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ABSTRACT 
 

ABIMBOLA RASHEED OGUNGBIRE. Novel Machine Learning Techniques for 
Weather-Related Crash Prediction. (Under the guidance of DR. SRINIVAS S. 

PULUGURTHA) 
 

This dissertation addresses critical aspects of traffic safety, focusing on novel approaches 

for weather-related crash prediction—a significant concern in the transportation field. It is 

divided into three interconnected studies: geospatial risk mapping, the treatment of 

imbalanced data in machine learning, and analytics for crash prediction. In the first study, 

the dissertation advances a novel approach to hotspot mapping by developing a spatio-

temporal cube that incorporates both the spatial and temporal dimensions of crash data, 

providing a dynamic and comprehensive analysis of crash hotspots. In the second study, the 

dissertation tackles the challenge of imbalanced data, which can bias model outputs from 

the machine learning techniques, making them less adept at predicting crash severity. By 

extending methods such as Synthetic Minority Over-sampling Technique (SMOTE) and 

Adaptive Synthetic Sampling (ADASYN), the dissertation evaluates the effectiveness of 

these methods in datasets with a prevalence of nominal predictors, aiming to enhance the 

predictive accuracy of machine learning techniques for crash severity. Lastly, the 

dissertation proposes the use of a Long Short-Term Memory (LSTM) algorithm for 

predicting a weather-related traffic crash. This approach seeks to overcome the limitations 

of traditional predictive models by leveraging the ability of LSTMs to retain relevant 

information over extended time frames, despite the stochastic nature of weather and human 

behavior. 

 

  



 

 

iv 

DEDICATION 

This dissertation is dedicated to my family: my lovely fiancée, Suliat Alli; my siblings, 

Adedoyin Mariam, Adedolapo Mojeed, Abiola Khadijat; and my parents, Mujidat Olaitan 

and Jimoh Ademola of the Ogungbire family. 

  



 

 

v 

ACKNOWLEDGEMENT 

First, I thank God for seeing me through this phase of my life. To my supervisor, Dr. 

Srinivas Pulugurtha, thank you for your support, mentorship, and feedback at each step of 

this Ph.D. journey. It was an honor to have worked with you. Also, I appreciate my 

committee members, Dr. Suzanne Leland, Dr. Omidreza Shoghli, and Dr. Ming-Chun Lee, 

for your constructive feedback and insight provided to improve this work. 

I am incredibly fortunate to hail from a family that holds education in high regard and 

has backed me throughout my academic journey- all the way from Osogbo to UNC 

Greensboro and finally UNC Charlotte.	I owe my deepest gratitude to my parents, Jimoh 

and Mujidat, whose unwavering support and sacrifices have fueled my intellectual curiosity 

from a young age. Their dedication and encouragement have been the foundation of my 

journey. To my wonderful siblings, thank you for your unwavering support and constant 

prayers. To my very special person, Suliat, you are truly incredible. To all my amazing 

friends and colleagues, thank you for your encouragement and motivation. Most importantly, 

I want to extend a special thanks to my friends, Ismail Olasege, Joseph Udofia, and Panick 

Kalambay, for their exceptional support. 

Finally, I would like to thank the United States Department of Transportation, 

Graduate School, Pulugurtha’s Lab and the Infrastructure and Environmental Systems 

program at UNC Charlotte for funding the works that culminated to this dissertation. I am 

very grateful.  

 

  



 

 

vi 

TABLE OF CONTENTS 

LIST OF FIGURES X 

LIST OF TABLES XII 

LIST OF ABBREVIATIONS XIII 

CHAPTER 1: INTRODUCTION 1 

1.1. GEOSPATIAL RISK MAPPING OF TRAFFIC CRASHES 2 

1.2. EFFECTIVENESS OF IMBALANCE DATA TREATMENT 3 

1.3. PREDICTING WEATHER-RELATED CRASH 4 

1.5. DISSERTATION STRUCTURE 5 

CHAPTER 2: LITERATURE REVIEW 7 

2.1. WEATHER-RELATED CRASHES 7 

2.2. IMPACT OF WEATHER EVENTS ON TRAFFIC SAFETY 8 

2.3. HOTSPOT IDENTIFICATION FOR WEATHER-RELATED CRASHES 10 

2.3.1. HISTORY OF HOTSPOT IDENTIFICATION 12 

2.3.2. TOWARDS A SPATIOTEMPORAL ANALYSIS 14 

2.4. HANDLING DATA IMBALANCE IN CRASH DATA 14 

2.4.1. APPROACHES FOR ADDRESSING IMBALANCE PROBLEM IN CRASH DATA 15 

2.5. WEATHER-RELATED CRASH PREDICTION 18 

2.5.1. CRASH PREDICTION USING TRADITIONAL MODELS 19 

2.5.2. DEEP LEARNING MODELS FOR WEATHER-RELATED CRASH PREDICTION 22 

2.6. OVERVIEW OF PRIOR RESEARCH LIMITATIONS AND DISSERTATION 

CONTRIBUTIONS 22 

CHAPTER 3: A SPATIOTEMPORAL RISK MAPPING OF STATEWIDE 

WEATHER-RELATED TRAFFIC CRASHES: A MACHINE 

LEARNING TECHNIQUE 24 



 

 

vii 

3.1. INTRODUCTION 24 

3.2. STUDY DESIGN & WORKFLOW OF DEVELOPED TECHNIQUES 27 

3.2.1. PRINCIPLE OF TIME SPACE CUBES 27 

3.2.2. INTEGRATING DYNAMIC TIME WARPING (DTW) AND GETIS-ORD GI* 

STATISTICS (DTW-G*) FOR CRASH RISK LABELING 28 

3.2.3. RISK FACTOR IDENTIFICATION USING XGBOOST 31 

3.2.4. SHAP FOR KEY RISK FACTOR INTERPRETATION 32 

3.3. CASE STUDY OF NORTH CAROLINA (NC) 33 

3.4. RESULTS 38 

3.4.1. DISTRIBUTION OF CRASHES IN DISTINCT WEATHER CONDITIONS 38 

3.4.2. DYNAMIC TIME WARPING (DTW) 40 

3.4.3. CRASH RISK LABELING 43 

3.4.4. RISK PATTERN PREDICTION PERFORMANCE 46 

3.4.5. KEY FACTORS FOR HIGH-RISK CRASH CLASSIFICATION 48 

3.4.6. KEY FACTORS FOR LOW-RISK CRASH CLASSIFICATION 51 

3.4.7. INTERACTION BETWEEN WEATHER CONDITION AND CRASH RISK 52 

CHAPTER 4: EFFECTIVENESS OF CRASH DATA IMBALANCE 

TREATMENT IN WEATHER-RELATED CRASH SEVERITY 

ANALYSIS 55 

4.1. INTRODUCTION 55 

4.2. CASE STUDY OF NORTH CAROLINA (NC) 57 

4.3. TREATMENTS FOR IMBALANCED DATA 63 

4.3.1. SYNTHETIC MINORITY OVER-SAMPLING TECHNIQUE – NOMINAL 

(SMOTE-N) 63 

4.3.2. ADAPTIVE SYNTHETIC – NOMINAL (ADASYN-N) 63 



 

 

viii 

4.4. FEATURE SELECTION 64 

4.5. MACHINE LEARNING TECHNIQUES 66 

4.5.1. EXTREME GRADIENT BOOSTING (XGBOOST) 66 

4.5.2. RANDOM FOREST (RF) MODEL 67 

4.4. RESULTS 68 

4.4.1. FEATURE EXTRACTION 68 

4.4.2. COMPARING TREATMENTS METHOD & MACHINE LEARNING TECHNIQUES 70 

4.4.3. BEST TREATMENT METHOD 73 

4.4.4. MODEL FIT ON DATASETS 74 

4.5. DISCUSSION 76 

CHAPTER 5: PREDICTING FUTURE WEATHER-RELATED CRASH RISK 

USING MACHINE LEARNING TECHNIQUE 80 

5.1. INTRODUCTION 80 

5.2. METHODOLOGY 82 

5.2.1. DATA SOURCES 82 

5.2.2. PROBLEM DEFINITION 83 

5.2.3. FEATURE EXTRACTION 85 

5.2.4. EXPERIMENTAL SETTINGS 86 

5.2.5. SPATIOTEMPORAL ENSEMBLED CONVLSTM 86 

5.3. RESULTS 89 

CHAPTER 6: CONCLUSIONS & FUTURE WORK 94 

6.1. CONCLUSIONS 94 

6.1.1. A SPATIOTEMPORAL RISK MAPPING OF STATEWIDE WEATHER-RELATED 

TRAFFIC CRASHES: A MACHINE LEARNING TECHNIQUE 94 



 

 

ix 

6.1.2. EFFECTIVENESS OF CRASH DATA IMBALANCE TREATMENT IN WEATHER-

RELATED CRASH SEVERITY ANALYSIS 95 

6.1.3. PREDICTING FUTURE WEATHER-RELATED CRASH RISK USING MACHINE 

LEARNING TECHNIQUE 96 

6.2. LIMITATIONS 97 

6.3. FUTURE RESEARCH OPPORTUNITIES 99 

REFERENCES 100 

APPENDIX A: BIOGRAPHY 119 

APPENDIX B: COPYRIGHT STATEMENT 120 

 

  



 

 

x 

LIST OF FIGURES 

Figure 1. Data processing workflow with a multi-layered crash hotspot identification 

technique 27 

Figure 2. Space-time cube of the case study 28 

Figure 3. a) Two similar time series that are out of phase, b) a warping matrix and 

search for optimal warping path (red squares) 29 

Figure 4. Left: Location of 238,252 weather-related crashes by severity level. Right: 

NC population density averaged over years 2015-2018 34 

Figure 5. Map showing time series maps for EPDO in NC 38 

Figure 6. Spatial distribution of crashes in distinct weather condition 40 

Figure 7. Left: Elbow method and Right: silhouette score technique 41 

Figure 8. Distribution of locations into DTW clusters 41 

Figure 9. Distribution of average EPDO across DTW clusters 42 

Figure 10. DTW-G* results 45 

Figure 11. ROC curve of crash risk classification: a) base model; b) tuned model 46 

Figure 12. Importance of features described in Table 4 for crash risk prediction 47 

Figure 13. Average impact of selected features described in Table 4 on crash risk 48 

Figure 14. SHAP summary plot of crash risk patterns 51 

Figure 15. Dependence plot of weather conditions and crash risk 54 

Figure 16. Permutation feature importance 65 

Figure 17. Interpretation of permutation feature importance 66 

Figure 18. Permutation feature importance plot of variables described in Table 6 70 

Figure 19. Performance metrics on test dataset 76 

Figure 20. Spatial distribution of crashes masked by a grid layer 83 

Figure 21. Training data from DTW clusters between 2015 to 2017 84 



 

 

xi 

Figure 22. Single ConvLSTM Architecture 88 

Figure 23. Distribution of frames by clusters 89 

Figure 24. Cross-K function between predicted and actual weather-related crash risks 90 

  



 

 

xii 

LIST OF TABLES 

Table 1. Impact of weather event on traffic safety 10 

Table 2. Summarization of previous weather-related crash severity studies 17 

Table 3. Comparison of crash prediction techniques 21 

Table 4. Description of features extracted within spatial cubes 34 

Table 5. Interaction of weather and DTW clusters 44 

Table 6. Descriptive statistics of variables for analysis 59 

Table 7. Model performance metrics 71 

Table 8. Confusion matrix for RF and XGBoost 72 

Table 9. Model performance evaluation 91 

 

  



 

 

xiii 

LIST OF ABBREVIATIONS 

 
ADASYN Adaptive Synthetic 

ADASYN-N Adaptive Synthetic- Nominal 

ARIMA Autoregressive Integrated Moving Average 

AUC-ROC Area under Curve- Receiver Operating Characteristics 

BART Bayesian Additive Regression Trees 

ConvLSTM Convolutional Long Short-Term Memory 

DTW Dynamic Time Warping 

DTW-G* Dynamic Time Warping- Getis* 

EB Empirical Bayes 

EPDO Equivalent Property Damage Only 

FHWA Federal Highway Administration 

HSIS Highway Safety Information System 

KDE Kernel Density Estimation 

LR Linear Regression 

LSTM Long Short-Term Memory 

MI Moderate Injury 

MNL Multinomial Logit 

MSE Mean Square Error  

MVDM  Modified Value Difference Metric  

NB Negative Binomial 

NC North Carolina 

NNC Nearest Neighbor Classification 

NNH Nearest Neighbor Hierarchical 



 

 

xiv 

PDO Property Damage Only 

PFI Permutation Feature Importance 

RF Random Forest 

RMSE Root Mean Square Error 

RNN Recurrent Neural Network 

ROC Receiver Operating Characteristics Curve 

SHAP Shapely Additive exPlanation 

SI Severe Injury 

SMOTE Synthetic Minority Over-sampling Technique 

SMOTE-N Synthetic Minority Over-sampling Technique- Nominal 

SVM Support Vector Machine 

XGBoost eXtreme Gradient Boosting 



 

 

1 

CHAPTER 1: INTRODUCTION 

Weather-related crashes stand out as a critical concern among the myriad challenges 

that necessitate rigorous study. Adverse weather, ranging from rain and snow to fog and 

icy roads, introduces a complex matrix of challenges that compromise traffic safety (Hambly 

et al., 2013) and effective traffic management (Dey et al., 2014). For example, according to 

a Federal Highway Administration (FHWA) report, weather-related crashes accounted for 

more than 21% of all vehicle crashes between 2007 to 2016 (FHWA, 2023). On the 

technology advancement front, technologies like weather information system (Saarikko et 

al., 2020), traction control system (Turner & Austin, 2000), and automatic headlight and 

wiper (Gaikwad & Markande) have revolutionized the approach to navigating adverse 

weather conditions while driving. Stakeholders have improved traffic safety while saving 

supply-side resources using these technologies, coupled with policies, increasing awareness, 

and education (Pahl-Wostl, 2007). Note that stakeholders are entities such as transportation 

agencies, insurance companies, healthcare institutions, and local governments, whose 

concerns revolve around reduction of traffic injuries and fatalities, resource allocation, and 

economic sustainability (WHO, 2015). For end users, such as drivers, pedestrians, and 

cyclists, the value of improving weather-related safety would be reduced physical and 

psychological toll on individuals and families (Musselwhite et al., 2021). For stakeholders, 

the value can be increased emergency response, effective resource allocation and reduced 

strain on budget (WHO, 2015; Daniel et al., 2016). 

The challenges in enhancing traffic safety, particularly in addressing weather-related 

crashes, can be broadly categorized into three key areas: data-driven hotspot mapping, 

efficacy of synthetic data in machine learning, and analytics for weather-related crash 

prediction (Strong et al., 2010). This dissertation primarily focuses on addressing gaps in 

each of them assuming the backdrop of favorable policies in place. Firstly, it focuses on 
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developing an advanced hotspot map, utilizing spatial-time cubes to identify and visualize 

high-crash locations, thereby aiding practitioners in targeted interventions. Secondly, the 

dissertation explores the effectiveness of imbalance data treatment on different machine 

learning techniques. This exploration is pivotal in understanding how various machine 

learning techniques can interpret and use artificially generated data, especially in scenarios 

where real-world data is rare. Lastly, the dissertation employs the use of machine learning 

techniques in weather-related crash prediction, an area that traditionally relies heavily on 

historical data and patterns. Future research, however, could delve deeper into refining 

predictive models for weather-related crashes, potentially revolutionizing how one prepares 

for and respond to these incidents. 

1.1. Geospatial Risk Mapping of Traffic Crashes 

The primary challenge in weather-related traffic crashes is to accurately identify and 

analyze hotspots where these crashes are most likely to occur (Perrels et al., 2015). 

Traditionally, hotspot analysis for traffic crashes has been explored using spatial data, 

focusing on geographical locations where crashes frequently happen (Lakshmi et al., 2019; 

Soltani & Askari, 2017; Songchitruksa & Zeng, 2010). However, this approach often 

overlooks the temporal dimension - the specific times when these crashes are more likely to 

happen. Weather-related crashes are not just spatial phenomena; they are also highly time-

dependent, as weather conditions fluctuate over time (Ungar, 1999). Therefore, a more 

comprehensive analysis that includes both spatial and temporal data is needed to better 

understand and predict these hotspots. 

In addition, there exists a substantial gap in how this geospatial information is currently 

used for dynamic resource planning and allocation (Robin et al., 2019). Most mapping 

applications provide a static view that does not account for the time factor in case of crash 

data. To bridge this gap, a novel approach using a spatiotemporal cube is proposed. This 
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method involves creating a three-dimensional model where two dimensions represent the 

spatial aspects (latitude and longitude) of the traffic crashes, and the third dimension 

represents time (Nakaya, 2013). This spatiotemporal cube allows for the analysis of traffic 

crashes in both space and time simultaneously, providing a more holistic view of the 

hotspots (Nakaya, 2013; Sha et al., 2023). This dissertation aims to explore and apply a 

time series machine learning technique to uncover intricate and latent patterns in crash 

data. The clusters identified through this technique are important as they reveal patterns 

and trends over time, which might not be apparent when considering spatial data alone 

(Tavenard et al., 2020). 

 

 

1.2. Effectiveness of Imbalance Data Treatment 

Predicting crash severity is complicated by the imbalanced nature of crash data, where 

certain types of crashes, such as severe or fatal crashes, occur less frequently than others 

(Wen et al., 2021). This imbalance can lead to biases in traditional model outputs from 

machine learning techniques, making them less effective at classifying crash severity. The 

unpredictability and hazardous nature of weather-related crashes can result in significant 

challenges in traffic management and emergency response planning.  

Traditional methods like under-sampling and over-sampling (Gao et al., 2021; Kim et 

al., 2021) have their drawbacks, such as the potential loss of important information or 

overfitting. Recent studies have explored sophisticated methods like the synthetic minority 

over-sampling technique (SMOTE) (Chawla et al., 2002) and adaptive synthetic (ADASYN) 

(He et al., 2008). However, these methods rely heavily on having numeric predictors in 

calculating distances and interpolating between data points within a multidimensional 

feature space to generate new instances in the minority class. In the absence of numeric 
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predictors, or in datasets predominantly composed of nominal variables, the efficacy of these 

techniques is significantly constrained.  

This dissertation aims to develops a technique to extend the SMOTE and ADASYN 

techniques and test the effectiveness of these data treatment techniques in enhancing the 

performance of machine learning techniques, particularly with a focus on handling datasets 

with predominantly nominal predictors. By assessing the effectiveness of these data 

treatment methods, the study seeks to provide insights into how they can improve the 

accuracy of models used for predicting the severity of weather-related traffic crashes. 

1.3. Predicting Weather-related Crash 

Weather-related traffic crashes are inherently random due to the stochastic nature of 

both weather events and human behavior. Weather conditions like rain, snow, fog, and ice 

can vary greatly in intensity, duration, and spatial distribution, making them unpredictable 

to some extent (Saarikko et al., 2020). This unpredictability is compounded by the random 

nature of human responses to these conditions (Hamdar et al., 2016; Ahmed et al., 2022). 

Drivers may react differently to the same weather conditions based on their individual 

driving skills, experience, vehicle condition, and other factors (Ahmed et al., 2022). This 

randomness in both weather events and driver behavior leads to a spatial point pattern of 

traffic crashes that is highly irregular and difficult to predict. 

Due to the inherent stochastic characteristics of weather-related traffic crashes, it is 

challenging to predict future weather-related crash events (Khan et al., 2008). Traditional 

predictive models often rely on historical data and identifiable trends or patterns for 

prediction. However, the dynamic and rapidly changing nature of weather conditions makes 

them inaccurate (Ahmed et al., 2022). As a result, any prediction model would need to 

account for a high degree of variability and uncertainty, both in terms of the weather 

conditions and the resulting spatial distribution of traffic crashes. This requires 
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sophisticated modeling techniques that can handle randomness and uncertainty, such as 

machine learning techniques that are capable of learning from complex and non-linear data 

patterns (Khan et al., 2008; Abdar et al., 2021). 

This dissertation aims to develop a long short-term memory (LSTM) algorithm to retain 

information of weather-related crashes over extended period. Unlike traditional recurrent 

neural networks (RNNs), which tend to forget earlier information in a sequence, LSTMs 

utilize gates to control the flow of information (Abdar et al., 2021). These gates can learn 

which data in a sequence is important to keep or discard, enabling the model to maintain 

relevant information throughout the sequence of inputs.  

 

1.4. The Interdisciplinary Perspective 

This dissertation embodies an interdisciplinary approach, seamlessly blending the 

domains of traffic engineering, data science, and public policy. It harnesses advanced spatial-

temporal geostatistical methods to unravel the complexities of traffic crash hotspots, 

bridging the gap between traditional traffic safety analysis and cutting-edge computational 

techniques. It further addresses data science problems by exploring challenges associated 

with imbalanced datasets through innovative synthetic data generation methods tailored 

for nominal predictors. The results will provide actionable insights for resource allocation 

and emergency response planning, emphasizing the societal impact of improved traffic safety 

measures viz-a-viz their policy implications. The interdisciplinary nature will not only 

strengthen the dissertation’s foundation but also broadens its applicability and relevance 

across multiple sectors. 

1.5. Dissertation Structure 
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This dissertation follows a three-paper format and is comprised of six chapters. Chapter 

1 is the introductory chapter that provides an overview and overall motivation for the 

dissertation. Chapter 2 delves into a literature review that synthesizes the three key areas 

geospatial risk mapping, imbalance data treatment in machine learning, and weather-related 

crash prediction. Chapter 3 focuses on geospatial risk mapping, discussing the development 

of advanced hotspot maps using spatial-time cubes to identify high-crash locations. Chapter 

4 explores the development and application of imbalance data treatment method to evaluate 

various data preprocessing strategies to improve the predictive performance of machine 

learning techniques, with a special emphasis on datasets predominantly composed of 

nominal or categorical predictors. Chapter 5 presents an in-depth analysis of predicting 

weather-related traffic crashes using advanced machine learning techniques, such as LSTM 

algorithms, which address the stochastic nature of these crashes. Finally, Chapter 6 

concludes the dissertation, summarizing key findings, contributions to the field, and 

potential areas for future research. 
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CHAPTER 2: LITERATURE REVIEW 

2.1. Weather-Related Crashes  

Research in crash severity prediction, focusing specifically on weather-related traffic 

crashes, is vital for understanding how various factors influence the severity of such 

incidents. Accurate crash severity prediction is crucial for emergency response planning, 

resource allocation, and the development of effective countermeasures to reduce the impact 

of these crashes. Numerous studies have been conducted in the past to investigate the factors 

influencing crash severity of weather-related traffic crashes (Al-Mistarehi et al., 2022; Zhao 

et al., 2019; Wei et al., 2023; Das et al., 2020; Yang et al., 2022). These factors can be 

broadly categorized into three main groups: driver-related, vehicle-related, and 

environmental-related factors, with emphasis on weather conditions (Yang et al., 2022; 

Robin & Fotios, 2020; Hou et al., 2022). Driver-related factors include driver age, gender, 

impairment (e.g., alcohol or drug use), distraction, and fatigue (Dingus et al., 2016). Vehicle-

related factors encompass vehicle type, size, and safety features (Strong et al., 2010; Ahmed 

et al., 2022). Environmental-related factors consist of road conditions, weather conditions, 

lighting, and traffic characteristics (Hamdar et al., 2016; Ahmed et al., 2022; Khan et al., 

2008; Abdar et al., 2021; Ghahramani, 2015). Understanding the impact of these factors is 

crucial for developing effective crash severity prediction models.  

The selection of predictor variables significantly impacts the accuracy and 

interpretability of crash severity prediction models (Sattar et al., 2023). Previous research 

has identified a wide range of potential predictor variables, including weather conditions 

and their interactions with driver characteristics (e.g., age and gender), roadway attributes 

(e.g., speed limit and road type), and other environmental conditions (e.g., lighting), and 

crash-specific variables (e.g., crash type and time of day) (Duddu et al., 2019; Shi et al., 

2019; Yuan et al., 2019; Islam & Mannering, 2023). Das et al. (2023) identified other 
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contributing factors such as locality and road-specific features (Das et al., 2023a; Das et al., 

2023b). Feature selection techniques such as stepwise regression, principal component 

analysis, or recursive feature elimination have been employed to identify the most influential 

variables for crash severity prediction (Duddu et al., 2019; Das et al, 2023a; Das et al., 

2023b).  

Evaluation metrics play a crucial role in assessing the performance of crash severity 

prediction models. Commonly used metrics include accuracy, precision, recall, F1 score, and 

area under the curve - receiver operating characteristic curve (AUC-ROC) (Yuan et al., 

2019). Additionally, confusion matrix analysis provides insights into model performance 

across different severity levels. Studies have compared the performance of different models 

and techniques, highlighting the strengths and limitations of each approach. Higher 

accuracy and AUC-ROC values indicate better model performance (Ke et al., 2017).  

Accurate crash severity prediction models have practical implications for traffic safety 

management. For instance, emergency response systems can use predicted severity levels to 

proactively plan or dispatch appropriate medical personnel and resources during adverse 

weather conditions. Transportation agencies can prioritize weather-specific traffic safety 

improvements and allocate funding based on predicted crash severity hotspots (Theofilatoa 

& Yannis, 2014). Furthermore, crash severity prediction models can aid in the development 

of intelligent transportation systems and advanced driver assistance systems to prevent or 

mitigate risks associated with weather-related crashes.  

2.2.  Impact of Weather Events on Traffic Safety 

Weather-related traffic crashes have a profound impact at multiple levels, ranging from 

individual consequences to broader societal implications (Hambly et al., 2013; Theofilatoa 

& Yannis, 2014). At the individual level, these crashes often result in physical injuries or 

fatalities, which can have a lasting impact on the victims and their families (Theofilatoa & 
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Yannis, 2014; Böcker et al., 2013). Injuries sustained in such crashes can range from minor 

bruises to severe, life-altering conditions, leading to long-term disability, chronic pain, and 

psychological trauma (Böcker et al., 2013). The emotional and psychological effects, such 

as post-traumatic stress disorder (PTSD) and anxiety related to driving or traveling in 

adverse weather conditions, can persist long after the physical injuries have healed. 

Furthermore, there are significant financial burdens associated with medical treatments, 

rehabilitation, and potential loss of income due to an inability to work. 

From a societal perspective, weather-related traffic crashes contribute to substantial 

economic costs. These costs include direct expenses such as emergency response services, 

healthcare for injured individuals, and legal proceedings, as well as indirect costs like traffic 

congestion, property damage, and reduced productivity due to injury or death (Theofilatoa 

& Yannis). For instance, it’s estimated that weather-related crashes in the United States 

alone accounted for $46 billion, in 2014, in economic losses annually (FHWA, 2023). These 

incidents also strain public resources, with emergency services and healthcare systems often 

being stretched to respond effectively (Theofilatoa & Yannis, 2014; Böcker et al., 2013). 

The economic impact extends beyond immediate costs, affecting insurance premiums, public 

health services, and local economies. 

Successfully addressing the challenges posed by weather-related traffic crashes would 

have significant implications for public policy and infrastructure planning. Improved 

predictive models and mitigation strategies would enable policymakers to allocate resources 

more effectively and design targeted safety campaigns, potentially leading to a substantial 

reduction in crashes and fatalities. Additionally, the findings from research on weather-

related crashes could inform legislation related to driving in poor weather condition, 

promoting safer driving practices. Table 1 present studies illustrating how various weather 

conditions impact traffic safety. 
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Table 1. Impact of weather event on traffic safety 
Weather 
event(s) 

Impact on traffic safety Limitations/gap References 

Cloudy Cloudy conditions impact light 
levels which affect driver 
visibility and perception 

Limited direct impact on safety 
compared to other weather events; 
however, subtle change in lighting 
has been overlooked in traffic safety 
studies 

Perrels et al., 
2015; 
Mohammed 
et al., 2020 

Rain Rain decreases driver visibility, 
reduces tire traction, and could 
result in hydroplaning 

Difficulty in predicting crash events 
in raining weather condition  

Perrels et al., 
2015; Das et 
al., 2020; 
Mohammed 
et al., 2020 

Snow Snow obscures road markings, 
reduces friction, and reduces 
roadway capacity 

Challenges in driver preparedness 
and response to snowy conditions 

Strong et al., 
2010; Ashifur 
Rahman et 
al., 2022; 
Mohammed 
et al., 2020 

Fog, smog, 
smoke 

Drastically reduces visibility, 
increases collision risk especially 
on high-speed roads 

Prediction and real time 
communication to drivers are 
inadequate; lack of visibility 
impairment mitigation strategies 

Perrels et al., 
2015; 
Mohammed 
et al., 2020 

Sleet, hail, 
freezing 
rain/drizzle 

Slippery road surface; physical 
damage to vehicle 

Weather predicting and traffic 
management systems are not 
sufficiently responsive 

Mohammed 
et al., 2020 

Severe 
crosswinds 

Affects vehicle visibility; increases 
risk of overturning; increases 
likelihood of lane deviation 

Driving training on handling 
crosswinds are lacking; inaccurate 
prediction of wind events 

Mohammed 
et al., 2020; 
Sawtelle, 2020 

Blowing sand Reduces visibility, causes road 
abrasion and mechanical failure 
in vehicles; can also cover road 
markings and reduce traction 

Impacts are localized and not 
widely explored; prevention and 
cleanup are not prioritized in non-
desert locations 

Mohammed 
et al., 2020; 
NRC 2004 

2.3. Hotspot Identification for Weather-related crashes 

The pursuit of enhancing traffic safety has led to the identification of high-risk locations, 

known as hotspots, which are typically determined based on specific selection criteria. 

Various studies aimed to refine this process, thereby bolstering the cost-effectiveness of 

safety programs (AASHTO, 2010). A widely accepted criterion involves analyzing expected 

collision frequencies at sites of interest, a method that strives to optimize system-wide safety 
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benefits (Hauer, 1992; Saccomanno et al., 2001; Greibe, 2003; Miranda-Moreno, 2006; Cheng 

& Washington, 2008). Conversely, some experts advocate for considering the collision rate 

relative to traffic exposure to address individual road user equity (Tarko & Kanodia, 2004). 

This dichotomy in approach highlights the ongoing debate between system optimization 

and individual risk assessment in the realm of traffic safety. 

Crash prediction models have traditionally served as the cornerstone for estimating 

expected crash frequencies. By statistically modeling crashes as a function of road 

characteristics, traffic volume, and weather conditions, these models partition roads into 

uniform sections for analysis (Hauer, 1992; Saccomanno et al., 2001; Greibe, 2003; Miranda-

Moreno, 2006; Cheng & Washington, 2008). The negative binomial (NB) model, particularly 

within an Empirical Bayes (EB) framework, stands out for its widespread adoption due to 

its adeptness at capturing local safety experiences (AASHTO, 2010; Cheng & Washington, 

2008). However, the success of such models hinges on the accurate specification of crash 

count distributions and model parameters. Any misstep in these areas can lead to the 

misidentification of hotspots, not to mention the substantial data collection and required 

model calibration efforts (Kuo et al., 2011). 

Geostatistical techniques offer an alternative approach by incorporating spatial 

autocorrelation, recognizing the interconnectedness of crash events across the geographical 

landscape (Pulugurtha et al., 2007). The Kernel Density Estimation (KDE) method, for 

instance, has been utilized to discern the spatial patterns of crashes and pinpoint hotspots 

(Pulugurtha et al., 2007; Kuo et al., 2011). Other methods like K-mean clustering (Kim & 

Yamashita, 2007) nearest neighborhood hierarchical (NNH) clustering (Levine, 2009), and 

the use of Moran’s I Index and Getis-Ord Gi statistics (Prasannakumar et al., 2011) also 

offer insights into the spatial dynamics of traffic safety, each with unique considerations of 

spatial correlations. 
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Illustratively, Anderson et al. (2009) deployed the KDE method in Turkey to unveil 

high-risk road sections, particularly at intersections. Keskin et al. (2011) further leveraged 

KDE to capture the temporal shifts in hotspots, while Khan et al. (2008) explored the 

specific spatial patterns of weather-related crashes. These explorations underscore the 

diverse impacts of different weather conditions on traffic safety and the importance of 

tailoring interventions accordingly. Moreover, the KDE method’s relative simplicity and 

focus on spatial autocorrelation of crashes have made it a popular choice in traffic safety 

studies (Khan et al., 2008; Keskin et al., 2011). 

2.3.1. History of Hotspot Identification  

Over the past two decades, the examination of crash data from a spatial perspective has 

gained traction, highlighting significant correlations and heterogeneity of crash occurrences 

across different areas (Aguero-Valverde & Jovanis, 2006; Quddus, 2008). Models, such as 

the multivariate Bayesian hierarchical models, laid the groundwork for incorporating spatial 

correlations into the prediction of crash frequencies, leading to enhanced model performance 

(Aguero-Valverde & Jovanis, 2010). The application of the geographically weighted Poisson 

regression model, like by Xu & Huang (2015), marked a progression in accounting for spatial 

variability in crash data analysis.  

Recently, a shift towards incorporating both spatial and temporal data points has 

emerged, reflecting an increasing interest in the dynamics of crash frequency and risk 

(Mannering & Bhat, 2014; Wu et al., 2023). These advanced studies suggest that the 

influence of nearby locations on a specific crash spot is a critical component often overlooked 

in traditional models. However, such detailed spatiotemporal analysis, especially on fine-

grained data, poses a challenge due to its complexity and time-intensive nature (Cai et al., 

2019). To navigate these complexities, contemporary research has pivoted towards 

leveraging sophisticated machine learning techniques, such as Convolutional Neural 
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Networks (CNNs), demonstrating their efficacy in discerning spatial correlations within 

high-resolution datasets (Cai et al., 2019). This reinforces the importance of considering 

spatial location as sets of monocytic homogenous grids to summarize the crash risk profile 

of an area, an idea that remains to be thoroughly explored. 

Factors influencing weather-related crashes can be broadly categorized into road 

characteristics, environmental condition, traffic flow, traffic management, and driving 

behavior. Environmental condition is an important factor that requires more studies, 

especially looking into how weather conditions influence crash risk. These conditions are 

systematically categorized in Table 1 as examined in past studies. Yet, there remains a gap 

in understanding how these factors interplay with the spatial and temporal landscape of 

crash risk, as most research has focused on isolated locations without considering the 

broader context. 

Historically, the identification of crash hotspots has been refined through various 

scientific methodologies. The Empirical Bayesian approach was initially heralded as the 

leading method for this purpose (Guo et al., 2019). It was later eclipsed by Full Bayes 

hierarchical models, which offered greater accuracy in identifying crash hotspots (Guo et 

al., 2019). Incorporating equivalent property damage only (EPDO) crashes expanded on 

this by integrating crash frequency and severity into a cohesive risk assessment (Ma et al., 

2016). With advancements in spatial statistics, KDE and emerging hotspot analysis became 

prominent tools for visualizing and identifying crash risk patterns (Plug et al., 2011; Chainey, 

2013). Nevertheless, the limitations of these methods, particularly in terms of high false 

discovery rates, have been noted as potential sources of inaccuracies in identifying true 

hotspots (Songchitruksa & Zeng, 2010; Ogungbire et al., 2023). 

The surge of application of machine learning techniques in traffic safety represents a 

pivotal shift towards more precise and interpretable risk prediction. Models employing 
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vehicle trajectory data, spatiotemporal dynamics, and advanced tree-based algorithms have 

been introduced, providing nuanced insights into crash risk prediction (Bao et al., 2019; 

Gao et al., 2023). Interpretability frameworks such as SHAP and LIME have transformed 

these complex models into more transparent systems, enabling a deeper understanding of 

the influential factors in various crash types (Wen et al., 2021; Amini et al., 2022; Veran et 

al., 2023). 

2.3.2. Towards a Spatiotemporal Analysis 

Despite the advancements in geostatistical methods, there remains room for innovation, 

particularly in incorporating the temporal aspect of crash data. Current methods 

predominantly focus on spatial analysis, which can overlook the temporal patterns that are 

equally crucial in understanding crash dynamics. This gap provides the motivation for a 

novel approach: the spatiotemporal cube (Nakaya, 2013). 

The spatiotemporal cube method allows for a comprehensive analysis of traffic crashes 

by considering both space and time dimensions simultaneously. This approach could offer 

a more dynamic and detailed understanding of crash hotspots, revealing not only where but 

also when crashes are most likely to occur. By integrating temporal data with spatial 

analysis, this method could identify patterns over time, such as seasonal variations or the 

impact of temporary road conditions, providing a richer context for safety interventions. 

This novel approach has the potential to revolutionize hotspot identification and 

significantly enhance traffic safety strategies.  

2.4. Handling Data Imbalance in Crash Data 

A huge amount of crash data is generated year in, year out, often exhibiting a skewed 

distribution (Kim et al., 2021). This skewness occurs when one category of crash severity- 

typically PDO crashes- far outnumbers more severe crashes. In this context, the prevalent 
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minor crashes represent the ‘majority class,’ while the less frequent but more severe crashes 

are the ‘minority class’. The challenge lies in the fact that most standard predictive models 

are inclined to favor the majority class due to its larger representation in the data, leading 

to poor prediction performance for the minority class, yet more critical, severe crash 

instances (Chawla et al., 2002). 

To address this imbalance, various strategies have been developed, categorized into 

algorithmic modifications, data preprocessing, and feature selection techniques (Yijing et 

al., 2016; Maldonado & López, 2018; Roy et al., 2018). Data preprocessing is one approach, 

where the data is manipulated before feeding it into the model. This can involve over-

sampling, where synthetic severe crash instances are generated to bolster the minority class 

(Gao et al., 2021), or under-sampling, where instances of the minor crashes are selectively 

removed to balance the classes (Kim et al., 2021). Another tactic is to refine or create new 

algorithms that are sensitive to the costs of misclassification, like cost-sensitive learning, 

and utilize advanced techniques such as kernel-based learning, like support vector machines 

(SVMs) (Tao et al., 2019). 

2.4.1. Approaches for Addressing Imbalance Problem in Crash Data 

The phenomenon of class imbalance has been identified as a significant challenge within 

the realm of statistical modeling and machine learning techniques. The disproportionate 

representation of classes often results in the dominance of the majority class, thereby 

undermining the reliability of the predictions pertaining to the minority class. This 

accentuates the pivotal role that data plays in these modeling frameworks, given their data-

dependent nature. This aspect is particularly salient within the context of traffic crash data 

analysis. Infrequent crashes, while less common in the dataset, are typically associated with 

higher severity and concomitant socioeconomic costs (Das et al., 2023a). Consequently, the 
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accurate prediction of these minority class crash events assumes critical importance (Wei 

et al., 2023). 

Iranitalab et al. (2017) undertook a comparative analysis of four distinct statistical and 

machine learning techniques, namely Multinomial Logit (MNL), nearest neighbor 

classification (NNC), SVM, and random forest (RF), in the context of traffic crash severity 

prediction. The findings revealed that machine learning techniques, encompassing NNC, 

SVM, and RF, generally outperformed the traditional MNL model in terms of prediction 

accuracy. Nonetheless, a common challenge encountered by all four models pertained to the 

classification of infrequent severe injury crashes, such as those resulting in severe injury or 

fatal crashes.  

To address the prevalent issue of class imbalance in crash severity analysis, minority 

over-sampling methods such as the SMOTE and the ADASYN have been developed and 

explored in the past (Chawla et al., 2002; He et al., 2008). SMOTE generates synthetic 

instances of the minority class by employing a bootstrapping approach in combination with 

the k-nearest neighbors’ algorithm, which has been widely used in traffic safety analysis. 

Similarly, ADASYN adopts a density distribution-based measure to determine the required 

number of samples from the minority class, in contrast to SMOTE’s uniform weight 

assignment. Besides over-sampling the minority class, under-sampling of the majority class 

has also been incorporated in crash analysis. For instance, Fiorentini & Losa (2020) utilized 

a random under-sampling of the majority class strategy to develop models predicting crash 

type, specifically focusing on two levels of collision severity: PDO and fatal + injury crashes. 

Their findings demonstrated that the random under-sampling of the majority class 

significantly improved the prediction performance for the minority class compared to the 

model trained on imbalanced data. Table 2 provides a summary of selected weather-related 

crash severity studies (Call et al., 2019; Ghasemzadeh & Ahmed, 2019; Mondal et al., 2020; 
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Zeng et al., 2020; Rahman et al., 2022) that have explored machine learning techniques in 

the past.  

In summary, the issue of class imbalance is a major issue in case of statistical methods 

and machine learning techniques, which can be addressed by using data treatment methods 

like SMOTE and ADASYN. However, there is a challenge when the dataset has 

predominantly nominal predictors with few or no numeric predictors. This study aims to 

address a critical gap in the existing literature by introducing a novel technique for synthetic 

data generation specifically tailored for nominal predictors in the context of crash severity 

analysis.  

Table 2. Summarization of previous weather-related crash severity studies 
Authors Independent variables Model used Findings 

Mondal et al., 
2020 

Manner of crash, weather 
condition, route class, hour of 
the day, type of intersection, 
light condition, road surface 
condition, work zone related, 
day of the week, and school bus 

Random Forest 
(RF) and 
Bayesian 
Additive 
Regression Trees 
(BART) 

RF model was better at predicting 
crash severity than the BART model; 
performance of the RF model was found 
to be very good, with a higher skill 
score of 0.73 compared to 0.61 for 
BART 

Zeng et al., 
2020  

Driver type, vehicle type, 
vehicle registered province, 
crash time, crash type, response 
time of emergency medical 
service, and horizontal curvature 
and vertical grade of the crash 
location 

Bayesian Spatial 
Generalized 
Ordered Logit 
Model 

An increase in precipitation is 
associated with a decrease in the 
probability of light and severe crashes, 
and an increase in the probability of 
medium crashes 

Call et al., 
2019  

Elevation, slope, location, time, 
and severity, as well as over 
twenty-five other fields related 
to the crash, such as single-
vehicle, weather-related, and 
driving under the influence 
(DUI) 

Logistic 
Regression 

Adverse weather-related crashes were 
most common in the winter season and 
correlated with snowfall; Excessive 
speed was more likely in these crashes, 
but they were generally less severe; 
Roadway slope was also a factor, with 
slight increases increasing the likelihood 
of crashes 

Ghasemzadeh 
& Ahmed, 
2019  

Speed, age, land use, crash type, 
DUI, lighting condition, 
weather, road type, traffic 
control devices, vehicle age, 
vehicle type, construction type, 
location, and surface condition 

Probit–
Classification 
Tree 

Presence of traffic control device and 
lighting conditions are significant 
interacting variables in the developed 
complementary crash severity model for 
work zone weather-related crashes 
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Authors Independent variables Model used Findings 
Rahman et 
al., 2022 

Lightning condition, AADT, 
roadway type, functional class, 
area type, roadway alignment, 
shoulder width, and posted 
speed limit 

Cluster 
Correspondence 
Analysis (CCA) 

Variety of attributes linked to speed 
limit, lighting condition, alignment, 
area type, manner of collision, restraint 
usage, and alcohol/drug can have an 
Influence on fatal/severe injury crashes 
and moderate injury crashes in the 
State of Louisiana 

It is hypothesized that these data treatment techniques will improve the prediction 

accuracy when trained on machine learning techniques compared to the control/raw dataset. 

The proposed technique is expected to improve accuracy of weather-related crash severity 

classifications. The findings from this study serve as valuable insights into the impact of 

these techniques on the accuracy and robustness of machine learning techniques when 

applied to crash data, contributing to more reliable and effective crash severity analysis 

methodologies.  

2.5. Weather-Related Crash Prediction 

Crashes are a result of multiple factors that can be categorized into behavioral, 

technological, and environmental influences (Ogungbire et al., 2023). While weather is not 

the primary cause of road crashes (FHWA, 2023; Ogungbire et al., 2023), its significance 

cannot be overlooked. Studies, including those by Vickery (1996) and Downs (2000), 

indicate that most people do not consider poor weather as a deterrent to driving unless 

conditions severely impede travel. Bergel-Hayat et al. (2013) have established a correlation 

between weather conditions and road transport, detailing how adverse weather can lead to 

inconvenience or even compel travelers to cancel their travel plan.  

Vehicles, unlike other modes of transport, are generally not designed to operate under 

extreme weather conditions. The impact of bad weather on traffic safety is complex and 

cannot be reduced to simple cause and effect. Research by Jackson & Sharif (2016) shows 

that rain increases crash rates, a situation exacerbated by more people choosing to drive 
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under wet conditions. However, the introduction of technologies such as anti-lock brakes 

and traction control has changed the dynamics of driving in poor weather, potentially 

leading to riskier driving behaviors as drivers gain confidence from these features (Smiley 

& Rudin-Brown, 2020). 

Weather-related challenges do not always lead to severe crashes. In some situations, like 

snow, drivers tend to be more cautious, reducing their speed and thus mitigating risk. 

Decisions to cancel or postpone travel plans can also decrease the likelihood of crashes 

during unfavorable weather conditions (Kilpeläinen & Summala, 2007). 

2.5.1. Crash Prediction Using Traditional Models 

Table 3 summarizes example crash prediction techniques. The evolution of traffic crash 

predicting using traditional models shows a shift from linear statistical models to more 

dynamic and complex computational models (Duddu & Pulugurtha, 2017; Pulugurtha et 

al., 2013; Gajera et al., 2023; Kalambay & Pulugurtha, 2023; Pulugurtha & Mahanthi, 2016; 

Najaf et al., 2018; Khan et al., 2022; Feng et al., 2020; Iranitalab & Khattak, 2017). The 

integration of different prediction techniques, such as combining grey models with Markov 

chains or enhancing autoregressive integrated moving average (ARIMA) with neural 

network analysis for the non-linear components, exemplifies the interdisciplinary approach 

towards a more accurate and robust prediction of traffic incidents. 

Time-series prediction methods have been foundational in predicting traffic crashes, 

utilizing historical data to estimate future outcomes (Khan et al., 2022). These methods 

consider the sequence of data points collected over time, analyzing patterns such as long-

term trends, seasonality, and irregular factors. Key approaches within time-series prediction 

include the exponential smoothing method (Khan et al., 2022; Rabbani et al., 2021), which 

emphasizes the diminishing significance of older data, and ARIMA, a model that integrates 

differencing of observations (to remove non-stationarity) with autoregression and moving 
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averages (Rabbani et al., 2021; Khan et al., 2022). These methods are based on the premise 

that past patterns in traffic crash data can offer insights into future occurrences, with 

techniques like exponential smoothing and ARIMA being particularly noted for their ability 

to model and predict traffic crashes (Hassouna & Al-Sahili, 2020; Rabbani et al., 2021; Khan 

et al., 2022). 

Exponential smoothing models, including the simple exponential smoothing and its 

extensions to account for trend and seasonality (Rabbani et al., 2021), provide a framework 

for smoothing out time series data to identify underlying trends. The sophistication of these 

models lies in their statistical rationale, which accommodates various forms of trends and 

seasonality through state-space models (Hassouna & Al-Sahili, 2020). ARIMA and its 

precursor, autoregressive moving average (ARMA), further advance the field by addressing 

the stochastic properties of time series and facilitating model selection based on the 

stationary characteristics of the data. These models have been applied to correct error terms 

in traffic crash prediction, combining with other methodologies like regression models to 

enhance the reliability of predictions. Markov chain models introduce a probabilistic 

approach to predicting, emphasizing the transition probabilities between discrete states over 

time (Pei et al., 2011). This method suits scenarios with significant random fluctuations but 

without clear trends, offering insights into the stochastic nature of traffic crashes.  
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Table 3. Comparison of crash prediction techniques 

Authors Methodologies Prediction 
range 

Features used Major improvement in literature 

Duddu & 
Pulugurtha 
(2017) 

Linear regression + 
back propagation 
neural network 

Short-term 
On network 
characteristics, and land 
use characteristics 

Link-level crash frequency model 
was developed. 

Loo et al. 
(2023) 

Random Forest (RF) 
+ XGBoost + Naïve 
bayes Negative 
Binomial) NB) 

Short-term 

Pedestrian exposure 
factors, pedestrian 
jaywalking, and bus stop 
crowding 

Both XGBoost and RF models 
generated similar results on 
feature importance for three sets 
of models. Also, there are non-
linear relationships of many risk 
factors with bus crashes.  

Formosa et al. 
(2020) 

Regional convolutional 
neural network (R-
CNN) 

Short-term 

Speed, vehicle sensor 
data (yaw rate, velocity, 
longitudinal 
displacement, etc.), 
headway, and occupancy 

Predict traffic conflict by 
integrating and mining heterodox 
data. 

Rabbani et al. 
(2021) 

Seasonal autoregressive 
integrated moving 
average (SARIMA) + 
ES 

Medium-term 
Historical crash 
frequency was used to 
predict future crash risk 

Exponential smoothing model has 
a better fit on crash data over 
SARIMA. 

Cai & Di (2021) 

Autoregressive 
integrated moving 
average (ARIMA) + 
boosting 

Short-term 

Lane traffic flow, 
weather information, 
vehicle speed, and truck 
to car ratio 

Integrating time series with a 
count data model can capture 
traffic crash features and account 
for the temporal autocorrelation. 

Ivan (2004) Bayesian framework Short-term  
Shows how traffic volume can be 
used in crash rate analysis. 

Ladron de 
Guevara et al. 
(2004) 

NB Short-term 

Population, TAZ area, 
number of housing units, 
number of schools, total 
miles of bus routes, and 
miles of bike routes 

Developed a model to predict 
crashes for equitable planning. In 
addition, the model would help 
state agencies in establishing 
incentive programs to reduce 
injuries and fatalities. 

Huang et al. 
(2019) 

Deep dynamic fusion 
Short-term & 
long-term 

Time, road condition, 
illegal parking, 
unsanitary condition, 
and blocked drive 

Improved the ability of deep 
neural network in modeling 
heterogeneous conditions in a 
fully dynamic ways for traffic 
crash prediction. 
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2.5.2. Deep Learning Models for Weather-Related Crash Prediction 

Deep learning, a subset of machine learning techniques characterized by its use of neural 

networks with multiple layers, has emerged as a powerful tool in the realm of traffic crash 

prediction (Formosa et al., 2020; Huang et al., 2020; Bibi et al., 2021; Valcamonico et al., 

2022; Loo et al., 2023). The application of deep learning in traffic crash prediction in 

literature has been restricted to specific models such as CNNs, recurrent neural networks 

(RNNs), and their variations such as LSTM networks and gated recurrent units (GRUs). 

These architectures are adept at handling the spatial and temporal data inherent in traffic 

systems, allowing for the modeling of complex patterns and relationships that traditional 

models might overlook. 

CNNs have proved effective in processing spatial data, making them suitable for 

analyzing crash data aggregated by geographical units, such as grid maps (Loo et al., 2023). 

By capturing spatial dependencies through their convolutional filters, CNNs can identify 

patterns related to traffic flow, road infrastructure, and other spatial factors contributing 

to crash risks (Huang et al., 2020). On the other hand, RNNs and LSTMs, are designed to 

handle sequential data, allowing for temporal dynamics of traffic crash occurrences. These 

models can learn from historical crash data, recognizing patterns over time, such as the 

cyclic nature of traffic volume and its correlation with crash incidents (Shi et al., 2015). In 

addition, LSTMs, can remember long-term dependencies, are particularly effective in 

overcoming the vanishing gradient problem common in traditional RNNs. 

2.6. Overview of Prior Research Limitations and Dissertation Contributions 

The literature review was conducted to scrutinize the limitations of past research and 

advance the field of weather-related crash severity analysis. The past research has focused 

on identifying crash hotspots through traditional crash prediction models and geostatistical 
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techniques (Pulugurtha et al., 2007; Kim & Yamashita, 2007; Khan et al., 2008; Levine, 

2009; Anderson, 2009; Kuo et al., 2011; Prasannakumar et al., 2011; Keskin et al., 2011). 

Nevertheless, these methods did not consider the temporal dimension of crashes and require 

substantial data collection, which was addressed through innovative spatiotemporal analysis 

in this dissertation. 

Past studies have also identified numerous factors that influence crash severity, 

including driver, vehicle, and environmental variables, with an emphasis on weather 

conditions (Zhao et al., 2019; Das et al., 2020; Al-Mistarehi et al., 2022; Yang et al., 2022). 

However, there is a gap in effectively predicting crash events and addressing their 

multifaceted impacts. This dissertation presents a robust variable selection technique in 

crash severity prediction and explores data imbalance treatment techniques to improve 

crash severity prediction models. 

Overall, key gaps were identified to set the stage for contribution to the body of 

knowledge, which involves enhancing the precision of hotspot identification with 

spatiotemporal analysis, proposing novel techniques for handling nominal predictors in crash 

data and developing advanced methodologies for traffic crash prediction.  
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CHAPTER 3: A SPATIOTEMPORAL RISK MAPPING OF STATEWIDE 
WEATHER-RELATED TRAFFIC CRASHES: A MACHINE LEARNING 

TECHNIQUE 

3.1. Introduction 

The dynamics of statewide transportation safety emphasize the impact of weather-

related crashes. According to the Federal Highway Administration (FHWA), between 2007 

and 2016, over 21% of all crashes were attributed to adverse weather conditions (FHWA, 

2023). These weather-related crashes tend to have a higher severity, most of them resulting 

in fatal outcomes. In addition to this, weather-related crashes in the United States 

accounted for $46 billion, in 2014, in economic losses (FHWA, 2023). Thus, state agencies 

are constantly making efforts to roll out strategic initiatives and policies with the aim of 

improving traffic safety and ensuring resilient transportation infrastructure (HSIP, 2010; 

PSC, 2008). Central to these efforts is the accurate identification of high-risk zones and a 

deep understanding of the factors that influence these areas.  

Traffic safety units of state DOTs have recognized the profound value of analyzing the 

spatial characteristics of crash data. This appreciation stems from the critical role such data 

plays in shaping statewide safety planning and management efforts (Brown 2016; Huang et 

al., 2014). Equipped with detailed locational insights, this data fosters research that delves 

into the spatial trends of weather-related crashes, enabling comprehensive safety evaluations 

at a granular level (Cai et al., 2019).  

Spatial grid methodologies have been embraced in recent traffic safety assessments 

across the state (Bao et al., 2019; Cai et al., 2019; Wu et al., 2023). By defining these grid 

dimensions, state planners can flexibly assess weather-related crash patterns across various 

spatial scales. These grids, with their fine granularity, offer a detailed lens for evaluating 

traffic safety, while also capturing diverse crash-related attributes, ranging from road 

characteristics patterns to urban infrastructures. 
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The challenge of identifying crash-prone zones, especially when mapped across time and 

space, has gained traction in recent state-led research endeavors. By identifying these zones, 

state transportation agencies are better positioned to devise and implement targeted 

interventions, thereby optimizing traffic safety outcomes (Drawve, 2019; Wu et al., 2023). 

Yet, there exists a gap in understanding the myriad factors contributing to these high-risk 

zones. Often, the interconnectedness of spatial-temporal attributes of surrounding areas 

with these zones remains underexplored. This interplay can be best understood through the 

lens of zonal spillover effects, where external factors at one location can have a ripple effect, 

impacting both the focal and adjacent areas (Zhang et al., 2022). Such effects arise due to 

the inherent continuity and interconnectedness observed in parameters like road designs 

and traffic flow dynamics. 

Given the huge number of factors influencing statewide crash risks, traditional statistical 

methods are often too simple to identify the important factors. However, machine learning 

techniques offer state DOTs the agility and precision to swiftly identify key risk factors 

from a high dimensional feature set (Santosh & Gaur, 2022; Yuan et al., 2022). Even though 

past studies have considered the combination of space and time in geospatial risk mapping 

theory, and these days, spatial data often include a time component, only a few studies 

have studied this in the context of weather-related crashes. The problem may be due to the 

complexity introduced by the heterogeneity of weather-related crash data. 

The aim of this study is to shed light on how spatiotemporal point process data using 

geographic location and times of individual traffic crashes can be used to identify weather-

related crash hotspots. Here, weather-related crash data are considered as a realization of 

spatiotemporal point process that lacks both spatial and temporal homogeneity, i.e., the 

expected number of crashes in each area units depends on their location and time. This 



 

 

26 

helps identify key spatiotemporal dynamics influencing weather-related crash hotspots at 

the grid level.  

The dissertation introduces a novel model for identifying statewide crash risks, weaving 

together space-time analytics and cutting-edge machine learning techniques. The nuanced 

effects of identified key factors on crash-prone zones are carefully explained using 

interpretable machine learning techniques. Drawing from these findings, state agencies can 

carve out informed policy recommendations, setting the stage for a safer transportation 

landscape. The subsequent sections will delve deeper into related literature, the proposed 

model’s intricacies, results interpretation, and implications, and culminate with a study 

summary and conclusion. The contribution of this step is as summarized next.  

a) In a statewide weather-related crash risk identification and prediction, the crash risk 

is not contained to one spatial region or time but spreads across multiple dimensions 

(Chen et al., 2016). The challenge lies in understanding how weather conditions 

influence crash risks over the vastness of a state, considering the data generation 

point process. The non-homogeneous nature of weather-related crashes that vary 

across space and time is addressed by  advancing the current methodologies which 

assume that crash data is uniformly distributed across a region. An architecture 

designed to systematically detect intricate patterns in the vast array of grids using 

an unsupervised machine learning technique is employed. 

b) Previous studies have developed techniques in visualizing crash hotspots without 

explaining factors responsible for crash hotspot (Lee & Khattak, 2019; Plug et al., 

2011). This part of the dissertation builds on existing studies to further examine 

factors responsible for both hotspot and coldspot using a supervised machine learning 

technique. In addition, the interaction among these risk zones and weather conditions 

is examined. 
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3.2. Study Design & Workflow of Developed Techniques 

The workflow depicted in Figure 1 describes a process for analyzing weather-related 

crash data. Initially, multiple datasets detailing cases of weather-related crashes are 

compiled into a space-time cube, which organizes the data across both spatial and temporal 

dimensions. This cube enables time series clustering, a method that groups similar patterns 

over time, to identify crash hotspots. These hotspots are then categorized and labelled as 

areas of high and low EPDO per mile using the method of integrating Getis-Ord Gi* 

statistics and dynamic time warping (DTW) as detailed in Algorithm 1. Subsequently, an 

advanced machine learning technique known as XGBoost, coupled with SHapley Additive 

exPlanations (SHAP), is used to integrate, and analyze the clustered data. The SHAP 

values explains which factors are most influential in predicting areas of high and low crash 

risk. The final step is the identification of risk factors for both crash-prone and low crash 

areas. 

 
Figure 1. Data processing workflow with a multi-layered crash hotspot identification 

technique 

3.2.1. Principle of Time Space Cubes 

Consider a random collection of weather-related crash points 𝑋 = {(𝑢! , 𝑡!)}!"#$ 	observed 

within a bounded space of plane, 𝑍 ⊂ ℝ%, where 𝑢! represent the spatial location of the ith 

crash event and 𝑡! is the time with a positive interval 𝑇 ⊂ ℝ&. Utilizing the crash occurrence 
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time and its geographical coordinates (𝑊 × 𝑇 ), the spatiotemporal pattern mining 

capabilities of the algorithm is used to construct a spatiotemporal cube, capturing both time 

and spatial nuances, as illustrated in Figure 2. Each cell within this cube corresponds to a 

distinct spatial (x, y) and temporal (t) coordinate. Traffic crashes within a given cell are 

assigned a shared location identifier. For the purposes of this research, the spatial base of 

each cell is configured as a square spanning 5mi × 5mi, with a temporal granularity set at 

one month. Viewed temporally, this cube can be dissected into multiple time series, 

differentiated primarily by their spatial coordinates. 

 
Figure 2. Space-time cube of the case study 

3.2.2. Integrating Dynamic Time Warping (DTW) and Getis-Ord Gi* Statistics (DTW-
G*) for Crash Risk Labeling 

Integrating Getis-Ord 𝐺!∗ and DTW may be applied to essentially any crash hotspot 

learning framework. The exact idea behind the development of the algorithm is explained. 

The contribution is a simple but effective fix to a problem that will otherwise plague any 

attempt at identifying hotspot for heterogeneous crash point datasets. The integration of 

Gestis-Ord 𝐺!∗ and DTW is conceptualized as a two-layer model: a) the temporal layer that 

constitute regions of similar temporal pattern in weather-related crash events, and, b) the 
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spatial layer that identifies which region within the groups of temporally similar regions are 

spatial hotspots. 

The DTW is a method to measure similarity between two temporal sequences. For time 

series X and Y, DTW finds the optimal alignment between these sequences to minimize the 

total distance between them. Assume there are two sequences as shown in Figure 3a, 

representing the EPDO of monthly weather-related crashes, Sequence X with length n, 𝑋	 =

	[𝑥#, 𝑥%… , 𝑥! , . . . , 𝑥$] and sequence Y with length m, 𝑌	 = 	 [𝑦#, 𝑦%… , 𝑦( , . . . , 𝑦)] , one can 

create an m-by-n path matrix where the (𝑖, 𝑗)th element of the matrix contain the distance 

between two points 𝑥$ and 𝑦) as shown in Figure 3b. The distance 𝑑(𝑥! , 	𝑦(), is calculated 

using  𝐿*	𝑛𝑜𝑟𝑚, 	||	𝑥! − 	𝑦( 	||*	which measures the difference in EPDO per mile for month i 

in location X and month j in location Y. The minimum distance path after the alignment 

of two sequences is recorded as the best match. 

 
Figure 3. a) Two similar time series that are out of phase, b) a warping matrix and search 
for optimal warping path (red squares) 

Thus, the optimal warping path can be computed by using the recursive formula in 

Equation 1. 

𝐷𝑇𝑊(𝑋, 𝑌) = D𝐷(𝑖, 𝑗)	        (1) 

where 𝐷(𝑖, 𝑗) is the cumulative distance as shown in Equation 2. 
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D(i, j) = d(x+, y+) + min{D(i − 1, j − 1), D(i − 1, j), D(i, j − 1)}		  (2) 

The objective of DTW is to find warping path through this matrix that minimizes the 

total distance subject to the following constraint: 

• Endpoint Constraint: The warping path must start at the first month’s EPDO for 

both location (𝑢# = (𝑥#, 𝑦#)) and end at the last month’s counts (𝑢, = (𝑥, , 𝑦,)) 

making sure the entire time span for both sequences is captured in the comparison. 

• Continuity Constraint: The path advance in one step increment in either sequence, 

i.e., if at step k the path is (𝑥! , 𝑦(), then at step 𝑘 + 1, it can only move to (𝑥!&#, 𝑦(), 

P𝑥! , 𝑦(&#Q, or (𝑥!&#, 𝑦(&#). 

• Monotonicity: The path must always move forward for both sequences to show the 

chronological progression of time i.e., if the path is at (𝑥! , 𝑦() at step k, then for step 

𝑘 + 1, it must move to a point (𝑥!&#, 𝑦(&#) where i and j are non-decreasing. 

Algorithm 1 is then designed to identify hotspots of weather-related crashes within a 3D 

grid by calculating a Getis-Ord 𝐺!∗ score for each cell i within distinct temporal cluster 

group k using equations 3 to 5. This score 𝑥( is based on the values of neighboring cells j, 

assuming each neighboring cell contributes equally (with a weight 𝑤!,( of 1) to the score. A 

cell is considered a neighbor if it touches another cell at any point, meaning a cell can have 

up to 26 neighbors in the middle of the grid, 11 if it is on the edge, and 7 if it is in a corner. 

The 𝐺!∗ score essentially tells us how unusually high or low a cell’s value is compared to its 

neighbors, using a method that turns these comparisons into a z-score, a statistical measure 

that indicates the difference from the average in units of standard deviation. 

𝐺,,!∗ =	
∑ /!,#	0#123
%
#&' 	∑ /!,#	

%
#&'

56
[%∑ *!,#

+%
#&' ,(∑ *!,#	

%
#&' )+]

%,'

	       (3)  

where, 𝑋S = 	
∑ 0#	
%
#&'

$
,        (4) 
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and 𝑠 = 	U
∑ 0	#

+%
#&'

$
−	𝑋S%       (5) 

 

Algorithm 1: Spatiotemporal Hotspot Identification 

 
Input: temporal sequence {𝑆0, 𝑆1… , 𝑆2}, each sequence 𝑆3 representing the occurrence of 
weather-related crash event over time for region i 

 Output: Group of regions with similar temporal pattern and their hotspots significance scores 
1: Compute temporal similarity using DTW 
2:  Initialize 𝐷𝑇𝑊43567289[𝑛][𝑛] to store DTW distance 
3: for each unique region (𝐼, 𝑗), where (𝑖 ≠ 𝑗) and (𝐼, 𝑗) in {1, …, n} 
4:  𝐷𝑇𝑊43567289[𝑖][𝑗] ← 𝐷𝑇𝑊(𝑆3 , 𝑆:)  
5:  A threshold θ is defined to distinguish between similar and dissimilar temporal patterns 
6:  A list ∀ is initialized to store groups of regions based on their temporal similarity 
7:  for each region i in {1, …, n} 
8:   for each region j in {1, …, n} and	j	≠ 𝑖 
9:    if 𝐷𝑇𝑊43567289[𝑖][𝑗] < 	𝜃 
10:     Add i and j to the same group ∀ 
11: Initialize list ℶ to store and compare significant hotspots within groups using Getis-Ord 𝐺3∗ 
12:  for each group 𝐺<∗, compute  𝐺∗ statistics as 𝐺3∗ ← 𝐺𝑒𝑡𝑖𝑠𝑂𝑟𝑑(𝑆3) 
13:   for each region i in 𝐺<∗ 
14:    if 𝐺3∗ is significant within group 𝐺<∗ 
15:     Add i to ℶ with significant score 𝐺3∗ 
16: end algorithm 

 

3.2.3. Risk Factor Identification Using XGBoost 

XGBoost is used to predict the risk pattern at different locations in a study area by 

predicting the labels as classified in the prior step. This algorithm leverages the ensemble 

technique of gradient boasting trees (Chen & Guestrin, 2016).  Let X denote the input 

matrix n × m, where n is the number of samples and m is the number of dimensions. The 

prediction outcome i.e., the labelled risk is given by the sum of the output from K trees, 

each represented by a function 𝑓, on the input matrix 𝐗 as shown in Equation 6. 

𝑦X = 	𝜙(Χ) = 	∑ 𝑓,(𝐗)7
,"#         (6) 

where 𝑦X is an n-dimensional vector of the predicted outputs. 
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The objective function L, combining both the loss and regularization term, can be 

expressed as Equation 7. 

𝐿 = 	∑ 𝑙(𝑦X! , 𝑦!) +$
!"# ∑ Ω𝑓,$

!"#        (7) 

For the regularization term Ω𝑓,, it is applied to each tree and can be seen as a sum of 

penalties on the complexity of each tree. The process of modifying the model iteratively, 

incorporating one tree at a time is given by Equation 8. 

𝑦X(9) = 𝑦X(91#) +	𝑓9(𝐗)        (8) 

where 𝑓9(𝐗) is the combination of the tth tree to the prediction. 

For the optimization of the objective function using a second-order Taylor expansion, 

the objective function 𝐿(9) after dropping the constant becomes Equation 9. 

𝐿(9) =	∑ ^𝑔!𝑓9(𝐗!) +	
#
%
ℎ!𝑓9(𝐗!)%a +	Ω𝑓9$

!"#       (9) 

where g and h are vectors of the first and second derivative statistics of the loss function 

with respect to the predictions 𝑦X(91#), and 𝑓9(𝐗!) represents the contribution of the tth tree 

to the prediction for sample i. 

3.2.4. SHAP for Key Risk Factor Interpretation 

The concept of SHapley Additive exPlanations (SHAP) values, introduced by Lundberg 

& Lee (2017), draws upon the foundational Shapley value estimation method, originally 

proposed by Shapley (1953). SHAP values provide a mechanism to quantify the importance 

of each feature by calculating its contribution to the prediction outcome when included in 

the model. The computation of SHAP values, serving as feature attributions, entails a 

weighted average of all conceivable differences in predictions, as outlined below in Equation 

10 in a more generalized matrix form. 

𝜙! =	∑
|<|!(|>|1|<|1#)!

|>|!<∈>{!} [𝑓<∪{!}P𝐗<∪{!}Q − 𝑓<(𝐗<)]    (10) 
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Here, 𝜙! represents the SHAP value for the ith feature, F denotes the full set of features, 

S is a subset of features excluding the ith feature, 𝑓<∪{!} and 𝑓< signify the model predictions 

with and without the ith feature, respectively, and 𝐗<	refers to the input values for the 

features in the set S. 

3.3. Case study of North Carolina (NC) 

The proposed workflow is demonstrated using the state of North Carolina (NC) as the 

study area. The traffic crash data used in the study comes from the Highway Safety 

Information Systems (HSIS) database. This data is the general crash data that occurred in 

the study area from January 1, 2015, to December 31, 2018. Figure 4 provides a visual 

analysis of weather-related traffic crashes and traffic volume in NC. The left map is a map 

detailing the severity of crashes, with different colors indicating the severity level: PDO, 

minor injuries, and severe injuries. This map is dense with PDO crashes, displayed in blue, 

and severe crashes displayed in red. The right map displays traffic volume intensity with a 

color scale ranging from yellow to red, highlighting the areas with the highest traffic density.  

Different weights based on societal and economic value of crashes in NC are used to 

compute the EPDO values as shown in Equation 11 to account for severity level of crashes 

in the density estimation. Weight of fatal, injury and PDO crashes are set to 249.8, 11.6 

and 1 respectively (NCDOT, 2019).  

The selected dataset is comprised of 2,045 cubes. The description of features extracted 

within each spatial cube is as presented in Table 4.  

𝐸𝑃𝐷𝑂! =	
%CD.F∑ [<H]!	?

@ABC&' &	##.J ∑ [KH]!&	∑ [LMN]!	?
@ABC&'

?
@ABC&'

O!
                 (11) 
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Figure 4. Left: Location of 238,252 weather-related crashes by severity level. Right: NC 
population density averaged over years 2015-2018 

Table 4. Description of features extracted within spatial cubes 
Feature Type Feature Name Categories Feature Code Description 

Road 

Lanes - no_lanes 
Average number of lanes in each 
cube 

Left shoulder width - lshldwid 
Average left shoulder width in 
each cube 

Right shoulder type - rshldwid 
Average right shoulder width in 
each cube 

Route type 

Interstate rte_type_1_ratio 
Proportion of interstate routes 
within each cube 

US route rte_type_2_ration 
Proportion of US routes within 
each cube 

NC route rte_type_3_ratio 
Proportion of NC routes within 
each cube 

Secondary route rte_type_4_ratio 
Proportion of secondary routes 
within each cube 

Left shoulder type 

Bitumen lft_shldr_Bitum_ratio 
Proportion of left shoulder with 
bitumen within each cube 

Concrete lft_shldr_Concrete_ratio 
Proportion of left shoulder with 
concrete within each cube 

Curb-concrete lft_shldr_Curb-Bit_ratio 
Proportion of left shoulder with 
curb-concrete within each cube 

Curb-
bituminous 

lft_shldr_Curb-Con_ratio 
Proportion of left shoulder with 
curb-bituminous within each cube 

Gravel or stone lft_shldr_Grass_ratio  
Proportion of left shoulder with 
gravel or stone within each cube 

Grass or sod lft_shldr_Gravel_ratio 
Proportion of left shoulder with 
grass or sod within each cube 

Right shoulder type 

Bitumen rt_shldr_t_Bitum_ratio  
Proportion of right shoulder with 
bitumen within each cube 

Concrete rt_shldr_t_Concrete_ratio 
Proportion of right shoulder with 
concrete within each cube 

Curb-concrete rt_shldr_t_Curb-Bit_ratio 
Proportion of right shoulder with 
curb-concrete within each cube 

Curb-
bituminous 

rt_shldr_t_Curb-Con_ratio 
Proportion of right shoulder with 
curb-bituminous within each cube 

Gravel or stone rt_shldr_t_Grass_ratio' 
Proportion of right shoulder with 
gravel or stone within each cube 

Grass or sod rt_shldr_t_Gravel_ratio 
Proportion of right shoulder with 
grass or sod within each cube 

Speed limit 0-15 mph spd_limt_1_ratio 
Proportion of 0-15 mph speed 
limit roads within each cube 
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Feature Type Feature Name Categories Feature Code Description 

20-40 mph spd_limt_2_ratio 
Proportion of 20-40 mph speed 
limit roads within each cube 

45-55 mph spd_limt_3_ratio 
Proportion of 45-55 mph speed 
limit roads within each cube 

>55 mph spd_limt_4_ratio 
Proportion of >55 mph speed 
limit roads within each cube 

Road surface type 

Dry rdsurf_1.0_ratio 
Proportion of dry road surface 
within each cube 

Wet rdsurf_2.0_ratio 
Proportion of wet road surface 
within each cube 

Water 
(standing, 
moving) 

rdsurf_3.0_ratio 
Proportion of road surface with 
water within each cube 

Ice rdsurf_4.0_ratio 
Proportion of road surface with 
ice within each cube 

Snow rdsurf_5.0_ratio 
Proportion of road surface with 
snow within each cube 

Slush rdsurf_6.0_ratio 
Proportion of road surface with 
slush within each cube 

Sand, 
mud/gravel 

rdsurf_7.0_ratio 
Proportion of road surface with 
sand, mud, dirt, or gravel within 
each cube 

fuel/oil rdsurf_8.0_ratio 
Proportion of road surface with 
fuel/oil within each cube 

other rdsurf_9.0_ratio 
Proportion of other road surface 
type within each cube 

Unknown rdsurf_10.0_ratio 
Proportion of unknown road 
surface type within each cube 

Environmental 
factors 

Lighting condition 

Daylight light_1.0_ratio 
Proportion of crash during 
daylight within each cube 

Dusk light_2.0_ratio 
Proportion of crash during dusk 
within each cube 

Dawn light_3.0_ratio 
Proportion of crash during dawn 
within each cube 

Dark- lighted 
roadway 

light_4.0_ratio 
Proportion of crash during the 
dark with lighted roadways within 
each cube 

Dark- roadway 
not lighted 

light_5.0_ratio 
Proportion of crash during the 
dark with roadways not lighted 
within each cube 

Dark- Unknown 
lighting 

light_6.0_ratio 
Proportion of crash during dark 
with unknown lighting within 
each cube 

Other light_7.0_ratio 
Proportion of crash with other 
type of roadway light condition 
within each cube 

Unknown light_8.0_ratio 
Proportion of crash with unknown 
type of roadway light condition 
within each cube 

Weather condition 

Unclear, foggy, 
and cloudy 

weather1_1_ratio 
Proportion of crash with unclear, 
foggy, and cloudy weather 
condition within each cube 

Rain weather1_2_ratio 
Proportion of crash with rainy 
weather condition within each 
cube 
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Feature Type Feature Name Categories Feature Code Description 

Snow, sleet, 
hail, freezing 
rain 

weather1_3_ratio 

Proportion of crash with snow, 
sleet, hail, freezing rain/drizzling 
weather condition within each 
cube 

Severe 
crosswinds, 
blowing sand, 
dirt 

weather1_4_ratio 
Proportion of crash with severe 
crosswinds, blowing sand 
condition within each cube 

Traffic 
flow/managemen
t 

Traffic volume - aadt 
Average traffic volume in each 
cube 

Traffic control type 

No control 
present 

trf_cntl_0.0_rati 
Proportion of location with no 
control device present within each 
cube 

Stop sign trf_cntl_1.0_rati 
Proportion of location with stop 
sign present within each cube 

Yield sign trf_cntl_2.0_rati 
Proportion of location with yield 
sign present within each cube 

Stop and go 
signal 

trf_cntl_3.0_rati 
Proportion of location with Stop 
and Go signal present within each 
cube 

Flashing signal 
with stop sign 

trf_cntl_4.0_rati 
Proportion of location with 
flashing signal with stop sign 
present within each cube 

Flashing signal 
without stop 
sign 

trf_cntl_5.0_rati 
Proportion of location with 
flashing signal without stop sign 
present within each cube 

RR gate and 
flasher 

trf_cntl_6.0_rati 
Proportion of location with 
railroad gate present within each 
cube 

RR flasher trf_cntl_7.0_rati 
Proportion of location with 
railroad flasher present within 
each cube 

RR crossbucks trf_cntl_8.0_rati 
Proportion of location with 
railroad crossbucks present within 
each cube 

Human control trf_cntl_9.0_rati 
Proportion of location with 
human control present within 
each cube 

Warning sign trf_cntl_10.0_rati 
Proportion of location with 
warning sign device present within 
each cube 

School zone 
signs 

trf_cntl_11.0_rati 
Proportion of location with school 
zone signs present within each 
cube 

Flashing stop 
and go signal 

trf_cntl_12.0_rati 
Proportion of location with 
flashing stop and go signal present 
within each cube 

No passing zone trf_cntl_13.0_rati 
Proportion of location with ‘no 
passing’ zone present within each 
cube 

other trf_cntl_14.0_rati 
Proportion of location with other 
control type present within each 
cube 

Driver 
characteristics 

Driver restraint None used drv_rest_ 0_ratio 
Proportion of drivers with no 
restraint used within each cube 
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Feature Type Feature Name Categories Feature Code Description 

Lap belt only drv_rest_ 1_ratio 
Proportion of drivers with lap belt 
only restraint within each cube 

Shoulder and 
lap belt 

drv_rest_ 2_ratio 
Proportion of drivers with 
shoulder and lap belt restraint 
within each cube 

Child restraint drv_rest_ 3_ratio 
Proportion of drivers with lap belt 
only restraint within each cube 

Helmet drv_rest_ 4_ratio 
Proportion of drivers with helmet 
within each cube 

Protective pads drv_rest_ 5_ratio 
Proportion of drivers with 
protective pad restraint within 
each cube 

Reflective pads drv_rest_ 6_ratio 
Proportion of drivers with 
reflective pad restraint within 
each cube 

Reflective 
clothing 

drv_rest_ 7_ratio 
Proportion of drivers with 
reflective clothing restraint within 
each cube 

Lighting drv_rest_ 8_ratio 
Proportion of drivers with lighting 
restraint within each cube 

Other drv_rest_ 9_ratio 
Proportion of drivers with other 
type of restraint within each cube 

Unable to 
determine 

drv_rest_ 10_ratio 
Proportion of drivers with 
unidentifiable restraint within 
each cube 

Driver sex 

Male drv_sex_1_ratio 
Proportion of male drivers in each 
cube  

Female drv_sex_2_ratio 
Proportion of female drivers in 
each cube  

Unknown drv_sex_3_ratio 
Proportion of unknown drivers in 
each cube  

Driver’s blood 
alcohol % 

- drv_bac 
Average driver blood alcohol % 
within a cube 

 

Figure 5 shows that the maps exhibit temporal variations in crash occurrences across 

NC, with the red colored areas indicating high-crash zones and yellow colored areas 

signifying locations with fewer crashes. Over time, these high-crash hotspots appear to 

fluctuate in location and concentration, suggesting a dynamic pattern in the incidence of 

traffic crashes. This fluctuation could be influenced by various factors, including changes in 

traffic volume, road conditions, seasonal variations, or the impact of traffic safety 

interventions.  

Although past studies have considered the combination of space-time theory (Yoon & 

Lee, 2021; Azimian et al., 2021), there are no examples in the context of weather-related 
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crash events. Perhaps, the heterogeneity of weather-related crash data is responsible. Here, 

a multi-layered technique was employed to analyze the complex heterogeneity issues seen 

in both spatial and temporal settings. 

 
Figure 5. Map showing time series maps for EPDO in NC 

3.4. Results 

The results as well as the model outputs are discussed in this section. The interactions 

between crash risk and weather conditions are also discussed.  

3.4.1. Distribution of Crashes in Distinct Weather Conditions 

Figure 6 is a set of four choropleth maps displaying EPDOs for crashes under different 

weather conditions: Cloudy/Fog, Rain, Snow/Sleet, and Wind. Each map shows a 

geographic area (say, NC), with a grid overlay. The intensity of the color on each grid cell 

indicates the EPDO value for crashes in that specific cell under the given weather condition. 
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Under the cloudy or foggy conditions, some grid cells have relatively higher EPDO 

values. These kinds of crashes are more prominent in the Mecklenburg and Wake counties 

of NC. These conditions significantly reduce visibility, which may lead to more severe 

crashes due to drivers not being able to see other vehicles or road hazards in time to react 

(Abdel-Aty et al., 2011). Similar to this is the map showing higher EPDO values for crashes 

in rainy weather compared to cloudy/fog. Both conditions show similar pattern, what is 

different is the intensity of the EPDOs. While rain can create slippery road surfaces and 

reduce tire traction (Perrels et al., 2015), leading to a higher risk of crashes, they also occur 

because of low visibility (Mohammed et al., 2020), especially with high rain intensity. 

The map on the bottom left corner shows generally lower EPDO values for crashes 

under snow or sleet conditions than for rain. This may be because drivers tend to be more 

cautious and drive slower under snowy conditions (Strong et al., 2010), which can lead to 

fewer crashes or less severe crashes with lower property damage. In addition, NC does not 

experience snow often and the result does not come surprising. However, the spatial 

footprint of crashes under this weather condition is higher compared to other weather 

conditions. This finding bolsters the result of a study carried out on personal disaster 

preparedness in NC that individuals are not prepared to handle the snowy conditions 

(Foster et al., 2011).  

The map in the bottom right corner of Figure 6 shows the lowest EPDO values among 

the displayed conditions. While wind can affect vehicle stability and control, especially for 

larger vehicles like trucks, it appears to have less impact on the EPDO for crashes in this 

region. 
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Figure 6. Spatial distribution of crashes in distinct weather condition 

3.4.2. Dynamic Time Warping (DTW) 

Two statistical methods were employed, the elbow method, and the silhouette score, to 

evaluate the clustering of crash data. The silhouette score is a measure of how similar data 

points are within a cluster compared to other clusters, with higher scores indicating better 

clustering quality, meaning the data points within a cluster are more similar to each other, 

and the clusters themselves are more distinct from one another. Per Figure 7, a silhouette 

score analysis suggests that the crash data is most effectively organized into two clusters. 

This means that the data can be best understood when it is divided into two distinct groups. 

However, when this finding is compared with results from the elbow method, which is 

another way to determine the number of clusters that best fits the data, it can be interpreted 

that three clusters are optimal for the dataset. 
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Figure 7. Left: Elbow method and Right: silhouette score technique 

The unsupervised clustering analysis provides the homogeneous groups of weather-

related crash point process in which each group contains data with similar behavior. This 

analysis was performed on monthly EPDO of weather-related crashes and the cluster wise 

spatial distribution is as shown in Figure 8. 

 
Figure 8. Distribution of locations into DTW clusters 

Figure 9 shows the average EPDO across clusters and have two y-axes with different 

scales since cluster 1 EPDOs are much higher than those for clusters 0 and 2. The left y-

axis corresponds to clusters 0 and 2, while the right y-axis corresponds to cluster 1. Given 

that the EPDO values for cluster 0 range from around 20 to just above 30, and show a 

gradual increase throughout the year, this cluster can be considered as ‘gradually increasing 

low-EPDO.’ Cluster 1 has significantly higher EPDO values, starting off around 200 and 
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growing towards 250 by the end of the year with notable fluctuations. This cluster is referred 

to as ‘volatile high-EPDO group.’ Since the EPDO values for cluster 2 are consistently the 

lowest, this cluster is referred to as ‘stable low-EPDO group.’  

 
Figure 9. Distribution of average EPDO across DTW clusters 

The DTW-G* maps are compared (Figure 10) with the DTW cluster distribution to 

find patterns and similarities. Cluster 1 is a group of volatile high-EPDOs which is also 

reflected in the hotspot map as majority of the grids that fall into the cluster 1 groups have 

high EPDOs. By visual inspection of Figure 5 and Figure 9, it can be stated that the spatial 

and temporal distribution of weather-related crashes are somewhat similar. Whereas in some 

cases, certain time and spatial units exhibit different patterns. For example, the positive 

peak bias between the distribution of crashes for cluster 0 and 1 is during the cold periods 

of October to December. A good justification for this might be that people are driving more 

in the colder months, thus increasing vehicle mile traveled (VMT) leading to more crashes. 

The summer months (June and July) records a dip in EPDOs. This is reasonable as 

favorable weather is experienced during this period. People want to walk and get involved 

in recreational activities during this period. The finding obtained from the spatial and 

temporal distribution of average EPDO across DTW clusters is two-fold. First, the seasonal 
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effect in weather-related crashes may be interacted with other external factors such as traffic 

volume and VMT. The key risk factors are explained in a later section.  

 

 

3.4.3. Crash Risk Labeling 

The application of the two-layered technique helps segregate high-risk locations from 

low-risk locations. Figure 10 indicates that the method intelligently classifies significant 

hotspot and coldspot cubes within their respective clusters. The trends and the intensity of 

crashes in different clusters can be better observed for the DTW method. The technique 

shows how these significant cubes distribute across the clusters. The DTW method suggests 

that cluster 0 is a group of gradually increasing low-EPDOs looking at the average trend 

line. The two layered technique supports this by showing that the cluster has a mix of 

hotspots and cold spots grids.  

From Table 3, all clusters have more than half of their weather-related crashes under 

unclear, foggy, and cloudy conditions. Cluster C2 has the highest mean percentage, 

indicating that such weather is a common factor in crashes, but with the highest variability 

(±17.1%), meaning that the extent to which this weather contributes to crashes varies the 

most in this cluster. Cluster C1 has the lowest mean but the least variability, indicating 

more consistency in the impact of unclear-weather condition on crashes across this cluster. 

Rain is a significant factor in crashes across all clusters, but it is most prominent in C1, 

where it is associated with the highest mean percentage of crashes. In addition, a low 

standard deviation of ±3.6% indicates that rain-related crashes are quite consistent, 

meaning that rain is a reliably common condition when crashes occur in C1. C0 and C2 

have lower mean percentages but higher standard deviations, suggesting that the 
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contribution of rain to crashes is highly inconsistent- some areas within this clusters may 

experience many rain-related crashes, while others experience few rain-related crashes. 

Snow, sleet, hail, and freezing rain happen in winter weather conditions. These weather 

conditions have a minor impact on crashes compared to the other weather types, with C1 

having the lowest mean percentage. C0 and C2 have similar mean percentages, but C2 has 

a higher variability, suggesting that in some areas within this cluster, these conditions are 

more significant factors in crashes. This finding seems reasonable because these weather 

conditions are rarely experienced in the study area. The high variability is also supported 

by the spatial distribution shown in Figure 6. The finding suggests that even though these 

crashes are not frequent within the study area, the outcome ends up more severe.  

Severe crosswinds and dusty condition category have the least impact on crashes across 

all clusters, with very low mean percentages. C1 has the smallest mean percentage and 

variability, indicating that these conditions are the least significant for crashes. C0 and C2 

have marginally higher means, but C2 exhibits a higher variability, again suggesting that 

the impact of these conditions on crashes varies more across different areas within this 

cluster. These conditions are expected to happen only for a short period, and it only make 

sense that Figure 6 shows severe crosswinds related crashes are more prominent along/close 

to the coast. 

Table 5. Interaction of weather and DTW clusters 

Weather categories Feature Code 
C0 C1 C2 

Mean % std. dev. Mean % std. dev. Mean % std. dev. 
Unclear, foggy, and 
cloudy 

weather1_1_ratio 59.6 10.9 56.3 4.2 61.4 17.1 

Rainy weather weather1_2_ratio 35.1 10.4 40.7 3.6 32.7 16.7 
Snow, sleet, hail, 
freezing rain 

weather1_3_ratio 5.2 4.3 2.9 1.4 5.7 7.9 

Severe crosswinds, 
blowing sand, dirt 

weather1_4_ratio 0.18 0.8 0.07 0.08 0.2 1.3 

Note: Numbers highlighted in bold are the most significant clusters for various weather conditions. 
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Figure 10. DTW-G* results  



 

 

46 

3.4.4. Risk Pattern Prediction Performance 

Of the 2,045 candidate cubes, 620 belong to cluster 0, 25 belong to cluster 1 and 1400 

belong to cluster 2. The training set is formed by drawing 80% samples without replacement 

from the full dataset and the remaining dataset was used for testing. The computed ROC 

curve and AUC from the base model are presented in Figure 11a. The plot shows a perfect 

prediction of cluster 1 which is a cluster of high-risk locations.  

It is important to assess how realistic is this result in practice. It is noteworthy that 

accurately predicting this class would help us put preventive measures in place prior to 

their occurrence. While ROC curves are not sensitive to changes in outcome class proportion 

(Carter et al., 2016), they do have considerable impact on the estimation of error rates and 

AUC. Although the developed model is perfectly able to identify this minority class, the 

sample size is to be considered while interpreting this curve. Cluster 2 has a higher 

discriminate capacity compared to cluster 0. While a curve that deviates significantly from 

the diagonal reflect the performance of a crash risk classification that is much better than 

chance (Carter et al., 2016), one can improve the performance by tuning and removing 

redundant features. 

 
Figure 11. ROC curve of crash risk classification: a) base model; b) tuned model  
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Figure 12 shows a ranked list of features used to classify the weather-related crash risks. 

The length of the bar indicates how much influence that feature has on the model’s 

prediction. The most important features are at the top of the plot with the longest bars, 

and they decrease in importance as you move down to the bottom of the plot. From Figure 

12, one can make changes to the dataset eliminating features that do not influence the 

results while having a better understanding of which features are the most influential. 

 

Figure 12. Importance of features described in Table 4 for crash risk prediction  
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When comparing the ROC curve of the developed tuned model in Figure 11b to that of 

the base model in Figure 11a, the tuned version shows the ROC curve that lies above the 

base model's curve, reflecting a superior true positive rate for the same false positive rate 

across different threshold settings. This improvement suggests that the tuning process has 

effectively optimized the model's parameters, leading to a more sensitive and specific 

classification of the crash risk. 

 
Figure 13. Average impact of selected features described in Table 4 on crash risk 

3.4.5. Key Factors for High-Risk Crash Classification 

From Figure 13, the contribution of each factor to the crash risk classification model 

can be examined. Double yellow line or no passing zone have the strongest influence in 

predicting the volatile high-EPDO crashes or the cluster 1 crashes. This observation posits 

that two-way roads, exert a significant influence on the model's ability to predict crashes 

at high-risk locations. The preeminence of double yellow lines or no passing zones in 

predicting high-EPDO crashes may be attributable to the nature of crashes that occur 
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within such areas. Typically, these zones are instituted on stretches of road where visibility 

or road conditions make overtaking maneuvers dangerous (Pashkevich et al., 2021). 

Consequently, violations of these regulations are likely to result in head-on collisions (Das 

et al., 2018), which are among the most severe types of vehicle crashes due to the high 

velocity impact and direct contact of the vehicles’ front sections. The severity of such 

crashes, in terms of both human injury and property damage, would naturally elevate their 

EPDO scores, making the model’s sensitivity to this feature as an indicator of high-risk 

crash location. A study carried out by Ogungbire et al. (2023) confirmed that there is a 

higher likelihood of weather-related crashes on two-way roads compared to one-way roads. 

Further, research focusing on road design and traffic regulation effectiveness has illuminated 

the critical role of no passing zones in mitigating the risk of such crashes by restricting 

overtaking maneuvers on particularly dangerous road segments (Naheed et al., 2023). 

Several other features are found to have huge impact on crash occurrence in high-risk 

locations. For example, light_4.0_ratio which represent the proportion of crashes during 

the dark with lighted roadways exert a significant influence on the model's ability to predict 

crashes at high-risk locations. The importance of lighted roadways in predicting crash 

occurrences can be interpreted through several lenses. Firstly, while illumination is intended 

to enhance visibility and safety during nighttime driving, the effectiveness of roadway 

lighting can vary greatly, influenced by factors such as the intensity of lighting, the spacing 

of light posts, and the presence of reflective road markers (Bullough, Donnell & Rea, 2013). 

In scenarios where lighting is insufficient or unevenly distributed, the contrast between light 

and dark spots can create visual illusions or reduce the reaction time available to drivers, 

thus escalating the risk of crashes. Moreover, studies examining driver behavior have 

indicated that perceived safety improvements due to roadway lighting can induce riskier 

driving behaviors, a phenomenon known as risk compensation (Houston & Richardson, 
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2007). For statewide transportation planning, these findings reinforce those enhancements 

to roadway lighting lead to a reduction in roadway safety. Not improving the lightning does 

reduce the safety as the ratio of crashes during the dark with unlighted roadways having a 

very high impact on the high-risk cluster prediction. Thus, it becomes important for state 

DOTs to not only implement and maintain roadway lighting but also ensure that 

educational campaigns and encouraging cautious driving behavior under all conditions are 

done. 

Amidst other factors that affects locations of high crashes lie locations with yield signs. 

Yield signs are intended to regulate traffic flow, requiring drivers to slow down or stop to 

give way to vehicles on the main road, thus avoiding potential conflicts (Rachakonda & 

Pawar, 2023). In situations where the yield sign's directive is misinterpreted, disregarded, 

or visibility is compromised, the risk of high-severity crashes increases. Scenarios involving 

non-visible yield signs due to poor weather conditions tend to result in sideswipe crashes. 

Several studies have shown that merging into traffic at inappropriate speeds increases the 

risk of severe injury and significant PDO (Pathivada et al., 2024; Sawtelle, 2023). To 

mitigate the frequency of occurrence for inappropriate merging during poor weather 

condition may involve strategic considerations; the use of technologies such as ramp 

metering and vehicle-to-infrastructure (V2I) communication to optimize merging processes. 

By controlling the rate at which vehicles enter the freeway based on real-time conditions, 

these technologies can reduce the likelihood of crashes at merge points. Additionally, 

variable message signs (VMS) can be implemented to warn drivers of poor visible conditions 

ahead heavy rain, fog, or snow. 

Figure 14 presents SHAP summary plots for the study area, categorized into gradually 

increasing low-risk/class 0, volatile high-risk/class 1, and stable low-risk/class 2. Within 

each plot, the significant features are arranged in a descending hierarchy based on their 
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absolute SHAP values, denoting their relative importance. The plots employ a dot 

representation for individual SHAP values corresponding to specific features and samples. 

Dots colored in red signify higher feature values, while blue dots indicate lower values. As 

regards volatile high-risk, several features are found to have huge effects on their occurrence. 

Lighting condition and the type of traffic control significantly impact whether or not a 

weather-related crash zone is classified as volatile high-risk zones. 

 

Figure 14. SHAP summary plot of crash risk patterns 

3.4.6. Key Factors for Low-Risk Crash Classification 

From Figure 14, one can observe how each feature has contributed to classifying crash 

risk zone as stable or gradually increasing low-EPDOs. Several features are common to both 

stable and gradually increasing low-risk zones, however, the effect varies. Features like 

proportion of locations with stop and go signals and proportion of drivers with no restrain 

used are top features in classifying a grid as both stable and gradually increasing low-risk 

zones. One can see that high proportion of crash zones with stop and go signals and drivers 

with no restraint used are associated with higher SHAP values in gradually increasing low-

risk zones. However, higher proportion of crash zones with stop and go signals is associated 

with low SHAP values in gradually increasing low-risk zones. Generally, one can deduce 

that stop and go traffic signals increase the likelihood of a zone to be classified as a low-risk 

zone. While there is no consensus on the effect of stop and go signals on traffic crashes in 



 

 

52 

literature, the efficiency of stop-and-go signals in reducing traffic crashes and improving has 

been substantiated by various studies (Elmitiny et al., 2010; Suh & Yeo, 2016). Cohn et al., 

2020 explained how mismanaged signals or poor signal placement can inadvertently increase 

the risk of certain types of crashes. This nuanced understanding is further expanded by 

insights from Figure 15, which suggest that the stop and go traffic signal is associated with 

rainy weather condition. This correlation might initially appear counterintuitive, given the 

primary role of traffic signals in regulating and securing vehicular movement. However, this 

relationship can be rationalized by considering the interplay between weather-induced road 

conditions and traffic control mechanisms. 

Low and high average driver blood alcohol (BAC) level is associated with high SHAP 

values. The relationship between elevated BAC levels and increased crash risk is well-

established in literature. High BAC levels impair cognitive functions, reaction times, and 

decision-making abilities, substantially increasing the likelihood of vehicle crashes (Martin 

et al., 2013). Conversely, the association of zones with low BAC levels and high SHAP 

values may initially appear counterintuitive, given the legal BAC limits set to promote 

traffic safety. However, this observation can be interpreted through several lenses. Firstly, 

the average BAC levels might be low, however, several individuals will have BAC level 

above the legal permissible limit. Secondly, low BAC level may still produce subtle 

impairments in driving ability, particularly in individuals with low alcohol tolerance or in 

combination with other factors such as poor weather condition (Martin et al., 2013). 

3.4.7. Interaction between Weather Condition and Crash Risk 

From Figure 15, one can see that if a crash occurs in stable/gradually increasing low-

risk zones, the proportion of crashes that occur as a result of rain tends to vary with 

increasing ratio of stop and go traffic control. The spread of SHAP values suggests a non-

linear interaction between rainy conditions and the prevalence of stop-and-go signals. This 
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suggests a varying predictive impact on low-risk zones. For instance, when the proportion 

of crashes that occur as a result of rain is between 0.2 to 0.3 with a high proportion of stop 

and go traffic control, they are less likely to be classified as low-risk crashes. A potential 

hypothesis could be that when the proportion of stop and go signals is low, the impact of 

rain on crash risk might be different compared to areas where there is a high proportion of 

stop and go signals, possibly due to varying traffic dynamics. For example, in areas with 

many stop and go signals, rainy conditions could lead to more frequent braking and reduced 

speeds, which may lower crash risk. Conversely, in areas with fewer such signals, drivers 

may be traveling at higher speeds during rain, potentially increasing crash risk. In areas 

identified as high-risk for traffic crashes, it is recommended to implement a stop and go 

traffic control system designed to regulate vehicle flow and reduce collision risk. This system 

should be strategically deployed at critical intersections, congested areas, and zones with a 

history of frequent accidents, using traffic signals, signage, and road markings to guide 

vehicular movement effectively. The system must be supported by comprehensive traffic 

studies that assess the unique needs and challenges of each area, ensuring that timing 

intervals are optimized to balance traffic flow with pedestrian safety. Additionally, public 

awareness campaigns and driver education programs should accompany the implementation 

to enhance compliance and effectiveness.  
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Figure 15. Dependence plot of weather conditions and crash risk 

The spread of SHAP values also suggests a non-linear interaction between unclear 

weather conditions and the prevalence of no passing zones. When the proportion of crashes 

that occur as a result of unclear/cloudy weather condition is between 0.5 to 0.7 with a high 

proportion of no passing zones, there is a high likelihood of being classified as a high-risk 

zone. To bolster the result in section 3.4.6, one can conclude that majority of high-risk crash 

that occurred at no passing zones are as a result of unclear, cloudy, or foggy weather 

condition. 
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CHAPTER 4: EFFECTIVENESS OF CRASH DATA IMBALANCE TREATMENT 
IN WEATHER-RELATED CRASH SEVERITY ANALYSIS 

4.1. Introduction 

Weather-related vehicle crashes are particularly hazardous due to their unpredictable 

nature. Not only can such crashes cause serious physical harm, but they can also have a 

substantial economic impact, with research indicating that weather-related crashes in the 

United States in 2014 costing approximately $46 billion (FHWA, 2023). Furthermore, 

weather-related crashes are more likely to be fatal than other types of crashes (Dey et al., 

2014), with statistics from the same year showing that they accounted for 21% of all 

fatalities (FHWA, 2023). The psychological repercussions of such crashes can be long-lasting 

and have a substantial economic impact in addition to reducing the quality of life of those 

affected (Gao et al., 2021).  

To mitigate the impact of weather-related crashes, practitioners must be able to 

accurately predict and identify the factors associated with their severity levels. However, 

due to the highly imbalanced nature of crash data, traditional machine learning techniques 

are not robust enough to effectively classify crash severity (Gao et al., 2021; Kim et al., 

2021). Thus, it is crucial to address the problem of class imbalance before predicting severity 

classes on weather-related crash dataset.  

Naive approaches, such as using only one classifier or the majority class to predict all 

classes, often lead to inaccurate results (Gao et al., 2021). Two of the most popular methods 

are under-sampling and over-sampling techniques. In under-sampling, the number of 

instances from the majority weather-related crash severity class are reduced to match the 

frequency of the minority class (Kim et al., 2021; Chawla et al., 2002). However, there is a 

risk of losing vital information about the majority class. On the other hand, over-sampling 

involves replicating weather-related crash events from the minority class to increase their 
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representation in the dataset. In the context of crash event, the rare occurrence of 

fatal/severe crash gives room for overfitting in the case of over-sampling method (He et al., 

2008).  

Due to the weakness of under-sampling and over-sampling, SMOTE (Chawla et al., 2002) 

and ADASYN (He et al., 2008) methods are used to balance the data, thus avoiding the 

risk of overfitting or data loss (Saarikko et al., 2020; Gaikwad & Markande, 2016). SMOTE 

works by generating new events that are interpolations of existing minority class events, 

thereby improving the diversity of instances without simply duplicating data. ADASYN, 

however, takes this step further by adaptively generating minority data points based on 

their density distribution with more weight on the most difficult-to-learn data instances. 

However, a significant limitation arises when dealing with a dataset that is entirely 

composed of nominal predictors. The method struggles because they rely on the concept of 

distance or interpolation between points.  

Modern data sources such as weather-related crash data have resulted in complex 

datasets that are cumbersome to model with classic statistical methods (Strong et al., 2010; 

Perrels et al., 2015; Daniels et al., 2016; Musselwhite et al., 2021). On the other hand, 

machine learning techniques are robust enough to deal with complex datasets with high 

dimensional features. While these techniques are becoming popular in predicting traffic 

crashes, the presence of data imbalance in weather-related crash severity datasets often 

introduce unintended biases to resultant models, making it essential to address these 

imbalances before beginning the model training process (Songchitruksa & Zheng, 2010; 

Lakshmi et al., 2019). This problem becomes even more complex with a dataset containing 

predominantly nominal predictors.  

Therefore, this dissertation aims to assess the efficacy of different data treatment 

techniques and their influence on machine learning techniques, particularly focusing on 
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handling nominal predictors. Specifically, data treatment techniques involving two synthetic 

approaches, namely SMOTE-N and ADASYN-N, are investigated for nominal predictors. 

The dissertation employed two crash severity classification models, the bagging algorithm 

(Random Forest - RF) and the boosting algorithm (Extreme Gradient Boosting - XGBoost). 

By evaluating the performance of these models with different data resampling methods, this 

dissertation seeks to gain insights into how such techniques can enhance the accuracy of 

machine learning techniques when applied to weather-related traffic crash data.  

4.2. Case Study of North Carolina (NC) 

The data used in this dissertation was obtained from the HSIS database. Crashes that 

took place between January 1, 2015, to December 31, 2017, were extracted. Crashes are 

reported using case numbers and observations with the same number indicate that the 

vehicles involved are part of the same crash incident. To gain a thorough understanding of 

the crash occurrence process, Washington & Haque (2013) argued that crashes due to 

different causes should be modeled separately. Hence, only weather-related crashes were 

extracted while crashes occurring under clear weather conditions were excluded to obtain a 

final dataset. The final dataset only included crashes that happened under non-clear weather 

conditions (i.e., with cloudy, rain, fog/smog, sleet/hail/freezing rain/drizzle, severe 

crosswinds, or blowing sand conditions described in the crash reports). Crash severity is 

defined in the HSIS database as five different levels (i.e., fatal crashes, injury type class A, 

injury type class B, injury type class C, and no injury/PDO). For this analysis, the crash 

severity was re-categorized into three levels, i.e., severe injury (fatal and injury type class 

A), moderate injury (injury type class B and injury type class C) and PDO/no injury. A 

total of 238,252 weather-related crashes were recorded within the study period with 2,952 

severe crashes, 71,688 moderate crashes and 163,612 PDO crashes. 
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The summary statistics gives information about the counts and percentages of different 

types of weather conditions for severe, moderate, and PDO injury cases. Cloudy weather is 

the most common weather condition in all three categories, with 63.4% of severe crashes, 

57.6% of moderate injury crashes, and 56.6% of no injury crashes occurring under cloudy 

conditions. Rain is the second most common weather condition, followed by snow, fog, smog, 

and smoke. Sleet, hail, and freezing rain/drizzle are less common, with blowing sand and 

dirt being the least common weather condition for all three-severity types.  

The dataset summarized in Table 6 underwent initial preprocessing to facilitate model 

selection and evaluation. Initially, the comprehensive dataset was partitioned into two 

distinct subsets: a training set and a testing set. The formation of the test dataset was 

accomplished through the methodology of random sampling, ensuring a distribution 

proportional to the size of each constituent class. Consequently, a fifth of the data, uniformly 

distributed across classes, was extracted to constitute the testing set. The residual 80% of 

the data served as the foundational set, subject to diverse treatment methodologies to 

generate corresponding training datasets. 
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Table 6. Descriptive statistics of variables for analysis 
Variable Categories Description Severe Moderate PDO 

Count % Count % Count % 
Weather 
condition 
(Weather) 

1 Cloudy 1871 63.4 41293 57.6 92663 56.6 
2 Rain 893 30.3 26828 37.4 60374 36.9 
3 Snow 41 1.4 1085 1.5 4296 2.6 
4 Fog, Smog, Smoke 104 3.5 1247 1.7 2786 1.7 
5 Sleet, Hall, Freezing 

Rain/Drizzle 
39 1.3 1196 1.7 3324 2 

6 Severe Crosswinds 3 0.1 31 0.04 132 0.08 
7 Blowing Sand, Dirt 1 0.03 8 0.01 37 0.02 

Contributing 
factor of the 
crash 
(contfac) 

1 No contributing 
factors 

1191 40.3 32095 44.8 75111 45.9 

2 Disregarding signs or 
signals 

98 3.3 2124 3.0 2492 1.5 

3 Exceeded safe 
speed/speed limit or 
fail to reduce speed 

548 18.6 17302 24.1 41651 25.5 

4 Improper turn or 
right turn on red 

17 0.6 730 1.0 1979 1.2 

5 Crossed centerline, 
improper lane change, 
or use of an improper 
lane 

222 7.5 2135 3.0 6102 3.7 

6 Overcorrected, 
oversteered, improper 
passing, or improper 
backing 

77 2.6 1503 2.1 3019 1.8 

7 Failing to yield to the 
right-of-way, or driver 
inattention 

267 9.0 9147 12.8 18870 11.5 

8 Operating too closely, 
aggressive driving, or 
alcohol use 

429 14.5 3768 5.3 6578 4.0 

9 Visibility obstruction, 
or defective 
equipment 

16 0.5 471 0.7 1275 0.8 

10 Other/unable to 
determine 

87 2.9 2413 3.4 6535 4.0 

Road surface 
condition 
(roadsurf) 

1 Dry 1290 43.7 27329 38.1 60413 36.9 
2 Wet, presence of 

water 
(standing/moving) 

1577 53.4 41617 58.1 93882 57.4 

3 Ice, snow, slush 81 2.7 2708 3.8 9248 5.7 
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Variable Categories Description Severe Moderate PDO 
Count % Count % Count % 

4 Sand, mud, dirt, 
gravel, fuel, or oil 

4 0.1 34 0.05 69 0.04 

Functional 
class of road 
(fclass) 

1 Principal arterial – 
interstate, freeways, 
and expressways 

402 13.6 12617 17.6 35002 21.4 

2 Principal arterial – 
other 

682 23.1 22955 32.0 50092 30.6 

3 Minor arterial 693 23.5 18303 25.5 39919 24.4 
4 Major collector 789 26.7 11795 16.5 24314 14.9 
5 Local 386 13.1 6018 8.4 14285 8.7 

Location type 
(intersecti) 

0 Non-intersection 2516 85.2 57486 80.2 138677 84.8 
1 Intersection 436 14.8 14202 19.8 24935 15.2 

Light 
condition 
(lightnew) 

1 Daylight 1727 58.5 51558 71.9 118084 72.2 
2 Dusk, and dawn 163 5.5 3582 5.0 7799 4.8 
3 Dark lighted 

roadway/unknown 
lighting 

244 8.3 7146 10.0 15206 9.3 

4 Roadway not lighted 818 27.7 9402 13.1 22523 13.8 
Road 
characteristic 
(roadchar) 

1 Straight-leveled road 1675 56.7 50437 70.4 118417 72.4 
2 Straight-

grade/hillcrest/botto
m 

485 16.4 12319 17.2 27794 17.0 

3 Curve-
leveled/grade/hillcrest 

788 26.7 8876 12.4 17221 10.5 

4 Not stated/unknown 4 0.1 56 0.1 180 0.1 
Driver gender 
(drv_sex) 

1 Male 2006 68.0 38058 53.1 92305 56.4 
2 Female 946 32.0 33630 46.9 71307 43.6 

Driver age 
(ageis) 

1 15–19 years 262 8.9 7105 9.9 16690 10.2 
2 19–69 years 2505 84.9 60725 84.7 138762 84.8 
3 ≥70 years 185 6.3 3858 5.4 8160 5.0 

Speed limit 
class (slgrp) 

1 ≤20 mph 5 0.2 415 0.6 1482 0.9 
2 20–30 mph* (30 mph 

included) 
17 0.6 1064 1.5 3042 1.9 

3 30–40 mph 302 10.2 15354 21.4 35896 21.9 
4 40–50 mph 860 29.1 28690 40.0 62077 37.9 
5 50–60 mph 1495 50.6 20053 28.0 42518 26.0 
6 >60 mph 273 9.2 6112 8.5 18597 11.4 

Crash type 
(crashtyp) 

1 Ran off-road 113 3.8 2524 3.5 5590 3.4 
2 Jackknife, 

overturn/rollover 
124 4.2 1191 1.7 1276 0.8 

3 Pedestrian/pedal 
cyclist 

186 6.3 484 0.7 53 0.0 
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Variable Categories Description Severe Moderate PDO 
Count % Count % Count % 

4 Animal or movable 
object 

26 0.9 727 1.0 9287 5.7 

5 Parked vehicle or 
fixed object 

664 22.5 9296 13.0 22011 13.5 

6 Rear-end collision 395 13.4 29527 41.2 67554 41.3 
7 Left-/right-turn 

crashes 
340 11.5 9243 12.9 15346 9.4 

8 Head-on collision 416 14.1 1534 2.1 763 0.5 
9 Sideswipe or angle 

collision 
599 20.3 15879 22.2 37251 2.8 

10 Other 89 3.0 1283 1.8 4481 2.7 
Work zone 
area 
(workzone) 

0 No 2880 97.6 69872 97.5 159385 97.4 
1 Yes 

72 2.4 1816 2.5 4227 2.6 

Vehicle type 
(vehicle) 

1 Passenger car/taxi 1331 45.1 40185 56.1 90650 55.4 
2 Pickup, light truck, 

sports utility, or van 
1228 41.6 28305 39.5 65899 40.3 

3 Commercial bus, 
school bus, activity 
bus, other bus 

13 0.4 255 0.4 593 0.4 

4 Single unit truck, 
truck/trailer, 
truck/tractor, tractor 
doubles, semitrailer, 
farm equipment, or 
other heavy trucks 

192 6.5 1847 2.6 5557 3.4 

5 Motor scooter, moped, 
pedal cycle, or 
motorcycle 

179 6.1 876 1.2 185 0.1 

6 Other 9 0.3 220 0.3 728 0.4 
Seasonal 
factors 
(season) 

1 Spring 623 21.1 18168 25.3 44375 27.1 
2 Summer 762 25.8 17669 24.6 37989 23.2 
3 Autumn 717 24.3 15408 21.5 33642 20.6 
4 Winter 850 28.8 20443 28.5 47606 29.1 

Road terrain 
(terrain) 

1 Flat 748 25.3 13405 18.7 29761 18.2 
2 Rolling 1975 66.9 53124 74.1 120807 73.8 
3 Mountainous 229 7.8 5159 7.2 1304 8.0 

Time of the 
day (TOD) 

1 12:00 AM – 03:00 AM 193 6.5 2047 2.9 3992 2.4 
2 03:00 AM – 06:00 AM 177 6.0 1880 2.6 4381 2.7 
3 06:00 AM – 09:00 AM 412 14.0 11886 16.6 29002 17.7 
4 09:00 AM – 12:00 PM 366 12.4 9488 13.2 22060 13.5 
5 12:00 PM – 03:00 PM 445 15.1 13421 18.7 29605 18.1 
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Variable Categories Description Severe Moderate PDO 
Count % Count % Count % 

6 03:00 PM – 06:00 PM 552 18.7 18351 25.6 41449 25.3 
7 06:00 PM – 09:00 PM 499 16.9 10164 14.2 23404 14.3 
8 09:00 PM – 12:00 PM 308 10.4 4451 6.2 9719 5.9 

Day of the 
week (dow) 

1 Sunday 412 14.0 6389 8.9 13217 8.1 
2 Monday 485 16.4 12518 17.5 29077 17.8 
3 Tuesday 410 13.9 12078 16.8 28917 17.7 
4 Wednesday 465 15.8 10533 14.7 24472 15.0 
5 Thursday 335 11.3 9869 13.8 22882 14.0 
6 Friday 449 15.2 12493 17.4 28711 17.5 
7 Saturday 396 13.4 7808 10.9 16336 10.0 

Locality 
(locality) 

1 Agricultural 1573 53.3 21185 29.6 47922 29.3 
2 Residential 597 20.2 13674 19.1 27615 16.9 
3 Commercial 760 25.7 35720 49.8 85696 52.4 
4 Institutional 8 0.3 625 0.9 1379 0.8 
5 Industrial 14 0.5 484 0.7 1000 0.6 

 

Algorithm 2: Synthetic Minority Over-sampling Technique – Nominal (SMOTEN-N) Data Generation 

 
Input: D = {x1, y1},  ys  ∈ Y = {1,…C} // training dataset D with n samples, & p dimensional 
feature space 

 Output: Synthetic data 
1: Calculate the distance metric for each sample using modifies value difference metric MVDM 
2: δ(V1, V2) = ∑ | C1i

C1
− C2i

C2
|h

i=1   
3: For each xi in minority class 
4: for i = 1 to ms: 
5:  for j = i + 1 to ms: 
6:   δ(V1, V2) = 0  
7:   for f = len(p): 
8:    if instance (X[0, f], nominal): 
9:     Calculate the MVMD distance for categorical features 
10:     C1 = ∑ [X[y = ms][k, f] = k [X[i, f] Indicator function for C1 
11:     C2 = ∑ [X[y = ms][k, f] = k [X[i, f]  Indicator function for C2 
12:     δ(V1, V2)  = ∑ | C1i

C1
− C2i

C2
|h

i=1   
13:    else: 
14:    Calculate the Euclidean distance for numerical features 
15:   end for 
16:  end for 
17: end for 
18: Compute the distance between two feature vectors 
19: Δ(X,Y) = wxwy ∑ δ(xb, yb)rp

b=1   
20: return X, Y 
21: end function 
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4.3. Treatments for Imbalanced Data 

In the domain of machine learning, there are a variety of methods that can be employed 

to tackle imbalanced crash data. The consequence of neglecting this discrepancy can result 

into a biased model, particularly for the minority class. In this dissertation, two data 

imbalance treatment methods were employed to assess how they influence the prediction of 

crash severity related to weather conditions.  

4.3.1. Synthetic Minority Over-sampling Technique – Nominal (SMOTE-N) 

The SMOTE, introduced by Chawla et al. (2002), addresses class imbalance by over-

sampling minority instances through the creation of synthetic data points. SMOTE-N, as 

presented in Algorithm 2, is an extension designed for nominal datasets using a modified 

version of the value difference metric (MVDM) to measure the distance between categorical 

feature values. The MVDM considers the occurrences of values and their response classes. 

The distance between feature vectors is calculated using a weighted Euclidean or Manhattan 

distance. In the case of SMOTE-N, weights are often disregarded, as it primarily aims to 

balance data distribution between classes rather than direct classification.  

 
4.3.2. Adaptive Synthetic – Nominal (ADASYN-N) 

ADASYN-N is designed to address class imbalance with nominal predictors as an 

extension of ADASYN (He et al., 2008) initially intended for numeric predictors. In 

ADASYN-N, as presented in Algorithm 3, the aim is to generate synthetic data for the 

minority class in a way that prioritize events that are challenging to learn. The process with 

a training dataset containing n samples, where x!  represents data in a p-dimensional feature 

space X, and y!  is the class label. The number of synthetic data points to be generated (G) 

is determined based on the desired level of balance, controlled by the parameter β (ranging 

from 0 to 1). For each x! in the minority class, the algorithm calculates k nearest neighbors 
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in the p-dimensional space and computes ri, which represents the ratio of majority events 

among these nearest neighbors. Higher r! values indicate events that are more challenging 

to learn. These r! values are normalized, ensuring that the sum of normalized r! values equal 

1. 

Algorithm 3: Adaptive Synthetic – Nominal (ADASYN-N) Data Generation 

 
Input: D = {x1, y1},  ys  ∈ Y = {1,…C} // training dataset D with n samples, and p dimensional 
feature space 

 Output: Synthetic data 
1: Calculate the number of synthetic data to be generated 
2: G = (ml −  ms) x β  
3: Separate dataset into minority and majority classes 
4:  ms = number of instances in minority class 
5:  ml = number of instances in majority class 
6: For each xi in minority class 
7: for i = 1 to ms: 
8:  Calculate the number of majority instances in nearest neighbor 
9:  Hi = number of majority instances in nearest neighbor 
10:  Calculate ri as ratio of majority domination in k-nearest neighbors 
11:  ri = Hi

k   
12:  Normalize ri 
13:  rı̂ = ri

∑ ri
ms
i=1

  

14:  Calculate number of Synthetic data to be generated 
15:  gi = rı̂ x G  
16:  Generate data by replicating xi 
17:  GenerateData (xi, gi) 
18: end for 
19: Generate Data function 
20: function GenerateData(xi, gi) 
21:  Generate data by replicating xi 
22:  for i = 1 to gi: 
23:   syntheticData = replicate xi 
24:  end for 
25: end function 

4.4. Feature Selection 

A variable section technique called permutation feature importance (PFI) was employed 

as presented in Algorithm 4. The idea behind this technique, as presented in Figure 16, is 

to destroy a feature of interest xj ∈ X by perturbing it such that it becomes uninformative. 
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For example, observations in xj are randomly permuted where the marginal distribution 

P(xj) stays the same.  

  
Figure 16. Permutation feature importance 

 
Algorithm 4: Permutation Feature Importance 
 Input: trained model f; feature matrix X, target vector y, loss function L (y, f) 
 Output: Sorted list of features by descending permutation feature importance PFI 
1: Calculate the original model error 𝑒DE3F 
2: 𝑒DE3F = 𝐿D𝑦, 𝑓(𝑋)H	  
3: Initialize an empty list to store feature importance values: PFI_values 
4: For each feature j from 1 to the number of feature p: 
5: for j = 1 to p + 1: 

6:  
Create a permutated feature matrix 𝑥G9EH by randomly shuffling the value of feature j in the 
data X 

7:  Estimate the permuted error 𝑒G9EH using the error measured: 
8:  𝑒G9EH = 	𝐿 M𝑦, 𝑓D𝑥G9EHHN	  
9: end for 
10: Calculate the permutation feature importance 𝑃𝐹𝐼: for each feature j using: 
11:  PFI as the difference between original error and permuted error: 
12:  𝑃𝐹𝐼: = 𝑒G9EH −	𝑒DE3F 
13: Append the calculated 𝑃𝐹𝐼: value to the PFI_value list 
14: Sort the feature in descending order of their PFI values 
15: end function 

 

The error without permuting the features and with permuted feature values are 

measured. Repetition of the feature permutation was done 500 times and the average of the 

differences of both errors was computed. Figure 17 shows how the result of the PFI is 

interpreted. For example, if crash type is the most important variable, it implies that 

destroying information about crash type by permuting it increases the error of the model 

the most. This interpretation of the PFI helps to understand which features the model is 

most sensitive to and guides model refinement. 
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Figure 17. Interpretation of permutation feature importance 

 

4.5. Machine Learning Techniques 

4.5.1. Extreme Gradient Boosting (XGBoost) 

An XGBoost model is an ensemble of decision trees, where each subsequent tree tries to 

correct the errors made by the previous ones. It’s an iterative process that aims to minimize 

a loss function. Mathematically, the prediction ŷ of an XGBoost model with K trees for an 

input x can be represented by Equation 12. 

y ̂ = ∑ fk(x)                                                                         (12)
K

k=1
 

where, fk(x) is the prediction of the kth tree.  

The objective function that XGBoost tries to minimize is represented by Equation 13. 

obj(θ) = L(θ) +  Ω(θ)                                                                   (13) 

where, θ represents the parameters of the model, L(θ) is the training loss function, and Ω(θ) 

is a regularization term that controls the complexity of the model. 

In the case of a classification problem like traffic crash severity prediction, L(θ) is 

typically the log loss for binary classification, or the softmax loss for multiclass classification. 
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The “gradient boosting” part of XGBoost comes from the fact that it trains each new tree 

to predict the negative gradient (or “residual”) of the loss function with respect to the 

current predictions. This is why it's called “gradient boosting”, as it uses gradient 

information to boost the performance of the ensemble. The regularization term Ω(θ) in the 

objective function is what distinguishes XGBoost from regular Gradient Boosting. In 

XGBoost, Ω(θ) is given by Equation 14. 

Ω(θ) =  γT + 12 λ ∑ wj
2

T

j=1
                                                            (14)  

where, T is the number of leaves in the tree, wj are the scores on the leaves, γ controls the 

complexity of the model (the number of leaves in the trees), and λ controls the L2 

regularization on the leaf scores. This regularization term helps to prevent overfitting by 

penalizing complex models. 

4.5.2. Random Forest (RF) Model 

RF is an ensemble learning method that operates by constructing a multitude of decision 

trees at training time and outputting the class that is the mode of the classes (classification) 

or mean prediction (regression) of the individual trees. Suppose a RF model consists of N 

decision trees (Biau et al., 2012). Each tree gives a classification, and the tree “votes” for 

that class. The forest chooses the classification having the most votes (over all the trees in 

the forest). Each tree is grown as follows: 1) if the number of cases in the training set is N, 

then N cases are sampled at random - but with replacement from the original data. This 

sample will be the training set for growing the tree; 2) if there are M input variables, a 

number m is specified such that at each node, m variables are selected at random out of 

the M and the best split on these m is used to split the node. The value of m is held constant 

during the forest growing; 3) Each tree is grown to the largest extent possible and there is 

no pruning. 
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For a given test record, each tree in the forest gives a classification. The forest chooses 

the classification having the most votes (over all the trees in the forest) and in case of 

regression, it takes the average of outputs by different trees. Mathematically, the prediction 

of a RF model for an input x can be defined as shown in Equation 15. 

y ̂ = 1
N ∑ fi(x)                                                                (15)

N

i=1
 

where fi(x) is the prediction of the ith decision tree.  

The model would take as input features of a traffic incident (such as speed, weather 

condition, time of day, etc.), and output a severity class (severe injury, moderate injury, 

PDO). The model would be trained on a labeled dataset, and the aim would be to minimize 

the discrepancy between the predicted and actual labels. RF’s ability to combine multiple 

decision trees helps it to avoid overfitting and generally results in a robust prediction 

performance.  

4.4. Results 

The results of data imbalance treatment using SMOTE-N and ADASYN-N are 

presented in this section. The dataset from both treatment methods is applied to RF and 

XGBoost. The dependent variable has three ordered levels: ‘1’ is severe injury crash, ‘2’ is 

moderate injury crash, and ‘3’ is PDO crash.  

4.4.1. Feature Extraction 

Figure 18 represents the permutation feature importance as determined by the RF model. 

The permutation feature importance is a technique for estimating the contributions of 

individual features to the predictive power of a model by observing the effect on model 

performance by randomly permuting the values of each feature, one at a time (Fiorentini & 

Losa, 2020). In this study, the RF model was trained on a subset of the dataset. A 

representative dataset was used for this process because this technique is computationally 
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demanding. In the plot, each bar corresponds to a specific feature in the dataset, and the 

length of the bar corresponds to the importance of that feature. Positive values indicate 

that the performance of the model decreases when the feature is shuffled, suggesting that 

the model relies on the feature to make accurate predictions. In other words, when the 

feature is perturbed or randomized (shuffled), the model’s predictability suffers because it 

loses access to the valuable information contained within that feature. Therefore, a decrease 

in performance upon shuffling implies that the feature plays a crucial role in the model’s 

overall accuracy. This highlights the importance of the feature in the predictive process, as 

it significantly contributes to the model's ability to make accurate predictions. Conversely, 

negative values indicate that the performance of the model improves when the feature is 

shuffled, suggesting that the model might be overfitting to noise in the feature. 

The top three features obtained from this analysis are crash type, vehicle type, and 

locality suggesting that these features are the most important for predicting the severity of 

a crash. However, it is important to note a few caveats. First, while permutation feature 

importance provides a useful way to rank the importance of features, it does not provide 

any information about the nature of the relationship between each feature and the target 

variable (Ke et al., 2017). Second, it is possible that important features might appear 

unimportant if they are highly correlated with other features (Ke et al., 2017; Modal et al., 

2020). Finally, the results might differ if the analysis were performed on the full dataset or 

a different sample because this analysis was performed on a sample of the original dataset.  
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Figure 18. Permutation feature importance plot of variables described in Table 6 

4.4.2. Comparing Treatments Method & Machine Learning Techniques 

Table 7 presents the performance metrics for the two machine learning technique-based 

models, RF and XGBoost, applied to three different datasets. The metrics include accuracy, 

precision, recall, and F1-score. The effectiveness of the treatments in the datasets are 

compared across different machine learning techniques, allowing us to assess the robustness 

of the treatments. The confusion matrices for the RF and XGBoost models are summarized 

in Table 8. By doing this, the accuracy and the types of errors being made by the model 

are examined.  
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Table 7. Model performance metrics 

Method Model 
Level of 
Crash 

Severity 

Train  Test 

Precision 
% 

Recall 
% 

F1 
Score 

% 

 Precisio
n 
% 

Recall 
% 

F1 
Score 

% 

CONTROL 

RF 

Severe 
Injury 

99.95 89.69 94.54 
 

69.44 6.76 12.32 

Moderate 
Injury 

99.53 82.32 90.11 
 

63.51 18.38 28.51 

PDO 92.65 99.84 96.11  72.32 95.93 82.47 

XGBoost 

Severe 
Injury 

99.97 93.54 96.65 
 

9.48 10.32 9.88 

Moderate 
Injury 

99.68 88.48 93.75 
 

31.64 36.53 33.91 

PDO 94.62 99.92 97.20  49.98 58.19 53.77 

SMOTE-N 

RF 

Severe 
Injury 

99.60 99.9 99.75 
 

22.65 10.41 14.26 

Moderate 
Injury 

94.70 97.40 96.03 
 

42.77 39.17 40.89 

PDO 97.51 94.40 95.93  74.08 77.53 75.77 

XGBoost 

Severe 
Injury 

99.16 99.72 99.44 
 

17.68 18.78 18.21 

Moderate 
Injury 

79.51 81.49 80.49 
 

40.78 47.46 43.87 

PDO 81.21 78.74 79.96  75.31 69.64 72.36 

ADASYN-N 

RF 

Severe 
Injury 

98.85 99.88 99.36 
 

13.79 19.46 16.14 

Moderate 
Injury 

92.99 97.79 95.33 
 

40.89 51.07 45.42 

PDO 98.19 91.89 94.94  76.16 67.32 71.47 

XGBoost 

Severe 
Injury 

96.22 99.36 97.76 
 

10.97 25.27 15.30 

Moderate 
Injury 

75.31 80.49 77.81 
 

38.86 53.33 44.96 

PDO 79.71 71.41 75.33  76.13 61.96 68.32 
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Table 8. Confusion matrix for RF and XGBoost 

Method Predicted 

Reference 

RF  XGBoost 

Train  Test  Train  Test 

Severe  

Injury 

Moderate 

Injury 
PDO 

 Severe 

Injury 

Moderate 

Injury 
PDO 

 Severe 

Injury 

Moderate 

Injury 
PDO 

 Severe 

Injury 

Moderate 

Injury 
PDO 

CONTROL 

Severe Injury 1,984 1 0  50 15 7  1,136 12 9  76 22 12 

Moderate Injury 19 44,293 192  230 3,286 1,658  223 15,138 2,505  345 6,530 27,049 

PDO 209 9,517 122,474 
 

460 14,576 39,281 
 

853 38,661 
120,15

2 

 
319 11,325 13,885 

SMOTE-N 

Severe Injury 122,523 300 236  77 109 154  122,319 528 511  139 297 350 

Moderate Injury 58 119,521 6,662  321 7,002 9,047  184 99,960 25,572  322 8,485 11,999 

PDO 85 2,845 115,768  342 10,766 31,745  163 22,178 96,583  279 9,095 28,597 

ADASYN-N 

Severe Injury 122,054 781 634  144 389 511  121,423 2,828 1,946  187 629 889 

Moderate Injury 103 124,799 9,309  328 9,129 12,871  554 102,720 33,130  314 9,533 14,685 

PDO 49 2,034 112,723  268 8,359 27,564  229 22,066 87,590  239 7,715 25,372 
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4.4.3. Best Treatment Method 

The focus is to assess the effect of the selected methods on the classification of crash 

severity into three categories: severe injury, moderate injury, and PDO. The primary 

evaluation metric used was the F1 score, which considers both precision and recall providing 

a balanced performance assessment. For the RF Model, the best-performing data imbalance 

treatment method was ADASYN-N, achieving a test F1 score of 45.42. ADASYN-N 

effectively addressed the class imbalance in case of moderate injury crash, resulting in 

improved predictions for this category. However, the control dataset proved most effective 

for handling the class imbalance specific to PDO, which has a test F1 score of 82.47. 

ADASYN-N was also identified as the best method for addressing the imbalance in case of 

severe injury crashes, achieving a test F1 score of 16.14. ADASYN-N significantly improved 

the model’s ability to predict severe injury crashes. 

For the XGBoost Model, the data imbalance treatment method that yielded the highest 

test F1 score of 44.96 was ADASYN-N for predicting moderate injury crashes. This data 

treatment method effectively handled the imbalance in the moderate injury crash category, 

leading to improved predictions for this severity level compared to the control dataset. 

SMOTE-N emerged as the best-performing method for PDO crashes, with a test F1 score 

of 72.36. SMOTE-N successfully mitigated the class imbalance issue, resulting in more 

accurate predictions for PDO crashes. SMOTE-N was identified as the most effective data 

imbalance treatment method for severe injury crashes, achieving a test F1 score of 18.21. 

SMOTE-N significantly improved the predictive performance for this severity category.  

A notable consideration is that the choice of evaluation metric has a significant effect 

on the assessment of data imbalance treatment methods. While the F1 score was used as 

the primary metric, other metrics prioritizing different aspects of classification performance 
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may lead to different rankings of the methods. For example, if recall is prioritized over 

precision, the best-performing data imbalance treatment method might change.  

In machine learning, the difference in performance between the training and test datasets 

can provide valuable insights into how well the model is learning from the data. In this 

dissertation, the F1 score was used to evaluate this, which balances both precision and recall. 

A large difference between the training and test F1 scores could indicate overfitting, while 

a small or negative difference might suggest underfitting or a good fit, depending on the 

absolute scores.  

4.4.4. Model Fit on Datasets 

Overfitting is a common issue in machine learning where the model learns the training 

data so well that it includes noise or random fluctuations. This results in a model that 

performs extremely well on the training data but poorly on unseen test data (Figure 19). 

Potential overfitting was observed in some scenarios.  

• The XGBoost model on the control dataset for severe injury crashes demonstrated 

the most pronounced case of overfitting, with an F1 score difference of 86.77.  

• RF model with the SMOTE-N method for severe injury crashes and the RF model 

with the ADASYN-N method for severe injury crashes also showed large F1 score 

differences, indicating potential overfitting.  

In these cases, the models achieved very high F1 scores on the training data, suggesting 

they were able to capture the nuances of the training data very well. However, their 

performance dropped significantly on the test data (Figure 19), suggesting that they may 

have overfit to the noise or specific patterns in the training data that do not generalize the 

unseen data. On the other hand, a small or negative difference in F1 scores between the 

training and test datasets could suggest that the model is underfitting or fitting the data 

well. Underfitting happens when a model is too simple to capture the complexity of the 
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data, performing poorly on both the training and test data. If the model fits the data well, 

it will have good performance on both datasets. From the analysis, the following scenarios 

demonstrate good fitting. 

• The XGBoost model with the ADASYN-N method for PDO crashes has an F1 

difference of 7.01. 

• The XGBoost model with the SMOTE-N method for PDO crashes has an F1 

difference of 7.60. 

• The RF model on the control dataset for PDO crashes has an F1 difference of 13.64. 

In these cases, the models achieved reasonable F1 scores on both the training and test 

data, suggesting they were able to generalize well the unseen data. These observations 

highlight the importance of evaluating the performance of a model not only on the training 

data but also on unseen test data. If a model is overfitting, strategies such as simplifying 

the model, collecting more data, or using regularization or cross-validation might help to 

improve its generalization. If a model is underfitting, making the model more complex or 

engineering better features could help it capture the underlying patterns in the data. 
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Figure 19. Performance metrics on test dataset 

 
 

4.5. Discussion 

The results delve into the effectiveness of data imbalance treatment methods when used 

on different machine learning algorithms in the context of weather-related crash severity 

analysis. The findings demonstrate that the choice of method significantly influences the 
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model’s ability to handle imbalanced data, and the effect varies depending on the severity 

category being predicted and the specific machine learning algorithm being used. One 

noteworthy observation is the consistent effectiveness of the ADASYN-N method for 

addressing moderate and severe injury crashes in both the RF and XGBoost models. 

ADASYN-N appears to be a robust approach for generating synthetic samples of the 

minority class, effectively balancing the class distribution, and enhancing the model’s 

performance in predicting severe and moderate injury crashes. The consistent success of 

ADASYN-N across different algorithms indicates its potential as a reliable data imbalance 

treatment method for these crash severity levels. Fountas et al. (2020) argued that the 

generation of data for weather-related crashes involves underlying latent processes that 

should be considered during analysis. As these processes as essential for enhancing crash 

severity prediction accuracy, various statistical methods were proposed to address this issue 

effectively (Cai et al., 2018; Fountas et al., 2020; Fountas et al., 2021). ADASYN-N appears 

to address this limitation and is more resilient to the heterogeneity introduced in the dataset, 

consistently performing well across all the algorithms tested.  

ADASYN-N’s effectiveness in predicting moderate and severe injuries can be attributed 

to the specific strengths of the ADASYN-N approach. Unlike standard over-sampling 

methods, ADASYN-N adaptively adjusts the synthetic sample generation based on the 

learning difficulty of minority classes. This feature is beneficial for severe and moderate 

injury crashes, which might have more complex or less consistent patterns than PDO 

crashes. By focusing more on the harder-to-learn examples, ADASYN-N help create a more 

balanced and representative training set for these types of crashes. 

The notable performance of ADASYN-N in predicting moderate injury crashes suggests 

that this category, while not as rare as severe injury crashes, still benefits significantly from 

a more balanced representation in the training data. The method’s data generation process 
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helps the model better understand the variations in moderate injury crashes, improving its 

predictability in this class. While both ADASYN-N and SMOTE-N improve the model's 

ability to predict severe injury crashes, the improvement is marginal. In addition, the model 

may become too attuned to the nuances of the training data i.e., there is a potential risk of 

overfitting, reducing its generalizability to real-world situations. In contrast, the prediction 

of moderate injury crashes, supported by a larger data set, tends to be more robust and 

generalizable.  

The marginal improvement in severe crash prediction achieved in this dissertation, while 

seemingly small, is nonetheless significant, especially considering the high stakes involved 

in severe crash scenarios and the challenges presented by the highly imbalanced dataset. 

Even a slight enhancement in predicting severe crashes can be crucial. These crashes, though 

less frequent, often have the most devastating consequences, including serious fatalities or 

injuries (Martins et al., 2022). Therefore, any improvement in accurately identifying 

potential severe crashes, no matter how marginal, is valuable as it could contribute to life-

saving interventions, more effective emergency response planning, and targeted safety 

measures (Hansson, 2022). In the scenario of weather-related crashes, a marginal 

improvement indicates that the model is overcoming some of the inherent biases and 

learning meaningful patterns related to severe crashes.  

High model performance on training data is often achievable with complex methods. 

However, these methods may not generalize well to unseen data, which is a phenomenon 

known as overfitting (Salman & Liu, 2019). Conversely, a method that is too simple may 

not perform well even on the training data, leading to underfitting, and hence also lacking 

generalization (Chung et al., 2018; Salman & Liu, 2019). A pronounced case of overfitting 

was observed in some cases, notably the XGBoost model on the control dataset for severe 

injury crashes and the RF model using both SMOTE-N and ADASYN-N methods for the 



 

 

79 

same crash category. This is evidenced by high F1 scores on training data but a substantial 

drop in performance on testing data, indicating these methods captured training data 

nuances, including noise, which did not generalize well to unseen/uncaptured data. This 

result shows that while these methods can improve model learning for underrepresented 

classes, they also introduce the risk of overfitting, especially when the synthetic samples do 

not perfectly represent the real-world data distribution (Fiorentini & Losa, 2020). In such 

cases, the importance of interpretability becomes paramount; understanding the model's 

decision-making process allows practitioners to discern whether predictions are based on 

genuine patterns or artifacts of the synthetic data (Antoniadi et al., 2021). Therefore, one 

must weigh the benefits of improved predictions against the potential loss of transparency 

when settling for a machine learning technique, ensuring the chosen model maintains a level 

of interpretability that supports reliable and actionable insights in practical applications.  

Furthermore, the dissertation highlights the superior performance of the SMOTE-N 

method for the XGBoost model in predicting PDO crashes. This observation suggests that 

the SMOTE-N effectively addresses the class imbalance present in the PDO crashes category 

for the XGBoost algorithm. This finding emphasizes the significance of selecting data 

imbalance treatment methods tailored to the characteristics of the machine learning 

technique and crash severity type to achieve optimal performance.   



 

 

80 

CHAPTER 5: PREDICTING FUTURE WEATHER-RELATED CRASH RISK 
USING MACHINE LEARNING TECHNIQUE 

5.1. Introduction 

The fast urbanization of most United States cities has introduced both safety and 

sustainability challenges. These challenges are even worse in states with epileptic weather 

condition such as in NC. The Federal Highway Administration (FHWA) reported that 21% 

of all crashes are weather-related (FHWA, 2023). Between 2007 to 2016, nearly 5,400 

persons were killed due to weather-related crashes making it one of the top contributing 

factors in traffic crashes (FHWA, 2023). Thus, intelligent transportation systems (ITS) has 

become an active research area given its potential to reduce crashes in poor weather 

conditions (Ran et al., 2012). As an essential step towards improving the ITS, weather-

related crash prediction aims at projecting into the future crash status at specific location 

within a traffic system. 

Spatial analysis of crash data is becoming more increasingly popular. In the last decades, 

researchers have made considerable effort in analyzing crash data at various spatial levels 

(Aguero-Valverde & Jovanis, 2006; Pulugurtha et al., 2007; Quddus, 2008; Plug et al., 2011; 

Pulugurtha et al. 2013; Ogungbire & Pulugurtha, 2024). In the most recent work (Ogungbire 

& Pulugurtha, 2024), a precedence was set for space-time cube theory in crash risk analysis. 

The preference of state DOTs to examine crash data at spatially aggregated levels, including 

traffic analysis zones (TAZ) (Pulugurtha et al., 2013l Bai et al., 2017) and grid-level spatial 

units (Ogungbire & Pulugurtha, 2024; Wu et al., 2023), is discussed to easily facilitate 

effective resource allocation (Roland et al., 2021). This part of the dissertation builds upon 

the groundwork laid in (Ogungbire & Pulugurtha, 2024) to predict potential future risk of 

weather-related crash events at grid level. 
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The availability of large datasets related to human activities in urban settings has 

spurred a significant increase in research on traffic incidents (Gonzalez et al., 2008; Hasan 

et al., 2013; Bao et al., 2017). This wealth of data offers an unprecedented opportunity to 

learn from historical events to better understand and predict future traffic incidents. Recent 

research efforts have explored integrating big data into spatially aggregated crash models 

(Bao et al., 2017; Xhao et al., 2024). A study by Bao et al. (2017) investigated the use of 

big data derived from traffic sensors and social media to improve spatially aggregated crash 

models. They developed a methodology that combines traditional traffic data with real-time 

social media analytics to predict crash hotspots in urban areas.  

Early studies have been formulated to view crash prediction as either a classification or 

a regression problem. For example, some work aimed to predict the likelihood of a crash 

occurrence at specific location (Duddu & Pulugurtha, 2017; Pulugurtha et al., 2013; Gajera 

et al., 2023) or time periods (Pulugurtha et al., 2013). Looking at crash prediction from this 

lens allow researchers to identify significant predictors of crashes and quantify their impacts. 

Conversely some studies are focused on estimating the intensity of crashes at specific 

location during each time window (Pulugurtha & Mahanthi, 2016; Duddu & Pulugurtha, 

2017; Najaf et al., 2018; Kalambay & Pulugurtha, 2022). Over time, the field has seen the 

integration of more sophisticated approaches, including time-series analysis (Feng et al., 

2020; Khan et al., 2022) for understanding temporal patterns and machine learning 

techniques (Iranitalab & Khattak, 2017; Ogungbire et al., 2023) for capturing complex, non-

linear relationships between variables. Geographic information systems (GIS) have also been 

applied to spatially analyze crash data and identify high-risk areas (Pulugurtha et al., 2007). 

These methods have evolved from simple, deterministic models to dynamic, probabilistic 

models that better account for the uncertainties inherent in predicting human behavior and 

environmental interactions. 
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Deep learning approach, which is gaining widespread popularity in computer vision (Loo 

et al., 2023), natural language processing (Valcamonico et al., 2022), artificial intelligence, 

and pattern recognition (Farmosa et al., 2020; Bibi et al., 2021), is now being applied in 

traffic safety research. This includes applications such as traffic conflict prediction (Farmosa 

et al., 2020; Bibi et al., 2021), near miss identification at intersections (Huang et al., 2020), 

estimating unsafe driving speed, and red-light violation at signalized intersection (Zhang, 

2020). Deep learning distinguishes itself from traditional statistical models and other 

learning architectures by its ability to model complex non-linear relationships through 

distributed and hierarchical feature representation (Shi et al., 2015), demonstrating superior 

performance in predicting short-term traffic flow and speed.  

The predictive potential of a spatially ensembled ConvLSTM model was utilized to 

predict the future state of weather-related crashes in this study. Through a rigorous 

comparison of the model’s performance against other established models, this study aims to 

establish a new benchmark in weather-related crash prediction. To investigate whether the 

proposed framework surpasses traditional models and the standard ConvLSTM in accuracy, 

assessing its performance variability across different risk zones and confirming the 

geographical accuracy of its predictions against actual crash locations is vital. 

5.2. Methodology 

This section presents the data used in the study, introduces the formulation of the problem, 

and present the feature extraction technique. 

5.2.1. Data Sources 

NC was selected as the study area. The state of NC is characterized by its wide range 

of weather phenomena, including but not limited to snowfalls, rainfall, and wind. This 

diversity in weather conditions makes NC an exemplary state for examining the effects of 
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weather, particularly precipitation, on road traffic incidents, a point made in a study by 

Mathew et al. (2022) in their research. The primary dataset for the investigation was 

sourced from the HSIS, encompassing vehicle crash records spanning 2015 through 2018. 

This dataset is not merely a compilation of the time and location of each crash; it also 

contains a few significant attributes related to the road conditions. The spatial distribution 

of these crash sites across NC is illustrated in Figure 20. 

 
Figure 20. Spatial distribution of crashes masked by a grid layer 

 

5.2.2. Problem Definition 

The objective is to construct a predictive framework that estimates the total number of 

traffic crashes within specified units of a spatial grid S over distinct time intervals. This 

grid, denoted as 𝑆 = {𝑠#, 𝑠%, … , 𝑠$} comprises subdivisions, each representing an area of 

𝑑 × 𝑑  square miles. For illustrative purposes, consider 𝑑 = 5mi , whereby the entire 

geographical expanse of NC could be dissected into a grid formation of 2,045 units. Time is 

segmented into discrete intervals, referred to as slots, with a week being the standard length 

for this analysis, albeit the methodology supports adjustments in both spatial (d) and 

temporal (t) dimensions. Figure 21 shows the EPDO trends of the training dataset. The 

problem is formulated as follows.  
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Figure 21. Training data from DTW clusters between 2015 to 2017 

Provided Inputs: 

• A spatiotemporal framework encapsulated by a matrix 𝑆 × 𝑇, where S symbolizes 

the spatial grid with its divisions, and T embodies the sequence of time intervals 

during the study period. 

• A matrix A of dimensions 𝑛 × 𝑡, with element 𝐴!( representing the crash EPDOs in 

spatial unit 𝑠! at time 𝑡(. 

• A series of m matrices {𝑀#, 𝑀%, … ,𝑀)}, with each matrix 𝑀, of dimensions 𝑛 × 𝑡, 

capturing distinct attributes pertinent to each grid unit 𝑠! over the time slots 𝑡(. 

• Training data set 𝐷9PQ!$ composed of pairs from A and the feature matrices for time 

slots within 𝑇9PQ!$, and a testing data set 𝐷9R59 containing pairs for time slots in 𝑇9R59. 

Objective: 

• Formulate a model that can accurately predict the crash count matrix A for all time 

intervals 𝑡( ∈ 𝑇9R59, aiming to minimize the discrepancy between predicted and actual 

crash counts.  
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Constraints: 

• The correlation between crash counts and features (𝑀,) varies across different spatial 

units. 

• Crashes are presumed to occur exclusively within the confines of the road network. 

• For any forthcoming timeslot 𝑡! , the corresponding feature matrices𝑀,,9!  are not 

accessible for use in predicting 𝐴!,9!, signifying 𝑡! ∈ 𝑇9R59. 

5.2.3. Feature Extraction 

To prepare the features for the model, the dataset was aligned with each grid 𝑠! and 

week 𝑡! combination, aggregating the data to compile a list of features. For the dependent 

variable, the EPDO was computed for each grid 𝑠! for each week 𝑡!, from January 2015 to 

December 2018. The process for extracting the independent features is detailed next. 

The road network was mapped onto grid cells, overlaying it with a mask layer to 

delineate the study area. It is important to note that traffic crashes are restricted to the 

road network, despite the grid-based partitioning of the entire area. The risk level in each 

grid was assessed based on two factors: crash frequency and crash severity. For more 

accurate predictions, the EPDO score was normalized for each grid by the total road length 

within that grid, assigning null values to grids without roads. Given the stability of the 

road network over time, this feature is considered time-invariant. 

The network mask layer was augmented by calculating and storing two additional 

measures for each grid cell: the average road length and the average speed limit. Further, 

the associated features were incorporated with road properties, which include the proportion 

of different traffic control types, average number of lanes, proportion of different route types, 

road, and annual average daily traffic (AADT) with each grid cells 𝑠!. These features are 

considered time-invariant. 
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5.2.4. Experimental Settings 

This dissertation aims to predict weather-related crashes in NC for the year 2018, based 

on EPDO scores and other related factors observed over the preceding three years. The 

dataset, comprising weekly aggregated data, translates into a sequence of 157 frames for 

training and 52 frames for testing. In total, the four-year dataset yielded 209 such sequences. 

The training set includes data from 2015 to 2017, while the final year, 2018, constitutes the 

testing set. Additionally, 10% of the training data was reserved for validation purposes. 

The geographical scope of the study involves partitioning NC into grids measuring 5mi 

by 5mi. For each week of 2018, the aim is to predict a traffic crash map utilizing the 

proposed ConvLSTM model. It is guided by three research questions: (1) Does the 

framework outperform conventional predictive models and the standard ConvLSTM in 

accuracy? (2) What variations in performance does the proposed model exhibit across 

different crash risk zones, such as areas of high and low risk? (3) Do the model's predictions 

align spatially with actual crash locations, thereby confirming their logical validity? 

To assess the models' precision, the mean squared error (MSE) and root-mean-square 

error (RMSE) were used as our primary metrics. Furthermore, the Cross-K function was 

used to evaluate the spatial correlation between the predicted outcomes and the actual data. 

5.2.5. Spatiotemporal Ensembled ConvLSTM 

The ConvLSTM model, an extension of the traditional LSTM, was initially developed 

by Shi et al (2015) for precipitation nowcasting. It is particularly suited for handling data 

where both spatial and temporal dimensions are crucial. Each input to the ConvLSTM 

network is treated as a 3D spatiotemporal tensor. The typical LSTM node is modified in 

the ConvLSTM to include convolution operations within its structure, as illustrated in a 

single ConvLSTM shown in Figure 22. Specifically, the input-to-state and state-to-state 



 

 

87 

transitions in a ConvLSTM cell involve convolutional operations which output 3-D tensors. 

These modifications are governed by algorithm 5. 

Algorithm 5: Spatial ensembled ConvLSTM 
1: Initialize model parameters for each window 
2: for training epoch in num_epochs: 
3:  for each window in study_area: 
4:  Extract spatiotemporal data x within window 
5:  for each timestep t in x: 
6:  Compute input gate: 
7:  𝑖6 = 	𝜎(𝑊I3 ∗ 𝑋6 +𝑊J3 ∗ ℎ6K0 +	𝑏3)  
8:  Compute for gate: 
9:  𝑓6 = 	𝜎(𝑊IL ∗ 𝑋6 +𝑊JL ∗ ℎ6K0 +	𝑏L)  
10:  Compute output gate: 
11:  𝜊6 = 	𝜎(𝑊IM ∗ 𝑋6 +𝑊JM ∗ ℎ6K0 +	𝑏M)  
12:  Update cell state: 
13:  𝐶6 =	𝑓6	. 𝐶6K0 + 𝑖6	. tanh	(𝑊I8 ∗ 𝑋6 +𝑊J8 ∗ ℎ6K0 +	𝑏8) 
14:  Hidden state output 
15:  ℎ6 =	𝜊6	. tanh	(𝐶6)		
16:  Store last hidden state ℎ6 
17:  Aggregate and store output from all frames 
18: Use ensembled method to combine predictions from all windows 
19: Evaluate model performance 
20: Adjust parameters based on gradients and learning rate 

 

To tackle the challenge of spatial heterogeneity in weather-related crash prediction, the 

approach involves constructing distinct LSTM models for various clusters within the study 

area. These clusters are determined based on the spatial heterogeneity of the data, which 

can reflect varying risk levels, such as high-risk or low-risk zones as shown in Figure 23. 

The ensemble method is then applied to integrate the results from multiple models, thereby 

mitigating the effects of data heterogeneity. 
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Figure 22. Single ConvLSTM Architecture 

A moving window technique was employed with each window measuring 32×32 grids. 

The study area is segmented by shifting this window from the upper-left corner at 

coordinates (0,0) to the bottom-right at coordinates (128, 64). The windows are moved 

across the grid in steps of 16 units both horizontally and vertically, ensuring comprehensive 

coverage and overlap across the study area. This strategy enabled the capture of localized 

spatial features significant for accurate crash prediction. 

For each windowed region, a dedicated ConvLSTM model was trained using the local 

training dataset corresponding to that window. The model then performed predictions on 

the testing dataset for that specific region. By training individual models on localized data, 

the unique spatial-temporal characteristics of each region were captured, which might be 

crucial due to varying meteorological and traffic conditions. The final prediction for a 

specific grid location 𝑠! on day 𝑡" is computed using an ensemble method, which aggregated 

predictions from all models covering 𝑠!. This aggregation is performed as a weighted average 

of the predictions for 𝑠! at 𝑡"  from all significant models (Equation 16).  
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𝐶o(𝑠, 𝑡) = 	 #
∑ /NO
N&'

	∑ 𝑤!𝐶o!(𝑠, 𝑡) × 𝐼(𝑠 ∈ 𝑊!)S
!"#       (16) 

 
Figure 23. Distribution of frames by clusters 

Here, 𝑁	denotes the total number of window models that include the grid location with 

a weight assigned to the kth	window, and 𝐼(𝑠 ∈ 𝑊!)	is an indicator function that equals 1 if 

𝑠! is within window 𝑊! and 0 otherwise. Equal weights were considered for each model, 

𝑤, 	= 1, although optimal weights could potentially be determined through regression 

analysis of regional model outputs.  

 

 

 

5.3. Results 

Figure 24 presents a comparison of four predictive models: LR, ARIMA, ConvLSTM, 

and Spatiotemporal Ensembled ConvLSTM, using the cross-K function to measure their 

accuracy in forecasting weather-related crashes. The cross-K function values, plotted against 

‘distance,’ serve to evaluate how closely each model’s predictions align with actual events. 
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Figure 24. Cross-K function between predicted and actual weather-related crash risks 

 

LR is observed to have the lowest performance among the four predictive models, with 

its cross-K function values consistently rising but lower than other models throughout the 

range. This shows that while LR can predict trends, its simplicity restricts its effectiveness 

in capturing complex patterns in weather-related crash data. ARIMA has better 

performance than LR, yet still falls short compared to the neural network-based models. Its 

ability to incorporate past values and forecast errors into future predictions does provide 

an edge over LR, yet it lacks the capability to effectively handle spatial or multidimensional 

temporal dependencies, which are crucial in the context of weather-related events. 

ConvLSTM substantially outperformed LR and ARIMA, underscoring the advantages 

of integrating convolutional layers into LSTM networks. This architecture enables the model 

to capture spatial features and temporal sequences simultaneously, which is particularly 

beneficial for modeling scenarios like weather patterns where both spatial and temporal 

dynamics are significant. Spatiotemporal Ensembled ConvLSTM has the highest cross-K 

function values across all distances. This model combines multiple ConvLSTM models to 

leverage diverse spatial and temporal features more robustly, reducing the risk of overfitting 

to patterns and improving generalization across various scenarios. 

The differences in performance can be attributed to several factors, for example, the 

model complexity and architecture, i.e., more complex models (ConvLSTM and 
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spatiotemporal ensembled ConvLSTM) are designed to handle the intricacies of spatial and 

temporal data simultaneously, which is crucial for accurately modeling phenomena like 

weather-related crashes that exhibit both spatial and temporal variability. In addition, the 

data handling capabilities of each model plays a role. The ability of ConvLSTM to process 

data in both time and space allows for a more nuanced understanding of how weather 

conditions across different regions influence crash rates over time. Furthermore, the superior 

performance of the spatiotemporal ensembled ConvLSTM suggests that ensembling 

techniques, which combine predictions from multiple models to improve accuracy are 

particularly effective in dealing with complex, noisy datasets like those involving weather 

and traffic.  

 

Table 9. Model performance evaluation 

Model 
Cluster 0 Cluster 1 Cluster 2 All regions 
RMSE MSE RMSE MSE RMSE MSE RMSE RMSE 

LR 0.321 0.103 0.146 0.021 0.184 0.034 0.852 0.7259 
ARIMA 0.288 0.082 0.091 0.008 0.151 0.023 0.543 0.2948 
ConvLSTM 0.253 0.064 0.073 0.005 0.084 0.007 0.331 0.1096 
Ensembled ConvLSTM - - - - - - 0.024 0.0006 

 

Table 9 provides a comparative analysis of the mean squared error (MSE) and root 

mean squared error (RMSE) across different clusters for the four predictive models: LR, 

ARIMA, ConvLSTM, and spatiotemporal ensembled ConvLSTM. Each cluster represents 

different characteristics of EPDO, which measures the severity and frequency of crashes.  

Cluster 0 represents gradually increasing low EPDOs. Here, LR, ARIMA, and 

ConvLSTM show progressively lower MSE and RMSE, indicating increasing accuracy with 

more sophisticated models. The improvement from LR to ARIMA and further to 

ConvLSTM suggests that the gradual increase in EPDO severity over time in this cluster 
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is better modeled by algorithms that can handle time series data with trend and seasonality. 

However, cluster 1 represents volatile high-EPDOs. This cluster displays the lowest MSE 

and RMSE across all models, which may seem counterintuitive given its volatility. However, 

this can indicate that the models, particularly ConvLSTM, are effectively capturing the 

rapid fluctuations in EPDOs. The lower error metrics suggest that sophisticated models like 

ConvLSTM are particularly adept at managing the high variability within this cluster. 

Cluster 2, on the other hand, represents stable low EPDOs. Despite the stability in EPDOs, 

the errors (MSE and RMSE) are higher than in Cluster 1 but lower than in Cluster 0 for 

ConvLSTM. This might be because while the data’s stability makes it easier to predict, the 

absolute errors remain low but perceptible, reflecting a consistent underestimation or 

overestimation by the models. 

All region combined dataset was compared across models. When aggregating all clusters, 

it is notable that ConvLSTM and spatiotemporal ensembled ConvLSTM perform 

significantly better than simpler models. The ensemble method likely leverages individual 

model strengths and mitigates their weaknesses, leading to improved overall prediction 

accuracy. The increasing complexity and adaptability of the models (from LR to ensembled 

ConvLSTM) generally lead to better performance. ConvLSTM, integrating both 

convolutional and LSTM layers, efficiently handles spatial-temporal data, crucial for 

predicting EPDOs which are influenced by both spatial factors (e.g., road conditions and 

traffic density) and temporal factors (e.g., seasonal variations and time of day). The volatile 

nature of Cluster 1 might assist in model training by providing diverse scenarios for the 

models to learn from, which might explain the unexpectedly lower errors in this cluster 

compared to the more stable Cluster 2. In contrast, the stability in Cluster 2, while 

theoretically easier to predict, may lead to complacency in error reduction, resulting in 

slightly higher error metrics than Cluster 1. The superior performance of the spatiotemporal 
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ensembled ConvLSTM in ‘All regions’ suggests that combining multiple models helps 

capture a broader range of patterns and anomalies in the data, thereby enhancing prediction 

accuracy. This is particularly beneficial when dealing with heterogeneous data across various 

regions.  
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CHAPTER 6: CONCLUSIONS & FUTURE WORK 

6.1. Conclusions 

The synopsis for each act of the dissertation is presented in this section.  

6.1.1. A Spatiotemporal Risk Mapping of Statewide Weather-Related Traffic Crashes: 
A Machine Learning Technique  

 
This dissertation focuses on how to analyze complex spatiotemporal weather-related 

crash pattern through a two-layered technique that captures the crash pattern similarities 

in time and spatial hotspot. Specifically, an unsupervised machine learning technique was 

used in studying these data generation pattern similarities. It was used in understanding 

how features impact weather-related crashes in both high and low risk crash zones using a 

supervised machine learning technique. The analysis presented in this study, through the 

application of a two-layered unsupervised machine learning technique, has helped to discern 

high-risk from low-risk locations and its effectiveness in identifying significant hotspots and 

coldspots within the clusters. The findings suggest a distinct variability in the impact of 

weather conditions on crash occurrences across different clusters, with unclear, foggy, and 

cloudy conditions playing a substantial role in all clusters, especially in Cluster C2 which 

exhibited the highest variability. Rain emerged as a consistent factor in crashes, particularly 

in Cluster C1, indicating a uniform influence across this cluster. Conversely, winter weather 

conditions and severe crosswinds had a lesser overall impact but showed significant spatial 

variability, particularly in Cluster C2.  

In investigating the role of contributing factors in crash risk zones, the critical role of 

no passing zones, stop and go traffic controls, and roadway lighting in influencing the 

likelihood and severity of crashes under varying weather conditions in high-risk crash zones 

was identified. The consideration of these factors in statewide transportation planning and 
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the subsequent implementation of targeted interventions could show promising result in 

reducing the risk of high-risk weather-related crashes. 

 

 

6.1.2. Effectiveness of Crash Data Imbalance Treatment in Weather-Related Crash 
Severity Analysis 

This dissertation successfully showcased the importance of choosing appropriate data 

treatment methods, specifically SMOTE-N and ADASYN-N, for handling nominal 

predictors in machine learning techniques applied to weather-related traffic crash severity 

prediction. The effectiveness of these methods varies depending on the crash severity level 

being predicted and the machine learning technique used.  

ADASYN-N proved particularly effective in balancing class distribution and enhancing 

the accuracy of both RF and XGBoost models for severe and moderate injury crash 

predictions. In contrast, the control dataset showed notable efficiency with the RF model 

for predicting PDO crashes, while the SMOTE-N method significantly improved the 

XGBoost model’s performance in the same category. This indicates that the XGBoost model 

benefited from a more balanced dataset provided by SMOTE-N, which likely offered more 

examples of the minority class to learn from. The high prediction accuracy of PDO crashes 

on RF model is not unusual as the model shows its bias to predicting the majority class. 

The dissertation establishes a clear benchmark for practitioners in selecting suitable 

methods to generate synthetic samples for addressing underrepresented crash categories 

such as severe and moderate injury crashes. By demonstrating the varying effectiveness of 

SMOTE-N and ADASYN-N across different machine learning techniques and crash severity 

levels, this study provides valuable insights for optimizing data treatment in crash severity 

prediction. The insights gained from this dissertation are instrumental in guiding the 
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development of more accurate and reliable crash severity prediction models, ultimately 

aiding in better informed and more effective traffic safety measures and policy decisions. 

Despite these promising findings, further research is warranted to explore the 

applicability of the introduced synthetic data generation method to other weather-related 

datasets and enhance its performance in real-world scenarios. Assessing the technique’s 

scalability and efficiency in handling large-scale datasets would be crucial, particularly for 

real-time applications or big data scenarios. Additionally, investigating the method’s 

effectiveness on more complex and diverse datasets would contribute to a deeper 

understanding of its potential in various crash severity analysis contexts.  

This dissertation demonstrates that SMOTE-N and ADASYN-N are effective data 

imbalance treatment methods for improving weather-related crash severity prediction in RF 

and XGBoost models, respectively. The effectiveness varies by crash severity category, with 

ADASYN-N excelling in severe and moderate injury crash predictions and SMOTE-N in 

PDO crash predictions. This study provides valuable guidance for researchers in choosing 

suitable techniques to create synthetic samples, particularly for underrepresented categories 

in weather-related crash severity prediction. The study paves the way for transportation 

agencies to develop more accurate crash severity prediction models. Such models are 

essential in enhancing traffic safety measures and building safer as well as more resilient 

roadways, especially in adverse weather conditions, ultimately protecting road users. 

6.1.3. Predicting Future Weather-Related Crash Risk Using Machine Learning 
Technique  

Several conclusions and recommendations can be made regarding the use of the spatially 

ensembled ConvLSTM framework for predicting weather-related crash risks. The spatially 

ensembled ConvLSTM framework does outperform conventional predictive models, such as 

LR, ARIMA, and the standard ConvLSTM model in terms of accuracy. This is evidenced 
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by the lower MSE and RMSE values across all regions, particularly when data from different 

crash risk zones are aggregated. The ensemble approach effectively combines the strengths 

of multiple ConvLSTM models, improving prediction accuracy through a robust handling 

of spatial and temporal variations in the data. 

The proposed model exhibits distinct performance variations across different crash risk 

zones. In areas of volatile high risk (Cluster 1), the model achieves the lowest MSE and 

RMSE, suggesting a strong capability to handle and accurately predict scenarios with high 

variability in crash risks. Conversely, in stable low-risk areas (Cluster 2), the model still 

improves upon simpler models but shows slightly higher errors than in high-risk areas, likely 

due to the challenges in capturing subtle variations in inherently low-risk environments. 

 The framework’s ability to spatially align predictions with actual crash locations, 

especially noted in the superior performance in high-risk, volatile areas, indicates its logical 

validity. The integration of spatial data within the model allows it to effectively map and 

predict crash occurrences in relation to varying geographical and environmental factors, 

thereby confirming its utility and accuracy in practical applications. 

6.2. Limitations 

The contribution of this dissertation stems from the perspective of methodological 

advancement and practical application of existing methods. In terms of methodological 

advancement, the proposed technique to capture crash data generation pattern from a 

temporal standpoint using DTW-G* is novel and contribute to techniques that can be used 

to identify and map spatiotemporal crash risk. In terms of application, machine learning 

techniques were used to predict crash pattern and explain the models. One of the key 

limitations of the spatiotemporal risk mapping technique is its reliance on the quality and 

granularity of the available crash data. Data inconsistencies and missing information can 
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affect the accuracy of the identified high-risk and low-risk zones. Furthermore, the clustering 

algorithm used may be sensitive to the initial parameters, which could lead to variability 

in the identified hotspots and coldspots. The current approach also does not fully account 

for dynamic changes in traffic patterns and weather conditions over time, which could 

further refine the spatiotemporal analysis.  

In the analysis of crash data imbalance treatment, while SMOTE-N and ADASYN-N 

have proven effective in handling nominal predictors, their performance may vary across 

different datasets and machine learning techniques. The study primarily focuses on RF and 

XGBoost models, and the generalizability of these findings to other machine learning 

techniques remains to be explored. Additionally, the synthetic data generation methods, 

while addressing class imbalance, may introduce noise or fail to capture the true underlying 

data distribution, potentially affecting model performance. 

The spatially ensembled ConvLSTM framework demonstrated improved predictive 

accuracy over conventional models. However, its complexity and computational 

requirements could limit its practical application, particularly for real-time prediction and 

large-scale datasets. The model's performance varies across different crash risk zones, 

suggesting a need for further optimization to handle low-risk areas more effectively. 

Moreover, the framework's reliance on historical data for training may not fully capture 

emerging trends and changes in weather patterns and traffic behaviors. Additionally, to 

maximize the practical benefits of the spatially ensembled ConvLSTM framework, 

integrating this model with real-time traffic and weather monitoring systems could provide 

dynamic, timely predictions that can be directly utilized for traffic management and crash 

prevention. Finally, development of decision-support tools that leverage the model’s outputs 
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to provide actionable insights for urban planners and public safety officials could 

significantly enhance the impact of the predictive capabilities. 

6.3. Future Research Opportunities 

Enhancing data quality and integrating real-time data sources such as traffic flow and 

weather forecasts could improve the accuracy and timeliness of the spatiotemporal risk 

mapping. Exploring the application of more sophisticated clustering techniques and dynamic 

models that account for temporal variations in traffic and weather conditions would also be 

beneficial. 

For crash data imbalance treatment, extending the evaluation to a wider range of 

machine learning techniques and datasets would provide a more comprehensive 

understanding of the effectiveness of SMOTE-N and ADASYN-N. Additionally, developing 

hybrid methods that combine synthetic data generation with other data augmentation 

techniques could further enhance model performance. 

In terms of predictive modeling, simplifying the spatially ensembled ConvLSTM 

framework to reduce computational demands without sacrificing accuracy would be an 

important step. Investigating the integration of real-time data streams and adaptive 

learning techniques could make the model more responsive to changing conditions. 

Furthermore, expanding the scope of the analysis to include a wider variety of 

environmental and socio-economic factors would provide a more holistic view of weather-

related crash risks. 
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