
APPROXIMATING SOLUTIONS OF BOUNDARY VALUE PROBLEMS

by

Hamid Semiyari

A dissertation submitted to the faculty of
the University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Applied Mathematics

Charlotte

2015

Approved by:

Dr. Douglas S. Shafer

Dr. Joel D. Avrin

Dr. James Sochacki

Dr. Vincent Ogunro

ii

c©2015
Hamid Semiyari

ALL RIGHTS RESERVED

iii

ABSTRACT

HAMID SEMIYARI. Approximating solutions of boundary value problems.
(Under the direction of DR. DOUGLAS S. SHAFER)

We present a new algorithm for approximating solutions of two-point boundary value prob-

lems and prove theorems that give conditions under which the solution must exist and the algorithm

generate approximations that converge to it. We show how to make the algorithm computation-

ally efficient and demonstrate how the full method works both when guaranteed to do so and more

broadly. We demonstrate that the method compares well against other methods commonly used

in the literature. We also prove a theorem on existence of solutions of certain multi-dimensional

Volterra integral equations and use it to show that the Parker-Sochacki method of introducing auxil-

iary variables, used to make the new algorithm computationally efficient, can be effectively applied

to these Volterra integral equations in order to approximate their solutions by means of a Picard it-

eration scheme. Finally, we extend the existence theorem for solutions of two-point boundary value

problems and prove that the new algorithm can be modified to approximate solutions in this case.

iv

ACKNOWLEDGMENTS

I would never have been able to finish my dissertation without the guidance of my committee

members, help from friends, and support from my family and wife.

I would like to express my deepest gratitude to my advisor, Dr. Douglas Shafer, for his excellent

guidance, caring, patience, editing my work and providing me with an excellent atmosphere for

doing research. I would like to thank Dr. James S. Sochacki, who taught me his method (Parker-

Sochacki method) for his guidance, understanding, patience, and most importantly, his friendship.

I would like to thank Dr. Joel Avrin for his assistance and guidance in getting my graduate career

started on the right foot and providing me with the foundation for becoming a mathematician. I

would like to thank Dr. David Carothers, who provided me with an excellent atmosphere for doing

research.

I would like to thank to Drs. Edgar G. Parker, Stephen Lucas and Roger Thelwell for helping

me to have a better understanding of The Parker-Sochacki method and many more. Many thanks to

Drs. Evan Houston, Mohammad Kazemi, Hae-Soo Oh, Animakk Biswas and John Taylor for help,

support and encouragement.

Finally, and most importantly, I would like to thank my wife Mitra. Her support, encour-

agement, quiet patience and unwavering love were undeniably the bedrock upon which the past

twenty-two years of my life have been built. Her tolerance of my occasional vulgar moods is a

testament in itself of her unyielding devotion and love.

v

TABLE OF CONTENTS

LIST OF FIGURES vii

CHAPTER 1: BACKGROUND 1

1.1 Initial Value Problems 1

1.2 Boundary Value Problems 8

1.3 Equivalences, Norms, and Contraction Mappings 10

CHAPTER 2: APPROXIMATING SOLUTIONS OF BOUNDARY VALUE PROBLEMS 13

2.1 An Efficient Algorithm for Approximating Solutions of Two-Point Boundary Value
Problems

13

2.2 Examples 20

2.3 Mixed Type Boundary Conditions 28

2.4 Mixed Type Boundary Conditions: A Second Approach 30

CHAPTER 3: COMPARISON OF METHODS 36

3.1 A Linear Example 36

3.1.1 The Shooting Method Using a Fourth Order Runge-Kutta Approximation
Scheme

36

3.1.2 The Finite Difference Method 37

3.1.3 The Power Series Method 38

3.1.4 The New Method 39

3.1.5 A Comparison of the Methods 39

3.2 A Non-Linear Case 40

3.2.1 The Shooting Method 40

3.2.2 The Finite Difference Method 41

3.2.3 The Power Series Method 41

3.2.4 The New Method 42

3.2.5 A Comparison of the Methods 43

vi

CHAPTER 4: VOLTERRA INTEGRAL EQUATIONS 48

4.1 Uniqueness Theorem 49

4.2 Examples 52

CHAPTER 5: A MORE GENERAL ALGORITHM FOR APPROXIMATING
SOLUTIONS OF BOUNDARY VALUE PROBLEMS

62

5.1 The Simplest Case 62

5.2 The General Case 73

5.3 Examples 80

REFERENCES 101

vii

LIST OF FIGURES

FIGURE 2.1 : Error plot |yexact(t)− y[5](t)| for Example 2.2.1. 34

FIGURE 2.2 : Error plot |yexact(t)− y[5](t)| for Example 2.2.5. 34

FIGURE 2.3 : Error plot |yexact(t)− y[12](t)|for Example 2.2.7. 35

FIGURE 3.1 : Linear Runge-Kutta. Error plot, |y(t)− yapprox|, with n = 4. y(t) represents
the exact solution and yapprox represents the approximate solution.

44

FIGURE 3.2 : Linear Finite Difference Method. Error plot, |y(t)− yapprox|, with n = 4. y(t)
represents the exact solution and yapprox represents the approximate solution.

44

FIGURE 3.3 : Linear Power Series Method. Error plot, |y(t)−yapprox|, with n= 4 iterations.
y(t) represents the exact solution and yapprox represents the approximate solution.

45

FIGURE 3.4 : Linear New Method. Error plot, |y(t)− yapprox|, with n = 4 iterations. y(t)
represents the exact solution and yapprox = p[5] represents the approximate solution.

45

FIGURE 3.5 : Non-Linear RK. Error plot, |y(t)− yapprox|, with n = 7 iterations. y(t) repre-
sents the exact solution and yapprox] represents the approximate solution.

46

FIGURE 3.6 : Non-Linear FDM. Error plot, |y(t)− yapprox|, with n = 7 iterations. y(t) rep-
resents the exact solution and yapprox] represents the approximate solution.

46

FIGURE 3.7 : Non-Linear PSM. Error plot, |y(t)− yapprox|, with n = 7 iterations. y(t) rep-
resents the exact solution and yapprox] represents the approximate solution.

47

FIGURE 3.8 : Non-Linear New Method. Error plot, |y(t)− yapprox|, with n = 7 iterations.
y(t) represents the exact solution and yapprox] represents the approximate solution.

47

FIGURE 4.1 : The error plot for Volterra Integral, |y(t)−y[8](t)|with n= 8 iterations, where
y(t) is the exact solution and y[8](t) is the approximate solution.

59

FIGURE 4.2 : Error plot for nonlinear Volterra Integral, |y(t)−y[8](t)| with n = 8 iterations,
where y(t) is the exact solution and y[8](t) is the approximate solution.

60

FIGURE 4.3 : The error plot for linear Volterra Integral, |y(t)− y[28](t)| with n = 28 itera-
tions, where y(t) is the exact solution and y[28](t) is the approximate solution.

61

FIGURE 5.1 : Simple Case, two subdivisions. 87

FIGURE 5.2 : Multiple subdivisions. 88

FIGURE 5.3 : The exact solution and the first approximated solution, with two subdivisions
of equal lengths, for Example 5.3.1.

89

FIGURE 5.4 : The exact solution and the fourth approximated solution, with two subdivi-
sions of equal lengths, for Example 5.3.1.

90

FIGURE 5.5 : The exact solution and the eighth approximated solution, with two subdivi-
sions of equal lengths, for Example 5.3.1.

91

viii

FIGURE 5.6 : The exact solution and the iterates 0, 4, and 8, with n = 8 iterations and two
subdivisions of equal lengths, for Example 5.3.1.

92

FIGURE 5.7 : The exact solution and the first approximated solution, with three subdivi-
sions of equal lengths, for Example 5.3.2.

93

FIGURE 5.8 : The exact solution and the fourth approximated solution, with three subdivi-
sions of equal lengths, for Example 5.3.2.

94

FIGURE 5.9 : The exact solution and the eighth approximated solution, with three subdivi-
sions of equal lengths, for Example 5.3.2.

95

FIGURE 5.10: The exact solution and the iterates 0, 4, and 8, with n = 8 iterations and
three subdivisions of equal lengths, for Example 5.3.2.

96

FIGURE 5.11: The exact solution and the first approximated solution, with two subdivi-
sions of equal lengths, for Example 5.3.3.

97

FIGURE 5.12: The exact solution and the fourth approximated solution, with two subdivi-
sions of equal lengths, for Example 5.3.3.

98

FIGURE 5.13: The exact solution and the eighth approximated solution, with two subdivi-
sions of equal lengths, for Example 5.3.3.

99

FIGURE 5.14: The exact solution and the iterates from 2 to 8, with n = 8 iterations and two
subdivisions of equal lengths, for Example 5.3.3.

100

CHAPTER 1: BACKGROUND

1.1 Initial Value Problems

In the first part of this work we will be primarily interested the solution of boundary value

problems associated to second order differential equations in a single dependent variable that can be

placed in the form y′′ = f (t,y,y′). It is well known that an nth order ordinary differential equation

in a single dependent variable that can be solved for the nth derivative of the dependent variable can

be transformed into a system of n first order ordinary differential equations. For given

y(n) = f (t,y,y′, . . . ,y(n−1)), (1.1)

where f : Ω→ R for an open set Ω⊂ R×Rn we introduce n−1 additional dependent variables

y1 = y′, y2 = y′1, . . . , yn−1 = y′n−2

so that (1.1) is equivalent to

y′ = y1

y′1 = y2

...

y′n−1 = f (t,y,y1, . . . ,yn−1)

(1.2)

which we write more succinctly in vector notation as

y′ = f(t,y)

2

where

y =



y

y1

...

yn−2

yn−1


and f(t,y) =



y

y1

...

yn−2

f (t,y1, . . . ,yn−1)


.

An initial value problem associated to (1.2) is the system (1.2) together with the additional

requirement that the solution of (1.2) satisfy the initial condition y(t0) = y0 for some pair (t0,y0) ∈

Ω. A fundamental result concerning existence and uniqueness of solutions of initial value problems

is the Picard-Lindelöf Theorem. Its statement requires the following definition.

Definition 1.1.1. Let E be an open subset of Rm×Rn. A mapping f : E → Rp : (y,z) 7→ f(y,z) is

(uniformly) Lipschitz on E with respect to y if there exists a constant L such that

|f(y,z)− f(y′,z)|1 6 L|y−y′|2 for all (y,z),(y′,z) ∈ E

with respect to some pre-assigned norms | · |1 and | · |2. The mapping f is locally Lipschitz on E with

respect to y if for each (y0,z0) ∈ E there exists a neighborhood Ẽ(y0,z0) of (y0,z0) in E on which

f is uniformly Lipschitz with respect to y.

Since all norms on finite dimensional vector spaces are equivalent the choice of norms in the

definition is unimportant, although the constant L will depend on the specific choice of norms.

Theorem 1.1.2 (Picard-Lindelöf Theorem). Let I×E be an open subset of R×Rn. If f : I×E→Rn

is continuous and locally Lipschitz in y then for each pair (t0,y0) ∈ I×E there exists a solution to

the initial value problem

y′ = f(t,y), y(t0) = y0 (1.3)

on an open interval J ⊂ I about t0, and any two such solutions agree on their common domain about

t0.

There are two popular methods for proving the theorem, both based on the fact that the initial

3

value problem (1.3) is equivalent to the integral equation

y(t) = y0 +
∫ t

t0
f(s,y(s))ds (1.4)

(see Lemma 1.3.1 for the precise statement). In the Picard iteration approach to the proof of the

theorem, a sequence of mappings is defined by y0(t)≡ y0 and

yk(t) = y0 +
∫ t

t0
f(s,yk−1(s))ds for k > 1

and is shown to converge to a solution of (1.4). In the contraction mapping approach to the proof,

the right hand side of (1.4) is used to define a mapping on a suitable function space, the mapping

is shown to be a contraction, and thus the mapping has a unique fixed point, which is of course a

solution of (1.4). Both of these ideas will figure into the proof of the main theorem in Chapter 2.

The algorithm that will be developed in Chapter 2 for the solution of certain boundary value

problems is based on a kind of Picard iteration as just described. It is well known that in many

instances Picard iteration performs poorly in actual practice, even for relatively simple differential

equations. A great improvement can sometimes be had by exploiting ideas originated by G. Parker

and J. Sochacki [?], which we will now describe. We begin with the following example, which

illustrates the ideas involved.

Example 1.1.3. Consider the initial value problem

y′ = siny, y(0) = π/2. (1.5)

The function on the right hand side of this autonomous differential equation is globally Lipschitz

on R with Lipschitz constant L = 1, hence by the Picard-Lindelöf Theorem there exists a unique

solution to the initial value problem defined on some interval J about t = 0. To approximate it by

means of Picard iteration, from the integral equation that is equivalent to (1.5), namely,

y(t) = π

2 +
∫ t

0
siny(s)ds

4

we define the Picard iterates

y0(t)≡ π

2 , yk+1(t) = π

2 +
∫ t

0
sinyk(s)ds for k > 0.

The first few iterates are

y0(t) = π

2

y1(t) = π

2 + t

y2(t) = π

2 − cos(π

2 + t)

y3(t) = π

2 +
∫ t

0
cos(sins)ds,

the last of which cannot be expressed in closed form. However, we can avoid this impasse by

introducing additional dependent variables originally so as to eliminate the transcendental function

of the dependent variable that appears on the right hand side of the differential equation in (1.5).

Specifically, we define variables u and v by u = siny and v = cosy so that y′ = u, u′ = (cosy)y′ = uv,

and v′ = (−siny)y′ = −u2, hence the original one-dimensional problem is embedded as the first

component in the three-dimensional problem

y′ = u y(0) = π

2

u′ = uv u(0) = 1 (1.6)

v′ =−u2 v(0) = 0 .

Indeed, let the unique solution to (1.5) be y = σ(t) on some interval J about 0 and let the unique so-

lution to (1.6) be (y,u,v) = (ρ(t),µ(t),ν(t)) on some interval K about 0. By construction (y,u,v) =

(σ(t),sinσ(t),cosσ(t)) solves (1.6) on J, hence we conclude that on J ∩K the function y = σ(t),

which in the general case we cannot find explicitly, is equal to the function y = ρ(t), which we can

approximate on any finite interval about 0 to any required accuracy. For although the dimension

has increased, now the right hand sides of the differential equations are all polynomial functions so

5

quadratures can be done easily. In particular, the Picard iterates are now

y0(t) =


π

2

1

0

 yk+1(t) = y0 +
∫ t

0
yk(s)ds =


π

2

1

0

+
∫ t

0


uk(s)

uk(s)vk(s)

−u2
k(s)

 ds.

The first component of the first few iterates are

y0(t) = π

2

y1(t) = π

2 + t

y2(t) = π

2 + t

y3(t) = π

2 + t− 1
6 t3

y4(t) = π

2 + t− 1
6 t3 + 1

24 t5

y5(t) = π

2 + t− 1
6 t3 + 1

24 t5

y6(t) = π

2 + t− 1
6 t3 + 1

24 t5− 61
5040 t7

The exact solution to the problem (1.5) is y = σ(t) = 2arctan(et), whose Maclaurin series is

σ(t) = π

2 + t− 1
6 t3 + 1

24 t5− 61
5040 t7 +O(t9).

It is apparent that the iterative process is in fact generating the Maclaurin series of the first compo-

nent of the solution of problem (1.6) (which is shown in [?] to hold in general; see Theorem 1.1.4

below).

In practice we are not always able to obtain a closed form expression for the limit of the iterates

yn(t), but must settle for an approximation yn of the actual solution y(t). However, obtaining an

approximate solution with a sufficiently large n is practical since the algorithm is computationally

efficient.

In general the Parker-Sochacki method is an approach to obtaining approximate solutions of

systems of ordinary differential equations. As the example illustrates, the idea is to introduce vari-

ables that are equal to various non-polynomial functions that appear in the system of differential

6

equations, as well as variables that are equal to their derivatives, in such a way that those functions

are expressible as solutions of a system of differential equations with polynomial right hand sides.

Moreover, the initial conditions in the original problem force the initial values of the new variables.

Thus we obtain a polynomial initial value problem and, by an argument based on uniqueness of

solutions of initial value problems just like that given in Example 1.1.3, the solution to the orig-

inal initial value problem is one component. The process guarantees that the iterative integral in

Picard iteration applied to the new, larger system is easy to compute, since the integrand is always

a polynomial function. The method produces Maclaurin series solutions to systems of differential

equations, with the coefficients in either algebraic or numerical form. The following theorem is

stated and proved in [5].

Theorem 1.1.4. Let F = (f1, · · · , fn) : Rn → Rn be a polynomial and y = (y1, · · · ,yn) : R→ Rn.

Consider initial value problem

y′j = f j(y), y j(0) = α j, j = 1, · · · ,n

and the corresponding Picard iterates Pk(s) = (P1,k(s), · · · ,Pn,k(s)) given by

Pj,1(t) = α j, j = 1, · · · ,n

Pj,k+1(t) = α j +
∫ t

0
f j(Pk(s))ds, k = 1,2, · · · , j = 1, · · · ,n.

Then Pj,k+1 is the kth Maclaurin Polynomial for y j plus a polynomial all of whose terms have degree

greater than k.

In [4] the authors address the issue as to which systems of ordinary differential equations can

be handled by this method. The procedure for defining the new variables is neither algorithmic nor

unique. However, with sufficient ingenuity it has been successfully applied in every case for which

the original differential equation is analytic. The following example further illustrates the method,

but in a much more complicated situation.

Example 1.1.5. Consider the initial value problem

y′′ = ecosy sin t
(√

y′
)3

, y(0) = α, y′(0) = γ > 0, (1.7)

7

where the condition on γ insures that there will be a unique solution on an interval about t = 0. As

usual we form the equivalent system of first order ordinary differential equations by introducing a

new dependent variable x = y′, obtaining

y′ = x

x′ = ecosy sin t
(√

y′
)3

.

(1.8)

For the term ecosy in the x′ equation, if we introduce u= ecosy then u′= ecosy(−siny)y′ and (siny)′=

(cosy)y′, which prompts us to introduce v = siny and w = cosy, so that system (1.8) is now

y′ = x, x′ = usin t x
3
2 , u′ =−uvx, v′ = wx, w′ =−vx.

If r = sin t, r′ = cos t so we introduce s = cos t to obtain

y′ = x, x′ = urx
3
2 , u′ =−uvx, v′ = wx, w′ =−vx, r′ = s, s′ = r.

Finally, to deal with the term (
√

x)3 we introduce µ =
√

x. Then µ′ = 1
2 x−

1
2 x′ so we introduce

ρ = 1/
√

x = µ−1, for which ρ′ =−µ−2µ′ =−ρ2 1
2 ρurµ3 and ultimately obtain the system

y′ = x y(0) = α

x′ = urµ3 x(0) = γ

u′ =−uvux u(0) = ecosα

v′ = wx v(0) = sinα

w′ =−vx w(0) = cosα (1.9)

r′ = s r(0) = 0

s′ =−r s(0) = 1

µ′ = 1
2 ρurµ3 µ(0) =

√
γ

ρ
′ =−u

r ρ
3µ3

ρ(0) = 1/
√

γ

which is well defined since γ > 0. We may now apply Picard iteration to (1.9) without danger of

8

encountering impossible quadratures, obtaining a longer and longer initial segment of the Maclaurin

series of the first component y(t) of the solution, which is the solution of (1.7).

1.2 Boundary Value Problems

A two-point boundary value problem associated to (1.2) on Ω = I × E is the system (1.2)

together with the additional requirement that the solution of (1.2) exist on an interval (a,b) ⊂ I

and satisfy a boundary condition g(y(a),y(b)) = 0 for some mapping g from E into Rn. Our chief

concern will be with problems of the form

y′′ = f (t,y,y′), y(a) = α, y(b) = β. (1.10)

In contrast with initial value problems of this form, regardless of the regularity of f the problem

(1.10) can have either no solutions, infinitely many solutions, or a unique solution. Consider, for

example, a boundary value problem of the form

y′′ = ay′+by, y(0) = α, y(h) = β. (1.11)

Since all solutions of the differential equation in (1.11) are known explicitly, it is not difficult to

verify that this boundary value problem has a unique solution if and only if either (i) a2 + 4b > 0

or (ii) a2 +4b < 0 and h
√
−a2−4b 6= 2kπ for any k ∈ Z. In the remaining cases it has no solution

if (among other possibilities) exactly one of α and β is zero and has infinitely many solutions if

(among other possibilities) α = β = 0.

A relatively general theorem that guarantees that problem (1.10) will possess a unique solution

is the following. It is a special case of Theorem 1.2.2 of [10], where a proof is given.

Theorem 1.2.1. Suppose the function f (t,u,v) = f (t,u) in problem (1.10) is defined on the set

R = {(t,u) : a6 t 6 b} ⊂ R×R2 and satisfies

a. f is Lipschitz in u = (u,v),

b. f is continuously differentiable, and

c. throughout R the first partial derivatives of f with respect u and v satisfy, for some constant M,

∂ f
∂u

> 0 and
∣∣∣∣∂ f

∂v

∣∣∣∣6M.

9

Then the boundary problem (1.10) has a unique solution.

When we specialize to linear second order two-point boundary value problems we have the

following well-known result (see, for example, [3]).

Theorem 1.2.2. The second-order linear boundary value problem

y′′ = p(t)y′+q(t)y+ r(t), y(a) = α, y(b) = β (1.12)

has a unique solution provided

a. p(t), q(t), and r(t) are continuous on [a,b] and

b. q(t)> 0 on [a,b].

The unique solution can be decomposed as

y(t) = y1(t)+
(

β− y1(b)
y2(b)

)
y2(t) (1.13)

where y1(t) is the unique solution of the initial value problem

y′′ = p(t)y′+q(t)y+ r(t), y(a) = α, y′(a) = 0 (1.14)

and y2(t) is the unique solution of the initial value problem

y′′ = p(t)y′+q(t)y, y(a) = 0, y′(a) = 1. (1.15)

Proof. The existence and uniqueness of the solution of (1.12) is an immediate consequence of

Theorem 1.2.1.

As to the decomposition, as a preliminary let y0(t) denote the unique solution of (1.12) and, as

indicated in the statement of the theorem, let y1(t) and y2) denote the unique solutions of the intial

value problems (1.14) and (1.15), respectively, which exist by the Picard-Lindelöf Theorem 1.1.2.

Let ŷ2(t) denote any solution (including y2(t)) of

y′′ = p(t)y′+q(t)y, y(a) = 0,

10

that is, of (1.15) but with the condition on the derivative at a omitted. Then obviously the function

y3(t)
def
= y0(t)+ ŷ2(t) solves the differential equation in (1.12) and satisfies y3(a) = α+ 0 = α. If

additionally ŷ2(b) = 0 then y3(b) = β+ 0 = β so that y3(t) is then a solution of (1.12) as well as

y0(t), hence by uniqueness of solutions ŷ2(t)≡ 0. Thus y2(b) cannot be zero, since y2(t) is certainly

not identically zero, so the function given by (1.13) is well-defined. It obviously solves (1.12).

1.3 Equivalences, Norms, and Contraction Mappings

In this section we collect for reference some known results that will be needed later. We begin

with two equivalences between initial value problems and integral equations.

Lemma 1.3.1. Suppose I is an open interval in R, t0 ∈ I, E is an open set in Rn, and f : I×E→Rn

is a continuous mapping.

a. If J is an open subset of I that contains t0 and η : J→ E is continuous and satisfies

η(t) = y0 +
∫ t

t0
f(s,η(s))ds (1.16)

then η is differentiable and solves the initial value problem

y′ = f(t,y), y(t0) = y0. (1.17)

b. Conversely, if J is as in part (a) and η : J→ E is differentiable and solves (1.17) then the integral

in (1.16) exists and η satisfies (1.16).

The second equivalence is also known, but is less familiar, so we will include a sketch of the

proof.

Lemma 1.3.2. Suppose I is an open interval in R, t0 ∈ I, E is an open set in R2, and f : I×E→ R

is a continuous function.

a. If h is a positive real number and η is a twice continuously differentiable function on an open

neighborhood of [t0, t0 +h]⊂ I that solves the second order initial value problem

y′′ = f (t,y,y′), y(t0) = α, y′(t0) = γ (1.18)

11

then η solves the integral equation

y(t) = α+ γ(t− t0)+
∫ t

t0
(t− s) f (s,y(s),y′(s))ds. (1.19)

b. Conversely, if η is a continuously differentiable function on an open neighborhood of [t0, t0 +h]

that solves (1.19) then η is twice continuously differentiable on an open neighborhood of [t0, t0+

h] and solves (1.18).

Proof. For part (a), suppose η is as hypothesized and s ∈ [t0, t0 +h]. Integrating (1.18) from t0 to s

yields

η
′(s)−η

′(t0) =
∫ s

t0
f (u,η(u),η′(u))du

which when integrated from t0 to t yields

η(t)−η(t0)−η
′(t0)(t− t0) =

∫ t

t0

[∫ s

t0
f (u,η(u),η′(u))du

]
ds.

Reversing the order of integration of the iterated integrals on the right hand side gives

η(t)−η(t0)−η
′(t0)(t− t0) =

∫ t

t0

[∫ t

u
f (u,η(u),η′(u))ds

]
du

from which we obtain

η(t) = η(t0)+η
′(t0)(t− t0)+

∫ t

t0
(t−u) f (u,η(u),η′(u))du.

Conversely, if h > 0 and η is a continuously differentiable function on an open neighborhood of

[t0, t0 +h] that solves (1.19) then differentiating (1.19) gives

η
′(t) = γ+(t− t) f (t,η(t),η′(t)) ·1+(t− t0) f (t0,η(t0),η′(t0)) ·0

+
∫ t

t0

∂

∂t [(t− s) f (s,η(s),η′(s))]ds

= γ+
∫ t

t0
f (s,η(s),η′(s))ds.

(1.20)

Since f , η, and η′ are continuous the right hand side is differentiable, we may differentiate again to

obtain η′′(t) = f (t,η(t),η′(t)), and by (1.19) and (1.20) η also satisfies the initial conditions. �

12

Two norms that we will use are the following.

Definition 1.3.3.

a. The sum norm on R2 is the norm defined by

∣∣∣∣(u

v

)∣∣∣∣
sum

= |u| + |v|.

b. The supremum norm (or just sup norm) on the set C of bounded continuous functions from a

specified subset A (usually an interval) of R into R2, with respect to the sum norm on R2, is the

norm defined by

|η|sup = sup{|η(t)|sum : t ∈ A}.

We will also need the concept of a contraction and the Contraction Mapping Theorem.

Definition 1.3.4. Let X be a vector space with norm || · ||. A contraction mapping on X is a mapping

T : X → X for which there exists a constant c with 06 c < 1 such that for all x and y in X

||T (x)−T (y)||6 c||x− y||. (1.21)

Theorem 1.3.5 (Contraction Mapping Theorem). If T is a contraction mapping on a commplete

normed vector space X then there exists a unique fixed point of T in X , that is, a unique element x0

of X such that T (x0) = x0. Moreover for any x ∈ X the sequence T n(x) = (T ◦ · · ·◦T)(x) (n-fold

composition) converges to x0.

CHAPTER 2: APPROXIMATING SOLUTIONS OF BOUNDARY VALUE PROBLEMS

In this chapter we present a new algorithm for approximating solutions of two-point boundary

value problems and prove a theorem that gives conditions under which it is guaranteed to succeed.

We show how to make the algorithm computationally efficient and demonstrate how the full method

works both when guaranteed to do so and more broadly. In the first section the original idea and

its application are presented. It is illustrated with a number of examples in the second section. In

the third section we show how to modify the same basic idea and procedure in order to apply it

to problems with boundary conditions of mixed type. In the fourth section a different approach to

problems treated in the third section is given which can perform better in practice.

2.1 An Efficient Algorithm for Approximating Solutions of Two-Point Boundary Value Problems

Consider a two-point boundary value problem of the form

y′′ = f (t,y,y′), y(a) = α, y(b) = β . (2.1)

If f is locally Lipschitz in the last two variables then by the Picard-Lindelöf Theorem, Theorem

1.1.2 (applied to (2.4) below), for any γ ∈ R the initial value problem

y′′ = f (t,y,y′), y(a) = α, y′(a) = γ (2.2)

will have a unique solution on some interval about t = a. Introducing the variable u = y′ we obtain

the first order system that is equivalent to (2.2),

y′ = u

u′ = f (t,y,u)

y(a) = α

u(a) = γ

(2.3)

14

or more succinctly, writing y = (y,u) ∈ R2, y0 = (α,γ), and f : R×R2→ R2 : (t,y) 7→ (u, f (t,y)),

y′ = f(t,y)

y(a) = y0,

(2.4)

which by Lemma 1.3.1 is equivalent to

y(t) = y(a)+
∫ t

a
f(s,y(s))ds. (2.5)

The Picard iterates based on (2.5) are known to converge to the unique solution of (2.2).

The boundary value problem (2.1) will have a solution if and only if there exists γ ∈ R such

that (i) the maximal interval of existence of the unique solution of (2.2) contains the interval [a,b],

and (ii) the unique solution y(t) of (2.2) satisfies y(b) = β. But we can identify such a γ by applying

Lemma 1.3.2 to (2.2) to obtain the equivalent integral equation

y(t) = α+ γ(t−a)+
∫ t

a
(t− s) f (s,y(s),y′(s))ds, (2.6)

which we then solve, when evaluated at t = b, for γ:

γ = 1
b−a

(
β−α−

∫ b

a
(b− s) f (s,y(s),y′(s))ds

)
(2.7)

The key idea in the new method is that in the Picard iteration scheme based on (2.5) we use (2.7) to

also iteratively obtain successive approximations to the value of γ in (2.2), if it exists, using some

initial choice γ[0] of γ, say γ[0] = (β−α)/(b− a), the average slope of the solution to (2.1) on the

interval [a,b]. Thus the iterates are

y[0](t)≡ α

u[0](t)≡ β−α

b−a

γ
[0] = β−α

b−a

(2.8a)

15

and

y[k+1](t) = α+
∫ t

a
u[k](s)ds

u[k+1](t) = γ
[k]+

∫ t

a
f (s,y[k](s),u[k](s))ds

γ
[k+1] =

1
b−a

(
β−α−

∫ b

a
(b− s) f (s,y[k](s),u[k](s))ds

)
.

(2.8b)

This gives the following algorithm for approximating solutions of (2.1), in which we have changed

the update of γ in (2.8) to incorporate it into the update of u. (See Section 2.3 for a similar application

of these ideas to problems with boundary conditions of mixed type.)

Algorithm 2.1.1. To approximate the solution of the boundary value problem

y′′ = f (t,y,y′), y(a) = α, y(b) = β (2.9)

iteratively compute the sequence of functions on [a,b]

y[0](t)≡ α

u[0](t)≡ β−α

b−a

(2.10a)

and

y[k+1](t) = α+
∫ t

0
u[k](s)ds

u[k+1](t) =
1

b−a

(
β−α−

∫ h

0
(h− s) f (y[k](s),u[k](s))ds

)
+

∫ t

0
f (y[k](s),u[k](s))ds.

(2.10b)

We will now state and prove a theorem that gives conditions guaranteeing that the problem

(2.9) has a unique solution, then prove that the iterates in Algorithm 2.1.1 converge to it. We will

need the following technical lemma.

Lemma 2.1.2. Let E ⊂ R×R2 be open and let f : E → R : (t,y,u) 7→ f (t,y,u) be Lipschitz in

y = (y,u) on E with Lipschitz constant L with respect to absolute value on R and the sum norm on

R2. Then

F : E→ R2 : (t,y,u) 7→ (u, f (t,y,u))

is Lipschitz in y with Lipschitz constant 1+L with respect to the sum norm on R2.

16

Proof. For (t,y1) and (t,y2) in E,

|F(t,y1)−F(t,y2)|sum =

∣∣∣∣∣∣∣
 u1

f (t,y1,u1)

−
 u2

f (t,y2,u2)


∣∣∣∣∣∣∣
sum

= |u1−u2|+ | f (t,y1,u1)− f (t,y2,u2)|

6 |u1−u2|+ |y1− y2|+L |y1−y2|sum

= |y1−y2|sum +L |y1−y2|sum

= (1+L) |y1−y2|sum. �

Theorem 2.1.3. Let f : [a,b]×R2→R : (t,y,u) 7→ f (t,y,u) be Lipschitz in y = (y,u) with Lipschitz

constant L with respect to absolute value on R and the sum norm on R2. If 0 < b−a < (1+ 3
2 L)−1

then for any α, β ∈ R the boundary value problem

y′′ = f (t,y,y′), y(a) = α, y(b) = β (2.11)

has a unique solution.

Proof. By Lemma 1.3.1 a twice continuously differentiable function η from a neighborhood of

[a,b] into R solves the ordinary differential equation in (2.11) if and only the mapping (y(t),u(t)) =

(η(t),η′(t)) from that neighborhood into R2 solves the integral equation (1.16),

y(t)

u(t)

=

y(0)

u(0)

+
∫ t

a

 u(s)

f (s,y(s),u(s))

 ds.

The discussion leading up to (2.7) shows that η meets the boundary conditions in (2.11) if and only

if η(a) = α and η′(a) = γ where γ is given by (2.7), now with (y(t),u(t)) = (η(t),η′(t)). In short

the boundary value problem (2.11) is equivalent to the integral equation

y(t)

u(t)

=

 α

1
b−a

[
β−α−

∫ b
a (b− s) f (s,y(s),u(s))ds

]
+

∫ t

a

 u(s)

f (s,y(s),u(s))

ds. (2.12)

If y(t) = (y(t),u(t)) is a bounded continuous mapping from a neighborhood U of [a,b] in R into

17

R2 then the right hand side of (2.12) is well defined and defines a bounded continuous mapping

from U into R2. Thus letting C denote the set of bounded continuous mappings from a fixed

open neighborhood U of [a,b] into R2, a twice continuously differentiable function η on U into

R solves the boundary value problem (2.11) if and only if ηηη
def
= (η,η′) is a fixed point of the operator

T : C → C defined by

T

y

u

(t) =

 α

1
b−a

[
β−α−

∫ b
a (b− s) f (s,y(s),u(s))ds

]
+

∫ t

a

 u(s)

f (s,y(s),u(s))

ds,

which we abbreviate to

T (y)(t) =

 α

1
b−a

[
β−α−

∫ b
a (b− s) f (s,y(s))ds

]
+

∫ t

a
F(s,y(s))ds (2.13)

by defining F : [a,b]×R2→ R by F(t,y,u) = (u, f (t,y,u)).

The vector space C equipped with the supremum norm is well known to be complete. Thus by

the Contraction Mapping Theorem, Theorem 1.3.5, the theorem will be proved if we can show that

T is a contraction on C . To this end, let ηηη and µµµ be elements of C . Let ε = max{t− b : t ∈U}.

Then for any t ∈U

|(T ηηη)(t)− (T µµµ)(t)|sum

6

∣∣∣∣∣∣∣
 α

1
b−a

[
β−α−

∫ b
a (b− s) f (s,ηηη(s))ds

]
−

 α

1
b−a

[
β−α−

∫ b
a (b− s) f (s,µµµ(s))ds

]

∣∣∣∣∣∣∣
sum

+

∣∣∣∣∫ t

a
F(s,ηηη(s))−F(s,µµµ(s))ds

∣∣∣∣
sum

6
1

b−a

∫ b

a
(b− s)| f (s,ηηη(s))− f (s,µµµ(s))|ds+

∫ t

a
|F(s,ηηη(s))−F(s,µµµ(s))|sum ds

(1)
6

1
b−a

∫ b

a
(b− s)L|ηηη(s)−µµµ(s)|sum ds+

∫ t

a
(1+L)|ηηη(s)−µµµ(s)|sum ds

6
1

b−a

∫ b

a
(b− s)L||ηηη−µµµ||sup ds+

∫ t

a
(1+L)||ηηη−µµµ||sup ds

6

(
1

b−a

∫ b

a
(b− s)Lds+(1+L)((b−a)+ ε)

)
||ηηη−µµµ||sup

= [1
2(b−a)L+(1+L)((b−a)+ ε)]||ηηη−µµµ||sup

18

where for inequality (1) Lemma (2.1.2) was applied in the second summand.

Thus ||T ηηη−T µµµ||sup 6 (1+ 3
2 L)((b− a) + ε))||ηηη−µµµ||sup and T is a contraction provided

(1+ 3
2 L)((b− a)+ ε) < 1, equivalently, provided (1+ 3

2 L)(b− a) < 1− (1+ 3
2 L)ε. But U can be

chosen arbitrarily, hence (1+ 3
2 L)ε can be made arbitrarily small, giving the sufficient condition of

the theorem. �

The second statement in the Contraction Mapping Theorem (Theorem 1.3.5) and the fact that

repeated composition of the mapping T in the proof of the theorem generates Picard iterates guar-

antees that the iterates defined by (2.10) will converge to the unique solution of (2.11) that the

theorem guarantees to exist. Thus we have the following result.

Theorem 2.1.4. Let f : [a,b]×R2→R : (t,y,u) 7→ f (t,y,u) be Lipschitz in y = (y,u) with Lipschitz

constant L with respect to absolute value on R and the sum norm on R2. If 0 < b−a < (1+ 3
2 L)−1

then for any α, β ∈ R the iterates generated by Algorithm 2.1.1 converge to the unique solution of

the boundary value problem

y′′ = f (t,y,y′), y(a) = α, y(b) = β (2.14)

guaranteed by Theorem 2.1.3 to exist.

Remark 2.1.5. The examples in the following section will show that the use of Algorithm 2.1.1 is

by no means restricted to problems for which the hypotheses of Theorem 2.1.4 are satisfied. It will

in fact give satisfactory results for many problems that do not satisfy those hypotheses.

We note that because the convergence is in the supremum norm at any step in the algorithm the

approximation is a function that is uniformly very close to the exact solution on the entire interval

of interest. We also remark than when Algorithm 2.1.1 is applied to a problem whose solution is

known, in order to study its performance, it can be convenient to keep track of the updated values

of the approximations γ[k] of γ, which means using the iteration (2.8) in place of the iteration (2.10)

stated in the algorithm.

When the right hand side of the equation (2.14) is a polynomial function then the integrations

that are involved in implementing Algorithm 2.1.1 can always be done, and done efficiently. But

when the right hand side of equation (2.14) is not a polynomial then in a manner analogous to what

19

happened with equation (1.5) the Picard iterates can lead to impossible integrations. In this situation

we use the auxiliary variable method of Parker and Sochacki in conjunction with Algorithm 2.1.1

to obtain a computationally efficient method for approximating the solution. Here are the details.

Supposing that the right hand side in (2.14) is not a polynomial in y and y′, in the usual way

introduce the new dependent variable u = y′ to obtain the equivalent system

y′ = u

u′ = f (t,y,u).
(2.15)

Find functions h1(t,y,u), . . . ,hr(t,y,u) and polynomials P0,P1, . . . ,Pr in r + 3 indeterminates such

that

(i) f (t,y,u) = P0(t,y,u,h1(t,y,u), . . . ,hr(t,y,u)) and

(ii) if (y(t),u(t)) solves (2.15) then v j(t)= h j(t,y(t),u(t)) solves v′j =Pj(t,y,u,v1, . . . ,vr), v j(t0)=

h j(t0,y0,u0), 16 j 6 r.

Consider the system of differential equations

y′ = f(t,y), (2.16)

where

y =



y

u

v1

...

vr


and f(t,y) =



u

P0(t,y,u,v1, . . . ,vr)

P1(t,y,u,v1, . . . ,vr)

...

Pr(t,y,u,v1, . . . ,vr)


.

If γ is the value at t = a of the solution of the boundary value problem (2.14) then we will

still have expression (2.7) for γ but with f (t,y,y′) replaced by P0(t,y,u,v1, . . . ,vr). Assuming the

value of (v j)0
de f
= h1(a,α,

β−α

b−a) is forced by all j by the original initial conditions y(a) = α and

y′(a) = γ, we have the usual initial value problem, the first component y(t) of whose solution solves

the original boundary value problem (2.14).

We can proceed as before with Picard iterates for (2.16), updating the estimate for γ at each step.

For although the dimension has increased, now the right hand sides of the differential equations are

20

all polynomial functions so quadratures can be done easily. Specifically, the initialization is

y[0](t)≡ α

u[0] ≡ β−α

b−a

v1(t)≡ (v1)0

...
...

vr(t)≡ (vr)0

γ
[0] ≡ β−α

b−a

and the recursion is



y[k+1](t)

u[k+1](t)

v[k+1]
1 (t)

...

v[k+1]
r (t)


=



α

γ[k]

(v1)0

...

(vr)0


+

∫ t

a



u[k](s)

P0(s,y[k](s),u[k](s),v
[k]
1 (s), . . . ,v[k]r (s)))

P1(s,y[k](s),u[k](s),v
[k]
1 (s), . . . ,v[k]r (s))

...

Pr(s,y[k](s),u[k](s),v
[k]
1 (s), . . . ,v[k]r (s))


ds

γk+1 =
1

b−a

[
β−α−

∫ b

a
(b− s)P0(s,y[k](s),u[k](s),v

[k]
1 (s), . . . ,v[k]r (s))ds

]
.

(2.17)

As before we can change the update of the estimate of γ to incorporate it into the update of

u[k](t).

2.2 Examples

In this section we implement the method to solve some linear and nonlinear problems and

compare the result with the exact solution. We also show how the method behaves for problems

with no solutions or with infinity many solutions.

Example 2.2.1. The second order linear two-point boundary value problem

y′′ =−y, y(0) = 1, y(π

4) =
√

2

21

has the unique solution

y(t) = cos t + sin t = 1+ t− 1
2!

t2− 1
3!

t3 +
1
4!

t4 +
1
5!

t5 +O(t6).

Since f (t,y,y′) = −y has Lipschitz constant 1, Theorem 2.1.4 guarantees existence of a unique

solution on intervals of length up to 2
5 , but we will see that the algorithm works well for the much

longer interval in this example. Using the recursion formulas (2.8) in Algorithm 2.1.1 instead of

(2.10) so that we have a record of the ending value of γ, the iterates are

y[k+1] = 1+
∫ t

0
u[k]ds

u[k+1] = γ[k]−
∫ t

0
y[k] ds

γ
[k+1] =

4
π

(√
2−1+

∫ π

4

0

(π

4
− s
)
y[k+1] ds

)
.

the Maple code for n = 5 iterations is

restart;
n := 5;
a := 0;
b := Pi/4;
alpha := 1;
beta := sqrt(2);
h := b - a;
y[0] := alpha;
gamma[0] := (beta-alpha)/h;
u[0] := gamma[0];

for k from 0 to n-1 do
y[k+1] := alpha+int(u[k], t = a .. t);
u[k+1] := gamma[k]-int(y[k], t = a .. t);
gamma[k+1] := (beta-alpha+int((b-t)*y[k+1],t=a..b))/h;
end:

Exact:=cos(t)+sin(t);
Error := abs(evalf(y[n]-Exact));
plot(Error, t = 0 .. h);
N:=degree(y[n+1],t);

The exact solution y(t), the approximations y[k](t), and the approximations γ[k] to the exact

22

value γ = 1, with coefficients rounded to five decimal places, are

γ
[0] = 0.92009, γ

[1] = 0.97431, γ
[2] = 0.99450, γ

[3] = 0.99840, γ
[4] = 0.99965, γ

[5] = 0.99990,

which are tending monotonically to the exact value γ = 1 and

y[0] = 1

y[1] = 1+0.52739 t

y[2] = 1+0.92009 t−0.50000 t2

y[3] = 1+0.97431 t−0.50000 t2−0.08790 t3

y[4] = 1+0.99450 t−0.50000 t2−0.15335 t3 +0.04167 t4

y[5] = 1+0.99840 t−0.50000 t2−0.16239 t3 +0.04167 t4 +0.00439 t5

y = 1+1.00000 t−0.50000 t2−0.16667 t3 +0.04167 t4 +0.00833 t5

A plot of the error in the final approximation y[5](t) is shown in Figure 2.1. The qualitative features

of the plot are as expected, since we are forcing agreement of y[k](0) with α, we expect the Maclaurin

polynomial agreement to fall off as t moves away from t = 0, but then the approximation improves

approaching t = b because agreement of y[k](b) with β is forced to be good by the increasingly

accurate approximation of γ by γ[k].

The maximum error of the fifth approximation is ||y−y[5]||sup ≈ 0.00009. When the number of

iterations is increased from five to eight the error plot looks qualitatively the same but the maximum

error drops dramatically to about 5.6×10−5.

Example 2.2.2. This example illustrates the effect on the rate of convergence by examining a bound-

ary value problem with the same differential equation and the same solution as in Example 2.2.1 but

on an interval twice as long:

y′′ =−y, y(0) = 1, y(π/2) = 1.

23

After five iterations we obtain, rounding coefficients to five decimal places, γ = 0.98674 and

y[5] = 1+0.94689 t−0.50000 t2−0.13090 t3 +0.04167 t4−0.00000 t5.

The error plot looks qualitatively the same as that in Figure 2.1 but the maximum error is now

||y− y[5]||sup ≈ 0.023. When the number of iterations is increased from five to eight the maximum

error drops to about 0.0023.

Example 2.2.3. In this example we keep the same ordinary differential equation but choose bound-

ary conditions for which there is no solution:

y′′ =−y, y(0) = 1, y(π) = 1.

As the number n of iterations is increased the last function computed, y[n](t), tends to blow up away

from the endpoints a = 0 and b = π in the sense that ||y[n]||sup becomes increasingly large. For

example, with n = 5, ||y[5]||sup ≈ 7 and with n = 8, ||y[8]||sup ≈ 13.

Example 2.2.4. In the last of this series of examples we keep the same ordinary differential equation

but choose boundary conditions in such a way that there are infinitely many solutions:

y′′ =−y, y(0) = 1, y(2π) = 1.

A one-parameter family of solutions is yc(t) = c cos t. As in the previous example, as the number n

of iterations is increased ||y[n]||sup becomes increasingly large. For example, with n = 5, ||y[5]||sup ≈

230 and with n = 8, ||y[8]||sup ≈ 235,000.

In the following examples the right hand side of the differential equation is non-polynomial so

we incorporate the Parker-Sochacki method of auxiliary variables in order to insure the Algorithm

2.1.1 is computationally feasible.

Example 2.2.5. Consider the boundary value problem

y′′ =−siny, y(0) = 1, y(1) = 0. (2.18)

24

As with Examples 2.2.1 and 2.2.2, here the length of the interval [a,b] = [0,1] is much greater than

the length on which Theorems 2.1.3 and 2.1.4 guarantee existence of a unique solution to which

iterates generated by Algorithm 2.1.1 must converge. The Lipschitz constant of f (t,y,y′) =−siny

is L = 1 so the theorems guarantee a result only for times up to 2
5 . In fact the solution is unique and

is given by

y(t) = k arccos
(

2et−1

e2(t−1)+1

)
, k =

[
arccos

(
2e−1

e−2 +1

)]−1

.

In order to effectively apply Algorithm 2.1.1 to (2.18), after introducing the variable u = y′ so as to

obtain the first order system y′= u, u′=−siny (the (2.15) in the discussion at the end of the previous

section), we must also follow the procedure detailed in the text following (2.15) and illustrated in

the discussion surrounding Examples 1.1.3 and 1.1.5.

It is apparent that we must introduce a variable v = siny, and since the derivative of sine is

cosine, in addition a variable w = cosy. Thus in this instance (2.16) is

y′ = u

u′ =−v

v′ = uw

w′ =−uv

with initial conditions

y(0) = 1, u(0) = γ, v(0) = sin1, w(0) = cos1,

a system on R4 for which the y-component is the solution of the boundary value problem (2.2.5)).

Thus in this instance

a = 0, b = 1, α = 1, β = 0,

P0(y,u,v,w) =−v, P1(y,u,v,w) = uw, P2(y,u,v,w) =−uv

25

so that (2.17) is

y[0](t)≡ 1

u[0](t)≡−1

v[0](t)≡ sin1

w[0](t)≡ cos1

γ
[0] =−1

(2.19a)

and 

y[k+1](t)

u[k+1](t)

v[k+1](t)

w[k+1](t)


=



1

−1+
∫ 1

0 (1− s)v[k](s)ds

sin1

cos1


+

∫ t

0



u[k](s)

−v[k](s)

u[k](s)w[k](s)

−u[k](s)v[k](s)


ds, (2.19b)

where, as indicated just after (2.17), we have shifted the update of γ and incorporated it into the

update of u[k](t).

The exact solution y(t), the approximations y[k](t), and the approximations γ[k], with coeffi-

cients rounded to five decimal places, are

γ
[0]=−1, γ

[1]=−0.57926, γ
[2]=−0.66931, γ

[3]=−0.68248, γ
[4]=−0.67738, γ

[5]=−0.68131

and

y[1] = 1

y[2] = 1−1.0 t

y[3] = 1−0.57926 t−0.42074 t2

y[4] = 1−0.66931 t−0.42074 t2 +0.09005 t3

y[5] = 1−0.68248 t−0.42074 t2 +0.05216 t3 +0.03925 t4 +0.01180 t5

y = 1−0.74853 t−0.28504 t2−0.01997 t3 +0.03610 t4 +0.01975 t5

A plot of the error in the final approximation y[5](t) is shown in Figure 2.2.

26

In the next example we treat a problem in which the function f on the right hand side fails to

be Lipschitz in y yet Algorithm 2.1.1 nevertheless performs well.

Example 2.2.6. Consider the boundary value problem

y′′ =−e−2y, y(0) = 0, y(1.2) = lncos1.2≈−1.015123283, (2.20)

for which the unique solution is y(t) = lncos t, yielding γ = 0.

Introducing the dependent variable u = y′ to obtain the equivalent first order system y′ = u,

u′ = e−y and the variable v = e−2y to replace the transcendental function with a polynomial we

obtain the expanded system

y′ = u

u′ =−v

v′ =−2uv

with initial conditions

y(0) = 0, u(0) = γ, v(0) = 1,

a system on R3 for which the y-component is the solution of the boundary value problem (2.20).

Thus in this instance

a = 0, b = 1.2, α = 0, β = lncos1.2

P0(y,u,v) =−v, P1(y,u,v) =−2uv

so that (2.17) is

y[0](t)≡ 0

u[0](t)≡ lncos1.2
1.2

v[0](t)≡ 1

γ
[0] =

lncos1.2
1.2

(2.21a)

27

and 
y[k+1](t)

u[k+1](t)

v[k+1](t)

=


0

1
1.2(β−α+

∫ 1.2
0 (1.2− s)v[k](s)ds

1

+
∫ t

0


u[k](s)

−v[k](s)

−2u[k](s)v[k](s)

 ds, (2.21b)

where, as indicated just after (2.17), we have shifted the update of γ and incorporated it into the

update of u[k](t). The first eight iterates of γ are:

γ
[1] =−0.24594, γ

[2] = 0.16011, γ
[3] = 0.19297, γ

[4] = 0.04165,

γ
[5] =−0.04272, γ

[6] =−0.04012, γ
[7] =−0.00923, γ

[8] = 0.01030,

The maximum error in the approximation is ||yexact− y[8]||sup ≈ 0.0065.

Example 2.2.7. Consider the boundary value problem

y′′ =
1
8

(
32+2t3− yy′

)
, y(1) = 17, y(3) =

43
3

(2.22)

whose right hand side is not autonomous and does not satisfy a global Lipschitz condition. The

unique solution is y(t) = t3 + 16
t . Using the iterates (2.8) in Algorithm 2.1.1 in order to keep track

of the iterates γ[k] we have

y[0](t)≡ 17

u[0](t)≡−4
3

γ
[0] =−4

3

(2.23a)

and y[k+1](t)

u[k+1](t)

=

17

γ[k]

+
∫ t

1

 u[k](s)

4+ 1
4 s3− y[k](s)u[k](s)

 ds,

γ
[k+1] =−4

3
− 1

2

∫ 3

1
(3− s)(4+

1
4

s3− y[k](s)u[k](s)ds.

(2.23b)

After n = 12 iterations, γ[12] = −8.443, whereas the exact value is γ = −76
9 ≈ −8.444. As

illustrated by the error plot, Figure 2.3 the maximum error in the twelfth approximating function is

||yexact− y[12]||sup ≈ 0.0012.

28

2.3 Mixed Type Boundary Conditions

The ideas developed at the beginning of Section 2.1 can also be applied to two-point boundary

value problems of the form

y′′ = f (t,y,y′), y′(a) = γ, y(b) = β , (2.24)

so that in equation (2.2) the constant γ is now known and α = y(a) is unknown. Thus in (2.6) we

evaluate at t = b but now solve for α instead of γ, obtaining in place of (2.7) the expression

α = β− γ(b−a)−
∫ b

a
(b− s) f (s,y(s),y′(s))ds.

In the Picard iteration scheme we now successively update an approximation of α starting with

some initial value α0. The iterates are

y[0](t)≡ α0

u[0](t)≡ γ

α
[0] = α0

(2.25a)

and

y[k+1](t) = α
[k]+

∫ t

a
u[k](s)ds

u[k+1](t) = γ+
∫ t

a
f (s,y[k](s),u[k](s))ds

α
[k+1] = β− γ(b−a)−

∫ b

a
(b− s) f (s,y[k](s),u[k](s))ds.

(2.25b)

We obtain in analogy with Algorithm 2.1.1 the following algorithm for approximating solutions of

(2.24), in which we have changed the update of α in (2.25) to incorporate it into the update of y.

Algorithm 2.3.1. To approximate the solution of the boundary value problem

y′′ = f (t,y,y′), y′(a) = γ, y(b) = β (2.26)

select an initial value α0 and iteratively compute the sequence of functions on [a,b]

y[0](t)≡ α0

u[0](t)≡ γ

(2.27a)

29

and

y[k+1](t) = β− γ(b−a)−
∫ b

a
(b− s) f (s,y[k](s),u[k](s))ds+

∫ t

0
u[k](s)ds

u[k+1](t) = γ+
∫ t

a
f (s,y[k](s),u[k](s))ds.

(2.27b)

An exact analogue of Theorem 2.1.3 but for the boundary conditions in (2.26) can be proved

exactly as Theorem 2.1.3 was proved, by means of a contraction mapping argument. Thus exactly

as before the second statement in the Contraction Mapping Theorem (Theorem 1.3.5) and the fact

that repeated composition of the mapping T in the proof of these theorems generates Picard iterates

guarantees that the iterates defined by (2.27) will converge to the unique solution of (2.26) that the

analogue of Theorem 2.1.3 guarantees to exist. Thus we have the following result analogous to

Theorem 2.1.4.

Theorem 2.3.2. Let f : [a,b]×R2→R : (t,y,u) 7→ f (t,y,u) be Lipschitz in y = (y,u) with Lipschitz

constant L with respect to absolute value on R and the sum norm on R2. If 0 < b−a < (1+ 3
2 L)−1

then for any β, γ ∈ R the iterates generated by Algorithm 2.3.1 converge to the unique solution of

the boundary value problem

y′′ = f (t,y,y′), y′(a) = γ, y(b) = β

guaranteed by the analogue of Theorem 2.1.3 to exist.

Example 2.3.3. Consider the boundary value problem

y′′ =−y′e−y, y′(0) = 1, y(1) = ln2 (2.28)

The exact solution is y(t) = ln(1+ t), for which y(0) = ln1 = 0. Introducing the dependent variable

u = y′ as always to obtain the equivalent first order system y′ = u, u′ = e−y and the variable v = e−y

to replace the transcendental function with a polynomial we obtain the expanded system

y′ = u

u′ =−uv

v′ =−uv

30

with initial conditions

y(0) = α, u(0) = γ, v(0) = e−α,

a system on R3 for which the y-component is the solution of the boundary value problem (2.28).

Thus in this instance

a = 0, b = 1, β = ln2, γ = 1

P0(y,u,v) =−uv, P1(y,u,v) =−uv

so that, making the initial choice α0 = 1, the analogue of (2.17) is

y[0](t)≡ α0

u[0](t)≡ 1

v[0](t)≡ e−α0

(2.29a)

and 
y[k+1](t)

u[k+1](t)

v[k+1](t)

=


ln2−1+

∫ 1
0 (1− s)u[k](s)v[k](s)ds

1

v[0]

+
∫ t

0


u[k](s)

−u[k](s)v[k](s)

−u[k](s)v[k](s)

 ds, (2.29b)

where we have shifted the update of α and incorporated it into the update of y[k](t). We list the first

eight values of α to show the rate of convergence to the exact value 0.

α
[1] =−0.00774, α

[2] = 0.11814, α
[3] = 0.07415, α

[4] = 0.08549,

α
[5] = 0.08288, α

[6] = 0.08339, α
[7] = 0.08330, α

[8] = 0.08331

2.4 Mixed Type Boundary Conditions: A Second Approach

In actual applications Algorithm 2.3.1 converges relatively slowly because of the update at

every step of the estimate of the initial value y(a) rather than of the initial slope y′(a). A different

approach that works better in practice with a problem of the type

y′′ = f (t,y,y′), y′(a) = γ, y(b) = β , (2.30)

31

is to use the relation

y′(b) = y′(a)+
∫ b

a
f (s,y(s),y′(s))ds (2.31)

between the derivatives at the endpoints to work from the right endpoint of the interval [a,b], at

which the value of the solution y is known but the derivative y′ unknown. That is, assuming that

(2.30) has a unique solution and letting the value of its derivative at t = b be denoted δ, it is also the

unique solution of the initial value problem

y′′ = f (t,y,y′), y(b) = β, y′(b) = δ . (2.32)

We introduce the new dependent variable u = y′ to obtain the equivalent system

y′ = u

u′ = f (t,y,u)

with initial conditions y(b) = β and y′(b) = δ and apply Picard iteration based at t = b, using (2.31)

with y′(a) = γ to update the approximation of y′(b) are each step. Choosing a convenient initial

estimate δ0 of δ, the successive approximations of the solution of (2.32), hence of (2.30), are given

by

y[0](t)≡ β

u[0](t)≡ δ0

δ
[0] = δ0

(2.33a)

and

y[k+1](t) = β+
∫ t

b
u[k](s)ds

u[k+1](t) = δ
[k]+

∫ t

b
f (s,y[k](s),u[k](s))ds

δ
[k+1] = γ+

∫ b

a
f (s,y[k](s),u[k](s))ds.

(2.33b)

This gives the following alternative algorithm for approximating solutions of (2.30).

Algorithm 2.4.1. To approximate the solution of the boundary value problem

y′′ = f (t,y,y′), y′(a) = γ, y(b) = β (2.34)

32

select an initial value δ0 and iteratively compute the sequence of functions on [a,b] given by (2.33).

By the theorem mentioned in Section 2.3 that is the analogue of Theorem 2.1.3 we obtain

the analogue of Theorems 2.1.4 and 2.3.2 that guarantees convergence of the iterates to the unique

solution of (2.34).

Example 2.4.2. Reconsider the boundary value problem (2.28) of Example 2.3.3,

y′′ =−y′e−y, y′(0) = 1, y(1) = ln2 (2.35)

with exact solution y(t) = ln(1+ t). The relation (2.31) is

y′(1) = 1−
∫ 1

0
y′(s)e−y(s) ds. (2.36)

Exactly as in Example 2.3.3 we set u = y′ and v = e−y to obtain the expanded system

y′ = u

u′ =−uv

v′ =−uv

but now with initial conditions

y(1) = ln2, u(1) = δ, v(1) = 1
2 ,

a system on R3 for which the y-component is the solution of the boundary value problem (2.35).

Making the initial choice δ0 = 1 (assuming that the slope from one endpoint to the next will not

change too drastically) and using (2.36) for the update of δ, (2.33) as applied to the expanded

system with the auxiliary variable v is

y[0](t)≡ ln2

u[0](t)≡ 1

v[0](t)≡ 1
2

δ
[0] = 1

(2.37a)

33

and 
y[k+1](t)

u[k+1](t)

v[k+1](t)

=


ln2

δ[k]

1
2

+
∫ t

0


u[k](s)

−u[k](s)v[k](s)

−u[k](s)v[k](s)

 ds,

δ
[k+1] = 1−

∫ 1

0
u[k](s)v[k](s)ds.

(2.37b)

The exact value of δ = y′(1) is 1
2 . The first eight values of δ[k] are:

δ
[0] =−0.50000, δ

[1] = 0.41667, δ
[2] = 0.50074,

δ
[3] = 0.51592, δ

[4] = 0.49987, δ
[5] = 0.49690,

δ
[6] = 0.50003, δ

[7] = 0.50060, δ
[8] = 0.50000

34

Figure 2.1: Error plot |yexact(t)− y[5](t)| for Example 2.2.1.

Figure 2.2: Error plot |yexact(t)− y[5](t)| for Example 2.2.5.

35

Figure 2.3: Error plot |yexact(t)− y[12](t)|for Example 2.2.7.

CHAPTER 3: COMPARISON OF METHODS

In this chapter we compare the method presented in Chapter 2 to several methods are com-

monly used in the literature. These are the shooting method using a fourth order Runge-Kutta

approximation scheme, the finite difference method, and the power series method. We will com-

pare these methods on a linear boundary value problem and then on a non-linear boundary value

problem.

3.1 A Linear Example

A two-point boundary value problem

y′′ = f (t,y,y′), y(a) = α, y(b) = β (3.1)

is called linear if the right hand side of the differential equation can be expressed in the form

f (t,y,u) = q(t)y+ p(t)u+ r(t). Theorem (1.2.2) gives conditions that guarantee that such a bound-

ary value problem have a unique solution. In particular, it implies that the solution

y(t) = cos t−
(

cos1
sin1

)
sin t (3.2)

of

y′′ =−y, y(0) = 1, y(1) = 0, (3.3)

which is easily found by direct integration, is unique. We will compare the four methods mentioned

above as they apply to (3.3).

3.1.1 The Shooting Method Using a Fourth Order Runge-Kutta Approximation Scheme

This method is based on the decomposition (1.13) of the solution of (1.12) given in Theorem

1.2.2. The unknown solution of the boundary value problem (1.12) is expressed as a linear com-

bination of the solutions of the initial value problems (1.14) and (1.15), each of which, after it has

37

been expressed as a first order system, can be approximated by a numerical scheme, in this case

the fourth order Runge-Kutta method with some number n of subintervals, using the approximate

values at the right endpoint to approximate the second coefficient (β− y1(b))/y2(b).

Whereas the output of the method developed in Chapter 2 is a function that approximates the

exact solution on the entire interval [a,b] in question, in this method the output is a sequence of

n+ 1 points that approximate the values of the unknown solution at n+ 1 t-values. We are able to

compute the error only at these n+1 points and then must interpolate between them.

In the case at hand the shooting method requires approximating the solutions of the initial value

problems

y′′ =−y, y(0) = 1, y′(0) = 0 (3.4)

and

y′′ =−y, y(0) = 0, y′(0) = 1. (3.5)

If y1(t) denotes the solution to equation (3.4) and y2(t) denotes the solution to equation (3.5) then

y(t) = y1(t)−
(

y1(1)
y2(1)

)
y2(t)

is the unique solution to the boundary value problem (3.3).

A plot of the error in the final approximation of the solution of (3.3) using the shooting method

with n = 4 is shown in Figure 3.1.

3.1.2 The Finite Difference Method

This method reduces the differential equation to an algebraic equation by replacing the deriva-

tives by their finite difference approximations. Once the number n of subintervals into which [a,b]

is partitioned is selected the approximation technique leads to an (n−1)× (n−1) system of linear

equations whose solution gives as output a sequence of n+ 1 points that approximate the values

of the unknown solutions at n+ 1 t-values. Thus as with the shooting method the output of this

method is not a function but a sequence of n+1 points that approximate the values of the unknown

solutions at n+1 t-values. Thus we are able to compute the error only at these n+1 points and then

interpolate between them.

We applied this method to (3.3) by implementing Algorithm 11.1 of [3] with n = 4 steps. A

38

plot of the error in the final approximation of the solution of (3.3) is shown in Figure 3.2.

3.1.3 The Power Series Method

Like the shooting method this method is based on the decomposition (1.13) of the solution of

(1.12) given in Theorem 1.2.2. We assume the solutions to the differential equations (1.14)) and

(1.15) can be represented as power series in powers of t− a, which we can compute out to some

arbitrary order n. We can recursively compute the coefficients in the two power series because the

two conditions are at the same value of t. Thus the output of this method is a polynomial function

that can be used to approximate the true solution at every point of the interval [a,b].

Applying this method to the equation (3.3) requires approximating the solutions to the initial

value problems (3.4) and (3.5). If y1(t) = ∑
∞
i=0 ait i denotes the solution to equation (3.4) then

substituting it into equation (3.4) we obtain

an =−
an−2

n(n−1)
, n> 2.

From the initial values is easy to see that a0 = 1 and a1 = 0, so truncating at n = 4 the approximate

solution is

y1(t)≈ 1− 1
2 t2 + 1

24 t4. (3.6)

If y2(t) = ∑
∞
i=0 bit i denotes the solution to equation (3.5) then similarly we obtain

y2(t)≈ t− 1
6 t3. (3.7)

Inserting these approximations into

y(t) = y1(t)−
(

y1(1)
y2(1)

)
y2(t)

and rounding the coefficients to five decimal places we obtain the approximation

y(t) = 1−0.65000 t−0.50000 t2 +0.10833 t3 +0.041667 t4

to the solution of (3.3).

39

A plot of the error in the final approximation of the solution of (3.3) is shown in Figure 3.3.

3.1.4 The New Method

Because the method is based on Picard iteration, in order to implement it to solve boundary

value problem (3.3) we must make an initial guess of the solution. We have chosen y[0](t) = 1− t,

whose graph is the straight line through the initial and final points. Computing out to order five,

the exact solution y(t) and the approximation y[5](t), both with coefficients rounded to five decimal

places, are

y = 1−0.64210 t−0.50000 t2 + .10702 t3 +0.04167 t4 +0.00534 t5

y[5] = 1−0.64444 t−0.50000 t2 +0.11111 t3 +0.04167 t4 +0.00433 t5.

Incidentally, the exact value of the derivative γ = y′(0) of the exact solution is γ =−0.64210, while

γ[4] =−0.64444.

A plot of the error in the final approximation of the solution of (3.3) by y[5](t) is shown in

Figure 3.4.

3.1.5 A Comparison of the Methods

The following table compares the results of the four methods as we have applied them to

problem (3.3). It gives the approximation to the exact solution at the five partition points common

to the shooting and finite difference methods.

t Runge−Kutta Finite−Di f f erence Power−Series New−Method Exact

0.000 1.000000 1.000000 1.000000 1.000000 1.000000

0.250 0.810051 0.810403 0.820313 0.809530 0.810056

0.500 0.569740 0.570156 0.587500 0.569010 0.569747

0.750 0.294009 0.294274 0.310938 0.2934977 0.294014

1.000 0.000000 0.000000 0.000000 0.0000000 0.000000

To verify that the computation time required by the new method to achieve accuracy compara-

40

ble with that of the other methods we implemented them in MATLAB and used the “tic” and “toc”

command to compute elapsed time for each method. The calculated elapsed time for each method

is displayed in the following table:

Runge−Kutta Finite−Di f f erence Power−Series New−Method

4 steps 4 steps n = 4 n = 4

0.001348 0.002817 0.001387 0.001345

3.2 A Non-Linear Case

In this section we apply the same four approximation methods introduced in previous section

to the nonlinear boundary value problem

y′′ =−siny, y(0) = 1, y(1) = 0, (3.8)

whose exact solution is

y(t) = k arccos
(

2et−1

e2(t−1)+1

)
, k =

[
arccos

(
2e−1

e−2 +1

)]−1

.

3.2.1 The Shooting Method

The technique for approximating the solution of a non-linear second order boundary value

problem

y′′ = f (t,y,y′), y(a) = α, y(b) = β (3.9)

is the following. We first make an initial guess γ0 as to the value γ = y′(a) of the derivative of the

exact solution of (3.9) at t = a and use some technique to approximate the solution of the initial

value problem

y′′ = f (t,y,y′), y(a) = α, y′(a) = γ0.

Denoting this approximation by y1(t), we compare y1(b) to β and adjust the approximation of γ

from our first choice γ0 to some γ1 in order that an approximate solution y2(t) of the initial value

41

problem

y′′ = f (t,y,y′), y(a) = α, y′(a) = γ1

more closely approximates β at t = b. The process is continued suitably many times. Thus loosely

speaking we iteratively “shoot” at the target β using the sequence of “sightings” γ j.

At each step the new γ j is computed using some sort of approximation technique, such as

Newton’s method, as explained, for example, in [3], and in fact requires a numerical approximation

of the solution of a second initial value problem at each step.

As the linear case the output of this method is not a function but a sequence of n+1 points that

approximate the values of the unknown solutions at n+1 t-values.

We applied this method to (3.8) by implementing Algorithm 11.2 of [3] with n = 7 partition

points at each step, with seven iterations (“shootings”), and with initial guess γ0 =−1, the slope of

the straight line through initial and final points.

A plot of the error in the final approximation y[7](t) is shown in Figure 3.5.

3.2.2 The Finite Difference Method

The finite difference approximations for nonlinear case is similar to linear case except that

the approximation technique leads to an (n− 1)× (n− 1) system of non-linear equations whose

solution can in general only be approximated to some degree of accuracy using an iterative scheme.

The output is a sequence of n+ 1 points that approximate the values of the unknown solution at

n+1 t-values, where n is the number of subintervals into which [a,b] is partitioned.

To apply this method to problem (3.8) we implemented Algorithm 11.2 of [3] with n = 7

partition points at each step, with seven iterations.

A plot of the error in the final approximation is shown in Figure 3.6.

3.2.3 The Power Series Method

As in the linear case we assume that the solution of (3.1) can be expressed as a power series

y(t) = ∑
∞
i=0 ai(t − a)i (or merely that y(t) is sufficiently smooth). In a situation such as (3.8) in

which the right hand side involves a non-polynomial analytic function, in order to avoid having

to insert a one series into another, which would lead to power series expressions for the unknown

coefficients ai instead of algebraic expressions, we first introduce the variable u = y′ to express (3.1)

42

as a system of two first order equations, then introduce auxiliary variables to obtain a system with

polynomial right hand sides. In the case of (3.8), letting γ denote as usual the unknown value y′(0)

of the derivative of the solution of (3.8) at the left endpoint, we obtain as in Example 2.2.5 the initial

value problem

y′ = u

u′ =−v

v′ = uw

w′ =−uv

y(0) = 1

u(0) = γ

v(0) = sin1

w(0) = cos1.

(3.10)

Writing u(t) = ∑
∞
i=0 bit i, v(t) = ∑

∞
i=0 cit i, and w(t) = ∑

∞
i=0 dit i we obtain from the differential equa-

tions in (3.10) relationships between the coefficients ai, bi, ci, and di, which together with the initial

conditions we can use to find the first few coefficients of each series. Because of the presence of

the unknown quantity γ in (3.10) these expressions will contain γ. Thus in general we must make

an initial guess γ0 as to the value of γ, obtain an expression for the series expansion of y(t), trun-

cated at some order M, and compare the resulting approximation of y(b) to β. In a shooting method

procedure we improve the estimate of γ from γ0 to γ1, then from γ1 to γ2, an so on, using Newton’s

Method as outlined in [3]. As already pointed out in the subsection on the shooting method as

used in the linear situation, this involves solving a second initial value problem at each step of the

iterative procedure.

In the case at hand, in approximating the solution of (3.8) by applying this procedure to (3.10),

beginning with γ0 =−1 as before, truncating the series at order seven, and iterating the procedure 4

times, we obtain (rounding the coefficients to five decimal places)

y = 1−0.68121 t +0.42074 t2−0.06134 t3−0.03521 t4−0.00898 t5 +0.00133 t6−0.00213 t7.

A plot of the error in the final approximation is shown in in Figure 3.7..

3.2.4 The New Method

The new method was applied to problem (3.8) in Example 2.2.5, where full details are given.

The the first six terms of the exact solution y(t) and the first six terms of approximations y[7](t), with

43

coefficients rounded to five decimal places, are

y[7] = 1−0.68115 t−0.42074 t2 +0.06135 t3 +0.03512 t4 +0.00894 t5

y = 1−0.74853 t−0.28504 t2−0.01997 t3 +0.03610 t4 +0.01975 t5.

A plot of the error in the final approximation y[7](t) is shown in Figure 3.8

3.2.5 A Comparison of the Methods

The following table compares the results of the four methods as we have applied them to

problem (3.8). It gives the approximation to the exact solution at the five partition points common

to the shooting and finite difference methods.

t Runge−Kutta Finite−Di f f erence PowerSeries NewMethod Exact

0.000 1.000000 1.000000 1.000000 1.000000 1.000000

0.143 0.894286 0.894394 0.893919 0.894254 0.887208

0.286 0.772692 0.772874 0.771963 0.772630 0.762679

0.429 0.636889 0.637104 0.635814 0.636797 0.626784

0.571 0.488986 0.489194 0.487617 0.488868 0.480525

0.714 0.331531 0.331695 0.330024 0.331399 0.325612

0.857 0.167457 0.167549 0.166228 0.167350 0.164448

1.000 −0.000004 0.000000 −0.000006 0.000000 0.000000

The calculated elapsed time for each method is given in the following table.

Runge−Kutta FiniteDi f f erence PowerSeries NewMethod

7 steps 7 steps n = 7 n = 7

0.003106 0.005531 0.001958 0.001908

44

Figure 3.1: Linear Runge-Kutta. Error plot, |y(t)− yapprox|, with n = 4. y(t) represents the exact
solution and yapprox represents the approximate solution.

Figure 3.2: Linear Finite Difference Method. Error plot, |y(t)−yapprox|, with n = 4. y(t) represents
the exact solution and yapprox represents the approximate solution.

45

Figure 3.3: Linear Power Series Method. Error plot, |y(t)− yapprox|, with n = 4 iterations. y(t)
represents the exact solution and yapprox represents the approximate solution.

Figure 3.4: Linear New Method. Error plot, |y(t)− yapprox|, with n = 4 iterations. y(t) represents
the exact solution and yapprox = p[5] represents the approximate solution.

46

Figure 3.5: Non-Linear RK. Error plot, |y(t)− yapprox|, with n = 7 iterations. y(t) represents the
exact solution and yapprox] represents the approximate solution.

Figure 3.6: Non-Linear FDM. Error plot, |y(t)− yapprox|, with n = 7 iterations. y(t) represents the
exact solution and yapprox] represents the approximate solution.

47

Figure 3.7: Non-Linear PSM. Error plot, |y(t)− yapprox|, with n = 7 iterations. y(t) represents the
exact solution and yapprox] represents the approximate solution.

Figure 3.8: Non-Linear New Method. Error plot, |y(t)− yapprox|, with n = 7 iterations. y(t) repre-
sents the exact solution and yapprox] represents the approximate solution.

CHAPTER 4: VOLTERRA INTEGRAL EQUATIONS

A Volterra integral equation of the second kind is an equation of the form

y(t) = ϕ(t)+
∫ t

a
K(t,s) f (s,y(s))ds (4.1)

where ϕ, K, and f are known functions of suitable regularity and y is an unknown function. Such

equations lend themselves to solution by successive approximation using Picard iteration, although

in the case that the known functions are not polynomials the process can break down when quadra-

tures that cannot be performed in closed form arise. Equation (4.1) can be generalized to

y(t) = ϕ(t)+
∫ t

a
K(t,s,y(s))ds. (4.2)

If the “kernel“ K is independent of the first variable t then the integral equation is equivalent to an

initial value problem. Indeed, in precisely the reverse of the process used in Chapter 2, we have that

y(t) = ϕ(t)+
∫ t

a
K(s,y(s))ds

is equivalent to

y′(t) = ϕ
′(t)+K(t,y(t)), y(a) = ϕ(a).

In this chapter we provide a method for introducing auxiliary variables in (4.2) in the case that

the t-dependence in K factors out, so that K(t,s,z) = f (t)k(s,z), in such a way that (4.2) embeds

in a vector-valued polynomial Volterra equation, thus extending the Parker-Sochacki method to

this setting and thereby obtaining a computationally efficient method for closely approximating

solutions of (4.2).

Existence and uniqueness theorems for vector-valued Volterra integral equations are not com-

mon in the literature, so we begin Section 4.1 by stating and proving such a theorem. The proof

is based on an application of the Contraction Mapping Theorem, so that we immediately obtain a

49

theorem that guarantees convergence of Picard iterates to the unique solution. We continue Section

4.1 by describing how to introduce auxiliary variables to obtain a feasible, efficient computational

procedure for approximating solutions of (4.2) when K factors as K(t,s,z) = f (t)k(s,z). In Section

4.2 we illustrate the method with both linear and nonlinear examples.

4.1 Uniqueness Theorem

For a subset S of Rm we let C(S,Rn) denoted the set of continuous mappings from S into Rn.

The following theorem is a straightforward generalization to the vector-valued case of Theorem

2.1.1 of [9].

Theorem 4.1.1. Let I = [a,b]⊂ R and J = {(x,y) : x ∈ I, y ∈ [a,x]} ⊂ I× I. Suppose ϕ ∈C(I,Rn)

and K ∈C(J×Rn,Rn) and that K is Lipschitz in the last variable: there exists L ∈ R such that

|K(x,y,z)−K(x,y,z′)|sum 6 L|z− z′|sum

for all (x,y) ∈ J and all z,z′ ∈ Rn. Then the integral equation

y(t) = ϕ(t)+
∫ t

a
K(t,s,y(s))ds (4.3)

has a unique solution y(t) ∈C(I,Rn).

Proof. Let C denote the set of continuous mappings from I into Rn, C = C(I,Rn). Since ϕ and K

are continuous, for any y∈ C the right hand side of (4.3) is a continuous function of t. Thus we may

define a mapping T from C into itself by

T (y)(t) = ϕ(t)+
∫ t

a
K(t,s,y(s))ds.

An element y of C is a solution of (4.3) if and only if y is a fixed point of the operator T , which we

will find by means of the Contraction Mapping Theorem 1.3.5.

Let ηηη and µµµ be elements of C . Then for all t ∈ I,

|(T ηηη)(t)− (T µµµ)(t)|sum 6
∫ t

a
|K(t,s,ηηη(s))−K(t,s,µµµ(s))|sum ds

6
∫ t

a
L|ηηη(s)−µµµ(s)|sum ds.

(4.4)

50

If we place, as usual, the supremum norm on C then we obtain from (4.4) the inequality

|(T ηηη)(t)− (T µµµ)(t)|sum 6 L||ηηη−µµµ||sup(b−a) for all t ∈ I.

Taking the supremum over t ∈ I shows that T is a contraction provided L(b−a)< 1, and since C

is complete with respect to the supremum norm the theorem follows by the Contraction Mapping

Theorem 1.3.5 , but with the additional condition that L(b−a)< 1. To obtain the theorem as stated

(that is, without the extra condition that L(b− a) < 1) we fix any constant β > 1 and, following

Hackbusch ([9]), instead equip C with the special norm

||y||H = max{e−βLt |y(t)|sum : t ∈ I}.

It is readily verified that || · ||H does define a norm on C and that it is equivalent to the supremum

norm, hence C is also complete when equipped with the norm || · ||H. Since, for any ηηη and µµµ in C

and any s ∈ I,

|ηηη(s)−µµµ(s)|sum = eβLse−βLs|ηηη(s)−µµµ(s)|sum

6 eβLs max{e−βLt |ηηη(t)−µµµ(t)|sum : t ∈ I}

= eβLs||ηηη−µµµ||H,

estimate (4.4) becomes

|(T ηηη)(t)− (T µµµ)(t)|sum 6 L ||ηηη−µµµ||H
∫ t

a
eβLs ds

= L ||ηηη−µµµ||H 1
βL [e

βLt − eβLa]

= 1
β

eβLt [1− eβL(a−t)]||ηηη−µµµ||H

6 1
β

eβLt [1− eβL(a−b)]||ηηη−µµµ||H

for all t ∈ I. Multiplying by e−βLt and taking the supremum over t ∈ I yields

||(T ηηη)− (T µµµ)||H 6
[

1
β
(1− e−(b−a)βL)

]
||ηηη−µµµ||H.

51

By our choice β > 1 the constant in brackets is strictly less than 1 so that T is a contraction on C

with respect to this norm, and the theorem follows by the Contraction Mapping Theorem 1.3.5. �

Because the theorem was proved by means of the Contraction Mapping Theorem we immedi-

ately obtain the following result.

Theorem 4.1.2. Under the hypotheses of Theorem (4.1.1), for any choice of the initial mapping

y[0](t) the sequence of Picard iterates

y[k+1](t) = ϕ(t)+
∫ t

a
K(t,s,y[k](s))ds

converges to the unique solution of the integral equation (4.3).

Now let a Volterra integral equation

y(t) = ϕ(t)+
∫ t

a
f (t)k(s,y(s))ds (4.5)

be given, where ϕ, f ∈ C([a,b],R), k ∈ C([a,b]×R,R), and k satisfies a Lipschitz condition in y.

Find functions h1(t), . . . ,hr(t) and polynomials P and Q in r indeterminates, R in r+ 2 indetermi-

nates, and P1, . . . ,Pr in r+1 indeterminates such that if y(t) solves (4.5) then

(i) ϕ(t) = P(h1(t), . . . ,hr(t)),

(ii) f (t) = Q(h1(t), . . . ,hr(t)),

(iii) k(s,y(s)) = R(s,y(s),h1(s), . . . ,hr(s)), and

(iv) v j(t) = h j(t) solves v′j = Pj(t,v1, . . . ,vr), v j(a) = h j(a), 16 j 6 r.

The initial value problem obtained by adjoining to the system in (iv) the values of h1 through

hr at a has a unique solution, which is the unique solution of the vector-valued Volterra equation

v1 = v1(a)+
∫ t

a
P1(s,v1(s), . . . ,vr(s))ds

...

vr = vr(a)+
∫ t

a
Pr(s,v1(s), . . . ,vr(s))ds.

(4.6)

52

Adjoin to (4.6) the original Volterra equation in the form

y(t) = P(v1(t), . . . ,vr(t))+
∫ t

a
Q(v1(t), . . . ,vr(t))R(s,y(s),v1(s), . . . ,vr(s))ds

to obtain

y = P(v1(t), . . . ,vr(t))+
∫ t

a
Q(v1(t), . . . ,vr(t))R(s,y(s),v1(s), . . . ,vr(s))ds

v1 = v1(a)+
∫ t

a
P1(s,v1(s), . . . ,vr(s))ds

...

vr = vr(a)+
∫ t

a
Pr(s,v1(s), . . . ,vr(s))ds.

(4.7)

System (4.7) satisfies the hypotheses of Theorem (4.1.1), hence has a unique solution, as does the

original Volterra integral equation. Since v1, . . . ,vr are completely specified by (4.1) and (4.6), the

y component of the solution of the augmented Volterra integral equation (4.7) must be the solution

of (4.5). But by Theorem 4.1.2 the Picard iteration scheme applied to (4.7), say with y[0](t)≡ y(0),

converges and is computationally feasible, so we obtain a computable approximation to the solution

of (4.5).

4.2 Examples

A Volterra equation (4.2) is said to be linear if the integrand factors as K(t,s,y) = k(t,s)y and

nonlinear if K(t,s,y) = k(t,s) f (s,y), where f (s,y) is a nonlinear function of y. In this section we

illustrate the method by means of several examples which include both linear and nonlinear Volterra

integral equations.

Example 4.2.1. Effati ([7]) introduced the linear Volterra integral equation of the second kind

y(t) = et sin t +
∫ t

0

2+ cos t
2+ coss

y(s)ds, (4.8)

which is of the form (4.5) with ϕ(t) = et sin t, f (t) = 2+cos t, and the kernel of a form we can treat,

k(s,y(s)) = y(s)/(2+ coss).

53

One appropriate choice of auxiliary variables is

v1 = et

v2 = cos t

v3 = sin t

v4 = 2+ v2

v5 =
1
v4
,

which satisfy the system of first order ordinary differential equations

v′1 = v1

v′2 =−v3

v′3 = v2

v′4 = v′2 =−v3

v′5 =
−v′4
v2

4
= v3v2

5,

which is equivalent to

v1(t) = v1(0)+
∫ t

0
v1(s)ds

v2(t) = v2(0)−
∫ t

0
v3(s)ds

v3(t) = v3(0)+
∫ t

0
v2(s)ds

v4(t) = v4(0)−
∫ t

0
v3(s)ds

v5(t) = v5(0)+
∫ t

0
v3(s)v2

5 ds.

The initial values of the auxiliary variables are determined by their definition. The initial value y(0)

of the solution of the integral equation (4.8) is found simply by evaluating that equation at t = 0 to

54

obtain y(0) = 0. Thus the iteration scheme is

y[k+1](t) = v[k]1 v[k]3 + v[k]4

∫ t

0
v[k]5 y[k]ds

v[k+1]
1 (t) = 1+

∫ t

0
v[k]1 ds

v[k+1]
2 (t) = 1−

∫ t

0
v[k]3 ds

v[k+1]
3 (t) =

∫ t

0
v[k]2 ds

v[k+1]
4 (t) =

∫ t

0
v[k]3 ds

v[k+1]
5 (t) =

1
3
+

∫ t

0
v[k]3 (v[k]5)2ds

We can initialize as we please, but it is reasonable to choose

y[0] ≡ 0

v[0]1 ≡ e0 = 1

v[0]2 ≡ cos0 = 1

v[0]3 ≡ sin0 = 0

v[0]4 ≡ 2+ v[0]2 = 3

v[0]5 ≡
1
3
.

The exact solution of (4.8) is

y(t) = exp t sin t + exp t
(

2+ cos t
)(

ln3− ln
(
2+ cos t

))
.

whose Maclaurin series, with its coefficients rounded to five decimal places, begins

y(t) = 1.00000t+1.50000t2+0.83333t3+0.16667t4−0.03333t5−0.02593t6−0.00529t7+O(t8).

55

the Picard iterate y[8](t) with coefficients rounded to five decimal , begins

y[8](t) = 1.00000t +1.50000t2 +0.83333t3 +0.16667t4−0.03333t5−0.02593t6−0.00529t7.

A plot of the error in the approximation of the exact solution by y[8](t) is given in Figure 4.1.

Example 4.2.2. In [2] Biazar introduced the nonlinear Volterra integral equation of the second kind

y(t) = 1
2 sin2t +

∫ t

0

3
2 y(s)2 cos(s− t)ds. (4.9)

To fit this into the framework of (4.5) we begin by applying the elementary cosine difference identity

cos(t− s) = cosscos t + sinssin t, obtaining

y(t) = 1
2 sin2t + 3

2(cos t
∫ t

0
y(s)2 cossds+ sin t

∫ t

0
y(s)2 sinsds).

Introducing the auxiliary variables v = coss and w = sins, which solve the system

v′ =−w, w′ = v,

upon integration we obtain the equivalent system of integral equations

v(t) = v(0)−
∫ t

0
w(s)ds

w(t) = w(0)+
∫ t

0
v(s)ds.

The initial values of the auxiliary variables are determined by their definition. The initial value y(0)

of the solution of the integral equation (4.9) is found simply by evaluating that equation at t = 0 to

56

obtain y(0) = 0. Thus the iteration scheme is

y[k+1](t) = w[k]v[k]+ 3
2

(
v[k](t)

∫ t

0
v[k](s)(y[k])2(s)ds+w[k](t)

∫ t

0
w[k](s)(y[k])2(s)ds

)
w[k+1](t) = 0+

∫ t

0
v[k](s)ds

v[k+1](t) = 1−
∫ t

0
w[k](s)ds.

We initialize with

y[0](t)≡ y(0) = 0

w[0](t)≡ sin0 = 0

v[1][0](t)≡ cos0 = 1.

The exact solution of (4.9) is y(t) = sin t, whose Maclaurin series, with its coefficients rounded to

five decimal places, begins

y(t) = 1.00000 t−0.16667 t3 +0.00833 t5−0.00020 t7 +O(t9).

the Picard iterate y[8](t) with coefficients rounded to five decimal , begins

y[8](t) = 1.00000 t−0.16667 t3 +0.008333 t5 +0.00000 t7.

A plot of the error in the approximation of the exact solution by y[8](t) is given in Figure 4.2.

Example 4.2.3. As a final and somewhat more elaborate example consider the linear Volterra inte-

gral equation of the second kind given by

y(t) = tan t− 1
4 sin2t− 1

2 t +
∫ t

0

1
1+ y2(s)

ds. (4.10)

This is a corrected version of an integral equation given by Vahidian and his colleagues in [16]. As

explained in the first paragraph of this chapter, because the integral part is independent of t, (4.10)

57

must be equivalent to an initial value problem. In fact the equivalent problem is

y′(t) = sec2 t− 1
2 cos2t− 1

2 +
1

1+ y2(t)
, y(0) = 0,

which was obtained by differentiating (4.10) to get the differential equation and by evaluating (4.10)

at t = 0 to get the initial value. Of course by means of the identity cos2 t = 1
2(1 + cos2t) the

differential equation can be more compactly expressed as

y′(t) = sec2 t− cos2 t +
1

1+ y2(t)
, (4.11)

which will be important later.

To approximate the unique solution of (4.10) we introduce the auxiliary variables

v1(t) = sin t

v2(t) = cos t

v3(t) =
1
v2

v4(t) = 1+ y2,

v5(t) =
1
v4
.

Note that in contrast with the previous examples the unknown function y(t) figures into the definition

of some of these variables, but in a polynomial way. Thus when we compute their derivatives y also

appears. Thanks to (4.11), it does so in a polynomial way, since by that identity y′ = v2
3− v2

2 + v5

and we have additionally

v′1 = v2

v′2 =−v1

v′3 = v1v2
3

v′4 = 2y(v2
3− v2

2 + v5)

v′5 =−2yv2
5(v

2
3− v2

2 + v5).

58

This system of ordinary differential equations, together with the equation satisfied by y′ and the

known initial values of all the variables involved, is equivalent to the system of integral equations

y(t) = v1v3− 1
2 v1v2− 1

2 t +
∫ t

0
v5(s)ds

v1(t) =
∫ t

0
v2(s)ds

v2(t) = 1−
∫ t

0
v1(s)ds

v3(t) = 1+
∫ t

0
v1(s)v2

3(s)ds

v4(t) = 1+2
∫ t

0
y(s)(v2

3(s)− v2
2(s)+ v5(s))ds

v5(t) = 1−2
∫ t

0
y(s)v2

5(s)(v
2
3(s)− v2

2(s)+ v5(s))ds.

Setting up the obvious iteration scheme based on these integral equations, and initializing with the

constant functions y(t) ≡ y(0) and v j(t) ≡ v j(0) for j = 1,2,3,4,5, the Picard iterate y[28](t) with

coefficients rounded to five decimal places is

y[28](t) = 1.00000 t +0.33333 t3 +0.13333 t5 +0.05397 t7 +0.02187 t9 +0.00886 t11.

The exact solution is y(t) = tan t, whose Maclaurin series, with coefficients rounded to five decimal

places, is

y(t) = 1.00000 t +0.33333 t3 +0.13333 t5 +0.05397 t7 +0.02187 t9 +0.00886 t11 +O(t13).

A plot of the error in the approximation of the exact solution by y[28](t) is given in Figure 4.3.

59

Figure 4.1: The error plot for Volterra Integral, |y(t)− y[8](t)| with n = 8 iterations, where y(t) is
the exact solution and y[8](t) is the approximate solution.

60

Figure 4.2: Error plot for nonlinear Volterra Integral, |y(t)−y[8](t)| with n = 8 iterations, where y(t)
is the exact solution and y[8](t) is the approximate solution.

.

61

Figure 4.3: The error plot for linear Volterra Integral, |y(t)− y[28](t)| with n = 28 iterations, where
y(t) is the exact solution and y[28](t) is the approximate solution.

CHAPTER 5: A MORE GENERAL ALGORITHM FOR APPROXIMATING SOLUTIONS OF
BOUNDARY VALUE PROBLEMS

In Chapter 2 we presented an efficient algorithm for approximating solutions of two-point

boundary value problems of the form

y′′ = f (t,y,y′), y(a) = α, y(b) = β . (5.1)

In this chapter we develop a modification of the algorithm that can extend its scope. The idea is

to partition the interval [a,b] into n subintervals and simultaneously and recursively approximate

the solutions to the n boundary value problems that are induced on the subintervals by (5.1) and

its solution. We begin in Section 5.1 by illustrating the ideas involved in the simplest case, n = 2,

where the key ideas in the modified method are not obscured by the details and are thus most easily

understood. In this first section we will also introduce notation and several lemmas that will be

useful later. In Section 5.2 we present the modified algorithm in the general case and state and

prove a theorem that guarantees its success. Finally, in Section 5.3 we illustrate the method with

several examples.

Throughout this chapter we will assume that the function f is continuous and Lipschitz in the

last two variables with Lipschitz constant L.

5.1 The Simplest Case

We begin by recalling from Chapter 1 the following fact, which for ease of future reference

we separate out as a lemma, but without a detailed statement of hypotheses (see (1.1) and (1.2) and

Lemma 1.3.2).

Lemma 5.1.1. The one-dimensional two-point boundary value problem

y′′ = f (t,y,y′), y(c) = λ, y(d) = δ

63

is equivalent to the vector integral equation

y(t)

u(t)

=

λ

γ

+
∫ t

c

 u(s)

f (s,y(s),u(s))

 ds (5.2a)

γ =
1

d− c

[
δ−λ−

∫ d

c
(d− s) f (s,y(s),u(s))ds

]
. (5.2b)

It will be convenient to solve (5.2b) for λ, yielding

λ = δ− (d− c)γ−
∫ d

c
(d− s) f (s,y(s),u(s))ds. (5.3)

We also note that if γ1 = y′(c) and γ2 = y′(d) then by the Fundamental Theorem of Calculus

γ2 = γ1 +
∫ d

c
f (s,y(s),u(s))ds. (5.4)

For the following discussion we speak as if it were certain that problem (5.1) has a unique

solution, which we denote y(t) = η(t).

Partition the interval [a,b] into two subintervals of equal length h = (b− a)/2 and let the

partition points be denoted a= t0 < t1 < t2 = b. Then (5.1) and its solution η(t) induce two boundary

value problems,

y′′ = f (t,y,y′), y(t0) = α, y(t1) = η(t1) (5.5)

on [t0, t1] and

y′′(t) = f (t,y,y′), y(t1) = η(t1), y(t2) = β (5.6)

on [t1, t2]. Letting β0 = α, β1 = η(t1), γ1 = η′(t0), and γ2 = η′(t1), the solutions of these boundary

value problems are the solutions of the initial value problems

y′′ = f (t,y(t),y′(t)), y(t0) = β0, y′(t0) = γ1 (5.7)

and

y′′ = f (t,y(t),y′(t)), y(t1) = β1, y′(t1) = γ2, (5.8)

64

which we express as the systems of first order equations


y′ = u

u′ = f (t,y,u)

y(t0) = β0

u(t0) = γ1

or y′ = f(t,y), y(t0) =

β0

γ1

 (5.7′)

and 
y′ = u

u′ = f (t,y,u)

y(t1) = β1

u(t1) = γ2

or y′ = f(t,y), y(t1) =

β1

γ2

 (5.8′)

Let

y1(t) =

y1(t)

u1(t)

 and y2(t) =

y2(t)

u2(t)


denote the solutions of the initial value problems (5.7′) and (5.8′), respectively. Then η(t) is the

concatenation of y1(t) and y2(t). See Figure 5.1.

The idea now is to apply the algorithm of Chapter 2 to each of the boundary value problems

(5.5) and (5.6) simultaneously, coupling the work on the separate intervals at each step. That is, we

wish to recursively approximate the vector functions y1(t) and y2(t) and the constants γ1, γ2, and β1

better and better, updating each one on each pass through the recursion.

Choose any initialization of the unknown functions and constants,

y[0]1 (t), u[0]1 (t), y[0]2 (t), u[0]2 (t), γ
[0]
1 , γ

[0]
2 , β

[0]
1 .

We can update the approximations of y[0]1 (t), u[0]1 (t), y[0]2 (t), and u[0]2 (t) using the right hand side of

(5.2a) applied to each subinterval. Writing

f j(s)
def
= f (s,y j(s),u j(s)), j = 1,2,

we update the approximation of γ2 in terms of the approximation of γ1 using (5.4) applied on [t1, t2],

namely,

γ2 = γ1 +
∫ t1

t0
f1(s)ds. (5.9)

65

We update the approximation of β1 in terms of β and the approximation of γ2 using (5.3), namely

β1 = β−hγ2−
∫ t2

t1
(t2− s) f2(s)ds. (5.10)

Finally, we update the approximation of γ1 in terms of α and the approximation of β1 using (5.2b),

namely

γ1 =
1
h

[
β1−α−

∫ t1

t0
(t1− s) f1(s)ds

]
. (5.11)

Introducing the simplifying notation

f [r]j (s) def
= f (s,y[r]j (s),u

[r]
j (s)), j = 1,2, r ∈ Z+∪{0},

and the natural shorthand y[r]j (t) the recurrence formulas are

y[k+1]
1 (t) def

=

y[k+1]
1 (t)

u[k+1]
1 (t)

=

 α

γ
[k]
1

+
∫ t

t0

 u[k]1

f [k]1 (s)

 ds (5.12a)

y[k+1]
2 (t) def

=

y[k+1]
2 (t)

u[k+1]
2 (t)

=

β
[k]
1

γ
[k]
2

+
∫ t

t1

 u[k]2

f [k]2 (s)

 ds (5.12b)

γ
[k+1]
2 = γ

[k]
1 +

∫ t1

t0
f [k+1]
1 (s)ds (5.12c)

β
[k+1]
1 = β−hγ

[k+1]
2 −

∫ t2

t1
(t2− s) f [k+1]

2 (s)ds (5.12d)

γ
[k+1]
1 = 1

h

[
β
[k+1]
1 −α−

∫ t1

t0
(t1− s) f [k+1]

1 (s)ds
]
. (5.12e)

Clearly if y[k]j (t), j = 1,2, converge, then γ
[k]
2 , β

[k]
1 , and γ

[k]
1 must converge. If the convergence is

uniform then we may pass the limits into the integrals to obtain the fact that the limit functions y1(t)

and y2(t) solve the ordinary differential equations in (5.7) and (5.8) and that

Γ j
def
= lim

k→∞

γ
[k]
j , j = 1,2 and B1

def
= lim

k→∞

β
[k]
1

66

satisfy

Γ2 = Γ1 +
∫ t1

t0
f1(s)ds (5.13)

B1 = β−hΓ2−
∫ t2

t1
(t2− s) f2(s)ds (5.14)

Γ1 =
1
h

[
B1−α−

∫ t1

t0
(t1− s) f1(s)ds

]
. (5.15)

It is intuitively clear that the concatenation y(t) of the limits y1(t) and y2(t) solves the original

boundary value problem (5.1), but here are the details. Evaluating the limit of (5.12a) at t = t0 gives

y1(t0) = α (5.16)

and

y′1(t0) = Γ1. (5.17)

Inserting (5.17) into (5.15) gives

y′1(t0) =
1
h

[
B1−α−

∫ t1

t0
(t1− s) f (s,y1(s),u1(s))ds

]

so that by (5.2b)

B1 = y1(t1). (5.18)

Evaluating the limit of (5.12b) at t = t1 gives

B1 = y2(t1) (5.19)

and

Γ2 = y′2(t1). (5.20)

Equations (5.18) and (5.19) give

y1(t1) = y2(t1). (5.21)

67

Inserting (5.19) and (5.20) into (5.14) gives

y2(t1) = β−hy′2(t1)−
∫ t2

t1
(t2− s) f (s,y2(s),u2(s))ds

so that by (5.3)

y2(t2) = β. (5.22)

Inserting (5.20) and (5.17) into (5.13) gives

y′2(t1) = y′1(t0)+
∫ t1

t0
f (s,y1(s),u1(s))ds

which by the Fundamental Theorem gives

y′2(t1) = y′1(t1). (5.23)

Equations (5.16), (5.21), (5.22), and (5.23) imply that the concatenation y(t) of y1(t) and y2(t) is a

C1 function on [a,b] that has a second derivative on [a, t1)∪(t1,b] that satisfies y′′(t)= f (t,y(t),y′(t))

on [a, t1)∪(t1,b]. Since the right hand side is continuous on [a,b] by Lemma 5.1.4, whose statement

and proof are deferred to the end of this section, y′′(t) exist on [a,b], hence y(t) solves the original

boundary value problem (5.1).

In order to prove convergence of the sequence of iterates y[k]j (t), j = 1,2, we need estimates on

|γ[k+1]
j − γ

[k]
j |, j = 1,2 and on |β[k+1]

1 −β
[k]
1 |. It is clear that we can estimate |γ[k+1]

2 − γ
[k]
2 | in terms of

|γ[k+1]
1 − γ

[k]
1 | and |γ[k+1]

1 − γ
[k]
1 | in terms of |β[k+1]

1 −β
[k]
1 |, but the estimate on |β[k+1]

1 −β
[k]
1 | involves

|γ[k+1]
2 − γ

[k]
2 |, hence circularity. An idea for a way out is to insert the expression for γ1 in the last

recurrence equation into that for γ2, insert the resulting expression for γ2 into the expression for

β1, and solve the resulting equation for β1. However, the step-indices on β1 do not match and the

procedure yields an equation with β
[k+1]
1 on the left and β

[k]
1 on the right. A solution to this dilemma

is to follow the same procedure, not with the recurrence equations, but with the equations (5.9)

through (5.11) on which they are based. That is, insert the expression for γ1 in (5.11) into (5.9),

insert the resulting expression for γ2 into (5.10), and solve the resulting equation for β1. The result

68

is

β1 =
1
2

[
β+α+

∫ t1

t0
(t1− s) f1(s)ds−h

∫ t1

t0
f1(s)ds−

∫ t2

t1
(t2− s) f2(s)ds

]
. (5.24)

We base the update of the approximation of β1 on this equation. Thus the recursion for which we

will prove convergence is (5.12) but with (5.12d) replaced by

β
[k+1]
1 = 1

2

[
β+α+

∫ t1

t0
(t1− s) f [k+1]

1 (s)ds−h
∫ t1

t0
f [k+1]
1 (s)ds−

∫ t2

t1
(t2− s) f [k+1]

2 (s)ds
]
. (5.12d′)

Recall that we need concern ourselves only with the convergence of the vector-valued functions

y1(t) and y2(t) on [t0, t1] and [t1, t2] but that the convergence must be uniform in order to prove that

we have found a solution of the original boundary value problem. Thus we are concerned with the

sequence (y1(t),y2(t)) in C([t0, t1],R2)×C([t1, t2],R2). We place the sup norm, the norm of uniform

convergence, on each of the function spaces, and do so with respect to the sum norm on R2 so that

the norm can be brought inside the integral. On the product of the function spaces we place the

maximum norm. Thus for (u(t),v(t)) ∈C([t0, t1],R2)×C([t1, t2],R2)

||(u(t),v(t))||max = max{||u(t)||sup, ||v(t)||sup}

and

||u(t)||sup = ||

u1(t)

u2(t)

 ||sup = sup{|u1(t)|+ |u2(t)| : t ∈ [t0, t1]}.

These choices are illustrated by the routine computations in the proof of Lemma 5.1.3, which gives

two estimates that will be used repeatedly and which appears at the end of this section, where it has

been collected with other such results.

As a preliminary to proving the convergence of y[k]1 (t) and y[k]2 (t) we examine the sequences of

constants β
[k]
1 , γ

[k]
1 , and γ

[k]
2 . First using (5.12d′) and recalling that f is Lipschitz in its last two entries

69

with Lipschitz constant L we estimate, appealing to Lemma 5.1.3 for the last inequality,

|β[k+1]
1 −β

[k]
1 |

6 1
2

[∫ t1

t0
(t1− s)| f [k+1]

1 (s)− f [k]1 (s)|ds+h
∫ t1

t0
| f [k+1]

1 (s)− f [k]1 (s)|ds

+
∫ t2

t1
(t2− s)| f [k+1]

2 (s)− f [k]2 (s)|ds
]

6 1
2

[
L
∫ t1

t0
(t1− s)|y[k+1]

1 (s)−y[k]1 (s)|ds+hL
∫ t1

t0
|y[k+1]

1 (s)−y[k]1 (s)|ds

+L
∫ t2

t1
(t2− s)|y[k+1]

2 (s)−y[k]2 (s)|ds
]

6 1
2 L
[1

2 h2 +h2 + 1
2 h2] ||y[k+1]−y[k]||max

= Lh2||y[k+1]−y[k]||max.

Using (5.12e), this estimate, and Lemma 5.1.3 we obtain

|γ[k+1]
1 − γ

[k]
1 |6

1
h |β

[k+1]
1 −β

[k]
1 |+

1
h

∫ t1

t0
(t1− s)| f [k+1]

1 (s)− f [k]1 (s)|ds

6 Lh||y[k+1]−y[k]||max +
1
2 hL||y[k+1]−y[k]||max

= 3
2 Lh||y[k+1]−y[k]||max

which in turn with (5.12c) and Lemma 5.1.3 yields

|γ[k+1]
2 − γ

[k]
2 |6 |γ

[k+1]
1 − γ

[k]
1 + |

∫ t1

t0
| f [k+1]

1 (s)− f [k]1 (s)|ds

6 3
2 Lh||y[k+1]−y[k]||max +Lh||y[k+1]−y[k]||max

= 5
2 Lh||y[k+1]−y[k]||max.

Turning now to the sequences y[k]1 (t) and y[k]2 (t), using these estimates and Lemma 2.1.2 , for

70

any t ∈ [t0, t1]

|y[k+1]
1 (t)−y[k]1 (t)|6

∣∣∣∣∣∣∣
 α

γ
[k]
1

−
 α

γ
[k−1]
1


∣∣∣∣∣∣∣
sum

+
∫ t

t0

∣∣∣∣∣∣∣
u[k]1 (s)

f [k]1 (s)

−
u[k−1]

1 (s)

f [k−1]
1 (s)


∣∣∣∣∣∣∣
sum

ds

= |γ[k]1 − γ
[k−1]
1 |+(1+L)h ||y[k]1 −y[k−1]

1 ||sup

6 3
2 Lh||y[k+1]−y[k]||max +(1+L)h ||y[k]−y[k−1]||max

= (1+ 5
2 L)h ||y[k]−y[k−1]||max

hence

||y[k+1]
1 −y[k]1 ||sup 6 (1+ 5

2 L)h ||y[k]−y[k−1]||max

and, assuming that h2 6 h, for any t ∈ [t1, t2]

|y[k+1]
2 (t)−y[k]2 (t)|sum 6

∣∣∣∣∣∣∣
β

[k]
1

γ
[k]
2

−
β

[k−1]
1

γ
[k−1]
2


∣∣∣∣∣∣∣
sum

+
∫ t

t1

∣∣∣∣∣∣∣
u[k]2 (s)

f [k]2 (s)

−
u[k−1]

2 (s)

f [k−1]
2 (s)


∣∣∣∣∣∣∣
sum

ds

= |β[k]
1 −β

[k−1]
1 |+ |γ[k]2 − γ

[k−1]
2 |+(1+L)h ||y[k]2 −y[k−1]

2 ||sup

6 [Lh2 + 5
2 Lh+(1+L)h] ||y[k]−y[k−1]||max

= (1+ 9
2 L)h ||y[k]−y[k−1]||max

hence

||y[k+1]
2 −y[k]2 ||sup 6 (1+ 9

2 L)h ||y[k]−y[k−1]||max.

Thus if (1+ 9
2 L)h < 1 then by Lemma 5.1.2 below the sequence

y[k](t) = (y[k]1 (t),y[k]2 (t)) =
(y[k]1 (s)

u[k]1 (s)

 ,

y[k]2 (s)

u[k]2 (s)

)

is a Cauchy sequence in the complete space C([t0, t1],R2)×C([t1, t2],R2), hence converges, hence

the component functions converge uniformly on [t0, t1] and [t1, t2]. This condition was derived on

the assumption that h6 1. If it fails we simply replace h by h2 in the last two estimates to obtain the

similar sufficient condition (1+ 9
2 L)h2 < 1 for convergence. We could also examine more elaborate

71

conditions involving both h and h2, or even take into account that the Lipshcitz constants for f

restricted to [t0, t1] and [t1, t2] could be smaller than L. In any event, even with the least complicated

condition it is straightforward to verify that in some situations, depending on the sizes of L and

b−a, the condition obtained by this partition method is an improvement over the estimate given in

Theorems 2.1.3 and 2.1.4 for existence of a solution of (5.1) and the convergence of the sequence

of iterates to it.

This section has presented the key ideas in the extension of the method of Chapter 2 based on a

partition of the interval [a,b] into subintervals. We now state and prove the three lemmas that were

needed in this simplest case, and which will also be needed in the general case discussed in the next

section.

Lemma 5.1.2. Let x[k] be a sequence in a normed vector space (V, | · |). If there exist a number c < 1

and an index N ∈ N such that

|x[k+1]− x[k]|6 c|x[k]− x[k−1]| for all k > N

then the sequence x[k] is a Cauchy sequence.

Proof. Applying the condition |x[k+1]− x[k]|6 c|x[k]− x[k−1]| a total of k times we have

|x[N+k]− x[N+k−1]|6 ck|x[N]− x[N−1]| (k > 1)

so that for any m > n by applying triangle inequality we get

|x[N+m]− x[N+n]|6 |x[N+m]− x[N+m−1]|+ · · ·+ |x[N+n+1]− x[N+n]|

6 (cm + cm−1 + · · ·+ cn+1)|x[N]− x[N−1]|

6 (cn+1 + cn+2 + · · ·)|x[N]− x[N−1]|

=

(
cn+1

1− c

)
|x[N]− x[N−1]|

=

(
cn

1− c

)
|x[N]− x[N−1]|

which can be made arbitrarily small by choosing n sufficiently large. �

72

Lemma 5.1.3. Suppose the interval [a,b] has been partitioned into n subintervals of equal length

h = (b−a)/n by partition points a = t0 < t1 < · · ·< tn−1 < tn = b. With the notation

y j(t) =

y j(t)

u j(t)

 and f [r]j (s) = f (s,y[r]j (s),u
[r]
j (s)), r ∈ Z+∪{0}, j = 1,2,

the following estimates hold:

∫ t j

t j−1

| f [k+1]
j (s)− f [k]j (s)|ds6 Lh||y[k+1]−y[k]||max (5.25)

and ∫ t j

t j−1

(t j− s)| f [k+1]
j (s)− f [k]j (s)|ds6 1

2 Lh2||y[k+1]−y[k]||max. (5.26)

Proof. For

∫ t j

t j−1

| f [k+1]
j (s)− f [k]j (s)|ds6

∫ t j

t j−1

L ||y[k+1]
j (s)−y[k]j (s)||sum ds

6 L ||y[k+1]
j −y[k]j ||sup

∫ t j

t j−1

ds6 Lh ||y[k+1]−y[k]||max

and

∫ t j

t j−1

(t j− s)| f [k+1]
j (s)− f [k]j (s)|ds6

∫ t j

t j−1

(t j− s)L ||y[k+1]
j (s)−y[k]j (s)||sum ds

6 L ||y[k+1]
j −y[k]j ||sup

∫ t j

t j−1

(t j− s)ds

6 1
2 Lh2||y[k+1]−y[k]||max. �

Lemma 5.1.4. Suppose η : (−ε,ε)→R is continuous and that η′ exists on (−ε,0)∪(0,ε). Suppose

g : (−ε,ε)→ R is continuous and that g = η′ on (−ε,0)∪ (0,ε). Then η′ exists and is continuous

on (−ε,ε).

Proof. Since η is continuous at 0 we have the existence and value of the limit

lim
h→0

η(h) = η(0).

73

This fact and the hypothesis that η′ exists on (−ε,0)∪(0,ε) imply that l’Hôpital’s Rule applies, and

with the remaining hypotheses gives the existence and value of the limit

η
′(0) = lim

h→0

η(h)−η(0)
h−0

= lim
h→0

η
′(h) = lim

h→0
g(h) = g(0).

But then η′ exists and is equal to the continuous function g on (−ε,ε), giving the result. �

5.2 The General Case

If η(t) is a solution of the original boundary value problem (5.1) and the interval [a,b] is

subdivided into n subintervals of equal length h by means of a partition

a = t0 < t1 < t2 < · · ·< tn = b

then setting β j = η(t j), j = 1, . . . ,n−1, we see that n boundary value problems are induced:

y′′ = f (t,y,y′)

y(t0) = α, y(t1) = β1

y′′ = f (t,y,y′)

y(t1) = β1, y(t2) = β2

. . .
y′′ = f (t,y,y′)

y(tn−1) = βn−1, y(tn) = β.

Setting γ j = η′(t j−1), j = 1, . . . ,n, or computing them by means of an appropriate implementation

of (5.2b), their solutions are solutions of the respective initial value problems

y′′ = f (t,y,y′)

y(t0) = α, y′(t0) = γ1

y′′ = f (t,y,y′)

y(t1) = β1, y′(t1) = γ2

. . .
y′′ = f (t,y,y′)

y(tn−1) = βn−1, y′(tn−1) = γn.

As in the previous section we denote the solutions to these problems by y j(t) with derivatives

u j(t) := y′j(t), j = 1,2,3. See Figure 5.2.. To make the presentation cleaner and easier to read

74

we continue and expand the shorthand notation of the previous section (for relevant choices of j):

f j(s) = f (s,y j(s),u j(s)) f [k]j (s) = f (s,y[k]j (s),u[k]j (s))

y j(s) =

u j(s)

y j(s)

 y[k]j (s) =

u[k]j (s)

y[k]j (s)



I j(s) =
∫ t j

t j−1

f j(s)ds I[k]j (s) =
∫ t j

t j−1

f [k]j (s)ds

J j(s) =
∫ t j

t j−1

(t j− s) f j(s)ds J[k]j (s) =
∫ t j

t j−1

(t j− s) f [k]j (s)ds.

(5.27)

The idea for generating a sequence of successive approximations of η(t) is to update the esti-

mates of the functions y j(t) using (5.2a) in the form

y j(t) =

β j−1

γ j

+
∫ t j

t j−1

u j(s)

f j(s)

 ds (5.28)

and then update γ j and β j using (5.4) and (5.3) in the forms

γ j = γ j−1 + I j−1 and β j−1 = β j−hγ j− J j (5.29)

(starting with j = 1 and working our way up to j = n for the γ j and in the reverse order with the β j,

with the convention that βn = β), except that on the first step we update γ1 using instead (5.2b) in

the form

γ1 =
1
h [β1−α− J1] (5.30)

and there is no β0. But as in the case n = 2 we will not be able to make the estimates that we need to

show convergence if we update β1 on this basis. We will address this problem in a manner directly

analogous to what was done in the simpler case. Before we do, however, note that the updates on

the β j come from “the right,” i.e., values of βr with r > j, hence ultimately tying into β at each pass

through the recursion, while the updates on the γ j come from “the left,” i.e., values of γr with r < j,

75

hence ultimately tying into α at each pass through the recursion.

To obtain a useful formula on which to base the successive approximations of β1, we begin by

using the second formula in (5.29) n−1 times:

β1 = β2− (hγ2 + J2)

= β3− (hγ3 + J3)− (hγ2 + J2)

= β4− (hγ4 + J4)− (hγ3 + J3)− (hγ2 + J2)

...

= β− (hγn + Jn)−·· ·− (hγ2 + J2)

= β−h(γ2 + · · ·+ γn)− (J2 + · · ·+ Jn).

But by repeated application of the first equation in (5.29) and use of (5.30) on the last step

γ2 + · · ·+ γn−2 + γn−1 + γn

= γ2 + · · ·+ γn−2 +2γn−1 + In−1

= γ2 + · · ·+3γn−2 +2In−2 + In−1

...

= (n−1)γ2 +(n−2)I2 + · · ·+3In−3 +2In−2 + In−1

= (n−1)γ1 +(n−1)I1 +(n−2)I2 + · · ·+3In−3 +2In−2 + In−1

=
n−1

h
[β1−α− J1]+ (n−1)I1 +(n−2)I2 + · · ·+3In−3 +2In−2 + In−1.

Inserting this expression into the previous display and solving the resulting equation for β1 yields

the formula

β1 =
1
n

[
β+(n−1)α+(n−1)J1−

n

∑
r=2

Jr−h
n−1

∑
r=1

(n− r)Ir

]
. (5.31)

Once an initialization has been chosen, an iteration procedure based on (5.28), (5.29), (5.30), and

(5.31) is, with the convention β0 = α and βn = β, the shorthand notation introduced above, and

76

order of evaluation in the order listed,

y[k+1]
j (t) =

β
[k]
j−1

γ
[k]
j

+
∫ t j

t j−1

u[k]j (s)

f [k]j (s)

 ds j = 1, · · · ,n (5.32a)

β
[k+1]
1 =

1
n

[
β+(n−1)α+(n−1)J[k+1]

1 −
n

∑
r=2

J[k+1]
r −h

n−1

∑
r=1

(n− r)I[k+1]
r

]
(5.32b)

γ
[k+1]
1 = 1

h [β
[k+1]
1 −α− J[k+1]

1] (5.32c)

γ
[k+1]
j = γ

[k+1]
j−1 + I[k+1]

j−1 j = 2, · · · ,n (5.32d)

β
[k+1]
j−1 = β

[k+1]
j −hγ

[k+1]
j − J[k+1]

j j = n,n−1, . . . ,4,3 (5.32e)

Theorem 5.2.1. Suppose the function f (t,y,u) from [a,b]×R2 into R is continuous and Lipschitz

in y = (y,u) with Lipschitz constant L. If there exists an integer n> 1 such that for the subdivision

of [a,b] into n subintervals of equal length h by the partition

a = t0 < t1 < · · ·< tn−1 < tn = b

the inequality
1
2n

[(n3 +n2 +n+2)L+2](b−a)< 1

holds if h = (b−a)/n6 1 or the inequality

1
2n2 [(n

3 +n2 +n+2)L+2](b−a)2 < 1

holds if h=(b−a)/n> 1, then there exists a solution of the two-point boundary value problem (5.1).

Moreover, in the language of the notation of Figure 5.2 and display (5.27), for any initial choice

of the functions y j(t) = (y j(t),u j(t)), 1 6 j 6 n, the constants γ j, 1 6 j 6 n, and the constants β j,

1 6 j 6 n− 1, the sequence of successive approximations defined by (5.32) converges to such a

77

solution.

Proof. As was done in the simple case n = 2 we will show that the sequence

y(t) = (y1(t), . . . ,yn(t)) ∈C([t0, t1],R2)×C([t1, t2],R2)×·· ·×C([tn−1, tn],R2)

is a Cauchy sequence by means of Lemma 5.1.4, where we place the supremum norm on each

function space, with respect to absolute value on R and the sum norm on R2, and the maximum

norm on their product. Precisely the same reasoning as was given in the paragraph that follows

display (5.15) shows that this is sufficient to show that the successive approximations converge to

functions on the individual subintervals which when concatenated form a solution of (5.1), appealing

to Lemma 5.1.4 for existence of the second derivative at the partition points.

By Lemma 5.1.3

|I[k+1]
r − I[k]r |=

∣∣∣∣∫ tr

tr−1

f [k+1]
r (s)ds−

∫ tr

tr−1

f [k]r (s)ds
∣∣∣∣

6
∫ tr

tr−1

| f [k+1]
r (s)− f [k]r (s)|ds

6 Lh||y[k+1]−y[k]||max

(5.33)

and

|J[k+1]
r − J[k]r |=

∣∣∣∣∫ tr

tr−1

(tr− s) f [k+1]
r (s)ds−

∫ tr

tr−1

(tr− s) f [k]r (s)ds
∣∣∣∣

6
∫ tr

tr−1

(tr− s)| f [k+1]
r (s)− f [k]r (s)|ds

6 1
2 Lh2||y[k+1]−y[k]||max.

(5.34)

Then from (5.32b) we have

|β[k+1]
1 −β

[k]
1 |6

n−1
n

∣∣∣J[k+1]
1 − J[k]1

∣∣∣+ n

∑
r=2

∣∣∣J[k+1]
r − J[k]r

∣∣∣+h
n−1

∑
r=1

(n− r)
∣∣∣I[k+1]

r − I[k]r

∣∣∣
6

[(
n−1

n

)
1
2

h2 +
n

∑
r=2

1
2

h2 +h
n−1

∑
r=1

(n− r)h

]
L||y[k+1]−y[k]||max

= B̂1h2L||y[k+1]−y[k]||max,

where B̂1 =
n−1

2

[1
n +1+n

]
.

78

From (5.32c)

|γ[k+1]
1 − γ

[k]
1 |6

1
h
|β[k+1]

1 −β
[k]
1 |+

1
h
|J[k+1]

1 − J[k]1 |

6 [B̂1hL+
1
2

hL]||y[k+1]−y[k]||max

= Γ̂1hL||y[k+1]−y[k]||max

and from repeated application of (5.32d), starting from j = 2 up through j = n,

|γ[k+1]
j − γ

[k]
j |6 |γ

[k+1]
j−1 − γ

[k]
j−1|+ |I

[k+1]
j−1 − I[k]j−1|

6 [Γ̂ j−1hL+hL]||y[k+1]−y[k]||max

= Γ̂ jhL||y[k+1]−y[k]||max

with Γ̂ j = B̂1 +
2 j−1

2 , which is in fact valid for 16 j 6 n.

From repeated application of (5.32e), starting from j = n−1 (with the convention that βn = β)

and down through j = 2,

|β[k+1]
j −β

[k]
j |6 |β

[k+1]
j+1 −β

[k]
j+1|+h|γ[k+1]

j+1 − γ
[k]
j+1|+ |J

[k+1]
j+1 − J[k]j+1|

6 [B̂ j+1h2L+ Γ̂ j+1h2L+
1
2

h2L]||y[k+1]−y[k]||max

= B̂ jh2L||y[k+1]−y[k]||max,

and B̂n−r = rB̂1 + r n− r(r−1)
2 , hence B̂ j = (n− j)B̂1 +n(n− j)− (n− j)(n− j−1)

2 , 26 j 6 n−1.

Using these estimates we find that, setting h∗ = max{h,h2}, for any j ∈ {2, . . . ,n}, for any

79

t ∈ [t j−1, t j],

|y[k+1]
j (t)−y[k]j (t)|sum

6

∣∣∣∣∣∣∣
β

[k]
j−1−β

[k−1]
j−1

γ
[k]
j − γ

[k−1]
j


∣∣∣∣∣∣∣
sum

+
∫ t j

t j−1

∣∣∣∣∣∣∣
u[k]j (s)−u[k−1]

j (s)

f [k]j (s)− f [k−1]
j (s)


∣∣∣∣∣∣∣
sum

ds

6 |β[k]
j−1−β

[k−1]
j−1 |+ |γ

[k]
j − γ

[k−1]
j |+(1+L)

∫ t j

t j−1

|y[k]j (s)−y[k−1]
j (s)|sum ds

6 [B̂ j−1h2L+ Γ̂ jhL] ||y[k]−y[k−1]||max +(1+L)||y[k]j −y[k−1]
j ||sup h

6 [B̂ j−1L+ Γ̂ jL+(1+L)]h∗||y[k]−y[k−1]||max

= [(B̂ j−1 + Γ̂ j +1)L+1]h∗||y[k]−y[k−1]||max

= c jh∗||y[k]−y[k−1]||max

where, using the expressions above for B̂1 and Γ̂1,

c j =
1
2n [n

4 +(3− j)n3 +n2 +(3 j− j2)n+(j−2)]L+1 (26 j 6 n).

Similarly, for all t ∈ [t0, t1], |y
[k+1]
1 (t)−y[k]1 (t)|sum 6 c1h||y[k]−y[k−1]||max for

c1 =

[
n3 +3n−1

2n

]
L+1.

Then for all j ∈ {1, . . . ,n},

||y[k]j −y[k−1]
j ||sup 6 c jh∗||y[k]−y[k−1]||max

and

||y[k+1]−y[k]||max 6max{c1, . . . ,cn}h∗||y[k]−y[k−1]||max. (5.35)

For fixed n, for j > 2, c j is a quadratic function of j with maximum at j = −n3+3n+1
2n , which is

negative for n > 2, so c2 > c j for j > 3. Direct comparison shows that c2 > c1 for all choices of n

as well. Thus estimate (5.35) is

||y[k+1]−y[k]||max 6 c2h∗||y[k]−y[k−1]||max

80

and by Lemma 5.1.2 the sequence y[k](t) is a Cauchy sequence provided c2h∗ < 1, which, when

h = (b−a)/n6 1 is the condition

1
2n

[(n3 +n2 +n+2)L+2](b−a)< 1

and when h = (b−a)/n> 1 is the condition

1
2n2 [(n

3 +n2 +n+2)L+2](b−a)2 < 1. �

5.3 Examples

In this section we illustrate the method by means of several examples.

Example 5.3.1. Consider

y′′ =−y

y(0) = α = 1

y(1) = β = 1

(5.36)

The exact solution is

y(t) = cos t +
(

1− cos1
sin1

)
sin t.

Partition the interval [a,b] = [0,1] into two subintervals of equal length h = 1
2 and we have

y′′1 =−y1 0≤ t ≤ 1
2

y1(0) = α = 1

y1(
1
2) = β1

(5.37)

and

y′′2 =−y2
1
2
≤ t ≤ 1

y2(
1
2) = β1

y2(1) = β = 1

(5.38)

To apply the algorithm describes in section 5.1, that is, (5.12) but with (5.12d′) in place of

(5.12d), we must first choose initializations of the four functions y[0]1 (t), u[0]1 (t), y[0]2 (t) and u[0]2 (t),

81

and of the three constants γ
[0]
1 , γ

[0]
2 and β

[0]
1 . We will use

y[0]1 (t)≡ α, u[0]1 (t)≡ β−α

b−a
, y[0]2 (t)≡ β, u[0]2 (t)≡ β−α

b−a

and

γ
[0]
1 =

β−α

b−a
, γ

[0]
2 =

β−α

b−a
, β

[0]
1 = β

The Maple code is

restart;

with(numapprox): with(plots):

n :=8;

a:=0;

b:=1.0;

h:=(b-a);

beta:=1;alpha:=1;

h1:=h/2;h2:=h/2;

t0:=0;t1:=h1;t2:=h1+h2;

y1[0]:=alpha;

u1[0]:=(beta-alpha)/h;

y2[0]:=beta;

u2[0]:=(beta-alpha)/h;

gamma1[0]:=(beta-alpha)/h;

gamma2[0]:=(beta-alpha)/h;

beta1[0]:=beta;

for k from 0 to n do

y1[k+1] := alpha+int(u1[k], t = t0 .. t);

82

u1[k+1] := gamma1[k]-(int(y1[k], t = t0 .. t));

y2[k+1] := beta1[k]+int(u2[k], t = t1 .. t);

u2[k+1] := gamma2[k]-int(y2[k], t = t1 .. t);

gamma2[k+1]:=gamma1[k]-int(y1[k+1], t=t0..t1);

beta1[k+1]:=1/2*(beta+alpha-int((t1-t)*y1[k+1],t=t0..t1)

+ h1*int(y1[k+1],t=t0..t1)+int((t2-t)*y2[k+1],t=t1..t2));

gamma1[k+1]:=1/h1*(beta1[k+1]-alpha+int((t1-t)*y1[k+1], t=t0..t1));

end:

Figure 5.3 shows the first approximation to the solution.

Figure 5.4 shows the fourth approximation to the solution.

Figure 5.5 shows the eighth approximation and exact solution.

Figure 5.6 shows the exact solution and the iterates 0, 4, and 8.

Example 5.3.2. In this example we reconsider the Example 5.3.1, but this time we partition the

interval [a,b] = [0,1] into three subintervals of equal length h = 1
3 and we have

y′′1 =−y1, 0≤ t ≤ 1
3

y1(0) = 1, y1(
1
3) = β1,

(5.39)

y′′2 =−y2,
1
3
≤ t ≤ 2

3

y2(
1
3) = β1, y2(

2
3) = β2

(5.40)

and

y′′3 =−y3,
2
3
≤ t ≤ 1

y3(
2
3) = β2, y3(1) = β

(5.41)

To apply the algorithm described in section 5.2, that is, (5.32), we must first choose initializa-

tions of the six functions y[0]1 (t), u[0]1 (t), y[0]2 (t), u[0]2 (t), y[0]3 (t), and u[0]3 (t), and of the five constants

83

γ
[0]
1 , γ

[0]
2 , γ

[0]
3 , β

[0]
1 and β

[0]
2 . We will use

y[0]1 (t)≡ α, u[0]1 (t)≡ β−α

b−a
, y[0]2 (t)≡ β, u[0]2 (t)≡ β−α

b−a

y[0]3 (t)≡ β, u[0]3 (t)≡ β−α

b−a
,

and

γ
[0]
1 =

β−α

b−a
, γ

[0]
2 =

β−α

b−a
,γ

[0]
3 =

β−α

b−a

β
[0]
1 = β, β

[0]
2 = β

The Maple code is

restart;

with(numapprox): with(plots):

n :=8;

a:=0;

b:=1;

beta:=1;alpha:=1;

h:=(b-a);

h1:=h/3;h2:=h/3;h3:=h/3;

t0:=0;t1:=h1;t2:=h1+h2;t3:=h1+h2+h3;

y1[0]:=alpha;

u1[0]:=(beta-alpha)/h;

y2[0]:=beta;

u2[0]:=(beta-alpha)/h;

y3[0]:=beta;

u3[0]:=(beta-alpha)/h;

gamma1[0]:=(beta-alpha)/h;

gamma2[0]:=(beta-alpha)/h;

84

gamma3[0]:=(beta-alpha)/h;

beta1[0]:=beta;

beta2[0]:=beta;

for k from 0 to n do

y1[k+1] := alpha+int(u1[k], t = t0 .. t);

u1[k+1] := gamma1[k]-(int(y1[k], t = t0 .. t));

y2[k+1] := beta1[k]+int(u2[k], t = t1 .. t);

u2[k+1] := gamma2[k]-int(y2[k], t = t1 .. t);

y3[k+1] := beta2[k]+int(u3[k], t = t2 .. t);

u3[k+1] := gamma3[k]-int(y3[k], t = t2 .. t);

beta1[k+1]:=1/3*(beta+2*alpha-2*int((t1-t)*y1[k+1],t=t0..t1)

+ int((t2-t)*y2[k+1],t=t1..t2) + int((t3-t)*y3[k+1],t=t2..t3)

+ h1*(2*int(y1[k+1],t=t0..t1) +int(y2[k+1],t=t1..t2)));

gamma1[k+1]:=1/h1*(beta1[k+1]-alpha+int((t1-t)*y1[k+1], t=t0..t1));

gamma2[k+1]:=gamma1[k]-int(y1[k+1], t=t0..t1);

gamma3[k+1]:=gamma2[k+1]-int(y2[k+1], t=t1..t2);

beta2[k+1]:=beta-gamma3[k+1]*h3+int((t3-t)*y3[k+1], t=t2..t3);

end;

Figure 5.7 shows the first approximation to the solution.

Figure 5.8 shows the fourth approximation to the solution.

Figure 5.9 shows the eighth approximation to the solution.

85

Figure 5.10 shows that the exact solution and the iterates 0, 4, and 8.

Example 5.3.3. Finally we give an example of this method applied to a nonlinear problem.

y′′ = 2y3

y(0) =−1
4

y(1) =−1
3

(5.42)

The exact solution is

y(t) =
1

t−4
.

Partition the interval [a,b] = [0,1] into two subintervals of equal length h= 1
2 . The process is exactly

similar to Example 5.3.1.

The Maple code is

restart;

with(numapprox): with(plots):

n :=8;

a:=0;

b:=1;

h:=(b-a);

beta:=-1/3;alpha:=-1/4;

h1:=h/2;h2:=h/2;

t0:=0;t1:=h1;t2:=h1+h2;

y1[0]:=alpha;

u1[0]:=(beta-alpha)/h;

y2[0]:=beta;

u2[0]:=(beta-alpha)/h;

gamma1[0]:=(beta-alpha)/h;

gamma2[0]:=(beta-alpha)/h;

86

beta1[0]:=beta;

for k from 0 to n do

y1[k+1] := alpha+int(u1[k], t = t0 .. t);

u1[k+1] := gamma1[k]+2*int(y1[k]ˆ3, t = t0 .. t);

y2[k+1] := beta1[k]+int(u2[k], t = t1 .. t);

u2[k+1] := gamma2[k]+2*int(y2[k]ˆ3, t = t1 .. t);

gamma2[k+1]:=gamma1[k]+2*int(y1[k+1]ˆ3, t=t0..t1);

beta1[k+1]:=1/2*(beta+alpha+2*int((t1-t)*y1[k+1]ˆ3,t=t0..t1)

- h1*2*int(y1[k+1]ˆ3,t=t0..t1)

- 2*int((t2-t)*y2[k+1]ˆ3,t=t1..t2));

gamma1[k+1]:=1/h1*(beta1[k+1]-alpha-2*int((t1-t)*y1[k+1]ˆ3, t=t0..t1));

end;

Figure 5.11 shows the first approximation to the solution.

Figure 5.12 shows the fourth approximation to the solution.

Figure 5.13 shows the eighth approximation to the solution.

Figure 5.14 shows that the exact solution and the iterates from 2 to 8.

87

Figure 5.1: Simple Case, two subdivisions.

88

Figure 5.2: Multiple subdivisions.

89

Figure 5.3: The exact solution and the first approximated solution, with two subdivisions of equal
lengths, for Example 5.3.1.

90

Figure 5.4: The exact solution and the fourth approximated solution, with two subdivisions of equal
lengths, for Example 5.3.1.

91

Figure 5.5: The exact solution and the eighth approximated solution, with two subdivisions of equal
lengths, for Example 5.3.1.

92

Figure 5.6: The exact solution and the iterates 0, 4, and 8, with n = 8 iterations and two subdivisions
of equal lengths, for Example 5.3.1.

93

Figure 5.7: The exact solution and the first approximated solution, with three subdivisions of equal
lengths, for Example 5.3.2.

94

Figure 5.8: The exact solution and the fourth approximated solution, with three subdivisions of
equal lengths, for Example 5.3.2.

95

Figure 5.9: The exact solution and the eighth approximated solution, with three subdivisions of
equal lengths, for Example 5.3.2.

96

Figure 5.10: The exact solution and the iterates 0, 4, and 8, with n = 8 iterations and three subdivi-
sions of equal lengths, for Example 5.3.2.

97

Figure 5.11: The exact solution and the first approximated solution, with two subdivisions of equal
lengths, for Example 5.3.3.

98

Figure 5.12: The exact solution and the fourth approximated solution, with two subdivisions of
equal lengths, for Example 5.3.3.

99

Figure 5.13: The exact solution and the eighth approximated solution, with two subdivisions of
equal lengths, for Example 5.3.3.

100

Figure 5.14: The exact solution and the iterates from 2 to 8, with n = 8 iterations and two subdivi-
sions of equal lengths, for Example 5.3.3.

101

REFERENCES

[1] Paul B. Bailey, Lawrence F. Shampine, and Paul Waltman. Nonlinear Two Point Boundary
Value Problems. Mathematics in Science and Engineering. Academic Press, New York, 1968.

[2] Jafar Biazar and Mostafa Eslami. Homotopy Perturbation and Taylor Series for Volterra In-
tegral of Second Kind. Middle East Journal of Scientific Research. Vol. 7, no. 4, (2011), pp.
604-409.

[3] Richard L. Burden and J. Douglas Faires. Numerical Analysis Fourth Edition. PWS-KENT
Publishing Company, Boston, 1988.

[4] David C. Carothers, G. Edgar Parker, James S. Sochacki, and Paul G. Warne. Some Proper-
ties Of Solutions To Polynomial Systems Of Differential Equations. Electronic Journal of
Differential Equations. Vol. 2005, no. 40, (2005), pp. 1-17.

[5] David Carothers, William Ingham, James Liu, Carter Lyons, John Marafino, G. Edgar
Parker, David Pruett, Joseph Rudmin, James S. Sochacki, Debra Warne, and Paul Warne.
An Overview Of The Modified Picard Method. Preprint.

[6] David C. Carothers, G. Edgar Parker, James S. Sochacki, D. A. Warne, and P. G. Warne.
Explicit A-Priori Error Bounds and Adaptive Error Control for Approximation of Nonlinear
Initial Value Differential Systems. Computers and Mathematics with Applications. Vol. 52,
(2006), pp. 1695-1710.

[7] Sohrab Effati and Mohammad Hadi Noori Skandari. Optimal Control Approach for Solving
Linear Volterra Integral Equations. International Journal of Intelligent Systems and Appli-
cations. Vol. 4, (2012), pp. 40-46.

[8] Alan Goldfine. Taylor Series Methods for the Solution of Volterra Integral and Integro-
Differential Equations. Mathematics of Computation. Vol. 31, no. 139, (Jul., 1977), pp.
691-707.

[9] Wolfgang Hackbusch. Integral Equations: Theory and Numerical Treatment. Springer Sci-
ence and Business Media, Boston, 1995.

[10] Herbert B. Keller. Numerical Methods For Two Point Boundary Value Problems. Blaisdell
Publishing Co., Waltham, Massachusets, 1968.

[11] M. Lal and D. Moffat. Picard’s Successive Approximation For Non-Linear Two-Point
Boundary-Value Problems. Journal of Computational and Applied Mathematics. Vol. 8, no.
4, (1982), pp. 233-236.

[12] Yasamin Mujahed and Marwa Shehadeh. Finite Difference Methods For Linear and Nonlin-
ear ODE And Modeling With Matlab. Preprint.

[13] G. Edgar Parker and James S. Sochacki. Implementing Picard Methods. Neural Parallel and
Scientific Computations. Vol. 4, no 1, (1996), pp. 97-112.

[14] W. A. Robin. Solving Differential Equations Using Modified Picard Iteration. International
Journal of Mathematical Education in Science and Technology. Vol. 41, no. 5, (2010), pp.
649-665.

102

[15] James S. Sochacki. Polynomial ODEs - Examples, Solutions, Properties. Neural Parallel
and Scientific Computations. Vol. 18, (2010), pp. 441-450.

[16] A. Vahidian Kamyad, M. Mehrabinezhad, and J. Saberi Nadjafi. A Numerical Approach for
Solving Linear and Nonlinear Volterra Integral Equations with Controlled Error. IAENG
International Journal of Applied Mathematics. Vol. 40, no. 2, (2010), pp. 27-32.

