
DISTRIBUTED HIERARCHICAL EVENT MONITORING FOR SECURITY
ANALYTICS

by

Mohiuddin Ahmed

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Computing and Information Systems

Charlotte

2024

Approved by:

Dr. Jinpeng Wei

Dr. Bei-Tseng Chu

Dr. Yongge Wang

Dr. Yasin Raja

ii

©2024
Mohiuddin Ahmed

ALL RIGHTS RESERVED

iii

ABSTRACT

MOHIUDDIN AHMED. Distributed Hierarchical Event Monitoring for Security
Analytics. (Under the direction of DR. JINPENG WEI)

The unprecedented increase in the number and sophistication of cyber-attacks (e.g.,

advanced persistent threats or APTs) has called for effective and efficient threat-

hunting techniques and robust security defenses. Various events (host level or network

level) can be readily captured today. Analyzing such events can offer great insights

into both ongoing attacks and the security posture of the system under protection.

This dissertation presents a distributed hierarchical event monitoring agent architec-

ture to facilitate two important aspects of cyber defense: efficient threat hunting and

the enforcement assessment of critical security controls (CSCs).

Efficient and Scalable Threat Hunting. Although the end hosts and net-

working devices can record all benign and adversarial actions and use them for threat

hunting, it is infeasible to monitor everything. The existing centralized threat-hunting

approach continuously collects monitored logs and transfers them to the central server,

which incurs high memory usage and communication overhead and thus creates scala-

bility issues on the monitored network. Besides, single event matching on the end-host

devices to detect attacks generates false alerts, causing the alert fatigue problem. To

overcome the limitations of existing tools and research works (i.e., monitoring ev-

erything, memory requirement, communication overhead, and many false alerts), we

present a distributed hierarchical monitoring agent architecture in this dissertation.

This architecture detects attack techniques at the agent level, classifies composite and

primitive events, and disseminates detected attack techniques or subscribed event in-

formation to the upper-level agents or managers. This solution advances the current

methodologies in threat hunting through the adoption of hierarchical event filtering-

based monitoring, significantly enhancing the scalability of monitoring tasks and re-

iv

ducing memory usage and communication overhead without compromising the accu-

racy of the state-of-the-art centralized threat-hunting approaches. Our evaluation of

both simulated attack use cases and the DARPA OpTC attack dataset shows that

the proposed approach reduces communication overhead by 43% to 64% and mem-

ory usage by 45% to 60% compared with centralized threat-hunting approaches while

enabling local decision-making and maintaining the same accuracy of threat-hunting

by state-of-the-art centralized approaches.

CSC Enforcement Assessment. Organizations like NIST and CIS (Center for

Internet Security) provide cyber security frameworks (CSF) and critical security con-

trols (CSCs) as best practice guidelines to enforce cybersecurity and defend against

attacks. These guidelines use well-defined measures and metrics to validate the en-

forcement of the CSCs. However, analyzing the implementations of security products

to validate CSC enforcement is non-trivial. First, the guidelines are not fixed in

order to adapt to the evolution of attack techniques. Second, manually developing

measures and metrics to monitor and implementing those monitoring mechanisms are

resource-intensive tasks and massively dependent on the security analyst’s expertise

and knowledge. To tackle those problems, we use large language models (LLMs)

as a knowledge base and reasoner to extract measures, metrics, and detailed steps

of the monitoring mechanism implementation from CSC descriptions to reduce the

dependency on human expertise. Our approach used few-shot learning with chain-of-

thought prompting to generate measures and metrics, and then generated knowledge

prompting for metrics implementation on top of our distributed hierarchical monitor-

ing agent architecture. Our evaluation shows that using LLMs to extract measures

and metrics and monitoring implementation mechanisms can reduce dependency on

humans and semi-automate the extraction process. We also demonstrate metric im-

plementation steps using generated knowledge promoting with ChatGPT.

v

ACKNOWLEDGEMENTS

My gratitude extends to all the collaborators and committee members whose curios-

ity, insights, and support were instrumental in completing this dissertation. Special

thanks to my advisor, Dr. Jinpeng Wei, for his invaluable help in broadening my

understanding of research within the security field, his proactive guidance, and his

commitment to fulfilling the milestones of my Ph.D. research. I am also grateful to

Dr. Ehab Al-Shaer for his mentorship throughout my Ph.D. career and for providing

valuable perspectives on my dissertation topics. My appreciation also goes to Dr.

Bill Chu and Dr. Yongge Wang for their feedback.

Above all, I sincerely appreciate my wife, Dr. Nasheen Nur, for her reliable support

and patience throughout my doctoral journey. This achievement would not have been

possible without the unwavering support of my amazing family and friends.

vi

TABLE OF CONTENTS

LIST OF TABLES ix

LIST OF FIGURES x

CHAPTER 1: Introduction 1

1.1. Motivation 4

1.2. System Overview 5

1.3. Research Challenges 7

1.4. Our Contributions 8

1.5. Thesis Outline 11

CHAPTER 2: Background Knowledge 12

2.1. Event Tracing for Windows (ETW) 12

2.2. Centralized Log Monitoring Agent Infrastructure and SPLUNK 13

2.3. MITRE ATT&CK Framework 14

2.4. Critical Security Controls 15

2.5. LLM and Prompt Engineering 16

CHAPTER 3: SCAHunter: Scalable Threat Hunting through Decentral-
ized Hierarchical Monitoring Agent Architecture

18

3.1. Introduction 18

3.2. Related Works 24

3.3. Problem Formalization 25

3.4. Distributed Hierarchical Monitoring Agent Architecture
Overview

30

3.4.1. Console Agent (CA) or Manager 31

vii

3.4.2. Composite Event Detector Agent (CEDA) 32

3.4.3. Event Filtering Agent (EFA) 32

3.4.4. Agent Communication Protocol 33

3.4.5. ESR Decomposition and Agent Hierarchy Generation. 35

3.4.6. Distributed Hierarchical Monitoring Use Case Demon-
stration

38

3.5. Implementation and Evaluation 40

3.5.1. Implementation Details 40

3.5.2. Evaluation 42

3.6. Static ESP rule generation for Attack Signature 50

3.7. Conclusion, Limitations and Future Work 53

CHAPTER 4: Prompting LLMs to Enforce and Validate CIS Critical
Security Controls

55

4.1. Introduction 55

4.2. Related Works 60

4.3. Overview of the CSC Validation 62

4.3.1. CSC Ontology 63

4.3.2. KMI and KEI Extraction and Measurement: Manual
Approach

64

4.3.3. KMI and KEI Extraction and Measurement: Prompt-
ing the LLM

66

4.3.4. CSCMonitor: Hierarchical Monitoring of Extracted
Measures

69

4.4. CSC enforcement validation using Prompt engineering: a case
study

70

viii

4.5. Evaluation 75

4.5.1. Metric Implementation Demonstration using LLM 81

4.6. Conclusion and Discussion 85

CHAPTER 5: Conclusions 88

REFERENCES 91

APPENDIX A: 97

A.1. CSC Safeguard 97

ix

LIST OF TABLES

TABLE 4.1: Human and LLM-generated Measures and Metrics for Safe-
guard 5.1

87

TABLE 4.2: Measures and Metrics for CSC 5.3 generated by LLM 87

TABLE A.1: CSC safeguard from version 8 and sub-control from version
7

98

x

LIST OF FIGURES

FIGURE 1.1: System Overview 6

FIGURE 2.1: ETW Architecture 12

FIGURE 3.1: Distributed Hierarchical Monitoring Agent Architecture 30

FIGURE 3.2: Generated agent hierarchy 38

FIGURE 3.3: Implementation of distributed hierarchical monitoring agent
architecture

41

FIGURE 3.4: Low-level Attacker Activities in OpTC Dataset 43

FIGURE 3.5: Performance and Scalability Evaluation of hierarchical mon-
itoring agent architecture based on Simulated Attack Use Cases

45

FIGURE 3.6: Performance and Scalability Evaluation of hierarchical mon-
itoring agent architecture based on OpTC Attack Dataset

46

FIGURE 3.7: Data source to technique coverage 48

FIGURE 4.1: CSC validation approach 62

FIGURE 4.2: CSC Ontology 67

FIGURE 4.3: CoT prompting flow 69

FIGURE 4.4: Zero-shot prompting for CSC Ontology 71

FIGURE 4.5: CoT prompting for CSC Ontology 72

FIGURE 4.6: CoT prompting for Measures and Metrics 73

FIGURE 4.7: Generated knowledge prompting for Metric Implementation 74

FIGURE 4.8: Evaluation of generated Metrics and Measures with LLM 75

FIGURE 4.9: Prompting to evaluate Measures and Metrics 78

xi

FIGURE 4.10: Semantic Similarity, Novelty, Correctness evaluation be-
tween LLM-generated and human-labeled metrics, and Correlation
between human evaluation and LLM evaluation (all the evaluation
done with ChatGPT-3.5)

78

FIGURE 4.11: Generated knowledge prompting for dormant account de-
tection implementation

82

xii

LIST OF ABBREVIATIONS

CA Console Agent.

CEDA Composite Event Detector Agent.

CIS Center for Internet Security.

CSC Critical Security Control.

CSF Cyber Security Framework.

EFA Event Filtering Agent.

LLM Large Language Model.

NIST National Institute of Standards and Technology.

CHAPTER 1: Introduction

Recent years have witnessed a surge in cybersecurity threats, including the emer-

gence of advanced persistent threats (APTs) [1], characterized by a level of sophis-

tication that is unparalleled in history [2]. The Sophos threat report indicates a

significant rise in APTs and ransomware incidents, jumping from 37% in 2020 to 78%

in 2021 [3]. These threats employ a variety of attack methodologies and innovative

procedures, often involving multiple steps to compromise a target. For instance, one

common approach involves the use of spear phishing emails [4] to gain initial access,

followed by drive-by download attacks [5] to exploit vulnerabilities, and exfiltration

of sensitive data from the breached system [6, 7]. Interestingly, even benign pro-

grams can be manipulated by attackers to launch these sophisticated campaigns [8].

These types of cyber attacks successfully circumvent signature-based intrusion detec-

tion systems by leveraging zero-day vulnerabilities, exploiting trusted applications,

and utilizing threat emulation tools like Metasploit, Cobalt Strike, and Mimikatz.

Adopting stealthy tactics, these attacks aim to remain under the radar of anomaly

detection systems while pursuing objectives such as data exfiltration and encryption.

The intricate and expansive nature of organizational networks, coupled with the

labor-intensive process of investigating attacks, allows attackers to maintain a pres-

ence within systems for prolonged periods. Mandiant’s research highlights that the

global average duration before detection of such threats is 24 days [9], with the im-

pact on organizations increasing dramatically the longer attackers go undetected.

According to IBM’s security report, the financial repercussions of data breaches from

ransomware attacks escalated from $3.86 million in 2020 to $4.24 million in 2021,

with breaches taking an average of 287 days to be identified and contained [10]. This

2

lengthy detection timeframe underscores the inadequacy of traditional intrusion de-

tection systems (IDS) in facilitating prompt and effective threat identification.

To combat these threats, an array of monitoring tools have been deployed to detect

and log such malicious activities [11, 12], with the resultant data being stored as

logs on the endpoint devices. Several methodologies and tools for centralized and

distributed monitoring have been suggested in the literature (e.g., [13, 14, 15, 16, 17]).

Despite their specific design intentions and goals, these solutions often fall short in

terms of scalability for distributed environments and lack the necessary adaptability to

accommodate diverse monitoring requirements. The limitations of these approaches

are notable: some are designed exclusively for analyzing network traffic [15], others

are tailored towards network fault diagnosis [17, 13], existing threat hunting tools

are required to monitor everything in the system, and single event matching may

create the alert fatigue problem by generating an enormous amount of false alerts. In

addition to these tools, several security frameworks and guidelines, such as the NIST

Cybersecurity Framework (CSF) and the Center for Internet Security (CIS) Critical

Security Controls (CSC), have been developed to fortify systems against such threats.

These frameworks recommend strategies such as benchmarking system configurations

or analyzing system-generated event logs to ascertain the implementation and efficacy

of security controls within an organization’s IT infrastructure.

Critical Security Controls (CSCs) are extensively adopted by organizations of var-

ious sizes, and an expanding corpus of research addresses their application and rein-

forcement. A principal obstacle in deploying the CIS CSCs lies in the meticulous and

thorough enforcement and implementation of these controls, a process known to be

intricate and demanding substantial time investment. It is vital to have a comprehen-

sive grasp of the controls, the procedural steps for their deployment to be established,

and continuous assessment of the CSC enforcement quality.

There is a scarcity of support available to facilitate the adoption and reinforcement

3

of the CIS CSCs. Though the CIS offers a range of tools and resources, including a self-

evaluation questionnaire, a detailed checklist, and a guide for implementation [18, 19],

there has been no research on assessing the enforcement quality of those tools. Addi-

tionally, various third-party vendors provide tools and services designed to assist in

the effective implementation and enforcement of these controls [20, 21]. Following the

implementation of the CIS CSCs, it is imperative to undertake validation exercises

such as vulnerability assessments, penetration testing, and security audits to ascer-

tain the effectiveness and correct application of the controls. Although guidelines

exist for the CSC’s implementation assessment, studies focusing on the evaluation of

enforcement strategies remain scarce [22].

In this dissertation, we present SCAHunter: a distributed hierarchical event moni-

toring approach that can be used for attack technique detection at lower level (agent

level) and TTPs (Tactics, Techniques, and Procedures) detection at the higher level

(manager level), and assessment of the CSC enforcement quality. Our SCAHunter de-

tects attacks with the same accuracy as the state-of-the-art centralized threat-hunting

approaches while reducing communication overhead by 43% to 64% and memory usage

by 45% to 60% compared with centralized threat-hunting approaches. We also present

an LLM (Large Language Model) prompting approach to automate measure and met-

rics generation, and measure and metrics implementation steps extraction from the

CIS CSC descriptions. For the automated generation of measures, metrics, and im-

plementation, we prompt LLM with few-shot prompting, chain-of-thought promoting,

and generated knowledge prompting. Our evaluation shows that using prompt en-

gineering to extract measures, metrics, and monitoring implementation mechanisms

can reduce dependency on humans and semi-automate the extraction process., and

LLM-generated measures and metrics align with human-generated measures and met-

rics.

4

1.1 Motivation

SCAHunter: Scalable Threat Hunting through a Decentralized Hier-

archical Monitoring Agent Architecture (Chapter 3). Within organizations,

numerous indicators of security incidents may be overlooked on a daily basis. These

indicators are primarily identified through examining network behaviors or analyzing

computer security event logs. It is crucial to analyze these indicators as promptly as

possible to mitigate the impacts of security incidents. However, the prevalent models

for centralized event monitoring and analysis impose significant demands on resources

and exacerbate network communication burdens. This is due to the constant data

exchange between the low-level log collection agents and the central management

console. Furthermore, log management and intrusion detection systems can generate

voluminous data sets. Events correlated across various devices in dispersed system lo-

cations can further complicate analysis. The necessity to monitor numerous endpoint

devices, the presence of multiple sources of event generation within these devices, and

their geographical dispersion in a large-scale distributed system present formidable

challenges, which include enhancing performance, ensuring the monitoring system’s

robustness, and achieving scalability.

Prompting LLMs to Enforce and Validate CIS Critical Security Con-

trols (Chapter 4). CIS critical security controls (CSCs) provide only guidelines

to enforce cyber security. No automated enforcement or measuring mechanisms for

these CSCs have yet been developed. Additionally, analyzing the implementations of

security products to validate the enforcement of CSCs is infeasible. Therefore, it is

quintessential to develop formal- and data-driven approaches and automated tools to

measure the effectiveness and validate the enforcement of CSC deployment. We can

formulate the problem in the following way: a company X has invested in Y products

to implement Z CSCs. Our goal is to identify metrics and measurement procedures to

test and evaluate the quality of CSC enforcement by these products quantitatively.

5

1.2 System Overview

In this section, we present the overview of our whole framework, as shown in

Figure 1.1. The framework consists of the following modules: Event Subscription

Policy Rule Generation, Distributed Hierarchical Agent Monitoring System, Prompt

Engineering to Extract Measures and Metrics, and Prompt Engineering to Extract

Measures and Metrics Implementation. A brief overview of each module is given

below.

Event Subscription Policy (ESP) Rule Generation (Chapter 3). To sup-

port monitoring tasks, we propose an analytical language that will be used in end-host

devices to subscribe for event logs from themselves or other reachable hosts. This lan-

guage also provides support for the correlation of collected logs. A threat hunter first

derives the attack signature from the attack technique description provided in the

MITRE ATT&CK framework and threat reports of interest. Then, the threat hunter

maps the attack signature to the Event Subscription Policy (ESP) rule by using our

analytical language (more details in Chapter 3).

Distributed Hierarchical Agent Monitoring System (Chapter 3). The dis-

tributed hierarchical event monitoring system will take the ESP rule as a subscription

task, decompose it into primitive event monitoring sub-tasks, and distribute them to

the lower-level agents. This monitoring system consists of three types of agents: Event

Filtering Agent, Composite Event Detector Agent, and Console Agent. This event

monitoring system is used for cyber threat hunting and CSC validation (collecting

statistics about specific measures).

• Event Filtering Agent (EFA). EFA monitors different data sources for events

requested in the received event subscription request. Those agents are static

(we generate them initially) and continue to work until they are terminated or

subscription requests are deleted.

6

Figure 1.1: System Overview

• Composite Event Detector Agent (CEDA). A CEDA correlates or detects dif-

ferent events based on the composite event mentioned in the event subscription

tasks (ESP Rules). The hierarchical agent architecture can have multiple levels

of CEDAs. The CEDAs will be generated dynamically based on the subscription

tasks (ESP Rules).

• Console Agent (CA). The CA is the main entry point of our proposed agent

monitoring architecture. It takes subscription tasks (ESP Rules) from the user,

decomposes the task into composite events and primitive events, and generates

appropriate CEDAs and configurations for each agent.

Prompt Engineering to Extract Measures and Metrics (Chapter 4). In

order to assess the enforcement quality of a CSC safeguard, we need a list of measures

and metrics where a measure is a concrete and objective attribute, and a metric

is an abstract and subjective attribute calculated from one or multiple measures.

We leverage the power of Large Language Models (LLMs) to automatically generate

7

the measures and metrics given a CSC safeguard description. Specifically, we first

generate a CSC ontology by using chain-of-thought prompting and then use it to

generate the list of measures and metrics for the corresponding safeguard by using

zero-shot and few-shot prompting.

Prompt Engineering to Extract Measures and Metrics Implementation

(Chapter 4). The measures and metrics generated in the previous module are not

implementable because they require security analyst’s help to determine specific data

sources and attributes to measure. To remove the need for expert knowledge, we

perform additional generated knowledge prompting to generate measure and met-

ric implementation steps. Then, we translate the implementation steps to ESP rules

which will be used in a hierarchical monitoring system to collect corresponding statis-

tics about the metric to validate the corresponding CSC safeguard.

1.3 Research Challenges

This dissertation addresses the following challenges to achieve our research goals.

• On-demand Monitoring: Current studies [23, 24, 25] have aimed at maxi-

mizing data visibility by monitoring an extensive array of sources, an approach

that is not always requisite for identifying TTPs. For instance, in the context

of detecting malware execution via PowerShell using an Endpoint Detection

and Response (EDR) solution, it is not essential to monitor additional data

streams such as registries, processes, or file activities. Focusing solely on Pow-

erShell command activity is sufficient for the detection of PowerShell execution

TTPs [26].

• Event Storage and Communication Overhead: The process of centralized

threat hunting involves the persistent aggregation of monitored logs on a central

server, leading to significant memory consumption and increased communica-

tion overhead for event transmission. Such a methodology poses scalability

8

challenges within the network being monitored.

• Efficient Event Correlation: To identify attacker TTPs, current method-

ologies and investigations [27] employ a strategy of matching individual events

on endpoint devices to trigger alerts. However, this approach of matching single

events tends to produce a high volume of false alerts, leading to a phenomenon

known as alert fatigue within the realm of threat hunting [28]. For instance,

both malicious actors and legitimate users may utilize the TTP of executing

commands through the Windows command shell to run an executable on the

system. Relying solely on matching these single events for detection will result

in numerous erroneous alerts.

• Manual Measures and Metrics Development for CSC Safeguards: The

continual evolution of cyber threats necessitates frequent updates to critical

security controls (CSCs), which require the repetitive manual task of extracting

measures and metrics to align with newly introduced controls. Additionally, the

development of manual measures and metrics heavily relies on security analysts’

expertise and prior knowledge, introducing a significant dependence on their

skills.

1.4 Our Contributions

In this dissertation, to solve the challenges mentioned in section 1.3, we make the

following contributions:

• To overcome the challenges (monitoring everything, memory requirement, com-

munication overhead, and many false alerts) of existing threat-hunting tools

and research works,

– We provide a distributed hierarchical monitoring agent architecture that

optimizes monitoring tasks to reduce resource usage and communication

overhead.

9

– We provide an approximation algorithm to generate a near-optimal agent

hierarchy, so that event correlation tasks are distributed among the hosts.

– We develop an ETW-based agent to monitor signature-specific events so

that on-demand monitoring is supported.

– We demonstrate the threat-hunting process using our proposed agent ar-

chitecture. We evaluated our proposed architecture using log data gener-

ated by running three test scripts provided by Red Canary Atomic Red

Team [29], and we created attack signatures for the test scripts follow-

ing the MITRE ATT&CK technique description during the evaluation.

We also evaluated our proposed approach using DARPA OpTC attack

dataset [30]. To compare our approach with the existing centralized event

monitoring approaches for threat hunting, we also implemented centralized

event monitoring using Splunk.

• To solve challenges of automating measures and metrics development and reduc-

ing dependency on security analyst’s expertise and prior knowledge, we make

the following contributions:

– We propose a CSC safeguard ontology for the things to be extracted from

each safeguard description. We provide a prompting template used to

extract CSC safeguard ontology where CSC ontology will help develop a

chain-of-thought (CoT) prompt to extract implementation steps for a CSC

safeguard enforcement.

– We provide a few-shot prompt to extract measures and metrics given the

safeguard description and dependent safeguard. This prompt generates

new measures and metrics for safeguard enforcement compliance and safe-

guard enforcement quality.

– We provide a prompting template for evaluating LLM-generated measures

10

and metrics to reduce human labor on manual evaluation where a differ-

ent LLM is used for evaluation. With the help of Spearman, Pearson,

and Kendall Tau’s correlation coefficient value, we showed that the LLM

evaluation aligns with human evaluation.

– We demonstrate CSC safeguard enforcement implementation for multiple

measures and metrics of a safeguard with the help of CoT prompting and

generated knowledge prompting.

The dissertation is based upon the following papers:

• Mohiuddin Ahmed, Jinpeng Wei, Ehab Al-Shaer. 2023. “SCAHunter: Scalable

Threat Hunting Through Decentralized Hierarchical Monitoring Agent Archi-

tecture.” In: Arai, K. (eds) Intelligent Computing. SAI 2023. Lecture Notes in

Networks and Systems, vol 739. Springer, Cham. https://doi.org/10.1007/978-

3-031-37963-5_88.

• Mohiuddin Ahmed, Ehab Al-Shaer. 2019. “Measures and Metrics for the En-

forcement of Critical Security Controls: a Case Study of Boundary Defense.” In

Proceedings of the 6th Annual Symposium on Hot Topics in the Science of Secu-

rity (Nashville, Tennessee, USA) (HotSoS ’19). Association for Computing Ma-

chinery, New York, NY, USA, Article 21. https://doi.org/10.1145/3314058.331

7730.

• Mohiuddin Ahmed, Jinpeng Wei, and Ehab Al-Shaer. 2024. Prompting LLM

to Enforce and Validate CIS Critical Security Control. In Proceedings of the

29th ACM Symposium on Access Control Models and Technologies (SACMAT

2024), May 15-17, 2024, San Antonio, TX, USA. ACM, New York, NY, USA.

https://doi.org/10.1145/3649158.3657036.

11

1.5 Thesis Outline

The remainder of the dissertation is organized as follows:

Chapter 2 reviews critical background knowledge crucial to understand the disser-

tation, including existing event monitoring tools and approaches, cyber threat hunt-

ing using MITRE ATT&CK framework, security best practices: CIS critical security

controls, and prompt engineering to extract information from text descriptions.

Chapter 3 presents SCAHunter, a distributed hierarchical agent monitoring archi-

tecture that is used for efficient and scalable cyber threat hunting.

Chapter 4 presents our manual and prompting approaches with LLMs to extract

measures and metrics and corresponding implementation steps to assess the enforce-

ment of security best practices.

Chapter 5 summarizes our contributions, findings, and limitations.

CHAPTER 2: Background Knowledge

In this chapter, we present existing tools and approaches used in agent monitoring

and threat hunting. Moreover, we also provide an overview of existing CSC validation

tools.

2.1 Event Tracing for Windows (ETW)

ETW [31] provides a mechanism to collect and store events generated by user-mode

applications and kernel-mode drivers. Windows OS provides ETW as a fast, reliable,

versatile event-tracing feature. Similar logging mechanisms exist in other operating

systems, such as audit.d for Linux systems. In this dissertation, we use ETW for event

collection from Windows OS. ETW consists of four components: 1) ETW Provider,

2) ETW Consumer, 3) ETW Session, and 4) ETW Controller, as shown in Figure 2.1.

ETW Provider is the conceptual agent responsible for generating and writing events

into an ETW Session. When integrating a software component with ETW, an ETW

Provider is established to detail the events it generates. During registration, the ETW

Provider assigns a unique provider ID to ETW. After registering an ETW provider

Figure 2.1: ETW Architecture

13

with the ETW Session, an ETW Controller can be used to enable or disable event

tracing from a specific ETW Provider.

The ETW Session accepts and buffers events received from the registered ETW

Provider. Typically, it generates a trace file to record these events and can simulta-

neously transmit them in real-time to consumer applications. To manage the flushing

of buffer data to the ETW log file and ETW Consumer, a dedicated write thread is

activated within the ETW Session.

ETW Controller is an application that orchestrates ETW provider, ETW Session,

and ETW Consumer.

An ETW Consumer pulls events in real time, either from an ETW Session or log

files. It can pull events from multiple ETW sessions concurrently.

2.2 Centralized Log Monitoring Agent Infrastructure and SPLUNK

A log management infrastructure typically comprises three modules: log genera-

tion, log analysis and storage, and log monitoring. The log generation module involves

hosts making their logs available to log servers in the second tier. This is performed

in two different ways. The exact method depends on the log type and the host and

network controls. In one way hosts run some services to send their log data over the

network to log collection servers. Alternatively, hosts allow the log servers to pull the

log data from them. The logs are often transferred to the log receivers either in a

real-time or near-real-time manner or in occasional batches based on a schedule.

The log analysis and storage module is composed of one or more log servers receiving

log data from the hosts. These log receivers are also called collectors or aggregators.

To facilitate log analysis, automated methods of converting logs from multiple formats

to a single standard format need to be implemented. Syslog format of logging is often

used for this purpose.

The log monitoring module contains consoles for monitoring and reviewing log

data and the results of automated analysis. Consoles may also be used for report

14

generation, management dashboards, and log baselines as part of this tier.

Log management infrastructures typically perform several functions that assist in

the storage, analysis, and disposal of log data. These functions are normally per-

formed in such a way that they do not alter the original logs. General functions of log

management infrastructure include log parsing, event filtering, and event aggregation.

On the storage side, log management has to provide for log rotation, log archival, log

compression, log reduction, log conversion, log normalization, and log file integrity.

Event correlation, log viewing, and log reporting are some of the analysis functions

of a log management infrastructure. Security information and event management

(SIEM) software such as SPLUNK provides the log management infrastructure en-

compassing log analysis, storage, and monitoring tiers. What sets SIEM products

(e.g., SPLUNK) apart from traditional log management software is the ability to

perform event correlation, alerting, incident management, reporting and forensic in-

vestigation based on event analysis. There are many SIEM solutions commercially

available today, and these solutions provide different sets of features and additional

add-ons. SIEM Technology (e.g., SPLUNK) aggregates the event data produced by

security devices, network devices, systems, and applications. The primary data source

is log data, but SIEM technology can also process other forms of data. Event data

combines contextual information about users, data, and assets. The data is normal-

ized so that events from disparate sources can be correlated and analyzed for specific

purposes, such as network security event monitoring, user activity monitoring, or com-

pliance reporting. The technology provides real-time security monitoring, historical

analysis, and other support for incident investigation and compliance reporting.

2.3 MITRE ATT&CK Framework

MITRE ATT&CK [26] is an open-source knowledge base and public effort to cate-

gorize and discover new attacker action execution procedures, intents, and final goals.

There are 156 techniques, 261 sub-techniques, and 12 tactics. Every technique de-

15

scribes one or multiple ways of achieving a specific capability or goal. Every tactic

defines what capability or goal an attacker is trying to achieve by executing corre-

sponding techniques or sub-techniques.

2.4 Critical Security Controls

The Center for Internet Security (CIS) [32] publishes 20 critical security controls

(CSCs), which contain a total of 171 sub-controls. According to CIS, these CSCs

provide guidelines not only to block the initial compromise of the cyber systems but

also to detect already compromised systems and prevent or block post-compromise

adversarial actions. These guidelines also provide ways to reduce the attack surface

by hardening device configurations, identifying compromised systems, and disrupting

the attacker’s command and control communications. These CSCs are now widely

used by industry and government organizations to enhance and enforce cyber security.

There are many solution providers who claim to implement these top 20 CSCs. For

instance- Rapid7 global service [20] implements the top 20 CSCs and is verified by

SANS as a top solution provider. AlienVault [33] is also known as a top solution

provider for top 20 CSCs. Moreover, a genuine effort has been made by the NSA,

NIST, and other cyber security counsels to establish these CSCs as standards or best

practices for enforcing cybersecurity.

CIS provides CIS Benchmark [32] tools as a prescriptive configuration recommen-

dation for more than 25 vendor product families. They represent the consensus-based

effort of cybersecurity experts globally to help protect systems against threats more

confidently. They also provide CIS-CAT [32] as a tool to assess the CIS benchmark

and CIS-CSAT [32] to track the implementation of the CSC. Those tools check specific

system configurations to validate a benchmark; they also map the benchmark to CSC.

Though verifying a configuration may provide a quantitative measure of CSC imple-

mentation, no qualitative approach to assess the effectiveness of CSC implementation

has been developed yet.

16

2.5 LLM and Prompt Engineering

Large Language Models (LLM) are pre-trained deep learning models in which a

transformer neural network consisting of an encoder and decoder with self-attention

is used as the underlying neural network architecture. Those models are trained

on vast amounts of data, enabling them to perform a range of Natural Language

Processing (NLP) tasks, such as question answering, classification, summarization,

text understanding, text generation, and reasoning. Since LLMs are trained with

vast amounts of data, one of the emergent abilities of LLMs is in-context learning,

which can be used for question-answering and reasoning [34].

Prompt Engineering is the process of guiding LLMs to generate desired outputs.

Even though an LLM attempts to mimic humans, it requires detailed instructions to

create high-quality and relevant output. In prompt engineering, the prompt engineer

chooses the most appropriate formats, phrases, words, and symbols that guide the

LLM in interacting with users more meaningfully. A prompt is a task instruction

described in natural language text that requests the LLM to perform a specific task.

To get the desired output from the LLM, the following prompt development trends

are encouraged [35]: 1) Use low-level pattern: instead of using terms that require

background knowledge to understand, use various patterns about the expected out-

put; 2) Itemize instruction: turn descriptive attributes into bulleted lists. If there are

any negation statements, turn them into assertion statements; 3) Break down a task

into multiple simpler tasks; 4) Enforce constraint: add explicit textual statements of

output constraints. and 5) Specialize the instruction: customize the instructions so

that they directly speak to the intended output.

Zero-shot prompting or direct prompting is a form of prompting where no examples

or demonstrations of the task are provided. Rather, only instruction about a task is

provided to the LLM. Fine-tuned language models are zero-shot learners [36].

Few-shot prompting is a way to elicit responses from LLMs. A few examples of

17

questions and corresponding answers are fed to the LLM, and the prompter asks the

LLM to answer the next question by following the examples. According to [36, 37],

LLM performance is improved if a demonstration of the task is given to the model in

addition to the task-specific instructions.

Chain-of-Thought Prompting (CoT) is a form of few-shot prompting for reasoning

tasks where a prompt consists of a triplet <input, chain of thought, output> that

is presented to the LLM as a question. This CoT prompting approach divides the

whole prompt into a series of intermediate reasoning steps that lead to the final out-

put. According to Wei et al. [34], CoT prompting significantly improves the complex

reasoning capabilities of LLMs.

Generated Knowledge Prompting is a form of prompting where knowledge is gen-

erated and extracted from the LLM first, then the generated knowledge is provided

as additional input to the LLM to answer a question. According to [38], generated

knowledge prompting facilitates common sense reasoning tasks in LLMs.

In this dissertation, we used LLM and prompt engineering extensively to extract

critical entities and knowledge from security guidelines.

CHAPTER 3: SCAHunter: Scalable Threat Hunting through Decentralized

Hierarchical Monitoring Agent Architecture

This chapter presents a scalable, dynamic, flexible, and non-intrusive monitoring

architecture for threat hunting. The agent architecture detects attack techniques at

the agent level, classifies composite and primitive events, and disseminates seen at-

tack techniques or subscribed event information to the upper-level agent or manager.

The proposed solution based on our published works [39] offers improvement over ex-

isting approaches for threat hunting by supporting hierarchical event filtering-based

monitoring, which improves monitoring scalability. It reduces memory requirement

and communication overhead while maintaining the same accuracy of threat hunting

in state-of-the-art centralized approaches.

3.1 Introduction

In recent years, there has been an increase in cyber attacks including advanced

persistence threats (APTs) and ransomware[1], and the techniques used by the at-

tacker have reached an unprecedented sophistication [3]. According to Sophos threat

report [3], APT and ransomware attacks increased from 37% in 2020 to 78% in 2021.

These attacks evade signature-based intrusion detection systems by exploiting the

zero-day vulnerability, whitelisted applications and threat emulation tools (Metas-

ploit, Cobalt Strike, Mimikatz). They use a low and slow approach to avoid trig-

gering anomaly detection while working on the attack goals such as exfiltration and

encryption. Due to the diverse and sprawling nature of organizational network, and

time-consuming nature of attack investigation, attackers can dwell in the system for

extended periods. Mandiant reports that the global average dwell time of the adver-

19

sary is 24 days [9]. The damage incurred by the adversary on an organization increases

exponentially with increasing dwell time. According to the IBM security threat re-

port [10], data breach damage from ransomware attacks increased from $3.86 million

in 2020 to $4.24 million in 2021, and the time to identify and contain the data breach

is, on average, 287 days. The high threat detection time indicates that traditional

IDS does not make the breakthrough in real-time threat hunting.

Considering the shift in threat actors and unprecedented sophistication in adversary

activities, the organization deploys Endpoint Detection and Response (EDR) solu-

tions and System Information and Event Management (SIEM) solutions to record,

monitor continuously, and analyze low-level system logs in end-host devices. The

EDR solutions detect threats by matching low-level system events against a knowledge

base of adversarial TTPs (Tactics, Techniques, and procedures). MITRE ATT&CK

framework [26] provides a knowledge base of TTPs developed by domain experts by

analyzing real-world APTs. The SIEMs collect low-level system logs or alerts through

a collector, sensor, or EDR agent installed in the end-host devices to the manager

(central server). A threat hunter uses SIEM to analyze and correlate collected logs

to detect adversary activities during the threat hunting process proactively. While

such centralized event correlation facilitates causality analysis of attacker activities, it

presents the following challenges in threat hunting at a large-scale distributed system:

• On-demand Monitoring: Existing researches [23, 24, 25] try to monitor

everything to give data visibility as much as possible, which is not necessary for

detecting a TTP. For example, while an EDR solution tries to detect PowerShell

execution of malware, it is not necessary to monitor other data sources (reg-

istries, processes, file operations); instead, monitoring the PowerShell command

is enough to detect PowerShell execution TTPs [26].

• Event Storage and Communication Overhead: The centralized threat

hunting process continuously collects monitored logs to the central server, which

20

incurs high memory usage and communication overhead to transfer events to

the central server. This approach introduces scalability issues on the monitored

network.

• Efficient Event Correlation: To detect attacker TTP, existing solutions

and research [27] use single event matching on the end-host devices and gen-

erate alerts. Unfortunately, such a single event matching approach generates

many false alerts, causing the alert fatigue problem [28] in threat hunting. For

example, adversary and benign users can use Windows command shell execu-

tion TTP to execute an executable on the system. Detection based on the single

event matching will generate many false alerts.

Recent works on threat hunting use causality analysis [40, 41, 24, 25], cyber threat

intelligence [23], and MITRE ATT&CK technique detector [23] to reduce mean-time-

to-know during the post-breach threat hunting process. These causality analysis

approaches incrementally parse low-level audit logs generated by system-level logging

tools (e.g., Sysmon, Event Tracing for Windows, and auditd) into causal graphs

(provenance graphs). The causal graph encodes the dependency between subjects

(processes, threads) and objects (files, registries, sockets) to provide the historical

context the threat hunter needs to correlate attacker activities and understand alerts.

In [40, 42], the authors developed detectors or rules for attack techniques and mapped

each detector/rule to the MITRE technique. According to a recent survey about EDR

solutions by Gartner, all top 10 EDR solutions use MITRE ATT&CK framework to

detect adversary behaviors [43]. Such causality analysis is promising for network-wide

alert correlation and cyber intelligence.

However, the performance of causality analysis is a limiting factor for real-time

threat hunting because of the significant graph construction time ranging from hours

to days [25] and the large size of the audit logs (terabytes of logs generated within

week [25]). To improve the graph construction time, prior works [40, 41] applied

21

different graph reduction and compression techniques. In [25], the author reduces

memory usage during causality analysis by storing the most recent part of the causal

graph on the main memory and the unused casual graph on disk. In [24], the authors

generate a host-specific causal graph and network-specific causal graph and perform

multi-host analysis only if any host-based sub-graph crosses a predefined risk score.

Though graph reduction and compression and hierarchical storage reduce memory

usage to store monitored events, the causality analysis on the compressed graph has

the following limitations. Prior works perform centralized analysis and want to give

data visibility as much as possible. Thus, they try to monitor all data sources in the

end-host devices, which raises the issue of monitoring scalability and communication

overhead (collecting logs on a central server) in threat hunting. Provenance graph ex-

pansion for multi-host analysis in Holmes [40] and Steinerlog [24] creates dependency

expansion. Graph alignment in multiple hosts [23] increases the threat detection time

exponentially with the increase of event logs and network size.

To overcome the limitations (monitoring everything, memory requirement, com-

munication overhead, and many false alerts) of existing tools and research works,

we propose a monitoring architecture (Figure 3.1) using a hierarchical event filtering

approach that reduces monitoring load and communication overhead and provides

efficient event correlation that can potentially reduce false alerts. The adversary

activities follow precedence, meaning that most of the attack techniques have pre-

conditions [44], which are other attack techniques. For example, without perform-

ing the initial compromise or execution technique, an attacker will not be able to

perform the discovery and command and control technique. Similarly, an attacker

cannot perform a collection or exfiltration technique without performing a discov-

ery technique. Following the attack technique association, the SCAHunter provides

on-demand monitoring of the data sources corresponding to the monitored attack

signature. We provide on-demand monitoring by instrumenting ETW (event tracing

22

for Windows) through ETW API so that the lower-level agents only log signature-

specific events. Similarly, auditd for Linux and Endpoint Security for Mac OS can be

used for providing signature-specific on-demand monitoring.

Additionally, events/logs can be correlated in the end host devices if monitored

events or logs correlate with them. If a set of events from a set of different hosts are

required for the correlation of a monitored signature, a middle-level host nearby (in

terms of hop-count) the corresponding monitored hosts can be used for the correlation

task. Event correlation at the intermediate host will reduce the memory requirement

and communication overhead since only the correlated events will be forwarded to the

upper-level agents or manager. It will improve scalability and performance by using

hierarchical monitoring and distributed correlation while reducing the monitoring

intrusiveness.

Finally, hierarchical event filtering will reduce the number of false alert generation

problems in the current research works. Single event matching will generate many

false alarms because of similarity with benign user activities. However, it is highly

unlikely that a sequence of adversary TTPs will match with benign user activities.

For example, execution of payload through services.exe or sc.exe (T1569.002) [26]

can be used by the benign user; however, remote execution of payload through sc.exe

is highly suspicious behavior. Our proposed hierarchical filtering correlates service

creation and remote execution in a middle host, thus generating less number of alerts

by distributed event correlation. However, generating the agent hierarchy is an NP-

hard problem, which we solve using an approximation algorithm (Algorithm 1) based

on the geographical host distribution and predefined monitoring capacity of agents.

Our proposed approach does not monitor every data source; instead, it monitors

what is required to detect the current attack stage and adds a new monitoring task

on-demand based on the threat hunting progress.

Contribution. Our first contribution is to provide a distributed hierarchical mon-

23

itoring agent architecture that optimizes monitoring tasks to reduce resource usage

and communication overhead. Our second contribution is to provide an approxima-

tion algorithm to generate a near-optimal agent hierarchy, so that event correlation

tasks are distributed among the hosts. Our third contribution is to develop an ETW-

based agent to monitor signature-specific events so that on-demand monitoring is

supported. Our last contribution is to demonstrate the threat hunting process using

our proposed agent architecture. We evaluated our proposed architecture using log

data generated by running three test scripts provided by Red Canary Atomic Red

Team [29], and we created attack signatures for the test scripts following the MITRE

ATT&CK technique description during the evaluation. We also evaluated our pro-

posed approach using DARPA OpTC attack dataset [30]. To compare our approach

with the existing centralized event monitoring approaches for threat hunting, we also

implemented centralized event monitoring using Splunk.

This chapter is organized as follows: Section 3.2 surveys existing research work on

threat hunting and intrusion detection system, Section 3.3 formalizes signature gener-

ation and scalable threat hunting with SCAHunter, Section 3.4 explains SCAHunter

by describing each component of the system, attack signature decomposition algo-

rithm, an approximation algorithm to generate near-optimal agent hierarchy used by

the agent architecture for subscribe-publish based event monitoring and correlation,

and also provides a threat hunting demonstration using the SCAHunter, Section 3.5

provides implementation details and evaluation with simulated attack use cases and

OpTC attack dataset, and Section 3.7 summarizes our contributions and future re-

search tasks. The remainder of this chapter will use logs, alarms, and events inter-

changeably. It will also interchangeably use monitoring tasks, composite events, and

subscribed events.

24

3.2 Related Works

Causality Analysis. Sleuth [41], DeepHunter [45], Nodoze [27], OmegaLog [46]

and CoNAN [47] used provenance graph generation and centralized analysis on the

aggregated logs for attack detection and investigation. Holmes[40] uses correlation

among information flow to detect an APT, which can be possible only if the threat

hunter aggregates events before performing correlation. Domino[48] combines alerts

from different NIDS to detect attacks globally, using a single hierarchy level, i.e.,

manager-agent architecture. Kelifa et al. [49] proposed a misbehavior detection mech-

anism for wireless sensor network (WSN) based on clustered architecture where a

cluster head is selected based on static metrics monitored by the monitoring nodes.

Collaborative IDS (CIDS) [50] aggregate alerts from lower-level IDS to manager IDS,

and the manager performs graph-based and network-based analysis to detect intru-

sions. All of those researches aggregate logs in a central server and perform corre-

sponding analysis, which requires monitoring of all events and incurs communication

overhead to transfer the generated events to the manager.

In Swift [25], the author reduces memory usage during causality analysis by storing

the most recent part of the causal graph on the main memory and the unused casual

graph on disk. In [24], the authors generate a host-specific causal graph and network-

specific causal graph and perform multi-host analysis only if any host-based sub-

graph crosses a predefined risk score. Though graph reduction and compression and

hierarchical storage reduce memory usage to store monitored events, the causality

analysis on the compressed graph has the following limitations. They try to monitor

all data sources in the end-host devices, which raises the issue of monitoring scalability

and communication overhead (collecting logs on a central server) in threat hunting.

Provenance graph expansion for multi-host analysis in Holmes [40] and Steinerlog [24]

creates dependency expansion. Graph alignment in multiple hosts [23] increases the

threat detection time exponentially with the increase of event logs and network size.

25

Event Monitoring. Several centralized and distributed monitoring approaches

and tools have been proposed (e.g., [51, 52, 53, 54, 55, 56]) in other domains. Al-

though they have various design-specific goals and objectives, they are not scalable

for distributed monitoring, lack the flexibility to express the monitoring demands,

and require monitoring every data sources. Those proposed approaches either mon-

itor only network traffic [57], apply to network fault diagnosis [51, 58], or maintain

a static agent hierarchy [57]. Though hierarchical monitoring systems exist in other

domains (fault detection, malicious sensor node detection), they are not suitable for

threat hunting since those systems are suitable for a specific use case.

Adversarial Tactics, Techniques and Procedures. MITRE ATT&CK frame-

work [26] published a public knowledge base of TTPs consisting of 24 tactics, 188

techniques, and 379 sub-techniques used by the APT. Every MITRE ATT&CK tac-

tic published is a high-level attacker goal in a specific kill chain phase. Every MITRE

ATT&CK technique consists of one or more procedures the attacker can use to achieve

a specific goal, whereas each procedure is a unique way to achieve the corresponding

goal. MITRE ATT&CK framework also provides 129 APT groups and a subset of

the publicly reported technique used by each APT Group. MITRE also provides the

data source to monitor to detect a specific attack technique. Holmes [40] uses MITRE

ATT&CK TTP to build a set of rules and perform rule matching on the collected

logs. This approach will fail if the initial compromise is not detected and they use

centralized analysis, which incurs high memory and communication overhead. Addi-

tionally, they analyze alerts after generation, whereas SCAHunter reduces the number

of alerts generated by hierarchical filtering.

3.3 Problem Formalization

To formulate the scalable threat hunting with hierarchical agent architecture, we

formulate the attack signature and agent hierarchy generation in this section. We

formalize attack signatures and event attributes and values, events, event subscription

26

predicate, and event subscription rule (attack signature).

Basic Notation for Events, Attributes, and Subscriptions. In distributed

event monitoring systems, event producers (application collecting event logs from

specific data source) frequently generate events to report aspects of the monitored

system state. Let’s represent events reported by producers as E = {e1, e2, .., en}. Each

event ei consists of a set of attributes ai,j that has assigned values vi,j such that i and

j represent the event and attribute indices, respectively. For example, the event ei

that has M attributes is defined as follows: ei = {(ai,1, vi,1), (ai,2, vi,2), .., (ai,M , vi,M)}.

Event consumers may submit multiple subscriptions si to request monitoring and

reporting of the occurrence of specific event instances or correlation of event instances.

The set of consumers’ subscriptions can be represented as S = {s1, s2, .., sn}. Each

subscription si consists of a logical expression on event attributes. For example, if a

CA subscribes with the following, Si = {(pName, ”cmd.exe”) ∧ (isChild, true)}, the

CA is asking for subscription of all cmd.exe processes that are children of another

process.

Formulation of Event Fragmentation. By following the formulation of events

and attributes, an occurrence of event i at time t is defined as combination (conjunc-

tive) of attribute values as follows:

eti = (ai,1 = vti,1) ∧ (ai,2 = vti,2)∧, ..,

∧(ai,M = vti,M) =
M∧
j=1

ai,j = vti,j

(3.1)

If we receive a sequence of events of the same event type c within a specified

interval T , the event history hcl of event type c during the interval T can be formally

represented as follows:

hcl =
∧
l∈L

∨
t,k∈T

etl−1e
k
l where l ̸= 1, t < k (3.2)

27

which can be further formalized using the event attributes and values as follows:

hcl =
∧
l∈L

∨
t,k∈T

∧
j∈M

(atl−1,j = vtl−1,j)(a
k
l,j = vkl,j)

where l ̸= 0, t < k

(3.3)

L is the number of events in the event sequence requested, M is the number of

attributes in the event type c. For l = 1, Equation 3.2 and Equation 3.3 are reduced

to the following:

hc1 =
∨
t∈T

et1 (3.4)

hc1 =
∨
t∈T

∧
j∈M

(at1,j = vt1,j) (3.5)

For instance, a consumer requests for type c event sequence {e1, e2, e3} in time interval

T = [1− 10] and the producer reported events e1 at t = 2, e2 at t = 6 and e3 at

t = 9, then the equations 3.2 and 3.3 will be evaluated true. However, if either any

of the three event is not reported or their reporting times are not in order with the

sequence, the equations 3.2 and 3.3 will be evaluated false.

Formulation of Event Subscription Predicate. An event subscription predi-

cate is a set of logical predicates that matches the attribute values of the one or more

event instance occurrences. Therefore, we define the event predicate as a logical ex-

pression defined by the user that will be evaluated based on the attribute values of the

event occurrences. Each predicate will be evaluated to true if and only if the event

attribute values satisfy the predicate logical expression. For example, the predicate

p1 : (pName,=, ”cmd.exe”) will evaluate to False if the event generated is not cor-

responding to the cmd.exe process, but the predicate, p2 : (memAllocated,>, 65) will

evaluate to True if the event is corresponding to a memory allocation and a memory

of size greater than 65B is allocated. Therefore, we can formally define the event

predicate as follows: pijk = (aij, op, vk), where aij is the attribute j of event i, vk is

28

any value of type integer or string that can match the value of the attribute, and op

is a logical operator (such as =, <,>,≤,≥) or set operator (such as ⊃, ̸⊂,⊆,⊈, etc).

Semantically, if op is =, then pijk ⇔ aij = vk.

A predicate can specify a relationship between (same or different) attributes of

same or different events to detect the occurrence of an event correlation. Formally, a

predicate that defines a relationship between attribute k in two different events, i and

j, can be specified as follows: pijk = (aik, op, ajk), where aik, and ajk is the attribute

k of events i and j, respectively.

Formulation of Event Subscription Rule. By following the formulation of

event subscription predicates, a user can define an Event Subscription Rule (ESR)

as the logical Boolean expression of a conjunctive normal form (CNF) using multiple

predicates to match an attack signature (subscription) occurrence, Si, as follows:

ESR(e1, .., en) = (p(ei) ∨ .. ∨ p(ej)) ∧ (p(ei)

∨.. ∨ p(ej)) ∧ .. ∧ (p(ei) ∨ .. ∨ p(ej))

(3.6)

which can be formalized in the concise format as follows:

ESR(e1, .., en) =
∧

i∈N:i≤n

∨
j∈N:j≤n

p(ej) (3.7)

Formulation of Event Correlation Subscription Rule. The user can also

define a relationship that describes the correlation of multiple events. In this case,

the user is interested to be notified iff a set of correlated target events are detected

within a time window. The subscription of the Event Correlation Rule (ECR) can be

formally defined as a conjunctive normal form (CNF) as follows:

ECR(e1, .., en) = (ESR(ei) ∨ ESR(ej)) ∧ (ESR(ei)

∨ ESR(ej)) ∧ .. ∧ (ESR(ei) ∨ ESR(ej)) (3.8)

29

This formulation offers the flexibility to define any general ECR subscription re-

quest to define an arbitrary logical relationship between event occurrences. Note that,

in the simplest form, an ECR might contain a single event detection.

Formulation of Event Subscription Policy. An Event Subscription Policy

(ESP) is defined as a list of ECR rules sequentially evaluated according to their

priorities based on receiving events to classify and forward notifications to subscribing

consumers (CA). If more than one rule is triggered, all corresponding subscription

actions will be taken.

Furthermore, ESP of n ECR rules can be formally defined as

ESP =
n∨

i=1

ECRi (3.9)

The above formulation offers the maximum flexibility in defining subscriptions for

events. It allows specifying various arbitrary lengths of conjunctive predicates between

event attributes and any arbitrary disjunctive relation between the predicates.

Therefore, given the attack signature or subscription request Si as ESR and a

network topology, the goal of the hierarchical monitoring architecture is to generate

optimal agent hierarchy such that communication cost and memory usage is reduced,

and task is distributed among the agents. The optimal agent hierarchy generation

problem can be formalized as follows-

minimize
∑

agent_count(Si),

minimize
∑

Data_Source_Count(Si)

(3.10)

subject to

monitoring_cost < threshold

To develop the hierarchical monitoring architecture, we have to address the following

problems: 1) Given the subscription request and network topology, generate the

30

Figure 3.1: Distributed Hierarchical Monitoring Agent Architecture

optimal number of middle-level agents, maintaining monitoring capacity constraints

of each agent, 2) Given the subscription request, determine the optimal number of

data sources to monitor, 3) develop monitoring agent for the specific data source.

The following section provides the agent architecture, optimal agent hierarchy, and

data source monitor generation.

3.4 Distributed Hierarchical Monitoring Agent Architecture Overview

In this section, we describe each component of SCAHunter as shown in Figure 3.1.

Our SCAHunter consists of three types of agents- console agent or manager (CA),

composite event detector agent (CEDA), event filtering agent (EFA), and data sources

to monitor. The user of this agent architecture (or a cyber threat hunter) provides a

single event or group of events or correlated event subscription requests (i.e., attack

signatures) using the CA. The CA decomposes the subscription request based on the

formalization provided in Section 3.3. The CA also generates the required number of

CEDAs using the decomposed subscription request. It determines appropriate EFAs,

and agent hierarchy such that communication overhead is minimum and subscription

31

task monitoring is distributed across the hosts in the network. Since the optimal

agent hierarchy generation is an NP-hard problem, our CA uses an approximation

algorithm to generate a near-optimal agent hierarchy. Then, the CA sends the de-

composed event subscription requests to the corresponding CEDAs and EFAs through

a dedicated configuration channel. Upon receiving a subscription request from the

CA, an EFA will start monitoring corresponding data sources. Whenever the EFA

detects a subscribed event, it publishes detected events to the upper-level (parent)

CEDA through task-specific channels as alerts containing task id and event details.

The CEDA or EFA also replies to the CA through a dedicated configuration channel

to activate the next monitoring task and deactivate the detected monitoring task to

detect a subscription request while supporting on-demand monitoring.

3.4.1 Console Agent (CA) or Manager

The Console Agent takes an attack signature as input (ESR) from the cyber threat

hunter at the beginning of the threat hunting process. This agent’s first task is

to decompose the subscription request received from the threat hunter using the

formalization described in Section 3.3. The CA’s second task is to determine how

many CEDA levels to generate and how many CEDAs to develop and where to place

those generated CEDAs based on the decomposed event subscription request, the data

source to monitor, and the location of end-host devices. It also needs to determine

EFA(s) where the event subscription request will be sent. After determining the

CEDAs and EFAs, the CA generates the corresponding CEDA and configures them.

After a decision as a reply from CEDA is available, it informs the threat hunter about

the detected TTPs or attack techniques.

Since the number of generated CEDAs will impact resource usage and communi-

cation overhead within the CA and the network, appropriate CEDA number, level,

and place are required. We can formulate the determination of the proper number

of CEDAs required as Generate a minimum number of CEDAs that can cover all

32

required EFAs for serving the event subscription request. We can formulate this prob-

lem as a set-cover problem that is NP-complete. One way to solve this problem is to

use heuristics on each CEDA or EFA’s predefined monitoring capacity and the geo-

graphical distribution of end-host devices. Specifically, we propose an approximation

algorithm (AHG in Algorithm 1) based on these heuristics.

3.4.2 Composite Event Detector Agent (CEDA)

Composite event detector agent reduces network communication overhead (traffic

flow) between the CA and EFAs by replying to the upper-level CEDA or the CA if a

monitoring task or subscribed event is detected. The hierarchical agent architecture

can have multiple levels of CEDAs. If the CA creates one level of CEDAs, each

CEDA’s child is an EFA, and its parent is the CA. On the other hand, if the CA

creates two levels of CEDAs, the child of lower-level CEDA is an EFA, and the

parent of it is a higher-level CEDA, and the parent of the higher-level CEDA will be

the CA.

3.4.3 Event Filtering Agent (EFA)

The event filtering agent is the lowest level of the agents in the SCAHunter. It

monitors different data sources for events requested in the received event subscription

request. These agents are static: we generate them initially and continue to work

until closed or subscription requests are deleted. MITRE ATT&CK framework [26]

provides around 38 different data sources to monitor for detecting different attack

TTPs. Thus, to detect all attack techniques and sub-techniques provided by the

MITRE ATT&CK framework, we have to develop less than 38 different event filtering

agents. We developed EFAs to monitor the following data sources: ETW trace,

Netmon, and Sysmon.

33

3.4.4 Agent Communication Protocol

Since every agent in SCAHunter may consume event logs or alerts from multiple

other agents or data sources, SCAHunter uses a publish-subscribe communication

pattern for group communication among the agents. The CA, CEDA, and EFA

agents may work as producers and consumers. The CA configures CEDA and EFA

agents by publishing configuration info to the corresponding agents through the con-

figuration channel. It also consumes alerts from lower-level CEDA or EFA agents

through task-specific channels. CEDA and EFA publish detected monitoring tasks

as alerts to the upper-level CEDA or CA through task-specific channels. We use

a publish-subscribe communication pattern to facilitate the above-mentioned group

communication among the agents. Though the proposed agent architecture employs

a hierarchical structure for event monitoring and detection, it is a virtual hierar-

chy constructed by CEDAs and EFAs’ group communication over publish-subscribe

communication protocols. Using publish-subscribe communication protocols in agent

communication will improve agent hierarchys’ robustness in agent failures or network

partitioning.

34

Algorithm 1 Agent Hierarchy Generation Algorithm AHG(S,MT,A)
Input: attack signature S, monitoring task list MT , agent hierarchy A. Output: agent hierarchy A

1: if size(MT) == 1 then

2: return A ∪ {MT}

3: end if

4: for all pair(mi,mj) where mi ∈MT,mj ∈MT,mi! = mj do

5: score, correlationScore← correlation between mi and mj , (score, mi,mj)

6: end for

7: sort correlationScore based on score

8: covered← ϕ, capacity ← ϕ, ind← 0, cluster ← ϕ, index← 0

9: for all (score,mi,mj) ∈ correlationScore do

10: if mi ∈ covered and mj ∈ covered then

11: continue

12: else if mi ∈ covered then

13: index,mi ← find cluster index containing mi, None

14: else if mj ∈ covered then

15: index,mj ← find cluster index containing mj , None

16: end if

17: if mi! = None and mj ! = None then

18: clusterind, capacityind, covered← mi ∪mj , 2, covered ∪mi ∪mj

19: else if mi! = None and capacityind + 1 <= threshold then

20: clusterind, capacityind, covered← clusterind ∪mi, capacityind + 1, covered ∪mi

21: else if mj ! = None and capacityind + 1 <= threshold then

22: clusterind, capacityind, covered← clusterind ∪mj , capacityind + 1, covered ∪mj

23: else if mi! = None then

24: clusterind, capacityind, covered← mi, 1, covered ∪mi

25: else

26: clusterind, capacityind, covered← mj , 1, covered ∪mj

27: end if

28: ind← ind+ 1

29: end for

30: A← A ∪ {cluster}

31: return AHG(S,cluster, A)

35

3.4.5 ESR Decomposition and Agent Hierarchy Generation.

A cyber threat hunter provides attack signatures as ESR to the CA for the sub-

scription of related events. However, the CA needs to decompose the provided ESR

to generate the required CEDAs and determine corresponding EFAs. The first step

in the signature decomposition process is to determine primitive events. Since any

predicate containing a relationship between event attribute and specific value is a

primitive event predicate (PEi) to monitor, determining primitive events from signa-

ture is trivial. Similarly, for any predicate containing a relationship among multiple

identical or different event attributes, we can consider such predicate as a composite

event predicate (CEi) or correlation task. Primitive event decomposition Algorithm

2 (PED(S)) takes an attack signature as a monitoring task and converts it to a pred-

icate list (line 1). Next, the PED algorithm extracts primitive events and correlation

tasks based on the predicate’s event attributes, value, and relationship (lines 3-9).

Given the decomposed primitive event predicates, PEi, and correlation tasks (com-

posite event predicate CEi) to monitor, the agent hierarchy generation Algorithm 1,

AHG (MT, A), determines the intermediate agents (CEDAs) to monitor correlation

among different primitive events. If MTi,j denotes the monitoring task of agent i at

level j, we can formalize the intermediate agent generation with the following recur-

rence relation:

MTi,j =


⋃

k∈corrSet PEk, if j == 0⋃
k∈corrSetMTk,j−1, otherwise

(3.11)

Where corrSet is a set of monitoring tasks of lower-level monitoring agents which

are highly correlated either by event attribute name or value. For the EFA agent,

each primitive event predicate, PEi, is a monitoring task of the corresponding agent.

Therefore, we can determine the monitoring task for agent i at level j by clustering

monitoring tasks of a group of agents at level j − 1 based on the correlation among

36

the monitoring tasks of the agent at level j − 1. The AHG algorithm calculates the

correlation score for every pair of monitoring tasks in MT (lines 4-6) and sorts the

estimated correlation score (line 7). Next, the AHG algorithm greedily selects the

pair with the highest correlation score.

It adds each monitoring task in the pair to a cluster if it is not present in the

existing cluster yet (e.g., for the pair (mi,mj), if mj is present in an existing cluster

but mi is not, the algorithm tries to add mi to the cluster of mj) (lines 17-22).

The AHG algorithm creates a new cluster if the existing cluster’s size has reached a

threshold (lines 23-27). This way, the algorithm greedily clusters all monitoring tasks

with a high correlation. In the end, each cluster represents the CEDA of the current

agent level. The generated clusters for the current level will be the monitoring tasks

for the next level (line 31). The above process continues until only one monitoring

task remains (line 1). Since every CEDA is performing a part of the monitoring

task, the monitoring task is distributed across the hosts in the network. Moreover,

since monitoring tasks in a CEDA have a high correlation, all the predicates related

to those monitoring tasks can be calculated with optimal communication; thus, the

SCAHunter reduces overall communication overhead. This agent hierarchy generation

algorithm starts by taking all primitive events as monitoring tasks.

37

Algorithm 2 Primitive Event Decomposition Algorithm PED(S)
Input: attack signature, S

Output: primitive event to monitor, MT and correlation task, CT

1: predicates← convert signature S to predicate list

2: MT,CT ← ϕ, ϕ

3: for all pi ∈ predicates do

4: if pi contains relation among event attribute and value then

5: MT ←MT ∪ {pi}

6: else

7: CT ← CT ∪ {pi}

8: end if

9: end for

10: return MT ∪ CT

The agent hierarchy generation starts by calling AHG(S, PED(S), ϕ), or Algo-

rithm 1, with the attack signature S to monitor, the decomposed monitoring tasks

calculated by PED(S), or Algorithm 2, in linear time, and an empty cluster list. Algo-

rithm 2 decomposes the given attack signature S to monitor in linear time. Since the

AHG algorithm runs recursively to cluster primitive tasks, each recursive call will re-

duce the problem size to N,N/c,N/c2, N/c3, ..., 1, where c is the monitoring capacity

of each CEDA agent and N is the number of decomposed monitoring tasks (Algorithm

2). Thus, there will be logcN number of recursive calls to the AHG algorithm. In

each of those recursive calls, there will be N2+N2log2N
2+N2 = 2N2+2N2log2N ≈

O(N2log2N) work in the worst case. Thus the run time of the AHG algorithm

is logcN × O(N2logN) ≈ log2c × logcN × O(N2logN) ≈ log2N × O(N2log2N) =

O(Nlog2N)2. Moreover, the AHG algorithm uses O(N2) additional memory to gen-

erate the agent hierarchy.

38

Figure 3.2: Generated agent hierarchy

3.4.6 Distributed Hierarchical Monitoring Use Case Demonstration

This section will demonstrate threat hunting using SCAHunter. We use a hypo-

thetical attack signature (p1 ∧ p2 ∧ p3) that contains three primitive event predicates

(p1, p2, and p3) to monitor. We demonstrate signature decomposition, hierarchy gen-

eration, and threat hunting in a network consisting of three hosts (H1, H2, and H3).

We also assume that each generated CEDA agent has a monitoring capacity of two

and each PEi (primitive event predicate) corresponds to separate data sources. Thus,

we can say that each PEi is a monitoring task of EFA. At a high level of abstraction,

our signature decomposition Algorithm 2 groups event predicates based on event type

and host to generate PEi, which is the monitoring task of EFA. Next, the AHG al-

gorithm takes all generated PEs as monitoring tasks (MTi,j ∈ MTj) and generates

monitoring tasks (MTk,j−1 ∈MTj−1) for higher-level agents by clustering MTi,j based

on the similarity among MTi,j. For our signature, MT0 = {p1, p2, p3}.

The AHG Algorithm 1 calculates correlation score for each pair of MTi,j. For our

39

case, let’s assume p1 has a higher correlation with p2 than p3. Thus, AHG algorithm

clusters p1 and p2 together first. Since each agent has a monitoring capacity of

2, p3 requires a separate cluster. Thus, MT1 = {p1 ∧ p2, p3}. At the next step,

AHG algorithm 1 recursively generates monitoring tasks for the next level. In our

case, MT1 is the monitoring task and AHG algorithm clusters each MT1,j. Though

MT1,1 and MT1,2 does not have any similarity between them, we will cluster them

together because monitoring capacity allows for up to 2 monitoring tasks. Thus,

MT3 = {p1∧p2∧p3} which is the attack signature to monitor. At this step, Algorithm

2 stops and returns the monitoring tasks for each level. The monitoring tasks for

each CEDA will be MT = {p1, p2, p3, p1 ∧ p2}. The overall result of our algorithms is

illustrated in Figure 3.2.

The hierarchy generation algorithm will determine how many CEDAs to generate

and where to place them and what are the communication channels. Since only one

monitoring task corresponding to an attack signature will be active at a time, in the

beginning only p1 will be active in all CEDAs and p1 needs to be monitored in all

hosts. Since our use case has three hosts and each agent has a monitoring capacity

of 2, we can generate CEDA1 to monitor MR in H1 and H2 and CEDA2 to monitor

MR in H3. We launch CEDA1 in H1 or H2 and CEDA2 in H3. CEDA1 com-

municates with {H1, H2} using task specific channels (c1p1, c1p2, c1p3), and CEDA2

communicates with H3 using task specific channels (c2p1, c2p2, c2p3) and the CA com-

municates with H1, H2, H3 through configuration channel and with CEDA1, CEDA2

through task specific channels (cap1, cap2, cap3). Now, the CA will activate first moni-

toring task in CEDA1 and CEDA2 and start the appropriate EFA agent in all hosts

to monitor specific ETW provider corresponding to p1. Suppose CEDA1 detects p1,

it will notify the CA by sending a detection alert containing detected MRi through

a configuration channel. If monitoring of p1 is not required for any other signatures,

the CA will stop monitoring p1 in CEDA1 and CEDA2. It will also stop consuming

40

event logs from data source corresponding to p1 in all hosts by removing corresponding

ETW providers from active session of EFAs. The CA also activates the next moni-

toring task, p2, in all CEDAs through configuration channels. It also activates EFA

corresponding to p2 if it is not already active. This process continues until all p1, p2

and p3 is detected. This threat hunting approach through SCAHunter reduces event

storage requirements through on-demand monitoring, and the hierarchical structure

of the agent communication ensures optimal communication overhead.

3.5 Implementation and Evaluation

We implemented the SCAHunter using Python in a Windows 10 machine with

64GB RAM and multiple VM settings (two hosts, three hosts, four hosts, and five

hosts). We simulated attacker and benign user activities on all the VM settings. This

section provides implementation details of the CA, CEDAs, and EFA agents and

evaluates the SCAHunter using three simulated use cases and DARPA OpTC attack

dataset [30].

3.5.1 Implementation Details

We implemented the console agent (CA) using Python 3. The CA consists of a sig-

nature decomposition and agent hierarchy generation module, configuration module,

signature filtering module, and communication module. Given an attack signature

in ESR format and network topology as an adjacency list, the signature decompo-

sition module decomposes ESR into primitive predicates and composite predicates.

We described the decomposition process in Section 3.4.5. It also generates agent

hierarchy based on an approximation algorithm 1. After agent hierarchy genera-

tion, the configuration module configures all required agents and monitoring tasks

in the corresponding hosts. It also configures the publish-subscribe communication

protocol so that agents can communicate with a group of required agents. A CA

agent works as both a subscriber (consumer) and publisher (producer). And CA con-

41

Figure 3.3: Implementation of distributed hierarchical monitoring agent architecture

sumes (subscribe) alerts corresponding to monitoring tasks from lower-level CEDAs or

EFAs. The signature filtering module stores monitored tasks in a map data structure

to maintain constant time filtering. We implemented the composite event detector

agent (CEDA) using python 3. The CEDA consists of a filtering module and commu-

nication module. We implemented the filtering module using the same logic as the

filtering module of CA while maintaining constant time filtering. CEDAs subscribe

(consume) monitored events from lower-level CEDAs or EFAs. It also subscribes for

configuration info from the CA.

We implemented the primitive event filtering agent (EFA) using Python 3 and

CPython. The EFA consists of an event filtering module, event consumer module,

and communication module (Figure 3.3). The event filtering module stores the de-

composed monitoring task in a map (python equivalent dictionary) data structure to

do the event filtering tasks in constant time. The event consumer module consumes

data from different data sources. To ingest data from ETW trace, we use various etw

providers. Windows ETW trace provides around 1000 ETW providers to produce

event logs corresponding to different data sources. It also provides wintrace API to

collect and manage event logs from ETW. ETW trace program consists of a con-

42

troller, provider, and consumer. Our EFA agent creates an ETW trace session with

a specific ETW provider based on the data source required to monitor. The EFA

consumer module consumes event data from the created session through the win32

event tracing API. Interaction with ETW event tracing API is implemented using

CPython.

Moreover, we provided ways to monitor specific events from an ETW provider

through win32 event tracing API. For example, the Sysmon provider generates event

logs corresponding to different data sources such as process creation, network traffic,

file access, and registry access. Our EFA agent can collect process creation, net-

work connection, or file access events through event tracing API. Our EFA agent also

maintains a list of active ETW sessions. If a new monitoring request comes from the

CA, the EFA agent creates a new ETW session if required event logs can not be col-

lected from the currently active session. We implemented Sysmon and Netmon EFA

agents and ingested data from ETW Windows Sysmon provider, Winsock providers,

and Powershell provider. We also implemented the publish/subscribe communica-

tion protocols using a message broker library RabbitMQ [59]. The CA subscribes

for monitored signature and publishes configuration info and monitoring tasks to the

CEDAs or EFAs using RabbitMQ. The CEDA uses RabbitMQ to ingest alerts for

the monitored jobs from the lower-level CEDAs or EFAs and publishes the detected

monitoring tasks as alerts to the upper-level CEDA or CA. The EFA agent publishes

collected event logs from ETW trace sessions to the upper-level CEDA or CA using

RabbitMQ.

To compare our proposed event filtering approach with the existing centralized

approaches, we also implemented centralized monitoring using Splunk.

3.5.2 Evaluation

We evaluate our approach with three simulated attack scenarios (multiple at-

tacker activity sequences expressed in MITRE ATT&CK techniques) and one public

43

Figure 3.4: Low-level Attacker Activities in OpTC Dataset

attack dataset, the OpTC (Operationally Transparent Cyber) dataset released by

DARPA [30]. We use Atomic Red Team’s atomic tests [29] to generate attacker ac-

tivities in a benign user session. The atomic test case includes scripts to execute

multiple procedures of each MITRE ATT&CK technique. We generate scripts for a

sequence of attacker activities using the MITRE ATT&CK technique by cascading

scripts of multiple techniques. In usecase 1, we execute a payload/malware file using

Technique PowerShell (T1059.001) [26]. The executed payload performs the account

discovery process using technique T1087 [26], and in the end, the malware process

executes a scheduled task using technique T1053 [26]. Usecase 2 executes techniques

T1189, T1035, T1021.001, T1119, and T1048 [26] using scripts from the Atomic Red

Team; we provide the signature for this use case in Appendix A. Usecase 3 uses

all the techniques in Usecase 2 plus one defense evasion technique, masquerading

(T1036) [26].

44

The OpTC dataset [30] contains 287 GB event logs collected on five hundred to

one thousand hosts over three days. During these three days, the red team performed

three APT scenarios. Our evaluation uses one scenario that consists of around 70

GB of log data corresponding to 1.3 billion events. In this APT scenario, the red

team updated notepad++, which downloads and executes a Meterpreter payload.

This payload execution obtains system access through named pipe impersonation.

It performs several discovery techniques: system info, installed applications, domain

controller, and network shares. It also performs ARP scanning to discover neighbor

hosts in the same network. Then, the Meterpreter process creates a Run registry

key and sets the value of the registry key to a downloaded Meterpreter module to

establish persistence. Later, this process adds administrator and admin accounts to

the administrators and RDP group. Finally, the attacker RDPed to the compromised

machine from the attacker’s server. We develop attack signatures corresponding to

each red team activity (Appendix A) and use those signatures to evaluate SCAHunter.

The discovered low-level attacker activities are shown in Figure 3.4. In this figure,

nodes represent system entities such as processes, registry keys, commands (rectan-

gles), files (ovals), and sockets (diamonds), and edges corresponding to the attacker’s

actions represent the information flow and causality. To evaluate the proposed threat

hunting approach, we try to answer the following three questions:

1. Does threat hunting with distributed hierarchical monitoring reduce

communication overhead and storage requirement compared to the state-

of-the-art centralized threat hunting approaches? Since a centralized approach

tries to monitor everything and aggregate logs in a central server, it has to store all of

the logs generated by the EFA agents. In contrast, a distributed monitoring approach

records logs only for a single monitor corresponding to the current active monitoring

task. There can be one active monitoring tasks for a single attack signature. More-

over, CEDAs corresponding to the monitoring tasks will store results of only detected

45

Figure 3.5: Performance and Scalability Evaluation of hierarchical monitoring agent
architecture based on Simulated Attack Use Cases

monitoring tasks for the currently active monitor. As a result, the distributed hi-

erarchical monitoring records fewer events than the centralized approach, which is

evident in Figure 3.5 (a) for simulated attack use cases and Figure 3.6 (a) for OpTC

attack dataset.

Specifically, to confirm the decrease in communication overhead, we measure the

number of exchanged messages (alerts, configuration messages) among the agents

in three simulated attack use cases for both centralized and proposed distributed

approaches. During this evaluation, we maintain a fixed monitoring capacity of 12

for each agent while varying the network size from one to five. For the centralized

monitoring approach, we collected event logs from only data sources related to the

attack signature. As we can see in Figure 3.5 (a), using the SCAHunter approach, the

number of exchanged messages among agents (event count) decreases around 49.74%

to 66.9%, 58.04% to 64.58%, and 51.3% to 59.35% for use case 1, use case 2, and use

case 3, respectively, compared with the centralized approach. We can also see that the

decrease becomes more and more significant as the network size increases. Similarly,

46

Figure 3.6: Performance and Scalability Evaluation of hierarchical monitoring agent
architecture based on OpTC Attack Dataset

we measure the number of exchanged messages among agents using the OpTC attack

dataset for centralized and proposed distributed approaches. For the centralized

monitoring approach, we collected logs from the following data sources: file creation

activity, registry key creation activity, process creation activity, and RDP network

connection creation activity. During this evaluation, we maintain a fixed monitoring

capacity of 12 for each agent while varying the network size from one to 16. In our

proposed approach, the number of exchanged messages among agents decreases by

around 43.7% - 64.8% from the centralized approach, as shown in Figure 3.6 (a).

Since our proposed approach forwards event logs corresponding to the current active

monitoring task, performs distributed event filtering by event correlation in CEDA

agents, and forwards only the detected correlated events to the upper-level agents

or CA, the communication overhead is lower compared to the centralized approach

as shown in Figure 3.5 (a) and Figure 3.6 (a). To show the decrease in memory

usage overhead, we measure the memory used by the agents (CA, CEDA, EFA) to

store the events corresponding to the detected monitoring tasks in the centralized

47

approach and our proposed hierarchical approach. The amount of memory used is

the number of event logs times the average size of each event log, which we estimate

as 500 bytes based on event logs from the ETW Sysmon provider. In the proposed

hierarchical monitoring approach, the total memory usage decreases around 65.9%

to 81.3%, 54.6% to 66.85%, and 49.75% to 62.48% for simulated attack use case 1,

use case 2, and use case 3, respectively, from the centralized monitoring approach

as shown in Figure 3.5 (b). Similarly, the proposed SCAHunter approach decreases

total memory usage by 45.4% to 60.1% for the OpTC attack dataset compared with

the centralized monitoring approach, as shown in Figure 3.6 (b). Since our proposed

approach stores only the event logs related to the monitoring tasks and only a subset of

the monitoring tasks are active at any moment of threat hunting, the storage required

is less for the hierarchical monitoring approach than the centralized approach, as

shown in Figure 3.5 (b) and Figure 3.6 (b).

2. Can threat hunting with distributed hierarchical monitoring detect

multi-step attacker activities with the accuracy of state-of-the-art cen-

tralized threat hunting approaches? Since the centralized approach monitors

all required data sources for an attack signature and aggregates generated logs in a

central manager, the accuracy of the centralized approach depends on the quality

of the attack signature. On the other hand, since the distributed approach decom-

poses attack signatures such that monitoring tasks are distributed among hosts, an

efficient event correlation is required in addition to the signature quality. For the

DARPA OpTC attack dataset, both the centralized and SCAHunter threat hunting

approaches can detect low-level attacker activities, shown in Figure 3.4. For example,

the signature a.Operation == NewFileWrite∧ x.event_id == process_creation∧

x.imagePath == a.newFilePath is used to detect Meterpreter’s payload download-

ing activity.

For the simulated attack use cases, the centralized approach can detect all three

48

Figure 3.7: Data source to technique coverage

attack signatures. However, the distributed hierarchical monitoring approach initially

missed one of the attack signatures. Further investigation of low-level logs reveals

that this is due to the on-demand nature of our proposed approach, which does not

monitor everything, instead, it activates a monitoring task only if all the previous

monitoring tasks in the attack signature are detected. Therefore, there is a time

lag in our approach, which we can mitigate by using a memory buffer. In our new

implementation, we keep event logs of all required data sources of the current signature

for thirty seconds. This user-defined period of log recording is introduced to cover the

time lag between detecting one monitoring task and activating the next monitoring

task. After introducing this log buffer, our approach detects previously missed attack

signatures.

3. Is the proposed hierarchical monitoring architecture scalable? We

examine the scalability of threat hunting with the hierarchical monitoring approach

as the size of the network topology and the monitoring capacity increase. We measure

the number of required CEDAs for the three simulated attack use cases and the OpTC

49

dataset in a simulated network whose size varies from 1 to 800 hosts. In Figure 3.5

(c), we see that with a 20% to 25% increase in network size (e.g., from 320 to 400),

the number of required CEDAs increases 19.5% to 33.3%, 12.4% to 28%, and 23% to

32.73% respectively, for use case 1, use case 2, and use case 3. Similarly, In Figure 3.6

(c), we see that with a 20% to 25% increase in network size, the required number of

CEDAs increases by 8.3% to 23.8% for OpTC attack dataset. From Figure 3.5 (c)

and Figure 3.6 (c), we see that the number of required CEDAs grows linearly with the

network size and tends to flatten out. In all these experiments, we set the monitoring

capacity to 12.

We also measure the number of required CEDAs for the three simulated attack

use cases and the DARPA OpTC attack dataset with a varying monitoring capacity

(from 1 to 600) in a fixed simulated network of size 50. With a 25% increase in the

agent monitoring capacity, the number of required CEDAs decreases 11.3% to 19.6%,

12.4% to 28%, and 17.1% to 32.9% respectively, for use case 1, use case 2, and use

case 3, as shown in Figure 3.5 (d). Similarly, In Figure 3.6 (d), we see that with

a 25% increase in the agent monitoring capacity, the required CEDA decreases by

4.7% to 38.4% for OpTC attack dataset. The number of required CEDAs is inversely

co-related with monitoring capacity, as shown in Figure 3.5 (d) and Figure 3.6 (d).

Since the number of required CEDAs is linearly increasing with the increasing size

of the network topology, as shown in Figure 3.5 (c) and Figure 3.6 (c), we need

to generate around 10% to 33% more CEDAs to support the threat hunting using

hierarchical monitoring which is a feasible number of CEDAs. However, the number of

required CEDAs is inversely co-related with monitoring capacity, as shown in Figure

3.5 (d) and Figure 3.6 (d). Since the number of required agents to monitor required

tasks will decrease with the increasing monitoring capacity, the CEDA generation

with the provided approximation algorithm is scalable.

Moreover, Figure 3.7 shows the technique coverage of the top 20 data sources

50

among 81 data sources. We can see that Command Execution and Process Creation

cover 36% to 42% techniques, while File Modification and File Creation cover around

32% techniques. Since most of the data sources cover multiple techniques, developing

EFAs for around 25% of the data sources will cover all remaining techniques, which

is feasible.

3.6 Static ESP rule generation for Attack Signature

Although we developed multiple primitive event detector agents and EFAs based on

ETW trace, we need to develop additional EFA agents to cover all the data sources.

Since the single-point-of-failure calls for applying the consensus mechanism, such as

the leader election algorithm, which is another research problem to solve, we did not

consider the single-point-of-failure for SCAHunter. Our agent architecture will not

be optimal if a new attack signature added to the system overlaps with the existing

monitored signatures. We plan to explore this topic in the future.

In order to build the attack signature in terms of low-level system events, we follow

the technique detectors provided by LogRythm [42]. Following the rules developed

by LogRythm, technique T1189 can be detected by inspecting IDS or antivirus logs.

Technique T1035, T1021.001, and T1119 [26] can be detected by analyzing Windows

event logs or SysMon logs as mentioned by MITRE [26]. Moreover, technique T1048

can be detected by analyzing network traffic and looking for uncommon data flow

in the NetMonitor. Therefore, we can define the signature in terms of low-level logs

for technique T1189, T1035, T1021.001, T1119, and T1048 [26], and use case 2 using

51

ESP formalization provided in Section 3.3 as follows:

IDSMon._event_id == Malware_detected∧

Malware_detected.malwareF ileDir ==′ ∗temp′∧

SysMon._event_id == object_access∧

object_access.object_dir ==′ ∗temp′∧

object_access.procName =′ chrome′ (3.12)

SysMon._event_id == service_creation∧

service_creation.command ==′ SC create′∧

service_creation.imagepath ==′ ∗temp′ (3.13)

SysMon._event_id == RDS_logon_success (3.14)

SysMon._event_id == process_created∧

process_created.command ==′ ∗.bat′∧

SysMon._event_id == network_conn_created (3.15)

NetMon._event_id == uncommon_data_flow (3.16)

52

(Equation 3.12) ∧ (Equation 3.13) ∧ (Equation 3.14) ∧ (Equation 3.15)∧

(Equation 3.16) ∧ (object_access.object_dir == service_creation.imagePath

== malware_detected.malwareF ileDir) ∧ (RDS_logon_success.src_ip

== ids_event_id.host_ip) ∧ (RDS_logon_success.session_id ==

process_created.session_id == network_conn_created.session_id)∧

(uncommon_data_flow.network_protocol ==

network_conn_created.network_protocol) (3.17)

To build the attack signature of the red team activities in OpTC attack dataset, we

investigate notepad++ update process and Meterpreter execution process. To detect

Meterpreter payload download activities, we can look for new file create and write

event logs and process creation using the newly created file.

a.Operation == NewFileWrite ∧ x.event_id == process_creation

∧ x.imagePath == a.newFilePath (3.18)

Named pipe impersonation can be detected by looking for any cmd.exe process

which is a child of services.exe and the commandline arguments of the cmd.exe process

contains echo and pipe keywords.

b.processName == cmd.exe ∧ b.parentProcess == services.exe

∧ b.Commandline ∈ echo ∧ b.Commandline ∈ pipe

∧ b.process_id == x.process_id (3.19)

53

The system info, installed applications, domain controllers and network share dis-

covery activities can be detected by looking for command line arguments running

form the cmd.exe process which is spawn from Meterpreter process.

(c.commandline ∈ [local_system_info_enumeration_command

∪ installed_application_enumeration_command(tasklist)

∪ domain_controller_enumeration_command(dclist)

∪ network_share_enumeration_command(Get_SmbShare)]

∧ c.process_id == b.process_id) (3.20)

We can detect the registry key creation and setting the value of the created key to

a newly downloaded payload as follows:

g.Operation == NewFileWrite ∧ h.Operation == RegistryKey_create

∧ g.newFilePath == h.registryKeyCreated.value

∧ g.process_id == h.process_id == x.process_id (3.21)

Creating new user account and adding it to specific group can be done by using

net utility. Thus the signature will be:

i.Commandline ∈ net_userAccount_add_command

∧ i.process_id == b.process_id ∧ i.processName == Net.exe (3.22)

3.7 Conclusion, Limitations and Future Work

This chapter describes a distributed hierarchical monitoring architecture for threat

hunting using the MITRE ATT&CK framework as a guideline of attacker activities.

We formalize the scalable threat hunting problem and provide an approximation

54

algorithm to generate agent hierarchy, evaluation with three simulated attack use

cases and DARPA OpTC attack dataset [30] with varying network size and monitoring

capacity, and a threat hunting demonstration using the SCAHunter. The monitoring

application for threat hunting in distributed large-scale systems must be scalable to

handle many event producers (EFA) and selective monitoring of event producers,

highly re-configurable to handle on-demand monitoring requests. An efficient event

filtering mechanism must be used to reduce event traffic propagation and monitor

intrusiveness.

The SCAHunter improves monitoring scalability using an approximation algorithm

by the near-optimal composite event detector (CEDA) and primitive event detector

(EFA) hierarchy generation. The proposed SCAHunter is scalable since we gener-

ate the minimum number of CEDAs that can communicate with the required EFAs

considering the hop count among the CEDAs and EFAs. It also reduces event traf-

fic propagation and monitoring intrusiveness by using the hierarchical structure and

optimal generation of agent hierarchy. RabbitMQ ensures the security of agent com-

munication.

CHAPTER 4: Prompting LLMs to Enforce and Validate CIS Critical Security

Controls

In this chapter, we present the automation of measures and metrics development

and corresponding implementation mechanism extraction from LLMs using prompt

engineering for critical security controls (CSCs). We also provide an end-to-end sys-

tem to assess the enforcement of CIS CSCs using developed metrics and distributed

hierarchical monitoring system presented in Chapter 3.

4.1 Introduction

Proper security control enforcement reduces the attack surface and protects the

organizations against attacks. Organizations like NIST and CIS (Center for Internet

Security) provide critical security controls (CSCs) as a guideline to enforce cyber se-

curity. Automated enforcement and measurability mechanisms for these CSCs still

need to be developed. Analyzing the implementations of security products to validate

security control enforcement is non-trivial. Moreover, manually analyzing and devel-

oping measures and metrics to monitor, and implementing those monitoring mecha-

nisms are resource-intensive tasks and massively dependent on the security analyst’s

expertise and knowledge. To tackle those problems, we use large language models

(LLMs) as a knowledge base and reasoner to extract measures, metrics, and monitor-

ing mechanism implementation steps from security control descriptions to reduce the

dependency on security analysts. Our approach used few-shot learning with chain-

of-thought prompting to generate measures and metrics and generated knowledge

prompting for metrics implementation. Our evaluation shows that prompt engineer-

ing to extract measures and metrics and monitoring implementation mechanisms can

56

reduce dependency on humans and semi-automate the extraction process. We also

demonstrate metric implementation steps using generated knowledge prompting with

LLMs.

The Center for Internet Security (CIS) published a set of defense actions that

form a group of defense-in-depth best practices known as critical security controls

(CSCs) to detect, prevent, respond to, and mitigate cyberattacks [32]. The CIS is

a non-profit organization that provides best practices and security benchmarks for

IT systems. The CIS Critical Security Controls (CSCs) are a set of 18 controls and

153 safeguards (previously known as sub-control) considered the most effective at

mitigating cyberattacks.

Organizations of all sizes widely use the CSCs, and there is a growing body of

literature on implementing and enforcing the controls. One of the critical challenges

in implementing the CIS CSCs is ensuring that the controls are appropriately imple-

mented and enforced. This can be a complex and time-consuming process, and it is

essential to clearly understand the controls and the steps involved in implementing

them. Several resources are available to help organizations implement and enforce

the CIS CSCs. The CIS provides tools and resources, including a self-assessment

questionnaire, a checklist, and an implementation guide [18, 19]. Some third-party

vendors offer tools and services to help organizations implement and enforce the con-

trols [20, 21]. Once the CIS CSCs have been implemented, it is crucial to validate

the implementation. This can be done through some methods, such as vulnerabil-

ity scanning, penetration testing, and security audits. Validation helps ensure that

the controls are in place and working as intended. Though there are guidelines for

implementing CSCs, there is hardly any research on assessing CSC enforcement [22].

The current state of validating the CIS CSCs is still under development. The CIS

works with various stakeholders, including government agencies, industry groups, and

security vendors, to ensure that the CSCs are up-to-date and reflect the latest threats.

57

However, it is essential to note that CSCs are not a silver bullet [60]. Organizations

must still implement, maintain, and validate the controls to be effective. Organiza-

tions face several challenges in validating the CSCs: 1) The CSCs are constantly being

updated as new threats emerge, 2) The CSCs can be complex and time-consuming to

implement, and 3) There is no single tool or solution that can automate the validation

of the CSCs. Despite these challenges, the CIS CSCs are vital to any organization’s

cybersecurity program. By implementing CSCs, organizations can significantly re-

duce their risk of a cyber attack. In general, organizations follow below steps to

validate the CIS CSCs: 1) Develop a plan for validating the CSCs, which should

include a timeline, budget, and resources. 2) Identify the tools and resources needed

to validate the CSCs. 3) Work with a qualified security professional to validate the

CSCs. 4) Monitor the effectiveness of the CSCs and make adjustments as needed. By

following these steps, organizations can ensure that the CIS CSCs are validated and

that their cybersecurity posture is improved.

The implementation and enforcement of the CIS CSCs is an ongoing process. Or-

ganizations should regularly review the controls and ensure they remain relevant to

their security posture. They should also make sure that the controls are appropriately

implemented and enforced. However, no well-defined automated measures and met-

rics are developed to validate the enforcement of these CSCs. Directly analyzing the

implementation of security products to verify and validate the enforcement of those

CSCs in security products is an infeasible task. Though guidelines exist to develop

measures and metrics to assess CIS CSC enforcement by checking configuration or

benchmark validation [61, 19], those guidelines are limited and provided as a sam-

ple way to generate measures and metrics. Additionally, those sample measures and

metrics check whether a configuration complies with guidelines (Yes or No answer).

However, a configuration check will not answer how well a CSC safeguard is enforced

(enforcement quality).

58

In a traditional approach of CSC safeguard enforcement assessment, a security

analyst manually analyzes by looking through the safeguard description, tries to un-

derstand what the cyber observable will be seen in the system in the presence/absence

of this safeguard, determines quantifiable features, and combines those together to

generate metrics [52]. For each quantifiable feature, the analyst also needs to know

how to measure this specific feature. For example, in safeguard 5.3: "Delete or disable

any dormant accounts after a period of 45 days of inactivity, where supported", to

assess enforcement of this safeguard, one of the metrics is the percentage of dormant

accounts that are still active [62]. To calculate this metric, the analyst needs to know

how many dormant accounts are in the system (a measure) and how many are still

active (another measure). To estimate the above two measures, the analyst needs

to know the cyber observable that will be present in the system if this safeguard is

enforced or not enforced. To determine the dormant account in the system, the cyber

observable is the presence/absence of dormant accounts, which the analyst can infer

by looking at the safeguard description and using his prior knowledge about the user

account. Next, the analyst tries to determine how to detect dormant accounts in the

system. If the analyst has previous experience in account management or by using

Google search, research articles, and papers, he can know the way to determine a

dormant account by checking the last activity time of each user account. The next

question he tries to answer is how to get a user’s last activity time in the system.

If the analyst knows ETW (Event tracing for Windows)/auditd (Linux) audit logs,

he will see that he can look at the logon, logoff, account delete, and account disable

event logs. To monitor those event logs, he also needs to determine which ETW

provider will provide those event logs so that he can monitor specific ETW providers

to collect particular event logs. After deciding on all the above information, he can

either use existing monitoring tools to collect those logs or implement his solution

for monitoring those specific events to quantify cyber observable features. In other

59

words, the security analyst must use his expertise in addition to external materials

(Google search, blogs, research articles, etc) to implement specific safeguards, which

is time-consuming and highly dependent on the analyst’s expertise.

We propose to minimize the dependency on the security analyst’s expertise by

solving the following challenges: 1) automated extraction of measures and metrics

from safeguard description, 2) automated extraction of knowledge base of facts (e.g.,

security best practices, event monitoring approach, and event ID in event logs) to

develop enforcement monitors. Automating the development of measures, metrics,

and corresponding enforcement monitors delivers immense value to vendors and en-

terprises.

Recent advancement in natural language processing opens the door for using large

language models (LLMs) as an oracle for such tasks, which can answer questions

about specific facts and will act as a knowledge base of facts. The training process of

LLM, such as LLAMA and ChatGPT, includes huge corpus and text data and dif-

ferent security controls. The LLM achieves the reasoning capability as an emergent

property [37]. Therefore, we leverage LLM to extract measures, metrics, and mon-

itoring implementation mechanisms in this chapter. To the best of our knowledge,

this is the first work in the direction of using LLM to generate measures and metrics

and elicit metrics implementation steps from LLM through prompt engineering.

We make the following technical contributions:

• We propose a CSC safeguard ontology: the things to extract from each safe-

guard description. We provide a prompting template used to extract CSC safe-

guard ontology where CSC ontology will help develop a chain-of-thought (CoT)

prompt to extract implementation steps for a CSC safeguard enforcement.

• We provide a few-shot prompt to extract measures and metrics given the safe-

guard description and dependent safeguard. This prompt generates new mea-

sures and metrics for safeguard enforcement compliance and safeguard enforce-

60

ment quality.

• We provide a prompting template for evaluating LLM-generated measures and

metrics to reduce human effort on manual evaluation where a different LLM is

used for evaluation. With the help of Spearman, Pearson, and Kendall Tau’s

correlation coefficient value, we showed that the LLM evaluation aligns with

human evaluation.

• We demonstrate CSC safeguard enforcement implementation for multiple mea-

sures and metrics of a safeguard with the help of chain-of-thought and generated

knowledge prompting.

This chapter is organized as follows: Section 4.2 surveys existing research work

on CIS critical security controls and prompt engineering with LLMs to extract in-

formation and reasoning; Section 4.3 describes proposed CSC enforcement validation

approach; Section 4.4 provides a case study of the whole CSC enforcement validation

approach; Section 4.5 evaluates LLM generated measures and metrics using another

LLM as evaluator through prompt engineering and provides a demonstration of CSC

safeguard enforcement assessment; Section 4.6 summarizes our contributions and lim-

itations. In this chapter, all prompts are developed and executed in GPT-3.5. We

will use LLM and ChatGPT interchangeably for the rest of the chapter.

4.2 Related Works

Critical Security Control. In [21], the authors map the organization’s security

requirements with standard security control frameworks such as NIST and CIS’s top

20 critical security controls. In [60], the authors collect security professional’s views on

the value of security controls to defend against attack by performing interviews. They

conduct interviews to determine trends and the effectiveness of CIS’s critical security

controls. The authors of the survey showed that the top three security controls for

effectiveness are CSC 3 (Vulnerability assessment), CSC 4 (Admin privileges), and

61

CSC 19 (Incident response). They also found out that the most commonly deployed

security controls are CSC 8 (Malware defenses), CSC 12 (Boundary defenses), CSC

7 (Web and email defenses), and CSC 11 (Secure network devices). In [63], the

authors used the CIS benchmark to audit the Linux operating system with Chef

InSpec by checking specific OS configurations. Though the CIS benchmark enforces

a particular part of specific security control, it does not cover the whole scope of the

corresponding security control. Dutta et al. [64] manually map threat actions to

security controls. They try to identify appropriate security controls and where and

why they should be implemented to optimize risk mitigation. However, they assumed

the effectiveness score of security control is provided to their framework and did not

validate the effectiveness of the corresponding security control. Ahmed et al. [52]

manually analyze CSC 12 (Boundary defense) and provide measures and metrics to

assess specific sub-controls using their own knowledge and expertise.

Prompt Engineering. Mishra et al. [35] identified five strategies to develop a

prompt so that the LLM can follow it easily for both zero-shot and few-shot prompt-

ing: 1) instead of using terms that require background knowledge to understand,

use various patterns about the expected output, 2) turn descriptive attributes into

bulleted lists. If there are any negation statements, turning them into assertion state-

ments makes the LLM to follow easily; 3) break down the task into multiple simpler

tasks; 4) add explicit textual statements of output constraints, and 5) customize the

instructions so that they directly speak to the intended output. Brown et al. [37]

shows that LLMs (GPT-3) are few-shot learners. The LLM works well when a few

demonstrations of the task in inference are provided in the prompt. Wei et al. [34]

shows that demonstrating the thought process in the prompt to the LLM elicits rea-

soning capabilities as an emergent property of LLM. To remove the bias of LLM

during few-shot prompting towards predicting certain answers, such as those that

are placed near the end of the prompt, the authors use contextual calibration [36].

62

The authors at [65, 66] used the LLM as an evaluator to evaluate text generated by

another LLM. Stern et al. [67] used prompt engineering with LLM to classify text

using few-shot prompting.

All of these works try to identify which security controls are essential to imple-

ment in an organization to defend against attack and develop assessment approaches

manually, which is a time-consuming and resource-intensive task. However, no pre-

vious research has explored the automated assessment of the enforcement of security

controls to reduce high reliance on the expertise of security analysts.

4.3 Overview of the CSC Validation

This section outlines our CSC validation approach and its goals, as illustrated in

Figure 4.1. The CSC validation consists of the following modules: 1) prompt engi-

neering to extract key measurement indicator (KMI) (measure) and key enforcement

indicator (KEI) (metrics) generation, 2) Event Subscription Rule (ESR) generation

and monitoring of cyber observables using CSCMonitor, and 3) CSC validation using

the generated KEIs. At first, we analyze the CSC safeguard description to extract

KMI and KEI both manually and by prompting an LLM. To pinpoint specific details

to be extracted from safeguard descriptions, we develop a CSC ontology that outlines

the relevant information for each safeguard.

Prompt

Engineering
LLM/ChatGPT CSCMonitor

CSC

ValidationESR

Metrics

Measures
Prompt

Developer

Figure 4.1: CSC validation approach

During prompt engineering with a large language model (LLM), we utilized the

CSC ontology that was manually extracted to create the prompt template. Employ-

ing techniques such as few-shot prompting, chain-of-thought (CoT) prompting, and

generated knowledge prompting, we developed measures and metrics to evaluate the

63

enforcement of safeguards.

Following the generation of measures and metrics, we established an event sub-

scription rule (ESR) for each measure and employed CSCMonitor (Section 4.3.4) to

gather data related to the measure. Ultimately, we assess the enforcement of the safe-

guard by using the metrics generated and the statistics gathered for each measure.

In Figures 4.1 and 4.3, various shapes represent different elements: ovals indicate

the start or end, rectangles depict processes, diamonds denote decision points, and

parallelograms signify inputs or outputs. The subsequent subsections will detail each

phase of the CSC enforcement validation process.

4.3.1 CSC Ontology

To determine critical information that assists in identifying KMI (measure) and

KEI (metric) for each safeguard, we manually examined all 153 safeguards. During

this manual review of the safeguard descriptions, we sought to answer several key

questions: 1) What are the threat actions and related cyber observables targeted

by each safeguard? 2) What are the KMI or cyber-measurable features that need

assessment for each safeguard? 3) What category does the measurement fall into,

and what approach is used for measuring?

After identifying cyber observables for each safeguard, we categorized each CSC

safeguard into four classes based on the methods for measuring or verifying the corre-

sponding cyber observables. The first category is General, which refers to safeguards

that provide broad guidelines without specific details on the defense action. The

second, Checklist, involves safeguards that can be verified through scripting, like CIS

CSC safeguard 6.1. A safeguard falls under Verifiable if it can be verified through

configuration and vulnerability analytics, such as analyzing network configurations to

identify reachable hosts in safeguard 12.1. The last category, Measurable, applies to

safeguards that can be verified through quantitative data analysis, using logs and net-

work traffic. For example, the use of a time server in Safeguard 6.1 can be determined

64

by analyzing network traffic logs to known time servers.

Additionally, by analyzing the CSCs, we have identified five types of enforcement

measurement approaches. One approach is Vulnerability Analytic, which utilizes the

targeted service’s vulnerability score (CVSS) to assess the deployed CSC’s effective-

ness. The Data-driven method measures the effectiveness of a safeguard using net-

work traffic statistics, including NetFlow data, DNS traffic, and web traffic data.

The Model-based approach employs system and network configurations to confirm

the enforcement of the safeguard. The Active Testing approach involves sending a

probe to validate a safeguard. Lastly, the Cyber Threat Intelligence-based approach

uses indicators of compromise (IOCs), threat feeds, and insights on malicious actors’

intents, opportunities, and capabilities from CTI reports to evaluate the effectiveness

of CSCs.

Therefore, our CSC safeguard ontology consists of cyber observable, class, and

measurement approaches.

4.3.2 KMI and KEI Extraction and Measurement: Manual Approach

This section outlines our manual efforts to determine metrics and measurement

procedures for each CSC safeguard to ensure their effective deployment (Figure 4.1).

Specifically, this section addresses the following objectives to identify metrics and

measurements to validate CSC enforcement in the security product under test (PUT):

• Identify the threat actions targeted by each CSC safeguard.

• Identify key measurement indicators (KMIs) or cyber-measurable features for

each CSC safeguard.

• Determine the cyber observables of each CSC safeguard that can be used to

identify KMIs.

• Determine how to compose KMIs to develop metrics for the key enforcement

65

indicators (KEIs), which will quantitatively assess the quality attributes of each

CSC safeguard enforcement.

• Determine the measurement category and the measurement approach for each

CSC safeguard.

To determine critical information to extract from each CSC safeguard, we manu-

ally reviewed all 153 safeguards. Based on our observation from manual analysis, we

detect four classes of CSC safeguard: General, Checklist, Verifiable Properties, and

Measurable, and five different measurement approaches: Data-driven, Model-based,

Active Testing, Vulnerability Analytic, and Cyber Threat Intelligence. The observ-

able, safeguard class, and measurement approach are key in determining the measures

(cyber measurable features) to monitor for assessing the enforcement quality of a safe-

guard. Consequently, each CSC safeguard is mapped to a specific observable, class,

and measurement approach as depicted in the CSC Ontology shown in Figure 4.2.

To develop the measures and metrics for the validation of CSC enforcement, the

first step is to identify the threat model of each CSC safeguard that determines what

the adversary can do in the absence of this specific CSC safeguard. For instance, the

absence of CSC 13 (Data Protection) implies the lateral movement of the attacker and

exfiltration of sensitive data. Subsequently, KMIs will be determined based on the

identified cyber observables or artifacts linked to each CSC safeguard. Each KMI is

a concrete and objective attribute (measurable attribute) for the corresponding CSC

safeguard, such as the number of detected malicious IP addresses and the number of

the unused IP addresses in the target organization. The following step is to compose

different KMIs to develop metrics for KEIs which will be used to assess the quality

of the CSC enforcement. Each KEI is an abstract and subjective attribute, such as

coverage or percentage of malicious IP addresses that can be detected, and freshness

or how fast a new asset is discovered by the PUT.

66

4.3.3 KMI and KEI Extraction and Measurement: Prompting the LLM

The CIS provides CSCs as a guideline of best security practices for defending

an organization against threats. However, security analysts need to check how well

security control is implemented in an organization. To determine the enforceability

(yes/no) and enforcement quality of a CSC safeguard, a security analyst needs to

identify cyber-measurable attributes to monitor, along with measurement metrics

and security configurations to examine. Recent advancements in natural language

processing open the door to the use of a large language model (LLM) as an oracle for

such tasks, which can answer questions about specific facts and act as a knowledge

base of fact. The training process of LLM, such as LLaMA and ChatGPT, includes

huge corpus and text data and different security controls. We prompt LLM to extract

critical information from the CSC description and generate measures and metrics for

each safeguard to reduce the dependency on the security analyst’s expertise.

Given a CSC safeguard description, we generate a list of measures and metrics for

the corresponding safeguard by using zero-shot and few-shot prompting. However,

those KMI are not implementable and require security analyst’s help to determine

specific data sources and attributes to measure. To remove the need for expert knowl-

edge, we perform additional chain-of-thought (CoT) prompting to determine how to

implement the monitoring steps of a KMI.

CoT is an emergent ability of model scale such that it does not positively influence

performance until used with a model of sufficient scale. To improve performance, the

LLM parameter size needs to be greater than 130B. According to [68, 34], CoT elicits

reasoning as an emergent property of LLM. According to [34], CoT prompting offers

several beneficial features for enhancing reasoning in language models. Firstly, it al-

lows models to break down complex, multi-step problems into simpler, intermediate

steps, which can be especially helpful for tasks that require additional computational

reasoning. Secondly, it provides a transparent view into the model’s thought process,

67

showing potential paths to a solution and offering a means to troubleshoot incorrect

reasoning paths, although fully understanding the underlying computations remains

a challenge. Thirdly, this method is useful for tackling tasks like math word problems,

commonsense reasoning, and symbolic manipulation, and could theoretically be ap-

plied to any problem that humans can solve using language. Lastly, chain-of-thought

reasoning can be easily triggered in large pre-trained language models by incorporat-

ing chain-of-thought examples into the training data used for few-shot prompting.

CSC

CSC Safeguard

ObservableClass Measurement approach

Checklist General MeasurableVerifiable Data-driven Model-based

Active Testing

Vulnerability

Analytic

Cyber Threat

Intelligence

Figure 4.2: CSC Ontology

Prompting for Safeguard Ontology: We generated the CSC ontology by man-

ually analyzing all 153 CSC safeguards. CIS updates and even rearranges the de-

scription of the safeguard over time. For example, we started our manual analysis

with CIS CSC version 6 and the currently updated CIS CSC version is 8. In this new

version, the CSC safeguard description is updated. In such a scenario, we generate

new ontology by prompting LLM with a few-shot prompting technique, providing

examples of manually extracted CSC ontology for a different safeguard as described

in [34]. We develop a prompt template (Section 4.4) consisting of all the fields of

CSC ontology for a target safeguard; to provide the chain of thoughts during few-

shot prompting, we also give an example (Section 4.4) with extracted ontology and

human reasoning steps during extraction as input. During this prompting step, we

used a few examples of manually generated CSC ontology to demonstrate reasoning

steps to LLM during the CoT prompting process. This generated CSC ontology will

be used to generate a prompt to extract measure implementation.

68

Prompting for Measures and Metrics Generation. By following the same

approach of CoT prompting described above for ontology generation, we use CoT

prompting to generate measures and metrics. We develop a prompt template (Sec-

tion 4.4) consisting of measures and metrics generation thought process. In this

prompting, we demonstrate our thought process during manual metrics and measure

generation by following the CoT prompting approach in [37]. The prompt provides

one example of measure and metric generation by dividing the multi-step task into

separate thoughts.

Prompting for Safeguard Enforcement Implementation: Though we gen-

erated the measures and metrics from manual analysis and prompt engineering, the

measures are not implementable. Expertise and knowledge are still needed to deter-

mine and implement specific measures to monitor. For example, controls-assessment-

specification [62] from CIS provides a metric for safeguard 1.4 to measure DHCP log

quality. To calculate the score for DHCP log quality, they used two measures: 1)

number of DHCP servers in the organization and 2) number of DHCP servers with

DHCP logging enabled. In order to implement the DHCP log quality metric, a secu-

rity analyst needs to know how to identify a DHCP server and count the total number

of DHCP servers. They also need to know which configuration to check to verify if a

DHCP server is configured with DHCP logging enabled. If access to configuration is

not provided, the analyst needs to know what audit/event logs to examine to iden-

tify whether a DHCP server is enabled with DHCP logging. Finally, if the analyst

wants to implement the metrics through passive monitoring, they need to be aware

of the appropriate approach to do so. In such cases, to alleviate the time required

and dependency on an analyst’s expertise, we propose to use the LLM as a source of

the knowledge base of different metric implementations. We suggest using generated

knowledge prompting [38] in association with CoT to elicit metric implementation

approaches from the LLM by prompting.

69

CSC
Description

LLM/ChatGPT
Generated

Knowledge:
CSC Ontology

Measure
Query

LLM/ChatGPT Implementable?
Measure

Implementation
Few-Shot
Prompting

No

Yes

Figure 4.3: CoT prompting flow

To elicit CSC measure implementation using the LLM as shown in Figure 4.3, we

first perform few-shot prompting with chain-of-thought to generate new knowledge.

In our case, this newly generated knowledge will be CSC ontology. This generated

knowledge and specific measure query will be used as context to generate CSC imple-

mentation approaches from the LLM. For each prompting in this step, the LLM may

generate multiple approaches. The security analyst needs to try all of the approaches

or the most viable ones (based on his own judgment) to elicit a measure-specific imple-

mentation approach. This process will continue until the security analyst is satisfied

with the specific granular-level measure implementation approach. Here, using the

LLM as a knowledge base and reasoner rather than depending on human expertise

and Google search for research articles will reduce the amount of time to discover the

implementation approach.

4.3.4 CSCMonitor: Hierarchical Monitoring of Extracted Measures

Though monitoring the cyber measurable attribute to calculate the measure statis-

tics can be done using a centralized monitoring system and security information and

event management (SIEM) technology such as SPLUNK, it incurs additional com-

munication overhead and memory usage and is unsuitable for selective monitoring.

We used a distributed hierarchical event monitoring agent architecture to overcome

those challenges as proposed in Chapter 3. Our hierarchical event monitoring agent

architecture consists of three types of agents: 1) Console agent (CA): This agent

works as a manager to decompose monitoring tasks to primitive events and assign

each decomposed task to a lower-level agent. It also determines the appropriate agent

70

hierarchy based on the correlation among the decomposed tasks and the host location.

2) Composite event detector agent (CEDA): this agent correlates detected events in

lower-level agents and forwards the detected subscribed task result to the upper-level

agent (CEDA or CA). There can be multiple levels of CEDA agents based on the

monitoring task (measure signature). 3) Event filtering agent (EFA): this agent is

a lower-level agent that ingests event logs directly from the event producer (ETW,

Netflow and auditd, etc.) and monitors primitive events, and publishes the detected

events to the higher level agent (CA or CEDA) based on the subscribed task. Such

hierarchical event monitoring will improve monitoring scalability and reduce commu-

nication and memory usage overhead by enabling local decision-making.

4.4 CSC enforcement validation using Prompt engineering: a case study

To demonstrate CSC enforcement validation implementation using prompt engi-

neering with the LLM, this section provides a step-by-step prompt for extracting CSC

ontology, generating measures and metrics using extracted ontology, and, at the end,

generating metrics implementation approaches with the help of generated knowledge

prompting in association with chain-of-thought prompting. This section will demon-

strate CSC safeguard implementation through prompt engineering using CIS CSC

safeguard 1.1, 12.2 from version 8, and sub-control 12.1 from version 7.

To generate CIS CSC enforcement implementation, the first step is to extract

knowledge (in our case, it is the CSC ontology) from the CIS CSC safeguard descrip-

tion. After generating the CSC ontology for each safeguard, we will create measures

and metrics for each safeguard using the extracted safeguard ontology as the gener-

ated knowledge. We use generated knowledge to develop the measures and metrics;

we use both zero-shot and few-shot prompting. In our observation, the LLM can not

extract CSC ontology with zero-shot prompting if we only provide the definition of

each field of CSC ontology. However, the LLM can generate feasible CSC ontology if

we give a few manually extracted CSC safeguard ontologies as examples and ask for

71

CSC ontology for a different safeguard that aligns with the current knowledge about

LLM, which states that LLMs are few-shot learners [37].

Question: For the following CIS CSC safeguard description enclosed in

the curly braces, extract the following CSC Ontology:

CIS CSC Safeguard: {…}

CSC Ontology to extract:

Cyber Observable: …

Class: …

Evaluation Method: …

Measures:

Metrics:

Format the output as JSON with the following keys:

Output format:

Observable

Class

Evaluation Method

Measures

Metrics

Answer:{

 "Observable": ["Frequency of inventory updates", "Completeness of inventory", Accuracy of asset information",

"Utilization of automated discovery tools", "Timeliness of updates", "Adherence to policy", "Incident response metrics",

"Compliance monitoring", "Number of unauthorized devices”, "Security breach metrics", "Asset lifecycle management", "Training effectiveness"],

 "Class": ["Checklist", "Verifiable", "Measurable"],

 "Evaluation Method": ["Data-driven", "Model-based", "Active testing"],

 "Measures": ["Percentage of known assets", "Accuracy of information", "Utilization percentage of automated tools",

 "Time taken for updates", "Adherence to documented policies", "Response time to security incidents", "Compliance with control and regulations",

"Number of unauthorized devices", "Frequency and impact of security breaches", "Effectiveness of asset lifecycle management", "Effectiveness of

training programs"],

 "Metrics": ["Completeness = (Known Assets / Total Expected Assets) * 100", "Accuracy = (Correctly Identified Assets / Total Identified Assets) *

100",

"Utilization Percentage = (Utilized Automated Tools / Total Tools Available) * 100", "Timeliness = Time taken for updates",

"Adherence to Policy = (Adhered Instances / Total Instances) * 100", "Response Time = Time taken to respond to security incidents",

 "Compliance Percentage = (Compliant Instances / Total Instances) * 100", "Number of Unauthorized Devices", "Security Breach Index = (Frequency *

Impact) / 2",

"Effectiveness of Asset Lifecycle Management = (Effective Instances / Total Instances) * 100", "Effectiveness of Training Programs = (Effective

Instances / Total Instances) * 100"]}

LLM

Figure 4.4: Zero-shot prompting for CSC Ontology

The first step in extracting CSC ontology (generated knowledge) from the safe-

guard 1.1 descriptions is to create a prompt template. The template consists of a

query, ontology definition, and output format. The definition of each of the ontology

fields is given in Section 4.3.2. The input prompt and output from the LLM are

given in Figure 4.4. The result shows that the LLM could not distinguish between

measures and metrics where measures are objective and metrics are subjective, a

combination of multiple measures. This is a zero-shot prompting since we did not

provide any thought process or examples of extracted CSC. The LLM could not dis-

tinguish between measures and metrics in this zero-shot prompting. Some of the

measure outputs in Figure 4.4, such as "Percentage of known assets", "Accuracy of

information", "Effectiveness of training program", and "Effectiveness of asset life-

cycle management", are also in the metrics outputs. One reason for such a wrong

extraction could be that the LLM could not distinguish measures and metrics when

only a definition is provided. However, when we offered a few examples of extracted

CSC ontology, it could follow the extraction strategy we used in the examples and

successfully identify accurate measures and metrics. We also observe that when the

context of a query is extended, the LLM emphasizes the context more at the end

of the context window as suggested in [36]. For example, to extract CSC ontology

by following the CoT prompting in Figure 4.5, we have to provide a few examples

72

of the CSC ontology extraction process. When we give multiple safeguard ontology

extraction as examples, the LLM’s answer is more aligned with the last example.

For the following security control safeguard description enclosed in the curly braces, extract the following information:

Observable: which cyber detectable observable to monitor to assess the safeguard enforcement

Class: Checklist or verifiable or Measurable (A safeguard can belong to multiple classes). A checklist class means we can

assess the safeguard through scripting, A verifiable class means we can verify the safeguard by checking system configuration,

and A measurable class means we have to use data-driven analytics to assess the safeguard. You must also give the reason for

why you think a safeguard belongs to the detected class.

Evaluation Method: Data-driven or Model-based or Active testing (A safeguard can be evaluated using multiple evaluation

methods). A Data-driven evaluation method indicates that we have to generate statistics from event logs, traffic flows, and user

activities to evaluate the enforcement of the safeguard; A model-based evaluation approach indicates that we have to use the

configuration of the system to evaluate the enforcement of the safeguard; A active testing evaluation method indicates that we

have to probe the system to evaluate the enforcement of the safeguard. You must also explain why you think a safeguard can

be evaluated using the detected evaluation method.

Format the output as JSON with the following keys:

Observable, Class.type, Class.explanation, Evaluation.method

Question: Safeguard: … CIS CSC 1.1 description.

Thought 1: If this safeguard is implemented, the organization should have an asset inventory list containing asset details. If it

is not enforced, there will be no asset inventory, so no asset details. Thus, observables will be the presence/absence of asset

inventory and asset attribute details. We can assess the safeguard by checking the presence/absence of asset inventory and asset

attributes recorded in the inventory. Thus, the class will be checklist.

Thought 2: Since we have to check recorded asset details and how fast an asset is recorded in the inventory to measure the

enforcement of this safeguard, the evaluation method will be Data-driven.

Question: {Safeguard: … CIS CSC 12.2 description}

Answer:

{ "Observable": "Insecure network architecture",

"Class": { "type": ["Measurable"],

"explanation": "The safeguard requires data-driven analytics to assess the effectiveness of

segmentation, least privilege, and availability measures." },

"Evaluation” : {

“Method": { "type": ["Data-driven"],

"explanation": "The evaluation method involves generating statistics from event logs, traffic

flows, and user activities to assess the enforcement of the safeguard." }}

LLM

Figure 4.5: CoT prompting for CSC Ontology

Two-step prompting. To overcome this limitation, we divide our CSC ontology

extraction prompt into two parts. In the first step, we extract observable, class, and

evaluation methods by providing extraction examples of those three CSC ontology

fields. Then we use those extracted CSC fields as generated knowledge context and

create another prompt that queries about measures and metrics. In this prompt,

we provide a chain of thought for extracting only measures and metrics by offering

73

examples of a specific safeguard and queries about measures and metrics of a differ-

ent safeguard. We also provide the extracted fields of this safeguard in the previous

prompt as context. As shown in Figure 4.6, this two-step prompting process can

generate accurate measures and metrics for a specific CSC safeguard. Our prompt-

ing experiment can generate all the existing measures and metrics provided by CIS

CSC specification project [21] in addition to other measures and metrics as shown in

Tables 4.1 and 4.2.

Question: Safeguard: … (CIS CSC safeguard 1.5 description).

Answer:

Thought 1: If this safeguard is implemented, we will see the passive discovery tool’s scan result. Thus, we can

measure the following things-

Measures: M1 = Count of properly configured passive asset discovery tools, M2 = Count of improperly configured

passive asset discovery tools, M3 = Count of organization’s networks that are covered by properly configured

passive discovery tools, M4 = Count of organization’s networks that are not covered by properly configured passive

discovery tools, M5 = Count of enterprise networks, M6 = last scan time, M7 = 2nd last scan time, M8 = Time when

asset inventory is updated.

Thought 2: To calculate the coverage score, you can combine measure M3 and M4; to calculate the Configuration

compliance quality, you can combine measure M1 and M2; To calculate scan rate, we can use measure M6 and M7;

To calculate Asset inventory update rate, we can use measure M8 and M6.

Metrics: Coverage = M3 / (M3 + M4), Configuration compliance quality = M1/(M1 + M2), Scan rate = time

difference between two consecutive scan = M6 - M7, Assent inventory update rate (freshness) = 1/ (the time when

asset inventory is updated - last scan time) = 1 / (M8 - M6).

Now, for the following security control safeguard description enclosed in the curly braces, extract the following

information:

Measures: what to measure to assess the safeguard?

Metrics: How to measure the effectiveness of the safeguard by using extracted measures?

After extracting measures, Use the extracted measures to generate metrics. Format the output as JSON with the

following keys: Measures, Metrics.

Question: {Safeguard: … (CIS CSC safeguard 1.1 description)}

Answer:{

 "Measures": {"M1": "Count of end-user devices in the inventory", "M2": "Count of network

devices in the inventory", "M3": "Count of non-computing/IoT devices in the inventory", "M4":

"Count of servers in the inventory", "M5": "Count of mobile end-user devices managed by MDM

tools", "M6": "Count of assets with static network addresses", "M7": "Count of assets with

approved network connectivity", "M8": "Count of assets with up-to-date records", "M9": "Count

of assets physically connected to the infrastructure", "M10": "Count of assets virtually connected

to the infrastructure", "M11": "Count of assets remotely connected to the infrastructure", "M12":

"Count of assets within cloud environments", "M13": "Count of assets regularly connected to the

network, even if not under control", "M14": "Count of assets reviewed and updated bi-annually

or more frequently"},

 "Metrics": {"Inventory Completeness": "(M1 + M2 + M3 + M4) / Total Expected Assets",

"Approval Rate": "M7 / (M1 + M2 + M3 + M4)", "MDM Coverage": "M5 / Total Mobile End-

User Devices", "Static Address Rate": "M6 / (M1 + M2 + M3 + M4)", "Up-to-date Record

Rate": "M8 / (M1 + M2 + M3 + M4)", "Connection Method Distribution": { "Physical": "M9 /

(M1 + M2 + M3 + M4)", "Virtual": "M10 / (M1 + M2 + M3 + M4)", "Remote": "M11 / (M1 +

M2 + M3 + M4)", "Cloud": "M12 / (M1 + M2 + M3 + M4)", "Regularly Connected": "M13 /

(M1 + M2 + M3 + M4)"}, "Review and Update Rate": "M14 / Total Assets"}}

LLM

Figure 4.6: CoT prompting for Measures and Metrics

Although we generated measures and metrics by using CoT prompting, the gener-

ated metrics and measures are not implementable yet. In order to calculate a score

for a metric, an analyst needs to monitor each of the corresponding measures, de-

termine the cyber observable to monitor corresponding to the measure and signature

of the observable, and at the end, how to implement these monitoring steps. To ex-

tract measure and metric implementation steps, we use a sequence of prompts in the

fashion of generated knowledge prompting as mentioned in [38].

To demonstrate measure implementation using generated knowledge prompting as

shown in Figure 4.7, we use CSC sub-control (safeguard) 12.1 from CIS CSC version

7. One metric to measure this safeguard’s enforcement quality is to calculate network

boundary asset inventory accuracy. To calculate the score, we have to determine

two measures: 1) the number of total network boundaries in the inventory list and

74

Count of unrecognized

network boundaries

Prompt 4: How to identify unrecognized

network boundaries from DNS query and

response logs for the above-mentioned CIS

sub-control?

Prompt 2: For the above-mentioned

CIS sub-control, which network

event to look at to discover all

active network boundaries?

Prompt 1: For the above-mentioned CIS sub-

control, how to determine unrecognized

network boundaries?

Prompt 5: Provide an SIEM Rule to count

all unrecognized network boundaries from

DNS Traffic logs for the above-mentioned

CIS sub-control.

Prompt 3: How to identify

unrecognized network boundaries

from DHCP logs for the above-

mentioned CIS sub-control?

Prompt 6: Provide an SIEM Rule to

count all unrecognized network

boundaries from DHCP logs for the

above-mentioned CIS sub-control.

Measure Implementation

Figure 4.7: Generated knowledge prompting for Metric Implementation

2) the number of unrecognized network boundaries in the network. To monitor the

two measures mentioned earlier, the security analyst needs to know what the cyber

observable is to monitor to detect network boundaries and how to implement these

monitoring steps. In such cases, we use LLM to generate implementation steps and

use LLM as both reasoner and knowledge base. In the first prompt, we will query

the LLM about determining network boundaries. In our observation, LLM provides

multiple approaches to detecting network boundaries.

However, the answer is vague at this prompting level, and we have to dig deeper to

extract specific implementation steps. In our case, we query the LLM for correspond-

ing network events and data sources. The LLM outputs specific network events and

two data sources for those events: 1) DHCP logs and 2) DNS query logs and responses

(prompts 2, 3, and 4 in Figure 4.7). At this step, the answer of LLM is specific to the

measures and is implementable. In the following prompt, we query the LLM about

the monitoring signature (SIEM rule) for each type of event and traffic log (prompts

6 and 7). In each prompting step, we use the output from the previous prompt as

generated knowledge for the current prompt. This process of prompting continues in

75

multiple paths until the analyst is satisfied with a specific implementation.

4.5 Evaluation

In this section, we will evaluate the quality of the LLM-generated measures and

metrics and demonstrate the metric implementation for CSC safeguard 5.3. Our

experiment used three VMs, each with five user accounts.

Ground truth

Dataset

LLM-Generated

Metric

Evaluation Prompt LLM

Semantic

Similarity

Novelty

Correctness

Parser
CIS CSC

Specification

Figure 4.8: Evaluation of generated Metrics and Measures with LLM

In traditional machine learning and deep learning, establishing ground truths is

crucial for assessing the accuracy of model predictions or classifications. However, for

large language models (LLMs), defining a clear-cut ground truth is more complex.

LLMs are typically required to generate human-like text, where there often isn’t a

single "correct" answer that allows for direct comparison. One way of evaluation is to

involve humans and ask them to rate the LLM responses. This is what most of us do

when we manually look at the responses of two models or two prompts and determine

which one looks better. Although this approach is quick to start, it quickly becomes

time-consuming and highly subjective. Given that RLHF (Reinforcement Learning

from Human Feedback) involves creating an (LLM) reward model that scores model

responses during training, this shows a new direction to use LLMs themselves as

evaluators [65, 66].

We prompt the LLM to act as an evaluator, comparing the gold standard answer

with the new LLM-generated answer. The LLM is tasked to respond with a binary

76

’Yes’ or ’No’ for the key features being evaluated (semantic similarity, novelty, and

correctness in Figure 4.8) with rationale. These three metrics have been chosen so

we will be able to evaluate how semantically similar the LLM-generated output is to

the human-generated output, whether the LLM can create new measures and metrics

that are not generated by humans, and whether the LLM can compose measures

correctly to generate metrics when compared against our ground truth [66].

We used the CIS control-assessment-specification [62] GitHub repository to gener-

ate the golden dataset as the ground truth of LLM-generated measures and metrics as

shown in Figure 4.8. This project provides sample measures and metrics for each CIS

CSC safeguard. We collected measures and metrics for each safeguard by crawling

the project and parsing it using a Python script. In addition to the parsed measures

and metrics from the repository, we used observable, measurement approach from

our manual analysis results. This parser generates a JSON document for each safe-

guard containing observables, measurable class, measurement approach, measures,

and metrics.

One way to evaluate the generated measures and metrics is to manually compare

them with the corresponding ground truth, a.k .a. the golden dataset. However, the

manual comparison is a time and resource-intensive task. Thus, it does not scale

with the increasing number of safeguards. There exist benchmarking frameworks

such as ROUGE and BLEU to evaluate text generation systems. However, those

benchmarking frameworks evaluate at the word level or look for syntactic or lexical

similarity between generated text and ground truth text. Since it is improbable

that LLM-generated text will match with ground truth at the lexicon level, we are

interested in evaluating the semantic similarity of the generated text. By following

the approaches in LLM-EVAl and Flask [65, 66], we used the LLM as an evaluator

for the generated measures and metrics. We evaluated the LLM-generated measures

and metrics in the following criteria: 1) semantic similarity, how semantically similar

77

the LLM and golden dataset are; 2) metrics correctness: whether the measures are

composed correctly to generate metrics in the LLM-generated measures and metrics;

3) novelty: whether the LLM suggests new measures and metrics other than the one

mentioned in the golden dataset. We use an evaluation prompt as shown in Figure 4.9

where we prompted the LLM to assign a score against each criterion by comparing

the LLM-generated measures and metrics and golden dataset for a specific safeguard.

In this prompting, LLM is used as the judge or evaluator of measures and metrics

generated in a different prompt. However, the evaluation score generated by LLM

does not guarantee any reliable scoring. To check whether the evaluation generated

by the LLM is aligned with human evaluation, we manually assign scores for 10

safeguards in each criterion by comparing LLM-generated metrics and measures with

the golden dataset. Ultimately, we calculate the Pearson, Spearman, and Kendall

Tau correlation coefficients using human and LLM evaluation scores.

Semantic Similarity: From the result in Figure 4.10 (a), we found that LLM-

generated metrics differ from the human-labeled ones when limited context is given.

For example, human-generated metrics for safeguard 5.6 are different from the LLM-

generated ones because the dependent safeguard is considered when humans are gen-

erating the metrics, but for LLM, we did not provide any dependent safeguard for

a specific safeguard. Thus, LLMs do not generate good metrics if the safeguard de-

scription is not enough (to generate metrics for this safeguard, we have to consider

some dependent safeguards). However, when any dependent safeguard consideration

is unnecessary, the LLM-generated metrics cover all the human-generated metrics

(e.g., safeguards 5.1 to 5.5).

Novelty: LLM-generated metrics provide new metrics for all of the safeguards we

evaluated (Figure 4.10 (b)). Since the human-generated metric is incomplete and

provided only as a guideline for security analysts, the LLM always generates new

metrics based on the safeguard description.

78

Given the context, LLM generated response and human-annotated response, evaluate LLM-

generated response with respect to annotated response based on the following criteria:

1. Semantic similarity: Is the LLM-generated response semantically similar to the

annotated response? While calculating the semantic similarity score, ignore the

measure name mismatch. Provide a score between 1 to 10.

2. Novelty: Does the LLM-generated response contain new metrics that are not

mentioned in the annotated response? Provide a score between 1 to 10.

3. Metrics correctness: are the measures composed correctly to generate metrics? Provide

a score between 1 to 10.

Context: safeguard description

LLM-generated response: “…”

Human-annotated response: “…”

Provide the score with explanation for each criterion in JSON format.

Answer:

Semantic similarity: {Score:…, Explanation: …}

Novelty: {Score:…, Explanation: …}

Metrics Correctness: {Score:…, Explanation: …}

LLM

Figure 4.9: Prompting to evaluate Measures and Metrics

5.1 5.2 5.3 5.4 5.5 5.6
CSC safeguard

0

2

4

6

8

Sc
or
es

a) Semantic similarity of LLM-generated response
Human-eval
LLM-eval

5.1 5.2 5.3 5.4 5.5 5.6
CSC safeguard

0

2

4

6

8

Sc
or
es

b) Novelty of LLM generated response
Human-eval
LLM-eval

5.1 5.2 5.3 5.4 5.5 5.6
CSC safeguard

0

2

4

6

8

10

Sc
or
es

c) Correctness of LLM generated response
Human-eval
LLM-eval

semantic similarity novelty correctness
−0.4

−0.2

0.0

0.2

0.4

Co
rre

la
tio

n
Sc
or
e

d) Correlation coefficient between LLM and human evaluation
Pearson
Spearman
Kendall-tau

Figure 4.10: Semantic Similarity, Novelty, Correctness evaluation between LLM-
generated and human-labeled metrics, and Correlation between human evaluation
and LLM evaluation (all the evaluation done with ChatGPT-3.5)

79

Correctness: To validate the correctness of LLM-generated measures and metrics,

we asked the LLM evaluator through zero-shot prompting by following the prompt

in Figure 4.9. We also manually evaluated the LLM-generated measures and metrics.

The goal here is to check whether LLM can compose different specific measures to-

gether to generate metrics. From Figure 4.10 (c), we see that the correctness score

of safeguards 5.1 and 5.3 to 5.6 for both manual and LLM are high (more than 5).

Initially, the correctness score for LLM-generated metrics for safeguard 5.2 is less than

5. We investigated it and found out that the metrics for safeguard 5.2 in the golden

dataset are wrong; after fixing the wrong metrics, the correctness score for the LLM

increased to 8.

Reliability: We evaluated the quality of the LLM-generated measures and met-

rics using another LLM. However, whether the evaluation of LLM is reliable or not

is an important question. To confirm the LLM’s evaluation aligns with human un-

derstanding and assessment of LLM-generated measures and metrics, we manually

provide a score of 0-10 under semantic similarity, novelty, and correctness criteria for

each safeguard measure and metric. We also evaluate the LLM-generated metrics

using zero-shot prompting (prompt in Figure 4.9) for the same safeguard. We did

this experiment for 10 safeguards. We calculate the Pearson, Spearman, and Kendall

Tau correlation coefficient to determine the correlation between human and LLM

scoring. Since from the limited evaluation, it is not clear whether the parametric or

non-parametric correlation approach is the appropriate one (normal distribution and

linear relationship of the score under each criterion), we calculated the correlation co-

efficient for both parametric (Pearson) and non-parametric (Spearman and Kendall

Tau) approach.

From Figure 4.10 (d), we have a Pearson, Spearman, and Kendall Tau correlation

coefficient of -0.39, -0.06, and -0.08 for semantic similarity evaluation. The negative

rho value indicates the LLM evaluation does not align with the human evaluation

80

of the LLM-generated measures and metrics. We further investigate the human-

labeled dataset and the LLM-generated one. Human-labeled measures and metrics

for safeguard 5.6 are quite different. Humans consider other dependent safeguards to

generate the measures and metrics for safeguard 5.6, but LLM generates the safeguard

only considering safeguard 5.6. Since LLM did not get the dependent safeguard as

context while generating the measures and metrics, the measures and metrics are very

different from the human-labeled one. During the evaluation of semantic similarity

evaluation in Figure 4.10 (a), we got a score of 5 and 8 for human and LLM evaluation,

respectively. To overcome this discrepancy, we regenerate the measures and metrics

by providing dependent safeguard as context and evaluate it using both LLM and

humans. This time the rho value improved to 0.6, 0.5, and 0.3 for Pearson, Spearman,

and Kendall Tau correlation coefficient. This positive correlation coefficient indicates

that using LLM as an evaluator is reliable and aligns with human evaluation.

From Figure 4.10 (d), the correlation coefficient of 0.47, 0.49, and 0.42 for Pearson,

Spearman, and Kendall Tau indicates that LLM evaluation for novelty aligns with

human evaluation of LLM-generated measures and metrics. Similarly, the correlation

coefficients of 0.33, 0.37, and 0.35 for Pearson, Spearman, and Kendall Tau indicate

that LLM evaluation for correctness aligns with human evaluation of LLM-generated

measures and metrics.

Improvement over Different Language Models. So far, all the responses

we discussed were generated using ChatGPT-3.5 (gpt-3.5-turbo-0125). To see the

improvement in similar tasks among different LLMs, we further executed the same

prompts with ChatGPT-4 (gpt-4-0613). The visible improvement of ChatGPT-4 is in

extracting CSC ontology (observable, measurable features). When extracting observ-

ables, ChatGPT-3.5 sometimes reports the wrong observable whereas ChatGPT-4

always reports the correct observable (for all 6 safeguards we tested). In terms of

measures and metrics generation, the answer from ChatGPT-4 covers all correct ones

81

from ChatGPT-3. Moreover, It provides more accurate metrics than the ones gener-

ated by ChatGPT-3.5. All chat transcripts are available at [69].

General Applicability of our Prompts for Security Controls Provided

by Entities other than CIS. While this chapter primarily presents use cases and

illustrations related to CIS CSC, our methodology can generally be applicable to other

security control guidelines, provided that these guidelines offer a comparable level of

specificity in delineating observables and features. We generate measures and metrics

for NIST CSF controls using our original prompts [69]. Specifically, we generate

measures and metrics for NIST CSF controls PR.AC-1, PR.AC-4 and PR.AC-5 by

prompting ChatGPT-3.5 and ChatGPT-4. Our original prompts for CIS CSC can

generate measures and metrics for all three NIST CSF security controls with the

same accuracy. However, the accuracy of ChatGPT-4 is higher than ChatGPT-3.5,

which is expected as ChatGPT-4 is a more advanced model. Since we developed the

prompts with CoT prompting, the reasoning steps are demonstrated to LLM during

prompt generation. We demonstrated the thought process for CIS CSC safeguard

and asked LLM to generate measures and metrics for NIST CSF controls. The chat

transcripts [69] with ChatGPT-3.5 and ChatGPT-4 show the general applicability of

our prompt for security controls provided by organizations other than CIS.

4.5.1 Metric Implementation Demonstration using LLM

In this section, we demonstrate measure and metric implementation with the help of

chain-of-thought prompting with LLM. Given a description of the safeguard, we used

chain-of-thought prompting to generate measures and metrics for the safeguard to

assess the enforcement quality of the corresponding safeguard. However, the security

analyst needs to implement those metrics in the organization to assess the enforcement

quality of the safeguard. We will demonstrate the process of implementing the metrics

for the safeguard 5.3 using LLM.

In the first step, we generate measures and metrics for safeguard 5.3 using the

82

Dormant Account Detection

Prompt 2: For the above-mentioned CIS sub-

control, which ETW provider logs account activity?

Prompt 1: For the above-mentioned CIS sub-control,

how to determine dormant account in a system?

Prompt 3: Provide a list of audit

events related to account activity?

Prompt 9: Provide an SIEM Rule to detect user login, log off or account

creation windows audit event for the above-mentioned CIS sub-control.

Measure Implementation

Prompt 4: What is the

windows audit event ID

of successful logon?

Prompt 5: What is the

windows audit event ID

of user-initiated logoff?

Prompt 8: What is the

windows audit event ID of

user account disabled?

Prompt 7: What is the

windows audit event ID

of user account deleted?

Prompt 6: What is the

windows audit event ID

of user account created?

Prompt 4.1: What is the

windows audit event ID of

successful interactive logon?

Figure 4.11: Generated knowledge prompting for dormant account detection imple-
mentation

prompt in Figure 4.6. The LLM-generated metrics contain three separate metrics,

whereas the CIS CSC specification provides one metric. The metrics are 1) Dormant

Account Deactivation Compliance, the percentage of deactivated dormant accounts;

2) Timeliness of Deactivation, the percentage of timely deactivation; and 3) Overall

Compliance Score, the average of Dormant Account Deactivation Compliance score,

and Timeliness of Deactivation score. To calculate metric 1, the LLM suggested

two measures: 1) Total dormant account and 2) number of deactivated dormant

accounts. To calculate metric 2, the LLM generates two measures: 1) number of

deactivated dormant accounts and 2) number of timely (within 45 days) deactivated

dormant accounts. Thus, to calculate both metrics 1 and 2, a security analyst needs

to monitor 3 measures: 1) Total dormant accounts, 2) the number of deactivated

dormant accounts, and 3) the number of timely (within 45 days) deactivated dormant

accounts. How to collect statistics corresponding to those three measures highly

depends on the analyst’s skills and prior knowledge. We will use generated knowledge

prompting with an LLM to extract those monitoring implementation steps as shown

in Figure 4.11.

83

From the list of required measures to monitor, we see that we have to implement a

way to detect dormant accounts in the system. So the first prompt for LLM will be to

ask it about detection techniques for dormant accounts. The LLM provides multiple

ways to detect dormant accounts, such as defining dormant criteria, reviewing ac-

count activity logs, and checking last login timestamps and account access patterns.

Reviewing the LLM answer, we see that all techniques are consolidated around look-

ing at account activity logs. However, at this stage, LLM does not provide details

of the account activity logs to look at. So, using our knowledge from the previous

prompt answer, we have to generate another prompt to ask the LLM about the spe-

cific account activity logs. Since we have to look at the activity logs, we will ask the

LLM about the ETW provider that logs the account activity. We also have to ask

the LLM about specific account activity event id such as logon event ID (4624), logoff

event ID (4634), and account disabled event ID (4725).

At this point of prompting, we know the event IDs and the ETW provider to mon-

itor account activity. We then use CSCMonitor (Section 4.3.4) to implement these

monitoring steps. CSCMonitor takes a monitoring task as the signature. We use

our extracted required event IDs to build a signature. We can use LLM to build

the event signature to monitor. However, the event signature depends on monitoring

tools, making generating an exact signature using LLM infeasible. For our work, we

manually created the signature using extracted event IDs. After receiving a monitor-

ing task, CSCMonitor decomposes it into primitive tasks to monitor and assign them

to lower-level agents. The goal of using CSCMonitor for our monitoring architecture

is to reduce transferring excessive amounts of event logs to the central server, i.e.,

the console agent of CSCMonitor. To detect dormant accounts, we have to know the

last account activity for each user account in the system. Among the user activity,

we are interested in logon, logoff, and account creation events. Thus, the monitoring

84

signature for the console agent of CSCMonitor will be:

(event_id == logon && logon.type == interactive)

|| (event_id == logoff) || (event_id == account_creation)

(4.1)

event_id == logon && logon.type == interactive (4.2)

event_id == logoff (4.3)

event_id == account_creation (4.4)

Given the monitoring signature 4.1, the console agent will decompose it to primitive

monitoring task signatures 4.2, 4.3, and 4.4.

Each host is assigned those primitive tasks to monitor by the console agent. Upon

detection of any primitive task, the host forwards the corresponding event details to

the upper-level agent. Since we are interested in account details and last activity

time, the lower-level agent forwards only the account details from the detected events

to the console agent. The console agent saves each account’s details and recent event

occurrence time. The console agent counts the total number of dormant accounts from

the recent event occurrence time for each user account, current time, and dormant

threshold.

To determine the timely deactivation of dormant accounts, we have to monitor

account disable (4725) and account deletion event (4726). Thus, the monitoring

signature for the account deactivation/deletion event is:

event_id == account_deletion || event_id == account_disabled (4.5)

85

event_id == account_deletion (4.6)

event_id == account_disabled (4.7)

Similar to the previous monitoring signature for dormant account detection, the

CA will decompose the monitoring task 4.5 to primitive monitoring tasks 4.6 and

4.7. The CA assigns each of those primitive monitoring tasks to a lower-level agent

to monitor corresponding events. Upon detection of the corresponding primitive

monitoring task, the EFA (event filtering agent) will forward the user account details

and corresponding activity occurrence time to the console agent and save it in its

persistent memory. Form each accounts deletion or deactivation time, CA counts the

number of timely dormant account deletion/deactivation.

In the end, the CA of CSCMonitor reports dormant account statistics of measures

1, 2, and 3 for Table 4.2. Using those statistics about the measure, CA also reports

the score for metrics M11 and M22 from Table 4.2.

One of the three VMs used for this demonstration contains the CA agent running,

and each VM has an EFA agent always running. Those EFA agents forward the

detected events to the CA.

4.6 Conclusion and Discussion

In summary, this chapter describes prompt engineering to generate measures and

metrics that will be used to validate CIS critical security control enforcement. We

generate CSC ontology, measures, and metrics using a few-shot prompting with CoT

to validate CSC safeguard enforcement. Moreover, we elicit measure and metric

implementation steps from the LLM by using a chain of zero-shot prompting where

each prompt uses knowledge from previous prompts as context (generated knowledge

prompting) for the current prompt.

86

We evaluate the LLM-generated measures and metrics using LLM. To evaluate

LLM-generated output, we provide an evaluation prompt that evaluates each gener-

ated measure and metric under three criteria: semantic similarity, novelty, and cor-

rectness. We calculate the correlation scores using Pearson, Spearman, and Kendall

Tau’s functions to ensure the LLM evaluation is reliable and aligned with human

evaluation. The correlation coefficient indicates that LLM evaluation aligns with the

human evaluation of generated measures and metrics.

Though we did not get any wrong answers during our experiment when the appro-

priate prompt was given, the hallucination of LLM is a known problem [70], and we

can not predict when it will happen. The answer generated by LLM can be wrong

from time to time. Since humans do the implementation steps of measures based

on the answers from LLM, this hallucination problem will be detected during the

implementation steps if it happens. Another limitation of this work is that LLM is

sensitive to prompts. A Prompt works for a specific LLM version, but it does not

mean it will work for all future versions or a different LLM. For different LLM or

different LLM versions, we may have to check whether the existing prompt works or

not and may have to fine-tune it to align it with the specific LLM.

87

Table 4.1: Human and LLM-generated Measures and Metrics for Safeguard 5.1

Safeguard CIS CSC Specification (Human-
Generated) Metric

LLM-Generated Metric

5.1

Completeness of Inventory = The
percentage of minimum elements
included in the inventory =
(Count of elements provided in in-
ventory) / 4

Account Inventory Accuracy =
the accuracy of the account inven-
tory in representing all accounts in
the enterprise = Number of Cor-
rect Entries / Total Entries) * 100

Completeness of Inventory De-
tails = The percentage of ac-
counts with complete information
= (Count of accounts in inventory
with complete information) / 2

Authorization Validation Fre-
quency = how frequently the
recurring validation of accounts is
performed = (Number of Valida-
tions within Time Period / Total
Time Periods) * 100

Accuracy of Inventory = The per-
centage of accurately listed ac-
counts in the inventory = Count
of unauthorized accounts / Count
of identified current accounts

Recurring Validation Frequency =
how frequently the recurring val-
idation of accounts is performed
= (Number of Validations within
Time Period / Total Time Peri-
ods) * 100
User and Administrator Account
Ratio = the ratio of user accounts
to administrator accounts in the
inventory = Number of User Ac-
counts / Number of Administrator
Accounts
Completeness of Account Details
= the completeness of account de-
tails recorded in the inventory =
(Number of Complete Entries /
Total Entries) * 100

Table 4.2: Measures and Metrics for CSC 5.3 generated by LLM

Name Measures Metrics
Dormant Account Deactivation
Compliance, the percentage of de-
activated dormant accounts

1. M1 = Total dormant
account. 2. M2 = Num-
ber of deactivated dor-
mant accounts

M11 = M2 / M1

Timeliness of Deactivation, the
percentage of timely deactivation

1. M3 = Number of
timely (45 days) deacti-
vated dormant accounts

M22 = M3 / M2

Overall Compliance Score (M11 + M22) / 2

CHAPTER 5: Conclusions

The centralized nature of existing monitoring system, corresponding communica-

tion overhead and resource consumption call for the design of a distributed hierarchical

monitoring architecture that reduces the communication overhead among the agents

and resource consumption. Moreover, the monitoring system should provide sufficient

expressibility in terms of analytical language to express user subscription requests. In

this dissertation, we provide an SCAHunter: a distributed hierarchical agent archi-

tecture that can monitor end-host and networking devices based on user subscription

requests to hunt cyber threats and assess the critical security control enforcement

quality. The proposed event monitoring system will reduce the communication over-

head and resource consumption in event monitoring, cyber threat hunting, and CSC

validation and effectiveness measurement through the use of distributed hierarchical

monitoring.

Firstly, we propose a distributed hierarchical agent infrastructure for event moni-

toring that optimizes monitoring tasks to reduce resource usage and communication

overhead. We also provide an analytical language to facilitate the required express-

ibility of the user/threat hunter’s subscription request. The agent infrastructure uses

the analytical language to specify user task requests.

Secondly, to serve the user request, the monitoring system must decompose the user

subscription request specified with the provided analytical language and determine the

optimal number of CEDAs that cover all required EFAs so that event correlation tasks

are distributed among the hosts. Since CEDA generation is an NP-hard problem, we

provide an approximation algorithms to generate an optimal agent hierarchy. We also

develop ETW-based agents to monitor signature-specific events so that on-demand

89

monitoring is supported.

Thirdly, we evaluated our proposed architecture using log data generated by run-

ning three test scripts provided by Red Canary Atomic Red Team. We created attack

signatures for the test scripts following the MITRE ATT&CK technique description

during the evaluation. We also evaluated our proposed approach using the DARPA

OpTC attack dataset. To compare our approach with the existing centralized event

monitoring approaches for threat hunting, we also implemented centralized event

monitoring using Splunk.

Fourthly, we provided prompt engineering techniques to generate measures and

metrics, which will reduce manual work on metrics development and dependency

on the security analyst’s expertise and prior knowledge. To generate CSC ontology,

we used CoT prompting. To generate measures and metrics, we used a few shot

promoting with CoT prompting. In the end, we generated measures and metrics

implementation steps using generated knowledge prompting.

We further assessed the enforcement quality of security controls by implementing a

CSC assessment monitor and using implementation steps generated during generated

knowledge prompting and monitoring the system using our distributed hierarchical

monitoring agent architecture.

In this dissertation, the issue of a single point of failure within our distributed

system was not addressed, a challenge that can potentially be remedied through the

use of consensus algorithms, presenting a further avenue for research. The halluci-

nation of LLM is a known problem, and the answers from LLM during automated

measures and metrics generation may not always be accurate over time. Therefore,

it may be necessary for security analysts to verify the reliability of the measures and

metrics produced during their implementation. An additional limitation identified of

this dissertation is the sensitivity of LLMs to the specificity of prompts. The efficacy

of existing prompts may vary across different LLMs or their versions, necessitating

90

adjustments or fine-tuning to ensure compatibility with the specific LLM.

91

REFERENCES

[1] “Symmantec. attack listing.” https://www.symantec.com/security-center/a-z.

[2] L. D. Ping Chen and C. Huygens, “A study on advanced persistent threats,” in
In IFIP International Conference on Communications and Multimedia Security,
2014.

[3] “The state of ransomware 2022.” https://www.sophos.com/en-us/content/state-
of-ransomware. [Online; accessed 15 July, 2022].

[4] C. G. Z. L. C. P. S. Stevens Le Blond, Adina Uritesc and E. Kirda, “A look at tar-
geted attacks through the lense of an ngo,” in In USENIX Security Symposium,
2014.

[5] C. K. Marco Cova and G. Vigna, “Detection and analysis of drive-by-download
attacks and malicious javascript code,” in In International Conference on World
Wide Web (WWW), 2010.

[6] P. P. H. D. H. Y. S. L. B. D. M. Brown Farinholt, Mohammad Rezaeirad and
K. Levchenko, “To catch a ratter: Monitoring the behavior of amateur darkcomet
rat operators in the wild,” in In IEEE Symposium on Security and Privacy, 2017.

[7] L. C. B. G. M. S. R. K. C. K. Brett Stone-Gross, Marco Cova and G. Vigna,
“Your botnet is my botnet: analysis of a botnet takeover,” in In ACM Conference
on Computer and Communications Security(CCS), 2009.

[8] M. Ahmed, J. Wei, Y. Wang, and E. Al-Shaer, “A poisoning attack against cryp-
tocurrency mining pools,” in Data Privacy Management, Cryptocurrencies and
Blockchain Technology (J. Garcia-Alfaro, J. Herrera-Joancomartí, G. Livraga,
and R. Rios, eds.), (Cham), pp. 140–154, Springer International Publishing,
2018.

[9] “Special report m-trends 2021.” https://www.mandiant.com/resources/m-
trends-2021. [Online; accessed 15 July, 2022].

[10] “How much does a data breach cost?.” https://www.ibm.com/security/data-
breach. [Online; accessed 15 July, 2022].

[11] Y. Li, J. Xia, S. Zhang, J. Yan, X. Ai, and K. Dai, “An efficient intrusion detection
system based on support vector machines and gradually feature removal method,”
in Expert Syst. Appl, 2009.

[12] C. G. H. R. S. A. Peng Ning, Dingbang Xu, “Building attack scenarios through
integration of complementary alert correlation methods,” in Expert Syst. Appl,
2004.

92

[13] H. A.-W. E. Al-Shaer and K. Maly, “Hifi: a new monitoring architecture for
distributed systems management,” in 19th IEEE International Conference on
Distributed Computing Systems (Cat. No.99CB37003), pp. pp. 171–178, 1999.

[14] M. W. B. J. B. J. G. H. A. G. Kevin Patrick, Mahaffey Timothy and A. C.
Abey, “Distributed monitoring, evaluation, and response for multiple devices,”
in United States Patent, US9753796B2, September 5 2017.

[15] L. D. C. L. M. J. M. B. R. S. M. S. Y. V. Akshay Adhikari, Scott Vincent Bianco,
“Distributed monitoring and analysis system for network traffic,” in United States
Patent, US7031264B2, April 18 2006.

[16] D. H. H. Liu and Y. Zhang, “Cooperative control based on distributed attack
identification and isolation,” in 2020 16th International Conference on Control,
Automation, Robotics and Vision (ICARCV), pp. pp. 1268–1273, 2020.

[17] C. K. T. P. F. Boem, R. M. G. Ferrari and M. M. Polycarpou, “A distributed
networked approach for fault detection of large-scale systems,” in IEEE Trans-
actions on Automatic Control, vol. 62, no. 1, pp. pp. 18–33, January 2017.

[18] “Cis controls self assessment tool (cis csat).”
https://www.cisecurity.org/controls/cis-controls-self-assessment-tool-cis-csat, 5
January 2024.

[19] “Cis controls measurement companion guide.”
https://www.cisecurity.org/insights/white-papers/a-measurement-companion-
to-the-cis-critical-controls, 5 January 2024.

[20] “Rapid7 global service.” https://www.rapid7.com/solutions/compliance/critical-
controls/. [Online; accessed 15 march, 2022].

[21] R. Bar-Haim, L. Eden, Y. Kantor, V. Agarwal, M. Devereux, N. Gupta, A. Ku-
mar, M. Orbach, and M. Zan, “Towards automated assessment of organizational
cybersecurity posture in cloud,” in Proceedings of the 6th Joint International
Conference on Data Science & Management of Data (10th ACM IKDD CODS
and 28th COMAD), CODS-COMAD 23, (New York, NY, USA), pp. 167–175,
Association for Computing Machinery, 2023.

[22] S. Gros, “A critical view on cis controls,” 2021 16th International Conference on
Telecommunications (ConTEL), pp. 122–128, 2019.

[23] S. M. Milajerdi, B. Eshete, R. Gjomemo, and V. Venkatakrishnan, “Poirot:
Aligning attack behavior with kernel audit records for cyber threat hunting,”
in Proceedings of the 2019 ACM SIGSAC Conference on Computer and Com-
munications Security, pp. 1795–1812, 2019.

93

[24] B. Bhattarai and H. Huang, “Steinerlog: Prize collecting the audit logs for threat
hunting on enterprise network,” in Proceedings of the 2022 ACM on Asia Con-
ference on Computer and Communications Security, ASIA CCS ’22, (New York,
NY, USA), p. 97â108, Association for Computing Machinery, 2022.

[25] W. U. Hassan, D. Li, K. Jee, X. Yu, K. Zou, D. Wang, Z. Chen, Z. Li, J. Rhee,
J. Gui, and A. Bates, “This is why we can’t cache nice things: Lightning-
fast threat hunting using suspicion-based hierarchical storage,” in Annual Com-
puter Security Applications Conference, ACSAC ’20, (New York, NY, USA),
p. 165â178, Association for Computing Machinery, 2020.

[26] “Adversarial tactics, techniques & common knowledge.”
https://attack.mitre.org/. [Online; accessed 15 march, 2022].

[27] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and A. Bates, “Nodoze:
Combatting threat alert fatigue with automated provenance triage,” in Network
and Distributed Systems Security Symposium, 2019.

[28] W. U. Hassan, A. Bates, and D. Marino, “Tactical provenance analysis for end-
point detection and response systems,” in 2020 IEEE Symposium on Security
and Privacy (SP), pp. 1172–1189, 2020.

[29] “Atomic red team: Mitre attack technique detector.”
https://github.com/redcanaryco/atomic-red-team/. [Online; accessed 15
march, 2022].

[30] R. Arantes, C. Weir, H. Hannon, and M. Kulseng, “Operationally transparent
cyber (optc),” 2021.

[31] “Etw: Evetn tracing for windows.” https://learn.microsoft.com/en-us/message-
analyzer/etw-framework-conceptual-tutorial. [Online; accessed 15 March, 2024].

[32] “Center for internet security- critical security control, 2021.”
https://www.cisecurity.org/controls/cis-controls-list, 5 January 2024.

[33] “Alienvault ossim.” https://www.alienvault.com/products/ossim. [Online; ac-
cessed 15 march, 2022].

[34] J. Wei, X. Wang, D. Schuurmans, M. Bosma, brian ichter, F. Xia, E. H. Chi,
Q. V. Le, and D. Zhou, “Chain of thought prompting elicits reasoning in large
language models,” in Advances in Neural Information Processing Systems (A. H.
Oh, A. Agarwal, D. Belgrave, and K. Cho, eds.), 2022.

[35] S. Mishra, D. Khashabi, C. Baral, Y. Choi, and H. Hajishirzi, “Reframing in-
structional prompts to gptk’s language,” ArXiv, vol. abs/2109.07830, 2021.

[36] Z. Zhao, E. Wallace, S. Feng, D. Klein, and S. Singh, “Calibrate before use: Im-
proving few-shot performance of language models,” in International Conference
on Machine Learning, pp. 12697–12706, PMLR, 2021.

94

[37] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,
G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter,
C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner,
S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models
are few-shot learners,” in Advances in Neural Information Processing Systems
(H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, eds.), vol. 33,
pp. 1877–1901, Curran Associates, Inc., 2020.

[38] J. Liu, A. Liu, X. Lu, S. Welleck, P. West, R. L. Bras, Y. Choi, and H. Hajishirzi,
“Generated knowledge prompting for commonsense reasoning,” 2022.

[39] M. Ahmed, J. Wei, and E. Al-Shaer, “Scahunter: Scalable threat hunting through
decentralized hierarchical monitoring agent architecture,” in Intelligent Comput-
ing (K. Arai, ed.), (Cham), pp. 1282–1307, Springer Nature Switzerland, 2023.

[40] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakrishnan,
“Holmes: real-time apt detection through correlation of suspicious information
flows,” in 2019 IEEE Symposium on Security and Privacy (SP), pp. 1137–1152,
IEEE, 2019.

[41] M. N. Hossain, S. M. Milajerdi, J. Wang, B. Eshete, R. Gjomemo, R. Sekar,
S. Stoller, and V. Venkatakrishnan, “{SLEUTH}: Real-time attack scenario re-
construction from {COTS} audit data,” in 26th {USENIX} Security Symposium
({USENIX} Security 17), pp. 487–504, 2017.

[42] “Logrythm:threat hunting use cases.” https://logrhythm.com/use-cases/. [On-
line; accessed 15 April, 2022].

[43] “Endpoint detection and response solution survey.”
https://www.gartner.com/reviews/market/endpoint-detection-and-response-
solutions. [Online; accessed 3 August, 2022].

[44] R. Al-Shaer, J. M. Spring, and E. Christou, “Learning the associations of mitre
att&ck adversarial techniques,” in 2020 IEEE Conference on Communications
and Network Security (CNS), pp. 1–9, 2020.

[45] R. Wei, L. Cai, L. Zhao, A. Yu, and D. Meng, “Deephunter: A graph neural
network based approach for robust cyber threat hunting,” in Security and Privacy
in Communication Networks (J. Garcia-Alfaro, S. Li, R. Poovendran, H. Debar,
and M. Yung, eds.), (Cham), pp. 3–24, Springer International Publishing, 2021.

[46] W. U. Hassan, M. A. Noureddine, P. Datta, and A. Bates, “Omegalog: High-
fidelity attack investigation via transparent multi-layer log analysis,” in Network
and Distributed System Security Symposium, 2020.

[47] C. Xiong, T. Zhu, W. Dong, L. Ruan, R. Yang, Y. Chen, Y. Cheng, S. Cheng, and
X. Chen, “Conan: A practical real-time apt detection system with high accuracy
and efficiency,” IEEE Transactions on Dependable and Secure Computing, 2020.

95

[48] V. Yegneswaran, P. Barford, and S. Jha, “Global intrusion detection in the
domino overlay system,” tech. rep., University of Wisconsin-Madison Depart-
ment of Computer Sciences, 2003.

[49] K. Benahmed, M. Merabti, and H. Haffaf, “Distributed monitoring for misbe-
haviour detection in wireless sensor networks,” Security and Communication
Networks, vol. 6, no. 4, pp. 388–400, 2013.

[50] Y.-S. Wu, B. Foo, Y. Mei, and S. Bagchi, “Collaborative intrusion detection sys-
tem (cids): a framework for accurate and efficient ids,” in 19th Annual Computer
Security Applications Conference, 2003. Proceedings., pp. 234–244, IEEE, 2003.

[51] E. Al-Shaer, H. Abdel-Wahab, and K. Maly, “Hifi: a new monitoring architecture
for distributed systems management,” in Proceedings. 19th IEEE International
Conference on Distributed Computing Systems (Cat. No.99CB37003), pp. 171–
178, 1999.

[52] M. Ahmed and E. Al-Shaer, “Measures and metrics for the enforcement of critical
security controls: a case study of boundary defense,” in Proceedings of the 6th
Annual Symposium on Hot Topics in the Science of Security, pp. 1–3, 2019.

[53] P. T. N. Hong and S. Le Van, “An online monitoring solution for complex dis-
tributed systems based on hierarchical monitoring agents,” in Knowledge and
Systems Engineering, pp. 187–198, Springer, 2014.

[54] M. M. Alam and W. Wang, “A comprehensive survey on data provenance: State-
of-the-art approaches and their deployments for iot security enforcement,” Jour-
nal of Computer Security, no. Preprint, pp. 1–24, 2021.

[55] M. Andreolini, M. Colajanni, and M. Pietri, “A scalable architecture for real-
time monitoring of large information systems,” in 2012 Second Symposium on
Network Cloud Computing and Applications, pp. 143–150, IEEE, 2012.

[56] M. N. Alsaleh, J. Wei, E. Al-Shaer, and M. Ahmed, “Gextractor: Towards au-
tomated extraction of malware deception parameters,” in Proceedings of the 8th
Software Security, Protection, and Reverse Engineering Workshop, SSPREW-8,
(New York, NY, USA), Association for Computing Machinery, 2018.

[57] F. D. Sacerdoti, M. J. Katz, M. L. Massie, and D. E. Culler, “Wide area cluster
monitoring with ganglia.,” in CLUSTER, vol. 3, pp. 289–289, 2003.

[58] F. Boem, R. M. Ferrari, C. Keliris, T. Parisini, and M. M. Polycarpou, “A
distributed networked approach for fault detection of large-scale systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 1, pp. 18–33, 2016.

[59] A. Wood, Rabbit MQ: For Starters. North Charleston, SC, USA: CreateSpace
Independent Publishing Platform, 2016.

96

[60] L. Axon, A. Erola, A. Janse van Rensburg, J. R. Nurse, M. Goldsmith, and
S. Creese, “Practitioners’ views on cybersecurity control adoption and effective-
ness,” in Proceedings of the 16th International Conference on Availability, Reli-
ability and Security, pp. 1–10, 2021.

[61] “Cis benchmark.” https://www.cisecurity.org/cis-benchmarks, 5 January 2024.

[62] “Cis controls assessment specification.” https://controls-assessment-
specification.readthedocs.io/en/stable/index.html, 5 January 2024.

[63] W. K. Sedano and M. Salman, “Auditing linux operating system with center for
internet security (cis) standard,” in 2021 International Conference on Informa-
tion Technology (ICIT), pp. 466–471, IEEE, 2021.

[64] A. Dutta and E. Al-Shaer, “"what","where", and "why" cybersecurity controls
to enforce for optimal risk mitigation,” in 2019 IEEE Conference on Communi-
cations and Network Security (CNS), pp. 160–168, IEEE, 2019.

[65] Y.-T. Lin and Y.-N. Chen, “Llm-eval: Unified multi-dimensional automatic eval-
uation for open-domain conversations with large language models,” 2023.

[66] Z. Zeng, J. Yu, T. Gao, Y. Meng, T. Goyal, and D. Chen, “Evaluating large
language models at evaluating instruction following,” ArXiv, vol. abs/2310.07641,
2023.

[67] W. Stern, S. J. Goh, N. Nur, P. J. Aragon, and T. Mercer, “Natural language
explanations for suicide risk classification using large language models,” 2024.

[68] S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and K. Narasimhan,
“Tree of thoughts: Deliberate problem solving with large language models,”
CoRR, vol. abs/2305.10601, 2023.

[69] “Llm chat trnascript.” https://github.com/MohiuddinSohel/CSC-Assessment-
Prompting, 12 April 2024.

[70] Y. Zhang, Y. Li, L. Cui, D. Cai, L. Liu, T. Fu, X. Huang, E. Zhao, Y. Zhang,
Y. Chen, et al., “Siren’s song in the ai ocean: A survey on hallucination in large
language models,” arXiv preprint arXiv:2309.01219, 2023.

97

APPENDIX A:

A.1 CSC Safeguard

98

Table A.1: CSC safeguard from version 8 and sub-control from version 7

CSC Description
1.1 Establish and maintain an accurate, detailed, and up-to-date inventory

of all enterprise assets with potential to store or process data, including
end-user devices (portable and mobile), network devices, non-computing
devices, and servers. Ensure inventory records network address (if static),
hardware address, machine name, data asset owner, department for each
asset, and whether the asset has been approved to connect to network. For
mobile end-user devices, MDM-type tools can support this process where
appropriate. This inventory includes assets connected to infrastructure
physically, virtually, remotely, and within cloud environments. Addition-
ally, it includes assets that are regularly connected to enterprise’s network
infrastructure, even if they are not under control of the enterprise. Re-
view and update the inventory of all enterprise assets bi-annually, or more
frequently.

1.5 Use a passive discovery tool to identify assets connected to the enterprise’s
network. Review and use scans to update the enterprise’s asset inventory
at least weekly, or more frequently.

5.1 Establish and maintain an inventory of all accounts managed in enterprise.
The inventory must include both user and administrator accounts. The
inventory, at minimum, should contain person’s name, username, start/stop
dates, and department. Validate that all active accounts are authorized,
on a recurring schedule at a minimum quarterly, or more frequently.

5.2 Use unique passwords for all enterprise assets. Best practice implementa-
tion includes, at a minimum, an 8-character password for accounts using
MFA and a 14-character password for accounts not using MFA.

5.3 Delete or disable any dormant accounts after a period of 45 days of inac-
tivity, where supported.

5.4 Restrict administrator privileges to dedicated administrator accounts on
enterprise assets. Conduct general computing activities, such as internet
browsing, email, and productivity suite use, from the user’s primary, non-
privileged account.

5.5 Establish and maintain an inventory of service accounts. At minimum,
inventory must contain department owner, review date, and purpose. Per-
form service account reviews to validate that all active accounts are autho-
rized, on a recurring schedule at a minimum quarterly, or more frequently.

5.6 Centralize account management through a directory or identity service.
12.1 Maintain an up-to-date inventory of all organization’s network boundaries.
12.2 Establish and maintain secure network architecture. A secure network must

address segmentation, least privilege, availability, at minimum.

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Motivation
	System Overview
	Research Challenges
	Our Contributions
	Thesis Outline

	Background Knowledge
	Event Tracing for Windows (ETW)
	Centralized Log Monitoring Agent Infrastructure and SPLUNK
	MITRE ATT&CK Framework
	Critical Security Controls
	LLM and Prompt Engineering

	SCAHunter: Scalable Threat Hunting through Decentralized Hierarchical Monitoring Agent Architecture
	Introduction
	Related Works
	Problem Formalization
	Distributed Hierarchical Monitoring Agent Architecture Overview
	Console Agent (CA) or Manager
	Composite Event Detector Agent (CEDA)
	Event Filtering Agent (EFA)
	Agent Communication Protocol
	ESR Decomposition and Agent Hierarchy Generation.
	Distributed Hierarchical Monitoring Use Case Demonstration

	Implementation and Evaluation
	Implementation Details
	Evaluation

	Static ESP rule generation for Attack Signature
	Conclusion, Limitations and Future Work

	Prompting LLMs to Enforce and Validate CIS Critical Security Controls
	Introduction
	Related Works
	Overview of the CSC Validation
	CSC Ontology
	KMI and KEI Extraction and Measurement: Manual Approach
	KMI and KEI Extraction and Measurement: Prompting the LLM
	CSCMonitor: Hierarchical Monitoring of Extracted Measures

	CSC enforcement validation using Prompt engineering: a case study
	Evaluation
	Metric Implementation Demonstration using LLM

	Conclusion and Discussion

	Conclusions
	REFERENCES
	
	CSC Safeguard

