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ABSTRACT

WASEEM GHASSAN TAHSEEN SHADID. Computational inverse mechanics of a
highly comminuted tibia fracture. (Under the direction of DR. ANDREW R.

WILLIS)

This dissertation presents a new computational system that seeks to estimate the

inverse mechanics of a bone fracture from 3D CT images. One image provides a model

of an unbroken bone and a second records a fractured example of the same bone after

an injury. For a bone fracture, these mechanics specify how the bone broke in terms

of what object impacted the limb and how the bone fracture fragments moved over

time due to that impact. To accomplish this task, novel image processing techniques

are used in combination with existing computational dynamics simulation tools. Es-

timates of a fracture event are generated in three steps: (1) estimate a 3D model of

the limb immediately before the fracture event occurred, (2) iteratively simulate the

fracture dynamics to search for values of the unknown fracture variables that produce

fracture patterns similar to that depicted in the observed image of the fractured limb,

and (3) visualize and analyze likely fracture scenarios in a virtual 3D environment.

This dissertation investigates the following two challenges: (1) obtaining a physically-

meaningful estimate of the unbroken limb and (2) solving the difficult search problem

for the unknown fracture event variables. Challenge one requires geometric surface

models having unprecedented accuracy to be estimated for the fracture fragments

which is a difficult unsolved problem. Challenge two requires conceptualizing and

implementing a completely new system to estimate the fracture event. Results for

the proposed methods are provided for clinical tibial plafond fracture data.
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CHAPTER 1: INTRODUCTION

In order to understand how a bone fracture is generated, one needs to understand

how the bone fragments moved from their original anatomical positions to their frac-

tured positions as presented by a fracture case. The absence of computational systems

like this prevent physicians from visualizing plausible reconstructions of the fracture

event. For traumatic fracture cases, this information can provide important forensic,

diagnostic and treatment insights for these difficult cases [46]. Current technologies

do not provide this information which is important, particularly for complex frac-

tures where multiple bone fragments are generated. Important information derived

from reconstruction of the fracture event may lead to a different diagnosis or treat-

ment. Existing approaches for orthopedic image analysis 2D and limited 3D analysis

methods for bone fractures despite their helpfulness to orthopedic physicians. Such

systems are helpful to orthopedic physicians because they allow them to analyze 3D

Computed Tomography (CT) images and to visualize fractures in three dimensions.

A subset of these systems go further and provide a virtual reconstruction of bone

fragments that physicians can use to assist in planning for surgical reconstructions

[26, 83]. The system described in this dissertation provides new visualization and

computational methods for analysis that may have important clinical benefits.

This dissertation describes a system that seeks to estimate the geometry and dy-

namics of a fracture event, i.e., the process of breaking a bone into fragments and
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moving these fragments away from their anatomic positions. The system requires

the following data as input: (1) a 3D CT image of a fractured limb, referred to as a

fracture image, (2) a 3D CT image of an unfractured limb, referred to as an intact

image, and (3) a collection of hypothesized objects that could break the bone, referred

to as strike objects. The outputs of the system are: (1) an estimate of the hypothe-

sized object that broke the bone ( the strike object) and (2) a virtual simulation of

how bone fragments moved from their original positions to their fractured positions

in the fracture as presented by the 3D CT image of the fractured limb, referred to

as a fracture simulation. The user interacts with the system to provide input data

and visualize the output fracture simulations. The user helps the system construct

estimates for the fracture event on the input side and visualizes and analyzes the

fracture simulation scenarios results at the output side.

Fracture simulations must be estimated from the provided 3D CT data. The system

obtains estimates for likely fracture simulation given the user input and data through

the following three steps:

1. Estimate the initial fracture context. The initial fracture context is a virtual

model of the limb and strike object at some time t,

2. Search for values of the unknown fracture event variables that produce a fracture

simulation that maximizes the likelihood of the observed image of the fractured

limb,

3. Users analyze fracture simulations having high likelihood scores.

The listed sequence describes a process for computational virtual reconstruction of a
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fracture event.

Step 1 takes three inputs: (1) a fracture image, (2) an intact image, and (3)

a collection of hypothesized strike objects that could have broken the bone. The

output of this step is a model having geometry and physical attributes that serves

as a virtual 3D model of the limb at the instant the bone was fractured, referred to

as the initial fracture context. The 3D models specify both the object shape and

physical attributes including the object’s density and coefficient of friction. With the

exception of the soft tissue model, these models are rigid and do not deform over

time.

The initial fracture context includes representations for three different types of ob-

jects: (1) fracture fragments, (2) soft tissue of the fractured limb, and (3) the strike

object. The geometry of the fracture fragments and soft tissue is unknown and must

be estimated from the image data. This makes estimation of the initial fracture con-

text a challenging problem and it requires solutions to several sub-problems. The

sub-problems are: (1) estimating the geometry of the fracture fragments and their

original anatomic positions, (2) estimating the geometry of the soft tissue, (3) es-

timating the geometry of the strike object, and (4) assigning appropriate physical

attributes to all these objects.

For the first sub-problem, the system extracts the geometry of fracture fragments

from the fracture image. Obtaining accurate estimates of the surfaces was not pos-

sible with existing surface extraction algorithms. This dissertation describes a novel

algorithm for computing these surfaces which is one of the contributions of this dis-

sertation [74]. An existing system for virtual reconstruction of bone fragments is
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applied to virtually reconstruct the unbroken bone from the extracted bone fragment

surfaces.

For the second sub-problem, the system estimates a volumetric model for the soft

tissue from the intact image. The model consists of a connected grid of 3D elements

that represent positions of soft tissue structures in the fractured limb immediately

before the fracture event occurred.

For the third sub-problem, the system takes a user-selected strike object from a

list of potential strike objects. The geometry of the strike object is assumed to

approximate the shape of the real object that fractured the limb. For the fourth

sub-problem, the system takes user-specified values for the physical attributes of the

objects. Physical attributes for fracture fragments include density and friction. The

physical attributes for soft tissue models include density and friction for each 3D

element, and criteria for how those elements are connected. The physical attributes

for the strike object model include: mass, friction, initial position and orientation,

and velocity. The physical attributes control the physical behavior of the attributed

models in a fracture simulation. By solving these sub-problem, an estimate of the

initial fracture context is obtained.

Step 2 searches for the unknown values of the fracture event that produce fracture

simulations that best match the observed image of the fractured limb. The search

applies an optimization procedure to find a subset of fracture event values that are

likely to have generated the observed fracture event data. In this dissertation, the

fracture event variables are assumed to be the mass, scale, velocity, position, and

direction of movement for the strike object. These variables are changed during
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the search process and optimized by minimizing a likelihood energy function. The

likelihood energy function expresses the likelihood of the data given values of the

fracture event variables. Likelihood decreases as the difference between the fracture

pattern generated by a fracture simulation and the fracture pattern observed in the

fracture image becomes large. The optimization process is an iterative and each

iteration requires a fracture simulation which provides a value for the likelihood energy

function when complete. After each iteration, the fracture event variables are updated

to improve this likelihood. This process continues until a local maximum likelihood

value for the fracture event variables is found.

Step 3 provide a virtual 3D fracture environment to the user where they can navi-

gate the computed solutions and visualize their associated fracture simulations. Typ-

ical search solution provide multiple plausible fracture event variable values which

are stored in a list of fracture event variable values. Users browse this list to explore

the space of plausible solutions. For each solution, a fracture simulation result may

be viewed which animates the bone fragment surfaces in a virtual 3D environment.

The simulations result shows how the bone fragments moved over time during the

fracture event. Additional analysis tools provide views of the simulated 3D models

and tracks their positions in the intact and fracture CT images. This allows users

to visually approximate the trajectory of the bone fragments through the soft tissue

which provides clues about the location and extent of the voids created in soft tissue

due to the fracture, i.e., areas in the fractured limb where soft tissue is pushed away

from its original position. The analysis tool highlights the voids in the soft tissue

created by computing soft tissue regions that have been displaced by the motion of
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bone fragments during the simulated fracture event. These areas are assumed to

correspond to damaged tissue regions in the fractured limb.

The dissertation uses data from clinical cases of a tibial plafond fracture. This

type of fracture happens when a high-energy axial impact is inflicted on the foot.

In this dissertation, tibial fracture cases are of importance for several reasons: (1)

the complexity of this type of fracture creates difficulties for physicians in making

accurate and reliable treatment decisions, (2) the ankle joint is usually involved in

tibia fractures and is typically difficult to treat when multiple bones that make up

the ankle joint are broken, and (3) the quality of tibia fracture reconstruction is an

important factor for the long term health of the patient. Due to these reasons, the

tibial plafond fracture cases are the focus example of this dissertation.

1.1 Structure of the Dissertation and Terminology

This section describes the structure of the dissertation, the formatting of the disser-

tation, and the terminology of the dissertation. This helps readers in understanding

the discussion throughout the dissertation.

1.1.1 Structure of the Dissertation

This dissertation is organized as follows: Chapter 1 introduces the dissertation

topic, the problem of estimating the inverse mechanics of a fracture, and the contri-

butions of this work to the state-of-the-art of the computational methods for medical

imaging. Chapter 2 introduces important background information on bone anatomy,

digital imaging, the X-ray CT imaging modality, image segmentation, and dynamics

simulation. Chapter 3 reviews state-of-the-art in computer based bone fracture anal-
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ysis systems and medical image segmentation algorithms. Chapters 4 and 5 describe

the system interface and the novel underlying algorithms that the user interface ap-

plies to estimate the inverse mechanics of a fracture event with the exception of the

image segmentation algorithm. Chapter 6 presents experimental results for several

fracture simulations for a high comminuted tibia fracture. Chapter 7 describes the

bone fragment segmentation algorithm used to segment fragments within a 3D CT

image of a fractured limb which was excluded from chapters 4 and 5. Chapter 8 pro-

vides segmentation results for six clinical fracture cases and quantitatively compares

these results with several competing methods and with human-generated segmenta-

tions. Chapter 9 summarizes the implemented work of this dissertation and its impact

on the current state of the research in this field.

1.1.2 Formatting of the Dissertation

Several formatting decisions have been made to improve the clarity of this docu-

ment. These decisions are:

1. Bold words are new terms introduced in this dissertation,

2. Bold small case variables indicate vector quantities,

These formatting decisions cue the reader to take note of these important components

to this dissertation.

1.1.3 Terminology of the Dissertation

Terminology used throughout this document is defined here to clarify and simplify

the discussion. These terms are:
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1. Fracture image: A 3D CT image of a fractured limb,

2. Intact image: A 3D CT image of an unbroken limb,

3. Highly comminuted fracture: A bone fracture that involves three or more frag-

ments,

4. Fracture event: The process of breaking a bone into fragments and moving these

fragments away from their anatomic positions,

5. Inverse mechanics of a bone fracture: A method to compute a fracture event in

terms of what object fractured a limb and how bone fracture fragments moved

over time from their original anatomical positions to their fractured positions

in a fractured limb based on the dynamics of fracture objects,

6. Attributed model: The combination of the geometry and physical attributes of

a model. The geometry of a model specify its shape while the physical attributes

specify the material properties of the model, for example, density and friction,

7. Strike object: An attributed model for an object that broke a bone,

8. Fracture context: A virtual attributed model for a fractured limb and a strike

object at some time t,

9. Dynamics simulator: A system that seeks to approximate the behavior of ob-

jects in space according to Newton’s laws of dynamics,

10. Fracture simulation: A virtual simulation of how bone fragments moved from

their original positions to their fractured positions in a fracture case,
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11. Dynamics optimization: A search for the conditions that produce a fracture

simulation that best match the image of a fractured limb,

12. Void in soft tissue: Areas in the fractured limb where soft tissue is pushed away

from its original position.

13. Image segmentation: A process of assigning labels to the pixels of an image

so that each group of pixels that have the same label forms a unique semantic

class,

14. Watershed algorithm: An image segmentation method that starts the labeling

process from an initial group of labeled pixels and expands the labels to adjacent

pixels according to their intensity values in away analogical to rain falls on a

topographic relief,

15. Leak: A segmentation problem that assigns pixels wrong labels for neighboring

segments these pixels are supposed to belong to,

16. Object position: The location and orientation of an object in space,

17. Reconstructed bone: A collection of aligned geometric fracture fragment models

that approximate the original unbroken bone,

18. “Isthmus”: a bone area where small parts of different bone fragments with small

depth appear touching each other in a CT image.

These terms are used throughout the dissertation and the definitions here help the

reader understands the formal definitions for these terms.
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1.2 Motivation

According to the American Academy of Orthopedic Surgeons (AAOS), about 6.8

million people need medical attention for bone fractures in the United States each

year. Typical treatment involves Orthopedic surgeons moving the bone fragments

to reconstruct surgically the normal anatomy of the broken bone [6]. Surgeons often

carried out these surgeries either by cutting through skin and soft tissues to move bone

fragments to their aligned positions or by attaching manipulators to bone fragments

through the skin and then moving the bone fragments to their aligned positions using

these manipulators, referred to as minimally invasive surgery [84]. It is hoped that

the technologies developed in this dissertation may improve reconstructive surgical

treatment and reduce the soft tissue trauma in invasive surgery, and reduce soft tissue

trauma in minimally invasive surgery.

Orthopedic surgeons often seek to reconstruct the normal anatomy of the broken

bone through surgery. One of the challenges that faces orthopedic surgeons is not

knowing a valid reconstruction sequence for bone fragments in terms of which frag-

ment goes where and when. For example, during surgery, surgeons put the first to

fragments together and fix them with a screw. But after being fixated to their recon-

structed position, these fragments obstruct other pieces from being correctly aligned.

Therefore, the surgeons may have to extend surgery time. Consequently, extended

surgery time often leads to higher rates of infection and increase the likelihood of a

poor prognosis of the patient [60]. Systems that estimate the inverse mechanics of

a fracture may help surgeons determine a valid reconstruction sequence for the bone
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fragments during preoperative planing.

In invasive surgeries, surgeons have to cut through skin and tissue to put the

fragments back together. If surgeons know what tissue has been already damaged

then cutting there creates less damage. So that, soft tissue trauma due to the surgery

for the reconstruction is reduced by knowing the path of the fragment. The path that

the fragment moved through is tissue that has been damaged because the fragment

moved through it. Furthermore, in minimally invasive surgery, surgeons stick a pin

into a bone fragment then they push the fragment around by moving the pin instead

of cutting the skin open. So related to soft tissue trauma, if they know the path way

that already has low resistance because the fragment already moved through that

path to get there, then that is a path that they can follow in a minimally invasive

surgery with manipulators to move the fragment back to its normal position. Reduced

soft tissue trauma may help in reducing the infection rate and increase the likelihood

of a poor prognosis of the patient[28].

1.3 Contribution

The contributions of this dissertation fall in two areas:

1. A new system to estimate the inverse mechanics of a bone fracture from a CT

image,

2. A new bone fragment segmentation algorithm from a CT image.

These two contributions establish new techniques in the field of medical image pro-

cessing.
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The first contribution is a system that estimates the computational inverse me-

chanics of a bone fracture. Currently, there are no existing approaches to solve this

problem. While existing approaches are present for analysis of bone fractures and for

virtual reconstruction of bone fractures, these systems fall short in that they do not

represent the actual breaking process. This work represents a novel addition to this

body of research that is unexplored to date.

The second contribution is a new bone fragment segmentation algorithm that gen-

erates a representation for the geometry of bone fragments within a CT image. The

segmentation algorithm uses a modified version of the watershed algorithm to utilize a

set of probability distributions. Where, each probability distribution is a combination

of two novel probability functions. One probability function to segment individual

bone fragments and a second to prevent merging bone fragments that are in close

proximity. There are three innovations associated with this algorithm: (1) the for-

mulation of a Probabilistic Watershed Transform (PWT), a modified version of the

classical watershed transform, (2) unique probability functions for segmenting bone

fragments in 3D CT images using the PWT, and (3) a unique probability function to

avoid merging bone fragments that are in close proximity which is an acknowledged

shortcoming of watershed transform methods.

The first contribution of the segmentation algorithm is the formulation of the PWT

algorithm. The PWT algorithm is similar to the work of Grau [34] in which also

solves a set of probability distributions to control the segment growth in the watershed

transform. However, this work introduces new probability distributions having use for

bone fragment segmentation. In the work of Grau, probability distributions represent
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the prior probability that a pixel lies on a surface boundary, i.e., it separates two

segments. In contrast, the probability distributions in the proposed PWT algorithm

defines a stochastic relationship between each unknown pixel label and a collection of

candidate segment labels. This allows the use of probability functions having different

probabilities, one for each segment.

The second contribution of the segmentation algorithm describes unique proba-

bility distributions to segment bone fragments within a CT image using the PWT

algorithm. The presented bone fragment segmentation algorithm uses the PWT al-

gorithm to divide a CT image into semantic parts so that each part represents a

unique bone fragment. The probability distribution represents the probability that

a given pixel is a measurement obtained from each of the provided semantic classes.

The probability distribution is computed using the intensity and position data of the

image pixels in order to increase the algorithm robustness to image inhomogeneities.

The framework of the PWT algorithm is not limited to the probability distributions

that are specified in this dissertation. This framework is able to operate on any

probability distributions. The probability distributions that are specified in this dis-

sertation address several known shortcomings of segmenting bone fragments using the

classical watershed transform method and several shortcomings of other competing

segmentation method. Using these probability distributions, one is able to apply the

PWT algorithm to segment bone fragments within a CT image of a bone fracture.

The third contribution of the segmentation algorithm describes a probability func-

tion to avoid incorrect merging of areas that correspond to different bone fragments

within a CT image. This incorrect merging problem is referred to as a leak problem.
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Leak problems cause two or more bone fragments to be represented by a single se-

mantic class in the segmentation algorithm. A leak problem occurs when pixels are

given incorrect labels and these incorrect labels are expanded to unclassified adjacent

pixels. This problem is highly likely to occur in an area that corresponds to a small

width part of a bone fragment within a CT image. This area is referred to as a narrow

bone area. The intensity data of the pixels in narrow bone areas in a CT image may

not correspond to the actual bones due to blurring and low image resolution. The

introduced solution seeks to assign low probability values to the pixels of narrow bone

areas in a CT image. So that, in a segmentation algorithm, those pixels are assigned

labels after assigning labels to all pixels outside narrow bone areas. Labeling the

pixels of narrow bone areas at the end will reduce the number of unclassified adjacent

pixels that may be given incorrect labels.



CHAPTER 2: BACKGROUND

This chapter provides background information that is needed to understand the

terminology of this dissertation and to interpret the dissertation results. The chapter

consists of an overview of six topics: (1) bone anatomy, (2) the comminuted tibial

plafond fracture, (3) medical images, (4) 3D Computed Tomography (CT) imaging,

(5) image segmentation, and (6) dynamics simulation. This dissertation proposes

new approaches that integrate work from these topics to provide novel computational

bone fracture analysis software that uses CT images as input.

2.1 Bone Anatomy

A bone is a dense, semi-rigid organ that composes most of the human skeleton.

Skeletal bones perform several functions for the body that include: providing shape

and support for the body, protecting organs of the body such as the brain, produc-

ing blood cells, and storing minerals. A bone consists of different tissues including:

osseous, endosteum, periosteum, nerves, blood vessels, marrow, and cartilage [89].

Osseous tissue is of particular importance to the analysis methods of this disserta-

tion because bones primarily consist of osseous tissue. Specifically, this dissertation

proposes methods to extract bone fragments from an image that depend almost ex-

clusively on the appearance of osseous tissue in an image, see chapter (7). Osseous

tissue is a hard and lightweight tissue that is primarily formed from calcium phos-
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Figure 1: shows the location of different bone tissues within the proximal (top) end of
the human tibia. Cortical bone and cancellous bone form the outer and inner layers
of the bone, respectively.

phate. Osseous tissue consists of two types of tissue which are: cortical (compact)

bone and cancellous (trabecular or spongy) bone, see figure (1). Cortical bone tissue

typically forms the outer shell of bones. It is hard, dense, strong, and responsible for

the bone’s smooth white appearance. Cortical bone makes up 80% of the total bone

mass of the skeleton. Cancellous bone tissue is a less dense inner layer of a bone.

Cancellous bone consists of a network of rod-and-plate like elements that allow space

for blood vessels and bone marrow making cancellous bone lighter and softer than

the cortical bone. Cancellous bone makes up 20% of the total bone mass of a skeleton

and has a surface area that is about ten times larger than the surface area of cortical

bone.

2.2 Comminuted Tibial Plafond Fracture

This dissertation uses as source data a collection of clinical tibial plafond fractures.

For this purpose, the medical nature of tibial plafond fracture and some details about

its terminology are provided in this section. A comminuted tibial plafond fracture
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is both a comminuted fracture, i.e., a fracture that involves many bone fragments,

the fracture involves the tibia so have the term “tibial”, and it is a specific type

of fracture called a plafond fracture. A plafond fracture is a fracture that includes

a specific sub-structure of the tibia bone referred to as the articular surface. An

articular surface is any surface against which two different bones articulate, i.e., bone

surfaces at bone joints. In particular, the articular surface referred to in a tibial

plafond fracture is the articular surface at the distal end, i.e., bottom part of the

tibia, these surfaces associated with the ankle joint. Comminuted plafond fractures

usually occur in the hips, knees, ankles, shoulder, and wrists. The incidence of tibial

plafond fractures accounts for 7% of all fractures of the tibia and less than 1% of all

fractures of the lower-extremity [70]. Although tibial plafond fracture is not the most

common joint injury, it has fracture characteristics similar to the ones of more frequent

joint fractures such as the tibial plateau fracture, i.e., a fracture of the proximal tibia.

Therefore, new computational technologies developed for the ankle joint fractures may

be successfully applied to fractures elsewhere. Tibial plafond fractures are caused

by axial compression, bending, and shearing forces. A comminuted tibial plafond

fracture is typically the result of a severe compressive talar impact that is axially

applied to the distal tibia. The other forces become more influential as the apposition

of the tibia and talus deviates from the original anatomic positions [71]. A severe

axial compressive force usually generates an explosion of bone fragments, whereas the

other forces generate oblique and split fractures in varying degrees. In severe fracture

cases, the fracture pattern extends from the articular surface to the diaphysis, cutting

across both cortical and cancellous bone regions.
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2.3 Medical Images

This dissertation proposes algorithms that process medical image data to perform

advanced virtual fracture analysis. This section provides background information to

understand the nature of this data and how image data is denoted with mathematical

notation. A medical image is defined as a finite two-dimensional (2D) or three-

dimensional (3D) array of digital numbers that represents a part of a human body in

order to be used for clinical purposes. Each array location denotes a spatial location

and includes a real valued sample, denoted the intensity, that is sampled at regular

intervals. The intensity values of the sampled signal are quantized to a finite number

of levels. Each element of the array is referred to as a pixel.

2.4 3D Computed Tomography Image

Computed Tomography (CT) images encode the amount that a tissue absorbs X-

ray radiation as an intensity within a 2D or 3D image. The intensity is proportional

to the amount of X-ray radiation absorbed by the tissue, referred to as radiographic

attenuation. The radiographic attenuation a tissue depends on its density and com-

position. The spatial position of each image pixel encode the spatial positions of

different tissues. Medical image intensities are often expressed in Hounsfield Units

(HU). The Hounsfield unit is a linear transformation of a radiographic attenuation

coefficient such that, in the transformed space, the intensity of distilled water at

Standard Pressure and Temperature (SPT) is 0 HU and the intensity of air at SPT

is -1000 HU. In CT images, the intensity of soft tissues in the vicinity of bones are

represented by values ranging from -100 to +100 HU, whereas cortical bones have a
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range from 500 to 2000 HU [67].

2.5 Image Segmentation

Segmentation describes the process of partitioning a collection of data into distinct

groups or segments. Segmentation algorithms for image data separate images into

groups of pixels. Typically these groups are intended to be semantically meaningful

or homogeneous with respect to one or more features or characteristics. In practice, a

segmentation algorithm maps each data point to a segment label where each segment

has a unique label. Let D = {d1, d2, ..., dN} represent the image data and di represent

the ith point of image data. Also, let L = {l1, l2, ..., lK} be the collection of K labels

associated with the segments within the image. Using this notation, the segmentation

operation may be formulated as:

Label(D) = Y

where Label is the segmentation function and Y is the collection of labels, one for

each point of the image data, i.e., Y = {y1, y2, ..., yN} such that yi ∈ L is a label fro

di. A segmentation function forms the segments by assigning a label to each data

point, i.e., Label(di) = yi. For each label lj, the collection of points that share the

same label forms the segment sj as expressed in equation (1).

sj = {
⋃
i

di| yi = lj} (1)

Each data point can have only one label, hence, segments are disjoint sets, i.e.,

si ∩ sj
i 6=j

= {∅}, and each segment, si, is formed by a set of data points that are con-
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nected to each other by sequences of links that connect points. These sequences are

referred to as paths. Two points that are connected by a path of length 1, i.e., a

single link, are called adjacent. Adjacent points that are connected horizontally and

vertically are referred to as 4-connected, while adjacent points that are connected hor-

izontally, vertically, and diagonally are referred to as 8-connected. 4-connectivity and

8-connectivity are commonly used in segmentation algorithms to generate segments

of connected points.

2.6 Dynamics Simulation

Dynamics simulation refers to the computational framework that seeks to model

the interaction of physical objects in a virtual space. These physical interactions are

modeled computationally using Newton’s laws of dynamics in addition to other laws

of physics such as Hooke’s law. Dynamics simulation programs require a collection of

models that virtually represent objects as input. These models must be given physical

attributes such as mass and rigidity that allow them to be treated as physical entity.

These models can be animated given paths overtime. A dynamics simulation program

takes all these attributed models and paths as constraints then simulate the physical

interaction of objects for a specified time interval. A dynamics simulation program

provides as output all the geometry and attribute information of models as it varies

overtime. There are three main challenges to perform a dynamics simulation: (1)

getting good models of physical objects, (2) getting physically meaningful attributes

for models, and (3) configuring correctly virtual internals of a dynamics simulation

program. There are many programs are used to perform dynamics simulations. When
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researchers perform dynamics simulations, they use programs such as Bullet engine,

PhysX, and AGX Multiphysics to accomplish these simulations. In this dissertation,

Bullet engine is used to perform dynamics simulations.

Dynamics simulation is important in scientific modeling of natural processes to gain

insight into their functionality. Computational simulation has particular import when

the real processes is not accessible or dangerous to reproduce in real life. Simulations

are used to approximate the real effects of alternative conditions and courses of action

in a processes. For example, in biomechanics field, dynamics simulation is used to

study the human anatomical structures in order to assist physicians in planning the

medical treatment [24]. For this simulation, a special mechanical model is created

from combinations of rigid and deformable bodies, joints, constraints, and various

force actuators. By changing variables in the simulation, physicians are able to make

predictions about the behavior of the system under study.

2.7 Summary

In this chapter, a brief overview is provided for the main concepts and theories

that are used in this dissertation. The overview presents the structure of bones, the

concept of medical images, the formation of CT images, image segmentation, and

dynamics simulation. Understanding these topics helps analyzing the contents of

CT images and understanding the nature of the problem of computing the inverse

mechanics for highly comminuted bone fractures.



CHAPTER 3: LITERATURE REVIEW

This literature review offer insights into computational bone fracture analysis in

section (3) and the different image segmentation algorithms in section (3.1.2). The

first section discusses the existing literature on the topic of dynamics simulation for

a fracture analysis. This review is very small because there are not many of fracture

analysis systems. The second section discusses the existing literature on the topic of

image segmentation algorithms. Segmentation is a classical problem and has many

various algorithms. The section divides these algorithms into categories and presents

a literature review for each category.

3.1 Computer Based Bone Fracture Analysis

There are four academic and three commercial systems have been developed in the

past few years to analyze bone fractures from 3D CT images of broken limbs. Such

systems seek to give orthopedic physicians tools that help them make better treatment

decisions. All of these systems include 2D and 3D visualizations of objects.

3.1.1 Academic Systems

The four most relevant academic systems are found in recent papers [23, 22, 90, 46].

These systems seek to provide a virtual reconstruction of a bone from its fragments.

Physicians can use these systems to assist in planning for surgical reconstructions.

In [23], Cimerman and Kristan develop a virtual preoperative planning system
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for displaced pelvic acetabular fractures where the acetabulum bone is broken. The

system is used to assist orthopedic surgeons in planning reduction, i.e., a medical

procedure to restore a fracture, for pelvic and acetabular structures. The system

consists of tools that allow users to virtually perform a surgical simulation. In this

system, CT images are manually segmented by an expert to extract bone fragments.

Then, in order to reconstruct the bone, i.e., restore its original shape, surgeons need

to move and rotate the segmented fragments manually to piece them back together.

The process of piecing bone fragments back together is very time consuming and

tedious. Surgeons need to make small refinements to the positions of bone fragments

in order to obtain an acceptable result. Furthermore the results of virtual reduction

are not repeatable since each fragment must be manually positioned.

In [22], Chowdhury et al. develop a system that automates the reconstruction

process. This system is specifically designed to help physicians in virtually recon-

structing craniofacial multifractures. In this type of fractures, the bone fragments

of the mandible, one of the craniofacial bone, are usually displaced with clearly de-

fined bone borders and non-deformed fracture surfaces. Bone fragments are extracted

from a 3D CT image of the broken limb automatically using an intensity threshold-

ing method, described in section (3.2). The reconstruction process is implemented

as an automatic. The first stage approximately apposes the fracture surfaces using

a graph matching algorithm, described in section (3.2.3.2). While, the second stage

reconstructs the fracture using an algorithm that minimizes the difference between

fracture surface points and surface points for a reference bone model. This system is

accurate in reconstructing the mandible from several fragments. However, the system
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assumes that a fragment is only aligned to a single other fragment. This assumption

is not valid for highly comminuted fractures because the surfaces of a fragment are

very likely align to surfaces on more than one other fragments. Furthermore, the

algorithm of the second stage because it assumes that fracture surfaces are not plasti-

cally deformed has limited application. This assumption does not generalize to bone

fractures in anatomic sites other than the mandible.

In [90, 3], Willis et. al. develop a semi-automatic system to virtually reconstruct

highly comminuted bone fractures. The system can help orthopedic physicians to plan

medical treatments for these bone fractures. The system provides a virtual interac-

tive environment where users control the reconstruction process. The reconstruction

process is accomplished by emphasizing geometric surface variations (ridges and val-

leys) during the alignment to more heavily influence the final reconstruction solution,

generating more visually encouraging results. However, the algorithm is only tested

on surfaces for simulated bone pieces fabricated from a specialty high-density poly-

meric foam. These surfaces have less variation and are easier to match than fracture

surfaces for fragments extracted from real-world clinical CT images.

In [46], Liu develops a computational system to assist physicians in making a more

accurate fracture severity classification. The system allows users to view and edit

their fracture cases in both 2D via CT images and 3D via a virtual 3D environment.

In order to do so, the system interface is integrated with a combination of 2D/3D

image processing and surface processing algorithms. This integration allows users to

quantitatively evaluate the fracture severity of bone fracture cases from their raw CT

image data. Furthermore, the system provides tools that link the 2D CT imagery with
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3D visualizations of the bone surfaces. The surfaces of bone fragments are extracted

automatically from CT image data using the watershed segmentation algorithm to

segment 3D CT images, described in section (3.2.3.1).

3.1.2 Commercial Systems

There are three commercial orthopedic computational systems that are capable

of analyzing bone fractures: (1) OrthoView (Orthopedic Digital Planning, USA),

(2) TraumaCad (VoyantHealth,USA), and (3) Mimics software system (Materialise,

Belgium).

OrthoView and TraumaCad are two software systems for digital medical image

analysis. These systems are designed mainly for orthopedic applications. The systems

allow users to perform virtual preoperative planning sessions on-screen with 2D digital

images. The user interface of these systems has unique features that allow users to

edit, mark, and measure X-ray images. These features include:

1. Making measurements of various anatomic features from digital images,

2. Visualizing fracture patterns in 2D X-ray images,

3. Designing custom implants in 2D to assist physicians during surgeries,

4. Generating pre-surgical reports that specify medical treatment plans for fracture

cases,

5. Reconstructing virtually simple fracture cases from 2D images,

These systems provide a set of pre-defined planning modules to help orthopedic sur-

geons in their preoperative planning sessions. The set of pre-defined planning modules



26

in OrthoView includes five modules for: (1) joint replacement, (2) limb deformity cor-

rection, (3) pediatrics, (4) fracture management, and (5) spine. While TraumaCad’s

set include nine modules for: (1) adult hip joint replacement, (2) pediatric hip joint,

(3) deformity correction, (4) spine, (5) foot and ankle, (6) adult knee joint replace-

ment, (7) upper limbs, (8) trauma, and (9) 3D implant visualization. These systems

support only 2D images and do not support viewing 3D objects. Therefore, recon-

struction solutions are not available in these systems.

The Mimics software system allows users to process and edit 2D image data, as well

as, to construct 3D models for fracture cases. Mimics system provides image segmen-

tation tools that allow users to segment 2D CT images manually. This system also

allows users to make measurements directly on 3D models. Mimics system supports

a wide range of output formats to export generated 3D data so that downstream ap-

plications, e.g., implant design software and surgical simulation software, are able to

use the generated data as input. Mimics system attempts to bridge the gap between

2D image data and downstream 3D applications. However, while the system is able

to generate 3D models, no further efforts are made to reconstruct these 3D models

automatically or semi-automatically.

To conclude, there are no existing computational systems that estimate what broke

the limb and how the bone fragments moved over time. While existing systems are

present for analysis of bone fractures and for virtual reconstruction of bone fractures,

these systems fall short in that they do not represent the actual breaking process.

This dissertation presents a novel addition to this body of research that is unexplored

to date.
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3.2 Image Segmentation Methods

There are various methods proposed for segmenting CT images. Each algorithm

has its own merits, limitations, and its field of applications. Segmentation algorithms

are classified into the following four categories: thresholding [73, 40, 37, 58], edge

based [31, 16, 13, 93, 9, 86, 18], region based [61, 8, 82, 92, 15, 76, 45], and graph

models [92, 15, 75, 14, 44, 78, 96, 36, 35, 77, 76]. A description of each category is

provided in the following sections with emphasis on the algorithms that are used in

segmenting bone fragments within CT images.

3.2.1 Thresholding

Thresholding is a segmentation approach that creates binary images. Threshold-

ing is important to separate image foreground from image background. Thresholding

groups image points into segments according to their intensity values such that all

points whose intensity values are in a given range fall into the same segment. Thresh-

olding creates a binary image by labeling all points whose intensity values above a

certain value, called threshold, with one and all pixels below that threshold with zero,

i.e.,:

Label(x) =


1, if I(x) > T

0, otherwise

(2)

where I is the image, x is a point in the image, T is the threshold value, and

Label(x) is the label at point x. Label 1 indicates a foreground point and label 0

indicates a background point.
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(a) (b)

Figure 2: Thresholding of image with manual threshold value, (a) input image, (b)
result of thresholding at T = 127. White area indicates label 1 the foreground and
black area indicates label 0 the background.

Threshold value can be determined either manually or automatically. Threshold is

determined manually by an expert who tries a range of values of T to find which one

works best at identifying the objects of interests, see figure (2) . Manual determination

of threshold value is a subjective process since different experts may produce differ-

ent values because of the divergence of their opinions and the involvement of their

personal work which reduces the reproducibility and comparability of the processed

images. Automatic determination of threshold value is preferable. A simple method

to compute automatically the threshold value is to use the gray level distribution

characterized by the image histogram. Local maxima of the histogram correspond to

the objects of interest, therefore, the threshold values are placed at the local minima

of the histogram to separate the objects. The method is effective in cases where back-

ground and objects points intensities have some average values and the actual point

intensities have some variation around these average values. The method may have

difficulty in finding the threshold in cases where the image histogram does not have

clearly defined local minima points which may lead to unacceptable segmentation
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results.

In [79], Sonka provides a method to compute the optimal threshold value iteratively.

The method computes the optimal threshold as follows. Let T i be the threshold

value at step i. In order to compute new threshold value, the image is segmented to

background and foreground according to equation (2). Let H i
0 and H i

1 be the average

intensities for image background points and foreground points, respectively. The new

threshold value for step i+ 1 is computed as follows:

T i+1 =
H i

0 +H i
1

2
(3)

where T i+1 is the threshold value for step i+ 1. The iterative update for threshold

value is repeated until there is no change in the threshold value, i.e., T i+1 = T i. The

iterative method to compute optimal threshold works well if the variances of back-

ground and foreground intensity distributions are approximately equal. Otherwise,

the method generates usually non desired segmentation results because it does not

handle largely different variances of background and foreground intensity distribu-

tions.

In [58], Otsu introduces a new criterion to compute threshold value in order to min-

imize the error of missclassification of points as background and foreground. Otsu’s

method intends to find a threshold that classifies the image points into two clusters

which are: foreground and background such that the area under histogram for ob-

jects of one cluster that lies on the other cluster side is minimum. Otsu’s method

minimizes the within class variance which is equivalent to maximizing the between-
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class variance. For threshold value T , the between-class variance, σ2
b , is computed as

follows:

σ2
b (T ) = n0(T )n1(T ) [H0(T )−H1(T )]2 (4)

where σ2
b (T ) is between-class variance for threshold T , n0(T ) and n1(T ) are the

number of background and foreground points for threshold T , respectively. H0(T )

and H1(T ) are the average intensities for image background and foreground points

for threshold T , respectively. Otsu’s method chooses the optimal threshold, Toptimal,

such that the between-class variance σ2
b is minimum, i.e.,:

Toptimal = arg
T

min
{
σ2
b (T )

}
(5)

where σ2
b (T ) is between-class variance for threshold T. Otsu’s method tries all

possible threshold values to find Toptimal. Otsu’s method requires the image to have

bimodal intensity distribution. Otsu’s method cannot segment the image correctly

when the image does not have bimodal intensity distribution, e.g., medical images of

anatomical structures, see figure (3) .

In [32], adaptive thresholding technique is provided in order to binary segment

images with uneven illumination. Adaptive thresholding technique subdivides the

image into multiple sub-images and apply different thresholds on the sub-images,

i.e.,:
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(a) (b) (c)

Figure 3: Thresholding of non bimodal intensity distribution image using Otsu’s
method, (a) original image, (b) intensity histogram of the original image, (c) results
of Otsu’s thresholding. White area indicates label 1 the foreground and black area
indicates label 0 the background. The image details are lost after the threshold.

Label(x) =


1, if I(x) > T (x)

0, otherwise

(6)

where T (x) is the threshold value at point x. Adaptive thresholding has two

problems which are: how to subdivide the image and how to specify the threshold for

each sub-image.

Thresholding techniques consider the intensities of the points only without consid-

ering any contextual relationship between them. Thus, there is no guarantee that

the produced segments are contiguous and makes the segmentation process sensitive

to noise and image inhomogeneities. Noise corrupts the image histogram making

the separation between different classes more difficult. When the image is noisy, the

image is usually smoothed before applying a thresholding segmentation process. A

survey of thresholding techniques is provided in [69] and a quantitative evaluation of

different thresholding performances is provided in [73].
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3.2.2 Boundary Based

Boundary based segmentation are algorithms that find the object boundaries and

segment regions enclosed by the boundaries. Boundary based algorithms are divided

into two sub categories: Edge based and deformable models which are discussed in

the following two sub sections.

3.2.2.1 Edge Based

Edge based segmentation are techniques that locate boundary points of the objects

using image gradient which has high values at objects edges in order to segment

objects. An object boundary or edge in an image is defined by the local gradient

of point intensity. Gradient is the first order derivative of the image function. Let

I(x, y) be a 2D image function, then the magnitude of the gradient is calculated as:

||∇I|| =

√(
∂I

∂x

)2

+

(
∂I

∂y

)2

(7)

where ||∇I|| is the magnitude of gradient, ∂I
∂x

is the gradient along the x direction,

and ∂I
∂y

is the gradient along the y direction. The direction of gradient is computed

as follows:

θ = tan−1

(
∂I
∂y

∂I
∂x

)
(8)

where θ is the gradient direction. The discrete nature of digital images does not

allow the application of continuous differentiation, so, the gradient calculation is

performed by differencing [32].

The magnitude of the gradient can be displayed as an image. The magnitude image
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has gray levels which are proportional to the magnitude of local intensity changes.

Gradient operators for digital images involve calculation of convolution by performing

a weighted summation of the point intensities in local neighborhood. The weights

are listed as a numerical array, known as kernel, with a form corresponds to the local

neighborhood in the image. For example, Sobel edge detector uses two 3× 3 kernels,

which are:

Gx =


−1 0 1

−2 0 2

−1 0 1



Gy =


−1 −2 −1

0 0 0

1 2 1


where Gx and Gy are approximations of the first derivative along the x and y di-

rections respectively, i.e., Gx ≈ ∂I
∂x
, Gy ≈ ∂I

∂y
. The magnitude image of the gradient

is generated by combining Gx and Gy using equation (7). The result of the edge de-

tector depends on the used gradient kernel. Other edge detector kernels are Roberts,

Robinson, and Fri-Chen [32, 38, 68]. Many edge detection methods perform a thresh-

old operation on the gradient image after applying the gradient operator in order to

decide whether an edge is found [32, 68], see figure (4) . The result of such methods

is a binary image which indicates the edges points. The main challenging problem

for these methods is to find the appropriate threshold value to enclose the objects of

interest.

Edge based methods are fast and do not require prior information about the ob-
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(a) (b) (c)

Figure 4: Edge segmentation algorithms, (a) input image, (b) result of Sobel edge
detector with threshold 0, (c) result of Sobel edge detector with threshold 5,. White
area indicates label 1 the edge and black area indicates label 0 the non edge.

jects in the image. The main problem of edge based segmentation methods is that

the objects are not enclosed completely by edges. In order to form closed edges sur-

rounding the objects of interest, a postprocessing step is needed to link or group edges

that correspond to a single boundary. A simple method to link edges is examining

the neighborhood points of an edge point to link points with similar edge magnitude

and direction. Edge linking methods are expensive, computationally, and not reliable

which need an expert to draw the edge when the edge tracing becomes ambiguous.

In [85], Wang et al. introduces a hybrid algorithm that allows an expert to interact

with the edge tracing process to correct errors using anatomical knowledge.

Laplacian operator is an approximation of the second order derivative and it is used

to locate edges. First order derivative peaks are zeros in the second order derivatives.

Laplace operator, ∇2, of an image function I(x, y) is defined as:

∇2I(x, y) =
∂2I(x, y)

∂x2
+
∂2I(x, y)

∂y2
(9)

where ∂2I(x,y)
∂x2

and ∂2I(x,y)
∂y2

are the second order derivatives of function I(x, y) along
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(a) (b)

Figure 5: An example for LoG edge segmentation algorithm, (a) input image, (b)
result of LoG edge detector. The Log edge detector image is generated by setting
Gaussian sigma to 2 and using a 13×13 convolution kernel. The white points indicates
the edge locations.

the x and y directions, respectively. Laplacian operator for digital images is approx-

imated by an N × N convolution kernel [79, 32], for example, a 3 × 3 kernel that

approximates the Laplacian operator is:

∇2 =


1 −2 1

−2 4 −2

1 −2 1


Laplacian edge detector locate edges by the points where the Laplacian crosses zero.

Laplacian edge detection methods are very sensitive to noise. The effect of noise can

be reduced by smoothing the image before applying the edge detector. In [49], Marr

and Hildreth applies a Gaussian smoothing filter on the image before applying the

Laplacian, this operation is called Laplacian of Gaussian (LoG). The edges generated

by LoG compared to Laplacian are smoother and the objects are better outlined,

see figure (5) . In [12], Bomans et al. used LoG to segment MR images of the

head. The main problem of LoG and Laplacian operations is the detection of non
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significant edges in almost constant intensity regions. In [33], Goshtasby and Turner

use a combination of zero crossing of LoG operator and local maximum of the gradient

magnitude image followed by curve fitting algorithm to segment ventricular chambers

in flow enhanced MR cardiac images.

In general, edge based segmentation algorithms are sensitive to noise and have a

tendency to detect edges that are irrelevant to the real boundary of the object. Edges

extracted by edge based segmentation algorithms are disjoint and do not completely

represent the boundary of the object. Edges extracted by edge based algorithms need

postprocessing to connect them and form closed object regions.

3.2.2.2 Deformable models

Deformable model based methods are segmentation approaches which evolve a

predetermined curve or surface to its minimum energy according to external forces

derived from the data set that pushes it toward the features of interest in the image

and internal constrains that maintain splines structure shape and smoothness. There

are two types of deformable models representations which are: parametric deformable

models and geometric deformable models. Parametric deformable models represent

curves and surfaces which are in their parametric forms explicitly during deformation.

Geometric deformable models represent curves and surfaces implicitly as a level set

of a higher dimensional scalar function.

In [41], Kass et al. introduce a parametric deformable model called snake. Snake is

a controlled contiguous contour which can deform to match the desired shape under

the influence of forces. The snake contour is represent as v(s) = x(s) where x is the
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coordinate function and s ∈ [0, 1] is the parametric domain. The shape of the contour

is dictated by the functional:

E(v) = S(v) + P(v) (10)

The functional is viewed as a representation of the contour energy where E(v) is

the total contour energy, S(v) is the internal deformation energy, and P(v) is the

external potentials. The final shape of the contour minimizes the energy function

E(v). S(v) is defined as:

S(v) =

1ˆ

0

w1(s)

∣∣∣∣∂v

∂s

∣∣∣∣2 + w2(s)

∣∣∣∣∂2v

∂s2

∣∣∣∣2 ds (11)

where w1(s) is a function that controls the tension of the contour and w2(s) is a

function controls the rigidity of the contour. S(v) characterizes the flexibility of the

contour and its stretchiness. P(v) is defined as:

P(v) =

1ˆ

0

P (v(s))ds (12)

where P (v(s)) is a scalar potential function. P(v) couples the snake contour to the

image. External potentials are designed such that their local minima coincide with

the image features of interest, for example, edges and intensity maxima. The snake

algorithm iteratively deforms the contour until it finds the one with the minimum

total energy which hopeful corresponds to the best fit of the object contour in the

image, see figure (6) .

In [2], Atkins and Mackiewich applied snake algorithm for brain segmentation. The
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(a) (b) (c)

Figure 6: Snake algorithm segmentation of a bone fragment, (a) original image with
the initial contour (blue curve), (b) The external force field, (c) segmentation result
(blue curve). The snake algorithm iteratively deforms the contour until it finds the
one with the minimum total energy which hopeful corresponds to the best fit of the
object contour in the image.

input image is smoothed and a mask to determine the initial brain boundary contour

is obtained by thresholding. Then, the snake model is performed to segment the

brain.

Snake algorithm is a good approach to model shapes, detect edges, and trace mo-

tions because it forms a smooth contour that corresponds to the region of interest

boundary. Snake algorithm is sensitive to the initial configuration of the snake contour

that different initializations contour and parameters may produce different results, see

figure (7) . Snake algorithm has a converging problem to concave and diffused bound-

aries parts of the region. Image force which is usually composed of image intensity

gradient exists in a narrow region near the convex part of the object boundary. Dif-

fused boundaries produces very weak image forces in their regions. Contour points

that fall in a region without image forces or very weak ones cannot be pulled toward

the object boundary causing the object region to merge with other regions which is

known as the leak problem. In [94], Xue and Prince propose a snake algorithm with

Gradient Vector Flow (GVF) in order to partially solve the converging problem of
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(a) (b)

Figure 7: Snake algorithm sensitivity to the initial configuration, (a) original image
with the initial contour (blue curve), (b) segmentation result (blue curve). Differ-
ent initializations contour and parameters for the snake algorithm produce different
segmentation results compared to the ones used to produce figure (6).

snake contour in concave parts of the region. The problem is solved partially by pre-

calculating the diffusion of the gradient vectors on the edge map. So, image forces

can exists near concave region to pull snake contour points toward the target object

boundary. GVF algorithm requires a good initialization for snake contour. GVF is

sensitive to noise because it depends on edges in its calculations.

Snake based algorithms have a problem with handling evolving contours which re-

quire topological changes, e.g., two evolving contours merge into one. In this case, the

algorithm needs to remove the connected contour points which are inside the merged

region. This process is computationally expensive especially for higher dimensions,

e.g., 3D.

In [72], Sethian introduce a level set approach in order to solve the problem of

evolving contours which require topological changes. Level set represents the object

boundary by a closed surface front δ(t) and propagates that surface along its normal

with speed υ, where υ is a function of geometric and image characteristics. To
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(a) (b)

Figure 8: Level set segmentation of a bone fragment image, (a) original image with
the initial surface (yellow area), (b) segmentation result (green curve). Level set
algorithm propagates the surface front along its normal until it converges to the
structure boundary.

propagate the surface, level set embeds the surface function as the zero level set

of a higher dimensional function Ψ which is defined as:

Ψ(x, t) = d(x) (13)

where d(x) is the signed distance function from point x to δ(t). The evolution of

Ψ is given by:

Ψt + υ |∇Ψ| = 0 (14)

where ∇ is the gradient operation. υ is the speed along the surface normal and

it can be a function of position x, geometrical quantities, or physical quantities that

are related to the problem under study. Ψ(x, t) remains as a function during its

evolution and δ(t) may change topology, merge, and break as Ψ changes which give

it the flexibility to converge to complex structures, see figure (8) . To compute the

evolution of the interface δ(t) , level set algorithm needs to update the level set values
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(a) (b)

Figure 9: Level set segmentation sensitivity to initial configurations of the level set
surface, (a) original image with the initial surface (yellow area), (b) segmentation
result (green curve). The level set configurations are similar to the ones used to
generate figure (8) except the initial surface. The level set algorithm wrongly merges
the region of the bone fragment with other regions, i.e., leak problem.

near the zero level only. This method is called narrow band level set method [72].

Level set algorithm is sensitive to initial configurations of the level set surface, dif-

ferent configurations may produce different results, see figure (9) .Level set algorithm

is sensitive to noise. In [27], Droske et al. introduce a level set method which in-

corporates curvature terms in the speed function in order to reduce the noise effect.

Also, they used an adaptive grid to speed up the evolution process.

Deformable models are widely used in medical image segmentation applications

specially snake model. In [98], Yue et al. applied snake algorithm to locate the

rib borders in chest radiographs. At the beginning, the thoracic cage boundary is

determined to restrict the search space. Then, Hough transform is used to find the

approximate rib borders. Finally, the snake algorithm is applied to refine the rib

borders. In [39], Jiang et al. used geodesic active contours in order to segment

forearm bones. Geodesic active contours is introduced by Caselles et al. in [17].



42

Geodesic active contours is a snake model algorithm which evolves over time according

to geometric measures, e.g., curvature. Jiang initializes the snake contour manually

from the X-ray image of the patient at the first visit to the hospital. In [19], Chen

and Jian use snake algorithm to extract teeth contours. The initial configuration of

the snake contour is obtained by detecting the gap between lower and upper teeth

and the gaps between neighboring teeth.

In [21], Chen et al. provide an incremental approach to segment femur bones. The

initial configuration of the snake contour is obtained by detecting the main features

of the femur bone in X-rays, e.g., parallel lines in the shaft area and circles in the

femoral heads, and fitting a curve to match the detected features. Then, the snake

algorithm is applied with curvature constraints to refine the femur contour. Chen’s

work uses a spring force that describes the difference between the actual curvature of

the snake and the reference curvature of the model.

In [4], Ballerini and Bocchi apply a modified the snake algorithm to segment hand

bones. Snake algorithm is modified by adding an internal energy term to model the

spatial relationships between adjacent bones. The new internal energy term appears

as an elastic force which connects appropriate points of adjacent snakes contours. The

snake algorithm is performed using polar coordinates in order to introduce ordering

to contour points and prevent snake elements to cross each other during the evolution.

Snake evolution to minimize the contour energy is performed using genetic algorithm

by encoding snake configuration into chromosomes. The algorithm has a problem

in representing concave shapes and is sensitive to initial contour placement which is

chosen randomly.
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In summary, despite of the appealing results of the deformable algorithms in seg-

mentation, deformable algorithms encounter several problems: (1) sensitive to the

initial configurations which often imply impractical user interaction in order to ob-

tain good ones, (2) poor to converge at weak and diffused boundaries because image

forces are very weak in these regions and cannot pull the evolving curve or surface

toward the object boundary (3) poor to converge at concave regions because of the

contour smoothing terms which are used to produce smooth contours and the absence

of image forces which are usually composed of image intensity gradient and exist near

the convex part of the object boundary, (4) level set methods are computationally ex-

pensive due to their iterative optimization, (5) require users to set the values for many

non easily understandable parameters that are used in the terms of the deformable

models equations which make the algorithms unintuitive to users in clinical practice.

For bone fragment segmentation problem, deformable methods tend to perform well

in segmenting intact, i.e., unbroken, bones but have poor performance in segmenting

fragments, i.e., fractured, bones because the bone tissues internal to bones are often

very similar to the soft tissue surrounding the bone. When the outer (cortical) surface

of the bone is fractured these internal structures are often adjacent to the surround-

ing soft tissues which makes it difficult to distinguish the bone fragment boundary in

these areas.

3.2.3 Region Based

Region based algorithms are approaches which look for a group of points with

similar features. Region based algorithms divide the image into disjoint regions where
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each region R is a group of points that satisfy the homogeneity criteria, i.e.:

I =
K⋃
i=1

Ri, Ri

⋂
Rj = ∅ ∀i 6= j (15)

where I is the image and K is the number of disjoint regions. Region based

algorithms are divided into two sub categories: region growing and watershed which

are discussed in the following two sub sections.

3.2.3.1 Region Growing

Region growing algorithm begins with a point or a group of points called seeds

which belong to the objects of interest. Seeds can be chosen either manually by an

expert or automatically by seed finding algorithm, e.g., converging square algorithm

[57] which is applied in [1]. Converging square algorithm recursively divides an n×n

image into four overlapping (n− 1)× (n− 1) sub images and the sub image with the

maximum intensity is chosen. The procedure is repeated until four points of 2 × 2

square remain, then the point with the maximum intensity is chosen as the seed. For

each seed point i a unique region Ri is created. Then, the neighboring points of the

regions are examined one at a time and added to the growing region if they satisfy

the homogeneity criterion. The process continues until no more points can be added.

The objects then are represented by the points of grown regions such that each unique

region represents a unique object [79, 32, 1, 80].

Region growing algorithms vary depending on the homogeneity criterion. The

choice of the homogeneity criterion is usually based on the nature of the problem

in the application. For example, a simple homogeneity criterion is comparing the
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(a) (b) (c)

Figure 10: Seeded region growing segmentation, (a) original image, (b) a good bone
fragment segmentation result, (c) a bad bone fragment segmentation results. The
bone fragment region is incorrectly merged with another region. The homogeneity
criterion is based comparing the difference between the point intensity value and the
mean intensity value over a region to a predefined threshold value. The threshold
value is set to 25.

difference between the point intensity value and the mean intensity value over a region

to a predefined threshold value. If the difference is less than the threshold value, for

example, one standard deviation of the intensity across the region, the point is added

to the region, otherwise, it is defined as an edge point.

Region growing algorithms can correctly segment regions with the same properties

and spatially separated. Region growing algorithms generate connected regions. The

result of region growing algorithm is highly dependent on the choice of the homo-

geneity criterion. If the homogeneity criterion is not properly chosen, the regions

may merge with regions that do not belong to the target object or may leak out into

adjoining areas. Region growing algorithm also have a problem that different seeds

may not generate identical regions results, see figure (10) .

In [66], Rosenfeld and Kak provided a region based technique called region splitting.

Region splitting begins with an initial segmentation and subdivide the regions that
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do not satisfy the homogeneity criterion. A simple region splitting technique is to

begin by considering the whole image as a single region. Each region is tested for

homogeneity criterion. If the region satisfies the homogeneity criterion, then the

region corresponds to an area of an interest in the image. Otherwise, the region is

divided into sub regions, for example, four sub regions, and tested for homogeneity

criterion. The process is repeated until no more splitting occurs. Region splitting

generates regions correspond to areas with similar properties but it may generate too

many of them which lead to over segmentation problem.

In [5], Bankman et al. propose a region growing algorithm called hill climbing to

segment microcalcifications in mammograms, i.e., tiny clusters of mineral deposits

which can be scattered throughout the mammary gland. The algorithm is based

on the fact that microcalcifications have closed contour edges around a known point

which is the local intensity maximum x0. The algorithm proceeds as follows. For

each point x, a slope value s(x) is defined as:

s(x) =
I(x0)− I(x)

||x0 − x||
(16)

where I is the image and ||x0 − x|| is the Euclidean distance between the local

maximum point x0 and point x. The points of the object edges are detected by

radial line search emanating from the local maximum. The line search is applied in

16 equally spaced directions originated from the local maximum point x0. For each

direction, a point is identified as edge point if it provides the maximal slope value.

Then, the identified edge points are used as seeds for region growing with a spatial
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constraint that grows the region inward toward the local maximum and an intensity

constraint to include points with intensity values increasing monotonically toward the

local maximum. Hill climbing algorithm does not need selection of a threshold value

because it grows the region from the edges toward the local maximum point.

In [48], Manos et al. propose a region growing algorithm to segment hand and

wrist bones. The algorithm begins with a region growing stage that will produce an

oversegmented result. Then, a region merging stage is applied to combine similar

regions according to size, connectivity, homogeneity, and edge information. The fi-

nal segmentation result is obtained by applying a region labeling process based on

heuristic rules according to intensity information.

Region growing algorithms are fast but need the objects of interest to have ho-

mogenous features. Region growing algorithms are highly dependent on the used

homogeneity criterion and initial seeds. Improper choice of the homogeneity crite-

rion or seeds selection may generate undesirable result. Region growing algorithms

are sensitive to noise and may generate oversegmentation results, therefore, a post

processing step is needed to merge similar regions.

3.2.3.2 Watershed

Watershed segmentation is a region based approach comes from the field of math-

ematical morphology. Watershed algorithm requires a set of connected points called

marker inside each object of interest including the background as a separate object.

Markers can be chosen either manually by an expert or automatically depending on

the application. The markers are grown using a morphological watershed transfor-
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(a) (b)

Figure 11: Watershed model, (a) input image with two dark blobs, (b) topographical
representation. The bright area represents “high” surface level and dark area repre-
sents “low ” surface level, the catchment basins in (b) corresponds to the dark regions
in the input image.

mation to form the regions [10]. The idea of watershed transform is based on an

analogy for how rain water flows when it falls upon a topographic relief. Under these

circumstances, water drops follow the landscape downhill forming lakes at the bot-

tom of the valleys. The lowest point in each valley is called a Catchment Basin (CB).

As water continues to fall, the catchment basins collect water that accumulates into

lakes. Neighboring lakes eventually merge when the water level exceeds the altitude

of the ridges that separate the two lakes. When this occurs, dams are built at lo-

cations where water coming from different lakes meet to keep them separate. As a

result, the landscape is divided into regions and the union of dams form the water-

shed lines or watershed. This analogy is extended to images by taking the image

point intensity values as the altitudes of a topographic relief where high intensities

(bright areas) represent high altitudes and low intensities (dark areas) represent low

altitudes, see figure (11). A detailed description of watershed transform is provided

in section (7.1.1). Watershed algorithm is simple and intuitive. Watershed algorithm

has the problem of oversegmentation because each local minimum will form its own
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(a) (b)

Figure 12: Sample result of watershed segmentation, (a) original image, (b) watershed
segmentation result. The oversegmentation problem is clearly visible due to noise
which introduce local minima that are not indicative of semantic contents.

catchment basin, see figure (12) .

In [56], Najman and Schmitt propose to use morphological operations to reduce

oversegmentation. In [65], Rogowska et al. provide a watershed implementation

which uses Sobel edge operator in place of the morphological gradient to extract edge

strength. The algorithm is applied to extract lymph nodes. At the beginning, the

expert selects a point inside the node to mark the node and draw a circle around

the node to mark the exterior of lymph node as background. Then, an edge image is

created by using Sobel edge detector to have high values for points with strong edges.

A watershed operation called simulated immersion is performed on the edge image

using node and background markers to segment the lymph node from the surrounding

tissue. The simulated immersion watershed examines whether a drop at each point in

the edge image would flow toward the interior node marker or the background marker.

Points that flow to the node marker belong to the lymph node, whereas points that

flow to the background marker belong to the background. The watershed algorithm

is sensitive to noise. In some applications the noise effect can be reduced by applying
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smooth filters before processing the image.

In [34], Grau et al. modify the watershed algorithm to utilize a set of probability

functions that encode prior information about the objects to reduce the sensitivity

to the noise. The probability function encodes the stochastic dependence between

the intensity of two neighboring pixels and the boundary of the unknown object.

This work is referred to as the “improved watershed.” The main shortcoming of this

algorithm is its dependency on a prior information of the objects. Grau states that

the success of the algorithm largely relies on the existence of a prior distribution

about the objects of interest. The absence of prior information causes the algorithm

to be sensitive to noise and not able to segment areas with low contrast boundaries,

and this is not desirable. A detailed description of the improved watershed algorithm

is provided in section (7.1.3). In [88], Wegner et al. introduce a watershed algorithm

that performs the watershed transform twice. The second watershed transform in

applied on the mosaic image generated by the first watershed transform to reduce

oversegmentation.

Watershed algorithm has many properties that makes it useful for many segmen-

tation problems. It is simple and generates contiguous regions. Watershed algorithm

may produce oversegmentation result which requires a post processing step to merge

similar regions. Watershed algorithm is sensitive to noise and poor at detecting thin

structures [34].
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3.2.4 Graph models

Graph based methods usually represent the segmentation problem in terms of a

graph G(V,E) where V is the set of vertices corresponds to image elements such that

each node vi ∈ V corresponds to a point in the image and E is the set of edges

connecting pairs of neighboring vertices. Each edge in the graph is assigned a weight

that is based on the properties of the points that it connects for example their image

intensities. A graph can be divided into multiple partitions by removing the edges

between them, the edge removal is called cut. Graph based methods try to divide the

graph G into two or more partitions by finding the minimum cuts in a graph where

the cut criterion is designed to minimize the similarity between the points that are

being split. The cost of the cut between two partitions is defined as:

cut(Ai, Aj) =
∑

u∈Ai,v∈Aj

w(u, v) (17)

where Ai and Aj are two unique partitions in the graph and w(u, v) is the edge

weight between u and v, see figure ((13)) .

In [92], Wu and Leahy present an algorithm that divides a graph into K partitions

such that the maximum cut between them is minimized. Wu’s algorithm tends to cut

the graph into small partitions because the cut value in equation (17) is proportional

to the size of the partition. In order to avoid this problem, Shi and Malik proposed a

new algorithm called normalized cut in [75]. Normalized cut algorithm defines a new

cost function called Ncut. Ncut is defined as:
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(a) (b)

Figure 13: Simple weighted graph that shows the vertices and edges, (a) graph G,
(b) a cut in graph G. Edges weights are reflected by thickness.

Ncut(Ai, Aj) =
cut(Ai, Aj)

assoc(Ai, V )
+

cut(Ai, Aj)

assoc(Aj, V )
(18)

where assoc(X, V ) =
∑

u∈X,t∈V w(u, t) is the total connection from nodes in X

to all nodes in the graph. Normalized cut algorithm measures the total similarity

within the partitions and the total dissimilarity between different ones. Normalized

cut algorithm has the problem of dividing high variability regions into multiple ones

because of its dependance on cutting large weight edges. Wang and Siskind addressed

this issue in their work in [87]. They present a new algorithm called ratio cut which

minimizes the ratio of the corresponding sums of two different weights of edges along

the cut boundary. The new cost function is called Rcut and it is defined as:

Rcut(Ai, Aj) =
c1(Ai, Aj)

c2(Ai, Aj)
(19)
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where c1(Ai, Aj) =
∑

u∈Ai,t∈Aj
w(u, t) is the first boundary cost which measures the

homogeneity of Ai and Aj. c2(Ai, Aj) is the second boundary cost which measures

the number of edges between Ai and Aj.

In [14], Boykov and Jolly use graph cut to interactively segment bones from ab-

dominal CT images. The proposed technique uses the graph cut to find the global

optimal solution of the segmentation problem for the image. The segmentation pro-

cess is controlled by hard and soft constrains. The hard constraints are obtained

from manually marked points on object regions and background by the user at the

beginning of segmentation process while the soft constraints are obtained from the

boundary and region information. The process starts by “clicks” and “strokes” on

the object and background then the graph cut is used to find the segmentation solu-

tion that has the best balance of boundary and region properties among all solutions

satisfying the constraints.

Graph based algorithms are computationally expensive because they try to find the

global optimum solution. Also, they suffer from over-segmentation problem because

they depend on low level features such as intensity and edges which are usually affected

by noise.

3.2.5 Summary

Image segmentation algorithms are evaluated according to the considered informa-

tion, computational complexity, performance, sensitivity to noise, and manual initial-

ization. Thresholding algorithms consider the intensities of the points only without

considering any contextual relationship between them. Thus, there is no guarantee
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that the produced segments are contiguous and makes the segmentation process sensi-

tive to noise and image inhomogeneities. Edge based segmentation algorithms locate

boundary points of the objects using the image gradient. Edge based algorithms are

sensitive to noise and have a tendency to detect edges that are disjoint and do not

completely represent the boundary of the object. Deformable based segmentation al-

gorithms evolve a predetermined curve or surface to its minimum energy according to

external forces that pushes it toward the features of interest in the image and internal

constrains that maintain splines structure shape and smoothness. Deformable based

algorithms are sensitive to the initial configurations and have a problem of converging

to concave and diffused boundaries parts of the region. Region based segmentation

algorithms divide the image into disjoint regions where each region is a group of points

with similar features. Region-based algorithms are sensitive to noise and require the

objects of interest to have homogeneous features. Graph based algorithms represent

the segmentation problem in terms of a graph G(V,E) which its vertices correspond

to the image elements and its edges connect the pairs of neighboring vertices. Each

edge in the graph is assigned a weight. Graph based algorithms divide the graph

into two or more partitions by finding the minimum cuts where the cut criterion is

designed to minimize the similarity between the partitions. Graph based algorithms

are computationally expensive and sensitive to noise. Thresholding, region-based and

graph-based algorithms tend to have an over-segmentation problem. The computa-

tional complexities are roughly linear for thresholding, region-based and edge-based

algorithms, while it is higher for deformable based and graph model algorithms. The

algorithms of all categories are sensitive to noise but the deformable based algorithms
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have the ability to include constraints that make them less sensitive to noise. Region

based and deformable based algorithms generally depend on manual initialization.

Among the existing methods for segmenting images, those presented in [48, 98, 39,

21, 4, 14, 34] are the most related to the bone fragment segmentation problem. In

[48], Manos et al. used a region growing algorithm to segment hand and wrist bones.

The algorithm begins with a region growing stage that will produce an oversegmented

result. Then, a region merging stage is applied to combine similar regions according to

size, connectivity, homogeneity, and edge information. The final segmentation result

is obtained by applying a region labeling process based on heuristic rules according

to intensity information. In [98], Yue et al. applied the snake algorithm to locate

the rib borders in chest radiographs. At the beginning, the thoracic cage boundary

is determined to restrict the search space. Then, Hough transform is used to find

the approximate rib borders. Finally, the snake algorithm is applied to refine the

rib borders. In [39], Jiang et al. used geodesic active contours in order to segment

forearm bones. Jiang initializes the snake contour manually from the X-ray image

of the patient at the first visit to the hospital. In [21], Chen et al. provided an

incremental approach to segment femur bones using the snake algorithm. The initial

configuration of the snake contour is obtained by detecting the main features of the

femur bone in X-rays and fitting a curve to match the detected features. Then, the

snake algorithm is applied with curvature constraints to refine the femur contour.

In [4], Ballerini and Bocchi apply a modified the snake algorithm to segment hand

bones. Snake algorithm is modified by adding an internal energy term to model the

spatial relationships between adjacent bones. The snake algorithm is performed us-



56

ing polar coordinates in order to introduce ordering to contour points and prevent

snake elements to cross each other during the evolution. Snake evolution is performed

using genetic algorithm by encoding snake configuration into chromosomes. The algo-

rithm has a problem in representing concave shapes and is sensitive to initial contour

placement which is chosen randomly. In [14], Boykov and Jolly used a graph cut

approach to interactively segment bones from abdominal CT images. The algorithm

uses the graph cut to find the global optimal solution of the segmentation problem

for the image. The segmentation process is controlled by hard and soft constrains.

The hard constraints are obtained from manually marked points on object regions

and background by the user at the beginning of segmentation process while the soft

constraints are obtained from the boundary and region information. The process

starts by “clicks” and “strokes” on the object and background then the graph cut is

used to find the segmentation solution that has the best balance of boundary and

region properties among all solutions satisfying the constraints. In [99], Zhang et.

al. propose a 3D adaptive thresholding method to segment bones within CT images.

The proposed method classifies image pixels into two classes: bone and non-bone.

Then, an iterative process of 3D correlation is performed to update the classification

of pixels. A post-processing step of 3D region growing is performed to extract bone

regions. Thresholding methods assume homogeneity of the object being segmented

and high contrast between the object and background. This assumption is invalid

in bone fragment segmentation problem because in fractured bone case the internal

structures of the bone are usually adjacent to the surrounding soft tissues which are

very similar to the internal bone tissues. In [97], Yousefi et. al. propose a method
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to segment the radius bone in wrist within MR images using active contours. The

proposed method computes an initial segmentation of an MR image. The method

estimates a mask of the radius bone in the MR image using anatomical knowledge

about that bone shape and size. The mask is applied to derive a convex hull region

around the radius bone in the image. This region is used as an initial mask for active

contour. The problem with this method is its dependence on a prior knowledge about

the shape of bones within images. This is knowledge is not available for bone fracture

fragments which have arbitrary shapes. In [91], Wu et. al. propose a method to seg-

ment pelvic bones from CT images. The proposed method computes edges in a CT

image. The computed edges are best matched with predefined manually generated

templates of pelvic bones. Then, the method applies a supervised learning technique

that requires a set of labeled training images to segment bone fragments from the

image. The main problem of their approach is the need for predefined templates of

bone fragments. Bone fragments of a fracture case have arbitrary shapes so it is not

possible to define templates for all these shapes. In [59], Paulano et. al. propose a

region growing algorithm to segment bone fragment from CT images. The algorithm

is a semi-automatic one and based on 2D seeded region growing. A user has to set

a seed in the first slice in which a bone fragment appears. When multiple fragments

are wrongly joined the user has to place additional seeds to separate them. The

propagation of labels from the seeds is based on heuristic rules according to intensity

information. This algorithm is highly dependent on the used homogeneity criterion

and initial seeds. Improper choice of the homogeneity criterion or seeds selection may

generate undesirable result and this not good for bone fragment segmentation since
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bone is an inhomogeneous tissue. In [34], Grau et. al. used the improved watershed

algorithm to segment knee cartilage from MR images. The algorithm combines the

watershed transform and atlas registration through the use of markers. The algorithm

applies anisotropic diffusion filter to reduce noise without compromising the contrast

at significant edges. Then a user selects manually pixels as markers for each of three

classes: cartilage, bone and other tissues. The last class represents the ligament and

muscle around the cartilage. The algorithm then uses a knee atlas to complete the

segmentation process by using the improved watershed algorithm. There two short-

comings of this algorithm in segmenting fractured bones: (1) its dependency on prior

information and (2) wrong labeling of pixels in close proximity area. The prior infor-

mation for bone fragments is not available due to the large variation and randomnicity

in fragments characteristics such as shape, position, orientation, and texture. The

algorithm may assign pixels with wrong labels for other nearby fragments, referred to

as leak problem. This problem likely to appear at close proximity areas where small

parts of different bone fragments with small depth appear touching each other in a

CT image, see figure (14) . These close proximity areas are referred to as “isthmus”

of bone area. An ”isthmus” bone area has a small depth so that it appears blurry in

a low resolution CT image.
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Figure 14: An example of an “isthmus” of bone area. (a) A CT image of a fractured
bone. (b) An image of the estimated bone region. Circled area shows a location for
an “isthmus” of bone area where two bone fragments are touching. An ”isthmus” area
has a small width compared to other bone region areas.



CHAPTER 4: SYSTEM INTERFACE

This chapter describes the graphical user interface for the system that estimates the

inverse mechanics for a fracture event. The system interface allows a user to control

the system by specifying data and allows a user to analyze the results. In order to find

the plausible solutions for a fracture event, the system requires the following datasets

as input: (1) the surfaces of the fracture fragments, (2) the position and orientation

of the fracture fragments at the start and end of a fracture event, (3) the model for

the limb soft tissues at the start of a fracture event, (4) a 3D model for the strike

object, (5) the physical attributes for these objects, and (6) the initial settings which

control the search process to find the set of plausible solutions for a fracture event.

The first data set is provided by applying the 3D segmentation described in chapter

7. The second data set is provided by applying the reconstruction system described

in [46] which reconstructs fracture fragments using two 3D CT images of a fractured

limb. Here, one image provides a model of the unbroken bone and a second records

the fractured bone fragments after an injury. The third data set is estimated from the

intact CT image by applying the 3D segmentation algorithm to extract soft tissues

from that image as described in section (5.2). Data sets 4, 5, and 6 are unknown to

the system and a user has to provide them to the system.

The system interface is divided into three components: (1) generating attributed

models, (2) dynamics optimization, and (3) fracture simulation analysis. In the first
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component, the system interface collects the required data from a user to generate

the geometry for the attributed models and assign them physical attributes. These

represent virtually the soft tissue, the bone fragments, and the strike object that

are involved in the fracture event. In the second component, the system interface

collects the data from a user to control the optimization process which seeks to find

the plausible solutions for the unknown variables of the fracture event. In the third

component, the system interface provides visualization and analysis tools that allow

users to navigate the solutions computed by the system to aid in creating improved

understanding and insights regarding how a fracture event occurred.

The system interface is implemented as a Java application that extends the work in

[46] which is called FxRedux. FxRedux is a software system for reconstructing highly

comminuted tibia fractures from 3D CT images. New interface elements added to

the FxRedux system interface enable for this dissertation fracture inverse mechanics

simulations visualization and analysis via the following three steps:

1. Generate attributed models,

2. Dynamics optimization,

3. Fracture simulation visualization and analysis.

Using these steps estimates of the fracture event can be generated and analyzed Dis-

cussion of the system interface starts with a brief overview of the FxRedux interface

from [46] followed by three sections that describe the new interface components asso-

ciated with the three steps above.
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Figure 15: A screen capture of the system interface developed in this dissertation is
shown. This image was captured after the reconstruction of fracture fragments and
after the alignment of a talus surface. Tabs at the top of the window outlined with a
red line access separate interface elements that reconstruct bone fragments from the
new interface elements that estimate the inverse mechanics of fractures.

4.1 FxRedux Overview

FxRedux is a system that assists in reconstructing a highly comminuted tibia frac-

ture from 3D CT images of a fracture case. FxRedux generates two datasets needed

by the system for estimating fracture inverse mechanics: (1) a collection of 3D sur-

faces for bone fragments and (2) a collection of transformations that move bone

fragment surfaces from their fracture positions to their positions in the reconstructed

bone. FxRedux provides visualizations and an interface to control these algorithms.

A detailed description of FxRedux is available in [46].

The FxRedux interface window consists of three main regions:
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1. the 3D canvas, shown as the region outlined with a red line in figure (15),

2. the image panel, shown as the region outlined with a green line in figure (15),

3. the tree panel, shown as the region outlined with a yellow line in figure (15).

The user integrates with items in these regions to control the bone reconstruction

process.

The 3D canvas provides a virtual environment where users view and manipulate

3D objects. Each 3D object is shown as 3D surface that is drawn onto the canvas.

Using the tree panel and the 3D canvas, users view, hide, and transform 3D objects

individually or as a group.

The image panel (on right of figure (15)) displays two CT image slices in two

separate panels. The upper panel shows a CT image of an unbroken limb, while the

lower panel shows a CT image of a fractured limb. Below each displayed image, a

slider bar is provided to view different slices in the 3D CT image. Three different

anatomic views are supported: axial, sagittal, and coronal.

The tree panel displays a tree representation of the objects shown in the 3D canvas.

Users select objects in the tree panel to perform actions on specific objects or groups

of objects shown in the 3D canvas. The tree panel allows users to perform a number

of useful actions on the 3D objects such as select object, delete object, merge object,

and split object.

Using FxRedux, virtual fracture reconstruction of bone fragments is accomplished

through the following sequence of three interactive steps:



64

Figure 16: An illustration picture shows the interactions that take place to segment a
3D CT image in step one.(a) a 3D CT image, (b) users specified parameters for bone
segmentation, (c) segmented image, and (d) generated 3D surfaces.

1. Segment 3D bone surfaces from intact and fracture CT images to generate a

surface for the intact, i.e., unbroken, bone and a surface for each bone fragment,

2. Align intact tibia surface to surfaces of tibia bone fragments,

3. Reconstruct surfaces of tibia bone fragments,

By performing the listed steps, a virtual reconstruction of the unbroken bone can be

approximated from the aligned bone fragments.

4.1.1 Segmentation of 3D Bone Surfaces

The segmentation process extracts the outer surfaces of the bone fragments from

the 3D CT fracture image and to extract the outer surface for the unbroken bone from

the 3D intact image. This step takes three data sets as inputs: (1) a 3D CT image of

a broken limb, (2) a 3D CT image of an unbroken limb, and (3) a users input. The

output of this step is a collection of 3D surfaces, one for each fragment, and a 3D

surface for the unbroken bone. Figure (16(b)) show the three parameters needed from

the user to complete the segmentation step: (1) the minimum bone intensity value,

(2) the minimum cortical intensity value, and (3) the cube size. The minimum bone
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intensity value specifies the minimum CT intensity of a pixel in HU to consider that

a bone tissue pixel. The minimum cortical intensity value specifies the minimum CT

intensity of a pixel in HU to consider that pixel a cortical bone tissue pixel. The cube

size parameter specifies the sampling density (resolution) for the 3D bone surface

reconstruction. The PWT algorithm described in chapter (7).

After the segmentation algorithm finishes segmenting a 3D CT image, the interface

displays the segmented image by marking pixels associated with each bone fragment

with a unique color, see figure (16(c)). Figure (16 (d)) shows the 3D mesh extracted

for each bone surface generated by applying the marching cubes algorithm on the

segmented image data [47]. One extracted, the 3D surfaces are shown in the 3D

canvas and added as objects to the tree panel.

4.1.2 Alignment of Bone Surfaces

The alignment process solves for the orientation and position provides a gross

alignment between the intact surfaces and all of the fragments of the fracture. This

step takes three data sets as inputs: (1) all bone fragment surfaces, (2) the surface of

the unbroken bone, and (3) user input. The output of this step is an aligned intact

tibia surface. The surface of an unbroken tibia is aligned in its position to the surfaces

for tibia bone fragments. This step consists of three stages:

1. Partitioning the 3D surfaces into sub surfaces,

2. Classifying the sub surfaces,

3. Aligning the intact tibia,
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Figure 17: Illustration picture shows the interactions that take place to align 3D
surfaces in step two.(a) a collection of 3D surfaces for bone fragment, (b) a 3D surface
of an unbroken tibia, (c) a 3D surface of an unbroken talus, (d) an interface window
for the partitioning stage, (e) an interface window for the classification stage, (f)
an interface window for the alignment stage, (g) aligned intact tibia surface to the
surfaces of the bone fragments, and (h) aligned unbroken talus surface to its relative
position with respect to surfaces of tibia fragments.

Figure 18: Illustration picture shows the result of partitioning a surface into patches
in stage one of the alignment step.

Figure (17) shows illustrations of these three stages which ultimately produce a virtual

3D reconstruction of the bone.. Stage 1 takes as input a collection of 3D surfaces and

outputs a collection of sub surfaces called patches. In this stage, each 3D surface

is divided into patches, see figure (18). The system interface allows users to split,

merge, and delete surface patches. Stage 2 takes as input the surface patches that

were generated in stage 1 and assigns a label for each surface patch. There are three

different labels: (1) fracture, (2) periosteal, and (3) articular, see figure (19). The

system interface provides an automatic method and a manual method to classify
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Figure 19: Illustration picture shows the output of the classification stage in the
alignment step. (a) a fragment with a collection of patches, (b) the process of stage
2, (c) classified surface patches of the fragment.

patches. Stage 3 takes as input the labeled patches and outputs an aligned intact

bone surface to the surfaces of bone fragments. This stage is accomplished by clicking

on the button “Align Limbs”, see figure (17 (f)).

4.1.3 Reconstruction of Bone Fragments

The reconstruction of tibia fragments estimates the original positions of tibia frag-

ments before the tibia was fractured. This step takes three inputs: (1) an aligned

surface for an unbroken tibia, (2) a collection of surfaces for tibia fragments, and (3)

a users input. There are two outputs for this step: (1) reconstructed surfaces of tibia

fragments, and (2) the reconstruction transformations for surfaces. The system inter-

face provides two solutions for the reconstruction step: (1) an automatic solution and

(2) a semi automatic solution. In the automatic solution, user click on the “Automatic

Reconstruction” button which invokes the 3D puzzle solving algorithm described in

[46], see figure (20 (b)). In the semi automatic solution, the interface allows users

to manually improve the reconstruction of misaligned surfaces. The system interface

provides a custom alignment algorithm called “jiggling” to assist users in correctly

positioning misaligned surfaces [46]. Figure (20) shows an illustration picture for this

step.
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Figure 20: Illustration picture shows the interactions that take place to reconstruct
3D surfaces in step three. (a) A surface of an unbroken tibia and surfaces of tibia
fragments in their aligned positions after the alignment step, (b) an interface window
for the two reconstruction solutions, i.e., automatic and semi automatic, and (c) a
reconstruction result.

4.2 Generating Attributed Models

Generating attributed models is the first step in the system of estimating a fracture

inverse mechanics. This step takes two inputs: (1) a collection of 3D surfaces for

fracture fragments and (2) a 3D CT image of an unfractured limb. The outputs

of this step are: (1) a collection of attributed models for fracture fragments, (2) a

collection of attributed models for soft tissues, and (3) an attributed model for a

strike object. The outputs are generated in three parallel track. The user interacts

in the input side to produce the output.

4.2.1 Track for Generating Attributed Models for Fracture Fragments

This track takes as input a collection of 3D surfaces for fracture fragments. The

output of this track is a collection of attributed models for fracture fragments. A user

specifies the following settings for physical attributes to generate these models: (1)

bone density and (2) friction. Figure (21) shows the interface window for the settings

to generate attributed models for fracture fragments. Bone density is the amount of

substance per square centimeter of bones. Bone density is used to estimate the mass
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Figure 21: A screen snapshot of the interface window for bone fracture fragments.
There are three dynamics characteristics: (1) friction, (2) bounciness, and (3) density.
Friction and bounciness characteristics determine the amount of gain and loss in
velocity and energy , respectively, during collisions, while density specify the amount
of substance in g/cm3.

Figure 22: A screen snapshot of the interface window for soft tissue settings. The
interface window consists of two button: geometry button and dynamics button.
Using these buttons users are able to specify the settings for dynamics models for
soft tissues for a fracture simulation.

for fracture fragments. Friction is a percentage value that specifies how much velocity

is lost when a 3D surface collides with other objects. A friction value of 0 means no

loss in velocity, while a value of 1 means complete loss in velocity. These attributes

determine the amount of gain and loss in velocity and energy, respectively, for 3D

surfaces during collisions.

4.2.2 Track for Generating Attributes Models for Soft Tissues

This track takes as input an intact image and provides as output a collection a

collections of attributes models for soft tissues. A user specifies the following two

groups of settings to generate these models: (1) geometry and (2) physical attributes.

By specifying these settings, the physical attributes for soft tissues are generated.

Figure (22) shows a snapshot of the interface window.

In the geometry settings, a user specifies a set of settings to generate surfaces for

two types of soft tissues muscle and fat. These setting are: (1) fat threshold, i.e.,
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Figure 23: A screen snapshot of the interface window for the settings used to generate
the geometry for soft tissues. The interface window consists of controls to specify
settings for the process of generating soft tissue elements from a 3D CT image of an
unfractured limb. There are two types of soft tissue elements: fat and muscle. The
display of the 3D CT image marks pixels belong to fat elements in yellow, while pixels
belong to muscle elements are marked in red.

the minimum intensity value in HU considered a fat tissue, (2) muscle threshold, i.e.,

the minimum intensity value in HU considered a muscle tissue, (3) bone threshold,

i.e., the minimum intensity value in HU considered a bone tissue, (4) x grid, i.e.,

the number of grid divisions along the x-axis, (5) y grid, i.e., the number of grid

divisions along the y-axis, and (6) z grid, i.e., the number of grid divisions along

the z-axis. These settings helps a segmentation algorithm to extract the soft tissue

surfaces from the intact image. Details for the segmentation algorithm are provided

in section (5.2.2). After the segmentation algorithm finishes generating soft tissue

surfaces, the interface displays a 3D CT image where pixels belong to fat tissue are

marked with yellow color, while pixels belong to muscle tissue are marked with red

color, see figure (23) .

In the physical attributes settings, a user specifies physical attributes for fat tissue

models, muscle tissue models, and non-rigid constraints. The physical attributes for

fat tissue models are: (1) fat density and (2) friction. Fat density is the amount of
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substance per square centimeter of fat tissue. Fat density is used to estimate the mass

for fat tissue models. Friction is a percentage that specifies how much velocity is lost

when a fat object collides with other objects. A friction value of 0 means no loss in

velocity, while a value of 1 means complete loss in velocity. The physical attributes

for muscle tissue models are: (1) muscle density and (2) friction. Muscle density is

the amount of substance per square centimeter of muscle tissue. Muscle density is

used to estimate the mass for muscle tissue models. Friction is a percentage that

specifies how much velocity is lost when a muscle object collides with other objects.

A friction value of 0 means no loss in velocity, while a value of 1 means complete

loss in velocity. The physical attributes for non-rigid constraints are: (1) damping,

(2) linear limit, (3) angular limit, (4) stiffness, (5) neighbor max distance, and (6)

breaking threshold. Damping specifies the percentage decrease in the energy stored

in the oscillation of a constraint per second. Damping value of 0 means no loss in

energy, while 1 means a total loss. Linear limit specifies the amount of translation

allowed along each coordinate axis. Angular limit specifies the amount of rotation

allowed around each coordinate axis. Stiffness specifies how bendy the constraint

is. A low value creates a very weak constraint, while a high value creates a strong

constraint. Neighbor max distance specifies the max distance between two adjacent

elements connected by a constraint. Breaking threshold specifies the impulse strength

that needs to be reached before a constraint breaks. Details for physical attributes

for attributed models for soft tissue and their non-rigid body constraints are provided

in section (5.2). Figure (24) shows a snapshot of the interface window.
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Figure 24: A screen snapshot of the interface window for the settings used to specify
physical attributes for soft tissues. There are three groups of attributes: (1) fat, (2)
muscle, and (3) spring constraints. These physical attributes control the behavior of
soft tissues objects in a fracture simulation.

4.2.3 Track for Generating an Attributed Model for a Strike Object

This track takes a user input and provides as output an attributed model for a strike

object. A user specifies the following settings to generate this model: (1) search type,

(2) dimensions (x,y,z), (3) mass, (4) velocity, (5) direction and (6) position. Search

type specifies the number of plausible solutions that should be generated by the

system. There are two types: single and multi. The single type allows the system to

generate one solution and allows the user to specify all other settings for the strike

object in this interface. While the multi type allows the system to generate multiple

solutions and does not allow the user to specify the direction and position settings

since their space is sampled automatically by the system. Dimensions specify the

length of a strike object along the x direction, y-direction, and z-direction in units.

Mass specifies the amount of material in a strike object in kilograms. Velocity specifies

how fast the strike object is moving. The direction specifies amount of velocity along

the x-direction, y-direction, and z-direction in units per second. Figure (25) shows a



73

Figure 25: A screen snapshot of the interface window for the strike object dynamics
settings. There are seven characteristics: (1) shape, (2) x dimension, (3) y dimension,
(4) z dimension, (5) mass, (6) initial speed, (7) position, and (8) velocity unit direc-
tion. These physical attributes control the behavior of a strike object in a fracture
simulation.

snapshot of the interface window. The position specifies the target impact location

of the strike object on the virtual limb. In this interface, the position is specified by

the center of the selected fragment. This is designed to simplify the determination of

the targeted impact point to the user.

4.3 Dynamics Optimization

Dynamics optimization is the second step in the system of estimating a fracture

inverse mechanics. This step takes three inputs: (1) a collection of attributed models

for fracture fragments, (2) a collection of attributed models for soft tissues, and

(3) an attributed model for a strike object. The output of this step is a set of

plausible solutions for the fracture event. The user specify the following parameters

to control the system iterative process to find the best fracture simulation: (1) time

interval, (2) environment damping, and (3) the maximum number of iterations. Time
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Figure 26: A screen snapshot of the interface window for the simulation optimization
settings. There are three unknown settings: (1) maximum number of iterations, (2)
time interval, and (3) environment damping. These settings help the system to in
finding a simulation that best matches the fracture observed in a fracture case.

interval specifies the time duration length in seconds for a fracture event simulation.

Environment damping specifies the percentage decrease of linear/angular velocity per

second for each object in the simulation. The damping of linear velocity affects the

freedom of an object to move. The damping of angular velocity affects the freedom

of an object to rotate. A damping value of 0 means there is no decrease in velocity,

while 1 means complete loss of velocity. In space there is almost zero damping, while

in water the damping value should be set quite high. The maximum number of

iterations determines the maximum number of trials to perform before stopping the

search process for a plausible solution. The details for the search process are provided

in section (5.3). Figure (26) shows a snapshot of the interface window. These settings

help the system in finding the set of plausible solutions given a user input.

4.4 Fracture Simulation Analysis

Fracture simulation analysis is the third step in the system of estimating a fracture

inverse mechanics. This step takes as input a set of plausible solutions for a fracture

event. The system provides three tools to explore the space of plausible solutions:

(1) list of plausible values for simulation variables, (2) play a fracture simulation and,

(3) visualize the estimated soft tissue void that was created during the fracture event.
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Figure 27: A screen snapshot of the interface window for the list of plausible solutions
for the fracture event. The solutions are presented in a descending order according
to the likelihood score value. The user is able to select a specific value from the list
to visualize later its fracture simulation and the estimated soft tissue void created in
that simulation.

These tools allow the user to explore the solution space to understand how a fracture

event may have occurred.

The list of plausible values for simulation variables reports the solutions found for

a fracture event. The simulation variables specify the initial conditions for the strike

object that virtually hits the virtual limb as described in chapter (5). The the plausi-

ble values are listed in a descending order according to a score value called likelihood

score as shown in figure (27). This value measures how likely a solution is based on

the similarity between the fracture pattern generated by a fracture simulation and the

fracture pattern observed in a fracture image. The system allows the user to select a

specific value from the list to visualize later its fracture simulation and the estimated

soft tissue void created in that simulation.

Playing a fracture simulation allows the user to visualize how bone fragments moved

during a fracture simulation. The fracture simulation that is played is the one gen-

erated using the selected value in the list of plausible solutions. Figure (28) shows

the interface window for the fracture simulation player. The player allows the user

to perform four operations on a fracture simulation: (1) play, (2) pause, (3) stop,
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Figure 28: A screen snapshot of the interface window for the simulation player. The
interface allows the user to play, pause, stop, and navigate through the recorded
keyframes for a fracture simulation. Playing a fracture simulation allows the user to
visualize how bone fragments moved during a fracture simulation.

and (4) navigation. The play operation allows the user to automatically move the

bone fragments and the strike by changing their positions and orientation according

to the recorded keyframes generated by the fracture simulation at a specific rate, i.e.,

keyframe/sec. In this interface, the used rate is two keyframes per second. The pause

operation allows the user to temporary stop the movement of bone fragments and the

strike at the current keyframe. The stop operation allows the user to completely stop

the movement of bone fragments and the strike object and to display them at their

positions as recorded in the first keyframe. The navigation operation allows the user

to go back and forth through the keyframes as well as to seek for a specific keyframe.

The user may change the viewperspective for the display during these operations.

These operations may help the user to visualize how bone fragments move during a

fracture event.

Visualizing the estimated soft tissue void that was created during a fracture event

allows the user to estimate the location, shape, and amount of pushed soft tissue. This

tool provides a 2D and a 3D representation of the void area. The 2D representation

highlights the pixels on the fracture image where bone fragments passed through

during a fracture simulation. For each slice, the estimated void pixels are counted

and highlighted on that slice, see figure (29) . The 3D representation generates a

surface for the void volume. This surface is displayed on the 3D canvas area, see



77

Figure 29: A screen snapshot of the interface window for the 2D representation of the
void region in soft tissue. The interface provides: (1) a display window to view the
void region pixels highlighted in yellow for each 2D slice, (2) a slide control to allow
the user to navigate through the different image slices, (3) two slide controls to allow
the user to specify the minimum intensity values to classify a pixel as a soft issue
and as a bone, and (4) a button control to start the computation of the void region
as described in section (5.3.1). The 2D representation highlights the pixels on the
fracture image where bone fragments passed through during a fracture simulation.
The number of void pixels in the displayed slice is shown in the interface window.

figure (30) . These two representations allow the user to estimate the location of the

created soft tissue void on the fractured limb, as well as the estimated volume of that

void.
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Figure 30: A screen snapshot of the interface window for the 3D representation of
the void region in soft tissue (light blue). The 3D representation generates a surface
for the void region volume. This surface is displayed on the 3D canvas area along
side other bone fragments to show its estimated relative shape and position in the
fractured limb.



CHAPTER 5: COMPUTATIONAL INVERSE MECHANICS SYSTEM FOR A
HIGHLY COMMINUTED FRACTURE

This chapter describes a system to generate a virtual fracture model and subse-

quently the inverse mechanics of a fracture event for that model. The process that

the system uses to estimate a fracture event consists of two parts: (1) estimate the

“initial” state of fractured limb, i.e., the state of the bone at the time the bone fracture

fragments were generated, and (2) search for values of the fracture event variables

that explain the 3D fracture CT data. Since the system goal is to estimate a solution

to the inverse kinematics problem of the fracture, the proposed problem is both com-

plex, i.e., it depends on a large number of dependent variables, and ill-posed, i.e., it

may have many plausible solutions. The system copes with these difficulties by using

fracture reconstruction software to reduce the number of unknowns associated with

the problem and by providing a collection of solutions for the user to examine rather

than a single solution. Users are expected to integrate their domain knowledge (med-

ical or forensic) and other external information to interpret these results to facilitate

their analysis (for surgical planning or forensic investigation).

Figure (31) shows a block diagram of the system. The system consists of three

separate components:

1. Estimate the intact limb, i.e., the state of the limb at the beginning of a fracture

event,
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Figure 31: The fracture event analysis system consists of three operations: (1) gener-
ate an estimate the intact limb from CT images and user input, (2) perform virtual
simulations to find plausible values for fracture event variables, and (3) display to
the user plausible simulations ranked by their likelihood score for visualization and
analysis.

2. Search for the values of the fracture event variables that agree with the data in

the fractured limb 3D CT image,

3. Display plausible fracture event simulations to the user in a 3D virtual environ-

ment for analysis.

The listed sequence describes a process to virtually computationally reconstruct and

analyze a fracture event. To my knowledge the proposed approach represents the

first system to attempt to recreate the fracture event. It includes a novel framework

which makes computation on this difficult problem tractable by using innovative

technologies. It also provides a rationale for addressing ill-posed inverse problems by

allowing users to navigate a collection of plausible solutions rather than displaying a

single “best” solution.

The system uses a model of the intact limb to simulate fracture events. While a

complete limb model would include models for numerous body substructures, e.g.,

bone, muscle, skin layers, connective tissue, tendons, etc. This prototypical system
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categorizes limb tissue into two basic types: (1) bone tissue and (2) soft tissues (fat

and muscle). Since the limb has already been injured, the models for both the intact

bone tissue and the intact soft tissue for the intact limb must be estimated.

An estimate of the intact bone tissue for the intact limb is obtained by applying

the bone fracture reconstruction system [46]. This system takes as input the fracture

image and an intact image. Typically the intact image is generated by imaging

the undamaged contra-lateral limb of the patient and subsequently transforming the

image by negating or “flipping” the image across the anatomic plane of symmetry.

As part of the reconstruction process, the reconstruction system extracts the bone

fracture fragments from the fracture image via the PWT segmentation algorithm

described in chapter (7). Let Bi denote the collection of (x, y, z) coordinates identified

as members of the ith bone fragment and let B = ∪iBi denote the collection of all

bone fragment 3D coordinates in the fracture image. The segmentation algorithm is

also applied to the intact image to extract the the intact bone surface. Reconstruction

then proceeds by aligning the surfaces of the bone fragments to the surface of the

intact bone. In this way the intact bone model acts as a template into which the bone

fragments are fit to reconstruct a model of the fractured bone from its fragments. The

reconstruction system provides a Euclidean transformation for each bone fragment

that repositions the bone fragment from its as-found position in the fracture image

to its estimated anatomic position within the fracture image. Let Ti denote the

Euclidean transformation that transforms the points of bone fragment Bi to their

estimated anatomic location. For simplicity we collect the transformation parameters

for a fracture involving N fragments into a single parameter T which incorporates 6



82

variables for each fracture fragment, i.e., it includes 6N variables. Using this notation

we can denote the state of the bone tissue for the intact limb as in equation (20).

B(t0) = {T}i(t0)B. (20)

Where t0 denotes the initial, i.e., beginning time of the fracture event and {T}i

denotes the Euclidean transformations for all of the bone fragments. This notation

is also used for fracture event simulation. Specifically, the position and orientation of

the bone fragment data at a generic time, t , is denoted as simplyB(t).

An estimate of the soft tissue of the intact limb model is generated by segmenting

soft tissues from the registered intact image. While many soft tissues exist, the

prototype system characterizes regions of soft tissue generically as either fat or muscle.

The segmentation algorithm is simplistic as it is needed only to differentiate soft tissue

from objects other than bone which, in typical bone fracture CT data, is typically

only open air. The tissue segmentation algorithm identifies (x, y, z) locations in the

3D CT intact image associated with soft tissue of the damaged limb. Simulation of

the fracture event requires incorporation of the tissue as a geometric model within

the virtual physical simulation. The system models soft tissue as a lattice of simple

geometric elements (currently cylinders) connected by breakable elastic constraints.

Let Sj denote the jth element within the 3D model for the soft tissue and S = ∪jSj

denote the collection of all 3D soft tissue model elements. Under simulation, the

soft tissue elements will rotate and translate over time due to impact and fragment

dispersion associated with the fracture event. Let Tj(t) denote the transformation

for Sj at time t. the generic position of all the soft tissue data at time t is denoted
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in equation (21).

S(t) = {T}j(t)S = ∪jTj(t)Sj. (21)

Where {T}j denotes the Euclidean transformations for all of the geometric elements

(cylinders) of the intact limb soft tissue model. The position of a soft tissue lattice

element at a generic time, t, is denoted as Sj(t) = Tj(t)Sj. The position of for all

soft tissue lattice elements at the beginning time of the fracture event, t0, is denoted

as simply S(t0).

The end result of the image processing functions and reconstruction system are

geometric estimates for the intact/unbroken bone in terms of its fragments, B(t0),

and the soft tissue surrounding the intact bone, S(t0), which is further subdivided

into elements of fat or muscle. These two elements combine to form the estimate of

the geometry intact limb needed to simulate the fracture event.

Fracture event simulations seek to approximate the physical process that occurred

when the injury was sustained. The simulation component of the system accomplishes

this task in 3 steps: (1) the estimated geometry of the intact limb model is assigned

physically-meaningful attributes, (2) a strike object is generated whose purpose is

to deliver the fracture impact, and (3) a search algorithm searches for values of the

fracture event that are plausible. The output of this process is a collection of fracture

event simulations where each simulation is ranked by a likelihood score. Each sim-

ulation score indicates the likelihood of the fracture image data given the assumed

value for the fracture event variables.
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Each fracture simulation is carried out in 3D using the Bullet physics modeling

engine and the Python interface to Bullet made available through the open-source

Blender modeling package [54]. Simulation data is passed to the Bullet engine and the

transformation data, i.e., T for both the soft tissue elements and the bone fragments

are recorded when the simulation is complete.

The dynamics simulator records the transformation data for the continuous process

of a fracture event by recording the generic position of all virtual objects in the limb

model at specific time intervals called keyframes as defined in equation (22).

{B(n),S(n)} = {B(t),S(t)} |nTs,n∈[0,N ]. (22)

Where Ts is the time sample interval and N + 1 is the number of samples such that

NTs = tf , where tf is the final time for the fracture event. The recorded positions for

all virtual objects in the limb model at the start of a fracture simulation is denoted by

{B(0),S(0)}. While, the recorded positions for all virtual objects in the limb model

at the end of a fracture simulation is denoted by{B(N),S(N)}.

Estimation of the intact limb model provides a geometric description of the limb

at the time immediately prior to the impact. However, to simulate the fracture

event, these geometric models have to be attributed with physically-meaningful at-

tributes. Physical attributes for bone tissue are a density and a coefficient of friction.

Constraints are implemented that specify bone tissue as rigid, i.e., non-deformable,

objects. Physical attributes for soft tissue also include a density and a coefficient of

friction for fat elements and muscle elements. These quantities determine the mass of

the 3D objects in the intact limb model and how energy is dissipated as these objects
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contact with each other due to motion.

The cylindrical elements of the soft tissue model are also connected by a lattice

of “breakable constraints.” Breakable constraints within the Bullet engine specify

elastic/spring-mass connections between the soft tissue elements that constrain their

joint movement. These constraints can “break” when the force exerted on the connec-

tion exceeds the connection bond strength. For the soft tissue model, the breaking

condition serves to approximate how soft tissue will tear apart when placed under

severe forces.

A strike object must be created as the object which delivers the traumatic impact

to the intact limb model. The strike object geometry and physical attributes are

typically unavailable for measurement at the point of treatment. The prototypical

system requires the user to specify a geometry, position, orientation, and physical

attributes for the strike object. This information provides an initial point within the

fracture event space, i.e., this provides sufficient data to perform a fracture simulation.

Yet, this user-specified data will be very noisy and inaccurate and when simulated

the fracture outcome is likely to be significantly different from that observed in the

measured fracture image.

For this reason, a search procedure is prescribed that varies the user-specified vari-

ables of the fracture event to find values for these variables that are supported by the

recorded fracture image data. For the prototypical system described here, the frac-

ture event variables are the variables that specify the geometry, position, direction of

travel and velocity of the strike object at the initial time of the fracture event; denoted

Θ. The resulting vector of unknown fracture event variables is Θ = [v, m, s, p, d]t
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where v denotes the strike object velocity, m denotes the strike object mass, s denotes

the scale factor for the strike object size, p denotes the 3D position of the strike object

to hit and d denotes the 3D direction of travel of the strike object as a unit vector.

Under these circumstances Θ is a vector of 8 variables.

The search procedure attempts to efficiently search the space of all plausible values

for the fracture event variables to find those which generate fracture patterns similar

to that measured in the fracture image. The search is facilitated by providing an

external scoring function which rates the quality of a chosen set of fracture event

values. The system applies a Maximum Likelihood Estimation (MLE) framework

for scoring specific collections of fracture event variable values. Let D denote the

fracture image data and p(D|Θ = Θi) is the likelihood of that data given the fracture

event variables Θ = Θi. The fracture image data in this system consists of bone

fragment data only, i.e., D = {B = ∪iBi}, since they are easy to identify with respect

to soft tissue and to represent by a virtual structure. The conceptual goal of the

MLE framework is simple, for each guess of the fracture event variables, Θ = Θi, a

likelihood value will be computed which reflects the likelihood that the fracture image

data given the chosen, p(D|Θ = Θi). Values of Θ with higher likelihoods are values of

the fracture event variables that are better supported by the fracture image data, i.e.,

they are “more likely.” The likelihood distribution chosen is a Gaussian distribution

which expresses the probability of the all data as the sum of the differences between

the simulated bone tissue intensities at the final time, B(tf ), and the bone tissue

intensities identified by segmenting the fracture image, B as shown in equation (23).
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p(D|Θ) = p(B|Θ,B(tf )) = k ∗ exp

(
−1

2
‖B−B(tf |Θ)‖2

)
(23)

Since B(tf ) = {T}i(tf |Θ)B we can see that equation (23) is ultimately seeks values

of the fracture event variables that cause the simulated bone fragments final position

to coincide with their segmented position in the fracture image. In this case B(tf ) = B

and the likelihood function is a maximum.

The search procedure guesses at values for Θ as inputs for simulated fracture events.

When the simulation ends final transformation values for the bone fragment data are

provided, denoted T̂. Each of these values for T̂ let us evaluate p(D |Θ = Θi) and

generate a likelihood score for the guessed Θ value. The search procedure assigns

each value of Θi the likelihood score p(B|Θ,B(tf )) and stores the result in a list

sorted in order of decreasing likelihood.

This prototypical system does not use a perfect model for the limb and it uses a

bone model that is already broken into fragments. The limb model is not perfect

since the system does not incorporate models for tendons or ligaments. The system

uses a bone model that is broken where bone fragments are already separated, so

that it does not account for any energy that is taken for bending the bone or creating

the fracture. That energy is subtracted from the kinetic energy for the strike object.

Despite this imperfection of the model, the system provides a first trial of how to

estimate a fracture event from 3D CT images of a fractured limb.

The system requires three collections of data sets as inputs: (1) a fracture image,

(2) an intact image, and (3) a user input. A fracture image is a 3D CT image of
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a fractured limb and it is used to measure the data for fracture fragments B. An

intact image is a 3D CT image of an unfractured limb and it is used for two purposes:

(1) estimating the data for soft tissue S and (2) estimating virtually the original

unbroken bone for the reconstruction method in [46]. The user input specifies the

physical attributes for different attributed models as well as settings to control the

search process for the initial conditions of the strike object. The output of the system

is a collection of recorded transformation data for all virtual objects in the limb model

and the virtual strike object. This collection provides plausible solutions of how bone

fragments moved from their anatomic positions to their fractured ones during the

fracture event. The user interacts with the system at both the input side and the

output side. The user helps the system to construct the virtual limb model in the

input side, and he also navigates and analyzes the result visually at the output side.

5.1 Blender Virtual Modeling Software Overview

Blender is a free and open-source 3D computer graphics program that enables dy-

namics simulations as well as the creation of a diverse range of 2D and 3D content.

Blender approximates the physical behavior of virtual objects using the Bullet en-

gine. Blender interfaces with the Bullet engine using the Python scripting computer

language. Blender also provides a 3D modeling environment that allows users to in-

stantiate geometric objects, relationships, and attributes for simulations. There are

three components from Blender are used in a fracture simulation: (1) rigid body, (2)

rigid body constraints, and (4) animation tool. These are are used to create virtual

models, assign them attributes, and specify their motion.
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5.1.1 Rigid Body Component

Blender allows users to interact with objects as virtual solid non-deformable bod-

ies called rigid bodies. A rigid body does not change shape over time. Each rigid

has attributes that control its behavior in simulations. From these attributes, nine

attributes are used in fracture simulations: (1) shape, (2) name, (3) position, (4)

orientation, (5) type, (6) mass, (7) damping, (8) friction, and (9) animated. These

attributes characterize a rigid body and describe its behavior in fracture simulations.

The shape attribute is determined by a set of polygonal faces, edges, and vertices,

referred to as a mesh. The mesh of a rigid body is created manually, imported

from other 3D applications, or automatically using primitive shapes. There are three

primitive shapes used in a fracture simulation: (1) cube, (2) sphere, and (3) cylin-

der. The name attribute is a unique text that identifies an object. The position

attribute specifies the location of the center of an object in global coordinates. The

orientation attribute specifies the rotation angles of an object around the global axes

at the object’s center. The type attribute defines the role of a rigid body object in

simulations. There are two types of rigid bodies: (1) active and (2) passive. Active

body is dynamically simulated so its position and orientation may change during sim-

ulations. While, passive body remains static so its position and orientation do not

change during simulations. The mass attribute specifies how heavy an object is. The

mass attribute affects the force that is required to move an object. The greater the

mass the greater the force that is needed to move an object. The damping attribute

is a percentage decrease of linear/angular velocity per second. The damping of linear
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velocity affects the freedom of an object to move. The damping of angular velocity is

only affects the freedom of an object to rotate. In space there should be almost zero

damping, while in water the damping value should be set quite high. The friction

attribute specifies how much velocity is lost when objects collide with each other. The

animated attribute enables or disables a rigid body to be driven by the animation

system, i.e., not according to Newton’s laws of dynamics, refer to section (5.1.3).

5.1.2 Rigid Body Constraint Component

Blender allows users to connect rigid bodies to each others using virtual joints

called rigid body constraints. Constraints are used to limit and control the freedom

of motion for an object either in global space or relatively to other objects. Constraints

control the position and orientation attributes of rigid bodies.

Each rigid body constraint has attributes that control its behavior in simulations.

For fracture simulations, nine of these attributes are used: (1) name, (2) constrained

objects, (3) location, (4) axes, (5) limits , (6) springs, (7) type, (8) breakable, and (9)

breaking threshold. These attributes characterize a constraint and describe its behav-

ior in fracture simulations. The name attribute is a text that identifies a constraint.

The constrained objects attribute determines the two objects that are connected to

a rigid body constraint. The location attribute specifies the position of the entity

hosting the physics constraint. The location of the constraint remains fixed during a

simulation and distinct from the two constrained objects. The axes attribute spec-

ifies the x-axis, y-axis, and z-axis of a constraint. These axes are distinct from the

global axes for the two constrained objects. The origin of the axes for a constraint
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is specified by the location attribute of that constraint. The limits attribute specifies

the translation and rotation range for constrained objects with respect to the axes

of their connecting constraint. The limits for the translation has three parameters

for each axis: (1) enable, (2) lower limit, and (3) upper limit. The enable parameter

enables translation limit for the specified axis. The lower limit parameter specifies the

lower translation limit along the axis. The upper limit parameter specifies the upper

translation limit along the axis. The limits for the rotation has three parameters for

each axis: (1) enable, (2) lower limit, and (3) upper limit. The enable parameter

enables rotation limit for the specified axis. The lower limit parameter specifies the

lower rotation limit from the axis. The upper limit parameter specifies the upper

rotation limit from the axis. The springs attribute specifies the bending and bounc-

ing limits for constrained objects along the axes of a constraint. For each axis, the

springs attribute has three parameters: (1) enable, (2) stiffness, and (3) damping.

The enable parameter enables spring for the specified axis. The stiffness parameter

specifies how bendy the spring is from the axis. The damping parameter specifies

the amount of damping the spring has along the axis. The type attribute specifies

what the constraint is. For a fracture simulation, the used type is a generic spring.

A generic spring constraint uses the limits and springs attributes. A generic spring

constraint uses the limit attribute to limit the amount of translation and rotation

between its objects with respect to its axes. while, it uses the springs attribute to

allow its objects to bounce around. The breakable attribute allows a constraint to

break during simulation. The breaking threshold attribute specifies the force needed

to break a constraint. Each constrained object has its own force value according to
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its mass. The force value for a constrained object, k, is calculated as follows:

Forcek = a ·Massk

where Forcek is the force value that is needed to break constrained object k, a is the

breaking acceleration threshold for the constraint, and Massk is the mass of object

k. According to this equation, heavy objects need stronger force to break than light

objects.

5.1.3 Animation Component

Blender provides an animation tool to make objects move or change shape over

time. The animation tool takes objects and specified paths as input, then, it moves

these objects along these paths using criteria that specify their velocities and accel-

erations. For an animated object, the velocity and acceleration are specified using

a method called keyframes. At a certain time, the object needs to be at a specific

location. That constraints the acceleration and the velocity of the object. This is

important for specifying the initial conditions by which a fracture event was created.

The object that impacts the bone needs to be animated using the animation tool to

create the fracture event. For this object, the only thing that needs to be controlled

by the animation tool is the velocity which determines the rate of change in position

for the center of the object.

Velocity is the first derivative of a position function for an object with respect to

time. Velocity is mathematically defined as:
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v(t) = lim
4t→0

x(t+4t)− x(t)

4t
, (24)

where v(t) and x(t) are the velocity and position of an object at time t, respectively.

4t is a time interval. When 4t has a fixed non-zero value instead of approaching

zero, the velocity is approximated using the difference in position of the object at the

specified time interval, i.e.,:

v(t) ≈ x(t+4t)− x(t)

4t
. (25)

This equation divides the forward difference in position by the time interval4t to

approximates the velocity. For an animated object, the velocity is specified using

the keyframes method. The keyframes method saves complete positions of an ani-

mated object for units of time referred to as frames. The velocity of an animated

object between two consecutive frames is the rate of change in position of the object’s

center between these two frames. For an animated object, the velocity between two

consecutive frames fri and fri+1 is computed as follows:

vanime(fri, fri+1) = (xanime(fri+1)− xanime(fri)) · fps (26)

where, vanime(fri, fri+1) is the velocity of an animated object between the two

consecutive frames fri and fri+1. xanime(fri) and xanime(fri+1) are the positions of

an animated object at frames fri and fri+1, respectively. fps is the number of frames

per second referred to as frame rate. So, in order to move an animated object at a

specific velocity, v, between the two consecutive frames fri and fri+1, an animator has
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to create two keyframes at these two frames such that the change in position is equal

to the specified velocity divided by the frame rate, i.e., (xanime(fri+1)−xanime(fri)) =

v
fps

. In simulations, the animation tool changes the position of the animated object

accordingly at these specified frames.

5.2 Generating Attributed Models

Generating attributed models is the first step in the system of estimating inverse

mechanics of a bone fracture. This step takes three inputs: (1) a fracture image If ,

(2) an intact image In, and (3) a user input. The outputs of this step are four: (1)

a set of attributed models for bone fracture fragments B(t0) , (2) a set of attributed

models for soft tissues S(t0), (3) an attributed model for a strike object, denoted by O,

and (4) the bone fragment data as provided by a segmentation of the fracture image

D. This step seeks to estimate a virtual representation of a fractured limb before

a fracture event occurred. The user input provides settings that help the system to

construct the virtual limb model in the input side.

5.2.1 Generating Attributed Models for Fracture Fragments

The generation process for attributed models for fracture fragments requires three

inputs: (1) a fracture image If , (2) an intact image In, and (3) a user input. The

outputs of this process are two: (1) a set of attributed models for bone fracture

fragments B(t0) and (2) the bone fragment data as provided by a segmentation of the

fracture image D. The system obtains the attributed models for fracture fragments

by applying the bone fracture reconstruction system in [46] to obtain the surfaces of

bone fragments then by assigning these surfaces physical attributes, i.e., density and
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friction. The user input helps the system in controlling the reconstruction system

and in specifying the physical attributes for the generated surfaces.

The system generates the attributed models for fracture fragments as a sequence

of four steps:

1. Estimate the bone fracture fragments from the fracture image If ,

2. Estimate the intact bone surface from the intact image In,

3. Reconstruct the surfaces of the bone fragments by aligning them to the surface

of the intact bone,

4. Assign physical attributes for the generated surfaces of the bone fragments.

The listed sequence describes a process to generate virtual attributed objects for bone

fragments in a fracture event.

In step (1), an estimate of the bone fracture fragments, B, is generated by seg-

menting bone tissues from the registered fracture image If . While many algorithms

have been developed for bone segmentation, fractured bone segmentation is a very

challenging problem because the osseous tissue that forms the bones does not always

produce distinguishable features from soft tissue regions in CT images. The system

applies the novel segmentation algorithm described in chapter (7) to segment bone

fragments within CT images. The proposed approach uses the Probabilistic Water-

shed Transform (PWT) algorithm to accomplish this goal. The PWT is a formulation

of the classical watershed transform to perform segmentation using probabilistic mod-

els. The algorithm classifies the image pixels into three sets: high confidence bone
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Figure 32: The system diagram for extracting and reconstructing fracture fragments
using CT images of an intact and a fracture cases. These fragments are used to specify
the geometry of the attributed models for bone fragments for a fracture event [46].

areas, referred to as markers, low confidence bone areas, and non bone areas. Each

high confidence area defines a unique bone fragment and is assigned a unique label.

Then, the algorithm classifies low confidence bone areas by propagating the labels

from high confidence areas to lower confidence ones following the path with maxi-

mum confidence. The collection of pixels with the same label represents a unique

bone fragment Bi.

In step (2), an estimate of the intact bone surface is generated by segmenting bone

tissues from the registered intact image In. The system applies the PWT segmenta-

tion algorithm described in chapter (7) to segment bone fragments within CT images.

The intact bone surface is used to align the fracture bone fragments to estimate their

anatomic positions before the fracture event occurred.

In step (3), the system reconstructs the surfaces of the bone fragments by aligning

them to the surface of the intact bone. The intact image is aligned (registered)

to the fracture image by aligning the intact bone surface with the surface of the

remaining/undisturbed portion of bone tissue from the fracture image, i.e., the bone
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fragment in the fracture image which remains in correct anatomic position after the

fracture has occurred (also referred to as the “base fragment” in [46]) figure (32).

Reconstruction then proceeds by aligning the surfaces of the bone fragments to the

surface of the intact bone. In this way, the intact bone model acts as a template into

which the bone fragments are fit to reconstruct a model of the fractured bone from

its fragments. Geometric alignments are performed using the Iterative Closest Point

(ICP) algorithm [11]. The details of this work is out of the scope of this dissertation.

As a result, the reconstruction system provides a Euclidean transformation, Ti, for

each bone fragment that repositions the bone fragment from it’s as-found position

in the fracture image to it’s estimated anatomic position within the fracture image.

This estimated anatomic position represents the initial state of the bone tissue for

the intact limb at t0 as B(t0) = {T}i(t0)B.

In step (4), physical attributes are assigned for the generated surfaces of the bone

fragments to give them physical meaning for the simulation. Physical attributes

for bone tissue are a density and a coefficient of friction. The quantity of these

attributes are specified by the user through the system interface, refer to chapter

(4). These quantities determine the mass of the 3D objects in the intact limb model

and how energy is dissipated as these objects contact with each other due to motion,

respectively.

The end result of the image processing functions and reconstruction system de-

scribed in this section are geometric estimates for the intact/unbroken bone in terms

of its fragments, B(t0), and the bone fragment data as provided by the segmenta-

tion of the fracture image D = B. This result form the estimate of the physically
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attributed geometry for the intact bone needed to simulate the fracture event.

5.2.2 Generating Attributed Models for Soft Tissue

The generation process for attributed models for soft tissue requires two inputs:

(1) an intact image In, and (2) a user input. The output of this process is a set of

attributed models for soft tissue S(t0). The system obtains an estimate of the soft

tissue of the intact limb model by segmenting soft tissues elements from the regis-

tered intact image then by assigning these elements physical attributes, i.e., density,

friction, and breakable constraints. The user input helps the system in controlling

the segmentation algorithm for soft tissue and in specifying the physical attributes

for the generated soft tissue elements.

The system performs this process as a sequence of two steps:

1. Estimate the soft tissue elements S(t0) from the intact image In,

2. Assign physical attributes for the generated elements of the soft tissue.

The listed sequence describes a process to generate virtual models for the soft tissue

found in the fractured limb before the fracture event occurred.

In step (1), an estimate of the soft tissue of the intact limb model is generated

by segmenting soft tissues from the registered intact image. While many soft tissues

exist, the prototype system characterizes regions of soft tissue generically as either

fat or muscle. The segmentation algorithm is simplistic as the system needs only to

differentiate soft tissue from objects other than bone which, in typical bone fracture

CT data, is typically only open air. For this reason the segmentation approach

classifies the pixels of the image into three categories: (1) fat pixels, (2) muscle pixels,
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Figure 33: (left) a “stack” of CT images with unknown soft tissues. (middle) the
user specifies basic segmentation criteria and a resolution for the categorization of
the image into the classes fat, muscle, and other. (right) a labeling of the CT image
into fat (yellow) and muscle (red).

and (3) non-soft tissue pixels. These regions are estimated using a global threshold

where a user specifies three threshold values: (1) fat Tfat, (2) muscle Tmuscle, and

(3) other tissues Tother such that Tfat<Tmuscle<Tother. Pixels are then classified by

applying these thresholds as follows: (1) a pixel is categorized as fat if its intensity is

greater than Tfat and less than Tmuscle and (2) a pixel is categorized as muscle if its

intensity is greater than Tfat and less than Tother. All other pixels are considered to

not be soft tissue. The resulting pixel-wise categorization of the soft tissues are then

simplified by applying an octree scheme and averaging categorizations over larger

volumes of the image where the larger volumes are labeled according to the majority

vote of the categorized pixels that they contain. The final result is a coarse covering

of the soft tissue regions within the registered intact image with cubes where each

cube includes a categorization of the tissue it contains as either fat (yellow) or muscle

(red) figure (33). A 3D model of these tissue elements, S, is generated by placing rigid

cylinders centered at each cube center figure (33) . The positions of these estimated
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elements represent the initial state of the soft tissue for the intact limb at t0 as

S(t0) = {T}j(t0)S.

In step (2), physical attributes are assigned for the generated elements of the soft

tissue to give them physical meaning for the simulation. Physical attributes for soft

tissue are: (1) a density for fat elements, (2) a coefficient of friction for fat elements,

(3) a density for muscle elements, (4) a coefficient of friction for muscle elements, and

(5) breakable constraints. The density and a coefficient of friction attributes for fat

and muscle elements determine the mass of the 3D fat and muscle objects in the intact

limb model and how energy is dissipated as these objects contact with each other due

to motion, respectively. The breakable constraints attribute serves to approximate

how soft tissue will tear apart when placed under severe forces.

The cylindrical elements of the soft tissue model are connected by a lattice of

“breakable constraints.” Breakable constraints within the bullet engine specify elas-

tic, spring-mass, connections between the soft tissue elements that constrain their

joint movement figure (34). These constraints can “break” when the force exerted on

the connection exceeds the connection bond strength. Five properties are needed to

specify the breakable non-rigid constraints figure (34) : (1) damping, (2) linear limit,

(3) angular limit, (4) stiffness, and (5) breaking threshold. Damping property specifies

the percentage decrease in the energy stored in the oscillation of a spring per second.

Damping value of 0 means no loss in energy, while 1 means a total loss. Linear limit

property specifies the amount of translation allowed along each coordinate axis. An-

gular limit property specifies the amount of rotation allowed around each coordinate

axis. Stiffness property specifies how bendy the spring is. A low value creates a very
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Figure 34: A screen snapshot of the interface window for the settings used to specify
physical attributes for soft tissues. There are three groups of attributes: (1) fat, (2)
muscle, and (3) spring constraints. These physical attributes control the behavior of
soft tissues objects in a fracture simulation.

weak spring, while a high value creates a strong spring. Breaking threshold property

specifies the impulse strength that needs to be reached before a constraint breaks.

These properties are specified by a user through the system interface to reflect the

inner stretching, bending, tension characteristics of soft tissues.

The end result of the image processing functions and segmentation algorithm de-

scribed in this section is a geometric estimate for the soft tissue surrounding the intact

bone, S(t0), which is further subdivided into elements of fat or muscle. These ele-

ments combine with the bone fragment ones, i.e., B(t0), estimated in section (5.2.1)

to form the estimate of the geometry intact limb needed to simulate the fracture

event.

5.2.3 Generating an Attributed Model for Strike Object

The generation process for an attributed model for the strike object requires a user

input. The strike object geometry and physical attributes are typically unavailable

for measurement at the point of treatment. The prototypical system requires the user
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to specify a geometry, position p, orientation, and physical attributes for the strike

object. Let O denote the strike object. The position and orientation of the strike

object at time t are denoted as shown in equation (27).

O(t) = TO(t)O (27)

Where TO(t) is the transformation matrix for the strike object at time t. The physical

attributes include: mass m, velocity v, and direction d. Mass is the amount of

material enclosed by the surface of the object. Velocity is the distance traveled per

unit of time. Direction specifies the course along which the strike object moves. This

information provides an initial point within the fracture event space, i.e., this provides

sufficient data to perform a fracture simulation.

5.3 Simulating Fracture Events

Simulating fracture events is the second step in the system of estimating a fracture

inverse mechanics. This step takes four inputs: (1) an estimate set of attributed

models for fracture fragments B(t0), (2) an estimate set of attributed models for

soft tissues S(t0), (3) an estimate attributed model for a strike object O, and (4)

measured data for bone fracture fragments D. The output of this step is a collection of

fracture event simulations where each simulation is ranked by a likelihood score. Each

simulation score indicates the likelihood of the fracture image data given the assumed

value for the fracture event variables. This step implements a search procedure that

varies the user-specified variables of the fracture event to find values for these variables

that are supported by the recorded fracture image data. Fracture event simulations
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seek to approximate the physical process that occurred when the injury was sustained.

The search procedure seeks to find the values of the fracture event variables, Θ, that

are most likely to have produced the fracture event. These values provide the most

accurate description of the measured positions for the fracture fragments observed

in the fracture event, in terms of how closely the estimated positions of the fracture

fragments in a simulation fit the measured data. These values maximize the likelihood

equation (23) and are defined as in equation (28).

Θ̂ = arg
Θ

max [p(B|Θ,B(tf ))] = arg
Θ

max

[
k ∗ exp

(
−1

2
‖B−B(tf |Θ)‖2

)]
. (28)

Where Θ̂ is the maximum likelihood estimator. ‖B−B(tf |Θ)‖ is the difference

between the measured positions for the fracture fragments observed in the frac-

ture event B and the estimated positions of the fracture fragments in a simulation

B(tf |Θ) = Ti(tf |Θ)B. ‖B−B(tf |Θ)‖ is computed as the average amount of transla-

tion that is needed to displace bone fragments from their estimated fracture positions

in a fracture simulation to their measured positions observed in the fracture image,

refer to equation (29).

‖B−B(tf |Θ)‖ =
1

K

K∑
i=1

‖Bi −Bi(tf |Θ)‖ . (29)

Where K is the number of bone fragments. The data for bone fragments are po-

sitions so that the rotation and intensity differences are ignored in ‖B−B(tf |Θ)‖

computation. This difference of data, i.e., ‖B−B(tf |Θ)‖, is referred to as a transla-

tion error. Let Bi = {x0,x1,x2...,xM} be the measured data for the ith bone fragment

and xm be the (x, y, z) coordinate in the image for the mth point in bone fragment
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Bi. Then, ‖Bi −Bi(tf |Θ)‖ is computed as the average amount of translation that is

needed to displace the transformed points in Bi(tf |Θ) to their measured positions as

defined in equation (30).

‖Bi −Bi(tf |Θ)‖ =
1

M

M∑
m=0

||xm −Ti(tf |Θ)xm||. (30)

Where Ti(tf |Θ) is the data transformation computed for ith bone fragment, Bi
, by

the fracture simulation at the final time for the fracture event. || · || is the norm of a

vector. Ti(tf |Θ)xm is equal to xm only and only if the data transformation Ti(tf |Θ)

is the identity matrix. So, the desired fracture simulation is the one that is able to

move bone fragment pixels from their estimated original anatomic positions at t0, i.e.,

Ti(t0|Θ)xm, and to put them back to their measured positions. Such a simulation

has the highest likelihood Θ.

By applying the natural log, equation (28) is rewritten as in equation (31) since

the maxima of p(B|Θ,B(tf )) are equivalent to the maxima of ln p(B|Θ,B(tf )).

arg
Θ

max [ln p(B|Θ,B(tf ))] = arg
Θ

max

[
ln k −

(
1

2
‖B−B(tf |Θ)‖2

)]
. (31)

Applying the natural log function in this context is helpful for three reasons. First,

logs reduce the potential for underflow in numerical analysis due to very small likeli-

hoods. Second, logs allow converting a product of factors into a summation of factors.

Third, the natural log function is a monotone transformation that does not change

the locations for maxima or minima. In equation (31), ln k and 1
2
are shift and scale

factors, respectively, that do not affect the location of maxima, so they are removed
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from the computation as in equation (32).

arg
Θ

max [ln p(B|Θ,B(tf ))] = arg
Θ

max
[
−‖B−B(tf |Θ)‖2] . (32)

Equation (32) is rewritten as in equation (33) since arg
x

max(−x) = arg
x

min(x).

This form is helpful to get rid of the negative sign in equation (32).

arg
Θ

max
[
−‖B−B(tf |Θ)‖2] = arg

Θ
min

[
‖B−B(tf |Θ)‖2] . (33)

Equation (32) is further reduced to equation (34) since ‖B−B(tf |Θ)‖ is a non-

negative value and the square function is monotonic in the interval of non-negative

values, i.e., x ≥ 0. So that arg
x

min(|x|2) = arg
x

min(|x|).

Θ̂ = arg
Θ

min
[
‖B−B(tf |Θ)‖2] = arg

Θ
min [‖B−B(tf |Θ)‖] (34)

This form is interesting since it directly connects the value of Θ̂ to the transla-

tion error, i.e., the difference between estimated fracture positions for fragments in

a fracture simulation and the measured fracture positions observed in the fracture

image.

The search procedure implements a numerical optimization algorithm to find the

MLE estimates for Θ. The goal for the optimization algorithm is to quickly find

a list of plausible optimal values that maximize the log-likelihood [55]. This goal

is achieved by searching smaller sub-sets of the 8-dimensional space instead of ex-

haustively searching the whole space, which becomes intractable as the number of

variables increases. The search proceeds by selecting different starting values for Θ

from the 8-dimensional space. For each starting value, the search proceeds by means
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of trial and error over the course of a series of iterative steps. On each iteration, a new

set of variable values is obtained by adding small changes to the previous variables,

computed in the previous iteration, in such a way that the new variables are likely

to lead to better estimate for Θ. The algorithm uses the gradient descent method in

updating these variables. This iterative process continues until predefined criterion

are achieved. The stopping criterion include the maximum number of iterations al-

lowed and the minimum amount of change in variable values between two successive

iterations. The most likely values of Θ are then selected as plausible solutions for

the fracture event. This optimization algorithm is practical since it is not possible in

practice to obtain an analytic form solution for the MLE estimate in a model that

involves so many parameters as the one in this system.

The 8-dimensional volume of the solution space is sampled to select different start-

ing values for Θ in the optimization algorithm. The multi-scale aspect of the algo-

rithm defines an 8-dimensional volume by bracketing each of the 8 components of

the fracture variables to the subset of values which are physically meaningful. For

example, the direction vector must be constrained to point in the direction of the

fracture site and the velocity has to be above a minimum speed and below some

maximum speed. Within this 8-dimensional volume samples are taken at locations

along a rectangular grid.

For each starting value for Θ, an iterative process is performed to find the most

likely value for Θ. This process uses the gradient descent method to update the values

of Θ in each iteration by taking into account the results from the previous iteration.

The iterative process is performed in a sequence of four steps:
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1. Run a fracture simulation using Θ,

2. Compute the translation error, i.e.,‖B−B(tf |Θ)‖,

3. Update the values of Θ using the gradient descent method,

4. Repeat steps (1 - 3), until the stopping criterion are achieved.

The listed sequence describes a process performs an iterative gradient descent mini-

mization to find a set of MLE values for Θ.

In step (1), the search procedure takes the current value of the fracture event

variables Θ and runs a fracture simulation. When the simulation ends, the system

provides transformation data T̂ for for all virtual objects, i.e., bone fragments, soft

tissue, and strike object, at each keyframe of the simulation. The collection of these

objects with their transformation data at a specific keyframe form the fracture context

at that keyframe. Let FC[n |Θ] denote the fracture context at keyframe n given

simulation variables Θ, then, the fracture contexts for a fracture simulation are defined

as in equation (35).

FC[n |Θ]|n∈[0,N ] = {{T̂}i[n|Θ]B, {T̂}j[n|Θ]S, T̂O[n|Θ]O}. (35)

Where N is the number of keyframes recorded by the fracture simulation.

In step (2), the value for {T̂}i is used to compute the translation error ‖B−B[N |Θ]‖

as in equation (29) for the guessed Θ value. The computed translation error rep-

resents the difference between the estimated fracture positions for fragments in a

fracture simulation at the last keyframe , i.e., B[N |Θ], and the measured fracture

positions observed in the fracture image, i.e., D = B.
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In step (3), the search process updates the values of Θ to minimize ‖B−B[N |Θ]‖

using the gradient descent method [25]. Let TE(Θ) = ‖B−B[N |Θ]‖ be a function of

Θ that denotes the translation error computed for the fracture simulation generated

using Θ. Then, the values of Θ are updated as in equation (36).

Θr+1 = Θr − γ∇ΘTE(Θr). (36)

Where Θr is the simulation variables at the rth iteration. ∇ΘTE(Θr) is the gradient

with respect to Θ for the computed translation error in equation (29) for the rth

iteration. γ is the step size. The gradient descent method finds a local minimum of a

function by taking steps proportional to the negative of the gradient (or approximate

gradient) of the function at the current point.

The gradient of the translation error ∇ΘTE(Θr) is computed numerically. For this

system, ∇ΘTE(Θr) is an 8-dimensional vector defined as in equation (37).

∇ΘTE(Θr) = [
∂TE(Θr)

∂v1

,
∂TE(Θr)

∂v2

, ...,
∂TE(Θr)

∂v8

]>. (37)

Where ∂TE(Θr)
∂vm

is the derivative of the translation error with respect to the mth

variable in Θ, i.e., vm. Let δ be a small positive number that represents the step
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length and em be the mth standard basis vector as defined in equation (38).

em =



0

...

0

1

0

...

0



-row numberm (38)

Then, the partial derivative of TE(Θr) with respect to the mth variable is approx-

imated as in equation (39).

∂TE(Θr)

∂vm
≈
TE(Θr + δem)− TE(Θr)

δ
. (39)

Where (Θr + δem) is the incremental step associated with the mth variable. Note

that, in a fracture simulation, the measured fragment data B is fixed and does not

change over time with respect to Θr. The transformation data T̂i[N |Θ] in B[N |Θr] =

T̂i[N |Θ]B is the only variable that changes with respect to Θr in a fracture simulation.

TE(Θr + δem) is evaluated by running a fracture simulation using the incremented

simulation variables (Θr + δem), then, at the end of the fracture simulation, the

translation error is computed as in equation (29). As a note, the step length δ should

be small, but not too small.

In step (4), the iteration process in steps (1 - 3) continues until predefined crite-

rion are achieved. The stopping criterion include the maximum number of iterations
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allowed and the minimum amount of change in variable values between two succes-

sive iterations. the likelihood score reaches its minimum. The maximum number of

iterations, denoted as R, is specified by the user. The iteration process stops when

r ≥ R, where r is an iteration counter. The minimum amount of change in variable

values between two successive iterations is measured by the norm of the gradient

vector ∇ΘTE(Θr) computed in equation (37). The iteration process stops when the

norm of that gradient vector is very small, i.e.,‖∇ΘTE(Θr)‖ < ε, where ε is a small

positive quantity. When on of these criterion is achieved, the system finishes the cur-

rent iteration process and stores the simulation variables Θ that corresponds to the

smallest translation error, i.e., TE(Θ) = ‖B−B[N |Θ]‖, obtained. For each stored

Θ a likelihood score is computed as in equation (40).

LKS(Θ) = −c1 ∗ ln [c2 ∗ ‖B−B[N |Θ]‖+ 1] . (40)

Where LKS(Θ) is the likelihood score computed for Θ and c1 and c2 are positive

scale factors. The natural log is a monotonic function that preserves the order of

an ordered set of values. The negative of the natural log is taken so that when the

translation error TE(Θ) is small the likelihood score is high and vice versa.

After processing all the sampled points of the simulation variables space, the search

procedure collects the simulation variables with the top likelihood scores and returns

them as a list of plausible solutions for the fracture event observed in the provided

CT images. The search procedure arranges the stored simulation variables Θ for

the different sample points in an descending order according to the value of their

corresponding LKS(Θ). So that, the first one is the most likely simulation variables



111

that generate a fracture pattern similar to that measured in the fracture image. While,

the last one is the least likely simulation variables that generate a fracture pattern

similar to that measured in the fracture image.

5.3.1 Visualizing and Analyzing Fracture Simulations

Visualizing and analyzing fracture simulations is the third step in the system of

estimating a fracture inverse mechanics. This step takes two inputs: (1) the list of

Θs found in section (5.3) and (2) fracture image If . In this step, the system provides

two tools: (1) a tool to visualize virtually how bone fragments moved in space during

a fracture event and (2) a tool to visualize virtually the void that is created in soft

tissue due to the movement of bone fragments. These tools allow a user to explore

the space of plausible solutions for a fracture event.

The movement of bone fragments is visualized by animating the surfaces for the

virtual fragment objects over time. The animation process creates the motion by

rapidly displaying a sequence of changes to the position and orientation for each bone

fragment. This sequence of changes uses the computed transformation data in all

keyframes produced by the fracture simulation that is generated for Θ of interest.

Each keyframe corresponds to a point of time in a fracture event. The computed

transformation data for that keyframe specify the estimated position and orientation

for all bone fragments at that point of time. Let n be the index of the keyframe to

be displayed, then the displayed bone fragments are B[n]= T̂i[n|Θ]B.

The void in soft tissue is visualized in two ways: (1) by displaying a 3D virtual

surface for the void region and (2) by highlighting the void region on the fracture
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image. These visualizing ways allow the user to estimate the location and shape of

the void region.

The void region in soft tissue corresponds to the estimated soft tissue areas where

bone fragments passed through during their movements in a fracture event. This

region is computed by intersecting the soft tissue positions on the fracture image at

the start of a fracture simulation with all positions on the fracture image for bone

fragments in all keyframes in a fracture simulation. This region is defined as in

equation (41).

V = S(0)
⋂ ⋃

n∈[0,N ]

B[n]

 . (41)

Where V is the computed void region. This region does not include the positions

of bone fragments at the start of a fracture event since these positions are not part

of the soft tissue S(0), i.e., they will be excluded by the intersection operation.

The 3D representation for the void region is generated by triangulating the surface

of this region. The 3D representation is displayed along side the bone fragments at

their reduced positions, i.e., their estimated original anatomic positions, see figure

(35). This display allows the user to visualize the void shape and position in the

fractured limb.

The highlighting of the void region on the fracture image is generated by displaying

the image pixels that are located inside this region with a unique color. By navigating

through the image slices, the user sees the void pixels highlighted in each slice, see

figure (36). This way allows the user to quantify the amount of void region in each
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Figure 35: shows a 3D representation of the estimated void region in soft tissue.
The void region in soft tissue surface is shown (in solid light blue) with respect to
other bone fragment surfaces (in faded colors) in their estimated original anatomic
positions in order to visualize the shape and location of void region in soft tissue in
the fractured ankle.

Figure 36: shows void region pixels on one of the 2D slices of the fracture image. The
image pixels that are located inside the void region are displayed with a unique color
in the slice. The number of pixels inside the void region is reported for each slice.
This way allows the user to quantify the amount of void region in each slice and to
estimate the start and end of the void region in the fractured limb.
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slice and to estimate the start and end of the void region in the fractured limb.

These presented tools allow the user to explore the space of plausible solutions

computed for a fracture event. Animating bone fragments shows how these fragments

moved over time during the fracture event. While, displaying the void region in soft

tissue approximate the trajectory of the bone fragments through the soft tissue. This

void region may provide clues about the location and extent of soft tissue trauma in

the fractured limb.



CHAPTER 6: RESULTS OF COMPUTING THE MECHANICS OF A HIGHLY
COMMINUTED TIBIA FRACTURE

This chapter discusses results of experiments for the system of computing the in-

verse mechanics of a highly comminuted tibia fracture. The experiments were per-

formed to find the estimated plausible solutions for a fracture event and visualize

them. The visualization shows how bone fragments moved over time during the frac-

ture event and shows the void created in soft tissue. Generated fracture simulations

are visually inspected and the errors are computed to conclude the results.

The system was used to estimate the fracture event of a clinical tibial plafond case

by following the interactive steps discussed in chapter (4). For this case, the fracture

image, the intact image, the bone fracture fragment surfaces, the intact bone surface,

and the reconstructed fracture fragment positions were provided by the work in [46],

which virtually reconstructs highly comminuted tibia fragments from 3D CT images

of a fracture case. The fracture case includes six bone fragments and also includes a

model for the talus bone. The images are 3D CT scans in DICOM format and 16-bit

are used to express the CT numbers.

The experiments were conducted to generate three fracture simulations for three

different shapes of a strike object while other system settings are held constant. All

experiments were conducted with the following collection of values for different pa-

rameters and settings of the system. The settings that are used to generate soft
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tissue attributed models are: fat threshold Tfat = -400HU, muscle threshold Tmuscle

= -100HU, bone threshold Tbone= 100HU, fat density = 0.9g/cm3 [29], fat friction

= 0.3, muscle density = 1.06g/cm3 [81], and muscle friction = 0.8. The breakable

constraints settings are: damping factor = 0.5, linear limit = 5mm, angular limit = 5

degrees, stiffness = 0.2, and breaking threshold = 1. The settings for physical prop-

erties of fracture fragment attributed models are: bone density = 1.85g/cm3 [95] and

friction = 0.6. Fracture simulations were set to run to a final time of 1.5 seconds and

the maximum number of search iterations allowed to find the best fracture simulation

is set to 100. The system solved for likely values of the unknown fracture event vari-

ables. These variables control the impact of the strike object and determine its: speed

v, mass m, scale s, 3D position p, and direction d. At the end of each experiment,

the list of most likely Θ̂ values is provided with their likelihood score. The likelihood

score is computed according to equation (40) with c1 = 100 and c2 = 0.001. These

scale factor values are used since the translation error ‖B−B(tf |Θ)‖ is computed in

mm. The listed values of Θ̂ are used to produce the plausible fracture simulations for

how the fracture event occurred.

Each experiment is presented in a separate section, sections (6.1 to 6.3). These

sections describe the unique aspects of each experiment and adhere to a fixed structure

for clarity. This structure consists of seven figures, two tables, and a discussion. The

discussion details some information in these figures and tables and also mentions the

distinctive aspects of the experiment using the system. The following list defines the

elements in each experiment analysis section in detail:
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1. Strike Object: This figure shows a snapshot of the strike object that is used to

virtually hit the virtual model of the fractured limb,

2. Axial Simulation View: This figure shows four snapshots from the axial view

perspective for the fracture simulation generated using the values of the most

likely Θ̂. These snapshots are taken at four even samples during the simulation

time interval.

3. Coronal Simulation View: This figure shows four snapshots from the coronal

view perspective for the fracture simulation generated using the values of the

most likely Θ̂. These snapshots are taken at four even samples during the

simulation time interval,

4. Saggital Simulation View: This figure shows four snapshots from the saggital

view perspective for the fracture simulation generated using the values of the

most likely Θ̂. These snapshots are taken at four even samples during the

simulation time interval,

5. CT Images: This figure shows two slices of the 3D CT fracture image, slice

80 and slice 108, with the contours of the fractured tibia fragments. These

contours represent the intersection of the specified slices with the fragment

surfaces. The fragments are at their final fracture position estimated by the

fracture simulation generated using the values of the most likely Θ̂.

6. Soft Tissue Void: This figure shows a 3D representation of the estimated void

region created in soft tissue due to the movement of the fracture fragments.
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7. Soft Tissue Void Chart: This chart shows the amount of void region in pixels

per slice on the fracture image.

8. List of Θ̂ Values: This table consists of the top three likely values for Θ̂. These

values produce fracture simulations which generate fracture patterns that are

most similar to that measured in the fracture image,

9. List of Translation Error Per Fracture Bone Fragment: This table consists of the

average amount of translation, i.e., ‖Bi −Bi(tf |Θ)‖, that is needed to displace

the transformed points in Bi(tf |Θ) to their measured positions as defined in

equation (30).

The results of the experiments are discussed in a separate section (6.4). The discussion

details some information about the result and the distinctive aspects of the generated

fracture simulations using the system.

6.1 Experiment-1: Spherical Strike Object

This section presents the experimental result for estimated fracture simulations

for a fracture event that are generated using a spherical strike object. Figure (37)

shows the shape for the spherical strike object. The diameter of the sphere is 20mm.

Table (1) shows the top three possible values for Θ̂ that are highly likely to generate a

fracture pattern similar to that measured in the fracture image. The values are sorted

in a descending order according to the likelihood score value. Figures (38-40) show

snapshots for the fracture simulation that is generated by the top value of Θ̂ from three

different view perspectives: axial, coronal, and sagittal. Each figure consists of four

snapshots captured at four evenly spaced time samples for the fracture simulation,
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(a)

Figure 37: shows strike object shape for experiment-1. The strike object shape is
a sphere with a diameter of 20mm. This shape of the strike object is used to hit
virtually the virtual limb model of the fracture event.

Table 1: List of the top three possible values for Θ̂ for a spherical strike object that
are highly likely to generate a fracture pattern similar to that measured in the fracture
image. Each row in the table, show the values of the variables in Θ̂ as well as the
reported likelihood score. The values for Θ̂ are sorted in an descending order with
respect to the likelihood score.

Θ̂ m (g) s v (mm/s) d (theta,phi) in rad p (x,y,z) LKS(Θ̂)
1 158 1.5 111 (2.18,-.174) (32,41,84) -5.9
2 152 .98 107 (2.06,0.0) (35,44,88) -6.0
3 199 1.4 72 (2.0,-.611) (34,36,87) -6.3

(a) (b) (c) (d)

Figure 38: shows axial view snapshots for experiment-1 of the fracture simulation for
a spherical strike object at four different keyframes. The time interval for the fracture
simulation is 1.5s. Figures (a to d) show snapshots of the fracture simulation at 0s,
0.5s, 1.0s, and 1.5s, respectively.
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(a) (b) (c) (d)

Figure 39: shows coronal view snapshots for experiment-1 of the fracture simulation
for a spherical strike object at four different keyframes. The time interval for the
fracture simulation is 1.5s. Figures (a to d) show snapshots of the fracture simulation
at 0s, 0.5s, 1.0s, and 1.5s, respectively.

(a) (b) (c) (d)

Figure 40: shows saggital view snapshots for experiment-1 of the fracture simulation
for a spherical strike object at four different keyframes. The time interval for the
fracture simulation is 1.5s. Figures (a to d) show snapshots of the fracture simulation
at 0s, 0.5s, 1.0s, and 1.5s, respectively.



121

(a) (b) (c)

(d) (e) (f)

Figure 41: shows contours of the six fractured fragments measured from the CT
image, reduced fragments, and fracture fragments at the end of the simulation for the
first value of Θ̂. The contours are shown at two different slices of the CT image: slice
80 (top row) and slice 108 (bottom row). Slice 80 shows contours for three of the six
fragments, while slice 108 shows the contours for all six fragments.

i.e., t = {0s, 0.5s, 1s, 1.5s}. These figures show the most likely plausible solution

obtained for how bone fragments moved from their original anatomic positions to

their fractured ones in a fracture event.

Figure (41) shows contours of the fractured fragments measured from the CT image,

reduced fragments, and fracture fragments at the end of the simulation for the first

value of Θ̂. The contours are shown at two different slices of the CT image: (1)

slice 80 that shows the contours for three fragments and (2) slice 108 that shows

the contours for all six fragments. This figure is provided to compare visually the

positions and orientations of the fragments computed via the simulation with their

measured ones within the fracture CT image. Table (2) shows the translation error for

each fragment. Fragment 1 has a 0 error since it is kept fixed during the simulation.
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Table 2: shows the computed translation error for each fragment ‖Bi −Bi(tf |Θ)‖
for the most likely value for Θ̂ for a spherical strike object to generate a fracture
simulation. The first row indicates the fragment ID while the second row reports the
translation error for each fragment. The color code in the first row indicate the color
of the corresponding fragment contour in figure (41). Fragment 1 has a 0 error since
it is kept fixed during the simulation. This bone represents the base bone that is used
in the reconstruction system.

Fragment ID 1(Red) 2 (Green) 3 (Yellow) 4(Blue) 5 (Pink) 6 (Turquoise)
‖Bi −Bi(tf |Θ)‖(mm) 0 19 119 112 96 22

(a) (b) (c)

Figure 42: shows a 3D representation of the estimated void region in soft tissue in
Experiment-1. Figures (a-c) show the void region surface in solid light blue from three
different view perspectives: axial, coronal, and saggital, respectively. The void region
surface is shown with respect to other bone fragment surfaces (in faded colors) in their
estimated original anatomic positions in order to visualize its shape and location in
the ankle.

This bone represents the base bone that is used in the reconstruction system. The

average translation error for all fragments, i.e., ‖B−B(tf |Θ)‖, is equal to 61mm as

computed in equation (29). This figure and table help the user to understand more

the translation error of the simulation result.

Figure (42) shows a 3D representation for the surface of the estimated void in

soft tissue due to the movements of fracture fragments during the fracture event.

The surface of the void region is shown from three different view perspectives: axial,

coronal, and saggital. The surface is drawn with respect to other bone fragment

surfaces in their estimated original anatomic positions in order to visualize the shape

and location of the void region in the fractured ankle. Figure (43) shows a chart for
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Figure 43: A chart for the void region in soft tissue that is estimated in Experiment-1.
The x-axis represents the slice index while the y-axis represents the number of pixels
of the void region per slice. These pixels are the ones that the bone fragments passed
through during a fracture simulation.

the estimated number of pixels for the void region per slice in the fracture image. This

chart provides a quantitative estimate for the void region. The information conveyed

by this chart and the 3D representation of the void region in soft tissue may help the

user in locating the most damaged region of the soft tissue in the real fractured ankle.

6.2 Experiment-2: 3D Rectangular Strike Object

This section presents the experimental result for estimated fracture simulations

for a fracture event that are generated using a 3D rectangular strike object. Figure

(44) shows the shape of the 3D rectangular strike object. The dimension of the 3D

rectangle (width, height, length) is (10mm, 20mm, 40mm). Table (3) shows the

top three possible values for Θ̂ that are highly likely to generate a fracture pattern

similar to that measured in the fracture image. The values are sorted in a descending

order according to the likelihood score value. Figures (45-47) show snapshots for

the fracture simulation that is generated by the top value of Θ̂ from three different
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(a)

Figure 44: shows strike object shape for experiment-2. The strike object shape is a
3D rectangle. The dimension of the 3D rectangle (width, height, length) is (10mm,
20mm, 40mm). This shape of the strike object is used to hit virtually the virtual
limb model of the fracture event.

Table 3: List of the top three possible values for Θ̂ for a 3D rectangular strike object
that are highly likely to generate a fracture pattern similar to that measured in the
fracture image. Each row in the table, show the values of the variables in Θ̂ as well as
the likelihood score. The values for Θ̂ are sorted in a descending order with respect
to the likelihood score.

Θ̂ m (g) s v (mm/s) d (theta,phi) in rad p (x,y,z) LKS(Θ̂)
1 89 0.5 99 (2.356,-.219) (37,41,87) -6.2
2 109 .5 101 (2.26,-.03) (36,39,84) -7.4
3 94 1.0 71 (2.18,-.17) (37,39,89) -9.2

(a) (b) (c) (d)

Figure 45: shows axial view snapshots for experiment-2 of the fracture simulation
for a rectangular prism strike object at four different keyframes. The time interval
for the fracture simulation is 1.5s. Figures (a to d) show snapshots of the fracture
simulation at 0s, 0.5s, 1.0s, and 1.5s, respectively.
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(a) (b) (c) (d)

Figure 46: shows coronal view snapshots for experiment-2 of the fracture simulation
for a rectangular prism strike object at four different keyframes. The time interval
for the fracture simulation is 1.5s. Figures (a to d) show snapshots of the fracture
simulation at 0s, 0.5s, 1.0s, and 1.5s, respectively.

(a) (b) (c) (d)

Figure 47: shows saggital view snapshots for experiment-2 of the fracture simulation
for a rectangular prism strike object at four different keyframes. The time interval
for the fracture simulation is 1.5s. Figures (a to d) show snapshots of the fracture
simulation at 0s, 0.5s, 1.0s, and 1.5s, respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 48: shows contours of the six fractured fragments measured from the CT
image, reduced fragments, and fracture fragments at the end of the simulation for the
first value of Θ̂. The contours are shown at two different slices of the CT image: slice
80 (top row) and slice 108 (bottom row). Slice 80 shows contours for three of the six
fragments, while slice 108 shows the contours for all six fragments.

view perspectives: axial, coronal, and sagittal. Each figure consists of four snapshots

captured at four evenly spaced time samples for the fracture simulation, i.e., t =

{0s, 0.5s, 1s, 1.5s}. These figures show the most likely plausible solution obtained for

how bone fragments moved from their original anatomic to their fractured ones in a

fracture event.

Figure (48) shows contours of the fractured fragments measured from the CT image,

reduced fragments, and fracture fragments at the end of the simulation for the first

value of Θ̂. The contours are shown at two different slices of the CT image: (1)

slice 80 that shows the contours for three fragments and (2) slice 108 that shows

the contours for all six fragments. This figure is provided to compare visually the

positions and orientations of the fragments computed via the simulation with their
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Table 4: shows the computed translation error for each fragment ‖Bi −Bi(tf |Θ)‖ for
the most likely value for Θ̂ for a 3D rectangular strike object to generate a fracture
simulation. The first row indicates the fragment ID while the second row report the
translation error for each fragment. The color code in the first row indicate the color
of the corresponding fragment contour in figure (48). Fragment 1 has a 0 error since
it is kept fixed during the simulation. This bone represents the base bone that is used
in the reconstruction system.

Fragment ID 1(Red) 2 (Green) 3 (Yellow) 4(Blue) 5 (Pink) 6 (Turquoise)
‖Bi −Bi(tf |Θ)‖(mm) 0 12 126 107 83 56

(a) (b) (c)

Figure 49: shows a 3D representation of the estimated void region in soft tissue in
Experiment-2. Figures (a-c) show the void region in soft tissue in solid light blue
from three different view perspectives: axial, coronal, and saggital, respectively. The
void region surface is shown with respect to other bone fragment surfaces (in faded
colors) in their estimated original anatomic positions in order to visualize the shape
and location of the void region in soft tissue in the ankle.

measured ones within the fracture CT image.Table (4) shows the translation error for

each fragment. Fragment 1 has a 0 error since it is kept fixed during the simulation.

This bone represents the base bone that is used in the reconstruction system. The

average translation error for all fragments, i.e., ‖B−B(tf |Θ)‖, is equal to 64mm as

computed in equation (29). This figure and table help the user to understand more

the translation error of the simulation result.

Figure (49) shows a 3D representation for the surface of the estimated void region in

soft tissue due to the movements of fracture fragments during the fracture event. The

surface of the void region in soft tissue is shown from three different view perspectives:

axial, coronal, and saggital. The surface is drawn with respect to other bone fragment
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Figure 50: A chart for void region in soft tissue that is estimated in Experiment-2.
The x-axis represents the slice index while the y-axis represents the number of pixels
of void region per slice. These pixels are the ones that the bone fragments passed
through during a fracture simulation.

surfaces in their estimated original anatomic positions in order to visualize its shape

and location of the void region in the fractured ankle. Figure (50) shows a chart for

the estimated number of pixels for the void region per slice in the fracture image.

This chart provides a quantitative estimate for the void region in soft tissue. The

information conveyed by this chart and the 3D representation of the void region in

soft tissue may help the user in locating the most damaged region of the soft tissue

in the real fractured ankle.

6.3 Experiment-3: Cylindrical Strike Object

This section presents the experimental result for estimated fracture simulations for

a fracture event that are generated using a rectangular cylindrical strike object. Figure

(51) shows the shape of the cylindrical strike object. The dimension of the cylinder

(diameter, length) is (10mm, 40mm). Table (5) shows the top three possible values

for Θ̂ that are highly likely to generate a fracture pattern similar to that measured
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(a)

Figure 51: shows strike object shape for experiment-3. The strike object shape is
cylinder. The dimension of the cylinder (diameter, length) is (10mm, 40mm). This
shape of the strike object is used to hit virtually the virtual limb model of the fracture
event.

Table 5: List of the top three possible values for Θ̂ for a cylindrical strike object
that are highly likely to generate a fracture pattern similar to that measured in the
fracture image. Each row in the table, show the values of the variables in Θ̂ as well as
the likelihood score. The values for Θ̂ are sorted in a descending order with respect
to the likelihood score.

Θ̂ m (g) s v (mm/s) d (theta,phi) in rad p (x,y,z) LKS(Θ̂)
1 79 0.5 80 (2.01,-.17) (42,38,89) -6.4
2 94 .57 99 (2.01,.00) (40,42,89) -7.2
3 79 0.86 89 (2.35,-.08) (42,39,86) -10.1

in the fracture image. The values are sorted in a descending order according to the

likelihood score value. Figures (52-54) show snapshots for the fracture simulation

that is generated by the top value of Θ̂ from three different view perspectives: axial,

coronal, and sagittal. Each figure consists of four snapshots captured at four evenly

spaced time samples for the fracture simulation, i.e., t = {0s, 0.5s, 1s, 1.5s}. These

figures show the most likely plausible solution obtained for how bone fragments moved

from their original anatomic to their fractured ones in a fracture event.

(a) (b) (c) (d)

Figure 52: shows axial view snapshots for experiment-3 of the fracture simulation
for a cylindrical strike object at four different keyframes. The time interval for the
fracture simulation is 1.5s. Figures (a to d) show snapshots of the fracture simulation
at 0s, 0.5s, 1.0s, and 1.5s, respectively.
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(a) (b) (c) (d)

Figure 53: shows coronal view snapshots for experiment-3 of the fracture simulation
for a cylindrical strike object at four different keyframes. The time interval for the
fracture simulation is 1.5s. Figures (a to d) show snapshots of the fracture simulation
at 0s, 0.5s, 1.0s, and 1.5s, respectively.

(a) (b) (c) (d)

Figure 54: shows saggital view snapshots for experiment-3 of the fracture simulation
for a cylindrical strike object at four different keyframes. The time interval for the
fracture simulation is 1.5s. Figures (a to d) show snapshots of the fracture simulation
at 0s, 0.5s, 1.0s, and 1.5s, respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 55: shows contours of the six fractured fragments measured from the CT
image, reduced fragments, and fracture fragments at the end of the simulation for the
first value of Θ̂. The contours are shown at two different slices of the CT image: slice
80 (top row) and slice 108 (bottom row). Slice 80 shows contours for three of the six
fragments, while slice 108 shows the contours for all six fragments.

Figure (55) shows contours of the fractured fragments measured from the CT image,

reduced fragments, and fracture fragments at the end of the simulation for the first

value of Θ̂. The contours are shown at two different slices of the CT image: (1)

slice 80 that shows the contours for three fragments and (2) slice 108 that shows

the contours for all six fragments. This figure is provided to compare visually the

positions and orientations of the fragments computed via the simulation with their

measured ones within the fracture CT image. Table (6) shows the translation error for

each fragment. Fragment 1 has a 0 error since it is kept fixed during the simulation.

This bone represents the base bone that is used in the reconstruction system. The

average translation error for all fragments, i.e., ‖B−B(tf |Θ)‖, is equal to 67mm as

computed in equation (29). This figure and table help the user to understand more
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Table 6: shows the computed translation error for each fragment ‖Bi −Bi(tf |Θ)‖
for the most likely value for Θ̂ for a cylindrical strike object to generate a fracture
simulation. The first row indicates the fragment ID while the second row report the
translation error for each fragment. The color code in the first row indicate the color
of the corresponding fragment contour in figure (55). Fragment 1 has a 0 error since
it is kept fixed during the simulation. This bone represents the base bone that is used
in the reconstruction system.

Fragment ID 1(Red) 2 (Green) 3 (Yellow) 4(Blue) 5 (Pink) 6 (Turquoise)
‖Bi −Bi(tf |Θ)‖(mm) 0 35 89 105 127 45

(a) (b) (c)

Figure 56: shows a 3D representation of the estimated void region in soft tissue in
Experiment-3. Figures (a-c) show the void region in soft tissue in solid light blue from
three different view perspectives: axial, coronal, and saggital, respectively. The void
region in soft tissue surface is shown with respect to other bone fragment surfaces (in
faded colors) in their estimated original anatomic positions in order to visualize the
shape and location of void region in soft tissue in the fractured ankle.

the translation error of the simulation result.

Figure (56) shows a 3D representation for the surface of the estimated void region in

soft tissue due to the movements of fracture fragments during the fracture event. The

surface of the void region in soft tissue is shown from three different view perspectives:

axial, coronal, and saggital. The surface is drawn with respect to other bone fragment

surfaces in their estimated original anatomic positions in order to visualize the shape

and location of the void region in soft tissue in the fractured ankle. Figure (57) shows

a chart for the estimated number of pixels for void region per slice in the fracture

image. This chart provides a quantitative estimate for the void region in soft tissue.

The information conveyed by this chart and the 3D representation of the void region
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Figure 57: A chart for the void region in soft tissue that is estimated in Experiment-3.
The x-axis represents the slice index while the y-axis represents the number of pixels
of the void region in soft tissue per slice. These pixels are the ones that the bone
fragments passed through during a fracture simulation.

in soft tissue may help the user in locating the most damaged region of the soft tissue

in the real fractured ankle.

6.4 Discussion

This suction discusses the results and the distinctive aspects of the experiments

and the generated fracture simulations using the system. The results as shown in

the snapshots of fracture simulations indicate that it is possible to construct a virtual

dynamics model for the fractured limb, to break that model, and to generate a fracture

simulation for a fracture event.

The translation errors reported in the tables for fracture fragments indicate that

the system was able to virtually move the fragments from their estimated anatomical

positions to fractured ones that are close to the measured positions of fracture frag-

ments in the fracture CT image. It is noticeable that the error for larger fragments

is smaller than the error for smaller fragments. That is because a large fragment has

a large surface that allows it to interact more with other virtual objects such as soft
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tissue compared to small fragments. So a large fragment may have more virtual colli-

sions with other objects than a small fragment which may pass through gaps between

the virtual objects. This note is clear in figures for CT images with fragment con-

tours. The contours for large fragments at the end of a fracture simulation are close

to their corresponding contours for measured fragments in contrast to small fragment

contours.

The relatively high error values can be explained, in part, by four reasons: curse of

dimension, imperfection of used model, values of the fixed parameters, and limitations

of the physics engine. Curse of dimension causes the error surface to have too many

local minima that make it hard for the system to find the absolute minimum without

checking every possible solution in the space of this surface and this is impractical.

The used model is imperfect because it does not include other elements that exist

in the fractured limb and interact with other elements during the fracture event, for

example, tendon and ligament. These missing elements may improve the quality of

the results. The values of the fixed parameters represent estimated physical attributes

of the fractured limb and these attributes may vary for different people. Adding these

parameters to the search process may improve the results but it is going to increases

the dimensions of the search space and this is not desirable. The used physics engine,

Bullet, has some technical limitations that does not allow the system to search the

whole space of solutions for example, Bullet does not handle speed values that are

too high because it may miss collision surfaces in its computation. These reasons can

be overcome by reducing the dimension of the search space to the most important

unknown parameters, using a more accurate model of the limb, using a search method
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that check so many possible solutions, and using a more sophisticated commercial

physics engine.

The reported void region in soft tissue provides an estimate about its location in

the real fractured limb. The 3D representation helps in visualizing its shape with

respect to the reconstructed bone fragments, while the chart helps in localizing the

void region along the axial axis. The void region may help the user in estimating the

damaged areas in soft tissue in a fractured limb.

The results of fracture simulations for this prototypical system indicate that it is

possible to construct a virtual dynamics model for the fractured limb, to break that

model, and to generate a fracture simulation for a fracture event. The system was

able to generate a list of plausible solutions that a user can explore to find the one that

is most likely generated the fracture event as presented in the fracture CT image.



CHAPTER 7: BONE FRAGMENT SEGMENTATION ALGORITHM

In this chapter, a novel bone fragment segmentation algorithm is presented. The

bone fragment segmentation algorithm uses the PWT algorithm to extract bone frag-

ment regions from a CT image. The proposed algorithm seeks to address two issues:

(1) how to accurately segment bone fragments that touch, i.e., are in close proximity

to one another, and (2) how to accurately segment bone fragment tissue from other

tissues. It does this by developing novel probabilistic models for both situations and

then integrating these models into a single probabilistically-driven version of the clas-

sical watershed transform, referred to as the PWT. This chapter begins by explaining

the PWT and it’s key variations away from the classical watershed transform.

7.1 Probabilistic Watershed Transform

Th PWT is an efficient approach to classify image pixels by propagating classifi-

cations decisions from high confidence areas to lower confidence areas following the

path with maximum confidence. Confidence is measured by probability and a high

confidence area is referred to as a marker. A path integrates connectivity information

that describes all of the pixels intervening between a pixel itself and the marker in

consideration. Integrating this information is important for reliable classification. A

path is propagating information from a marker through a connected set of data to

the pixel into consideration so it is always propagating information through the data
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rather than classifying the data independent of any connectivity. In general, comput-

ing this is hard. The PWT algorithm is adopted so that to compute the maximum

probability path. This Integrates the information about the data intervening between

the marker and the pixel into consideration where this information can be in arbitrary

units or context since the PWT operates on probability distributions.

The PWT algorithm consists of three steps:

1. Classify the input image pixels into three sets: markers, data, and background,

2. Compute class-conditional probabilistic reliefs, i.e., cost images,

3. Compute watershed: Expand the image markers in the order of slowest cost

ascent until all non-markers pixels belong to some marker.

Marker computation uses reliable data as a basis for estimating unreliable data. This

allows to propagate high probability solutions into areas with lower probability where

the correct classification is less certain. The segmentation algorithm starts by clas-

sifying image pixels into three sets: markers, data, and background. The algorithm

starts by computing a binary image referred to as the marker image. This image

is generated by classifying each image pixel into two classes: (1) marker pixels and

(2) non-marker pixels. The classifier conservatively labels pixels as marker pixels,

i.e., marker pixels are only those pixels that are highly likely to include the semantic

information of interest for segmentation. After the marker image is computed the

connected components of the marker image is computed to generate a collection of

initial foreground regions which are referred to as markers. The image pixels that are

non markers are classified into two sets: data and background. Data set is the image
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pixels that are assumed to be part of the objects and will be processed by the PWT

algorithm. Background set is the image pixels that are assumed to not be part of any

object. Background pixels will not be processed by the PWT.

Using the computed markers and the input image, a set of cost images is computed

which is an interim step that enables the algorithm to efficiently compute the image

watershed from the initial markers. Cost images are defined to make propagation

decisions from high confidence areas to lower confidence areas through the path of

maximum probability. Cost images specify the penalty for expanding the markers

through the different image pixels. The number of cost images is equal to the number

of markers, i.e., one cost image for each marker. These cost images are generated

from probability distributions which define the stochastic relation between each pixel

and the best segmentation label for the pixel. The use of probabilistic trend allows

integrating costs of various decisions without having to worry about the units that

these measurement were made in. The typical watershed transform works on intensity

alone so the watershed transform for color images, for example, is difficult because it

is difficult to know which intensity is more important as a unit of red, as a unit of

green, or as a unit of blue.

The watershed transform computes the geodesics across the probability distribu-

tions such that the total cost of the path from a pixel to the associated marker has

maximum probability. The algorithm propagates classification decisions from area of

high confidence to areas of lower confidence. Markers are the areas with the highest

confidence. Those are neighboring regions, every time you move away from the marker

boundary the confidence of the classification decreases. So the algorithm propagates
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classification decisions out through paths of maximum probability starting by high

confidence pixel first. Then to classify a pixel, the algorithm does not take only the

information of that pixel but the information of pixels along the path. Computing

this is hard. The PWT is an efficient approach to compute this path. A path inte-

grates connectivity information that describes all of the pixels intervening between

the pixel itself and the marker in consideration.

The discussion of PWT in this section is developed as follows. The concept of

watershed transform is presented in section (7.1.1). Classical watershed transform is

discussed with its drawbacks in section (7.1.2). Improved watershed transform algo-

rithm is discussed with its problems in section (7.1.3). PWT concept and algorithm

are presented with detailed explanation in section (7.1.4).

7.1.1 Watershed Transform Algorithm

The watershed algorithm is a region-growth oriented segmentation method having

origins taken from the field of mathematical morphology. The algorithm segments

an image into regions using the geometric shape of the image values as the basis of

the segmentation. The name “watershed” is derived from an analogy which likens

the process of computing these regions to the problem of finding a watershed in a

topographic relief. In a topographical context, “watershed” denotes the topographic

regions divided by ridges that will drain water to different bodies of water. The

watershed algorithm computes these regions treating the image intensities as the

altitude of the topographic relief.

Much of the terminology for this algorithm is borrowed from that used in geology
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Figure 58: Illustration of Rain Falling flooding process in watershed transforms. The
water drops follow the landscape downhill forming lakes at the bottom of the valleys
which are called basins.

for watersheds. For example, the lowest point in each region is called a catchment

basin (CB) or simply a basin, see figure (58) . Within images, catchment basins

correspond to local minima of the image intensity. The algorithm works by first

locating these catchment basins within the image and subsequently raising the “water

level” in the topographic relief. A variety of terminologies are used in watershed

related publications for the “water level.” These include the following terms: height,

level, altitude, and intensity. In this dissertation we refer to the “water level” as

the height. The height of the water is uniform over the relief and increases with

uniform speed. Neighboring basins eventually fill with “water” and merge when the

water height exceeds the altitude of the ridges that separate the two basins. When

this occurs, dams are built at the locations where water coming from different basins

meet to keep them separate. As a result, the landscape is divided into regions and

the dams formed to separate the catchment basins define the the watershed lines or

“watershed,” see figure (59)
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Figure 59: Illustration of watershed transform, dams are built at the points the water
coming from two different lakes may meet, the union of dams represent the watershed
lines. CB refers to catchment basin.

In images, the intensity values define the altitudes of a topographic relief where

high intensities (bright areas) represent high altitudes and low intensities (dark areas)

represent low altitudes, see figure (11). Computing the watershed of an image is a

two-part problem: (1) locating local intensity minima (catchment basins) and (2) as-

sociating each image pixel with one of the detected catchment basins. Local minima

can be found by looking for sign changes in the first and second order discrete dif-

ferentials of the image intensity surface. The found local minima are called markers.

The second problem must be solved by finding the path of fastest descent from each

image pixel to some catchment basin (which must be a regional minimum). A simple

approach to solve this problem is to use the discrete approximation of the gradient

to determine the path of fastest descent on the surface until a catchment basin is

reached. This “direct” method for computing the watershed proceeds by starting at

a non-marker pixel and traversing the image by visiting a sequence of adjacent pixels

until a marker pixel is reached. At each point in the path, the adjacent neighbor is

chosen by following the negated intensity surface gradient. Let i = f(x) define an
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intensity function where intensity i occurs at position x. In this case, the path of

fastest descent at the point x is given by traversing to the “downhill” neighboring

pixel position referred to as ŷ(x). The “downhill” pixel is selected using equation

(42).

ŷ(x) = arg
y

{
max

y∈NG(x),f(y)<f(x)

〈
−∇f(x),

y − x

||y − x||

〉}
(42)

where NG(x) denotes the neighbors of point x, i.e., the set of locations which

share an edge (or face in 3D) with the point x. Unfortunately, this approach is

computationally costly due to the following two factors: (1) spatially-close pixels

will often follow the nearly the same descent path and (2) for complex surfaces,

these paths can create long and circuitous descent paths before terminating at a

marker. Also, this initial version of the watershed algorithm often divided semantic

objects within the image into many segments; a problem known as over-segmentation.

Over-segmentation is generally undesirable as the user must merge these segments to

produce a viable segmentation. Oversegmentation issues exist for several reasons: (1)

noise, (2) semantics. Noise is a random perturbation of the image intensity due to

the sensing process. Noise typically introduce local minima which are not indicative

of semantic contents. For watershed algorithm, these minima create distinct regions

that do not have a semantic meaning. A semantic object may consist of components

which introduce multiple local minima due to natural variation in the texture of the

object surface. In such cases, the object will be divided into multiple parts and this

is not desirable, see figure (12).
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7.1.2 Classical Watershed Transform Algorithm

The classical watershed algorithm first introduced in 1991 by Meyer [51]. Meyer

addressed the issues of computation cost and over-segmentation by modifying the

topographic relief. The modification was successful in eliminating many of the local

minima responsible for over-segmentation and simplified the computation of the path

of steepest descent as described in equation (42). The resulting algorithm is less prone

to over-segmentation, albeit this is still an issue, and provides the same watershed

result using a fraction of the computational cost of the direct solution referenced

above. This work is referred to as the “classical watershed.” Meyer’s work in this

regard is the basis of contemporary research in this area including the approach

proposed in this dissertation. Meyer’s algorithm is as follows:

1. Compute the image markers and non-marker pixels,

2. Compute the cost image,

3. Expand the image markers in the order of slowest cost ascent until all non-

markers pixels belong to some marker.

The algorithm starts by computing a binary image referred to as the marker image.

This image is generated by classifying each image pixel into two classes: (1) marker

pixels and (2) non-marker pixels. The classifier conservatively labels pixels as marker

pixels, i.e., marker pixels are only those pixels that are highly likely to include the

semantic information of interest for segmentation. Classification is done in this way

for two reasons (1) the marker image is intended to be a coarse labeling of the final
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Figure 60: Minimum imposition into 1D image. The original image has local minima
at A, B, C, D, and E. The marker image has a single zero at minimum B. The red
plateaus show the filled minima after imposition. The result image has only one local
minima at B.

segmented image and (2) each contiguous group of marker pixels will ultimately define

a distinct watershed region having a unique label. After the marker image is computed

the connected components of the marker image is computed to generate a collection

of initial foreground regions which are referred to as markers.

Using the computed markers and the input image, a cost image is computed which

is an interim step that enables the algorithm to remove local minima in the intensity

image and efficiently compute the image watershed from the initial markers. Local

minima are removed by setting each marker as a minimum and subsequently assigning

non-marker pixels to have monotonically increasing costs with respect to the markers.

This process is referred to as imposing minima, see figure (60) . The watershed is then

computed by growing the markers into adjacent non-marker pixels with lowest cost

first. This growth strategy selects the lowest cost pixel, with respect to the starting

markers, from the set of pixels adjacent to the image markers and merges it into its
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adjacent marker which is the “downhill” pixel described in equation (42).

The cost image simplifies the computation of the image watershed by re-using

path computations between spatially close pixels and by shortening long and possibly

circuitous paths between non-marker pixels and their markers. The cost image is

created using two criteria: (1) regional minima must occur at each marker and (2)

each pixel belonging to the watershed of a given marker will have a least-cost path in

the cost image from the non-marker pixel position to a position on the given marker

boundary corresponds to the path of fastest descent as described in equation (42).

These criteria are satisfied by a carefully orchestrated sequence of mathematical

constructions. The first of which is to define a cost function that attributes a cost

for traversing the path edge that connects two spatially adjacent pixels. Let (xi,xj)

denote two neighboring (adjacent) pixels in the image. The cost of traversing the

edge connecting xi to xj is defined in equation (43).

cost(xi,xj) =



f(xi)− f(ŷ(xi)) f(xi) > f(xj)

f(xj)− f(ŷ(xj)) f(xi) < f(xj)

f(xi)−f(ŷ(xi))+f(xj)−f(ŷ(xj))

2
f(xi) = f(xj)

(43)

Note that the cost definition (43) takes the point from of the pair (xi,xj) that

has highest intensity and uses the intensity difference between that point and its

“downhill” neighbor as the cost. This definition guarantees that the least-cost path

in the cost image from a non-marker pixel position to a position on a given marker

boundary corresponds to the path of fastest descent as described in equation (42).
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Averaging occurs when the intensities at these points are equal. The cost between

two neighboring pixels is equal at least to the difference between their intensities or

higher. The least cost of traversing the edge connecting xi to xj, i.e., cost(xi,xj) =

f(xj)− f(xi), is obtained only when xi is the “downhill” neighboring pixel of xj, i.e.,

xi = ŷ(xj). This definition for the cost allows for a least-cost path to be computed

which, due to the properties of (43), generate a path corresponds to the path of fastest

descent in the cost image and this is desired.

Since cost focuses merely on the change in the intensity (also referred to as the to-

pographic height/altitude) Meyer refers to cost as the topographic distance between

neighboring pixels. This analogy is then extended to include multiple transitions

between adjacent pixels to construct a path. The path between two image posi-

tions xi and xj is represented as a sequence of L image positions referred to as

π(x1,xL) = {x1,x2, . . . ,xL} where the positions have been re-indexed in the order

suggested by the path sequence. The topographic distance of the path π is referred

to as TDπ(x1,xL) which is defined in equation (44).

TDπ(x1,xL) =
L−1∑
i=1

cost(xi,xi+1) (44)

For each non-marker pixel there will exist a very large number of paths between

that pixel and the markers of the image. Yet, each pixel will have at least one path

of fastest descent within the cost image. This path may be computed by following

the negative of the cost image gradient, i.e., let x1 denote the non-marker start pixel

and subsequently select xi+1 using the recurrence relation xi+1 = ŷ(xi) as defined in
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equation (42) until a marker pixel is reached, at which point we define the marker

pixel to have path index L. This path is referred to as the geodesic of the topographic

distance function between the points x1 and xL and the topographic distance of this

path is denoted TD(x1,xL) as it is a shortest-path criterion using the topographic

distance as a metric as shown in equation (45).

TD(x1,xL) = min
π∈Ω(x1,xL)

TDπ(x1,xL) (45)

where Ω(x1,xL) is the set of all paths from x1 to xL. In [52], it is proven that

paths of the fastest descent are the geodesics of the topographic distance functions

and they are the paths of minimal cost.

Proposition: The topographic distance for a path of fastest descent is equal to the

difference of the function values between their terminal points .

Proof: Let π∗ be a path of fastest descent from x1 to xL and π∗ = {x1,x2, . . . ,xL}

be the set of points belonging to π∗ such that xi+1 = ŷ(xi)∀i ∈ [0, L − 1]. Let

f be a function of x, then, xi+1 is the point with the lowest function value in the

neighborhood of xi since xi+1 = ŷ(xi). Therefore, the cost for walking from xi to

xi+1 is equal to the difference between the function values for the two points, i.e.,

cost(xi,xi+1) = f(xi) − f(xi+1). The topographic distance along path π∗ is equal

to the sum all costs between adjacent points along the path, i.e., TDπ∗(x1,xL) =∑L−1
i=1 cost(xi,xi+1) =

∑L−1
i=1 f(xi)−f(xi+1) = f(x1)−f(xL). Hence, the topographic

distance for a path of fastest descent is equal to the difference of the function values

between their terminal points, i.e., TDπ∗(x1,xL) = f(x1)− f(xL).



148

Proposition: Paths of fastest descent are geodesics of the topographic distance

function.

Proof: Let π be a path from x1 to xL and π = {x1,x2, . . . ,xL} be the set of points

belonging to π. Let xi,xi+1 be a line segment in the path π, then, the cost between xi

and xi+1 is equal to the difference between their function values or higher as defined

in equation (43), i.e., cost(xi,xi+1) ≥ f(xi) − f(xi+1). The cost of the line segment

xi,xi+1 is equal to the difference between their function values, i.e., cost(xi,xi+1) =

f(xi)−f(xi+1), iff xi+1 = ŷ(xi). If the path π is not the path of fastest descent, then,

there will be at least a line segment xi,xi+1 for which xi+1 6= ŷ(xi) and cost(xi,xi+1) >

f(xi) − f(xi+1). Therefore, TDπ(x1,xL) =
∑L−1

i=1 cost(xi,xi+1) > f(x1) − f(xL) =

TDπ∗(x1,xL), where π∗ is the path of fastest descent from x1 to xL according to

Proposition 7.1.2. Hence, the paths of fastest descent are geodesics of the topographic

distance function.

Proposition 7.1.2 and Proposition 7.1.2 are also shown true in [52]. Constructing

the cost function using the amount of rise at the point along the gradient direction

is analogous to the cost constructed from lower slope in [52]. As time has passed this

approach for computation of the watershed has been coined “geodesic reconstruction”

as it seeks to reconstruct the watershed by “growing” the marker regions along the

geodesic paths of the topographic distance surface (the cost image) from the bottom

up. Geodesic reconstruction is computationally efficient as it needs to traverse each

pixel only once to assign it the correct label where the “direct” method may traverse

the same pixel many times. Work in [64] analyzed this approach for computing the

watershed and proved that using the method is equivalent the more computationally



149

intensive direct method for computing the watershed. This work is summarized in

the definition below:

Definition: Let f denote an intensity function that is strictly increasing from its

minima defined in domain D with regional minima set M = {Mk}k∈K where K is its

index set. Let f(x) denote the value of an intensity function at the point x in the

image. Each regional minimum Mi in the image has a catchment basin denoted by

CB(Mi) and assigned a label i. CB(Mi) is the set of points that are topographically

closer to Mi than any other regional minimum Mj:

CB(Mi) = {x|f(Mi) + TD(x,Mi) ≤ f(Mj) + TD(x,Mj))
∀j 6=i,j∈K

} (46)

Watershed, denoted wshed, of f is the set of image points that do not belong to

any catchment basin:

wshed(f) = D ∩

[⋃
∀i∈K

CB(Mi)

]C
(47)

Let W be a distinct value that does not belong to K, i.e. W /∈ K and label

watershed. Then, the watershed transform of function f is a mapping Label : D →

K ∪ {W}, such that:

Label(x) =


i if x ∈ CB(Mi)

W if x ∈ wshed(f)

(48)

A regional minimum is either a single point or a set of connected points that have

the same intensity value.
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The watershed transform generates a unique catchment basin for each minimum,

each catchment basin is given a unique label, each pixel in the image is given the label

of the catchment basin which has the shortest-path to the pixel using the topographic

distance as a metric as described in equation (45). The pixel is assigned the watershed

label, i.e., W , in the case where two or more catchment basins have the shortest-path

to the pixel using the topographic distance as a metric.

Meyer’s algorithm is efficient but suffers from several shortcomings that limit its

application. These shortcomings include the following: (1) the cost function defined

in equation (43) only considers intensity/the geometry of the intensity surface, (2)

loss of image information, and (3) no special class for the background. The cost as

defined in equation (43) focuses merely on the change in the intensity between neigh-

boring pixels using one cost function. In practice, objects may have more semantic

information, e.g., color, that distinguish them from each other. Also, each marker

may have its own semantic, e.g., probabilistic information, which help in determining

the pixels that should be merged to it. Such information cannot be incorporated

in the intensity for one cost function causing the watershed algorithm to incorrectly

segment the objects regions in the image. The loss of image information may reduce

the watershed algorithm accuracy in segmenting the objects region from the image.

Image data is modified to have regional minima at the markers positions in the cost

image. This modification may remove the boundaries and reduce the contrast between

the objects regions which cause the watershed algorithm to incorrectly segment the

objects regions in the image and this is not desired, see figure (61) . No special class

for the background reduces the watershed algorithm accuracy in segmenting objects
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(a) (b) (c)

Figure 61: Information loss due to marker imposition, (a) Original image, (b) The
marker to be imposed position on the original image, (c)The result of imposing the
marker as minimum on the original image, a lot of details are lost and it is clearly
apparent the right side of the image, the details on the right side of the original image
are were deleted in order to impose marked minimum.

that have diffused boundaries with the background. In the classical watershed algo-

rithm, the image pixels are classified into two classes only: marker and non marker.

Therefore, a marker should be placed in every background region regardless of its size

in order to segment the background area from the objects otherwise unmarked back-

ground areas will be considered part of the surrounding objects. Background markers

may add many markers to the markers set. Image data is modified to have regional

minima at every marker position in the cost image. The loss of image information is

proportional with the number of markers. This loss of information may reduce the

watershed algorithm accuracy in segmenting the objects region from the image.

7.1.3 Improved Watershed Transform Algorithm

The improved watershed transform algorithm was introduced in 2004 by Grau et

al. [34]. Grau addressed the issues of considering only the intensity for one cost

function and the loss of image information by modifying the watershed transform to

utilize a set of probability functions that encode prior information about the objects.
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The modification was successful in introducing multiple cost images which encode the

stochastic dependence between the intensity of two neighboring pixels and the bound-

ary of the unknown object. Also, the algorithm avoided the loss of image information

by eliminating the need of imposing minima prior the watershed computation. The re-

sulting algorithm utilizes prior information about the objects and provides watershed

result less sensitive to noise. This work is referred to as the “improved watershed”.

The improved watershed algorithm is as follows:

1. Compute the image markers and non-marker pixels,

2. Compute the cost images,

3. Expand the image markers in the order of slowest cost ascent until all non-

markers pixels belong to some marker.

Similar to classical watershed, the algorithm starts by computing a binary image

referred to as the marker image. This image is generated by classifying each image

pixel into two classes: (1) marker pixels and (2) non-marker pixels. The classifier

conservatively labels pixels as marker pixels, i.e., marker pixels are only those pixels

that are highly likely to include the semantic information of interest for segmentation.

After the marker image is computed the connected components of the marker image

is computed to generate a collection of initial foreground regions which are referred

to as markers.

Using the computed markers and the input image, a set of cost images is computed

which is an interim step that enables the algorithm to introduce prior knowledge about

the objects and efficiently compute the image watershed from the initial markers. The
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number of cost images is equal to the number of markers, i.e., one cost image for each

marker. Cost images are computed using the probability functions which represent

the stochastic dependence between the intensity of two neighboring pixels and the

boundary of the unknown object. The watershed is then computed by growing the

markers into adjacent non-marker pixels in order of lowest cost ascent. This growth

strategy selects the pixel with lowest cost from the set of pixels adjacent to the image

markers and merges it into its adjacent marker.

The improved watershed is computed by a sequence of mathematical constructions.

The first of which is to define multiple cost functions, one for each marker, where

each cost function attributes the cost for traversing the path edge that connects

two spatially adjacent pixels with respect to the marker. Let (xi,xj) denote two

neighboring (adjacent) pixels in the image such that xi belongs to the marker with

labelk. The cost of traversing the edge connecting xi to xj is defined in equation (49).

costk(xi,xj) = pk(xi,xj) (49)

where pk(xi,xj) is a probability function that represents the probability of having

an edge between the xi to xj given that xi belongs to marker with label k. The prob-

ability functions are computed using prior information about the objects. In [34], the

probability function, pk(xi,xj), is defined to be the difference between the posterior

probabilities of the edge points xi and xj where the posterior probability is computed

using the prior information provided by Pott’s model, which is a generalization of

Ising model for more than two states, and atlas.
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Improved watershed algorithm suffers from a major shortcoming that limit its ap-

plication. The shortcoming is its dependency on prior information of the objects.

Grau states that the success of the algorithm largely relies on the existence of a prior

distribution about the objects of interest. The absence of prior information causes

the algorithm to be sensitive to noise and not able to segment areas with low contrast

boundaries. Noise introduces local variations to the image intensity are not indicative

of semantic contents. The improved watershed detects these variations between the

markers as contours. Prior information defines the places of the expected contours

in the image. The absence of prior information will lead to detect contours that do

not correspond to actual object boundaries. Low contrast boundaries are obtained

when the signal to noise ratio is not high enough at the boundary of interest. The

improved watershed detects contours with high variations between the markers. Prior

information defines the places of the expected contours in the image and increases

the variation around them to improve the boundaries detection. The absence of prior

information will lead to inaccurate detection of object boundaries and this is not

desirable. In many applications, the prior information is not available because of

the large variation and randomicity in the objects of interest characteristics such as

shapes, positions, orientation, texture, intensity, and color. For this reason, new ap-

proaches for segmentation are needed for these application which incorporate better

models for objects structures.
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7.1.4 Probabilistic Watershed Transform Algorithm

The Probabilistic Watershed Transform (PWT) modifies the watershed transform

to allow the introduction of a set of probability distributions which represent the

stochastic relation between each pixel and the best segmentation label for the pixel.

The PWT is similar to Grau’s algorithm in utilizing a set of functions and different

than Grau’s algorithm in what the probability distributions represent. Probability

distributions in the PWT represent the stochastic dependence between the properties

of each pixel in the image and the properties of each catchment basin in order to

over come the need for a prior distribution and the dependency on local information.

In practical applications, each object may have its own semantic information about

its surface properties, texture variation, relative intensities, and geometry. Definition

(7.1.2) of watershed transform does not allow the introduction of this information.

Probability distributions are able to encode semantic information about the objects,

e.g., color and likelihood information. PWT extends rain fall analogy to probability

distributions by taking the image point probability values as the altitudes of a topo-

graphic relief where high probability values represent low altitudes and low probability

values represent high altitudes. Regional maxima of the probability distributions cor-

respond to the bottoms of the catchment basins of the landscape, see figure (62). .

The cost images are generated by negating these probability distributions. So the

minima of the cost images are located at the maxima of probability distributions. In

this work, the computation of watershed is conducted by using the probability dis-

tributions notation directly since they are the negative of cost images. In this case,
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(a) (b)

Figure 62: PWT model, (a) probability distribution with one white blob, (b) topo-
graphical relief representation of the probability distribution. The bright area is the
region of high probability values in the probability distribution and dark area is the
region of low probability values. The high probability values represent the low alti-
tudes in the relief surface and the low probability values represent the high altitudes.
The catchment basin corresponds to the bright regions in the probability distribution.

for probability distribution fk, the path of fastest descent at the point x is given by

traversing to the “downhill” neighboring pixel position referred to as ŷk(x) following

the probability distribution gradient. The “downhill” pixel is selected using equation

(50):

ŷk(x) = arg
y

{
max

y∈NG(x),fk(y)>fk(x)

〈
∇fk(x),

y − x

||y − x||

〉}
(50)

Each probability distribution has a single maximum, the collection of maxima of the

probability distributions are the pixels that are highly likely to include the semantic

information of interest for segmentation.

The PWT algorithm addresses the issue of not having a background set in the

classical watershed algorithm by creating a unique set that contains the background

points and not processing it with the markers. The PWT algorithm is as follows:

1. Classify the input image pixels into three sets: markers, process data, and

background,

2. Generate the cost images,
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3. Expand the image markers in the order of slowest cost ascent until all non-

markers pixels belong to some marker.

The segmentation algorithm starts by classifying image pixels into three sets: markers,

process data, and background. Similar to classical watershed, the algorithm starts by

computing a binary image referred to as the marker image. This image is generated

by classifying each image pixel into two classes: (1) marker pixels and (2) non-marker

pixels. The classifier conservatively labels pixels as marker pixels, i.e., marker pixels

are only those pixels that are highly likely to include the semantic information of

interest for segmentation. After the marker image is computed the connected compo-

nents of the marker image is computed to generate a collection of initial foreground

regions which are referred to as markers, M = {Mk}k∈[1,K]. The image pixels that are

non markers are classified into two sets: process data and background. Process data

set, D, is the collection of image pixels that are assumed to be part of the objects

and will be processed by the PWT algorithm. Background set, BG, is the collection

of image pixels that are assumed to not be part of any object. Background pixels will

not be processed by the PWT.

Using the computed markers and the input image, a set of cost images is computed

which is an interim step that enables the algorithm to efficiently compute the image

watershed from the initial markers. The number of cost images is equal to the number

of markers, i.e., one cost image for each marker. Cost images are computed using

the probability distribution, F = {fk}k∈[1,K], which define the stochastic relation

between each pixel and the best segmentation label for the pixel. Depending on the
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application, probability distributions can be either manually provided by the user or

automatically calculated from the set of markers and input image data. The number

of probability distributions is equal to the number of markers, i.e., one distribution for

each marker. Each probability distribution has only one maximum at the associated

marker and monotonically decreasing elsewhere with respect to the marker. A cost

image is generated for each probability distribution such that it has local minimum

at the associated marker location and subsequently assigning non-marker pixels to

have monotonically increasing costs with respect to the marker. The watershed is

then computed by growing the markers into adjacent non-marker pixels with lowest

cost first. This growth strategy selects the pixel with lowest cost, with respect to the

starting markers, from the set of pixels adjacent to the image markers and merges it

into its adjacent marker.

The PWT is computed by a carefully orchestrated sequence of mathematical con-

structions. The first of which is to define multiple cost functions, one for each marker,

where each cost function attributes the cost for traversing the path edge that con-

nects two spatially adjacent pixels with respect to the marker. Let (xi,xj) denote two

neighboring (adjacent) pixels in the image such that xi belongs to the marker with

labelk, Mk, for distribution function fk. The cost of traversing the edge connecting

xi to xj is defined in equation (51).
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costk(xi,xj) =



fk(ŷ(xi))− fk(xi) fk(xi) < fk(xj)

fk(ŷ(xj))− fk(xj) fk(xi) > fk(xj)

fk(ŷ(xi))−fk(xi)+fk(ŷ(xj))−fk(xj)

2
fk(xi) = fk(xj)

(51)

Note that the cost definition (51) with respect to label k takes the point from of

the pair (xi,xj) that has the minimum probability and uses the probability difference

between that point and its “downhill” neighbor as the cost. This definition guarantees

that the least-cost path in the cost image from a non-marker pixel position to a

position on a given marker boundary corresponds to the path of fastest descent in

the topographic relief as described in equation (50). Averaging occurs when the

probability at these points are equal. The cost between two neighboring pixels is

equal at least to the difference between their probability values or higher. The least

cost of traversing the edge connecting xi to xj, i.e., costk(xi,xj) = fk(xj) − fk(xi),

is obtained only when xj is the “downhill” neighboring pixel of xi, i.e., xj = ŷ(xi).

This definition for the cost allows for a least-cost path to be computed which, due to

the properties of (51), generate a path corresponds to the path of fastest descent in

the cost image for marker Mk and this is desired.

Cost in PWT focuses merely on the change in the probability values (also referred

to as the topographic height/altitude) and the cost between neighboring pixels is

referred to as the topographic distance. This analogy is then extended to include

multiple transitions between adjacent pixels to construct a path. The path between

two image positions xi and xj is represented as a sequence of L image positions
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referred to as π(x1,xL) = {x1,x2, . . . ,xL} where the positions have been re-indexed

in the order suggested by the path sequence. The topographic distance of the path

π with respect to label k is referred to as TDπ
k (x1,xL) which is defined in equation

(52).

TDπ
k (x1,xL) =

L−1∑
i=1

costk(xi,xi+1) (52)

For each non-marker pixel there will exist a very large number of paths between

that pixel and the markers of the image. Yet, each pixel will have at least one path

of fastest descent within the cost image. This path may be computed by following

the cost image gradient with respect to label k, i.e., let x1 denote the non-marker

start pixel and subsequently select xi+1 using the recurrence relation xi+1 = ŷk(xi)

as defined in equation (50) until a marker pixel is reached, at which point we define

the marker pixel to have path index L. This path is referred to as the geodesic of the

topographic distance function between the points x1 and xL with respect to label k

and the topographic distance of this path is denoted TDk(x1,xL) as it is a shortest-

path criterion using the topographic distance as a metric as shown in equation (53).

TDk(x1,xL) = min
π∈Ω(x1,xL)

TDπ
k (x1,xL) (53)

where Ω(x1,xL) is the set of all paths from x1 to xL. As proven in section (7.1.2),

the paths of the fastest descent are the geodesics of the topographic distance functions

and they are the paths of minimal cost.

To compute the PWT catchment basins, a unique catchment basin CB(Mk) is
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created for each marker Mk, the catchment basins are computed according to the

following definition of the PWT:

Definition: Let {(f,m)k}k∈[1,K] be a set of probability functions with their regional

maxima where K is the number of catchment basins. fk has a single regional maxi-

mum mk and it is defined in the domain D. fk is strictly decreasing from its regional

maximum. Each regional maximum mi has a catchment basin denoted by CB(mi).

CB(mi) is the set of points that are topographically closer to mi than any other

regional maximum mj:

CB(mi) = {x|−fi(mi) + TDi(x,mi) ≤ −fj(mj) + TDj(x,mj))
∀j 6=i,j∈[1,K]

} (54)

Watershed, denoted Wshed, of F = {fk}k∈[1,K] is the set of image points that do

not belong to any catchment basin:

Wshed(F ) = D ∩

 ⋃
∀i∈[1,K]

CB(mi)

C (55)

Let W be a distinguish value that does not belong to K, i.e. W /∈ K and label

watershed. Then, probability watershed transform of set F is a mapping Label : D→

K ∪ {W}, such that:

Label(x) =


i if x ∈ CB(mi)

W if x ∈ Wshed(F )

(56)

So, PWT assigns unique labels to the points belong to different catchment basins

and assigns a distinguish label W to the points of watershed for set F .



162

In order to define the computational steps of PWT algorithm, let {(f,M)k}k∈[1,K],

D, and BG be the set of cost images associated with their markers, process data,

and background sets, respectively. The provided PWT algorithm combines geodesic

reconstruction with PWT calculations to improve the efficiency. The computation

steps are as follows:

1. Initialization: Each marker Mi is assigned a unique label i. All markers points

are grouped into subset S and all data points in D are grouped into subset S.

An empty set WS is created, i.e. WS = {∅}, to store watershed points. BG

holds the background points.

2. Select the point x ∈ S for which

fk(x)
y∈S,x∈S,x∈NG(y)

= max fl(z)
v∈S, z∈S, z∈NG(v)

(57)

where k and l are the labels assigned earlier to points y and v, respectively.

Point x is assigned label k and removed from S : S = S\{x} and added to

S : S = S ∪ {x}. Then, go to Step 3. If x is not found do: BG = BG ∪ S,

END.

3. For each neighbor z of x belonging to S , i.e. z ∈ NG(x), z ∈ S; if Label(z) 6=

Label(x) do: Label(x) = WATERSHED, remove x from S : S = S\{x}, and

add x to WS : WS = WS ∪ {x}. If S is empty, i.e. S = {∅}, END; else go to

Step 4.

4. For each neighbor z of x belonging to S with x belonging to S, i.e. z ∈

NG(x), z ∈ S, x ∈ S; If fk(z) >fk(x) do: fk(z) =fk(x). Return to Step 2.
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Figure 63: Illustration picture of 2D image with three regional minima {m1,m2,m3}.
Each regional minimum mi is assigned a distinguish label i and its points are labeled
with the same label. The minima points are grouped into set S, colored pink, and all
other points are grouped into set S, colored blue.

Figure 64: Illustration picture of 2D image shows the selected point x, in yellow, that
satisfies equation (57). Point x is assigned label 3 since point y belongs to regional
minimum m3.

The algorithm starts by assigning a unique label for each marker and label its points

with the same label. The markers points are grouped into set S and data points

in D are grouped into set S. Notice that no point in S is assigned a label. An

empty set WS is created to store watershed points, i.e. points with watershed label

WATERSHED. Background points are kept in BG, refer to step 1, see figure (63)

. Then, point x in set S which is a neighbor to point y in set S with the maximum

probability function value is selected, assigned the label of point y, removed from set

S, and added to set S, refer to step 2. The maximum probability function value is

selected. This step ensures the label expansion process is following the path of fastest

ascent by making each point x gets its label from the neighbor ŷk(x), see figure (64) .
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(a) (b)

Figure 65: Illustration picture of 2D image. (a) shows the 4-connected neighborhood
in thick borders of the selected point, x, in yellow, and the neighborhood points that
belong to set S, in dark pink. Point x has label 3 and one of its neighbors has label 2
so point x is a watershed point (b) shows point x as a watershed point, in gray, with
label W .

If point x is not found, i.e., the remaining points in S have no labeled neighbor belongs

to S, then, move the remaining points in S to BG because they are not connected to

any marker and stop running the algorithm. If all the neighbors of point x belonging

to S do not have the same label of point x, then, point x is assigned the watershed

label WATERSHED, removed from S, and added to WS, refer to step 3. This

step ensures the construction of watershed lines and not expanding their labels by

removing the watershed points from set S and store them in WS, see figure (65) . If

set S is empty the algorithm ends, otherwise, all the neighbors of point x belonging

to S with x belonging to S that have probability function values greater than the

probability function value at x get the probability function value at point x, refer

to step 4. This step is the implicit implementation of the transformation process to

make fk monotonically decreasing from its regional maximumMk by transforming all

other maxima of fk into non-regional maxima plateaus. The algorithm keeps running

until all the points in set S are removed, see figure (66) .
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Figure 66: Illustration picture of 2D image shows the final result of PWT algorithm.
The different catchment basins are separated by watershed lines. Watershed lines are
labeled by W and colored gray.

PWT algorithm utilizes a set of probability functions which can encode semantic

information about the objects. PWT algorithm does not require the original image

to be modified to process, therefore, there is no loss in image information. PWT

algorithm assigns labels to data points that are connected to markers only and do

not process background points so an object label will not be expanded to an object

that is not connected to it and background region will not be expanded to objects.

The PWT algorithm addresses the issue of the dependency on prior information by

using probability distributions which define the stochastic relation between each pixel

and the best segmentation label for the pixel. The PWT also resolves the issues of

considering only the intensity for one cost function and the loss of image information

by modifying the watershed transform to utilize a set of probability distributions.

The modification was successful in introducing multiple cost images which encode

the stochastic dependence between the properties of each pixel in the image and the

properties of each catchment basin. Also, the algorithm avoided the loss of image

information by eliminating the need of imposing minima prior the watershed com-

putation. The introduction of the background set makes the algorithm avoids the
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(a) (b)

Figure 67: Illustration picture for queue and ordered queue. (a) A queue (FIFO) token
are inserted from top and removed from the bottom where each token represents and
image data point and carries the its coordinate information. (b) An ordered queue
of N -Level so the number of queues is N , all queues are open from the top but, only
the queue with the highest priority level available can be emptied.

need to mark every background area in the image and processing them. Also, the

background set will improve the PWT speed and accuracy. The speed is improved

because the background pixels are not processed in the algorithm so the number of

pixels that are going to be processed by PWT algorithm in the image is reduced. The

accuracy is improved because the probability of wrong expansion of the background

labels to the object of interest is reduced by not processing the background pixels.

7.2 PWT Algorithm With Ordered Queue

PWT algorithm is implemented using an ordered queue where the probability dis-

tributions determine the order in which the points are processed at in ordered queue.

Ordered queues are very efficient structures for fast computation of morphological

transformations, for example, watershed transform and geodesic reconstruction. An

ordered queue is a set of queues, a queue is a First In First Out (FIFO) buffer that

contains tokens and they are removed in the same order they were added, see figure

(67a) . Each token represents an image data point, e.g. a pixel, and it carries two
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information: the coordinate information of the point, i.e., (x, y, z), and catchment

basin information associated with the token.

Ordered queue is a collection of queues with different priority levels. The number of

queues equals to the number of possible priority levels that may exist in an application.

Each queue has a single unique priority level. All queues are open at their top and a

token can be added to the corresponding priority queue at any time. Only the queue

with the highest priority level available at the moment of processing can be emptied

and cleared. The removed token from the queue is the one that has been added to

it first, see figure (67b). The process of the ordered queue starts by emptying the

highest priority queue. Once the queue of the highest priority is empty, it is removed

from the ordered queue and the process starts emptying the next queue until all

queues are removed. Once a queue is removed it cannot be created again and a low

priority queue cannot be processed before all the higher priority queues are emptied

and removed.

The PWT algorithm is implemented using an ordered queue. The ordered queue

is initialized by adding the outer boundary points of the markers. For each marker

Mk, the process points with at least a neighbor inside Mk are added to the ordered

queue. Points are added to the ordered queue according to their priorities. The token

at the highest priority queue is removed. Let x be the point corresponds to the token

coordinate information and k be the label of the catchment basin associated with

the token. If point x is already assigned a label then it is ignored. Otherwise, if

the neighborhood of point x contains only points with label k or WATERSHED,

point x is assigned label k, if not, it is assigned label WATERSHED. If point x
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is assigned label k , then, each neighbor process point y of x which is not labeled

is added to the ordered queue with priority fk(y) if fk(y) < fk(x) , otherwise, with

priority fk(x). The ordered queue process continues until all queues are emptied and

removed.

The implementation of PWT algorithm with ordered queue has many advantages

which are: (1) It marks the watershed line, (2) The queues contains only the borders

of the growing regions so it needs less memory, (3) Watershed line never expands

and has always a width of 1 point, and (4) Watershed line is contiguous using the

opposite connectivity of the one used in the PWT algorithm, for example, in 2D

images, watershed line is 8-connected when the algorithm runs using 4-connected, see

figure (66), and 4-connected if the algorithm runs using 8-connected.

7.3 Segmenting Bone Fragments Using the PWT Algorithm

The bone fragment segmentation algorithm follows steps of the PWT algorithm to

extract bone fragments within CT images. The algorithm starts by classifying image

pixels into three classes: (1) cortical bone tissue, (2) non-cortical bone tissue, and

(3) non-bone tissue. The classification process is simplistic as it is needed only to

differentiate bone tissue from objects other than soft tissue which, in typical bone

fracture CT data, is typically only open air. For this reason the segmentation ap-

proach classifies the pixels of the image into three categories: (1) cortical pixels, (2)

non-cortical pixels, and (3) non-bone tissue pixels. These regions are estimated using

a global threshold with two threshold values: (1) cortex Tcortex and (2) bone Tbone.

These values are estimated using a prior distribution for bone tissue, p(wbone), in CT
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Figure 68: The prior bone distribution that is used to estimate the bone area in a CT
image. (a) An original CT image where bone area, denoted by B, and non-bone area,
denoted by N, are manually segmented. The CT values in the image are represented
12-bit numbers range from -2048 to 2047. (b) The histogram of pixel intensities for
the segmented bone and non-bone areas. (c) The Gaussian distributions for bone
prior, and non-bone prior. For the bone prior distribution, the Gaussian function
has a mean = 692 HU with a standard deviation = 146HU. For the non-bone prior
distribution, the Gaussian function has a mean = -212 HU with a standard deviation
= 375HU.

images.

The prior distribution is specified as a function of intensity. Figure (68) shows

the generated prior distribution for bone tissue as well as a prior distribution for

non-bone tissue. The prior distributions are generated using a known profile for CT

intensities for bone tissues within the human body to determine the likelihood that a

pixel from a CT image is a pixel coming from bone tissue. The prior distributions are

approximated by two Gaussian functions. One is the prior for bone tissue centered

at the average of intensities for bone pixels and the second is the prior for non-bone

tissue centered at the average of intensities for non-bone tissue pixels. The centers

for bone tissue pixels and non-bone tissue pixels are found to be 692HU and -212HU,

respectively. These findings support the CT values reported for bone tissue and soft

tissue for all human found in [30]. To generate the prior distributions, each CT image

is manually segmented by a user to extract two regions: bone region and non-bone
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region. Bone region is a set of pixels that a user is certain they correspond to a

bone, see figure (68 a). Non-bone region is a set of pixels that a user is certain they

do not correspond to a bone and they have relatively high intensities compared to

other non-bone areas, see figure (68 a). The histogram distribution of pixel intensities

is computed for each region. Then, a Gaussian distribution is fit to the computed

histogram distribution for each region such that the mean is set to the average inten-

sity in the region and the variance is set to the variance of intensities in the region.

The Gaussian distribution that is generated for bone region is referred as bone prior,

p(wbone). While the Gaussian distribution generated for non-bone region is referred

to as non-bone prior. In this work, these Gaussian distribution are applied to human

bone across all genders types and ages. To generate a Gaussian distribution for a

specific type, CT images for that type should be used in the generation process of

prior distributions.

The classification process is accomplished by two stages of classification: (1) classify

bone and non-bone tissue and then (2) sub-dividing the group of classified bone tissue

into cortical bone tissue and non-cortical bone tissue. Classification (cortical bone

/non-cortical bone) is likely to minimize Type 1 errors given the distribution p(wbone).

Classification (bone/non-bone) is likely to minimize Type 2 errors given p(wbone).

Minimizing Type 1 and Type 2 errors involves threshold segmentations, with Tcortex

and Tbone thresholds, determined by multiplying p(wbone) by a constant and then

finding regions where the distribution is > or < some chosen power or significance

level. For minimizing Type 1, the constant that multiplies p(wbone) is expected to be

< 1 shifting Tcortex threshold to higher probabilities of p(wbone). For minimizing Type
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2, the constant is expected to be > 1 shifting Tbone threshold in opposite direction.

How far the constant deviates from 1 determines how conservative (classification (1))

or how liberal (classification (2)) the classification is. The significance of classification

(1) should be small. The power of classification (2) should be as high as possible.

Pixels marked as candidate-bone tissue are given bone fragment class labels using

the PWT algorithm. The PWT algorithm uses a collection of probability models for

computing bone fragment class labels. These models are separated into two tiers.

The first tier of the model computes the likelihood of a bone fragment class, wfragk ,

for all bone pixels. The second tier of the model estimates the geometric context of

the pixel of consideration and represents the likelihood that a pixel is located in an

“isthmus” of bone tissue, refer to section (3.2.4).

Fragment likelihood is constructed as a product of two independent distributions:

(1) a fragment tissue probability which expresses the likelihood the observed intensity

comes from the kth fragment and (2) a fragment position probability which expresses

the likelihood the observed pixel position is a position in the kth fragment. The

product of the two represents the joint likelihood of the kth fragment class given

a pixel at position x with intensity I(x). Fragment tissue probability is a Laplace

distribution with a mean set by the mean intensity of all pixels within a specified

distance of the marker region for the fragment. Fragment position probability is

a discrete distribution obtained by computing the distances between each fragment

cortical pixels, denoted byMk, and the pixel of consideration, x, where the probability

of the kth fragment class is taken as its percentage of the total of these distances.

Context likelihood is a discrete distribution obtained by computing the distance
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(a) (b)

Figure 69: An example to demonstrate the capability of context likelihood in reducing
the leak problem, i.e., incorrectly label some parts of a bone fragment with labels of
other nearby fragments due to the loss of clear edge information specially in close
proximity areas. The segmentation is applied to segment tibia (green), fibula (red)
and talus (purple) bones of an ankle. (a) Segmentation result without the use of
context likelihood, some parts of fibula and talus are wrongly labeled as tibia. (b)
Segmentation result using the context likelihood.

between the edge of bone area and the pixel of consideration, x, where the probability

of the kth fragment class is taken as its percentage of the pre-specified minimum

expected depth of fragment of interest, Tdepth. This percentage is useful to specify

fragment class probability for pixels located in an “isthmus” of bone tissue. A pixel is

assumed to be located inside “isthmus” of bone tissue if it is distance to the edge of

bone area is less than Tdepth. Context likelihood is used to enhance the segmentation

result and reduce the leak problem through “isthmus” bone areas. Figure (69) shows

an example of segmentation results with and without the use of context likelihood.

Context likelihood helps in reducing the leak problem between bone fragments.

Fragment likelihood and context likelihood are combined to form a collection of

probability distributions for the PWT algorithm, one for each bone fragment, fk.

Each probability distribution has only one maximum at the location of its corre-

sponding marker and monotonically decreasing elsewhere with respect to the marker.

The cost images are generated by negating these probability distributions. So the
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minima of the cost images are located at the maxima of probability distributions.

The PWT computes the geodesics across the probability distributions such that the

total cost of the path from a pixel to the associated marker has maximum probability.

The algorithm propagates classification decisions from area of high confidence, i.e.,

markers of cortical bone areas, to areas of lower confidence, i.e., non cortical bone

areas.

The bone fragment segmentation algorithm takes as input a CT image of the limb

(I) and a set of user settings. The output of this algorithm is a labeled image where

each unique label corresponds to a unique bone fragment.

7.3.1 Image Pixel Classification

Image pixels classification is the first step in bone fragment segmentation algorithm.

This step takes two inputs: (1) the CT image I, and (3) the size threshold Tsize. The

outputs of this step are three: (1) a set of markers, M, (2) the set of non-cortical

bone pixels, D, and (3) the set of background pixels, BG. This is accomplished by

two stages of classification: (1) classify bone and non-bone (background) tissue and

then (2) sub-dividing the group of classified bone tissue into cortical bone tissue and

non-cortical bone tissue.

In the first classification stage, the algorithm uses a global threshold method to

classify image pixels into one of two classes: (1) bone pixels and (2) background

pixels. A pixel is considered a bone pixel if it has an intensity that is equal to the

bone threshold, Tbone, or higher, i.e., Xbone = {x|I(x) ≥ Tbone} where I(x) is the image

intensity for pixel x. Otherwise, it is considered a background pixel, i.e., BG = Xbone,
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(a) (b)

Figure 70: Non marker pixel classification, (a) original image, (b) the PWT data
sets: markers area M is highlighted in yellow, bone data area D in green and blue,
and background area BG in gray. The image is generated using Tcx = 600HU and
Tbone = 90HU.

see figure (70) .

The bone threshold Tbone is determined using the prior distribution for bone tissue,

p(wbone). The value of Tbone is specified by finding the intersection point between

bone prior distribution and non-bone prior distribution. In order to minimize Type

2, p(wbone) is multiplied by a constant that is > 1 to shift the threshold to lower prob-

abilities of p(wbone). In this work, the constant is set to 100 so that the intersection

point is approximated to 180HU which is the bone threshold, i.e., Tbone= 140. Users

may change the constant value as appropriate to fit the imaging devices used in their

application.

In the second classification stage, the algorithm uses a global threshold method

to classify bone pixels Xbone into one of two classes: (1) cortical bone pixels and

(2) non cortical bone pixels. A pixel is considered a cortical bone pixel if it has an

intensity that is equal to the cortical bone threshold, Tcortex, or higher, i.e., Xcortex =

{x|I(x) ≥ Tcortex,x ∈ Xbone}. Otherwise, it is considered a non cortical bone pixel,

i.e., D = Xbone ∩Xcortex.

The cortical bone threshold Tcortex is determined using the prior distribution for
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bone tissue, p(wbone). The value of Tcortex is specified by finding the intersection

point between bone prior distribution and non-bone prior distribution. In order to

minimize Type 1, p(wbone) is multiplied by a constant that is < 1 to shift the threshold

to higher probabilities of p(wbone). In this work, the constant is set to 0.05 so that the

intersection point is approximated to 600HU which is the cortical bone threshold, i.e.,

Tcortex= 600. Users may change the constant value as appropriate to fit the imaging

devices used in their application.

The set of cortex pixels Xcortex is decomposed into disjoint union, i.e., Xcortex =⋃
iMi, where Mi is a connected component. These connected components are in-

tended to be a coarse labeling of the final segmented image. This is based on the

assumption that bone fragments are distinguished by their cortical bone tissue. So

that each of these connected components is called a marker and approximate the

location of a bone fragment in the image. Each marker will ultimately define a dis-

tinct PWT region having a unique label. So, the number of provided markers is the

estimated number of bone fragments in the image.

Markers which have a size greater than or equal to the maximum size of a false

positive marker Tsize are added to from a marker set called M, i.e., M = {Mi, |Mi|) ≥

Tsize,Mi ∈ Xcortex} where |Mi| is the number of pixels in Mi. This process filters out

false markers due to noise or markers that correspond to bone fragments of insignif-

icance. Markers with size less than Tsize are added to the set of non-cortical bone

pixels, i.e.,D = D∪{Mi, |Mi|) < Tsize,Mi ∈ Xcortex}. The set M = {M1,M2, ...,MK}

includes connected components which mark the unknown bone fragments in the CT

image I, where K is the number of the detected markers.
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7.3.2 Probability Distributions Computation

Probability distributions computation is the second step of the bone fragment seg-

mentation algorithm. This step takes three inputs: (1) the CT image I, (2) the set of

markers M, (3) the set of bone pixels D, (4) the set of background pixels BG, and (5)

the depth threshold Tdepth. The output of this step is a set of probability distributions

that define the stochastic relationship between the properties of each bone pixel and

the properties of each of the provided markers. For the bone fragment segmentation

problem, a probability distribution fk(x) determines how likely a pixel x comes from

the kth bone fragment which has class wk. Probability distributions computation is

based on the joint probability of two independent likelihood models: (1) fragment-

based probability model and (2) context-based probability model. Fragment-based

probability model is a unique likelihood distribution that is based on intensity and

position information of the image pixels in order to increase the algorithm robustness

to image inhomogeneities. This model is the basic model to compute probability

distributions to segment bone fragments. Context-based probability model is the

likelihood that a bone pixel has an ”isthmus”/non-”isthmus” bone area property. This

model is an enhancement to the basic model to cope with the leak problem that may

occur through narrow bone areas. Probability distributions computation consists of

three stages:

1. Fragment-based probability computation,

2. Context-based probability computation,
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3. PWT probability distributions computation.

At the end of these stages, the algorithm computes the probability distributions that

are needed to segment bone fragments from the CT image using the PWT algorithm.

7.3.2.1 Fragment-Based Probability Computation

Fragment-based probability computation is the first stage of probability distribu-

tion computation. In this stage, the algorithm takes three inputs: (1) the CT image,

(2) the set of markers M, and (3) the set of non-cortical bone data D. The out of this

stage is the likelihood of bone fragment class k, denoted by wfragk , given the position

x , the intensity I(x), the kth marker, i.e., Mk, and the set of marker regions M. This

likelihood is referred to as fragment probability. The fragment probability is based

on the product of two likelihoods: (1) position-based likelihood and (2) intensity-

based likelihood. The position-based and intensity-based likelihoods are assumed to

be conditionally independent. The fragment probability distribution is computed in

equation (58):

p(wfragk |I(x),x, k,M) =
p(wfragk |I(x), k,M) p(wfragk |x, k,M)

p(I(x),x,M)
(58)

where p(wfragk |I(x),x, k,M) is the fragment probability. p(wfragk |I(x), k,M) is the

intensity-based likelihood that determines the probability of wfragk given I(x), the kth

marker, and the set of markers M. p(wfragk |x, k,M) is the position-based likelihood

that determines the probability of wfragk given x, the kth marker, and the set of

markers M. p(I(x),x,M) is a normalization factor. Probability is computed for

bone pixels only, i.e., x ∈ D. The computation of probability distribution is based on



178

Figure 71: An example of how to compute the position likelihood for pixel x given
the first marker and the set of markers M = {M1,M2,M3}. p(x|”1”,M) is the
ratio of the reciprocal of the distance between point x and marker M1 to the sum of
the reciprocals of the individual distances between point x and all markers, refer to
equation (59).

spatial and intensity information that are obtained from inside the image to reduce

heterogeneity. Intensity distribution inside the bone region may vary significantly

from one dataset to another depending on the parameters of acquisition, the imaged

body part, and the nature of the bone tissue for a patient.

The position-based likelihood, p(wfragk |x, k,M), is the likelihood of wfragk given the

position x, the kth marker, and the set of markers M. The position-based likelihood,

p(wfragk |x, k,M), is computed as the ratio of the reciprocal of the distance between

point x and marker Mk for the kth bone fragment to the sum of the reciprocals

of the individual distances between point x and all markers. The computation of

p(wfragk |x, k,M) is shown in equation (59).

p(wfragk |x, k,M) =

1
dist(x,Mk)

K∑
i=1

1
dist(x,Mi)

(59)

where dist(x,Mi) is the shortest Euclidean distance between pixel x and marker Mi,

see figure (71) . dist(x,Mi) is defined in equation (60):

dist(x,M i) = min
∀xj∈Mi

{||x−xj||} (60)
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where ‖·‖is the Euclidean distance. The computation of the position likelihood is

based on the assumption that a bone pixel is most likely part of the bone fragment

region which has the closest cortical pixels to that bone pixel. This assumption is

based on the fact that bone structures are continuous, smooth and mostly covered

by cortical tissue. Cortical tissue is represented by pixels with high intensity values

in a CT image. These pixels are estimated in a CT image to create markers for bone

fragment regions, refer to section (7.3.1). The spatial distance between a pixel and

a marker reflects how close the pixel is to cortical pixels of the corresponding bone

fragment. The position-based likelihood is considered a shape based probability for

a bone fragment class.

Intensity-based likelihood, p(wfragk |I(x), k,M), is the likelihood of wfragk given the

image intensity I(x), the kth marker, and the set of markers M. The intensity-based

likelihood, p(wfragk |I(x), k,M), is computed in equation (61).

p(wfragk |I(x), k,M) =
1

2
exp(−|I(x)− µk(x)|) (61)

where µk(x) is the location parameter of the Laplace distribution. The computation of

intensity likelihood is based on the assumption that bone structures typically exhibit

an exponential decaying of intensity in CT images from their cortex. So that, Laplace

distribution provides a convenient way to model exponential distributions. Laplace

distribution has relatively large values around µk(x), i.e., |I(x) − µk(x)| ≈ 0, and

has relatively small values for intermediate and large values of |I(x) − µk(x)|. The

intensity-based likelihood is considered a tissue properties based probability for a

bone fragment class.
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The location parameter of the Laplace distribution µk(x) represents the expected

intensity at point x due to the existence of markerMk. µk(x) is computed in equation

(62):

µk(x) =
1

|LS(d)|
∑

xi∈LS(d)

I(xi) (62)

where d is the distance between pixel x and the kth marker Mk, i.e., d = dist(x,Mk).

LS(d) is the set of all pixels in the bone region that satisfy dist(xi,M)−d = 0. LS(d)

is computed as in equation (63).

LS(d) = {xi|dist(xi,M)− d = 0,∀xi ∈ D} (63)

The distance between a pixel xi and the set of markers M, i.e., dist(xi,M), is calcu-

lated in equation (64):

dist(xi,M) = min
∀xj∈M

||xi−xj|| (64)

where ‖·‖is the Euclidean distance. The computation of µk(x) is based on the as-

sumption that the intensity values follow similar decaying curves as pixels move away

from markers for different parts of the image, so that bone pixels that have the same

distance to the markers set are expected to have the same intensity value, see figure

(72) . This assumption is based on the fact that bones exhibit smooth structural

changes and will have similar structure in CT scans which usually image small areas

of the body.

The normalization factor, p(I(x),x,M), ensures that the likelihood probability in

the left-hand side of equation (58) is a valid probability which sums over all possible
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Figure 72: An illustration picture to show the equal distance lines from markers.
Along each line, pixels are assumed to have the same intensity value.

hypotheses to one. This normalization factor is computed in equation (65):

p(I(x),x,M) =

K∑
k=1

p(wfragk |I(x), k,M) p(wfragk |x, k,M) (65)

where K is the number of markers. The normalization factor is the sum of all like-

lihood multiplications for all bone fragment classes. Once the intensity-based like-

lihood, position-based likelihood, and the normalization factor are computed, the

fragment probability is computed according to equation (58).

7.3.2.2 Context-Based Probability Computation

Context-based probability computation is the second stage of probability distri-

bution computation. This stage takes three inputs: (1) the set of non-cortical bone

pixels D, (2) the set of background pixels BG, (3) the set of markers M, and (4)

the depth threshold Tdepth. There are two outputs of this stage: (1) non-“isthmus”

context likelihood and (2) non-”isthmus” likelihood. These likelihoods are used to

enhance the segmentation results for bone fragments within CT images.

The non-“isthmus” context likelihood measures how likely the geometric shape

around pixel x assembles a non-“isthmus” bone area. The algorithm computes this

likelihood by the percentage of the distance between a pixel and the edge of bone



182

area to the cut-off distance Tdepth. The non-“isthmus” context likelihood is computed

in equation (66):

p(cNIS |x) =


1, DT (x) ≥ Tdepth

DT (x)
Tdepth

, otherwise

(66)

where p(cNIS|x) is the non-“isthmus” context likelihood given x, while, DT (x) is the

pixel distance from the boundary of the bone region and Tdepth is the depth threshold.

Tdepth is set according to the expected minimum width of a bone fragment of interest

for the user. The computation of p(cNIS|x) probability is based on the assumption

that pixels located in ”isthmus” areas are very close to the boundary of the bone

region because these areas have a small depth. So, the further a pixel is from the

boundary of the bone region the lower its probability to assemble an”isthmus” bone

area shape.

The non-”isthmus” likelihood defines how likely a bone pixel is located outside an

”isthmus” bone area. The non-”isthmus” likelihood is computed in equation (67).

p(wNIS |x) =


1, DT (x) ≥ Tdepth

0, otherwise

(67)

where p(wNIS|x) is the non-“isthmus” likelihood given x. The algorithm computes

the non-”isthmus” likelihood as a binary value based on the distance of the pixel from

the boundary of bone region. The algorithm uses Tdepth as a cut-off value to assume

whether the pixel x is located inside or outside an “isthmus” bone area.

The boundary of a bone region is determined by a collection of pixels which have

at least a neighbor pixel that belongs to the background. The boundary of a bone
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region, denoted as BBR, is computed in equation (68).

BBR = {x|x ∈ D, ∃(y ∈ NG(x),y ∈ BG)} (68)

where NG(x) is the set of pixels that are neighbors to pixel x.

The distance of a pixel from the boundary of a bone region is defined as the length

of the shortest path that connects a bone pixel to the boundary such that this path

does not include any marker pixel. Let x be a bone pixel and y be a boundary pixel,

i.e., x ∈ D and y ∈ BBR. Also, let π(x,y) = {x1,x2, . . . ,xl} denote a path with

length l that connects between x and y such that x1 = x, xl = y, and xi /∈M. Then,

the distance of bone pixel x from the boundary BBR is computed in equation (69):

DT (x) = min
∀y∈BBR

[
min

π∈Ω(x,y)
|π(x,y)|

]
(69)

where Ω(x,y) is the set of all paths from x to y and |π(x,y)| is the length of the

path which corresponds to the number of pixels along the path. The computation of

distances for bone pixels from the boundary of the bone region are performed using

the wavefront propagation algorithm for distance transform described in [62].

7.3.2.3 PWT Probability distributions computation

PWT Probability distributions computation is the third stage of probability com-

putation. In this stage, the algorithm takes three inputs: (1) fragment-based prob-

ability, (2) non-“isthmus” context likelihood, and (3) non-”isthmus” likelihood. The

output of this algorithm is a set of probability distributions {fk} that computes how

likely a bone fragment class wfragk given x. The PWT probability distributions are
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computed in equation (70):

fk(x) = p(wfragk |x) =
1

2

[
p(wNIS |x)(p(wfragk |I(x),x, k,M) + 1) + (1− p(wNIS |x))p(cNIS |x)

]
(70)

where fk(x) is the probability function associated with marker Mk for pixel x and

1
2
is a normalization factor. fk(x) is determined by the probability of whether bone

fragment class k is true at pixel x or not. The algorithm uses the p(wNIS|x) to

switch between fragment-based probability and non-”isthmus” context likelihood. If

the p(wNIS|x) of that pixel is 1, the pixel is assumed to be a non-”isthmus” pixel,

otherwise it is assumed an “isthmus” pixel. For a non-”isthmus” pixel, the algorithm

computes the PWT probability depending on the fragment probability only, because

the intensity value for this pixel is assumed to be reliable, i.e., assumed to have small

blurring noise. Adding1 to the fragment probability shifts the PWT probability

value at this pixel to the upper half of the probability range. For an “isthmus” pixel,

the algorithm computes the probability by depending on the non-“isthmus” context

likelihood only because p(wNIS|x) = 0 at this pixel. The multiplication by 1
2
in

equation (70) is a normalization factor to ensure that the PWT probability values

are between 0 and 1. According to equation (70), the probability value for a non-

”isthmus” pixel is between 0.5 and 1, while for an “isthmus” pixel, the probability

value is between 0 and 0.5, see figure (73) . This ensures that non-”isthmus” pixels

have higher probabilities than “isthmus” pixels.

7.3.3 Performing the PWT Algorithm

Performing the PWT algorithm is the fourth step of the bone fragment segmenta-

tion algorithm. This step takes four inputs: (1) the set of markers M, (2) the set of
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Figure 73: An illustration picture to show the mapping of fragment probability and
non-“isthmus” context likelihood to generate probability distributions for the PWT
algorithm. Fragment probability is mapped to the upper half of the probability range
while the non-“isthmus” context likelihood is mapped to the lower half.

bone pixels D, (3) the set of background pixels BG, and (4) the set of probability

distributions {fk}. The output of this step is a collection of labels, one for each bone

pixel. The collection of bone pixels that share the same label form a unique segment

which represents a unique bone fragment in the image, see figure (74).

The PWT algorithm is performed as described in section (7.1.4). The algorithm

starts by assigning a unique label for each marker and label its pixels with the same

label. Then, the labels of the markers are expanded into bone pixels according to

their probability distributions. Pixels with higher probability values are processed

before pixels with lower probability values. Once the PWT algorithm finishes its

operations, the collection of the labeled pixels represent the estimated bone fragments

in the image and the background set BG contains the pixels that do not belong to

any bone fragment.

The PWT algorithm assigns labels to none ”isthmus” pixels before assigning labels

to ”isthmus” pixels because none ”isthmus” pixels have higher probabilities. This

order of assignment reduces the expansion of any incorrect labels for pixels in the

narrow bone areas to none ”isthmus” pixels. For ”isthmus” pixels, the PWT algorithm
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(a) (b)

Figure 74: Bone fragment segmentation result using the PWT algorithm, (a) original
image, (b) segmentation results, each unique label is represented with a unique color.
The white area represents the background points in BG.

expands labels by adding an additional layer of pixels neighboring those already

labeled ones at each step, starting from the farthest pixels from the boundary of

the bone region since they have higher probabilities, refer to equation (70). This

order of assignment causes ”isthmus” pixels to be divided evenly between neighboring

segments.



CHAPTER 8: RESULTS OF BONE FRAGMENT SEGMENTATION
ALGORITHM

This chapter describes the methods used to quantitatively evaluate the bone frag-

ment segmentation algorithm and a detailed analysis of a select subset of segmenta-

tion results to better understand the strengths and weaknesses of this algorithm. The

quantitative evaluation is performed over 2D images and 3D images. For 2D images,

the quantitative evaluation is performed by comparing results from a collection of seg-

mentation algorithms, including results from the bone fragment segmentation, with

results established as the ground truth. Analysis proceeds by studying the geometric

properties of the segmentation boundaries and regions for a select group of interest-

ing images. For 3D images, the quantitative evaluation is performed by comparing

results from the bone fragment segmentation with results established as the ground

truth. The segmentation evaluation techniques described in [7, 63, 53, 20] are used

to evaluate the bone fragment segmentation using the PWT approach. These results

allow users to compare this approach with other leading segmentation methods.

The patient data that is used for segmentation performance analysis is provided by

[46]. The used data set includes three cases for tibia fractures where each case includes

an image of a broken limb and an image of an unbroken limb. These fracture cases

range from low energy fracture events such as 1.5 foot fall, to high energy fracture

events such as a 50 mph car accident. The images are 3D CT scans in DICOM format
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and 16-bit are used to express the CT numbers. Each volume contains of 81 to 302

contiguous axial slices with a slice thickness of 5mm. 2D images are generated by

selecting slices from the 3D scans from axial, sagittal, and coronal view perspectives to

represent normal and abnormal cases of intact and fractured shapes of bone fragments.

The proposed segmentation algorithm evaluation approach requires a definition of

a ground truth segmentation for each image. For 2D images, the ground truth seg-

mentation is generated by employing a human to manually segment each image. The

set of human generated segmentations were taken as a collection of 2D “ground truth”

examples. For 3D images, work in [46] extracted surfaces for tibia bone fragments for

the cases of the dataset by employing humans to manually segment each image using

a watershed segmentation tool. The set of the generated surfaces were taken as a

collection of 3D “ground truth” examples. Evaluation is accomplished by comparing

the segmentations produced by automatic algorithms with each of the “ground truth”

examples.

A set of ten metrics serve to score the difference between two segmentations of

a given image. These metrics measure the difference between two segmentations as

a function of the segmented region boundaries or the contents of the segmented re-

gions. The metrics are applied by choosing an image and ground truth segmentation

of that image, then comparing segmentations generated by automatic algorithms with

the ground truth segmentation. Using this comparison strategy, the bone fragment

segmentation algorithm was ranked with respect to other leading segmentation algo-

rithms using the same metrics.
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8.1 Methodology for Evaluation

The evaluation for the proposed bone fragment segmentation using the PWT algo-

rithm uses ten evaluation metrics taken from [7, 63, 53, 20] to compare segmentations

generated with the ground truth examples. One of these metrics measures the seg-

mentation difference by comparing the boundaries of the two segmentations using a

boundary difference score. The other nine metrics measure the segmentation differ-

ence by comparing regions of two segmentations using nine distinct approaches for

measuring the difference between two regions. Rather than selecting one of these met-

rics, we present results for all four to develop insights on the strengths and weaknesses

of the bone fragment segmentation algorithm which are analyzed in detail afterward.

8.1.1 Experimental Setup for Comparative Evaluations

Comparative evaluations experiments were conducted to evaluate the performance

of the bone fragment segmentation algorithm on 2D images and 3D images. For 2D

images, the experiment compares the performance of the proposed bone fragment

segmentation algorithm with other segmentation algorithms. While for 3D images,

the experiment computes the evaluation metric that measures the segmentation dif-

ference with the ground truth examples by comparing the boundaries of two segments

using a boundary difference score.

For 2D images, the experiment compares the bone fragment segmentation algo-

rithm using the PWT algorithm, referred to as the PWT algorithm for abbreviation,

with five segmentation algorithms: (1) Level set, [42], (2) Active contours, [100], (3)

Region, [43], (4) Threshold, [58], and (5) Watershed, [50]. The implementations to
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generate segmentations for the level set, active contours and region algorithms were

provided by the work in [42], [100], and [43] respectively. The implementation for

each of these algorithms takes as input a 2D image and provides as output closed

contours for the segmented regions where each enclosed region represents a unique

segment. The implementations to generate segmentations for threshold and water-

shed algorithms were provided by MATLAB software. For the threshold algorithm,

the implementation takes as input a 2D image and provides as output a set of disjoint

regions where each region represents a unique segment. For the watershed algorithm,

the implementation takes two inputs a 2D image to be segmented and a marker im-

age. The marker image specifies estimated locations for bone fragment segments.

To compare fairly with other segmentation algorithms, a 2D image that contains

the bone region estimated by the PWT algorithm was provided as input for other

segmentation algorithms to generate their best result. Furthermore, the estimated

locations for bone fragment segments by the PWT algorithm are provided as markers

to the watershed algorithm. If multiple segments were generated by a segmentation

algorithm for a single ground truth segment, i.e., oversegmentation, these segments

are combined to simplify the computation of metrics and to measure the maximum

region that a segmentation algorithm is able to segment regardless of the number of

generated segments.

For 3D images, the experiment compares segmentations for the PWT algorithm

with the ground truth examples provided by the work in [46]. The ground truth ex-

amples are surfaces for tibia fragments generated by triangulating segments that have

been manually generated by a human. The comparison process generates surfaces for
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the segments generated by the PWT algorithm. Then, it computes the evaluation

metric that measures the segmentation difference by comparing the boundaries of the

two surfaces using a boundary difference score.

8.1.2 Compute Evaluation Metrics

The performance analysis uses ten metrics proposed in [7, 63, 53, 20] to evaluate how

well the PWT algorithm performs relative to the ground truth examples. Each metric

can be seen as an adaptation of a similar metric used to evaluate the performance

of image segmentation algorithms. All the metrics suffer from two shortcomings, the

values for each metric can be unstable when either segmentation contains too few

or too many segments[101]. There are two extreme situations in the segmentation

results: (1) the segmentation algorithm segments every pixel into a different segment,

(2) the segmentation algorithm segments the whole image into a single segment. In

these two circumstances, the values for each metric will not present the true quality

of the results.

Segmentation comparison metrics quantify differences between two segmentation

results. There are ten comparison metrics are used: (1) accuracy, (2) sensitivity, (3)

specificity, (4) overlap, (5) precision, (6) recall, (7) F1 score, (8) Hamming distance,

(9) region rank, and (10) cut discrepancy. These metrics are taken from [7, 63, 53, 20]

to compare segmentation results of an automated algorithm with ground truth seg-

mentation. The first nine metrics compare segmentations by measuring differences

between regions of two segmentations. While, the remaining metric compares seg-

mentations by measuring differences between boundaries of two segmentations. These
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metrics are used to evaluate how well a segmentation algorithm performs relative to

a ground truth segmentation.

8.1.2.1 Region Based Segmentation Comparison Metrics

Region based metrics measure the difference between two segmentation results by

comparing the regions of their segments. Region based metrics consists of nine met-

rics: (1) accuracy, (2) sensitivity, (3) specificity, (4) overlap, (5) precision, (6) recall,

(7) F1 score, (8) Hamming distance, and (9) region rank. These metrics compare

two segmentation regions point-wise according to points membership in two segmen-

tations of an image. Assume an image that represents objects and background is

segmented by two algorithms producing the segmentations S1 = {S1
1 , S

2
1 , ..., S

m
1 } and

S2 = {S1
2 , S

2
2 , ..., S

n
2 } with m and n segments, respectively, so that S2 is the ground

truth segmentation. Si1 denotes the ith segment region from segmentation S1 , and

Si2 is the ith segment region for S2. Using this notation, the region based metrics are

defined as follows.

Accuracy metric is the ratio of the shared points between two segmentations to the

total number of points in an image [7], i.e.:

Accuracy =

∑
i ||Si2 ∩ S

t(i)
1 ||

||S||
, (71)

where “ ∩ ” is the set intersection operator, ||X|| is the size of set X, and t(i)

is the index of the best corresponding segment in S1 for segment Si2, i.e., t(i) =

argk{max Si2 ∩ Sk2}. t(i) decides the index of the region from segmentation S1 which

has the largest overlap with region i from segmentation S2. ||S|| is a normalization
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factor to the metric and it denotes the size of the set S which represents the total area

of an image. Accuracy metric values have a range between 0 and 1, where 0 means

objects and background are completely not segmented while 1 means objects and

background are perfectly segmented. Accuracy metric, as defined in equation (71),

indicates how good a segmentation algorithm is in accurately segmenting both objects

and background. Accuracy metric provides a good evaluation for the performance

of a segmentation algorithm when objects and background areas have similar sizes.

However, accuracy metric has a shortcoming in cases where there is a big difference

between the sizes of objects and background. In such cases, measurements of large

areas are dominating so that measurements of small areas have a negligible effect on

the computed accuracy metric value. For example, if the size of objects is too small

compared to a background size, i.e., , then the accuracy metric is evaluated to:

lim∑
i6=b ||Si

2||→0
Accuracy =

||Sb2 ∩ S
t(b)
1 ||

||Sb2||
,

where b denotes the index of the background segment from segmentation S2. Sb2

denotes the background segment region from segmentation S2.
∑

i 6=b ||Si2|| is the total

size of segments for objects other than the background from segmentation S2. In

this case, the accuracy metric value is high if most of background pixels are labeled

correctly by a segmentation algorithm regardless of the correctness of other segments

of objects and this is not desired. This example occurs frequently in problems of seg-

menting bone fragments from CT images where bone fragments occupy small regions

compared to the background region.

Sensitivity and specificity are two metrics defined in order to overcome the afore-
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mentioned shortcoming of the accuracy metric by evaluating the segmentation of ob-

jects and background separately. Sensitivity metric is the ratio of the shared points

of object segments between two segmentations to the total number of points in object

regions in an image. Sensitivity metric is computed as:

Sensitivity =

∑
i 6=b ||Si2 ∩ S

t(i)
1 ||∑

i 6=b ||Si2||
, (72)

where b denotes the index of the background segment from segmentation S2. t(i)

decides the index of the region from segmentation S1 which has the largest overlap

with region i from segmentation S2.
∑

i 6=b ||Si2|| is the total size of segments for objects

other than the background from segmentation S2. From equation (72), sensitivity

metric is equivalent to the accuracy metric when the size of a background approaches

zero i.e. lim
||Sb

2||→0
Accurecy, where Sb2 Sb2 denotes the background segment region from

segmentation S2. Sensitivity metric values have a range between 0 and 1, where

0 means objects are completely not segmented while 1 means all points in object

regions from segmentation S2 are inside object segments from segmentation S1, i.e.,

ground truth segments from S2 are completely inside their corresponding segments

in S1. Sensitivity metric measures the performance of a segmentation algorithm on

extracting objects area without a background. A shortcoming of the sensitivity metric

is that high values do not indicate a good segmentation. High sensitivity metric values

occur when most points in object regions from ground truth segmentation S2 are

inside object segments from segmentation S1. Having most points in object regions

from segmentation S2 are inside object segments from segmentation S1 does not
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Figure 75: Classification result of two binary images A and B compared point-wise
with image A as a reference to represent the truth model of the object. Image B
represents an automatically segmented object that is larger than the truth model and
completely covers it, therefore, NFN = 0 and Recall = 1.

mean most points in object regions from segmentation S1 are inside object segments

from segmentation S2. For example, figure (75) shows a case where a segmentation

algorithm that has a leak problem in a background, i.e., incorrectly labels background

pixels as object pixels, generates a segment that is larger than its corresponding

ground truth segment while it covers completely the ground truth segment. In this

case, ||Si2 ∩ S
t(i)
1 || = ||Si2|| so that Sensitivity = 1. So, a high sensitivity metric value

is obtained for a bad segmentation and this not desirable.

Specificity metric is the ratio of the shared points of a background segment be-

tween two segmentations to the number of points in background region in an image.

Specificity metric is computed as:

Specificity =
||Sb2 ∩ S

t(b)
1 ||

||Sb2||
, (73)

where b denotes the index of the background segment from segmentation S2. t(b)

decides the index of the region from segmentation S1 which has the largest over-
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lap with background region b from segmentation S2. From equation (73), specificity

metric is equivalent to the accuracy metric when the size of objects approaches zero

i.e. lim∑
i 6=b ||Si

2||→0
Accurecy. Specificity metric values have a range between 0 and 1,

where 0 means the background is completely not segmented and 1 means it is per-

fectly segmented. Specificity metric measures the algorithm performance in extracting

background area without objects. In a case where small objects exist on a large back-

ground and a small part of background pixels are labeled as objects, the effect of

background errors is small on the specificity metric, while, incorrectly labeled pix-

els of background may have a considerable bad effect on the correctness of object

segments and this is not desirable.

Overlap metric is defined as the ratio of the shared points of object segments

between two segmentations to the number of points in the union of object segments

of the two segmentations. Overlap metric is computed as:

Overlap =

∑
i 6=b ||Si2 ∩ S

t(i)
1 ||∑

i 6=b ||Si2 ∪ S
t(i)
1 ||

, (74)

where b denotes the index of the background segment from segmentation S2. t(i)

decides the index of the region from segmentation S1 which has the largest overlap

with region i from segmentation S2. “ ∪ ” is the set union operator. Overlap metric

values have a range between 0 and 1, where 0 means objects are completely not seg-

mented and 1 means objects are perfectly segmented. The definition of overlap metric

overcomes the shortcoming of the sensitivity metric by considering in its computation

the intersection points between segments of objects from segmentation S1 with back-
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ground segment from segmentation S2. This is achieved by setting the normalization

factor to the size of the union of object segments from S1 and S2 instead of the size

of segments from S2 alone. Segments from S1 include correct and incorrect labeled

pixels for objects. High values of the overlap metric indicate a good segmentation of

objects in an image. However, these values do not indicate what kind of problems a

segmentation algorithm has, for example, a leak problem and a problem of segmenting

only parts of objects, referred to as partial segmentation. Furthermore, the overlap

metric does not evaluate the performance of a segmentation algorithm in segmenting

a background.

Precision metric is the ratio of the shared points of object segments between two

segmentations to the total number of points in segmented object regions. Precision

metric is computed as:

Precision =

∑
i 6=b ||Si2 ∩ S

t(i)
1 ||∑

i 6=b ||S
t(i)
1 ||

, (75)

where b denotes the index of the background segment from segmentation S2. t(i)

decides the index of the region from segmentation S1 which has the largest overlap

with region i from segmentation S2.
∑

i 6=b ||S
t(i)
2 || is the total number of points in seg-

mented object regions other than the background from segmentation S1. Precision

metric values have a range between 0 and 1, where 0 means objects are completely

not segmented and 1 means all points in object regions from segmentation S1 are

inside object segments from segmentation S2, i.e., segments of S1 are completely in-

side their corresponding ground truth segments in S2. A shortcoming of the precision
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Figure 76: Classification result of two binary images A and B compared point-wise
with image A as a reference to represent the truth model of the object. Image B
represents an automatically segmented object that is completely inside the truth
model object, therefore, NFP = 0 and Precesion = 1.

metric is that high values do not indicate a good segmentation. High precision met-

ric values occur when most points in object regions from segmentation S1 are inside

object segments from segmentation S2. Having most points in object regions from

segmentation S1 are inside object segments from segmentation S2 does not mean most

points in object regions from segmentation S2 are inside object segments from seg-

mentation S1. For example, figure (76) shows a case where a segmentation algorithm

extracts part of a ground truth segment only, i.e., partial segmentation. In this case,

||Si2 ∩ S
t(i)
1 || = ||St(i)1 || so that Precesion = 1. So, a high precision metric value is

obtained for a bad segmentation and this not desirable.

Recall metric is the ratio of the shared points of object segments between two

segmentations to the total number of points in object regions in an image. Recall

metric is computed as:

Recall =

∑
i 6=b ||Si2 ∩ S

t(i)
1 ||∑

i 6=b ||Si2||
, (76)
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where b denotes the index of the background segment from segmentation S2. t(i)

decides the index of the region from segmentation S1 which has the largest overlap

with region i from segmentation S2. Recall metric as defined in equation (76) is the

sensitivity metric as defined in equation (72). Recall metric values have a range be-

tween 0 and 1, where 0 means completely not segmented while 1 means all points in

object regions from segmentation S2 are inside object segments from segmentation

S1, i.e., ground truth segments from S2 are completely inside their corresponding seg-

ments in S1. The shortcomings for the recall metrics are similar to the shortcomings

for the sensitivity metric.

F1 score metric is a harmonic average of the precision metric and the recall metric.

F1 score metric is defined as:

F1 =
2× Precesion×Recall
Precesion+Recall

=
2
∑

i 6=b ||Si2 ∩ S
t(i)
1 ||∑

i 6=b ||Si2||+
∑

i 6=b ||S
t(i)
1 ||

, (77)

where b denotes the index of the background segment from segmentation S2. t(i)

decides the index of the region from segmentation S1 which has the largest overlap

with region i from segmentation S2. This equation indicates no preference for either

precision metric or recall metric, both metrics have equal importance. F1 score metric

values have a range between 0 and 1, where 0 means completely not segmented while

1 means objects and background are perfectly segmented. High values for F1 score

metric indicate a good segmentation, however, it does not indicate what kind of

problems a segmentation algorithm has, for example, a leak problem and partial

segmentation.
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Hamming Distance (HD) metric measures the difference between two segmentation

results in terms of the shared point membership of the two segmentations [20]. The

directional Hamming distance from S1 to S2, DH(S1 ⇒ S2), is defined as:

DH(S1 ⇒ S2) =
∑
i

||Si2 \ S
t(i)
1 || (78)

Where “ \ ” is the set difference operator, and t(i) is the index of the best corre-

sponding segment in S1 for segment Si2, i.e., t(i) = argk{max Si2 ∩ Sk2}. t(i) decides

the index of the region from segmentation S1 which has the largest overlap with

region i from segmentation S2. DH(S1 ⇒ S2) is the sum of the areas of the non-

overlapping parts of S1 segments which are found corresponding to some segments

in S2. Similarly, DH(S2 ⇒ S1) is the sum of the areas of the non-overlapping parts

of S2 segments which are found corresponding to some segments in S1. Then, two

measures are computed which are: the missing rate, Rm, and the false alarm rate,

Rf . Rm and Rf are defined as follows:

Rm(S1, S2) =
DH(S1 ⇒ S2)

||S||
, (79)

Rf (S1, S2) =
DH(S2 ⇒ S1)

||S||
, (80)

where ||S|| is a normalization factor to the metric and it denotes the size of the set

S which represents the total area of objects. The Hamming distance is defined as the

average of the missing rate and the false alarm rate, i.e.,:
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HD(S1, S2) = 1− 1

2
(Rm(S1, S2) +Rf (S1, S2)) (81)

Where HD(S1, S2) is the Hamming distance between S1 and S2. Metric values

range from 0 to 1. The smaller the degree of mismatch, the closer the metric value

is to 1. The Hamming distance metric relies on finding the correspondences between

segments. This metric is meaningful when correspondences are correct and adds noise

when they are not.

Region Rank (RR) metric is the average of the seven unique aforementioned region

based metrics: (1) accuracy, (2) sensitivity (recall), (3) specificity, (4) overlap, (5)

precision, (6) F1score, and (7) Hamming distance. Region rank metric is computed

as:

RR =
(Accuracy + Sensitivity + Specificity +Overlap+ Precision+ F1 +HD)

7
, (82)

where RR is the region rank metric. RR metric values have a range between 0

and 1, where 0 means objects and background are completely not segmented while

1 means objects and background are perfectly segmented. The seven unique region

based metrics are used in computing the RR metric in order to use it in ranking

a segmentation algorithm based on segmented regions. Each of the seven unique

region based metrics indicates an aspect or more about a segmentation algorithm.

Accuracy metric give a general indication of how good a segmentation algorithm is in

segmenting both a background and objects. Sensitivity metric is good in indicating if a

segmentation algorithm has a problem of partial segmentation but it does not indicate
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if there is a leak problem. Specificity metric indicates how good a segmentation

algorithm is in segmenting a background from an image but it does not indicate

the effect of background segmentation errors on objects. Overlap metric indicates

how good a segmentation algorithm in specifying objects in an image but it does

not indicate if an algorithm has a leak problem or partial segmentation problem.

Precision metric is good in indicating if a segmentation algorithm has a leak problem

but it does not indicate if there is a partial segmentation problem. F1 score metric

gives a general indication if a segmentation algorithm has both a problem of partial

segmentation and a leak problem but it does not specify if one of them exists only.

HD metric gives another general indication if a segmentation algorithm has both a

problem of partial segmentation and a leak problem but it does not specify if one of

them exists only. An efficient segmentation algorithm scores high values in all region

based metrics while a less efficient one scores low in one or more metrics. Hence, the

usage of RR metric in ranking a segmentation algorithm based on segmented regions.

8.1.2.2 Boundary Based Segmentation Comparison Metric: Cut Discrepancy

Cut Discrepancy (CD) is a boundary-based metric which measures the difference

between two segmentation results by comparing the boundaries of their segments.

CD was originally proposed in [20] and it compares two segmentation boundaries by

measuring the curve-to-curve distance from the set of points on one segmentation

boundary to the set of points on the other segmentation boundary. CD is computed

by summing the distances from the points along the cuts in the first segmentation

to the closest cuts points in the second segmentation and vice versa. Assume an
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image is segmented by two algorithms producing the segmentations S1 and S2 so

that S2 is the ground truth segmentation. Let C1 and C2 represent the segmentation

boundaries for S1 and S2, respectively. The CD measures the sum of the distances

between the segmentation boundaries C1 and C2. Suppose p1is a point that belongs

to the boundary C1, i.e., p1 ∈ C1. Then, the distance between the point p1 ∈ C1 and

C2 can be computed by finding the minimum distance between the point p1 and the

segmentation boundary C2 and it is defined as:

d(p1, C2) = min{d(p1,p2), ∀p2 ∈ C2} (83)

Where d(p1,p2) is the Euclidean distance between the two points p1 and p2 and

d(p1, C2) is the distance between the point p1 and C2. The directional cut discrepancy

for S1 with respect to S2 is defined as the mean of the point-to-boundary distances

d(p1, C2), taken over all the points in the first segmentation boundary C1 for all points

p1 ∈ C1, i.e., :

DCD(S1 ⇒ S2) =
1

N1

∑
∀p1∈C1

d(p1, C2) (84)

Where DCD(S1 ⇒ S2) is the directional cut discrepancy for S1 with respect to S2.

N1 is the number of points in C1. The cut discrepancy between S1 and S2 is defined

as the mean of their directional cut discrepancy functions in both directions divided

by the average of the Euclidean distance from a point in the surface to the centroid

of the object , i.e.,:
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CD(S1, S2) =
DCD(S1 ⇒ S2) +DCD(S2 ⇒ S1)

AvgRadius
(85)

Where CD(S1, S2) is the cut discrepancy between S1 and S2, and AvgRadius is

the average of the Euclidean distance from a point in the surface to the centroid of

the object. The average of the Euclidean distance ensures the symmetry of the metric

and reduces the scale effects. Metric values range from 0 to 1. The smaller the degree

of mismatch, the closer the metric value is to 0. The benefit of the cut discrepancy

metric is that it provides a measure of how well boundaries align.

8.1.3 Scores Used for Analysis

Collectively, there are nine different meaningful scores that are proposed to measure

the difference between two segmentations. Each score must be merged across multiple

segmentations to provide a value that summarizes the score of the data set. To merge

scores, the dataset score is taken as the arithmetic mean of the scores for each of the

different segmentations. The scores computed for analysis are as follows:

1. Accuracy as in equation (71),

2. Sensitivity (Recall) as in equation (72),

3. Specificity as in equation (73),

4. Overlap as in equation (74),

5. Precision as in equation (75),

6. F1 score as in equation (77),
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7. Hamming Distance, HD, as in equation (81),

8. Region Rank, RR, as in equation (82),

9. Cut Discrepancy, CD, as in equation (85).

The details of each score are discussed in section (8.1.2). Comparative evaluations

are accomplished by observing these scores for the different segmentation approaches.

8.2 Evaluation and Analysis for 2D Images

Figure (77) shows image segmentation results for five different 2D images using

seven different image segmentation methods. They are shown together to allow for

visual comparison of the results and to better understand the strengths and weak-

nesses of the PWT algorithm. The first row of figure (77) shows the original input

images, the remaining rows of figure (77) shows segmentation results for each of the

seven different segmentation methods. These methods, from top-to-bottom, are 1) a

human generated segmentation (“ground truth”), 2) the PWT segmentation, 3) the

watershed segmentation, 4) the threshold segmentation, 5) the region segmentation,

6) the active contour segmentation, and 7) the level set segmentation. The segmen-

tation results for these algorithms are shown in rows (2), (3), (4), (5), (6), (7), and

(8) of figure (77), respectively. Table (7) shows the PWT settings that are used to

segment images. The results shown suggest that the PWT algorithm can generate

similar segmentation results as the ground truth examples.

Figure (78) shows a bar chart of the evaluation scores for the six automatic segmen-

tation methods when evaluated over all the images. There are seven unique region

based evaluation metrics that are reported: (1) accuracy, (2) sensitivity (recall), (3)
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Figure 77: Image segmentation results for five different 2D CT images using seven
different segmentation method. The first row shows the input images. The remaining
rows show segmentation results generated by humans (“ground truth”), the PWT
algorithm, the watershed algorithm , the threshold algorithm, the region algorithm
[43], the active contour algorithm [100], and the level set algorithm [42], respectively.
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Table 7: The settings for the PWT algorithm that are used in segmenting the original
images (first row) in figure (77). The first row in the table is the number of the column
of the segmented image in the indicated figure. Rows (2), (3), (4), and (5) are the used
values for Tcx, Tbone, TSize, and Tdepth settings for the PWT algorithm, respectively.

Image Column# 2 3 4 5 6
Tcx (HU) 720 640 600 655 600
Tbone (HU) 140 140 140 150 140
TSize(pixels) 15 15 15 15 15
Tdepth (pixels) 15 15 15 15 15

Figure 78: A chart for region based evaluation scores for segmentation results of all
2D images. The x-axis represents the region based metrics for different segmentation
algorithms while the y-axis represents the measured metric value. Each algorithm is
represented by group of bars. An efficient algorithm scores high values in all region
based metrics while a less efficient one scores low in one or more metrics.
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Table 8: Region based evaluation scores for segmentation results of all 2D images
computed for the different segmentation algorithms used in performance comparison.
All metrics values range from 0 to 1. The smaller the degree of mismatch, the closer
the metric value to 1.

Method Accuracy Sensitivity Specificity Overlap Precision F1 HD
Level Set 0.48 0.29 .72 .28 .69 .39 .68

Active Contour .69 .47 .95 .45 .93 .61 .71
Region .51 .45 .57 .38 .53 .47 .81

Threshold .75 .75 .78 .62 .73 .72 .85
Watershed .77 .74 .86 .62 .77 .72 .80

PWT .94 .96 .93 .91 .94 .94 .95

Table 9: RR evaluation score for segmentation results of all 2D images computed for
the different segmentation algorithms used in performance comparison. The metric
value ranges from 0 to 1. The smaller the degree of mismatch, the closer the metric
value to 1.

Method RR
Level Set .48

Active Contour .66
Region .52

Threshold .74
Watershed .75

PWT .94

specificity, (4) overlap, (5) precision, (6) F1 score, and (7) HD. Table (8) shows the

measured seven region based metrics. The RR metric for segmentation algorithms is

reported separately in a table and a chart. Figure (79) shows a chart of the RR metric

while table (9) shows the RR metric for segmentation algorithms. The PWT segmen-

tation has the score closest to the score for the ground truth examples among all the

automatic segmentation algorithms. This indicates that the regions computed by the

PWT algorithm are close to the regions specified in the ground truth segmentations.

The boundary based comparison metric CD for segmentation algorithms is reported

in a table and a chart. Figure (80) shows a chart of the CD metric while table (10)
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Figure 79: A chart for RR evaluation score for segmentation results of all 2D images
to compare the performance of the different segmentation algorithms. The metric
value ranges from 0 to 1. The smaller the degree of mismatch, the closer the metric
value to 1.

Figure 80: A chart for CD evaluation score for segmentation results of all 2D images
to compare the performance of the different segmentation algorithms. The x-axis
represents the CD metric for different segmentation algorithms while the y-axis rep-
resents the measured metric value. Each algorithm is represented by a single bar.
The smaller the degree of mismatch, the closer the metric value to 0.
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Table 10: CD evaluation score for segmentation results of all 2D images computed
for the different segmentation algorithms used in performance comparison. Metric
values range from 0 to 1, the smaller the degree of mismatch, the closer the metric
value to 0.

Method CD
Level Set .23

Active Contour .12
Region .20

Threshold .13
Watershed .28

PWT .03

shows the CD metric for segmentation algorithms. For this metric, the PWT seg-

mentation has the score closest to the score for the ground truth examples among all

the automatic segmentation algorithms. This indicates that the shapes of the regions

computed by the PWT algorithm are close to the shapes of the regions specified in

the ground truth segmentations. The small value of the computed CD metric for the

PWT algorithm indicates that the PWT algorithm will not over-segment or under-

segment most of models in the dataset. Hence, all evaluation scores indicate that the

PWT algorithm tends to produce good segmentations when evaluated over all the 2D

images in the test dataset.

8.2.1 Analysis

Analysis focuses on answering several important questions motivated by observa-

tions from the figures shown in (77 to 80) and tables in (8 to 10). The general

questions posed are as follows:

1. Why does the PWT algorithm perform well on large fragments but not well on

small ones?
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2. Why does the PWT algorithm label some pixels as part of a fragment and they

should not be, i.e., leak?

3. Why does the PWT algorithm generate incorrect number of segments for images

in columns 2 and 5?

4. Why the level set and active contour algorithms tend to oversegment bone

fragment regions?

5. Why does the watershed algorithm suffer from leak problem more than the

other segmentation algorithms?

6. Why does the PWT algorithm typically out-perform the analyzed competing

segmentation methods?

Answering these questions would provide a better understanding of the segmentation

results as well as the strengths and weaknesses of the PWT algorithm.

The PWT algorithm performs well on large fragments but not well on small ones

for two main reasons: (1) the ratio of the size of the cortex region with respect to the

size of the segment is relatively small for small fragments and (2) the width of a bone

region for a small fragment is relatively small. For the first reason, having a small

cortex region in a fragment segment generates a relatively small marker with respect

to the size of that intended segment. When the ratio of the size of a marker to the size

of the intended segment is small, the pixels that belong to that intended segment may

have large distances to the marker region. Large distances from a marker cause pixels

at these distances to have low fragment likelihood values according to equation (58).
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Pixels with low likelihood values for a marker are less likely labeled with the label

of that marker especially when they are close to other markers. So, these pixels are

highly likely labeled with incorrect labels. This problem is highly likely to appear for

small fragments because they are usually generated from the internal side of a broken

bone which mostly composed from cancellous tissue. For the second reason, having a

bone region with small width increases the number of pixels that are likely to be inside

”isthmus” bone areas in that region. Pixels that are assumed to be inside ”isthmus”

bone areas are given low probability values according to their likelihood of being inside

an ”isthmus” bone area, i.e., depends on non-”isthmus” context probability, refer to

equation (70). For these pixels, the fragment probability which depends on intensity

information and distances from markers is ignored. As a result, the pixels that are

assumed to be inside ”isthmus” bone areas are labeled last in the PWT algorithm

and they are divided evenly between the neighboring segments causing some of these

pixels to be incorrectly labeled.

The PWT algorithm may label incorrectly some bone pixels as part of a fragment

while they should not be, for example, between fragments A2 and A3 in the image

in the third column in figure (77). This issue highly likely occurs for pixels with

very close distance to the background so to the boundary of the bone region. These

pixels are assumed to be inside an ”isthmus” bone area. Pixels that are assumed to

be inside ”isthmus” bone areas are given low probability values according to their

likelihood of being inside an ”isthmus” bone area, i.e., depends on non-”isthmus”

context probability, refer to equation (70). For these pixels, the fragment probability

which depends on intensity information and distances from markers is ignored. As a
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result, the pixels that are assumed to be inside ”isthmus” bone areas are labeled last

in the PWT algorithm and they are divided evenly between the neighboring segments

causing some of these pixels to be incorrectly labeled.

The PWT algorithm generates incorrect number of segments for images in columns

2 and 5. This issue occurs due to an error in detecting the correct number of markers

for bone fragment segments in the marker detection stage, refer to section (7.3.1).

This can be explained, in part, due to two reasons: (1) the existence of low intensity

cortex areas within the cortex region and (2) the minimum intensity value considered

a cortical tissue is too low value. For the first reason, the low intensity cortex areas

causes algorithm to divide a single cortex region into multiple disjoint regions where

each region is assumed to be a unique marker for a unique segment. In this case, too

many markers are generated and a single bone fragment is represented by multiple

segments, e.g., bone fragment A10 in the image in the second column in figure (77)

is represented by two segments. For the second reason, if a too low value for the

minimum intensity considered a cortical tissue is used, the marker detection algorithm

may assume pixels that do not belong to a cortical tissue region as cortical pixels.

These pixels may connect multiple disjoint cortex regions together. The algorithm

considers these connected cortex regions as one and generates a single marker for

them. Therefore, the PWT algorithm generates a single unique segment for this

marker that represents multiple bone fragments, for example, bone fragments A2 and

A4 in the image in the fifth column in figure (77) are represented by a single segment

in the PWT segmentations.
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The level set and active contour algorithms tend to oversegment bone fragment

regions and labels small parts of the bone region more than any other algorithm.

This can be explained, in part, due to the texture of bone fragments. Bone fragment

regions in an image do not have a smooth intensity variation. This variation generates

strong internal forces within bone regions that affect deformable models, refer to

section (3.2.2.1). These internal forces move the initial contours for deformable models

toward regions boundaries making a deformation process to split internal structures

and textures of bone regions.

The watershed algorithm suffers from leak problem more than the other segmen-

tation algorithm. This can be explained in part due to the loss of image information

during the watershed segmentation process, refer to section (7.1.2). The watershed

algorithm takes two inputs: an image and a collection of markers markers. The wa-

tershed algorithm modifies the input image to have regional minima at the specified

marker positions. This modification may remove the boundaries and reduce the con-

trast between object regions. So that pixels at the lost boundaries may be incorrectly

labeled. The labels of these incorrectly labeled pixels are then expanded to adja-

cent pixels. This process continues until no more pixels are none labeled, hence the

problem.

The PWT algorithm typically out-perform the analyzed competing segmentation

methods. This can be explained for three main reasons: (1) the use of unmodified in-

tensity information in the computation of fragment probability, (2) the use of distance

information between pixels and markers in the computation of fragment probability,

and (3) the use of non-”isthmus” context probability to enhance the segmentation
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result through “isthmus” bone area. For the first reason, the use of unmodified inten-

sity information allows to not lose boundary information in the image. This allows

the PWT algorithm to stop at boundaries and close proximity areas that separate

between fragment regions, for example, the labeling of bone fragments A1 and A2

in the image in the fourth column in figure (77). For the second reason, distances

between pixels and markers allows to reduce the leak problem by preventing over-

growing segments to far away pixels. A pixel is highly likely to belong to a segment

that has a close marker than to belong to a segment that has a far away marker.

For the third reason, the non-”isthmus” context probability is used to enhance the

labeling process for the pixels that are inside ”isthmus” bone areas. These pixels usu-

ally separate between bone fragments and have inaccurate intensity information due

to blurring. Therefore, these pixels are given low probability values to be processed

last in the PWT algorithm. The PWT algorithm assigns these pixels labels after all

pixels that are outside ”isthmus” bone areas are labeled. This procedure prevents the

expansion of potentially incorrect labels to pixels outside ”isthmus” bone areas, for

example, labeling of bone fragments A2 and A4 in the image in the first column in

figure (77).

8.3 Evaluation and Analysis for 3D Images

In this section, the performance of the PWT bone fragment segmentation algo-

rithm is quantitatively evaluated on 3D CT images. The performance is evaluated

by applying the PWT algorithm on two 3D CT images of ankles to segment the

tibia: one image for an unbroken tibia and a second records a fractured tibia after
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(a) (b) (c)

Figure 81: The segmentation results for a 3D CT image for unbroken tibia using the
PWT algorithm and its “ground truth” segmentation. The PWT segmentation result
is shown in red, while the “ground truth” segmentation is shown in pink. They are
shown together to allow for visual comparison of the results and to better understand
the strengths and weaknesses of the PWT algorithm.

an injury. The estimated surfaces by the algorithm are compared to ground truth

surfaces provided by the work in [46]. The performance is measured by computing

the cut discrepancy metric which evaluates average distance between the points of

the estimated surfaces and their corresponding points in the ground truth surfaces.

8.3.1 Unbroken Tibia Case

Figure (81) shows segmentation result for a 3D CT image for unbroken tibia using

the PWT algorithm. The images show the segmentation result of the PWT algorithm

for the tibia bone (in red) together with its “ground truth” segmentation (in pink)

from three different view perspectives: axial, coronal, and saggital. They are shown

together to allow for visual comparison of the results and to better understand the

strengths and weaknesses of the PWT algorithm. The “ground truth” serves as the

benchmark against which the PWT segmentation is compared.

The segmentation result of the PWT algorithm indicates that one region was gen-

erated to represent the unbroken tibia. The surface of this region looks very similar
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to the ground truth one. The cut discrepancy metric for the segmentation result is

0.05. This low value confirms the similarity between the segmented region and the

ground truth one.

8.3.2 Fractured Tibia Case

Figures (82-85) show segmentation result for a 3D CT image for a fractured tibia

that was broken into three fragments using the PWT algorithm. Figure (82) shows all

fragments together while each fragment is viewed separately in figures (83-85). The

segmentation result is shown from three different view perspective: axial, saggital,

and coronal. The segmentation result and the human generated segmentation, i.e.,

“ground truth”, are shown together to allow for visual comparison of the results and to

better understand the strengths and weaknesses of the PWT algorithm. The “ground

truth” serves as the benchmark against which the PWT segmentation is compared.

Different segmented regions are shown in different colors.

The segmentation result indicates that five regions were generated to represent the

three fracture tibia fragments. The cut discrepancy metric for each fragment is shown

in table (11). There are two notes about the PWT segmentation algorithm: (1) it

may not perform well on segmenting small bone fragments and (2) it may generates

an incorrect number of bone fragments.

For the first note, the proposed segmentation algorithm may not perform well in

segmenting small bone fragment for two main reasons: (1) the ratio of the size of

the cortex region with respect to the size of the segment is relatively small for small

fragments and (2) the width of a bone region for a small fragment is relatively small.
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(a) (b) (c)

(d) (e) (f)

Figure 82: The segmentation results for a 3D CT image for a broken tibia using the
PWT algorithm and its “ground truth” segmentation. Figures (a-c) show the segmen-
tation result for all fractured tibia fragments from three different view perspective:
axial, saggital, and coronal, respectively. Figures (d-f) show the human generated
segmentation which is treated as “ground truth” from three different view perspective:
axial, saggital, and coronal, respectively. Different segmented regions are shown in
different colors.

Table 11: The cut discrepancy metric values measured for the segmentation result
for a 3D CT image for a broken tibia that was fractured into three fragments. The
first, second, and third fragments are shown in figures (83-85), respectively.

Fragment CC
First 0.09
Second 0.22
Third 0.38
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(a) (b) (c)

Figure 83: The segmentation results for the first fragment of three within a 3D CT
image for a broken tibia using the PWT algorithm and its corresponding “ground
truth” segmentation. Figures (a-c) show the segmentation result from three different
view perspective: axial, saggital, and coronal, respectively. The PWT segmentation
result is shown in dark blue, while the “ground truth” segmentation is shown in red.

(a) (b) (c)

Figure 84: The segmentation results for the second fragment of three within a 3D
CT image for a broken tibia using the PWT algorithm and its corresponding “ground
truth” segmentation. Figures (a-c) show the segmentation result from three different
view perspective: axial, saggital, and coronal, respectively. The PWT segmentation
result is shown in blue, while the “ground truth” segmentation is shown in orange.

(a) (b) (c)

Figure 85: The segmentation results for the third fragment of three within a 3D CT
image for a broken tibia using the PWT algorithm and its corresponding “ground
truth” segmentation. Figures (a-c) show the segmentation result from three different
view perspective: axial, saggital, and coronal, respectively. The PWT segmentation
result is shown in blue, while the “ground truth” segmentation is shown in pink.
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For the first reason, having a small cortex region in a fragment segment generates

a relatively small marker with respect to the size of that intended segment. When

the ratio of the size of a marker to the size of the intended segment is small, the

pixels that belong to that intended segment may have large distances to the marker

region. Large distances from a marker cause pixels at these distances to have low

fragment likelihood values according to equation (58). Pixels with low likelihood

values for a marker are less likely labeled with the label of that marker especially

when they are close to other markers. So, these pixels are highly likely labeled with

incorrect labels. This problem is highly likely to appear for small fragments because

they are usually generated from the internal side of a broken bone which mostly

composed from cancellous tissue. For the second reason, having a bone region with

small width increases the number of pixels that are likely to be inside ”isthmus” bone

areas in that region. Pixels that are assumed to be inside ”isthmus” bone areas are

given low probability values according to their likelihood of being inside an ”isthmus”

bone area, i.e., depends on non-”isthmus” context probability, refer to equation (70).

For these pixels, the fragment probability which depends on intensity information

and distances from markers is ignored. As a result, the pixels that are assumed to

be inside ”isthmus” bone areas are labeled last in the PWT algorithm and they are

divided evenly between the neighboring segments causing some of these pixels to be

incorrectly labeled.

For the second note, the proposed segmentation algorithm may generate an incor-

rect number of segments due to an error in detecting the correct number of markers

for bone fragment segments in the classification process stage, refer to section (7.3.1).
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This can be explained, in part, due to two reasons: (1) the existence of low intensity

cortex areas within the cortex region and (2) the minimum intensity value consid-

ered a cortical tissue is too low value. For the first reason, the low intensity cortex

areas causes algorithm to divide a single cortex region into multiple disjoint regions

where each region is assumed to be a unique marker for a unique segment. In this

case, too many markers are generated and a single bone fragment is represented by

multiple segments as in figures (84-85). For the second reason, if a too low value

for the minimum intensity considered a cortical tissue is used, the marker detection

algorithm may assume pixels that do not belong to a cortical tissue region as cortical

pixels. These pixels may connect multiple disjoint cortex regions together. The algo-

rithm considers these connected cortex regions as one and generates a single marker

for them. Therefore, the PWT algorithm generates a single unique segment for this

marker that represents multiple bone fragments.

8.4 Conclusion

In this chapter, the bone fragment segmentation using the PWT algorithm is quan-

titatively evaluated by comparing its results with ground truth segmentation results

using ten evaluation metrics. A similar evaluation is done for five other algorithms

on 2D images. The segmentation results are also studied to explore how the PWT

algorithm segments 2D images. Overall, the evaluation scores indicate that the PWT

algorithm is more similar to the ground truth than other segmentation algorithms.

The geometric segmentation properties for segmented boundaries and regions gener-

ated by the PWT algorithm are also close to the ground truth. However, the PWT
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algorithm has some shortcomings. Specifically, it tends to incorrectly label pixels that

are very close to background and to in accurately specify the boundaries for small

bone fragment regions.



CHAPTER 9: CONCLUSION AND FUTURE WORK

The presented system is capable of estimating the inverse mechanics of highly

comminuted bone fractures from 3D CT images of fracture cases, which is heretofore

unsolved problem in the existing systems for fractures analysis. The system estimates

how a limb fractured in terms of what fracture the limb and how the bone fragments

moved over time. The system represents a unique integration of image processing

techniques with existing dynamics simulation tools. The system is provided with a

3D CT image of a fractured limb and another 3D CT image for an unfractured limb.

The system extracts data from these images using the image processing techniques.

The system uses these data to build a virtual dynamics model of the fractured limb.

This model represents fracture bone fragments, soft tissues, and a strike object as they

existed before the fracture event occurred. The dynamics model is assigned physical

attributes to reflect physical properties of the real fractured limb. The system then

estimates the fracture event by hitting the dynamics model of the limb with the strike

object. The system uses dynamics simulator to approximate the physical behavior

of the objects in a fracture event. The system iteratively modifies the velocity for

the strike object in order to find the best fracture simulation. The estimated frac-

ture simulation is then analyzed by a user to explore the space of plausible solutions

to understand how a fracture event may have occurred. While it is intuitive that

a system like this could improve surgical treatment, this has not been proven as a
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clinically effective tool. However, due to the limited number of experiments, solid con-

clusive statements about clinical utility of the system of inverse mechanics for highly

comminuted fractures cannot be made. This system is a significant advancement

toward improving the treatment of comminuted tibial plafond fractures. Estimating

the inverse mechanics of a fracture provides heretofore unavailable understanding of

how bone fragments moved from their original anatomical positions to their fractured

positions as presented by a fracture case. Such understanding may help physicians

improve the accuracy of bone fragments treatment decisions.

9.1 Future Work

Although the presented prototypical system to compute the mechanics of a highly

comminuted fracture offers a powerful new tool for knowing the estimated trajectory

that each fragment had taken to move from the their anatomic positions to their

fractured position in a fracture, there are some limitations that need to be taken into

account for future research before the system can be used in a clinical setting. The

most important limitation of the system is the lack of the evaluation information

from real world users to the system. Ideally, the real world user should be a trained

orthopedic physician. A user study should be conducted to evaluate the system. The

user study should attempt to answer the following set of questions: (1) does the tool

to compute the mechanics of a fracture event benefit the users? If yes, how do users

benefit from it, and in what aspects? (2) Is there any difference between the paths

used in manual reconstruction surgery and trajectory paths estimated by the system?

If yes, what is the difference? And why there is a difference? (3) What things can be
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done to further improve the system? The feedback and suggestions for improving the

system from the user study should be taken into consideration as the system evolves

to suit these needs. Another limitation of the current system is the assumption that a

healthy bone template is available as a reference from the patient. In practice, we may

not have a healthy bone template due to cost limitation that only the fractured limb is

scanned or the patient may have broken both limbs [46]. Future work may investigate

how to automatically generate a generic 3D template bone for each fracture case

depending on the biological information of the patient, for example, age, sex, height

and weight. Another limitation of the current system is that it does not consider

some important types of soft tissues around the bone and their connection to the

bone in the simulation process, for example, tendon and ligament. Consideration of

this information may improve the accuracy of the system to generate fracture patterns

similar to the one observed in the fractured limb. Another limitation of the current

bone segmentation algorithm used in the system is that it does not consider the 3D

gradient of intensities for bone pixels in the probability computation. This gradient

information may help the algorithm to detect the boundaries of bone fragments in the

CT image especially for small fragments, so that the leak problem may be reduced

further. Finally, future may seek to investigate the relationship between the estimated

displaced volume of the soft tissue and the severity of a fracture. The severity of a

fracture helps physician in determining a sequence of best-practices for obtaining the

best possible prognosis for the patient.
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