes. Deep learning has become a powerful solution in these

contexts due to its outstanding performance surpassing traditional machine learning methods.

Moreover, its evolution also outpacing them, given unprecedented focus and contributions by

different domains (e.g., engineering, medicine, computer science, and geography).

GIScience has been able to better derive knowledge from geospatial data by using deep learning

(Goodchild and Li 2021). For example, Man and Liu (2021) used deep neural network to reliably

downscale air quality related variables. Duan et al (2020) adopted reinforcement learning to

33

automate the alignment between vector data and historical maps. The origins of GeoAI can be

traced back to the late 20th century when pioneers like Smith (1984), Couclelis (1986), and

especially Openshaw (1992), Openshaw and Openshaw (1997) began applying AI techniques to

detect patterns embedded in geographic data, contributing to the early development of spatial data

science. Over time, GeoAI has evolved to not only adopt AI techniques for geographic applications

but also contribute to the development of AI itself by incorporating geographic principles such as

spatial dependency and spatial heterogeneity, whether it is explicitly stated or not (Goodchild and

Li 2021). For example, Goodchild and Li (2021) attributed the exceptional performance of

convolutional neural networks (CNN) on object detection tasks to its spatial dependency

incorporated methodological design.

While deep learning has shown unprecedented capabilities in geospatial object detection from

remotely sensed data, it is still an open question with respect to the handling of spatial

dependencies of observed attributes (e.g., color information and LiDAR1 intensity) within 3D

geospatial data. Traditional models especially rely on the spatial properties (i.e., XYZ coordinates)

of 3D data as well as the shape features embedded in them. Some of them include hand-crafted

features (e.g., pre-estimated surface normal) to enhance model performance on object detection

(Qi et al. 2017a, Zhao et al. 2021). Nevertheless, these studies often overlook the potential benefits

of color and its spatial autocorrelation features in improving model performance. This might be

due to the lack of color information for many benchmark datasets (e.g., ShapeNet 2 ,

SemanticKITTI3) where a neural network architecture might not be designed to require color as

input. However, color information has been increasingly incorporated in modern data acquisition

1 LiDAR stands for light detection and ranging technology.
2

ShapeNet: https://shapenet.org/
3

SemanticKITTI: http://www.semantic-kitti.org/

http://www.semantic-kitti.org/

34

using instruments such as LiDAR and RGB-D4 cameras (e.g., S3DIS5, Semantic3D6). Therefore,

it is important to make use of, and take advantage of such observed non-spatial attributes as well

as the spatial autocorrelation features inherent to this data to achieve better performance.

This study pioneered efforts to bridge this gap by explicitly incorporating spatial autocorrelation

of color information into 3D deep learning models for geospatial object detection. Inspired by the

success of spatial autocorrelation features in object detection on 2D geospatial data (Bian and Xie

2004, Bian and Lee 2005). We explore their potential for boosting the performance of 3D deep

learning models. Our study aims to both advance the field of GeoAI by promoting the linkages

between deep learning and GIScience and contribute to the ongoing development of deep learning

techniques adapted for geospatial applications.

Our main contributions are:

1. Explicit incorporation of spatial autocorrelation into 3D deep learning: Our study breaks

new ground by being the first to explicitly integrate spatial autocorrelation features,

particularly semivariances, to enhance the performance of 3D deep learning models in

geospatial object detection.

2. Novel approach of spatial autocorrelation estimation in 3D data: We propose a novel

framework to estimate spatial autocorrelation features for object detection in the context of

3D deep learning, and tackle challenges posed by the nature of unstructured and unevenly

distributed 3D data.

3. Insights of spatial autocorrelation as contextual information in 3D deep learning: We

provide insights into the effectiveness of spatial autocorrelation features serving as context

information affected by how neighborhood or extent is defined in different environments,

such as indoor and outdoor settings. This contributes to the understanding of the uncertain

4
RGB-D stands for Red, Green, Blue and Depth.

5
S3DIS: http://buildingparser.stanford.edu/

6
Semantic3D: http://www.semantic3d.net/

http://buildingparser.stanford.edu/
http://www.semantic3d.net/

35

geographic context problem (Kwan 2012) with respect to 3D geospatial object detection,

and the development of more robust and accurate models in the field of 3D deep learning.

The remainder of this paper is organized as follows: Section 2 reviews relevant work,

encompassing deep learning techniques applied to 3D point clouds as well as prior studies on the

use of spatial autocorrelation features in geospatial object detection for remotely sensed data.

Section 3 elaborates on our methodologies, particularly highlighting our novel framework for

extracting spatial autocorrelation features from 3D data. Section 4 introduces the datasets used in

our study, while Section 5 details two experiments designed to explore the role of spatial

autocorrelation in 3D deep learning. The results and findings of these experiments are reported

and discussed in Section 6. We draw the conclusions in Section 7.

3.2 Related Work

3.2.1 Related work of 3D deep learning on point cloud data

3D point clouds are inherently unstructured, unordered, and unevenly distributed in space.

Handling their unstructured nature is an important problem in 3D deep learning. Early approaches

attempted to convert 3D point clouds into structured 3D voxels so that it can be fed to deep neural

networks. However, this approach posed challenges as it scaled up in terms of data size (Maturana

and Scherer 2015, Qi et al. 2016). One revolutionary work in this domain was the development of

PointNet (Qi et al. 2017a), which marked a breakthrough by directly taking unstructured point

cloud data as input. PointNet introduced the concept of extracting permutation- and rotation-

invariant features (a.k.a., symmetric features) from these unstructured and unordered point clouds.

This was achieved through the ingenious use of symmetric functions, specifically max pooling, to

aggregate point-wise features to global features that are permutation and rotation invariant.

PointNet not only provided architecture for 3D deep learning but also shifted the way 3D deep

36

learning architectures were designed. A generic framework for 3D deep learning based on the

empirical knowledge by PointNet (see Figure 3.1) comprises two main components, data sampling

and structuralization, and the deep learning architecture.

Figure 3.1. Generic framework for 3D deep learning-based object detection. The demonstrated

point cloud is from the Semantic3D benchmark dataset by Hackel et al. (2017).

Data sampling involves the spatial partitioning of the input 3D point cloud into smaller and

manageable subsets and sampling a fixed number of points from them to make the input

structuralized. These subsets are often referred to as blocks (see in Figure 3.1). Data sampling

serves two primary purposes, structuring the input and efficient processing. By dividing the point

cloud into smaller blocks and sampling with a fixed number of points, input data is structured so

that it can be fed into deep learning architectures. On the other hand, data sampling can make the

processing more efficient. Working with smaller blocks enables efficient processing, as it reduces

computation time and required computing resources. This is crucial for handling large point cloud

datasets.

Deep learning architecture learns from structured blocks of points and makes predictions to detect

geospatial objects within them. The architecture of deep neural network typically consists of two

components, a feature extractor (i.e., backbone) and a classification head. The primary function of

a backbone is to extract and aggregate features for further analysis or task-specific applications

37

(e.g., object detection, and classification). The initial layers of the architecture perform feature

extraction. After feature extraction, there are neural network layers that aggregate information

from neighboring points or an entire block (e.g., a max pooling layer in PointNet), which is crucial

for capturing global feature and understanding the relationships between points. There are three

main types of modules (Guo et al. 2021) serving as the feature extraction modules including multi-

layer perceptron (MLP) layer, convolutional layer, or graph-based layers. PointNet-like methods

feed pointwise local features to shared MLP and generate pooling-derived global features (Qi et

al. 2017b). CNN-based methods use loosely connected convolutional kernels to extract such

invariant features by cascaded layers (Wu, Qi and Fuxin 2019, Boulch 2020). Graph-based

methods treat each point as a vertex of a graph to generate invariant features based on neighbors

defined by directed edges (Simonovsky and Komodakis 2017, Landrieu and Simonovsky 2018).

Classification head refers to the final layers of the architecture (e.g., fully connected layers in a

CNN), taking extracted features for predictions.

3.2.2 Spatial autocorrelation in object detection

Many studies prove the effectiveness of spatial autocorrelation features in object detection by

explicitly involving such features in machine learning models. The ability of local context

awareness of spatial autocorrelation (e.g., semivariogram) is commonly used for representing

texture features (Humeau-Heurtier 2019). The incorporation of spatial autocorrelation features is

backed by not only practical evidence as aforementioned but also theoretical foundations. The

theoretical underpinning of its effectiveness in pattern recognition as explained by Haralick,

Shanmugam and Dinstein (1973) is that human beings interpret pictorial information based on

spectral, textural, and contextual features, which are the three essential pattern elements of imagery.

Spectral information depicts tonal variations in different bands of a spectrum. For example, color

38

information of an image are such values captured by corresponding sensors. Textural information

describes the spatial pattern of a spectrum channel. Tso and Olsen (2004) defined it as a joint tonal

variation within a prescribed area. Practically, textural features are derived from values within a

predefined window from an image, describing the spatial relations between the center point and

its neighbors. Contextual features encompass information extracted from a specific section of an

image and its surrounding environment, assisting humans to interpret imagery.

Shekhar et al. (2002) explored the source of spatial dependency within remotely sensed data,

attributing it to the difference between the fine spatial resolution of the data collected by sensors

and the size of the object represented in the data. To illustrate, consider an image of a conference

room where a chair is represented by multiple pixels. In this case, the spatial resolution of the

imagery is finer than the chair represented in the image. This pixel correlation representing the

chair allows us to distinguish it from the background, where the background pixels are less

correlated with those belonging to the chair. It is also mentioned as internal spatial continuity (e.g.,

the chair an object itself) and external spatial discontinuity (e.g., chair and background) by Bian

and Xie (2004). Therefore, spatial autocorrelation is inherent in the data collected by sensors (e.g.,

digital camera and LiDAR), where pixels within a close distance tend to be more similar than

distant ones in terms of radiation (Karasiak et al. 2022). As a result, early researchers (Atkinson

and Lewis 2000, Haack et al. 2000, Miranda, Fonseca and Carr 1998, Bian and Xie 2004) further

fed spatial autocorrelation features (e.g., semivariance) as a representation of texture information

to their object detection models.

In the task of object detection from landcover data, it has been observed that different land cover

categories exhibit distinct semivariogram patterns (Miranda et al. 1998). The parameters (e.g.,

range, sill, nugget) estimated for semivariogram models have the potential to be used as the

39

representation of spatial autocorrelation features (Durrieu and Nelson 2013, Pereira et al. 2019).

Using semivariograms as additional features to geospatial data feeding to machine learning models

have been suggested with advantages including effectiveness in increasing the accuracy of object

detection (Kattenborn et al. 2021). Other than parameters of a semivariogram model, semivariance

is also used as a spatial autocorrelation feature. The studies incorporating semivariance for object

detection showed significant improvement in model performance (Miranda et al. 1998, Miranda,

Macdonald and Carr 1992, Zawadzki et al. 2005, Bian and Lee 2005, Bian and Xie 2004). In terms

of the improvement in previous geospatial object detection tasks brought by including spatial

autocorrelation features, this study investigated the potential of its capability in a 3D context.

3.3 Methodology

3.3.1 3D Deep Learning Framework

In this section, we present our 3D deep learning framework for the explicit incorporation of spatial

autocorrelation to detect geospatial objects (see Figure 3.2). The input data is, for example, point

cloud with spatial and color information that can be retrieved via LiDAR techniques. The spatial

autocorrelation feature is extracted based on both information through the approach to be discussed

in Section 3.3.2. The spatial autocorrelation features are subsequently concatenated with the spatial

and color information – serving as the input layer of 3D deep learning. Through training and

validation, the model is equipped with prediction capabilities to detect geospatial objects (e.g.,

trees, grass, and road as demonstrated in Figure 3.2).

40

Figure 3.2. 3D deep learning framework with explicit incorporation of spatial autocorrelation for

geospatial object detection. A typical 3D deep learning architecture is used for demonstration

purpose. The demo point cloud is from the Semantic3D benchmark dataset.

In this study, we used PointNet as a representative 3D deep learning architecture. First, PointNet

is highly efficient in terms of computation due to its relatively low number of parameters favored

by shared Multilayer Perceptron (MLP) layers, which allows for rapid training and validation. The

clean and straightforward design of the architecture not only accelerates the training process but

also improves the interpretability of the deep learning model. Second, its concise architecture

offers us direct control over hyper-parameter configurations, enabling us to carefully assess how

various features affect the model’s ability to detect geospatial objects. Third, its strong

representational power, as highlighted in the study by Guo et al. (2021), as another reason to

support our selection. Finally, its capability to effectively capture spatial hierarchies in 3D data

renders it outstanding for object detection tasks. Given these considerations, PointNet stands out

as an ideal candidate for this study – It offers a balanced combination of efficiency, interpretability,

and representational power, thus making it well-suited for our study.

PointNet was not originally implemented with a primary focus on large-scale semantic

segmentation. Instead, it is designed for general purposes, such as classification, part segmentation,

41

and semantic segmentation (Qi et al. 2017a). Therefore, we modified the PointNet for large-scale

semantic segmentation in our study by excluding the T-net (spatial transformer network) module

(Jaderberg, Simonyan and Zisserman 2015), which was designed to automatically rotate point

clouds making small-scale objects spatially invariant. For small-scale semantic segmentation (i.e.,

part segmentation on point cloud of an object), T-net can help make the input spatially invariant

no matter how it was spatially transformed. However, it is not needed for large-scale semantic

segmentation (i.e., scene parsing) since the x-y plane will always be on ground and the z-axis is

the only axis on which rotation can be operated. Therefore, for large-scale semantic segmentation,

it is simply required to make the z-axis rotation invariant. The design of PointNet++ for scene

parsing can support this point, which excluded the T-net module. The modified architecture of

PointNet is shown in Figure A1 and we implemented it using PyTorch (version 1.12.1).

3.3.2 Retrieve spatial autocorrelation features in 3D point cloud

In this section, we introduced the extraction of spatial autocorrelation features (specifically the

semivariance) from unstructured 3D point clouds. Semivariance, essentially an experimental

semivariogram, enables us to measure the spatial decay of a variable over distance (referred to as

lag) by calculating and aggregating pairwise differences of observed value (specifically color

information in our case) between any locations within a specified extent.

Early approaches, as pioneered by Miranda et al. (1992), Miranda and Carr (1994), Miranda et al.

(1998), Bian and Lee (2005), Bian and Xie (2004), Kamal, Phinn and Johansen (2014), and Wu et

al. (2015), directly used semivariance at different lag values as textural features, or spatial

continuity and discontinuity properties for object detection on remotely sensed data. Typically, in

the 2D context, a fixed-size moving window (r*r; r: window size) was used to extract a subset of

pixels centered around each pixel, where semivariance is calculated at each spatial lag within the

42

window. However, when dealing with the inherently unstructured points within a 3D point cloud,

the potential absence of points within a predefined spatial lag presents a unique challenge, resulting

in a null semivariance value for the lag bin. Therefore, it poses a challenge to derive semivariance

from a 3D point cloud for use in geospatial object detection.

We propose a novel approach to address this challenge. Our solution, detailed in Figure 3.3,

introduces a four-step approach to tackle the aforementioned challenge, namely: searching for

neighbors, estimating pairwise differences, binning, and estimating semivariance. Each of these

steps is elucidated further in the following subsections. Furthermore, we provided more insights

about applicability of the traditional approach to extract semivariance for point cloud data.

Figure 3.3. Spatial autocorrelation feature extraction – a demo of deriving semivariance for one

point.

3.3.2.1 Searching neighborhood

A neighborhood is a band of distance or number of points that all points within the neighborhood

will be used for deriving the semivariance. In traditional studies, a neighborhood is defined by a

certain square window. For example, 22*22 window size and 7*7 kernel size are used by Miranda

and Carr (1994) for their study since this particular size is identified by the trade-off between

semivariance estimation accuracy and lowering the risk of the moving window overlapping on

class boundary. However, a certain distance may not be suitable for an unevenly distributed point

43

cloud, where there might not always be a neighbor within a certain neighborhood (a certain radius

for neighbor searching is demonstrated in Figure 3.4A). To make it more adaptive to the irregularly

spaced nature of point clouds, we use k-nearest neighbor (kNN) as the neighborhood searching

method as shown in Figure 3.4B. Therefore, there will always be neighbors in a neighborhood.

Figure 3.4. Conceptual illustration of neighborhood searching methods. Red dots are points of

interest, where the searching is conducted. Yellow dots are the neighbors within radius r or k

nearest neighbors with respect to the selected point. Gray dots are points outside of the

neighborhood ranges. A: searching with a defined radius r in Euclidean space; B: searching with

k-nearest neighbor (e.g., k = 3 as shown).

3.3.2.2 Binning

The method of grouping pairwise differences into categories is termed “binning”. Traditional

binning is to classify by equal intervals, where each lag bin encompasses a uniform range of lag

distances (as illustrated in Figure 3.5A). However, this approach can be problematic for 3D point

clouds due to their varied density distribution. Specifically, equal intervals may result in null

values in empty bins, introducing issues to subsequent deep learning. To address this challenge,

we adopt quantile classification, which allocates pairwise differences to lag bins based on equal

number of pairs. This ensures a more uniform distribution of pairwise differences across lag bins

(as shown in Figure 3.5B), eliminating the risk of null values in any lag bin.

44

Figure 3.5. Demonstration of binning methods. A: equal interval; B: quantile. There can be

scenarios where there are no pairwise difference values falling into some lag bins classified by

equal interval.

The combination of the kNN searching and quantile binning is the key of the proposed approach,

which can address the challenge brought by the unstructured nature of 3D point cloud as

aforementioned. We also observe that this solution might bring uncertainty to the scale for

semivariance calculation as the spatial extent defined by kNN can be different across points. This

impact on model generalization can be mitigated by the sampling strategies used in this study. For

example, the training samples are randomly generated by a fixed size of blocks. Moreover, the

points within a block are also randomly sampled (see detailed configurations in Section 3.4). That

is, for the same point, it can be captured multiple times with different nearest neighbors. This idea

was also used in Klemmer, Safir and Neill (2023), who used such random sampling before

convoluting k nearest neighbor to mitigate the impact of the scale so as that to learn scale-

insensitive features.

45

𝑖=1

3.3.2.3 Estimator of semivariance

Various estimators can be employed to compute experimental semivariance, including but not

limited to methods developed by Matheron (1963), Dowd (1984), and Cressie and Hawkins (1980).

In our study, we focus on utilizing the two foundational semivariance estimators from Matheron

(1963) and Dowd (1984), which inherently rely on the mean and the median of pairwise differences.

The Matheron estimator’s formula for calculating semivariance at a given spatial lag h is presented

in Equations 3.1 and 3.2:

𝛾(ℎ) =
1

2𝑁(ℎ)
∗ ∑

𝑁(ℎ)
(𝑑)2

 (3.1)

𝑑 = 𝑍(𝑥𝑖) − 𝑍(𝑥𝑖+ℎ) (3.2)

where Z(x) is the observation (e.g., color information) at the location x. N is the number of point

pairs at the bin lag h; d is the pairwise differences at a given lag h.

The Matheron estimator computes the mean of the squared pairwise differences as semivariance.

However, Matheron semivariance is sensitive to extreme values by using means. The Dowd

estimator uses the median value, which is robust to extreme values. The formula of the Dowd

estimator is defined in Equations 3.3 and 3.4.

𝛾(ℎ) = 1 ∗ 𝑚𝑒𝑑𝑖𝑎𝑛(𝑑)2
2

(3.3)

𝑑 = 𝑍(𝑥𝑖) − 𝑍(𝑥𝑖+ℎ) (3.4)

The computational complexity (Cormen et al. 2022), denoted as O, of deriving the semivariance

for one point with respect to the number of nearest neighbor, k, is O(k2) because the number of

pairwise differences is k*(k-1)/2. Therefore, k is one important hyperparameter to be configured

for semivariance derivation considering computing resources. An increasing k can result in

dramatic increase in the amount of computation.

46

3.4 Data

In this study, we leveraged two benchmarks to evaluate the effectiveness of spatial autocorrelation

features in diverse scenarios (i.e., indoor and outdoor environment settings) for 3D deep learning.

These benchmarks are listed as follows.

1. S3DIS (Stanford 3D Indoor Scene Benchmark): S3DIS (Armeni et al. 2016) is a

representative dataset of small-scale indoor scenes. It serves as an essential resource for

understanding indoor environments, including room- and object-level classification.

2. Semantic3D (a.k.a Large-scale Point Cloud Classification Benchmark): Semantic3D

(Hackel et al. 2017) provides a large-scale outdoor point cloud classification benchmark.

It is a valuable dataset for evaluating algorithms designed for point cloud processing and

classification tasks in expansive outdoor environments.

We aim to offer a better understanding of how explicit incorporation of spatial autocorrelation

impacts 3D deep learning in different environment settings. Specifically, we sought to determine

if semivariance improves object detection in both narrow indoor spaces and expansive outdoor

settings.

3.4.1 Stanford 3D Indoor Scene Dataset

S3DIS is a representative indoor scene dataset with 13 semantic classes, including ceiling, floor,

wall, beam, column, window, door, table, chair, sofa, bookcase, board, and clutter. There are in

total 271 indoor scene of rooms (e.g., office, conference room, classroom, etc.) across 6 main areas,

namely Areas 1-6, where each area represents a part of a building as demonstrated in Figure 3.6

(4 of 6 are shown for demonstration purpose). In this study, Area 1-4 and 6 are used for training,

and Area 5 is used for validation purpose as per previous studies working on the dataset (Qi et al.

2017b, Fan et al. 2021). The preprocessing generally followed the steps outlined in Qi et al.

(2017b), where 4,096 points are sampled from each one meter block.

47

However, we dropped any blocks with less than 128 unique points to fit downstream processing

of semivariance. Based on the current block generating template, the points within a block are

resampled (with replacement). If the original number of points is less than 4,096 but the output is

oversampled to 4,096, there must be duplicated points. Therefore, we only take unique point

location into consideration so that it will not be impacted by duplicated points resulted by the

resampling template. In this case, if the number of unique points is less than 128, it will violate

one configuration (k = 128) in Experiment 2 (see Section 3.5.2 for detail).

We demonstrated the semivariance value for each class along the bins in Figure 3.7. Generally, we

can observe that semivariance increases along the lag bin which is reasonable as the values can

differ more in distant points. Moreover, semivariance of different objects show various responses

to the lag bins. The patterns of their semivariance values along the lag bins can potentially help

identify them. We observed that floor and ceiling had a similar pattern. They both may have less

variance of texture within the given lag bin.

48

Figure 3.6. Demonstration of S3DIS datasets. The ceiling is hidden in this figure so that the objects

within each room can be visualized.

 .33

 .31

 .

 .

 .

 . 3

 . 1

 .1

 .1

 .1

bin1 bin bin3

 eiling

 loor

 all

Beam

 olumn

 indow

Door

Table

 hair

 ofa

Bookcase

Board

 lutter

Figure 3.7. Demonstration of averaged semivariance value derived for each class in S3DIS dataset.

The semivariances are derived by Matheron estimator with 16 nearest neighbors for demonstration

purpose.

o
rm

al
iz

ed
 s

em
iv

ar
ia

n
ce

 v
al

u
e

49

3.4.2 Large-scale point cloud classification benchmark

Semantic3D (Hackel et al. 2017) is a large-scale outdoor scene dataset with 8 semantic classes

including man-made and natural terrain, high and low vegetation, building, hard scape, scanning

artefacts, and cars (see Figure 3.8). There are 15 labeled rural and urban scenes. We used 9 of them

for training and the rest for validation. This outdoor scene dataset is challenging in 3D deep

learning due to its large spatial extent and the extremely uneven distribution in the space.

Figure 3.8. Demonstration of the Semantic3D dataset. Semantic3D dataset has 15 labeled scenes

ranging from rural to urban areas with 8 classes.

We preprocessed the dataset by using 8 meters as the block size as suggested by previous study

(Boulch 2020) and 4,096 points as the number of points. The semivariance values are calculated

prior to being fed into the 3D deep learning model. We demonstrate an averaged value for each

class in Figure 3.9. Car has the highest value as car since the texture of a car is more complex

50

given a defined neighborhood (i.e., k=16 in this case). Natural terrain and high vegetation show a

lower value indicating the color of points are more similar within the given bin.

Figure 3.9. Demonstration of averaged semivariance value derived for each class in Semantic3D

dataset. The semivariances are derived by Matheron estimator with 16 nearest neighbors for

demonstration purpose.

3.5 Experimental Design

In this study, we designed two experiments to address the research question of how the explicit

incorporation of spatial autocorrelation features impacts 3D deep learning on object detection in

different environment settings. The first one investigates whether semivariance is beneficial to the

model performance. The other one perturbs the configuration of semivariance generation and

explores insights of different configurations towards various environments.

51

3.5.1 Experiment 1: Effectiveness of spatial autocorrelation features in 3D deep learning

This experiment aims to assess the impact of explicitly incorporating semivariance as a spatial

contextual feature on the performance of 3D deep learning models. Specifically, the experiment

compares models trained solely on spatial information against those trained on a combination of

spatial, color, and/or semivariance data.

We designed three treatments with different features in input data (see Table 3.1), spatial

information only, color information as additional features, and spatial autocorrelation features as

the other additional feature channels. The semivariance of 3 lag bins – 3 additional feature channels

– are generated based on 16 nearest neighbors within a block of points, where the configurations

of blocks for different datasets refers to Sections 3.4.1 and 3.4.2. To address the uncertainties

introduced by the randomization in the deep learning process, we trained and validated the model

for each treatment with 10 repetitions. The number of repetitions was influenced by the

computational challenges against our available computing resources. Additionally, our results (see

Appendix 3.2 for detail) suggest that 10 repetitions were adequate for reliable outcomes. The

validation dataset was pre-generated so that the performance measurements were comparable.

Then, we compared the averaged performance measurements over the 10 repetitions, where

Intersection over Union (IoU), mean Intersection over Union (mIoU) and Overall Accuracy (OA)

were used as indicators to identify how well the model generalizes on a validation dataset. IoU and

OA are two measurements commonly used for object detection (Rezatofighi et al. 2019, Qi et al.

2017a, Boulch 2020). Jaccard similarity index or Lee-Salle shape index (Lee and Sallee 1970),

were commonly used in the domain of geography or GIScience (Shelton 2019, Clarke 1996),

which have a similar concept of IoU. The equations of the three metrics are shown below.

52

𝐼𝑜𝑈 =
 𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖+𝐹𝑃𝑖
(3.5)

𝑚𝐼𝑜𝑈 = 𝑚𝑒𝑎𝑛(𝐼𝑜𝑈𝑖) (3.6)

𝑂𝐴 =
 𝑇𝑃𝑎𝑙𝑙

𝑇𝑃𝑎𝑙𝑙+𝐹𝑃𝑎𝑙𝑙
(3.7)

where TP, FP, and FN are True Positive, False Positive, and False Negative; subscript all means

across all classes and i refers to each individual class.

Table 3.1. Configuration of Experiment 1.

Treatment ID Features Attributes Repetition

1 Spatial information only XYZ 10

2 Spatial and color information XYZ + RGB 10

3 Spatial, color, and spatial

autocorrelation information
XYZ + RGB +
Semivariance

10

After training, the average performance metrics across the 10 repetitions were calculated for each

treatment. Subsequently, comparisons were conducted to assess the observed differences. By

employing the systematic approach, this experiment aims to offer an in-depth understanding of the

effectiveness of semivariance as a spatial autocorrelation feature in 3D deep learning models for

geospatial object detection.

3.5.2 Experiment 2: Investigation into Uncertainty of Spatial Context affected by Configurations

The objective of this second experiment is to investigate the uncertainty of contextual information

with respect to the effectiveness of spatial autocorrelation features that are affected by the

configurations. The parameters perturbed for the configuration are estimators (i.e., Matheron

estimator and Dowd estimator) and the number of nearest neighbors (k), which specifies the size

of the local neighborhood used for computing semivariance as shown in Table 3.2.

53

The challenges of k value settings come from two aspects. A smaller value for k may result in loss

of color variation within the local neighborhood, particularly when the LiDAR sensor offers a finer

resolution than the RGB color sensor at a certain distance7. A larger k value poses computational

challenges, as the computational complexity (see detail in Section 3.3.2.3) scales quadratically

with O(k2). Through initial exploratory experiments and trial runs, we have identified a k-value

range of 8 to 128 as suitable for further investigation. These values were chosen based on their

balance between capturing local variations and maintaining computational efficiency.

Multiple datasets with varying characteristics were used to train and validate the models. For each

combination of k and estimator, we trained and validated the deep learning models. Each

configured model was trained 10 times to investigate uncertainties inherent in deep learning

processes brought by the stochastic processes, for example, the random initialization of weights.

The training data and validation data were pre-generated so as to avoid extra time spent on

generating the data and make the outcomes comparable, where 3 bins of semivariance values were

derived for each point with respect to a number of nearest neighbors within a block of points. We

computed mean and variance for the model’s performance metrics across all repetitions. Metrics

such as IoU for each class, mIoU of classes, and OA serve as key indicators for assessing the

models’ performance.

By systematically manipulating these parameters and analyzing the performance outcomes, this

experiment seeks to provide insights to configurations for utilizing semivariance in object

detection from different scenarios (i.e., indoor and outdoor scenes).

7

The spatial information and color information of point clouds are fused based on laser scanner and RGB sensor (e.g.,

camera). Due to their different resolutions, points can correspond to the same pixel from RGB imagery.

54

Table 3.2. Configuration of Experiment 2.

Treatment k Estimator #Repetition

1 8 Matheron 10

2 16 Matheron 10

3 32 Matheron 10

4 64 Matheron 10

5 128 Matheron 10

6 8 Dowd 10

7 16 Dowd 10

8 32 Dowd 10

9 64 Dowd 10

10 128 Dowd 10

*k refers to k nearest neighbors.

3.6 Results and Discussion

3.6.1 Computing Performance of the Experiments

To overcome the computational challenge brought by repetitions of model training for each

treatment in this study, we leverage high-performance computing (HPC) cluster resources. HPC

has been widely utilized to assist geospatial research in addressing computational challenges (Tang

and Wang 2020). Furthermore, HPC equipped with Graphics Processing Units (GPUs) enables

unprecedented power to solve geospatial problems (Tang and Jia 2014). Specifically in this study,

we have 10 nodes with GPUs in our HPC cluster, where each node has 1 NVIDIA A40 GPU, 8

cores of an Intel Xeon Gold 6326 CPU, and 64 GB memory. The total sequential computing time

for Experiments 1 and 2 are about 368.07 hours and 1,362.68 hours. The computing time by

leveraging 10 nodes in parallel for the two experiments are 38.15 hours and 142.78 hours. They

are sped up by 9.65 and 9.54 times. The average computing time and the corresponding standard

deviation for each treatment for corresponding datasets are shown in Table 3.3. As a result, GPU-

based HPC computing resources provide solid support for the computational needs of training of

our 3D deep learning model as required by the experiments in this study.

55

Table 3.3. Computing time for each type of treatment categorized by features included (Std:

standard deviation).

Treatment Dataset Number of

Channel

Average

Computing

Time

Std.

Computing

Time

Spatial information

only

Semantic3D 3 8.56 hours 0.35 hours

Spatial and color

information

Semantic3D 6 8.95 hours 0.18 hours

Spatial, color, and

spatial autocorrelation

information

Semantic3D 9 10.35 hours 0.28 hours

Spatial information

only

S3DIS 3 2.92 hours <0.01 hours

Spatial and color

information

S3DIS 6 2.99 hours <0.01 hours

Spatial, color, and

spatial autocorrelation
 information

S3DIS 9 3.02 hours 0.01 hours

3.6.2 Effectiveness of Spatial Autocorrelation Features in 3D Deep Learning

This underscores the integral role that color information plays in providing essential context for

geospatial object detection in 3D deep learning. We report the results on the two benchmark

datasets, S3DIS and Semantic3D in the following subsections.

3.6.2.1 Results on Semantic3D dataset

Table 3.4 summarizes the comparison among the three treatments for Semantic3D dataset while

using Treatment 2 (i.e., the one with spatial and color information) as the baseline. The detailed

results of 10 repetition treatments for each treatment are presented in Appendix 3.2 (see Tables

A1-A4). Observed from Table 4, the baseline treatment has averaged OA and mIoU values of

81.95% and 51.58%, respectively. However, omitting color information from the dataset led to

substantial decrease in performance metrics. Specifically, OA declined by 15.46%, and mIoU

56

dropped by 20.84% (Table 4). Thus, incorporating semivariance as an additional feature provided

a moderate but meaningful increase in performance: OA improved by 1.37%, and mIoU saw a

2.47% increase.

As evident in the IoU metrics for specific classes, the inclusion of semivariance not only enhances

global accuracy but also boosts performance at the class level. The IoU across classes exhibited

gains between 0.33% and 5.17%. Notably, the IoU scores for scanning artefacts and cars saw

significant improvement, around 5%.

Table 3.4. Performance comparison across treatments (Semantic3D Dataset).

Measurements Treatment 1
Treatment 2

(Baseline) Treatment 3

OA 66.49% (-15.46%) 81.95% 83.32% (+1.37%)

mIoU 30.74% (-20.84%) 51.58% 54.05% (+2.47%)

Man-made terrain 69.18% (-21.51%) 90.69% 91.02% (+0.33%)

Natural terrain 27.03% (-45.56%) 72.59% 73.45% (+0.86%)

High vegetation 36.80% (-20.21%) 57.01% 60.15% (+3.14%)

Low vegetation 8.58% (-15.54%) 24.12% 26.41% (+2.29%)

Buildings 65.64% (-14.21%) 79.85% 81.38% (+1.53%)

Hard scape 11.80% (-9.75%) 21.55% 23.19% (+1.64%)

Scanning artefacts 12.60% (-7.65%) 20.25% 25.10% (+4.85%)

Cars 14.29% (-32.26%) 46.55% 51.72% (+5.17%)

*OA: Overall Accuracy. mIoU: mean Intersection over Union. The class name (e.g., cars) indicates

the IoU for each class. The values are averaged across the repetitions.

These results suggest that feature selection plays a crucial role in the performance of 3D deep

learning models on semantic datasets. Specifically, the incorporation of color information and

spatial autocorrelation features can substantially enhance model generalization capabilities in

terms of the performance metrics.

57

3.6.2.2 Results on S3DIS benchmark

Table 3.5 summarizes the comparison between three treatments for the S3DIS dataset, using the

treatment with both spatial and color information as the baseline. Appendix 3.2 reports detailed

results from 10 repetitions for each treatment (see Tables A5-A8).

In terms of global accuracy, the baseline treatment exhibits average OA and mIoU values of 82.83%

and 50.19% (see Table 5). Omitting color information led to a substantial drop in these metrics:

OA declined by 3.03%, and mIoU fell by 4.88%. In contrast, the incorporation of semivariance as

an extra feature resulted in moderate improvements. Specifically, OA increased by roughly 1.36%,

and mIoU improved by 2.35%.

Regarding IoU for 13 classes in S3DIS data, the treatment 3 outperformed other treatments in

predicting most of the classes. According to the IoU values for individual classes, the average IoU

across different classes ranged from 0.04% to 5.44%. In particular, the IoUs for board and

bookcase saw a remarkable rise of around 4-5%.

The treatment with spatial information only shows dramatical weakness in understanding windows

and doors with 17.95% and 20.92% lower than those of the baseline treatment. This can be due to

the spatial structure of window and door that is very close to that of a flat wall so that models

trained on spatial information-only dataset appear to be less accurate in this scenario. It is

noteworthy that the simulation shows the highest IoU for the sofa and column class among the

three treatments. Boulch (2020) also found that the column class is better detected by a no-color

model than the color model. Boulch attributed this to more importance given to RGB features in

the presence of color information during the stochastic training process, but columns often share

the same color. Therefore, color does not serve as a distinguishing feature, resulting in a worse

58

performance for such classes (Boulch 2020). Similarly, we found that both chair and sofa exhibited

comparable behaviors.

In summary, color information can help improve the performance of the model trained only on

spatial information in our experiments. Engelmann et al. (2017) also advocated this finding in their

experiments that there was approximately 3% improvement in OA and mIoU when color was

added. Our experiments further suggest that semivariance, representative of spatial autocorrelation

features, can boost the model performance of 3D deep learning. This aligns with the findings by

Bian and Xie (2004) that semivariance can help identify geospatial objects but our study focuses

its capability in 3D context. However, the uncertainty introduced by this framework for deriving

semivariance, as opposed to the conventional method of searching neighbors within a given radius

and binning with fixed lag distances, is worth further investigation in future work. This need arises

especially due to the spatial heterogeneity in point density, which may affect robustness of spatial

autocorrelation features. These features are derived from neighbors identified through the kNN

searching process. To illustrate, in areas of sparse point density, some neighbors identified by kNN

might not actually be relevant to the reference point. They could be so far apart that spatial

dependency might no longer exist. Such scenarios highlight potential limitations in our current

approach that need more in-depth analysis. From our understanding, we assume that an adequate

selection of block size (see Figure 3.1), for partitioning and sampling the point cloud could help

mitigate such effect because that allows the models to be trained on samples with varying point

densities, potentially enhancing the robustness of model performance.

Table 3.5. Performance comparison across treatments (S3DIS Dataset).

Measurements Treatment 1
Treatment 2

(Baseline) Treatment 3

OA 79.80% (-3.03%) 82.83% 84.19% (+1.36%)

59

mIoU 45.31% (-4.88%) 50.19% 52.54% (+2.35%)

Ceiling 87.02% (-2.01%) 89.03% 90.82% (+1.79%)

Floor 96.68% (-0.46%) 97.14% 97.18% (+0.04%)

Wall 59.92% (-6.07%) 65.99% 68.54% (+2.55%)

Beam 44.80% (-0.70%) 45.50% 46.90% (+1.40%)

Column 9.82% (+3.83%) 5.99% 7.72% (+1.73%)

Window 19.45% (-17.95%) 37.40% 39.04% (+1.64%)

Door 37.86% (-20.92%) 58.78% 61.64% (+2.86%)

Table 56.88% (-2.37%) 59.25% 60.51% (+1.26%)

Chair 62.99% (+1.96%) 61.03% 64.29% (+3.26%)

Sofa 26.05% (+19.72%) 6.33% 9.00% (+2.67%)

Bookcase 35.13% (-5.07%) 40.20% 44.29% (+4.09%)

Board 9.99% (-28.55%) 38.54% 43.98% (+5.44%)

Clutter 42.40% (-4.95%) 47.35% 49.07% (+1.72%)

*OA: Overall Accuracy. mIoU: mean Intersection over Union. The class name (e.g., sofa)

indicates the IoU for each class. The values are averaged across the repetitions.

3.6.2.3 Summary of findings in different scenarios

In terms of 3D deep learning for geospatial object detection, the importance of feature selection

cannot be overstated. The performance of model on generalization capabilities, and understanding

of specific classes, are heavily influenced by the choice of features. An observation from the

experiments on both datasets (see Sections 3.6.2.1 and 3.6.2.2) was the significant impact of color

information on performance. Specifically, the omission of color data resulted in a marked

reduction in key performance metrics, such as OA and mIoU in different scenarios (indoor and

outdoor environments). This underscores the integral role that color information plays in providing

essential context for geospatial object detection in 3D deep learning. Moreover, the spatial

autocorrelation of color information, specifically semivariance, further produces moderate but

significant improvements in model performance across both datasets. This is evident not only in

global metrics such as OA and mIoU but also in class-specific IoU metrics. The ability of

semivariance in capturing spatial relationships and providing local contextual information was

particularly pronounced, with certain classes showing substantial performance boosts (e.g., 5%

60

improvement in IoU of cars in Semantic3D dataset). The experiments further reveal the advantages

of integrating spatial autocorrelation features, with semivariance to boost model performance.

3.6.3 Uncertainty of spatial context

Experiment 2 investigates the uncertainty of spatial context brought by the spatial autocorrelation

features (i.e., semivariance) affected by diverse configurations (e.g., number of nearest neighbors).

To do this, we identified the optimal settings for generating effective semivariance metrics for 3D

object detection across various scenarios. We perturbed the number of nearest neighbors, k, from

8 to 128 using a quadratic increase step and compared the performance of two semivariance

estimators: Matheron estimator and Dowd estimator. In this section, we present the results for

treatments that involved perturbed k with the Matheron estimator, as the outcomes with the Dowd

estimator exhibited similar patterns. Tables A11 and A12, and Figures A2 and A3 from Appendix

3.4 report the detailed results of the Dowd estimator.

3.6.3.1 Number of Nearest Neighbors for Outdoor Environment

Table 3.6 depicts the mean values of performance metrics for each configuration. The OA and

mIoU values range from 82.80% to 83.14% and 52.81% to 53.52%, respectively. These results

suggest that the overall performance is relatively unaffected by variations of k. A moderate decline

in the mean values of OA and mIoU was noted with an increasing k, though there was an exception

at k = 64. We conducted one-tailed t-test to explore if they have significant difference, see Table

A9. The t-test results suggest that only the results of k=8 appear to only be significantly higher

than that of k=32 (both OA and mIoU) and k=128 (mIoU only) at a 90% confidence level.

Regarding the OA and mIoU, a smaller k generally results in a higher IoU in the outdoor

environment.

61

Table 3.6. Performance metrics across different k values (Semantic3D dataset).

Measurements k = 8 k = 16 k = 32 k = 64 k = 128

OA 83.14% 82.87% 82.78% 82.97% 82.80%

mIoU 53.52% 53.19% 53.00% 53.34% 52.81%

Man-made terrain 91.08% 90.57% 90.83% 90.89% 90.71%

Natural terrain 73.93% 72.53% 73.43% 73.16% 72.54%

High vegetation 60.17% 59.72% 58.93% 59.47% 59.44%

Low vegetation 25.70% 24.95% 24.67% 25.25% 25.14%

Buildings 81.53% 81.18% 81.00% 81.03% 81.13%

Hard scape 22.37% 22.89% 22.95% 22.99% 22.58%

Scanning artefacts 24.02% 24.22% 22.93% 23.79% 23.39%

Cars 49.39% 49.44% 49.29% 50.14% 47.56%

*k: number of nearest neighbors. OA: Overall Accuracy. mIoU: mean Intersection over Union.

The class name (e.g., Cars) indicates the IoU for each class. The values are averaged across the

repetitions.

Figure 3.10 shows the variation across ten repetitions for each configuration. Generally, the mIoU

and OA for the ten repetitions varied between 49.5% to 55.5% and 81.0% to 84.5%, respectively.

A noticeable trend suggests a slight decrease in accuracy with a rising k. In summary, a smaller k

is preferred in an outdoor environment. Specifically, the treatment with k = 8 exhibits the best

performance compared to others.

Figure 3.10. Box chart of performance measures for the Semantic3D dataset with Matheron

semivariance. A: mean Intersection over Union; B: Overall Accuracy. Centerline is for median.

62

3.6.3.2 Number of Nearest Neighbors for Indoor Environment

The performance metrics showcased in Table 3.7 reveal patterns for the S3DIS dataset. The metrics

exhibit consistent trends across different k. Specifically, the mIoU values fall in between

approximately 52% to 53%. Similarly, the OA values span from approximately 84% to 85%. One

noticeable trend is the gradual increase in both averaged OA and mIoU as k increases. This trend

reaches a peak when k = 128, with the model achieving 84.56% of OA and 53.04% of mIoU. The

results of one-tailed t-test are shown in Table A10. The performance (i.e., both OA and IoU) of k

= 8 is significantly lower than the other three treatments; moreover, when k = 128, the performance

is significantly higher than others at a 95% confidence level. The trend is not significant when we

compare the three treatments in between (i.e., k = 16, 32, and 64) with each other. Generally, a

larger number of nearest neighbors can be preferred by indoor environment, while the data

partitioning and sampling configuration (i.e., block size and number of points per block) can also

impact the optimal value of k.

Table 3.7. Performance metrics across different k values (S3DIS dataset).

Measurements k = 8 k = 16 k = 32 k = 64 k = 128

OA 84.11% 84.39% 84.39% 84.36% 84.56%

mIoU 52.16% 52.73% 52.81% 52.72% 53.04%

Ceiling 90.62% 90.69% 90.69% 90.64% 90.75%

Floor 97.26% 97.40% 97.26% 97.30% 97.27%

Wall 68.25% 68.82% 68.91% 68.80% 69.29%

Beam 46.60% 46.71% 47.07% 47.24% 47.53%

Column 7.28% 7.83% 7.37% 8.20% 8.32%

Window 38.53% 38.67% 39.08% 38.68% 39.43%

Door 60.75% 62.18% 62.65% 61.54% 63.62%

Table 60.81% 61.06% 61.13% 61.48% 61.61%

Chair 64.27% 64.96% 64.28% 64.41% 64.87%

Sofa 7.47% 8.99% 9.21% 9.85% 9.39%

Bookcase 44.17% 44.97% 45.15% 44.89% 45.48%

Board 42.75% 43.65% 44.00% 42.45% 42.01%

Clutter 49.28% 49.62% 49.69% 49.90% 49.93%

63

*k: number of nearest neighbors. OA: Overall Accuracy. mIoU: mean Intersection over Union.

The class name (e.g., Sofa) indicates the IoU for each class. The values are averaged across the

repetitions.

Table 3.7 indicates that configuring k can impact the performance of the 3D deep learning model.

In indoor environments, where objects can be closely spaced, the model benefits from considering

a larger number of neighbors for its spatial autocorrelation features (also supported by Figure 3.11).

Figure 3.11. Box plot of performance measures for S3DIS dataset with Matheron semivariance. A:

mean Intersection over Union; B: Overall Accuracy. Centerline is for median.

3.6.3.3 Insights for Number of Nearest Neighbor in Different Scenarios

Our findings on global performance in different environment settings indicate that optimal value

of k values depend on the relative scale of the dataset. Scale defines the resolution and extent

(Goodchild 2011). When it comes to our case, the relative scale is with respect to the two

parameters configured during data preprocessing (see details in Section 3.4 Data), block size (i.e.,

extent) and number of points per block (i.e., related to resolution). The relative scale of the block

needs to be carefully configured to fit different datasets since the objects have various spatial

extents and details across datasets. For example, an indoor dataset commonly demands a smaller-

64

scale block (1 meter in this case). For an outdoor dataset, a larger-scale block is commonly used,

for instance, 8 meters in the study. The number of points per block is 4,096, which were set the

same for the two datasets in this study for comparison purpose. Therefore, the actual 3D spatial

extent of the 8 nearest neighbors in the outdoor dataset should be larger than that of 8 neighbors

in the indoor dataset, given the same configuration on the number of points per block. In such as

setting, large-scale outdoor environments tend to benefit from smaller k values, whereas indoor

environments generally perform better with larger k values. Our findings can be explained as

follows. In outdoor datasets, such as Semantic3D, the relative scale of a point cloud subset is

typically larger, capturing a broader range of contextual information. For these datasets, a smaller

k often effectively captures local context. In contrast, for small-scale indoor settings like S3DIS,

the more limited spatial extent may require a larger k to better represent the local context. In

summary, we demonstrated how the model performance reacts to the number of nearest neighbors,

along with the datasets in different relative scales. Although the optimal value of k may vary among

datasets, these insights offer valuable guidance for future research in configuring appropriate value

of k for their datasets.

In the rest of this section, we investigate how varying k affects the performance of models on

specific classes within the two different datasets. The aim is to understand whether different classes

and different environment settings (large-scale outdoor versus small-scale indoor) have distinct

optimal values of k for achieving the best model performance. While the investigation is not to

suggest good value of k for all datasets, it is intended to provide insights into the how the

performances on different classes response to the impact from k nearest neighbor and the relative

scale of the block. Even though the current method may not be able to customize a k value for a

65

specific class, the experiment results and discussion may help inform future methodological design

for better performance.

The IoU of each class was averaged over 10 repetitions and aggregated at various k values. Figure

3.12 and Figure 3.13 show these metrics, indicating the number of points per class and illustrating

the IoU differences in comparison to baselines.

For Semantic3D datasets, the four dominant classes (i.e., buildings, man-made terrain, high

vegetation, and natural terrain) appear to prefer less k nearest neighbors (i.e., k = 8, see Figure

3.12). Car seems to be outstandingly detected when k = 64, where k from 8 to 32 seems to have a

similar IoU value, indicating that each class prefers a specific k. It appears k = 128 is too big in

this large-scale outdoor scenario, where it seems not to be preferred by any of the classes. We

observed that there can be an upper limit of k that is informative in a particular environment setting,

where semivariance may not be functioning over a specific limit. An extreme scenario is that the

influence of semivariance will disappear if k equals the number of points in this block (i.e., 4,096

in this study) since all points have the same values.

66

Figure 3.12. Relative differences in Intersection over Union (colored lines) along the increase of

k nearest neighbors (k =128 as baseline) for Semantic3D dataset. Number of points are shown in

columns. The values are averaged across the repetitions.

For S3DIS dataset, the trend of k against IoU (Figure 3.13), seems to be opposite from that of

Semantic3D benchmark (see Figure 3.12) because a larger k is preferred. The IoU of the two

dominant classes (i.e., ceiling and floor) seem to be insensitive to a change in k, which, to our

understanding, could be potentially attributed to either the sufficient training data for them or the

less variation of textural information. Others in this dataset seem to prefer k = 128 most of the time

except for the board and sofa. We assume there can be a lower limit of k that the corresponding

semivariance will be less informative if k is smaller than a specific threshold. For example, the

semivariance within eight nearest neighbors in a small block can be close to zero.

Above all, the impact of the number of neighboring points on prediction performance may vary

for different classes and datasets. Certain classes derive greater benefits from the local context—

such as car in the Semantic3D dataset and door in the S3DIS dataset—whereas others do not

exhibit the same level of sensitivity. The approach outlined in our study lacks the capability to

67

dynamically adjust the number of neighbors for each class individually. However, the presented

findings serve as an insightful indicator for guiding the development of future methodologies.

These insights underscore the importance of considering class-specific characteristics in the design

of more adaptable and efficient neighbor-selection algorithms.

Figure 3.13. Relative differences in Intersection over Union (colored lines) along the increase of

k nearest neighbors (k = 8 as baseline) for S3DIS dataset. Number of points are shown in columns.

The values are averaged across the repetitions.

3.6.3.4 Discussion on Estimators for Spatial Autocorrelation Features

In our experiments, Matheron semivariance and Dowd semivariance show quite similar results,

where Matheron results seem to be slightly higher (around 1%) than that of the Dowd results (see

Tables A11 and A12). Moreover, they also show similar patterns with an increasing k (ee Dowd’s

in Figures A2 and A3), where there is a decreasing performance when incorporating more

neighbors. We attribute this similarity to the relatively low color variability in the lag distance in

68

the experiments as the Dowd semivariance estimator was originally proposed to derive a more

robust semivariance by using the median instead of mean which is sensitive to extreme outliers

(Dowd 1984). The results of the Dowd semivariance are presented in Appendix 3.4.

3.7 Conclusion

This study sheds new light on the potential of spatial autocorrelation features, specifically

semivariance serving as local spatial context, in enhancing 3D deep learning’s ability to understand

complex 3D point cloud data with additional channels (i.e., color information in this study). Our

observations have emphasized the importance of spatial autocorrelation features in refining 3D

deep learning models. Its integration has resulted in noticeable improvements in per class accuracy

across different environment settings.

Our first finding demonstrates the significance of spatial autocorrelation features in 3D deep

learning for geospatial object detection. Specifically, the improved performance observed when

incorporating color information and spatial autocorrelation features, as compared to using only

spatial information, reinforces that the explicit incorporation of spatial autocorrelation enhances

the power of 3D deep learning models for geospatial object detection. The spatial inner continuity

and external discontinuity broadly exist in remotely sensed geospatial data no matter whether it is

2D or 3D. Moreover, the results from the examination of 3D point cloud data in this study and

previous studies on 2D geospatial data suggest its ability to inform machine learning models to

distinguish different objects.

In this study, we recognized the constraints of conventional methodologies for deriving

semivariance from geospatial data, especially when applied to spatially unstructured and uneven

distributed 3D point cloud. We have introduced a novel framework that seamlessly integrates kNN

69

searching with the quantile binning method. This framework adeptly addressed the challenges

presented by the unstructured nature of 3D point cloud, ensuring effective extraction of spatial

autocorrelation features.

Our exploration into model generalization further validated the insights we presented as our third

main contribution. We have provided insightful guidance for upcoming research by understanding

the uncertainty of spatial context. This understanding is crucial for deriving spatial autocorrelation

features. A key aspect of this process involves recognizing the sensitivities tied to the number of

nearest neighbors. These sensitivities vary notably depending on the environmental settings. For

instance, there are distinct considerations for indoor versus outdoor scenes. In a future study, we

will keep seeking the potential of spatial autocorrelation features in helping identify 3D geospatial

objects, especially finding a way to adaptively select the number of nearest neighbors for better

performance.

This study not only underpins the potential of spatial autocorrelation features such as semivariance

in transforming the way 3D deep learning interprets complex 3D geospatial data but also

underscores the efficacy of our proposed framework. It guides future studies to further enhance

the power of spatial autocorrelation in 3D deep learning—i.e., the use of spatial information or a

spatial algorithm to inform deep learning algorithms while using the latter to resolve spatial

problems. Embracing this bridge between deep learning and GIScience is not just an advancement

for GeoAI; it represents a significant advancement in a broader field of geospatial applications.

70

Reference

Armeni, I., S. Sax, A. R. Zamir & S. Savarese. 2016. Joint 2D-3D-semantic data for indoor scene

understanding. In 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 1534-1543. Las Vegas, NV, USA.

Atkinson, P. M. & P. Lewis (2000) Geostatistical classification for remote sensing: An

introduction. Computers & Geosciences, 26, 361-371.

Bian, L. & J. Lee (2005) Incorporating multiple index vectors and feedback to improve urban

objects retrieval. GIScience & Remote Sensing, 42, 97-112.

Bian, L. & Z. Xie (2004) A spatial dependence approach to retrieving industrial complexes from

digital images. The Professional Geographer, 56, 381-393.

Boulch, A. (2020) ConvPoint: Continuous convolutions for point cloud processing. Computers &

Geosciences, 88, 24-34.

Cormen, T. H., C. E. Leiserson, R. L. Rivest & C. Stein. 2022. Introduction to algorithms. MIT

press.

Couclelis, H. (1986) Artificial intelligence in geography: Conjectures on the shape of things to

come. The Professional Geographer, 38, 1-11.

Cressie, N. & D. M. Hawkins (1980) Robust estimation of the variogram: I. Journal of the

International Association for Mathematical Geology, 12, 115-125.

Dowd, P. A. 1984. The variogram and Kriging: Robust and resistant estimators. In Geostatistics

for Natural Resources Characterization: Part 1, eds. G. Verly, M. David, A. G. Journel &

A. Marechal, 91-106. Dordrecht: Springer Netherlands.

Duan, W., Y.-Y. Chiang, S. Leyk, J. H. Uhl & C. A. Knoblock (2020) Automatic alignment of

contemporary vector data and georeferenced historical maps using reinforcement learning.

International Journal of Geographical Information Science, 34, 824-849.

Durrieu, S. & R. F. Nelson (2013) Earth observation from space – the issue of environmental

sustainability. Space Policy, 29, 238-250.

Engelmann, F., T. Kontogianni, A. Hermans & B. Leibe. 2017. Exploring spatial context for 3D

semantic segmentation of point clouds. In Proceedings of the IEEE international

conference on computer vision workshops, 716-724.

Fan, S., Q. Dong, F. Zhu, Y. Lv, P. Ye & F.-Y. Wang. 2021. SCF-net: Learning spatial contextual

features for large-scale point cloud segmentation. In 2021 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), 14504-14513. IEEE.

Goodchild, M. (2022) The Openshaw effect. International Journal of Geographical Information

Science, 36, 1697-1698.

Goodchild, M. & W. Li (2021) Replication across space and time must be weak in the social and

environmental sciences. Proceedings of the National Academy of Sciences, 118.

Goodchild, M. F. (2011) Scale in GIS: An overview. Geomorphology, 130, 5-9.

Guo, Y., H. Wang, Q. Hu, H. Liu, L. Liu & M. Bennamoun (2021) Deep learning for 3D point

clouds: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43,

4338-4364.

Haack, B. N., N. D. Herold, M. A. Bechdol & Others (2000) Radar and optical data integration for

land-use/land-cover mapping. Photogrammetric Engineering and Remote Sensing, 66,

709-716.

Hackel, T., N. Savinov, L. Ladicky, J. D. Wegner, K. Schindler & M. Pollefeys (2017)

Semantic3D.net: A new Large-scale Point Cloud Classification Benchmark. ISPRS Annals

of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-1-W1.

71

Haralick, R. M., K. Shanmugam & I. h. Dinstein (1973) Textural features for image classification.

IEEE Transactions on Systems, Man, and Cybernetics, SMC-3, 610-621.

Humeau-Heurtier, A. (2019) Texture feature extraction methods: A Survey. IEEE Access, 7, 8975-

9000.

Jaderberg, M., K. Simonyan & A. Zisserman (2015) Spatial transformer networks. Conference on

Neural Information Processing Systems, 28.

Kamal, M., S. Phinn & K. Johansen (2014) Characterizing the spatial structure of mangrove

features for optimizing image-based mangrove mapping. Remote Sensing, 6, 984-1006.

Karasiak, N., J. F. Dejoux, C. Monteil & D. Sheeren (2022) Spatial dependence between training

and test sets: another pitfall of classification accuracy assessment in remote sensing.

Machine Learning, 111, 2715-2740.

Kattenborn, T., J. Leitloff, F. Schiefer & S. Hinz (2021) Review on Convolutional Neural

Networks (CNN) in vegetation remote sensing. ISPRS Journal of Photogrammetry and

Remote Sensing, 173, 24-49.

Klemmer, K., N. S. Safir & D. B. Neill. 2023. Positional encoder graph neural networks for

geographic data. In International Conference on Artificial Intelligence and Statistics, 1379-

1389. PMLR.

Kwan, M.-P. (2012) The uncertain geographic context problem. Annals of the Association of

American Geographers, 102, 958-968.

Landrieu, L. & M. Simonovsky. 2018. Large-scale point cloud semantic segmentation with

superpoint graphs. In Proceedings of the IEEE conference on computer vision and pattern

recognition, 4558-4567.

Lee, D. R. & G. T. Sallee (1970) A method of measuring shape. Geographical Review, 555-563.

Li, Z., M. E. Hodgson & W. Li (2018) A general-purpose framework for parallel processing of

large-scale LiDAR data. International Journal of Digital Earth, 11, 26-47.

Matheron, G. (1963) Principles of geostatistics. Economic geology, 58, 1246-1266.

Maturana, D. & S. Scherer. 2015. VoxNet: A 3D convolutional neural network for real-time object

recognition. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 922-928. ieeexplore.ieee.org.

Miranda, F. P. & J. R. Carr (1994) Application of the semivariogram textural classifier (STC) for

vegetation discrimination using SIR‐B data of the guiana shield, northwestern brazil.

Remote Sensing Reviews, 10, 155-168.

Miranda, F. P., L. E. N. Fonseca & J. R. Carr (1998) Semivariogram textural classification of

JERS-1 (Fuyo-1) SAR data obtained over a flooded area of the Amazon rainforest.

International Journal of Remote Sensing, 19, 549-556.

Miranda, F. P., J. A. Macdonald & J. R. Carr (1992) Application of the semivariogram textural

classifier (STC) for vegetation discrimination using SIR-B data of Borneo. International

Journal of Remote Sensing, 13, 2349-2354.

Openshaw, S. (1992) Some suggestions concerning the development of artificial intelligence tools

for spatial modelling and analysis in GIS. The annals of regional science, 26, 35-51.

Openshaw, S. & C. Openshaw. 1997. Artificial intelligence in geography. John Wiley & Sons, Inc.

Pereira, E., E. Silveira, I. T. Bueno & F. W. A. Júnior (2019) Spatial and spectral remote sensing

features to detect deforestation in Brazilian Savannas. Advances in Forestry Science, 6,

775-782.

72

Qi, C., H. Su, K. Mo & L. J. Guibas. 2017a. Pointnet: Deep learning on point sets for 3d

classification and segmentation. In Proceedings of the IEEE conference on computer vision

and pattern recognition, 652-660.

Qi, C., H. Su, M. Nießner, A. Dai, M. Yan & L. J. Guibas. 2016. Volumetric and multi-view cnns

for object classification on 3D data. In Proceedings of the IEEE conference on computer

vision and pattern recognition, 5648-5656.

Qi, C., L. Yi, H. Su & L. J. Guibas (2017b) Pointnet++: Deep hierarchical feature learning on point

sets in a metric space. Advances in Neural Information Processing Systems, 30.

Rezatofighi, H., N. Tsoi, J. Gwak, A. Sadeghian, I. Reid & S. Savarese. 2019. Generalized

intersection over union: A metric and a loss for bounding box regression. In Proceedings

of the IEEE/CVF conference on computer vision and pattern recognition, 658-666.

Shekhar, S., P. R. Schrater, R. R. Vatsavai, W. Wu & S. Chawla (2002) Spatial contextual

classification and prediction models for mining geospatial data. IEEE Transactions on

Multimedia, 4, 174-188.

Simonovsky, M. & N. Komodakis. 2017. Dynamic edge-conditioned filters in convolutional

neural networks on graphs. In Proceedings of the IEEE conference on computer vision and

pattern recognition, 3693-3702.

Smith, T. R. (1984) Artificial intelligence and its applicability to geographical problem solving.

The Professional Geographer, 36, 147-158.

Tang, W. & M. Jia (2014) Global sensitivity analysis of a large agent-based model of spatial

opinion exchange: A heterogeneous multi-GPU acceleration approach. Annals of the

Association of American Geographers, 104, 485-509.

Tang, W. & S. Wang (2020) Navigating high performance computing for geospatial applications.

High Performance Computing for Geospatial Applications, 1-5.

Tso, B. & R. C. Olsen (2004) Algorithms and technologies for multispectral, hyperspectral, and

ultraspectral imagery x. Algorithms and Technologies for.

Wu, W., Z. Qi & L. Fuxin. 2019. Pointconv: Deep convolutional networks on 3d point clouds. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

9621-9630.

Wu, X., J. Peng, J. Shan & W. Cui (2015) Evaluation of semivariogram features for object-based

image classification. Geo-spatial Information Science, 18, 159-170.

Yu, M. & Q. Liu (2021) Deep learning-based downscaling of tropospheric nitrogen dioxide using

ground-level and satellite observations. Science of the Total Environment, 773, 145145.

Zawadzki, J., C. Cieszewski, M. Zasada & R. Lowe (2005) Applying geostatistics for

investigations of forest ecosystems using remote sensing imagery. Silva Fennica, 39.

Zhao, H., L. Jiang, J. Jia, P. H. S. Torr & V. Koltun. 2021. Point Transformer. In Proceedings of

the IEEE/CVF International Conference on Computer Vision, 16259-16268.

openaccess.thecvf.com.

73

Appendix 3.1 Modified Implementation of PointNet

Figure A1. Modified PointNet architecture incorporating spatial autocorrelation features as

additional channels for large-scale semantic segmentation. The numbers on top of the layers

suggest the number of input channels, number of neurons per layer, and number of outputs channel.

n is the number of points per block and c is the number of classes.

74

Appendix 3.2 Summary of the Statistics for Accuracy Measurements in Experiment 1

Table A1. Results of 10 repetitions for models trained on spatial information only on Semantic3D

dataset.

Statistics Mean Std. Max Min

OA 66.49% 2.97% 69.26% 59.59%

mIoU 30.74% 1.80% 33.35% 28.48%

Man-made terrain 69.18% 6.23% 77.29% 58.40%

Natural terrain 27.03% 8.50% 38.27% 14.60%

High vegetation 36.80% 3.52% 44.09% 31.15%

Low vegetation 8.58% 2.68% 11.60% 2.65%

Buildings 65.64% 5.31% 70.65% 55.02%

Hard scape 11.80% 3.79% 18.65% 6.47%

Scanning artefacts 12.60% 1.66% 16.45% 10.74%

Cars 14.29% 4.77% 20.05% 6.43%

*OA: Overall Accuracy. mIoU: mean Intersection over Union.

75

Table A2. Results of 10 repetitions for models trained on spatial information and color information

on Semantic3D dataset.

Statistics Mean Std. Max Min

OA 81.95% 1.06% 83.10% 79.66%

mIoU 51.58% 1.56% 53.30% 47.84%

Man-made terrain 90.69% 0.77% 91.75% 89.02%

Natural terrain 72.59% 4.15% 77.64% 64.96%

High vegetation 57.01% 2.33% 61.81% 53.54%

Low vegetation 24.12% 1.38% 25.64% 20.75%

Buildings 79.85% 1.63% 81.60% 77.22%

Hard scape 21.55% 3.08% 26.44% 14.68%

Scanning artefacts 20.25% 2.69% 23.89% 14.23%

Cars 46.55% 4.49% 51.44% 36.98%

*OA: Overall Accuracy. mIoU: mean Intersection over Union

76

Table A3. Results of 10 repetitions for models trained on datasets with additional spatial

autocorrelation information on Semantic3D dataset.

Statistics Mean Std. Max Min

OA 83.32% 1.17% 84.86% 81.38%

mIoU 54.05% 1.83% 56.52% 51.55%

Man-made terrain 91.02% 0.85% 92.23% 89.58%

Natural terrain 73.45% 2.37% 78.30% 68.82%

High vegetation 60.15% 3.32% 63.54% 54.51%

Low vegetation 26.41% 2.09% 30.25% 23.36%

Buildings 81.38% 1.88% 83.91% 78.24%

Hard scape 23.19% 1.52% 25.15% 20.33%

Scanning artefacts 25.10% 2.90% 28.52% 20.38%

Cars 51.72% 5.28% 59.07% 42.40%

*OA: Overall Accuracy. mIoU: mean Intersection over Union

77

Table A4. One-tailed t-test results in terms of p-value for treatments on Semantic3D dataset.

Statistics Spatial info. v.s. RGB RGB v.s. Semivariance

OA <0.01 0.01

mIoU <0.01 <0.01

Man-made terrain <0.01 0.19

Natural terrain <0.01 0.29

High vegetation <0.01 0.01

Low vegetation <0.01 <0.01

Buildings <0.01 0.03

Hard scape <0.01 0.07

Scanning artefacts <0.01 <0.01

Cars <0.01 0.01

*Spatial info., RGB, and Semivariance are the three treatments aforementioned.

78

Table A5. Results of 10 repetitions for models trained on spatial information only on S3DIS dataset.

Statistics Mean Std. Max Min

OA 79.80% 0.27% 80.07% 79.21%

mIoU 45.31% 0.34% 45.74% 44.64%

Ceiling 87.02% 0.69% 88.08% 85.94%

Floor 96.68% 0.32% 96.93% 96.16%

Wall 59.92% 0.52% 61.01% 59.32%

Beam 44.80% 1.32% 46.72% 42.65%

Column 9.82% 1.61% 13.58% 7.73%

Window 19.45% 2.78% 23.40% 13.76%

Door 37.86% 0.83% 39.71% 36.51%

Table 56.88% 0.84% 58.39% 55.48%

Chair 62.99% 2.01% 65.47% 59.08%

Sofa 26.05% 2.24% 28.47% 22.11%

Bookcase 35.13% 1.80% 38.16% 33.17%

Board 9.99% 0.82% 11.19% 8.46%

Clutter 42.40% 0.53% 43.18% 41.43%

*OA: Overall Accuracy. mIoU: mean Intersection over Union.

79

Table A6. Results of 10 repetitions for models trained on spatial information and color information

on S3DIS dataset.

Statistics Mean Std. Max Min

OA 82.83% 0.51% 83.47% 81.90%

mIoU 50.19% 0.72% 51.05% 48.99%

Ceiling 89.03% 0.45% 89.80% 88.36%

Floor 97.14% 0.08% 97.27% 97.04%

Wall 65.99% 1.33% 67.89% 63.43%

Beam 45.50% 0.99% 47.17% 43.95%

Column 5.99% 1.09% 7.61% 4.83%

Window 37.40% 1.34% 39.15% 35.29%

Door 58.78% 1.93% 62.19% 56.18%

Table 59.25% 1.67% 61.43% 56.38%

Chair 61.03% 1.89% 63.32% 56.38%

Sofa 6.33% 1.49% 9.28% 4.93%

Bookcase 40.20% 2.07% 43.63% 36.27%

Board 38.54% 3.14% 42.38% 32.40%

Clutter 47.35% 1.27% 48.65% 44.68%

*OA: Overall Accuracy. mIoU: mean Intersection over Union.

80

Table A7. Results of 10 repetitions for models trained on datasets with additional spatial

autocorrelation information on S3DIS dataset.

Statistics Mean Std. Max Min

OA 84.19% 0.33% 84.78% 83.55%

mIoU 52.54% 0.56% 53.38% 51.34%

Ceiling 90.82% 0.60% 91.53% 89.63%

Floor 97.18% 0.21% 97.41% 96.75%

Wall 68.54% 0.70% 69.87% 67.31%

Beam 46.90% 1.18% 48.85% 44.86%

Column 7.72% 1.36% 9.51% 5.33%

Window 39.04% 1.04% 40.10% 37.09%

Door 61.64% 2.56% 67.14% 58.98%

Table 60.51% 1.11% 62.89% 58.71%

Chair 64.29% 0.71% 65.29% 62.84%

Sofa 9.00% 4.57% 17.91% 3.42%

Bookcase 44.29% 1.36% 46.29% 41.89%

Board 43.98% 1.54% 46.21% 41.82%

Clutter 49.07% 0.96% 50.46% 47.44%

*OA: Overall Accuracy. mIoU: mean Intersection over Union.

81

Table A8. One-tailed t-test results for treatments on Semantic3D dataset in terms of p-value.

Statistics Spatial info. v.s. RGB RGB v.s. Semivariance

OA <0.01 <0.01

mIoU <0.01 <0.01

Ceiling <0.01 <0.01

Floor <0.01 0.26

Wall <0.01 <0.01

Beam 0.13 0.01

Column <0.01 <0.01

Window <0.01 0.01

Door <0.01 <0.01

Table <0.01 0.04

Chair 0.03 <0.01

Sofa <0.01 0.05

Bookcase <0.01 <0.01

Board <0.01 <0.01

Clutter <0.01 0.01

*Spatial info., RGB, and Semivariance are the three treatments aforementioned.

82

Appendix 3.3 One-tailed t-test Results for Different kNN

Table A9. One-tailed t-test results for Semantic3D dataset in terms of p-value.

kNN OA mIOU

8-16 0.14 0.17

8-32 0.05 0.07

8-64 0.29 0.34

8-128 0.11 0.06

128-8 0.11 0.06

128-16 0.30 0.18

128-32 0.49 0.35

128-64 0.21 0.09

*kNN: k nearest neighbor. OA: Overall Accuracy. mIoU: mean Intersection over Union.

83

Table A10. One-tailed t-test results on S3DIS dataset in terms of p-value.

kNN OA mIOU

8-16 <0.01 <0.01

8-32 <0.01 <0.01

8-64 0.01 <0.01

8-128 <0.01 <0.01

128-8 <0.01 <0.01

128-16 0.02 0.02

128-32 0.05 0.05

128-64 <0.01 0.01

*kNN: k nearest neighbor. OA: Overall Accuracy. mIoU: mean Intersection over Union.

84

Appendix 3.4 Results of Perturbing k Nearest Neighbors Using Dowd Estimator

Table A11. Performance metrics across different k values (Semantic3D dataset) using Dowd

estimator.

Measurements k = 8 k = 16 k = 32 k = 64 k = 128

OA 82.99% 82.94% 83.06% 82.91% 82.66%

mIoU 53.36% 53.12% 53.22% 52.99% 52.71%

Man-made terrain 90.90% 90.72% 90.93% 90.59% 90.78%

Natural terrain 72.95% 73.52% 73.78% 72.01% 72.51%

High vegetation 60.47% 60.19% 60.33% 60.53% 59.39%

Low vegetation 25.56% 25.69% 25.23% 25.21% 25.74%

Buildings 81.31% 81.35% 81.51% 81.47% 81.06%

Hard scape 22.62% 22.52% 22.50% 22.00% 21.89%

Scanning artefacts 24.43% 22.87% 23.55% 23.42% 22.78%

Cars 48.66% 48.11% 47.96% 48.72% 47.52%

*k: number of nearest neighbors. OA: Overall Accuracy. mIoU: mean Intersection over Union.

The class name (e.g., Cars) indicates the IOU for each class. The values are averaged across the

repetitions.

85

Figure A2. Box chart of performance measures for Semantic3D dataset with Dowd estimator. A:

mean Intersection over Union; B: Overall accuracy. Centerline is for median.

86

Table A12. Performance metrics across different k values (S3DIS dataset) using Dowd estimator.

Measurements k = 8 k = 16 k = 32 k = 64 k = 128

OA 83.86% 84.14% 84.16% 84.29% 84.37%

mIoU 51.74% 52.30% 52.48% 52.56% 52.82%

Ceiling 90.40% 90.54% 90.44% 90.62% 90.57%

Floor 97.26% 97.24% 97.27% 97.32% 97.28%

Wall 67.74% 68.39% 68.31% 68.79% 68.77%

Beam 46.11% 46.69% 47.27% 47.26% 47.22%

Column 6.48% 7.18% 7.56% 8.02% 7.99%

Window 37.63% 37.80% 38.37% 38.59% 38.70%

Door 60.12% 61.71% 61.49% 61.85% 62.70%

Table 60.43% 60.76% 60.39% 60.48% 61.10%

Chair 63.68% 64.19% 63.87% 64.31% 64.69%

Sofa 8.41% 9.47% 10.02% 9.40% 10.31%

Bookcase 44.17% 44.97% 45.15% 44.89% 45.48%

Board 42.75% 43.65% 44.00% 42.45% 42.01%

Clutter 49.28% 49.62% 49.69% 49.90% 49.93%

*k: number of nearest neighbors. OA: Overall Accuracy. mIoU: mean Intersection over Union.

The class name (e.g., Sofa) indicates the IOU for each class. The values are averaged across the

repetitions.

87

Figure A3. Box plot of performance measures for S3DIS dataset with Dowd estimator. A: mean

Intersection over Union; B: Overall accuracy. Centerline is for median.

88

4 SPATIAL AUTOCORRELATION ENCODER FOR 3D DEEP LEARNING

4.1 Introduction

3D geospatial object detection is underscored in its critical role in building accurate 3D models for

state-of-the-art applications of geographical information science (GIScience). These applications

span digital earth (Guo, Goodchild and Annoni 2020), twin cities (Goodchild 2022b, Batty 2023),

and Building Information Modeling (BIM) (Goodchild 2021, Batty 2013), where the 3D

representations are important not only for visualizing but also for analyzing, and management. In

the domain of GIScience, the past decades have witnessed a remarkable evolution in 3D techniques,

ranging from the development of data acquisition technologies (e.g., LiDAR8) to the evolution of

data processing and analyzing technologies supported by computing technologies. Early studies

naively represent 3D spatial objects, essentially reflecting the spatial location of the object in a 3D

space. For example, objects were represented by spatial points in a 3D network (Kwan and Lee

2005) to describe the spatial relationship among them. Moreover, the representations of buildings

are simply derived from blueprints (Evans, Hudson-Smith and Batty 2006, Batty and Hudson‐

Smith 2005, Batty 2000) without the as-built status of them. However, nowadays, the

advancements of 3D techniques have made it possible to generate up-to-date, and as-is

representations of diverse geospatial objects, laying the foundation for the development of 3D

geographical information systems (GIS). Therefore, there is a demand for accuracy and efficiency

for 3D geospatial object detection.

An illustrative example of this is Tree Folio NYC9, which is a digital twin of New York City (NYC)

Urban Canopy produced by the Design Across Scales Lab at Cornell University. It is a web-based

8 LiDAR stands for light detection and ranging.
9 https://labs.aap.cornell.edu/daslab/projects/treefolio

https://labs.aap.cornell.edu/daslab/projects/treefolio

89

GIS application designed to provide practitioners and stakeholders with a user-friendly platform

for querying, analyzing, and visualizing the 3D point cloud representations of individual trees in

NYC. The development of such applications requires the detection and extraction of trees from 3D

point clouds. Due to the number of trees in NYC (approximately 8 million), it would become

incredibly time-consuming and labor-intensive work if performed manually.

3D deep learning algorithms can be potentially used to address this challenge. Deep learning for

object detection in 3D context has been attracted unprecedented focus since the first architecture,

PointNet (Qi et al. 2017a), which is a deep neural network designed to directly consume point

cloud as input, shaping the development of neural network architectures in recent years. The

variants of this architecture have been continuously serving as a key part in many cutting-edge

architectures from recent studies (Xie et al. 2021, Wu et al. 2020, Ren et al. 2024, Qian et al. 2022).

Parallel to these advancements, the emergence of GeoAI—a synthesis of GIScience and Artificial

Intelligence (AI)—marks a pivotal shift towards not only using cutting-edge AI methodologies to

inform geographical studies but also to enrich AI with geographical insights (Goodchild 2022a, Li

2021). A few efforts have been seen since then. For example, Chen (2024) conducted a systematic

investigation and proved the effectiveness of semivariance as a representation of spatial

autocorrelation in informing 3D deep learning.

Semivariance is essentially estimated by a function, such as Matheron's estimator (Matheron 1963)

and Dowd’s estimator (Dowd 1984), on pairwise differences in a neighborhood. Even though there

are enhancement brought by explicitly feeding the semivariance into the model for object detection,

there are two weaknesses of the method that may entangle the practitioners to use it. One is that

pre-calculation of semivariance is required, which demands additional effort towards object

90

detection rather than end-to-end10. The other weakness is that it is difficult for users especially

those without expert knowledge to well configure the parameters, such as number of nearest

neighbors, number of bins, and semivariance estimators, whose optimal setting might differ for

various datasets.

Therefore, this study proposed a spatial autocorrelation encoder, which is a neural network-based

module to extract high-dimensional vector as a representation of spatial contextual features for the

neighborhood of each point based on pairwise differences ordered by spatial lag distance. The

proposed spatial autocorrelation encoder neither requires the user to pre-calculate the contextual

features for each point, nor demands expert knowledge to carefully configure the dataset-

dependent parameters for the model. The proposed encoder directly extracts a context embedding

from the ordered pairwise difference and the parameters are configured during the training process.

This study also conducted environments to investigate the effectiveness of ordered pairwise

differences to prove the validity in using it as the initial representation of 3D spatial autocorrelation.

The proposed encoder not only enhances the capability of GIS in handling and interpreting 3D

geospatial data but also paves the way for further investigation on geographical insights in

benefiting AI models. The implications of this are significant for various applications, including

urban planning, environmental monitoring, and disaster management, where quick and accurate

interpretation of spatial data is crucial. The contributions of this study are highlighted as follows:

• Enhanced Geospatial Object Detection: The study underscores the utility of ordered

pairwise differences for identifying diverse geospatial objects, reinforcing the synergy

10 End-to-end, in the domain machine learning, typically refers to a process or a model that takes raw data as input

and directly produces the expected output, without demanding any manual intermediate steps operated by humans.

91

between geographic theories, statistical methods, and deep learning advancements. It

demonstrates the pivotal role of spatial statistics in enriching AI technologies for geospatial

object detection from complex environments.

• Automate Contextual Representation Extraction: By developing a neural network-based

encoder that effectively extracts spatially contextual embeddings from ordered pairwise

differences, this research showcases an innovative integration of AI in geospatial analysis.

This approach simplifies the application of traditional semivariance estimations, offering a

streamlined, dataset-specific learning mechanism that enhances model accuracy and

efficiency in geospatial object detection.

The remainder of this manuscript is organized as follows: Section 4.2 reviews the related

literature with a focus on contextual features in object detection. Sections 4.3 to 4.5 detailly

explained the methodology of this study, including the design of the proposed encoder,

processing to derive ordered pairwise difference, dataset used in this study, and experimental

designs. Section 4.6 delineated the results of the experiments followed by discussion about

them. Finally, the conclusions are depicted in Section 4.7.

4.2 Literature Review

Spatial context is important to the task of 3D object detection (Mottaghi et al. 2014, Pohlen et al.

2017, Engelmann et al. 2017). To improve the performance of deep learning architectures on 3D

datasets, many studies focus on using different feature extraction modules to improve the deep

learning model. We listed some of them from a scope of geographical insights enhancing AI model.

Wu et al. (2020) presents an advanced method for 3D object detection in point clouds, improving

upon the Frustum PointNet (Charles et al. 2018) by incorporating local neighborhood information

92

into point feature computation. This approach enhances the representation of each point through

the neighboring features. The novel local correlation-aware embedding operation leads to superior

detection performance on the KITTI dataset compared to the F-PointNet baseline. This method

emphasized the importance of local spatial relationships for 3D object detection in deep learning

frameworks. Klemmer, Safir and Neill (2023) adds a positional encoder using Moran’s I as an

auxiliary task to enhance the graphic neural network in interpolation tasks. Fan et al. (2021)

designed a module based on the distance between points to capture its local spatial context to

inform object detection. Engelmann et al. (2017) proposed a network to incorporate larger-scale

spatial context in order to improve the model performance by considering the interrelationship

among subdivisions (i.e., blocks) of the point cloud. While most of the endeavors contribute to

improving the model capability to derive discriminative feasters from spatial information,

information from other channels seems to be overlooked (Chen 2024). Current LiDAR often

captures more information rather than the position, such as intensity, and RGB, while some special

sensor can further collect other spectrum information such as near inferred for thermal studies.

Even though some studies integrate RGB as input (Qi et al. 2017b, Qi et al. 2017a, Boulch 2020),

colors are not their focus and limited considerations are taken on utilizing them. Chen (2024)

pioneered a study with a focus on making more use of RGB information by explicitly incorporating

semivariance variables to improve the model performance, which are estimated based on the

variation of observed color information and corresponding spatial lag distance. Extending the

scope of Chen (2024), we would further explore the spatial variances of non-spatial information.

The color information as well as the texture embedded in it, for example, is important for humans

to recognize different objects (Haralick, Shanmugam and Dinstein 1973, Tso and Olsen 2004).

Therefore, we emphasize the importance of color in geospatial object detection, moreover, we call

93

for investigation of the channels other than spatial information and corresponding endeavor to

improve the performance of models. We are leading a focus shift towards bridging the gap between

the development of 3D deep learning and better utilizing non-spatial information.

4.3 Methodology

4.3.1 Architecture design of the spatial autocorrelation encoder

Inspired by Chen (2024) explicitly feeding semivariance as contextual features for object detection,

we aim to automate the estimation process and derive dataset-dependent contextual embeddings

by using a spatial autocorrelation encoder (see Figure 4.1). One important requirement for the

design of the neural network architecture for 3D deep learning is that the embeddings should be

permutation invariant to the input (Qi et al. 2017). PointNet uses max pooling as a symmetric

function that makes the output global signatures invariant in terms of permutation. ConvPoint

(Boulch 2020) adopted a continuous convolution operation to ensure the convoluted features are

permutation invariant to the input point cloud. The spatial dependency embeddings extracted by

the proposed encoder are naturally permutation invariant to the input point cloud because the input

unordered point cloud for the contextual feature estimation will be resorted based on the lag

distance (see Figure 4.2).

94

Figure 4.1. Proposed spatial autocorrelation encoder for spatial autocorrelation features extraction.

PointNet is used as the basic structure for demonstration purposes. The numbers in parenthesis are

the # input channels, # neurons in hidden layers, and # output channels.

4.3.2 Ordered pairwise differences.

Ordered pairwise differences is the initial input of the sub-neural network from the spatial

autocorrelation encoder. We demonstrate how to derive ordered pairwise difference using one

point as example shown in Figure 4.2. To calculate ordered pairwise differences, we would need

to define the neighbors. Due to the unstructured nature of a 3D point cloud, it is not feasible to use

a fixed distance to identify the neighbors. For example, the number of neighbors within a certain

distance can vary across different points. Moreover, one point in point sparse areas may not find a

neighbor within a given distance. Therefore, it is essential to use k nearest neighbor to identify the

neighborhood. This idea is supported by many cutting-edge studies, such as PointNet++ (Qi et al.

2017b), PointNext (Qian et al. 2022), and ConvPoint (Boulch 2020) using the kNN approach. kNN

is also adopted in this paper. One argument that is often associated along with kNN is that the local

neighborhood captured by kNN varied its size for different points, which may lead to inconsistent

95

features. However, we are aware of this difficulty brought by kNN that feature might not be

inconsistent, but we address this challenge through random sampling as suggested by ConvPoint.

Randomly sampling points to represent the same object within the same scene in the training

process is a way to mitigate the inconsistencies brought by the kNN approach.

Figure 4.2. Illustration of the preprocessing to prepare a training dataset and derive ordered

pairwise differences. One point from a block is used for demonstration purpose.

To make it more clear how the original point clouds are prepared, we illustrate how the pairwise

differences are calculated from the initial dataset. Data partitioning and subsampling are two

essential steps in the preprocessing steps of cutting-edge 3D deep learning methods. This is due to

the consideration related to computing resources and the nature of neural networks. The point

cloud datasets directly collected by sensors like LiDAR instruments commonly include millions

of points with the dataset often gigabytes in size, which is too large to be efficiently, or feasibility

be fed to the CPU and/or GPU. On the other hand, neural networks require structured input, but

the unstructured nature of 3D point clouds does not satisfy this requirement. Therefore, we have

to perform data partitioning and subsampling to prepare structured and memory-manageable

datasets for deep neural networks. These two steps are demonstrated as the first two steps in Figure

4.2. Data partitioning is implemented by using a particular size of blocks to subtract a subset from

the original point cloud. Furthermore, a sampling method is conducted to sample from the subset

to an anticipated number. Considering the unevenly distributed nature of 3D point cloud, this step

96

is often done by sampling with replacement. This is to overcome the case that the number of points

within the subset does not reach the expected number of points per block.

A block of sampled points is the input for the ordered pairwise differences extraction. We used

one point from such a block as an example to explain how the pairwise differences are extracted.

First, we identify the neighbors of the point by kNN. While kNN is computationally intensive,

especially in current 3D deep learning methods that employ k , it takes around 1 ⁄ 3 of the total

computing time to train a deep learning model. We used tree searching embedded in SciPy11 to

implement kNN, which is more efficient than calculating all pair distances. Once k nearest

neighbors are identified, the pairwise differences are calculated between the center point (key point)

and its neighbors. In the traditional calculation of semivariance, the pairwise differences not only

consider the key point and its neighbors within total n values. The total number of that is n*(n-1)

differences because all pair differences are calculated among the identified neighbors. We chose

to use the former design because it is simpler in computational complexity, and it is as powerful

as the latter one in identifying different objects in our preliminary experiments. Finally, we ordered

the k nearest neighbors by its lag distance away from the key points, using this as a representation

of initial context features of the point. Subsequently, we applied this to all points in the block to

prepare a dataset. We chose 16 as the k value to identify the nearest neighbor in this study, referring

to the empirical setting from the previous studies when aggregating features from neighbors (Fan

et al. 2021, Boulch 2020).

11 https://scipy.org/

https://scipy.org/

97

4.3.3 Feature grouping

In a deep neural network, each feature extraction layer can extract the features from the previous

layer (either input or hidden layers). In such a way, high-level features (from later layers) can be

eventually extracted, while the final abstract features should be adequately invariant to most local

changes from early layers (e.g., input layer). In our design, we are trying to extract such high-level

embedding features from pairwise differences within a neighborhood and use these features along

with embedding features from spatial and color information for the final prediction. The k nearest

neighbors will be found for each point and pairwise differences will be calculated based on the

values of the neighbors as demonstrated in Figure 4.2. The ordered pairwise differences will be

fed to the spatial autocorrelation encoder (see Figure 4.1). Finally, the high-level embedding

features will be concatenated for classification.

Aggregating local features to a larger scale (up to global scale) can effectively improve the model

performance. By incorporating the spatial autocorrelation module, we would group the spatial

dependency embeddings to other features of a neural network. There are three types (Qi et al.

2017b) of grouping templates (three settings of framework), single-scale point grouping (SSG),

multi-scale point grouping (MSG), and multi-resolution point grouping (MRG). Single-scale point

grouping (SSG) is used to extract abstraction by layers and only use the final layer features as the

feature of a point for classification. Multi-resolution point grouping (MRG) is extremely

computationally expensive (Qi et al. 2017b), in which larger scale features are derived based on

features from smaller scale. Multi-scale point grouping (MSG) appears to be a simple but effective

approach to group layers from different scales. The final features of points combine features from

different scales, where features for each scale can be independently derived. The grouping

templates can also help to mitigate the impact from uneven distribution of point clouds. Multi-

98

scale and single scale grouping, claimed by (Engelmann et al. 2017), appear to have similar

performance, where MSG is 2.1% higher than SS in terms of IoU. Therefore, we followed an MSG

template to group the features. We concatenated the local contextual features with the global and

point-wise local features (see Figure 4.1).

4.4 Dataset

Semantic3D, introduced by Hackel et al. (2017), stands as a substantial and diverse dataset

specifically tailored for outdoor scene analysis. We selected this dataset because its context is close

to GIS applications such as twin city, where it can serve as the original data for 3D modeling

geospatial objects, such as buildings, trees, traffic lights, and road surface. The Semantic3D dataset

offers a detailed and complex dataset with 15 scenes ranging from urban to rural. It covers a wide

range of eight semantic categories, man-made and natural terrains, high and low vegetation,

structures like buildings and hardscape (e.g., road light, and fencing), scanning artefacts (e.g.,

dynamic noise during scanning), and vehicles (see Figure 4.3).

As we are moving towards the concept of twin cities, where urban environments are enriched with

sensors and technology for better management and planning, the need for accurate and efficient

processing of 3D spatial data becomes increasingly critical (Batty 2023, Guo et al. 2020). The

ability to accurately segment and interpret this data can inform various aspects of smart city

planning, including infrastructure development, environmental monitoring, and emergency

response strategies (Kwan and Lee 2005, Batty 2023, Li, Batty and Goodchild 2020, Batty 2013,

Batty 2008, Evans et al. 2006). The Semantic3D benchmark serves as a bridge between academic

research and real-world applications. It provides a common ground for researchers to test and

compare their methodologies, fostering an environment of collaboration and continuous

99

improvement. This is particularly important in fast-evolving fields like GIS, where the gap

between theoretical research and practical application needs to be constantly narrowed.

In our methodology, we carefully chose nine of these scenes for our training dataset, selected in

terms of their diversity. The other six scenes were used for validation to examine the generalization

capability of our model. For preprocessing, we adopted an 8-meter block size for dataset

partitioning, aligning with recommendations of Boulch (2020), and targeted a density of 4,096

points per block. A block size of 8 meters indicates that the dataset is divided by an 8-meter grid,

where each block covers an area of 8 meters by 8 meters. This setting is a good rule of thumb for

large scale outdoor dataset, which is also supported by (Tang et al. 2022). This segmentation

facilitates the handling and analysis of large datasets by breaking them down into more

manageable units, allowing for detailed processing and analysis of each segment while maintaining

the structural nature of spatial data. To maintain the quality of ordered pairwise difference

estimation, blocks containing fewer than 128 unique points were excluded. This approach

addresses the issue of duplicated points in oversampled blocks by prioritizing unique point

locations, ensuring that our model input is not skewed by artificial data replication. For example,

when estimating the ordered pairwise differences, only unique points are taken into consideration,

otherwise, oversampled points can count towards k nearest neighbors, which can lead a weak

representation of spatial relationships within the dataset for accurate geospatial object detection.

100

Figure 4.3. Demonstration of Semantic3D benchmark dataset.

There are two main challenges in the dataset, uneven point distribution and a long tail problem.

The points within these scenes are not uniformly distributed; instead, they exhibit an extremely

uneven spatial distribution as is the nature of LiDAR data. This unevenness poses a unique

challenge as it requires algorithms to be highly adaptable and sensitive to a wide variety of spatial

contexts and densities. Furthermore, the classes exhibit extremely uneven distribution, known as

a long tail problem. As suggested in Figure 4.4, the first four largest classes (i.e., building, man-

made terrain, high vegetation and natural terrain) represent approximately 90% of the whole

dataset. In particular, the building class is approximately 45% of the points in the entire dataset.

The remaining four classes, hard scape, low vegetation, cars, and scanning artefacts only represent

<10% proportion of the dataset. The ability to adequately represent non-uniform point-cloud data

are essential for developing sophisticated 3D deep learning models that can accurately interpret

and interact with complex and variable real-world environments. The Semantic3D dataset,

101

therefore, serves as an invaluable resource for advancing research and development in 3D scene

analysis and understanding.

Figure 4.4 Distribution of different classes in Semantic3D dataset.

4.5 Experiment

We designed two experiments, where one is to investigate the effectiveness of ordered pairwise

difference for object detection and the other is to examine the effectiveness of the proposed

architecture to inform the 3D deep learning for geospatial object detection.

The first experiment is to investigate the usefulness of ordered pairwise difference in identifying

different geospatial objects using 3D deep learning methods. Practically, we only feed pairwise

differences to a 3D deep neural network except any spatial information or RGB data. We used

PointNet here not only because it is concise and powerful to derive good representations (Guo et

al. 2021) but also because of its compatibility to handle any type of input features. Cutting edge

architectures have a more sophisticated design requiring an explicit feed of spatial information.

102

For example, neural network architectures designed by Boulch (2020) and Fan et al. (2021) have

an essential need of explicit spatial information as an input. In this case, we would not be able to

solely examine the effectiveness of ordered pairwise differences for distinguishing geospatial

objects.

The second experiment aims to assess the effectiveness of the designed architecture In benefiting

the 3D deep learning in terms of the object detection capability. Moreover, we will compare the

results with models directly trained on a combination of spatial information, color information,

and contextual information.

To address the uncertainties introduced by the stochastic process during the training, we trained

and validated the model for each treatment with 10 repetitions. The number of repetitions was set

by considering the computational challenges against our available computing resources. The

validation dataset was pre-generated so that the performance measurements were comparable.

Then, we summarized the averaged performance measurements over the 10 repetitions, where

Intersection over Union (IoU), mean Intersection over Union (mIoU), Average Accuracy (AA)

and Overall Accuracy (OA) were used as indicators to identify how well the model generalizes on

a validation dataset. The average performance metrics across the 10 repetitions were calculated for

each treatment. Subsequently, comparisons were conducted to assess the observed differences.

One tailed t-test is applied to examine if their mean is significantly different. The equations of the

three metrics are shown below. By employing the systematic approach, this experiment aims to

offer an in-depth understanding of the effectiveness of the module to inform 3D deep learning.

𝐼𝑜𝑈 =
 𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖+𝐹𝑃𝑖
(4.1)

𝐴𝐴 = 𝑚𝑒𝑎𝑛(
 𝑇𝑃𝑖) (4.2)
𝑇𝑃𝑖+𝐹𝑁𝑖

103

𝑚𝐼𝑜𝑈 = 𝑚𝑒𝑎𝑛(𝐼𝑜𝑈𝑖) (4.3)

𝑂𝐴 =
 𝑇𝑃𝑎𝑙𝑙

𝑇𝑃𝑎𝑙𝑙+𝐹𝑃𝑎𝑙𝑙
(4.4)

where TP, FP, and FN are True Positive, False Positive, and False Negative; subscript all means

across all classes and i refers to each individual class.

4.6 Results and Discussion

4.6.1 Computing performance of the experiments

In this study, to address the computational challenges brought by either hyperparameter tuning or

repeated models training, we utilized high-performance computing (HPC) cluster resources

equipped with Graphics Processing Units (GPUs). HPC has been widely applied in geospatial

research to tackle computational challenges, as noted by Tang and Wang (2020), and the

integration of GPUs, as mentioned by Tang and Jia (2014), offers remarkable capabilities for

solving geospatial issues. Our HPC cluster comprises 10 nodes, each equipped with an NVIDIA

A40 GPU, an Intel Xeon Gold 6326 CPU with 8 cores, and 64 GB of memory. This setup

significantly saved hundreds of hours for hyper-parameter tuning in this study so that we can have

an adequate configuration for Experiment 2. The computing time of Experiments 2 shrunk from

126.8 hours as sequential time to 13.4 hours, when utilizing all 10 nodes in parallel. This represents

a speed-up of approximately 9.46 times. Consequently, the GPU-enhanced HPC resources provide

robust support for the computational demands of our 3D deep learning model training in the

experiments conducted in this study.

4.6.2 Investigating effectiveness of ordered pairwise difference.

Experiment 1 investigated the effectiveness of ordered pairwise differences in terms of geospatial

object detection. The measures are reported in Table 4.1 and demonstration of the results are shown

104

in Figure 4.5. It is interesting to see the overall accuracy can achieve 63% while the input data is

only the ordered pairwise difference without any explicit spatial locations or RGB information,

which supports a moderate capability of pairwise difference in identifying geospatial objects. Even

though it does not show a good performance in all classes, it still has an adequate performance for

several of them, such as building and high vegetation. This performance is especially visible on

selected scenes as shown in Figure 4.5.

Table 4.1. Performance results for Experiment 1.

OA 63%

AA 40%

 mIOU 28%

Man-made terrain 39%

Natural terrain 38%

High vegetation 54%

Low vegetation 8%

Buildings 63%

Hard scape 12%

Scanning artefacts 0%

 Cars 11%

*OA: Overall Accuracy. AA: Average Accuracy. mIoU: mean Intersection over Union. The class

name (e.g., Cars) indicates the IoU for each class. The values are averaged across the repetitions.

The IoU for each class shows a big difference across classes. The model performance on buildings

and high vegetation separately reaches 63% and 54% in IoU. The second tier of classes are man-

made terrain and natural terrain, on which the model has an IoU of 39% and 38% correspondingly.

The rest of classes, hard scape, low vegetation, cars, and scanning artefacts, are not well detected

by the model, where the IoU ranges from 0% to 12%.

We observed that the model performance on different classes seems to be related to the proportion

of the class within the dataset and the volume of the objects. As shown in Figure 4.3, buildings,

man-made terrain, natural terrain, and high vegetation are the four largest classes, where a

105

cumulative proportion is around 90% of the whole dataset. The model shows better performance

on these four classes and appears far better than the rest of classes in terms of IoU. One potential

reason that causes the diversity performance of the model on each class is the proportion of the

class within the dataset. Even though man-made terrain has more points than high vegetation class,

the performance on high vegetation is better than that of man-made terrain. It seems ordered

pairwise differences have the capability to identify different objects while it also appears to be

sensitive to the volume of the objects. We attribute this finding to the nature of data partitioning

and sampling process. While in this process, the number of points for objects in the original dataset

directly impacts how many points from this object can be captured during this process. Moreover,

the volume of the object also impacts the analysis. For example, a cubic object (e.g., building and

tree) tends to be captured with more points than the planar one since ground only exists on the

floor surface of a block but cubic objects exist across the space. Hardscape, scanning artefacts, and

cars take a small volume as well as the number of points as opposed to the whole scene. Therefore,

they might be less represented using the pairwise differences as the points sampled for them might

be more subject to boundary effects.

Even though there are less represented classes, we still innovatively find the capability of ordered

pairwise difference as context features to identify many objects. We can tell from Figure 4.5 that

buildings, trees and terrains, even though confusion between natural terrain and man-made terrain,

are adequately identified by the model. The cutting-edge results from a model based on spatial

information and RGB surpasses the performance of the ordered pairwise difference (Boulch 2020,

Fan et al. 2021), but knowing the usefulness of pairwise difference is also an important finding.

106

Figure 4.5. Visualization of the prediction results of using order pairwise differences only as the

input. Ordered pairwise differences only show an adequate performance on objects with a large

volume in the scene, such as high vegetation, natural/man-made terrain, and buildings.

The visualization of the prediction results demonstrated the confusion among classes especially

around the boundaries. For example, the natural terrain and man-made terrain are not well

differentiated by the model. Moreover, we also observed that some man-made surfaces are

predicted as trees if the points are close to a tree. These results represent a challenge of current

method to that spatial autocorrelation features of those points on boundaries may not adequately

be represented since the neighboring points can be from other classes. This problem is also seen

in the classification task on 2D remotely sensed imagery when spatial autocorrelation is considered.

Myint (2003) tried to mitigate this challenge by excluding the samples on the boundaries during

model training. Wu et al. (2015) addressed the boundary issue by considering the object-based

spatial contextual features instead of the window-based one. However, further studies have to be

conducted to adapt these solutions from 2D to 3D content so that this challenge can be well

addressed.

107

4.6.3 Performance of spatial autocorrelation encoder

Experiment 2 is to investigate the effectiveness of the designed spatial autocorrelation encoder.

Once we derived the ordered pairwise differences based on the partitioned block of point with a

fixed number of points, they were fed separately to a sub neural network for feature encoding. The

features were grouped with global features and point features from a normal 3D deep neural

network, PointNet in our case. In this section we demonstrated the measurement statistics across

the 10 repetitions (see detail in Appendix 4.1) using the measures delineated in Table 4.2. We

further demonstrate our results in Figure 4.6 comparing with the results without the encoder.

The OA, AA, and mIOU are 85.5%, 69.7%, and 57.6% separately, providing a global measure for

the model performance for this dataset. The IoU across the classes ranges from 26.8% (scanning

artefacts) to 92.8% (man-made terrain). Same as reflected in Experiment 1, the classes with higher

proportion from the original datasets tend to have a better performance. For example, man-made

terrain (IoU 92.8%), buildings (IoU 84.0%), natural terrain (IoU 78.7%), and high vegetation (IoU

66.1%) are the four classes that the model best performed on, while they are also the four largest

classes with a cumulative proportion of 90% of the original dataset. We attribute their better

performance to the amount of data compared to the rest of the classes. The model shows a moderate

performance on cars with 55.6% IoU. Scanning artefacts, hard scape, and low vegetation seems to

be not well detected by the model with IoU ranging from 26.8% to 28.8%.

Table 4.2. Statistical results across 10 repetitions.

Statistics Mean Std. Max Min

OA 85.5% 0.2% 85.1% 85.8%

AA 68.7% 0.5% 68.1% 69.6%

108

mIoU 57.6% 0.4% 56.9% 58.4%

Man-made terrain 92.8% 0.3% 92.4% 93.1%

Natural terrain 78.7% 1.4% 76.4% 80.4%

High vegetation 66.1% 1.2% 63.9% 68.3%

Low vegetation 28.8% 2.6% 25.7% 33.2%

Buildings 84.0% 0.4% 83.0% 84.7%

Hard scape 27.7% 0.9% 26.1% 28.9%

Scanning artefacts 26.8% 1.6% 23.9% 29.0%

Cars 55.6% 1.8% 52.6% 57.8%

*OA: Overall Accuracy. AA: average accuracy mIoU: mean Intersection over Union. The class

name (e.g., Cars) indicates the IOU for each class. The values are averaged across the repetitions.

Figure 4.6. Comparison between ground truth, and the predicted results w./w.o. spatial

autocorrelation encoder.

4.6.4 Comparison analysis

We conducted a comparison analysis between the results from our study with the one in Chen

(2024). Chen (2024) systematically analyzed how the input feature will impact the model

performance on geospatial object detection, where the three treatments are spatial information only,

spatial information and RGB, and one with additional semivariances. While, it has been shown

that the latter two produced a significant increase in accuracy as compared to the use of spatial

109

information on its own in the analysis. In this comparison analysis, we compare our results with

results from Chen (2024) for treatments including RGB and additionally combining semivariances.

We use RGB as a baseline to investigate how context information can inform the model for

geospatial object detection and a one tailed t-test is performed against the baseline to explore its

statistical significance (see Table 4.3).

Table 4.3. Comparison analysis results.

Statistics RGB Semivariance (gain, p-value) Our study (gain, p-value)

OA

81.95%

83.32% (+1.37%, 0.01)

85.55% (+3.60%, < 0.01)

AA 64.03% 66.04% (+2.01%, 0.01) 68.72% (+4.69%, < 0.01)

mIOU 51.58% 54.05% (+2.47%, 0.00) 57.58% (+6.00%, < 0.01)

Man-made terrain

90.69%

91.02% (+0.33%, 0.19)

92.78% (+2.09%, < 0.01)

Natural terrain 72.59% 73.45% (+0.86%, 0.29) 78.67% (+6.08%, < 0.01)

High vegetation 57.01% 60.15% (+3.14%, 0.01) 66.10% (+9.09%, < 0.01)

Low vegetation 24.12% 26.41% (+2.29%, < 0.01) 28.81% (+4.69%, < 0.01)

Buildings 79.85% 81.38% (+1.53%, 0.03) 84.05% (+4.20%, < 0.01)

Hard scape 21.55% 23.19% (+1.64%, 0.07) 27.73% (+6.18%, < 0.01)

Scanning artefacts 20.25% 25.10% (+4.85%, < 0.01) 26.83% (+6.58%, < 0.01)

Cars 46.55% 51.72% (+5.17%, 0.01) 55.64% (+9.09%, < 0.01)

*OA: Overall Accuracy. AA: average accuracy mIoU: mean Intersection over Union. The class

name (e.g., Cars) indicates the IOU for each class. The values are averaged across the repetitions.

RGB and semivariance represent the two treatments from Chen (2024).

For the global measurements, OA, AA, and mIOU, there is an increasing trend in accuracy as we

consider spatial context with more sophisticated measures. Without considering the spatial content,

the three measurements are 81.95%, 64.03%, and 51.58% using RGB data on its own. Explicitly

110

incorporating semivariance as a spatial context feature can result in a 1-3% increase in the global

measurements. Once we applied a neural network to directly learn a spatial context embedding

from ordered pairwise differences, accuracy improved 3.60%, 4.69%, and 6.00% for the three

assessment measures with the increase being significant at 99% confidence interval.

The comparison analysis significantly underscores the advancement our study brings to the field

of geospatial object detection using 3D deep learning. By directly learning spatial context

embeddings from ordered pairwise differences, our approach outperforms previous models trained

on RGB and/or semivariance in terms of OA, AA, and mIOU. The substantial gains across various

classes, particularly in categories like high vegetation and cars, highlight the effectiveness of

incorporating spatial autocorrelation features. The comparison results validate the advancement of

the proposed encoder over previous approaches in deriving spatial contextual features in geospatial

object detection tasks. The statistical significance of these results emphasizes the critical role of

spatial contextual features in enhancing 3D deep learning models, paving the way for future

advancements in this rapidly evolving field.

4.7 Conclusion

This study introduces a spatial autocorrelation encoder to integrate spatial contextual features into

3D deep learning for enhancing object detection within point clouds. By leveraging ordered

pairwise differences, the encoder significantly improves the accuracy of geospatial object

detection, especially in complex urban and natural environments. Experimental results underscore

the effectiveness of this approach, suggesting its potential for a wide range of applications in GIS

and smart city planning. Moreover, it also supported the effectiveness of ordered pairwise

differences in geospatial object detection, which can stand alone to have adequate performance on

111

some of the objects. This finding is innovative and suggests the potential use of pairwise

differences in future improvements in geospatial object detection. Furthermore, the proposed

spatial autocorrelation encoder not only streamlines the workflow for geospatial object detection

explicitly considering spatial autocorrelation but also simplifies the extraction of sophisticated

spatial autocorrelation features, making it accessible to practitioners without deep expertise in the

field.

Our study started initially from the call for integrating GIS, and AI to enhance the development of

state-of-the-art GIS applications, such as digital twin projects like Tree Folio. By innovating in the

realm of geospatial object detection, we provide a robust foundation for future research and

applications in urban planning, environmental monitoring, and beyond. The exploration and

findings presented serve not only as a remarkable progress witnessed in these domains but also as

a bridge connecting the theoretical underpinnings of GIS with the practical applications of AI in

3D geospatial object detection.

112

Reference

Batty, M. (2000) The new urban geography of the third dimension. Environment and Planning B:

Planning and Design, 27, 483-484.

--- (2008) Virtual reality in geographic information systems. The Handbook of Geographic

Information Science. Oxford, Blackwell Publishing, 317-334.

---. 2013. Agents, models, and geodesign. Citeseer.

--- (2023) Digital twins in city planning. Nature Computational Science, 4.

Batty, M. & A. Hudson‐Smith (2005) Urban simulacra: London. Architectural Design, 75, 42-

47.

Boulch, A. (2020) ConvPoint: Continuous convolutions for point cloud processing. Comput.

Graph., 88, 24-34.

Charles, R. Q., W. Liu, C. Wu, H. Su & J. G. Leonidas. 2018. Frustum pointnets for 3D object

detection from RGB-D data. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 918-927.

Chen, T. C. W. T. C. A. S.-E. (2024) Spatial explicit incorporation of spatial autocorrelation

features in 3D deep learning [Manuscript submitted for publication]. Annals of the

American Association of Geographers.

Dowd, P. A. 1984. The variogram and Kriging: Robust and resistant estimators. In Geostatistics

for Natural Resources Characterization: Part 1, eds. G. Verly, M. David, A. G. Journel &
A. Marechal, 91-106. Dordrecht: Springer Netherlands.

Engelmann, F., T. Kontogianni, A. Hermans & B. Leibe. 2017. Exploring spatial context for 3D

semantic segmentation of point clouds. In Proceedings of the IEEE International

Conference on Computer Vision Workshops, 716-724.

Evans, S., A. Hudson-Smith & M. Batty (2006) 3-D GIS: Virtual London and beyond. An

exploration of the 3-D GIS experience involved in the creation of virtual London. Cybergeo:

European Journal of Geography.

Fan, S., Q. Dong, F. Zhu, Y. Lv, P. Ye & F.-Y. Wang. 2021. SCF-net: Learning spatial contextual

features for large-scale point cloud segmentation. In 2021 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), 14504-14513. IEEE.

Goodchild, M. (2022a) The Openshaw effect. Journal of Geographical Information Science, 36,

1697-1698.

Goodchild, M. F. (2021) Introduction to urban big data infrastructure. Urban Informatics, 543-

545.

--- (2022b) Elements of an infrastructure for big urban data. Urban Informatics, 1, 3.

Guo, H., M. F. Goodchild & A. Annoni. 2020. Manual of digital Earth. Springer Nature.

Guo, Y., H. Wang, Q. Hu, H. Liu, L. Liu & M. Bennamoun (2021) Deep Learning for 3D Point

Clouds: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43,

4338-4364.

Hackel, T., N. Savinov, L. Ladicky, J. D. Wegner, K. Schindler & M. Pollefeys. 2017.

Semantic3D.net: A new large-scale point cloud classification benchmark.

Haralick, R. M., K. Shanmugam & I. h. Dinstein (1973) Textural Features for Image Classification.

IEEE Transactions on Systems, Man, and Cybernetics, SMC-3, 610-621.

Klemmer, K., N. S. Safir & D. B. Neill. 2023. Positional encoder graph neural networks for

geographic data. In International Conference on Artificial Intelligence and Statistics, 1379-

1389. PMLR.

113

Kwan, M.-P. & J. Lee (2005) Emergency response after 9/11: The potential of real-time 3D GIS

for quick emergency response in micro-spatial environments. Computers, Environment

and Urban Systems, 29, 93-113.

Li, W. (2021) GeoAI and Deep Learning. The International Encyclopedia of Geography., 1-6.

Li, W., M. Batty & M. F. Goodchild (2020) Real-time GIS for smart cities. International Journal

of Geographical Information Science, 34, 311-324.

Matheron, G. (1963) Principles of geostatistics. Economic Geology, 58, 1246-1266.

Mottaghi, R., X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R. Urtasun & A. Yuille. 2014.

The role of context for object detection and semantic segmentation in the wild. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 891-

898.

Myint, S. (2003) Fractal approaches in texture analysis and classification of remotely sensed data:

Comparisons with spatial autocorrelation techniques and simple descriptive statistics.

International Journal of Remote Sensing, 24, 1925-1947.

Pohlen, T., A. Hermans, M. Mathias & B. Leibe. 2017. Full-resolution residual networks for

semantic segmentation in street scenes. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 4151-4160.

Qi, C., H. Su, K. Mo & L. J. Guibas. 2017a. Pointnet: Deep learning on point sets for 3d

classification and segmentation. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 652-660.

Qi, C., L. Yi, H. Su & L. J. Guibas (2017b) Pointnet++: Deep hierarchical feature learning on point

sets in a metric space. Advances in Neural Information Processing Systems, 30.

Qian, G., Y. Li, H. Peng, J. Mai, H. Hammoud, M. Elhoseiny & B. Ghanem (2022) Pointnext:

Revisiting pointnet++ with improved training and scaling strategies. Advances in Neural

Information Processing Systems, 35, 23192-23204.

Ren, D., Z. Ma, Y. Chen, W. Peng, X. Liu, Y. Zhang & Y. Guo (2024) Spiking PointNet: Spiking

neural networks for point clouds. Advances in Neural Information Processing Systems, 36.

Tang, W., S.-E. Chen, J. Diemer, C. Allan, T. Chen, Z. Slocum, T. Shukla, V. S. Chavan & N. S.

Shanmugam. 2022. DeepHyd: A deep learning-based artificial intelligence approach for

the automated classification of hydraulic structures from LiDAR and sonar data. North

Carolina Department of Transportation. Research and Development Unit.

Tso, B. & R. C. Olsen (2004) Scene classification using combined spectral, textural, and contextual

information. Algorithms and Technologies.

Wu, C., J. Pfrommer, J. Beyerer, K. Li & B. Neubert. 2020. Object detection in 3D point clouds

via local correlation-aware point embedding. In 2020 Joint 9th International Conference

on Informatics, Electronics & Vision (ICIEV) and 2020 4th International Conference on

Imaging, Vision & Pattern Recognition (icIVPR), 1-8. IEEE.

Wu, X., J. Peng, J. Shan & W. Cui (2015) Evaluation of semivariogram features for object-based

image classification. Geo-spatial Information Science, 18, 159-170.

Xie, J., Y. Xu, Z. Zheng, S.-C. Zhu & Y. N. Wu. 2021. Generative pointnet: Deep energy-based

learning on unordered point sets for 3d generation, reconstruction and classification. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

14976-14985.

114

Appendix 4.1 Inference Performance of 10 Repetitions

Treat

OA

AA

mIoU

Man-made

terrain

Natural

terrain

High

vegetation

Low

vegetation

Building

Hard

scape

Scanning

artefacts

1 85.7% 68.3% 57.7% 93.0% 79.6% 67.0% 28.4% 84.3% 28.3% 26.4%

2 85.6% 68.1% 57.3% 92.5% 78.8% 66.2% 28.3% 84.1% 28.9% 25.2%

3 85.8% 69.6% 58.4% 92.8% 80.4% 66.8% 29.7% 84.4% 28.3% 26.9%

4 85.6% 68.7% 57.5% 92.8% 78.4% 66.5% 25.8% 84.0% 27.2% 28.6%

5 85.3% 68.6% 57.4% 92.7% 76.4% 66.3% 25.7% 83.8% 27.6% 29.0%

6 85.4% 68.8% 56.9% 92.4% 78.0% 68.3% 25.7% 84.7% 26.1% 27.4%

7 85.4% 69.0% 57.6% 92.8% 77.3% 63.9% 31.2% 84.2% 28.3% 27.0%

8 85.1% 69.5% 57.1% 92.5% 77.2% 66.0% 29.4% 83.8% 26.5% 25.8%

9 85.8% 68.3% 58.0% 93.1% 80.4% 64.8% 33.2% 83.0% 28.3% 23.9%

10 85.7% 68.4% 57.9% 93.1% 80.2% 65.4% 30.8% 84.1% 28.0% 28.1%

*Treat is for treatment IDs. OA is Overall Accuracy. AA is Average Accuracy. mIoU is for

mean Intersection over Union. The name of the class represents the IoU for each class.

115

5 SPATIAL INTERPOLATION TO ENHANCE DEEP LEARNING-BASED 3D

GEOSPATIAL OBJECT DETECTION FOR LARGE-SCALE SCENES

5.1 Introduction

3D geospatial object detection has been attracting unprecedented attention, driven by an increasing

availability of 3D data. This is largely attributed to innovations in 3D data acquisition technologies,

including light detection and ranging (LiDAR), RGB-D sensors, and the supportive systems

provided by unmanned aerial, ground, and surface vehicles. 3D geospatial object detection has

seen a significant boost from recent breakthroughs in 3D deep learning techniques, which have

been used for obstacle detections for self-driving vehicles, and building highly accurate 3D models

for cutting-edge applications, such as digital twin cities (Batty 2023, Goodchild 2022), and

Building Information Modeling (BIM) (Goodchild 2021). The demand for prediction accuracy in

these applications is more focused than ever, given its potential impact on public safety.

The recent development of 3D deep learning techniques has been largely benefiting the tasks of

3D geospatial object detection. One milestone of the current 3D deep learning techniques is the

study of (Qi et al. 2017a), where a deep learning architecture, PointNet, was developed to directly

take raw point cloud as input. The design of the architecture, especially the symmetric function,

inspired and shaped the recent development in 3D deep learning, addressing the challenge brought

by the unstructured and unordered nature of point cloud data. Following this conceptual design,

scholars have applied successful architectures from different tasks to 3D deep learning, where

these architectures are but not limited to multi-layer perceptron (Qi et al. 2017a, Qi et al. 2017b),

convolutional neural networks (Boulch 2020, Wu, Qi and Fuxin 2019), graph neural networks (Shi

and Rajkumar 2020), and attention-based neural networks (Zhao et al. 2021).

116

In this context, the DeepHyd project (Tang et al. 2022) emerges as a pivotal development of a deep

learning-based application used for a particular domain, hydrology. DeepHyd is specifically

designed for the detection of hydraulic structures, such as bridges and their components (i.e.,

pillars, retaining walls, and railings), from LiDAR datasets collected through field work. This

framework is not just a technological advancement but paves the way for critical downstream

applications including asset inventory, hydraulic modeling, and safety inspection, showcasing the

practical impact of deep learning in enhancing infrastructure management and public safety.

The enhancement in LiDAR data resolution, coupled with the integration of additional sensor data

(e.g., RGB), leads to a significant increase in the size of LiDAR datasets, which brings big data

challenges to data processing as well as deep learning. A single LiDAR scan can encompass up to

billions of points, occupying several gigabytes of storage. This increase in data size further

presents substantial challenges for 3D geospatial object detection, especially due to the constraints

of computational resources when processing large-scale 3D geospatial datasets. Therefore, current

3D deep learning frameworks, Qi et al. (2017a) for example, used a fixed size of block to partition

a large-scale 3D point cloud and followed by a random sampling to structuralize the inferencing

datasets. Moreover, some approaches use overlapped blocks to improve model performance. This

strategy of data partitioning and sampling can make the input data manageable by limited memory

size. Qi et al. (2017a) discusses the challenges of processing large-scale point clouds and the

benefits of partitioning them into smaller blocks for memory and computational efficiency.

Moreover, data partitioning can also help to capture the local context of the point cloud, especially

beneficial to semantic segmentation. Moreover, neural network architectures that leverage

Convolutional Neural Network (CNN), as exemplified by Boulch (2020), require structured inputs

to facilitate structured convolution operations. This necessity ensures that the input data can

117

undergo convolution in a manner that preserves its inherent structure. Although numerous

frameworks, including point-wise MLPs like PointNet and attention-based architectures such as

Point Transformer (Zhao et al. 2021), can process point clouds of varying sizes, sampling a fixed

number of points often emerges as a practical decision under constraints of computational

resources. The configuration of data partitioning and sampling, including block size and the

number of points per block, varies depending on the characteristics of the dataset. For instance,

Chen (2024) highlighted that the effectiveness of local contextual features is closely related to

scale, which directly ties to the settings of data partitioning and sampling. Effective choices of

both block size and the number of points to sample can differ based on multiple factors, such as

the nature of the dataset, and the demands of the specific application.

However, the strategy of data partitioning and sampling by blocks introduces a significant

challenge: not all points from a point cloud may be effectively predicted by deep neural networks.

This limitation stems from the inherent design of current deep learning algorithms, which only

allow a fixed number of points from a specific spatial extent (i.e., block) to be processed. This

problem is commonly overlooked in the studies proposing types of neural network architecture.

Furthermore, this aspect of postprocessing is often not explicitly mentioned, being embedded only

within the implementation scripts. Therefore, this study aims to delve into the existing solutions

to this challenge and seek improved methodologies for handling it, particularly in the context of

large-scale 3D point cloud datasets.

In this study, we leveraged the datasets and fine-tuned models from the DeepHyd project (Tang et

al. 2022) as a practical study case. Our main contributions are delineated as follows:

118

1. We explored the current implicit solution to address the issue brought by data partitioning

in geospatial object detection for large-scale scenes.

2. We investigated various spatial dependency patterns for different classes using the

DeepHyd project as a study case.

3. We implement spatial interpolation methods to refine the post-processing phase of deep

learning-based 3D geospatial object detection for large-scale 3D point cloud datasets.

5.2 Literature Review

In practice, those unpredicted points are often labeled based on their nearest neighbor during post-

processing, a method depicted in Figure 5.1A and exemplified by (Boulch 2020). Additionally,

many studies (Qi et al. 2017a, Wu et al. 2019, Boulch 2020) have employed overlapping spatial

extents of blocks as a strategy to mitigate this issue, enabling more points within a specific spatial

extent to be predicted and thereby enhancing the accuracy for those unpredicted points. However,

relying solely on the nearest neighbor to label unpredicted points is an overly simplistic approach,

as a point's label may be influenced not only by its nearest neighbor but also by other surrounding

points. Consequently, we have introduced the concept of a surrogate model as a way to improve

the accuracy of labeling these unpredicted points.

119

Figure 5.1. Post-processing—assign labels to unpredicted points. Colored points represent

predicted points with three different classes (Red, blue, and green). Grey points represent

unpredicted points. A: nearest neighbor method; B: spatial interpolation method.

The surrogate model (also known as a metamodel or "model of the model"), as discussed by

(Kleijnen 1987, Kleijnen 2009) has been used in engineering to approximate the outcomes of

interest, which are either too costly to access, or cannot be directly accessed. Kleijnen (2009)

defined that “[m]etamodels are fitted to the I/O data produced by the experiment with the

simulation model” (p.). Viewed through this lens, the nearest neighbor method, employed for

labeling unpredicted points in 3D deep learning, can be considered a naive form of a surrogate

model—a model designed to approximate the outputs generated by primary deep learning models.

In this scenario, utilizing the nearest neighbor method as a surrogate during the post-processing

phase of 3D semantic segmentation represents a basic approach that could be significantly

enhanced through the adoption of more sophisticated surrogate models. Various methods have

been used as surrogate modeling techniques in previous studies, such as polynomial response

surface (Engelund et al. 1993, Venter, Haftka and Starnes 1996), artificial/deep neural networks

(Smith 1993, Tang, Liu and Durlofsky 2020), multivariate adaptive regression splines (Friedman

1991), and radial basis functions (Hardy 1971, Buhmann 2000). For addressing spatial problems

specifically (see Figure 5.1B), spatial interpolation methods such as Kriging (Sacks and Welch

1989, Simpson et al. 1998, Kleijnen 2009) and Inverse Distance Weighting (IDW), have been

120

employed due to their capability in spatial interpolation—estimating values at unobserved

locations based on observed values from surrounding neighbors. In this light, our study aims to

leverage spatial interpolation not as a method for spatial analysis but as a sophisticated surrogate

model to address the challenges of 3D deep learning-based geospatial object detection for large-

scale scenes.

5.3 Methodology

5.3.1 Metamodel for labeling unpredicted points

The outcome of a deep learning-based 3D geospatial object detection model does not only predict

a final label for each predicted point but also evaluates the uncertainty and probability of these

predictions, represented as scores and probabilities. Initially, the model outputs a score for each

class that it is trained to recognize for a given point. A higher score indicates greater confidence

that the point belongs to that class. These scores are subsequently normalized using a softmax

function (Goodfellow, Bengio and Courville 2016), converting them into probability values that

sum to one, which represent the relative confidence of the model across the different classes. For

instance, in a model trained to differentiate between chickens, cats, and dogs, a clear image of a

cat might have scores of [50, 80, 30] for chickens, dogs, and cats respectively. These scores could

translate to probabilities of [<0.1%, >99.9%, <0.1%] after softmax normalization, demonstrating

a high confidence in the cat classification. In contrast, a blurred cat image might result in scores

of [5, 8, 3], translating to probabilities of [4.8%, 94.6%, 0.6%], suggesting a high likelihood but

less certain of being a cat rather than the other two classes.

Deep learning-based 3D geospatial object detection for large-scene is not only related to predicting

labels by the deep neural network itself but also relies on metamodel for labeling all other

121

unpredicted points. It becomes evident that an advanced approach to refining these predictions is

essential. This detailed process that models output scores for each class that reflect confidence

levels and then normalized to probabilities, lays a crucial foundation for understanding model

behavior. For example, the difference in model confidence between clear and blurred images of a

cat highlights the variability in certainty that can significantly influence the accuracy and reliability

of object detection.

Based upon this understanding, our study pioneered the approach to bring spatial interpolation

method, specifically IDW, in addressing the inherent challenges of deep learning-based 3D

geospatial object detection for large-scale scenes. Moreover, by manually perturbing the parameter

configurations, specifically searching radius and power values, we are able to investigate how the

performance of 3D geospatial object detection correlates to the configuration of these parameters,

reflecting the underlying spatial dependencies.

5.3.2 Deep learning models of DeepHyd

There are two tasks of DeepHyd software corresponding to two fine-tuned models (see Figure 5.2).

One task is to detect bridge from an outdoor scene represented by a 3D point cloud. The other

task is to detect different bridge components from the bridge. The project leverages ConvPoint

(Boulch 2020) as the architectures and trained models on 41 labeled point cloud datasets for

bridges. The models are fine-tuned by detailed hyperparameter tuning.

122

Figure 5.2. Conceptual illustration of the DeepHyd framework and corresponding models (Tang

et al. 2022).

ConvPoint (see Figure 5.3) is a pioneering approach in the field of 3D point cloud processing,

characterized by its innovative continuous convolutional neural network design specifically

tailored for classification and segmentation tasks. Its introduction marked a significant

advancement in handling point clouds, which are sets of data points in space representing the

external surface of objects or three-dimensional shapes. One of the standout achievements of

ConvPoint is its top-ranking performance on the Semantic3D dataset since 2020, where it has

consistently outperformed all other cutting-edge neural network architectures entered in the

competition 12 . This success underscores the effectiveness of ConvPoint in directly applying

12 http://www.semantic3d.net/view_results.php?chl=1

http://www.semantic3d.net/view_results.php?chl=1

123

convolutions to irregular and unordered point data, especially for large-scale outdoor scenes. By

dynamically selecting relevant points within a certain radius for convolution and efficiently

managing varying densities and distributions of point clouds, ConvPoint has proven to be a

scalable and computationally efficient solution for real-world applications in 3D object detection,

classification, and beyond.

Figure 5.3. Architecture of ConvPoint for 3D object detection (adapted from Boulch, 2020).

Semantic3D, introduced by Hackel et al. (2017), stands as a substantial and diverse dataset

specifically tailored for outdoor scene analysis. The Semantic3D dataset offers a detailed and

complex dataset with 15 scenes ranging from urban to rural. It covers a wide range of eight

semantic categories, man-made and natural terrains, high and low vegetation, structures like

buildings and hardscapes (e.g., road light, and fencing), scanning artefacts (e.g., dynamic noise

during scanning), and vehicles. The final models of DeepHyd projects leverage a pre-trained model

trained on the Semantic3D dataset to boost the performance on detecting bridges and their

component structures.

124

5.4 Data

The data used in this study was collected from selected bridges around Charlotte, NC. We collected

in total 10 scans for 7 bridges, where we collect 1-2 scans for each bridge depending on the

fieldwork environment. Moreover, we labeled them based on the settings of DeepHyd—one

dataset is prepared with labeling bridge, vegetation and ground, and the other one is annotated for

bridge components only, such as deck, wall, pillar, and railing (see Figure 5.4 for a demonstration).

Figure 5.4. Illustration of the collected LiDAR data and corresponding labels.

5.5 Experiment

In this study, we used DeepHyd project as a study case to investigate the effectiveness of using

spatial interpolation as the metamodeling for the postprocessing of 3D deep learning-based

geospatial object detection. We employed IDW to explore different characteristics of spatial

autocorrelations for diverse classes and its impact on the final results. The neighbor searching

125

method can be fixed radius or kNN but we chose to use the latter one. Due to the uneven

distribution of 3D point cloud data, particularly in LiDAR-generated point clouds where the

density of points increases closer to the scanning center, using fixed-radius settings can lead to

empty values for certain points, resulting in labeling issues. However, kNN will not have such an

issue and has been broadly used in the 3D deep learning problems. The number of nearest

neighbors is set with a minimum value of 1 and the maximum value of 32. The maximum number

follows a generic setting (e.g., 16-32 neighbors) when local context is considered for a point during

the deep learning process. The range of power is set to from 0.1 to 3.0 with 0.1 as the interval. We

assume the maximum value of 3.0 is big enough because of the nature of IDW that the weights of

near neighbors as opposed to distant ones increase exponentially with the increase in power.

Moreover, our results also support this idea (see response surfaces of performance to kNN and

power in Section 5.4). IDW is separately applied to both Model 1 and Model 2 of DeepHyd, where

one is to detect bridges on a relative larger scale and the other is to detect bridge components on a

relative smaller scale.

The performance measurements used in this study are overall accuracy (OA), mean Intersection

of Union (mean IoU), and IoU for each class. IoU and OA are two measurements commonly used

for object detection (Rezatofighi et al. 2019, Boulch 2020). IoU has a similar principle as Jaccard

index, which is used for similarity measurements in the geography domain (Shelton and Poorthuis

2019). The equations of the three metrics are shown below.

𝐼𝑜𝑈 =
 𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖+𝐹𝑃𝑖
(5.1)

𝑚𝐼𝑜𝑈 = 𝑚𝑒𝑎𝑛(𝐼𝑜𝑈𝑖) (5.2)

𝑂𝐴 =
 𝑇𝑃𝑎𝑙𝑙

𝑇𝑃𝑎𝑙𝑙+𝐹𝑃𝑎𝑙𝑙
(5.3)

126

where TP, FP, and FN are True Positive, False Positive, and False Negative; subscript all means

across all classes and i refers to each individual class.

5.6 Results and Discussion

5.6.1 Prediction results on the collected data in this study

In this section, we used the direct predictions results on the dataset collected for this study as a

baseline. The direct prediction results are retrieved by directly using the command line-based

DeepHyd software13, where the nearest neighbor is used to label those points that are not predicted

by the deep learning-based model in the inferencing step. At first, we demonstrated the number of

points for each scan and number of predicted points followed by a predicted rate in Table 1 with

respect to Model 1 and Model 2 The predicted rates for various sites depend on the characteristics

of the sites (e.g., size of the bridge, and distance of the bridge to the scanning center), the

configuration of preprocessing (e.g., sampling), the configuration of the postprocessing (e.g., step

size). For Model 1, the predicted rate ranges from 16.16% - 59.58% with an average value of

31.91%. It ranges from 15.70% to 96.71% with an averaged value of 38.46% when it comes to

Model 2. We observed the diverse predicted rates with respect to different scans and an averaged

predicted rate is less than 40% for both Model 1 and Model 2. In other words, over 60% percent

of points are labeled by its nearest neighbor that predicted by the deep neural network. Therefore,

it is important to carefully select a method to take care of this post processing step in practice.

Table 5.1. Statistics of number of points and predicted points for each scan.

 Model 1 Model 2

Scan name # Points # Predicted

Predicted

rate # Points # Predicted

Predicted

rate

Scan 1 719,106 350,558 48.75% 243,688 160,499 65.86%

Scan 2 1,085,824 242,730 22.35% 766,940 120,383 15.70%

13 https://rosap.ntl.bts.gov/view/dot/62502

https://rosap.ntl.bts.gov/view/dot/62502

127

Scan 3 8,009,476 2,539,892 31.71% 3,831,684 1,128,015 29.44%

Scan 4 3,382,589 1,381,216 40.83% 1,060,047 431,250 40.68%

Scan 5 4,239,833 1,289,660 30.42% 1,919,714 451,409 23.51%

Scan 6 1,313,687 782,698 59.58% 272,321 263,374 96.71%

Scan 7 11,061,405 2,790,427 25.23% 1,895,694 638,301 33.67%

Scan 8 6,253,579 1,044,304 16.70% 3,465,144 519,195 14.98%

Scan 9 4,435,961 1,214,976 27.39% 1,222,273 534,298 43.71%

Scan 10 5,705,619 921,896 16.16% 3,202,886 650,979 20.32%

Average 4,620,708 1,255,836 31.91% 1,788,039 489,770 38.46%

We demonstrated the performance measurements in Table 5.2 and Table 5.3 for Model 1 and

Model 2 respectively. This performance served as a baseline for comparison purposes. The

performance of Model 1 on the collected dataset reaches 86.71% and 73.08% for OA and IoU,

which is relatively good for outdoor 3D object detection datasets referring to those model

performance in large-scale outdoor classification benchmarks (e.g., Semantic3D). The IoU for

bridge is 94.11%, which means the bridge is well detected. These results support the effectiveness

of the DeepHyd model to detect bridges from a 3D scene. It appears that vegetation and ground

have a relatively lower performance. Tang (2022) also found that vegetation and ground have

lower IoU as opposed to the bridge. This can be attributed to the fact that lower vegetation can be

potentially misclassified as ground, where DeepHyd software was not designed to identify natural

ground or man-made ground (e.g., pavement).

Table 5.2. Performance of Model 1 on the datasets.

 Measurement Values

OA 86.71%

mIoU 73.08%

Bridge IoU 94.11%

Vegetation IoU 51.49%

 Ground IoU 73.65%

*OA: Overall Accuracy. mIoU: mean Intersection over Union.

128

The OA and mIoU for Model 2 are 70.29% and 40.99%, which is relatively lower than that of

Model 1. This is due to the limitation of the accessible classification data for Model 2. This can be

attributed to many reasons, ranging from the types of bridge, and setting for scanning in the

fieldwork (e.g., location and distance to bridge). For example, some bridges may not have specific

components, such as pillars, and retaining walls. On the other hand, the setting for scanning may

also impact it. For example, under-bridge scans may not capture the railing of a bridge. All the

above reasons can lead to an imbalance of the dataset, further resulting in a relatively lower

performance of Model 2. Among different bridge components, the deck shows the highest IoU as

78.42% and pillar is ranked in the second with an IoU of 51.95%. Deck and pillar are the two most

important classes to be detected for DeepHyd project due to their essential roles in the safety

evaluation of the hydraulic structure (Tang, 2022). Improving detection performance in hydraulic

modeling is indeed critical for various applications such as hydraulic structure management, and

infrastructure planning. Enhanced detection capabilities can lead to more accurate predictions and

better-informed decision-making.

Table 5.3. Performance of Model 2 on the datasets.

Measurement Values

OA 70.29%

mIoU 40.99%

Deck IoU 78.42%

Wall IoU 21.29%

Pillar IoU 51.95%

Railing IoU 12.28%

*OA: Overall Accuracy. mIoU: mean Intersection over Union.

129

5.6.2 Spatial interpolation results for Model 1

The global performance for Model 1 with IDW for post-processing are demonstrated in Figure 5.5.

Since only using the nearest neighbor for post-processing is a special case when we apply IDW

with a searching radius as 1 nearest neighbor (i.e., k=1 for kNN). Therefore, the baseline

performance is also included in the figure, where it is located on the far-left end of the x axis. The

OA and IoU range separately from 86.72% to 86.88%, and from 73.04% to 73.22%. The variations

are not obvious (i.e., 0.16% and 0.18% for OA and IoU) but we observe an increasing trend when

the number of nearest neighbors increases as suggested by the response surface of Figure 5.5. The

increasing pattern along the x axis indicates that the overall performance benefits with more nearest

neighbors. Moreover, a lower power results in a higher performance, suggesting the accuracy of

points rely more on the local context rather than on only the nearest ones.

Figure 5.5. Response surface of Overall Accuracy (A) and Intersection over Union (B) for Model

1 with respect to number of nearest neighbor and power of Inverse Distance Weighting.

When it comes to the class-wise performance, we can see diverse patterns for the response surfaces.

Generally, there is an increase in IoU of different classes when we apply spatial interpolation,

where the increases are separately 0.10%, 0.25%, and 0.45% for bridge, vegetation, and ground,

respectively. The IoU of bridge appears to benefit more with a smaller number of nearest neighbors

130

and higher power values (see Figure 5.6A). The pattern of response surface points out that the

identification of bridge data depends more on the relatively local neighbors. We can tell that when

there is an increase in the number of nearest neighbors, a higher power is more preferred, indicating

more weights are given to the near neighbors than distant ones. There is a fluctuation in the trend

of the IoU for vegetation along with the increase in the number of nearest neighbor (see Figure

5.6B), where the maximum values are located on the left end of the x axis. Moreover, the IoU is

more sensitive to the number of neighbors when the number is around 1 and 2. The Intersection

over Union (IoU) metric for ground classification in point cloud data, as indicated by a range from

73.65% to 74.1%, suggests a noteworthy level of accuracy in distinguishing ground points from

non-ground points. This range is similar to the pattern observed in the mean Intersection over

Union (mIoU) across different classes, implying that the accuracy of point classification is

significantly influenced by the local context of points, rather than being solely dependent on the

nearest neighbors. This observation underscores the importance of considering a broader

neighborhood and the spatial relationships among points to capture the underlying structure and

features of the data effectively.

Figure 5.6. Response surface of Intersection over Union on bridge (A), vegetation (B), and

ground (C) for Model 1 with respect to number of nearest neighbor and power of Inverse

Distance Weighting.

131

5.6.3 Spatial interpolation results for model 2

The DeepHyd Model 2, specifically designed for detecting bridge components such as decks and

pillars from bridge-only point clouds, showcases its effectiveness through its performance metrics.

The ranges of OA and mIoU for Model 2 on the dataset collected for this study are separately from

70.3% to 70.9%, and from 41.0% to 42.2%. Compared to Model 1, there is a slightly larger

increase when we apply IDW for the post-processing step.

This performance boost aligns with observations from Model 1, suggesting that both models from

DeepHyd benefit from considering a larger neighborhood of points. The trend, as depicted in

Figure 5.7, illustrates a positive correlation between the model accuracy and the number of

neighbors taken into account, indicating that a broader spatial context contributes to the refinement

of classification outcomes. Such findings highlight the importance of spatial relationships and the

local environment of points in achieving higher accuracy in point cloud segmentation and

classification tasks, underscoring the potential of IDW or similar spatial-aware metamodels in

elevating the performance of deep learning models like DeepHyd.

Figure 5.7. Response surface of Overall Accuracy (A) and Intersection over Union (B) for Model

2 with respect to number of nearest neighbor and power of Inverse Distance Weighting.

132

The improvements observed across various classes in Model 2 provide a compelling insight into

the impact of spatial context on point cloud classification. Specifically, the model shows

incremental improvements of 0.2% for railing, 0.35% for deck, 1% for wall, and a notable 3.5%

improvement for pillar. These enhancements underscore the hypothesis that a broader spatial

context significantly contributes to refining classification outcomes for complex structures within

bridge-only point clouds.

The optimal performance across different classes in Model 2 (see Figure 5.8) begins to emerge at

specific thresholds of nearest neighbors—12 for pillars, 16 for decks, and 29 for retaining walls.

Remarkably, beyond these thresholds, the classification accuracy remains stable, demonstrating

that additional nearest neighbors do not compromise performance. This finding suggests that while

each class requires a minimum spatial context to achieve optimal classification, further expansion

of this context does not detract from the accuracy. Such a pattern emphasizes the significance of

identifying the minimum number of nearest neighbors necessary to reach peak performance for

each class. This strategy not only ensures high precision in classification but also optimizes

computational resources by avoiding the inclusion of superfluous neighbors that do not contribute

to further accuracy improvements. This approach underlines a nuanced understanding of spatial

dependencies within each class, highlighting the delicate balance between the depth of spatial

context considered and the computational efficiency in point cloud processing.

Railing presents an interesting case where the relationship between classification accuracy and the

number of nearest neighbors deviates from the trend observed in other classes. Its performance

shows a negative correlation with an increasing number of neighbors, akin to the behavior noted

for vegetation in Model 1. Furthermore, the analysis reveals that railing classifications prefer a

higher power value when considering more nearest neighbors, suggesting that railings, similar to

133

vegetation, rely more heavily on immediate spatial neighbors rather than distant ones. This

behavior indicates a distinct pattern of spatial autocorrelation for railings, different from other

structural components.

Figure 5.8. Response surface of Intersection over Union on deck (A), retaining wall (B), pillar (C),

and railing (D) for Model 2 with respect to number of nearest neighbor and power of Inverse

Distance Weighting.

These observations highlight the varying characteristics of spatial autocorrelations within each

class, illustrating the complex interplay between spatial context and classification performance in

134

point cloud analysis. Understanding these dynamics is essential for the development of more

efficient and accurate point cloud processing algorithms, enabling tailored approaches that

consider the unique spatial dependencies of each class to optimize both computational resources

and classification accuracy.

In this study, the application of the Inverse Distance Weighting (IDW) method was subject to a

uniform parameter setting across all classes, meaning it did not support the customization of the

number of points for each class individually. Despite this limitation, the study's findings lay a

foundational groundwork for future advancements. By identifying the optimal number of nearest

neighbors for peak performance in different classes and highlighting the importance of spatial

context, this research paves the road for developing more sophisticated methods. Future

approaches could allow for class-specific customization in the number of points considered,

potentially enhancing classification accuracy and computational efficiency. This evolution would

mark a significant step forward, offering a more tailored and precise approach to point cloud

classification that adapts to the unique characteristics and requirements of each class.

5.7 Conclusion

The convergence of advancements in 3D data acquisition technologies and breakthroughs in 3D

deep learning has revolutionized the field of 3D geospatial object detection, marking a significant

milestone in the digital representation of the physical world. These innovations have not only

facilitated the expansion of high-quality (e.g., resolution and additional channels such as RGB) 3D

data collections but also underscored the critical need for accuracy in applications impacting public

safety and infrastructure management. Within this evolving stage, the DeepHyd project emerges

as a notable effort, using deep learning to effectively detect hydraulic structures in large-scale

135

LiDAR datasets. This study, building upon the foundation laid by the DeepHyd project, sought to

address the inherent challenges posed by large-scale 3D point clouds, particularly focusing on the

implications of data partitioning and sampling for object detection.

By analyzing datasets optimized for the DeepHyd framework, this study made several important

contributions. The study first explicitly investigated the data partitioning method (e.g., using

blocks with a fixed size) used to address the challenge brought by the unmanageable size of 3D

large-scale point cloud. Furthermore, it delved into the characteristics of spatial dependency

patterns for different classes, providing an insight of spatial correlations in point cloud data.

Specifically, the study reveals the distinct spatial dependencies of various bridge components, with

optimal performance thresholds identified for pillars, decks, and retaining walls, beyond which the

additional nearest neighbors does not further improve accuracy. This suggests that there is a

maximum spatial extent, while further expansion does not necessarily enhance performance. Such

findings emphasize the need for a balanced approach to computational resource allocation and the

potential for more sophisticated methods that allow for class-specific customization. The study

also highlights the unique spatial autocorrelation patterns within different classes, such as the

negative correlation between classification accuracy and the number of nearest neighbors observed

in railings, indicating it relies more on nearest neighbors. These observations underscore the

complex relations between spatial context and classification performance, pointing to the necessity

for approaches that consider unique spatial dependencies for each class.

136

Reference

Batty, M. (2023) Digital Twins in City Planning. Nature Computational Science, 4.

Boulch, A. (2020) ConvPoint: Continuous convolutions for point cloud processing. Computers &

Graphics., 88, 24-34.

Buhmann, M. D. (2000) Radial basis functions. Acta Numerica, 9, 1-38.

Chen, T. C. W. T. C. A. S.-E. (2024) Spatial explicit incorporation of spatial autocorrelation

features in 3D deep learning [Manuscript submitted for publication]. Annals of the

American Association of Geographers.

Engelund, W. C., D. O. Stanley, R. A. Lepsch, M. M. McMillin & R. Unal (1993) Aerodynamic

configuration design using response surface methodology analysis. NASA STI/Recon

Technical Report A, 94, 10718.

Friedman, J. H. (1991) Multivariate adaptive regression splines. The Annals of Statistics, 19, 1-67.

Goodchild, M. 2022. The Openshaw effect. 1697-1698. Taylor & Francis.

Goodchild, M. F. (2021) Introduction to urban big data infrastructure. Urban Informatics, 543-

545.

Goodfellow, I., Y. Bengio & A. Courville. 2016. Deep learning. MIT press.

Hackel, T., N. Savinov, L. Ladicky, J. D. Wegner, K. Schindler & M. Pollefeys (2017)

Semantic3D.net: A new Large-scale Point Cloud Classification Benchmark. ISPRS Annals

of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-1-W1.

Hardy, R. L. (1971) Multiquadric equations of topography and other irregular surfaces. Journal of

geophysical research, 76, 1905-1915.

Kleijnen, J. P. 1987. Statistical tools for simulation practitioners. Marcel Dekker.

--- (2009) Kriging metamodeling in simulation: A review. European Journal of Operational

Research, 192, 707-716.

Qi, C., H. Su, K. Mo & L. J. Guibas. 2017a. Pointnet: Deep learning on point sets for 3d

classification and segmentation. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 652-660.

Qi, C., L. Yi, H. Su & L. J. Guibas (2017b) Pointnet++: Deep hierarchical feature learning on point

sets in a metric space. Advances in Neural Information Processing Systems., 30.

Rezatofighi, H., N. Tsoi, J. Gwak, A. Sadeghian, I. Reid & S. Savarese. 2019. Generalized

intersection over union: A metric and a loss for bounding box regression. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 658-666.

Sacks, W. & T. Welch (1989) Design and analysis of computer experiments. Statistical Science,

4, 409-435.

Shelton, T. & A. Poorthuis (2019) The nature of neighborhoods: Using big data to rethink the

geographies of Atlanta’s neighborhood planning unit system. Annals of the American

Association of Geographers, 109, 1341-1361.

Shi, W. & R. Rajkumar. 2020. Point-gnn: Graph neural network for 3d object detection in a point

cloud. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 1711-1719.

Simpson, T., F. Mistree, J. Korte & T. Mauery. 1998. Comparison of response surface and kriging

models for multidisciplinary design optimization. In 7th AIAA/USAF/NASA/ISSMO

Symposium on Multidisciplinary Analysis and Optimization, 4755.

Smith, M. 1993. Neural networks for statistical modeling. Thomson Learning.

137

Tang, M., Y. Liu & L. J. Durlofsky (2020) A deep-learning-based surrogate model for data

assimilation in dynamic subsurface flow problems. Journal of Computational Physics, 413,

109456.

Tang, W., S.-E. Chen, J. Diemer, C. Allan, T. Chen, Z. Slocum, T. Shukla, V. S. Chavan & N. S.

Shanmugam. 2022. DeepHyd: A deep learning-based artificial intelligence approach for

the automated classification of hydraulic structures from LiDAR and sonar data. North

Carolina Department of Transportation. Research and Development Unit.

Venter, G., R. Haftka & J. Starnes, James. 1996. Construction of response surfaces for design

optimization applications. In 6th Symposium on Multidisciplinary Analysis and

Optimization, 4040.

Wu, W., Z. Qi & L. Fuxin. 2019. Pointconv: Deep convolutional networks on 3d point clouds. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

9621-9630.

Zhao, H., L. Jiang, J. Jia, P. H. Torr & V. Koltun. 2021. Point transformer. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, 16259-16268.

138

6 CONCLUSION

6.1 Summary

This dissertation represents a comprehensive exploration into the realm of GeoAI, specifically

focusing on the enhancement of 3D deep learning models' understanding of 3D geospatial data

through the lens of spatial principles. The research journey commenced with a foundational

understanding of geospatial technologies, including the significance of 3D data acquisition

advancements and the evolving role of artificial intelligence in geospatial analytics. At its core,

the dissertation seeks to answer pivotal research questions centered around the utility of spatial

autocorrelation features in 3D deep learning, the development of a neural network architecture

encoding spatial dependencies, and the improvement of post-processing in the task of 3D object

detection.

Chapter 3 shed light on the potentials of spatial autocorrelation features, particularly semivariance,

in refining 3D deep learning models for geospatial object detection. The incorporation of these

features alongside spatial information and color information led to marked improvements in

accuracy across varied environmental settings, underscoring the importance of spatial context in

enhancing model performance.

Chapter 4 further advanced the discourse by introducing a spatial autocorrelation encoder designed

to seamlessly integrate spatial contextual features into 3D deep learning models. This innovation

not only boosts accuracy in geospatial object detection but also streamlined the workflow, making

sophisticated spatial autocorrelation features more accessible to practitioners without expert

knowledge in geospatial analytics.

139

Chapter 5 focused on a practical study case of 3D geospatial object detection, DeepHyd project

which aimed at detecting hydraulic structures within large-scale LiDAR datasets. The chapter

delved into the challenges of data partitioning and sampling in large-scale 3D point clouds,

offering insights into spatial dependency patterns and the implications for object detection

accuracy.

Collectively, this dissertation underscores the pivotal role of spatial autocorrelation features in

enhancing the interpretive capabilities of 3D deep learning models. This work contributes to the

field of GeoAI by bridging the gap between GIScience and AI, with a focus on offering innovative

methodologies for 3D geospatial object detection. It advances theoretical understanding but also

has empirical implications in urban planning, environmental monitoring, and beyond, marking a

significant step forward in the integration of spatial principles into AI research for enhanced

geospatial analytics. This work lays a solid foundation for future research at the intersection of

GIScience and AI, driving forward the quest for more intelligent, spatially aware technology

solutions.

6.2 Future Work

This dissertation has made efforts in the integration of spatial principles, specifically spatial

autocorrelation, with 3D deep learning for enhancing geospatial object detection. The exploration

of spatial autocorrelation in 3D deep learning paves roads for future research. This section outlines

potential directions for extending this line of study, addressing challenges, and leveraging

emerging technologies and methodologies in GIS and AI.

Expanding the Scope of Spatial Features

140

While this research has focused on the utility of spatial autocorrelation, particularly semivariance

of optical data, future studies could explore other spatial and non-spatial features and their

integration into deep learning models for a particular study case. For example, spatial context of

elevation can be a strong indicator to detect surface microtopography in case study of carbon

dynamics. Investigating other aspects of spatial relationships, such as spatial heterogeneity and the

scale effect, could lead to further improvements in model performance for geospatial object

detection. Additionally, the development of new spatially aware neural network architectures that

inherently understand the spatial autocorrelation, and geometry of spatial data could offer novel

ways to process and analyze 3D geospatial information.

Leveraging Advanced Deep Learning Architectures

The advancements in deep learning architectures, such as Transformer models and GNNs, provide

solid ground for future research. These architectures, known for their ability to capture complex

relationships in data, could be adapted and optimized for handling 3D geospatial datasets as well

as spatial autocorrelation and spatial heterogeneity nature of them. For example, integrating spatial

autocorrelation features within Transformer models designed for 3D data could potentially offer

more nuanced understandings of spatial dependencies and enhance object detection capabilities in

complex urban and natural environments.

Addressing Challenges Brought by Data Partition and Sampling

As the demand for processing large-scale 3D geospatial datasets, future research can explore

approaches to better handle the aforementioned issue brought by the data partitioning and sampling.

Exploring efficient ways to handle large-scale 3D point clouds could make deep learning

applications more feasible for real-world GIScience problems. Moreover, future studies could

141

explore a broader range of spatial interpolation methods beyond the current implementation.

Advanced techniques such as kriging or machine learning-based interpolation could offer better

ways to incorporate spatial dependencies, potentially leading to further improvements in detection

accuracy across diverse geospatial datasets.

Ethical Considerations and Societal Impact

Future studies could extend the methodologies developed in this dissertation to practical

applications such as urban planning, environmental monitoring, and autonomous navigation. Each

of these domains presents unique challenges and opportunities for leveraging spatial principles

and deep learning to derive insights from 3D geospatial data. As the capabilities of AI in

understanding and interpreting 3D geospatial data advance, it is crucial to consider the ethical

implications and societal impacts of these technologies. Future research should not only focus on

technical advancements but also address concerns related to privacy, data security, and the

potential bias in AI algorithms. Developing frameworks and guidelines for the responsible use of

3D deep learning in GIScience could ensure that these technologies are safe and trustworthy to the

public.

This dissertation represents a step forward in the integration of spatial principles into 3D deep

learning for geospatial object detection. As the evolution of GeoAI, these future studies will play

an essential role in shaping the next generation of geospatial technologies.

142

Reference

Analytics, M. (2020) Global survey: The state of AI in 2020. Image.

Atzori, L., A. Iera & G. Morabito (2017) Understanding the Internet of Things: definition,

potentials, and societal role of a fast evolving paradigm. Ad Hoc Networks, 56, 122-140.

Bengio, Y., Y. Lecun & G. Hinton (2021) Deep learning for AI. Communications of the

Association for Computing Machinery, 64, 58-65.

Couclelis, H. (1986) Artificial intelligence in geography: Conjectures on the shape of things to

come. The Professional Geographer, 38, 1-11.

De Deuge, M., A. Quadros, C. Hung & B. Douillard. 2013. Unsupervised feature learning for

classification of outdoor 3D scans. In Australasian Conference on Robitics and Automation.

araa.asn.au.

Goodchild, M. (2010) Twenty years of progress: GIScience in 2010. Journal of Spatial

Information Science, 3-20.

Goodchild, M. F. & W. Li (2021) Replication across space and time must be weak in the social

and environmental sciences. Proceedings of the National Academy of Sciences of the

United States of America, 118.

Hackel, T., N. Savinov, L. Ladicky, J. D. Wegner, K. Schindler & M. Pollefeys (2017) Semantic3d.

net: A new large-scale point cloud classification benchmark. ISPRS Annals of the

Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-1/W1, 91–98.

Han, Z., Z. Liu, J. Han, C.-M. Vong, S. Bu & C. L. P. Chen (2016) Mesh convolutional restricted

Boltzmann machines for unsupervised learning of features with structure preservation on

3-D meshes. IEEE Transactions on Neural Networks and Learning Systems, 28, 2268-2281.

Hinton, G. (2009) Deep belief networks. Scholarpedia, 4, 5947.

Ioannidou, A., E. Chatzilari, S. Nikolopoulos & I. Kompatsiaris (2017) Deep Learning Advances

in Computer Vision with 3D Data: A Survey. Association for Computing Machinery

Computing Surveys, 50, 1-38.

LeCun, Y., Y. Bengio & G. Hinton (2015) Deep learning. Nature, 521, 436-444.

Li, W. (2021) GeoAI and Deep Learning. The International Encyclopedia of Geography., 1-6.

Liu, M., M. Salzmann & X. He. 2014. Discrete-continuous depth estimation from a single image.

In 2014 IEEE Conference on Computer Vision and Pattern Recognition, 716-723. IEEE.

Magomadov, V. S. (2020) The Industrial Internet of Things as one of the main drivers of Industry

4.0. Institute of Physics Conference Series: Materials Science and Engineering, 862,

032101.

Maturana, D. & S. Scherer. 2015. VoxNet: A 3D convolutional neural network for real-time object

recognition. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 922-928. ieeexplore.ieee.org.

Minaee, S., N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu & J. Gao (2021) Deep

Learning-10based text classification: A comprehensive review. Association for Computing

Machinery Computing Surveys, 54, 1-40.

Nassif, A. B., I. Shahin, I. Attili, M. Azzeh & K. Shaalan (2019) Speech Recognition Using Deep

Neural Networks: A Systematic Review. IEEE Access, 7, 19143-19165.

Openshaw, S. (1992) Some suggestions concerning the development of artificial intelligence tools

for spatial modelling and analysis in GIS. The Annals of Regional Science, 26, 35-51.

Openshaw, S. & C. Openshaw. 1997. Artificial intelligence in geography. John Wiley & Sons, Inc.

Philbeck, T. & N. Davis (2018) The fourth industrial revolution. Journal of International Affairs,

72, 17-22.

143

Qi, C., H. Su, K. Mo & L. J. Guibas. 2017. Pointnet: Deep learning on point sets for 3d

classification and segmentation. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 652-660.

Reichstein, M., G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais & Prabhat (2019)

Deep learning and process understanding for data-driven Earth system science. Nature,

566, 195-204.

Rottensteiner, F., G. Sohn, M. Gerke, J. D. Wegner, U. Breitkopf & J. Jung (2014) Results of the

ISPRS benchmark on urban object detection and 3D building reconstruction. ISPRS

Journal of Photogrammetry and Remote Sensing, 93, 256-271.

Schwab, K. 2017. The fourth industrial revolution. Crown.

Serna, A., B. Marcotegui, F. Goulette & J.-E. Deschaud. 2014. Paris-rue-Madame database: A 3D

mobile laser scanner dataset for benchmarking urban detection, segmentation and

classification methods. In 4th International Conference on Pattern Recognition,

Applications and Methods ICPRAM 2014. hal.science.

Silberman, N., D. Hoiem, P. Kohli & R. Fergus. 2012. Indoor segmentation and support inference

from RGBD images. In European Conference on Computer Vision (5), 746-760. Florence,

Italy.

Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I.

Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N.

Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel & D.

Hassabis (2016) Mastering the game of Go with deep neural networks and tree search.

Nature, 529, 484-489.

Singh, T., S. Sharma & S. Nagesh (2017) Socio-economic status scales updated for 2017. Medical

Science Monitor, 5, 3264.

Smith, T. R. (1984) Artificial intelligence and its applicability to geographical problem solving.

The Professional Geographer, 36, 147-158.

Song, S., S. P. Lichtenberg & J. Xiao. 2015. SUN RGB-D: A RGB-D scene understanding

benchmark suite. In 2015 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 567-576. IEEE.

Su, H., S. Maji, E. Kalogerakis & E. Learned-Miller. 2015. Multi-view convolutional neural

networks for 3D shape recognition. In IEEE International Conference on Computer Vision,

945-953. Santiago, Chile.

Tuan, Y.-F. 1977. Space and place: The perspective of experience. University of Minnesota Press.

Vallet, B., M. Brédif, A. Serna, B. Marcotegui & N. Paparoditis (2015) TerraMobilita/iQmulus

urban point cloud analysis benchmark. Computers & Graphics, 49, 126-133.

VoPham, T., J. E. Hart, F. Laden & Y.-Y. Chiang (2018) Emerging trends in geospatial artificial

intelligence (geoAI): Potential applications for environmental epidemiology.

Environmental Health, 17, 1-6.

Wu, Z., S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang & J. Xiao. 2014. 3D ShapeNets: A deep

representation for volumetric shapes. In IEEE Conference on Computer Vision and Pattern

Recognition. Boston, Massachusetts.

Young, T., D. Hazarika, S. Poria & E. Cambria (2018) Recent trends in deep learning based natural

language processing. IEEE Computational Intelligence Magazine, 13, 55-75.

Yusoff, I. M., A. Ramli & N. A. M. Al-Kasirah (2021) Geospatial data and technology application

towards managing flood disaster in the context of industrial revolution 4.0 (IR4.0). Journal

of Agriculture, Science And Technology, 1, 38-69.

144

Zhu, Z., P. Luo, X. Wang & X. Tang (2014) Multi-view perceptron: A deep model for learning

face identity and view representations. Advances in Neural Information Processing

Systems, 27.

Zlatanova, S., A. Rahman & M. Pilouk (2002) 3D GIS: Current status and perspectives.

International Archives of Photogrammetry Remote Sensing and Spatial Information

Sciences, 34, 66-71.

Zlochower, A., D. S. Chow, P. Chang, D. Khatri, J. A. Boockvar & C. G. Filippi (2020) Deep

learning AI applications in the imaging of glioma. Topics in Magnetic Resonance Imaging,

29, 115-110.

