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ABSTRACT

MEI LI. Statistical analysis of mark-specific proportional hazards model.
(Under the direction of DR. YANQING SUN)

Competing risks occur frequently in survival analysis, and in some cases, the competing

risks are not discrete. In this dissertation, we develop some statistical inferences to analyze

continuous competing risks.

In Chapter 2, inspired by the HIV vaccine trials, we extend the modeling of mark-

specific hazards function to multivariate marks to better fit the HIV data. We develop the

partial likelihood based parametric procedure to estimate the coefficents. The asymptotic

properties of the proposed estimators are derived. We propose some tests to examine a

variety of null hypotheses to understand how relevant the two distances are for protection.

Finite sample performances of the proposed methods, are examined through extensive

simulations and are shown satisfying. The methods are applied to STEP data to evaluate

the vaccine efficacy and its dependence on the multivariate marks. A goodness of fit

procedure is also developed. The test statistics are constructed based on the score function

and the generalized weighted martingale residuals. The performance of tests are also

examined through simulations. And the tests are used to check adequacy of the multivariate

mark-specific proportional hazard model for STEP data.

In Chapter 3, we develop a goodness of fit procedure for the stratified mark-specific

proportional hazard model with continuous marks. Coefficents are estimated through par-

tial likelihood based kernel smoothing method. The asymptotic properties of the proposed

estimators are derived. We also construct confidence bands for vaccine efficacy. We focus

on the goodness of fit test of the model. The test statistics are constructed based on the

generalized weighted martingale residuals. The finite sample properties of proposed tests

are examined through simulations.
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CHAPTER 1: INTRODUCTION

In the traditional survival analysis, we often assume the subject will only experience

one type of failure. However, in many clinical trials, the subject may experience more

than one type of event, and the occurrence of one type of event hinders the occurrence of

other types of events (Pintilie, 2006). For example, patients who undergo bone marrow

transplant are followed in order to observe acute graft versus host disease (GVHD). At

the end of the study, patients will either developed acute GVHD, or did not, or died from

other causes. So death without acute GVHD is the competing risk for the acute GVHD

(Wang, 2010). In demographic mortality studies, when evaluating the efficacy of heart

transplants, one may want to treat deaths due to heart failure differently from deaths due

to other causes, such as accident and cancer (Lee, 2003). As discussed above, competing

risks occur frequently in medical research.

1.1 Competing Risks Data

Let T be the failure time that may be subject to censoring, Z the covariate vector,

and J ∈ {1, 2, ...,m} the type or cause of failure. A typical right censored competing

risks data can be represented by {Xi, δi, δiJi, Zi}, i = 1, . . . , n. Where Xi = min(Ti, Ci),

δi = I(Ti ≤ Ci) and Ci is the censoring time. When δi = 1, the cause of failure is

observed; Otherwise, it is undefined and unknown. A basic estimable quantity based on

the competing risks data is the cause-specific hazard functions, defined by

λj(t; z) = lim
∆t→0

P (t < T < t+∆t, J = j|T > t;Z = z)/∆t, (1.1)

for J ∈ {1, 2, . . . ,m}. And the overall hazard function is

λ(t; z) = lim
∆t→0

P (t < T < t+∆t|T > t;Z = z)/∆t.

1
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Prentice et al. (1978) introduced a Cox regression framework for the analysis of failure time

data by cause-specific hazard function in the presence of finitely many competing risks.

The regression function is defined as

λj(t|z) = λ0j(t) exp(β
T
j z(t)), j = 1, 2, . . . ,m, (1.2)

where λ0j(t) is an unspecified baseline function, and βj is a column vectors of cause-specific

regression coefficients. A lot of work has been done on the discrete cases, Kuk (1992), Aly,

Kocha, and Mckeague (1994), Lunn and McNeil (1995), Sun and Tiwari (1995), Lam

(1998), Hu and Tisa (1999), Luo and Tunbull (1999), Sun (2001), and Scheike, Zhang and

Gerds (2008).

1.2 Competing Risks Data with Continuous Marks

Many important applications of competing risks methodologies involve continuous

causes-of-failure (marks). For example, in a AIDS clinical trial of drug regimens for treat-

ing HIV infection, the time to treatment failure (typically defined by levels of viral load

rising above a threshold (Gilbert et al., 2001)) can decrease with increases in a distance

measure describing the extent of drug-selected HIV genetic evolution within a patient be-

tween baseline and the time of failure. Detecting such an association can help in designing

anti-HIV treatments that overcome the problem of drug resistance, which represents one of

the greatest barriers to achieving durably efficacious treatment of HIV infection (Hirsch et

al., 2000; Yeni et al., 2002). In this example, the mark V is a measure of the accumulated

HIV genetic resistance resulting from exposure to an antiretroviral treatment, which is

measured only on subjects who fail treatment, at the time of treatment failure. A second

example of interest is a prospective cohort study of a population at risk for acquiring HIV

infection. In this application, T is the time from cohort entry until HIV infection, and V is

the value of a metric measuring genotypic or phenotypic dissimilarity of the HIV virus that

infects a study participant from a reference HIV strain. For example, V could be Ham-

ming’s genetic distance and the reference strain could be the prototype virus contained

in an HIV vaccine that is under development for field testing in the cohort population.
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Other examples of continuous mark variables include lifetime medical cost or a quality of

life score associated with survival time (Olschewski and Schumacher, 1990). The grouping

of continuous mark data into discrete marks is unsatisfactory because that amounts to

a coarsening of the data and the results will depend on the way the groups are defined.

Huang and Louis (1998) first considered a continuous mark and developed the nonpara-

metric maximum likelihood estimator of the joint distribution of the failure time and the

mark.

Denote the time to endpoint as T and the mark variable V , the observable random

variables are (X, δ, δV ), where X = min{T,C}, δ = I(T ≤ C), and C is a censoring

random variable. When the failure time T is observed, δ = 1 and the mark V is also

observed, whereas if T is censored, the mark is unknown. Gilbert, Mckeague and Sun

(2004) introduced the mark-specific hazard function

λ(t, v) = lim
h1,h2→0

P{T ∈ [t, t+ h1), V ∈ [v, v + h2)|T ≥ t}/h1h2, (1.3)

with t ranging over a fixed interval [0, τ ], where τ is the end of follow-up. The mark-specific

function is the natural analog of its discrete counterpart, with similar interpretation. In

particular, λ(t, v) is the instantaneous risk of failure by a cause V in a small interval

[v, v+h2) in the presence of all other causes. Just as the cause-specific hazard functions are

the basic estimable quantities when the mark variable is discrete, the mark-specific hazard

function λ(t, v) is estimable from the available data and forms the basis for inference when

the mark variable is continuous. Indeed, the likelihood function under the competing risks

data with continuous mark has a similar form and is derived as follows. Assume that the

continuous mark variable V has a known bounded support; rescaling V if necessary, this

support is taken to be [0, 1]. Let f(t, v) be the joint density of (T, V ), and ST (t) be survival

function of T . Then λ(t, v) = f(t, v)/ST (t) and λ(t) =
∫ 1

0
λ(t, v) dv is the overall hazard

function of T . The likelihood function given n i.i.d. observations (Xi, δi, δiVi), i = 1, . . . , n
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from the above model can be expressed in terms of the mark-specific hazard rate as

∏
o

f(Xi, Vi)
∏
c

ST (Xi) =
∏
o

λ(Xi, Vi)
n∏

i=1

exp

{
−
∫ 1

0

∫ Xi

0

λ(s, v) ds dv

}
, (1.4)

where
∏

o denotes the product over the observed failure times,
∏

c denotes the product over

right censored failure times, and each product only applies to the expression immediately

in front. Gilbert et al. (2004) developed nonparametric testing procedures for

H0 : λ(t, v) does not depend on v for t ∈ [0, τ ]

against the following alternative hypotheses:

H1 : λ(t, v1) ≤ λ(t, v2) for all v1 ≤ v2, t ∈ [0, τ ];

H2 : λ(t, v1) ̸= λ(t, v2) for some v1 ≤ v2, t ∈ [0, τ ]

with strict inequalities for some t, v1, v2 in H1.

In the AIDS clinical trial example, the test of H0 versus the monotone alternative H1

assesses whether the absolute (instantaneous) risk of treatment failure increases with the

level of acquired drug resistance. The test is useful for evaluating if V is a clinically rele-

vant measure of a treatment’s resistance cost. Knowledge of clinically meaningful genetic

resistance cost metrics would be helpful for identifying combination drug regimens that do

not select for drug resistant virus, and thus provide long-lasting treatment efficacy. In the

second example mentioned above, the test of H0 versus the two-sided hypothesis H2 assess-

es whether the HIV metric V is associated with the instantaneous risk of HIV infection.

Finding evidence for H2 may suggest that the metric V can be used to guide selection of

the types of HIV antigens to include in HIV vaccines (Gilbert et al., 2001). For example,

if H0 is rejected and the infection risk appears particularly high for v > 0.7, then it may

behoove vaccine researchers to insert HIV antigens characterized by v > 0.7. Carrying

out the test for multiple metrics in multiple genes could help identify the metric(s) that
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optimize the breadth of expected protective coverage of the vaccine. This application is

important because the broad genotypic and phenotypic diversity of HIV poses one of the

greatest challenges to developing an effective AIDS vaccine (UNAIDS, 2001).

Let λ1(t, v) and λ2(t, v) denote the mark-specific hazard functions for the vaccine

group and placebo group, respectively. The mark-specific vaccine efficacy is defined as

V E(t, v) = 1 − λ1(t, v)/λ2(t, v). Assuming the HIV vaccine trial is a randomized double-

blinding trial and since HIV infection is a rare event in HIV vaccine efficacy trials, V E(t, v)

approximately measure the vaccine effect to reduce susceptibility to HIV acquisition given

exposure to strain v at time t; See Gilbert, Mckeague and Sun (2008). Gilbert, Mckeague

and Sun (2008) developed some nonparametric test procedures to evaluate the mark-specific

HIV vaccine efficacy, the the mark of interest is a measure of genetic distance between

the HIV sequence sampled from a volunteer infected in the trial and the HIV sequence

represented in the tested vaccine construct. Specifically, they considered testing the null

hypothesis

H0
0 : V E(t, v) = 0 for (t, v) ∈ [0, τ ]× [0, 1]

against the following alternative hypotheses:

H0
1 : V E(t, v) ≥ 0 for all (t, v) ∈ [0, τ ]× [0, 1];

H0
2 : V E(t, v) ̸= 0 for some (t, v) ∈ [0, τ ]× [0, 1]

with strict inequality for some (t, v) ∈ [0, τ ] × [0, 1] in H0
1 . Testing H0

0 evaluates whether

there is any vaccine efficacy against any HIV strain. If H0
0 is rejected, then it is of interest

to assess if vaccine efficacy varies with strain distance. They have developed test for

H0 : V E(t, v) does not depend on v for t ∈ [0, τ ]
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against the following alternative hypotheses:

H1 : V E(t, v1) ≥ V E(t, v2) for all v1 ≤ v2, t ∈ [0, τ ];

H2 : V E(t, v1) ̸= V E(t, v2) for some v1 ≤ v2, t ∈ [0, τ ]

with strict inequality for some t, v1, v2 in H1. Testing H0 versus H1 assesses whether

vaccine efficacy decreases with HIV sequence divergence. Detecting that the vaccine pro-

tects against some strains but not others, and quantifying the relationship between vaccine

efficacy and viral divergence, is useful for guiding vaccine deployment decisions and for

designing new vaccines that provide greater breadth of protection.

To evaluate HIV vaccine efficacy with adjustments for covariates and develop more

efficient statistical methods, Sun, Gilbert and Mckeague (2009) studied the mark-specific

proportional hazards model with continuous marks defined as:

λ(t, v|z(t)) = λ0(t, v) exp(β(v)
T z(t)), (1.5)

where the baseline hazard function λ0(t, v) is an unspecified function of (t, v) and the

p-dimensional regression parameter β(v) are unknown continuous functions of the marks

v.Let Z(t) = (Z1, Z2(t)) where Z1 is the treatment(vaccine) group indicator and Z2(t) are

possibly time-dependent covariates. The covariate Z2(t) adjusted mark-specific vaccine

efficacy is then V E(v) = 1−exp(β1(v)), where β1(v) is the coefficient for Z1. Sun, Gilbert,

and McKeague (2009) developed some estimations and hypothesis tests for V E(v) based

univariate continuous marks. Model (1.5) can provide more powerful tests of mark-specific

vaccine efficacy. Furthermore, ignoring the mark variable and studying vaccine efficacy

using the standard Cox model, as is widely practiced in vaccine trials for many infectious

diseases, can give misleading results since the ordinary Cox model averages the mark-

specific vaccine efficacy over its range, and important vaccine effects may be missed.



7

1.3 Multivariate Continuous Marks

Despite the research progress, the previous work did not account for multivariate mark-

s. This is a serious limitation given that all of the candidate HIV vaccines tested in HIV

vaccine efficacy trials have contained multiple antigens/immunogens, with rational to at-

tempt to elicit multiple types of immune response that recognize and block different types

of HIV viruses. The greater the number of virus types that can be recognized and killed

by vaccine-induced immune responses, the greater the potential overall vaccine efficacy.

Many HIV vaccine candidates have multiple ”antigens/immunogens” that are designed to

elicit certain kinds of immune responses. In the first two efficacy trials, the HIV vaccine

construct contained two envelope (env) gene antigens, based on two distinct strains of HIV,

such that a 2-dimensional mark variable is of interest (Flynn et al., 2005; Pitisittithum et

al., 2006). The vaccine construct evaluated in the third and fourth efficacy trials contained

gag, pol, and nef gene antigens, making a 3-dimensional mark variable of interest (Buch-

binder et al., 2008; Gray et al., 2009). Lastly, the fifth and most recent efficacy trial tested

a vaccine that contained gag, pol, and nef gene antigens, as well as three distinct env gene

antigens, making a 6-dimensional mark variable of interest (Rerks-Ngarm et al., 2009).

The previous work dealt with the multivariate mark issue by collapsing the multiple

distances into a univariate mark– the minimum of the distances to each vaccine antigen.

This approach is reasonable under the belief that the only thing that matters for protection

is the nearness of the exposing HIV to the closest antigen represented inside of the vaccine

(e.g., Gilbert, McKeague and Sun, 2008). However, there are many ways in which this

assumption may fail. For one example, based on host genetics (e.g., HLA type or Fc-γ-

receptor type), one subgroup may be protected through immune responses that recognize

HIV peptides that are similar to HIV peptides represented in antigen 1, whereas another

subgroup may be protected through immune responses that are similar to HIV peptides

represented in antigen 2; in this case the vaccine efficacy depends on both individual dis-

tances and less so on the minimum distance. For a second example, there are many ways

to define a genetic distance in a putatively immunologically relevant way (several distances
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were used in the sieve analysis of the Buchbinder et al., (2008), efficacy trial reported by

Rolland et al., (2011), and if two distances are used such that the first considers many

HIV sites irrelevant for protection whereas the second sagely restricts attention to key HIV

sites that are contained in epitopes that cause protection, then the first distance could be

shorter even though vaccine efficacy only depends on the second. Therefore, a more gen-

eral approach to assessing and modeling how vaccine efficacy depends on multiple genetic

distances is needed, that does not pre-assume a particular way to collapse the multivariate

distances into a univariate distance. Outside of the survival analysis field, Gilbert (2000)

studied such a general approach with multivariate marks, based on a semiparametric biased

sampling model. However, this method is limited by the fact that the model conditions on

infection, so that conditional odds ratios but not prospective relative risks of infection can

be estimated, and by the fact that the model treats HIV infection as a binary outcome,

not accounting for the time to HIV infection.

Sun, Gilbert and McKeague (2009) studied the mark-specific proportional hazard mod-

el

λ(t, v|z) = λ0(t, v)e
βT (v)z(t), (1.6)

for evaluating the mark-specific vaccine efficacy. Note under the proportional hazard model,

the ratio of hazard function of any two individuals is a constant independent of time. This

assumption may not always be met in practice, and can be relaxed through stratification

(Lee, 2003). Here we propose to study the stratified mark-specific proportional hazard

model to multivariate marks where the baseline hazard function can vary with stratum.

For simplicity, we consider a two-dimensional mark variable v = (v1, v2). The methods for

general multivariate marks follow similar outlines. Note that the mark-specific relative risk

function β(v) = β(v1, v2) is an unspecified p-dimensional function depending on (v1, v2).

Estimation of β(v) without any structural assumptions is possible following the procedure

for one-dimensional mark variable by Sun, Gilbert and McKeague (2009). However this

would require a very large sample size due to curse of dimensionality. In this paper, we
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propose estimation procedure under a parametric structure for β(v). Consider the model

β(v) = β0 + β1v1 + β2v2 + β12v1v2, (1.7)

which is the first order Taylor approximation of β(v) plus an interaction term which will

be used to investigate whether there is a confounding effect between the two marks. Here

each of β0, β1, β2, and β12 is a p-dimensional vector. Thus β(v) is completely specified

by the 4 × p parameters denoted by β̄ = (βT
0 , β

T
1 , β

T
2 , β

T
12)

T . We develop an estimation

procedure for the stratified mark-specific proportional hazard model under model (2.2)

for β(v) and testing procedures for the hypothesis relevant to the HIV vaccine efficacy

evaluation. We consider the following null hypotheses to understand how relevant the two

marks are for protection: H10 : β1 = β2 = β12 = 0; H20 : β12 = 0; H30 : β1 = β12 = 0

and H40 : β2 = β12 = 0. The null hypothesis H10 indicates that the relative risks does

not depend on marks; H20 implies that the distances v1 and v2 do not have confounding

effects on relative risks; The null hypothesis H30 implies that relative risks are not affected

by v1; While H40 implies that relative risks are not affected by v2. Note that the β’s

given in the hypotheses are p-dimensional vectors, these tests can also be carried out for

a single component corresponding to a given covariate to examine how the covariate effect

is modified the marks or strain distances.

1.4 Overview

In Chapter 2, we propose the parametric estimator of β(v) based on maximum partial

likelihood method. The asymptotic properties of the proposed estimator are derived. The

likelihood based hypotheses tests such as the likelihood ratio test, Wald test and score

test are proposed to examine a variety of null hypotheses to understand how relevant the

two marks are for protection against HIV infection. Extensive simulations are conducted

to examine the finite sample performance of the proposed methods. An application to

STEP data is discussed to show the usage of the methodology. We also proposed some

former statistical tests to check goodness of fit of the multivariate mark-specific propor-

tional hazard model based on the generalized weighted martingale residuals. The proposed
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goodness-of-fit tests are justified and examined through simulations and also applied to

STEP data.



CHAPTER 2: PROPORTIONAL HAZARDS MODEL WITH MULTIVARIATE
CONTINUOUS MARKS

In this chapter, we develop the estimation and hypothesis testing procedures for the

mark-specific proportional hazards model. We consider a parametric model for the regres-

sion coefficients β(v). The asymptotic properties of the estimators are studied. The test

statistics are constructed based on the asymptotic distributions of these estimators. We

conduct a simulation study of the proposed estimation and hypothesis testing procedures.

An application in the STEP data is used to illustrate the proposed methods.

2.1 Model and Data Description

Consider a two dimensional mark variable v = (v1, v2) stratified multivariate mark-

specific proportional hazard model

λk(t, v|z) = λ0k(t, v)e
βT (v)zk(t), k = 1, 2, . . . , K, (2.1)

where K is the number of the strata, λ0k(t, v) is an unspecified baseline mark-specific

hazards function, β(v) is p-dimensional regression function of v given by

β(v) = β0 + β1v1 + β2v2 + β12v1v2. (2.2)

Here each of β0, β1, β2, and β12 is a p-dimensional vector. Let z = (z1, z2(t))
T , where z1

is the vaccine group indicator, z1 = 1 for the vaccine group and z1 = 0 for the placebo

group, while z2(t) is other possibly time-dependent covariates. Under the mark-specific

proportional hazards model (2.1), the mark-specific vaccine efficacy can be expressed as

V E(v) = 1 − λ(t, v|z1 = 1)/λ(t, v|z1 = 0) = 1 − exp(β1(v)), where β1(v) is the coefficient

corresponding z1. Let Tk be the failure time for an individual in the kth stratum, Vk be

11
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the mark observation at failure and Zk be the associated p-dimensional covariate. Assume

that Tk, Vk, Zk follow model (2.1). Under right censoring, the observed random variables

are (Xk, δk, δkVk, Zk), where Xk = min(Tk, Ck), δk = I(Tk ≤ Ck), and Ck is the censoring

random variable, which is assumed to be independent of (Tk, Vk) given Zk. The mark

variable Vk is observed if the corresponding failure time uncensored. We consider statistical

inferences for (2.1) and (2.2) with the observations (Xki, δki, δkiVki, Zki), i = 1, . . . , nk,

which are independent identically distributed (iid) replicates of (Xk, δk, δkVk, Zk), for k =

1, 2, . . . , K. We assume that the end of follow-up time is τ , i.e., the failure time beyond τ

are all censored.

2.2 Estimation

Under model (2.2), β(v) is completely specified by the 4 × p parameters denoted by

β̄ = (βT
0 , β

T
1 , β

T
2 , β

T
12)

T . Let v̄ = (1, v1, v2, v1v2)
T and Z̃ki(t, v) = Zki(t)⊗ v̄ with ⊗ being the

Kronecker product. Similar to Kalbfleisch and Prentice (1980) for competing risks model

with finite number of causes, the log-partial likelihood function for β̄ can be expressed as

l(β̄) =
K∑
k=1

nk∑
i=1

∫ 1

0

∫ τ

0

[
βT (v)Zki(s)− log

{ K∑
l=1

nk∑
j=1

Ylj(s) exp(β
T (v)Zlj(s))

}]
Nki(ds, dv)

=
K∑
k=1

nk∑
i=1

∫ 1

0

∫ τ

0

[
β̄T Z̃ki(s, v)− log

{ K∑
l=1

nk∑
j=1

Ylj(s) exp(β̄
T Z̃lj(s, v))

}]
Nki(ds, dv),

(2.3)

where Nki(t, v) = I(Xki ≤ t, Vki ≤ v, δki = 1, k ∈ K) is the marked counting pro-

cess of the ith individual in stratum k and Yki(t) = I(Xki ≥ t) is the at risk process.

For the multivariate mark variable Vki, the relation Vki ≤ v in Nki(t, v) means that

the inequality holds for each component of the multivariate marks. Here we note that

β̄T Z̃ki(s, v) = (βT
0 , β

T
1 , β

T
2 , β

T
12)(Z

T
ki(s), Z

T
ki(s)v1, Z

T
ki(s)v2, Z

T
ki(s)v1v2)

T = βT (v)Zki(s). The

partial likelihood estimator ˆ̄β for β̄ is obtained by maximizing l(β̄). Let

S
(j)
k (t, v, β̄) = n−1

k

nk∑
i=1

Yki(t)exp{β̄T Z̃ki(t, v)}Z̃ki(t, v)
⊗j. (2.4)
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Taking the derivative of l(β̄) with respect to β̄, the score function can be written as

U(β̄) =
∂l(β̄)

∂β̄
=

K∑
k=1

nk∑
i=1

∫ 1

0

∫ τ

0

[Z̃ki(t, v)−
S
(1)
k (t, v, β̄)

S
(0)
k (t, v, β̄)

]Nki(dt, dv). (2.5)

The information matrix is given by the derivative of U(β̄) with respect to β̄

I(β̄) =
K∑
k=1

nk∑
i=1

∫ 1

0

∫ τ

0

[
S
(2)
k (t, v, β̄)

S
(0)
k (t, v, β̄)

− (
S
(1)
k (t, v, β̄)

S
(0)
k (t, v, β̄)

)⊗2]Nki(dt, dv). (2.6)

The maximum partial likelihood estimator ˆ̄β for β̄ is a solution to U(β̄) = 0. Under

condition A, the matrix I(β̄) is positive definite with probability 1 as nk → ∞ for 1 ≤

k ≤ K. Thus ˆ̄β exists almost surely for large sample sizes. The baseline function λ0k(t, v)

can be estimated by smoothing the increments of the following estimator of the doubly

cumulative baseline function Λ0k(t, v) =
∫ t

0

∫ v

0
λ0k(s, u)dsdu as

Λ̂0k(t, v) =

∫ t

0

∫ v

0

Nk·(ds, du)

nkS
(0)
k (s, u, ˆ̄β)

, (2.7)

where Nk·(t, v) =
∑nk

i=1Nki(t, v). A kernel estimator of λ0k(t, v) is given by λ̂0k(t, v) =∫ τ

0

∫ 1

0
K

(1)
h1

(t − s)K
(1)
h2

(v − u)Λ̂0k(ds, du), where K
(1)
h1

(x) = K(1)(x/h1)/h1 and K
(2)
h2

(x) =

K(2)(x/h2)/h2 with K(1)(·) and K(2)(·) be the kernel functions and h1 and h2 the band-

widths.

2.3 Asymptotic Properties

We make use of the following regularity conditions.

Condition A

(A.1) The covariate process Zk(t) is left continuous with bounded variation and satisfies

the moment condition E[∥Zk(t)∥4 exp(M∥Zk(t)∥)] < ∞, where ∥ · ∥ is the Euclidean

norm and M is a constant such that (β0, β1, β2, β12) ∈ (−M,M)p for 1 ≤ k ≤ K.

(A.2) For j = 0, 1, 2, let s
(j)
k (t, v, β̄) = E(S

(j)
k (t, v, β̄)). Let β̄0 be the true value of β̄ under

the model (2.1) and (2.2). λ0k(t, v) is continuous on [0, τ ]× [0, 1]2. Each component
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of s
(j)
k (t, v, β̄) is continuous on [0, τ ] × [0, 1]2 × B where B is an neighborhood of β.

And s
(0)
k (t, v, β̄) > 0 on [0, τ ]× [0, 1]2×B for 1 ≤ k ≤ K. nk/n → pk as nk → ∞. The

matrix Σ(β̄) =
∑K

k=1

∑nk

i=1 pk
∫ 1

0

∫ τ

0
[
s
(2)
k (t,u,β̄)

s
(0)
k (t,u,β̄)

− (
s
(1)
k (t,u,β̄)

s
(0)
k (t,u,β̄)

)⊗2] λ0k(t, v)s
(0)
k (t, u, β̄)dtdu

is positive definite.

The following theorems state the asymptotic consistency and asymptotic normality for ˆ̄β.

Theorem 2.1. Under conditions (A.1)-(A.2), ˆ̄β converges in probability to β̄0 as nk → ∞

for 1 ≤ k ≤ K.

Theorem 2.2. Under conditions (A.1)–(A.2), n1/2( ˆ̄β − β̄)
D−→N(0,Σ−1(β̄0)) as nk → ∞

for 1 ≤ k ≤ K. Σ(β̄0) can be consistently estimated by n−1I( ˆ̄β) .

Following theorem 2.2, the large sample 100(1 − α)% confidence interval for the jth

component β̄j of β̄ is

ˆ̄βj ± n− 1
2 zα/2σ̂j,

where σ̂j is the jth diagonal element of n−1I( ˆ̄β) and Zα/2 is the 1 − α/2 quantile of a

standard normal distribution.

2.4 Hypothesis Testing

In this section, we develop tests for testing the following hypothesis:

H10 : β1 = β2 = β12 = 0;

H20 : β12 = 0;

H30 : β2 = β12 = 0;

and H40 : β1 = β12 = 0. We propose three test statistics including the likehood ratio test,

Wald test and score test. Note that the logarithm of partial likelihood function of β under

(2.1) and (2.2) is l(β̄) =
∑K

k=1

∑nk

i=1

∫ 1

0

∫ τ

0

[
β̄T Z̃ki(s, v)− log

{∑K
l=1

∑nk

j=1 Ylj(s) ∗

exp(β̄T Z̃lj(s, v))
}]

Nki(ds, dv). Let ˆ̄β be the maximum partial likelihood estimator maxi-

mizing l(β̄). Let ˆ̄βH0 be the estimator of β̄ under H10, β̄H0 is the maximizer of l(β̄) under

the restriction β1 = β2 = β12 = 0 for testing H10. The likelihood ratio test (LRT) statistic

is

Tl = 2{l( ˆ̄β)− l( ˆ̄βH0)}.
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Routine analysis following Serfling (1980) shows that underH10, Tl converges in distribution

to a chi-square distribution with 3p degrees of freedom.

The Wald test is given by

Tw = ( ˆ̄β − ˆ̄βH0)
T [I( ˆ̄β)]( ˆ̄β − ˆ̄βH0),

where information matrix I( ˆ̄β) is defined in (2.6).

The score test statistic is given by

Ts = UT (β̄H0)I(
ˆ̄βH0)

−1U(β̄H0).

where the score function U(β̄H0) and information matrix I( ˆ̄β) is defined in (2.5) and (2.6)

respectively. Under H10, both Tw and Ts converge in distribution to a chi-square distribu-

tion with 3p degrees of freedom. Under H20, Tl, Tw, and Ts converge in distribution to a

chi-square distribution with p degrees of freedom. The asymptotic distributions of these

test statistics under H30 and H40 is chi-square with 2p degrees of freedom. The likelihood

ratio test rejects the null hypothesis H10 if Tl > χ2
3p,α, the upper α quantile of the chi-square

distribution with 3p degrees of freedom. The corresponding critical values for testing H20,

H30, and H40 are χ2
p,α, χ

2
2p,α and χ2

2p,α, respectively. Similar decision rules hold for the

Wald test (Tw) and score test (Ts).

2.5 Goodness-of-fit Tests

The estimation and testing procedures developed in section 2.3 and 2.4 are developed

under model (2.1) and (2.2). The validity of these prcedures depends on goodness of fit

of the multivariate mark-specific proportional hazard model. This section develops some

goodness of fit tests of model (2.1) and (2.2). Similar to Lin, Wei and Ying (1993) and

Spiekerman and Lin (1996), we derive the model checking test statistics based on the
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martingale residuals is defined as

M̂ki(t, v) =

∫ t

0

∫ v

a

Nki(ds, du)− Yki(s) exp(
ˆ̄βT Z̃ki(s, u))Λ̂0k(ds, du). (2.8)

Where ˆ̄β is the maximum partial likelihood estimator given in section 2.2, and Λ̂0k(t, k) is

defined in (2.7). M̂ki(t, v) may be interpreted as the difference at time t between the ob-

served and the predicted number of events with marks less than v for the ith subject in kth

stratum. Thus the martingale residuals are informative about the model misspecification.

It is easy to check that

K∑
k=1

nk∑
i=1

M̂ki(t, v) =
K∑
k=1

nk∑
i=1

∫ t

0

∫ v

a

[
Nki(ds, du)− Yki(s) exp(

ˆ̄βT Z̃ki(s, u))
Nk·(ds, du)

nkS
(0)
k (s, u, ˆ̄β)

]

=
K∑
k=1

nk∑
i=1

Nki(t, v)−
K∑
k=1

nk∑
i=1

∫ t

0

∫ v

a

Yki(s) exp(
ˆ̄βT Z̃ki(s, u))×

Nk·(ds, du)∑nk

j=1 Ykj(s)exp(
ˆ̄βT Z̃kj(s, u))

= 0.

For 1 ≤ k ≤ K, let

Wk(t, v, z) = n−1/2

nk∑
i=1

gk(Zki, z)M̂ki(t, v), (2.9)

here gk(Zki, z) is a 1 × r-vector of known bounded functions of Zki and z. For example,

one may take gk(Zki, z) = fk(Zki)I(Zki ≤ z), where fk(·) is a known function and I(Zki ≤

z) = (I(Z1ki ≤ z1), . . . , I(Zpki ≤ zp)), in which case r = p. We construct goodness of fit

test statistics based on the test process W (t, v, z) = (W1(t, v, z), . . . ,WK(t, v, z)). If model

(2.1) and (2.2) hold, the process W (t, v, z) fluctuates randomly about zero. Various test

statistics can be constructed by selecting different weight functions fk(·) and using different

functionals of the process W (t, v, z). Here we propose the supremum test statistics to test

the overall fit of the model:

S = sup
1≤k≤K

sup
t,v,z

|Wk(t, v, z)|. (2.10)



17

The distribution of W (t, v, z) and S can be approximated by using the Guassian multiplier

method (Lin, Wei and Ying, 1993) as we shall drive next.

Let S
(0)
kg (t, v, z, β̄) = n−1

k

∑nk

i=1 Yki(t) exp{β̄T Z̃ki(t, v)}gk(Zki, z) and S
(1)
kg (t, v, z, β̄) =

n−1
k

∑nk

i=1 Yki(t) exp{β̄T Z̃ki(t, v)}Z̃ki(t, v)⊗ gk(Zki, z), where A⊗ B is the Kronecker prod-

uct of matrices A and B. Let s
(0)
kg (t, v, z, β̄) = E(S

(0)
kg (t, v, z, β̄)) and s

(1)
kg (t, v, z, β̄) =

E(S
(1)
kg (t, v, z, β̄)). From the proof given in Appendix I, we have the following decom-

position.

Theorem 2.3.

Wk(t, v, z)

= n−1/2

K∑
l=1

nl∑
i=1

∫ τ

0

∫ v

0

I(l = k)I(s ≤ t)

[
gl(Zli, z)−

s
(0)
lg (s, u, z, β̄)

s
(0)
l (s, u, β̄)

]
Mli(ds, du)

+n−1/2(Rk(t, v, z))
T (Σ(β̄))−1

K∑
l=1

nl∑
i=1

{∫ τ

0

∫ 1

0

[
Z̃li(s, u)−

s
(1)
l (s, u, β̄)

s
(0)
l (s, u, b̄eta)

]
Mli(ds, du)

}T

+op(1).

(2.11)

where

Rk(t, v, z) = (nk/n)

∫ t

0

∫ v

a

(
s
(1)
k (s, x, β̄)⊗ s

(0)
kg (s, x, z, β̄)

s
(0)
k (s, x, β̄)

− s
(1)
kg (s, x, z, β̄)

)
λ0k(s, x) dsdx.

The expression (2.11) shows that the process Wk(t, v, z) is asymptotically equivalent

to the sum of iid terms involving the integrations with respect to Mli(s, u). The empirical

process theorem (Donsker theorem) can be used to show that the process W (t, v, z) =

(W1(t, v, z), . . . ,WK(t, v, z)) converges weakly to a multi-dimensional Gaussian random

field. Let {ξli, i = 1, . . . , nl, l = 1, . . . , K} be iid standard normal random variables. Using

the Gaussian multiplier technique of Lin, Wei and Ying (1993), the distribution ofW (t, v, z)

can be approximated by the distribution of W ∗(t, v, z) = (W ∗
1 (t, v, z), . . . , W

∗
K(t, v, z)),
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where for 1 ≤ k ≤ K,

W ∗
k (t, v, z)

= n−1/2

K∑
l=1

nl∑
i=1

∫ τ

0

∫ v

0

I(l = k)I(s ≤ t)

[
gl(Zli, z)−

S
(0)
lg (s, u, z, ˆ̄β)

S
(0)
l (s, u, z, ˆ̄β)

]
ξli Nli(ds, du)

+n−1/2(R̂k(t, v, z))
T (Σ(β̄))−1

K∑
l=1

nl∑
i=1

{∫ τ

0

∫ 1

0

[
Z̃li(s, u)−

S
(1)
l (s, u, β̄)

S
(0)
l (s, u, β̄)

]
ξliNli(ds, du)

}T

,

(2.12)

where

R̂k(t, v, z) = (nk/n)

∫ t

0

∫ v

0

(
S
(1)
k (s, x, ˆ̄β)⊗ S

(0)
kg (s, x, z,

ˆ̄β)

S
(0)
k (s, x, ˆ̄β)

− S
(1)
kg (s, x, z,

ˆ̄β)

)
dΛ̂0k(s, x).

Let

S∗
0 = sup

1≤k≤K
sup
t,v,z

|W ∗
k (t, v, z)|. (2.13)

The distribution of S can be approximated by the empirical distribution of S∗ obtained

repeatedly generating a large number of sets of iid random variables ξli while holding the

observed data fixed. We reject the model (2.1) and (2.2) at significance level α if S is

greater than the upper α quantile of S∗.

2.6 Simulation Study

2.6.1 Estimation and Hypothesis Testing Procedures

In this section, we use simulation to check the proposed estimation and hypothesis test

under model (2.1) and (2.2). The simulations are set up to mimic the STEP data. The

STEP data includes 1900 randomized men. It is a stratified random sample, about 1100

in the ”Ad5 ≤ 200” stratum and about 800 in the ”Ad5 > 200” stratum. The strata refer

to whether a volunteer has pre-existing immunity to the Adenovirus serotype 5 vector that

was used in the vaccine; 200 is the titer of neutralization (≤ 200 is low, > 200 is high).

The study enrolled people to the Ad5 ≤ 200 stratum first, and later amended the study

to include an additional enrolment of Ad5 > 200. For Ad5 ≤ 200 there were 52 total
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infections, pretty even in vaccine and placebo (28 vaccine; 24 placebo; annual incidences

4.2%, 3.5%). For Ad5 > 200 there were 30 total infections, 21 in vaccine and 9 in placebo

(annual incidence 5.4% and 2.3%).

We consider two strata K = 2 corresponding to two levels of Ad5 strata neutralization.

Set the baseline hazard λ0k(t, v) to be constants for k = 1 and 2, with λ01 = 0.4 and

λ02 = 0.6. The simulations are constructed for nk = 250, 400 and 500 in each stratum.

We set the covariate z as Bernoulli random variable with 0.5 probability of success where

z = 1 corresponds to the vaccine group and z = 0 for the placebo group. We generate the

censoring times from an exponential distribution, independent of (T, V ), and the follow-up

time is τ = 2.0. The following selections of β(v) specified in terms of (β0, β1, β2, β12) are

chosen to examine the proposed estimation and hypothesis testing procedures.

M10 : (β0, β1, β2, β12) = (−1.65, 0., 0., 0.);

M11 : (β0, β1, β2, β12) = (−1.65, .9, 0., 0.);

M12 : (β0, β1, β2, β12) = (−1.65, .9, .8, 0.);

M13 : (β0, β1, β2, β12) = (−1.65, .9, .8, .6).

M20 : (β0, β1, β2, β12) = (−3.5, .3, .1, 0.);

M21 : (β0, β1, β2, β12) = (−3.5, .3, .1, 5.0);

M22 : (β0, β1, β2, β12) = (−3.5, .3, .1, 5.5);

M23 : (β0, β1, β2, β12) = (−3.5, .3, .1, 6.0).

M30 : (β0, β1, β2, β12) = (−1.65, 1.2, 0., 0.);

M31 : (β0, β1, β2, β12) = (−1.65, 0.8, 1.0, 0.);

M32 : (β0, β1, β2, β12) = (−1.65, 0.5, 1.2, 0.);

M33 : (β0, β1, β2, β12) = (−1.65, 0.6, 0.8, 1.0);

M34 : (β0, β1, β2, β12) = (−1.65, 0.4, 0.9, 1.2).

Here M10 is a model under the null hypothesis H10 that no β except β0 is nonzero.

Under M11, the vaccine efficacy depends on only the first mark. Under M12, the vaccine

efficacy depends on both marks but not the intersection of these marks. Under M13, the

vaccine efficacy depends on both marks and the intersection of these marks. M20 is a

model under the null hypothesis H20 that all βs except β12 is nonzero. And M30 is a
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model under the null hypothesis H30 that no beta except β1 is nonzero. The average

vaccine efficacy defined as AV E =
∫ 1

0

∫ 1

0
(1 − eβ(v))dv1dv2 is around 50%. Table 2.1, 2.2

and 2.3 list the bias and the standard deviation of the estimators (SSE), the average of

the estimated standard deviation (ESE) and the coverage probability (CP) for β for total

sample size n = n1 + n2 = 500, 800, and 1000. Those tables show that the biases of

the estimators are small, ESE approximates SSE well and the coverage probability are

very close to their nominal level of 0.95. Table 2.4, 2.5 and 2.6 summarize the empirical

sizes and powers of the likelihood ratio test, Wald test and the score test for testing

H10, H20 and H30 at the significance level α = 0.05. Those tables show that the empirical

sizes of all these tests are close to 0.05. The likelihood ratio test has better power than

Wald and score test. The departure from H10 increases as the simulation model moves

from M11 to M13, corresponding power also increases. Similarly the power for testing H20

increases in the direction M21 to M23. And the power for testing H30 also increases in

the direction M31 to M34. And naturally, the power increases as the sample size increase.

The coverage probabilities for β0, β1, β2 and β12 are also listed to demonstrate that the

proposed maximum partial likelihood methods work very well.

2.6.2 Goodness-of-fit Procedure

In this section, we conduct a simulation study to check the finite sample performance

of the proposed testing procedure. The size of the test is examined using the following

simple mark-specific proportional hazards model:

M40 : λk(t, v|z) = λ0ke
(β0+β1v1+β2v2+β12v1v2)T zk , k = 1, 2, (2.14)

where λ01 = 0.4, λ02 = 0.6 and (β0, β1, β2, β12) = (−1.65, .4, .9, 1.2). zki takes value 0 or

1 as a treatment indicator. We generate covariates Zki from Bernoulli distribution with

P (Zki = 1) = 0.5. The censoring times are generated from an exponential distribution,

independent of (Tki, Vki).

Table 2.11 shows the empirical sizes of the test for total sample sizes of n = n1 + n2 =

100, 200 and 300. The empirical sizes are calculated based on 1000 simulations and 500
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Gaussian multiplier samples. And the emperical size of all those tests are shown to be very

close to 0.05.

To evaluate the power of proposed test, consider the model

λk(t, v|z) = λ0k(t, v)e
(−atb+0.4v1+0.6v2)z, k = 1, 2, (2.15)

where λ0k = abkt(b−1)eat
b−0.4v1−0.6v2 for k = 1 and 2. Again we take Zki as a Bernoulli

random variable with P (Zki = 1) = 0.5. Model (2.15) is not a mark-specific proportional

hazard model since the hazard ratio λk(t, v|Zki = 1)/λk(t, v|Zki = 0) = eat
b−0.4v1−0.6v2

changes with time. We consider the following choices of (a,b):

(M41) : (a, b) = (0.20, 0.30);

(M42) : (a, b) = (0.25, 0.40);

(M43) : (a, b) = (0.30, 0.50). As a and b increases, the hazard ratio under (2.15) increases

faster with t, which represents an increases departure from the null hypothesis. For each of

the above selected (a, b), random right censoring times are generated from an exponential

distribution, independent of (Tki, Vki). sample sizes of n = n1 + n2 = 100, n = 200 and

300 are studied. The empirical power of the test at the significance level 0.05 under (2.15)

for different choice of (a, b) are given in Table 2.11. Each entry of the table is based on

1000 simulations and 500 Gaussian multiplier samples. The power of the test increases

with the increasing of (a, b), and also increases with sample size. The limited simulation

study demonstrates the validity of the proposed goodness of fit testing procedure. The test

provides a valuable tool to check the adequacy of the stratified mark-specific proportional

hazard model (2.1).

2.7 Application to the STEP Data

2.7.1 Estimation Procedure

We now illustrate our model with an analysis of the STEP data. The ‘Step’ trial

randomized 1836 HIV negative men to receive either the Merck Adenovirus 5 vaccine

(MRKAd5) or placebo, and was conducted in North and South America (Buchbinder et
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al., 2008). Women were also enrolled, but because only 1 became HIV infected, essentially

all of the information about vaccine efficacy is restricted to men. Of the 1836 men 88

acquired HIV infection, of which 66 had between 5 and 14 HIV sequences measured. The

22 men with no sequence data are excluded from the analysis. The randomization was

stratified by whether a volunteer has pre-existing immunity to the Adenovirus serotype 5

vector that was used in the vaccine, defined by an Ad5 neutralization titer below versus

above 200 (sample sizes 1058 and 778, respectively), such that the method is implemented

accounting for these strata. one. In this data set, we focus on men only, because only one

woman got infected.

We define the mark as the HIV genetic distance for a subject whose HIV infection

was diagnosed in the acute phase; diagnosis in the acute phase means that the HIV-

specific PCR test is positive but the ELISA antibody test is negative. About 50% of

the infections in STEP were diagnosed in this way. The genetic distance is defined as

the percent mismatch of amino acids (infecting strain compared to the strain inside the

vaccine). Those amino acids are the HIV Gag protein that are in cytotoxic T lymphocyte

epitopes and are recognized by at least 10% of vaccine recipients at the Week 8 visit.

For Ad5 ≤ 200 there were 54 total infections, 29 infections in the vaccine group (7 of

which with missing marks) and 25 infections in the placebo group (with 8 missing marks).

The annual incidences were 5.3% for the vaccine and 4.7% for the placebo. For Ad5 > 200

there were 33 total infections (7 of them with missing marks), 24 infections in the vaccine

(with 7 missing marks) and 9 infections in placebo. The annual incidences were 6.1% for

the vaccine and 2.3% for the placebo.

Two factors motivate the need to consider multiple genetic distances for the sieve anal-

ysis of the Step data. First, the MRKAd5 vaccine contained three HIV genes: Gag, Pol,

and Nef. As a control it is also of interest to consider genetic distances to all of the HIV

vaccine genes combined not included in the vaccine, env-rev-tat-vif-vpr-vpu, for which the

HXB2 reference strain is used. Second, as described in greater detail in the clinical paper

(Rolland et al., 2011), two different bioinformatics methods, NetMHC (Buus, 2003), and

Epipred (Heckerman, 2007) were used to predict for each infected subject, based on their
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HLA alleles, the set of HIV peptides that could potentially constitute T cell epitopes and

hence could potentially cause vaccine-protection. NetMHC predicts binding of peptides to

4-digit HLA alleles; the software discriminates on the basis of quantitative peptide MHC

binding data and discerns strong and weak binders. In contrast, Epipred identifies known

and potential HIV-1 CTL epitope motifs using 2-digit HLA information. In addition to the

known HLA-restricted epitopes previously reported at the Los Alamos National Laborato-

ry HIV database (HIVDB), we accepted all epitope motifs with a posterior probability of >

0.8. HLA-specific epitopes were predicted in the MRKAd5 HIV-1 Gag-Pol-Nef vaccine se-

quences and in all proteins from HXB2 (available at the HIVDB, http:www.hiv.lanl.gov).

Using Epipred, the first step in computing the distance between a subject’s sequences

and the reference sequence is to compute the nonparametric maximum likelihood estimate

(NPMLE) of the number of peptides shared between the reference sequence and the sub-

ject’s sequences, defined as the sum of estimated epitope-probabilities across all 8, 9, 10,

11-mers in the reference sequence that are exactly matched in all of the subject’s sequences.

Then, the distance is the NPMLE of the percent of peptides mismatched in at least one

of the subject’s sequences, defined as one minus the ratio of the NPMLE of the number of

shared peptides (computed in the first step) and the NPMLE of the number of peptides

in the reference sequence. Because the NetMHC software returns results of non-binder,

weak binder, or strong binder, we defined the distance as the estimated percent of epitopes

mismatched in at least one of a subject’s sequences, the latter defined as the number of

weak or strong binding 8, 9, 10, or 11-mers in the reference sequence that mismatch the

corresponding peptide in at least one of the subject’s sequences.

We consider distances defined using the reference HIV regions Gag, Pol, Nef, Gag-Pol-

Nef, env-rev-tat-vif-vpr-vpu, as well as using the two bioinformatics prediction methods. In

the following table, we choose different combinations of reference region and bioinformatics

method as bivariate marks (v1, v2), where (except for the last control case) we always in-

clude at least one Gag distance, given the hypothesis that this gene is most important for

protection. We analyze the data with the mark specific proportional hazard model (2.1)

where the covariate z is the indicator for the treatment, with z = 1 for the vaccine group
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and 0 for placebo group, and β(v) takes the form (2.2).

Model mark type ref gene

S1 v1 Epipred Step Gag

v2 Epipred Step Pol

S2 v1 Epipred Step Gag

v2 Epipred Step Nef

S3 v1 Epipred Step Gag

v2 Epipred HXB2 env-rev-tat-vif-vpr-vpu

S4 v1 netMHC Step Gag

v2 netMHC Step Pol

S5 v1 netMHC Step Gag

v2 netMHC Step Nef

S6 v1 netMHC Step Gag

v2 netMHC HXB2 env-rev-tat-vif-vpr-vpu

S7 v1 Epipred Step Gag

v2 netMHC Step Gag

S8 v1 Epipred HXB2 env-rev-tat-vif-vpr-vpu

v2 netMHC HXB2 env-rev-tat-vif-vpr-vpu

In the tables 2.7, 2.8, we compare the result using original and standardized marks.

Here we standardize mark by subtract the minimum one in that group, then divide the

range (which equals the maximum minus minimum mark ). Since the support of the

original marks (v1, v2) is not (0, 1), we modify the average vaccine efficacy (AVE) as

AV E∗ =

∫ V M
1

V m
1

∫ V M
2

V m
2

(1− eβ(v))dv1dv2

(V M
1 − V m

1 )(V M
2 − V m

2 )
,

here V m
i and V M

i are the minimum and maximum of mark Vi, i = 1, 2. Table 2.7 shows

that most AV E∗ are negative, that because there are more failures in vaccine group than

in placebo group. And the large negative AVEs for S4-S7 are not valid, because from the
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figures 2.1 to 2.8, we can see the failure time’s range for vaccine and placebo group are

quite different. In that case the model (2.1) and (2.2) are not appropriate for these data.

In addition, we use likelihood ratio test, Wald test and score test to test H10 : β1 = β2 =

β12 = 0, which indicates that the relative risks does not depend on marks; H20 : β12 = 0,

which means the distances v1 and v2 do not have confounding effects on relative risks;

H30 : β2 = β12 = 0, implies the relative risks are not affected by v1. Table 2.9 and 2.10

show the p-value of likelihood ratio test, Wald test and score test for H10, H20 and H30.

From the goodness-of-fit we checked later, only S2 and S8 fit the proposed model. And

under the selection of S8, we may reject H10 and H30 under nominal level 0.05, and can

also reject H20 under nominal level 0.10.

2.7.2 Goodness-of-fit Procedure

Next we check the goodness of fit of model (2.1) and (2.2) for the real date STEP

based on the previous analysis which are carried out, the test is conducted at the sig-

nificance level α = 0.05, and by setting fk(z) = 1. Following the procedure given

in section 2.5, we check if S = sup1≤k≤Ksupt,v,z|Wk(t, v, z)| falls below 0.95 quantile of

S∗ = sup1≤k≤Ksupt,v,z|W ∗
k (t, v, z)|. The asymptotic distribution of S∗ can be approximat-

ed by repeatedly generating sets of independent standard normal random variables while

holding the observed data fixed. We generate 500 copies of S∗ and calculate the p-value

as the percentage of values of S∗ greater than S. Table 2.12 list the p-value of the test

statistic S for the STEP data for different combinations of the marks. It shows that except

S2 and S8, other selections of marks do not fit our proposed model. For S4, S5, S6 and S7,

this cause from the fact that the range of V1 being too short for the placebo compared to

the vaccine group. In the future, it is worth to look at the analysis for S4-S7 based on a

subset where V1 has the same range for both the vaccine and placebo and V2 has the same

range for both the vaccine and placebo.
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2.8 Complements

In this section, we give the derivations of the main results presented in previous sections

of this chapter. First we present the following result that for proving the asymptotic

normality of ˆ̄β(v) and provides important insight into the constructions of the confidence

bands and test statistics that follow. Let

W̃A(v) = n−1/2

K∑
k=1

nk∑
i=1

∫ v

0

∫ τ

0

A(u)

[
Z̃ki(s, u)−

s
(1)
k (s, u, β̄)

s
(0)
k (s, u, β̄)

]
Mki(ds, du), (2.16)

where A(u) is a deterministic p× p matrix with bounded components.

Lemma 2.1. Assume that each component of the p× p matrix A(v), v ∈ [a, b], is continu-

ous. Under conditions (A.1)–(A.2), W̃A(v) converges weakly to a p-dimensional mean-zero

Gaussian martingale, WA(v), with continuous sample paths on v ∈ [a, b]. The covariance

matrix of WA(v) is given by Cov(WA(v)) =
∫ v

a
A(u)Σ(u)A(u) du. The estimator of Σ(u)

is given by

Σ̂Â(v) = n−1

K∑
k=1

nk∑
i=1

∫ v

a

∫ τ

0

Â(u)Jkn(t, β̂(u))Â
T (u)Nki(dt, du), (2.17)

where Â(v) is a consistent estimator of A(v) uniformly in v ∈ [a, b] ⊂ [0, 1]. It can be

shown that Σ̂A(v) is a consistent estimator of Cov(WA(v)).

Proof of Lemma 2.1.

It is easy to check that the conditions of Lemma 1 of Sun and Wu (2005) are satisfied

under Condition A. It follows that W̃A(v) converges weakly to a vector of continuous mean-

zero Gaussian random processes, WA(v), v ∈ [0, 1]2. Now we show that WA(v) has indepen-

dent increments. Let wki(v) =
∫ v

a

∫ τ

0
A(u)

[
Z̃ki(t, u) − s

(1)
k (t, u, β̄)/s

(0)
k (t, u, β̄)

]
Mki(dt, du).

Then W̃A(v) = n−1/2
∑n

i=1wki(v). For 0 ≤ v1 ≤ v2 ≤ 1, the covariance matrix of WA(v1)

and WA(v2) − WA(v1) is equal to E{wki(v1)(wki(v2) − wki(v1))
T}. Since Mki(t, v1) and

Mki(t, v2) −Mki(t, v1), 0 ≤ t ≤ τ , are orthogonal square integrable martingales, it follows
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that E{wki(v1)(wki(v2)−wki(v1))
T} = 0. Hence WA(v), v ∈ [0, 1], is a vector of mean-zero

Gaussian random processes with independent increments.

Further, the covariance matrix of WA(v) is equal to

E{wi(v)(wi(v))
T}

= E

{∫ v

0

∫ τ

0

A(u)

[
Zki(t)−

s
(1)
k (t, u, β̄)

s
(0)
k (t, u, β̄)

]⊗2

A(u)Nki(dt, du)

}
= E

{∫ v

0

∫ τ

0

A(u)

[
Zki(t)−

s
(1)
k (t, u, β̄)

s
(0)
k (t, u, β̄)

]⊗2

A(u)Yki(t)exp(β̄
T Z̃ki(t))λ0k(t, u)

=

∫ v

0

A(u)Σ(u)A(u) du.

This completes the proof of Lemma 2.1. Q.E.D.

Lemma 2.2. Under conditions (A.1)-(A.2), S
(j)
k (t, v, β̄) converge to s

(j)
k (t, v, β̄) in proba-

bility uniformly in (t, v) ∈ [0, τ ]× [0, 1]2 × B4p as nk → ∞, for j = 0, 1, 2 and 1 ≤ k ≤ K.

Proof of Lemma 2.2.

Let S
(j)
ki (t, v, β̄) = Yki(t)exp{β̄T Z̃ki(t, v)}Z̃ki(t, v)

⊗j, then S
(j)
k = n−1

k

∑nk

i=1 S
(j)
ki (t, v, β̄).

We show the lemma for j = 0. The proofs for j = 1 and 2 follow similarly. Let ωki =

(Xki, Zki), and Zki ∈ [−B,B]p for some B > 0. ωki, i = 1, . . . , nk, is a random sample from

a probability distribution Pk on a measurable space (Xk,Ak), where Xk = [0, τ ]× [−B,B]p

and Ak is its Borel σ-field. Let F be the class of all coordinate projections ft,v,β̄(ωki) :

Xk −→ R, where ft,v,β̄ = Ski(t, v, β̄), for (t, v, β̄) ∈ [0, τ ] × [0, 1]2 × B. Then Sk(t, v, β̄) =

n−1
k

∑nk

i=1 ft,v,β̄(ωki). Let ∥ft,v,β̄∥P,r = (Pk|ft,v,β̄|r)1/r = (E|Ski(t, v, β̄)|r)1/r be Lr(Pk)-norm

of ft,v,β̄. Next, we show that F is Glivenko-Cantelli. Since Zki(·) is of bounded variation,

for simplicity we assume that Zki(·) is an nonnegative monotone increasing process. In

general, Zki(·) can be expressed as the difference of two nonnegative monotone increasing

processes plus a constant. In this case, the class of functions of interest, F is the product

of several Glivenko-Cantelli (Donsker) classes, therefore.

Let {th}, {vj} and {β̄m} be the grid points of finite partitions of the intervals [0, τ ],

[0, 1]2, and B, respectively. Let {th′ , th}, {vj′ , vj} and {β̄m
′ , β̄m} be the grid points on the
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opposite ends of a hyper-cubic of the partitions such that 0 ≤ th − th′ ≤ ϵ, 0 ≤ vj − vj′ ≤ ϵ

and 0 ≤ β̄m − β̄m′ ≤ ϵ for ϵ > 0. Define the bracketing functions lh′j′m′ = S
(0)
i (th′ , vj′ , β̄m′ )

and uhjm = S
(0)
i (th, vj, β̄m). Then for any ft,v,β̄ ∈ F , there is a bracket [lh′

j
′
m

′ , uhjm] such

that ft,v,β̄ ∈ [lh′
j
′
m

′ , uhjm].

∥uhjm − lh′
j
′
m

′∥P,2 ≤ ∥S(0)
ki (th, vj, β̄m)− S

(0)
ki (th′ , vj′ , β̄m

′ )∥P,2

= ∥Yki(th)exp{β̄T
mZ̃ki(th, vj)}

−Yki(th′ )exp{β̄T
m

′ Z̃ki(th′ , vj′ )}∥p,2

≤ [C1∥th − th′∥+ C2∥vj − vj′∥+ C3∥β̄m − β̄m
′∥)]1/2

≤ Cϵ1/2,

where C1, C2, C3 and C are some positive constants. Hence, the bracketing number

N[ ](ϵ
1/2,F , L2(Pk)) is of the polynomial order (1/ϵ)p+3. Thus N[ ](ϵ,F , L2(Pk)) is of the

order (1/ϵ)2(p+3). By the Glivenko–Cantelli Theorem (Theorem 19.4 of van der Vaart ),

S
(j)
k (t, v, β̄) converges in probabitlity uniformly to s

(j)
k (t, v, β̄) for (t, v, β̄) ∈ [0, τ ]×[0, 1]2×B.

Proof of Theorem 2.1.

Consider

X(β̄) = n−1(l(β̄)− l(β̄0))

= n−1

K∑
k=1

nk∑
i=1

∫ 1

0

∫ τ

0

[
(β̄ − β̄0)

T Z̃ki(s, u)− log
[ S(0)

k (s, u, β̄)

S
(0)
k (s, u, β̄0)

]]
Nki(ds, du)

Note that under condition (A.2),

∂2X(β̄)/∂β̄2 = −n−1

K∑
k=1

nk∑
i=1

∫ 1

0

∫ τ

0

[
S
(0)
k (s, u, β̄)

S
(0)
k (s, u, β̄0)

− (
S
(0)
k (s, u, β̄)

S
(0)
k (s, u, β̄0)

)⊗2

]
Nki(ds, du)

= −n−1I(β̄).
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converges in probability to:

−
k∑

k=1

Pk

∫ 1

0

∫ τ

0

s
(2)
k (s, u, β̄)

s
(0)
k (s, u, β̄)

− s
(1)
k (s, u, β̄)⊗2

s
(0)
k (s, u, β̄)

s
(0)
k (s, u, β̄0)λ0ki(ds, du)dsdu,

uniformly in β̄ ∈ B by lemma 2.2 and by the uniform convergence of n−1
k

∑nk

i=1Nki(t, v)
P−→∫ t

0

∫ v

0
λ0k(s, u)S

(0)
k (s, u, β̄0)dsdu in (t, v) ∈ [0, τ ] × [0, 1]2 (Gilbert al., 2004). The limiting

matrix function is a minus positive definite matrix at β̄ = β̄0, Hence, X(β) converges in

probability to a function of β̄ which is concave with a unique maximum at β̄0. Since β̄ is

the maximizer of X(β), we have ˆ̄β converges in probability to β̄0 as n → ∞ by Var der

Vaart (1998).

Proof of Theorem 2.2.

Note that U( ˆ̄β) − U(β̄0) = I(β̄∗)( ˆ̄β − β̄0), where β̄∗ is on the line segment between ˆ̄β

and β̄0. By the uniform convergence of n−1I(β̄)
P−→−Σ(β̄) in probability in β ∈ B and the

consistency of ˆ̄β to β̄0, we have

n1/2( ˆ̄β − β̄) = −(I(β̄∗)/n)−1n−1/2U(β̄0)

= (Σ(β̄0))
−1n−1/2U(β̄0) + op(1).

It remains to show that: n−1/2U(β̄0)
D−→N(0,Σ(β̄0)).

let Mki(t, v) = Nki(t, v)−
∫ v

0

∫ t

0
Yki(s)λki(s, u)dsdu, then

n−1/2U(β̄) = n−1/2

K∑
k=1

nk∑
i=1

∫ 1

0

∫ τ

0

[Z̃ki(s, u)−
S
(1)
k (t, u, β̄)

S
(0)
k (t, u, β̄)

]Nki(ds, du)

= n−1/2

K∑
k=1

nk∑
i=1

∫ 1

0

∫ τ

0

[
Z̃ki(s, u)−

S
(1)
k (t, u, β̄)

S
(0)
k (t, u, β̄)

]
Mki(ds, du) +

n−1/2

K∑
k=1

nk∑
i=1

∫ 1

0

∫ τ

0

[
Z̃ki(s, u)−

S
(1)
k (t, u, β̄)

S
(0)
k (t, u, β̄)

]
exp(β̄TZki(s, u)) ∗

Yki(s)λ0k(s, u)dsdu

= n−1/2

K∑
k=1

nk∑
i=1

∫ 1

0

∫ τ

0

[
Z̃ki(s, u)−

S
(1)
k (t, u, β̄)

S
(0)
k (t, u, β̄)

]
Mki(ds, du)
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= n−1/2

K∑
k=1

nk∑
i=1

∫ 1

0

∫ τ

0

[
Z̃ki(s, u)−

s
(1)
k (t, u, β̄)

s
(0)
k t, u, β̄)

]
Mki(ds, du) + op(1)

= W̃I(1) + op(1).

By lemma 2 of Gilber, Mckeague and Sun (2006). From Lemma 2.1 , W̃I(1) and thus

n−1/2U(β̄) converges to N(0,Σ(β̄)), This completes the proof. Q.E.D.

Proof of Theorem 2.3.

Consider the following decomposition:

M̂ki(t, v) =

∫ t

0

∫ v

0

[Nki(ds, du)− Yki(s) exp(
ˆ̄βT Z̃ki(s, u))Λ̂0k(ds, du)]

= Mki(t, v) +

∫ t

0

∫ v

0

Yki(s) exp((β̄
T Z̃ki(s, u))Λ0k(ds, du)

−
∫ t

0

∫ v

0

Yki(s) exp(
ˆ̄βT Z̃ki(s, u))Λ̂0k(ds, du)

= Mki(t, v)−
∫ t

0

∫ v

0

Yki(s) exp(
ˆ̄βT Z̃ki(s, u))[Λ̂0k(ds, du)− Λ0k(ds, du)]

−
∫ t

0

∫ v

0

Yki(s)[exp(
ˆ̄βT Z̃ki(s, u))− exp(β̄T Z̃ki(s, u)]Λ0k(ds, du)]. (2.18)

Note that

Λ̂0k(t, v)− Λ0k(t, v) =

∫ t

0

∫ v

0

Nk·(ds, du)

nkS
(0)
k (s, u, ˆ̄β)

− Λ0k(t, v)

=

∫ t

0

∫ v

0

[
1

nkS
(0)
k (s, u, ˆ̄β)

− 1

nkS
(0)
k (s, u, β̄)

]
Nk·(ds, du)

+

∫ t

0

∫ v

0

Mk·(ds, du)

nkS
(0)
k (s, u, β̄)

+ op(n
−1/2
k )

=

∫ t

0

∫ v

0

(S
(1)
k (s, u, β̄))T (β̄ − ˆ̄β)

nkS
(0)
k (s, u, ˆ̄β)S

(0)
k (s, u, β̄)

Nk·(ds, du)

+

∫ t

0

∫ v

0

Mk·(ds, du)

nkS
(0)
k (s, u, β̄)

+ op(n
−1/2
k )
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=

∫ t

0

∫ v

0

(S
(1)
k (s, u, β̄))T (β̄ − ˆ̄β)λ0k(s, u)

S
(0)
k (s, u, ˆ̄β)

dsdu

+

∫ t

0

∫ v

0

Mk·(ds, du)

nkS
(0)
k (s, u, β̄)

+ op(n
−1/2
k ). (2.19)

Where Mk·(t, v) =
∑

i=1k Mki(t, v). Plugging (2.19) into (2.18), we have

Wk(t, v, z) = n−1/2

nk∑
i=1

gk(Zki, z)Mki(t, v)

+nkn
−1/2

∫ t

0

∫ v

0

S
(0)
kg (s, u, z, β̄)[(S

(1)
k (s, u, β̄))T ( ˆ̄β − β̄)]

S
(0)
k (s, u, β̄)

λ0k(s, u) dsdu

−n−1/2

∫ t

0

∫ v

0

S
(0)
kg (s, u, z, β̄)

S
(0)
k (s, u, β̄)

Mk·(ds, du)

−nkn
−1/2

∫ t

0

∫ v

0

( ˆ̄β − β̄)TS
(1)
kg (s, u, z, β̄)λ0k(s, u) dsdu+ op(1). (2.20)

From the proof of Theorem 2.2, we have n1/2( ˆ̄β − β̄) = (Σ(β̄))−1W̃I(1) + op(1), then

the second term of (2.20) equals to

(nk/n)

{∫ t

0

∫ v

0

[S
(1)
k (s, u, β̄)⊗ S

(0)
kg (s, u, z, β̄)]

Tλ0k(s, u)

S
(0)
k (s, u, β̄)

dsdu

}
Σ−1(β̄)W̃I(1) + op(1)

Similarly, the fourth term of (2.20) is equal to

(nk/n)

{∫ t

0

∫ v

a

[S
(1)
kg (s, u, z, β̄)]

Tλ0k(s, u) dsdu

}
Σ−1(β̄)W̃I(1) + op(1).
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Bringing the above expressions into (2.20) , we have

Wk(t, v, z)

= n−1/2

nk∑
i=1

∫ t

0

∫ v

0

[
gk(Zki, z)−

S
(0)
kg (s, u, z, β̄)

S
(0)
k (s, u, z, β̄)

]
Mki(ds, du) +

nk

n

∫ t

0

∫ v

0

(
S
(1)
k (s, u, β̄)⊗ S

(0)
kg (s, u, β̄)

S
(0)
k (s, u, β̄)

− S
(1)
kg (s, u, z, β̄)

)T

λ0k(s, u) dsdu(Σ(β̄))
−1W̃I(1)

+op(n
1/2
k )

= n−1/2

nk∑
i=1

∫ t

0

∫ v

0

[
gk(Zki, z)−

S
(0)
kg (s, u, z, β̄)

S
(0)
k (s, u, β̄)

]
Mki(ds, du) + n−1/2(Rk(t, v, z))

T ∗

(Σ(β̄))−1

K∑
l=1

nl∑
i=1

{∫ τ

0

∫ 1

0

[
Z̃li(s, u)−

S
(1)
l (s, u, β̄)

S
(0)
l (s, u, β̄)

]
Mli(ds, du)

}T

+ op(1)

= n−1/2

K∑
l=1

nl∑
i=1

∫ τ

0

∫ v

0

I(l = k)I(s ≤ t)

[
gl(Zli, z)−

S
(0)
lg (s, u, z, β̄)

S
(0)
l (s, u, β̄)

]
Mli(ds, du)

+n−1/2(Rk(t, v, z))
T (Σ(β̄))−1

K∑
l=1

nl∑
i=1

{∫ τ

0

∫ 1

0

[
Z̃li(s, u)−

S
(1)
l (s, u, β̄)

S
(0)
l (s, u, β̄)

]
Mli(ds, du)

}T

+op(1).

(2.21)

By the uniform convergence of S
(0)
k (s, u, β̄), S

(1)
k (s, u, β̄), S

(0)
kg (s, u, z, β̄), and S

(1)
kg (s, u, z, β̄)

to s
(0)
k (s, u, β̄), s

(1)
k (s, u, β̄), s

(0)
kg (s, u, z, β̄), and s

(1)
kg (s, u, z, β̄) in (s, u) ∈ [0, τ ]×[0, 1]2 in prob-

ability, respectively. And by the weak convergence of n
−1/2
k

∑nk

i=1

∫ t

0

∫ v

0

S
(0)
kg (s,u,z,β̄)

S
(0)
k (s,u,β̄)

Mki(ds, du)

and n
−1/2
k

∑nk

i=1

∫ τ

0

∫ 1

0

S
(1)
k (s,u,β̄)

S
(0)
k (s,u,β̄)

Mki(ds, du) for k = 1, . . . K, the terms S
(0)
k (s, u, β̄), S

(1)
k (s, u, β̄),

S
(0)
kg (s, u, z, β̄), and S

(1)
kg (s, u, z, β̄) can be replaced by their expected values respectively.

This complete the proof. Q.E.D.
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Table 2.1: Summary statistics for the estimators ˆ̄β and coverage probabilities of the 95%
simultaneous confidence intervals for (β0, β1, β2, β12) under model M10.

(n1, n2) Coefficient Bias SSE ESE CP
(250, 250) β0 −0.0846 0.9893 0.9150 .947

β1 0.0387 1.7113 1.5916 .953
β2 0.0648 1.7045 1.5952 .960
β12 0.0696 2.917 2.7694 .955

(400, 400) β0 −0.0451 0.7190 .7046 .960
β1 0.0410 1.2005 1.2230 .966
β2 0.0160 1.2336 1.2222 .963
β12 −0.0382 2.0698 2.1219 .965

(500, 500) β0 −0.04244 0.6217 0.6247 .954
β1 0.0502 1.0950 1.0813 .954
β2 0.0047 1.0686 1.0860 .952
β12 0.0099 1.8662 1.8778 .956
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Table 2.2: Summary statistics for the estimators ˆ̄β and coverage probabilities of the 95%
simultaneous confidence intervals for (β0, β1, β2, β12) under model M20.

(n1, n2) Coefficient Bias SSE ESE CP

(250, 250) β0 −0.0210 0.7824 0.7884 .964
β1 0.0174 1.2611 1.2736 .968
β2 0.0100 1.2865 1.2824 .954
β12 0.0005 2.0566 2.0802 .958

(400, 400) β0 −0.0340 0.6226 0.6171 .957
β1 0.0211 0.9909 0.9945 .962
β2 0.0308 1.00038 1.0020 .962
β12 0.0080 1.6225 1.6216 .963

(500, 500) β0 −0.0338 0.5483 0.5475 .957
β1 0.0377 0.8769 0.8829 .960
β2 0.0492 0.9084 0.8905 .950
β12 −0.0437 1.4557 1.4412 .950
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Table 2.3: Summary statistics for the estimators ˆ̄β and coverage probabilities of the 95%
simultaneous confidence intervals for (β0, β1, β2, β12) under model M40.

(n1, n2) Coefficient Bias SSE ESE CP
(250, 250) β0 −0.0428 0.8601 0.8208 .957

β1 0.0686 1.33300 1.2942 .957
β2 −0.0021 1.4785 1.4268 .960
β12 −0.0177 2.2907 2.468 .961

(400, 400) β0 −0.0179 0.6560 0.6356 .946
β1 0.0043 1.0254 1.0026 .946
β2 −0.0703 1.1276 1.1045 .950
β12 0.0816 1.7516 1.7407 .954

(500, 500) β0 −0.0221 0.5761 0.5655 .950
β1 0.0379 0.9161 0.8921 .951
β2 0.0007 1.0051 0.9813 .943
β12 −0.0091 1.5954 1.5482 .945
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Table 2.4: For testing H10 : β1 = β2 = β12 = 0. The empirical size and power of likelihood
ratio test, Wald test and score test at the significance level 0.05.

Model n1(Trt, P lb) n2(Trt, P lb) AVE LRT Wald Score CP (β0, β1, β2, β12)

M10 250(11,46) 250(16,60) 80.8 6.7 5.2 5.7 94.7,95.3,96.0,95.5
400(18,73) 400(26,97) 80.8 4.4 4.0 4.5 96.0,96.6,96.3,96.5
500(22,92) 500(33,121) 80.8 4.8 4.2 4.4 95.4,95.4,95.2,95.6

M11 250(17,46) 250(25,60) 68.9 56.5 55.8 55.9 95.1, 95.2, 95.1, 95.7
400(28,73) 400(40,97) 68.9 64.8 63.8 64.7 96.0, 96.4, 96.0, 95.6
500 (35,92) 500(50,121) 68.9 74.0 72.4 72.8 94.5, 94.7, 95.8, 95.1

M12 250(25,46) 250(35,60) 52.3 56.4 53.2 54.9 95.5,95.7,94.9,95.6
400(41,74) 400(51,97) 52.3 74.1 73.2 73.8 95.8,95.7,95.8,95.3
500(51,92) 500(72,121) 52.3 82.4 81.4 81.8 95.1,96.2,95.2,95.6

M13 250(30,46) 250(42,60) 41.4 76.4 72.9 75.9 93.5,93.2,94.0,94.0
400(49,74) 400(67,97) 41.4 91.7 91.2 91.5 95.3,95.3,94.6,95.0
500(61,93) 500(84,121) 41.4 97.7 97.7 97.7 94.7,95.0,94.2,94.5
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Table 2.5: For testing H20 : β12 = 0. The empirical size and power of likelihood ratio test,
Wald test and score test at the significance level 0.05.

Model n1(Trt, P lb) n2(Trt, P lb) AVE LRT Wald Score CP (β0, β1, β2, β12)

M20 250(25,46) 250(36,60) 52.3 4.9 4.2 4.6 96.4,96.8,95.4,95.8
400(41,74) 400(57.96) 52.3 3.9 3.8 3.8 95.7,96.2,96.2,96.3
500(51,92) 500(71,120) 52.3 5.0 5.0 5.0 95.7,96.0,95.0,95.0

M21 250(17,45) 250(25,60) 68.9 31.0 35.3 33.5 95.5, 96.6, 96.7, 96.2
400(28,74) 400(40,96) 68.9 38.8 42.2 41.5 94.6, 95.0, 94.5, 94.0
500 (35,93) 500(50,121) 68.9 50.8 54.8 53.4 95.9, 96.1, 94.8, 95.5

M22 250(23,46) 250(32,60) 57.9 34.0 39.3 38.2 96.5, 97.3, 96.5, 96.7
400(37,74) 400(52,97) 57.9 51.0 55.2 54.2 95.4, 95.3, 95.8, 95.6
500 (46,92) 500(65,121) 57.9 60.4 63.5 62.8 95.5, 96.0, 95.0, 96.3

M23 250(30,46) 250(41,60) 42.1 40.0 43.3 42.0 95.7, 96.4, 95.4, 95.4
400(48,74) 400(67,97) 42.1 53.7 57.6 56.8 94.7, 94.6, 95.9, 95.1
500 (61,92) 500(83,121) 42.1 67.0 69.8 69.0 95.8, 95.8, 95.7, 95.5
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Table 2.6: For testing H30 : β2 = β12 = 0, the empirical size and power of likelihood ratio
test, Wald test and score test at the significance level 0.05.

Model n1(Trt, P lb) n2(Trt, P lb) AVE LRT Wald Score CP (β0, β1, β2, β12)

M30 250(20,46) 250(29,60) 62.8 5.6 4.8 5.5 95.7,95.7,96.0,96.1
400(33,74) 400(47.97) 62.8 3.9 3.6 3.9 94.6,94.6,95.0,95.4,
500(41,92) 500(58,120) 62.8 5.3 5.0 5.2 95.0,95.1,94.3,94.5

M31 250(27,46) 250(37,60) 49.4 57.0 56.0 56.6 94.6,95.1,94.5,94.1
400(43,74) 400(60,96) 49.4 70.9 69.7 70.0 96.1 95.8,96.3,95.4
500(54,92) 500(75,121) 49.4 79.6 79.1 79.5 95.3,95.2,96.3,96.1

M32 250(25,46) 250(36,60) 51.8 66.9 64.3 66.1 96.2,95.8,96.1,95.7
400(41,74) 400(58,97) 51.8 83.5 82.8 83.0 95.5 95.2,95.0,95.1
500(51,92) 500(72,120) 51.8 89.2 88.6 88.8 95.5 95.8,95.8 95.3

M33 250(29,46) 250(41,60) 43.3 62.8 60.2 61.8 94.6,95.0,95.3,94.5
400(48,74) 400(65,96) 43.3 83.0 82.1 82.6 93.6,93.7,94.6,94.2
500(59,92) 500(82,120) 43.3 90.8 90.3 90.4 95.6,95.3,95.5,95.1

M34 250(30,46) 250(41,60) 42.3 74.6 73.3 74.2 95.2,95.6,95.1,95.0
400(48,74) 400(66,97) 42.3 91.3 90.9 91.2 95.4,95.5,95.6,96.2
500(60,92) 500(83,121) 42.3 96.0 95.7 95.9 94.2,95.3,94.4,94.7
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Table 2.8: Estimator of (β0, β1, β2, β12) under standardized marks.

Model (β̂0, β̂1, β̂2, β̂12) SE(β̂0, β̂1, β̂2, β̂12) AVE
S1 (−0.7464, 3.7829, 2.3479,−4.5770) (0.9278, 2.7257, 2.8261, 4.2928) −2.8249

S2 (0.4664,−0.9358,−0.7815, 1.7421) (1.1345, 2.9339, 2.3066, 3.9144) −0.0558

S3 (0.2235,−4.6530,−1.8821, 6.7805) (0.8561, 7.0811, 2.7491, 8.5654) 0.6664

S4 (0.2092, 1.74509,−2.9374, 2.6182) (0.9606, 3.0765, 2.2719, 4.1130) −0.9981

S5 (1.0782,−0.6448,−3.0065, 2.6467) (0.9411, 2.0458, 2.0963, 3.0184) −0.0571

S6 (0.7397,−0.0650,−3.0347, 3.2543) (1.4456, 5.8498, 2.8475, 6.4918) −0.1963

S7 (−1.0940, 0.0876, 8.1077,−4.7879) (0.9302, 1.9413, 6.4748, 6.7672) −32.4863

S8 (0.6571,−0.2429,−9.9050, 10.2485) (1.1332, 3.6885, 16.5549, 19.7318) 0.4835
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Table 2.9: The p-value of the likelihood ratio test, Wald test and score test for H10, H20

and H30 with various selections of original marks.

Model TEST LRT Wald Score

S1 H10 0.4000 0.4242 0.4070
H20 0.5984 0.5948 0.5991
H30 0.8600 0.8593 0.8605

S2 H10 0.1246 0.1777 0.1336
H20 0.3408 0.3750 0.3476
H30 0.1990 0.2427 0.2078

S3 H10 0.2168 0.2534 0.2401
H20 0.5161 0.5162 0.4934
H30 0.4053 0.4004 0.4022

S4 H10 0.0001 0.0050 0.0010
H20 0.7047 0.7020 0.7033
H30 0.7928 0.7928 0.7932

S5 H10 0.0001 0.0123 0.0021
H20 0.1908 0.1900 0.1900
H30 0.2526 0.2515 0.2511

S6 H10 0.0001 0.0052 0.0007
H20 0.3272 0.3008 0.2970
H30 0.5934 0.5695 0.5638

S7 H10 0.0001 0.0050 0.0007
H20 0.5204 0.5250 0.5250
H30 0.0001 0.0023 0.0005

S8 H10 0.0383 0.07148 0.0490
H20 0.0710 0.1044 0.0932
H30 0.0416 0.0846 0.0526
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Table 2.10: The p-values of the likelihood ratio test, Wald test and score test for H10, H20

and H30 with various selections of standardized marks.

Model TEST LRT Wald Score

S1 H10 0.4000 0.4249 0.4051
H20 0.5985 0.5959 0.5944
H30 0.8601 0.8599 0.8590

S2 H10 0.1245 0.1730 0.1298
H20 0.3407 0.3615 0.3510
H30 0.1990 0.2357 0.2114

S3 H10 0.2168 0.2591 0.2365
H20 0.5161 0.5162 0.5137
H30 0.4053 0.4149 0.4043

S4 H10 0.0001 0.0051 0.0010
H20 0.7046 0.7024 0.7034
H30 0.7927 0.7929 0.7934

S5 H10 0.0001 0.0123 0.0021
H20 0.1908 0.1904 0.1899
H30 0.2526 0.2519 0.2513

S6 H10 0.0001 0.0052 0.0007
H20 0.3272 0.3011 0.2955
H30 0.5933 0.5699 0.5628

S7 H10 0.0001 0.0050 0.0007
H20 0.5201 0.5265 0.5286
H30 0.0001 0.0023 0.0005

S8 H10 0.0383 0.0728 0.0476
H20 0.0710 0.1039 0.0850
H30 0.0416 0.0852 0.0504
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Table 2.11: The empirical size and power of goodness-of-fit test at the significance level
0.05.

Model n1(Trt, P lb) n2(Trt, P lb) Size/Power

M40 50(5,9) 50(8,12) 6.2
100(12,18) 100(16,24) 5.2
150(18,27) 250(25,36) 6.0

M41 50(4,8) 50(8,13) 49.80
100(9,16) 100(16,27) 79.00
150(14,24) 150(25,40) 87.40

M42 50(5,10) 50(10,15) 61.00
100(11,20) 100(20,31) 87.00
150(17,30) 150(31,47) 92.40

M43 50(7,12) 50(11,17) 69.40
100(13,24) 100(23,35) 92.40
150(21,36) 150(36,52) 97.00
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Table 2.12: Summary results of goodness-of-fit test of mark-specific PH model for STEP
data with various selections of standardized marks.

Mark Selection S1 S2 S3 S4 S5 S6 S7 S8

P-value 0.1500 .3900 .0900 .1400 .0900 .0400 .0900 .5600
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CHAPTER 3: GOODNESS-OF-FIT OF STRATIFIED PROPORTIONAL HAZARDS
MODELS WITH CONTINUOUS MARKS

3.1 Introduction

The proportional hazard model (Cox model) has been wildly used in survival analysis.

Motivated by the need to evaluate HIV vaccine efficacy trials, Sun, Gilbert and McKeague

(2009) studied the mark-specific proportional hazards (PH) model with continuous marks

under the competing risk setting. In case of the Cox model, the model assumption may

fail in three ways: (i) the time invariance of the hazard ratio does not hold; (ii) the

functional forms of individual covariates in the exponent of the model are misspecified;

(iii) the exponential form of the link function for the hazard ratio is inappropriate. The

model misspecification can have detrimental effects on the validity and efficiency of the

partial likelihood inference ( Lagakos & Schoenfeld, 1984; Struthers & Kalbfleisch, 1986;

Lagakos, 1988; Lin & Wei, 1989). Lin, Wei and Ying (1993) and Spiekerman & Lin (1996)

developed some formal martingale residual based goodness of fit procedures to check the

validity of the Cox model.

In this chapter, we study the stratified mark-specific proportional hazard model with

continuous marks. The estimation procedure and derive the asymptotic properties of the

estimator are developed following Sun, Gilbert and McKeague (2009). Confidence bands of

vaccine efficacy are also constructed. The main contribution of this chapter is developing

a goodness of fit procedure for the stratified mark-specific proportional hazard model with

continuous marks. The finite sample performance of the proposed tests are examined by

simulations.

3.2 Estimation

Suppose that a study population is divided into K strata. The stratified mark-specific

proportional hazards model postulates that the conditional mark-specific hazard function

53
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for an individual with covariate z(·) in the kth stratum is

λk(t, v|z(t)) = λ0k(t, v)exp
{
β(v)T z(t)

}
, k = 1, . . . , K (3.1)

where λ0k(t, v) is unspecified baseline hazard functions and β(v) is the unknown p-dimensional

regression function of v. Sun, Gilbert and Mckeague (2009) developed some estimation and

hypothesis testing procedures for (3.1) in the case of K = 1. Sun and Gilbert (2011) stud-

ied model (3.1) based on missing marks. In the following we present an estimation method

for model (3.1) parallel to Sun, Gilbert and Mckeague (2009). But the focus of this chapter

is on goodness of fit of model (3.1) presented in section 3.5.

Let nk be the number of observations in the kth stratum, k = 1, . . . , K. The total

sample size is then n =
∑K

k=1 nk. For each k, let (Xki, δki, δkiVki, Zki), i = 1, . . . , nk be

i.i.d. replicates of (Xk, δk, δVk, Zk).

For a p-dimensional covariate Zk in the kth stratum, let Tk be the failure time and Vk

the mark variable observable upon failure. We assume that (Tk, Vk, Zk) follows model (3.1).

The mark variable Vk is assumed to have a known and bounded support; rescaling Vk if

necessary, this support is taken without loss of generality to be [0, 1]. The observed random

variables are (Xk, δk, δkVk, Zk), where Xk = min(Tk, Ck), δk = I(Tk ≤ Ck) and Ck is a

censoring random variable. The mark is observed whenever the corresponding failure time

is uncensored. The censoring time is assumed to be conditionally independent of (Tk, Vk)

given Zk. The estimation of model (3.1) using the observations (Xki, δki, δkivki, Zki) for

i = 1, . . . , nk, k = 1, . . . , K can be based on a localized version of the log partial likelihood

function for β = β(v) at a fixed v:

l(v, β) =
K∑
k=1

nk∑
i=1

∫ 1

0

∫ τ

0

Kh(u−v)

[
βTZki(t)−log

( nk∑
j=1

Ykj(t)e
βTZkj(t)

)]
Nki(dt, du), (3.2)

where Kh(x) = K(x/h)/h, K(·) is a kernel function with support [−1, 1], τ is the end of the

follow-up period and h = hn is a bandwidth. Here Nki(t, v) = I(Xki ≤ t, δki = 1, Vki ≤ v)

is the marked counting process with a jump at an uncensored failure times Xki and the
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associated mark Vki, and Yki(t) = I(Xki ≥ t). The log partial likelihood function (3.2)

resembles that of Kalbfleisch and Prentice (1980) in the case of discrete marks, except that

it borrows strength from observations having marks in the neighborhood of v. The kernel

function is designed to give greater weight to observations with marks near v than those

further away. The local maximum partial likelihood estimator of β(v) is a maximizer β̂(v)

of (3.2). For β ∈ Rp, t ≥ 0, let

S
(j)
k (t, β) = n−1

k

nk∑
i=1

Yki(t) exp{βTZki(t)}Zki(t)
⊗j, (3.3)

where for any z ∈ Rp, we denote z⊗0 = 1, z⊗1 = z and z⊗2 = zzT . Taking the derivative

of l(v, β) with respect to β gives the score function

U(v, β) =
K∑
k=1

nk∑
i=1

∫ 1

0

∫ τ

0

Kh(u− v)

[
Zki(t)−

S
(1)
k (t, β)

S
(0)
k (t, β)

]
Nki(dt, du). (3.4)

The second derivative of l(v, β) with respect to β yields

l′′β(v, β) = −
K∑
k=1

nk∑
i=1

∫ 1

0

∫ τ

0

Kh(u− v)Jkn(t, β)Nki(dt, du),

where Jkn(t, β) =
S
(2)
k (t,β)

S
(0)
k (t,β)

−
(

S
(1)
k (t,β)

S
(0)
k (t,β)

)⊗2

. The maximum partial likelihood estimator is a

solution to U(v, β̂(v)) = 0. β̂(v) can be obtained using the Newton–Raphson algorithm:

Set β(j+1)(v) = β(j)(v) − {l′′β(v, β(j))}−1U(v, β(j)), until β(v) convergence. The baseline

function λ0k(t, v) can also be estimated, by smoothing the increments of the following

estimator of the doubly cumulative baseline function Λ0k(t, v) =
∫ t

0

∫ v

0
λ0k(s, u) dsdu:

Λ̂0k(t, v) =

∫ t

0

∫ v

0

Nk·(ds, du)

nkS
(0)
k (s, β̂(u))

, (3.5)

where Nk·(t, v) =
∑nk

i=1Nki(t, v). A kernel estimator of λ0k(t, v) is given by

λ̂0k(t, v) =
∫ τ

0

∫ 1

0
K

(1)
h1

(t − s)K
(1)
h2

(v − u)Λ̂0k(ds, du), where K
(1)
h1

(x) = K(1)(x/h1)/h1 and

K
(2)
h2

(x) = K(2)(x/h2)/h2 with K(1)(·) and K(2)(·) be the kernel functions and h1 and h2
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the bandwidths.

3.3 Asymptotic Results

Define s
(j)
k (t, β) = ES

(j)
k (t, β) and

Jk(t, β) =
s
(2)
k (t, β)

s
(0)
k (t, β)

−
(
s
(1)
k (t, β)

s
(0)
k (t, β)

)⊗2

.

We make use of the following regularity conditions; not all of these conditions are required

for the proof of each theorem, nor are they the minimum required set of conditions.

Condition A

(A.1) β(v) has componentwise continuous second derivatives on [0, 1]. For each k =

1, . . . , K, the second partial derivative of λ0k(t, v) with respect to v exists and is con-

tinuous on [0, τ ]×[0, 1]. The covariate process Zk(t) has paths that are left continuous

and of bounded variation, and satisfies the moment condition E[∥Zk(t)∥4 exp(2M∥Zk(t)∥)] <

∞, where M is a constant such that (v, β(v)) ∈ [0, 1] × (−M,M)p for all v and

∥A∥ = maxk, l |akl| for a matrix A = (akl).

(A.2) Each component of s
(j)
k (t, θ) is continuous on [0, τ ]× [−M,M ]p, and

supt∈[0, τ ], θ∈[−M, M ]p ∥S(j)(t, θ)− s(j)(t, θ)∥ = Op(n
−1/2), for j = 0, 1, 2.

(A.3) s
(0)
k (t, θ) > 0 on [0, τ ] × [−M,M ]p and the matrix Σ(v) =

∑K
k=1 pkΣk(v) is positive

definite, where Σk(v) =
∑K

k=1

∫ τ

0
Jk(t, β(v))λ0k(t, v)s

(0)
k (t, β(v)) dt, pk = limn→∞ nk/n

and 0 < pk < 1.

(A.4) E(Nki(dt, dv)|Ft−) = E(Nki(dt, dv)|Yki(t), Zki(t)), where (Ft) is the (right-continuous)

filtration generated by the processes (Nki, Yki, Zki), i = 1, . . . , nk, k = 1, . . . , K.

(A.5) The kernel function K(·) is symmetric with support [−1, 1] and of bounded variation.

The bandwidth satisfies nh2 → ∞ and nh5 → 0 as n → ∞.

Note that the condition (A.2) holds under the condition (A.1) given some additional

moment conditions on Z(t) − Z(s) and exp(bTZ(t)) − exp(bTZ(s)). If Z(t) = Z, not de-

pending on t, then (A.2) holds by the Donsker Theorem (Theorem 19.5 of van der Vaart,
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1998). The condition (A.4) assumes that the mark-specific instantaneous failure rate at

time t given the observed information up to time t only depends on the failure status and

the current covariate value. Under (A.4) and by the definition (1.3), E(Nki(dt, dv)|Ft−) =

Yki(t)λ(t, v|Zki(t)) dtdv. Let Mki(t, u) =
∫ t

0

∫ u

0
[Nki(ds, dx) − Yki(s)λ(s, x|Zki(s)) dsdx]. It

follows by Aalan and Johansen (1978) that Mki(·, v1) and Mki(·, v2)−Mki(·, v1) are orthog-

onal square integrable martingales with respect to Ft for any 0 ≤ v1 ≤ v2 ≤ 1. To avoid

the problems at the boundaries v = 0, 1, we shall study the asymptotic properties of β̂(v)

for the interior values of v ∈ [a, b] ⊂ (0, 1).

First we present the following result that is essential for proving the asymptotic nor-

mality of β̂(v) and provides important insight into the constructions of the confidence

bands and test statistics that follow. Let

W̃A(v) = n−1/2

K∑
k=1

nk∑
i=1

∫ v

a

∫ τ

0

A(u)

[
Zki(t)−

s
(1)
k (t, β(u))

s
(0)
k (t, β(u))

]
Mki(dt, du), (3.6)

where A(u) is a deterministic p× p matrix with bounded components.

Theorem 3.1. Assume that each component of the p×p matrix A(v), v ∈ [a, b], is continu-

ous. Under conditions (A.1)–(A.4), W̃A(v) converges weakly to a p-dimensional mean-zero

Gaussian martingale, WA(v), with continuous sample paths on v ∈ [a, b] as n → ∞. The

covariance matrix of WA(v) is given by Cov(WA(v)) =
∫ v

a
A(u)Σ(u)A(u) du.

Let

Σ̂Â(v) = n−1

K∑
k=1

nk∑
i=1

∫ v

a

∫ τ

0

Â(u)Jkn(t, β̂(u))Â
T (u)Nki(dt, du), (3.7)

where Â(v) is a consistent estimator of A(v) uniformly in v ∈ [a, b] ⊂ [0, 1]. It can be

shown that Σ̂A(v) is a consistent estimator of Cov(WA(v)).

The consistency and asymptotic normality of β̂(v) are established in the next two

theorems.

Theorem 3.2. Under conditions (A.1)–(A.5), β̂(v) converges to β(v) uniformly in v ∈

[a, b] ⊂ (0, 1) as n → ∞.
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Theorem 3.3. Under conditions (A.1)–(A.5), (nh)1/2(β̂(v)−β(v))
D−→N(0, ν0Σ

−1(v)) for

v ∈ [a, b] ∈ (0, 1) as n → ∞, where vo =
∫ 1

−1
K2(u)du.

The proof of Theorem 3.3 uses a Taylor expansion of the score function, leading

to β̂(v) − β(v) = −(l′′β(v, β
∗(v)))−1U(v, β(v)), where β∗(v) is on the line segment be-

tween β̂(v) and β(v). The asymptotic variance of n−1/2h1/2U(v, β(v)) is shown to be

ν0Σ(v), which is the in probability limit of Σ̃n(β(v)) = n−1h
∑K

k=1

∑nk

i=1

∫ 1

0

∫ τ

0
(Kh(u −

v))2Jkn(t, β(v))Nki(dt, du). It can also be shown that Σ̂(v) ≡ −l′′β(v, β̂(v))/n
P−→Σ(v)

as n → ∞. Thus, the asymptotic variance of (nh)1/2(β̂(v) − β(v)) can be estimat-

ed by Σ̂1(v) = (l′′β(v, β̂(v))/n)
−1 Σ̃n(β̂(v))(l

′′
β(v, β̂(v))/n)

−1. An alternative estimator is

Σ̂2(v) = −ν0(l
′′
β(v, β̂(v))/n)

−1. It is easy to check that ν0 = 3/5 for Epanechnikov’s kernel

K(x) = 3
4
(1− x2), −1 < x < 1. Simulations indicate that the two estimators have similar

finite sample performance.

Theorem 3.3 will lead to the construction of pointwise confidence intervals for the

vaccine efficacy. Simultaneous inference over v ∈ [a, b] will be possible in terms of the

estimate B̂(v) =
∫ v

a
β̂(u) du of the cumulative regression coefficient B(v) =

∫ v

a
β(u) du. We

have the following weak convergence result for B̂(v).

Theorem 3.4. Under conditions (A.1)–(A.5), n1/2(B̂(v) − B(v)) converges weakly to a

p-dimensional mean-zero Gaussian martingale, WΣ−1(v), with continuous sample paths on

v ∈ [a, b] as n → ∞. The covariance matrix of WΣ−1(v) is
∫ v

a
Σ(u)−1 du, which can

be consistently estimated by Σ̂Â(v) defined by (3.7) with A(v) = (Σ(v))−1 and Â(v) =

(Σ̂(v))−1.

3.4 Confidence Bands for Vaccine Efficacy

In the context of the vaccine trial application, let z(t) = (z1, z
T
2 (t))

T , where z1 is the

treatment group (1=vaccine; 0=placebo) and z2 are other related explanatory variables.

Let β(v) = (β1(v), β
T
2 (v))

T . Then the vaccine efficacy can be expressed as VE(v) = 1 −

exp(β1(v)). The estimated vaccine efficacy is V̂E(v) = 1 − exp(β̂1(v)). By Theorem 3.3

and the delta method, (nh)1/2(V̂E(v)−VE(v))
D−→N(0, ν0σ

2
1(v) exp(2β1(v))) for v ∈ [a, b],

where σ2
1(v) is the first element on the diagonal of Σ−1(v). Let σ̂2

β1
(v) be the first element on



59

the diagonal of Σ̂1(v). By the discussions on the consistent estimators for the asymptotic

variance following Theorem 3.3, σ̂2
β1
(v) is a consistent estimator for ν0σ

2
1(v). A pointwise

100(1− α)% confidence band for VE(v) is given by

V̂E(v)± (nh)−1/2zα/2σ̂β1(v) exp(β̂1(v)), a ≤ v ≤ b, (3.8)

where zα/2 is the upper α/2 quantile of the standard normal distribution.

3.5 Goodness-of-fit Tests

Similar to Lin, Wei and Ying (1993), we derive the model checking test statistics based

on the martingale residuals, which, in our case, is defined as

M̂ki(t, v) =

∫ t

0

∫ v

a

[Nki(ds, du)− Yki(s) exp((β̂(u))
TZki)Λ̂0k(ds, du)]. (3.9)

M̂ki(t, v) may be interpreted as the difference at time t between the observed and the

predicted number of events with marks less than v for the ith subject in kth stratum.

Thus the martingale residuals are informative about the model misspecification. It can be

checked that n−1/2
∑K

k=1

∑nk

i=1 M̂ki(t, v) = op(1). This property is similar to that for the

martingale residuals of the standard Cox model, where the sum of all martingale residuals

is exactly zero. The difference here is caused by the kernel smoothing in a neighborhood

of v.

Consider the test process W (t, v, z) = (W1(t, v, z), . . . ,WK(t, v, z)), where for 1 ≤ k ≤

K,

Wk(t, v, z) = n−1/2

nk∑
i=1

gk(Zki, z)M̂ki(t, v), (3.10)

and gk(Zki, z) is a 1 × r-vector of known bounded functions of Zki and z. For example,

one may take gk(Zki, z) = fk(Zki)I(Zki ≤ z), where fk(·) is a know function, I(Zki ≤ z) =

(I(Z1ki ≤ z1), . . . , I(Zpki ≤ zp)), andZjki is the jth element of Zki. In this case r = p. If

model (3.1) holds, the process W (t, v, z) fluctuates randomly about zero. The distribution

of W (t, v, z) can be approximated using the Guassian multiplier method as we describe
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next. Various test statistics can be constructed by selecting different weight functions fk(·)

and using different functionals of the process W (t, v, z).

Let S
(0)
kg (t, z, β) = n−1

k

∑nk

i=1 Yki(t) exp{βTZki(t)}gk(Zki, z) and S
(1)
kg (t, z, β) = n−1

k∑nk

i=1 Yki(t) exp{βTZki(t)}Zki(t) ⊗ gk(Zki, z), where A ⊗ B is the Kronecker product of

matrices A and B.

Theorem 3.5. Assuming conditions (A.1)− (A.5), we have for 1 ≤ k ≤ K,

Wk(t, v, z)

= n−1/2

K∑
l=1

nl∑
i=1

∫ τ

0

∫ v

a

I(l = k)I(s ≤ t)

[
gl(Zli, z)−

S
(0)
lg (s, z, β(u))

S
(0)
l (s, β(u))

]
Mli(ds, du)

+n−1/2

K∑
l=1

nl∑
i=1

{∫ τ

0

∫ v

a

(Rk(t, u, z))
T (Σ(u))−1

[
Zli(s)−

S
(1)
l (s, β(u))

S
(0)
l (s, β(u))

]
Mli(ds, du)

}T

+op(1)

, (3.11)

where

Rk(t, u, z) = (nk/n)

∫ t

0

(
S
(1)
k (s, β(u))⊗ S

(0)
kg (s, z, β(u))

S
(0)
k (s, β(u))

− S
(1)
kg (s, z, β(u))

)
λ0k(s, u) ds.

The process W (t, v, z) = (W1(t, v, z), . . . ,Wk(t, v, z)) converges weakly to a k di-

mensional mean zero Gaussion random process on [0, τ ] × [a, b] × Rp as n → ∞. Let

{ξli, i = 1, . . . , nl, l = 1, . . . , K} be iid standard normal random variables. Using the Gaus-

sian multiplier technique of Lin, Wei and Ying (1993), the distribution of W (t, v, z) can be

approximated by the distribution of W ∗(t, v, z) = (W ∗
1 (t, v, z), . . . , W

∗
K(t, v, z)), where for
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1 ≤ k ≤ K,

W ∗
k (t, v, z)

= n−1/2

K∑
l=1

nl∑
i=1

∫ τ

0

∫ v

a

I(l = k)I(s ≤ t)

[
gl(Zli, z)−

S
(0)
lg (s, z, β̂(u))

S
(0)
l (s, β̂(u))

]
ξli Nli(ds, du)

+n−1/2

K∑
l=1

nl∑
i=1

{∫ τ

0

∫ v

a

(R̂k(t, u, z))
T (Σ̂(u))−1

[
Zli(s)−

S
(1)
l (s, β̂(u))

S
(0)
l (s, β̂(u))

]
ξliNli(ds, du)

}T

,

(3.12)

where

R̂k(t, u, z) = (nk/n)

∫ t

0

(
S
(1)
k (s, β̂(u))⊗ S

(0)
kg (s, z, β̂(u))

S
(0)
k (s, β̂(u))

− S
(1)
kg (s, z, β̂(u))

)
dΛ̂u,0k(s),

and

Λ̂u,0k(t) =

∫ t

0

∫ 1

0

Kh(u− x)
dNk·(ds, dx)

nkS
(0)
k (s, β̂(x))

(3.13)

is the estimator for the mark-specific cumulative baseline function Λu,0k(t) =
∫ t

0
λ0k(s, u) ds.

Various test statistics based on the functionals of the process W (t, v, z) can be con-

structed to check the lack of fit model (3.1). Let (g
(1)
k (x, z), . . . , g

(r)
k (x, z)) and

(W
(1)
k (t, v, z), . . . ,W

(r)
k (t, v, z)) be the r components of gk(x, z) andWk(t, v, z), respectively.

We consider the following supremum test statistic to test the overall fit of the model:

T = sup
1≤k≤K

sup
1≤j≤r

sup
(t,v,z)∈C

|W (j)
k (t, v, z)|, (3.14)

where C = [0, τ ]× [a, b]× Rp and [ak, bk] ∈ (0, 1). Let T ∗ = sup1≤k≤K sup1≤j≤r sup(t,v,z)∈C

|W ∗(j)
k (t, v, z)|, where W

∗(j)
k (t, v, z) is the jth component of W ∗

k (t, v, z). The distribution

of T can be approximated by repeatedly generating iid sets of standard normal random

variables {ξli}. We reject model (3.1) at significance level α if T is greater than the upper

α quantile of T ∗. When gk(Zki, z) = Zki, T is the supremum test based on the score

process. The selection gk(Zki, z) = I(Zki ≤ z), where all components of Z other than

the jth component are set to be ∞, can be used to test the functional form of the jth
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component of covariate Z. On the other hand, one can take gk(Zki, z) = (Zki, I(Zki ≤ z))

to test the overall fit of model (3.1).

3.6 Simulation Study

In this section, we conduct a simulation study to check the finite sample performance

of the proposed testing procedure. The size of the test is examined using the following

simple mark-specific proportional hazards model:

λk(t, v|z) = exp{γv + (α+ βv)z}, t ≥ 0, 0 ≤ v ≤ 1, (3.15)

where α, β and γ are constants, z takes value 0 or 1 as a treatment indicator. We consider

the simple case where k = 1. The mark-specific baseline function is λ0k(t, v) = exp(γv). We

generate covariates Zki from Bernoulli distribution with P (Zki = 1) = 0.5. The censoring

times are generated from an exponential distribution, independent of (Tki, Vki), with the

censoring rates ranging from 20% to 30%. Set the follow-up time τ = 2.0. The censoring

rate before τ is around 10%. We set the interval of analyses for v as [a, b] = [.1, .9].

The observed failure times with marks outside the interval [a, b] can also be used since

the smoothing at v takes the cases with marks in its h-neighborhood. The Epanechnikov

kernel K(x) = .75(1 − x2)I{|x| ≤ 1} is used throughout. Table 3.1 shows the empirical

sizes of the test under different choice of α, β and γ, for sample sizes of n = 200, n = 350

and 500 and bandwidths h = 0.2, 0.25, 0.3. The empirical sizes are calculated based on

1000 simulations and 500 Gaussian multiplier samples. They are very close to 0.05.

To evaluate the power of proposed test, consider the model

λk(t, v|zki(t)) = λ0k(t, v)exp{(βv − ct)zki}, (3.16)

where λ0k(t, v) = k exp(ct − βv) for k = 1, . . . , K. Again we take Zki as a Bernoulli

random variable with P (Zki = 0.5). For simplicity here we consider only one failure cause

K = 1. Model (3.16) is not a mark-specific proportional hazard model since the hazard

ratio λk(t, v|Zki = 1)/λk(t, v|Zki = 0) = exp{ct − βv} changes with time. We set β = 0.1
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and consider c = 0.8, 1.0, 1.2 and 1.4. As c increases, the hazard ratio under (3.16) increases

faster with t, which represents an increases departure from the null hypothesis. For each

of the above selected c, random right censoring times are generated from an exponential

distribution, independent of (Tki, Vki), to yield around 30% of censoring. Again we set

τ = 2.0 and [a, b] = [0.1, 0.9]. sample sizes of n = 200, n = 350 and 500 are studied. The

empirical power of the test at the significance level 0.05 under (3.16) for c = 0.8, 1.0, 1.2

and 1.4, n = 300, 500, 800, and h = 0.20, 0.25 and 0.30 are given in Table 3.2. Each entry

of the table is based on 1000 simulations and 500 Gaussian multiplier samples. The power

of the test increases with c, and also increases with sample size. The limited simulation

study demonstrates the validity of the proposed goodness of fit testing procedure. The test

provides a valuable tool to check the adequacy of the mark-specific proportional hazard

model (3.1).
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3.7 Complements

In this section, we give the derivations of the main results presented in previous sections

of this chapter. Proof of Theorem 3.1.

It is easy to check that the conditions of Lemma 1 of Sun and Wu (2005) are satisfied

under Condition A. It follows that W̃A(v) converges weakly to a vector of continuous mean-

zero Gaussian random processes, WA(v), v ∈ [a, b]. Now we show that WA(v) has indepen-

dent increments. Let wki(t, v) =
∫ v

a

∫ t

0
A(u)

[
Zki(t) − s

(1)
k (t, β(u))/s

(0)
k (t, β(u))

]
Mki(dt, du).

Then W̃A(v) = n−1/2
∑K

k=1

∑nk

i=1wki(τ, v). For a ≤ v1 ≤ v2 ≤ b, the covariance matrix of

WA(v1) and WA(v2) − WA(v1) is equal to
∑K

k=1
nk

n
E{wki(τ, v1)(wki(τ, v2) − wki(τ, v1))

T}.

Since Mki(t, v1) and Mki(t, v2) − Mki(t, v1), 0 ≤ t ≤ τ , are orthogonal square integrable

martingales, it follows that wki(t, v1) and wki(t, v2) − wki(t, v1), 0 ≤ t ≤ τ , orthogonal

square integrable martingales. Hence E{wki(τ, v1)(wki(τ, v2)−wki(τ, v1))
T} = 0. SoWA(v),

v ∈ [a, b], is a vector of mean-zero Gaussian random processes with independent increments.

Further, the covariance matrix of WA(v) is equal to

K∑
k=1

PkE{wki(τ, v)(wi(τ, v))
T}

=
K∑
k=1

PkE

{∫ v

a

∫ τ

0

A(u)

[
Zki(t)−

s
(1)
k (t, β(u))

s
(0)
k (t, β(u))

]⊗2

A(u)Nki(dt, du)

}

= E

{∫ v

a

∫ τ

0

A(u)

[
Zki(t)−

s
(1)
k (t, β(u))

s
(0)
k (t, β(u))

]⊗2

A(u)yk(t|Zki(t))λk(t, u|Zki(t)) dtdu

}
=

∫ v

a

A(u)E

{∫ τ

0

[
Zki(t)−

s
(1)
k (t, β(u))

s
(0)
k (t, β(u))

]⊗2

yk(t|Zki(t))λk(t, u|Zki(t)) dt

}
A(u) du

=

∫ v

a

A(u)Σ(u)A(u) du.

This completes the proof of Theorem 3.1. Q.E.D.

Proof of Theorem 3.2.

We shall prove Theorem 3.2 by verifying the conditions of Lemma 1 of Sun, Gilbert,

Mckeague (2009).
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Let

ηn(u, θ) = n−1

K∑
k=1

nk∑
i=1

∫ u

0

∫ τ

0

[
θTZki(t)− log(S

(0)
k (t, θ))

]
Nki(dt, du)

ξn(u, θ) = n−1

K∑
k=1

nk∑
i=1

∫ u

0

∫ τ

0

[
θTZki(t)− log(s

(0)
k (t, θ))

]
Nki(dt, du)

Qn(v, θ) = n−1l(v, θ) + n−1

K∑
k=1

nk∑
i=1

log nk

∫ 1

0

Kh(u− v)Nki(τ, du).

Then by Condition A, ηn(v, θ) = ξn(v, θ) +Op(n
−1/2) and

Qn(v, θ) =

∫ 1

0

Kh(u− v) ηn(du, θ) =

∫ 1

0

Kh(u− v) ξn(du, θ) +Op(n
−1/2h−1),

uniformly in (v, θ) ∈ [0, 1]× [−M,M ], for M > 0. Let

Q(v, θ) =
K∑
k=1

PkE

[ ∫ τ

0

[
θTZki(t)− log(s

(0)
k (t, θ))

]
λk0(t, v) exp(β

T (v)Zki(t))Yki(t) dt

]
.

Following similar steps of the proof of Theorem 1 of Sun, Gilbert and Mckeague (2009),

β(v) is the well separated point of maximum of Q(v, θ) for v ∈ [0, 1] uniformly in (v, θ) ∈

[a, b]× [−M,M ], and Qn(v, β̂(v)) ≥ Qn(v, β(v)). Q.E.D.

Proof of Theorem 3.3.

In the proof of this theorem, we set β = β(v) for simplicity. Note that under Condition

A, using a second order Taylor expansion for λk(t, u|Zki(t)) in the neighborhood of v, we

have

n−1/2

∣∣∣∣ K∑
k=1

nk∑
i=1

∫ 1

0

∫ τ

0

Kh(u− v)

[
Zki(t)−

S
(1)
k (t, β)

S
(0)
k (t, β)

]
Yki(t)[λk(t, v|Zki(t))−

λk(t, u|Zi(t))] dtdu

∣∣∣∣ = Op(n
1/2h2),
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uniformly in v ∈ [0, 1]. It follows that

n−1/2U(v, β)

= n−1/2

K∑
k=1

nk∑
i=1

∫ 1

0

∫ τ

0

Kh(u− v)

[
Zki(t)−

S
(1)
k (t, β)

S
(0)
k (t, β)

]
[Nki(dt, du)−

Yki(t)λk(t, v|Zki(t)) dtdu]

= n−1/2

K∑
k=1

nk∑
i=1

∫ 1

0

∫ τ

0

Kh(u− v)

[
Zki(t)−

S
(1)
k (t, β)

S
(0)
k (t, β)

]
[Nki(dt, du)−

Yki(t)λk(t, u|Zki(t)) dtdu] +Op(n
1/2h2),

uniformly in v ∈ [0, 1].

Next, we show that for each v, n−1/2h1/2U(v, β) converges weakly to a normal distribu-

tion. By Lemma 2 of Sun, Gilbert and Mckeague (2009), n−1/2Mk(t, v) converges weakly

to a mean-zero Gaussian process for 1 ≤ k ≤ K. By Condition A, ∥S(j)
k (t, β)−s

(j)
k (t, β)∥ =

op(n
−1/2+δ), uniformly in t for j = 0, 1 and 1 ≤ k ≤ K, for some 0 < δ < 1/2. Note that

n−1/2+δh−1/2 = o(1) for δ = 1/4 as nh2 → ∞. We have h1/2Kh(u−v)∥S(j)
k (t, β)−s

(j)
k (t, β)∥

goes to zero in probability for 1 ≤ k ≤ K. Applying Lemma 2 of Gilbert, McKeague and

Sun (2006), we have

n−1/2h1/2U(v, β) = n−1/2h1/2

K∑
k=1

nk∑
i=1

∫ 1

0

∫ τ

0

Kh(u− v)

[
Zki(t)−

s
(1)
k (t, β)

s
(0)
k (t, β)

]
[Nki(dt, du)− Yki(t)λk(t, u|Zki(t)) dtdu] +Op(n

1/2h5/2) + op(1)

= n−1/2h1/2

K∑
k=1

nk∑
i=1

∫ 1

0

∫ τ

0

Kh(u− v)

[
Zki(t)−

s
(1)
k (t, β(u))

s
(0)
k (t, β(u))

]
[Nki(dt, du)− Yk(t)λk(t, u|Zi(t)) dtdu] +Op(n

1/2h5/2) + op(1)

= h1/2

∫ 1

0

Kh(u− v) W̃I(du) +Op(n
1/2h5/2) + op(1), (3.17)

where W̃I(v) is defined in (3.6) with A = I and a = 0.

Since W̃I(v)
D−→WI(v) by Theorem 3.1. By the almost sure representation theorem

(Shorack and Wellner, 1986), there exist W̃ ∗
I (v) and W ∗

I (v) on some probability space

that have the same distributions and sample paths as W̃I(v) and WI(v), respectively, such

that W̃ ∗
I (v)

a.s.−→W ∗
I (v) uniformly in v ∈ [0, 1]. Hence

∫ 1

0
Kh(u − v) W̃ ∗

I (du) =
∫ 1

0
Kh(u −
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v)W ∗
I (du) + Op(n

−1/2h−1) by integration by parts since K(·) has bounded variation. It

follows that

h1/2

∫ 1

0

Kh(u− v) W̃I(du)
D
=h1/2

∫ 1

0

Kh(u− v) W̃ ∗
I (du)

= h1/2

∫ 1

0

Kh(u− v)W ∗
I (du) +Op(n

−1/2h−1/2). (3.18)

SinceW ∗
I (v) is a Gaussian martingale with covariance matrix of

∫ v

0
Σ(u) du, h1/2

∫ 1

0
Kh(u−

v)W ∗
I (du) is a mean zero Gaussian random vector with covariance matrix equal to h

∫ 1

0
K2

h(u−

v)Σ(u) du → ν0Σ(v) as h → 0. Hence, h1/2
∫ 1

0
Kh(u− v) W̃I(du)

D−→N(0, ν0Σ(v)) as h → 0,

nh → ∞. By the Slutsky theorem, n−1/2h1/2U(v, β) converges weakly to N(0, ν0Σ(v)) as

nh2 → ∞ and nh5 → 0.

Note that U(v, β̂) − U(v, β) = l′′β(v, β
∗(v))(β̂(v) − β(v)), where β∗(v) is on the line

segment between β̂(v) and β(v). By Condition A and the uniform consistency of β̂(v) on

v ∈ [a, b] ⊂ (0, 1), we have n−1l′′β(v, β
∗(v)) = −Σ(v) + op(1), uniformly in v ∈ [a, b] for

0 < δ < 1/2. Hence,

n1/2h1/2(β̂(v)− β(v)) = −(l′′β(v, β
∗(v))/n)−1n−1/2h1/2U(v, β)

= (Σ(v))−1n−1/2h1/2U(v, β) + op(1), (3.19)

uniformly in v ∈ [a, b]. It follows that (nh)1/2(β̂(v)− β(v))
D−→N(0, ν0Σ(v)

−1) as nh2 → ∞

and nh5 → 0. Q.E.D.

Proof of Theorem 3.4.

From (3.17) and the first line of (3.19), we have, for v ∈ [a, b],

∫ v

a

n1/2(β̂(u)− β(u)) du = −
∫ v

a

(Σ(u))−1

∫ 1

0

Kh(x− u)W̃I(dx)du+ op(1).

Exchanging the order of integration and by the compact support of the kernel function
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K(·) on [−1, 1], we have

∫ v

a

n1/2(β̂(u)− β(u)) du = −
∫ 1

0

[ ∫ v

a

(Σ(u))−1Kh(x− u) du

]
W̃I(dx) + op(1)

= −
∫ v−h

a+h

[ ∫ v

a

(Σ(u))−1Kh(x− u) du

]
W̃I(dx)

−
∫ a+h

a−h

[ ∫ v

a

(Σ(u))−1Kh(x− u) du

]
W̃I(dx)

−
∫ v+h

v−h

[ ∫ v

a

(Σ(u))−1Kh(x− u) du

]
W̃I(dx) + op(1). (3.20)

By Theorem 3.1, W̃I(x) converges weakly to a mean-zero Gaussian process with continuous

paths. Under the assumption (A.4),
∫ v

a
(Σ(u))−1Kh(x − u) du has bounded variation and

converges uniformly to Σ(x)−1 for x ∈ (a + h, v − h). By Lemma 2 of Gilbert, McKeague

and Sun (2006), the first term in (3.20) is equal to −
∫ v

a
(Σ(x))−1W̃I(dx) + op(1). Similar

arguments lead to the second and the third terms in (3.20) to be op(1). Hence

∫ v

a

n1/2(β̂(u)− β(u)) du = −
∫ v

a

(Σ(x))−1W̃I(dx) + op(1) = −W̃Σ−1(v) + op(1),

which converges weakly to a p-dimensional mean-zero Gaussian martingale, WΣ−1(v), with

continuous paths. The covariance matrix ofWΣ−1(v) equals Cov(WΣ−1(v)) =
∫ v

a
Σ(u)−1Σ(u)

Σ(u)−1 du =
∫ v

a
Σ(u)−1 du. Q.E.D.

Proof of Theorem 3.5. Note that:

M̂ki(t, v) = Mki(t, v)−
∫ t

0

∫ v

a

Yki(s) exp((β̂(u))
TZki)[Λ̂0k(ds, du)− Λ0k(ds, du)]

−
∫ t

0

∫ v

a

Yki(s)[exp((β̂(u))
TZki)− exp((β(u))TZki)]Λ0k(ds, du)].

(3.21)

Consider the approximation decomposition

exp(β̂(u)TZki)− exp(β(u)TZki) = (β̂(u)− β(u))T exp(β(u)TZki) + o(∥β̂(u)− β(u)∥),
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and

Λ̂0k(t, v)− Λ0k(t, v) =

∫ t

0

∫ v

a

dNk·(ds, du)

nkS
(0)
k (s, β̂(u))

− Λ0k(t, v)

=

∫ t

0

∫ v

a

[
1

nkS
(0)
k (s, β̂(u))

− 1

nkS
(0)
k (s, β(u))

]
Nk·(ds, du)

+

∫ t

0

∫ v

a

Mk·(ds, du)

nkS
(0)
k (s, β(u))

+ op(n
−1/2
k )

=

∫ t

0

∫ v

a

(S
(1)
k (s, β(u)))T (β(u)− β̂(u))

nkS
(0)
k (s, β̂(u))S

(0)
k (s, β(u))

Nk·(ds, du)

+

∫ t

0

∫ v

a

Mk·(ds, du)

nkS
(0)
k (s, β(u))

+ op(n
−1/2
k )

=

∫ t

0

∫ v

a

(S
(1)
k (s, β(u)))T (β(u)− β̂(u))λ0k(s, u)

S
(0)
k (s, β(u))

dsdu

+

∫ t

0

∫ v

a

Mk·(ds, du)

nkS
(0)
k (s, β(u))

+ op(n
−1/2
k ), (3.22)

where Mk·(t, v) =
∑nk

i=1Mki(t, v).

From (3.21), we have

Wk(t, v, z) = n−1/2

nk∑
i=1

gk(Zki, z)Mki(t, v)

+nkn
−1/2

∫ t

0

∫ v

a

S
(0)
kg (s, z, β(u))[(S

(1)
k (s, β(u)))T (β̂(u)− β(u))]

S
(0)
k (s, β(u))

λ0k(s, u) dsdu

−n−1/2

∫ t

0

∫ v

a

S
(0)
kg (s, z, β(u))

S
(0)
k (s, β(u))

Mk·(ds, du)

−nkn
−1/2

∫ t

0

∫ v

a

(β̂(u)− β(u))TS
(1)
kg (s, z, β(u))λ0k(s, u) dsdu+ op(1).

(3.23)

Following (3.17) and (3.19) in the proof of Theorem 3.3, the second term of (3.23) equals
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to

(nk/n)

{∫ t

0

∫ v

a

[S
(1)
k (s, β(u))⊗ S

(0)
kg (s, z, β(u))]

Tλ0k(s, u)

S
(0)
k (s, β(u))

(Σ(u))−1

×
[ ∫ 1

0

Kh(x− u)W̃I(dx)

]
dsdu

}T

+ op(1)

= (nk/n)

{∫ t

0

∫ v

a

[S
(1)
k (s, β(u))⊗ S

(0)
kg (s, z, β(u))]

Tλ0k(s, u)

S
(0)
k (s, β(u))

(Σ(u))−1 dsW̃I(du)

}T

+ op(1)

= (nk/n)

{∫ v

a

[ ∫ t

0

[S
(1)
k (s, β(u))⊗ S

(0)
kg (s, z, β(u))]

Tλ0k(s, u)

S
(0)
k (s, β(u))

ds

]
(Σ(u))−1W̃I(du)

}T

+op(1)

(3.24)

Similarly, the fourth term of (3.23) is equal to

{∫ v

a

[ ∫ t

0

(nk/n)(S
(1)
kg (s, z, β(u)))

Tλ0k(s, u) ds

]
(Σ(u))−1W̃I(du)

}T

+ op(1).

(3.25)

Combining (3.23), (3.24) and (3.25), we have

Wk(t, v, z)

= n−1/2

nk∑
i=1

∫ t

0

∫ v

a

[
gk(Zki, z)−

S
(0)
kg (s, z, β(u))

S
(0)
k (s, β(u))

]
Mki(ds, du)

+(nk/n)

{∫ v

a

[ ∫ t

0

(
S
(1)
k (s, β(u))⊗ S

(0)
kg (s, z, β(u))

S
(0)
k (s, β(u))

− S
(1)
kg (s, z, β(u))

)T

λ0k(s, u) ds

]
×(Σ(u))−1W̃I(du)

}T

+ op(n
1/2
k )

= n−1/2

nk∑
i=1

∫ t

0

∫ v

a

[
gk(Zki, z)−

S
(0)
kg (s, z, β(u))

S
(0)
k (s, β(u))

]
Mki(ds, du)

+n−1/2

K∑
l=1

nl∑
i=1

{∫ τ

0

∫ v

a

(Rk(t, u, z))
T (Σ(u))−1

[
Zli(s)−

S
(1)
l (s, β(u))

S
(0)
l (s, β(u))

]
Mli(ds, du)

}T

+op(1)
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= n−1/2

K∑
l=1

nl∑
i=1

∫ τ

0

∫ v

a

I(l = k)I(s ≤ t)

[
gl(Zli, z)−

S
(0)
lg (s, z, β(u))

S
(0)
l (s, β(u))

]
Mli(ds, du)

+n−1/2

K∑
l=1

nl∑
i=1

{∫ τ

0

∫ v

a

(Rk(t, u, z))
T (Σ(u))−1

[
Zli(s)−

S
(1)
l (s, β(u))

S
(0)
l (s, β(u))

]
Mli(ds, du)

}T

+op(1).

(3.26)

Further, we note that S
(0)
lg (s, z, β(u)), S

(1)
lg (s, z, β(u)), S

(0)
l (s, β(u)) and S

(1)
l (s, z, β(u))

in (3.26) can be replaced with their expectations s
(0)
lg (s, z, β(u)), s

(1)
lg (s, z, β(u)), s

(0)
l (s, β(u))

and s
(1)
l (s, z, β(u)) respectively. The resulted process is the sum of iid terms involving the

integrations with respect to Mli(s, u), which is equivalent to the one before the change by

Lemma 2 of Gilbert, Mckeague and Sun (2006). Then it follows from the limit theorems of

empirical process theory that W (t, v, z) converges weakly to a mean zero Gaussian process.

Q.E.D.
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Table 3.1: Empirical size of goodness of fit test at the significant level 0.05

Model (α, β, γ) n h size

M1 (0., 0., .3) 200 0.20 6.2
0.25 6.6
0.30 6.4

350 0.20 6.3
0.25 6.4
0.30 5.9

500 0.20 6.4
0.25 6.3
0.30 6.1

M2 (−.6, .6, .3) 200 0.20 5.7
0.25 5.2
0.30 5.4

350 0.20 4.9
0.25 5.4
0.30 5.4

500 0.20 5.3
0.25 5.3
0.30 5.3

M3 (−.69, 0, .3) 200 0.20 5.5
0.25 5.9
0.30 5.9

350 0.20 6.7
0.25 6.8
0.30 6.6

500 0.20 6.4
0.25 6.3
0.30 6.4

M4 (−1.5, 1.5, .3) 200 0.20 4.0
0.25 4.0
0.30 4.2

350 0.20 4.2
0.25 3.9
0.30 4.1

500 0.20 4.4
0.25 4.6
0.30 5.0
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Table 3.2: The power of goodness of fit test at significant level 0.05

Model c n h power

H1 0.8 300 0.20 49.4
0.25 49.3
0.30 49.2

500 0.20 71.3
0.25 71.1
0.30 70.6

800 0.20 88.9
0.25 88.4
0.30 87.9

H2 1.0 300 0.20 59.6
0.25 60.3
0.30 58.4

500 0.20 81.3
0.25 80.5
0.30 80.8

800 0.20 95.5
0.25 95.3
0.30 95.1

H3 1.2 300 0.20 65.8
0.25 64.8
0.30 64.2

500 0.20 87.3
0.25 86.9
0.30 86.4

800 0.20 98.1
0.25 97.7
0.30 97.4

H4 1.4 300 0.20 70.2
0.25 69.4
0.30 68.5

500 0.20 90.5
0.25 90.7
0.30 90.4

800 0.20 98.6
0.25 98.3
0.30 98.2
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